
On the NP-Hardness of Two Scheduling
Problems Under Linear Constraints

Kameng Nip(B)

School of Mathematical Sciences, Xiamen University, Xiamen, China

kmnip@xmu.edu.cn

Abstract. In this work, we investigate the computational complexity
of two different scheduling problems under linear constraints, including
single-machine scheduling problem with total completion time and no-
wait two-machine flow shop scheduling problem. In these problems, a set
of jobs must be scheduled one or more machines while the processing
times of them are not fixed and known in advance, but are required to
be determined by a system of given linear constraints. The objective is
to determine the processing time of each job, and find the schedule that
minimizes a specific criterion, e.g., makespan or total completion time
among all the feasible choices. Although the original scheduling prob-
lems are polynomially solvable, we show that the problems under linear
constraints become NP-hard. We also propose polynomial time exact or
approximation algorithms for various special cases of them. Particularly,
we show that when the total number of constraints is a fixed constant,
both problems can be solved in polynomial time by utilizing the schedul-
ing algorithms and the properties of linear programming.

Keywords: Scheduling · linear programming · computational
complexity

1 Introduction

In the presented work, we study two different machine problems under linear
constraints, including single-machine scheduling problem with minimizing total
completion time 1||∑j Cj and no-wait two-machine flow shop scheduling prob-
lem F2|no−wait|Cmax. In scheduling problem under linear constraint problems,
the processing times of jobs are not fixed and known beforehand, which distin-
guishes them from classic scheduling problems and adds an additional layer
of flexibility to the decision-making process. Instead, the decision maker only
knows the information that the processing times satisfy a system of given linear
constraints. The goal is to determine the processing time of each job, and the

This research work is partially supported by the Natural Science Foundation of Fujian
Province of China No. 2021J05011 and the Fundamental Research Funds for the Central
Universities of Xiamen University No. 20720210033.

c© Springer Nature Switzerland AG 2023
M. Li et al. (Eds.): IJTCS-FAW 2023, LNCS 13933, pp. 58–70, 2023.
https://doi.org/10.1007/978-3-031-39344-0_5

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-39344-0_5&domain=pdf
https://doi.org/10.1007/978-3-031-39344-0_5

Scheduling Problems Under Linear Constraints 59

schedule to one or more machines such that certain objective, e.g., the makespan
Cmax or the total completion time

∑
j Cj is minimized.

The scheduling problem under linear constraints (SLC in short) was first
introduced in [18], in which the machine environment is identical parallel machine
and the objective is to minimize the makespan, that is, P ||Cmax where Cmax is
the completion time of the last job. More specifically, there are k identical par-
allel machines and n jobs to be processed, with a matrix A ∈ R

k×n and a vector
b ∈ R

k×1. The processing times x = (x1, ..., xn) ∈ R
n are also decision variables

that have to satisfy Ax ≥ b and x ≥ 0. The objective of the SLC problem is
to find the values of processing times x as well as the schedule of jobs to the
machines, which leads to the minimum makespan among all the feasible choices.
Note that the SLC problem is a generalization of the original scheduling problem,
since one can reduce the original one to the SLC problem by setting the linear
constraints as x1 = p1, x2 = p2, ..., xn = pn, where pi is the fixed processing
times of the problem without linear constraints. Moreover, the authors showed
that if the number of linear constraints k is a fixed constant, then the SLC
problem can be solved in polynomial time through searching the basic feasible
solutions of a series of linear programs. They also proposed several approxima-
tion algorithms for the general case where k is an input of problem instance. It
is worth-noting that the original parallel machine scheduling problem P ||Cmax is
a widely recognized NP-hard problem even for the case of two machines, and is
strongly NP-hard in general [4]. Subsequently, several scheduling problems that
involve processing times or other parameters (such as machine speeds) satisfying
linear constraints have been investigated in this research direction. These prob-
lems includes uniformly parallel machines [27,28], the two-machine flow shop
machine and other shop machine environments [16]. The above results illustrate
a sharp difference in computational complexity between the original scheduling
problems and those under linear constraints. For instance, the two-machine flow
shop scheduling problem F2||Cmax can be solved in polynomial time by John-
son’s rule [10], while the two-machine flow shop scheduling problem under linear
constraints (2-FLC in short) is NP-hard in the strong sense as shown in [15]. In
comparison, the two-machine open shop scheduling problem under linear con-
straints (2-OLC in short) can be solved in polynomial time [16], which has the
similar computational complexity as the original two-machine open shop schedul-
ing problem O2||Cmax [6]. Additionally, there have been recent research on dif-
ferent other combinatorial optimization problems with linear constraints, such
as bin packing problem [24], knapsack problem [19], and various graph optimiza-
tion problems [14,17]. The findings of these studies prompt further investigation
into the computational complexity and algorithmic designs for problems under
linear constraints. Such research could potentially offer theoretically benefits to
the broader field combinatorial optimization as well.

As indicated in previous works, the scheduling problems under linear con-
straints could have potential practical applications beyond their theoretical inter-
est. To motivate the two problems discussed in this work, we present some appli-
cation scenarios as follows.

60 K. Nip

– Consumer service. The single machine scheduling problem, which minimizes
total completion time, has a wide range of applications in service systems,
such as hospitals, restaurants, and banks to enhance consumer satisfaction
[21]. The processing time of each job can be viewed as a service time of each
consumer, and the machine can be viewed as a service producer. The common
objective to the service producer is to decide the serving schedule that can
minimize the mean total waiting and service time of the consumers, which
is closely related to the total completion time (also called mean flow time in
the literature) of jobs in the machine. In the simplest and offline setting, the
service producer possesses complete information regarding the service time
required for each consumer, say, those make reservations for the upcoming
business day. Therefore, it is optimal to schedule the service order according
to the famous shortest processing time first rule [21], which is also known
as Smith’s rule [23], such that the mean total waiting time is minimized.
However, in some situations, it is possible that the service time of each cus-
tomer is not so accurately determined and could be flexible. For example,
consider the scenario outlined in Table 1 for a concrete illustration. Assume

Table 1. Example for the application of consumer service.

Constraints Consumer

1 2 · · · n

revenue 100x1 200x2 · · · 120xn ≥10000

resource A 3x1 5x2 · · · 7xn ≤30

resource B 5x1 10x2 · · · 6xn ≤50
...

...
...

...
...

...

min. of 1 x1 0 · · · 0 ≥10

max. of 1 x1 0 · · · 0 ≤20

min. of 2 x2 0 · · · 0 ≥15

max. of 2 x2 0 · · · 0 ≤30
...

...
...

...
...

...

max. of n 0 0 · · · xn ≤15

that we have n consumer to be served, and xi is the service time of consumer
i. Each consumer has an interval of her acceptable service time based on her
own situation, e.g., 10 ≤ x1 ≤ 20 for consumer 1, which indicates that the
appropriate time to serve this consumer would be between 10 and 20 unit
times. Moreover, each unit of service time will generate a specific amount
of profit or utility to the service producer. For example, if the service time
of consumer 1, 2, ..., n are x1, ..., n, respectively, then the service producer
would receive revenues of 100x1, 200x2, ..., 120xn, respectively. The service
producer aims to gain a total revenue of at least 10000, which naturally leads

Scheduling Problems Under Linear Constraints 61

to 100x1+200x2+ · · · 120xn ≥ 10000. Moreover, the service typically requires
the consumption of various resources, including human labor, electricity, com-
putational resources, and more. Particularly in Table 1, each unit service time
of consumer 1 requires 3 unit amounts of resource A, 5 unit amounts for con-
sumer 2, and so forth. In other words, the processing time of jobs should also
satisfy the linear constraint 3x1 + 5x2 + · · · 7xn ≤ 30 for the limit of resource
A, and so for the other resources. The service provider needs to assign service
times to consumers based on linear constraints and schedule their service to
minimize the total completion time.

– Industrial Production. Scheduling problems have a wide range of applications
in industrial production. In previous works [15,16,18], the authors presented
various practical scenarios regarding the scheduling problems under linear
constraints. For instance, the 2-FLC problem is motivated by steel manu-
facturing [15,16]. The decision maker wants to obtain specific quantities of
several raw metals by extracting them from multiple types of steel. Each
type of steel (iron, copper, aluminum, and etc.) corresponds to a job. The
restrictions such as requirements of the raw metals corresponds to the linear
constraints of the processing times. There are different essential steps in the
flow-shop production process, such as wire-drawing and annealing, and must
be completed in that order for each job. The decision maker aims to deter-
mine the processing time of each job while consider linear constraints, and to
schedule the jobs on the flow-shop machines to minimize the makespan.
In certain scenarios, such as chemical processing, food processing, automobile
assembly and working planning [3,8], it is necessary for a job to start process-
ing on the second machine immediately after completing its operations on the
first machine. For instance, if the materials are not cooled down quickly, it
can cause undesirable issue such as transforming into some other substances.
Therefore, it is practical to extend the above 2-FLC problem to the machine
environment that the jobs satisfy no-wait restrictions.

In this work, we focus on investigating the computational complexity of
the two scheduling problems under linear constraints mentioned above, namely,
single-machine scheduling problem under linear constraints (with minimizing
total completion time) and no-wait two-machine flow shop scheduling problem
under linear constraints. We show that both two problems are NP-hard. It is
worth noting that the original problems 1||∑j Cj and F2|no − wait|Cmax can
be solved in polynomial time, as we will review in later sections. Our findings
indicate that solving the problems under linear constraints is more computa-
tionally difficult than solving their original counterparts. Moreover, we propose
approximation algorithms for the general cases, which are obtained by solving
some specific linear programs. Then we consider several nontrivial special cases
of them. In particular, we show that if the total number of fixed constraints is a
constant, then both problems can be solved in polynomial time. The algorithms
are based on the properties of basic feasible solutions for linear programming
and their scheduling algorithms.

62 K. Nip

The remainder of this work is organized as follows. In Sect. 2, we study the
single machine scheduling problem under linear constraints, while in Sect. 3,
we study the no-wait two-machine flow shop scheduling problem under linear
constraints. For each section, we first formally define the corresponding problem
and briefly review the related literature. Then, we analyze the computational
complexity, and present polynomial-time optimal or approximation algorithms
for various cases. Finally, in Sect. 4, we provide some concluding remarks.

2 Single Machine Scheduling Under Linear Constraints

2.1 Problem Definition and Literature Review

The single machine scheduling problem under linear constraints (SSLC problem
in short) is formally defined as follows.

Definition 1. Given n jobs and a single machine. Each job i has a processing
time xi, which are determined by k linear constraints Ax ≥ b with A ∈ R

k×n

and b ∈ R
k×1. The goal of the SSLC problem is to determine the processing

times of the jobs such that they satisfy the linear constraints and to schedule the
jobs to the machines to minimize the total completion time

∑
j Cj.

The problem 1||∑j Cj is perhaps the simplest scheduling model studied in
the field of scheduling. In [23], it is shown that the optimal schedule is to assign
the jobs in a non-decreasing order of their processing jobs. Such rule is referred
to Smith’s rule or the shortest processing time first rule [21], and can be imple-
mented in O(n log n) time. In other words, let p1 ≤ p2 ≤ ... ≤ pn the (fixed)
processing times of the n jobs and OPT be the optimal value, then the optimal
total completion time for 1||∑j Cj is given by

OPT = np1 + (n − 1)p2 + · · · + 2pn−1 + pn. (1)

Smith [23] also extended the idea of Simth’s rule to solve a more general model
1||∑j wjCj , in which each job has a nonnegative weight wj and the objective is
to minimize the total weighted completion time. Later, [1] showed that a more
complicated extension to the unrelated parallel machine environments R||∑j Cj

can be solved in polynomial time, by reducing it to the transportation problem.
However, many slight extensions of single machine scheduling problem turn out
to be NP-hard. For instance, [1] showed that P2||∑j wjCj is NP-hard, and [12]
proved that 1|rj |

∑
j Cj is strongly NP-hard in which rj is the arrival time of job

j. For more details on the machine scheduling problem with minimizing total
completion time, we refer to the textbook [21] and some recent works [9,11].
For the scheduling problem under the linear constraints, [18] showed that the
problem 1||Cmax with linear constraints is also polynomially solvable, by solving
a linear program that minimizes the total processing time

∑n
j=1 pj . Conversely,

the SSLC problem turns out to be more difficult than the original scheduling
problem 1||∑j Cj , as we will demonstrate that it is indeed NP-hard.

Scheduling Problems Under Linear Constraints 63

2.2 Computational Complexity

By (1), the optimal schedule of 1||∑j Cj is to assign the jobs in a non-decreasing
order of their processing times. Therefore, we can reformulate the SSLC problem
as the following mathematical optimization problem (2):

min nΘ1(x) + (n − 1)Θ2(x) + · · · + 2Θn−1(x) + Θn(x) (2a)
s.t. Ax ≥ b (2b)

x ≥ 0, (2c)

where Θk : Rn → R maps x to its k-largest element. In other words, we have
Θ1(x) = mini=1,...,n{xi}, Θn(x) = maxi=1,...,n{xi} and Θ1(x) ≤ Θ2(x) ≤ · · · ≤
Θn(x) where Θk(x) is the k-largest element of x. We remark that the objective
function is considered as a weighted average function in the literature [20,25,26].
Particularly, let f(x) = w1Θ1(x) + w2Θ2(x) · · · + wn−1Θn−1(x) + wnΘn(x). If
the weights satisfy w1 ≤ w2 ≤ · · · ≤ wn, then it has been shown that the nonlin-
ear optimization problem min f(x) subject to (2b) and (2b) can be equivalently
reformulated as a linear programming problem [20]. In other words, the corre-
sponding problem can be solvable in polynomial time, e.g., by some ellipsoid
method or interior point method [13]. However, the idea of transforming (2) into
an equivalent linear programming formulation may not be a viable option when
the weights follow the condition w1 ≥ w2 ≥ · · · ≥ wn. To the best of our knowl-
edge, the computational complexity of such linear programming problem with a
non-increasing weighted average objective function is unclear. In the following,
we show that the SSLC problem (2) is NP-hard, which significantly differs from
the original scheduling problem 1||∑j Cj , as well as other optimization problems
involving a weighted average function.

Theorem 1. The SSLC problem (2) is NP-hard.

Proof. We reduce the independent set problem to the decision problem of the
SSLC problem (2). The decision problem of independent set problem is given
a graph G = (V,E) and an integer K, to decide whether there is a vertex set
V ′ ∈ V with size at least K in which no two vertices are adjacent. Let n = |V |
and m = |E|, we construct an instance of SSLC with 2n variables that has
processing times denoted by x1, ..., xn and y1, ..., yn, where xj and yj correspond
to vertex vj in V , and m + n + 1 linear constraints:

n∑

i=1

xi ≥ K (3a)

xu + xv ≤ 1, ∀(u, v) ∈ E (3b)
xj + yj = 1, ∀j = 1, ..., n (3c)

x,y ≥ 0. (3d)

It suffices to show that there is an independent set with size at least K if and
only if there is a setting of processing times for the jobs that are feasible to (3) of

64 K. Nip

the SSLC problem, and a corresponding schedule with a total completion time
of no more than n(n+1)

2 .
On one hand, if there is an independent set V ′ with size at least K, then for

each vertex vj ∈ V ′, we set xj = 1 and yj = 0; for vj �∈ V ′, we set xj = 0 and yj =
1. The processing times of jobs are feasible to (3), since the jobs correspond to V ′

form an independent set. Moreover, there are exactly n jobs that have processing
times 1, and the other n jobs have processing times 0. The total completion time
of this schedule of this instance is exactly n + (n − 1) + · · · + 1 = n(n+1)

2 .
On the other hand, assume that there is an instance of the SSLC problem,

in which the processing times x and y are feasible to (3), and a corresponding
schedule S with total completion time no more than n(n+1)

2 . Let p1 ≤ p2 ≤
· · · ≤ pn−1 ≤ pn be the n largest values among the 2n variables x and y in this
solution, where pj could be certain xi or yi for some i. Accordingly, for each
j = 1, ..., n, we denote p̃j = yi if pj = xi, and p̃j = xi if pj = yi. Note that we
have xj + yj = 1 for all j by constraint (3c), and 1 − pn ≥ · · · ≥ 1 − p1 by the
definition of pj . In other words, we relabel the variables x1, ..., xn and y1, ..., yn

by p1, ..., pn and p̃1, ..., p̃n, which satisfies

p̃n ≤ · · · ≤ p̃1 ≤ p1 ≤ · · · ≤ pn. (4)

Next we claim that any feasible schedule of this instance must have total com-
pletion time at least n(n+1)

2 , and the equality holds only if p1 = · · · = pn = 1
and p̃1 = · · · = p̃n = 0. To see this, we consider the best possible schedule of this
instance, which is scheduled by the shortest processing time first/Smith’s rule.
Then from (1) and (4), its total completion time is given by

2np̃n + (2n − 1)p̃n−1 + · · · + (n + 1)p̃1 + np1 + · · · + 2pn−1 + pn

= 2n(1 − pn) + pn + (2n − 1)(1 − pn−1) + 2pn−1 + · · · + (n + 1)(1 − p1) + np1
= 2n + (2n − 1) + · · · + (n + 1) + (1 − 2n)pn + (3 − 2n)pn−1 + · · · + (−1)p1.

Consider the following linear programming problem:

min (1 − 2n)pn + (3 − 2n)pn−1 + · · · + (−1)p1
s.t. 0 ≤ pj ≤ 1, ∀j = 1, ..., n

(5)

Since all coefficients of its objective function are negative, we can verify that
p1 = · · · = pn = 1 is the unique optimal solution to (5). By definition, it follows
that p̃1 = · · · = p̃n = 0 and the claim is proved. Therefore, the total completion
time of any feasible schedule to this instance is no less than the optiaml value to
(5), namely, n+(n− 1)+ · · ·+1 = n(n+1)

2 . By assumption, the total completion
time of the schedule in this SSLC instance is exactly n(n+1)

2 , in which exactly
n variables among x and y are 1, and the other n variables are 0. We can just
select the vertex vj with xj = 1 into V ′, which constitutes an independent set
with size at least K by (3a) and (3b). It finishes the proof of the theorem. �

2.3 Algorithms

The hardness result in Theorem 1 indicates that it is impossible to find an
optimal solution to (2) in polynomial time unless P = NP . In this subsection,

Scheduling Problems Under Linear Constraints 65

we develop algorithms for solving the SSLC problem. For the general case, we
can obtain an n-approximation algorithm as described in Theorem 2. Due to the
limitation of space, we omit the details of the subsequent lemmas and theorems.
The details will be provided in the full version.

Theorem 2. The SSLC problem has an n-approximation algorithm.

It should be noted that the number of constraints k in the instance of the
hardness reduction in Theorem 1 is not a fixed constant. In the following, we
consider a special case when k is not fixed. We show that this case can be solved
in polynomial time, which depends on the following property.

Lemma 1. The SSLC problem has an optimal solution in which at most k jobs
have nonzero processing time.

By Lemma 1, there exists an optimal solution that contains a constant num-
ber k of nonzero processing time. Therefore, we can find the optimal solution by
first enumerating all the nonzero processing time jobs and the optimal schedule,
then solve a specific linear program to obtain the best processing times. The
detail is summarized in Algorithm 1 and Theorem 3.

Algorithm 1. Enumeration algorithm for the SSLC problem with fixed k

1: for each subset J ′ of J with k jobs do
2: for each possible permutation of J ′ do
3: Let (σ(1), ..., σ(k)) be the permutation, solve the following linear program

while setting xi = 0 for i �∈ J ′:

min kxσ(1) + (k − 1)xσ(2) + · · · + xσ(k)

s.t. Ax ≥ b
x ≥ 0.

(6)

4: if (6) is feasible then
5: Let the processing times of jobs be the optimal solution to (6), and record

the schedule and the makespan.
6: return the schedule with the smallest total completion time among all these iter-

ations and its corresponding processing times.

Theorem 3. Algorithm 1 returns an optimal solution to the SLC problem and
has time complexity O(nkL), where the parameter L is the input length of (6).

3 No-Wait Two-Machine Flow Shop Scheduling Problem
Under Linear Constraints

3.1 Problem Definition and Literature Review

The no-wait two-machine flow shop scheduling problem under the linear con-
straints (no-wait 2FLC problem in short) is formally defined as follows.

66 K. Nip

Definition 2. Given n jobs and two flow-shop machines. Each job has to be
processed on the first machine and then on the second machine, and the process
in the second machine must be start immediately after its finish in the first
machine (no-wait restriction). The processing times of job i on the first machine
and the second machine are xi and yi respectively, which are determined by k
linear constraints, Ax + Cy ≥ b with A,C ∈ R

k×n and b ∈ R
k×1. The goal

of the no-wait 2FLC problem is to determine the processing times of the jobs
such that they satisfy the linear constraints and to schedule the jobs to the two
flow-shop machines to minimize the makespan.

Flow shop scheduling is one of the three basic models (open shop, flow shop,
job shop) of multi-stage scheduling problems. Flow shop scheduling with mini-
mizing the makespan is usually denoted by Fm||Cmax, where m is the number
of machines. Garey et al. [5] proved that Fm||Cmax is strongly NP-hard for
m ≥ 3, and Hall [7] proposed a PTAS algorithm for Fm||max. Particularly, the
two-machine flow shop scheduling problem F2||Cmax can be solved by Johnson’s
algorithm in O(n log n) time [10]. If all the jobs are processed in the same order,
then we call this schedule a permutation schedule. It is known that F2||Cmax

or F3||Cmax has an optimal permutation schedule [2]. The no-wait flow shop
scheduling, which is denoted by Fm|no − wait|Cmax. In Fm|no − wait|Cmax,
once a job has been processed, each stage must be started after its completion
of the previous stage without any delay. In the traditional setting, each job
has exactly two distinct operations and must be scheduled fulfilling the no-wait
restrictions. In other words, each of the two processes of jobs must be sched-
uled even if it has zero processing time (see, e.g., [3, Section 6.3]). We note that
the no-wait 2-FLC problem studied in this paper correspond to this traditional
setting of no-wait restriction. Gilmore and Gomory [6] proposed an O(n log n)
algorithm to solve this problem in polynomial time, which is by relating it to a
polynomially solvable case of the traveling salesman problem. Researchers also
concerned on the problem in which some job may have only one stage, namely,
with missing operations. Surprisingly, [22] showed that the problem with miss-
ing operations is NP-hard in the strong sense and hence is much harder than
that without missing operations. Furthermore, it is observed that any feasible
schedule of F2|no − wait|Cmax must be a permutation schedule. We refer to the
literature [3,8] for more discussion of no-wait scheduling and its applications.

For 2-FLC problem, [15,16] showed that the problem under linear constraints
is NP-hard in the strong sense, which sharply differs from the computational
complexity of the original F2||Cmax. In the following, we will show that the
no-wait 2-FLC problem is also NP-hard, which is more difficult than its original
version. We remark that the hardness result of 2-FLC problem cannot be directly
applied to no-wait 2-FLC problem, since the jobs used in the reduction [15,16]
do not satisfy no-wait restriction.

To close this section, we state a classic result of F2|no − wait|Cmax (see,
e.g., [3, Section 6.3]), which will be frequently used in the subsequent analysis.
Let (σ(1), σ(2), ..., σ(n)) be an arbitrary feasible schedule of F2|no−wait|Cmax.
Then the makespan of this schedule is given by

Scheduling Problems Under Linear Constraints 67

Cmax = xσ(1) +
n∑

i=2

max(yσ(i−1), xσ(i)) + yσ(n). (7)

3.2 Computational Complexity

In this section, we show that the no-wait 2-FLC problem is NP-hard. As men-
tioned above, we consider the flow-shop scheduling problem without any miss-
ing operations. For the original problem without linear constraints, on can use
Gilmore and Gomory’s algorithm [6] to find an optimal schedule in polynomial
time. Our hardness result indicates that the problem under linear constraints is
much more difficult. We summarize the result in Theorem 4.

Theorem 4. The no-wait 2-FLC problem is NP-hard, even if each job has
strictly positive processing times on both stages.

3.3 Algorithms

In the general case, it can be observed that a straightforward 2-approximation
algorithm exists for the no-wait 2-FLC problem, which is based on solving a
linear program that minimizes the total processing time of the jobs.

Theorem 5. The no-wait 2-FLC problem has a 2-approximation algorithm.

Next we study a special case where the no-wait 2-FLC problem can be solved
in polynomial time, in which the number of constraints k is fixed. The key is
to prove a similar result as the SSLC problem, which shows that the no-wait 2-
FLC problem has an optimal solution with a fixed number of nonzero processing
time jobs if k is fixed. We remark that the case of no-wait 2-FLC problem is
more complicated than Lemma 2, since the objective function (7) is not linear
in general even when the optimal schedule σ is known.

Lemma 2. The no-wait 2-FLC problem has an optimal solution, in which each
machine has at most k jobs with nonzero processing time.

Based on Lemma 2, we propose an enumeration algorithm for 2-FLC problem
with a fixed number of constraints k. We summarize it in Algorithm 2 and
Theorem 6.

Theorem 6. Algorithm 2 returns an optimal solution to the no-wait 2FLC prob-
lem and has time complexity O(n2kL), where the parameter L is the input length
of (8).

68 K. Nip

Algorithm 2. Enumeration algorithm for 2-FLC problem with fixed k

1: for each subset J ′ of J with k jobs do
2: for each possible permutation of the jobs in J ′ do
3: Let (σ(1), ..., σ(k)) be the permutation, i.e., the schedule of these k jobs. Solve

the following LP while setting yi = 0 for i �∈ J ′.

min xσ(1) +
1

2

n∑

i=2

(yσ(i−1) + xσ(i) + z+
i + z−

i) + yσ(n) (8a)

s.t.

n∑

i=1

ajixi + cjiyi ≥ bj ∀ j = 1, . . . , k

(8b)

xσ(i) + z+
i = yσ(i−1) + z−

i ∀ i = 2, . . . , n
(8c)

z+
i , z−

i , xi, yi ≥ 0 ∀ i = 1, . . . , n,

4: if (8) is feasible then
5: Let the processing times of jobs be the optimal solution to (8), and record

the schedule and the makespan.
6: return the schedule with the smallest makespan among all these iterations and its

corresponding processing times.

4 Conclusions

In this work, we investigate the computational complexity of two different
scheduling problems under linear constraints. We show that the problems with
linear constraints are NP-hard, while the original versions of both problems
are polynomially solvable. Additionally, we propose polynomial time exact or
approximation algorithms for various cases of the problems. One potential
research direction is to develop improved approximation algorithms for the gen-
eral cases of these problems, or to show the possibility of inapproximability.
Moreover, it is interesting to explore other types of objectives (e.g., lateness or
tardiness) or machine restrictions (e.g., release date, due dates or job unavail-
ability) for the machine scheduling problems under linear constraints.

References

1. Bruno, J.L., Coffman, E.G., Jr., Sethi, R.: Scheduling independent tasks to reduce
mean finishing time. Commun. ACM 17(7), 382–387 (1974)

2. Conway, R.W., Maxwell, W.L., Miller, L.W.: Theory of Scheduling. Reading (1967)
3. Emmons, H., Vairaktarakis, G.: Flow Shop Scheduling: Theoretical Results, Algo-

rithms, and Applications. Springer, New York (2013). https://doi.org/10.1007/
978-1-4614-5152-5

4. Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory
of NP-Completeness. Freeman, New York (1979)

https://doi.org/10.1007/978-1-4614-5152-5
https://doi.org/10.1007/978-1-4614-5152-5

Scheduling Problems Under Linear Constraints 69

5. Garey, M.R., Johnson, D.S., Sethi, R.: The complexity of flowshop and jobshop
scheduling. Math. Oper. Res. 1, 117–129 (1976)

6. Gilmore, C., Gomory, R.E.: Sequencing a one state-variable machine: a solvable
case of the travelling salesman problem. Oper. Res. 12, 655–679 (1964)

7. Hall, L.A.: Approximability of flow shop scheduling. Math. Program. 82, 175–190
(1998)

8. Hall, N.G., Sriskandarajah, C.: A survey of machine scheduling problems with
blocking and no-wait in process. Oper. Res. 44(3), 510–525 (1996)

9. Jansen, K., Lassota, A., Maack, M., Pikies, T.: Total completion time minimization
for scheduling with incompatibility cliques. In: Proceedings of the International
Conference on Automated Planning and Scheduling, vol. 31, no. 1, pp. 192–200
(2021)

10. Johnson, S.M.: Optimal two- and three-stage production schedules with setup times
included. Naval Res. Logist. Q. 1, 61–68 (1954)

11. Knop, D., Koutecký, M.: Scheduling meets n-fold integer programming. J. Sched.
21(5), 493–503 (2018)

12. Lawler, J.L., Johnson, E.L., Lenstra, J.K., Rinnooy Kan, A.H.G., Shmoys, D.B.:
The complexity of machine scheduling problems. Ann. Discrete Math. 1, 343–362
(1977)

13. Luenberger, D.G., Ye, Y.: Linear and Nonlinear Programming, 4th edn. Springer,
Cham (2016)

14. Nip, K., Shi, T., Wang, Z.: Some graph optimization problems with weights satis-
fying linear constraints. J. Comb. Optim. 43, 200–225 (2022)

15. Nip, K., Wang, Z.: Two-machine flow shop scheduling problem under linear con-
straints. In: Li, Y., Cardei, M., Huang, Y. (eds.) COCOA 2019. LNCS, vol. 11949,
pp. 400–411. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-36412-
0 32

16. Nip, K., Wang, Z.: A complexity analysis and algorithms for two-machine shop
scheduling problems under linear constraints. J. Sched. (2021)

17. Nip, K., Wang, Z., Shi, T.: Some graph optimization problems with weights sat-
isfying linear constraints. In: Li, Y., Cardei, M., Huang, Y. (eds.) COCOA 2019.
LNCS, vol. 11949, pp. 412–424. Springer, Cham (2019). https://doi.org/10.1007/
978-3-030-36412-0 33

18. Nip, K., Wang, Z., Wang, Z.: Scheduling under linear constraints. Eur. J. Oper.
Res. 253(2), 290–297 (2016)

19. Nip, K., Wang, Z., Wang, Z.: Knapsack with variable weights satisfying linear con-
straints. J. Global Optim. 69(3), 713–725 (2017). https://doi.org/10.1007/s10898-
017-0540-y

20. Ogryczak, W., Śliwiński, T.: On solving linear programs with the ordered weighted
averaging objective. Eur. J. Oper. Res. 148(1), 80–91 (2003)

21. Pinedo, M.: Scheduling: Theory, Algorithms, and Systems. Springer, New York
(2016)

22. Sahni, S., Cho, Y.: Complexity of scheduling shops with no wait in process. Math.
Oper. Res. 4(4), 448–457 (1979)

23. Smith, W.E.: Various optimizers for single-stage production. Naval Res. Logist. Q.
3, 59–66 (1956)

24. Wang, Z., Nip, K.: Bin packing under linear constraints. J. Comb. Optim. 34(4),
1198–1209 (2017). https://doi.org/10.1007/s10878-017-0140-2

25. Yager, R.R.: On ordered weighted averaging aggregation operators in multicriteria
decisionmaking. IEEE Trans. Syst. Man Cybern. 18(1), 183–190 (1988)

https://doi.org/10.1007/978-3-030-36412-0_32
https://doi.org/10.1007/978-3-030-36412-0_32
https://doi.org/10.1007/978-3-030-36412-0_33
https://doi.org/10.1007/978-3-030-36412-0_33
https://doi.org/10.1007/s10898-017-0540-y
https://doi.org/10.1007/s10898-017-0540-y
https://doi.org/10.1007/s10878-017-0140-2

70 K. Nip

26. Yager, R.R.: Constrained OWA aggregation. Fuzzy Sets Syst. 81(1), 89–101 (1996)
27. Zhang, S., Nip, K., Wang, Z.: Related machine scheduling with machine speeds

satisfying linear constraints. In: Kim, D., Uma, R.N., Zelikovsky, A. (eds.) COCOA
2018. LNCS, vol. 11346, pp. 314–328. Springer, Cham (2018). https://doi.org/10.
1007/978-3-030-04651-4 21

28. Zhang, S., Nip, K., Wang, Z.: Related machine scheduling with machine speeds
satisfying linear constraints. J. Comb. Optim. 44(3), 1724–1740 (2022)

https://doi.org/10.1007/978-3-030-04651-4_21
https://doi.org/10.1007/978-3-030-04651-4_21

	On the NP-Hardness of Two Scheduling Problems Under Linear Constraints
	1 Introduction
	2 Single Machine Scheduling Under Linear Constraints
	2.1 Problem Definition and Literature Review
	2.2 Computational Complexity
	2.3 Algorithms

	3 No-Wait Two-Machine Flow Shop Scheduling Problem Under Linear Constraints
	3.1 Problem Definition and Literature Review
	3.2 Computational Complexity
	3.3 Algorithms

	4 Conclusions
	References

