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Abstract. We focus on maximizing a non-negative k-submodular func-
tion under a knapsack constraint. As a generalization of submodular
functions, a k-submodular function considers k distinct, non-overlapping
subsets instead of a single subset as input. We explore the algorithm
of Greedy+Singleton, which returns the better one between the best
singleton solution and the fully greedy solution. When the function is
monotone, we prove that Greedy+Singleton achieves an approximation
ratio of 1

4
(1− 1

e2
) ≈ 0.216, improving the previous analysis of 0.158 in the

literature. Further, we provide the first analysis of Greedy+Singleton for
non-monotone functions, and prove an approximation ratio of 1

6
(1− 1

e3
) ≈

0.158.
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1 Introduction

A k-submodular function generalizes a submodular function in a natural way
that captures interactions among k subsets. While a submodular function takes
a single subset of a finite nonempty set V as input, a k-submodular function con-
siders k disjoint subsets of V , and exhibits the property of diminishing marginal
returns common to many problems in operations research.

Given a finite nonempty set V of n items, let (k+1)V := {(X1, . . . , Xk) | Xi ⊆
V ∀i ∈ [k],Xi ∩ Xj = ∅ ∀i �= j} be the family of k disjoint sets, where [k] :=
{1, . . . , k}. A function f : (k + 1)V → R is k-submodular if and only if for every
k-tuples x = (X1, . . . , Xk) and y = (Y1, . . . , Yk) in (k + 1)V ,

f(x) + f(y) ≥ f(x 	 y) + f(x 
 y),

where

x 	 y := (X1 ∪ Y1 \ (
⋃

i�=1

Xi ∪ Yi), . . . , Xk ∪ Yk \ (
⋃

i�=k

Xi ∪ Yi)),

c© Springer Nature Switzerland AG 2023
M. Li et al. (Eds.): IJTCS-FAW 2023, LNCS 13933, pp. 15–28, 2023.
https://doi.org/10.1007/978-3-031-39344-0_2

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-39344-0_2&domain=pdf
https://doi.org/10.1007/978-3-031-39344-0_2


16 Z. Tang et al.

x 
 y := (X1 ∩ Y1, . . . , Xk ∩ Yk) .

For a k-tuple x = (X1, . . . , Xk) ∈ (k+1)V , we define its size by |x| = |∪i∈[k]Xi|.
We say that f : (k + 1)V → R is monotone, if f(x) ≤ f(y) holds for any
x = (X1, . . . , Xk) and y = (Y1, . . . , Yk) with Xi ⊆ Yi for i ∈ [k].

Since Huber and Kolmogorov [6] proposed the notion of k-submodularity
one decade ago, there have been increased theoretical and algorithmic interests
in the study of k-submodular functions, as various combinatorial optimization
problems and practical problems can be formulated as k-submodular function
maximization. The applications include influence maximization with k topics
in social networks [22], sensor placement with k types of sensors [13], multi-
document summarization [11] and multi-class feature selection [27]. For example,
given k topics or rumors in a social network, each topic has a different spread
model, and we want to select several influential people for each topic to start its
spread, in order to maximize the population influenced by at least one topic. This
objective function can be modeled as a k-submodular function. More detailed
discussions can be found in [22,27].

As a generalization of the NP-hard submodular maximization problem, the
k-submodular maximization problem is also NP-hard. Compared with the sub-
modular maximization where we determine which elements/items are incorpo-
rated into the solution, additionally, for k-submodular maximization we need
to specify which subsets/dimensions they belongs to. Extensive research has
been devoted to developing efficient algorithms and proving their approximation
ratios in different settings. In addition to the unconstrained setting [7,17,23],
researchers also investigate this problem under cardinality constraints [13,22],
matroid constraints [16,18], and certainly, knapsack constraints [15,21], which
is the focus of this article.

Our Contributions
In this paper, we study the k-submodular maximization problem under a knap-
sack constraint, called k-submodular knapsack maximization (kSKM). Each item
a ∈ V has a cost c(a), and the total cost of the items selected in the solution
cannot exceed a given budget B ∈ R+. We consider the combination of two
natural heuristics for knapsack problems, Singleton and Greedy. The former
returns the best singleton solution arg maxx:|x|=1 f(x), that is, it selects a single
item and assigns it to a dimension in a way that maximizes the gain of func-
tion value. The latter algorithm adds an item to a dimension that maximizes
the marginal density (i.e., the marginal gain divided by its cost), until no item
fits. Both heuristics are well known to have unbounded approximations, even for
linear objectives.

Chen et al. [1] first notice that their combination Greedy+Singleton
achieves a bounded approximation for kSKM, and prove an approximation ratio
1
4 (1 − 1

e ) ≈ 0.158 when the function is monotone. This algorithm compares the
outcomes of Singleton and Greedy, and returns the one with greater value.

We re-consider the Greedy+Singleton algorithm and prove an approx-
imation ratio of 1

4 (1 − 1
e2 ) ≈ 0.216 by a more careful analysis for mono-

tone k-submodular functions, improving the result in [1]. Furthermore, for
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non-monotone k-submodular functions, we derive an approximation ratio of
1
6 (1 − 1

e3 ) ≈ 0.158.
Though there are several algorithms with proven performance guarantees

that are better than ours kSKM in the monotone case, the main advantage of
the Greedy+Singleton algorithm is the time complexity. Tang et al. [21] pro-
vide a greedy algorithm with approximation 1

2 (1 − 1
e ) ≈ 0.316 (which combines

Singleton with a routine that completes all feasible solutions of size 2 greed-
ily), but it takes O(n4k3) queries of the function. Wang and Zhou [22] provide
an asymptotically-optimal (12 − ε)-approximation, but it involves designing a
continuous extension of the discrete problem and rounding the fractional solu-
tion to recover the discrete solution. Compared with them, Greedy+Singleton
requires only O(n2k) queries.

This paper is organized as follows. In Sect. 2 we present the model and prelim-
inaries. In Sect. 3 we consider the maximization problem without any constraint,
of which the result will be used in the analysis of kSKM. In Sect. 4 we analyze
the approximation of Greedy+Singleton for kSKM. In Sect. 5 we compare it
with the method in [1].

Related Work
Huber and Kolmogorov [6] proposed k-submodular functions to express submod-
ularity on choosing k disjoint sets of elements instead of a single set. Recently,
this has become a popular subject of research [2,4,5,9,12,17].

For the kSKM problem, Tang et al. [21] were the first to consider it in
the community. When the function is monotone, they provided a 1

2 (1 − 1
e )-

approximation algorithm that combines Singleton with a greedy algorithm that
completes all feasible solutions of size 2 greedily. Their analysis framework follows
from that of Sviridenko [19] for submodular knapsack maximization problems.
Xiao et al. [24] later improved the ratio of the same algorithm to 1

2 (1 − e−2)
and 1

3 (1 − e−3) for the monotone and non-monotone case, respectively. Wang
and Zhou [22] presented an algorithm with asymptotically optimal ratio of 1

2 − ε
by multilinear extension techniques (relaxing the optimization to the continuous
space and then rounding the fractional solution). Pham et al. [15] proposed a
streaming algorithm with approximation ratios 1

4 − ε and 1
5 − ε for the monotone

and non-monotone cases, respectively, which requires O(n
ε log n) queries. Other

works related to kSKM include [20,25,26].
Chen et al. first analyzed the performance of Greedy+Singleton for kSKM,

and proved an approximation ratio 1
4 (1 − 1

e ). Before them, due to its simplicity
and efficiency, Greedy+Singleton has received lots of attention for submodu-
lar knapsack maximization. This algorithm was first suggested in [8] for coverage
functions, and adapted to monotone submodular function in [11]. Feldman et al.
[3] showed that the approximation ratio is within [0.427, 0.462], and Kulik et al.
[10] presented an improved upper bound of 0.42945. Hence, it limits the approx-
imation ratio of Greedy+Singleton for submodular knapsack maximization
to the interval [0.427, 0.42945].

The k-submodular maximization problem is also studied in different uncon-
strained or constrained settings. For unconstrained k-submodular maximization,
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Ward and Živnỳ [23] proposed a max{ 1
3 , 1

1+a}-approximation algorithm with
a = max{1,

√
(k − 1)/4}. Later, Iwata et al. [7] improved it to 1

2 , which is
more recently improved to k2+1

2k2+1 by Oshima [14]. For monotone k-submodular
maximization, Iwata et al. [7] also proposed a randomized k

2k−1 -approximation
algorithm, and showed that the ratio is asymptotically tight. For monotone k-
submodular maximization under a total size constraint (i.e.,

∑
i∈[k] |Xi| ≤ B

for an integer budget B), Ohsaka and Yoshida [13] proposed a 1
2 -approximation

algorithm, and a 1
3 -approximation algorithm for that under individual size con-

straints (i.e., |Xi| ≤ Bi ∀i ∈ [k] with budgets Bi). Under a matroid constraint,
Sakaue [16] proposed a 1

2 -approximation algorithm for the monotone case, which
is asymptotically tight, and Sun et al. [18] gave a 1

3 -approximation algorithm for
the non-monotone case.

2 Preliminaries

We introduce more characteristics of k-submodular functions. If two k-tuples
x = (X1, . . . , Xk) and y = (Y1, . . . , Yk) in (k +1)V with Xi ⊆ Yi for each i ∈ [k],
we denote x � y. Define the marginal gain when adding item a to the i-th
dimension of x = (X1, . . . , Xk) to be

Δa,i(x) := f(X1, . . . , Xi−1,Xi ∪ {a},Xi+1, . . . , Xk) − f(x),

and thus Δa,i(x)
c(a) is the marginal density. A k-submodular function f clearly

satisfies the orthant submodularity

Δa,if(x) ≥ Δa,if(y), ∀x,y ∈ (k + 1)V with x � y, a /∈
⋃

j∈[k]

Yj , i ∈ [k],

and the pairwise monotonicity

Δa,i1f(x)+Δa,i2f(x) ≥ 0, ∀x ∈ (k +1)V with a /∈
⋃

j∈[k]

Xj , i1, i2 ∈ [k], i1 �= i2.

Ward and Živnỳ [23] show that the converse is also true.

Lemma 1 ([23]). A function f : (k + 1)V → R is k-submodular if and only if f
is orthant submodular and pairwise monotone.

It is easy to see that when f is monotone, the k-submodularity degenerates into
orthant submodularity.

Every k-tuple x = (X1, . . . , Xk) ∈ (k + 1)V uniquely corresponds to a set
S = {(a, d) | ∃d ∈ [k] a ∈ Xd} that consists of item-index pairs. That is, an
item-index pair (a, d) belongs to S (called a solution) if and only if there is an
index d so that a ∈ Xd. From now on, with a slight abuse of notations, we
write x and its corresponding solution S interchangeably, for example, Δa,d(S)
means the marginal gain f(S ∪ {(a, d)}) − f(S). For any solution S, we define
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Algorithm 1. Unconstrained Greedy
Input: Set V ′, k-submodular function f
Output: A solution S ∈ (k + 1)V

1: S ← ∅

2: for each item a ∈ V ′ do
3: da ← argmaxd∈[k] Δa,d(S)
4: S ← S ∪ {(a, da)}
5: end for
6: return S

U(S) := {a ∈ V | ∃d ∈ [k] (a, d) ∈ S} to be the set of items included, and the
size of S is |S| = |U(S)|. In this paper, let f be a non-negative k-submodular
function, and we further assume w.l.o.g. that f(∅) = 0.

We point out the following lemma that will repeatedly and implicitly used
in our analysis.

Lemma 2 ([21]). For any solutions S, S′ with S ⊆ S′, we have

f(S′) − f(S) ≤
∑

(a,d)∈S′\S

Δa,d(S).

3 A Key Lemma for Unconstrained k-Submodular
Maximization

In this section, we consider the problem of maximizing the function value in the
unconstrained setting, for an arbitrary subset of items V ′ = {e1, e2, . . . , em} ⊆
V . Algorithm 1 (Unconstrained Greedy) considers items in V ′ in an arbitrary
order, and assigns each item the best index that brings the largest marginal gain
in each iteration. We will introduce a lemma that is important for the analysis
in Sect. 4 for kSKM.

Let T = {(e1, d∗
1), . . . , (em, d∗

m)} be an optimal solution that maximizes the
function value over V ′ (such an optimal solution must exist due to the pairwise
monotonicity). We dictate that Unconstrained Greedy considers the items
in an order of e1, e2, . . . , em, and denote the returned greedy solution by S =
{(e1, d1), . . . , (em, dm)}.

For j = 0, 1, . . . ,m, define

Sj = {(e1, d1), . . . , (ej , dj)} and (1)

Tj =
(
T \ {(e1, d∗

1), . . . , (ej , d
∗
j )}

) ∪ Sj . (2)

That is, Sj is the first j item-index pairs in the greedy solution S, and Tj is
obtained from the optimal solution T by replacing the first j item-index pairs
with Sj . Clearly, S0 = ∅, Sm = S, T0 = T and Tm = S.
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The following key lemma bounds the optimal value f(T ) in terms of f(St) and
marginal gains. This conclusion is firstly noticed by Ward and Živnỳ (implicitly
in Theorem 5.1 [23]) and formalized by Xiao et al. [24]. For completeness, we
write down the proof and credit [23,24].

We point out the following lemma

Lemma 3. For t = 0, 1, . . . ,m,

(a) if f is monotone, then f(T ) ≤ 2f(St) +
∑

(a,d)∈Tt\St
Δa,d(St);

(b) if f is non-monotone, then f(T ) ≤ 3f(St) +
∑

(a,d)∈Tt\St
Δa,d(St);

Proof. For j = 0, . . . , t−1, we introduce an intermediate Pj := Tj\(ej+1, d
∗
j+1) =

Tj+1 \ (ej+1, dj+1). That is, Pj consists of m − 1 items (excluding ej+1), where
the indices of items e1, . . . , ej coincide those in S, and the indices of other items
coincide those in T . Then

f(Tj) = f(Pj) + Δej+1,d∗
j+1

(Pj),

f(Tj+1) = f(Pj) + Δej+1,dj+1(Pj).

When f is monotone, the difference of f(Tj) and f(Tj+1) is

f(Tj) − f(Tj+1) = Δej+1,d∗
j+1

(Pj) − Δej+1,dj+1(Pj)

≤ Δej+1,d∗
j+1

(Sj) (3)

≤ Δej+1,dj+1(Sj) (4)
= f(Sj+1) − f(Sj).

Equation (3) follows from the fact of Sj ⊆ Pj and the monotonicity of f . Equa-
tion (4) follows from the fact that the greedy algorithm always assign the index
with maximum marginal gain to the item considered, and (ej+1, dj+1) is the
(j + 1)-th pair added. Summing this inequality from j = 0 to t − 1, we obtain

f(T0) − f(Tt) ≤ f(St) − f(S0) = f(St).

Since St ⊆ Tt and Lemma 2, we have

f(T ) ≤ f(St) + f(Tt) ≤ 2f(St) +
∑

(a,d)∈Tt\St

Δa,d(St).

When f is non-monotone, Eq. (3) no longer holds. Instead, we bound the
difference of f(Tj) and f(Tj+1) by

f(Tj) − f(Tj+1) = Δej+1,d∗
j+1

(Pj) − Δej+1,dj+1(Pj)

= 2Δej+1,d∗
j+1

(Pj) − [Δej+1,d∗
j+1

(Pj) + Δej+1,dj+1(Pj)]

≤ 2Δej+1,d∗
j+1

(Pj) (5)

≤ 2Δej+1,d∗
j+1

(Sj) ≤ 2Δej+1,dj+1(Sj)

= 2f(Sj+1) − 2f(Sj),
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where Eq. (5) follows from the pairwise monotonicity. Summing it from j = 0
to t − 1, we obtain

f(T0) − f(Tt) ≤ 2f(St) − 2f(S0) = 2f(St).

Since St ⊆ Tt and Lemma 2, we have

f(T ) ≤ 2f(St) + f(Tt) ≤ 3f(St) +
∑

(a,d)∈Tt\St

Δa,d(St).


	
Letting t = m in the above lemma, it is easy to see that the greedy solution

S is 2-approximation of f(T ) when f is monotone, and 3-approximation of f(T )
when f is non-monotone.

4 Greedy+Singleton for k-Submodular Knapsack

We consider the kSKM problem. Each item a ∈ V has a cost c(a), and the total
cost of selected items must not exceed a given budget B ∈ R+. For any solution
S ∈ (k + 1)V , define c(S) =

∑
a∈U(S) c(a) to be the total cost of all items in S.

We consider Greedy+Singleton (Algorithm 2). It returns the better solu-
tion between Greedy and Singleton, where the former greedily chooses the
item-index pair of maximum marginal density in every iteration until no item
fits (Line 2–11), and the latter chooses the single item-index pair of maximum
marginal gain (Line 1).

Next, we prove approximation ratios 1
4 (1 − 1

e2 ) and 1
6 (1 − 1

e3 ) for the mono-
tone and non-monotone cases, respectively. The general framework follows from
Khuller et al. [8] for the budgeted maximum coverage problem, which gives a
1
2 (1 − 1

e ) approximation for the submodular knapsack maximization. We adapt
it to kSKM, and utilize the characteristics of k-submodularity.

Algorithm 2. Greedy+Singleton
1: Let S∗ ∈ arg max

S: |S|=1,c(S)≤B
f(S) be a singleton solution giving the largest value.

2: G0 ← ∅, V 0 ← V
3: for t from 1 to n do
4: Let (at, dt) = arg max

a∈V t−1,d∈[k]

Δa,d(Gt−1)

c(a)
be the pair maximizing the marginal

density
5: if c(Gt−1) + c(at) ≤ B then
6: Gt = Gt−1 ∪ {(at, dt)}
7: else
8: Gt = Gt−1

9: end if
10: V t = V t−1 \ {at}
11: end for
12: S∗ ← Gn if f(Gn) > f(S∗)
13: return S∗
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Let OPT be the optimal solution, and f(OPT ) be the optimal value. In each
iteration t = 1, . . . , n, a pair (at, dt) is considered, and Gt is called the partial
greedy solution. Let l + 1 be the first time when Algorithm 2 does not add an
item in U(OPT ) to the current solution because its addition would violate the
budget (i.e., al+1 ∈ U(OPT ) and c(al+1) + c(Gl) > B). We can further assume
that l + 1 is the first time t for which Gt = Gt−1. This assumption is without
loss of generality, because if it happens earlier for some t′ < l + 1, then at′

does not belong to the optimal solution T , nor the approximate solution we are
interested in; thus, we can remove at′ from the ground set V , without affecting
the analysis, the optimal solution T , and the approximate solution. Thus, we
have Gt = Gt−1 ∪ {(at, dt)} for t = 1, . . . , l.

For each t = 1, . . . , l, we define Ḡt = Gt to be the partial greedy solution
after the t-th iteration, and define Ḡl+1 = Gl ∪ {(al+1, dl+1)} to be the solution
obtained by adding (al+1, dl+1) to Gl. Note that Ḡl+1 violates the budget, and
Gl = Gl+1 �= Ḡl+1 by our assumption.

Next, we prove the approximation ratio of Greedy+Singleton by a series
of lemmas and Theorem 1. In Lemma 4, we show that a selected item which
occupies a large proportion of the budget gives a good approximation. In Lemma
5 we bound the marginal gain in every iteration, and then Lemma 6 gives a lower
bound on every f(Ḡt).

Lemma 4. For t = 1, . . . , l, if c(at) ≥ α · B, then the partial greedy solution Ḡt

is min{ 1
2 , α}-approximation if f is monotone, and min{ 1

3 , α}-approximation if
f is non-monotone.

Proof. For each t = 1, . . . , l, we consider the unconstrained maximization over
the items in V ′ := U(Ḡt−1) ∪ U(OPT ) = {e1 . . . , em}. Assume w.l.o.g. that
e1 = a1, e2 = a2, . . . , et−1 = at−1. Let Algorithm 1 consider the items in the order
of e1, . . . , em. Recall the notations in Eq. (1) and (2), and note that Ḡj = Sj for
j = 1, . . . , t−1, that is, the partial greedy solutions in Algorithm2 coincide those
in Algorithm 1. Denote by OPT ′ the optimal solution of the unconstrained max-
imization over U(Ḡt−1)∪U(OPT ), and we apply Lemma 3 to bound f(OPT ′).

When f is monotone, by Lemma 3 we have

f(OPT ) ≤ f(OPT ′) ≤ 2f(Ḡt−1) +
∑

(a,d)∈Tt−1\Ḡt−1

Δa,d(Ḡt−1)

≤ 2f(Ḡt−1) +
∑

(a,d)∈Tt−1\Ḡt−1

c(a) · Δat,dt
(Ḡt−1)

c(at)
(6)

≤ 2f(Ḡt−1) +
Δat,dt

(Ḡt−1)
c(at)

· B, (7)

where Eq. (6) is because (at, dt) is the pair of maximum marginal density by the
greedy algorithm, and Eq. (7) is because the items in Tt−1 \Ḡt−1 must belong to
OPT and their total cost is at most B. Combining with the value of the partial
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greedy solution f(Ḡt) = f(Ḡt−1) + Δat,dt
(Ḡt−1), it is easy to see that

f(Ḡt)
f(OPT )

≥ 1
2

· f(Ḡt−1) + Δat,dt
(Ḡt−1)

f(Ḡt−1) + Δat,dt (Ḡt−1)B

2c(at)

.

If B
2c(at)

≤ 1, then clearly f(Ḡt)
f(OPT ) ≥ 1

2 . If B
2c(at)

> 1, then

f(Ḡt)
f(OPT )

≥ 1
2

· Δat,dt
(Ḡt−1)

Δat,dt (Ḡt−1)B

2c(at)

=
c(at)
B

≥ α.

Therefore, Ḡt is min{ 1
2 , α}-approximation.

When f is non-monotone, using Lemma 3 for t = 1, . . . , l, similarly we have

f(OPT ) ≤ f(OPT ′) ≤ 3f(Ḡt−1) +
∑

(a,d)∈Tt−1\Ḡt−1

Δa,d(Ḡt−1)

≤ 3f(Ḡt−1) +
∑

(a,d)∈Tt−1\Ḡt−1

c(a) · Δat,dt
(Ḡt−1)

c(at)

≤ 3f(Ḡt−1) +
Δat,dt

(Ḡt−1)
c(at)

· B,

Combining with the value of the partial greedy solution f(Ḡt) = f(Ḡt−1) +
Δat,dt

(Ḡt−1), it is easy to see that

f(Ḡt)
f(OPT )

≥ 1
3

· f(Ḡt−1) + Δat,dt
(Ḡt−1)

f(Ḡt−1) + Δat,dt (Ḡt−1)B

3c(at)

.

If B
3c(at)

≤ 1, then clearly f(Ḡt)
f(OPT ) ≥ 1

3 . If B
3c(at)

> 1, then

f(Ḡt)
f(OPT )

≥ 1
3

· Δat,dt
(Ḡt−1)

Δat,dt (Ḡt−1)B

3c(at)

=
c(at)
B

≥ α.

Therefore, Ḡt is min{ 1
3 , α}-approximation. 
	

The following lemma bounds the marginal gain in every iteration.

Lemma 5. For each t = 1, . . . , l + 1,

(a) if f is monotone, then

f(Ḡt) − f(Ḡt−1) ≥ c(at)
B

(
f(OPT ) − 2f(Ḡt−1)

)

(b) if f is non-monotone, then

f(Ḡt) − f(Ḡt−1) ≥ c(at)
B

(
f(OPT ) − 3f(Ḡt−1)

)
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Proof. As in the proof of Lemma 4, we again consider the unconstrained maxi-
mization over U(Ḡt−1) ∪ U(OPT ) for each t = 1, . . . , l + 1, and assume that the
partial greedy solutions in Algorithm2 coincide those in Algorithm 1. Denote by
OPT ′ the optimal solution of this unconstrained maximization problem.

When f is monotone, by Lemma 3 (a), for t = 1, . . . , l + 1 we have

f(OPT ) ≤ f(OPT ′) ≤ 2 · f(Ḡt−1) +
∑

(a,d)∈Tt−1\Ḡt−1

Δa,d(Ḡt−1)

≤ 2 · f(Ḡt−1) + B · Δat,dt
(Ḡt−1)

c(at)

= 2 · f(Ḡt−1) + B · f(Ḡt) − f(Ḡt−1)
c(at)

,

where the last inequality follows from the facts that the marginal density is
maximized in each iteration and the capacity remained is at most B. Then
immediately we have f(Ḡt) − f(Ḡt−1) ≥ c(at)

B

(
f(OPT ) − 2f(Ḡt−1)

)
.

When f is non-monotone, by Lemma 3 (b), a similar analysis gives

f(OPT ) ≤ 3 · f(Ḡt−1) + B · f(Ḡt) − f(Ḡt−1)
c(at)

.


	
Lemma 6. For each t = 1, . . . , l + 1, we have

f(Ḡt) ≥ (1 − xt) · f(OPT ),

where x1 = 1 − c(a1)
B , xt = (1 − 2c(at)

B )xt−1 + c(at)
B if f is monotone, and xt =

(1 − 3c(at)
B )xt−1 + 2c(at)

B if f is non-monotone.

Proof. We prove it by induction. Firstly, when t = 1, clearly we have f(Ḡ1) ≥
c(a1)

B f(OPT ). Assume that the statement holds for iterations 1, 2, . . . , t − 1. We
show that it also holds for iteration t. When f is monotone, by Lemma 5 (a),

f(Ḡt) = f(Ḡt−1) + f(Ḡt) − f(Ḡt−1)

≥ f(Ḡt−1) +
c(at)
B

(
f(OPT ) − 2f(Ḡt−1)

)

= (1 − 2c(at)
B

)f(Ḡt−1) +
c(at)
B

f(OPT )

≥ (1 − 2c(at)
B

)(1 − xt−1) · f(OPT ) +
c(at)
B

f(OPT )

=
[
1 − (

(1 − 2c(at)
B

)xt−1 +
c(at)
B

)]
f(OPT ).

When f is non-monotone, a similar analysis follows from Lemma 5 (b). 
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It is not hard to see that the recurrence relation xt = (1− 2c(at)
B )xt−1 + c(at)

B

with initial state x1 = 1 − c(a1)
B can be written as

xt − 1
2

= (1 − 2c(at)
B

)xt−1 − 1
2
(1 − 2c(at)

B
) = (1 − 2c(at)

B
)(xt−1 − 1

2
).

Hence, for the monotone case we can easily get a general formula

xt = (
1
2

− c(a1)
B

)
t∏

j=2

(1 − 2c(aj)
B

) +
1
2
. (8)

For the non-monotone case, similarly we can write the recurrence relation as

xt − 2
3

= (1 − 3c(at)
B

)xt−1 − 2
3
(1 − 3c(at)

B
) = (1 − 3c(at)

B
)(xt−1 − 2

3
),

and get a general formula

xt = (
1
3

− c(a1)
B

)
t∏

j=2

(1 − 3c(aj)
B

) +
2
3
. (9)

Now we are ready to prove our main theorem.

Theorem 1. For the kSKM, Greedy+Singleton achieves an approximation
ratio of 1

4 (1− 1
e2 ) ≈ 0.216 and 1

6 (1− 1
e3 ) ≈ 0.158 when the function is monotone

and non-monotone, respectively, within O(n2k) queries.

Proof. When f is monotone, by Lemma 6 and Eq. (8), we have

f(Ḡl+1) ≥ (1 − xl+1) · f(OPT )

=
(1

2
− (

1
2

− c(a1)
B

)
l+1∏

j=2

(1 − 2c(aj)
B

)
)

· f(OPT )

=
(1

2
− 1

2

l+1∏

j=1

(1 − 2c(aj)
B

)
)

· f(OPT ). (10)

If 1− 2c(aj)
B ≥ 0 for all j ∈ [l+1], since c(Ḡl+1) = c(Ḡl)+c(al+1) > B, we obtain

f(Ḡl+1) ≥
(1

2
− 1

2

l+1∏

j=1

(1 − 2c(aj)
c(Ḡl+1)

)
)

· f(OPT )

≥
(1

2
− 1

2
· (1 − 2

l + 1
)l+1

)
· f(OPT )

≥
(1

2
− 1

2e2

)
· f(OPT ). (11)

If 1 − 2c(aj)
B < 0 for exactly one j ∈ [l + 1] and 1 − 2c(aj)

B ≥ 0 for all i �= j,
it immediately follows from Eq. (10) that f(Ḡl+1) ≥ 1

2f(OPT ). It remains to
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consider the case when 1− 2c(aj)
B < 0 for exactly one j ∈ [l] and 1− 2c(al+1)

B < 0.
By Lemma 4, the large cost of item aj implies that Ḡj has an approximation
at least min{ 1

2 ,
c(aj)

B } ≥ 1
2 . By the monotonicity we have f(Ḡl+1) ≥ f(Ḡj) ≥

1
2f(OPT ).

Hence, we always have

f(Ḡl+1) = f(Ḡl) + Δal+1,dl+1(Ḡl) ≥
(1

2
− 1

2e2

)
· f(OPT ).

Note that Δal+1,dl+1(Ḡl) is no more than the maximum profit of a single item, i.e.,
the outcome of Singleton, say (a∗, d∗). Therefore, the better solution between
Ḡl and {(a∗, d∗)} has a value

max{f(Ḡl), f({(a∗, d∗)})} ≥ 1
2

(1
2

− 1
2e2

)
· f(OPT ).

Since Ḡl is a part of the solution returned by Greedy+Singleton when Greedy
performs better than Singleton, it establishes an approximation ratio 1

4 (1− 1
e2 ).

When f is non-monotone, by Lemma 6 and Eq. (9), we have

f(Ḡl+1) ≥ (1 − xl+1) · f(OPT )

=
(1

3
− (

1
3

− c(a1)
B

)
l+1∏

j=2

(1 − 3c(aj)
B

)
)

· f(OPT )

=
(1

3
− 1

3

l+1∏

j=1

(1 − 3c(aj)
B

)
)

· f(OPT ). (12)

If 1 − 3c(aj)
B ≥ 0 for all j ∈ [l + 1], since c(Ḡl+1) > B, we obtain

f(Ḡl+1) ≥
(1

3
− 1

3

l+1∏

j=1

(1 − 3c(aj)
c(Ḡl+1)

)
)

· f(OPT )

≥
(1

3
− 1

3
· (1 − 3

l + 1
)l+1

)
· f(OPT )

≥
(1

3
− 1

3e3

)
· f(OPT ).

If 1 − 3c(aj)
B < 0 holds for one j or three j’s in [l + 1], then it immediately

follows from Eq. (12) that f(Ḡl+1) ≥ 1
3f(OPT ). It remains to consider the case

when 1 − 3c(aj1 )

B < 0, 1 − 3c(aj2 )

B < 0, and 1 − 3c(ai)
B ≥ 0 for all i /∈ {j1, j2}.

Assume j1 ∈ [l]. By Lemma 4, the large cost of item aj1 implies that Ḡj1 has an
approximation at least min{ 1

3 ,
c(aj1 )

B } ≥ 1
3 . By the pairwise monotonicity and

the greedy procedure we know that the function value of partial greedy solutions
is non-decreasing, and thus f(Ḡl+1) ≥ f(Ḡj1) ≥ 1

3f(OPT ).
Therefore, Greedy+Singleton has a value at least

max{f(Ḡl), f({(a∗, i∗)})} ≥ 1
2

(1
3

− 1
3e3

)
· f(OPT ).
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5 Conclusion

We provided a novel analysis of Greedy+Singleton for the kSKM, and proved
approximation ratios 1

4 (1 − 1
e2 ) and 1

6 (1 − 1
e3 ) for monotone and non-monotone

functions, respectively. Compared with the 1
4 (1 − 1

e )-approximation in [1], our
improvement heavily replies on the key proposition of Lemma 3, which gives
upper bounds on the optimum f(T ) (for unconstrained maximization) in terms of
every partial greedy solution St, instead of the simple 2-approximation achieved
by the final greedy solution in [1]. Moreover, our Lemma 4 shows that a selected
item with a large cost gives a good approximation, which is also useful for proving
the improved approximation ratios. Future directions include further improving
the approximation ratio of Greedy+Singleton and looking for other efficient
algorithms.
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27. Yu, Q., Küçükyavuz, S.: An exact cutting plane method for k-submodular function
maximization. Discret. Optim. 42, 100670 (2021)

https://doi.org/10.1007/978-3-031-20350-3_1
https://doi.org/10.1007/978-3-031-20350-3_1
http://arxiv.org/abs/2107.07103
https://doi.org/10.1007/978-3-031-16081-3_14
https://doi.org/10.1007/978-3-031-16081-3_14

	An Improved Analysis of the Greedy+Singleton Algorithm for k-Submodular Knapsack Maximization
	1 Introduction
	2 Preliminaries
	3 A Key Lemma for Unconstrained k-Submodular Maximization
	4 Greedy+Singleton for k-Submodular Knapsack
	5 Conclusion
	References


