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Abstract. A major problem in cake-cutting is how to both fairly and
efficiently allocate the cake. Egalitarian welfare, which prioritizes agents
with the worst utilities, is a compelling notion that provides guaran-
tees for both fairness and efficiency. In this paper, we investigate the
complexity of finding a maximized egalitarian welfare (MEW) allocation
when all the value density functions are piecewise-constant. We design an
FPT (fixed-parameter tractable) algorithm (with respect to the number
of the agents) for computing an MEW allocation when all the bundles
are requested to be contiguous. Furthermore, we show that this problem
is NP-hard to approximate to within any constant factor.
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1 Introduction

The cake-cutting problem is one of the most fundamental research problems
explored in social science, economics, computer science, and other related
fields (Steinhaus 1948, 1949; Aumann and Dombb 2015; Brams et al. 2012;
Cohler et al. 2011; Bei et al. 2012, 2017; Tao 2022). Its primary objective is to
fairly distribute a heterogeneous and divisible resource (also called a cake) among
a group of agents, each with their own preferences for different portions of the
resource. Although the setting seems simple, the problem becomes interesting
and nontrivial when specific properties (e.g., fairness, efficiency, truthfulness,
etc.) must be met by the output allocation.

How to design an allocation that obtains a high efficiency when fairness is
guaranteed is an important research question of cake-cutting and has garnered
significant interest due to its wide range of applications (e.g., network routing,
public traffic, etc.). Many previous studies have attempted to investigate the
correlation between fairness and efficiency. For example, there are some topics
like the price of fairness (Bertsimas et al. 2011; Roughgarden 2010; Caragiannis
et al. 2012), the complexity of computing the most efficient allocation subject
to fairness constraints (Cohler et al. 2011; Bei et al. 2012; Aumann et al. 2013).
The term “efficiency” mentioned above mostly refers to social welfare, which
is defined as the sum of the agents’ utilities, and the above-mentioned papers
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formulate the problem as a constrained optimization problem where a fairness
notion is served as a constraint and the social welfare is the object that we would
like to optimize.

Other than considering a combination of two separate notions (one for effi-
ciency and one for fairness), there are other allocation criteria/measurements
that embed both fairness and efficiency. Egalitarian welfare, defined as the mini-
mum utility among all agents, is a measurement of both efficiency and fairness. It
is a natural measurement of allocation efficiency. Moreover, from a fairness per-
spective, acquiring excess value for an arbitrary individual may not contribute
to the improvement of egalitarian welfare, as it primarily focuses on the agent
with the lowest value, so we tend to allocate the remaining resources to this
specific agent to make the allocation fairer. In addition, an allocation that maxi-
mizes the egalitarian welfare also satisfies some common fairness criteria such as
proportionality, where an allocation is proportional if each agent receives a share
that is worth at least 1/n fraction of her total value of the entire cake (where n is
the number of the agents).1 In our work, we study the complexity of computing
an allocation with maximum egalitarian welfare (MEW) in the setting where all
the value density functions are piecewise-constant and all the agents are hungry.

Comparison with Other Notions. Other than egalitarian welfare, other notable
notions concerning both efficiency and fairness are Nash welfare and leximin.

Nash welfare is defined as the product of agents’ utilities. It is known that
an allocation maximizing the Nash welfare satisfies the fairness notion envy-
freeness (Kelly 1997), which is stronger than the proportionality mentioned ear-
lier. Compared with Nash welfare, egalitarian welfare puts more focus on the
least happy agent.

An allocation is leximin if it maximizes the utility to the least happy agent,
and, subject to this, it maximizes the utility to the second least happy agent, and
so on. Clearly, a leximin allocation always maximizes egalitarian welfare, and the
notion of leximin places further requirements on the other agents. However, in
many settings, maximizing egalitarian welfare is already NP-hard. We can then
study the design of approximation algorithms for maximizing egalitarian welfare.
Unlike egalitarian welfare which has a single objective to maximize, it is unclear
how to define the approximation version of leximin.

1.1 Related Work

Fairness Notions. Apart from egalitarian welfare, a well-studied fairness notion
is proportionality, which states that each agent receives at least an average value
from her perspective. When there are two agents, proportionality can be easily
achieved through the “I cut, you choose” algorithm, where the first agent cuts

1 It is well known that a proportional allocation always exists even if we require each
agent to receive a connected piece (see, e.g., (Dubins and Spanier 1961)). Therefore,
there exists an allocation with egalitarian welfare of at least 1/n, and the allocation
with optimal egalitarian welfare is proportional.
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the cake into two pieces that she thinks to be equal, then the second agent
chooses one piece that she thinks of higher value. For any number of agents, two
well-known algorithms to guarantee proportional are Dubins-Spanier Dubins and
Spanier (1961) devised in 1961 and Even-Paz Even and Paz (1984) in 1984.

Another fairness notion is envy-freeness, which means each agent prefers her
bundle over any other agent. It is a stronger notion than proportionality, and
an envy-free allocation is also proportional. For two agents, the “I cut, you
choose” still works. However, Dubins-Spanier and Even-Paz algorithms for gen-
eral number of agents are not envy-free. For three agents, an elegant algorithm to
compute an envy-free allocation is Selfridge-Conway (Brams and Taylor 1995).
Furthermore, it has been confirmed that for any number of agents, an envy-free
allocation always exists Aziz and Mackenzie (2017), even if only n − 1 cuts are
allowed (Brams and Taylor 1995).

The third wide-studied notion is equitability. Incomparable to envy-freeness
or proportionality, each agent is assigned a piece of the same value. An equitable
allocation can be achieved by Austin moving-knife procedure for two agents, and
if only one cut is allowed, it can be calculated with full knowledge of the partners’
valuations Jones (2002); Brams et al. (2006). Further, if more than two cuts are
allowed, we can achieve an equitable allocation that is also envy-free Barbanel
and Brams (2011). Austin moving-knife and full revelation procedure can also
be extended to any number of agents, while the latter one still works under con-
tiguous constraints. However, equitability and envy-freeness are not compatible
under such constraints for three or more agents Brams et al. (2006).

Price of Fairness. The price of fairness (POF) is defined as the worst-case ratio
between the optimal welfare obtained and the maximum welfare obtained by a
fair allocation. In Caragiannis et al. (2012)’s work, they have shown, the price of
envy-freeness and proportionality for two agents is 8 − 4

√
3. For n agents, they

show the price of proportionality is Θ(
√

n) and the price of equitability is Θ(n).
The price of proportionality directly implies that the lower bound of the price
of envy-freeness is Ω(

√
n) as envy-freeness implies proportionality. Bertsimas et

al. (2011) further shows the upper bound of the price of envy-freeness is O(
√

n),
concluding the price of envy-freeness is also Θ(

√
n).

MEW in Fair Division. In cake-cutting, the problem of computing MEW (Max-
imum Egalitarian Welfare) has been proven to have a 2-inapproximation ratio
by Aumann et al. (2013).2 With the number of agents being the parameter, they
also developed an FPT PTAS (Polynomial Time Approximation Scheme) for
egalitarian welfare objectives. For indivisible goods, the best-known polynomial-
time algorithm can achieve an approximation factor of O

(√
n log3 n

)
(Asadpour

and Saberi 2010), and this problem has been proven to have a 2-inapproximation
ratio (Aumann et al. 2013).

2 The 2-inapproximation result is in the arXiv version of the paper Aumann et al.
(2013).



266 X. Bu and J. Song

1.2 Our Results

In our paper, we mainly study the complexity of computing MEW allocation in
two settings. In the first setting, each bundle is not required to be contiguous
(i.e. each agent could receive a lot of scattered intervals). This case is relatively
straightforward, and we demonstrate that the MEW allocation can be directly
obtained through linear programming. In the second setting, a stricter constraint
is imposed where each bundle must be contiguous. Despite the moving-knife
procedure being able to output an allocation with 1

n egalitarian welfare, it fails
to extend for computing an MEW allocation. We design an FPT algorithm
with respect to the number of agents for computing an MEW allocation, which
improves the previous result of FPT PTAS by Aumann et al. (2013). Finally, we
prove that this problem is NP-hard to approximate to within any constant factor
by a reduction from 3-SAT, which significantly improves the 2-inapproximability
by Aumann et al. (2013).

2 Preliminaries

Let [n] = {1, . . . , n}. In the cake-cutting problem, the cake is modeled as an inter-
val [0, 1] and is required to allocate to a set of N = [n] agents. Each agent i has a
non-negative value density function fi over the cake [0, 1]. In particular, agent i’s
utility vi to a subset X of the cake is defined as vi(X) =

∫
X

fi(x)dx. Through-
out this paper, we assume her value density function is piecewise-constant, that
is, fi is constant on each contiguous interval separated by a finite number of
breakpoints. We also assume the agents are hungry and normalized, that is, fi

is strictly positive at any point of [0, 1] and for any i ∈ [n], vi ([0, 1]) = 1.
An allocation A = (A1, . . . , An) is a partition of the cake, where Ai ∩Aj = ∅

for any i, j and ∪n
i=1Ai = [0, 1]. Among those bundles, bundle Ai is allocated to

agent i. We say an allocation A = (A1, . . . , An) is equitable if all the agents get
the exact same utility (by their own valuations). Formally, for each i, j ∈ [n],
vi(Ai) = vj(Aj). Bundle Ai is called contiguous if it contains a single interval.
An allocation with contiguous pieces requires that each bundle in the allocation
is contiguous, so such an allocation contains only n − 1 cuts.

The egalitarian welfare (EW) of an allocation A is defined as

EW(A) � mini∈[n]vi(Ai).

Clearly, if an allocation A is proportional (i.e. vi(Ai) ≥ 1
nvi([0, 1])), then EW(A)

is at least 1
n . A common approach for computing a proportional allocation is

called moving-knife procedure, which is defined as follows,

Definition 1 (Moving-knife Procedure). We set a threshold θ = 1
n , and let

a knife moves from the left of the cake to the right. An agent calls ‘stop’ when
her value to the interval left to the knife reaches θ, and we cut the cake and
allocate it to this agent.
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In our paper, we mainly study the problem of computing an allocation that
maximizes egalitarian welfare (MEW). We respectively discuss two scenarios
when the bundles could be non-contiguous and all of them must be contiguous.

Our technique for solving the above problem includes linear programming,
and it is known that an optimal vertex solution can be found in polynomial time.

Lemma 1 (Güler et al. (1993)). For a linear program max{c�x : Ax ≤
b,x ≥ 0}, an optimal solution (if exists) can be found in polynomial time.

To warm up, let us consider a simple scenario where each bundle may not be
contiguous. In Theorem 1, we demonstrate that the MEW allocation can always
be efficiently obtained via linear programming in polynomial time.

Theorem 1. If all the bundles are not required to be contiguous, an MEW allo-
cation can be found in polynomial time.

Proof. First, assume all the different breakpoints of f1, . . . , fn are 0 = p0 < p1 <
. . . < pm = 1, where m ∈ Z

+. Let variable xi,k represent the fractional ratio
that agent i receives from the interval [pk−1, pk]. Consider the following linear
program:

max EW(A)
subject to x1,k + . . . + xn,k = 1, k ∈ [m] (1)

m∑

k=1

xi,kvi ([pk−1, pk]) ≥ EW(A), i ∈ [n] (2)

0 ≤ xi,k ≤ 1, i ∈ [n], k ∈ [m] (3)

Within the above linear program, the constraints (1) ensures each interval
is exactly allocated and the constraints (2) ensure each agent’s utility is no less
than the objective function EW(A). Clearly, {xi,k}i∈[n],k∈[m] could describe an
allocation and it is MEW. Since the linear program can be solved in polynomial
time, the theorem concludes. �

3 Maximize Egalitarian Welfare with Contiguous Pieces

In this section, we will discuss our results when only n − 1 cuts are allowed (i.e.
each agent’s bundle should be contiguous). As mentioned before, the moving-
knife procedure could find a proportional and contiguous allocation, whose egal-
itarian welfare is already 1

n . Inspired by this, a natural idea to compute an MEW
allocation is to first guess the value of the egalitarian welfare, then adopt the
moving-knife algorithm where θ is set as the guessed value. If the moving-knife
procedure works, we can trivially achieve a PTAS algorithm. Unfortunately,
when the threshold θ exceeds 1

n , moving-knife may fail to find an allocation
with egalitarian welfare θ when such allocation exists.



268 X. Bu and J. Song

f1(x) =

{
2 − ε, x ∈ [0, 1

4
] ∪ [ 3

4
, 1]

ε, x ∈ ( 1
4
, 3
4
).

f2(x) = f3(x) =

{
4
3

− 2ε
3

, x ∈ [0, 3
4
]

2ε, otherwise.

Counter-Example of Moving-Knife. Consider a counter-example with three
agents. Assume ε is sufficiently small, and we are given the value density func-
tions as follows,

In the example, the optimal allocation is A1 = [34 , 1], A2 = [0, 3
8 ] and A3 =

[38 , 3
4 ] with MEW as 1

2 − ε
4 . However, it cannot be found through the moving-knife

algorithm, as agent 1 first calls stop at 1
4 , and assume we allocate the second

interval with value 4
3 − ε

3 to agent 2. When ε → 0, agent 3 can only receive the
remaining part with value

(
4
3 − 2ε

3

) × ( 34 − 1
4 − 3

8 ) = 1
6 − ε

12 < 1
2 − ε

4 . Further, in
Sect. 3.2, we provide a constant-inapproximability result.

3.1 Agents with Fixed Permutation

We first consider an easy case when the order of agents receiving the cake is
fixed, that is, for two agents i and j where i < j in the permutation, i needs to
receive a bundle before j. We show that the optimal allocation could be found
in polynomial time. An observation is that we could directly extend it to the
general case of constant n by enumerating all the permutations and handling
each of them.

Next, we begin to present our algorithm for a fixed permutation. As shown
in Algorithm 1, we design a linear programming-based algorithm to compute
an optimal allocation. In our latter analysis, without loss of generality, we
assume the fixed permutation is just (1, 2, . . . , n). We define a series of knifes
{δ0, δ1, . . . , δn} where δi ∈ [0, 1], and let δ0 = 0. For each agent i, we consider
allocating the interval [δi−1, δi] to her. Denote all the different breakpoints of
f1, . . . , fn by 0 < p0 < p1 < · · · < pm = 1, where m ∈ Z

+. Let di be the distance
between knife δi and its right-closest breakpoint pσ(i) (i.e. di � minpk

(pk − δi)
where pk > δi, and pσ(i) � arg minpk

(pk − δi)). Specifically, if δi = 1, by this
definition, pσ(i) and di would be 1 and 0, respectively.

max ŷ (4)
subject to 0 ≤ xi ≤ di, i ∈ [n] (5)

v1,σ(1)x1 = ŷ, (6)
vi+1,σ(i+1)xi+1 − vi+1,σ(i)xi = ŷ, i ∈ [n − 1]. (7)

Now, we move each knife δi from left to right within distance di to achieve
a maximum increase in egalitarian welfare using linear program 4. In the linear
program, we use ŷ to denote the increase of egalitarian welfare and use xi to
denote the distance that knife δi moves. For simplicity, we denote agent i’s
value to an interval [xj , xj+1] with a constant value density as vi,j+1. The linear
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Algorithm 1: Algorithm for computing maximum egalitarian welfare
Input: Each agent i’s value density function fi with all the breakpoints pi∈[m],

and a permutation of agents (i1, i2, . . . in).
Output: An allocation A that maximizes egalitarian welfare.

1 Let y ← 0 denote the maximum egalitarian welfare under this permutation;
2 Let δk ← 0 denote the knife position for agent ik for each k ∈ [n];
3 Let ŷ ← ∞ denote the increment of y within each iteration;
4 while ŷ �= 0 do
5 Let pσ(k) denote the right-closest breakpoint of δk and dk ← pσ(k) − δk;
6 Run linear program 4 to solve the optimal ŷ and xk;
7 Update δk ← δk + xk and y ← y + ŷ ;

8 Let Ai ← [δi−1, δi] for each i ∈ [n];
9 return A = (A1, . . . , An)

program is subject to, first, each agent’s utility to her bundle has the same
increase ŷ, hence, the output allocation is equitable. Second, to compute such
an increase for each agent, we need to focus on the interval with constant value
density, so the maximum distance that δi moves cannot exceed di. If δi moves
and y increases, we update di and repeat the process. If ŷ = 0, we further prove
y is the MEW value.

Theorem 2. Algorithm 1 will output an MEW allocation for a fixed permuta-
tion of agents in polynomial time.

Proof. Let OPT = ([0, o1], . . . , [on−1, on]) represent the optimal allocation. We
first claim that OPT is both equitable and unique via the following two lemmas.

Lemma 2. OPT is equitable.

Proof. For the sake of contradiction, we assume there exist i 
= j ∈ [n] such
that vi([oi−1, oi]) 
= vj([oj−1, oj ]). Hence, there exist two adjacent agents such
that one has the smallest utility and the other has a higher utility. Otherwise,
the utilities of all the agents would be equal, which violates our assumption.
Without loss of generality, we assume agent i and agent i + 1 are such two
agents. Due to the intermediate value theorem, we could find o′

i such that
vi ([oi−1, o

′
i]) = vi+1 ([o′

i, oi+1]). This operation clearly improves agent i’s util-
ity and does not decrease agent i + 1’s utility to the original minimum. By
repeating this operation, we can improve egalitarian welfare, which contradicts
the assumption of the optimal solution. Note that the case where agent n has
the smallest utility can be handled in a similar way. �

Lemma 3. An equitable allocation is also unique.

Proof. By contradiction, we assume there are two equitable allocations, and
denote their cut points as {x0 = 0, x1, . . . , xn = 1} and {y0 = 0, y1, . . . , yn = 1}
respectively. Since the allocations are different, we can find a minimal interval
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[xi, xj ] and [yi, yj ] such that xi = yi, xj = yj , and for any k ∈ [i + 1, j − 1],
xk 
= yk. Without loss of generality, we assume xi+1 < yi+1. We consider the
following two cases.

1. For all k ∈ [i + 2, j − 1], xk < yk. Since [xi, xi+1] is a subset of [yi, yi+1]
and each agent is hungry, we have vi+1([xi, xi+1]) < vi+1([yi, yi+1]). Simi-
larly, vj([xj−1, xj ]) > vj([yj−1, yj ]). However, since the two allocations are
equitable, we have vi+1([xi, xi+1]) = vj([xj−1, xj ]) and vi+1([yi, yi+1]) =
vj([yj−1, yj ]), which leads to a contradiction.

2. Otherwise, there exists at least one index k ∈ [i + 2, j − 1] such that xk > yk,
We further assume k is the smallest index, i.e. for all � ∈ [i+2, k−1], x� < y�.
We already know vi+1([xi, xi+1]) < vi+1([yi, yi+1]). As [xk−1, xk] is a superset
of [yk−1, yk], we have vj([xk−1, xk]) > vj([yk−1, yk]). Same to the analysis in
the above case, this leads to a contradiction.

Combining the two above cases, the lemma is concluded. �

Back to the original proof. Due to our previous description, the utilities
of these agents keep the same during running Algorithm 1. If δn = 1 when the
algorithm terminates, according to Lemma 2 and Lemma 3, the output allocation
must be the unique optimal solution. Otherwise, there will be an interval of cake
left, and ŷ will be zero. We claim this case cannot happen and δn will reach 1
when Algorithm 1 terminates.

Lemma 4. If ŷ = 0, then δn = 1.

Proof. According to the definition of linear program 4, if ŷ = 0, that implies
x1 = . . . = xn = 0. If the proposition is false (i.e. δn < 1), our main idea is to
add a sufficiently small constant to each of xi and ŷ so that the solution remains
feasible but has a larger objective value. Let x′

i (for i = 1, . . . , n) and ŷ′ be the
new values of xi and ŷ. Consider the following three constants λ, μ, ε and the
new objective value ŷ′,

λ = max
i∈[n−1]

{
vi+1,σ(i)

vi+1,σ(i+1)

}
, μ = max

i∈[n−1]

{
1

vi+1,σ(i+1)

}
,

ε = min
i∈[n]

{
di

2λi−1
,

1
v1,σ(1)

· di(1 − λ)
2μ (1 − λn−1)

}
, ŷ′ = v1,σ(1)ε.

Next, we set x′
1 = ε and x′

i+1 = vi+1,σ(i)

vi+1,σ(i+1)
x′

i + ŷ′

vi+1,σ(i+1)
for i = 1, . . . , n − 1.

Clearly, ŷ′ is strictly positive. After that, we claim that (x′
1, . . . , x

′
n, ŷ′) is also an

feasible solution. It is not hard to verify the constraints (6) and (7) are satisfied
by the definition of x′

i and ŷ′. Additionally, since x′
1 = ε ≤ 1

2 mini∈[n]

(
di

λi−1

) ≤
1
2d1 ≤ d1. For i = 1, . . . , n − 1, constraints (5) can be verified by the following
inequality:
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x′
i+1 =

vi+1,σ(i)

vi+1,σ(i+1)

x′
i +

ŷ′

vi+1,σ(i+1)

≤ λx′
i + μŷ′ ≤ . . .

≤ λix′
1 + μ

(
1 + . . . + ai−1

0

)
ŷ′ (By the definition of a0 and b0)

≤ 1

2
di+1 + μ

(
1 + . . . + λi−1

)
ŷ′ (By the first part of the definition of ε)

≤ 1

2
di+1 +

1

2
di+1 = di+1. (By the second part of the definition of ε)

Thus, (x′
1, . . . , x

′
n, ŷ′) is also feasible and has a larger objective value, leading to

a contradiction. �

Due to Lemma 4 and our prior statements, the output allocation is equitable.
Since the optimal allocation is unique and also equitable, we conclude that our
algorithm achieves the optimal allocation.

Finally, we show this algorithm also runs in polynomial time. Within each
iteration, we will find an optimal solution at a vertex of the feasible region.
Since there are 3n constraints of the linear program and the vertex has n + 1
dimensions, then at least one of the constraints (5) is tight. Suppose xi satisfies
xi = 0 or di. If xi = 0, then xi, . . . , x1 would be all zero, and ŷ would also be
zero, which contradicts to the assumption of ŷ 
= 0. Hence, xi = di and δi will
be updated to pσ(i) at the end of this iteration.

We observe that all the knives would keep moving rightward during the
algorithm and at least one would encounter a breakpoint within each iteration.
Since there are only m breakpoints, the number of total iterations is at most
n · m. Within each iteration, the time complexity of solving the linear program
is also polynomial. Thus, the overall time complexity is polynomial. �

Note that for general number of agents, we can still enumerate all the per-
mutations and adopt Algorithm 1. This directly leads to the following result.

Corollary 1. For general cases without any constraint on the permutation of
the agents, the problem of computing an MEW allocation can be solved within a
complexity of fixed-parameter tractable with respect to the number of agents n.

3.2 Agents Without Permutation Constraints

In this section, we present the inapproximability results for a general number
of agents and no constraints on the permutation of the agents. To illustrate our
reduction, we first provide proof of the inapproximability of 2 in Theorem 3.
Although it has been demonstrated by Aumann et al. (2013), we also give our
proof here. Following that, we expand upon this theorem and adapt it to demon-
strate a c-inapproximation ratio in Theorem 4, where c can be any constant.

Theorem 3 (Aumann et al. (2013)). The problem of computing an MEW
allocation with contiguous pieces is NP-hard to approximate to within factor 2
for a general number of agents with no constraint on permutation.
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We present a reduction from the 3-SAT problem. Given a 3-SAT instance Φ
with m clauses and 3m literals, we construct an instance of maximizing egalitar-
ian welfare with contiguous pieces with four types of agents: literal agents, clause
agents, logic agents, and blocking agents. Let Φi∈[m] denote the i-th clause and
Φj∈[3m] denote the j-th literal in Φ. Before presenting the formal construction
of our reduction. We first show some high-level ideas as follows.

Ideas of Construction. For each clause, we introduce a clause agent ci and three
literal agents �3i−2, �3i−1, �3i for the literals within it. Then, for each literal
agent j ∈ {3i + 1, 3i + 2, 3i + 3}, let her have three disjoint valued pieces of
cake I

(1)
j , I

(2)
j , I

(3)
j such that there is a spacing between every two pieces. We

denote those spacing by s
(1)
3i−2, s

(2)
3i−2, s

(1)
3i−1, s

(2)
3i−1, s

(1)
3i , s

(2)
3i . Within those spac-

ing, we design to put other agents’ valued intervals.
First, as shown in Fig. 1, we let the clause agent ci have three valued pieces

within s
(2)
3i−2, s

(2)
3i−1, s

(2)
3i . For each of the three literal agents, we refer to the first

two of her valued pieces I
(1)
j , I

(2)
j including the spacing s

(1)
j as her true interval

and I
(2)
j , I

(3)
j including the spacing s

(2)
j as her false interval. If Φ is satisfiable,

we aim to let each literal agent receive her true interval I
(1)
j , s

(1)
j , I

(2)
j if the

corresponding literal is true in the assignment and false interval I
(2)
j , s

(2)
j , I

(3)
j

if the corresponding literal is false. If Φ is unsatisfiable, there always exists a
clause such that all three literals are assigned false under any assignment. If we
insist that the allocation represents a valid boolean assignment for Φ, there will
exist a clause such that the literal agents of it will all receive their false intervals
at the same time. That will cause the value received by the corresponding clause
agent to be zero, which will lead to egalitarian welfare being zero. Hence, we
could no longer make the allocation represent a valid boolean assignment.

To guarantee the consistency and validity of the assignment, we further add
some constraints by introducing logic agents. There are two types of logic agents.
The first type of logic agent ensures any literal agent �j cannot get a complete
interval including I

(1)
j , I

(2)
j and I

(3)
j (so that we cannot assign both “false” and

“true” to a single literal). Otherwise, there will exist a logic agent receiving zero
utility. The second type of logic agent guarantees the consistency of the literals.
For example, if a variable x occurs twice as the form of x in two literals Φj1

and Φj2 , then we introduce two logic agents t1x and t2x. The logic agent t1x has
two valued pieces within s

(1)
j1

and s
(2)
j2

, and t2x has two valued pieces within s
(2)
j1

and s
(1)
j2

. In this case, the literal agent �j2 cannot receive her false interval if
�j1 receives her true interval, and the literal agent �j2 cannot receive her true
interval if �j1 receives her false interval. Otherwise, t1x or t2x will receive a utility
of zero. The case is similar when the literal agent �j1 receives her false interval.

Construction. The detailed construction is defined as follows:

– For each clause Φi, we construct a clause agent ci.
– For each literal Φj , we construct a literal agent �j .
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Fig. 1. Construction of clause agents and literal agents.

– Logic agents further contain two types: (1) For each literal Φj , we construct
a logic agent tj . (2) If a variable x as well as its negation x̄ appear totally k
times where k > 1, we construct 2(k − 1) logic agents t1x, . . . , t2k−1

x .
– Further, we construct 9m blocking agents d1, . . . , d9m.

For simplification, we extend the cake from interval [0, 1] to [0, 36] while each
agent’s value to the cake remains normalized. We refer to the interval [0, 18m] as
the actual cake, and [18m, 36m] as the dummy cake. Each agent’s value density
function to the cake is constructed as follows.

Let ε > 0 be a sufficiently small real number. In order to simplify the descrip-
tion of the value density function, we will only define the parts where the density
is not equal to ε. In fact, in our later argument, we will regard ε as 0. It will not
affect our proof of inapproximability ratio.

Figure 2 illustrates our construction of the value density functions for both
literal agents and clause agents on the actual cake. For clarity, for each literal
agent �j∈[3m], she has three disjoint valued intervals on the actual cake.

f�j
(x) =

1
6
, for x ∈ [6j − 6, 6j − 5] ∪ [6j − 4, 6j − 3] ∪ [6j − 2, 6j − 1].

Let k̂ be the maximum number of occurrences of any variable x in Φ, formally,

k̂ � max
x

∑

j∈[3m]

1
(
Φj = x ∨ Φj = x̄

)
.

Then, we evenly divide the spacing interval [6j − 5, 6j − 4] into k̂ disjoint sub-
intervals and [6j − 3, 6j − 2] into k̂ + 1 disjoint sub-intervals. For each clause
agent ci∈[m], she only has value to three disconnected intervals. When x ∈ [18i−
14− 1

k̂+1
, 18i−14]∪ [18i−8− 1

k̂+1
, 18i−8]∪ [18i−2− 1

k̂+1
, 18i−2], fci

(x) = k̂+1
3 .

As shown in Fig. 3, for each logic agent tj of the first type constructed from
Φj , we define her value density function as follows,

ftj
(x) =

{
k̂
2 , x ∈ [6j − 5, 6j − 5 + 1

k̂
]

k̂+1
2 , x ∈ [6j − 3, 6j − 3 + 1

k̂+1
].
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Fig. 2. Value density function of literal agents and clause agents.

For each logic agent of the second type, we consider her corresponding variable
y. Assume y and ȳ appears k times totally in Φ. We only focus on the case where
k > 1. Assume y first appears in literal Φa, and without loss of generality, assume
its (including ȳ) s-th appearance (2 ≤ s ≤ k) is in literal Φb. We construct two
literal agents of the second type t2s−3

y and t2s−2
y .

If Φb = y, we define their value density functions as

ft2s−3
y

(x) =

{
k̂
2 , x ∈ [6a − 5 + s−1

k̂
, 6a − 5 + s

k̂
]

k̂+1
2 , x ∈ [6b − 3 + s−1

k̂+1
, 6b − 3 + s

k̂+1
],

ft2s−2
y

(x) =

{
k̂+1
2 , x ∈ [6a − 3 + s−1

k̂+1
, 6a − 3 + s

k̂+1
]

k̂
2 , x ∈ [6b − 5 + s−1

k̂
, 6b − 5 + s

k̂
].

If Φb = ȳ, we swap the second interval of the two agents.

ft2s−3
y

(x) =

{
k̂
2 , x ∈ [6a − 5 + s−1

k̂
, 6a − 5 + s

k̂
]

k̂
2 , x ∈ [6b − 5 + s−1

k̂
, 6b − 5 + s

k̂
],

ft2s−2
y

(x) =

{
k̂+1
2 , x ∈ [6a − 3 + s−1

k̂+1
, 6a − 3 + s

k̂+1
]

k̂+1
2 , x ∈ [6b − 3 + s−1

k̂+1
, 6b − 3 + s

k̂+1
].

In addition to the above intervals for literal agents, each literal agent also
has three disconnected valued intervals on the dummy cake. When x ∈ [18m +
6j −6, 18m+6j −5]∪ [18m+6j −4, 18m+6j −3]∪ [18m+6j −2, 18m+6j −1],
f�j

(x) = 1
6 (Fig. 4).

The blocking agents are designed to block the valuable intervals of the above
agents. Each blocking agent has value to one piece between them:

fdj
(x) = 1, for x ∈ [18m + 2j − 1, 18m + 2j] and j ∈ [1, 9m].

Under this construction, the integral of the value density function for each
agent over the entire cake is equal to 1. Now we are ready to provide the formal
proof.
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Fig. 3. The value density function of tj . In this case, literal agent �j (whose value
density function is colored red) cannot receive the three intervals [6j − 6, 6j − 5], [6j −
4, 6j − 3] and [6j − 2, 6j − 1] at the same time. Otherwise, the utility of logic agent tj

(whose value density function is colored green) will be zero. (Color figure online)

Fig. 4. The value density functions of t2s−3
y and t2s−2

y when literals Φa, Φb are both y.
In this case, when literal agent �a (whose value density function is colored red in the
above figure) receives her true intervals, literal agent �b (whose value density function is
colored yellow) is forbidden to receive her false intervals. Otherwise, logic agent t2s−3

y

(whose value density function is colored green) will have zero utility. For a similar
reason, literal agents �a and �b cannot respectively receive their true intervals and false
intervals at the same time. Otherwise, logic agent t2s−2

y (whose value density function
is colored blue) will have zero utility. The construction of the case when Φa = y and
Φb = ȳ is similar. (Color figure online)
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Proof. Suppose the 3-SAT instance is a yes instance (i.e., there exists a valid
assignment such that Φ = true). We construct an allocation as follows.

In the assignment, if a literal Φj is assigned true, then we let the literal
agent �j receive her true interval [6j − 6, 6j − 3]. If the clause agent c�j/3� has

not received any interval, we let her take the interval
[
6j − 2 − 1

k̂+1
, 6j − 2

]
.

Further, we let all the logic agents that have value on
[
6j − 3, 6j − 2 − 1

k̂+1

]

receive their valued intervals. Otherwise, if Φj is assigned false, we let �j receive
her false interval [6j − 4, 6j − 1], and let all the logic agents receive their valued
intervals on [6j−5, 6j−4]. Further, we let each blocking agent receive her valued
interval. For each contiguous interval that remains unallocated, we allocate it to
an arbitrary agent who receives the interval adjacent to it.

Under this allocation, it is straightforward to find that each literal agent
receives value 1

3 , while each blocking agent receives a value of 1. For each clause
Φi, there exists at least one literal Φj∈[3i−2,3i] assigned true. Therefore, the
interval received by each clause agent ci will be at least 1

3 . For each logic agent
tj of the first type, since �j only receives one of [6j −5, 6j −4] and [6j −3, 6j −2],
she can always receive an interval with value 1

2 . For each logic agent of the second
type tjy, denote the two intervals that she has value to by Jj

y1
and Jj

y2
. Assume

y appears k times, then k − 1 logic agents can receive Jj
y1

and obtain value 1
2 on

the first appearance of y. Since the assignment is consistent, by our construction,
the other k − 1 agents can always receive Jj

y2
with value 1

2 .
Hence, the maximum egalitarian welfare under a yes instance is at least 1

3 .
Suppose the 3-SAT instance is a no instance, that is, there is no assignment

such that Φ = true. We prove the maximum egalitarian welfare will be at most
1
6 by contradiction.

Assuming the maximum egalitarian welfare is more than 1
6 , then, each literal

agent �j needs to receive a length of more than 2 on the cake (since the maximum
density of f�j

is 1
6 ). She cannot receive anything from the dummy cake, otherwise,

at least one blocking agent will receive a utility of zero. Therefore, we only
consider the case that each literal agent receives only part of the actual cake,
hence she will surely receive an interval containing either [6j − 5, 6j − 4] or
[6j − 3, 6j − 2].

Denote the corresponding variable of Φj as y. To ensure each logic agent of
the second type receives more than 1

6 , all the literal agents �a where Φa = y
cannot receive [6j − 3, 6j − 2] and all the literal agents �b where Φb = ȳ cannot
receive [6j − 5, 6j − 4]. Moreover, to ensure each clause agent receives more
than 1

6 , at least one literal agent in each clause cannot receive [6i − 3, 6i − 2]. If
such allocation exists, we can construct an assignment that if the literal agent
�j receives [6j − 5, 6j − 4], we assign Φj = true. If the literal agent �j receives
[6j − 3, 6j − 2], we assign Φj = false. The assignment is consistent according to
the above analysis, and a literal is assigned true in each clause.

Hence, we conclude Φ is satisfiable, which leads to the contradiction. There-
fore, the inapproximability is at least

1
3
1
6

= 2 and the theorem holds. �
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Theorem 4. The problem of computing MEW with contiguous pieces is NP-
hard to approximate within any constant factor for a general number of agents
with no constraint on permutation.

Construction. We follow the same idea as the construction in the above exam-
ple on the actual cake while the dummy cake is not needed in the following
construction. Let r ∈ Z

+ be a constant integer.

– For literal Φj , we still construct a literal agent �j . Instead of constructing
three disconnect intervals that she has value to, we construct 2r + 1 such
disconnect intervals. Denote these intervals by Ij = {I

(1)
j , . . . , I

(2r+1)
j }, and

the interval that splits I
(k)
j and I

(k+1)
j by s

(k)
j . All these intervals are disjoint

with each other. In our new construction, we call the interval from I
(1)
j to

I
(r+1)
j as the agent �j ’s true interval Tj (which begins at the leftmost point of

I
(1)
j and ends at the rightmost point of I

(r+1)
j ), and the interval from I

(r+1)
j

to I
(2r+1)
j as false interval Fj (which begins at the leftmost point of I

(r+1)
j

and ends at the rightmost point of I
(2r+1)
j ).

Our goal is to make a literal agent receive the entire true interval when the
3-SAT instance is a yes instance. In the case of a no instance, we want to
limit her bundle to at most one interval of Ij .

– For clause Φi, we construct r3 clause agents instead of only one clause agent
in the previous construction. In particular, for each of the r3 combinations
{s

(j1)
3i−2 ⊂ F3i−2, s

(j2)
3i−1 ⊂ F3i−1, s

(j3)
3i ⊂ F3i}, we construct a clause agent that

has value to a sub-intervals of each of the three disconnect intervals. The
design of the clause agent in this context is adapted from the previous proof.
If the three literal agents of the same clause all receive their false interval,
there will always exist a clause agent receiving zero utility.

– For each literal, we construct r2 logic agents of the first type. In particular,
for each of the r2 combinations {s

(j1)
i ⊂ Ti, s

(j2)
i ⊂ Fi}, we construct a logic

agent of the first type that has value to a sub-intervals of each of the two
disconnected intervals. These agents are also used to prevent any literal agent
from receiving her true and false intervals at the same time.

– For each variable z, assume it first appears in Φi. If it appears more than
once, for each of its appearances in Φ, we construct 2r2 logic agents of the
second type. In particular, if Φj = z, the first r2 agents have value to the sub-
intervals of each combination {s

(i′)
i ⊂ Ti, s

(j′)
j ⊂ Fj}, and the latter r2 agents

have value to the sub-intervals of each combination {s
(i′)
i ⊂ Fi, s

(j′)
j ⊂ Tj}.

Otherwise, if Φj = z̄, the first r2 agents have value to the sub-intervals of
each combination {s

(i′)
i ⊂ Ti, s

(j′)
j ⊂ Tj}, and the latter r2 agents have value

to the sub-intervals of each combination {s
(i′)
i ⊂ Fi, s

(j′)
j ⊂ Fj}.

After constructing these three types of agents, if there are n′ agents that
have value to a sub-interval of s

(j)
i , we divide s

(j)
i into n′ disjoint intervals, and
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let each agent has value only on one sub-interval. Moreover, for each agent, if
there are multiple intervals that she has value to, we let her value to each of
these intervals equal and normalized to 1 in total.

Formal Proof. Assume Φ is a yes instance, then there exists a valid assignment
such that Φ = true. We construct an allocation A from a satisfying assignment
as follows.

We traverse j from 1 to 3m. If the literal Φj is assigned true, then we let literal
agent �j receive her true interval Tj (i.e., A�j

= Tj). If a corresponding clause
agent or a logic agent has not received any interval, we let her receive a sub-
interval of s

(k)
j ∈ Fj that she has value to. If Φj is assigned false, we let �j receive

her false interval Fj (i.e., A�j
= Fj). We also let each of the corresponding logic

agents that has value on Tj and has not received any bundle receive an interval
that she has value to. For each contiguous interval that remains unallocated, we
allocate it to an arbitrary agent who receives the interval adjacent to it.

Then we show that EW(A) is at least 1
3 . Since each literal agent takes either

her true interval or false interval, she will receive 1
2 in A. Since Φ = true under

this assignment, in each clause, there is at least one literal that is assigned true,
so all the r3 clause agents can receive an interval from this literal agent’s false
interval and obtain value 1

3 . Each logic agent of the first type can receive value
1
2 as the corresponding literal agent can only receive either her true interval
or her false interval. Since the assignment is consistent, each logic agent of the
second type can also receive 1

2 for the same reason as we have shown in the
2-inapproximation result. Therefore, the maximum egalitarian welfare under a
yes instance is 1

3 .
Now we consider the case that Φ is a no instance, so no assignment can satisfy

Φ = true. We prove EW(A) will be no more than 1
2r+1 for any allocation A by

contradiction.
Suppose the maximum egalitarian welfare is more than 1

2r+1 , we show that

there will exist a satisfying assignment. Assume for each literal agent �i, |I(j)i | =
|s(j)i | = 1. Then, each literal agent needs to receive an interval Ji with |Ji| > 2,
|Ji ∩Ii| > 1 and |Ji \Ii| ≥ 1. Ji cannot intersect with both Ti and Fi, otherwise,
there will be at least one logic agent of the first type that receives 0. We assume
Φi = z and, without loss of generality, Ji ⊆ Ti. Then, to avoid any logic agent
of the second type receiving 0, for any j such that Φj = z, we need to allocate
an interval Jj ⊆ Tj to �j using the similar analysis in the 2-inapproximation
result. If Φj = z̄, �j needs to receive an interval Jj ⊆ Fj . Further, to avoid any
clause agent receiving 0, at least one literal agent corresponding to this clause
cannot receive any sub-interval from s

(r+1)
j to s

(2r)
j . Hence, she needs to receive

a bundle on the true interval. Then, we consider the following assignment. For
a literal agent �i, if Ji ⊆ Ti, we assign Φi as true. If Ji ⊆ Fi, we assign Φi as
false. From the above analysis, the assignment is consistent, and there is a true
literal in each clause, indicating Φ = true under this assignment and leading to
a contradiction.
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We have shown that the inapproximability factor is 1/3
1/(2r+1) = 2r+1

3 . Since r

can be any constant, Theorem 4 holds. �

4 Conclusion and Future Work

In this paper, we consider the problem of maximizing egalitarian welfare for hun-
gry agents with and without contiguous constraints respectively. In the absence
of contiguous constraints, the problem can be readily solved using linear pro-
gramming. With contiguous constraints, there exists a non-trivial algorithm to
output an optimal allocation for agents with fixed permutation in polynomial
time, which indicates a fixed parameter tractable algorithm with respect to the
number of agents n. Moreover, if a fixed permutation is not required, we provide
a constant-inapproximability result.

As we consider hungry agents in our work, an interesting future direction is
to generalize the setting to agents without hungry assumption. An intuitive idea
is to first apply our algorithm, however, as an agent may have a value of 0 to the
next interval, the egalitarian welfare we calculate may not increase and the knives
may not move. In this case, we may deploy another linear program to maximize
the summation of the distance of each knife’s position while maintaining that
each agent’s utility to her contiguous piece does not decrease. Further, we may
consider a more general case where the constraints for contiguous are subjective
to the agents, which means some agents can receive a non-contiguous bundle
while others need to receive a contiguous one.
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