
Minming Li
Xiaoming Sun
Xiaowei Wu (Eds.)

LN
CS

 1
39

33 Frontiers of
Algorithmics
17th International Joint Conference, IJTCS-FAW 2023
Macau, China, August 14–18, 2023
Proceedings

Lecture Notes in Computer Science 13933
Founding Editors
Gerhard Goos
Juris Hartmanis

Editorial Board Members
Elisa Bertino, Purdue University, West Lafayette, IN, USA
Wen Gao, Peking University, Beijing, China
Bernhard Steffen , TU Dortmund University, Dortmund, Germany
Moti Yung , Columbia University, New York, NY, USA

https://orcid.org/0000-0001-9619-1558
https://orcid.org/0000-0003-0848-0873

The series Lecture Notes in Computer Science (LNCS), including its subseries Lecture
Notes in Artificial Intelligence (LNAI) and Lecture Notes in Bioinformatics (LNBI),
has established itself as a medium for the publication of new developments in computer
science and information technology research, teaching, and education.

LNCS enjoys close cooperation with the computer science R & D community, the
series countsmany renowned academics among its volume editors and paper authors, and
collaborates with prestigious societies. Its mission is to serve this international commu-
nity by providing an invaluable service, mainly focused on the publication of conference
andworkshop proceedings and postproceedings. LNCScommenced publication in 1973.

Minming Li · Xiaoming Sun · Xiaowei Wu
Editors

Frontiers of
Algorithmics
17th International Joint Conference, IJTCS-FAW 2023
Macau, China, August 14–18, 2023
Proceedings

Editors
Minming Li
City University of Hong Kong
Hong Kong SAR, China

Xiaowei Wu
University of Macau
Macau, China

Xiaoming Sun
Chinese Academy of Sciences
Beijing, China

ISSN 0302-9743 ISSN 1611-3349 (electronic)
Lecture Notes in Computer Science
ISBN 978-3-031-39343-3 ISBN 978-3-031-39344-0 (eBook)
https://doi.org/10.1007/978-3-031-39344-0

© Springer Nature Switzerland AG 2023

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of
the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors, and the editors are safe to assume that the advice and information in this book
are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the
editors give a warranty, expressed or implied, with respect to the material contained herein or for any errors
or omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Switzerland AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

https://orcid.org/0000-0002-5766-2115
https://orcid.org/0000-0002-0281-1670
https://doi.org/10.1007/978-3-031-39344-0

Preface

This volume contains the contributed, accepted papers presented at International Joint
Conference on Theoretical Computer Science - Frontiers of Algorithmic Wisdom
(IJTCS-FAW 2023), which combined the 17th International Conference on Frontiers
of Algorithmic Wisdom (FAW) and the 4th International Joint Conference on Theoreti-
cal Computer Science (IJTCS), held in Macau, China, during August 14–18, 2023. For
the first time in the past four years, the conference was run in a fully in-person mode.
FAW started as the Frontiers of Algorithmics Workshop in 2007 at Lanzhou, China, and
was held annually from 2007 to 2022 and published archival proceedings. IJTCS, the
International Joint Theoretical Computer Science Conference, started in 2020, aiming
to attract presentations covering active topics in selected tracks in theoretical computer
science.

To accommodate the diversified new research directions in theoretical computer
science, FAWand IJTCS joined their forces together to organize an event for information
exchange of new findings and work of enduring value in the field. The conference had
both contributed talks submitted to the three tracks in IJTCS-FAW 2023, namely,

• Track A: The 17th Conference on Frontiers of Algorithmic Wisdom,
• Track B: Blockchain Theory and Technology,
• Track C: Computational Economics and Algorithmic Game Theory,

and invited talks in focused tracks on Blockchain Theory; Multi-agent Learning,
Multi-agent Systems, Multi-agent Games; Learning Theory; Quantum Computing; and
Conscious AI. Furthermore, the CSIAM forum, Female Forum, Young PhD Forum,
Undergraduate Forum, Young Faculty in TCS and the CCFAnnual Conference on Com-
putational Economics 2023 (CCF CE 2023) were also organized during the five-day
event.

For the three tracks that accepted submissions, the Program Committee, consisting
of 45 top researchers from the field, reviewed 34 submissions and decided to accept 21
of them as full papers. These are presented in this proceedings volume. Each paper had
three reviews. The review processwas double blind and conducted entirely electronically
via the EasyChair system. The conference papers included in the volume have taken the
Springer Nature policies into account. After a review process and a thorough discussion
among the Program Committee members, we gave out a Best Paper Award and a Best
Student Paper Award.

The Best Paper Award goes to

• Max-Min Greedy Matching Problem: Hardness for the Adversary and Fractional
Variant

authored by Hubert T-H. Chan, Zhihao Gavin Tang and Quan Xue.

vi Preface

The Best Student Paper Award goes to

• EFX Allocations Exist for Binary Valuations

authored by Xiaolin Bu, Jiaxin Song and Ziqi Yu.

Besides the regular talks, IJTCS-FAW2023 had keynote talks fromKazuhisaMakino
(Kyoto University), Xiaotie Deng (Peking University) and Jianwei Huang (Chinese
University of Hong Kong, Shenzhen). We are very grateful to all the people who made
this conference possible: the authors for submitting their papers, the ProgramCommittee
members and the TrackChairs for their excellent work in coordinating the review process
and inviting the speakers, and all the keynote speakers and invited speakers.Wealso thank
the Advisory Committee and Steering Committee for providing the timely advice about
running the conference. In particular, we would like to thank the Local Organization
Committee members from the University of Macau and Peking University for providing
organizational support. Finally, we would like to thank Springer for their encouragement
and cooperation throughout the preparation of this conference.

August 2023 Minming Li
Xiaoming Sun
Xiaowei Wu

Organization

General Chair

Chengzhong Xu University of Macau, Macau, China

Program Committee Chairs

Minming Li City University of Hong Kong, Hong Kong, China
Xiaoming Sun Chinese Academy of Sciences, China
Xiaowei Wu University of Macau, Macau, China

Track Chairs

The 17th Conference on Frontiers of Algorithmic Wisdom

Zhiyi Huang University of Hong Kong, Hong Kong, China
Chihao Zhang Shanghai Jiao Tong University, China

Blockchain Theory and Technology

Jing Chen Stony Brook University, USA
Xiaotie Deng Peking University, China

Computational Economics and Algorithmic Game Theory

Yukun Cheng Suzhou University of Science and Technology,
China

Zhengyang Liu Beijing Institute of Technology, China
Biaoshuai Tao Shanghai Jiao Tong University, China

Steering Committee

Xiaotie Deng Peking University, China
Jian Li Tsinghua University, China

viii Organization

Pinyan Lu Shanghai University of Finance and Economics,
China

Jianwei Huang Chinese University of Hong Kong Shenzhen,
China

Lijun Zhang Chinese Academy of Sciences, China

Program Committee

Xiaohui Bei Nanyang Technological University, Singapore
Zhigang Cao Beijing Jiaotong University, China
Xue Chen University of Science and Technology of China,

China
Xujin Chen Chinese Academy of Sciences, China
Donglei Du University of New Brunswick, Canada
Muhammed F. Esgin Monash University, Australia
Mingyu Guo University of Adelaide, Australia
Chao Huang University of California Davis, USA
Moran Koren Harvard University, USA
Shi Li Nanjing University, China
Bo Li Hong Kong Polytechnic University, Hong Kong,

China
Bingkai Lin Nanjing University, China
Jingcheng Liu Nanjing University, China
Shengxin Liu Harbin Institute of Technology Shenzhen, China
Jinyan Liu Beijing Institute of Technology, China
Luchuan Liu BNU & HKBU United International College,

China
Xinhang Lu UNSW Sydney, Australia
Qi Qi Renmin University of China, China
Shuai Shao University of Science and Technology of China,

China
Xiaorui Sun Columbia University, USA
Yi Sun Chinese Academy of Science, China
Changjun Wang Chinese Academy of Sciences, China
Ye Wang University of Macau, Macau, China
Zihe Wang Renmin University of China, China
Jiayu Xu Oregon State University, USA
Yingjie Xue Brown University, USA
Kuan Yang Shanghai Jiao Tong University, China
Haoran Yu Beijing Institute of Technology, China
Yang Yuan Tsinghua University, China

Organization ix

Zhijie Zhang Fuzhou University, China
Yuhao Zhang Shanghai Jiao Tong University, China
Jinshan Zhang Zhejiang University, China
Jie Zhang University of Bath, UK
Yong Zhang Chinese Academy of Science Shenzhen Institutes

of Advanced Technology, China
Zhenzhe Zheng Shanghai Jiao Tong University, China

Keynote Speeches

Majority Game in Blockchain

Xiaotie Deng

Peking University

Abstract.Majority Equilibrium has made its way in Economic Systems
in its implementation of Bitcoin. Its economic stability or security hasmet
a challenge in the Selfishmining attack by Ittay Eyal and Emin Gün Sirer.
This talk is a presentation on the cognitive level viewof themajority game,
based on a recent joint work “Insightful Mining Equilibria” on WINE
2022, with Mengqian Zhang, Yuhao Li, Jichen Li, Chaozhe Kong.

Mechanism Design with Data Correlation

Jianwei Huang

Chinese University of Hong Kong (Shenzhen)

Abstract.High-quality data collection is essential for various data-driven
analysis scenarios. However, this process can compromise user privacy,
especially when data across individuals are correlated. In such cases, one
may suffer privacy loss even without reporting his own data directly.
This talk considers the design of privacy-preserving mechanisms in two
application scenarios: non-verifiable data with analysis-based incentives,
and verifiable data with payment-based incentives. In both cases, we
discuss how data correlation affects users’ data contribution behavior
and how the data collector should optimize the mechanism accordingly.

Optimal Composition Ordering for 1-Variable Functions

Kazuhisa Makino

Kyoto University

Abstract. We outline the composition ordering problem of 1-variable
functions, i.e., given n 1-variable functions, we construct a minimum
composition ordering for them.We discuss applications and related prob-
lems for the problem as well as the current status of the complexity
issue.

Contents

Understanding the Relationship Between Core Constraints
and Core-Selecting Payment Rules in Combinatorial Auctions 1

Robin Fritsch, Younjoo Lee, Adrian Meier, Ye Wang,
and Roger Wattenhofer

An Improved Analysis of the Greedy+Singleton Algorithm
for k-Submodular Knapsack Maximization . 15

Zhongzheng Tang, Jingwen Chen, and Chenhao Wang

Generalized Sorting with Predictions Revisited . 29
T.-H. Hubert Chan, Enze Sun, and Bo Wang

Eliciting Truthful Reports with Partial Signals in Repeated Games 42
Yutong Wu, Ali Khodabakhsh, Bo Li, Evdokia Nikolova,
and Emmanouil Pountourakis

On the NP-Hardness of Two Scheduling Problems Under Linear Constraints . . . 58
Kameng Nip

On the Matching Number of k-Uniform Connected Hypergraphs
with Maximum Degree . 71

Zhongzheng Tang, Haoyang Zou, and Zhuo Diao

Max-Min Greedy Matching Problem: Hardness for the Adversary
and Fractional Variant . 85

T.-H. Hubert Chan, Zhihao Gavin Tang, and Quan Xue

Approximate Core Allocations for Edge Cover Games . 105
Tianhang Lu, Han Xiao, and Qizhi Fang

Random Approximation Algorithms for Monotone k-Submodular
Function Maximization with Size Constraints . 116

YuYing Li, Min Li, Yang Zhou, and Qian Liu

Additive Approximation Algorithms for Sliding Puzzle . 129
Zhixian Zhong

Differential Game Analysis for Cooperation Models in Automotive
Supply Chain Under Low-Carbon Emission Reduction Policies 147

Yukun Cheng, Zhanghao Yao, and Xinxin Wang

xx Contents

Adaptivity Gap for Influence Maximization with Linear Threshold Model
on Trees . 160

Yichen Tao, Shuo Wang, and Kuan Yang

Physically Verifying the First Nonzero Term in a Sequence: Physical
ZKPs for ABC End View and Goishi Hiroi . 171

Suthee Ruangwises

Mechanism Design in Fair Sequencing . 184
Zhou Chen, Yiming Ding, Qi Qi, and Lingfei Yu

Red-Blue Rectangular Annulus Cover Problem . 195
Sukanya Maji, Supantha Pandit, and Sanjib Sadhu

Applying Johnson’s Rule in Scheduling Multiple Parallel Two-Stage
Flowshops . 212

Guangwei Wu, Fu Zuo, Feng Shi, and Jianxin Wang

The Fair k-Center with Outliers Problem: FPT and Polynomial
Approximations . 225

Xiaoliang Wu, Qilong Feng, Jinhui Xu, and Jianxin Wang

Constrained Graph Searching on Trees . 239
Lusheng Wang, Boting Yang, and Zhaohui Zhan

EFX Allocations Exist for Binary Valuations . 252
Xiaolin Bu, Jiaxin Song, and Ziqi Yu

Maximize Egalitarian Welfare for Cake Cutting . 263
Xiaolin Bu and Jiaxin Song

Stackelberg Strategies on Epidemic Containment Games . 281
Tingwei Hu, Lili Mei, and Zhen Wang

Author Index . 295

Understanding the Relationship Between
Core Constraints and Core-Selecting

Payment Rules in Combinatorial Auctions

Robin Fritsch1, Younjoo Lee2, Adrian Meier1, Ye Wang3(B),
and Roger Wattenhofer1

1 ETH Zurich, Zurich, Switzerland
{rfritsch,wattenhofer}@ethz.ch, meiera@student.ethz.ch

2 Seoul National University, Seoul, Korea
youlee@student.ethz.ch

3 University of Macau, Macau, China
wangye@um.edu.mo

Abstract. Combinatorial auctions (CAs) allow bidders to express com-
plex preferences for bundles of goods being auctioned, which are widely
applied in the web-based business. However, the behavior of bidders
under different payment rules is often unclear. In this paper, we aim
to understand how core constraints interact with different core-selecting
payment rules. In particular, we examine the natural and desirable non-
decreasing property of payment rules, which states that bidders cannot
decrease their payments by increasing their bids. Previous work showed
that, in general, the widely used VCG-nearest payment rule violates the
non-decreasing property in single-minded CAs. We prove that under a
single effective core constraint, the VCG-nearest payment rule is non-
decreasing. In order to determine in which auctions single effective core
constraints occur, we introduce a conflict graph representation of single-
minded CAs and find sufficient conditions for the single effective core
constraint in CAs. We further show that the VCG-nearest payment rule
is non-decreasing with no more than five bidders.

Keywords: Combinatorial auctions · Core-selecting payment rules ·
VGC-nearest payment rule · Non-decreasing payment rules ·
Overbidding

1 Introduction

Combinatorial Auctions (CAs) [19] are widely used to sell multiple goods with
unknown value at competitive market prices. CAs permit bidders to fully express
their preferences by allowing them to bid on item bundles instead of being lim-
ited to bidding on individual items. A CA consists of an allocation algorithm

c© Springer Nature Switzerland AG 2023
M. Li et al. (Eds.): IJTCS-FAW 2023, LNCS 13933, pp. 1–14, 2023.
https://doi.org/10.1007/978-3-031-39344-0_1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-39344-0_1&domain=pdf
https://doi.org/10.1007/978-3-031-39344-0_1

2 R. Fritsch et al.

that chooses the winning bidders, and a payment function that determines the
winner’s payments. CAs are popular, sometimes with a total turnover in the
billions of US dollars [1], especially in the web-based business [16]. Often auc-
tion designers want an auction to be truthful, in the sense that all bidders are
incentivized to reveal their true value.

Table 1. An example of an auction with 3 bidders and 2 items. The two local bidders
win the auction because they bid 6 + 7 = 13, whereas the global bidder only bids 9.

Local
Bidder 1

Local
Bidder 2

Global
Bidder

Bundle {A} {B} {A,B}
Bid 6 7 9

Allocation {A} {B} {}
First-price payment 6 7 0

VCG payment 2 3 0

VN payment 4 5 0

Consider the example in Table 1. This is a so-called Local-Local-Global (LLG)
auction; two bidders are local in the sense that they are only interested in one
good each, while the global bidder wants to buy all goods. If the payment scheme
is the first-price payment, the winning local bidders would need to pay 6+7 = 13.
They would have been better off by lying, for instance, by bidding a total amount
of 10 only.

The well-known Vickrey-Clarke-Groves (VCG) payment scheme [9,14,21] is
the unique payment function to guarantee being truthful under the optimal wel-
fare allocation. In our example, the VCG payments are much lower. Indeed, VCG
payments are often not plausible in practice because of too low payments [3]. In
our example, the VCG payments of 2 + 3 = 5 are less valuable than the bid of
the global bidder. Therefore, the global bidder and the seller should ignore the
VCG mechanism and make a direct deal.

Core-selecting payment rules, in particular the VCG-nearest (VN) pay-
ment [11], have been introduced to improve the situation and to guarantee the
seller a reasonable revenue [12]. The VN payment rule selects the closest point
to the VCG payments in the core, where the core is the set of payments, for
which no coalition is willing to pay more than the winners [10] (see Fig. 1).

Core Constraints and Core-Selecting Payment Rules in CAs 3

Fig. 1. Left: payment space of winning bidders in Table 1. The green point pV is the
VCG payment point, the red point PV N is the VN payment point, the orange line is
the core constraint on payments of local bidders 1 and 2, and the gray triangle is the
core given by core constraints. Right: If bidder 1 increases their bid from 6 to 7, their
payment increases as well, from 4 to 4.5.

In this paper, we study payment rules for welfare maximizing known single-
minded CAs in which each bidder is interested in a single known bundle. The
profile of desired bundles together with the profile of bids define a number of
linear constraints (the core constraints) which form a polytope (the core).

However, also core-selecting payments such as the VN payment are not per-
fect. It has been shown that bidders can sometimes decrease their payments
by announcing higher-than-truthful bids under the VN payment rule. Exam-
ples which show such overbidding behavior already need a non-trivial amount of
goods and bidders [7]. In this paper, we study the limitations of VN payments.
How complicated can CAs get such that bidders cannot profit from higher-than-
truthful bids when using VN payments? What is the relation between different
core constraints and core-selecting payment rules?

In particular, we study when the non-decreasing property holds, which is a
natural and desirable property of payment rules. This property requires that a
bidder cannot decrease their payment by increasing their bid. We examine for
which kind of core constraints VN payments are non-decreasing. More precisely,
we show that the non-decreasing property holds whenever a single effective core
constraint exists.

Our second result determines which kinds of auctions are non-decreasing.
To do so, we introduce a graph-based representation of CAs. We construct a
conflict graph based on the overlap between the desired bundles of the bidders.
We find sufficient conditions on the conflict graph to have a single effective core
constraint. In particular, we show that this is the case if the conflict graph is a
complete multipartite graph or if any maximal independent set in the conflict
graph has at most two nodes. Furthermore, we show that for auctions with at
most five bidders, the VN payment is non-decreasing, without relying on the
existence of a single effective core constraint.

4 R. Fritsch et al.

2 Related Work

The incentives of bidders in CAs with core-selecting payment rules are not under-
stood well [13]. Day and Milgrom claimed that core-selecting payment rules
minimize incentives to misreport [10]. However, it is not known under which cir-
cumstances certain incentive properties, like the non-decreasing property, hold.
The non-decreasing property has been observed for the VN payment rule in
LLG auctions [2], but does not hold in other single-minded CAs [7]. Markakis
and Tsikirdis examined two other payment rules, 0-nearest and b-nearest, which
select the closest point in the minimum-revenue core to the origin and to the
actual bids, respectively [15]. They prove that these two payment rules satisfy
the non-decreasing property in single-minded CAs.

To analyze the effectiveness of core-selecting payment rules in Computational
Auctions (CAs), Day and Raghavan introduced a constraint generation approach
to succinctly formulate the pricing problem [12]. Building upon this work, B”unz
et al. presented an enhanced algorithm that expedites the generation of core con-
straints by leveraging conflict graphs among auction participants [4]. Niazadeh
et al. [17] and Cheng et al. [8] further extended these advancements by develop-
ing rapid algorithms tailored for specific use cases, such as advertising auctions
and path auctions, respectively.

Payment properties strongly influence incentive behaviors in CAs. Previous
research focused on game-theoretic analysis [12] and showed that bidders might
deviate from their truthful valuation to under -bidding strategies (bid shading)
or over -bidding strategies, where bidders place a bid lower or higher than their
valuation, respectively. Ryuji Sano [20] proved that the truthful strategy is not
dominant in proxy and bidder-optimal core-selecting auctions without a trian-
gular condition. However, whether over-bidding strategies exist in any NE is still
an open question.

Previous work has shown that in both full and incomplete information set-
ting, under-bidding strategies always exist in Pure Nash equilibria (PNE) and
Bayesian Nash equilibria (BNE) for core-selecting CA. Beck and Ott exam-
ined over-bidding strategies in a general full-information setting and proved that
every minimum-revenue core-selecting CA has a PNE, which only contain over-
bids [18]. Although the existence of over-bidding strategies in PNE has been
proven, incentives for over-bidding when values are private are not very well
understood. In BNE, bidders choose from their action space to respond to oth-
ers’ expected strategies with a common belief about the valuation distribution
among all bidders. One of the few known facts is that bidders might over-bid on
a losing bundle to decrease their payment for a winning bundle [5,6,18].

Compared to previous studies our work fills the following three gaps. First,
previous studies have not fully considered how core constraints influence core-
selecting payment property. This paper examines how core constraints interact
with core-selecting payment rules, which motivates better designs of CA models.
Second, since we believe that graph representations are at the heart of under-
standing the core constraints and core-selecting payment rules, we represent
conflicts as a graph. Finally, the relationship between non-decreasing payment

Core Constraints and Core-Selecting Payment Rules in CAs 5

rules and incentive behaviors in CAs has not been studied yet. Our work pro-
vides new insight into the existence of over-bidding strategies in Nash equilibria,
underlining the importance of the non-decreasing property.

3 Formal Model

We study auctions under the assumption that all bidders as well as the auction-
eer act independently, rationally, and selfishly. Each bidder aims to maximize
personal utility.

3.1 Combinatorial Auctions

In a combinatorial auction (CA) a set M = {1, . . . , m} of goods is sold to a
set N = {1, . . . , n} of bidders. In this paper, we consider single-minded CAs
(SMCAs) in which every bidder only bids on a single bundle. Let ki ⊂ M be
the single bundle that bidder i is bidding for and denote k = (k1, . . . , kn) as the
interest profile of the auction. We assume that the interest profile of an auction
is known and fixed. Furthermore, let vi ∈ R≥0 be the true (private) value of ki
to bidder i and bi ∈ R≥0 the bid bidder i submits for ki. The bids of all bidders
are summarized in the bid profile b = (b1, . . . , bn). We denote the bid profile of
all bids except bidder i’s b−i, and in general, the bid profile of a set L ⊂ N of
bidders bL.

A CA mechanism (X,P) consists of a winner determination algorithm X and
a payment function P . The winner determination selects the winning bids while
the payment function determines how much each winning bidder must pay.

3.2 Winner Determination

The allocation algorithm X(b) returns an efficient allocation x, i.e. a set of win-
ning bidders who receive their desired bundles. All other bidders receive nothing.
An allocation is called efficient if it maximizes the reported social welfare which
is defined as the sum of all winning bids. We denoted the reported social welfare
as W (b, x) =

∑
i∈x bi. This optimization problem is subject to the constraint

that every item is contained in at most one winning bundle.
Every bidder intends to maximize their utility which is the difference between

their valuation of the bundle they acquire and the payment they make. The social
optimum would be to choose the allocation that maximizes the sum of valuations
of the winning bundles. However, since the valuations are private, the auctioneer
can only maximize the reported social welfare.

3.3 Payment Functions

We assume the payment function satisfies voluntary participation, i.e., no bidder
pays more than they bid. So the payment pi of bidder i satisfies pi ≤ bi for every
i ∈ N .

6 R. Fritsch et al.

The Vickrey-Clarke-Groves (VCG) payment is the unique payment rule
which always guarantees truthful behavior of bidders in CAs. We denote bidder
i’s VCG payment as pVi .

Definition 1 (VCG payment). For an efficient allocation x = X(b), the VCG
payment of bidder i is

pVi (b, x) := W (b,X(b−i)) − W (b, x−i)

where x−i = x \ {i} is the set of all winning bidder except i. Note that X(b−i)
is an efficient allocation in the auction with all bids except bidder i’s bid.

The VCG payment pVi is a measurement of bidder i’s contribution to the
solution. It represents the difference between the maximum social welfare in an
auction without i and the welfare of all winners except i in the original auction.

Definition 2 (Core-selecting Payment Rule). For an efficient allocation
x = X(b), the core is the set of all points p(b, x) which satisfies the following
core constraint for every subset L ⊆ N :

∑

i∈N\L
pi(b, x) ≥ W (b,X(bL)) − W (b, xL)

Here, xL = x∩L is the set of winning bidders in L under the allocation x. Note
that X(bL) is an efficient allocation in the auction with only the bids of bidders
in L.

A payment rule is called core-selecting if it selects a point within the core.
The minimum revenue core forms the set of all points p(b, x) minimizing∑

i∈N pi(b, x) subject to being in the core.

The core is described by lower bound constraints (the core constraints) on
the payments such that no coalition can form a mutually beneficial renegotiation
among themselves. Those core constraints impose that any set of winning bidders
must pay at least as much as their opponents would be willing to pay to get their
items. The VN payment rule selects a payment point in the core closest to the
VCG point.

Definition 3 (VCG-nearest Payment). The VCG-nearest payment rule
(quadratic payment, VN payment) picks the closest point to the VCG payment
within the minimum-revenue core with respect to Euclidean distance.

Definition 4 (Non-decreasing Payment Rule). For any allocation x, let
Bx be the set of bid profiles for which x is efficient. The payment-rule p is non-
decreasing if, for any bidder i, any allocation x, and bid profiles b, b′ ∈ Bx with
b′
i ≥ bi and b−i = b′

−i, the following holds:

pi(b′, x) ≥ pi(b, x)

Core Constraints and Core-Selecting Payment Rules in CAs 7

4 Non-decreasing Payment Rules and Single Effective
Core Constraints

We begin by proving a sufficient condition on the core constraints that guarantees
that VN is a non-decreasing payment rule.

For core selecting payment rules, the core constraints bound the payments
from below to ensure that no coalition has a higher reported price than the
winners. However, many of the constraints are redundant since other constraints
are more restrictive. For example, consider an LLG auction such as the one
shown in Fig. 1 in which the local bidders win. The core constraints on their
payment are then

p1 + p2 ≥ bG (1)
p1 ≥ bG − b2 (2)
p2 ≥ bG − b1 (3)

where bG is the bid of the global bidder. Of these constraints, (2) is immediately
satisfied, as soon (1) holds since p2 ≤ b2. The same is true for (3). So (1)
is the only effective constraint. We will formalize this idea in the following.
Note that the constraints (2) and (3) discussed above are of the form pi ≥ pVi .
Such a constraint arises for every winning bidder from the core constraint for
N \ L = {i}. However, when calculating the VN payments, we can disregard
core constraints of the form pi ≥ pVi which we call VCG-constraints since we
are minimizing the distance between p and pV and no other constraint forces
pi < pVi .

Definition 5. Consider an SMCA with a fixed interest profile and a fixed winner
allocation. Intuitively, we say a single effective core constraint (SECC) exists,
if for all bid profiles, the fact that a single core constraint holds implies that all
other core constraints are satisfied. More formally, an SECC exists, if for all bid
profiles, the polytope defined by this core constraint together with the voluntary
participation constraints exactly equals the core (which is defined by all core
constraints).

Theorem 1. The VN payment rule is non-decreasing for SMCAs with a single
effective core constraint.

Proof. To prove this theorem, we will first compute an explicit formula for the
VN payments. The payments of all losing bidders are 0. For all winning bidders
whose payment is not part of the SECC, the VN payment simply equals the
VCG payment. Let S be the set of winners whose payment is part of the SECC.
Then we have the following constraints on the VN payments to S, where (4) is
the SECC with some lower bound B.

∑

i∈S

pV N
i ≥ B (4)

pV N
i ≤ bi for i ∈ S (5)

8 R. Fritsch et al.

The quadratic optimization problem to be solved is minimizing the Euclidean
distance between pV N and pV under the constraints above. For the solution of
this optimization, the voluntary participation constraint (5) will be active for
some i. Let A be the set of indices for which (5) is active, i.e. pV N

i = bi for i ∈ A.
For the remaining i ∈ S \ A, we write pV N

i = pVi + δi. The single effective
core constraint (4) can now be rewritten as

∑

i∈S\A
δi ≥ B −

∑

i∈S\A
pVi −

∑

i∈A

bi.

Minimizing the Euclidean distance between pV N and pV is equivalent to minimiz-
ing

∑
i∈S\A δ2i . Since we have a lower bound on the sum of the δi, the minimum

possible value of
∑

i∈S\A δ2i is achieved when all δi are equal, i.e.

δi = δ =
1

|S \ A|

⎛

⎝B −
∑

j∈S\A
pVj −

∑

j∈A

bj

⎞

⎠ (6)

for i ∈ S \ A. With that we conclude

pV N
i =

{
bi for i ∈ A
pVi + δ for i ∈ S \ A.

(7)

Finally, we verify that VN is non-decreasing. Assume bidder i increases their
bid and this does not change the allocation x. If i is a losing bidder in x, their
VN payment is 0 and can obviously not decrease. Furthermore, if i is a winning
bidder, but i’s payment is not part of the SECC, i’s VN payment will equal their
VCG payment which does not change as it only depends on the other bids. From
now on, we assume that bidder i is a winning bidder whose payment is part of
the SECC, i.e. i ∈ S.

Consider how the quadratic optimization problem changes when increasing
bidder i’s bid. One constraint and the point pV move continuously with this
change. So clearly the solution, i.e. pV N , also moves continuously. During this
move, some of the constraints (5) will become active or inactive. We call the
moments when this happens switches and examine the steps between two con-
secutive switches.

As pV N changes continuously around switches, Eq. (7) will yield the same
result at the switch, no matter if we consider the switching constraint to be active
or not. So for every single step, we can assume that the set of active constraints
is the same at the beginning and the end of the step. If suffices to show that
bidder i’s payment does not decrease in every step between two switches. (In
short, pV N is a continuous function which is piecewise defined and we verify all
of its pieces are non-decreasing.)

Assume bidder i’s bid increases from bi to b′
i in a certain step and let b =

(bi, b−i) and b′ = (b′
i, b−i) denote the corresponding bid profiles. We distinguish

two case based on if i is in the set of active constraints in this step or not. If

Core Constraints and Core-Selecting Payment Rules in CAs 9

i’s constraint is active, i.e. i ∈ A, we have pV N
i (b, x) = bi and pV N

i (b′, x) = b′
i in

(7). Then the voluntary participation constraint implies

pV N
i (b, x) = bi ≤ b′

i = pV N
i (b′, x).

Otherwise, for i /∈ A, we have pV N
i (b, x) = pVi + δ and pV N

i (b′, x) = pVi + δ′

where δ′ is the term in (6) for the bidding profile b′ with the increased bid.
Then it remains to argue that δ ≤ δ′. This is true since neither B nor |S \ A|
in (6) change. The sum

∑
j∈A bj also stays the same since i /∈ A. Furthermore,

∑
j∈S\A pVj decreases or stays the same because the VCG payments of all other

bidders decrease or stay the same when a winning bidder increases their bid.

So the existence of an SECC is a sufficient condition for the VN payment to
be non-decreasing. It is however, not a necessary condition as can be shown by
an appropriate example.

5 Graph Representation of Auction Classes

In the following, we examine for which auction classes there is guaranteed to exist
only a single effective core constraint. To this end, we consider a representation
of the auction classes as graphs. More precisely, we construct a conflict graph
from the interest profile of an auction which represents the overlap between the
bundles as follows. For an interest profile k = (k1, . . . , kn) of an SMCA, consider
the graph G = (V,E), where V = {k1, . . . , kn}, i.e. each node represents a bidder.
Two nodes are connected by an edge if and only if the corresponding bundles
intersect in at least one item. Two simple examples are shown in Fig. 2.

Fig. 2. Two examples of conflict graphs. The left one corresponds to the interest profile
({A}, {B}, {C}, {D}, {A,B,C,D}), the right one to ({A,B}, {B,C}, {C,D}, {D,A}).

Every set of winners of the auction corresponds to a maximal independent
set (MIS) in the graph.

Note that every graph with n nodes is the conflict graph of an SMCA with
n bidders, i.e. the mapping is surjective: Given a graph, we associate a distinct
item with every edge. For every node, we then choose the bundle containing
all items of adjacent edges. While different interest profiles are mapped to the
same conflict graph, auctions with the same conflict graph lead to equivalent
core constraints.

10 R. Fritsch et al.

Lemma 1. Interest profiles with the same conflict graph have equivalent core
constraints (up to renaming the bidders) for all possible bid profiles.

Proof. For two interest profiles with isomorphic conflict graphs, let us renumber
the bidders in one profile such that the isomorphism maps the i-th bidder in
one graph to the i-th bidder in the other graph for all i ∈ {1, . . . , n}. Remember
Definition 2 of the core constraints:

∑

i∈N\L
pi(b, x) ≥ W (b,X(bL)) − W (b, xL)

Note that for every L, the sets xL and X(bL) depend only on the conflict graphs
and the bid profile. So the same is true for the whole right side on the inequality.

Only by looking at the conflict graph, we can tell by the following sufficient
conditions if an SECC exists.

Lemma 2. Every auction whose conflict graph is a complete multipartite graph
has a single effective core constraint.

Proof. If the conflict graph of an auction is a complete multipartite graph, the
bidders can be grouped into k bidder groups B1, . . . , Bk, where no edge between
two bidders within the same group exists, but any two bidders in different groups
are connected by an edge.

We argue that the winning set must be one of these bidder groups. A winning
set clearly can not contain bidders from different groups since their bundles
overlap. Moreover, if the winning set is only a subset of a bidder group, the
current winner allocation does not maximize reported social welfare, since the
rest of the group can simply be added to the winners.

Let Bw be the winning bidder group. We now argue that only a single effective
core constraint exists. For any subset L ⊆ N , we have the core constraint

∑

i∈N\L
pi(b, x) ≥ W (b,X(bL)) − W (b, xL). (8)

First, note that the core constraint is not effective if N \ L contains a losing
bidder. Adding this losing bidder to L does not change the left-hand side (LHS)
of (8) since this losing bidder’s payment must be 0. On the other hand, the
right-hand side (RHS) will not decrease since W (b, xL) does not change. Hence,
the new constraint covers the previous one.

So we only need to consider the core constraints with N \ L ⊂ Bw. Choose
L′ such that Bw \ L′ = N \ L. Furthermore, let Bo be the winning bidder group
in the auction with only the bidders N \Bw. The term W (b,X(bL)) on the RHS
equals either

∑
i∈L′ bi or

∑
i∈Bo

bi. If the former is true, the RHS is 0 and the
constraint is clearly not effective. In the latter case, the constraint is of the form

∑

i∈Bw\L′
pi(b, x) ≥

∑

i∈Bo

bi −
∑

i∈L′
bi.

Core Constraints and Core-Selecting Payment Rules in CAs 11

Because of pi(b, x) ≤ bi, any such constraints is covered by the constraint
∑

i∈Bw

pi(b, x) ≥
∑

i∈Bo

bi

which is therefore the single effective core constraint.

Note, both graphs in Fig. 2 are complete bipartite meaning an SECC exists
for any auctions with such a conflict graph. Another sufficient condition for the
existence of an SECC is the following.

Lemma 3. If every MIS in the conflict graph contains at most 2 nodes, the
auction has a single effective core constraint.

Proof. As seen in the previous proof, we only need to consider core constraints
where N \ L contains only winning bidders. So we get a constraint of the form
pi + pj ≥ B, and one each for pi and pj . These are either pi ≥ 0 or pi ≥ B − bj
(and similarly for pj). Because pi ≤ bi and pj ≤ bj , pi + pj ≥ B is the only
effective core constraint.

The Lemmas 2 and 3 show two sufficient conditions for the existence of a
single effective core constraint. However, there do exist examples with a SECC,
where the conflict graph has a MIS of size larger than 2 and is not a complete
multipartite graph, meaning the conditions are not necessary.

So looking at the conflict graph can tell us when the auction has a SECC
and consequently, if certain payment rules are non-decreasing for this auction.
On the other hand, by understanding induced subgraphs of the conflict graph,
we can also determine that the non-decreasing property of a payments rule is
violated for this auction.

Lemma 4. Consider two interest profiles k and k′ with corresponding conflict
graphs G and G′. If G′ is an induced subgraph of G and a payment rule is not
non-decreasing for k′, then the payment rule is also not non-decreasing for k.

Proof. According to Definition 4, a payment rule not being non-decreasing for
k′ means there exists an allocation x and bid profiles b and b′ with b′

i ≥ bi and
b−i = b′

−i such that pi(b′, x) < pi(b, x). By simply choosing zero (or arbitrarily
small) bids for all bidders in G \ G′, we also find two bid profiles with the same
property for k.

Bosshard et al. proved that the VN payment violates the non-decreasing
property by proposing an interest profile and corresponding bids [7]. Hence,
VN is also not non-decreasing for any auction that contains the graph of this
example as an induced subgraph. This principle motivates the search for minimal
examples of overbidding, as well as proving further sufficient conditions for when
overbidding does not occur. In the following, we show a sufficient condition for
the non-decreasing property, without relying on the existence of a single effective
core constraint.

12 R. Fritsch et al.

Theorem 2. The VN-payment rule is non-decreasing for all auctions that have
an interest profile for which every winner allocation contains at most three win-
ners.

Proof. The case that the auction is won by two bidders is already treated in
Lemma 3. Assume three bidders win the auction, and without loss of generality,
let the winners be bidders 1, 2 and 3. Then the core constraints are

pV N
1 + pV N

2 + pV N
3 ≥ W (b,X(bN\{1,2,3})) (9)

pV N
1 + pV N

2 ≥ W (b,X(bN\{1,2})) − b3 (10)

pV N
2 + pV N

3 ≥ W (b,X(bN\{2,3})) − b1 (11)

pV N
1 + pV N

3 ≥ W (b,X(bN\{1,3})) − b2. (12)

Remember, that we can ignore core constraints of the form pV N
i ≥ pVi (VCG-

constraints). Furthermore, assume without loss of generality that bidder 3
increases their bid.

Let M be the minimum revenue determined by the core constraints. There
are two possibilities for the minimum revenue core: First, if the plane described
by (9) is not fully covered by the constraints (10), (11) and (12), the minimum
revenue is M = W (b,X(bN\{1,2,3})). We further discuss this case in the next
paragraph. The second possibility is that the plane described by (9) is fully
covered by the other constraints, and M > (b,X(bN\{1,2,3})). Then the minimum
revenue core is a single point determined by equality holding in (10), (11) and
(12). Since the right sides of (10), (11) and (12) are not larger than the right
side of (9), all three constraints are needed to fully cover the plain. In particular,
bidder 3 must be part of X(bN\{1,2}), otherwise (9) implies (10), and the plane
is not fully covered. But this means, that increasing b3 does not change the right
sides of (10). As the same is true for (11) and (12), increasing b3 does not move
the minimum revenue core and thereby the VN payment point.

In the following, we assume that constraint (9) is active. Moreover, we assume
that M = W (b,X(bN\{1,2,3})). We argue similarly to the proof of Theorem 1:
All changes in the VN payments are continuous in the change of the bid b3. At
any time, a number of constraints are active, and this set of active constraints
changes at certain switches. To prove, the payment does not decrease overall,
it suffices to prove it does not decrease between two switches, when the set of
active constraints does not change. In the following, we distinguish three possible
cases.

1st Case. Only constraint (9) is active. Hence, the VN payments are
⎛

⎜
⎝

pV1 + M−(pV
1 +pV

2 +pV
3)

3

pV2 + M−(pV
1 +pV

2 +pV
3)

3

pV3 + M−(pV
1 +pV

2 +pV
3)

3

⎞

⎟
⎠

When b3 is increased, M = W (b,X(bN\{1,2,3})), the minimum revenue does
not change. Furthermore, pV1 and pV2 stay the same or decrease. So bidder 3’s
payment does not decrease according to the formula above.

Core Constraints and Core-Selecting Payment Rules in CAs 13

2nd Case. The constraints (9) and (10) are active. This implies

pV N
3 = b3 + M − W (b,X(bN\{1,2}))

pV N
1 + pV N

2 = W (b,X(bN\{1,2})) − b3.

As b3 increases, W (b,X(bN\{1,2})) can increase by at most as much as b3. Hence,
the payment pV N

3 will not decrease.

3rd Case. Constraints (9) and (11) are active. (Note that the case when con-
straints (9) and (12) are active is equivalent due to symmetry.) This implies

pV N
1 = b1 + M − W (b,X(bN\{2,3}))

pV N
2 + pV N

3 = W (b,X(bN\{2,3})) − b1.

These equations describe a line on which the VN payment points lies. Increasing
b3 does not change the right side of the equation. Furthermore, it may decrease
pV2 , but does not change pV3 . Since pV N is the closest point to pV on the line,
this can, if it causes a change, only lead to a decrease of pV N

2 and an increase
of pV N

3 .

Corollary 1. The VN-payment rule is non-decreasing for all auctions with at
most five bidders.

Proof. If the auction has at most three winners, the previous theorem applies.
Furthermore, if there are four bidders and four winners or five bidders and
five winners, the conflict graphs are not connected. For non-connected conflict
graphs, the problem reduces to multiple smaller, independent auctions. So the
only remaining case is five bidders and four winners. Then the only possible
connected conflict graph is the complete bipartite graph K1,4. And this case is
covered by Lemma 2.

6 Conclusion

In this paper, we study the relationship between payment rules and core con-
straints in CAs. We show how core constraints interact with an incentive prop-
erty of payment rules in SMCAs, more precisely, that a single effective core
constraint results in the non-decreasing property of the VN payment rule. Addi-
tionally, we introduce a conflict graph representation of SMCAs and prove suf-
ficient conditions on it for the existence of a single effective core constraint.

References

1. Ausubel, L.M., Baranov, O.: A practical guide to the combinatorial clock auction.
Econ. J. 127(605), F334–F350 (2017). https://doi.org/10.1111/ecoj.12404

2. Ausubel, L.M., Baranov, O.: Core-selecting auctions with incomplete information.
Int. J. Game Theory 49(1), 251–273 (2020)

https://doi.org/10.1111/ecoj.12404

14 R. Fritsch et al.

3. Ausubel, L.M., Milgrom, P., et al.: The lovely but lonely Vickrey auction. Comb.
Auctions 17, 22–26 (2006). https://www.researchgate.net/profile/Paul Milgrom/
publication/247926036 The Lovely but Lonely Vickrey Auction/links/54bdcfe10
cf27c8f2814ce6e/The-Lovely-but-Lonely-Vickrey-Auction.pdf

4. Bünz, B., Seuken, S., Lubin, B.: A faster core constraint generation algorithm for
combinatorial auctions. In: Proceedings of the AAAI Conference on Artificial Intel-
ligence, vol. 29, no. 1 (2015). https://doi.org/10.1609/aaai.v29i1.9289. https://ojs.
aaai.org/index.php/AAAI/article/view/9289

5. Bosshard, V., Bünz, B., Lubin, B., Seuken, S.: Computing Bayes-Nash equilibria
in combinatorial auctions with verification. J. Artif. Intell. Res. 69, 531–570 (2020)

6. Bosshard, V., Seuken, S.: The cost of simple bidding in combinatorial auctions.
arXiv:2011.12237 (2020)

7. Bosshard, V., Wang, Y., Seuken, S.: Non-decreasing payment rules for combinato-
rial auctions. In: IJCAI, pp. 105–113 (2018)

8. Cheng, H., Zhang, W., Zhang, Y., Zhang, L., Wu, J., Wang, C.: Fast core pricing
algorithms for path auction. Auton. Agent. Multi-Agent Syst. 34(1), 1–37 (2020).
https://doi.org/10.1007/s10458-019-09440-y

9. Clarke, E.H.: Multipart pricing of public goods. Public Choice 11(1), 17–33 (1971)
10. Day, R., Milgrom, P.: Core-selecting package auctions. Int. J. Game Theory 36(3–

4), 393–407 (2008). https://doi.org/10.1007/s00182-007-0100-7
11. Day, R.W., Cramton, P.: Quadratic core-selecting payment rules for combinatorial

auctions. Oper. Res. 60(3), 588–603 (2012)
12. Day, R.W., Raghavan, S.: Fair payments for efficient allocations in public sector

combinatorial auctions. Manag. Sci. 53(9), 1389–1406 (2007). https://pubsonline.
informs.org/doi/pdf/10.1287/mnsc.1060.0662

13. Goeree, J.K., Lien, Y.: On the impossibility of core-selecting auctions. Theor. Econ.
11(1), 41–52 (2016)

14. Groves, T.: Incentives in teams. Econometrica: J. Econometric Soc. 617–631 (1973)
15. Markakis, E., Tsikiridis, A.: On core-selecting and core-competitive mechanisms

for binary single-parameter auctions. In: Caragiannis, I., Mirrokni, V., Nikolova,
E. (eds.) WINE 2019. LNCS, vol. 11920, pp. 271–285. Springer, Cham (2019).
https://doi.org/10.1007/978-3-030-35389-6 20

16. Narahari, Y., Dayama, P.: Combinatorial auctions for electronic business. Sadhana
30(2), 179–211 (2005)

17. Niazadeh, R., Hartline, J., Immorlica, N., Khani, M.R., Lucier, B.: Fast core pricing
for rich advertising auctions. Oper. Res. 70(1), 223–240 (2022)

18. Ott, M., Beck, M., et al.: Incentives for overbidding in minimum-revenue core-
selecting auctions. In: VfS Annual Conference 2013 (Duesseldorf): Competition
Policy and Regulation in a Global Economic Order, no. 79946, Verein für Socialpoli-
tik/German Economic Association (2013)

19. Rassenti, S.J., Smith, V.L., Bulfin, R.L.: A combinatorial auction mechanism for
airport time slot allocation. Bell J. Econ. 402–417 (1982)

20. Sano, R.: Incentives in core-selecting auctions with single-minded bidders. Games
Econom. Behav. 72(2), 602–606 (2011)

21. Vickrey, W.: Counterspeculation, auctions, and competitive sealed tenders. J.
Financ. 16(1), 8–37 (1961)

https://www.researchgate.net/profile/Paul_Milgrom/publication/247926036_The_Lovely_but_Lonely_Vickrey_Auction/links/54bdcfe10cf27c8f2814ce6e/The-Lovely-but-Lonely-Vickrey-Auction.pdf
https://www.researchgate.net/profile/Paul_Milgrom/publication/247926036_The_Lovely_but_Lonely_Vickrey_Auction/links/54bdcfe10cf27c8f2814ce6e/The-Lovely-but-Lonely-Vickrey-Auction.pdf
https://www.researchgate.net/profile/Paul_Milgrom/publication/247926036_The_Lovely_but_Lonely_Vickrey_Auction/links/54bdcfe10cf27c8f2814ce6e/The-Lovely-but-Lonely-Vickrey-Auction.pdf
https://doi.org/10.1609/aaai.v29i1.9289
https://ojs.aaai.org/index.php/AAAI/article/view/9289
https://ojs.aaai.org/index.php/AAAI/article/view/9289
http://arxiv.org/abs/2011.12237
https://doi.org/10.1007/s10458-019-09440-y
https://doi.org/10.1007/s00182-007-0100-7
https://pubsonline.informs.org/doi/pdf/10.1287/mnsc.1060.0662
https://pubsonline.informs.org/doi/pdf/10.1287/mnsc.1060.0662
https://doi.org/10.1007/978-3-030-35389-6_20

An Improved Analysis
of the Greedy+Singleton Algorithm

for k-Submodular Knapsack
Maximization

Zhongzheng Tang1, Jingwen Chen2, and Chenhao Wang2,3(B)

1 School of Science, Beijing University of Posts and Telecommunications,
Beijing 100876, China

2 BNU-HKBU United International College, Zhuhai 519087, China
chenhwang@bnu.edu.cn

3 Beijing Normal University, Zhuhai 519087, China

Abstract. We focus on maximizing a non-negative k-submodular func-
tion under a knapsack constraint. As a generalization of submodular
functions, a k-submodular function considers k distinct, non-overlapping
subsets instead of a single subset as input. We explore the algorithm
of Greedy+Singleton, which returns the better one between the best
singleton solution and the fully greedy solution. When the function is
monotone, we prove that Greedy+Singleton achieves an approximation
ratio of 1

4
(1− 1

e2
) ≈ 0.216, improving the previous analysis of 0.158 in the

literature. Further, we provide the first analysis of Greedy+Singleton for
non-monotone functions, and prove an approximation ratio of 1

6
(1− 1

e3
) ≈

0.158.

Keywords: k-submodularity · Greedy · Knapsack · Approximation

1 Introduction

A k-submodular function generalizes a submodular function in a natural way
that captures interactions among k subsets. While a submodular function takes
a single subset of a finite nonempty set V as input, a k-submodular function con-
siders k disjoint subsets of V , and exhibits the property of diminishing marginal
returns common to many problems in operations research.

Given a finite nonempty set V of n items, let (k+1)V := {(X1, . . . , Xk) | Xi ⊆
V ∀i ∈ [k],Xi ∩ Xj = ∅ ∀i �= j} be the family of k disjoint sets, where [k] :=
{1, . . . , k}. A function f : (k + 1)V → R is k-submodular if and only if for every
k-tuples x = (X1, . . . , Xk) and y = (Y1, . . . , Yk) in (k + 1)V ,

f(x) + f(y) ≥ f(x 	 y) + f(x
 y),

where

x 	 y := (X1 ∪ Y1 \ (
⋃

i�=1

Xi ∪ Yi), . . . , Xk ∪ Yk \ (
⋃

i�=k

Xi ∪ Yi)),

c© Springer Nature Switzerland AG 2023
M. Li et al. (Eds.): IJTCS-FAW 2023, LNCS 13933, pp. 15–28, 2023.
https://doi.org/10.1007/978-3-031-39344-0_2

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-39344-0_2&domain=pdf
https://doi.org/10.1007/978-3-031-39344-0_2

16 Z. Tang et al.

x
 y := (X1 ∩ Y1, . . . , Xk ∩ Yk) .

For a k-tuple x = (X1, . . . , Xk) ∈ (k+1)V , we define its size by |x| = |∪i∈[k]Xi|.
We say that f : (k + 1)V → R is monotone, if f(x) ≤ f(y) holds for any
x = (X1, . . . , Xk) and y = (Y1, . . . , Yk) with Xi ⊆ Yi for i ∈ [k].

Since Huber and Kolmogorov [6] proposed the notion of k-submodularity
one decade ago, there have been increased theoretical and algorithmic interests
in the study of k-submodular functions, as various combinatorial optimization
problems and practical problems can be formulated as k-submodular function
maximization. The applications include influence maximization with k topics
in social networks [22], sensor placement with k types of sensors [13], multi-
document summarization [11] and multi-class feature selection [27]. For example,
given k topics or rumors in a social network, each topic has a different spread
model, and we want to select several influential people for each topic to start its
spread, in order to maximize the population influenced by at least one topic. This
objective function can be modeled as a k-submodular function. More detailed
discussions can be found in [22,27].

As a generalization of the NP-hard submodular maximization problem, the
k-submodular maximization problem is also NP-hard. Compared with the sub-
modular maximization where we determine which elements/items are incorpo-
rated into the solution, additionally, for k-submodular maximization we need
to specify which subsets/dimensions they belongs to. Extensive research has
been devoted to developing efficient algorithms and proving their approximation
ratios in different settings. In addition to the unconstrained setting [7,17,23],
researchers also investigate this problem under cardinality constraints [13,22],
matroid constraints [16,18], and certainly, knapsack constraints [15,21], which
is the focus of this article.

Our Contributions
In this paper, we study the k-submodular maximization problem under a knap-
sack constraint, called k-submodular knapsack maximization (kSKM). Each item
a ∈ V has a cost c(a), and the total cost of the items selected in the solution
cannot exceed a given budget B ∈ R+. We consider the combination of two
natural heuristics for knapsack problems, Singleton and Greedy. The former
returns the best singleton solution arg maxx:|x|=1 f(x), that is, it selects a single
item and assigns it to a dimension in a way that maximizes the gain of func-
tion value. The latter algorithm adds an item to a dimension that maximizes
the marginal density (i.e., the marginal gain divided by its cost), until no item
fits. Both heuristics are well known to have unbounded approximations, even for
linear objectives.

Chen et al. [1] first notice that their combination Greedy+Singleton
achieves a bounded approximation for kSKM, and prove an approximation ratio
1
4 (1 − 1

e) ≈ 0.158 when the function is monotone. This algorithm compares the
outcomes of Singleton and Greedy, and returns the one with greater value.

We re-consider the Greedy+Singleton algorithm and prove an approx-
imation ratio of 1

4 (1 − 1
e2) ≈ 0.216 by a more careful analysis for mono-

tone k-submodular functions, improving the result in [1]. Furthermore, for

An Improved Analysis of Greedy+Singleton 17

non-monotone k-submodular functions, we derive an approximation ratio of
1
6 (1 − 1

e3) ≈ 0.158.
Though there are several algorithms with proven performance guarantees

that are better than ours kSKM in the monotone case, the main advantage of
the Greedy+Singleton algorithm is the time complexity. Tang et al. [21] pro-
vide a greedy algorithm with approximation 1

2 (1 − 1
e) ≈ 0.316 (which combines

Singleton with a routine that completes all feasible solutions of size 2 greed-
ily), but it takes O(n4k3) queries of the function. Wang and Zhou [22] provide
an asymptotically-optimal (12 − ε)-approximation, but it involves designing a
continuous extension of the discrete problem and rounding the fractional solu-
tion to recover the discrete solution. Compared with them, Greedy+Singleton
requires only O(n2k) queries.

This paper is organized as follows. In Sect. 2 we present the model and prelim-
inaries. In Sect. 3 we consider the maximization problem without any constraint,
of which the result will be used in the analysis of kSKM. In Sect. 4 we analyze
the approximation of Greedy+Singleton for kSKM. In Sect. 5 we compare it
with the method in [1].

Related Work
Huber and Kolmogorov [6] proposed k-submodular functions to express submod-
ularity on choosing k disjoint sets of elements instead of a single set. Recently,
this has become a popular subject of research [2,4,5,9,12,17].

For the kSKM problem, Tang et al. [21] were the first to consider it in
the community. When the function is monotone, they provided a 1

2 (1 − 1
e)-

approximation algorithm that combines Singleton with a greedy algorithm that
completes all feasible solutions of size 2 greedily. Their analysis framework follows
from that of Sviridenko [19] for submodular knapsack maximization problems.
Xiao et al. [24] later improved the ratio of the same algorithm to 1

2 (1 − e−2)
and 1

3 (1 − e−3) for the monotone and non-monotone case, respectively. Wang
and Zhou [22] presented an algorithm with asymptotically optimal ratio of 1

2 − ε
by multilinear extension techniques (relaxing the optimization to the continuous
space and then rounding the fractional solution). Pham et al. [15] proposed a
streaming algorithm with approximation ratios 1

4 − ε and 1
5 − ε for the monotone

and non-monotone cases, respectively, which requires O(n
ε log n) queries. Other

works related to kSKM include [20,25,26].
Chen et al. first analyzed the performance of Greedy+Singleton for kSKM,

and proved an approximation ratio 1
4 (1 − 1

e). Before them, due to its simplicity
and efficiency, Greedy+Singleton has received lots of attention for submodu-
lar knapsack maximization. This algorithm was first suggested in [8] for coverage
functions, and adapted to monotone submodular function in [11]. Feldman et al.
[3] showed that the approximation ratio is within [0.427, 0.462], and Kulik et al.
[10] presented an improved upper bound of 0.42945. Hence, it limits the approx-
imation ratio of Greedy+Singleton for submodular knapsack maximization
to the interval [0.427, 0.42945].

The k-submodular maximization problem is also studied in different uncon-
strained or constrained settings. For unconstrained k-submodular maximization,

18 Z. Tang et al.

Ward and Živnỳ [23] proposed a max{ 1
3 , 1

1+a}-approximation algorithm with
a = max{1,

√
(k − 1)/4}. Later, Iwata et al. [7] improved it to 1

2 , which is
more recently improved to k2+1

2k2+1 by Oshima [14]. For monotone k-submodular
maximization, Iwata et al. [7] also proposed a randomized k

2k−1 -approximation
algorithm, and showed that the ratio is asymptotically tight. For monotone k-
submodular maximization under a total size constraint (i.e.,

∑
i∈[k] |Xi| ≤ B

for an integer budget B), Ohsaka and Yoshida [13] proposed a 1
2 -approximation

algorithm, and a 1
3 -approximation algorithm for that under individual size con-

straints (i.e., |Xi| ≤ Bi ∀i ∈ [k] with budgets Bi). Under a matroid constraint,
Sakaue [16] proposed a 1

2 -approximation algorithm for the monotone case, which
is asymptotically tight, and Sun et al. [18] gave a 1

3 -approximation algorithm for
the non-monotone case.

2 Preliminaries

We introduce more characteristics of k-submodular functions. If two k-tuples
x = (X1, . . . , Xk) and y = (Y1, . . . , Yk) in (k +1)V with Xi ⊆ Yi for each i ∈ [k],
we denote x � y. Define the marginal gain when adding item a to the i-th
dimension of x = (X1, . . . , Xk) to be

Δa,i(x) := f(X1, . . . , Xi−1,Xi ∪ {a},Xi+1, . . . , Xk) − f(x),

and thus Δa,i(x)
c(a) is the marginal density. A k-submodular function f clearly

satisfies the orthant submodularity

Δa,if(x) ≥ Δa,if(y), ∀x,y ∈ (k + 1)V with x � y, a /∈
⋃

j∈[k]

Yj , i ∈ [k],

and the pairwise monotonicity

Δa,i1f(x)+Δa,i2f(x) ≥ 0, ∀x ∈ (k +1)V with a /∈
⋃

j∈[k]

Xj , i1, i2 ∈ [k], i1 �= i2.

Ward and Živnỳ [23] show that the converse is also true.

Lemma 1 ([23]). A function f : (k + 1)V → R is k-submodular if and only if f
is orthant submodular and pairwise monotone.

It is easy to see that when f is monotone, the k-submodularity degenerates into
orthant submodularity.

Every k-tuple x = (X1, . . . , Xk) ∈ (k + 1)V uniquely corresponds to a set
S = {(a, d) | ∃d ∈ [k] a ∈ Xd} that consists of item-index pairs. That is, an
item-index pair (a, d) belongs to S (called a solution) if and only if there is an
index d so that a ∈ Xd. From now on, with a slight abuse of notations, we
write x and its corresponding solution S interchangeably, for example, Δa,d(S)
means the marginal gain f(S ∪ {(a, d)}) − f(S). For any solution S, we define

An Improved Analysis of Greedy+Singleton 19

Algorithm 1. Unconstrained Greedy
Input: Set V ′, k-submodular function f
Output: A solution S ∈ (k + 1)V

1: S ← ∅

2: for each item a ∈ V ′ do
3: da ← argmaxd∈[k] Δa,d(S)
4: S ← S ∪ {(a, da)}
5: end for
6: return S

U(S) := {a ∈ V | ∃d ∈ [k] (a, d) ∈ S} to be the set of items included, and the
size of S is |S| = |U(S)|. In this paper, let f be a non-negative k-submodular
function, and we further assume w.l.o.g. that f(∅) = 0.

We point out the following lemma that will repeatedly and implicitly used
in our analysis.

Lemma 2 ([21]). For any solutions S, S′ with S ⊆ S′, we have

f(S′) − f(S) ≤
∑

(a,d)∈S′\S

Δa,d(S).

3 A Key Lemma for Unconstrained k-Submodular
Maximization

In this section, we consider the problem of maximizing the function value in the
unconstrained setting, for an arbitrary subset of items V ′ = {e1, e2, . . . , em} ⊆
V . Algorithm 1 (Unconstrained Greedy) considers items in V ′ in an arbitrary
order, and assigns each item the best index that brings the largest marginal gain
in each iteration. We will introduce a lemma that is important for the analysis
in Sect. 4 for kSKM.

Let T = {(e1, d∗
1), . . . , (em, d∗

m)} be an optimal solution that maximizes the
function value over V ′ (such an optimal solution must exist due to the pairwise
monotonicity). We dictate that Unconstrained Greedy considers the items
in an order of e1, e2, . . . , em, and denote the returned greedy solution by S =
{(e1, d1), . . . , (em, dm)}.

For j = 0, 1, . . . ,m, define

Sj = {(e1, d1), . . . , (ej , dj)} and (1)

Tj =
(
T \ {(e1, d∗

1), . . . , (ej , d
∗
j)}

) ∪ Sj . (2)

That is, Sj is the first j item-index pairs in the greedy solution S, and Tj is
obtained from the optimal solution T by replacing the first j item-index pairs
with Sj . Clearly, S0 = ∅, Sm = S, T0 = T and Tm = S.

20 Z. Tang et al.

The following key lemma bounds the optimal value f(T) in terms of f(St) and
marginal gains. This conclusion is firstly noticed by Ward and Živnỳ (implicitly
in Theorem 5.1 [23]) and formalized by Xiao et al. [24]. For completeness, we
write down the proof and credit [23,24].

We point out the following lemma

Lemma 3. For t = 0, 1, . . . ,m,

(a) if f is monotone, then f(T) ≤ 2f(St) +
∑

(a,d)∈Tt\St
Δa,d(St);

(b) if f is non-monotone, then f(T) ≤ 3f(St) +
∑

(a,d)∈Tt\St
Δa,d(St);

Proof. For j = 0, . . . , t−1, we introduce an intermediate Pj := Tj\(ej+1, d
∗
j+1) =

Tj+1 \ (ej+1, dj+1). That is, Pj consists of m − 1 items (excluding ej+1), where
the indices of items e1, . . . , ej coincide those in S, and the indices of other items
coincide those in T . Then

f(Tj) = f(Pj) + Δej+1,d∗
j+1

(Pj),

f(Tj+1) = f(Pj) + Δej+1,dj+1(Pj).

When f is monotone, the difference of f(Tj) and f(Tj+1) is

f(Tj) − f(Tj+1) = Δej+1,d∗
j+1

(Pj) − Δej+1,dj+1(Pj)

≤ Δej+1,d∗
j+1

(Sj) (3)

≤ Δej+1,dj+1(Sj) (4)
= f(Sj+1) − f(Sj).

Equation (3) follows from the fact of Sj ⊆ Pj and the monotonicity of f . Equa-
tion (4) follows from the fact that the greedy algorithm always assign the index
with maximum marginal gain to the item considered, and (ej+1, dj+1) is the
(j + 1)-th pair added. Summing this inequality from j = 0 to t − 1, we obtain

f(T0) − f(Tt) ≤ f(St) − f(S0) = f(St).

Since St ⊆ Tt and Lemma 2, we have

f(T) ≤ f(St) + f(Tt) ≤ 2f(St) +
∑

(a,d)∈Tt\St

Δa,d(St).

When f is non-monotone, Eq. (3) no longer holds. Instead, we bound the
difference of f(Tj) and f(Tj+1) by

f(Tj) − f(Tj+1) = Δej+1,d∗
j+1

(Pj) − Δej+1,dj+1(Pj)

= 2Δej+1,d∗
j+1

(Pj) − [Δej+1,d∗
j+1

(Pj) + Δej+1,dj+1(Pj)]

≤ 2Δej+1,d∗
j+1

(Pj) (5)

≤ 2Δej+1,d∗
j+1

(Sj) ≤ 2Δej+1,dj+1(Sj)

= 2f(Sj+1) − 2f(Sj),

An Improved Analysis of Greedy+Singleton 21

where Eq. (5) follows from the pairwise monotonicity. Summing it from j = 0
to t − 1, we obtain

f(T0) − f(Tt) ≤ 2f(St) − 2f(S0) = 2f(St).

Since St ⊆ Tt and Lemma 2, we have

f(T) ≤ 2f(St) + f(Tt) ≤ 3f(St) +
∑

(a,d)∈Tt\St

Δa,d(St).

	
Letting t = m in the above lemma, it is easy to see that the greedy solution

S is 2-approximation of f(T) when f is monotone, and 3-approximation of f(T)
when f is non-monotone.

4 Greedy+Singleton for k-Submodular Knapsack

We consider the kSKM problem. Each item a ∈ V has a cost c(a), and the total
cost of selected items must not exceed a given budget B ∈ R+. For any solution
S ∈ (k + 1)V , define c(S) =

∑
a∈U(S) c(a) to be the total cost of all items in S.

We consider Greedy+Singleton (Algorithm 2). It returns the better solu-
tion between Greedy and Singleton, where the former greedily chooses the
item-index pair of maximum marginal density in every iteration until no item
fits (Line 2–11), and the latter chooses the single item-index pair of maximum
marginal gain (Line 1).

Next, we prove approximation ratios 1
4 (1 − 1

e2) and 1
6 (1 − 1

e3) for the mono-
tone and non-monotone cases, respectively. The general framework follows from
Khuller et al. [8] for the budgeted maximum coverage problem, which gives a
1
2 (1 − 1

e) approximation for the submodular knapsack maximization. We adapt
it to kSKM, and utilize the characteristics of k-submodularity.

Algorithm 2. Greedy+Singleton
1: Let S∗ ∈ arg max

S: |S|=1,c(S)≤B
f(S) be a singleton solution giving the largest value.

2: G0 ← ∅, V 0 ← V
3: for t from 1 to n do
4: Let (at, dt) = arg max

a∈V t−1,d∈[k]

Δa,d(Gt−1)

c(a)
be the pair maximizing the marginal

density
5: if c(Gt−1) + c(at) ≤ B then
6: Gt = Gt−1 ∪ {(at, dt)}
7: else
8: Gt = Gt−1

9: end if
10: V t = V t−1 \ {at}
11: end for
12: S∗ ← Gn if f(Gn) > f(S∗)
13: return S∗

22 Z. Tang et al.

Let OPT be the optimal solution, and f(OPT) be the optimal value. In each
iteration t = 1, . . . , n, a pair (at, dt) is considered, and Gt is called the partial
greedy solution. Let l + 1 be the first time when Algorithm 2 does not add an
item in U(OPT) to the current solution because its addition would violate the
budget (i.e., al+1 ∈ U(OPT) and c(al+1) + c(Gl) > B). We can further assume
that l + 1 is the first time t for which Gt = Gt−1. This assumption is without
loss of generality, because if it happens earlier for some t′ < l + 1, then at′

does not belong to the optimal solution T , nor the approximate solution we are
interested in; thus, we can remove at′ from the ground set V , without affecting
the analysis, the optimal solution T , and the approximate solution. Thus, we
have Gt = Gt−1 ∪ {(at, dt)} for t = 1, . . . , l.

For each t = 1, . . . , l, we define Ḡt = Gt to be the partial greedy solution
after the t-th iteration, and define Ḡl+1 = Gl ∪ {(al+1, dl+1)} to be the solution
obtained by adding (al+1, dl+1) to Gl. Note that Ḡl+1 violates the budget, and
Gl = Gl+1 �= Ḡl+1 by our assumption.

Next, we prove the approximation ratio of Greedy+Singleton by a series
of lemmas and Theorem 1. In Lemma 4, we show that a selected item which
occupies a large proportion of the budget gives a good approximation. In Lemma
5 we bound the marginal gain in every iteration, and then Lemma 6 gives a lower
bound on every f(Ḡt).

Lemma 4. For t = 1, . . . , l, if c(at) ≥ α · B, then the partial greedy solution Ḡt

is min{ 1
2 , α}-approximation if f is monotone, and min{ 1

3 , α}-approximation if
f is non-monotone.

Proof. For each t = 1, . . . , l, we consider the unconstrained maximization over
the items in V ′ := U(Ḡt−1) ∪ U(OPT) = {e1 . . . , em}. Assume w.l.o.g. that
e1 = a1, e2 = a2, . . . , et−1 = at−1. Let Algorithm 1 consider the items in the order
of e1, . . . , em. Recall the notations in Eq. (1) and (2), and note that Ḡj = Sj for
j = 1, . . . , t−1, that is, the partial greedy solutions in Algorithm2 coincide those
in Algorithm 1. Denote by OPT ′ the optimal solution of the unconstrained max-
imization over U(Ḡt−1)∪U(OPT), and we apply Lemma 3 to bound f(OPT ′).

When f is monotone, by Lemma 3 we have

f(OPT) ≤ f(OPT ′) ≤ 2f(Ḡt−1) +
∑

(a,d)∈Tt−1\Ḡt−1

Δa,d(Ḡt−1)

≤ 2f(Ḡt−1) +
∑

(a,d)∈Tt−1\Ḡt−1

c(a) · Δat,dt
(Ḡt−1)

c(at)
(6)

≤ 2f(Ḡt−1) +
Δat,dt

(Ḡt−1)
c(at)

· B, (7)

where Eq. (6) is because (at, dt) is the pair of maximum marginal density by the
greedy algorithm, and Eq. (7) is because the items in Tt−1 \Ḡt−1 must belong to
OPT and their total cost is at most B. Combining with the value of the partial

An Improved Analysis of Greedy+Singleton 23

greedy solution f(Ḡt) = f(Ḡt−1) + Δat,dt
(Ḡt−1), it is easy to see that

f(Ḡt)
f(OPT)

≥ 1
2

· f(Ḡt−1) + Δat,dt
(Ḡt−1)

f(Ḡt−1) + Δat,dt (Ḡt−1)B

2c(at)

.

If B
2c(at)

≤ 1, then clearly f(Ḡt)
f(OPT) ≥ 1

2 . If B
2c(at)

> 1, then

f(Ḡt)
f(OPT)

≥ 1
2

· Δat,dt
(Ḡt−1)

Δat,dt (Ḡt−1)B

2c(at)

=
c(at)
B

≥ α.

Therefore, Ḡt is min{ 1
2 , α}-approximation.

When f is non-monotone, using Lemma 3 for t = 1, . . . , l, similarly we have

f(OPT) ≤ f(OPT ′) ≤ 3f(Ḡt−1) +
∑

(a,d)∈Tt−1\Ḡt−1

Δa,d(Ḡt−1)

≤ 3f(Ḡt−1) +
∑

(a,d)∈Tt−1\Ḡt−1

c(a) · Δat,dt
(Ḡt−1)

c(at)

≤ 3f(Ḡt−1) +
Δat,dt

(Ḡt−1)
c(at)

· B,

Combining with the value of the partial greedy solution f(Ḡt) = f(Ḡt−1) +
Δat,dt

(Ḡt−1), it is easy to see that

f(Ḡt)
f(OPT)

≥ 1
3

· f(Ḡt−1) + Δat,dt
(Ḡt−1)

f(Ḡt−1) + Δat,dt (Ḡt−1)B

3c(at)

.

If B
3c(at)

≤ 1, then clearly f(Ḡt)
f(OPT) ≥ 1

3 . If B
3c(at)

> 1, then

f(Ḡt)
f(OPT)

≥ 1
3

· Δat,dt
(Ḡt−1)

Δat,dt (Ḡt−1)B

3c(at)

=
c(at)
B

≥ α.

Therefore, Ḡt is min{ 1
3 , α}-approximation.
	

The following lemma bounds the marginal gain in every iteration.

Lemma 5. For each t = 1, . . . , l + 1,

(a) if f is monotone, then

f(Ḡt) − f(Ḡt−1) ≥ c(at)
B

(
f(OPT) − 2f(Ḡt−1)

)

(b) if f is non-monotone, then

f(Ḡt) − f(Ḡt−1) ≥ c(at)
B

(
f(OPT) − 3f(Ḡt−1)

)

24 Z. Tang et al.

Proof. As in the proof of Lemma 4, we again consider the unconstrained maxi-
mization over U(Ḡt−1) ∪ U(OPT) for each t = 1, . . . , l + 1, and assume that the
partial greedy solutions in Algorithm2 coincide those in Algorithm 1. Denote by
OPT ′ the optimal solution of this unconstrained maximization problem.

When f is monotone, by Lemma 3 (a), for t = 1, . . . , l + 1 we have

f(OPT) ≤ f(OPT ′) ≤ 2 · f(Ḡt−1) +
∑

(a,d)∈Tt−1\Ḡt−1

Δa,d(Ḡt−1)

≤ 2 · f(Ḡt−1) + B · Δat,dt
(Ḡt−1)

c(at)

= 2 · f(Ḡt−1) + B · f(Ḡt) − f(Ḡt−1)
c(at)

,

where the last inequality follows from the facts that the marginal density is
maximized in each iteration and the capacity remained is at most B. Then
immediately we have f(Ḡt) − f(Ḡt−1) ≥ c(at)

B

(
f(OPT) − 2f(Ḡt−1)

)
.

When f is non-monotone, by Lemma 3 (b), a similar analysis gives

f(OPT) ≤ 3 · f(Ḡt−1) + B · f(Ḡt) − f(Ḡt−1)
c(at)

.

	
Lemma 6. For each t = 1, . . . , l + 1, we have

f(Ḡt) ≥ (1 − xt) · f(OPT),

where x1 = 1 − c(a1)
B , xt = (1 − 2c(at)

B)xt−1 + c(at)
B if f is monotone, and xt =

(1 − 3c(at)
B)xt−1 + 2c(at)

B if f is non-monotone.

Proof. We prove it by induction. Firstly, when t = 1, clearly we have f(Ḡ1) ≥
c(a1)

B f(OPT). Assume that the statement holds for iterations 1, 2, . . . , t − 1. We
show that it also holds for iteration t. When f is monotone, by Lemma 5 (a),

f(Ḡt) = f(Ḡt−1) + f(Ḡt) − f(Ḡt−1)

≥ f(Ḡt−1) +
c(at)
B

(
f(OPT) − 2f(Ḡt−1)

)

= (1 − 2c(at)
B

)f(Ḡt−1) +
c(at)
B

f(OPT)

≥ (1 − 2c(at)
B

)(1 − xt−1) · f(OPT) +
c(at)
B

f(OPT)

=
[
1 − (

(1 − 2c(at)
B

)xt−1 +
c(at)
B

)]
f(OPT).

When f is non-monotone, a similar analysis follows from Lemma 5 (b).
	

An Improved Analysis of Greedy+Singleton 25

It is not hard to see that the recurrence relation xt = (1− 2c(at)
B)xt−1 + c(at)

B

with initial state x1 = 1 − c(a1)
B can be written as

xt − 1
2

= (1 − 2c(at)
B

)xt−1 − 1
2
(1 − 2c(at)

B
) = (1 − 2c(at)

B
)(xt−1 − 1

2
).

Hence, for the monotone case we can easily get a general formula

xt = (
1
2

− c(a1)
B

)
t∏

j=2

(1 − 2c(aj)
B

) +
1
2
. (8)

For the non-monotone case, similarly we can write the recurrence relation as

xt − 2
3

= (1 − 3c(at)
B

)xt−1 − 2
3
(1 − 3c(at)

B
) = (1 − 3c(at)

B
)(xt−1 − 2

3
),

and get a general formula

xt = (
1
3

− c(a1)
B

)
t∏

j=2

(1 − 3c(aj)
B

) +
2
3
. (9)

Now we are ready to prove our main theorem.

Theorem 1. For the kSKM, Greedy+Singleton achieves an approximation
ratio of 1

4 (1− 1
e2) ≈ 0.216 and 1

6 (1− 1
e3) ≈ 0.158 when the function is monotone

and non-monotone, respectively, within O(n2k) queries.

Proof. When f is monotone, by Lemma 6 and Eq. (8), we have

f(Ḡl+1) ≥ (1 − xl+1) · f(OPT)

=
(1

2
− (

1
2

− c(a1)
B

)
l+1∏

j=2

(1 − 2c(aj)
B

)
)

· f(OPT)

=
(1

2
− 1

2

l+1∏

j=1

(1 − 2c(aj)
B

)
)

· f(OPT). (10)

If 1− 2c(aj)
B ≥ 0 for all j ∈ [l+1], since c(Ḡl+1) = c(Ḡl)+c(al+1) > B, we obtain

f(Ḡl+1) ≥
(1

2
− 1

2

l+1∏

j=1

(1 − 2c(aj)
c(Ḡl+1)

)
)

· f(OPT)

≥
(1

2
− 1

2
· (1 − 2

l + 1
)l+1

)
· f(OPT)

≥
(1

2
− 1

2e2

)
· f(OPT). (11)

If 1 − 2c(aj)
B < 0 for exactly one j ∈ [l + 1] and 1 − 2c(aj)

B ≥ 0 for all i �= j,
it immediately follows from Eq. (10) that f(Ḡl+1) ≥ 1

2f(OPT). It remains to

26 Z. Tang et al.

consider the case when 1− 2c(aj)
B < 0 for exactly one j ∈ [l] and 1− 2c(al+1)

B < 0.
By Lemma 4, the large cost of item aj implies that Ḡj has an approximation
at least min{ 1

2 ,
c(aj)

B } ≥ 1
2 . By the monotonicity we have f(Ḡl+1) ≥ f(Ḡj) ≥

1
2f(OPT).

Hence, we always have

f(Ḡl+1) = f(Ḡl) + Δal+1,dl+1(Ḡl) ≥
(1

2
− 1

2e2

)
· f(OPT).

Note that Δal+1,dl+1(Ḡl) is no more than the maximum profit of a single item, i.e.,
the outcome of Singleton, say (a∗, d∗). Therefore, the better solution between
Ḡl and {(a∗, d∗)} has a value

max{f(Ḡl), f({(a∗, d∗)})} ≥ 1
2

(1
2

− 1
2e2

)
· f(OPT).

Since Ḡl is a part of the solution returned by Greedy+Singleton when Greedy
performs better than Singleton, it establishes an approximation ratio 1

4 (1− 1
e2).

When f is non-monotone, by Lemma 6 and Eq. (9), we have

f(Ḡl+1) ≥ (1 − xl+1) · f(OPT)

=
(1

3
− (

1
3

− c(a1)
B

)
l+1∏

j=2

(1 − 3c(aj)
B

)
)

· f(OPT)

=
(1

3
− 1

3

l+1∏

j=1

(1 − 3c(aj)
B

)
)

· f(OPT). (12)

If 1 − 3c(aj)
B ≥ 0 for all j ∈ [l + 1], since c(Ḡl+1) > B, we obtain

f(Ḡl+1) ≥
(1

3
− 1

3

l+1∏

j=1

(1 − 3c(aj)
c(Ḡl+1)

)
)

· f(OPT)

≥
(1

3
− 1

3
· (1 − 3

l + 1
)l+1

)
· f(OPT)

≥
(1

3
− 1

3e3

)
· f(OPT).

If 1 − 3c(aj)
B < 0 holds for one j or three j’s in [l + 1], then it immediately

follows from Eq. (12) that f(Ḡl+1) ≥ 1
3f(OPT). It remains to consider the case

when 1 − 3c(aj1)

B < 0, 1 − 3c(aj2)

B < 0, and 1 − 3c(ai)
B ≥ 0 for all i /∈ {j1, j2}.

Assume j1 ∈ [l]. By Lemma 4, the large cost of item aj1 implies that Ḡj1 has an
approximation at least min{ 1

3 ,
c(aj1)

B } ≥ 1
3 . By the pairwise monotonicity and

the greedy procedure we know that the function value of partial greedy solutions
is non-decreasing, and thus f(Ḡl+1) ≥ f(Ḡj1) ≥ 1

3f(OPT).
Therefore, Greedy+Singleton has a value at least

max{f(Ḡl), f({(a∗, i∗)})} ≥ 1
2

(1
3

− 1
3e3

)
· f(OPT).

	

An Improved Analysis of Greedy+Singleton 27

5 Conclusion

We provided a novel analysis of Greedy+Singleton for the kSKM, and proved
approximation ratios 1

4 (1 − 1
e2) and 1

6 (1 − 1
e3) for monotone and non-monotone

functions, respectively. Compared with the 1
4 (1 − 1

e)-approximation in [1], our
improvement heavily replies on the key proposition of Lemma 3, which gives
upper bounds on the optimum f(T) (for unconstrained maximization) in terms of
every partial greedy solution St, instead of the simple 2-approximation achieved
by the final greedy solution in [1]. Moreover, our Lemma 4 shows that a selected
item with a large cost gives a good approximation, which is also useful for proving
the improved approximation ratios. Future directions include further improving
the approximation ratio of Greedy+Singleton and looking for other efficient
algorithms.

Acknowledgements. This work is partially supported by Artificial Intelligence and
Data Science Research Hub, BNU-HKBU United International College (UIC), No.
2020KSYS007, and by a grant from UIC (No. UICR0400025-21). Zhongzheng Tang is
supported by National Natural Science Foundation of China under Grant No. 12101069.
Chenhao Wang is supported by NSFC under Grant No. 12201049, and is also supported
by UIC grants of UICR0400014-22, UICR0200008-23 and UICR0700036-22.

References

1. Chen, J., Tang, Z., Wang, C.: Monotone k-submodular knapsack maximization:
an analysis of the Greedy+Singleton algorithm. In: Ni, Q., Wu, W. (eds.) AAIM
2022. LNCS, vol. 13513, pp. 144–155. Springer, Cham (2022). https://doi.org/10.
1007/978-3-031-16081-3 13

2. Ene, A., Nguyen, H.: Streaming algorithm for monotone k-submodular maximiza-
tion with cardinality constraints. In: Proceedings of the 39th International Con-
ference on Machine Learning (ICML), pp. 5944–5967. PMLR (2022)

3. Feldman, M., Nutov, Z., Shoham, E.: Practical budgeted submodular maximiza-
tion. Algorithmica 1–40 (2022)

4. Gridchyn, I., Kolmogorov, V.: Potts model, parametric maxflow and k-submodular
functions. In: Proceedings of the IEEE International Conference on Computer
Vision (ICCV), pp. 2320–2327 (2013)

5. Hirai, H., Iwamasa, Y.: On k-submodular relaxation. SIAM J. Discret. Math. 30(3),
1726–1736 (2016)

6. Huber, A., Kolmogorov, V.: Towards minimizing k -submodular functions. In:
Mahjoub, A.R., Markakis, V., Milis, I., Paschos, V.T. (eds.) ISCO 2012. LNCS,
vol. 7422, pp. 451–462. Springer, Heidelberg (2012). https://doi.org/10.1007/978-
3-642-32147-4 40

7. Iwata, S., Tanigawa, S., Yoshida, Y.: Improved approximation algorithms for k-
submodular function maximization. In: Proceedings of the 27th Annual ACM-
SIAM Symposium on Discrete Algorithms (SODA), pp. 404–413 (2016)

8. Khuller, S., Moss, A., Naor, J.S.: The budgeted maximum coverage problem. Inf.
Process. Lett. 70(1), 39–45 (1999)

9. Kudla, J., Živnỳ, S.: Sparsification of monotone k-submodular functions of low
curvature. arXiv preprint arXiv:2302.03143 (2023)

https://doi.org/10.1007/978-3-031-16081-3_13
https://doi.org/10.1007/978-3-031-16081-3_13
https://doi.org/10.1007/978-3-642-32147-4_40
https://doi.org/10.1007/978-3-642-32147-4_40
http://arxiv.org/abs/2302.03143

28 Z. Tang et al.

10. Kulik, A., Schwartz, R., Shachnai, H.: A refined analysis of submodular greedy.
Oper. Res. Lett. 49(4), 507–514 (2021)

11. Lin, H., Bilmes, J.: Multi-document summarization via budgeted maximization
of submodular functions. In: Human Language Technologies: The 2010 Annual
Conference of the North American Chapter of the Association for Computational
Linguistics, pp. 912–920 (2010)

12. Nguyen, L., Thai, M.T.: Streaming k-submodular maximization under noise sub-
ject to size constraint. In: Proceedings of the 37th International Conference on
Machine Learning (ICML), pp. 7338–7347. PMLR (2020)

13. Ohsaka, N., Yoshida, Y.: Monotone k-submodular function maximization with size
constraints. In: Proceedings of the 28th International Conference on Neural Infor-
mation Processing Systems (NeurIPS), vol. 1, pp. 694–702 (2015)

14. Oshima, H.: Improved randomized algorithm for k-submodular function maximiza-
tion. SIAM J. Discret. Math. 35(1), 1–22 (2021)

15. Pham, C.V., Vu, Q.C., Ha, D.K., Nguyen, T.T., Le, N.D.: Maximizing k-
submodular functions under budget constraint: applications and streaming algo-
rithms. J. Comb. Optim. 44(1), 723–751 (2022)

16. Sakaue, S.: On maximizing a monotone k-submodular function subject to a matroid
constraint. Discret. Optim. 23, 105–113 (2017)

17. Soma, T.: No-regret algorithms for online k-submodular maximization. In: Pro-
ceedings of the 22nd International Conference on Artificial Intelligence and Statis-
tics (AISTATS), pp. 1205–1214. PMLR (2019)

18. Sun, Y., Liu, Y., Li, M.: Maximization of k-submodular function with a matroid
constraint. In: Du, D.Z., Du, D., Wu, C., Xu, D. (eds.) TAMC 2022. LNCS,
vol. 13571, pp. 1–10. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-
20350-3 1

19. Sviridenko, M.: A note on maximizing a submodular set function subject to a
knapsack constraint. Oper. Res. Lett. 32(1), 41–43 (2004)

20. Tang, Z., Wang, C., Chan, H.: Monotone k-submodular secretary problems: cardi-
nality and knapsack constraints. Theor. Comput. Sci. 921, 86–99 (2022)

21. Tang, Z., Wang, C., Chan, H.: On maximizing a monotone k-submodular function
under a knapsack constraint. Oper. Res. Lett. 50(1), 28–31 (2022)

22. Wang, B., Zhou, H.: Multilinear extension of k-submodular functions. arXiv
preprint arXiv:2107.07103 (2021)

23. Ward, J., Živnỳ, S.: Maximizing k-submodular functions and beyond. ACM Trans.
Algorithms 12(4), 1–26 (2016)

24. Xiao, H., Liu, Q., Zhou, Y., Li, M.: Small notes on k-submodular maximization
with a knapsack constraint. Technical report (2023)

25. Yu, K., Li, M., Zhou, Y., Liu, Q.: Guarantees for maximization of k-submodular
functions with a knapsack and a matroid constraint. In: Ni, Q., Wu, W. (eds.)
AAIM 2022. LNCS, vol. 13513, pp. 156–167. Springer, Cham (2022). https://doi.
org/10.1007/978-3-031-16081-3 14

26. Yu, K., Li, M., Zhou, Y., Liu, Q.: On maximizing monotone or non-monotone k-
submodular functions with the intersection of knapsack and matroid constraints.
J. Comb. Optim. 45(3), 1–21 (2023)

27. Yu, Q., Küçükyavuz, S.: An exact cutting plane method for k-submodular function
maximization. Discret. Optim. 42, 100670 (2021)

https://doi.org/10.1007/978-3-031-20350-3_1
https://doi.org/10.1007/978-3-031-20350-3_1
http://arxiv.org/abs/2107.07103
https://doi.org/10.1007/978-3-031-16081-3_14
https://doi.org/10.1007/978-3-031-16081-3_14

Generalized Sorting with Predictions
Revisited

T.-H. Hubert Chan , Enze Sun , and Bo Wang(B)

The University of Hong Kong, Pok Fu Lam, Hong Kong, China
{hubert,ezsun,bwang}@cs.hku.hk

Abstract. This paper presents a novel algorithm for the generalized
sorting problem with predictions, which involves determining a total
ordering of an underlying directed graph using as few probes as possible.
Specifically, we consider the problem of sorting an undirected graph with
predicted edge directions. Our proposed algorithm is a Monte Carlo app-
roach that has a polynomial-time complexity, which uses O(n logw+w)
probes with probability at least 1 − e−Θ(n), where n is the number of
vertices in the graph and w is the number of mispredicted edges. Our
approach involves partitioning the vertices of the graph into O(w) dis-
joint verified directed paths, which can reduce the number of probes
required. Lu et al. [11] introduced a bound of O(n logn + w) for the
number of probes, which was the only known result in this setting. Our
bound reduces the factor O(log n) to O(logw).

Keywords: Forbidden Comparison · Predictions · Generalized Sorting

1 Introduction

Sorting is a fundamental task in computer science, in which a collection of data is
required to be arranged according to some specified total ordering. Comparison-
based sorting algorithms are most widely used since they are generally regarded
as more flexible and efficient for a broader range of data types and application
scenarios, particularly when the input data is not structured in any particular
way. In the comparison-based sorting framework, an algorithm can get infor-
mation about this total ordering only via pair-wise elements comparison. The
standard model of comparison-based sorting assumes that all pairs of elements
can be compared, and the cost of each comparison is the same. However, this
might not always be the case. For instance, some pairs may be prohibited in
certain scenarios [1,9], or the cost of comparisons may vary [4–6,8].

The generalized sorting problem (with forbidden comparisons) was proposed
by Huang et al. [7], which involves sorting a set of elements with the restriction
that certain pairs of elements cannot be compared (while it is guaranteed that

This research was partially supported by the Hong Kong RGC grants 17201220,
17202121 and 17203122.

c© Springer Nature Switzerland AG 2023
M. Li et al. (Eds.): IJTCS-FAW 2023, LNCS 13933, pp. 29–41, 2023.
https://doi.org/10.1007/978-3-031-39344-0_3

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-39344-0_3&domain=pdf
http://orcid.org/0000-0002-8340-235X
http://orcid.org/0009-0005-5627-7900
http://orcid.org/0000-0003-4232-0478
https://doi.org/10.1007/978-3-031-39344-0_3

30 T.-H. H. Chan et al.

allowed pairs will induce a total ordering on the items) and comparisons are of
unit cost. The goal is to produce a sorted list or ordering of the elements that
satisfies the restriction on forbidden comparisons. The first non-trivial bound on
the number of comparisons for the generalized sorting problem of n items has
been given in [7]. Specifically, a randomized algorithm with ˜O(n1.5) comparisons
was provided to solve the worst-case version generalized sorting problem with
high probability; while in the stochastic version where each pair is included
independently and randomly with probability p, an ˜O(n1.4) bound was achievable
with high probability, for the worst-case choice of p.

Lu et al. [11] considered a variant of the problem called generalized sorting
with predictions in which the algorithm is given an undirected graph G = (V,E)
together with predictions of the directions of all the edges in E, where |V | =
n. Each edge has some hidden true direction, and it is guaranteed that there
exists a Hamiltonian path in the underlying directed graph. By conducting a
probe on an edge, the predicted direction of an edge can be identified as either
correct (consistent) or incorrect (inconsistent). The goal of the problem is to
compute a total ordering on the underlying directed graph using as few number
of probes as possible. We use w to denote the number of mispredicted edges,
which is unknown in advance. Lu et al. [11] provided a randomized algorithm
with O(n log n + w) probes and a deterministic algorithm with O(nw) probes,
which outperform the bound ˜O(n1.5) when w is small.

In summary, we give an improved algorithm for the generalized sorting with
predictions problem in the paper. The main contribution of the paper is formally
stated as follows:

Theorem 1 (Main Theorem). There is a polynomial-time Monte Carlo
algorithm which solves the generalized sorting with prediction problem using
O(n log w + w) probes with probability at least 1 − e−Θ(n).

Note that w is at most n2 (the number of edges in E), hence the performance
of our proposed algorithm is not worse than neither O(n log n + w) nor O(nw)
for any w. Notably, O(n log w+w) is better than both O(n log n+w) and O(nw)
when w = log n.

High Level Ideas. The overall framework is to for each node, to check directly
or indirectly the true direction of each of its incoming edges in the predicted
graph. The main novel idea is that, it is possible to partition vertices in G into
O(w) disjoint verified directed paths using O(n) probes if there are w mispre-
dicted edges, where edges in a verified path all have true directions. Roughly
speaking, for each node, it is sufficient to only consider an in-neighbor of the
node from each path as representatives instead of considering all in-neighbors
by taking advantage of the verified paths so as to reducing the number of probes.
This idea allows us to reduce one factor O(log n) in [7] to O(log w).

Other Related Work. Banerjee and Richards [2] considered the worst-case
version generalized sorting problem under the setting where

(

n
2

) − q pairs are
assumed to be comparable. They gave an algorithm with O((q + n) log n) com-
parisons. The paper also studied stochastic version generalized sorting problem

Generalized Sorting with Predictions Revisited 31

and gave a lower bound ˜O(min{n
3
2 , pn2}) to the number of comparisons. Biswas

et al. [3] further improved the lower bound for the worst-case version generalized
sorting problem to O(q + n log n) (note that it is assumed that most pairs are
comparable). Kuszmaul and Narayanan [10] improved the lower bounds for the
worst-case and stochastic version generalized sorting problem to O(n log(pn))
and ˜O(

√
nm), separately, where m is the number of all comparable pairs.

Roadmap. In Sect. 2, we will revisit generalized sorting with predictions prob-
lem. In Sect. 3, we will introduce an algorithm to partition n vertices into
O(w) disjoint verified directed paths, which will then be utilized to achieve the
O(n log w + w) randomized algorithm in Sect. 4.

2 Preliminaries

We revisit the generalized sorting problem with predictions that has been intro-
duced in [11], whose notation will also be used in this paper.

Definition 1 (Generalized Sorting with Prediction [11]). An adversary
picks a directed acyclic graph �G = (V, �E) (where n = |V | and m = | �E|) that
contains a (directed) Hamiltonian path. A directed edge (u, v) ∈ �E represents
the true direction and means that u < v, and a Hamiltonian paths means that
there is a total ordering on V .

The adversary may reverse the directions of an arbitrary subset of edges in
�E to produce �GP = (V, �P) that is given to the algorithm. Note that |�P | = | �E|
and w = |�P \ �E| is the number of edges whose directions have been reversed, but
the algorithm does not know w in advance.

An algorithm may only probe an edge in �P and it will be told whether the
direction of that edge has been reversed. The algorithm may adaptively decide
the next edge to be probed, based on the answers of all previous probes. If the
algorithm uses randomness, the randomness is generated after the adversary has
picked �G and �GP .

The goal of the algorithm is to find the (unique) Hamiltonian path in �E using
a minimum number of probes.

Probe Charging. A probe for an edge (u, v) ∈ �P is consistent if the direction
(u, v) ∈ �E is correct; otherwise, the probe is inconsistent. Since we allow a term
O(w) in the number of probes, we focus on bounding the number of consistent
probes. Moreover, for each inconsistent probe, we may charge O(1) number of
consistent probes to it. Therefore, if there are X number of remaining uncharged
consistent probes, we can bound the total number of probes by X + O(w).

High Level Approach. The idea in [11] is to, for each u ∈ V , check directly
or indirectly the true direction of each of its incoming edges in �P . Since the
approach focuses on in-neighbors, we will use succinct terminology as follows.

32 T.-H. H. Chan et al.

Definition 2 (Succinct Neighbor Terminology). For any u ∈ V , we define
the following terminology.

– Denote Nu := {v : (v, u) ∈ �P} as the p-neighbors of u.
– Denote Su := {v : (v, u) ∈ �P ∩ �E} as the true p-neighbors of u. A vertex

v ∈ Nu \ Su is a false p-neighbor of u.
– Observe that after the algorithm has made some probes, it may be able to

directly or indirectly infer whether a p-neighbor is true or false. In this case,
we say that the p-neighbor is revealed.

– A p-neighbor v of u is plausible at some moment if it is either a true p-
neighbor or unrevealed at that particular moment. We use ˜Tu to denote the
collection of plausible p-neighbors of u. Observe that ˜Tu changes as the algo-
rithm gains more information.

– For simplicity, the reader may consider the more conservative definition that
v ∈ ˜Tu if v ∈ Su or the edge (v, u) ∈ �P has not been probed.

Checked Vertices. The algorithm maintains a collection A of checked vertices.
Initially, A := ∅. A vertex u is checked if all its p-neighbors are revealed. The
algorithm adds checked vertices to A one by one, and eventually terminates
when A = V . Observe that if an edge (u, v) ∈ �E has both endpoints in A, then
its direction is known to the algorithm. Therefore, when A = V , the standard
topological sort can be performed to return the desired Hamiltonian path.

How to Check a Vertex with a Small Number of Consistent Probes?
To check a vertex u, we can avoid probing all its remaining plausible p-neighbors
if we can use information derived from edges totally contained in A.

Definition 3 (Partial Order <A). A partial order <A is defined on the ver-
tices in A such that a <A b iff there is a directed path from a to b consisting only
of vertices in A and edges in �E.

Ideal Vertices. A vertex u is ideal if (i) all its remaining plausible p-neighbors
in ˜Tu are in A, and (ii) if ˜Tu is non-empty, the elements in ˜Tu are totally ordered
with respect to <A.

Lemma 1 (Checking an Ideal Vertex). An ideal vertex can be checked with
at most 1 consistent probe (i.e., there is no need to charge it to any inconsistent
probe).

Proof. Starting from the largest element in ˜Tu, we can probe (v, u) in decreasing
order of v ∈ ˜Tu with respect to <A. Hence, we can identify the largest true
p-neighbor (if any) using at most one consistent probe, while removing all false
p-neighbors from ˜Tu.

Lemma 1 says that an ideal vertex u can be checked with at most one
(uncharged) consistent probe and can be added to A. The following notion of
certificate shows that a vertex u cannot be ideal.

Generalized Sorting with Predictions Revisited 33

Definition 4 (Certificate). The following is a valid certificate for u with
respect to A.

– Type 1. There is a true p-neighbor v ∈ Su such that v /∈ A.
– Type 2. If all plausible p-neighbors ˜Tu are contained in A, there are two

incomparable elements in ˜Tu with respect to <A that are both true p-neighbors
of u.

Lemma 2 (Finding Certificate). For any vertex u /∈ A, either a certificate
for u can be found or the vertex u becomes ideal. If x inconsistent probes are
made in the process, then at most x + 2 consistent probes are made. Hence, x of
these consistent probes can be charged to the inconsistent probes, which means
that there are at most 2 uncharged consistent probes.

Moreover, the outcome of whether u becomes ideal does not depend on the
choices made in the process.

Proof. If a vertex u is not ideal because ˜Tu \ A is non-empty, we sequentially
consider each v ∈ ˜Tu \A and probe (v, u), until we find a true p-neighbor v ∈ Su

(which is a valid Type-1 certificate for u), or ˜Tu \ A becomes empty. Observe
that if all p-neighbors in ˜Tu \ A turns out to be false, then we have not made
any consistent probe.

Next, we try to find a Type-2 certificate. If there are two different v1 and v2
in ˜Tu that are incomparable with respect to <A, we probe (v1, u) and (v2, u) (if
necessary) to reveal the true direction of the edges. If both v1 and v2 are true
p-neighbors of u, then we have found a Type-2 certificate. Otherwise, we remove
false p-neighbors from ˜Tu and repeat until either a Type-2 certificate is found,
or we conclude that u is ideal.

Finally, observe that the order in which we probe the edges in the above
process cannot affect the outcome of whether u becomes ideal.

Remark 1. As demonstrated in [11], if we try to find a certificate for the smallest
vertex in V \A with respect to the true global ordering <V , the process described
in Lemma 2 will conclude that it is ideal using zero number of consistent probes.
This implies that the algorithm will always terminate.

Algorithm 1. An algorithm based on certificates [11]
1: set A := ∅
2: while A �= V do
3: Pick lexicographically smallest u ∈ V \A that does not have a valid certificate.
4: Use Lemma 2 to try finding a certificate for u (where randomness might be

used) using at most 2 uncharged consistent probes.
5: if u turns out to be ideal then
6: Use Lemma 1 with at most 1 uncharged consistent probe to check u.
7: Add u to A (which might make some current certificates invalid)
8: end if
9: end while

34 T.-H. H. Chan et al.

Lemma 3 (Probe Charging Analysis). In Algorithm 1, suppose for each
vertex u, there are Xu attempts to find a certificate for u. Then, the total number
of probes made is at most O(n + w +

∑

u∈V Xu).

Proof. Observe that for each inconsistent probe, at most 1 consistent probe is
charged to it, as in Lemma 2.

Hence, it suffices to bound the number of uncharged consistent probes. From
the algorithm description, each vertex u incurs at most 1 uncharged consistent
probes when it becomes ideal, or at most 2 uncharged consistent probes every
time there is an attempt to find a certificate for it. Hence, the result follows.

Bounding the Number of Certificate Finding Attempts. According to
Lemma 3, it suffices to bound the number of certificate finding attempts. One
crucial observation made in [11] is that for each vertex, its pool of potentially
valid certificate candidates changes in a deterministic fashion as a result of the
following lemma.

Lemma 4 (Vertices Checked in a Deterministic Order). Vertices are
added to A in a deterministic order.

Proof. This is because in Algorithm 1, we always pick the lexicographically
smallest vertex u without a currently valid certificate. Moreover, according to
Lemma 2, whether a certificate for u is found does not depend on the choices
made in the process.

Certificate Candidates. For each vertex u without a currently valid certificate,
the algorithm will first attempt to find a Type-1 certificate. Hence, initially all
true p-neighbors Su of u can potentially be a witness for a Type-1 certificate.
However, as more vertices are added to A, a Type-1 certificate might become
invalid.

Observe that the vertices in Su are added to A in a deterministic order. At
the moment when all vertices in Su are added to A, there cannot be any valid
Type-1 certificate for u. If u is still not in A, then the algorithm will start to find
Type-2 certificate for u, where a witness is a distinct pair of vertices in Su that
are incomparable with respect to <A. However, as more vertices are added to A,
a Type-2 certificate may become invalid as the involved pair become comparable
under <A.

Uniform Certificate Sampling. In [11], the same technique is used to analyze
the number of certificates found for a vertex u for each type. The idea is that
there is initially a pool Cu of potential certificate candidates for u, and these
candidates become invalid in some deterministic order. In the worst case sce-
nario, we require that a valid certificate must be possessed by vertex u at all
times until all potential candidates become invalid. When required, the intuition
is to pick a certificate uniformly at random from the pool of remaining valid
certificate candidates. To minimize the number of certificate finding attempts, it
makes sense to pick a certificate that becomes invalid later. However, since the

Generalized Sorting with Predictions Revisited 35

algorithm does not know the order in which the certificate candidates become
invalid, a uniformly random one is picked to achieve a high probability bound.
By considering all vertices together, we get a better measure concentration result
than the previous analysis in [11].

Lemma 5 (New Measure Concentration Bound). Suppose each vertex u
has an initial pool Cu of certificate candidates that become invalid in a determin-
istic order. Suppose each vertex u independently samples a certificate uniformly
at random from the remaining pool of valid certificates whenever needed. Then,
except with probability at most e−Θ(n), the total number of certificates sampled
by all vertices is at most O(

∑

u∈V (log |Cu| + 1)).

Proof. In the original analysis [11], a high probability statement is proved to
bound the number of certificates sampled for each vertex. Then, the union bound
is used to achieve a high probability statement over all vertices. Our new insight
is that a better measure concentration bound can be achieved if we directly
consider the total number of sampled certificates for all vertices.

For each vertex u, it is equivalent to first sample a uniformly random priority
on the collection Cu of candidates. Whenever a certificate is needed, a valid can-
didate with the highest priority is selected. Consider the candidate with the i-th
highest priority; observe that this candidate is selected if among the i certificates
with highest priority, it is the last one to become invalid. Let Xu

i ∈ {0, 1} be the
indicator random variable for this event.

A crucial observation is that E[Xu
i] = 1

i and the random variables Xu
i ’s

are independent. This can be checked if we sample the random priority starting
from the position with the least priority, i.e., i = |Cu|. In this case, Xu

|Cu| = 1
iff we pick the certificate that is the last to become invalid, which happens with
probability 1

|Cu| .
In general, when we pick a candidate for the i-th priority position, it does not

matter what certificates have already been picked for the lower priority positions.
This certificate will be possessed by u if among the i remaining candidates, the
one that becomes invalid last is selected for the i-th position, which happens
with probability 1

i .
The above description assumes that certificates become invalid one by one,

as in the case for Type-1 certificates. However, for Type-2 certificates, a block of
certificates can become invalid at the same time. In this case, the above analysis
is more pessimistic than reality, and so still serves as a correct upper bound
analysis for the number of sampled certificates.

Therefore, the random variables Xu
i ∈ {0, 1} are independent over different

vertices u and i. Observe that the expectation satisfies:
n ≤ E[

∑

u∈V

∑|Cu|
i=1 Xu

i] =
∑

u∈V

∑|Cu|
i=1

1
i ≤ ∑

u∈V (log |Cu| + 1).
For a sum Z of independent {0, 1}-random variables, the Chernoff Bound

states for any 0 < ε < 1, Pr[Z ≥ (1 + ε)E[Z]] ≤ exp(− 1
3ε2E[Z]). Using ε = 1

2
gives the required result.

Remark 2. Observe that the algorithm does not actually know the true p-
neighbors. Hence, it can only do uniform sampling among plausible p-neighbors

36 T.-H. H. Chan et al.

for a Type-1 certificate and among pairs of distinct p-neighbors for a Type-2 cer-
tificate. However, the proof in Lemma 2 shows that if any plausible p-neighbor
turns out to be false, any consistent probes involved can be charged to incon-
sistent probes. Therefore, the procedure essentially samples uniformly over all
remaining valid certificates.

Bounding the Pool of Certificate Candidates. In the original analysis [11],
a trivial bound of n is used for the number of potential Type-1 certificate can-
didates and a bound of

(

n
2

)

is used for that of Type-2. Our new insight is that
these bounds can be improved to O(w) and O(w2), respectively. From Lem-
mas 3 and 5, this implies that the total number of probes can be improved to
O(n log w + w).

3 Path Decomposition

The main novel idea is that if there are only w number of mispredicted edges,
then it is possible to partition the vertices into O(w) number of disjoint verified
directed paths using O(n) number of probes, where a verified path means that
edges in the path all belong to �E. Intuitively, for each node u, instead of consid-
ering each of its p-neighbors individually, we will consider a representative from
each path, thereby reducing the number of consistent probes.

The first observation is that the predicted graph can be decomposed into
disjoint paths or cycles in polynomial time.

Lemma 6 (Decomposition to Paths and Cycles in Prediction Graph).
There is a polynomial-time algorithm that partitions the vertices of the graph

(V, �P) into at most w+1 number of paths and c number of cycles in �P , where w is
the number of mispredicted edges in �P and c ≤ w. Observe that no edge probing
is performed in this step.

Proof. Observe that in a directed graph where each vertex has in-degree and out-
degree both at most 1, then each vertex lies on a directed path or cycle. There-
fore, we achieve the desired decomposition by considering a matching problem
in a bipartite graph constructed as follows.

The vertices in VB = L ∪ R consists of L := {lu : u ∈ V } and R = {rv :
v ∈ V }. The bipartite graph GB = (VB , EB) is constructed such that an edge
(lu, rv) ∈ EB iff (u, v) ∈ �P . Observe that a matching M ⊆ EB in the bipartite
graph naturally induces a subset EM := {(u, v) ∈ �P : (lu, rv) ∈ M} of directed
edges in �P in which each vertex has in-degree and out-degree at most 1, i.e., EM

is a decomposition into disjoing paths or cycles.
In polynomial time, we can find a maximum matching M in (VB , EB). Let

α = |EM | = |M | be the size of the maximum matching. Observe that if �P
contains a Hamiltonian path, then this path induces a matching of size n − 1
in (VB , EB). However, since there are w mispredicted edges in �P , it follows that
α ≥ n − w − 1.

Generalized Sorting with Predictions Revisited 37

We next want to give an upper bound on the number of weakly connected
components in (V,EM). Let c be the number of cycles in EM . Since the cycles
in EM are disjoint and each cycle in �P is due to a mispredicted edge, it follows
that c ≤ w.

Starting from the vertex set V , if we add edges in EM one by one, every time
we add an edge, the number of connected components drops by 1, unless the
edge forms a cycle. Hence, the number of weakly connected components in EM

is n − α + c ≤ w + 1 + c, as required.

Lemma 7 (Verified Directed Paths). Using at most n edge probes, the
vertices in V can be partitioned into at most 2w + 1 verified directed paths in
�E ∩ �P .

Proof. According to Lemma 6, the vertices are partitioned to at most disjoint
w + 1 number of directed paths and c number of cycles in �GP , where c ≤ w. We
probe all the edges in these paths and cycles, and remove the mispedicted edges.

Observe that in each of the c cycles, there is at least one mispredicted edge
whose removal does not increase the number of components. There can be at
most w−c remaining inconsistent probes, each of which may increase the number
of components by 1.

Hence, after removing mispredicted edges, the number of components
(directed paths) is at most (w + 1 + c) + w − c = 2w + 1.

Path Probing. We use Z to denote the collection of directed paths found in
Lemma 7. Since all the edges in each such path have been probed, the vertices
in each path are totally ordered by <�E . Recall that in the framework described
in Sect. 2, for each vertex u, all its p-neighbors in Nu are eventually revealed (to
be either true or false). Observe that for each path Q ∈ Z, all vertices in Q∩Nu

can be revealed using at most 1 consistent probe, because one can simply start
from the largest plausible p-neighbor v in Q∩Nu and probe the edge (v, u) until
the largest true p-neighbor (if any) in Q∩Nu is found. This observation directly
recovers the result from [11] that O(nw) probes are sufficient for a deterministic
algorithm.

4 Modified Method for Finding Certificates

Under the path decomposition Z in Lemma 7, the framework in Algorithm 1
can still be applied, but now certificates are defined in terms of paths in Z.

Definition 5 (Modified Certificate). The following is a valid certificate for
u with respect to the current A.

– Type 1. A path Q ∈ Z such that that contains a true p-neighbor of u that
does not belong to A.

38 T.-H. H. Chan et al.

– Type 2. Suppose no Type 1 certificate exists. In this case, a Type 2 certificate
is a pair of 2 distinct paths in Z that contain two true p-neighbors of u in A
which are incomparable with respect to <A. Observe those two incomparable
true p-neighbors must lie on different paths in Z, because any two vertices in
a path are comparable.

Modified Global Probe Charging. We follow the same definition of consis-
tent probe and inconsistent edge probes. There can be at most w inconsistent
probes, which can be absorbed into the term O(w). Hence, again we can focus
on bounding the number of consistent probes. Observe that modified certificates
are defined with respect to the paths in the decomposition Z.

At any time, for each node u, there can be at most O(w) candidates for
Type-1 certificates and at most O(w2) candidates for Type-2 certificates. We will
prove in the following that at most 1 consistent probe is needed in each attempt
to find a Type-1 certificate. For each attempt at finding Type-2 certificate, we
will show after charging O(1) consistent probe to each inconsistent probe, the
number of uncharged probes would be at most 2. Therefore, if there are X valid
certificates used during the execution of the algorithm, then O(X) uncharged
probes would be consumed, the total number of probes would be bounded by
O(X + w). However, in order to show that the X is small with high probability,
we also need to prove that we can sample from the collection of valid potential
certificates uniformly at random so that we can apply the measure concentration
argument in Lemma 5.

Lemma 8 (Finding Type-1 Certificate). For any vertex u /∈ A such that
˜Tu \ A is non-empty, either a Type-1 certificate for u can be sampled uniformly
at random over all valid ones or we can conclude that no Type-1 certificates can
be found for u (in which case all p-neighbors in ˜Tu \ A turns out to be false).

If a Type-1 certificate is found, at most 1 consistent probe will be made;
otherwise no consistent probes will be made.

Proof. We consider the paths Zu ⊆ Z that contain at least 1 plausible p-neighbor
in A. However, at the beginning, the algorithm does not know whether these p-
neighbors in A are true or false.

In order to sample a valid Type-1 certificate uniformly at random, the algo-
rithm picks such a path Q in Z uniformly at random and verifies whether Q is a
valid Type-1 certificate. Starting from the largest plausible p-neighbor v (which
changes a more information is revealed) of u that does not belong to A, we probe
(v, u). If v is a true p-neighbor, then Q is a valid Type-1 certificate; otherwise,
we consider the next largest plausible p-neighbor in Q that is not contained in
A. Observe that if it turns out that there is no more plausible p-neighbors from
Q that is not in A, then Q cannot be a valid Type-1 certificate; in this case,
no consistent probe is made, and we can sample uniformly at random from the
remaining possible paths in Zu \ {Q}.

Hence, the above process is actually doing uniform sampling among all valid
Type-1 certificates (if any). Moreover, 1 consistent probe is incurred iff a valid
Type-1 certificate is found.

Generalized Sorting with Predictions Revisited 39

Lemma 9 (Finding Type-2 Certificate). For any vertex u /∈ A such that
all plausible p-neighbors ˜Tu ⊆ A, either a Type-2 certificate for u can be sampled
uniformly at random over all valid ones or we can conclude that u is ideal.

If x inconsistent probes are made in the process, then at most 2x+2 consistent
probes would be made. Hence, 2x of these consistent probes can be charged to the
x inconsistent probes, which means that there are at most 2 uncharged consistent
probes.

Proof. Let Zu ⊆ Z be the set of paths where each path has at least one plausible
p-neighbor of u. Let L be a random permutation of unordered pairs {Q1, Q2}
of paths that contain at least two incomparable p-neighbors of u with respect
to A (but we do not know yet whether they are true or false). Observe that all
valid Type-2 certificates are included in L and the relative order among them is
uniformly at random.

Each pair {Q1, Q2} in L is verified as follows. For i ∈ {1, 2}, starting from the
largest plausible p-neighbor of u in Qi, all p-neighbors in Qi can be revealed as
soon as the first true p-neighbor is found. After all p-neighbors of Q1 and Q2 are
revealed, the pair forms a Type-2 certificate if they contain two incomparable
p-neighbors with respect to A. (However, this pair may become invalid later
as more vertices are included into A.) Since we give higher priority to Type-1
certificates, if no Type-2 certificate can be found for u, it means that node u is
ideal.

The above procedure samples a valid Type-2 certificate uniformly at random
if there is any. It remains to analyze probe charging. Observe that when each pair
{Q1, Q2} is verified, there will be at most 2 consistent probes, each coming from
one of the paths. If the pair turns out to be a valid Type-2 certificate, we can
keep these 2 consistent probes uncharged. If the pair turns out to be invalid, it
means that at least 1 inconsistent probe is encountered, because at the beginning
the two pairs contain two incomparable plausible p-neighbors (at least one of
which is revealed to be false during verification). Hence, the 2 consistent probes
can be charged to at least 1 inconsistent probe.

As before, the order in which vertices are included into A is deterministic.

Remark 3 (Becoming Ideal Independent of Choices). Observe that according to
the process described in Lemma 8 and Lemma 9, the order in which we consider
paths and pairs of paths for finding certificates cannot affect the outcome of
whether u becomes ideal. Hence, the outcome of whether u becomes ideal does
not depend on the choices made in the process.

Remark 4 (Predecessor in Verified Directed Paths). For a directed path Q ∈ Z,
if a vertex u ∈ Q belongs to A, then all vertices that are smaller than u in Q are
all in A.

Modified Algorithm. The modified algorithm has the same framework as
Algorithm 1, except that it uses Lemma 8 and Lemma 9 successively to try
finding a certificate for the considered vertex u.

40 T.-H. H. Chan et al.

Lemma 10 (Identifying an Ideal Vertex). An ideal vertex can always be
identified in V \ A if A
= V .

Proof. Let the Hamiltonian path in �G be (v1, · · · , vn), and k the smallest index
s.t. vk /∈ A, then Svk

⊆ {v1, · · · , vk−1} ⊆ A. Hence the partial order <A

restricted to Svk
is a total order. By Lemma 8 and Lemma 9, if we follow the

process of finding certificates on vk, then vk would be identified as an ideal vertex
since wrong p-neighbors would all be removed from ˜Tu.

Lemma 11 (Correctness of the Algorithm). The algorithm can always
proceed and would terminate in finitely many steps.

Proof. Applying the strategy described in Lemma 8 and Lemma 9 for a vertex
that is not in A, we can either find a certificate for it or it becomes ideal.
Moreover, according to Lemma 10, an ideal vertex can always be identified.
Specifically, we can sequentially identify all ideal vertices in increasing order
with respect to the true global ordering <V . This implies that the algorithm will
always terminate. Also, note that there are finitely many potential certificates
for each vertex, and an invalid certificate would not be valid again. Hence there
will only be a finite number of steps.

We recall Theorem 1:

Theorem 1 (Main Theorem). There is a polynomial-time Monte Carlo
algorithm which solves the generalized sorting with prediction problem using
O(n log w + w) probes with probability at least 1 − e−Θ(n).

Proof. Lemma 11 has shown the correctness of the modified algorithm. We now
bound the number probes used.

First of all, we can use Lemma 7 to find in polynomial time O(w) verified
directed paths in �GP which can cover all vertices in V with at most n probes.

Lemma 4 still holds for the modified algorithm by the same proof since
whether a certificate for the considered vertex is found does not depend on
the choices made in the process in Lemma 8 and Lemma 9 neither.

The probe charging analysis for the modified algorithm is exactly the same
as in Lemma 3, i.e., the total number of probes made is at most O(n + w +
∑

u∈V Xu), where Xu is the number of attempts to find a certificate for u.
Note that at most 2 uncharged consistent probes are incurred every time there
is an attempt to find a certificate. Moreover, observe that the algorithm does
not know the true p-neighbors. Hence it needs to do uniform sampling among
all paths that contain plausible p-neighbors for a Type-1 certificate and among
all pairs of distinct paths that contain at least one plausible p-neighbor for a
Type-2 certificate. However, Lemma 8 and Lemma 9 show that if any plausible
p-neighbor turns to be false, either no consistent probes would be consumed or
any consistent probes involved can be charged to inconsistent probes. Lemma 8
and Lemma 9 are essentially to sample uniformly over all remaining valid certifi-
cates. Therefore, each vertex has an initial pool of O(w) candidates for Type-1
certificate and O(w2) for Type-2 certificate.

Generalized Sorting with Predictions Revisited 41

Note that Lemma 5 will also hold for the modified algorithm. We now have
that the initial pools Cu of Type-1 and Type-2 certificates are of size O(w)
and O(w2) separately. Therefore, the total number of certificates sampled by all
vertices, i.e.,

∑

u∈V Xu, is at most O(
∑

u∈V (log |Cu| + 1)) = O(n log w) with
probability at least 1 − e−Θ(n).

Combining all these together, we have that the modified algorithm uses at
most O(n log w + w) probes with probability at least 1 − e−Θ(n) and it runs in
polynomial running time.

5 Conclusion

In conclusion, this paper presented a novel approach to address the generalized
sorting with predictions problem. The proposed algorithm partitions vertices
into verified directed paths, which in turn helps to reduce the number of probes
required for each vertex. This leads to a polynomial-time Monte Carlo algorithm
that allows for O(n log w + w) probes with high probability, thus outperforming
previous solutions when w is small. However, it remains an open problem whether
the bound presented in our algorithm is tight, and if it is possible to remove the
additive term w altogether. These are interesting directions for further research
in this field.

References

1. Alon, N., Blum, M., Fiat, A., Kannan, S., Naor, M., Ostrovsky, R.: Matching nuts
and bolts. In: SODA, pp. 690–696. ACM/SIAM (1994)

2. Banerjee, I., Richards, D.S.: Sorting under forbidden comparisons. In: SWAT.
LIPIcs, vol. 53, pp. 22:1–22:13. Schloss Dagstuhl - Leibniz-Zentrum für Informatik
(2016)

3. Biswas, A., Jayapaul, V., Raman, V.: Improved bounds for poset sorting in the
forbidden-comparison regime. In: Gaur, D., Narayanaswamy, N.S. (eds.) CALDAM
2017. LNCS, vol. 10156, pp. 50–59. Springer, Cham (2017). https://doi.org/10.
1007/978-3-319-53007-9 5

4. Blanc, G., Lange, J., Tan, L.: Query strategies for priced information, revisited.
In: SODA, pp. 1638–1650. SIAM (2021)

5. Charikar, M., Fagin, R., Guruswami, V., Kleinberg, J.M., Raghavan, P., Sahai,
A.: Query strategies for priced information. J. Comput. Syst. Sci. 64(4), 785–819
(2002)

6. Gupta, A., Kumar, A.: Sorting and selection with structured costs. In: FOCS, pp.
416–425. IEEE Computer Society (2001)

7. Huang, Z., Kannan, S., Khanna, S.: Algorithms for the generalized sorting problem.
In: FOCS, pp. 738–747. IEEE Computer Society (2011)

8. Kannan, S., Khanna, S.: Selection with monotone comparison cost. In: SODA, pp.
10–17. ACM/SIAM (2003)

9. Komlós, J., Ma, Y., Szemerédi, E.: Matching nuts and bolts in o(n log n) time.
SIAM J. Discret. Math. 11(3), 347–372 (1998)

10. Kuszmaul, W., Narayanan, S.: Stochastic and worst-case generalized sorting revis-
ited. In: FOCS, pp. 1056–1067. IEEE (2021)

11. Lu, P., Ren, X., Sun, E., Zhang, Y.: Generalized sorting with predictions. In: SOSA,
pp. 111–117. SIAM (2021)

https://doi.org/10.1007/978-3-319-53007-9_5
https://doi.org/10.1007/978-3-319-53007-9_5

Eliciting Truthful Reports with Partial
Signals in Repeated Games

Yutong Wu1(B), Ali Khodabakhsh1, Bo Li2, Evdokia Nikolova1,
and Emmanouil Pountourakis3

1 The University of Texas at Austin, Austin, TX 78712, USA
{yutong.wu,ali.kh}@utexas.edu, nikolova@austin.utexas.edu

2 The Hong Kong Polytechnic University, Hung Hom, Hong Kong, China
comp-bo.li@polyu.edu.hk

3 Drexel University, Philadelphia, PA 19104, USA
manolis@drexel.edu

Abstract. We consider a repeated game where a player self-reports her
usage of a service and is charged a payment accordingly by a center.
The center observes a partial signal, representing part of the player’s
true consumption, which is generated from a publicly known distribu-
tion. The player can report any value that does not contradict the signal
and the center issues a payment based on the reported information. Such
problems find application in net metering billing in the electricity mar-
ket, where a customer’s actual consumption of the electricity network
is masked and complete verification is impractical. When the underly-
ing true value is relatively constant, we propose a penalty mechanism
that elicits truthful self-reports. Namely, besides charging the player
the reported value, the mechanism charges a penalty proportional to
her inconsistent reports. We show how fear of uncertainty in the future
incentivizes the player to be truthful today. For Bernoulli distributions,
we give the complete analysis and optimal strategies given any penalty.
Since complete truthfulness is not possible for continuous distributions,
we give approximate truthful results by a reduction from Bernoulli dis-
tributions. We also extend our mechanism to a multi-player cost-sharing
setting and give equilibrium results.

Keywords: Energy economics · Equilibrium analysis · Repeated
games · Electricity market · Penalty mechanisms

1 Introduction

Consider the following repeated game where a center owns resources and one or
more strategic players pay the center to consume the resources. In every round,
a player self-reports their usage, which will then be used to determine their
payment to the center. However, it is not always possible for the center to verify
the submitted information from the players. Instead, only part of the actual
consumption is revealed to the center based on some publicly known distribution.
c© Springer Nature Switzerland AG 2023
M. Li et al. (Eds.): IJTCS-FAW 2023, LNCS 13933, pp. 42–57, 2023.
https://doi.org/10.1007/978-3-031-39344-0_4

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-39344-0_4&domain=pdf
https://doi.org/10.1007/978-3-031-39344-0_4

Eliciting Truthful Reports with Partial Signals in Repeated Games 43

A player can report any value that is at least the revealed amount. Without any
external interference, a player will naturally report exactly the revealed amount
(potentially lower than the true consumption) to minimize their payment. The
center then needs to determine a payment mechanism such that each player is
incentivized to report their true value.

The electricity market is facing precisely the described problem. As the num-
ber of electricity prosumers increases each year, new rate structures are designed
to properly calculate the electricity bill for this special type of consumer while
ensuring that every customer is still paying their fair share of the network costs.
Prosumers are those who not only consume energy but also produce electricity
via distributed energy resources such as rooftop solar panels. Among different
rate structures, net metering is a popular billing mechanism that is currently
adopted in more than 40 states in the US [22]. Net metering charges prosumers
a payment proportional to their net consumption, i.e., gross consumption minus
the production [26], demonstrated in Fig. 1. The payment includes the electricity
usage as well as grid costs that are incurred by using the electricity network.

Fig. 1. Net metering for electricity prosumers.

The controversy in net metering lies in that prosumers fail to pay their share
of the grid costs when they do not have local storage equipment [9]. In the United
States, only 4% of the solar panel owners also own a battery to store the produced
solar energy [18]. For those who do not own battery storage, the generated power
has to be transmitted back to the grid. Accordingly, the daily consumption of
power by these prosumers also needs to come from the grid instead of directly
from the solar panels. In this way, most prosumers have under-paid their share
of the network costs and become “free-riders” of the electricity grid. The grid is
often subject to costly line upgrades and net metering unevenly shifts such costs
to traditional consumers, who usually come from lower-income households [15].
Indeed, previous research works have suggested that prosumers should pay a part
of the grid costs proportionally to their gross consumption, not net consumption
[9,16]. However, the gross consumption is hidden from the utility companies
since only net consumption can be observed from the meter. Meanwhile, there
is no incentive for prosumers to voluntarily report their true consumption as it
will only increase their electricity bills.

44 Y. Wu et al.

Fortunately, the production from solar panels usually follows some pattern
while the gross consumption of electricity for a typical household stays relatively
constant, which is especially true for industrial sites – the major consumers for
utilities [21,27]. Thus, the observed consumption can be assumed to follow some
natural distribution and the center is able to detect dishonesty when a player’s
report differs from their reporting history. With this idea, we propose a simple
penalty mechanism, the flux mechanism, that elicits truthful reports from players
in a repeated game setting when only partial verification is possible. Particularly,
a player is charged their reported value as well as a penalty due to inconsistency
in consecutive reports in each round. The main goal is to ensure that every
player reports their true values and no penalty payment is collected. We show
that the combining effect of (i) the penalty rate and (ii) the length of the game
is sufficient for inducing truthful behavior from the player for the entire game.
As the horizon of the game increases, the minimum penalty rate for truth-telling
as an optimal strategy decreases. In other words, it is the fear of uncertainty in
the future that incentivizes the player to be truthful today.

1.1 Our Contribution

We address the problem of eliciting truthful reports when the center is able
to observe a part of the player’s private value based on some publicly known
distribution. The strategic player reports some value that is at least the publicly
revealed value and is charged a payment accordingly. We propose a truth-eliciting
mechanism, flux mechanism, that utilizes the player’s fear of uncertainties to
achieve truthfulness. In each round, the player is charged a “regular payment”
proportional to the consumption they report. Starting from the second round,
the player is charged an additional “penalty payment”, which is r times the
(absolute) difference between the reports in the current and the previous round,
where the penalty rate r is set by the center before the game starts.

Intuitively, a player can save their regular payment by under-reporting their
consumption, but they will then face the uncertainty of paying penalties in future
rounds due to inconsistent reports. Under most settings, if r is set to be infinitely
high, the players will be completely truthful to avoid any penalty payment.
However, a severe punishment rule is undesirable and discourages players from
participating. Therefore, we want to understand the following question.

What is the minimum penalty rate such that the player is willing to report
their true value?

We observe that no finite penalty can achieve complete truthfulness for arbi-
trary distributions as a player’s true consumption may never be revealed exactly.
We can, however, obtain approximate truthfulness for a general distribution by
analyzing complete truthfulness for a corresponding Bernoulli distribution. For
Ber(p), the partial signal equals the true consumption with probability p and 0
with probability 1 − p for p ∈ (0, 1). We give results for Bernoulli distributions
in Main Results 1 and 2. For arbitrary distributions, we redefine p as the prob-
ability of having a partial signal that is at least α times the true consumption,
for α ∈ [0, 1], to obtain α-truthfulness (Main Result 3).

Eliciting Truthful Reports with Partial Signals in Repeated Games 45

Main Result 1 (Theorem 1). For a T -round game with Bernoulli distribution
Ber(p), the player is completely truthful if and only if the penalty rate is at least

1 − (1 − p)T

p − p(1 − p)T−1
.

Main Result 1 gives the minimum penalty rate that guarantees complete
truthfulness for Ber(p) distributions. We also want to understand how players
would behave if the penalty rate is not as high, which describes the situation
when the center is willing to sacrifice some degree of truthfulness by lowering the
penalty rate. Given any penalty rate, we show that a player’s optimal strategies
can be described as one or a combination of three basic strategies, lying-till-
end, lying-till-busted and honest-till-end. Specifically, with a low penalty rate,
the player is always untruthful to save regular payment, i.e., lying-till-end is
optimal. As the penalty rate increases, the player’s optimal strategy gradually
moves to lying-till-busted, which is to be untruthful until the partial signal is
revealed as the true consumption for the first time and then stays truthful for
the rest of the game. When the penalty rate is sufficiently high, the player would
avoid lying completely and reports the truth, i.e., she is honest-till-end.

Table 1. Optimal strategy given penalty rate r under Ber(p) distributions

Bernoulli Prob. Penalty Rate Optimal Strategy

p ≥ 0.5 r ≤ 1
2p

lying-till-end
1
2p

< r ≤ 1 lying-till-busted
+ lying last round

1 < r < 1−(1−p)T

p−p(1−p)T−1 lying-till-busted

r ≥ 1−(1−p)T

p−p(1−p)T−1 honest-till-end

p < 0.5 r ≤ 1 lying-till-end

h(t − 1) < r ≤ h(t) lying-till-end first t rounds
+ lying-till-busted for rest

h(T − 1) < r < 1−(1−p)T

p−p(1−p)T−1 lying-till-busted

r ≥ 1−(1−p)T

p−p(1−p)T−1 honest-till-end

Main Result 2 (Theorems 1 and 2). For a T -round game with Bernoulli dis-
tribution Ber(p), given any penalty rate r, the player’s optimal strategy is sum-
marized in Table 1, where

h(t) =
1 − (1 − p)t

2p − p(1 − p)t−1
, for1 ≤ t ≤ T.

For arbitrary distributions, including uniform distributions, it is impossible
to obtain complete truthfulness without setting the penalty to infinity. Main
Result 3 gives a reduction from Bernoulli distributions to general distributions
for approximate truthfulness.

46 Y. Wu et al.

Main Result 3 (Theorem 3). Given α ∈ [0, 1] and an arbitrary distribution
with CDF F , if a penalty rate r achieves complete truthfulness for Ber(p) where
p = 1 − F (αD) and D is the player’s true gross consumption, then the same r
achieves α-approximate truthfulness for distribution F .

Finally, we extend our results to multiple players. We note that if the play-
ers are charged independently, applying the flux mechanism to each individual
elicits truthful reports. A more complicated and realistic setting is the cost-
sharing problem where the players split an overhead cost based on their sub-
mitted reports. We propose the multi-player flux mechanism where the penalty
payment is the same as before but the regular payment is now a share of some
overhead cost. Again, if the penalty rate is sufficiently high, the players stay
truthful, regardless of others’ behavior, to avoid any penalty payment, i.e., the
truthful report profile forms a dominant strategy equilibrium. As the penalty rate
decreases, the truthfulness of a player may depend on other players’ actions. That
is, with a lower penalty rate, a truthful report profile forms a Nash equilibrium.
For both equilibrium definitions, we are interested in the following question.

What is the minimum penalty rate for the truthful report profile to form
a dominant strategy or Nash equilibrium?

We give exact penalty thresholds for both truthful equilibria under Bernoulli
distributions and use a reduction to obtain approximate results under arbitrary
distributions in Main Result 4.

Main Result 4 (Theorems 4, 5, 6 and 7). For any T -round game with distri-
bution Ber(p), a truthful strategy profile is a dominant strategy equilibrium if
and only if

r ≥ C

nD

1 − (1 − p)n−1

p

1 − (1 − p)T

p − p(1 − p)T−1
,

and a Nash equilibrium if and only if

r ≥ C

nD

1 − (1 − p)T

p − p(1 − p)T−1
.

Given α ∈ [0, 1] and any distribution with cumulative distribution function F ,
let p = 1−F (αD), where D is the true gross consumption. Then α-approximate
truthful profile is a Nash equilibrium if

r ≥ 1
α

C

nD

1 − (1 − p)T

p − p(1 − p)T−1
,

and the α-approximate truthful profile is a dominant strategy equilibrium if

r ≥ 1
α

C

nD

1 − (1 − p)n

p

1 − (1 − p)T

p − p(1 − p)T−1
.

Eliciting Truthful Reports with Partial Signals in Repeated Games 47

1.2 Related Works

The economic effect of the net metering policy has been explored for different
countries and regions [6,7,17,24,28]. It has been observed that net metering can
cause inequality issues for traditional energy consumers [8,15,17,23]. Accord-
ingly, alternative pricing mechanisms and tariff structures have been proposed
to fairly compensate the energy production [4,9,10,16,25]. In particular, Gau-
tier et al. [9] and Khodabakhsh et al. [16] proposed that individuals should be
charged based on their true consumption, not net consumption. Our work is a
continuation of [16], where a primitive version of the penalty mechanism is first
proposed for promoting a fairer electricity rate structure. We formally define the
mechanism and provide the corresponding theoretical analysis.

More broadly, fairness for the power grid has become an increasingly popular
subject. First, Heylen et al. provided various indices to measure fairness and
inequality in power system reliability [13]. Fairness is also explored for load
shedding plans [14], electric vehicle charging schemes [1], demand response [2],
etc. Moret and Pinson showed fairness can be improved with a “community-
based electricity market”, where prosumers are allowed to share their production
on the community level [20]. Our model, on the other hand, addresses the fairness
issues by modifying the current electricity structure, which is easier for utility
companies to adopt.

Theoretically, our work is related to information elicitation with limited ver-
ification ability. Caragiannis et al. [5] and Ball et al. [3] worked on probabilistic
verification where a lying player may be caught by a probability based on her
type. Our work can be viewed as an extension of probabilistic verification under
a repeated game setting where the verification is implicit and the main goal is to
incentivize truthful reports. Another related problem is strategic classification,
in which individuals can manipulate their input to obtain a better classifica-
tion outcome [11,12,19,30]. Although we also consider the strategic behavior of
players in a sequential game, our model is quite different. Strategic classification
allows the center to learn the patterns of the players via a private classifier.
In our setting, the scoring rule is transparent to the players and an additional
measure (e.g., a penalty) has to be invoked to incentivize truthfulness.

2 Problem Statement

We formally define our problem under the single player setting and defer the
extension to multiple players to Sect. 5. The player has a gross consumption
D ≥ 0, which is her private information. The game has T rounds where T > 1
as otherwise the flux mechanism becomes invalid. In each round t, the center
observes a partial signal, yt ≤ D, which is randomly and independently drawn
from a distribution F supported on [0,D]. We use r ≥ 0 to denote the penalty
rate. In a flux mechanism, a player cares more about the number of rounds
left in the future rather than the number of rounds has passed. Thus we use
t = T, T − 1, · · · , 1 to denote the current round, where t means there are t
rounds left, including the current round. For example, the first round is round

48 Y. Wu et al.

T , the last round is round 1, and the previous round of round t is round t + 1.
For round t ≤ T , the flux mechanism runs as follows.

– The center observes the player’ net consumption yt ∼ F .
– The player submits their reported gross consumption which is at least the

net consumption, bt ≥ yt. The player may not be truthful, i.e., bt ≤ D.
– When t < T , the player’s payment consists of regular payment bt and penalty

payment r·|bt+1−bt|. When t = T , the player only pays the regular payment.

For t < T , we call bt+1 the history of round t. In each round t, the player
wants to pay the lowest expected total payment by reporting bt without knowing
the partial signals for future rounds. We call a mechanism truthful if the player
reports D for all rounds. When two reports bring the same expected payment,
we break tie in favor of truthfulness. We adopt the assumption from Khod-
abakhsh et al. [16] that D does not vary with t. We explain in the full version
of this paper an easy extension where Dt is drawn from a known range [D,D].

3 Bernoulli Distributions

We start with the analysis of Bernoulli distribution as we show later a reduction
from an arbitrary distribution to a Bernoulli distribution. We prove it is only
optimal for a player to report zero or their true consumption in each round. The
optimal strategies can then be characterized by three basic strategies (Defini-
tion 1). The penalty thresholds are computed by comparing the different com-
binations of the basic strategies. Due to space limit, we defer most proofs to the
full version of this paper and focus on explaining the intuition in this section.

3.1 Basic Strategies

In a Bernoulli distribution setting, in each round t, the partial signal yt is D
with probability p and 0 with probability 1 − p. When the partial signal equals
to the private value, i.e., yt = D, we say that the player is “busted” in round t.
We first define three basic strategies.

Definition 1 (Basic Strategies). For Bernoulli distributed net consumption
yt ∼ Ber(p), we define the following as the three basic strategies:

– lying-till-end: Report bt = 0 when yt = 0 and bt = D otherwise;
– lying-till-busted: Report bt = 0 until yt = D for the first time, then report D for

all future rounds;
– honest-till-end: Report bt = D for all rounds.

We note that a player’s optimal strategy for a given penalty rate r can
be solved by backward induction. Let OptCost(t, r, bt+1) denote the optimal
expected cost for a player starting in round t with penalty rate r and report
bt+1 for the previous round. Then

OptCost(t, r, bt+1) = min
bt

ExpCost(t, r, bt+1, bt),

Eliciting Truthful Reports with Partial Signals in Repeated Games 49

where ExpCost(t, r, bt+1, bt) is the expected cost for the player starting in round
t and reporting bt (if she is allowed to), with penalty rate r and history bt+1,

ExpCost(t, r, bt+1, bt)
= Eyt

[max{yt, bt} + r|max{yt, bt} − bt+1| + OptCost(t − 1, r,max{yt, bt})]

= p
(
D + r(D − bt+1) + OptCost(t − 1, r,D)

)

+ (1 − p)
(
bt + r|bt − bt+1| + OptCost(t − 1, r, bt)

)
.

The first term on the right side of the equation above refers to the cost when the
partial signal is revealed as D and the player has to report D. The second term
refers to the cost when the partial signal is 0 and the player chooses to report
bt. Let OptCost(0, r, b1) = 0 for all b1. When t = T , i.e., the first round, there is
no history bT+1 and the player wants to minimize the following total cost,

OptCost(T, r) = min
bT

ExpCost(T, r, bT)

= p(D + OptCost(t − 1, r,D)) + (1 − p)(bT + OptCost(t − 1, r, bT)).

Solving the recursion will give the characterization of optimal strategies in
Table 1, as we demonstrate in the full version of this paper. In what follows,
we discuss a surprisingly simpler and more constructive proof by exploiting the
properties of the flux mechanism, which may be of independent interest.

3.2 Main Theorems

We observe that there are two key elements that influence the decision making
of the player.

(1) The player’s history, bt+1 for t < T . The value of bt+1 directly affects the
penalty payment in round t. Intuitively, a player is more reluctant to lie if
bt+1 is high and better off lying if bt+1 is small.

(2) The number of rounds left to play, i.e., t, indirectly influences the probability
and the number of times a player will be busted in the remaining rounds.

Via Lemmas 1–4, we show these are the only two elements that determine
a rational player’s action. The following lemma shows that it is not optimal for
a player to report a value strictly between 0 and D. Moreover, if a player is
untruthful in the previous round, it is better off to remain untruthful. With this
lemma, we largely reduce the strategy space we need to consider.

Lemma 1. For any round t ≤ T , given yt = 0, the optimal report in round t is
bt ∈ {0,D}. Moreover, if t < T and bt+1 = yt = 0, then the optimal report is
bt = 0.

Next, we prove that in each round, the optimal strategy is determined by a
penalty threshold such that a player will be truthful if and only if the penalty
rate r is above the threshold. We call them critical thresholds.

50 Y. Wu et al.

Lemma 2 (Critical Thresholds). For t = T , there is a threshold penalty
rate r

(∅)
T ≥ 0 such that reporting D is optimal if and only if the penalty rate is

at least r
(∅)
T ; For t < T , there is a threshold penalty rate r

(bt+1)
t ≥ 0 such that

reporting D is optimal for a player in round t with history bt+1 if and only if
the penalty rate is at least r

(bt+1)
t .

Lemmas 1 and 2 together imply that the optimal strategy can only be one
or a combination of the basic strategies. In particular, by Lemma 1, r

(0)
t = ∞

for any t. Moreover, since bt+1 can only be 0 or D, by Lemma 2, we only need
to determine the values of r

(∅)
T and r

(D)
t for t < T to complete the picture of

optimal strategies. We now give some properties of these thresholds.

Lemma 3. r
(∅)
t ≥ r

(D)
t for t ∈ {1, . . . , T}.

Given the same t rounds left, Lemma 3 says a player is more inclined to lie
without a history than with a truthful history. This is straightforward as lying
with a truthful history results in an additional penalty payment.

Lemma 4. Given r
(∅)
t ≥ 1

p , r
(∅)
t decreases as t increases.

Lemmas 3 and 4 together tell us the player is least incentivized to be truthful
on the first round and r

(∅)
T is the penalty threshold that ensures truthfulness for

the game. We give this important threshold in Theorem 1.

Theorem 1. The minimum penalty for truthful reporting in a game of T rounds
with Ber(p) distribution is

r
(∅)
T =

1 − (1 − p)T

p − p(1 − p)T−1
. (1)

We see r
(∅)
T → 1/p as T → ∞ and r

(∅)
T decreases as T increases. This implies

the increasing length of the game incentivizes the player to speak the truth today,
even when they do not have to. To understand Theorem 1, we observe that it is
sufficient to compare lying-till-busted and honest-till-end since r

(∅)
T ensures the

player to stay truthful after being busted. Before the player is busted for the
first time, it is not optimal to oscillate between lying and truth-telling, as it is
strictly dominated by lying completely. Therefore, the only viable strategies are
lying-till-busted and honest-till-end, and the desired threshold sets the expected
cost of these two strategies equal.

With a more involved argument, we get the exact values for the truthful
threshold given a truthful history, i.e., the r

(D)
t ’s. The values of r

(∅)
T and r

(D)
t

characterize the optimal strategies for a player and are an alternative represen-
tation of Table 1.

Theorem 2. For p ≤ 1
2 , r

(D)
t = 1−(1−p)t

2p−p(1−p)t−1 . For p > 1
2 , r

(D)
t = 1 for t = 1

and r
(D)
t = 1

2p for t ≥ 2.

Eliciting Truthful Reports with Partial Signals in Repeated Games 51

The optimal strategy is visualized in Figs. 2a and 2b for p = 0.3 and p = 0.7,
respectively. The x-axis is the number of rounds left (t), and the y-axis is the
penalty thresholds for truthfulness. We give examples of penalties via the red
dashed lines. For the first round, the player refers to the blue dot representing
r
(∅)
T and is truthful if and only if the penalty is above the blue dot. Afterwards,

given t rounds left and history D, the player looks at the green curve represent-
ing r

(D)
t and is only truthful if the penalty is above the curve. If the history is

0, she remains untruthful and reports 0. Figures 2a and 2b visualize the optimal
strategies given in Table 1. Both green curves are closely related to 1

2p . An intu-
ition is that in any round t < T , a player pays D if she is truthful and roughly
2prD if she lies, where the penalty payment rD comes from the previous and
the next round, each with probability p. The penalty that sets these two costs
equal is 1

2p . The actual r
(D)
t thresholds vary upon values of t and p.

Fig. 2. Critical thresholds under two distributions with sample optimal strategies.

4 A Reduction for Arbitrary Distributions

As discussed in the introduction, only the infinite penalty rate will guarantee
complete truthfulness under arbitrary distributions, yet there is still hope to
obtain approximate results. The trick is to redefine being busted as having a
partial signal that is less than α times the true consumption, for α ∈ [0, 1].
Then any arbitrary distribution is reduced to Ber(p) where p is the probability
that the partial signal is at least αD. For approximate truthfulness, we define
being α-truthful as reporting at least αD. We reuse the arguments of comparing
basic strategies from Sect. 3 to determine an upper bound for the penalty rate
that guarantees α-truthfulness. We introduce the notion of approximate truth-
fulness in Definition 2 and give the reduction in Theorem 3. We demonstrate the
reduction with uniform distributions in Example 1.

Definition 2 (α-truthfulness). A reporting b is α-truthful when bt ≥ αD for
all t = 1, . . . , T .

Theorem 3. Given α ∈ [0, 1] and an arbitrary distribution with CDF F , if a
penalty rate r achieves complete truthfulness for Ber(p) where p = 1 − F (αD),
then the same r achieves α-approximate truthfulness for distribution F .

52 Y. Wu et al.

Example 1. Assume partial signals follow a uniform distribution U(0,D). Let r

be the truthful threshold of Ber(p) where p = 1 − α, i.e. r = 1−αT

(1−α)(1−αT−1)
.

Then using r ensures α-truthfulness for U(0,D) by Theorem 3. For uniform
distributions, it is impossible to obtain complete truthfulness unless r = ∞,
which can be verified by setting α = 1.

5 Extension: A Cost-Sharing Model

We extend the problem to the multi-player setting and focus on cost-sharing
among homogeneous players. Let N be the set of players with n = |N | ≥ 1.
Each player i ∈ N has a private value xi ≥ 0, and we assume all players are
symmetric, i.e., xi = D for all i ∈ N (see the full version of this paper for a
relaxation). All players in N split an overhead cost C, which is at least the total
gross consumption, i.e., C ≥ nD. The game has T rounds in total. Given the
penalty rate r, we analyze the following multi-player flux mechanism.

– The center observes a partial signal representing player i’s net consumption
yi

t ∼ F for each player i ∈ N ;
– Each player i submits their reported gross consumption that is at least their

net consumption, bi
t ≥ yi

t;
– If t < T , player i’s pays regular payment C · bit∑

j bjt
and penalty payment

r · |bi
t+1 − bi

t|. If t = T , the players only pay regular payments.

We call bi
t+1 the history for player i in round t and bt+1 the group history.

If everyone lies in a round, the overhead cost is split evenly among all players.
A mechanism is truthful if every player reports D for every round. We are inter-
ested in computing the minimum penalty rates such that truthful reports form
a Nash equilibrium (NE) or a dominant strategy equilibrium (DSE). Informally,
a strategy profile is a NE if no player wants to unilaterally deviate, and it is
a DSE if no player wants to deviate no matter what the other players do. We
show that approximate results for any arbitrary distribution can be deducted
from an exact analysis for a Bernoulli distribution. Due to space limit, we defer
all proofs to the full version of this paper.

Similar to the single-player setting, we avoid solving the recursion by exploit-
ing the properties of the mechanism. Again, we start our analysis with F being
a Bernoulli distribution and provide a reduction for approximate truthfulness
when F is an arbitrary distribution. In the single-player model with Bernoulli-
distributed F , we have shown that it is only optimal for a player to report 0
or her actual consumption D. We claim it is the same case for multiple players.
Moreover, if a player lied yesterday and also has an observed consumption of 0
today, they will report 0 regardless of other players’ actions.

Lemma 5. For Bernoulli-distributed F , reporting anything strictly between 0
and D is sub-optimal in a multi-player flux mechanism. Moreover, if bi

t+1 =
yi

t = 0, it is optimal to report bi
t = 0.

Eliciting Truthful Reports with Partial Signals in Repeated Games 53

Starting from this point, we assume that every player reports either 0 or D.
When n = 2, we show that the multi-player model reduces to the single-player
model with a multiplicative factor of C

2D . The reason for the reduction is that
the savings of switching to lying from being truthful for a player are always C

2 ,
regardless of what the other player does.

Lemma 6. When n = 2, the multi-player model reduces to a single-player
model. The truthful penalty threshold is C

2D times (1).

For general n, we show it is sufficient to analyze the maximum difference
between lying and truth-telling for player i in round t given group history bt+1.
In a DSE, a player achieves the biggest gain from lying if all players were lying
in the previous round. We then use bt+1 = 0 to compare lying and truth-telling
for a player.

Theorem 4. For the Ber(p) distribution, a truthful strategy profile forms a
dominant strategy equilibrium if and only if

r ≥ C

nD

1 − (1 − p)n−1

p

1 − (1 − p)T

p − p(1 − p)T−1
. (2)

If we slowly lower the penalty from (2), we will hit a threshold such that
truth-telling is an NE. The difference between the truthful NE and the DSE is
that now we can assume that every player j �= i is truthful in the first round
and show that player i would not deviate unilaterally. However, we shall not
assume that player j �= i remains truthful for the rest of the game. This is
because if player i lies in the first round, player j can observe the report of i
in the second round and deviate from truthful behavior. We first show that if
r ≥ C

nD
1
p , players with truthful history stay truthful. Then we can safely assume

player j �= i remains truthful throughout the game. In this way, truthful NE is
reduced to the case where there is one strategic player and n−1 truthful players.
It is not hard to see the threshold is precisely C

nD
1−(1−p)T

p−p(1−p)T−1 .

Theorem 5. For the Ber(p) distribution, a truthful strategy profile forms a
Nash equilibrium if and only if

r ≥ C

nD

1 − (1 − p)T

p − p(1 − p)T−1
. (3)

We visualize Ber(p) penalty thresholds in Fig. 3 for different T ’s and p’s. The
x-axis is the total number of rounds for a game and the y-axis is the penalty
rate that guarantees the specified equilibrium. The blue and orange lines are
penalty thresholds for p = 1

3 and 2
3 , respectively. The solid and dashed lines

are thresholds for truthful DSE and NE, respectively. All four thresholds in
Fig. 3 decrease as T increases, suggesting that the increasing length of the game
promotes truthful equilibria. From expressions (2) and (3), we see that the DSE
and NE thresholds tend to be the same as p approaches 1.

54 Y. Wu et al.

Fig. 3. Exact penalty thresholds for truthful DSE and NE, given the number of rounds
T for Ber(p) distributions. We assume n = 20, D = 1 and C = n · D = 20.

Similar to the single-player model, we extend the results for Bernoulli dis-
tributions to approximate results for general distributions. Given α ∈ [0, 1], we
redefine being busted as having an observed consumption of at least αD. For
the dominant strategy equilibrium, we find the threshold that being α-truthful
is a dominant strategy. For Nash equilibrium, we first define the approximate
truthful NE, a natural extension of the complete truthful NE.

Theorem 6. Given α ∈ [0, 1] and some general distribution F , let p = 1 −
F (αD). The α-truthful strategy profile forms a dominant strategy equilibrium if

r ≥ 1
α

C

nD

1 − (1 − p)n

p

1 − (1 − p)T

p − p(1 − p)T−1
. (4)

Definition 3 (α-truthful Nash equilibrium). Given α ∈ [0, 1], a reporting
profile b ∈ [0,D]n×T is an α-truthful Nash equilibrium if bi

t ≥ αD for all i, t and
no player wants to deviate from being α-truthful in any round.

Theorem 7. Given α ∈ [0, 1] and some general distribution F , let p = 1 −
F (αD). The α-truthful strategy profile forms a Nash equilibrium if

r ≥ 1
α

C

nD

1 − (1 − p)T

p − p(1 − p)T−1
. (5)

We see that both the penalty thresholds, (4) and (5) are close to 1
α times their

Bernoulli thresholds, (2) and (3), for p = 1 − F (αD). Recall that in the single-
player model, α-truthfulness can be obtained by directly using the Bernoulli
threshold with p = 1 − F (αD). In the multi-player model, however, we have to
multiply the Bernoulli threshold with a factor of 1

α , which suggests it is more
difficult to get every player to speak the truth under the cost-sharing setting.
We note that both penalty rates (4) and (5) are upper bounds for the actual
thresholds. This is because we treat any report greater than αD as αD. We
conjecture that the exact thresholds are not far from thresholds (4) and (5).

Eliciting Truthful Reports with Partial Signals in Repeated Games 55

6 Conclusion and Open Problems

We propose a penalty mechanism for eliciting truthful self-reports when only
partial signals are revealed in a repeated game. A player faces trade-off between
under-reporting today and paying a penalty in the future due to the uncer-
tainty of partial signals. We find that the length of the game naturally reduces
the minimum penalty rate that incentivizes truth-telling. Given any penalty
rate, we give a characterization of the optimal strategies under both single- and
multiple-player settings for any distribution. We identify a penalty rate that
achieves complete truthfulness for Bernoulli distributions, which can be used in
a reduction to obtain approximate truthfulness for arbitrary distributions.

A possible future direction is to extend our results to asymmetric multi-
player settings where players do not have the same gross consumption or the
same distribution for partial signals. For heterogeneous players, we may then
consider, in addition to truthfulness, the fairness of the mechanism. It would
be interesting to develop a definition of fairness for the cost sharing model and
compute the fairness ratios accordingly. It is also worthwhile to derive other
truthful and fair mechanisms that do not involve penalty.

Acknowledgement. The full version of this paper can be found on arXiv [29]. The
authors would like to thank the anonymous reviewers for their insightful and con-
structive comments. Part of this work was done when Bo Li was affiliated with the
Department of Electrical and Computer Engineering at the University of Texas at
Austin.

References

1. Aswantara, I.K.A., Ko, K.S., Sung, D.K.: A centralized EV charging scheme
based on user satisfaction fairness and cost. In: 2013 IEEE Innovative Smart Grid
Technologies-Asia (ISGT Asia), pp. 1–4. IEEE (2013)

2. Baharlouei, Z., Hashemi, M., Narimani, H., Mohsenian-Rad, H.: Achieving opti-
mality and fairness in autonomous demand response: benchmarks and billing mech-
anisms. IEEE Trans. Smart Grid 4(2), 968–975 (2013)

3. Ball, I., Kattwinkel, D.: Probabilistic verification in mechanism design. In: Proceed-
ings of the 2019 ACM Conference on Economics and Computation, pp. 389–390
(2019)

4. Burger, S., Schneider, I., Botterud, A., Pérez-Arriaga, I.: Fair, equitable, and effi-
cient tariffs in the presence of distributed energy resources. Consumer, Prosumer,
Prosumager: How Service Innovations will Disrupt the Utility Business Model, p.
155 (2019)

5. Caragiannis, I., Elkind, E., Szegedy, M., Yu, L.: Mechanism design: from partial
to probabilistic verification. In: Proceedings of the 13th ACM Conference on Elec-
tronic Commerce, pp. 266–283 (2012)

6. Darghouth, N.R., Barbose, G., Wiser, R.: The impact of rate design and net meter-
ing on the bill savings from distributed PV for residential customers in California.
Energy Policy 39(9), 5243–5253 (2011)

7. Dufo-López, R., Bernal-Agust́ın, J.L.: A comparative assessment of net metering
and net billing policies. Study cases for Spain. Energy 84, 684–694 (2015)

56 Y. Wu et al.

8. Eid, C., Guillén, J.R., Maŕın, P.F., Hakvoort, R.: The economic effect of electricity
net-metering with solar PV: consequences for network cost recovery, cross subsidies
and policy objectives. Energy Policy 75, 244–254 (2014)

9. Gautier, A., Jacqmin, J., Poudou, J.-C.: The prosumers and the grid. J. Regul.
Econ. 53(1), 100–126 (2018). https://doi.org/10.1007/s11149-018-9350-5

10. Glass, E., Glass, V.: Power to the prosumer: a transformative utility rate reform
proposal that is fair and efficient. Electr. J. 34(9), 107023 (2021)

11. Haghtalab, N., Immorlica, N., Lucier, B., Wang, J.Z.: Maximizing welfare with
incentive-aware evaluation mechanisms. arXiv preprint arXiv:2011.01956 (2020)

12. Hardt, M., Megiddo, N., Papadimitriou, C., Wootters, M.: Strategic classification.
In: Proceedings of the 2016 ACM Conference on Innovations in Theoretical Com-
puter Science, pp. 111–122 (2016)

13. Heylen, E., Ovaere, M., Proost, S., Deconinck, G., Van Hertem, D.: Fairness and
inequality in power system reliability: summarizing indices. Electr. Power Syst.
Res. 168, 313–323 (2019)

14. Heylen, E., Ovaere, M., Van Hertem, D., Deconinck, G.: Fairness of power system
load-shedding plans. In: 2018 IEEE International Conference on Systems, Man,
and Cybernetics (SMC), pp. 1404–1409. IEEE (2018)

15. Hoarau, Q., Perez, Y.: Network tariff design with prosumers and electromobility:
who wins, who loses? Energy Econ. 83, 26–39 (2019)

16. Khodabakhsh, A., Horn, J., Nikolova, E., Pountourakis, E.: Prosumer pricing,
incentives and fairness. In: Proceedings of the Tenth ACM International Confer-
ence on Future Energy Systems, pp. 116–120 (2019)

17. Koumparou, I., Christoforidis, G.C., Efthymiou, V., Papagiannis, G.K., Georghiou,
G.E.: Configuring residential PV net-metering policies–a focus on the Mediter-
ranean region. Renew. Energy 113, 795–812 (2017)

18. Leavitt, L.: Solar batteries: how renewable battery backups work (2021).
https://www.cnet.com/home/energy-and-utilities/solar-batteries-how-renewable-
battery-backups-work/. Accessed 13 Aug 2022

19. Liang, A., Madsen, E.: Data and incentives. In: Proceedings of the 21st ACM
Conference on Economics and Computation, pp. 41–42 (2020)

20. Moret, F., Pinson, P.: Energy collectives: a community and fairness based approach
to future electricity markets. IEEE Trans. Power Syst. 34(5), 3994–4004 (2018)

21. Nadel, S., Young, R.: Why is electricity use no longer growing? In: American
Council for an Energy-Efficient Economy Washington (2014)

22. National Conference of State Legislators: State net metering policies
(2017). https://www.ncsl.org/research/energy/net-metering-policy-overview-and-
state-legislative-updates.aspx. Accessed 13 Aug 2022

23. Negash, A.I., Kirschen, D.S.: Combined optimal retail rate restructuring and value
of solar tariff. In: 2015 IEEE Power & Energy Society General Meeting, pp. 1–5.
IEEE (2015)

24. Schelly, C., Louie, E.P., Pearce, J.M.: Examining interconnection and net metering
policy for distributed generation in the United States. Renew. Energy Focus 22,
10–19 (2017)

25. Singh, S.P., Scheller-Wolf, A.: That’s not fair: tariff structures for electric utilities
with rooftop solar. Manuf. Serv. Oper. Manag. 24(1), 40–58 (2022)

26. Solar Energy Industry Associations: Net metering (2017). https://www.seia.org/
initiatives/net-metering. Accessed 01 Sept 2021

27. United States Energy Information Administration: Hourly electricity consump-
tion varies throughout the day and across seasons (2020). https://www.eia.gov/
todayinenergy/detail.php?id=42915. Accessed 03 Nov 2021

https://doi.org/10.1007/s11149-018-9350-5
http://arxiv.org/abs/2011.01956
https://www.cnet.com/home/energy-and-utilities/solar-batteries-how-renewable-battery-backups-work/
https://www.cnet.com/home/energy-and-utilities/solar-batteries-how-renewable-battery-backups-work/
https://www.ncsl.org/research/energy/net-metering-policy-overview-and-state-legislative-updates.aspx
https://www.ncsl.org/research/energy/net-metering-policy-overview-and-state-legislative-updates.aspx
https://www.seia.org/initiatives/net-metering
https://www.seia.org/initiatives/net-metering
https://www.eia.gov/todayinenergy/detail.php?id=42915
https://www.eia.gov/todayinenergy/detail.php?id=42915

Eliciting Truthful Reports with Partial Signals in Repeated Games 57

28. Vieira, D., Shayani, R.A., De Oliveira, M.A.G.: Net metering in Brazil: regulation,
opportunities and challenges. IEEE Lat. Am. Trans. 14(8), 3687–3694 (2016)

29. Wu, Y., Khodabakhsh, A., Li, B., Nikolova, E., Pountourakis, E.: Eliciting infor-
mation with partial signals in repeated games. CoRR abs/2109.04343 (2021)

30. Zhang, H., Conitzer, V.: Incentive-aware PAC learning. In: Proceedings of the
AAAI Conference on Artificial Intelligence, vol. 35, pp. 5797–5804 (2021)

On the NP-Hardness of Two Scheduling
Problems Under Linear Constraints

Kameng Nip(B)

School of Mathematical Sciences, Xiamen University, Xiamen, China

kmnip@xmu.edu.cn

Abstract. In this work, we investigate the computational complexity
of two different scheduling problems under linear constraints, including
single-machine scheduling problem with total completion time and no-
wait two-machine flow shop scheduling problem. In these problems, a set
of jobs must be scheduled one or more machines while the processing
times of them are not fixed and known in advance, but are required to
be determined by a system of given linear constraints. The objective is
to determine the processing time of each job, and find the schedule that
minimizes a specific criterion, e.g., makespan or total completion time
among all the feasible choices. Although the original scheduling prob-
lems are polynomially solvable, we show that the problems under linear
constraints become NP-hard. We also propose polynomial time exact or
approximation algorithms for various special cases of them. Particularly,
we show that when the total number of constraints is a fixed constant,
both problems can be solved in polynomial time by utilizing the schedul-
ing algorithms and the properties of linear programming.

Keywords: Scheduling · linear programming · computational
complexity

1 Introduction

In the presented work, we study two different machine problems under linear
constraints, including single-machine scheduling problem with minimizing total
completion time 1||∑j Cj and no-wait two-machine flow shop scheduling prob-
lem F2|no−wait|Cmax. In scheduling problem under linear constraint problems,
the processing times of jobs are not fixed and known beforehand, which distin-
guishes them from classic scheduling problems and adds an additional layer
of flexibility to the decision-making process. Instead, the decision maker only
knows the information that the processing times satisfy a system of given linear
constraints. The goal is to determine the processing time of each job, and the

This research work is partially supported by the Natural Science Foundation of Fujian
Province of China No. 2021J05011 and the Fundamental Research Funds for the Central
Universities of Xiamen University No. 20720210033.

c© Springer Nature Switzerland AG 2023
M. Li et al. (Eds.): IJTCS-FAW 2023, LNCS 13933, pp. 58–70, 2023.
https://doi.org/10.1007/978-3-031-39344-0_5

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-39344-0_5&domain=pdf
https://doi.org/10.1007/978-3-031-39344-0_5

Scheduling Problems Under Linear Constraints 59

schedule to one or more machines such that certain objective, e.g., the makespan
Cmax or the total completion time

∑
j Cj is minimized.

The scheduling problem under linear constraints (SLC in short) was first
introduced in [18], in which the machine environment is identical parallel machine
and the objective is to minimize the makespan, that is, P ||Cmax where Cmax is
the completion time of the last job. More specifically, there are k identical par-
allel machines and n jobs to be processed, with a matrix A ∈ R

k×n and a vector
b ∈ R

k×1. The processing times x = (x1, ..., xn) ∈ R
n are also decision variables

that have to satisfy Ax ≥ b and x ≥ 0. The objective of the SLC problem is
to find the values of processing times x as well as the schedule of jobs to the
machines, which leads to the minimum makespan among all the feasible choices.
Note that the SLC problem is a generalization of the original scheduling problem,
since one can reduce the original one to the SLC problem by setting the linear
constraints as x1 = p1, x2 = p2, ..., xn = pn, where pi is the fixed processing
times of the problem without linear constraints. Moreover, the authors showed
that if the number of linear constraints k is a fixed constant, then the SLC
problem can be solved in polynomial time through searching the basic feasible
solutions of a series of linear programs. They also proposed several approxima-
tion algorithms for the general case where k is an input of problem instance. It
is worth-noting that the original parallel machine scheduling problem P ||Cmax is
a widely recognized NP-hard problem even for the case of two machines, and is
strongly NP-hard in general [4]. Subsequently, several scheduling problems that
involve processing times or other parameters (such as machine speeds) satisfying
linear constraints have been investigated in this research direction. These prob-
lems includes uniformly parallel machines [27,28], the two-machine flow shop
machine and other shop machine environments [16]. The above results illustrate
a sharp difference in computational complexity between the original scheduling
problems and those under linear constraints. For instance, the two-machine flow
shop scheduling problem F2||Cmax can be solved in polynomial time by John-
son’s rule [10], while the two-machine flow shop scheduling problem under linear
constraints (2-FLC in short) is NP-hard in the strong sense as shown in [15]. In
comparison, the two-machine open shop scheduling problem under linear con-
straints (2-OLC in short) can be solved in polynomial time [16], which has the
similar computational complexity as the original two-machine open shop schedul-
ing problem O2||Cmax [6]. Additionally, there have been recent research on dif-
ferent other combinatorial optimization problems with linear constraints, such
as bin packing problem [24], knapsack problem [19], and various graph optimiza-
tion problems [14,17]. The findings of these studies prompt further investigation
into the computational complexity and algorithmic designs for problems under
linear constraints. Such research could potentially offer theoretically benefits to
the broader field combinatorial optimization as well.

As indicated in previous works, the scheduling problems under linear con-
straints could have potential practical applications beyond their theoretical inter-
est. To motivate the two problems discussed in this work, we present some appli-
cation scenarios as follows.

60 K. Nip

– Consumer service. The single machine scheduling problem, which minimizes
total completion time, has a wide range of applications in service systems,
such as hospitals, restaurants, and banks to enhance consumer satisfaction
[21]. The processing time of each job can be viewed as a service time of each
consumer, and the machine can be viewed as a service producer. The common
objective to the service producer is to decide the serving schedule that can
minimize the mean total waiting and service time of the consumers, which
is closely related to the total completion time (also called mean flow time in
the literature) of jobs in the machine. In the simplest and offline setting, the
service producer possesses complete information regarding the service time
required for each consumer, say, those make reservations for the upcoming
business day. Therefore, it is optimal to schedule the service order according
to the famous shortest processing time first rule [21], which is also known
as Smith’s rule [23], such that the mean total waiting time is minimized.
However, in some situations, it is possible that the service time of each cus-
tomer is not so accurately determined and could be flexible. For example,
consider the scenario outlined in Table 1 for a concrete illustration. Assume

Table 1. Example for the application of consumer service.

Constraints Consumer

1 2 · · · n

revenue 100x1 200x2 · · · 120xn ≥10000

resource A 3x1 5x2 · · · 7xn ≤30

resource B 5x1 10x2 · · · 6xn ≤50
...

...
...

...
...

...

min. of 1 x1 0 · · · 0 ≥10

max. of 1 x1 0 · · · 0 ≤20

min. of 2 x2 0 · · · 0 ≥15

max. of 2 x2 0 · · · 0 ≤30
...

...
...

...
...

...

max. of n 0 0 · · · xn ≤15

that we have n consumer to be served, and xi is the service time of consumer
i. Each consumer has an interval of her acceptable service time based on her
own situation, e.g., 10 ≤ x1 ≤ 20 for consumer 1, which indicates that the
appropriate time to serve this consumer would be between 10 and 20 unit
times. Moreover, each unit of service time will generate a specific amount
of profit or utility to the service producer. For example, if the service time
of consumer 1, 2, ..., n are x1, ..., n, respectively, then the service producer
would receive revenues of 100x1, 200x2, ..., 120xn, respectively. The service
producer aims to gain a total revenue of at least 10000, which naturally leads

Scheduling Problems Under Linear Constraints 61

to 100x1+200x2+ · · · 120xn ≥ 10000. Moreover, the service typically requires
the consumption of various resources, including human labor, electricity, com-
putational resources, and more. Particularly in Table 1, each unit service time
of consumer 1 requires 3 unit amounts of resource A, 5 unit amounts for con-
sumer 2, and so forth. In other words, the processing time of jobs should also
satisfy the linear constraint 3x1 + 5x2 + · · · 7xn ≤ 30 for the limit of resource
A, and so for the other resources. The service provider needs to assign service
times to consumers based on linear constraints and schedule their service to
minimize the total completion time.

– Industrial Production. Scheduling problems have a wide range of applications
in industrial production. In previous works [15,16,18], the authors presented
various practical scenarios regarding the scheduling problems under linear
constraints. For instance, the 2-FLC problem is motivated by steel manu-
facturing [15,16]. The decision maker wants to obtain specific quantities of
several raw metals by extracting them from multiple types of steel. Each
type of steel (iron, copper, aluminum, and etc.) corresponds to a job. The
restrictions such as requirements of the raw metals corresponds to the linear
constraints of the processing times. There are different essential steps in the
flow-shop production process, such as wire-drawing and annealing, and must
be completed in that order for each job. The decision maker aims to deter-
mine the processing time of each job while consider linear constraints, and to
schedule the jobs on the flow-shop machines to minimize the makespan.
In certain scenarios, such as chemical processing, food processing, automobile
assembly and working planning [3,8], it is necessary for a job to start process-
ing on the second machine immediately after completing its operations on the
first machine. For instance, if the materials are not cooled down quickly, it
can cause undesirable issue such as transforming into some other substances.
Therefore, it is practical to extend the above 2-FLC problem to the machine
environment that the jobs satisfy no-wait restrictions.

In this work, we focus on investigating the computational complexity of
the two scheduling problems under linear constraints mentioned above, namely,
single-machine scheduling problem under linear constraints (with minimizing
total completion time) and no-wait two-machine flow shop scheduling problem
under linear constraints. We show that both two problems are NP-hard. It is
worth noting that the original problems 1||∑j Cj and F2|no − wait|Cmax can
be solved in polynomial time, as we will review in later sections. Our findings
indicate that solving the problems under linear constraints is more computa-
tionally difficult than solving their original counterparts. Moreover, we propose
approximation algorithms for the general cases, which are obtained by solving
some specific linear programs. Then we consider several nontrivial special cases
of them. In particular, we show that if the total number of fixed constraints is a
constant, then both problems can be solved in polynomial time. The algorithms
are based on the properties of basic feasible solutions for linear programming
and their scheduling algorithms.

62 K. Nip

The remainder of this work is organized as follows. In Sect. 2, we study the
single machine scheduling problem under linear constraints, while in Sect. 3,
we study the no-wait two-machine flow shop scheduling problem under linear
constraints. For each section, we first formally define the corresponding problem
and briefly review the related literature. Then, we analyze the computational
complexity, and present polynomial-time optimal or approximation algorithms
for various cases. Finally, in Sect. 4, we provide some concluding remarks.

2 Single Machine Scheduling Under Linear Constraints

2.1 Problem Definition and Literature Review

The single machine scheduling problem under linear constraints (SSLC problem
in short) is formally defined as follows.

Definition 1. Given n jobs and a single machine. Each job i has a processing
time xi, which are determined by k linear constraints Ax ≥ b with A ∈ R

k×n

and b ∈ R
k×1. The goal of the SSLC problem is to determine the processing

times of the jobs such that they satisfy the linear constraints and to schedule the
jobs to the machines to minimize the total completion time

∑
j Cj.

The problem 1||∑j Cj is perhaps the simplest scheduling model studied in
the field of scheduling. In [23], it is shown that the optimal schedule is to assign
the jobs in a non-decreasing order of their processing jobs. Such rule is referred
to Smith’s rule or the shortest processing time first rule [21], and can be imple-
mented in O(n log n) time. In other words, let p1 ≤ p2 ≤ ... ≤ pn the (fixed)
processing times of the n jobs and OPT be the optimal value, then the optimal
total completion time for 1||∑j Cj is given by

OPT = np1 + (n − 1)p2 + · · · + 2pn−1 + pn. (1)

Smith [23] also extended the idea of Simth’s rule to solve a more general model
1||∑j wjCj , in which each job has a nonnegative weight wj and the objective is
to minimize the total weighted completion time. Later, [1] showed that a more
complicated extension to the unrelated parallel machine environments R||∑j Cj

can be solved in polynomial time, by reducing it to the transportation problem.
However, many slight extensions of single machine scheduling problem turn out
to be NP-hard. For instance, [1] showed that P2||∑j wjCj is NP-hard, and [12]
proved that 1|rj |

∑
j Cj is strongly NP-hard in which rj is the arrival time of job

j. For more details on the machine scheduling problem with minimizing total
completion time, we refer to the textbook [21] and some recent works [9,11].
For the scheduling problem under the linear constraints, [18] showed that the
problem 1||Cmax with linear constraints is also polynomially solvable, by solving
a linear program that minimizes the total processing time

∑n
j=1 pj . Conversely,

the SSLC problem turns out to be more difficult than the original scheduling
problem 1||∑j Cj , as we will demonstrate that it is indeed NP-hard.

Scheduling Problems Under Linear Constraints 63

2.2 Computational Complexity

By (1), the optimal schedule of 1||∑j Cj is to assign the jobs in a non-decreasing
order of their processing times. Therefore, we can reformulate the SSLC problem
as the following mathematical optimization problem (2):

min nΘ1(x) + (n − 1)Θ2(x) + · · · + 2Θn−1(x) + Θn(x) (2a)
s.t. Ax ≥ b (2b)

x ≥ 0, (2c)

where Θk : Rn → R maps x to its k-largest element. In other words, we have
Θ1(x) = mini=1,...,n{xi}, Θn(x) = maxi=1,...,n{xi} and Θ1(x) ≤ Θ2(x) ≤ · · · ≤
Θn(x) where Θk(x) is the k-largest element of x. We remark that the objective
function is considered as a weighted average function in the literature [20,25,26].
Particularly, let f(x) = w1Θ1(x) + w2Θ2(x) · · · + wn−1Θn−1(x) + wnΘn(x). If
the weights satisfy w1 ≤ w2 ≤ · · · ≤ wn, then it has been shown that the nonlin-
ear optimization problem min f(x) subject to (2b) and (2b) can be equivalently
reformulated as a linear programming problem [20]. In other words, the corre-
sponding problem can be solvable in polynomial time, e.g., by some ellipsoid
method or interior point method [13]. However, the idea of transforming (2) into
an equivalent linear programming formulation may not be a viable option when
the weights follow the condition w1 ≥ w2 ≥ · · · ≥ wn. To the best of our knowl-
edge, the computational complexity of such linear programming problem with a
non-increasing weighted average objective function is unclear. In the following,
we show that the SSLC problem (2) is NP-hard, which significantly differs from
the original scheduling problem 1||∑j Cj , as well as other optimization problems
involving a weighted average function.

Theorem 1. The SSLC problem (2) is NP-hard.

Proof. We reduce the independent set problem to the decision problem of the
SSLC problem (2). The decision problem of independent set problem is given
a graph G = (V,E) and an integer K, to decide whether there is a vertex set
V ′ ∈ V with size at least K in which no two vertices are adjacent. Let n = |V |
and m = |E|, we construct an instance of SSLC with 2n variables that has
processing times denoted by x1, ..., xn and y1, ..., yn, where xj and yj correspond
to vertex vj in V , and m + n + 1 linear constraints:

n∑

i=1

xi ≥ K (3a)

xu + xv ≤ 1, ∀(u, v) ∈ E (3b)
xj + yj = 1, ∀j = 1, ..., n (3c)

x,y ≥ 0. (3d)

It suffices to show that there is an independent set with size at least K if and
only if there is a setting of processing times for the jobs that are feasible to (3) of

64 K. Nip

the SSLC problem, and a corresponding schedule with a total completion time
of no more than n(n+1)

2 .
On one hand, if there is an independent set V ′ with size at least K, then for

each vertex vj ∈ V ′, we set xj = 1 and yj = 0; for vj �∈ V ′, we set xj = 0 and yj =
1. The processing times of jobs are feasible to (3), since the jobs correspond to V ′

form an independent set. Moreover, there are exactly n jobs that have processing
times 1, and the other n jobs have processing times 0. The total completion time
of this schedule of this instance is exactly n + (n − 1) + · · · + 1 = n(n+1)

2 .
On the other hand, assume that there is an instance of the SSLC problem,

in which the processing times x and y are feasible to (3), and a corresponding
schedule S with total completion time no more than n(n+1)

2 . Let p1 ≤ p2 ≤
· · · ≤ pn−1 ≤ pn be the n largest values among the 2n variables x and y in this
solution, where pj could be certain xi or yi for some i. Accordingly, for each
j = 1, ..., n, we denote p̃j = yi if pj = xi, and p̃j = xi if pj = yi. Note that we
have xj + yj = 1 for all j by constraint (3c), and 1 − pn ≥ · · · ≥ 1 − p1 by the
definition of pj . In other words, we relabel the variables x1, ..., xn and y1, ..., yn

by p1, ..., pn and p̃1, ..., p̃n, which satisfies

p̃n ≤ · · · ≤ p̃1 ≤ p1 ≤ · · · ≤ pn. (4)

Next we claim that any feasible schedule of this instance must have total com-
pletion time at least n(n+1)

2 , and the equality holds only if p1 = · · · = pn = 1
and p̃1 = · · · = p̃n = 0. To see this, we consider the best possible schedule of this
instance, which is scheduled by the shortest processing time first/Smith’s rule.
Then from (1) and (4), its total completion time is given by

2np̃n + (2n − 1)p̃n−1 + · · · + (n + 1)p̃1 + np1 + · · · + 2pn−1 + pn

= 2n(1 − pn) + pn + (2n − 1)(1 − pn−1) + 2pn−1 + · · · + (n + 1)(1 − p1) + np1
= 2n + (2n − 1) + · · · + (n + 1) + (1 − 2n)pn + (3 − 2n)pn−1 + · · · + (−1)p1.

Consider the following linear programming problem:

min (1 − 2n)pn + (3 − 2n)pn−1 + · · · + (−1)p1
s.t. 0 ≤ pj ≤ 1, ∀j = 1, ..., n

(5)

Since all coefficients of its objective function are negative, we can verify that
p1 = · · · = pn = 1 is the unique optimal solution to (5). By definition, it follows
that p̃1 = · · · = p̃n = 0 and the claim is proved. Therefore, the total completion
time of any feasible schedule to this instance is no less than the optiaml value to
(5), namely, n+(n− 1)+ · · ·+1 = n(n+1)

2 . By assumption, the total completion
time of the schedule in this SSLC instance is exactly n(n+1)

2 , in which exactly
n variables among x and y are 1, and the other n variables are 0. We can just
select the vertex vj with xj = 1 into V ′, which constitutes an independent set
with size at least K by (3a) and (3b). It finishes the proof of the theorem. �

2.3 Algorithms

The hardness result in Theorem 1 indicates that it is impossible to find an
optimal solution to (2) in polynomial time unless P = NP . In this subsection,

Scheduling Problems Under Linear Constraints 65

we develop algorithms for solving the SSLC problem. For the general case, we
can obtain an n-approximation algorithm as described in Theorem 2. Due to the
limitation of space, we omit the details of the subsequent lemmas and theorems.
The details will be provided in the full version.

Theorem 2. The SSLC problem has an n-approximation algorithm.

It should be noted that the number of constraints k in the instance of the
hardness reduction in Theorem 1 is not a fixed constant. In the following, we
consider a special case when k is not fixed. We show that this case can be solved
in polynomial time, which depends on the following property.

Lemma 1. The SSLC problem has an optimal solution in which at most k jobs
have nonzero processing time.

By Lemma 1, there exists an optimal solution that contains a constant num-
ber k of nonzero processing time. Therefore, we can find the optimal solution by
first enumerating all the nonzero processing time jobs and the optimal schedule,
then solve a specific linear program to obtain the best processing times. The
detail is summarized in Algorithm 1 and Theorem 3.

Algorithm 1. Enumeration algorithm for the SSLC problem with fixed k

1: for each subset J ′ of J with k jobs do
2: for each possible permutation of J ′ do
3: Let (σ(1), ..., σ(k)) be the permutation, solve the following linear program

while setting xi = 0 for i �∈ J ′:

min kxσ(1) + (k − 1)xσ(2) + · · · + xσ(k)

s.t. Ax ≥ b
x ≥ 0.

(6)

4: if (6) is feasible then
5: Let the processing times of jobs be the optimal solution to (6), and record

the schedule and the makespan.
6: return the schedule with the smallest total completion time among all these iter-

ations and its corresponding processing times.

Theorem 3. Algorithm 1 returns an optimal solution to the SLC problem and
has time complexity O(nkL), where the parameter L is the input length of (6).

3 No-Wait Two-Machine Flow Shop Scheduling Problem
Under Linear Constraints

3.1 Problem Definition and Literature Review

The no-wait two-machine flow shop scheduling problem under the linear con-
straints (no-wait 2FLC problem in short) is formally defined as follows.

66 K. Nip

Definition 2. Given n jobs and two flow-shop machines. Each job has to be
processed on the first machine and then on the second machine, and the process
in the second machine must be start immediately after its finish in the first
machine (no-wait restriction). The processing times of job i on the first machine
and the second machine are xi and yi respectively, which are determined by k
linear constraints, Ax + Cy ≥ b with A,C ∈ R

k×n and b ∈ R
k×1. The goal

of the no-wait 2FLC problem is to determine the processing times of the jobs
such that they satisfy the linear constraints and to schedule the jobs to the two
flow-shop machines to minimize the makespan.

Flow shop scheduling is one of the three basic models (open shop, flow shop,
job shop) of multi-stage scheduling problems. Flow shop scheduling with mini-
mizing the makespan is usually denoted by Fm||Cmax, where m is the number
of machines. Garey et al. [5] proved that Fm||Cmax is strongly NP-hard for
m ≥ 3, and Hall [7] proposed a PTAS algorithm for Fm||max. Particularly, the
two-machine flow shop scheduling problem F2||Cmax can be solved by Johnson’s
algorithm in O(n log n) time [10]. If all the jobs are processed in the same order,
then we call this schedule a permutation schedule. It is known that F2||Cmax

or F3||Cmax has an optimal permutation schedule [2]. The no-wait flow shop
scheduling, which is denoted by Fm|no − wait|Cmax. In Fm|no − wait|Cmax,
once a job has been processed, each stage must be started after its completion
of the previous stage without any delay. In the traditional setting, each job
has exactly two distinct operations and must be scheduled fulfilling the no-wait
restrictions. In other words, each of the two processes of jobs must be sched-
uled even if it has zero processing time (see, e.g., [3, Section 6.3]). We note that
the no-wait 2-FLC problem studied in this paper correspond to this traditional
setting of no-wait restriction. Gilmore and Gomory [6] proposed an O(n log n)
algorithm to solve this problem in polynomial time, which is by relating it to a
polynomially solvable case of the traveling salesman problem. Researchers also
concerned on the problem in which some job may have only one stage, namely,
with missing operations. Surprisingly, [22] showed that the problem with miss-
ing operations is NP-hard in the strong sense and hence is much harder than
that without missing operations. Furthermore, it is observed that any feasible
schedule of F2|no − wait|Cmax must be a permutation schedule. We refer to the
literature [3,8] for more discussion of no-wait scheduling and its applications.

For 2-FLC problem, [15,16] showed that the problem under linear constraints
is NP-hard in the strong sense, which sharply differs from the computational
complexity of the original F2||Cmax. In the following, we will show that the
no-wait 2-FLC problem is also NP-hard, which is more difficult than its original
version. We remark that the hardness result of 2-FLC problem cannot be directly
applied to no-wait 2-FLC problem, since the jobs used in the reduction [15,16]
do not satisfy no-wait restriction.

To close this section, we state a classic result of F2|no − wait|Cmax (see,
e.g., [3, Section 6.3]), which will be frequently used in the subsequent analysis.
Let (σ(1), σ(2), ..., σ(n)) be an arbitrary feasible schedule of F2|no−wait|Cmax.
Then the makespan of this schedule is given by

Scheduling Problems Under Linear Constraints 67

Cmax = xσ(1) +
n∑

i=2

max(yσ(i−1), xσ(i)) + yσ(n). (7)

3.2 Computational Complexity

In this section, we show that the no-wait 2-FLC problem is NP-hard. As men-
tioned above, we consider the flow-shop scheduling problem without any miss-
ing operations. For the original problem without linear constraints, on can use
Gilmore and Gomory’s algorithm [6] to find an optimal schedule in polynomial
time. Our hardness result indicates that the problem under linear constraints is
much more difficult. We summarize the result in Theorem 4.

Theorem 4. The no-wait 2-FLC problem is NP-hard, even if each job has
strictly positive processing times on both stages.

3.3 Algorithms

In the general case, it can be observed that a straightforward 2-approximation
algorithm exists for the no-wait 2-FLC problem, which is based on solving a
linear program that minimizes the total processing time of the jobs.

Theorem 5. The no-wait 2-FLC problem has a 2-approximation algorithm.

Next we study a special case where the no-wait 2-FLC problem can be solved
in polynomial time, in which the number of constraints k is fixed. The key is
to prove a similar result as the SSLC problem, which shows that the no-wait 2-
FLC problem has an optimal solution with a fixed number of nonzero processing
time jobs if k is fixed. We remark that the case of no-wait 2-FLC problem is
more complicated than Lemma 2, since the objective function (7) is not linear
in general even when the optimal schedule σ is known.

Lemma 2. The no-wait 2-FLC problem has an optimal solution, in which each
machine has at most k jobs with nonzero processing time.

Based on Lemma 2, we propose an enumeration algorithm for 2-FLC problem
with a fixed number of constraints k. We summarize it in Algorithm 2 and
Theorem 6.

Theorem 6. Algorithm 2 returns an optimal solution to the no-wait 2FLC prob-
lem and has time complexity O(n2kL), where the parameter L is the input length
of (8).

68 K. Nip

Algorithm 2. Enumeration algorithm for 2-FLC problem with fixed k

1: for each subset J ′ of J with k jobs do
2: for each possible permutation of the jobs in J ′ do
3: Let (σ(1), ..., σ(k)) be the permutation, i.e., the schedule of these k jobs. Solve

the following LP while setting yi = 0 for i �∈ J ′.

min xσ(1) +
1

2

n∑

i=2

(yσ(i−1) + xσ(i) + z+
i + z−

i) + yσ(n) (8a)

s.t.

n∑

i=1

ajixi + cjiyi ≥ bj ∀ j = 1, . . . , k

(8b)

xσ(i) + z+
i = yσ(i−1) + z−

i ∀ i = 2, . . . , n
(8c)

z+
i , z−

i , xi, yi ≥ 0 ∀ i = 1, . . . , n,

4: if (8) is feasible then
5: Let the processing times of jobs be the optimal solution to (8), and record

the schedule and the makespan.
6: return the schedule with the smallest makespan among all these iterations and its

corresponding processing times.

4 Conclusions

In this work, we investigate the computational complexity of two different
scheduling problems under linear constraints. We show that the problems with
linear constraints are NP-hard, while the original versions of both problems
are polynomially solvable. Additionally, we propose polynomial time exact or
approximation algorithms for various cases of the problems. One potential
research direction is to develop improved approximation algorithms for the gen-
eral cases of these problems, or to show the possibility of inapproximability.
Moreover, it is interesting to explore other types of objectives (e.g., lateness or
tardiness) or machine restrictions (e.g., release date, due dates or job unavail-
ability) for the machine scheduling problems under linear constraints.

References

1. Bruno, J.L., Coffman, E.G., Jr., Sethi, R.: Scheduling independent tasks to reduce
mean finishing time. Commun. ACM 17(7), 382–387 (1974)

2. Conway, R.W., Maxwell, W.L., Miller, L.W.: Theory of Scheduling. Reading (1967)
3. Emmons, H., Vairaktarakis, G.: Flow Shop Scheduling: Theoretical Results, Algo-

rithms, and Applications. Springer, New York (2013). https://doi.org/10.1007/
978-1-4614-5152-5

4. Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory
of NP-Completeness. Freeman, New York (1979)

https://doi.org/10.1007/978-1-4614-5152-5
https://doi.org/10.1007/978-1-4614-5152-5

Scheduling Problems Under Linear Constraints 69

5. Garey, M.R., Johnson, D.S., Sethi, R.: The complexity of flowshop and jobshop
scheduling. Math. Oper. Res. 1, 117–129 (1976)

6. Gilmore, C., Gomory, R.E.: Sequencing a one state-variable machine: a solvable
case of the travelling salesman problem. Oper. Res. 12, 655–679 (1964)

7. Hall, L.A.: Approximability of flow shop scheduling. Math. Program. 82, 175–190
(1998)

8. Hall, N.G., Sriskandarajah, C.: A survey of machine scheduling problems with
blocking and no-wait in process. Oper. Res. 44(3), 510–525 (1996)

9. Jansen, K., Lassota, A., Maack, M., Pikies, T.: Total completion time minimization
for scheduling with incompatibility cliques. In: Proceedings of the International
Conference on Automated Planning and Scheduling, vol. 31, no. 1, pp. 192–200
(2021)

10. Johnson, S.M.: Optimal two- and three-stage production schedules with setup times
included. Naval Res. Logist. Q. 1, 61–68 (1954)

11. Knop, D., Koutecký, M.: Scheduling meets n-fold integer programming. J. Sched.
21(5), 493–503 (2018)

12. Lawler, J.L., Johnson, E.L., Lenstra, J.K., Rinnooy Kan, A.H.G., Shmoys, D.B.:
The complexity of machine scheduling problems. Ann. Discrete Math. 1, 343–362
(1977)

13. Luenberger, D.G., Ye, Y.: Linear and Nonlinear Programming, 4th edn. Springer,
Cham (2016)

14. Nip, K., Shi, T., Wang, Z.: Some graph optimization problems with weights satis-
fying linear constraints. J. Comb. Optim. 43, 200–225 (2022)

15. Nip, K., Wang, Z.: Two-machine flow shop scheduling problem under linear con-
straints. In: Li, Y., Cardei, M., Huang, Y. (eds.) COCOA 2019. LNCS, vol. 11949,
pp. 400–411. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-36412-
0 32

16. Nip, K., Wang, Z.: A complexity analysis and algorithms for two-machine shop
scheduling problems under linear constraints. J. Sched. (2021)

17. Nip, K., Wang, Z., Shi, T.: Some graph optimization problems with weights sat-
isfying linear constraints. In: Li, Y., Cardei, M., Huang, Y. (eds.) COCOA 2019.
LNCS, vol. 11949, pp. 412–424. Springer, Cham (2019). https://doi.org/10.1007/
978-3-030-36412-0 33

18. Nip, K., Wang, Z., Wang, Z.: Scheduling under linear constraints. Eur. J. Oper.
Res. 253(2), 290–297 (2016)

19. Nip, K., Wang, Z., Wang, Z.: Knapsack with variable weights satisfying linear con-
straints. J. Global Optim. 69(3), 713–725 (2017). https://doi.org/10.1007/s10898-
017-0540-y

20. Ogryczak, W., Śliwiński, T.: On solving linear programs with the ordered weighted
averaging objective. Eur. J. Oper. Res. 148(1), 80–91 (2003)

21. Pinedo, M.: Scheduling: Theory, Algorithms, and Systems. Springer, New York
(2016)

22. Sahni, S., Cho, Y.: Complexity of scheduling shops with no wait in process. Math.
Oper. Res. 4(4), 448–457 (1979)

23. Smith, W.E.: Various optimizers for single-stage production. Naval Res. Logist. Q.
3, 59–66 (1956)

24. Wang, Z., Nip, K.: Bin packing under linear constraints. J. Comb. Optim. 34(4),
1198–1209 (2017). https://doi.org/10.1007/s10878-017-0140-2

25. Yager, R.R.: On ordered weighted averaging aggregation operators in multicriteria
decisionmaking. IEEE Trans. Syst. Man Cybern. 18(1), 183–190 (1988)

https://doi.org/10.1007/978-3-030-36412-0_32
https://doi.org/10.1007/978-3-030-36412-0_32
https://doi.org/10.1007/978-3-030-36412-0_33
https://doi.org/10.1007/978-3-030-36412-0_33
https://doi.org/10.1007/s10898-017-0540-y
https://doi.org/10.1007/s10898-017-0540-y
https://doi.org/10.1007/s10878-017-0140-2

70 K. Nip

26. Yager, R.R.: Constrained OWA aggregation. Fuzzy Sets Syst. 81(1), 89–101 (1996)
27. Zhang, S., Nip, K., Wang, Z.: Related machine scheduling with machine speeds

satisfying linear constraints. In: Kim, D., Uma, R.N., Zelikovsky, A. (eds.) COCOA
2018. LNCS, vol. 11346, pp. 314–328. Springer, Cham (2018). https://doi.org/10.
1007/978-3-030-04651-4 21

28. Zhang, S., Nip, K., Wang, Z.: Related machine scheduling with machine speeds
satisfying linear constraints. J. Comb. Optim. 44(3), 1724–1740 (2022)

https://doi.org/10.1007/978-3-030-04651-4_21
https://doi.org/10.1007/978-3-030-04651-4_21

On the Matching Number of k-Uniform
Connected Hypergraphs with Maximum

Degree

Zhongzheng Tang1, Haoyang Zou2, and Zhuo Diao2(B)

1 School of Science, Beijing University of Posts and Telecommunications,
Beijing 100876, China

tangzhongzheng@amss.ac.cn
2 School of Statistics and Mathematics, Central University of Finance

and Economics, Beijing 100081, China
diaozhuo@amss.ac.cn

Abstract. For k ≥ 2, let H(V, E) be a k-uniform connected hypergraph
with maximum degree Δ on n vertices and m edges. A set of edges
A ⊆ E is a matching if every two distinct edges in A have no common
vertices. The matching number is the maximum cardinality of a match-
ing, denoted by ν(H). In this paper, we prove the following inequality:

ν(H) ≥ n−(k−2)m−1
Δ

and characterize the extremal hypergraphs with
equality holds. A class of hypergraphs called Δ-star hypertrees are intro-
duced, which are exactly the extremal hypergraphs. These results is a
generalization of the theorems by Tang and Diao in IJTCS-FAW 2022.

Keywords: k-uniform hypergraphs · maximum degree · matching
number · extremal hypergraphs

1 Introduction

A hypergraph is a generalization of a graph in which an edge can join any number
of vertices. A simple hypergraph is a hypergraph without multiple edges. Let
H = (V,E) be a simple hypergraph with vertex set V and edge set E. As for a
graph, the order of H, denoted by n, is the number of vertices. The number of
edges is denoted by m.

For each vertex v ∈ V , the degree d(v) is the number of edges in E that
contains v. We say v is an isolated vertex of H if d(v) = 0. Hypergraph H is
k-regular if each vertex’s degree is k (d(v) = k,∀v ∈ V). The maximum degree
of H is Δ(H) = maxv∈V d(v). Hypergraph H is k-uniform if each edge contains
exactly k vertices (|e| = k,∀e ∈ E). Hypergraph H is called linear if any two
distinct edges have at most one common vertex.

Supported by National Natural Science Foundation of China under Grant No.
11901605, No. 12101069, the disciplinary funding of Central University of Finance
and Economics, the Emerging Interdisciplinary Project of CUFE.

c© Springer Nature Switzerland AG 2023
M. Li et al. (Eds.): IJTCS-FAW 2023, LNCS 13933, pp. 71–84, 2023.
https://doi.org/10.1007/978-3-031-39344-0_6

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-39344-0_6&domain=pdf
https://doi.org/10.1007/978-3-031-39344-0_6

72 Z. Tang et al.

Let k ≥ 2 be an integer. A cycle of length k, denoted as k-cycle, is a vertex-
edge sequence C = v1e1v2e2 · · · vkekv1 with: (1){e1, e2, . . . , ek} are distinct edges
of H. (2){v1, v2, . . . , vk} are distinct vertices of H. (3){vi, vi+1} ⊆ ei for each
i ∈ [k], here vk+1 = v1. We consider the cycle C as a sub-hypergraph of H with
vertex set {vi, i ∈ [k]} and edge set {ej , j ∈ [k]}. For any vertex set S ⊆ V , we
write H \S for the sub-hypergraph of H obtained from H by deleting all vertices
in S and all edges incident with some vertices in S. For any edge set A ⊆ E, we
write H \ A for the sub-hypergraph of H obtained from H by deleting all edges
in A and keeping vertices. If S is a singleton set {s}, we write H \ s instead of
H \ {s}.

A hypertree T (V,E) is a connected hypergraph with no cycle. In a hypertree
T (V,E), for any two distinct vertices {u, v} ⊆ V , there is a unique u− v path P
in T . Given a hypergraph H(V,E), a set of edges A ⊆ E is a feedback edge set
(FES) if H \ A is acyclic. The feedback edge set number is the minimum cardi-
nality of a feedback edge set, denoted by τ ′

c(H). Given a hypergraph H(V,E),
a set of edges A ⊆ E is a matching if every two distinct edges have no com-
mon vertex. The matching number is the maximum cardinality of a matching,
denoted by ν(H). In this paper, we consider the matching number in k-uniform
connected hypergraphs.

1.1 Related Works

The problem of finding a maximum matching is fundamental in both practical
and theoretical computer science, and has numerous applications. Maximum
matching in bipartite graphs is significantly simpler than in general graphs, as
computations of augmenting paths do not encounter odd cycles. The seminal
algorithm of Hopcroft and Karp [14] solves maximum bipartite matching in
O(

√
nm) time, for graphs with n vertices and m edges. The first polynomial

time algorithm for finding a maximum matching in a general graph was obtained
by Edmonds [5]. The currently fastest deterministic algorithm for this problem,
obtained by Micali and Vazirani, runs in O(

√
nm) time (see [8,18,23]). Faster

algorithms are known for several important special classes of graphs.
Various lower bounds on the matching number for regular graphs have

appeared in the literature. For example, Biedl et al. [2] proved that if G is a
cubic graph, then ν(G) ≥ 4n−1

9 . This result was generalized to regular graphs of
higher degree by Henning and Yeo [11], see also O and West [19]. O and West [21]
established lower bounds on the matching number with given edge-connectivity
in regular graphs. Cioaba et al. [3,4,9] studied matchings in regular graphs from
eigenvalues. Suil [20] studied spectral radius and matchings in graphs. Lower
bounds on the matching number in subcubic graphs (graphs with maximum
degree at most 3) were studied by, among others, Henning et al. [13] and Haxell
et al. [10]. Lower bounds on the matching number for general graphs and bipar-
tite graphs were obtained by Jahanbekam et al. [17] and Henning et al. [12].

Yet although the graph matching problem is fairly well understood, and solv-
able in polynomial time, most of the problems related to hypergraph matching
tend to be very difficult and remain unsolved. Indeed, the hypergraph matching

Matching Number of k-Uniform Hypergraphs 73

problem is known to be NP-hard even for 3-uniform hypergraphs, without any
good approximation algorithm.

One of the most basic open questions in this area was raised in 1965 by
Erdös [6], who asked for the determination of the maximum possible number
of edges that can appear in any k-uniform hypergraph with matching number
ν(H) < t ≤ n

k . See [1,7,15,16] for latest developments on the problem.
In IJTCS-FAW 2022, for simple graphs, Tang and Diao [22] have established

a sharp lower bound on the matching number with given maximum degree,
as stated in Theorem 1. In this paper, we generalize the results to k-uniform
hypergraphs.

Theorem 1. For every connected graph G(V,E) with maximum degree Δ on n
vertices and m edges, ν(G) ≥ n−1

Δ holds. Furthermore, the equality ν(G) = n−1
Δ

holds if and only if G(V,E) is a Δ-star tree when Δ ≥ 3.

1.2 Our Results

In this paper, for every k-uniform connected hypergraph, we give a sharp lower
bound for the matching number and characterize the extremal hypergraphs with
lower bound attained. The result is stated in Theorem 2.

Theorem 2. For every k-uniform connected hypergraph H(V,E) with maximum
degree Δ on n vertices and m edges, ν(H) ≥ n−(k−2)m−1

Δ holds. Furthermore, the
equality ν(H) = n−(k−2)m−1

Δ holds if and only if H(V,E) is a Δ-star hypertree
when Δ ≥ 3.

The main content of the article is organized as follows:

– In Sect. 2, we prove the lower bound for the matching number.
– In Sect. 3, we characterize the extremal hypergraphs with lower bound

attained.

2 The Lower Bound of Matching Number with Maximum
Degree

In this section, for every k-uniform connected hypergraph, a lower bound of the
matching number with maximum degree is proved, as stated in Theorem 3. The
content is organized as follows:

– In Lemma 1, for every k-uniform hypertree, a lower bound of the matching
number with maximum degree is proved.

– In Lemma 2, for every k-uniform connected hypergraph, an upper bound of
the feedback edge number is proved.

– In Theorem 3, for every k-uniform connected hypergraph, a lower bound of
the matching number with maximum degree is proved.

74 Z. Tang et al.

Theorem 3. For every k-uniform connected hypergraph H(V,E) with maximum
degree Δ on n vertices and m edges, ν(H) ≥ n−(k−2)m−1

Δ .

Lemma 1. For every k-uniform hypertree T (V,E) with maximum degree Δ on
m edges, ν(T) ≥ m

Δ .

Proof. It is equivalent to prove the next proposition:

Proposition. For every k-uniform hypertree T (V,E) with d(v) ≤ p,∀v ∈ V ,
ν(T) ≥ m

p .

We prove this proposition by contradiction. Let us take out the counterexam-
ple T (V,E) with minimum edges. Thus d(v) ≤ p,∀v ∈ V , ν(T) < m

p . Obviously
T (V,E) has at least three edges. The longest path in T is P = v1e1v2 · · · vtetvt+1,
which connects one leaf v1 to another leaf vt+1 and v2 is the only one vertex
in e1 with degree more than one, as shown in Fig. 1. The degree of v2 is d(v2)
and T \ v2 has (k − 1)d(v2) components, denoted as {Ti, 1 ≤ i ≤ (k − 1)d(v2)}.
Assume that Ti contains mi edges.

Fig. 1. The longest path P between leaves v1 and vt+1

Claim 1. ν(T \ v2) ≥ m−p
p .

T is the counterexample with minimum edges, thus ν(Ti) ≥ mi

p . Combined with
d(v2) ≤ p, we have the following inequalities:

ν(T \ v2) =
∑

1≤i≤(k−1)d(v2)

ν(Ti) ≥
∑

1≤i≤(k−1)d(v2)

mi

p
=

m − d(v2)
p

≥ m − p

p
. �

Claim 2. ν(T) ≥ ν(T \ v2) + 1.

The longest path in T is P = v1e1v2 · · · vtetvt+1 thus v2 is the only one vertex
in e1 with degree more than one. For every matching M in T \ v2, M ∪ {e1} is
a matching in T . �

According to these claims, we have the following inequalities:

ν(T) ≥ ν(T \ v2) + 1 ≥ m − p

p
+ 1 =

m

p
,

which is a contradiction with ν(T) < m
p . �

Matching Number of k-Uniform Hypergraphs 75

Next for every k-uniform connected hypergraph, we give an upper bound of
the feedback edge number.

Lemma 2. Let H(V,E) be a k-uniform connected hypergraph, τ ′
c(H) ≤ (k −

1)m − n + 1.

Before proving the lemma above, we will prove a series of lemmas which are
very useful.

Lemma 3. For every k-uniform connected hypergraph H(V,E), n ≤ (k−1)m+1
holds on.

Proof. We prove this lemma by induction on m. When m = 0, H(V,E) is an
isolate vertex, n ≤ (k−1)m+1 holds on. Assume this lemma holds on for m ≤ t.
When m = t + 1, take arbitrarily one edge e and consider the subgraph H \ e.
obviously, H \ e has at most k components. Assume H \ e has p components
Hi(Vi, Ei), ni is the vertex number and mi is the edge number for each i ∈
{1, . . . , p}. Then by our induction, ni ≤ (k − 1)mi + 1 holds on. So we have

n = n1 + · · · + np ≤ (k − 1)m1 + · · · + (k − 1)mp + p

= (k − 1)(m − 1) + p = (k − 1)m + p − k + 1 ≤ (k − 1)m + 1.

By induction, we finish our proof. �

Lemma 4. For every k-uniform connected hypergraph H(V,E), n = (k−1)m+1
if and only if H is a hypertree.

Proof. Sufficiency: if H is a hypertree, we prove n = (k−1)m+1 by induction on
m. When m = 0, H(V,E) is an isolate vertex, n = (k−1)m+1 holds on. Assume
this lemma holds on for m ≤ t. When m = t+1, take arbitrarily one edge e and
consider the subhypergraph H \ e. Because H is a k-uniform hypertree, H \ e
has exactly k components, denoted by Hi(Vi, Ei), ni is the vertex number and
mi is the edge number for each i ∈ {1, . . . , p}. Because every component is a
hypertree, thus by our induction, ni = (k − 1)mi + 1 holds on. So we have

n = n1+· · ·+nk = (k−1)m1+· · ·+(k−1)mk+k = (k−1)(m−1)+k = (k−1)m+1.

By induction, we finish the sufficiency proof.
Necessity: We prove by contradiction. If H is not a hypertree, H contain a cycle
C. Take arbitrarily one edge e in C and consider the subgraph H \ e. obviously,
H \ e has at most k −1 components. Assume H \ e has p components Hi(Vi, Ei),
ni is the vertex number and mi is the edge number for each i ∈ {1, . . . , p}. Then
by Lemma 3, ni ≤ (k − 1)mi + 1 holds on. So we have

n = n1 + · · · + np ≤ (k − 1)m1 + · · · + (k − 1)mp + p

= (k − 1)(m − 1) + p = (k − 1)m + p − k + 1 ≤ (k − 1)m < (k − 1)m + 1,

which is a contradiction with n = (k − 1)m + 1. Thus H is a hypertree and we
finish our necessity proof. �

76 Z. Tang et al.

Next we will prove a generalization of Lemma 2:

Lemma 5. Let H = (V,E) be a k-uniform hypergraph with p components, then
τ ′
c(H) ≤ (k − 1)m − n + p.

Proof. Pick arbitrarily a minimum FES A ⊆ E. Suppose that H \ A contains
exactly t components Hi = (Vi, Ei) with ni vertices and mi edges, i = 1, . . . , t.
It follows from Lemma 4 that ni = (k − 1)mi + 1 for each i ∈ [t]. Thus n =∑

i∈[t] ni = (k − 1)
∑

i∈[k] mi + t = (k − 1)(m − τ ′
c(H)) + t, which means (k −

1)τ ′
c(H) = (k − 1)m − n + t. To establish the lemma, it suffices to prove t ≤

(k − 2)τ ′
c(H) + p.

In case of τ ′
c(H) = 0, we have A = ∅ and t = p = (k − 2)τ ′

c(H) + p. In
case of τ ′

c(H) ≥ 1, suppose that A = {e1, . . . , eq}. Because A is a minimum
FES of H, for each i ∈ [q], there is a cycle Ci in H \ (A \ {ei}) such that
ei ∈ Ci. Considering H \ A being obtained from H by removing e1, e2, . . . , eq

sequentially, for i = 1, . . . , q, since ei have k vertices, the presence of Ci implies
that the removal of ei can create at most k − 2 more components. Therefore we
have t ≤ (k − 2)τ ′

c(H) + p as desired. �
Corollary 1. Let H = (V,E) be a k-uniform hypergraph with p components
and τ ′

c(H) = (k − 1)m − n + p. A ⊆ E is a minimum feedback edge set. For any
e ∈ A, C(H \ A) = C(H \ {A \ e}) + k − 2 holds, here C(H \ A) is the number
of components in H \ A and C(H \ {A \ e}) is the number of components in
H \ {A \ e}.

Now we will prove the main theorem in this section, for every k-uniform
connected hypergraph, a lower bound of the matching number with maximum
degree is proved.

Theorem 3. For every k-uniform connected hypergraph H(V,E) with maximum
degree Δ on n vertices and m edges, ν(H) ≥ n−(k−2)m−1

Δ .

Proof. It is equivalent to prove the next proposition:

Proposition. For every k-uniform connected hypergraph H(V,E) on n vertices
and m edges, d(v) ≤ p,∀v ∈ V , ν(H) ≥ n−(k−2)m−1

p .

Pick arbitrarily a minimum FES A ⊆ E. Consider the hypergraph H ′ = H\A
and m′ is the edge number. According to Lemma 5,

m′ = m − τ ′
c(H) ≥ m − [(k − 1)m − n + 1] = n − (k − 2)m − 1.

H ′ is acyclic and by Lemma 1, we have ν(H ′) ≥ m′
p . Combining the above

inequalities, there is

ν(H) ≥ ν(H ′) ≥ m′

p
≥ n − (k − 2)m − 1

p
. �

Remark 1. For every k-uniform connected hypergraph H(V,E) with maximum
degree Δ on n vertices and m edges, Theorem 3 implies a polynomial-time
algorithm for computing a matching with cardinality at least n−(k−2)m−1

Δ .

Matching Number of k-Uniform Hypergraphs 77

3 The Extremal Hypergraphs on Matching Number
with Maximimum Degree

In this section, we characterize the extremal hypergraphs H with Δ ≥ 3 and
ν(H) = n−(k−2)m−1

Δ . A class of hypergraphs called Δ-star hypertrees are intro-
duced and we prove Δ-star hypertrees are exactly the extremal hypergraphs, as
stated in Theorem 4.

Theorem 4. For every k-uniform connected hypergraph H(V,E) with maximum
degree Δ ≥ 3 on n vertices and m edges, ν(H) = n−(k−2)m−1

Δ if and only if
H(V,E) is a Δ-star hypertree.

The content is organized as follows:

– In Definitions 1, 2 and 3, a class of hypergraphs called p-star hypertrees are
introduced.

– In Lemmas 6 and 7, some useful results about p-star hypertrees are proved.
– In Lemma 8, we prove Δ-star hypertrees are exactly the extremal hypertrees

with ν(T) = m
Δ .

– In Theorem 4, we prove Δ-star hypertrees are exactly the extremal hyper-
graphs with ν(H) = n−(k−2)m−1

Δ .

Define that k-uniform p-star is a (kp−p+1)-vertex tree with (kp−p) vertices
with degree 1 and the central vertex of a p-star is a p-degree vertex, an example
is shown as Fig. 2. Then we introduce the definition of p-star hypertree.

Fig. 2. 5-star

Definition 1. A k-uniform hypertree T (V,E) is called a p-star tree if it satis-
fies:

– Each vertex’s degree is no more than p.
– The edges of T can be decomposed into several p-stars.

78 Z. Tang et al.

Definition 2. For a p-star hypertree T (V,E), the central vertices of p-stars are
called central vertices and other vertices are called noncentral vertices. The ver-
tices connecting different p-stars are called adjacent vertices. Noncentral vertices
are formed by adjacent vertices and leaves.

Definition 3. For a p-star hypertree T (V,E), the structure tree describes the
structure of T as formed by its p-stars. Let A denote the set of adjacent vertices
of T , and B the set of its p-stars. Then we have a natural tree T ′(A ∪ B,E′) on
A ∪ B formed by the edges e′(a, b) ∈ E′ with a ∈ A, b ∈ B, a ∈ b, which means
that the adjacent vertex a belongs to the p-star b in T . An example is shown in
Fig. 3.

(a) A p-star tree (b) Structure tree of p-star tree

Fig. 3. A p-star tree, where the squares, the hollow dots and the solid dots are central
vertices, adjacent vertices and leaves, respectively.

Lemma 6. For a p-star tree T (V,E), there is a unique p-star decomposition
of T .

Proof. This can be finished by induction on the number t of p-stars in T .

– When t = 0, T is an isolated vertex and there is a unique p-star decomposition.
– When t = 1, T is a p-star and there is a unique p-star decomposition.
– Assume the lemma holds for t ≤ q. When t = q +1, let us consider the struc-

ture tree T ′ of the p-star tree T . v′ is a leaf in T ′ and Sv′ is the corresponding
p-star in T . v is the central vertex of Sv′ , as shown in Fig. 4. T \ v is also a
p-star tree and the number of p-stars in T \ v is exactly q. By our induction,
there is a unique p-star decomposition D in T \ v. Thus D ∪Sv′ is the unique
q-star decomposition in T . The lemma holds for t = q + 1. By induction, the
lemma holds for every p-star tree. �

Lemma 7. T (V,E) is a p-star hypertree.

1. u ∈ V, e ∈ E, u ∈ e, u is a noncentral vertex, Cu(T \e) is the number of edges
in the component of T \ e containing u. Then Cu(T \ e) is congruent to 0
modulo p, that is Cu(T \ e) ≡ 0 (mod p).

Matching Number of k-Uniform Hypergraphs 79

Fig. 4. The central vertex v of Sv′

2. u ∈ V, e ∈ E, u ∈ e, u is a central vertex, Cu(T \ e) is the number of edges in
the component of T \ e containing u. Then Cu(T \ e) is congruent to p − 1
modulo p, that is Cu(T \ e) ≡ (p − 1) (mod p).

3. u ∈ V, {e1, e2} ⊆ E, u ∈ e1, u ∈ e2, u is a central vertex, Cu(T \ {e1, e2})
is the number of edges in the component of T \ {e1, e2} containing u. Then
Cu(T \{e1, e2}) is congruent to p−2 modulo p, that is Cu(T \{e1, e2}) ≡ (p−2)
(mod p).

Proof. This can be finished by induction on the number t of p-stars in T .

– When t = 0, T is an isolated vertex and the three propositions hold.
– When t = 1, T is a p-star and the three propositions hold.
– Assume the three propositions hold for t ≤ q. When t = q +1, let us consider

the structure tree T ′ of the p-star tree T . v′ is a leaf in T ′ and Sv′ is the
corresponding p-star in T . v is the central vertex of Sv′ , as shown in Fig. 4.
T \ v is also a p-star hypertree and the number of p-stars in T \ v is exactly q.
By our induction, the three propositions hold in T \ v. T is formed by adding
a p-star to T \v and the operation keeps the same remainder modulo p. Thus
the three propositions also hold in T . The lemma holds for t = q + 1. By
induction, the lemma holds for every p-star hypertree. �

Next we will prove Δ-star hypertrees are exactly the extremal hypertrees
with ν(T) = m

Δ , as stated in Lemma 8.

Lemma 8. For every k-uniform hypertree T (V,E) with maximum degree Δ on
n vertices and m edges, ν(T) = m

Δ if and only if T (V,E) is a Δ-star hypertree.

Proof. It is equivalent to prove the next proposition:

Proposition. For every k-uniform connected hypertree T (V,E) on n vertices
and m edges, d(v) ≤ p,∀v ∈ V , ν(T) = m

p if and only if T is a p-star hypertree.

Necessity: T (V,E) is a hypertree with d(v) ≤ p,∀v ∈ V and ν(T) = m
p holds.

It needs to show T is a p-star hypertree. Obviously T (V,E) has at least two
edges. The longest path in T is P = v1e1v2 · · · vtetvt+1, which connects one leaf
v1 to another leaf vt+1 and v2 is the only one vertex in e1 with degree more than

80 Z. Tang et al.

one, as shown in Fig. 1. The degree of v2 is d(v2) and T \ v2 has (k − 1)d(v2)
components, denoted as {Ti, 1 ≤ i ≤ (k − 1)d(v2)}. Assume that Ti contains mi

edges.

Claim 3. ν(T \ v2) ≥ m−p
p .

According to Lemma 1, ν(Ti) ≥ mi

p . Combined with d(v2) ≤ p, we have the
following inequalities:

ν(T \ v2) =
∑

1≤i≤(k−1)d(v2)

ν(Ti) ≥
∑

1≤i≤(k−1)d(v2)

mi

p
=

m − d(v2)
p

≥ m − p

p
. �

Claim 4. ν(T) ≥ ν(T \ v2) + 1.

The longest path in T is P = v1e1v2 · · · vtetvt+1 thus v2 is the only one vertex
in e1 with degree more than one. For every matching M in T \ v2, M ∪ {e1} is
a matching in T . �

According to these claims, we have the following inequalities:

ν(T) ≥ ν(T \ v2) + 1 ≥ m − p

p
+ 1 =

m

p

Combined with ν(T) = m
p , we have ν(T \ v2) = m−p

p . This means the degree of
v2 is exactly p and in T \ v2, each component {Ti, 1 ≤ i ≤ (k − 1)d(v2)} satisfies
ν(Ti) = mi

p holds. Take out {Ti, 1 ≤ i ≤ (k −1)d(v2)} as T and repeat the above
analysis process. Finally, there are some isolated vertices. Denote the deleted
vertices as {vj , 1 ≤ j ≤ q}. A p-star Sj is deleted when vj is deleted. Thus the
edges of T can be decomposed into several p-stars. According to Definition 1, T
is a p-star tree.
Sufficiency: T is a p-star tree. It needs to show ν(T) = m

p . This can be finished
by induction on the number t of p-stars in T .

– When t = 0, T is an isolated vertex and ν(T) = m
p holds.

– When t = 1, T is a p-star and ν(T) = m
p holds.

– Assume the sufficiency holds for t ≤ q. When t = q + 1, let us consider
the structure tree T ′ of the p-star tree T . v′ is a leaf in T ′ and Sv′ is the
corresponding p-star in T . v is the central vertex of Sv′ , as shown in Fig. 4.
T \ v is also a p-star hypertree and the number of p-stars in T \ v is exactly
q. By our induction, ν(T \ v) = m−p

p holds. Thus we have

ν(T) = ν(T \ v) + 1 =
m − p

p
+ 1 =

m

p

The sufficiency holds for t = q + 1. By induction, the sufficiency holds for
every p-star tree. �

Remark 2. The above proof also demonstrates a polynomial-time algorithm to
decide whether a tree T is a p-star hypertree. In addition, If T is a p-star hyper-
tree, the algorithm gives the unique p-star decomposition.

Matching Number of k-Uniform Hypergraphs 81

Next we will prove our main theorem: Δ-star hypertrees are exactly the
extremal hypergraphs with ν(H) = n−(k−2)m−1

Δ when Δ ≥ 3.

Theorem 4. For every k-uniform connected hypergraph H(V,E) with maximum
degree Δ ≥ 3 on n vertices and m edges, ν(H) = n−(k−2)m−1

Δ if and only if
H(V,E) is a Δ-star hypertree.

Proof. Sufficiency: H(V,E) is a Δ-star hypertree. According to Lemmas 4 and
8, there is

n = (k − 1)m + 1, ν(H) =
m

Δ
⇒ ν(H) =

n − (k − 2)m − 1
Δ

.

Necessity: For every k-uniform connected hypergraph H(V,E) with maximum
degree Δ on n vertices and m edges, ν(H) = n−(k−2)m−1

Δ . It needs to prove
H(V,E) is a Δ-star hypertree. We prove by contradiction. Suppose H(V,E) is
not a hypertree. Take out arbitrarily a minimum feedback edge set A ⊆ E, then
T = H \ A is acyclic.

Claim 5. Each component of T is a Δ-star hypertree.

Denote m(T) as the edge number of T and Δ(T) as the maximum degree
of vertices in T . The components of T are Ti with mi edges for 1 ≤ i ≤ p.
According to Lemmas 1 and 2, there is

m(T) = m − τ ′
c(H), τ ′

c(H) ≤ (k − 1)m − n + 1, ν(T) ≥ m(T)
Δ(T)

.

⇒ ν(H) ≥ ν(T) =
p∑

i=1

ν(Ti) ≥
p∑

i=1

mi

Δ
=

m(T)
Δ

≥ n − (k − 2)m − 1
Δ

.

Combining with ν(H) = n−(k−2)m−1
Δ , there is ν(Ti) = mi

Δ . According to
Lemma 8, each component of T is a Δ-star hypertree. �

Now take out arbitrarily an edge e ∈ A. e is an edge in the minimum feedback
edge set, thus there is a cycle C containing e in H \ {A \ e}. Assume the cycle
C = v1e1v2 · · · vtetvt+1ev1 and P = v1e1v2 · · · vtetvt+1 is a path from v1 to vt+1

in T = H \ A, as shown in Fig. 5(a)(b).

Claim 6. For each ei ∈ P, 1 ≤ i ≤ t, A ∪ {ei} \ e is a minimum feedback edge
set of H.

Because A and A ∪ {ei} \ e have the same cardinality and A is a minimum
feedback edge set of H, it is suffice to prove A∪{ei}\e is also a feedback edge set
of H. Suppose A∪{ei}\e is not a feedback edge set, H \{A∪{ei}\e} has a cycle
C ′. Because H \ A is acyclic, C ′ must contain e. According to Corollary 1, the
number of components in H \A is k−2 more than the number of components in
H \{A\e}. This means v1 and vt+1 are two adjacent vertices of e in the cycle C ′.
But this is impossible because the unique v1 − vt+1 path P = v1e1v2 · · · vtetvt+1

in H \ A is cut off in H \ {A ∪ {ei} \ e}. �

82 Z. Tang et al.

(a) Cycle C (b) Path P (c) Path P ′′

Fig. 5. Schematic diagrams in the proof of Theorem 4

According to Claim 5, each component of T = H \ A is a Δ-star hypertree.
P = v1e1v2 · · · vtetvt+1 is a path from v1 to vt+1 in T = H \ A. Next let us con-
sider the roles of v1 and vt+1 in the Δ-star hypertree. v1 and vt+1 are noncentral
vertices of the Δ-star hypertree. T = H \ A, {v1, vt+1} ⊆ e, if one of v1 and vt+1

is a central vertex of the Δ-star hypertree, the degree of v1 and vt+1 is Δ + 1 in
H, this is impossible.

Claim 7. In the path P = v1e1v2 · · · vtetvt+1 of T = H \ A, v1 and vt+1 are
noncentral vertices. Furthermore, the central vertices and noncentral vertices are
alternate in the path P .

The component of T = H \ A is a Δ-star hypertree. In the Δ-star
hypertree, two central vertices are not adjacent. Suppose in the path P =
v1e1v2 · · · vtetvt+1, there are two noncentral vertices vi and vi+1. We consider
the edge set A ∪ {ei} \ e. According to Claim 6, A ∪ {ei} \ e is also a minimum
feedback edge set of H.

On one hand, according to Claim 5, each component of T ′ = H \{A∪{ei}\e}
is also a Δ-star hypertree, thus the edge number of each component is congruent
to 0 modulo Δ.

On the other hand, each component of T = H \ A is a Δ-star hypertree, vi

and vi+1 are noncentral vertices and {vi, vi+1} ⊆ ei. According to Lemma 7, in
T \ ei, the edge number of component containing vi is congruent to 0 modulo Δ,
the edge number of component containing vi+1 is congruent to 0 modulo Δ. This
means the edge number of component containing e in T ′ = H \ {A ∪ {ei} \ e} is
congruent to 1 modulo Δ, which contradicts with T ′ is a Δ-star hypertree. �

Claim 8. A ∪ {et} \ e is a minimum feedback edge set of H. Each compo-
nent of T ′′ = H \ {A ∪ {et} \ e} is a Δ-star hypertree. In the path P ′′ =
vt+1ev1e1v2 · · · vt−1et−1vt of T ′′ as shown in Fig. 5(c), vt and vt+1 are non-
central vertices. Furthermore, the central vertices and noncentral vertices are
alternate in the path P ′′.

According to Claims 5 and 6, A ∪ {et} \ e is a minimum feedback edge set of
H. Each component of T ′′ = H \ {A ∪ {et} \ e} is a Δ-star hypertree. A similar

Matching Number of k-Uniform Hypergraphs 83

analysis as Claim 7 proves in the path P ′′ = vt+1ev1e1v2 · · · vt−1et−1vt of T ′′,
vt and vt+1 are noncentral vertices. The central vertices and noncentral vertices
are alternate in the path P ′′. �

On one hand, each component of T = H \A is a Δ-star hypertree. According
to Claim 7, in the path P = v1e1v2 · · · vtetvt+1 of T , v1 and vt+1 are noncentral
vertices. The central vertices and noncentral vertices are alternate in the path
P . This means vt is a central vertex in the Δ-star hypertree of T .

On the other hand, each component of T ′′ = H \ {A ∪ {et} \ e} is a Δ-star
hypertree. According to Claim 8, in the path P ′′ = vt+1ev1e1v2 · · · vt−1et−1vt

of T ′′, vt and vt+1 are noncentral vertices. The central vertices and noncentral
vertices are alternate in the path P ′′. This means vt is a noncentral vertex in
the Δ-star hypertree of T ′′.

According to Claims 7 and 8, v1 is a noncentral vertex in P and vt+1 is a
noncentral vertex in P ′′, so v1 is a central vertex in P ′′. Thus, the roles of v1 are
different in P and P ′′.

On one hand, in the Δ-star hypertree of T = H \ A, v1 is a noncentral
vertex in P and v1 ∈ e1. According to Lemma 7, in T \ e1, the edge number of
component containing v1 is congruent to 0 modulo Δ.

On the other hand, in the Δ-star hypertree of T ′′ = H \{A∪{et}\e}, v1 is a
central vertex in P ′′ and v1 ∈ e1, v1 ∈ e. According to Lemma 7, in T ′′ \ {e1, e},
the edge number of component containing v1 is congruent to Δ − 2 modulo Δ.

The components containing v1 in T\e1 and T ′′\{e1, e} are same, which is a
contradiction due to Δ ≥ 3. Thus our initial assumption doesn’t hold. H(V,E) is
a hypertree. According to Lemma 8, H(V,E) is a Δ-star hypertree. The necessity
proof is finished. �

Remark 3. The condition of Theorem 4 is that Δ ≥ 3. For Δ = 2, the result does
not hold since an odd cycle is a simple example. It is interesting to characterize
the structure of H with Δ(H) = 2 and ν(H) = n−(k−2)m−1

2 .

References

1. Alon, N., Frankl, P., Huang, H., Rödl, V., Ruciński, A., Sudakov, B.: Large match-
ings in uniform hypergraphs and the conjectures of Erdős and Samuels. J. Comb.
Theory Ser. A 119(6), 1200–1215 (2012)

2. Biedl, T., Demaine, E.D., Duncan, C.A., Fleischer, R., Kobourov, S.G.: Tight
bounds on maximal and maximum matchings. Discret. Math. 285, 7–15 (2004)

3. Cioabă, S.M., Gu, X.: Connectivity, toughness, spanning trees of bounded degree,
and the spectrum of regular graphs. Czechoslov. Math. J. 66(3), 913–924 (2016).
https://doi.org/10.1007/s10587-016-0300-z

4. Cioaba, S.M., Gregory, D.A., Haemers, W.H.: Matchings in regular graphs from
eigenvalues. J. Comb. Theory Ser. B 99(2), 287–297 (2009)

5. Edmonds, J.: Path, trees, and flowers. Can. J. Math. 17(3), 449–467 (1965)
6. Erdos, P.: A problem on independent r-tuples. Ann. Univ. Sci. Budapest. Eötvös

Sect. Math. 8, 93–95 (1965)
7. Frankl, P.: On the maximum number of edges in a hypergraph with given matching

number. Discret. Appl. Math. 216, 562–581 (2017)

https://doi.org/10.1007/s10587-016-0300-z

84 Z. Tang et al.

8. Gabow, H.N., Tarjan, R.E.: Faster scaling algorithms for general graph matching
problems. J. ACM 38(4), 815–853 (1991)

9. Gu, X.: Regular factors and eigenvalues of regular graphs. Eur. J. Comb. 42, 15–25
(2014)

10. Haxell, P., Scott, A.: On lower bounds for the matching number of subcubic graphs.
J. Graph Theory 85, 336–348 (2017)

11. Henning, M.A., Yeo, A.: Tight lower bounds on the size of a maximum matching
in a regular graph. Graphs Comb. 23(6), 647–657 (2007)

12. Henning, M., Yeo, A.: Tight lower bounds on the matching number in a graph with
given maximum degree. J. Graph Theory 89, 115–149 (2018)

13. Henning, M.A., Lwenstein, C., Rautenbach, D.: Independent sets and matchings
in subcubic graphs. Discret. Math. 312(11), 1900–1910 (2012)

14. Hopcroft, J.E., Karp, R.M.: A n5/2 algorithm for maximum matchings in bipartite
graphs. SIAM J. Comput. 2, 225 (1973)

15. Huang, H., Loh, P.S., Sudakov, B.: The size of a hypergraph and its matching
number. Comb. Probab. Comput. 21(3), 442–450 (2012)

16. Huang, H., Zhao, Y.: Degree versions of the Erdős-Ko-Rado theorem and Erdős
hypergraph matching conjecture. J. Comb. Theory Ser. A 150, 233–247 (2017)

17. Jahanbekam, S., West, D.B.: New lower bounds on matching numbers of general
and bipartite graphs. Congr. Numer. 218, 57–59 (2013)

18. Micali, S., Vazirani, V.: An O(
√

nm) algorithm for finding maximum matchings in
general graphs. In: Proceedings of the 21st Annual Symposium on Foundations of
Computer Science (FOCS), pp. 17–27 (1980)

19. Suil, O., Douglas, B.: West: balloons, cut-edges, matchings, and total domination
in regular graphs of odd degree. J. Graph Theory 64, 116–131 (2010)

20. Suil, O.: Spectral radius and matchings in graphs. Linear Algebra Appl. 614(2),
316–324 (2021)

21. Suil, O., West, D.B.: Matching and edge-connectivity in regular graphs. Eur. J.
Comb. 32(2), 324–329 (2011)

22. Tang, Z., Diao, Z.: On the transversal number of rank k hypergraphs. In: Li, M.,
Sun, X. (eds.) IJTCS-FAW 2022. LNCS, vol. 13461, pp. 162–175. Springer, Cham
(2022). https://doi.org/10.1007/978-3-031-20796-9 12

23. Vazirani, V.V.: A theory of alternating paths and blossoms for proving correctness
of the general graph matching algorithm. Combinatorica 14(1), 71–109 (1994)

https://doi.org/10.1007/978-3-031-20796-9_12

Max-Min Greedy Matching Problem:
Hardness for the Adversary

and Fractional Variant

T.-H. Hubert Chan1 , Zhihao Gavin Tang2 , and Quan Xue1(B)

1 The University of Hong Kong, Hong Kong, China
csxuequan@connect.hku.hk

2 ITCS, Shanghai University of Finance and Economics, Shanghai, China

Abstract. Eden, Feige, and Feldman considered the max-min greedy
matching problem can be viewed as a game between an algorithm and
an adversary. A bipartite graph between items and players is given to
both parties upfront. The algorithm first chooses a priority order on
the items, and then depending on the algorithm’s choice, the adversary
chooses a priority order on the players. Then, the two priority orders are
used in a greedy process to produce a matching between the items and
the players; specifically, when it is a player’s turn, the highest priority
item among its still available neighbors will be matched. The goal of the
algorithm is to maximize the size of the resulting matching, while the
goal of the adversary is to minimize its size. The previous work shows
that the algorithm has a polynomial-time strategy to ensure a competi-
tive ratio of strictly greater than 1

2
.

In this work, we show that from the adversary’s perspective, the adver-
sarial order minimum matching problem is NP-hard to approximate with
a ratio better than 6

5
, assuming the small set expansion (SSE) hypothesis.

On the other hand, we propose a fractional variant of the problem and
examine the interplay between the algorithm and the adversary when one
or both parties may use fractional permutations. An interesting result
is that if the algorithm uses only integral item permutations, then an
optimal response for the adversary can also be an integral player permu-
tation. Moreover, we also show that in a fractional variant, the algorithm
can use a round-robin strategy to achieve a competitive ratio of at least
1 − 1

e
for input graphs with large enough granularity parameter m. Fur-

thermore, we show that the analysis for the round-robin strategy is tight
even for regular graphs.

Keywords: max-min greedy matching · adversarial hardness ·
fractional matching

T.-H. H. Chan—This research was partially supported by the Hong Kong RGC grants
17201220, 17202121 and 17203122.

c© Springer Nature Switzerland AG 2023
M. Li et al. (Eds.): IJTCS-FAW 2023, LNCS 13933, pp. 85–104, 2023.
https://doi.org/10.1007/978-3-031-39344-0_7

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-39344-0_7&domain=pdf
http://orcid.org/0000-0002-8340-235X
http://orcid.org/0000-0002-5094-1971
http://orcid.org/0009-0001-5939-7271
https://doi.org/10.1007/978-3-031-39344-0_7

86 T.-H. H. Chan et al.

1 Introduction

Karp, Vazirani, and Vazirani [10] introduced the ranking algorithm for the online
bipartite matching problem, which can be described as a greedy matching process
as follows. The input of the problem is a bipartite graph G = (U, V ;E) between
players U and items V . Based on G, the adversary chooses an arrival order of
the players and the algorithm picks a uniformly random priority order on the
items. When a player arrives, it is matched to the highest priority item among
its still unmatched (if any) neighbors. Observe that even though the algorithm’s
strategy is independent of G, the resulting matching has an expected size that
achieves a competitive ratio of at least 1 − 1

e .
Eden, Feige, and Feldman [5] studied a related variant of the bipartite match-

ing problem in which the rules for how each party makes its decision are modified.
In the max-min greedy matching problem, the algorithm may refer to the input
graph and first picks a priority order on the items, after which the adversary can
adaptively pick the arrival order of the players depending on the input graph
and also the algorithm’s choice. For clarity, we describe the matching process in
more details as follows.

Bipartite Matching with Priorities. Suppose G(U, V ;E) is a bipartite graph
with n vertices on each side. As above, we will think of U as players and V as
items. For every vertex w ∈ U ∪ V , let N(w) denote the set of neighbors of w
in G. We use S(A) to denote the collection of permutations over a set A, which
represents a priority order on A. Given a player permutation σ ∈ S(U) and an
item permutation π ∈ S(V), we use MG[σ, π] to denote the matching achieved
by the following greedy process. Players in U arrive in the order given by σ, and
an arriving vertex u ∈ U is matched to the unmatched vertex (if any) in N(u)
with the highest priority under π. If all vertices in N(u) are matched, then u is
left unmatched. The competitive ratio is the size of MG[σ, π] divided by that of
a maximum matching in G.

Max-Min Greedy Matching Problem. This is a game between an algo-
rithm and an adversary. Given an input graph G(U, V ;E), the algorithm first
picks π ∈ S(V) and then the adversary picks σ ∈ S(U), which may depend on
the algorithm’s choice. The algorithm’s objective is to maximize the size of the
matching MG[σ, π], while the adversary’s objective is to minimize its size. Hence,
formally, the game can be described by the following max-min problem:

max
π∈S(V)

min
σ∈S(U)

|MG[σ, π]|.

The aforementioned previous work [5] showed that the algorithm has a
polynomial-time strategy that achieves a competitive ratio of larger than 0.51.
Moreover, they showed that for certain classes of regular graphs with arbitrar-
ily large degrees, no strategy by the algorithm can achieve a competitive ratio
of larger than 8

9 . While they conjectured that finding the optimal algorithm
strategy is computationally hard, they showed that there is a polynomial-time
procedure that decides whether the optimal algorithm strategy has competitive
ratio of exactly 1, and if “yes”, can also return a corresponding optimal item
permutation.

Max-Min Greedy Matching Problem 87

1.1 Our Results

We summarize the contribution of this work and the structure of the paper as
follows.

– Section 3: Hardness of the adversary side. Given a bipartite graph
G = (U, V ;E) and an item permutation π over V , we refer to the strategy
made by the adversary as the adversarial order minimum matching problem,
which we show (in Theorem 1) is NP-hard to approximate with ratio smaller
than 6

5 , assuming the small set expansion hypothesis.
– Section 4: Fractional Variant. We utilize the concept of fractional per-

mutations, which can be interpreted as breaking a vertex in smaller pieces
that we refer to as atoms. An interesting question is for each party, whether
utilizing a fractional permutation would offer any advantage as opposed to
utilizing only an integral one. We examine the interplay between the algorithm
and the adversary when one or both parties implement fractional permuta-
tions. Among several cases, we think that the most interesting result is that if
the algorithm uses only integral item permutations, then the adversary may
respond optimally using only an integral player permutation (Theorem 2).

– Section 5: Tight Analysis of the Round-Robin Algorithm. Inspired
by the ranking algorithm, the algorithm uses an oblivious strategy for the
fractional variant, in which atoms for distinct items are chosen in a round-
robin fashion to form the priority order; the formal procedure is described in
Sect. 4.
We show that when the granularity of the atoms is fine enough, the round-
robin fractional algorithm can achieve a competitive ratio approaching 1 − 1

e
in Theorem 3.
On the other hand, we also show that for certain classes of regular graphs,
the round-robin algorithm cannot achieve a competitive ratio of strictly larger
than 1 − 1

e in Theorem 4.

1.2 Related Work

Since we study the same problem as in the most relevant aforementioned work [5],
we will summarize some of the related works and contrast them with our results.

Online Bipartite Matching. As mentioned above, the ranking algorithm pro-
posed by Karp et al. [10] and its subsequent analysis [8] have given us the
inspiration to analyze the round-robin algorithm for the fractional variant to
achieve the same competitive ratio of 1 − 1

e .
For regular graphs with large degrees d, there are randomized algorithms

that can achieve ratios close to 1. For instance, Cohen and Wajc [2] presented a
randomized algorithm that can achieve an expected value of 1−O(

√
log d√

d
) for d-

regular graphs and has a lower bound of 1−O(1√
d
). In contrast, our construction

in Theorem 4 shows that the analysis of the round-robin algorithm is tight for
regular graphs.

88 T.-H. H. Chan et al.

The case when the adversary chooses a random player arrival order has also
been analyzed. The deterministic greedy algorithm attains 1− 1

e and no determin-
istic algorithm can attain more than 3

4 [2]. For random player arrival order, the
ranking algorithm obtains a competitive ratio of between 0.696 and 0.727 [9,12],
while no randomized algorithm can achieve more than 0.823 [13].

More details on online bipartite matching are given in the survey [15] and
experimental results are given in the recent paper [1].

Minimum Maximal Matching. Since the greedy matching process always
produces a maximal matching, the hardness for the adversary side is closely
related to the minimum maximal matching problem studied by Dudycz et al. [3],
where for a given graph, the goal is to return a maximal matching with minimum
size. Assuming the Unique Games Conjecture (UGC), the hardness of approxi-
mation is 2 for general graphs. For bipartite graphs, the hardness result is 4

3 also
under UGC; however, under the stronger small set expansion (SSE) hypothesis
the hardness result for bipartite graphs can be improved to 3

2 . The techniques
used in achieving our hardness results are also inspired by [3].

Pricing Mechanisms. As mentioned in [5], the max-min greedy matching prob-
lem is also related to pricing mechanisms [7], where setting prices of items cor-
responds to an item permutation. Furthermore, various forms of posted price
mechanisms have been proposed for different combinatorial settings [4,6,7,11].
Hence, it is not surprising that our analysis of the round-robin algorithm in
Theorem 3 is also based on a pricing strategy.

2 Preliminaries

Recall that max-min greedy matching is a game between an algorithm and an
adversary. The aim of the algorithm is to maximize the matching, while the aim
of the adversary is to minimize the matching. The bipartite graph G(U, V ;E)
is given upfront. Upon seeing G the algorithm chooses a linear order π over
V . Upon seeing G and π, the adversary chooses a linear order σ over U . The
combination of G, π and σ defines a unique matching MG[σ;π] that we refer to
as the greedy matching. It is the matching produced by the greedy matching
algorithm in which vertices of U arrive in order σ and each vertex u ∈ U is
matched to the highest (under π) yet unmatched v ∈ N(u) (or left unmatched,
if all of N(u) has already been matched).

The following observation states that any upper bound on the competitive
ratio can be attained by instances admitting perfect matchings.

Observation 1 (Instances with Perfect Matching are Hardest for Algo-
rithm). If there is an algorithm that achieves competitive ratio at least r for
bipartite graphs with perfect matching, then the algorithm can be modified to
achieve ratio at least r for general bipartite graphs.

Proof. Suppose algorithm ALG achieves a competitive ratio of r for graphs
with perfect matching. Consider a general graph G = (U, V ;E) where the maxi-
mum matching is M . We provide ALG with the induced subgraph G[M] on the

Max-Min Greedy Matching Problem 89

matched vertices in M as input, which returns a permutation πM of matched
items.

Then, the modified algorithm returns πM followed by items unmatched in
M in any arbitrary order. Because ALG achieves competitive ratio r, any per-
mutation σM on the matched players will lead to at least r · |M | matched items.
Finally, observe that interleaving unmatched players among σM cannot decrease
the size of the matching. Hence, the result follows. ��

(Discrete) Fractional Variant. Given a bipartite graph instance G and a
granularity parameter m ∈ Z, we define a fractional version of G, denoted as
Gm. To construct Gm, each vertex w in G is subdivided into m atoms (each
having a weight of 1

m). Edges in Gm are induced by edges in G in the natural
way: every edge (u, v) ∈ G induces a complete bipartite graph between atoms
derived from u with atoms derived from v. The game between the algorithm and
the adversary on the new graph Gm is the same as before, except that each party
chooses a permutation of the atoms on its side. The weight of the corresponding
(fractional) matching MGm

[σ, π] refers to the total weights of matched atoms on
each side.

Fractional Permutations. A fractional permutation refers to a permutation
of atoms (derived with respect to some granularity parameter m).

Integral Permutations. An integral permutation refers to a permutation of
atoms in which atoms derived from the same original vertex are located consec-
utively. This naturally corresponds to a permutation of the original vertices.

Continuous Variant. It is possible to define a continuous variant directly (with
m = ∞), but complicated mathematical notions in measure theory are needed
to formally define a continuous permutation and describe the matching proce-
dure given two continuous permutations on both sides of the bipartite graphs.
However, since we only consider a relatively simple algorithm (known as Round
Robin in Sect. 5) for the continuous variant, it is simpler to treat the continuous
variant as the limiting behavior as m tends to infinity.

3 Hardness for the Adversary Side

In previous work [5], it is shown that there is a polynomial-time algorithm that
achieves a competitive ratio of strictly larger than 1

2 , even against an adver-
sary with unlimited computational power. To the best of our knowledge, the
complexity of the max-min greedy matching problem on the adversary side has
not been investigated. We show that the problem faced by the adversary side
is actually hard to approximate given some standard hardness assumption. Our
proofs borrow techniques that are used to achieve hardness results for the similar
minimum maximal matching problem [3]. We first define formally the problem
for the adversary side.

Adversarial Order (AO) Minimum Matching Problem. Given a bipartite
graph G = (U, V ;E) and an item permutation π ∈ S(V), the adversary returns a

90 T.-H. H. Chan et al.

player permutation σ ∈ S(U) that minimizes the size of the matching MG[σ;π].
The approximation ratio (which is at least 1) for the adversary is compared with
respect to the optimal minσ∈S(U) |MG[σ, π]|.

As in previous works [3,14], our inapproximability result is based on the
following hardness assumption.

Small Set Expansion (SSE) Hypothesis [16, Conjecture 1.3]. The edge
expansion of a set X of vertices in a graph G is defined as: |∂X|

|X| , where ∂X

denotes the subset of edges that have exactly one endpoint in X. The small set
expansion of a graph with n vertices is defined to be the minimum edge expansion
among its subsets of at most n

log2 n vertices. The small set expansion hypothesis
asserts that, for every ε > 0, it is NP-hard to distinguish for d-regular graphs
between the two cases of whether the small set expansion is at least (1 − ε)d, or
at most εd.

Similar to the minimum maximal matching problem [3], our reduction is also
from the decision version of the maximum balanced biclique (MBB) problem.

Fact 1 (Decisional MBB is SSE-Hard [3]). Assuming the SSE hypoth-
esis, for every ε > 0, it is NP-hard to distinguish, given a bipartite graph
G = (A,B;E), with |A| = |B|, between the following two cases:

– Yes case: ∃KA ⊂ A,KB ⊂ B, |KA| = |KB | = (12 − ε)n such that KA × KB ⊆
G. Namely, there is a balanced biclique in G with almost half of the vertices.

– No case: ∀KA ⊂ A,KB ⊂ B, KA = KB > ε|A| =⇒ ∃a ∈ KA, b ∈ KB,
(a, b) /∈ E(G). Namely, there is no balanced biclique with more than ε-fraction
of vertices.

The following inapproximability result is the main result of this section.

Theorem 1 (Hardness of AO Minimum Matching). The AO minimum
matching problem is NP-hard to approximate with ratio strictly smaller than 6

5
under the SSE hypothesis.

Following the proof strategy in [3], we show that if there exists a polynomial-
time algorithm for AO minimum matching problem with an approximation ratio
smaller than 6

5 , then we can use this algorithm to construct a randomized algo-
rithm that solves the MBB problem with a success probability greater than some
positive constant. This would imply that the MBB problem is in RP, which con-
tradicts Fact 1 under the SSE hypothesis.

3.1 Proof of Theorem 1: Reduction from the MBB Problem

Assuming that we have an adversary Adv that can approximate the AO minimum
matching problem with some small ratio ρ, we construct a randomized algorithm
ALG for the decisional MBB problem.

Given an instance G of the MBB problem, we first describe how to transform
it into an instance of the AO minimum matching problem.

Max-Min Greedy Matching Problem 91

Transformation from MBB to AO Minimum Matching. Let G =
(A,B;E) (together with the distinguishing parameter ε) be an instance of the
MBB problem. Our transformation will return a bipartite graph G′ together
with a collection S of item permutations.

Augmented Bipartite Graph. Suppose n = |A| = |B|. We use the same con-
struction of G′ as in [3, Section 7], where G′ := (A ∪ A′, B ∪ B′;E ∪ E′). The
construction takes the following steps.

1. Start from the complement bipartite graph of G, i.e., add the edge (a, b) ∈
A × B iff (a, b) /∈ E.

2. Add n(12 + ε) new vertices to each side, i.e., |A′| = |B′| = n(12 + ε).
3. Each newly added vertex is connected to all vertices (both old and new) on

the other side, i.e., E′ = (A′ × B) ∪ (A × B′) ∪ (A′ × B′).

Recall that in the AO minimum matching problem, A ∪ A′ are the players
and B ∪ B′ are the items.

Collection S of Item Permutations. Let πB′ be an arbitrary permutation of B′.
Let S = {πB′ ⊕ πB : πB ∈ S(B)}, i.e., the items in B′ have some highest fixed
priorities, followed by items in B arranged uniformly at random.

Randomized Algorithm ALG for MBB. We generate N = n2 independent
instances of AO minimum matching. Each instance uses the same augmented G′

and samples an item permutation uniformly at random from S. Instance i ∈ [N]
is passed to the adversary Adv that returns some player permutation, and let
Mi be the size of the corresponding matching. Define M := 1

N

∑
i∈[N] Mi. If

M < (32 − ε)n, ALG returns “yes”; otherwise, ALG returns “no”.
To complete the inapproximability proof, it suffices to consider the behavior

of ALG for “yes” and “no” instances G of MBB. For “no” instances, we can
readily use the result in [3, Lemma 25].

Fact 2 (No Instances of MBB). If G has no biclique Kεn,εn, every maximal
matching in G′ contains at least (32 − ε)n edges.

Lemma 1. If G has no biclique Kεn,εn, then ALG outputs “no” with probabil-
ity 1.

Proof. Observe that every player permutation returned by Adv will lead to a
maximal matching in G′. Hence, by Fact 2, for every instance i ∈ [N], Mi ≥
(32 − ε)n. This implies that M ≥ (32 − ε)n with probability 1. ��

For “yes” instances G of MBB, we show that ALG returns “yes” with
some constant probability. The idea is that if the adversary ideally knew a
Kn(1

2−ε),n(1
2−ε) biclique KA × KB in G, then it can return a player permuta-

tion such that the expected size of the resulting matching is small, where the
randomness is over the random item permutation sampled from S. However,
our polynomial-time adversary can only achieve some approximation ratio ρ,
which inflates the expectation of the ideal case by a factor of at most ρ. Finally,
the repetition with N independent instances allows us to use standard measure
concentration techniques to achieve a constant probability statement.

92 T.-H. H. Chan et al.

Lemma 2. If G has a Kn(1
2−ε),n(1

2−ε) biclique KA×KB, then in the transformed
instance G′ for AO minimum matching, if an item permutation is sampled uni-
formly from S, an (unbounded) adversary has a strategy such that the size M of
the resulting matching satisfies:

E[M] ≤ n(54 + 3ε − ε2).

Proof. Since the adversary is unbounded, we may assume that it knows the
players KA in the biclique. Then, the adversary picks a permutation of the form:
σ = (A − KA, A′,KA), which consists of three blocks. The first block includes
players in A − KA, the second block includes players in A′, and the third block
includes players in KA. The order of players within each block can be arbitrary.

Consider a permutation π sampled uniformly at random from S, i.e., the
(12+ε)n items in B′ have the highest priorities, followed by a random permutation
of the n items in B.

Observe that for the player permutation σ, the (12 + ε)n players in A − KA

will be matched to the items in B′. Then, the top (12 − ε)n items in B according
to π will be matched to the players in A′. Since KA and KB have no edges in G′,
any item in KB falling into the last (12 − ε)n positions will remain unmatched.
Observe that an item in KB falls into the last (12 − ε)n positions in π with
probability 1

2 − ε.
Hence, the expected number of such items is |KB | · (12 − ε). This implies that

the size M of the resulting matching has expectation E[M] ≤ n(32 + ε) − |KB | ·
(12 − ε) = n(54 + 3ε − ε2). ��
Lemma 3. Suppose an adversary Adv for AO minimum matching can achieve
approximation ratio ρ < 6

5 . For small enough ε > 0 and large enough n, if G
has a Kn(1

2−ε),n(1
2−ε) biclique, then ALG outputs “yes” with probability at least

1 − e−2.

Proof. Lemma 2 and the ρ-approximation of the adversary Adv implies that for
each instance i ∈ [N], the size Mi of the resulting matching has expectation
E[Mi] ≤ ρ · n(54 + 3ε − ε2).

Observe that it is guaranteed that all items in B′ will be matched. Hence, it
follows that with probability 1, Mi ∈ [(12 + ε)n, (32 + ε)n], which is an interval
of width n. By Hoeffding’s inequality, for any t > 0, we have

P (N · M − E[N · M] ≥ t) ≤ e− 2t2

Nn2 .

We pick t = n2 and N = n2. It suffices to check that if ρ < 6
5 , then for small

enough ε > 0 and large enough n, we have:
t
N + E[M] = 1 + ρ · n(54 + 3ε − ε2) < (32 − ε)n.
This implies that Pr[M < (32 − ε)n] ≥ 1 − e−2, as required. ��
Lemmas 1 and 3 together complete the proof of Theorem 1.

Max-Min Greedy Matching Problem 93

u1

u2

u3

v1

v2

v3

Fig. 1. The C6 Example

4 The Power of Fractional Permutations

In Sect. 2, we introduce the notion of (discrete) fractional permutations. A nat-
ural question is whether a party can gain some advantage if it uses a fractional
permutation instead of only an integral one. In this section, we investigate the
interplay between the algorithm and the adversary when one or both parties use
fractional permutations. Here is a summary of scenarios that we will consider.

– We use the simple C6 example as in [5] and consider the competitive ratio
when both parties use only integral permutations as the baseline.

– In the same example, if the algorithm is allowed to use a fractional permu-
tation, while the adversary must still use an integral permutation, we show
that the competitive ratio can strictly increase.

– However, we show that if the adversary is also allowed to use a fractional
permutation in this example, then it can cause a slightly lower competitive
ratio, but it is still larger than when both parties use integral permutations.

– Therefore, a natural question is whether a better competitive ratio can be
achieved when both sides use fractional permutations, as opposed to both
sides using integral permutations. Obviously, for some examples such as a
single edge, there is no difference.
The non-trivial result is that in general, allowing both parties to use frac-
tional permutations will not decrease the competitive ratio of the max-min
greedy matching problem, comparing to the case that both parties use inte-
gral permutations.
Another way to interpret this result is that if the algorithm only uses integral
permutations, then the adversary does not have an extra advantage to use
fractional permutations.

The C6 Example [5] in Fig. 1. The underlying bipartite graph is a cycle
with 6 vertices. The set of items is V = {v1, v2, v3} and the set of players is
U = {u1, u2, u3}. It is simple to analyze this graph because all items and all users
interact in a symmetric way. As noted in [5], all item permutations picked by
the algorithm are equivalent, and the adversary can always cause one item being
unmatched. For instance, if the algorithm picks π = (v1, v2, v3), the adversary
can pick σ = (u1, u3, u2) such that both u2 and v3 are left unmatched.

94 T.-H. H. Chan et al.

Fact 3 (Both Parties Use Integral Permutations). For C6, when both
parties act optimally using only integral permutations, the competitive ratio for
the max-min greedy problem is 2

3 .

Fractional Item Permutations. In this paper, we consider a special type of
fractional item permutations that is oblivious to the input graph structure.

Round-Robin Permutation. Recall that each vertex is divided into m atoms in
the fractional variant. A round-robin permutation consists of m blocks, where
each block is a permutation of n atoms derived from distinct vertices in the
original graph. Note that the permutation of the n atoms within each block can
be arbitrary. Note that when m is large, the choice of the permutation within
each block becomes less relevant.

Item Fractional-Player Integral. If we allow item permutation to be frac-
tional, but restrict player permutation to be integral, by Lemma 4, it’s possible
that the best item permutation can only be fractional.

Lemma 4 (Fractional Item Permutations vs Integral Player Permuta-
tions). For C6 with granularity parameter m which is a multiple of 4, if the
algorithm chooses a round-robin (fractional) item permutation, then any integral
player permutation chosen by the adversary will lead to a competitive ratio 11

12 .

Proof. Let m = 4k. Because of symmetry in C6, we can assume without loss of
generality that the adversary picks π = (u1, u2, u3). After all 4k atoms from u1

arrived, they are matched to 2k atoms from each of v1 and v2. When atoms from
u2 arrive, 3k of them are matched to atoms from v3, while k of them are matched
to atoms from v2. After all atoms from u3 arrived, 2k of them are matched to
atoms from v1, while k of them are matched to v3. Since at this point, all atoms
of v1 and v3 are fully matched. Therefore, k atoms from u3 left unmatched. Thus,
the resulting ratio is 11

12 . ��
Remark 1. For large enough m, even if it is not a multiple of 4, similar analysis
shows that the resulting ratio approaches 11

12 as m tends to infinity.

Both Parties Use Fractional Permutations. In the context of regular
graphs, the (discrete) fractional variant of C6 has been analyzed. We paraphrase
their result [5, Theorem 2] as follows.

Fact 4 (Adversary’s Strategy for C6 [5]). For C6, even if the algorithm is
allowed to use fractional item permutations, the adversary has a strategy to also
use fractional player permutations such that competitive ratio is at most 8

9 .

Lemma 5 demonstrates that the algorithm can use a round-robin item per-
mutation to achieve the competitive ratio 8

9 . Hence, for the fractional variant on
C6, we see that when both parties act optimally, the achieved competitive ratio
is 8

9 , which is strictly greater than 2
3 for the case when both parties may use

only integral permutations.

Max-Min Greedy Matching Problem 95

Lemma 5 (Round-Robin Item Permutation). For the graph C6 and some
large enough granularity parameter m, the algorithm can use a round-robin item
permutation to achieve competitive ratio 8

9 (no matter what fractional player
permutation the adversary chooses).

Proof. Suppose in the fractional variant, when the algorithm picks a round-
robin item permutation, there is some fractional player permutation such that
the competitive ratio is strictly less than 1.

Without loss of generality, suppose there is at least one player u1-atom that
is unmatched. Because the matching is maximal, this implies that all item v1-
and v2-atoms are matched, which means that only v3-atoms may be unmatched.
Furthermore, this implies that all player u2- and u3-atoms are matched. We
will restrict our attention to (fractional) player permutations that satisfy these
conditions.

For some player permutation, consider the moment just after the last player
u2- or u3-atom arrives. Observe that if β is the fraction of remaining unmatched
v3-atoms at this moment, they will always remain unmatched. Hence, the com-
petitive ratio is 1 − β

3 .
Hence, the idea is to make β as large as possible, i.e., when the last u2- or u3-

atom arrives, the fraction of matched v3-atoms should be as small as possible.
Since the algorithm uses a round-robin permutation, the adversary should keep
all player u1-atoms arriving at the end.

Moreover, since v3 is connected to both u2 and u3, a round-robin item per-
mutation implies that among the three items, the fraction of matched v3-atoms
is close to the maximum fraction for the other two types of item atoms. This
implies that to maximize the fraction β of unmatched v3-atoms, all three types
of item atoms should be matched for roughly the same fraction (to player u2-
and u3-atoms). Hence, it follows that β ≤ 1

3 + 1
m . When m is a multiple of 3,

β = 1
3 .

Hence, when m is large enough, the competitive ratio is at least 1 − β
3 ≥ 8

9 ,
as required. ��

4.1 Integral Item Permutation vs Fractional Player Permutation

Fact 3 and Lemma 4 together show that if the adversary only uses integral
player permutation, then it is possible for the algorithm to have an advantage
by using fractional item permutations. In this section, we show an interesting
result that the reverse is not true. In general, if the algorithm only uses integral
item permutations, then the adversary does not lose anything by also using only
integral player permutations. The formal description for this result is provided
in Theorem 2.

Theorem 2. In the fractional AO minimum matching problem, if the algorithm
picks an integral item permutation, then the adversary can act optimally using
also an integral player permutation.

96 T.-H. H. Chan et al.

Proof Overview of Theorem 2. We first construct a program P which is a
relaxation for the AO minimum matching problem (Lemma 6). Then, we show
in Lemma 7 that any integral solution of P corresponds to an integral player
permutation with exactly the same objective value.

Then, it suffices to show that P does not have an integrality gap. The main
idea of this step is similar to the proof of no integrality gap of LP relaxation P0 of
maximum bipartite matching problem: all extreme points are integral. However,
unlike P0, P is not a linear programming problem. Therefore, we need extra
steps to show that the feasible region R is closed and bounded in Lemma 8 and
P has an optimal solution which is also an extreme point of R in Lemma 9.
Then, the proof is completed by showing that any fractional solution is not an
extreme point in Lemma 10, because this implies that there is an integral optimal
solution to the program P . The main idea of this step is also similar to the proof
in P0: any non-integral solution can be written as a convex combination of two
other points in the feasible region. But the process to find these two points is
more sophisticated.

Program Relaxation P . We prove Theorem 2 with the help of a minimization
program P . Given any integral item permutation, we rename the items as V =
[n], where i < j means that item i has a higher priority than j to be matched. For
player u and item v, the variable xuv ∈ [0, 1] represents the fraction of u-atoms
that are matched to v-atoms.

min
∑

(u,v)∈E

xuv

s.t ∀(u, v) ∈ E,
∑

l

xlv < 1 =⇒
∑

s≤v

xus = 1 (1)

∀v ∈ V,
∑

l

xlv ≤ 1

∀u ∈ U,
∑

k

xuk ≤ 1

∀(u, v) ∈ E, xuv ≥ 0

The constraints for the program P consist of the usual matching constraints
for a bipartite graph, but with an extra condition (1) that essentially says that
if not all item v-atoms are matched, but there is a player u such that (u, v) ∈ E,
then it must be the case that all player u-atoms are matched to item atoms with
priorities higher or equal to v. This immediately implies that P is a relaxation
of the AO minimum matching problem. However, note that because of the extra
constraint, P is not exactly an LP.

Lemma 6 (Program Relaxation). Any fractional player permutation corre-
sponds to a feasible fractional solution to the program P , whose objective equals
the resulting weight of the matching.

Max-Min Greedy Matching Problem 97

Proof. For any fractional player permutation, consider the greedy matching pro-
cedure in which for any (u, v) ∈ E in the original graph, xuv is the fraction of
player u-atoms matched to item v-atoms. The objective is exactly the weight of
the (fractional) matching.

Then, it is clear that the variables x satisfy the usual matching constraints.
Moreover, the above discussion states that x must also satisfy constraint (1).
This is because if (u, v) ∈ E and

∑
l xlv < 1, then some item v-atom is not

matched. By the max-min greedy matching property, all player u-atoms must
be fully matched. Additionally, since there are some available item v-atoms left
unmatched, no player u-atom can match to any item atom derived from an item
with lower priority than v. ��

In general, it is not clear if every feasible solution of the program P would
correspond to a (fractional) player permutation. However, we can show that
every integral feasible solution corresponds to an integral player permutation.

Lemma 7 (Integral Feasible Solution). For any integral solution x of P ,
there is some integral player permutation that produces a matching that agrees
with x.

Proof. We construct a player permutation σ based the feasible integral solution
x. Since x is an integral solution that is feasible, x corresponds to an integral
matching M between items and players. Constraint (1) implies that the match-
ing M is maximal

In σ, we let matched players have the highest priorities. The priorities among
matched players are resolved by the priorities of the corresponding matched
items, i.e., a player matched to an item with higher priority will have a higher
priority in σ. Unmatched players have the lowest priorities and can be arranged
arbitrarily in σ.

Then, it follows that if players arrive according to σ, then the matching M
will be produced. ��

Proof of Theorem 2. In view of Lemmas 6 and 7, it suffices to show that
there exists an integral optimal solution to program P . This is achieved in the
following two steps.

1. An optimal solution can be attained by an extreme point of the collection R
of feasible solutions. Recall that an extreme point of R is one that cannot be
expressed as a convex combination of two other different points in R.

2. Only integral solutions can be extreme points of R.

Lemma 8 (Feasible Region is Closed and Bounded). The feasible region
R of program P is closed and bounded.

Proof. The matching constraints show that any feasible x must satisfy ‖x‖∞ ≤ 1.
Hence, the feasible region R is bounded.

98 T.-H. H. Chan et al.

Next, it suffices to check that R is closed. Consider an arbitrary sequence
{x(n)} in R that converges to y, i.e., for all (u, v) ∈ E, limn→∞ x

(n)
uv = yuv. We

check that y is a feasible solution to P .
By the property of limits, it is immediate that y satisfies the matching

constraints. We next check that y satisfies the constraint (1). Consider any
(u, v) ∈ E. If

∑
l ylv = 1, then there is nothing more to check; hence, we consider

the case that
∑

l ylv < 1.
By the property of limits, there exists some N such that for all n ≥ N ,

∑
l x

(n)
lv < 1, which implies that

∑
s≤v x

(n)
us = 1, since x(n) is feasible. Hence, as

n tends to infinity, we have
∑

s≤v yus = 1. Therefore, y is also a feasible solution.
Hence, the feasible region R is closed. ��

Lemma 9 (Existence of Optimal Solution that is an Extreme Point).
The program P has an optimal solution that is an extreme point.

Proof. Consider the hyperplane H such that the objective value of P equals the
optimal value. By Lemma 8, the feasible region R is closed and bounded. Hence,
the collection R ∩ H of optimal solutions is also closed and bounded. Since the
�2-norm is a continuous function, let c ∈ R ∩ H be an optimal solution with the
maximum �2 norm.

We show that c is an extreme point of R. Otherwise, there exists distinct
a, b ∈ R such that all three points {a, b, c} are distinct and c = λ · a + (1 − λ) · b
for some 0 < λ < 1.

Because the objective function of P is linear, the optimality of c and the
feasibility of both a and b imply that both a and b are in R ∩ H.

However, since the �2-norm is a strongly convex function, it follows that
either a or b has a strictly larger �2-norm than c. In other words, when there
are three distinct points on a straight line, only one of the two extreme points
can have maximum �2-norm among the three points. Hence, we have reached a
contradiction. ��
Lemma 10 (Only Integral Solutions Can be Extreme Points). Any
(strictly) fractional solution x of P is not an extreme point of the feasible region
R.

Proof. A strictly fractional solution x is one such that there is some (u, v) ∈ E
such that 0 < xuv < 1. In this case, we show that it is possible to create
two distinct different feasible points, denoted as x+ and x−, such that x =
1
2 (x+ + x−). The process for constructing these points is outlined as follows.

We say that an edge (u, v) is fractional if 0 < xuv < 1. Define Gx to be the
collection of these fractional edges. We say a vertex w is saturated if it is fully
matched in x, i.e., its weighted degree with respect to x is 1.

There are two possible cases for Gx. Either there exists a cycle C ⊆ Gx (case
1), or there’s no cycle (case 2).

1. Case 1: there exists a cycle C ⊆ Gx. Let a and b be the minimum
and maximum values of xe for e ∈ C, respectively. Define ε ≤ 1

2 · min(1 −

Max-Min Greedy Matching Problem 99

b, a). Obtain a new (fractional) matching x+ from x by alternatively adding
and subtracting ε from weights on edges along C. By performing the same
operations on x but reverse additions and subtractions, we obtain x−.
Now we argue that x+ is still feasible. A similar argument can be used to
demonstrate the feasibility of x−. Observe that the following features do not
change as the solution changes from x to x+.

– The weighted degree of every vertex does not change.
– The fractional set Gx of edges does not change. Integral edges in x also

have the same value for x+.
In particular, this means that if the weighted degree for a vertex is due to
non-zero weights in x for a subset F of edges, then its weighted degree in x+

is also derived from exactly F .
Hence, all constraints in P are still satisfied.

2. Case 2: there’s no cycle in Gx. Since Gx contains at least one edge, let
Q ∈ Gx be a maximal path in Gx. Let s1, s2 be the two end points of Q.
Note that s1 and s2 must be non-saturated as otherwise, Q is not maximal.
Moreover, because of constraint (1), both s1 and s2 must be item vertices.
Define a, b in the same way as in case 1. Let c =

∑
l xs1l, d =

∑
l xs2l. Define

ε = 1
2 · min(1 − b, a, c, d, 1 − c, 1 − d). Obtain x+ and x− similarly as case 1.

Note that apart from the weighted degree of s1 or s2, all other quantities
remain unchanged as in case 1. However, observe that even if the weighted
degree of these two vertices may change, they will remain strictly fractional.
Hence, no constraint in P can be violated.
Therefore, we can conclude that both x+ and x− are feasible.

For both cases, since we can construct two feasible points x+ and x− such
that x = 1

2 (x+ + x−). Therefore, x is not an extreme point. ��

5 Tight Analysis of the Fractional Round-Robin
Algorithm

In Sect. 4, we showed in Lemma 4 that for some graphs, the algorithm can
achieve a strictly larger competitive ratio by using fractional item permutations.
Specifically, the round-robin algorithm uses a fractional item permutation that
is oblivious to the input graph. In this section, we will give a tight analysis for
the round-robin algorithm.

Theorem 3. For any input bipartite graph G, when the granularity parameter m
is large enough, the round-robin algorithm achieves competitive ratio approaching
1 − 1

e .

Proof. To prove the lemma, we assign a price to each atom of the items to
facilitate our analysis. Note that this assignment of prices can result in a (possibly
fractional) permutation of the items where a smaller price corresponds to a higher
priority.

100 T.-H. H. Chan et al.

Regarding the matching between an item atom a and a player atom b, we
define the contribution of a to be its price divided by m, which is equal to
pa

m . Similarly, we define the contribution of b to be 1−pa

m . Then, the size of the
resulting matching is the sum of the contributions of all atoms.

Let M be a maximum matching of G. To further investigate the matching,
we analyze the total contribution R of all atoms of an item v and its partner in
M .

Assume that for an item v ∈ V , all of its m atoms are priced from the
smallest to the largest as p1, p2, . . . , pm. Suppose among these m atoms, the first
i of them are matched, corresponding respectively to the prices p1, p2, . . . , pi. It
holds that R ≥ 1 − pi+1 +

∑i
s=1 ps · 1

m , where we let pm+1 = 1.
Let f(x) be a function such that f(s

m) = ps. Then, let t = i+1
m . For a large

number m, the expression 1 − pi+1 +
∑i

s=1 ps · 1
m is approximately equal to

1 − f(t) +
∫ t

0
f(x)dx.

When we choose the function f(x) = ex−1, it follows that 1 − f(t) +
∫ t

0
f(x)dx = 1 − 1

e . Thus, we have shown that R ≥ 1 − 1
e . ��

In the proof of Theorem 4, we give a construction of regular graphs for which
the performance of the round-robin algorithm is tight.

Theorem 4. There exists a class of regular bipartite graphs such that when the
granularity parameter m is large enough, the adversary has a strategy against
the round-robin algorithm to achieve a competitive ratio approaching 1 − 1

e .

Proof. To prove the theorem, we will construct a regular graph G with an integral
player permutation π such that if the item permutation is round-robin, the player
permutation yields a ratio of approximately 1− 1

e . G is a d-regular graph with n
items that are divisible by d, with k = n

d , and where d is divisible by an integer t

with z = d
t . Since π is integral, we will indicate the set of items with which each

player connects in player’s arrival order in π to describe G and π. Lastly, we will
show that when z and k are large, the competitive ratio is approximately 1 − 1

e .
The set of items is divided into k groups with a size of d items per group,

and each group of items is further partitioned into z subgroups with a size of t
items per subgroup. We will index each subgroup arbitrarily as α1, α2, . . . , αkz.
Then the ith group of items is

⋃z
j=1 α(i−1)z+j .

The player permutation π consists of k consecutive blocks of players, and we
will specify each block in descending priority order, starting with the highest.

We will use μ� and h to describe the players, defining them as follows:

μ� =

{
z

k(z−1)+1 , � = 1
z

(k−(�−1))(z−1)+1 · ∏�−2
i=0

(k−i)(z−1)
(k−i)(z−1)+1 , � ≥ 2

h is the largest integer such that
∑h

i=1 μi ≤ 1. Additionally, t should be such
that t · μ� is an integer for all 1 ≤ � ≤ h. Given that μ� is a rational number,
such a t exists.

Max-Min Greedy Matching Problem 101

The �th Block

– 1 ≤ � ≤ h. The block starts with t · μ� · z identical players, each of whom is
incident to all items in the �th group of items.
The set of all subsets of the �th group that contain z −1 subgroups (of items)
can be arbitrarily indexed as {s1, s2, . . . , sz}. There are then (k − �) · z sub-
blocks of players that will arrive, each consisting of t ·μ� players. Each player
in the ith sub-block likes all items in simod z ∪ αi.
After all players in the �th block have arrived, note that the degree of all
items in the �th group is d. Additionally, for groups (of items) with an index
≥ �, the proportion of items that have been matched, denoted as xv, is equal
to

∑�
i=1 μi.

– h < � ≤ k. After the arrival of the hth block of players, every item in a group
(of items) with an index of ≤ h has a degree of d.
For the �th block of players, t · (z − ∑h

i=1 μi) players arrive, each liking all
the items in the �th group. Once all players in the �th block have arrived, all
the items in the �th group will have a degree of d. As a result, the resulting
graph will be d-regular.

Now that we have finished describing the graph G and player permutation
π, we will show that if the item permutation is round-robin, then π yields an
approximate ratio of 1 − 1

e for graph G.

Competitive Ratio Analysis
By the definition of h, μh+1 +

∑h
i=1 μi > 1, while

∑h
i=1 μi ≤ 1.

μh+1 =
z

(k − h)(z − 1) + 1
·

h−1∏

i=0

(k − i)(z − 1)
(k − i)(z − 1) + 1

=
z

(k − h)(z − 1) + 1
·

k∏

j=k−h+1

j(z − 1)
j(z − 1) + 1

=
z

(k − h)(z − 1) + 1
·

k∏

j=k−h+1

1 − 1
j(z − 1) + 1

Take ln on both sides:

ln(μh+1) = ln(
z

(k − h)(z − 1) + 1
) +

k∑

j=k−h+1

ln(1 − 1
j(z − 1) + 1

)

102 T.-H. H. Chan et al.

When k → ∞, z → ∞:

lim
z,k→∞

ln(µh+1) = lim
z→∞

ln(
1 + 1

(z−1)

(k − h) + 1
(z−1)

) +
k∑

j=k−h+1

lim
z→∞

ln(1 − 1

j(z − 1) + 1
)

= ln(
1

k − h
) −

k∑

j=k−h+1

1

j(z − 1) + 1

= ln(
1

k − h
) − 1

(z − 1)
·

k∑

j=k−h+1

lim
z→∞

1

j + 1
(z−1)

= ln(
1

k − h
) − 1

(z − 1)
·

k∑

j=k−h+1

1

j

= ln(
1

k − h
) − 1

(z − 1)
· lim
k→∞

k∑

j=k−h+1

1
j
k

· 1

k

= ln(
1

k − h
) − 1

(z − 1)
·
∫ 1

1− h
k

1

x
dx

= ln(
1

k − h
) − 1

(z − 1)
· ln(

k

k − h
)

= ln(
1

k − h
· (

k − h

k
)

1
(z−1)) =⇒

lim
z,k→∞

µh+1 =
1

k − h
· (

k − h

k
)

1
(z−1)

Let’s now analyze the relationship between h and k. Define ρ� = z−∑�−1
i=1 μ�.

It can be proved by induction that:

ρ� =

⎧
⎪⎪⎨

⎪⎪⎩

z, � = 1

z ·
�−2∏

i=0

(k − i)(z − 1)
(k − i)(z − 1) + 1

, � ≥ 2

Using similar argument as above we can show that limz,k→∞ ρh+1 = z ·
e− 1

z−1 ·ln(k
k−h).

If we assume that h
k = ε where 0 < ε < 1. Then limz,k→∞ μh+1 =

limz,k→∞ 1
(1−ε)k · 1 = 0, which implies that limz,k→∞

∑h
i=1 μi = 1. Since

ρh+1 = z − ∑h
i=1 μi, therefore, it holds that:

lim
z,k→∞

ρh+1

z
= 1 − 1

z
= e− 1

z−1 ·log(k
k−h)

=⇒ lim
z,k→∞

1
z

=
1

z − 1
· log(

k

k − h
) =⇒ log(

k

k − h
) = lim

z→∞
z − 1

z
= 1

=⇒ k

k − h
= e

Max-Min Greedy Matching Problem 103

This implies that ε = 1− 1
e , which does not contradict our assumption. Since

after the hth iteration, all groups of items with index > h will not be matched.
Therefore, the competitive ratio is:

lim
z,k→∞

1 − (z − 1)t(k − h − 1)
zkt

= 1 − k − h

k
= 1 − 1

e

��

References

1. Borodin, A., Karavasilis, C., Pankratov, D.: An experimental study of algorithms
for online bipartite matching. J. Exp. Algorithmics (JEA) 25, 1–37 (2020)

2. Cohen, I.R., Wajc, D.: Randomized online matching in regular graphs. In: Proceed-
ings of the Twenty-Ninth Annual ACM-SIAM Symposium on Discrete Algorithms,
pp. 960–979. SIAM (2018)

3. Dudycz, S., Lewandowski, M., Marcinkowski, J.: Tight approximation ratio for
minimum maximal matching. In: Lodi, A., Nagarajan, V. (eds.) IPCO 2019. LNCS,
vol. 11480, pp. 181–193. Springer, Cham (2019). https://doi.org/10.1007/978-3-
030-17953-3 14

4. Dutting, P., Feldman, M., Kesselheim, T., Lucier, B.: Prophet inequalities made
easy: stochastic optimization by pricing nonstochastic inputs. SIAM J. Comput.
49(3), 540–582 (2020)

5. Eden, A., Feige, U., Feldman, M.: Max-min greedy matching. Theory Com-
put. 18(6), 1–33 (2022). https://doi.org/10.4086/toc.2022.v018a006, https://
theoryofcomputing.org/articles/v018a006

6. Ezra, T., Feldman, M., Roughgarden, T., Suksompong, W.: Pricing multi-unit
markets. ACM Trans. Econ. Comput. (TEAC) 7(4), 1–29 (2020)

7. Feldman, M., Gravin, N., Lucier, B.: Combinatorial auctions via posted prices.
In: Proceedings of the Twenty-Sixth Annual ACM-SIAM Symposium on Discrete
Algorithms, pp. 123–135. SIAM (2014)

8. Goel, G., Mehta, A.: Online budgeted matching in random input models with
applications to adwords. In: SODA, vol. 8, pp. 982–991 (2008)

9. Karande, C., Mehta, A., Tripathi, P.: Online bipartite matching with unknown
distributions. In: Proceedings of the Forty-Third Annual ACM Symposium on
Theory of Computing, pp. 587–596 (2011)

10. Karp, R.M., Vazirani, U.V., Vazirani, V.V.: An optimal algorithm for on-line bipar-
tite matching. In: Proceedings of the Twenty-Second Annual ACM Symposium on
Theory of Computing, pp. 352–358 (1990)

11. Lucier, B.: An economic view of prophet inequalities. ACM SIGecom Exchanges
16(1), 24–47 (2017)

12. Mahdian, M., Yan, Q.: Online bipartite matching with random arrivals: an app-
roach based on strongly factor-revealing LPS. In: Proceedings of the Forty-Third
Annual ACM Symposium on Theory of Computing, pp. 597–606 (2011)

13. Manshadi, V.H., Gharan, S.O., Saberi, A.: Online stochastic matching: online
actions based on offline statistics. Math. Oper. Res. 37(4), 559–573 (2012)

14. Manurangsi, P.: Inapproximability of maximum biclique problems, minimum k-cut
and densest at-least-k-subgraph from the small set expansion hypothesis. Algo-
rithms 11(1), 10 (2018). https://doi.org/10.3390/a11010010

https://doi.org/10.1007/978-3-030-17953-3_14
https://doi.org/10.1007/978-3-030-17953-3_14
https://doi.org/10.4086/toc.2022.v018a006
https://theoryofcomputing.org/articles/v018a006
https://theoryofcomputing.org/articles/v018a006
https://doi.org/10.3390/a11010010

104 T.-H. H. Chan et al.

15. Mehta, A., et al.: Online matching and ad allocation. Found. Trends R© Theor.
Comput. Sci. 8(4), 265–368 (2013)

16. Raghavendra, P., Steurer, D.: Graph expansion and the unique games conjecture.
In: Proceedings of the Forty-Second ACM Symposium on Theory of Computing,
pp. 755–764 (2010)

Approximate Core Allocations for Edge
Cover Games

Tianhang Lu , Han Xiao(B) , and Qizhi Fang

School of Mathematical Sciences, Ocean University of China, Qingdao, China
tlu@stu.ouc.edu.cn, {hxiao,qfang}@ouc.edu.cn

Abstract. Edge cover games are cooperative cost games arising from
edge cover problems, where each player controls a vertex and the cost of
a coalition is the minimum weight of edge covers in the subgraph induced
by the coalition. In this paper, we study the approximate core for edge
cover games. We show that the ratio of approximate core depends on
the shortest odd cycle of underlying graphs and the 3

4
-core is always

non-empty. We also show that the approximate ratio 3
4

is tight, since
it coincides with the integrality gap of the natural LP for edge cover
problems.

Keywords: Edge cover game · approximate core · linear program
duality · integrality gap

1 Introduction

Game theory studies the decision-making of rational, self-interested agents in
strategic environments [22]. Cooperative game theory is the branch of game the-
ory which studies situations where players are able to making binding agreements
about the distribution of payoffs outside the rules of the game [24]. One central
problem in cooperative game theory is to distribute the total cost of coopera-
tion to its participants. There are many criteria for evaluating allocations [3,24],
such as stability, fairness, and satisfaction. Emphases on different criteria lead to
different allocations, e.g., the core, the stable set, the Shapley value, the nucleon
and the nucleolus.

The core [12], which addresses the issue of stability, is one of the most attrac-
tive solution concepts in cooperative game theory. The allocations in core are
stable in the sense that no subset of players has an incentive to deviate from
the grand coalition. The approximate core, which is introduced by Faigle and
Kern [9], provides an alternative solution for stability. Unlike the core which
can be empty, it offers an approximation to the core and is always existent,
as long as the approximation ratio is bad enough. Moreover, the approximate

This work is supported in part by the National Natural Science Foundation of China
(Nos. 12001507, 11871442, 11971447 and 12171444) and Natural Science Foundation of
Shandong (No. ZR2020QA024).

c© Springer Nature Switzerland AG 2023
M. Li et al. (Eds.): IJTCS-FAW 2023, LNCS 13933, pp. 105–115, 2023.
https://doi.org/10.1007/978-3-031-39344-0_8

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-39344-0_8&domain=pdf
http://orcid.org/0009-0001-8137-8149
http://orcid.org/0000-0002-7893-4028
https://doi.org/10.1007/978-3-031-39344-0_8

106 T. Lu et al.

core captures a wider range of solution concepts compared to the core, and it
eventually reduces to the core when the approximation ratio equals one. In the
study of approximate core, a central problem is to determine the best ratio so
that the approximation to the core is as close as possible. This problem has
been widely discussed for a number of cooperative games, such as matching
games [9,28,30], TSP games [8,25,27], bin packing games [10,17,26] and facility
location games [13,19].

Edge cover games was first studied by Deng et al. [6] to model the cost
allocation problem arising from edge cover problems. From Gallai’s Theorem,
the core of edge cover game can be represented by the core of matching games.
In this sense, the core of the edge cover game may be empty by using of the
fact that the core of the matching games may be empty. On the other hand, the
convex of the core can not be represented by the set of maximum independent
sets on the underlying graph.

In another work, Liu and Fang [20] studied a variant of edge cover games
and provided a complete characterization for the core and a sufficient condition
for verifying the non-emptiness of the core. In a follow-up work, Kim [18] stud-
ied rigid fractional edge cover games and its relaxed games. They showed that
a characterization of the cores of both games and found relationships between
them. Park et al. [23] also studied different variants of edge cover games, includ-
ing rigid k-edge cover games and its relaxed games. They gave a characterization
of the cores of both games, found relationships between them, and gave necessary
and sufficient conditions for the balancedness of both of them.

In this work, we study edge cover games and present a characterization for the
approximate core by employing the integrality gap of the underlying problem.
Our analysis demonstrates that the best ratio of the approximate core is upper
bounded by the reciprocal of integrality gap. Consequently, the most promising
ratio for guaranteeing the non-emptiness of approximate core in edge cover games
is 3

4 . Additionally, we illustrate that it is always feasible to construct an allocation
in the 3

4 -core of edge cover games efficiently.
The rest of this work is organized as follows. In Sect. 2, some notions and

notations used in this paper are introduced. Section 3 is devoted to a character-
ization for the approximate core of edge cover games with the integrality gap.
Section 4 gives the concluding remark and some possible future research for the
edge cover games.

2 Preliminaries

A cooperative cost game Γ (N, c) consists of a player set N = {1, 2, . . . , n} and
a characteristic function c : 2N → R, where for each coalition S ⊆ N , c(S)
represents the cost incurred by the players in S. The core of the game Γ (N, c)
is the set of vectors a ∈ R

|N |
+ satisfying:

a(S) ≤ c(S) for all S ⊆ N,

a(N) = c(N).
(1)

Approximate Core Allocations for Edge Cover Games 107

where a(S) =
∑

i∈S ai. We say a vector a ∈ R
|N |
+ satisfies the core property if

a(S) ≤ c(S) for any S ⊆ N . Given 0 ≤ α ≤ 1, the α-core of the game Γ (N, c) is
the set of vectors a ∈ R

|N |
+ satisfying:

a(S) ≤ c(S) for all S ⊆ N,

a(N) ≥ αc(N).
(2)

A vector in the α-core guarantees that no coalition will cost more than the cost
it makes on its own, and the total cost of that allocation is at least α times of
the cost of all players. It is appealing to find the largest value α guaranteeing
the α-core being non-empty. When the core is non-empty, the core is precisely
the α-core for α = 1.

Let G = (V,E) be an undirected graph with vertices set V and edges set E.
For any non-empty set U ⊆ E, the induced subgraph on U , denoted by G[U],
is a subgraph of G with edges in U . For any vertex subset S ⊆ V , δ(S) denotes
the set of edges incident to exactly one vertex in S. If S contains a single vertex
v, we use δ({v}) as an abbreviation for δ(v).

An edge cover of G is a set of edges K ⊆ E such that δ(v) ∩ K �= ∅ for any
v ∈ V . Given a non-negative weight function w on E that assigns a cost to each
edge, the minimum weight edge cover problem aims to find an edge cover such
that the total weight of edges is minimized. The value of a minimum weight edge
cover, denoted by γ(G,w), is called the weighted edge cover number.

Edge cover games study how to allocate the total cost of the edge cover
among all players. More precisely, ΓG(V, c) is the edge cover game defined on
an edge-weighted graph G = (V,E;w). The player set of ΓG(V, c) consists of
the vertices in V . For any coalition S ⊆ V , the cost function c : 2V → R+ is
defined by the minimum weight of edge set covering S. In other words, c(S) =
γ(G[E[S] ∪ δ(S)], w) where E[S] denotes set of edges that both endpoints are
contained in S.

3 The Approximate Core of Edge Cover Games

It is showed that the core of an edge cover game is non-empty if and only if
there is no integrality gap for the underlying problem [6]. It turns out that the
approximate core of edge cover games also admits a characterization with the
integrality gap of the underlying problem. Moreover, the largest ratio guarantee-
ing the approximate core being non-empty is upper bounded by the reciprocal
of integrality gap. Hence the problem of finding the largest ratio for the approxi-
mate core boils down to computing the integrality gap. This section is threefold.
Subsection 3.1 shows how to compute an optimal half-integral edge cover. Sub-
section 3.2 utilizes the fractional edge cover computed in Subsect. 3.1 to prove
the integrality gap of edge cover problems. Subsection 3.3 uses the integrality
gap of edge cover problems to characterize the approximate core of edge cover
games.

108 T. Lu et al.

3.1 Computing an Optimal Half-Integral Edge Cover

To compute the integrality gap of edge cover problems, we resort to a class
of special fractional edge covers, the optimal half-integral edge covers. We show
that an optimal half-integral edge cover can always be found efficiently. Formally,
a vector x is called half-integral if 2x is integral.

The following linear program (3) captures the minimum weight edge cover
problem on G = (V,E;w) by restricting variables to 0 and 1.

minimize
∑

e∈E

wexe (3a)

subject to
∑

e∈δ(v)

xe ≥ 1 v ∈ V, (3b)

xe ≥ 0 e ∈ E. (3c)

A feasible solution to LP (3) is called a fractional edge cover in G. An optimal
solution to LP (3) is called a minimum fractional edge cover in G. In the case
of bipartite graphs, the weight of minimum fractional edge cover has the same
value as weighted edge cover number γ(G,w).

Lemma 1 (Schrijver [1]). If G is a bipartite graph, then LP (3) has an integral
optimal solution.

In the following, we show how to obtain an optimal fractional solution to
LP (3) that is half-integral. We employ the technique of edge doubling proposed
by Nemhauser and Trotter [21], whereby we create two copies of the vertex
set V , denoted as V ′ and V ′′, such that each vertex v ∈ V corresponds to
v′ ∈ V ′ and v′′ ∈ V ′′. Next, we construct the graph G′ = (V ′ ∪ V ′′, E′), where
E′ = {u′v′′|uv ∈ E} ∪ {u′′v′|uv ∈ E}, and assign weight wuv to each of edges
u′v′′ ∈ E′ and u′′v′ ∈ E′. Since G′ is bipartite, it is possible to efficiently compute
a minimum edge cover of G′, denoted as F . We set x = 1F , meaning that xe = 1
if e ∈ F and xe = 0 otherwise.

Define x∗ from x by

x∗
uv =

1
2

(xu′v′′ + xu′′v′) for all uv ∈ E. (4)

The following lemma shows that x∗ defined in (4) is an optimal half-integral
edge cover of G.

Lemma 2. x∗ is an optimal fractional edge cover of G.

Proof. We first show that x∗ is feasible for LP (3). For any vertex v ∈ V , we
have

∑

uv∈δ(v)
x∗

uv =
1
2

∑

u′′v′∈δ(v′)
xu′′v′ +

1
2

∑

u′v′′∈δ(v′′)
xu′v′′ ≥ 1, (5)

Approximate Core Allocations for Edge Cover Games 109

which implies the feasibility of x∗. If x∗ is not an optimal half-integral edge
cover in G, there will be an optimal fractional edge cover z in G such that∑

e∈E weze <
∑

e∈E wex
∗
e. Then, we define a feasible edge cover z in G′:

zu′v′′ = zu′′v′ = zvu for all uv ∈ E. (6)

This reduction get feasible of z and we have

2
∑

e∈E

wex
∗
e =

∑

u′v′′∈E′ wuvxu′v′′ +
∑

u′′v′∈E′ wuvxu′′v′

≤
∑

u′v′′∈E′ wuvzu′v′′ +
∑

u′′v′∈E′ wuvzu′′v′

= 2
∑

e∈E

weze

(7)

which contradicts with the assumption
∑

e∈E weze <
∑

e∈E wex
∗
e. ��

We can adjust the half-integral edge cover in the Lemma 2 so that the sub-
graph induced by fractional components of x∗ can be decomposed into vertex-
disjoint odd cycles. This can be achieved by rounding x∗ iteratively.

Lemma 3. There exists an optimal half-integral edge cover x̃ such the subgraph
induced by fractional components of x̃ can be decomposed into vertex-disjoint odd
cycles.

Proof. Initially, We set x̃ equal to x∗ and describe a procedure that generates
another optimal solution with strictly more integer coordinates than x̃. Let H
be the subgraph of G induced by the set of edges {e ∈ E|x̃e = 1

2}. First, We
round x̃ to eliminate all of paths and even cycles in H.

Let P = v1v2 . . . vk be the longest path in H. Note that if e is an edge incident
to v1 and different from v1v2, then xe �= 1

2 ; otherwise, H would contain either
a cycle or a longer path. Therefore, the edge v1v2 is the only edge connected to
v1 that has a half-integral value on x̃. As x̃ is feasible for LP (3), at least one
edge incident to v1 has a value of 1 in x̃. Thus we have x̃(δ(v1)) ≥ 3

2 . Likewise,
we can deduce that x̃(δ(vk)) ≥ 3

2 . Define x′ and x′′ as follows:

x′
e =

⎧
⎪⎨

⎪⎩

x̃e − 1
2 , if e = vivi+1, 1 ≤ i ≤ k − 1 and i is odd,

x̃e + 1
2 , if e = vivi+1, 1 ≤ i ≤ k − 1 and i is even,

x̃e, if e /∈ E(P),

and

x′′
e =

⎧
⎪⎨

⎪⎩

x̃e + 1
2 , if e = vivi+1, 1 ≤ i ≤ k − 1 and i is odd,

x̃e − 1
2 , if e = vivi+1, 1 ≤ i ≤ k − 1 and i is even,

x̃e, if e /∈ E(P).

There are two admissible solutions to LP (3). Moreover,

∑

e∈E

wex̃e =
1
2

(
∑

e∈E

wex
′
e +

∑

e∈E

wex
′′
e

)

110 T. Lu et al.

Vectors x′ and x′′ have integer coordinates in P , and share the same coordinates
with x̃ on the other edges. As x̃ is an optimal fractional edge cover, x′ and x′′

are also optimal solutions.
For any even cycle C = v1v2 . . . vk in H with v1 = vk, we can use similar

method to round x̃. Define x′ and x′′ as follows:

x′
e =

⎧
⎪⎨

⎪⎩

x̃e − 1
2 , if e = vivi+1, 1 ≤ i ≤ k − 1 and i is odd,

x̃e + 1
2 , if e = vivi+1, 1 ≤ i ≤ k − 1 and i is even,

x̃e, if e /∈ E(C),

and

x′′
e =

⎧
⎪⎨

⎪⎩

x̃e + 1
2 , if e = vivi+1, 1 ≤ i ≤ k − 1 and i is odd,

x̃e − 1
2 , if e = vivi+1, 1 ≤ i ≤ k − 1 and i is even,

x̃e, if e /∈ E(C).

There are two admissible solutions to LP (3). Moreover,

∑

e∈E

wex̃e =
1
2

(
∑

e∈E

wex
′
e +

∑

e∈E

wex
′′
e

)

Thus x′ and x′′ are also optimal solutions, have integer coordinates in C and
share the same coordinates with x̃ on the other edges.

We continue this process until H does not contain any path or even cycle.
Next, we proof that any two odd cycles in H are vertex-disjoint. If two odd
cycles in H are vertex-disjoint but not edge-disjoint, we can combine them into
an even cycle and then round it. Therefore, to prove that any two odd cycles
are vertex-disjoint, it is sufficient to show that they are edge-disjoint. Suppose
that H contains two cycles C1 and C2. Let P = v1v2 . . . vk be the longest path
belong to C1 ∩ C2. We use the same method to obtain two vectors x′ and x′′

which have integer coordinates on P . Then, we can replace x̃ by x′ or x′′ and
continue this procedure until any two odd cycles in H are edge-disjoint. ��

3.2 Integrality Gap of Edge Cover Problems

This subsection studies the integrality gap of edge cover problems which will
be used in characterizing the approximate core for edge cover games. The edge
cover polytope of G, denoted by IP(G), is the convex hull of incidence vectors of
all edge covers of G. The fractional edge cover polytope of G, denoted by P(G), is
the convex hull of all fractional edge covers of G. It follows that P(G) is precisely
the polytope defined by constraints (3b) and (3c). According to Edmonds [7],
IP(G) can be described by P(G) after imposing the following odd set constraints:

x(E[U] ∪ δ(U)) ≥ 1
2
|U |� for all U ⊆ V, |U | odd. (8)

The integrality gap of the edge cover problem on G, denoted by ρ(G), is
defined by

ρ(G) = max
w:R|E|→R+

min{wx : x ∈ IP(G)}
min{wx : x ∈ P(G)} . (9)

Approximate Core Allocations for Edge Cover Games 111

We have the following result for ρ(G).

Theorem 1. Let G = (V,E) be a graph. Then, ρ(G) = 1 + 1
�(G) , where �(G)

is the length of the shortest odd cycle in G. Moreover, if G is bipartite, then
ρ(G) = 1.

Proof. We employ the result of Carr and Vempala [5]. A dominant D(P) of a
polyhedron P ⊆ R

n is the set of points y ∈ R
n which dominates some vector

x ∈ P , i.e., D(P) = {y ∈ R
n : ∃x ∈ P, y ≥ x}.

Lemma 4 (Carr and Vempala [5]). Given a polyhedron P and its convex
hull of the integer points Z, the integrality gap of the linear programming on P
is r if and only if r ≥ 1 is the smallest real number such that for any point x∗

of P , rx∗ ∈ D(Z).

If G is bipartite, ρ(G) = 1 follows from Lemma 1 directly. Hence we assume
that G is non-bipartite.

We first show that ρ(G) ≥ 1+ 1
�(G) . Let C∗ be a shortest odd cycle in G. We

obtain that

ρ(G) = max
w:R|E|→R+

min{wx : x ∈ IP(G)}
min{wx : x ∈ P(G)}

≥ min{1C∗x : x ∈ IP(G)}
min{1C∗x : x ∈ P(G)}

=
(|C∗| + 1)/2

|C∗|/2

= 1 +
1

�(G)
.

(10)

Here the second-to-last equality holds because the minimum edge cover of C∗

can be attained by any matching in C∗ that exposes exactly one vertex, while
the minimum fractional edge cover of C∗ corresponds to an half-integral edge
cover.

Then we show that ρ(G) ≤ 1 + 1
�(G) . Let x̃ denote the optimal half-integral

edge cover of G constructed in Lemma 3. Lemma 4 implies that the condition
ρ(G) ≤ 1 + 1

�(G) holds if and only if (1 + 1
�(G))x̃ belongs to IP(G). Since that

(1 + 1
�(G))x̃ is a feasible fractional edge cover, we only need to show that it

satisfies (8). Let H1 and H2 be the subgraph of G induced by the fractional and
integral components of x̃ respectively. Then H1 consists of vertex-disjoint cycles
by Lemma 3. Moreover, by picking alternate edges in each path with a length
greater than 3, we can assume that H2 is composed of vertex-disjoint stars. Let
U be any odd set of vertices in G. For any components K of G[E[U] ∪ δ(U)],
there are four possible cases:

1. K be a star in H2[E[U]], then x̃(E[K]) = |E[K]|,
2. K be a star in H2[δ(U)], then x̃(E[K]) = |E[K]|,
3. K be a path in H1[E[U] ∪ δ(U)], then x̃(K) = 1

2 |E[K]|, and
4. K be an odd cycle in H1[E[U] ∪ δ(U)], then x̃(K) = 1

2 |E[K]|.

112 T. Lu et al.

If there is no odd cycle in G[E[U] ∪ δ(U)], then we have
(
1 + 1

�(G)

)
x̃(E[U] ∪ δ(U)) ≥ x̃(E[U] ∪ δ(U))

= |E[U]| + |δ(U)|
≥ 1

2 |U |�.

The last inequality bases on the observation that x̃(K) ≥ 1
2 |V [K]|� when K

falls in the first three cases, where V [K] denotes the set of vertices of K.
Otherwise, H1 contains an odd cycle, thus �(G) ≤ |U |. It follows that

(
1 + 1

�(G)

)
x̃(E[U] ∪ δ(U)) ≥ |U |+1

|U | x̃(E[U] ∪ δ(U))

≥ |U |+1
|U | · |U |

2

= |U |
2 �.

Therefore, we conclude that (1 + 1
�(G))x̃ belongs to IP(G). ��

3.3 Characterizing Approximate Core with Integrality Gap

In this subsection, we introduce a characterization for the approximate core of
edge cover games. For any vertex v, N(v) denotes the set of vertices adjacent to
v. If a vertex subset S ⊆ N(v), δ(v, S) denotes the set of crossing edges between
v and S. In additionally, the induced subgraph G[δ(v, S)] is called a star or a
v-star with v being the center.

Liu and Fang [20] showed that the core of edge cover games is closely related
to the stars in the underlying graph. Based on the observation that any minimum
edge cover can be partitioned into some vertex-disjoint stars, we introduce the
following characterizations for the core property.

Lemma 5. A vector a ∈ R
|V |
+ satisfies the core property of ΓG(V, c) if and only

if for any vertex v ∈ V and vertex subset T ⊆ N(v) the inequality a(T ∪ {v}) ≤∑
e∈δ(v,T) we holds.

Proof. Let a ∈ R
|V |
+ be a vector satisfying the core property in ΓG(V, c), i.e.,

a ≥ 0 and a(S) ≤ c(S) for any subset S of V . Since T ⊆ N(v), δ(v, T) is an edge
cover for T ∪ {v}. It follows that a(T ∪ {v}) ≤ c(T ∪ {v}) ≤ ∑

e∈δ(v,T) we.
To prove the converse, it suffices to show that a(S) ≤ c(S) for any S ⊆ V . Let

K denote the set of edges which covers S with minimum weight. It is evident
that K admits a star decomposition represented by K1,K2, . . . ,Kl. For each
i = 1, 2, . . . , l, we define ui as the center of the star Ki, and Ti as the set of
vertices in the star Ki except ui. Hence, we have a(S) ≤ ∑l

i=1 a(Ti ∪ {ui}) ≤
∑l

i=1

∑
e∈δ(ui,Si)

we =
∑

e∈K we = c(S). ��
Based on the linear programming formula of the α-core, we show that dual

solutions of this game characterize the core property.

Approximate Core Allocations for Edge Cover Games 113

Lemma 6. A vector a ∈ R
|V |
+ satisfies the core property of ΓG(V, c) if and only

if it is a dual feasible solution to the LP (3).

Proof. Consider the dual of LP (3).

maximize
∑

v∈V

yv (11a)

subject to yu + yv ≤ wuv uv ∈ E, (11b)

yv ≥ 0 v ∈ V. (11c)

On the one hand, let a ∈ R
|V |
+ be a vector satisfying core property of edge

cover game ΓG(V, c). By Lemma 5, it is easy to verify that au + av ≤ wuv for
any edge uv ∈ E. This implies that a is a feasible solution to LP (11).

On the other hand, let y be a feasible solution of LP (11), we show that y
satisfies the core property. Let v ∈ V and T ⊆ N(v). Since yu + yv ≤ wuv, it
follows that y(T ∪{v}) ≤ y(T)+ |T |yv ≤ ∑

e∈δ(v,T) wuv. By Lemma 5, a satisfies
the core property. ��

Now we are ready to characterize the approximate ratio in terms of the
integrality gap.

Theorem 2. Let ΓG(V, c) be the edge cover game defined on graph G =
(V,E;w). Then the 1

�(G) -core of ΓG(V, c) is always non-empty and can be
computed efficiently. Moreover, 1

�(G) is the largest ratio guaranteeing the non-
emptiness of the approximate-core of ΓG(V, c).

Proof. An optimal solution a∗ to the dual of LP (3) can be computed in poly-
nomial time using standard linear programming techniques. By Lemma 6, a∗

satisfies the core property, i.e., a∗(S) ≤ c(S) for any coalition S ⊆ V . Besides,
we have

ρ(G)a∗(V) = ρ(G) · min{wx : x ∈ P(G)}
≥ min{wx : x ∈ IP(G)}
= c(V).

According to the definition of the approximate core, a∗ is a 1
�(G) -core for ΓG(V, c).

Algorithms for finding a shortest odd cycle of a graph can be finished in time
O(|V ||E|) by using breadth-first search in [15]. Thus we can calculate ρ(G) in
polynomial time of |V | and |E|.

Now we show that 1
�(G) is the largest ratio guaranteeing the non-emptiness

of the approximate-core. Suppose a is a vector in the α-core of ΓG(V, c). By the
definition, the a satisfies the core property. Thus a is a feasible dual solution to
LP (3) by Lemma 6. We have

αγ(G,w) = αc(V) ≤ a(V) ≤ min{wx : x ∈ P(G)},

114 T. Lu et al.

where the last inequality follows by the weak duality theorem of linear program-
ming. It follows that

α ≤ min{wx : x ∈ P(G)}
γ(G,w)

.

By the definition of integrality gap, we have α ≤ 1
�(G) . ��

Since the length of the shortest odd cycle is at least 3, the ratio will degenerate
to 3

4 if there is any triangle in the graph.

Corollary 1. Let ΓG(V, c) be the edge cover game defined on graph G =
(V,E;w). Then the 3

4 -core of ΓG(V, c) is always non-empty. Moreover, an allo-
cation in the 3

4 -core of ΓG(V, c) can be computed efficiently.

4 Conclusion

In this paper, we considered a cost allocation problem for the edge cover game.
We characterize approximate core by using the dual solution of the nature linear
programming problem. Therefore, the best approximate factor depends on the
integrality gap between the integer linear programming problem and its relax-
ation. To estimate this factor, we employ linear programming rounding tech-
niques and prove that it is 1 + 1

�(G) . This result ensures that the 1
�(G) -core of

the edge cover game is always non-empty. Additionally, when the shortest odd
cycle in the underlying graph is equal to 3, our proposed solution boils down to
a factor of 3

4 .
One possible working direction for edge cover games is to study the nucleon.

Faigle et al. [11] studied the nucleon of matching games and Kern and
Paulusma [16] studied the nucleon of simple flow games. Our result might be
helpful in computing the nucleon since the nucleon locals in the allocation of
the largest satisfaction ratio. Besides, variants of edge cover games introduced
by Liu and Fang [20] are also worth studying.

Acknowledgements. We would like to extend our sincere thanks to the anonymous
reviewers for their thorough and constructive feedback, which helped us significantly
improve the quality of this manuscript.

References

1. Schrijver, A.: Combinatorial Optimization: Polyhedra and Efficiency. AC, vol. 24.
Springer, Berlin (2003)

2. Balinski, M.L.: Integer programming: methods, uses, computations. Manag. Sci.
12(3), 253–313 (1965)

3. Chalkiadakis, G., Elkind, E., Wooldridge, M.: Computational aspects of coopera-
tive game theory. Synth. Lect. Artif. Intell. Mach. Learn. 5(6), 1–168 (2011)

4. Cornuéjols, G.: Combinatorial Optimization: Packing and Covering. SIAM (2001)
5. Carr, R., Vempala, S.: Towards a 4

3
approximation for the asymmetric traveling

salesman problem. In: SODA, pp. 116–125 (2000)

Approximate Core Allocations for Edge Cover Games 115

6. Deng, X., Ibaraki, T., Nagamochi, H.: Algorithmic aspects of the core of combina-
torial optimization games. Math. Oper. Res. 24(3), 751–766 (1999)

7. Edmonds, J.: Matching: a well-solved class of integer programs. Combinatorial
Structures and their Applications, pp. 89–92 (1970)

8. Faigle, U., Fekete, S.P., Hochstättler, W., Kern, W.: On approximately fair cost
allocation in Euclidean TSP games. Oper. Res. Spektrum 20(1), 29–37 (1998)

9. Faigle, U., Kern, W.: On some approximately balanced combinatorial cooperative
games. Z. Oper. Res. 38(2), 141–152 (1993)

10. Faigle, U., Kern, W.: Approximate core allocation for binpacking games. SIAM J.
Discret. Math. 11(3), 387–399 (1998)

11. Faigle, U., Kern, W., Fekete, S.P., Hochstättler, W.: The nucleon of cooperative
games and an algorithm for matching games. Math. Program. 83(1–3), 195–211
(1998)

12. Gillies, D.B.: Solutions to general non-zero-sum games. Contrib. Theory Games
4(40), 47–85 (1959)

13. Goemans, M.X., Skutella, M.: Cooperative facility location games. J. Algorithms
50(2), 194–214 (2004)

14. Huang, D., Pettie, S.: Approximate generalized matching: f -factors and f -edge
covers. Algorithmca 84, 1952–1992 (2022)

15. Itai, A., Rodeh, M.: Finding a minimum circuit in a graph. SIAM J. Comput. 7(4),
413–423 (1978)

16. Kern, W., Paulusma, D.: On the core and f-nucleolus of flow games. Math. Oper.
Res. 12 (2009)

17. Kern, W., Qiu, X.: Integrality gap analysis for bin packing games. Oper. Res. Lett.
40(5), 360–363 (2012)

18. Kim, H.K.: Note on fractional edge covering games. Glob. J. Pure Appl. Math.
12(6), 4661–4675 (2016)

19. Kolen, A.: Solving covering problems and the uncapacitated plant location problem
on trees. Eur. J. Oper. Res. 12(3), 266–278 (1983)

20. Liu, Y., Fang, Q.: Balancedness of edge covering games. Appl. Math. Lett. 20(10),
1064–1069 (2007)

21. Nemhauser, G., Trotter, L.E.: Vertex packings: structural properties and algo-
rithms. Math. Program. 8(1), 232–248 (1975)

22. Osborne, M.J., Rubinstein, A.: A Course in Game Theory. MIT Press, Cambridge
(1994)

23. Park, B., Kim, S.R., Kim, H.K.: On the cores of games arising from integer edge
covering functions of graphs. J. Comb. Optim. 26(4), 786–798 (2013)

24. Peleg, B., Sudhölter, P.: Introduction to the Theory of Cooperative Games, vol.
34. Springer, Heidelberg (2007)

25. Potters, J.A., Curiel, I.J., Tijs, S.H.: Traveling salesman games. Math. Program.
53(1), 199–211 (1992)

26. Qiu, X., Kern, W.: Approximate core allocations and integrality gap for the bin
packing game. Theor. Comput. Sci. 627, 26–35 (2016)

27. Sun, L., Karwan, M.H.: On the core of traveling salesman games. Oper. Res. Lett.
43(4), 365–369 (2015)

28. Vazirani, V.V.: The general graph matching game: approximate core. Games
Econom. Behav. 132, 478–486 (2022)

29. van Velzen, B.: Dominating set games. Oper. Res. Lett. 32(6), 565–573 (2004)
30. Xiao, H., Lu, T., Fang, Q.: Approximate core allocations for multiple partners

matching games. arXiv:2107.01442 (2021)

http://arxiv.org/abs/2107.01442

Random Approximation Algorithms
for Monotone k-Submodular Function
Maximization with Size Constraints

YuYing Li, Min Li, Yang Zhou, and Qian Liu(B)

School of Mathematics and Statistics, Shandong Normal University, Jinan, China
{liminEmily,zhouyang}@sdnu.edu.cn, lq_qsh@163.com

Abstract. A k-submodular function is an extension of the submodular
function, which has received extensive attention due to its own value. In
this paper, we design two random algorithms to improve the approxima-
tion ratio for maximizing the monotone k-submodular function with size
constraints. With the total size constraint, we get an approximate ratio
of nk

2nk−1
, under which the total size of the k disjoint subsets is bounded

by B ∈ Z+. With the individual size constraint, under which the indi-
vidual size of the k disjoint subsets are bounded by B1, B2, . . . , Bk ∈ Z+

respectively, satisfying B =
∑k

i=1 Bi, we get an approximate ratio of
nk

3nk−2
.

Keywords: k-submodular function · Approximation algorithms · Size
constraints

1 Introduction

E is defined as a ground set with n elements. In this paper, we note that V is
a set of all element position pairs (e, i), where e represents an arbitrary element
in the finite set E, and i represents an arbitrary position in the k positions,
represented by symbols V = {(e, i)|e ∈ E, i ∈ [k]}. The total number of element
position pairs contained in V is nk. In this paper, we are interested in some
subsets of V , whose element position pairs satisfy the following property: for
any element e ∈ E, position i ∈ [k], if (e, i) belongs to this set, then (e, j) must
not belong to this set, where j is not equal to i. We denote by T the set of all
subsets of V satisfying this property. Let T = {X ⊆ V |(e, i) ∈ X ⇒ (e, j) �∈
X, ∀j �= i, j ∈ [k]}. A set function f : T → R+ is called a k-submodular function,
if it satisfies

f(X) + f(Y) ≥ f(X 	 Y) + f(X
 Y),

for any X,Y ∈ T , where

X
 Y = X ∩ Y,

X 	 Y = X ∪ Y \ZX∪Y ,

ZX∪Y = {(e, i) ∈ X ∪ Y |∃j �= i, (e, j) ∈ X ∪ Y }.

c© Springer Nature Switzerland AG 2023
M. Li et al. (Eds.): IJTCS-FAW 2023, LNCS 13933, pp. 116–128, 2023.
https://doi.org/10.1007/978-3-031-39344-0_9

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-39344-0_9&domain=pdf
https://doi.org/10.1007/978-3-031-39344-0_9

Monotone k-Submodular Function Maximization 117

Obviously, when k = 1, the k-submodular function is equivalent to the submod-
ular function. A k-submodular function is defined as monotone, if f(X) ≤ f(Y)
for any X, Y ∈ T with X ⊆ Y .

A k-submodular function is derived from submodular function [1–3] and
bisubmodular function [4] and plays a significant role in many practical problems.
For unconstrained maximization of the monotone k-submodular function, Ward
and Źivný [5] firstly proposed an approximate ratio of 1

2 through a deterministic
algorithm. Later, Iwata et al. [6] designed a random algorithm increasing the
approximate ratio to k

2k−1 . For unconstrained nonmonotone k-submodular max-
imization, Ward and Źivný [5] obtained an approximate ratio of max{1

3 , 1
1+a},

where a = max{1,
√

k−1
4 }. This approximate ratio had been increased to 1

2 by

Iwata et al. [6] and k2+1
2k2+1 by Oshima [7].

In recent years, constrained maximization of k-submodular functions have
received increasing attention. For maximizing a monotone k-submodular func-
tion with the total size constraint, Ohsaka and Yoshida [8] obtained an approx-
imate ratio of 1

2 through a deterministic greedy algorithm. Meanwhile, for max-
imizing a monotone k-submodular function with the individual size constraint,
Ohsaka and Yoshida [8] obtained an approximate ratio of 1

3 through a greedy
algorithm. For maximizing a monotone k-submodular function with the matroid
constraint, Sakaue [9] obtained an approximate ratio of 1

2 through the greedy
algorithm. For nonmonotone cases, Li and Sun [10] obtained an approximate
ratio of 1

3 . For dealing with large-scale problems, it is necessary to process ele-
ments in a flow manner, and streaming algorithm play an important role in it.
For streaming k-submodular maximization under noise subject to size constraint,
Nguyen and Thai [11] provided 2+2εB

1−ε approximate ratio through greedy algo-
rithm when f is monotone and (2+2ε+4εB)(1+ε)

(1−ε)2 + 1 in case of non-monotonicity.
Later for monotone k-submodular maximization with size constraints, Ene and
Nguyen [12] also designed some new streaming algorithms. In addition, there are
many good research results on maximizing and minimizing k-submodular func-
tions with other constraints [13–22]. To the best of our knowledge, the approx-
imation ratio of 1

2 with the total size constraint is currently the best result
for maximizing monotone k-submodular function in polynomial time, while the
approximation ratio of 1

3 with the individual size constraint is currently the best
result.

In this paper, we study the maximization of monotone k-submodular function
under different constraints, and we design two different random algorithms to
improve the approximation ratio. Our main contributions are as follows:

– With the total size constraint, we design a random algorithm to obtain the
approximate ratio of nk

2nk−1 . The algorithm runs in O(knB) time. Through
the random algorithm, we select element position pairs with probability in
each iteration, ensuring that the algorithm solution is closer to the optimal
solution to a certain extent, thereby improving the approximation ratio.

– With the individual size constraint, we also design a random algorithm. Since
the constraint is different with total size, we use a new method to analyze the

118 Y. Li et al.

approximate ratio and get a result of nk
3nk−2 . The algorithm runs in O(knB)

time.

The rest of the paper is organized as follows. In Sect. 2, we mainly define some
symbols and describe some properties of k-submodular function. In Sect. 3, we
design a random algorithm with the total size constraint to improve the approx-
imation ratio of the monotone k-submodular function maximization. In Sect. 4,
we propose a random algorithm for the problem of monotone k-submodular
maximization with individual size constraint. In Sect. 5, we summarize the main
work of this paper.

2 Preliminaries

In this section, we mainly introduce the representation of notations, and related
properties of the k-submodular function. Let [k] := {1, 2, ..., k}, we define the
support of X as supp(X) = {e ∈ E | (e, i) ∈ X, ∀i ∈ [k]} and suppi(X) = {e ∈
E | (e, i) ∈ X} for any i ∈ [k]. Let ∅ represent a set without any element position
pairs. For X and Y in T , we define a partial order �, that is, X � Y if X ⊆ Y . We
also define �e,if(X) := f(X ∪ {(e, i)}) − f(X), for X ∈ T, e �∈ supp(X), i ∈ [k],
which is a marginal gain when adding (e, i) to the X ∈ T . In addition, for any
X,Y ∈ T , orthant submodularity is defined as:

�e,if(X) ≥ �e,if(Y)

for X � Y, e �∈ supp(Y). And the pairwise monotonicity is defined as:

�e,if(X) + �e,jf(X) ≥ 0

for any X ∈ T, e �∈ supp(X), i, j ∈ [k], i �= j.

Theorem 1. (Ward and Živný [5]) A function f is k-submodular if and only if
f is orthant submodular and pairwise monotone.

In this paper, we consider the problem of maximizing a monotone k-
submodular function with two different constraints, namely, total size constraint
and individual size constraint. Then, we will briefly introduce the basic knowl-
edge of the two constraints. Suppose X is a set composed of element position
pairs, and X ∈ T . With the total size constraint, under which the total size of
the k disjoint subsets is bounded by B ∈ Z+, we consider

max f(X) subject to |supp(X)| ≤ B,

where f : T → R+ is monotone k-submodular and X ∈ T . Since f is monotone,
there exists an optimal solution O ∈ T , which satisfies |supp(O)| = B. With
the individual size constraint, under which the individual size of the k disjoint
subsets are bounded by B1, B2, . . . , Bk ∈ Z+, that is,

max f(X) subject to |suppi(X)| ≤ Bi, ∀i ∈ [k],X ∈ T.

Since f is monotone, there exists an optimal solution O ∈ T , which satisfies
|suppi(O)| = Bi, ∀i ∈ [k] and |supp(O)| = ∑k

i=1 Bi.

Monotone k-Submodular Function Maximization 119

3 Maximizing a Monotone k-Submodular Function
with a Total Size Constraint

In the following, we introduce our random algorithm for maximizing a monotone
k-submodular function with a total size constraint. We will select the element
position pairs as probabilities, which are proportional to their marginal benefits.

Algorithm 1. A random algorithm for monotone k-submodular maximization
with a total size constraint
Input: A nonnegative monotone k-submodular function f
Output: S satisfying |supp(S)| = B
1: S ← ∅, t = nk − 1
2: for j = 1 to B do
3: p ← 0n×k

4: y ← 0n×k

5: for each e ∈ E\supp(S) and position i ∈ [k] do
6: ye,i ←�e,i f(S) for(e, i) ∈ [n] × [k]
7: pe,i ← yt

e,i

8: end for
9: β ← ∑

(e,i)∈[n]×[k]

pe,i

10: if β �= 0 then
11: p ← p

β

12: else
13: Arbitrarily choose an e ∈ E\supp(S) and i ∈ [k], pe,i ← 1
14: end if
15: Randomly choose (e, i) ∈ [n] × [k], with Pr[(e, i)] = pe,i

16: S = S ∪ {(e, i)}
17: end for
18: return S

We consider the jth iteration of the algorithm, (ej , ij) is the element location
pair selected in the jth iteration of the algorithm, pj

e,i represents the probability
of selecting (e, i) in the jth iteration, and Sj is the output solution of the jth

iteration algorithm, where S0 is defined as an empty set. We iteratively construct
O0 = O,O1, ..., OB as follows. For each j ∈ [B], if ej ∈ supp(Oj−1)\supp(Sj−1),
we set oj = ej . If ej �∈ supp(Oj−1)\supp(Sj−1), we set oj to be an arbitrary
element in supp(Oj−1)\supp(Sj−1). That is to say, in each iteration j ∈ [B],
we choose an element position pair (ej , ij), which corresponds to an element
position pair (oj , Oj−1(oj)) in Oj−1. Firstly, we construct Oj−1/2: delete the
element position pair (oj , Oj−1(oj)) in Oj−1, and the other elements and cor-
responding positions are exactly the same as those in Oj−1, that is, Oj−1/2 =
Oj−1\{(oj , Oj−1(oj))}. Then we construct Oj : Oj = Oj−1/2 ∪ {(ej , ij)}. Note
that for any j ∈ {0, 1, 2, . . . , B}, there is |supp(Oj)| = B and OB = SB = S.
From this structure, we have Sj−1 � Oj− 1

2 . Next, for any (e, i) ∈ V , we define

120 Y. Li et al.

yj
e,i = �e,if(Sj−1), aj

e,i = �e,if(Oj− 1
2). The orthant submodularity implies

yj
e,i ≥ aj

e,i. Specifically, for each iteration j, we have the probability to select
each element position pairs (e, i) ∈ V . For those element position pairs (e′, i′)
where e′ ∈ supp(Sj−1), the algorithm shows that, yj

e′,i′ = 0, pj
e′,i′ = 0.

Lemma 1. For any j ∈ [B], according to Algorithm 1, the following inequality
holds. ∑

Sj−1

∑
(e,i)∈[n]×[k]

(aj
oj ,Oj−1(oj) − aj

e,i) · pj
e,i · pSj−1

≤ (1 − 1
nk

)
∑
Sj−1

∑
(e,i)∈[n]×[k]

yj
e,i · pj

e,i · pSj−1 .
(1)

Proof. To prove inequality (1), we only need to prove the following inequality
holds,

∑
(e,i)∈[n]×[k]

(aj
oj ,Oj−1(oj) − aj

e,i) · pj
e,i ≤ (1 − 1

nk
)

∑
(e,i)∈[n]×[k]

yj
e,i · pj

e,i. (2)

In the following proof process, we omit the superscript j in the inequality in
order to describe clearly. Firstly, let us consider the case of β = 0. At this time,
ye,i = 0, for any (e, i) ∈ V . Since f is monotone, we have ae,i ≥ 0. So

aoj ,Oj−1(oj) − ae,i ≤ aoj ,Oj−1(oj)

= f(Oj− 1
2 ∪ {(oj , Oj−1(oj))}) − f(Oj− 1

2)

≤ f(Sj−1 ∪ {(oj , Oj−1(oj))}) − f(Sj−1)
= 0.

(3)

Therefore, inequality (2) holds. Secondly, we need to prove that when β �= 0, so
our goal isto prove

∑
(e,i)∈[n]×[k]

(aoj ,Oj−1(oj) − ae,i) · yt
e,i ≤ (1 − 1

nk
)

∑
(e,i)∈[n]×[k]

yt+1
e,i . (4)

If nk = 1, it means n = 1, k = 1, so both sides of the inequality are equal
to 0. If nk ≥ 2, let r = (nk − 1)

1
t = t

1
t . For each iteration j ∈ [B], an ele-

ment position pair (e, i) is added to Sj−1. According to the previous descrip-
tion, there is a corresponding (oj , Oj−1(oj)). We denote I = Oj−1\Sj−1 and
ymax = max(e,i)∈I(f(Sj−1 ∪ {(e, i)}) − f(Sj−1)). When (e, i) ∈ I, we have
(e, i) = (oj , Oj−1(oj)), then

Monotone k-Submodular Function Maximization 121

∑
(e,i)∈[n]×[k]

(aoj ,Oj−1(oj) − ae,i) · yt
e,i

=
∑

(e,i)/∈I

(aoj ,Oj−1(oj) − ae,i) · yt
e,i

≤
∑

(e,i)/∈I

aoj ,Oj−1(oj) · yt
e,i

≤
∑

(e,i)/∈I

yoj ,Oj−1(oj) · yt
e,i

≤ ymax

∑
(e,i)/∈I

yt
e,i

=
1
r
(r · ymax

∑
(e,i)/∈I

yt
e,i).

(5)

Assume a1,...,an is a positive real number. If the sum of n non-negative
real numbers is 1, x1 + x2 + · · · + xn = 1, the weighted AM-GM inequal-
ity holds, a1x1 + a2x2 + · · · + anxn ≥ ax1

1 ax2
2 · · · axn

n . Let a = (r · ymax)t+1,
b = (

∑
(e,i) �=(oj ,Oj−1(oj))

yt
e,i)

t+1
t . Because β > 0, a and b cannot be 0 at the

same time, when a=0 or b=0, inequality (4) clearly holds. Next, Let us discuss
the case where a and b are both greater than 0. From the AM-GM inequality,
a

1
t+1 b

t
t+1 ≤ 1

t+1a + t
t+1b, we have

1
r
(rymax

∑
(e,i)/∈I

yt
e,i)

≤ 1
r
[

1
t + 1

(rymax)t+1 +
t

t + 1
(

∑
(e,i)/∈I

yt
e,i)

t+1
t].

(6)

Holder’s inequality, a1, ...an and b1, ..., bn are non-negative real numbers,∑n
i=1 aibi ≤ (

∑n
i=1 ap

i)
1
p (

∑n
i=1 bq

i)
1
q , let ai = yt

e,i, bi = 1, we have

122 Y. Li et al.

1
r
(rymax

∑
(e,i)/∈I

yt
e,i)

≤ 1
r
[

1
t + 1

(rymax)t+1 +
t

t + 1
(

∑
(e,i)/∈I

y
t· t+1

t
e,i)(

∑
(e,i)/∈I

1t+1)
1
t]

≤ 1
r
[

1
t + 1

(rymax)t+1 +
t

t + 1
(nk − 1)

1
t

∑
(e,i)/∈I

yt+1
e,i]

=
rt

t + 1
yt+1

max +
t

t + 1

∑
(e,i)/∈I

yt+1
e,i

=
t

t + 1
yt+1

max +
t

t + 1

∑
(e,i)/∈I

yt+1
e,i

≤ t

t + 1

∑
(e,i)∈[n]×[k]

yt+1
e,i

= (1 − 1
nk

)
∑

(e,i)∈[n]×[k]

yt+1
e,i .

(7)

To sum up, inequality (4) holds, thus inequality (1) holds. We obtained this
lemma.

Theorem 2. With the total size constraint, a nk
2nk−1 -approximate solution can

be obtained by Algorithm 1.

Proof. We find the relationship between f(O) and E[f(S)]. Noting that

E[f(Oj−1) − f(Oj)] =
∑
Sj−1

∑
(e,i)∈[n]×[k]

(aj
oj ,Oj−1(oj) − aj

e,i) · pj
e,i · pSj−1 ,

and
E[f(Sj) − f(Sj−1)] =

∑
Sj−1

∑
(e,i)∈[n]×[k]

yj
e,i · pj

e,i · pSj−1 .

It can be known from Lemma 1, we have E[f(Oj−1)−f(Oj)] ≤ (1− 1
nk)E[f(S

j)−
f(Sj−1)]. Hence

f(O) − E[f(S)] =
B∑

j=1

E[f(Oj−1) − f(Oj)]

≤ (1 − 1
nk

)
B∑

j=1

E[f(Sj) − f(Sj−1)]

= (1 − 1
nk

)(E[f(S)] − f(∅))

≤ (1 − 1
nk

)E[f(S)].

(8)

Then E[f(S)] ≥ nk
2nk−1f(O), the result can be obtained.

Monotone k-Submodular Function Maximization 123

4 Maximizing a Monotone k-Submodular Function
with the Individual Size Constraint

In this section, we mainly introduce the problem of maximizing monotone k-
submodular function with the individual size constraint.

Algorithm 2 A random algorithm for monotone k-submodular maximization
with the individual size constraint
Input: A nonnegative monotone k-submodular function f
Output: S satisfying |suppi(S)| = Bi for each i ∈ [k]
1: S ← ∅, t = nk − 1, B ← ∑

i∈[k]

Bi

2: for j = 1 to B do
3: p ← 0n×k

4: y ← 0n×k

5: for each e ∈ E\supp(S) and position i ∈ [k] such that |suppi(S)| < Bi do
6: ye,i ←�e,i f(S) for(e, i) ∈ [n] × [k]
7: pe,i ← yt

e,i

8: end for
9: β ← ∑

(e,i)∈[n]×[k]

pe,i

10: if β �= 0 then
11: p ← p

β

12: else
13: Arbitrarily choose an e ∈ E\supp(S) and i ∈ [k] such that |suppi(S)| < Bi,

pe,i ← 1
14: end if
15: Randomly choose (e, i) ∈ [n] × [k], with Pr[(e, i)] = pe,i

16: S = S ∪ {(e, i)}
17: end for
18: return S

The symbols defined in this section are mostly the same as those in Sect. 3.
Below, we will provide a detailed description of the differences from those in
Sect. 3. Firstly, we mainly describe how the Oj sequence is constructed. We iter-
atively construct O0 = O,O1, ..., OB as follows. Next, we will describe how to
construct from Oj−1 to Oj . For each j ∈ [B], if ej ∈ suppij (Oj−1)\supp(Sj−1),
let us set oj = ej . If ej �∈ suppij (Oj−1)\supp(Sj−1), let oj to be an arbitrary
element in suppij (Oj−1)\supp(Sj−1). For any X ⊆ V , if element e ∈ supp(X),
we denote X(e) as the position of element e in X, then (e,X(e)) ∈ X. If ele-
ment e �∈ supp(X), we remember that the position of element e in X is 0, which
means X(e) = 0, then (e,X(e)) satisfying f(X ∪ {(e,X(e))}) − f(X) = 0, such
element position pairs have no meaning, but for a clearer description in the
subsequent proof process, we still define a class of such element position pairs.
Firstly we construct Oj− 1

2 : If ej ∈ supp(Oj−1), Oj− 1
2 = Oj−1\{(ej , Oj−1(ej))},

otherwise Oj− 1
2 = Oj−1. Construct Oj− 1

4 : Oj− 1
4 = Oj− 1

2 \{(oj , Oj−1(oj))}.

124 Y. Li et al.

Construct Oj− 1
8 : If ej ∈ suppi′(Oj−1)\supp(Sj−1), i′ �= ij , Oj− 1

8 = Oj− 1
4 ∪

{(oj , Oj−1(ej))}, otherwise Oj− 1
8 = Oj− 1

4 . Construct Oj : Oj = Oj− 1
8 ∪{(ej , ij)},

where ij = Oj−1(oj). Note that |suppi(Oj)| = Bi holds for every j ∈
{0, 1, 2, . . . , B}, and OB = SB = S. Next, for ∀(e, i) ∈ V , we define yj

e,i =
�e,if(Sj−1), a′j

e,i = �e,if(Oj− 1
2), a′′j

e,i = �e,if(Oj− 1
4), a′′′j

e,i = �e,if(Oj− 1
8). By

constructing in this way, we have Sj−1 � Oj− 1
2 , Sj−1 � Oj− 1

4 , Sj−1 � Oj− 1
8 ,

Sj−1 � Oj , the orthant submodularity yj
e,i ≥ a′j

e,i, yj
e,i ≥ a′′j

e,i, yj
e,i ≥ a′′′j

e,i .
For each j ∈ [B], let us note that L is the set of all these element position
pairs (e, i) that make |suppi(S ∪ (e, i))| ≤ Bi. These element position pairs (e, i)
in L can be divided into three cases, we record them as L1, L2 and L3, where
L = L1∪L2∪L3. L1 represents the set of selected element position pairs (e, i) that
are exactly in Oj−1, that is, e ∈ suppi(Oj−1)\supp(Sj−1). If we choose the pair
(e, i) ∈ L1, Oj− 1

2 = Oj−1\{(e, i)}, Oj− 1
2 = Oj− 1

4 = Oj− 1
8 , Oj = Oj− 1

8 ∪ {(e, i)}.
L2 represents the set of selected element position pairs (e, i) whose elements
are not in the support set of Oj−1, that is, e �∈ supp(Oj−1)\supp(Sj−1). In
this case, Oj− 1

2 = Oj−1, Oj− 1
4 = Oj− 1

2 \{(oj , Oj−1(oj))}, Oj− 1
4 = Oj− 1

8 , Oj =
Oj− 1

8 ∪ {(e, i)}. L3 represents set of selected element position pairs (e, i) that
are not in Oj−1, but the elements in these element position pairs are in the
support set of Oj−1, that is, e ∈ suppi′(Oj−1)\supp(Sj−1), i �= i′. At this point,
Oj−1, Oj− 1

2 , Oj− 1
4 , Oj− 1

8 , Oj are all different.

Lemma 2. For any j ∈ [B], according to Algorithm 2, the following inequality
holds.

∑

Sj−1

∑

(e,i)∈[n]×[k]

[(a′j
e,Oj−1(e)

+ a′′j
oj ,Oj−1(oj)

) − (a′′j
oj ,Oj−1(e)

+ a′′′j
e,Oj−1(oj)

)]pj
e,i · pSj−1

≤ (2 − 2

nk
)

∑

Sj−1

∑

(e,i)∈[n]×[k]

yj
e,i · pj

e,i · pSj−1 .

(9)

Proof. In the following proof process, we omit the superscript j in the inequality
in order to describe clearly. From the above analysis, inequality (9) is equivalent
to ∑

L2

(�oj ,Oj−1(oj)f(Oj− 1
4) − �e,if(Oj− 1

8))pL2 +
∑
L3

[(�e,Oj−1(e)f(Oj− 1
2)

+ �oj ,Oj−1(oj)f(Oj− 1
4)) − (�oj ,Oj−1(e)f(Oj− 1

4) + �e,if(Oj− 1
8))]pL3

≤ (2 − 2
nk

)
∑
L

pLyL.

(10)

First, let us analyze the situation of β = 0, here yL = 0,

�oj ,Oj−1(oj) f(Oj− 1
4) − �e,if(Oj− 1

8)

≤ �oj ,Oj−1(oj)f(Oj− 1
4)

≤ �oj ,Oj−1(oj)f(Sj−1)

= 0,

(11)

Monotone k-Submodular Function Maximization 125

and

�e,Oj−1(e) f(Oj− 1
2) + �oj ,Oj−1(oj)f(Oj− 1

4)

− (�oj ,Oj−1(e)f(Oj− 1
4) + �e,if(Oj− 1

8))

≤ �e,Oj−1(e)f(Oj− 1
2) + �oj ,Oj−1(oj)f(Oj− 1

4)

≤ �e,Oj−1(e)f(Sj−1) + �oj ,Oj−1(oj)f(Sj−1)

= 0,

(12)

so the left side of inequality (10) is equal or lesser than 0, and the right side is
equal to 0, so inequality (10) holds.

Next, let us discuss the situation of β �= 0, our goal is to show the following
inequality.

∑
L2

[(�oj ,Oj−1(oj)f(Oj− 1
4) − �e,if(Oj− 1

8))]yt
L2

+
∑
L3

[(�e,Oj−1(e)f(Oj− 1
2)

+ �oj ,Oj−1(oj)f(Oj− 1
4)) − (�oj ,Oj−1(e)f(Oj− 1

4) + �e,if(Oj− 1
8))]yt

L3

≤ (2 − 2
nk

)
∑
L

yt+1
L .

(13)

If nk = 1, it means n = 1, k = 1, so both sides of the inequality are 0. If
nk ≥ 2, let r = (nk − 1)

1
t = t

1
t . Any (e, i) belongs to L1, we define yL1max =

max(e,i)∈L1(f(S
j−1 ∪{(e, i)})− f(Sj−1)), we know that if e ∈ supp(Oj−1), then

(oj , Oj−1(oj)) ∈ L1 and (e,Oj−1(e)) ∈ L1, otherwise �e,Oj−1(e)f(Oj−1) = 0.
Since f is monotone, so we have:

∑
L2

[�oj ,Oj−1(oj)f(Oj− 1
4) − �e,if(Oj− 1

8)]yt
L2

+
∑
L3

[(�e,Oj−1(e)f(Oj− 1
2)

+ �oj ,Oj−1(oj)f(Oj− 1
4)) − (�oj ,Oj−1(e)f(Oj− 1

4) + �e,if(Oj− 1
8))]yt

L3

≤
∑
L2

�oj ,Oj−1(oj)f(Oj− 1
4)yt

L2

+
∑
L3

[�e,Oj−1(e)f(Oj− 1
2) + �oj ,Oj−1(oj)f(Oj− 1

4)]yt
L3

≤
∑
L2

�oj ,Oj−1(oj)f(Sj−1)yt
L2

+
∑
L3

[�e,Oj−1(e)f(Sj−1) + �oj ,Oj−1(oj)f(Sj−1)]yt
L3

≤ 2yL1max

∑
L2∪L3

yt
L

=
2
r
(ryL1max

∑
L2∪L3

yt
L).

(14)

126 Y. Li et al.

According to the weighted AM-GM inequality and Holder’s inequality, we have

2
r
(ryL1max

∑
L2∪L3

yt
L).

≤ 2
r
{ 1
t + 1

(ryL1max)t+1 +
t

t + 1
[(

∑
L2∪L3

y
t· t+1

t

L)(
∑

L2∪L3

1t+1)
1
t]}

≤ 2
r
[

1
t + 1

(ryL1max)t+1 +
t

t + 1
(nk − 1)

1
t

∑
L2∪L3

yt+1
L]

=
2rt

t + 1
yt+1

L1max +
2t

t + 1

∑
L2∪L3

yt+1
L

=
2t

t + 1
yt+1

L1max +
2t

t + 1

∑
L2∪L3

yt+1
L

≤ 2t
t + 1

∑
L

yt+1
L

= (2 − 2
nk

)
∑
L

yt+1
L .

(15)

To sum up, inequality (13) holds, thus inequality (9) holds. We obtained this
lemma.

Theorem 3. With the individual size constraint, a nk
3nk−2 -approximate solution

can be obtained by Algorithm 2.

Proof. We use the random algorithm to find the relationship between f(O) and
E[f(S)]. Here E[f(Oj−1)− f(Oj)] =

∑
Sj−1

∑
(e,i)∈[n]×[k]

[(a′j
e,Oj−1(e) + a′′j

oj ,Oj−1(oj))−

(a′′j
oj ,Oj−1(e) + a′′′j

e,Oj−1(oj))] · pj
e,i · pSj−1 ,

E[f(Sj) − f(Sj−1)] =
∑
Sj−1

∑
(e,i)∈[n]×[k]

yj
e,i · pj

e,i · pSj−1 .

Therefore, according to Lemma 2, it can be inferred that E[f(Oj−1)− f(Oj)] ≤
(2 − 2

nk)E[f(S
j) − f(Sj−1)]. According to the proof process of Theorem 2, we

obtain E[f(S)] ≥ nk
3nk−2f(O). The result can be obtained.

5 Discusstion

In this paper, we first discuss the problem of maximizing monotone k-submodular
function with the total size constraint, we obtain the approximate ratio of nk

2nk−1
by using the random algorithm. Next we discuss the problem of maximizing
monotone k-submodular function with the individual size constraint and obtain
the approximate ratio of nk

3nk−2 by using the random algorithm.

Monotone k-Submodular Function Maximization 127

Acknowledgements. This paper was supported by the Natural Science Foundation
of Shandong Province of China (Nos. ZR2020MA029 and ZR2021MA100) and the
National Natural Science Foundation of China (No. 12001335).

References

1. Calinescu, G., Chekuri, C., Pál, M., Vondrák, J.: Maximizing a monotone submod-
ular function subject to a matroid constraint. SIAM J. Comput. 40(6), 1740–1766
(2011). https://doi.org/10.1137/080733991

2. Buchbinder, N., Feldman, M., Naor, J., Schwartz, R.: A tight linear time (1/2)-
approximation for unconstrainted submodular maximization. SIAM J. Comput.
44(5), 1384–1402 (2015). https://doi.org/10.1137/130929205

3. Sviridenko, M.: A note on maximizing a submodular set function to a knapsack
constraint. Oper. Res. Lett. 32(1), 41–43 (2004). https://doi.org/10.1016/S0167-
6377(03)00062-2

4. Singh, A., Guillory, A., Bilmes, J.: On bisubmodular maximization. In: AISTATS,
vol. 22, pp. 1055–1063 (2012). https://proceedings.mlr.press/v22/singh12.html

5. Ward, J., Živný, S.: Maximizing k-submodular functions and beyond. ACM Trans.
Algorithms 12(4), 1–26 (2016). https://doi.org/10.1145/2850419

6. Iwata, S., Tanigawa, S., Yoshida, Y.: Improved approximation algorithms for k-
submodular function maximization. In: Proceedings of the 27th Annual ACM-
SIAM Symposium on Discrete Algorithms(SODA), pp. 404–413 (2016). https://
doi.org/10.1137/1.9781611974331.ch30

7. Oshima, H.: Improved randomized algorithm for k-submodular function maxi-
mization. SIAM J. Discrete Math. 35(1), 1–22 (2021). https://doi.org/10.1137/
19M1277692

8. Ohsaka, N., Yoshida, Y.: Monotone k-submodular function maximization with size
constraints. In: Proceedings of the 28th International Conference on Neural Infor-
mation Processing Systems(NeurIPS), pp. 694–702 (2015). https://dl.acm.org/doi/
abs/10.5555/2969239.2969317

9. Sakaue, S.: On maximizing a monotone k-submodular function subject to a matroid
constraint. Discrete Optim. 23, 105–113 (2017). https://doi.org/10.1016/j.disopt.
2017.01.003

10. Sun, Y., Liu, Y., Li, M.: Maximization of k-submodular function with a matroid
constraint. In: Proceedings of Theory and Applications of Models of Computation
(TAMC), pp. 1–10 (2022). https://doi.org/10.1007/978-3-031-20350-3_1

11. Nguyen, L., Thai, M.: Streaming k-submodular maximization under noise sub-
ject to size constraint. In: Proceedings of the 37th International Conference on
Machine Learning (ICML), pp. 7338–7347(2020). https://dlnext.acm.org/doi/10.
5555/3524938.3525618

12. Ene, A., Nguyen, H.: Streaming algorithm for monotone k-Submodular maximiza-
tion with cardinality constraints. In: Proceedings of the 39th International Confer-
ence on Machine Learning (ICML), pp. 5944–5967 (2022)

13. Huber, A., Kolmogorov, V.: Towards minimizing k-submodular functions. In: Pro-
ceedings of International Symposium on Combinatorial Optimization (ISCO), pp.
451–462 (2012). https://doi.org/10.1007/978-3-642-32147-4_40

14. Gridchyn, I., Kolmogorov, V.: Potts model, parametric maxflow and k-submodular
functions. 2013 IEEE International Conference on Computer Vision, pp. 2320–2327
(2013). https://doi.org/10.1109/ICCV.2013.288

https://doi.org/10.1137/080733991
https://doi.org/10.1137/130929205
https://doi.org/10.1016/S0167-6377(03)00062-2
https://doi.org/10.1016/S0167-6377(03)00062-2
https://proceedings.mlr.press/v22/singh12.html
https://doi.org/10.1145/2850419
https://doi.org/10.1137/1.9781611974331.ch30
https://doi.org/10.1137/1.9781611974331.ch30
https://doi.org/10.1137/19M1277692
https://doi.org/10.1137/19M1277692
https://dl.acm.org/doi/abs/10.5555/2969239.2969317
https://dl.acm.org/doi/abs/10.5555/2969239.2969317
https://doi.org/10.1016/j.disopt.2017.01.003
https://doi.org/10.1016/j.disopt.2017.01.003
https://doi.org/10.1007/978-3-031-20350-3_1
https://dlnext.acm.org/doi/10.5555/3524938.3525618
https://dlnext.acm.org/doi/10.5555/3524938.3525618
https://doi.org/10.1007/978-3-642-32147-4_40
https://doi.org/10.1109/ICCV.2013.288

128 Y. Li et al.

15. Pham, C.V., Vu, Q.C., Ha, D.K.T., Nguyen, T.T.: Streaming algorithms for bud-
geted k-submodular maximization problem. In: Proceedings of Computational
Data and Social Networks (CSoNet), pp. 27–38 (2021). https://doi.org/10.1007/
978-3-030-91434-9_3

16. Pham, C., Vu, Q., Ha, D., Nguyen, T., Le, N.: Maximizing k-submodular functions
under budget constraint: applications and streaming algorithms. J. Comb. Optim.
44, 723–751 (2022). https://doi.org/10.1007/s10878-022-00858-x

17. Qian, C., Shi, J., Tang, K., Zhou, Z.: Constrained monotone k-submodular func-
tion maximization using multiobjective evolutionary algorithms with theoretical
guarantee. IEEE Trans. Evol. Comput. 22(4), 595–608 (2018). https://doi.org/10.
1109/TEVC.2017.2749263

18. Rafiey, A., Yoshida, Y.: Fast and private submodular and k-submodular functions
maximization with matroid constraints. In: Proceedings of the 37th International
Conference on Machine Learning (ICML), pp. 7887–7897 (2020). https://dl.acm.
org/doi/abs/10.5555/3524938.3525669

19. Zheng, L., Chan, H., Loukides, G., Li, M.: Maximizing approximately k-
submodular functions. In: Proceeding of the 2021 SIAM International Confer-
ence on Data Mining (SDM), pp. 414–422 (2021). https://doi.org/10.1137/1.
9781611976700.47

20. Hiroshi, H., Yuni, I.: On k-submodular relaxation. SIAM J. Discrete Math. 30(3),
1726–1736 (2016). https://doi.org/10.1137/15M101926X

21. Yu, K., Li, M., Zhou, Y., Liu, Q.: Guarantees for maximization of k-submodular
functions with a knapsack and a matroid constraint. In: Proceeding of Algorith-
mic Applications in Management (AAIM), pp. 156–167 (2022). https://doi.org/
10.1007/978-3-031-16081-3_14

22. Liu, Q., Yu, K., Li, M., Zhou, Y.: k-submodular maximization with a knapsack
constraint and p matroid constraints. Tsinghua Sci. Technol. 28(5), 896–905 (2023).
https://doi.org/10.26599/TST.2022.9010039

https://doi.org/10.1007/978-3-030-91434-9_3
https://doi.org/10.1007/978-3-030-91434-9_3
https://doi.org/10.1007/s10878-022-00858-x
https://doi.org/10.1109/TEVC.2017.2749263
https://doi.org/10.1109/TEVC.2017.2749263
https://dl.acm.org/doi/abs/10.5555/3524938.3525669
https://dl.acm.org/doi/abs/10.5555/3524938.3525669
https://doi.org/10.1137/1.9781611976700.47
https://doi.org/10.1137/1.9781611976700.47
https://doi.org/10.1137/15M101926X
https://doi.org/10.1007/978-3-031-16081-3_14
https://doi.org/10.1007/978-3-031-16081-3_14
https://doi.org/10.26599/TST.2022.9010039

Additive Approximation Algorithms
for Sliding Puzzle

Zhixian Zhong(B)

Beijing, China
zhongzx18@tsinghua.org.cn

Abstract. With the development of sport sliding puzzle, it is of great
significance to study better algorithms to solve sliding puzzles. Since
solving the puzzle optimally is hard, we hope to find an additive approx-
imation algorithm, that is, the length of solution output by this algorithm
is at most a low-order term more than optimal solution. n×2 rectangular
puzzle, as a variation of (n2−1)-puzzle, can be solved by an algorithm in
divide-and-conquer scheme. We proved that it’s an additive approxima-
tion algorithm within O(n logn) additive constant. For (n2 − 1)-puzzle,
finding a good approximation algorithm is more difficult. We designed a
new poly-time algorithm to solve (n2 − 1)-puzzle, which consists of sev-
eral phases: First build the board into a “clear state”, then transport the
tiles in this clear state, after arranging some tiles the puzzle is divided
into smaller parts, finally solve each of parts. And we proved that it is
an additive approximation algorithm within O(n2.75) additive constant.
Also, using these approximation algorithms, we analyzed the optimal
solution length asymptotically in the average case and the worst case
(God’s number). For n × 2 rectangular puzzle, the average optimal solu-
tion length is n2 +O(n logn) and the God’s number is 2n2 +O(n logn).
For (n2−1)-puzzle, the average optimal solution length is 2

3
n3+O(n2.75)

and the God’s number is n3 + O(n2.75).

Keywords: sliding puzzle · approximation algorithm · potential
function · asymptotic analysis · God’s number

1 Introduction

Sliding puzzle is a classical game that has a history of over 100 years. In (n2−1)-
puzzle, there is an n×n grid board with n2−1 tiles, distinct integers in [1, n2−1]
are written on all tiles, and there is exactly one empty cell. Initially tiles are
scrambled (arranged out of order). Player can move any tile to its adjacent cell
if it’s empty, for any times. The goal is to arrange the tiles in increasing order
from top to bottom, from left to right.

In recent years, sliding puzzle becomes a mind sport. Players are required to
solve sliding puzzle boards as fast as possible (speedsolving event), or using as
least moves as possible (fewest-move event).

c© Springer Nature Switzerland AG 2023
M. Li et al. (Eds.): IJTCS-FAW 2023, LNCS 13933, pp. 129–146, 2023.
https://doi.org/10.1007/978-3-031-39344-0_10

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-39344-0_10&domain=pdf
http://orcid.org/0000-0003-2065-3714
https://doi.org/10.1007/978-3-031-39344-0_10

130 Z. Zhong

With the development of sport sliding puzzle, studying better algorithms for
sliding puzzle is useful for training and competing. Since solving it optimally is
hard, it’s important to find better approximation algorithms.

In 1990, Danial Ratner and Manfred Warmuth proved that computing the
optimal solution of (n2 − 1)-puzzle is NP-hard, even if O(1) additive constant is
allowed. Also, they designed an approximation algorithm within a large constant
multiplicative factor [1]. In 1995, Ian Parberry analyzed the performance of naive
tile-by-tile algorithm for (n2 − 1)-puzzle in the worst case, and provided upper
and lower bound for “God’s number” (optimal solution length in the worst case)
[2] However, the bound is not tight: the upper bound of God’s number 5n3+o(n2)
is up to 5 times the lower bound n3 + O(n2). Parberry’s subsequent work also
analyzed the bound of its average optimal solution length, which is also tight:
The upper bound 8

3n3+O(n2) is up to 4 times the lower bound 2
3n3+O(n2) [4].

Some work focuses on small boards. In 2005, Richard E. Korf and Peter
Schultze used large-scaled parallel breadth-first search to compute the optimal
solution for all states, and find the God’s number of 15-puzzle is 80 [3]. The
God’s number of (n2 − 1)-puzzle for n ≥ 5 is still open. With the development
of artificial intelligence, in 2019, Forest Agostinelli et al. developed an approx-
imation algorithm to solve Rubik’s cube and (n2 − 1)-puzzle for n ≤ 7 based
on reinforcement learning, named DeepCubeA [5]. AI method can find near-
optimal solution in practice, but the bound of difference between solution length
and optimal solution length is not guaranteed.

In this work:

– We design approximation algorithms in polynomial time for two types of slid-
ing puzzle: n × 2 rectangular puzzle and (n2 − 1)-puzzle. These are additive
approximation algorithms, that is, the difference of solution length and opti-
mal solution length is bounded by a lower-order term, which is better than
common multiplicative approximation in most cases.

– Then, we use them to analyze optimal solution length in average/worst case
asymptotically. The upper bounds of average optimal solution length and the
God’s number meet the lower bounds in the asymptotic sense.

2 Preliminaries

2.1 Basic Definitions

Definition 1 (Board). An n × m board B is a rectangular array of n ≥ 2
rows and m ≥ 2 columns, and element 0 appears exactly once in it. For integers
0 ≤ x < n, 0 ≤ y < m, (x, y) represents the cell on the (x + 1)-th row, the
(y + 1)-th column, and B(x, y) is the element at cell (x, y) in B.

If B(x, y) �= 0, then cell (x, y) contains a tile with number B(x, y) on it; if
B(x, y) = 0, then (x, y) is an empty cell, denoted as (x0(B), y0(B)).

Additive Approximation Algorithms for Sliding Puzzle 131

Definition 2 (Operation sequence). An operation sequence σ is a
sequence of form δ1δ2 · · · δl, where each δi ∈ {U,D,L,R} is a single-tile move-
ment1, meaning that move a tile up, down, left or right to the empty cell. The
board after acting σ on B, denoted by Bσ, is the board obtained by successively
acting δ1, δ2, · · · , δl on B. σ is applicable to B if all operations are applicable
when acting σ on B.

Formally, let x0 = x0(B), y0 = y0(B), the result of acting move δ on B is to
swap B(x0, y0) and B(x0 − Δxδ, y0 − Δyδ), where movement vector (Δxδ,Δyδ)
is given in Table 1. δ is applicable to B if cell (x0 − Δxδ, y0 − Δyδ) exists.

Table 1. Movement vector

δ U D L R

(Δxδ, Δyδ) (−1, 0) (1, 0) (0, −1) (0, 1)

In this work, we use single-tile movement metric, that is, the length of
solution σ = δ1δ2 · · · δl, denoted by |σ|, is the number of moves in σ, i.e. |σ| = l.

Now we can give the formal definition of sliding puzzle.

Definition 3 (Sliding puzzle). A sliding puzzle is a scrambled board BS along
with its target board BT , and a solution to this puzzle is an operation sequence
σ such that BT = BSσ. The goal is to minimize the solution length |σ|.

Standard n × m rectangular puzzle has target board

BT =

⎛
⎜⎜⎜⎝

1 2 · · · m − 1 m
m + 1 m + 2 · · · 2m − 1 2m

...
...

. . .
...

...
nm − m + 1 nm − m + 2 · · · nm − 1 0

⎞
⎟⎟⎟⎠

here, BT (x, y) = (mx + y + 1) mod mn. In particular, if n = m, the puzzle is
called (n2 − 1)-puzzle.

In fact, we can use any target board BT containing distinct elements and
BT (n−1,m−1) = 0 in n×m rectangular puzzle, which is equivalent to standard
one by relabelling the tiles to 1, 2, · · · , nm − 1.

2.2 Some Properties

Here are some properties of boards and operations, they will be used in further
discussion.

Definition 4 (Subarray). For n×m board B and integers 0 ≤ u < d ≤ n, 0 ≤
l < r ≤ m, define B(u : d, l : r) as the subarray of B in rectangle (u : d, l : r):
from the (u + 1)-th to the d-th row and from the (l + 1)-th to the r-th column.
B(u : d, l : r) is called a sub-board of B if it is a board.
1 The following text calls it a move for short.

132 Z. Zhong

Proposition 1. For n×m board B and its sub-board B(u : d, l : r), if operation
sequence σ is applicable to B(u : d, l : r), then σ is applicable to B, (Bσ)(u :
d, l : r) = B(u : d, l : r)σ and (Bσ)(x, y) = B(x, y) for all cells (x, y) not in
(u : d, l : r). In other words, Bσ is the board by replacing subarray B(u : d, l : r)
from B with B(u : d, l : r)σ.

Definition 5 (Composition). The composition of operation sequences σ1, σ2

is the operation sequence by concatenating σ1 and σ2, denoted as σ1σ2. For
n ∈ N, σn is the composition of n identical operation sequences σ.

Definition 6 (Mapping). For array B and map π defined on all elements in
B, define πB as the array obtained by replacing each element B(x, y) in B with
π(B(x, y)).

Proposition 2. For board B:

– B(σ1σ2) = (Bσ1)σ2, for any operation sequences σ1, σ2 if applicable;
– (π2π1)B = π2(π1B), for any mapping π1, π2;2
– (πB)σ = π(Bσ), for any operation sequence σ applicable to B and permuta-

tion π s.t. π(0) = 0.

Definition 7 (Orbit). For board B, set {Bσ : σ is applicable to B} is called
the orbit of B.

In the area of sliding puzzle, there is a well-known result:

Proposition 3. Let B1, B2 be two n×m boards that has the same set of elements
X (|X| = nm, 0 ∈ X), then B1, B2 are in the same orbit if and only if integer
x0(B1) + y0(B1) + x0(B2) + y0(B2) and permutation π : X → X s.t. B2 = πB1

are both odd or both even.

2.3 Algorithms

An algorithm for sliding puzzle requires a puzzle BS along with its target board
BT , outputs a solution σ if exists. We will introduce some definitions and nota-
tions for sliding puzzle algorithms.

Online Algorithm. In sliding puzzle speedsolving area, because of the limi-
tation of time, player can only operate according to current state to solve the
puzzle. Similarly, we mainly use online algorithm to solve the puzzle in poly-
nomial time, that is, the algorithm directly acts moves on current board, and
terminates when the board is solved. Formally, an online algorithm implies the
following structure:

– Initially, let current board B ← BS , and current operation sequence σ ← ε;3

2 π2π1 is short for π2 ◦ π1.
3 ε represents empty sequence.

Additive Approximation Algorithms for Sliding Puzzle 133

– In statement “act τ ”, update B ← Bτ , σ ← στ ;
– When the algorithm terminates, B = BT , return σ.

Sometimes, instead of using “act τ ” directly, we use an alternative way to
describe the actions in our description of algorithms:

– move-x(x): means act Dx0(B)−x (if x < x0(B)) or Ux−x0(B) (otherwise),
after that x0(B) = x;

– move-y(y): means act Ry0(B)−y (if y < y0(B)) or Ly−y0(B) (otherwise), after
that y0(B) = y.

Example 1. In 1995, Ian Parberry analyzed a simple tile-by-tile algorithm for
(n2 −1)-puzzle, as Algorithm 1 [2]. It’s an online algorithm: each τ only depends
on current position of tile BT (x, y) and empty cell in B.

Algorithm 1. Parberry’s algorithm for (n2 − 1)-puzzle
for k = 0 to n − 2 do

for (x, y) in (k, k..n − 1) and (k + 1..n − 1, k) do
let τ be an operation sequence such that, when acting on B(k : n, k : n), it

places tile BT (x, y) into (x − k, y − k) in B(k : n, k : n) preserving tiles that are
previously placed

act τ � now B(x, y) = BT (x, y)
end for

end for

Proposition 4 (Parberry). It costs at most O(n) moves to put any tile into
a particular cell in the first row/column, i.e. |τ | ≤ O(n) in Algorithm 1. Hence,
it costs at most O(n2) moves to put the first row/column into place, and at most
O(n3) moves to solve (n2 − 1)-puzzle.

Multi-phase Algorithm. In practice, we usually design multi-phase algo-
rithm, consisting of several phases, while each phase reduce current board B to
a simpler one. By implementing each phase, we will obtain the whole algorithm.
Algorithm 2 gives the paradigm of a 2-phase algorithm as follows:

{initialboard}
phase I−−−−→ {board after

Phase I } phase II−−−−−→ {BT }

To implement it, we only need to implement phase I and II respectively.

Algorithm 2. 2-phase algorithm
act Solve-Phase-I(B, BT)
act Solve-Phase-II(B, BT)

134 Z. Zhong

Example 2. In (n2−1)-puzzle speedsolving area, there are two multi-phase meth-
ods that are widely used: reduction-of-order and divide-and-conquer.

The scheme of reduction-of-order is as follows, in fact Algorithm 1 uses this
scheme:

{initialboard}
solve

1st row−−−−−→
{

board s.t.
B(0,0:n)

=BT (0,0:n)

} solve 1st
column−−−−−→

{
board s.t.

B(0,0:n)=BT (0,0:n)
B(0:n,0)=BT (0:n,0)

} solve
(n−1)×(n−1)

block−−−−−−−−−→
by recursion

{BT }

The scheme of divide-and-conquer is as follows4, later we’ll use it in n × 2
rectangular puzzle:

{initialboard}
partition−−−−−→
m=�n

2 �

{
board s.t. B(0:n,0:m)
contains all elements

in BT (0:n,0:m)

} solve
left part−−−−−−→

by
recursion

{
board s.t.

B(0:n,0:m)
=BT (0:n,0:m)

} solve
right part−−−−−−→

by
recursion

{BT }

Approximation. For (n2 − 1)-puzzle, when n is large, the orbit of BT is too
large to use brute force (e.g. BFS) to find the optimal solution. So we turn to
consider to design approximation algorithms in polynomial time.

For an algorithm and an instance BS in the orbit O of BT , denote

– OPT: the length of optimal solution, i.e. min{|σ| : BT = BSσ};
– SOL: the length of solution found by this algorithm.

Definition 8 (Approximation). For an algorithm for sliding puzzle, if SOL ≤
OPT+α holds, where α is a function of the size of puzzle, then it is an additive
approximation algorithm within an additive constant of α.

A non-trivial additive approximation should satisfy α = o(OPT),5 where
OPT = E[OPT] when BS is uniformly distributed in O.

To analyze such algorithms, we introduce a concept:

Definition 9 (Potential function). Let O be an orbit of boards, then a
map ϕ : O → R is called a potential function if for all B ∈ O and move
δ ∈ {U,D,L,R} that is applicable to B, ϕ(δB) ≥ ϕ(B)− 1. Move δ acting on B
is called an efficient move if ϕ(Bδ) = ϕ(B)− 1, and it’s called an inefficient
move otherwise.

Proposition 5. For B ∈ O, if B′ = Bσ for some operation sequence σ, then
ϕ(B) − ϕ(B′) ≤ |σ| ≤ ϕ(B) − ϕ(B′) + 2k, where k is the number of inefficient
moves when acting σ on B.

If an algorithm always solves within α inefficient moves, then SOL ≤ ϕ(BS)−
ϕ(BT) + 2α ≤ OPT+ 2α, that is, it is also within additive constant 2α.

4 In fact, the algorithm needs to solve rectangular puzzle for recursion.
5 In this article, all asymptotic notations assume that the size of puzzle tends to

infinity.

Additive Approximation Algorithms for Sliding Puzzle 135

3 Approximation Algorithm for n× 2 Rectangular Puzzle

In this section, we discuss a type of puzzle: n×2 rectangular puzzle. It is closely
related to (n2 − 1)-puzzle solving. The target board is specified as

BT =

⎛
⎜⎜⎜⎝

1 2
3 4
...

...
2n − 1 0

⎞
⎟⎟⎟⎠

Here we give a potential function for n × 2 rectangular puzzle:

Definition 10. For board B, its inversion number I(B) is the inversion num-
ber of non-zero elements in sequence {bi}0≤i<2n, where bi = B(� i

2	, i mod 2),
that is:

I(B) =
∑

0≤i<j<2n

[bi > bj > 0] (1)

Proposition 6. I defined by (1) is a potential function.

Proof. Let i = 2x0(B) + y0(B), then bi = 0. When acting move δ on B:

– If δ ∈ {L,R}, then bi and bi±1 are swapped, I(Bδ) = I(B);
– If δ = U, then bi and bi+2 swap, I(Bδ) = I(B)− [bi+1 > bi+2]+ [bi+2 > bi+1];
– If δ = D, then bi and bi−2 swap, I(Bδ) = I(B)− [bi−2 > bi−1]+ [bi−1 > bi−2].

Since I(Bδ) ≥ I(B)−1 holds, I is a potential function. When δ = U, bi+1 > bi+2

or δ = D, bi−1 < bi−2, δ is an efficient move.

In this section, we will give an approximation algorithm for n×2 rectangular
puzzle to show that:

Theorem 1. There is a poly-time additive approximation algorithm to solve
n × 2 rectangular puzzle within O(n log n) additive constant.

This algorithm use divide-and-conquer scheme (mentioned in Example 2) for
n × 2 rectangular puzzle:

{initial
board}

partition−−−−−→
m=� n

2 �

{
board s.t. B(0:m,0:2)
contains all elements

in BT (0:m,0:2)

} upper
part−−−−−−→
by

recursion

{
board s.t.

B(0:m−1,0:2)
=BT (0:m−1,0:2)

} lower
part−−−−−−→
by

recursion

{BT }

3.1 Partition

The implementation of partition phase is shown in Algorithm 3.

136 Z. Zhong

Algorithm 3. Partition
v ← BT (�n

2
�, 0); u ← min{u : ∃y, B(u, y) ≥ v}

move-y(1); move-x(u) � empty cell is adjacent to a tile ≥ v
if B(u − 1, 1) ≥ v then u ← u − 1 � all tiles in B(0 : u, 0 : 2) are < v
for x = x0(B) + 1 to n − 1 do

if B(x, 1) ≥ v then act U
else

if B(u : x, 0) are all < v then x′ ← u, u ← u + 1
else x′ ← max{x′ : x′ < x, B(x′, 0) ≥ v}
act Dx−x′−1RUx−x′

L � (a)
end if � B(x, 1) = 0, all tiles in B(u : x, 1) are ≥ v

end for
d ← max{d : B(d, 0) < v} � all tiles in B(d + 1 : n, 0) are ≥ v
move-x(d)
for x = d − 1 to u decreasing do

act D
if B(x, 0) ≥ v then act RUd−xLDd−x, d ← d − 1 � (b)

end for � B(x, 1) = 0, all tiles in B(x : d + 1, 0) are < v
for i = 0 to (d − u − 1)/2 do

act RUd−u−2iLDd−u−2i−1 � (c)
end for

0 1

0

1

2

3

4

5

6

7

8

9

B(0 : u, 0 : 2)
all are < v

B(u : x − 1, 1)
all are ≥ v

empty cell next
to a tile ≥ v

B(x, 1) < v

(the case that
u is increased)

0 1

0

1

2

3

4

5

6

7

8

9

(the other case)

0 1

0

1

2

3

4

5

6

7

8

9

0 1

0

1

2

3

4

5

6

7

8

9

tile < v

tile ≥ v

empty cell

efficient move

not necessarily
efficient move

)c()b()a(

Fig. 1. Illustration of partition

Figure 1 illustrates the actions (a)(b)(c) in Algorithm 3. Take (a) for example,
denote x0 = x0(B), y0 = y0(B):

Additive Approximation Algorithms for Sliding Puzzle 137

– Before each D move, B(x0 − 1, 1) ≥ v > B(x0, 0), by Proposition 6, this D
move is an efficient move (according to potential function (1), same below);

– Before each U move (except the first and last one), B(x0 + 1, 0) < v ≤
B(x0, 1), this U move is also efficient;

– So at most O(1) moves are inefficient in (a).

It’s the same for each (b) and (c). Thus, partition costs at most O(n) inefficient
moves during up to n loops containing (a), (b) and (c).

3.2 Solve Two Parts

After partition, we can use recursion to solve upper part ((m−1)×2) and lower
part ((n − m + 1) × 2), until the size of the puzzle is small (typically n ≤ 5) so
that a brute force can be used. The steps are as follows:

(i) Put v − 4 = BT (m − 2, 0) into B(m − 1, 0) within O(n) moves (Proposition
4), keeping that B(0 : m, 0 : 2) contains all elements in BT (0 : m, 0 : 2);

(ii) Do move-y(0), move-x(m − 1), now B(m − 1, 0) = 0, B(m, 0) = v − 4,
then recursively solve B′ = (v − 1 v − 2 v − 3 v − 4)B(0 : m, 0 : 2) while the
target board is B′

T = (v − 1 0)BT (0 : m, 0 : 2),6 after acting the solution,
B(0 : m, 0 : 2) = (v − 4 v − 3 v − 2 v − 1 0)BT (0 : m, 0 : 2);
– Notice that B′ may not be in the orbit of B′

T , if so, B′ is in the orbit of
(v−3 v−2)B′

T (Proposition 3); So we allow that v−3 and v−2 in B′ are
swapped; In this case, B(0 : m, 0 : 2) = (v−4 v−3 v−1 0)BT (0 : m, 0 : 2)
after action;

Then, act RULD2RU, now B(0 : m − 1, 0 : 2) = BT (0 : m − 1, 0 : 2);
(iii) Finally, recursively solve B(m − 1 : n, 0 : 2) while the target board is

BT (m − 1 : n, 0 : 2), it must be solvable if B is solvable (Proposition 3).

Let’s analyze the bound of inefficient moves in this algorithm. Denote T (n)
as the upper bound of inefficient moves of this algorithm in n × 2 board, note
that in step (ii), any efficient move on B′ is also efficient when applying on B
(see Proposition 6), so there are at most T

(
n
2 �) inefficient moves in step (ii),

and it’s similar in step (iii). Then

T (n) = T
(

n

2
�
)
+ T

(
�n

2
	 + 1

)
+ O(n)

solved as T (n) = O(n log n). So far, we have proved that this is an additive
approximation algorithm within O(n log n) additive constant.

6 Elements in B′
T (except the last row) are also increasing from top to bottom, so the

correctness of Algorithm 3 is guaranteed. Recall that (a1 a2 · · · ak) represents a
cyclic permutation such that a1 	→ a2, a2 	→ a3, · · · , ak 	→ a1.

138 Z. Zhong

4 Approximation Algorithm for (n2 − 1)-Puzzle

Now let’s turn to general (n2 − 1)-puzzle. The target board is specified as

BT =

⎛
⎜⎜⎜⎝

1 2 · · · n − 1 n
n + 1 n + 2 · · · 2n − 1 2n

...
...

. . .
...

...
n2 − n + 1 n2 − n + 2 · · · n2 − 1 0

⎞
⎟⎟⎟⎠

Also, there is an obvious potential function for n × 2 rectangular puzzle:

Definition 11. For n × n board B, let (xi, yi) and (x′
i, y

′
i) be the position of

element i in B and BT respectively, define its Manhattan distance to BT as

D(B) =
n2−1∑
i=1

(|xi − x′
i| + |yi − y′

i|) (2)

Proposition 7. D defined by (2) is a potential function.

Unlike n×2 rectangular puzzle, existing algorithm schemes, such as Example
2, can’t achieve an additive approximation for (n2−1)-puzzle, which is what we’ll
improve. In this section, we will show this result by designing a new algorithm:

Theorem 2. There is a poly-time additive approximation algorithm to solve
(n2 − 1)-puzzle within O(n2.75) additive constant.

4.1 Algorithm when n = k4

Suppose n = k4 for some integer k ≥ 2, let’s split target board BT into k2

squares of size k3 × k3. For 0 ≤ i < k2, denote Si as the set of tiles (non-zero
elements) in square BT (aik

3 : (ai + 1)k3, bik
3 : (bi + 1)k3), where ai = � i

k 	,
bi = i mod k, as Fig. 2(a). Clearly |Si| = k6 − [i = k2 − 1]. Then, let’s split
current board B into these parts, as Fig. 2(b):

– Hi(B): Set of elements in B(aik
3 + bi, 0 : n);

– Vi,j(B) (0 ≤ j < k2): Set of elements in B(aik
3 + k : (ai + 1)k3, bik

3 + j);
– Ri(B): Set of elements in B(aik

3 + k : (ai + 1)k3, bik
3 + k2 : (bi + 1)k3).

We will omit “(B)” in Hi(B), Vi,j(B) and Ri(B) in the following text.
Remember that Hi, Vi,j and Ri change as current board B changes.

Additive Approximation Algorithms for Sliding Puzzle 139

Fig. 2. Split BT and B into parts

Clearly |Hi| = n, |Vi,j | = k3 − k, |Ri| = (k3 − k)(k3 − k2), and these parts
exactly cover B. We call that board B is in clear state if

– ∀0 ≤ i < k2, Hi ⊆ Si;
– ∀0 ≤ i, j < k2, Vi,j ⊆ Sj .

Now, we can design the phases of our algorithm:

I. Build: To make B be in clear state and ∀0 ≤ i < k2 − 1, Rk2−1 ∩ Si �= ∅;
II. Transport: To make B be in clear state and ∀0 ≤ i < k2, Ri ⊆ Si;

III. Arrange: To make each square B(aik
3 : (ai + 1)k3, bik

3 : (bi + 1)k3) be
filled with tiles in Si;

IV. Finish: To make B = BT .

Figure 3 illustrates its first three phases: (a) is the initial board, (b) is the
board after phase I (Build), (c) is the board after phase II (Transport), and
(d) is the board after phase III (Arrange). For better understanding, tiles are
colored corresponding to Fig. 2(a) (tiles of the same color belong to the same Si)
and the board is split according to Fig. 2(b).

(a) (b) (c) (d)

Fig. 3. Illustration of the algorithm

140 Z. Zhong

Phase I: Build. There are many ways to make B be in clear state and ∀0 ≤
i < k2 − 1, Rk2−1 ∩ Si �= ∅ within O(n2.75) moves. Here we give one, which has
following steps:

(i) For each 0 ≤ i < k2, choose any n + k2(k3 − k) tiles in Si and put them
into B(aik

3 + bi, 0 : k3), B(i, k3 : n) and B(ajk
3 + k : (aj + 1)k3, bjk

2 + i)
for every 0 ≤ j < k2;
• Note that these parts exactly cover the first k2 rows and first k3 columns of

B, so we can use an algorithm in reduction-of-order scheme (see Example
2 and Proposition 4) to solve them within k3 · O(n2) = O(n2.75) moves.

Then, for each 0 ≤ i < k2 − 1, choose any other one tile in Si and put it
into B(n − k2 : n, n − k2 : n), so that Rk2−1 ∩ Si �= ∅, as shown in Fig. 4(a)
(note that only tiles which are chosen and put are drawn);

(ii) For i = k2 − 1, k2 − 2, · · · , 0, move B(i, k3 : n) down to B(aik
3 + bi, k

3 : n),
so that Hi ⊆ Si, as shown in Fig. 4(b);

(iii) For i = k2 − 1, k2 − 2, · · · , 0, move B(aik
3 + k : (ai + 1)k3, bik

2 : bik
2 + k2)

right to B(aik
3 + k : (ai +1)k3, bik

3 : bik
3 + k2), so that Vi,j ⊆ Sj for all j,

as shown in Fig. 4(c).

(a) Board after (i) (b) Board after (ii) (c) Board after (iii)

Fig. 4. Illustration of phase I

In (ii) and (iii), we need to do translational movement for a 1 × m or m × 1
subarray. Here we describe a way to move a 1×m subarray down by 1 cell within
O(m) moves, while other cases of translational movement are similar:

Lemma 1. For 3 × m board B′ s.t. B′(2, 0) = 0, operation sequence

θm = LDRDLm−1(RULDR)m−2U2RD2LURU (3)

satisfies that (B′θm)(1, 0 : m) = B′(0, 0 : m), (B′θm)(2, 0 : m) = B′(2, 0 : m).

If we need to move B(x, y : y+m) down, first move the empty cell to (x+2, y),
note that B(x, y : y+m) is the first row of 3×m sub-board B(x : x+3, y : y+m),
acting θm on B will move tiles in B(x, y : y +m) down by one cell within O(m)
moves. Then acting (θmU)t will move them down by t cells within O(nm) moves.

Therefore, it costs k2 · O(n2) + k2 · k2 · O(nk3) = O(n2.75) moves in (ii)(iii).

Additive Approximation Algorithms for Sliding Puzzle 141

Phase II: Transport. After B is built to such a state, the transport phase
begins. Before implementation, let’s introduce a kind of operation:

Lemma 2. For m × 2 or 2× m board B′ and any cell (x, y) s.t. x+ y + x0 + y0
is odd (x0 = x0(B′), y0 = y0(B′)), there is an operation sequence τ s.t. B′τ =
(B′(x, y) 0)B′ within O(m) moves.

Proof. Here only show one case. Other cases are similar and we omit them.
For 2×m board s.t. x0 = 0, x = 1, y = y0+2l, denote bi = B′(1, y0+2l− i),

τi = L2(l−i)UL2DR, ρ = URDL, then B‘τiρ = (b2i−2 b2i−1 b2i)B′τi, that is,
B′τiρτ−1

i = (b2i−2 b2i−1 b2i)B′.7 Let τ = τ1(ρτ−1
l−1τl)l−1ρτ−1

l UL2l, then

B′τ = B′τ1ρτ−1
l−1τlρτ−1

l−1τl · · · ρτ−1
l−1τlρτ−1

l UL2l

= B′τ1ρτ−1
1 τ2ρτ−1

2 τ3 · · · ρτ−1
l−1τlρτ−1

l UL2l

= (b0 b1 b2)(b2 b3 b4) · · · (b2l−2 b2l−1 b2l)B′UL2l

= (b0 b1 · · · b2l)B′UL2l = (b0 0)B′

For current board B, let x0 = x0(B), y0 = y0(B), if cell (x, y) is in an m × 2
or 2 × m sub-board and x + y + x0 + y0 is odd, then we can act an operation
sequence within O(m) moves to swap the empty cell and B(x, y). We use term
“jump (x, y)” to describe such operation.

The implementation is shown in Algorithm 4.

Algorithm 4. Transport

ci,j ← |Ri ∩ Sj | for all 0 ≤ i, j < k2

i ← integer s.t. 0 ∈ Ri

while ∃j = i, cj,i > 0 do
j ← min{j : j = i : cj,i > 0} � (*)
choose any B(x, y) ∈ Rj ∩ Si

jump (aik
3 + bi, y

′) for y′ = y0(B) or y0(B) − 1 � (i)
move-y(bjk

3 + i) � (ii)
for x′ = x0(B) to x increasing or decreasing do

if x′ mod k3 ≥ k then
if x′ = x0(B) ± 1 then move-x(x′) � (iii)
else

jump (x′, bjk
3 + i) or (x′ ± 1, bjk

3 + i) in Si � (iv)
end if � Hi ⊆ Si and V∗,i ⊆ Si holds

end if
end for � Now 0 ∈ Vj,i

jump (x, y), or act U or D (keeping 0 ∈ Vj,i) then jump � (v)
cj,i ← cj,i − 1, ci,i ← ci,i + 1 � ci,j = |Ri ∩ Sj | holds
i ← j � 0 ∈ Ri holds

end while � B is still in clear state

7 σ−1 is the sequence by reversing σ and replacing U 	→ D,D 	→ U,L 	→ R,R 	→ L,
clearly Bσσ−1 = B.

142 Z. Zhong

Figure 5 shows the operation in each loop of Algorithm 4.

Hi

Vj,i

(i)

(ii)

(iv)

(iii)

(iv)

(iii)
(v)

move
jump

Fig. 5. Operations in each loop of phase II

Here are some facts of Algorithm 4 to show the correctness of this algorithm:

– Fact 1: The process terminates in at most n2 loops.
Because

∑
i

∑
j �=i ci,j ≤ n2 initially, and

∑
i

∑
j �=i ci,j decreases by 1 after

each loop.
– Fact 2: When the process terminates, i = k2 − 1, and Rj ⊆ Sj for all j.

Note that when 0 ∈ Ri, ci,i ≤ |Ri| − 1, since Hi, Vj,i ⊆ Si, |Si| = |Hi| +∑
j |Vj,i| +

∑
j cj,i, so

∑
j �=i

cj,i = |Si| − |Hi| −
∑

j

|Vj,i| − ci,i

= |Si| − n − k2(k3 − k) + (|Ri| − ci,i) − (k3 − k)(k3 − k2)

= |Si| − k6 + (|Ri| − ci,i) ≥ |Si| − k6 + 1

When the process terminates,
∑

j �=i cj,i = 0, so |Si| = k6 −1, i = k2 −1. Now
ci,i = |Ri|−1, that means Ri −{0} ⊆ Si, hence ci,j = 0 for all j �= i = k2 −1.
Also note that for all i′ < k2−1, ck2−1,i′ is positive at the beginning (because
Rk2−1 ∩ Si′ �= ∅) and zero at the end, so there is some loop that changes
ck2−1,i′ from 1 to 0, in that loop, i = i′, j = k2 −1, by (*), ∀j′ < k2 −1∧ j′ �=
i′, cj′,i′ = 0, that means after this loop, ∀j′ �= i′, cj′,i′ = 0 holds. Finally,
cj,i = 0 holds for all j, i s.t. i �= j, that is, Rj ⊆ Sj .

Additive Approximation Algorithms for Sliding Puzzle 143

– Fact 3: This phase costs at most O(n2.75) inefficient moves according to
potential function D defined by (2).
By Lemma 2, each (i) and (v) costs O(k3) moves while they are executed for
at most n2 times, each (iv) costs O(k) moves while it is executed for at most
n2k times, so they cost at most n2 · O(k3) + n2k · O(k) = O(n2.75) moves.
Since (ii) and (iii) only move tiles in Si towards rectangle area (aik

3 : (ai +
1)k3, bik

3 : (bi + 1)k3) of B, when y0(B) �∈ [bik
3, (bi + 1)k3), L/R moves in

(ii) are efficient, and similarly, when x0(B) �∈ [aik
3, (ai + 1)k3), U/D moves

in (iii) are efficient. Therefore, in each loop, (ii) and (iii) cost at most O(k3)
inefficient moves, and at most O(n2.75) inefficient moves in total.

Phase III: Arrange. In this phase, we only need to:

– Swap Vi,j and Vj,i for all 0 ≤ i, j ≤ k2, i �= j;
– Swap elements in B(ak3 + b, ck3 : (c+ 1)k3) and elements in B(ak3 + c, bk3 :

(b + 1)k3) for all 0 ≤ a, b, c < k, b �= c;
Now tiles in Hi are moved into B(aik

3 : aik
3 + k, bik

3 : (bi + 1)k3).

To swap the sets of tiles P,Q of two 1× k3 or k3 × 1 subarrays in B, we can
use any way to move them into a 2×k3 or k3×2 rectangle within at most O(k3n)
moves (such as tile-by-tile, or using the way in Lemma 1 to move the subarray).
Assume that operation sequence σ0 places tiles in P,Q into (x : x+3, y : y+k3),
while the first row of B′ = (Bσ0)(x : x + 3, y : y + k3) is filled with tiles in P ,
the second row of B′ is filled with tiles in Q, B′(2, 0) = 0, then, by Lemma 1,
Bσ0θk3 = πBσ0 for permutation π which maps P to Q and maps Q to P (θk3

is given by (3)), so Bσ0θk3σ−1
0 = πB. Act σ0θk3σ−1

0 on B, then sets P,Q are
swapped on B, preserving other tiles.

Use this method, swapping the sets of tiles of two 1× k3 or k3 × 1 subarrays
costs O(k3n) moves, so there are at most k4 · O(k3n) = O(n2.75) moves in this
phase.

Phase IV: Finish. Finally, we need to solve k2 parts B(ak3 : (a + 1)k3, bk3 :
(b+1)k3). The method is similar to the phase to solve upper and lower parts of
n×2 rectangular puzzle, see Sect. 3.2. However, it’s not necessary to do recursion,
instead, we can use any poly-time algorithm within O(k9) time to solve each part,
such as Algorithm 1. So there are at most k2 · O(k9) = O(n2.75) moves in this
phase.

4.2 Algorithm in General

For general (n2 − 1)-puzzle, we can easily reduce it to the case which n = k4:

– Let k = � 4
√

n	, then k4 ≤ n < (k + 1)4 = k4 + O(k3);
– Use algorithm in reduction-of-order scheme to solve first n − k4 rows and

first n − k4 columns of B, it costs (n − k4) · O(n2) = O(n2.75) moves
(Proposition 4;

144 Z. Zhong

– Solve k4 × k4 block B(n − k4 : n, n − k4 : n) to finish.
Obviously DBT

(B) = DBT (n−k4:n,n−k4:n)(B(n − k4 : n, n − k4 : n)),8 so it
costs at most O(n2.75) inefficient moves for B too.

So far, we have proved that this is an additive approximation algorithm for
(n2 − 1)-puzzle within O(n2.75) additive constant.

5 Application: Average/Worst Case Analysis

For a type of sliding puzzle, how many moves are needed to solve the puzzle in
average case, and in worst case?

Let O be the orbit of the target board BT , and the scrambled board BS ∈ O.

– In average case, the average optimal solution length OPT is the average
value of OPT of all BS ∈ O;

– In worst case, the maximum optimal solution length maxOPT, also
known as the God’s number, is the maximum value of OPT for all BS ∈ O.

For n×2 rectangular puzzle or (n2−1)-puzzle, computing OPT or maxOPT
is hard. However, using additive approximation algorithms, we can get asymp-
totic results for these puzzles. For an additive approximation algorithm within
α inefficient moves based on potential function ϕ, we have

ϕ(BS) − ϕ(BT) ≤ OPT ≤ SOL ≤ ϕ(BS) − ϕ(BT) + α

when BS is uniformly distributed in O:

E[ϕ(BS)] − ϕ(BT) ≤ OPT ≤ E[ϕ(BS)] − ϕ(BT) + α

max
BS∈O

ϕ(BS) − ϕ(BT) ≤ maxOPT ≤ max
BS∈O

ϕ(BS) − ϕ(BT) + α

so OPT = E[ϕ(BS)] − ϕ(BT) + O(α), maxOPT = maxBS∈O ϕ(BS) − ϕ(BT) +
O(α). The remaining task is to find E[ϕ(BS)] and maxBS∈O ϕ(BS).

5.1 Analysis for n × 2 Rectangular Puzzle

Proposition 8. For n×2 rectangular puzzle, the average optimal solution length
is n2 + O(n log n), and the God’s number is 2n2 + O(n log n).

Proof. Assume n ≥ 3. For uniformly distributed BS ∈ O, let bi = BS(� i
2	, i mod

2), for i = 1, 2, · · · , 2n − 1, denote pi as the integer s.t. bpi
= i, then

E[I(BS)] = E

⎡
⎣ ∑
1≤i<j<2n

[pi > pj]

⎤
⎦ =

∑
1≤i<j<2n

Pr{pi > pj}

8 Here the subscript represents the corresponding target board.

Additive Approximation Algorithms for Sliding Puzzle 145

For any 1 ≤ i < j < 2n, choose 1 ≤ i′, j′ < 2n s.t. i, j, i′, j′ are distinct, consider
a map f : O → O defined by B �→ (i j)(i′ j′)B, then f maps {BS ∈ O : pi < pj}
to {BS ∈ O : pi > pj} and vice versa, so these two sets have the same size,
Pr{pi > pj} = 1

2 , thus E[I(BS)] = 1
4 (2n − 1)(2n − 2). So OPT = E[I(BS)] +

O(n log n) = n2 + O(n log n).
Note that I(BS) ≤ ∑

1≤i<j<2n 1 = 1
2 (2n − 1)(2n − 2) and the equality holds

when BS is obtained by rotating BT half a turn:

BS =

⎛
⎜⎜⎜⎝

0 2n − 1
2n − 2 2n − 3

...
...

2 1

⎞
⎟⎟⎟⎠

so maxOPT = maxBS∈O I(BS) + O(n log n) = 2n2 + O(n log n).

5.2 Analysis for (n2 − 1)-Puzzle

Proposition 9. For (n2−1)-puzzle, the average optimal solution length is 2
3n3+

O(n2.75), and the God’s number is n3 + O(n2.75).

Proof. For uniformly distributed BS ∈ O, here directly use the conclusion in [2]:

E[D(BS)] =
2
3
n3 + O(n2), max

BS∈O
D(BS) ≥ n3 − O(n2)

so OPT = E[D(BS)]+O(n2.75) = 2
3n3+O(n2.75). Let (xi, yi), (x′

i, y
′
i) be current

and target position of tile i in BS , then

D(BS) ≤
n2−1∑
i=1

(∣∣∣∣xi − n − 1
2

∣∣∣∣ +
∣∣∣∣x′

i − n − 1
2

∣∣∣∣ +
∣∣∣∣yi − n − 1

2

∣∣∣∣ +
∣∣∣∣y′

i − n − 1
2

∣∣∣∣
)

≤ 4n
n−1∑
x=0

∣∣∣∣x − n − 1
2

∣∣∣∣ = n3 + O(n2)

so maxOPT = maxBS∈O D(BS) + O(n2.75) = n3 + O(n2.75).

6 Conclusion

This research focus on the design of poly-time additive approximation algorithm
for two types of sliding puzzle: n × 2 rectangular puzzle and (n2 − 1)-puzzle.

Some methods in sport sliding puzzle area are useful in approximation algo-
rithm design. For n × 2 rectangular puzzle, which is a variation of (n2 − 1)-
puzzle, directly using an algorithm in divide-and-conquer scheme has a good
performance. Using inversion number as potential function, we have proved that
it achieves an additive approximation within O(n log n) additive constant.

146 Z. Zhong

However, to achieve additive approximation for (n2 − 1)-puzzle is more dif-
ficult. Therefore, we designed a new poly-time algorithm for (n2 − 1)-puzzle
to solve this problem successfully. Using Manhattan distance as potential func-
tion, we have proved that it achieves an additive approximation within O(n2.75)
additive constant.

An important application of these approximation algorithms is average/worst
case analysis. Using the potential functions and approximation algorithms we
have designed, we can analyze optimal solution length in average case and worst
case (God’s number) for n× 2 rectangular puzzle and (n2 − 1)-puzzle asymptot-
ically. The result is shown in Table 2.

Table 2. Average/worst case analysis

Type Average optimal solution length God’s number

n × 2 rectangular puzzle n2 + O(n logn) 2n2 + O(n logn)

(n2 − 1)-puzzle 2
3
n3 + O(n2.75) n3 + O(n2.75)

Acknowledgements. I would like to thank my supervisor, Ran Duan, for his guidance
during this research.

I would also like to thank professional sliding puzzle players: jrj5423, Samarra,
dphdmn, for bring me some data and idea.

References

1. Ratner, D., Warmuth, M.: The (n2 − 1)-puzzle and related relocation problems. J.
Symb. Comput. 10(2), 111–137 (1990)

2. Parberry, I.: A real-time algorithm for the (n2 −1)-puzzle. Inf. Process. Lett. 56(1),
23–28 (1995)

3. Korf, R., Schultze, P.: Large-scale parallel breadth-first search. In: Proceedings of
the 20th National Conference on Artificial Intelligence (AAAI-2005), pp. 1380–1385
(2005)

4. Parberry, I.: Solving the (n2 −1)-puzzle with 8
3
n3 expected moves. Algorithms 8(3),

459–465 (2015)
5. Agostinelli, F., McAleer, S., Shmakov, A., Baldi, P.: Solving the Rubik’s cube with

deep reinforcement learning and search. Nat. Mach. Intell. 1, 356–363 (2019)

Differential Game Analysis
for Cooperation Models in Automotive

Supply Chain Under Low-Carbon
Emission Reduction Policies

Yukun Cheng1,3(B) , Zhanghao Yao2, and Xinxin Wang2

1 School of Business, Jiangnan University, Wuxi 214122, China
ykcheng@amss.ac.cn

2 School of Business, Suzhou University of Science and Technology,
Suzhou 215009, China

zhyao@post.usts.edu.cn
3 Think Tank for Urban Development, Suzhou University of Science and Technology,

Suzhou 215009, China

Abstract. In the context of reducing carbon emissions in the auto-
motive supply chain, collaboration between vehicle manufacturers and
retailers has proven to be an effective measure for enhancing carbon
emission reduction within the enterprise. This study aims to evaluate
the effectiveness of such collaboration by constructing a differential game
model that incorporates carbon trading and consumer preferences for
low-carbon products. The model examines the decision-making process
of an automotive supply chain comprising a vehicle manufacturer and
multiple retailers. By utilizing the Hamilton-Jacobi-Bellman equation,
we analyze the equilibrium strategies of the participants under both a
decentralized model and a Stackelberg leader-follower game model. In the
decentralized model, the vehicle manufacturer optimizes its carbon emis-
sion reduction efforts, while each retailer independently determines its
low-carbon promotion efforts and vehicle retail price. In the Stackelberg
leader-follower game model, the vehicle manufacturer cooperates with
the retailers by offering them a subsidy. Consequently, the manufacturer
plays as the leader, making decisions on carbon emission reduction efforts
and the subsidy rate, while the retailers, as followers, compute their pro-
motion efforts and retail prices accordingly. Through theoretical analysis
and numerical experiments considering the manufacturer’s and retailers’
efforts, the low-carbon reputation of vehicles, and the overall system prof-
its under both models, we conclude that compared to the decentralized
model, where each party pursues individual profits, the collaboration in
the Stackelberg game yields greater benefits for both parties. Further-
more, this collaborative approach promotes the long-term development
of the automotive supply chain.

This work is supported by the National Nature Science Foundation of China (No.
11871366) and the Research Innovation Program for College Graduate Students of
Jiangsu Province (No. KYCX22 3249).

c© Springer Nature Switzerland AG 2023
M. Li et al. (Eds.): IJTCS-FAW 2023, LNCS 13933, pp. 147–159, 2023.
https://doi.org/10.1007/978-3-031-39344-0_11

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-39344-0_11&domain=pdf
http://orcid.org/0000-0002-3638-3440
https://doi.org/10.1007/978-3-031-39344-0_11

148 Y. Cheng et al.

Keywords: Differential game · Carbon trading · Automotive · Supply
chain · Carbon emission reduction efforts

1 Introduction

The automotive industry, in particular, has been identified as one of the major
contributor to global carbon emissions, and as a result, has been the focus of
regulatory and societal pressures to reduce its carbon emissions. In response to
these pressures, many manufactures have set ambitious goals to reduce their
carbon emissions, including improving energy efficiency and adopting electric
vehicles [1]. However, achieving these goals is not always straightforward, as
manufacturers operate in a complex ecosystem that includes not only themselves
but also retailers, consumers, and other participants.

One important part in this ecosystem is the interaction between the manu-
facturers and their retailers. The manufacturer is responsible for carbon emission
reduction efforts by conducting research and development of low-carbon tech-
nologies and producing low-carbon vehicles. Retailers play a critical role in the
distribution of vehicles, using low-carbon promotions to attract consumers to
purchase low-carbon products. Besides, the manufacturer and retailers may also
cooperate in their emission reduction activities. However, retailers and manu-
facturer are primarily driven by their own interests to maximize profits, which
may lead to suboptimal resource allocation and market efficiency. Therefore,
designing appropriate cooperation models between manufacturers and retailers
is crucial. Generally, decentralized decision-making and the Stackelberg leader-
follower game model are widely adopted [2–4]. In decentralized decision-making,
manufacturers and retailers can make independent decisions based on their own
information and considerations. This decision design encourages them to make
optimal decisions based on their own interests. At the same time, decentralized
decision-making can reduce the costs of information exchange and coordination.
Through the Stackelberg leader-follower decision-making, manufacturer can first
formulate the carbon emission reduction effort and subsidy rate, while retail-
ers react based on the manufacturer’s decisions. This arrangement of decision
sequences can fully leverage the manufacturer’s advantage and achieve market
efficiency to some extent.

When it comes to government efforts to reduce carbon emissions, various
administrative measures are implemented, including carbon taxes, building car-
bon trading markets, increasing green investments, and more. Among these mea-
sures, carbon trading is the most widely used, which has been implemented in
many countries, including China and the European Union [5]. Under a carbon
trading system, the government initially allocates a certain amount of carbon
quotas to each enterprise based on specific allocation rules. If an enterprise’s
actual carbon emissions are lower than the initial quota, they can sell the excess
quotas in the carbon trading market to generate profit. On the other hand, enter-
prises that exceed their carbon quotas need to buy additional quotas to comply
with government regulations [6]. It is evident that the carbon trading policy

Cooperation Models in Automotive Supply Chain 149

influences the production and operation decisions of enterprises [7]. Taking the
impact of carbon trading into consideration, Yang et al. [8] designed pricing and
emission reduction models for two competitive supply chains under a carbon
trading scheme. Sun et al. [3] studied multi-period continuous production sub-
ject to dynamically changing characteristic conditions within the framework of
carbon trading, and proposed different differential game models to explore coop-
eration models between the government and enterprises. Unlike existing works
that typically involve two participants, such as one manufacturer and one sup-
plier or one manufacturer and one retailer, this paper focuses on studying the
interactions among one manufacturer and multiple retailers.

Many studies have investigated the influence of consumers’ low-carbon pref-
erences on the supply chain. Xia et al. [5] incorporated reciprocal preferences
and consumers’ low-carbon awareness into a supply chain model consisting of a
single manufacturer and a single retailer, and examined how these preferences
affect the decisions, performance, and efficiency of the supply chain members.
Wang et al. [2] studied the carbon reduction decisions of automotive supply chain
members under total control and transaction rules using differential game the-
ory, where consumers’ low-carbon preferences were also a significant factor affect-
ing companies’ emission reduction decisions. Chen et al. [9] developed a closed-
loop supply chain model for recycling and remanufacturing based on Stackelberg
leader-follower game theory, considering consumers’ low-carbon preferences and
government subsidies, and established profit models for each stakeholder under
centralized and decentralized decision-making models. They also examined the
impact of consumers’ low-carbon preferences on the profits and decisions of sup-
ply chain members. Xu et al. [4] developed a cost-sharing model for the auto-
motive supply chain, considering the dynamic changes in consumers’ low-carbon
preferences. They argued that consumer demand would be affected by the low-
carbon reputation of products, which in turn would impact product sales. Simi-
lar insights can also be found in the studies of [3,10,11], which suggest that mar-
ket demand depends on a company’s green reputation and the level of environ-
mental friendliness of its products, and that the formation of a green reputation
requires coordination among supply chain members. These studies highlight that
consumers’ low-carbon preferences have become an essential factor in supply chain
decision-making. Additionally, we noted that [2,4] considered dynamic consumer
low-carbon preferences in their research. Dynamic preferences are more reflective
of their impact on the supply chain compared to static preferences. Therefore,
drawing inspiration from [3,4], our paper aims to introduce dynamic consumer
low-carbon preferences based on green low-carbon reputation.

In reality, the process of reducing carbon emissions within the supply chain is
a dynamic and long-term endeavor. Throughout this process, the level of emis-
sion reduction and the green low-carbon reputation of vehicles, as well as con-
sumers’ low-carbon preferences, are continuously changing. This prompts us to
adopt a dynamic perspective to study the interaction between the manufacturer
and n retailers. Differential game theory, as an important dynamic game model,
can provide solutions for dynamic equilibrium outcomes in continuous time [12].
By utilizing the Hamilton-Jacobi-Bellman equation, we analyze the equilibrium

150 Y. Cheng et al.

strategies of participants in two distinct models: a decentralized model and a
Stackelberg leader-follower game model. In the decentralized model, each par-
ticipant makes individual decisions, whereas in the Stackelberg game model,
the manufacturer engages in collaboration with the retailers by offering a sub-
sidy. Unlike previous studies that mainly focus on the manufacturer’s strategy of
carbon emission reduction efforts and the retailers’ strategies for low-carbon pro-
motion, our study goes further by incorporating the retailers’ decision-making
process regarding retail pricing. Furthermore, to enhance the realism of our
model, we introduce carbon trading as an additional element.

The remaining parts of this article are organized as follows. Section 2 provides
the introduction of the problem and the necessary assumptions. In Sect. 3, two
differential cooperation models are established and the corresponding equilib-
rium solutions are analyzed. Section 4 conducts the experiments and the numer-
ical analysis to verify our theoretical results. Finally, Sect. 5 presents the conclu-
sion and discussion on further directions. The detailed proofs of the main results
are placed in the full version.

2 Problem Assumptions and Notations

This paper focuses on a two-tier automotive supply chain consisting of a man-
ufacturer and n retailers. The manufacturer is responsible for carbon emission
reduction efforts to develop low-carbon technology and producing vehicles under
a brand, and its investment in low-carbon technology can enhance the low-carbon
reputation of its products and the emissions reduction level. The retailers strive
to improve the low-carbon reputation of the brand of vehicles through carbon
promotion efforts, such as publicity, subsidies, and other efforts to attract more
consumers. Both the manufacturer and the retailers’ efforts can improve the
low-carbon reputation of this brand of vehicle. In addition, due to the existence
of cap-and-trade regulation, the manufacturer needs to consider the impact of
carbon trading when making decisions.

Considering the interaction between the manufacturer and the retailers, we
propose two cooperation models: the decentralized model and the Stackelberg
leader-follower game model, to explore the strategy selection and interaction
among the participants, respectively. Each model accounts for the interdepen-
dence between the manufacturer and the retailers, as well as the impact of carbon
trading and consumer green preferences on their decision-making process.

Table 1 provides the notations used in this paper.

2.1 Model Assumptions

Assumption 1. Both the carbon emission reduction effort Em of the manufac-
turer and the low-carbon promotion effort Eri

of retailer i affect the low-carbon
reputation G of the brand of vehicles. Similar to [4], this dynamic process of
G(t) is described by the following differential equation:

Ġ(t) = μmEm(t) +
n∑

i=1

μri
Eri

(t) − δG(t),

Cooperation Models in Automotive Supply Chain 151

Table 1. Notations and description.

Notation Descriptions

t Time period

G(t), G(0) Low carbon reputation of the vehicle at time t, and initial value of the low
carbon reputation, G(0) ≥ 0.

Em, Eri Manufacturer’s carbon emission reduction effort, retailer i’s low-carbon

promotion effort.

λm, λri Manufacturer’s cost coefficient related to carbon emission reduction, retailer

cost coefficient related to the promotion of low-carbon vehicle, λm, λri > 0.

μm, μri Influence coefficient of manufacturer emission reduction efforts on the
reputation, influence coefficient of retailer’s low-carbon promotion efforts on
reputation, μm, μri > 0.

ω Influence coefficient of manufacturer emission reduction efforts on the
emission reduction level, ω > 0.

p, pi, pc Manufacturer’s wholesale price, retail price, price per unit of carbon emission
credit, p, pi, pc > 0.

Qi(t) Demand function for retailer i at time t and the total demand is
Q(t) =

∑n
i=1 Qi(t).

θ Low-carbon preference of consumers, θ > 0.

ai retailer i’s potential sales, ai > 0.

bi, c Influence coefficient of price on sales, influence coefficient of other retailers’
prices on sales, bi > 0, 0 ≤ c ≤ 1.

F0 Carbon emission quota.

F (t) Total quantity of carbon quota trading at time t.

δ Decay coefficient of low-carbon reputation, δ > 0.

ρ Discount rate of profit, ρ > 0

where μm and μri
, i = 1, · · · , n, are the influence coefficients of manufacturer’s

and retailers’ efforts on the reputation, δ > 0 is the decay coefficient of low-
carbon reputation.

Assumption 2. By assumptions for demand in [13], the demand Qi of the
vehicles sold by retailer i is decreasing with the retail price pi and increasing
with the price pj , j �= i set by others. In addition, the higher lower-carbon
reputation G(t) can positively influence demand Qi(t). Thus

Qi(t) = (ai − bipi + c

n∑

k=1,k �=i

bkpk

n − 1
)θG(t),

where bi > 0 is the coefficient of the effect from the retail price pi on demand
Qi. Since the effect from other retail price pk �= pi on Qi is no more than the
effect from pi, we let the coefficient 0 ≤ c ≤ 1.

Assumption 3. The carbon emissions level of the vehicle is determined by
the manufacturer’s efforts in emission reduction (through low-carbon technology

152 Y. Cheng et al.

investment and development), with the emission reduction level being propor-
tional to the manufacturer’s efforts, denoted by a coefficient ω. Thus, the vehicle’s
emission reduction level is equal to ω ·Em(t). Similar to the assumption in [2,5],
we assume that the initial carbon emissions per unit product is 1, indicating
the emission reduction per unit product is 1 · ω · Em(t), the per unit product
carbon emission is 1 − ω · Em(t), and the total emission of the manufacturer is
(1 − ωEm(t))

∑n
i=1 Qi(t). Let us denote the carbon quota of the manufacturer

at time t as F (t), with F0 being the initial carbon quota. Therefore, the carbon
quota of the manufacturer is expressed as:

F (t) = F0 − (1 − ωEm(t))
n∑

i=1

Qi(t).

It is worth to note that when F (t) > 0, the manufacturer possesses excess carbon
quotas that can be traded for financial gain in the carbon market. Conversely,
if F (t) < 0, the manufacturer is obligated to procure carbon quotas from the
market to comply with the government’s regulations.

Assumption 4. The costs of emission reduction efforts paid by the manufac-
turer and retailer are quadratic functions of Em(t) and Eri

(t), respectively, which
are popular and have been adopted by a lot of literatures [2,3,5]. Therefore, the
costs of efforts respectively paid by the manufacture and retailer i are

Cm(t) =
1
2
λmE2

m(t), Cri
(t) =

1
2
λri

E2
ri

(t).

Assumption 5. Due to the fact that the n retailers are the retailers of the
same brand of automobile vehicles, which are provided by the manufacturer,
their business scale, target customers, and sales models are all similar. Therefore,
we suppose these n retailers to be homogeneous, and thus the cost coefficients,
the impact coefficients of effort levels on reputation, and the price sensitivity
coefficient are all set to be the same, that is, λr = λr1 = λr2 = . . . = λri

,
μr = μr1 = μr2 = . . . = μri

, b = b1 = b2 = . . . = bi.

3 Model Formulation

Based on the assumptions in Sect. 2, this section establishes two differential
game models to analyze the equilibrium strategies of the manufacture and the
retailers, by considering the long-term impact of carbon trading and low-carbon
reputation of vehicles. For the sake of convenience, we omit t in the following.

3.1 Decentralized Model

Before establishing the decentralized model, it is necessary for us to clarify that
the objectives of the manufacture and the retailers are all to maximize their own

Cooperation Models in Automotive Supply Chain 153

profits individually over an infinite time, and the discount rate is denoted by
ρ > 0. Therefore, their objective functions are formulated as follows.

max JD
m =

∫ ∞

0

e−ρt

[
p

n∑

i=1

Qi + pc (F0 − (1 − ωEm)
n∑

i=1

Qi) − 1
2
λmE2

m

]
dt,

max JD
ri

=
∫ ∞

0

e−ρt

[
piQi − 1

2
λrE

2
ri

]
dt,

where p is the wholesale price, pc is the price of per carbon quota, which are
given in advance; and pi is the retail price set by retailer i. Let V D

m , V D
ri

denote
the profit function of manufacture and retailer i, respectively. Thus, the corre-
sponding Hamiltonian-Jacobi- Bellman (HJB) equations are formulated as:

ρV D
m = max

[
p

n∑

i=1

Qi + pc(F0 − (1 − ωEm)
n∑

i=1

Qi) − 1
2
λmE2

m + V D′
m (μmEm

+
n∑

i=1

μrEri
− δG)

]
,

ρV D
ri

= max
[
piQi − 1

2
λrE

2
ri

+ V D′
ri

(μmEm +
n∑

i=1

μrEri
− δG)

]
.

Let us denote qi = ai − bpi + c
∑n

k=1,k �=i
bpk

n−1 , meaning that Qi(t) = θG(t)qi. So

n∑

i=1

qi =
n∑

i=1

(ai − bpi + c
n∑

k=1,k �=i

bpk

n − 1
) =

n∑

i=1

ai − (1 − c)b
n∑

i=1

pi.

Proposition 1. Under the decentralized model, the optimal carbon emission
reduction effort of the manufacturer and the optimal low-carbon promotion
efforts of retailers are

ED
m

∗
=

pcθωG
∑n

i=1 qi + (2ADG + BD)μm

λm
, ED

ri

∗
=

μrD
D
i

λr
,

the optimal retailer price set by retailer i is

pD
i

∗
=

(n − 1)(2 − c)ai + c
∑n

k=1 ak

b(2 − c)(2n − 2 + c)
,

the optimal trajectory of low carbon reputation is:

GD∗ =
4BDλrμ

2
m + 4λmμ2

r

∑n
i=1 DD

i

λr

√
�D − λmλrρ

,

and the optimal profits of manufacture and retailer i are:

V D
m = A(GD∗)2 + BGD∗ + CD, V D

ri
= DD

i GD∗ + HD
i ,

154 Y. Cheng et al.

where AD, BD, CD and DD
i are the coefficients in the value functions V D

m (G) =
ADG2 + BDG + CD and V D

ri
= DD

i G + HD
i ,

AD =
4λmδ + 2λmρ − 4pcθωμm

∑n
i=1 qi −

√
�D

8μ2
m

,

BD =
4λmλrθ(p − pc)

∑n
i=1 qi + 8Aλmμ2

r

∑n
i=1 Di

2λmλrρ +
√

�D
,

CD =
pcF0

ρ
+

BD2
μ2

m

2λmρ
+

BD
∑n

i=1 μrEri

ρ
,

DD
i =

λmpiqiθ

λm(ρ + δ) − pcθωμm

∑n
i=1 qi − 2Aμ2

m

,

where �D = (4pcθωμm

∑n
i=1 qi − 4λmδ − 2λmρ)2 − 16(μmpcθω

∑n
i=1 qi)2 > 0.

The proof of Proposition 1 is provided in the full version.

3.2 Stackelberg Leader-Follower Game Model

In the Stackelberg leader-follower game model, the manufacturer supports the
retailers by offering a subsidy. In this model, the manufacturer plays as a leader
to disclose its carbon emission reduction effort Em and subsidy rate xi to retailer
i in the first stage, and its objective function is

max JS
m =

∫ ∞

0

e−ρt

[
p

n∑

i=1

Qi + pc(F0 − (1 − ωEm)
n∑

i=1

Qi) − 1
2
λmE2

m

− 1
2

n∑

i=1

λrxiE
2
ri

]
dt.

Then, in the second stage retailer i determines its low-carbon promotion effort
Eri

after observing the manufacturer actions as a follower. Therefore, the objec-
tive functions of retailer i is given by:

max JS
ri

=
∫ ∞

0

e−ρt

[
piQi − 1 − xi

2
λrE

2
ri

]
dt.

Let V S
m , V S

ri
denote the value functions of manufacture and retailer i, respectively.

We have the Hamiltonian-Jacobi- Bellman (HJB) equations as

ρV S
m = max

[
p

n∑

i=1

Qi + pc(F0 − (1 − ωEm)
n∑

i=1

Qi) − 1
2
λmE2

m − 1
2

n∑

i=1

λrxiE
2
ri

+ V S′
m (μmEm +

n∑

i=1

μrEri
− δG)

]
,

ρV S
ri

= max
[
piQi − 1 − xi

2
λrE

2
ri

+ V S′
ri

(μmEm +
n∑

i=1

μrEri
− δG)

]
.

Cooperation Models in Automotive Supply Chain 155

Proposition 2. Under the Stackelberg leader-follower game model, the equilib-
rium carbon emission reduction effort of the manufacturer and the low-carbon
promotion effort of retailer i are presented as follows:

ES
m

∗
=

pcθωG
∑n

i=1 qi + (2ASG + BS)μm

λm
, ES

ri

∗
= μrDS

i

λr(1−xi)
,

the equilibrium retailer price pS∗
i is

pS
i

∗
=

(n − 1)(2 − c)ai + c
∑n

k=1 ak

b(2 − c)(2n − 2 + c)
,

the equilibrium subsidy rate x∗
i is

x∗
i =

2(ASGS
s + BS) − DS

i

2(ASGS
s + BS) + DS

i

,

the equilibrium trajectory of low carbon reputation is:

GS∗ =
4BSλrμ

2
m + 4nBSλmμ2

r + 2λmμ2
r

∑n
i=1 DS

i√
�S − λmλrρ

. (1)

and the equilibrium profits of manufacture and retailer i under the Stackelberg
leader-follower game are

V S
m = ASGD

s

2
+ BSGS

s + CS , V S
ri

= DS
i GS

s + HS
i ,

where AS , BS , CS and DS
i are the coefficients of the value functions V S

m =
ASG2 + BSG + CS and V S

ri
= DS

i G + HS
i , with the formulations as:

AS =
(4δλmλr + 2λmλrρ − 4λrμmpcωθ

∑n
i=1 qi) −

√
�S

8(λrμ2
m + nλmμ2

r)
,

BS =
4λmλrθ(p − pc)

∑n
i=1 qi + 4Aλmμ2

r

∑n
i=1 Di

2λmλrρ +
√

�S
,

CS =
pcF0

ρ
+

BS2
μ2

m

2λmρ
+

4nB2μ2
r − 4BSμ2

r

∑n
i=1 DS

i
2 + μ2

r

∑n
i=1 DS

i

8λrρ
,

DS
i =

4λmλrθpiqi

2λmλrρ + ASλmμ2
r +

√
�S

,

where

�S = (4λmλrδ + 2λmλrρ − 4λrμmpcωθ

n∑

i=1

qi)
2 − 16λr(λrμ

2
m + nλmμ2

r)(pcθω

n∑

i=1

qi)
2.

The proof of Proposition 2 is provided in the full version.

156 Y. Cheng et al.

4 Numerical Analysis

This section performs numerical experiments to assess the models’ validity, con-
duct the sensitivity analysis of key parameters, and provide managerial insights.
Moreover, we simulate the impact of changes in low-carbon reputation and sup-
ply chain members’ profits under the scenario without carbon trading, aiming
to examine the decision-makings under various policy conditions.

Drawing upon the works of Xu et al. [4] and Wang et al. [2], we set the
relevant parameters for our numerical experiments as: G(0) = 0, λm = 500, λr =
100, μm = 2, μr = 0.5, ω = 0.4, p = 15, θ = 0.6, b = 0.9, c = 0.8, F0 = 500, δ =
0.8, ρ = 0.6, n = 6.

We distinguish the existence of carbon trading policy by setting pc = 1 > 0
and the scenario without carbon trading by setting pc = 0.

The results of the identical decision-making model are depicted using the
same color scheme. Specifically, the decentralized model is represented by the
color cyan, while the Stackelberg game model is represented by the color blue.
Furthermore, solid and dashed lines are employed to differentiate between cases
with and without carbon trading, respectively. Finally, we use the superscript
‘N ’ to denote the scenario where the carbon trading policy is not implemented.

4.1 Changes in Manufacturer’s and Retailer’s Profits over Time

This section discusses the variation of profits for the manufacturer and the
retailer over time for the decentralized model and the Stackelberg game model
respectively in Fig. 1-(a) and Fig. 1-(b).

From the figures, we can observe that conditional cooperation leads to
improved profits for both manufacturers and retailers. This is achieved through
manufacturers providing subsidies to retailers to incentivize the adoption of more
low-carbon promotional measures. Additionally, in the absence of carbon trad-
ing, both decision-making models result in lower profitability compared to the
scenarios with carbon trading. This indicates that manufacturers derive benefits
from engaging in carbon trading.

It is worth noting that in the decentralized model with carbon trading, retail-
ers experience higher profitability than in scenarios without carbon trading. This
suggests that retailers benefit from the enhanced reputation resulting from man-
ufacturers’ carbon emission reduction efforts. Overall, if the vehicles produced
by the manufacturer are environmentally friendly, they can generate more profits
from the carbon trading market and allocate subsidies to support retailers’ pro-
motion efforts. By channeling a portion of the carbon trading revenue into the
supply chain, both the manufacturer and retailers are incentivized to actively
participate in low-carbon management, ultimately leading to the decarboniza-
tion of the entire supply chain.

Cooperation Models in Automotive Supply Chain 157

(a) (b)

Fig. 1. Manufacturer’s and retailers’ profits under different models.

4.2 Changes of Low-Carbon Reputations and Supply Chain Profits
over Time

(a)
models.

(b)
ferent models.

Fig. 2. Low-carbon reputations and total profits of supply chain under different models.

Figure 2 illustrates the trajectories of low-carbon reputation under three sce-
narios, which increase with the increase of time t and stabilize as t approaches
infinity. In Fig. 2-(a), we can observe that the low-carbon reputation under the
Stackelberg game model is higher than that under the decentralized model, which
indicating that cooperation can enhance low-carbon reputation even if it is one-
way. Furthermore, reputations were improved across all models where carbon
trading was implemented. Therefore, supply chains should collaborate rather
than act independently in the search for low-carbon solutions and the govern-
ment should consider carbon trading as an alternative policy after subsidy can-
cellation.

158 Y. Cheng et al.

From the Fig. 2-(b), it can be seen that the profit of supply chain in the
Stackelberg game model is higher than that in the decentralized model, which
demonstrates a similar trend as the low-carbon reputation shown in Fig. 2-(a).
These findings highlight the importance of prioritizing cooperation among supply
chain members in the long run, as it can yield better profit performance and
cost reduction. Moreover, the implementation of carbon trading enhances supply
chain profits. Therefore, it is imperative for supply chain members to remain
vigilant and adapt to policy changes accordingly.

5 Conclusion

This study employs a differential game framework to examine the dynamic
decision-making process related to low-carbon strategies within the automotive
supply chain. Departing from previous assumptions of fixed marginal profit, this
study places emphasis on the joint decision-making regarding pricing and low-
carbon operations. By considering the influence of carbon trading policies and
the reputation of low-carbon vehicles, two interaction models between the man-
ufacturer and n retailers are discussed: the decentralized model and the Stack-
elberg game model. For each model, the equilibrium decisions of all participants
and the trajectory of low-carbon reputation are analyzed. The key conclusions
derived from this study are as follows:

– In the Stackelberg game model, where the manufacturer plays as the leader,
providing subsidies to retailers to incentivize their low-carbon promotion
efforts, several positive outcomes are observed. Compared to decentralized
decision-making, the Stackelberg game model leads to improvements in sup-
ply chain profit, effort levels, and low-carbon reputation. This demonstrates
that conditional cooperation through the Stackelberg model can effectively
motivate supply chain members to actively engage in emission reduction activ-
ities.

– The low-carbon reputation of vehicles has a significant impact on market
demand. Both retailers and manufacturers can increase their respective efforts
to enhance the reputation of their vehicles, expand market share, and boost
revenue.

– The implementation of carbon trading policies contributes to carbon emission
reduction within the automotive supply chain and enhances the industry’s
low-carbon reputation to a certain extent. However, it is important to note
that the initial adoption of carbon trading may impose challenges on the
supply chain. Therefore, it is crucial for the government to dynamically adjust
relevant policies to ensure a smooth transition towards a low-carbon supply
chain.

However, this study does have some limitations that should be acknowledged.
Firstly, the model settings do not incorporate the participation of retailers in
carbon trading, which could be a valuable aspect to explore in future research.
Secondly, the decision-making process within the automotive supply chain can

Cooperation Models in Automotive Supply Chain 159

be influenced by various other government policies, such as subsidies and carbon
taxes, which were not extensively considered in this study. Finally, the research
primarily focuses on manufacturers’ direct retail channels and does not delve
into the analysis of dual-channel sales, which could provide additional insights
and avenues for further investigation.

References

1. Al-Buenain, A., Al-Muhannadi, S., Falamarzi, M., Kutty, A.A., Kucukvar, M.,
Onat, N.C.: The adoption of electric vehicles in Qatar can contribute to net carbon
emission reduction but requires strong government incentives. Vehicles 3(3), 618–
635 (2021)

2. Wang, Y., Xin, X., Zhu, Q.: Carbon emission reduction decisions of supply chain
members under cap-and-trade regulations: a differential game analysis. Comput.
Ind. Eng. 162, 107711 (2021)

3. Sun, H., Gao, G., Li, Z.: Differential game model of government-enterprise cooper-
ation on emission reduction under carbon emission trading policy. Pol. J. Environ.
Stud. 31(5), 4859–4871 (2022)

4. Xu, C., Jing, Y., Shen, B., Zhou, Y., Zhao, Q.Q.: Cost-sharing contract design
between manufacturer and dealership considering the customer low-carbon prefer-
ences. Expert Syst. Appl. 213, 118877 (2023)

5. Xia, L., Guo, T., Qin, J., Yue, X., Zhu, N.: Carbon emission reduction and pricing
policies of a supply chain considering reciprocal preferences in cap-and-trade sys-
tem. Ann. Oper. Res. 268, 149–175 (2018). https://doi.org/10.1007/s10479-017-
2657-2

6. Zang, J., Wan, L., Li, Z., Wang, C., Wang, S.: Does emission trading scheme have
spillover effect on industrial structure upgrading? Evidence from the EU based on
a PSM-DID approach. Environ. Sci. Pollut. Res. 27, 12345–12357 (2020). https://
doi.org/10.1007/s11356-020-07818-0

7. Benjaafar, S., Li, Y., Daskin, M.: Carbon footprint and the management of supply
chains: insights from simple models. IEEE Trans. Autom. Sci. Eng. 10(1), 99–116
(2012)

8. Yang, L., Zhang, Q., Ji, J.: Pricing and carbon emission reduction decisions in
supply chains with vertical and horizontal cooperation. Int. J. Prod. Econ. 191,
286–297 (2017)

9. Chen, Y., Wang, Z., Liu, Y., Mou, Z.: Coordination analysis of the recycling and
remanufacturing closed-loop supply chain considering consumers’ low carbon pref-
erence and government subsidy. Sustainability 15(3), 2167 (2023)

10. Bian, J., Zhang, G., Zhou, G.: Manufacturer vs. consumer subsidy with green
technology investment and environmental concern. Eur. J. Oper. Res. 287(3), 832–
843 (2020)

11. Zhang, Z., Liying, Yu.: Dynamic optimization and coordination of cooperative
emission reduction in a dual-channel supply chain considering reference low-carbon
effect and low-carbon goodwill. Int. J. Environ. Res. Public Health 18(2), 539
(2021)

12. Li, Y.: Research on supply chain CSR management based on differential game. J.
Clean. Prod. 268, 122171 (2020)

13. Zhang, J., Chiang, W.K., Liang, L.: Strategic pricing with reference effects in a
competitive supply chain. Omega 44, 126–135 (2014)

https://doi.org/10.1007/s10479-017-2657-2
https://doi.org/10.1007/s10479-017-2657-2
https://doi.org/10.1007/s11356-020-07818-0
https://doi.org/10.1007/s11356-020-07818-0

Adaptivity Gap for Influence
Maximization with Linear Threshold

Model on Trees

Yichen Tao1, Shuo Wang2, and Kuan Yang3(B)

1 School of Electronic, Information and Electrical Engineering,
Shanghai Jiao Tong University, Shanghai 200240, China

taoyc0904@sjtu.edu.cn
2 Zhiyuan College, Shanghai Jiao Tong University, Shanghai 200240, China

shuo wang@sjtu.edu.cn
3 John Hopcroft Center for Computer Science, Shanghai Jiao Tong University,

Shanghai 200240, China

kuan.yang@sjtu.edu.cn

Abstract. We address the problem of influence maximization within
the framework of the linear threshold model, focusing on its compari-
son to the independent cascade model. Previous research has predomi-
nantly concentrated on the independent cascade model, providing var-
ious bounds on the adaptivity gap in influence maximization. For the
case of a (directed) tree (in-arborescence and out-arborescence), [CP19]
and [DPV23] have established constant upper and lower bounds for the
independent cascade model.

However, the adaptivity gap of this problem on the linear thresh-
old model is not so extensively studied as on the independent cascade
model. In this study, we present constant upper bounds for the adap-
tivity gap of the linear threshold model on trees. Our approach builds
upon the original findings within the independent cascade model and

employs a reduction technique to deduce an upper bound of 4e2

e2−1
for the

in-arborescence scenario. For out-arborescence, the equivalence between
the two models reveals that the adaptivity gap under the linear threshold
model falls within the range of [e

e−1
, 2], as demonstrated in [CP19] under

the independent cascade model.

1 Introduction

The influence maximization problem, initially introduced in [DR01,RD02], is a
well-known problem that lies at the intersection of computer science and eco-
nomics. It focuses on selecting a specific number of agents, referred to as seeds, in
a social network to maximize the number of agents influenced by them. To ana-
lyze this problem mathematically and formally, social networks are represented
as weighted graphs, where vertices correspond to agents and edges represent
their connections, with each edge assigned a weight indicating the strength of
the connection. The independent cascade model [KKT03] and the linear threshold
c© Springer Nature Switzerland AG 2023
M. Li et al. (Eds.): IJTCS-FAW 2023, LNCS 13933, pp. 160–170, 2023.
https://doi.org/10.1007/978-3-031-39344-0_12

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-39344-0_12&domain=pdf
https://doi.org/10.1007/978-3-031-39344-0_12

Adaptivity Gap for Influence Maximization with LT Model on Trees 161

model [KKT03] are two prominent diffusion models that have received signifi-
cant attention in previous studies. These models have been applied to various
fields such as viral marketing, meme usage, and rumor control.

More recently, the adaptive influence maximization problem has gained con-
siderable attention. Unlike the original setting where all seeds are selected at
once, the adaptive version allows seeds to be selected based on observations of
the propagation of previously chosen seeds. Of particular interest are two feed-
back models [GK11], namely myopic feedback and full adoption feedback. When
considering myopic feedback, only the status of the seeds’ neighbors can be
observed. Conversely, the full adoption feedback allows the whole propagation
process of previously selected seeds to be considered when selecting the next
seed. While the introduction of adaptive seed selection might enhance the influ-
ence of the seed set, it also presents significant technical challenges. Therefore,
it becomes imperative to evaluate the benefits of adaptivity, which is measured
by the adaptivity gap. The adaptivity gap is informally defined as the supremum
value of the ratio between the optimal influence spread of an adaptive policy
and a non-adaptive one. It provides insights into the performance improvement
achieved by the adaptive strategy and gives us a taste of whether it is worth the
effort to develop the adaptive strategy for the problem.

Regarding the adaptivity gap, a number of previous works have explored
this concept in the context of the independent cascade model [CP19,DPV23,
PC19]. In [CP19], the adaptivity gap for the independent cascade model with
full adoption feedback was studied for certain families of influence graphs. It
was demonstrated that the adaptivity gap lies in the range of [e

e−1 , 2e
e−1] for in-

arborescence, [e
e−1 , 2] for out-arborescence, and exactly e

e−1 for bipartite graphs.
Another recent work [DPV23] improved upon these results by providing a tighter
upper bound of 2e2

(e2−1) for the adaptivity gap of in-arborescence. Furthermore,
this work established an upper bound of (3

√
n + 1) for general graphs, where n

stands for the number of vertices in the graph. For the myopic feedback setting, it
has been proved in [PC19] that the adaptivity gap for the independent cascade
model with myopic feedback is at most 4 and at least e

e−1 . However, despite
the progress made in analyzing the adaptivity gap for the independent cascade
model, to the best of our knowledge, no existing results are available on the
adaptivity gap for the linear threshold model.

1.1 Our Results

In this work, we give an upper bound for the adaptivity gap for in-arborescence
under the linear threshold model as follows.

Theorem 1. The adaptivity gap AGLT for in-arborescence under the linear
threshold model is no more than 4e2

e2−1 .

Also, for out-arborescence, the linear threshold model is equivalent to the
independent cascade model since each vertex has at most in-degree 1. Thus,
the results under the independent cascade model for out-arborescence given by
[CP19] can be also used in the linear threshold model (Table 1).

162 Y. Tao et al.

Theorem 2. The adaptivity gap AGLT for out-arborescence under the linear
threshold model satisfies that AGLT ∈ [e

e−1 , 2].

Table 1. The previous results and the results of this paper are summarized in the
table. New results of this paper are in blue.

Diffusion
Model

Feedback
Model

Graph Family Lower Bound of
Adaptivity Gap

Upper Bound of
Adaptivity Gap

Independent
Cascade

Full adoption
feedback

In-arborescence
e

e − 1

2e2

(e2 − 1)

Out-arborescence
e

e − 1
2

Bipartite graphs
e

e − 1

e

e − 1
General graphs (3

√
n + 1)

Myopic
feedback

General graphs
e

e − 1
4

Linear
Threshold

Full adoption
feedback

In-arborescence
4e2

e2 − 1

Out-abborescence
e

e − 1
2

1.2 Related Works

The influence maximization problem was initially proposed in [DR01] and
[RD02]. Subsequently, the two most extensively studied diffusion models, namely
the independent cascade model and the linear threshold model, were introduced
in [KKT03], which also demonstrated their submodularity. For any submod-
ular diffusion model, the greedy algorithm is shown to obtain a (1 − 1/e)-
approximation to the optimal influence spread [NWF78,KKT03,KKT05,MR10].
A later work [STY20] shows that the approximation guarantee of the greedy algo-
rithm for the influence maximization problem under the linear threshold model
is asymptotically (1 − 1/e).

The adaptive influence maximization problem is first considered in [GK11].
The results relevant to adaptivity gaps under the independent cascade model
have been discussed before, and we discuss further related work here. Later,
Asadpour and Nazerzadeh studied the adaptivity gap for the problem of maxi-
mizing stochastic monotone submodular functions [AN16].

The adaptivity gap compares the optimal adaptive solution to the optimal
nonadaptive solution. Motivated by that the inapproximability of the influence
maximization problem [KKT03,ST20] and the fact that most influence maxi-
mization algorithms are based on greedy, the concept of greedy adaptivity gap is
introduced in [CPST22], which depicts how much adaptive greedy policy would

Adaptivity Gap for Influence Maximization with LT Model on Trees 163

outperform its non-adaptive counterpart. This work also showed that the greedy
adaptivity gap is at least (1− 1/e) for an arbitrary combination of diffusion and
feedback models.

2 Preliminaries

2.1 Linear Threshold Model

In the linear threshold model (LT), we have a weighted directed graph called the
influence graph G = (V = [n], E, {pu,v | (u, v) ∈ E}), satisfying

∑
u pu,v ≤ 1.

Fix a seed set S ⊆ V , the diffusion process in the LT model is defined as
follows. Define the current activated vertex set T , and initialize T = S. Before
the diffusion process starts, every vertex first independently samples a value
ai ∈ [0, 1] uniformly at random. In each iteration, if a non-activated vertex
x satisfies that

∑
u∈T pu,x ≥ ax, it will be activated and let T = T ∪ {x}.

The diffusion process terminates when there is no more activated vertex in an
iteration.

It is mentioned in [KKT03] that the LT model has another equivalent inter-
pretation (Fig. 1). Fix a seed set S ⊆ V .

Fig. 1. The above pictures are an example of weighted directed influence graph and an
instance of its live-edge graph. In the LT model, the right live-edge graph appears for a
probability 0.5 · 0.5 · 0.2 = 0.05. However, in the IC model, the appearing probability is
0.5 · 0.7 · 0.5 · 0.2 · 0.2 = 0.007. Readers can find the differences between the two models
in this example.

Then sample a live-edge graph L = (V,L(E)) of G, which is a random graph
generated from the base graph G as follows. For each vertex i, sample at most
one in-edge, where the edge (u, i) is selected with probability pu,i, and add this
edge (if exists) to L(E). In this case, the diffusion process will activate all the

164 Y. Tao et al.

vertices that can be reached from S. Given a live-edge graph L, use R(S,L) to
denote all the vertices activated at the end of this process. Given a seed set S,
the expected influence spread of S is defined as σ(S) := EL[|R(S,L)|].

2.2 Independent Cascade Model

The independent cascade model (IC) also involve a weighted directed influence
graph G = (V = [n], E, {pu,v | (u, v) ∈ E}). Before the beginning of the propa-
gation, a live-edge graph L = (V,L(E)) is sampled. The sampling of the live-edge
graph in the IC model is simpler than that of the LT model. Each edge e ∈ E
appears in L(E) independently with probability pe. When an edge is present in
the live-edge graph, we say that it is live. Otherwise, we say that it is blocked.
Denote the set of all possible live-edge graphs by S, and the distribution over L
by P. Given a seed set S ⊆ V , the vertices affected, denoted by Γ(S,L) is exactly
the set of vertices reachable from S in the live-edge graph L. The influence reach
of a certain seed set on a live-edge graph f : {0, 1}V × L → R+ is defined as the
number of affected vertices, i.e., f(S,L) = |Γ(S,L)|. Then we define the influ-
ence spread of a seed set σ(S) to be the expected number of affected vertices at
the end of the diffusion process, i.e., σ(S) = EL∼P [f(S,L)].

2.3 Non-adaptive Influence Maximization

The non-adaptive influence maximization problem is defined as a computational
problem that, given an influence graph G and an integer k ≥ 1, we are asked to
find a vertex set S satisfying that |S| = k and maximizing σ(S). Use OPTN (G, k)
to denote the maximal σ(S) under graph G and parameter k. The subscript
“N” stands for “non-adaptive”, which is in contrast with the “adaptive” model
defined in the next section.

2.4 Adaptive Influence Maximization

Compared with non-adaptive influence maximization problem, the adaptive set-
ting allows to activate the seeds sequentially and adaptively in k iterations. One
can first choose a vertex, activates it, and see how it goes. After observing the
entire diffusion process of the first vertex, we can change their strategy optimally
adaptive to the diffusion process. Similarly, the choices of the following vertices
are based on the previous observation. We consider the full-adoption feedback
model, which means the adaptive policy observes the entire influence spread
from the previous chosen vertices.1

An adaptive policy can be formally defined as follows. Given a live-edge graph
L, the realization φL : V → 2V denotes a function from a vertex to a vertex set.
For a fix vertex v, define φL(v) := R(v, L), i.e., the set of vertices activated by
v under the live-edge graph L. Given a subset S of V satisfying that |S| = k,

1 Another commonly considered model is called the myopic feedback model, where
only one iteration of the spread can be observed.

Adaptivity Gap for Influence Maximization with LT Model on Trees 165

define the partial realization ψ : S → 2V restricted to S to be the part of some
realization, which can be used to represent the graph observed by the player
at some point of the adaptive algorithm. For a fixed partial realization, let its
domain (the chosen seed vertices) be dom(ψ) := S, let R(ψ) = ∪v∈Sψ(v), and
let f(ψ) = |R(ψ)|. A partial realization ψ′ is called a sub-realization of another
partial realization ψ if and only if that dom(ψ′) ⊆ dom(ψ) and ψ′(v) = ψ(v) for
any v ∈ dom(ψ′).

2.5 Adaptivity Gap

The adaptivity gap for the LT model is defined as follows

AGLT = sup
G,k

OPTLT
A (G, k)

OPTLT
N (G, k)

,

where OPTLT
A (G, k) is the optimal influence spread with a k-vertex seed set

on graph G in the adaptive setting, and OPTLT
N (G, k) is its counterpart in the

non-adaptive setting.
Similarly for the IC model, the adaptivity gap can be defined as follows

AGIC = sup
G,k

OPTIC
A (G, k)

OPTIC
N (G, k)

.

3 Adaptivity Gap for In-Arborescence

An in-arborescence is a directed graph G = (V,E) that can be constructed by
the following process: fix a rooted tree T = (V,E′), and add edge (u, v) if v is
the parent of u in T . An upper bound for AGIC for in-arborescence is given by
[DPV23]. This bound also plays an essential role in our proof of the constant
upper bound for AGLT for in-arborescence.

We prove the following theorem:

Theorem 3. AGLT ≤ 4e2

e2−1 for in-arborescence.

The key technique is to reduce the influence maximization problem in the
LT model to the influence maximization problem in the IC model.

To find a relation between the LT model and IC model, we construct a new
instance G′ in the IC model, but the graph G′ is the same as G both in structures
and weights of edges. The following lemma is the technical lemma in our proof,
which reveals the relation between the two models (Fig. 2).

Lemma 4. OPTLT
A (G, k) ≤ OPTIC

A (G′, 2k)

Proof. The proof outline is to construct an algorithm for G′ based on the optimal
adaptive algorithm for G. There is an observation that after choosing the same

166 Y. Tao et al.

Fig. 2. This figure gives an example. In the first round, we choose vertex indexed 4,
and the diffusion process stops at it self. In the second, round we choose vertex 5, while
the process also stops at itself. According to our reduction, we have the probability
p5,3(1/pt3 − 1) = 0.2 to add vertex 3 to our seed set in this case.

first seed vertex both in G and G′, the diffusion process shares the same distri-
bution on the in-arborescence. However, in the following process, the appearing
probability of the edge would increase in the LT model, and we need a larger
seed set in the IC model to compensate for the boosted probability.

To formalize the intuitions above, we design an k-round adaptive algorithm
for G′. Let π be the optimal adaptive algorithm for G, and π′ be the algorithm
constructed for G′. First, we maintain a current partial realization ψ, which is
an empty set at first. In the first round, we simulate the algorithm π in G′ to
get the first seed of π′. In π′, we also add π(ψ) (ψ = ∅ at first) to our seed set,
and add (π(ψ), R(π(ψ))) to ψ. Suppose that the diffusion process of π(ψ) end at
vertex u, we mark the parent of u (if exists) as a critical point. Also, we maintain
a value for each vertex v called remaining potential defined as

ptv :=
∑

u∈Child(v),u is not activated

pu,

where we use Child(v) to denote the set of children of v on the tree.
In the next k − 1 rounds, we first choose x = π(ψ) to be our new seed. How-

ever, the existing probabilities of some edges increased because of the previous
rounds. Suppose the diffusion process of x stops at a vertex u, and let its parent
be v. If v is a critical point, which means the existing probability of edges (u, v)
has already increased, we flip a biased coin which appears heads with probability
pu,v(1/ptv−1). If the coin appears heads, we choose v to be our next seed, remove
v from critical vertex sets, and continue this round. On the contrary, we just go
to the next round. Obviously, this process eventually ends at some vertex y.
Before the end of this round, we update ψ with ψ∪(x, {the paths from x to y)},
and mark y’s parent (if exists) as a new critical point.

Adaptivity Gap for Influence Maximization with LT Model on Trees 167

First of all, it’s easy to verify that, the ψ after i rounds shares the same
distribution in the LT model after choosing the first i seeds. Thus, ELT(π) =
EIC(π′). Also, there is an observation that there are at most k vertices marked
as critical points. Thus, we have that

|π′| ≤ k + k = 2k,

and
OPTLT

A (G, k) = ELT(π) = EIC(π′) ≤ OPTIC
A (G′, 2k),

as desired.

Lemma 4 builds a connection between the two models. Further analysis is needed
to give an upper bound of AGLT.

Lemma 5. OPTLT
N (G, k) ≥ OPT IC

N (G′, k)

Proof. This can be proved by an easy reduction. We want to prove that for every
fixed seed set S, it holds that,

EL∼LT(R(L, S)) ≥ EL∼IC(R(L, S)).

First, by the linearity of the expectation, it holds that,

EL∼LT(R(L, S)) =
∑

v∈V

Pr
L∼LT

[v is activated].

Similarly, we have that,

EL∼IC(R(L, S)) =
∑

v∈V

Pr
L∼IC

[v is activated].

Then, we will prove by induction that

Pr
L∼LT

[v is activated] ≥ Pr
L∼IC

[v is activated]

with a decreasing order of v’s depth.
For a vertex v with the largest depth, if it is in the seed set, it holds that

Pr
L∼LT

[v is activated] = Pr
L∼IC

[v is activated] = 1.

Otherwise, it holds that

Pr
L∼LT

[v is activated] = Pr
L∼IC

[v is activated] = 0.

168 Y. Tao et al.

For a vertex w of another depth, assume that every child of w satisfies the
induction hypothesis. We have that,

Pr
L∼LT

[w is activated] =
∑

u∈Child(v)

pu,w Pr
L∼LT

[u is activated]

≥
∑

u∈Child(v)

pu,w Pr
L∼IC

[u is activated]

Union bound≥ 1 −
∏

u∈Child(v)

(1 − pu,w Pr
L∼IC

[u is activated])

= Pr
L∼IC

[w is activated] ,

as desired.

The last step is to bound OPTIC
A (G′, 2k) by OPTIC

A (G′, k). This comes from the
following submodularity lemma:

Lemma 6 (Adaptive Submodularity for the IC model, [GK11]).
Let G be an arbitrary influence graph. For any partial realizations ψ, ψ′ of G

such that ψ ⊆ ψ′, and any node u /∈ R(ψ′), we have that Δ(u | ψ′) ≤ Δ(u | ψ),
where Δ(u | ψ) represents the expected increasing influence to choose u under ψ.

This lemma gives a good property of the IC model, leading to the following
submodularity lemma of the optimal adaptive algorithm:

Lemma 7. OPT IC
A (G′, 2k) ≤ 2OPT IC

A (G′, k)

Proof. First, we divide the optimal adaptive algorithms π′ for G′ with a fixed
seed set size 2k. We want to argue that the expected influence of each part is
less than OPTIC

A (G′, k).
For the first part, it is an adaptive algorithm with seed set size equaling k.

Thus, the total influence should be not more than OPTIC
A (G′, k).

After the selection of the first k seeds, there exists a non-empty partial real-
ization ψ. We want to prove that if we select k more seeds, the expected extra
influence is no more than OPTIC

A (G′, k). This is a natural corollary of adaptive
submodularity.

Thus, we have OPTIC
A (G′, 2k) ≤ 2OPTIC

A (G′, k) as desired.

Lemma 8 ([DPV23]). AGIC ≤ 2e2

e2−1 .

This bound is given by [DPV23]. And can be used to give a bound of AGLT:

Adaptivity Gap for Influence Maximization with LT Model on Trees 169

Proof (Proof of Theorem 1) Putting together Lemma 4, 5, 7, 8, we have

AGLT = sup
G,k

OPTLT
A (G, k)

OPTLT
N (G, k)

≤ sup
G,k

OPTLT
A (G, k)

OPTIC
N (G′, k)

≤ sup
G,k

OPTIC
A (G′, 2k)

OPTIC
N (G′, k)

≤ sup
G,k

2OPTIC
A (G′, k)

OPTIC
N (G′, k)

≤ 2AGIC

≤ 4e2

e2 − 1
,

as desired.

4 Discussions and Open Questions

In [CP19] and [DPV23], they also give some constant upper bounds under the
IC model for some other graphs such as one-directional bipartite graphs. Also,
[DPV23] gives an upper bound for general graphs though it is not a constant
bound. We have the following conjecture.

Conjecture 1 The adaptivity gap for general graphs under the LT model has a
constant upper bound.

However, adaptivity algorithms gain more profits in the LT model than the
IC model. Thus, we also have the following conjecture.

Conjecture 2 The adaptivity gap for general graphs under the IC model has a
constant upper bound.

Also, we have a conjecture about the relation between the two models on
the general graphs, and we believe that our approach can help to build a similar
argument on general graphs.

Conjecture 3 There is a Lemma 4 like argument holds for general graphs.

Thus, as a corollary of the above conjecture, we are able to claim that the
adaptivity gap on LT model is linearly upper bounded by the adaptivity gap on
IC model.

Acknowledgements. The research of K. Yang is supported by the NSFC grant No.
62102253. Y. Tao, S. Wang and K. Yang sincerely thank the anonymous reviewers
for their helpful feedback. Y. Tao, S. Wang and K. Yang also want to express the
gratitude to Panfeng Liu and Biaoshuai Tao for their insightful suggestions during the
composition of this paper.

170 Y. Tao et al.

References

[AN16] Asadpour, A., Nazerzadeh, H.: Maximizing stochastic monotone submodu-
lar functions. Manage. Sci. 62(8), 2374–2391 (2016)

[CP19] Chen, W., Peng, B.: On adaptivity gaps of influence maximization under
the independent cascade model with full adoption feedback. arXiv preprint
arXiv:1907.01707 (2019)

[CPST22] Chen, W., Peng, B., Schoenebeck, G., Tao, B.: Adaptive greedy versus non-
adaptive greedy for influence maximization. J. Artif. Intell. Res. 74, 303–351
(2022)

[DPV23] D’Angelo, G., Poddar, D., Vinci, C.: Better bounds on the adaptivity gap
of influence maximization under full-adoption feedback. Artif. Intell. 318,
103895 (2023)

[DR01] Domingos, P., Richardson, M.: Mining the network value of customers. In:
Proceedings of the Seventh ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining, pp. 57–66 (2001)

[GK11] Golovin, D., Krause, A.: Adaptive submodularity: theory and applications
in active learning and stochastic optimization. J. Artif. Intell. Res. 42, 427–
486 (2011)

[KKT03] Kempe, D., Kleinberg, J., Tardos, É.: Maximizing the spread of influence
through a social network. In: Proceedings of the Ninth ACM SIGKDD Inter-
national Conference on Knowledge Discovery and Data Mining, pp. 137–146
(2003)

[KKT05] Kempe, D., Kleinberg, J., Tardos, É.: Influential nodes in a diffusion model
for social networks. In: Caires, L., Italiano, G.F., Monteiro, L., Palamidessi,
C., Yung, M. (eds.) ICALP 2005. LNCS, vol. 3580, pp. 1127–1138. Springer,
Heidelberg (2005). https://doi.org/10.1007/11523468 91

[MR10] Mossel, E., Roch, S.: Submodularity of influence in social networks: from
local to global. SIAM J. Comput. 39(6), 2176–2188 (2010)

[NWF78] Nemhauser, G.L., Wolsey, L.A., Fisher, M.L.: An analysis of approximations
for maximizing submodular set functions-I. Math. Program. 14, 265–294
(1978)

[PC19] Peng, B., Chen, W.: Adaptive influence maximization with myopic feedback.
In: Advances in Neural Information Processing Systems vol. 32 (2019)

[RD02] Richardson, M., Domingos, P.: Mining knowledge-sharing sites for viral mar-
keting. In: Proceedings of the Eighth ACM SIGKDD International Confer-
ence on Knowledge Discovery and Data Mining, pp. 61–70 (2002)

[ST20] Schoenebeck, G., Tao, B.: Influence maximization on undirected graphs:
toward closing the (1–1/e) gap. ACM Trans. Econ. Comput. (TEAC) 8(4),
1–36 (2020)

[STY20] Schoenebeck, G., Tao, B., Yu, F.-Y.: Limitations of greed: influence maxi-
mization in undirected networks re-visited. In: Proceedings of the 19th Inter-
national Conference on Autonomous Agents and MultiAgent Systems, pp.
1224–1232 (2020)

http://arxiv.org/abs/1907.01707
https://doi.org/10.1007/11523468_91

Physically Verifying the First Nonzero
Term in a Sequence: Physical ZKPs
for ABC End View and Goishi Hiroi

Suthee Ruangwises(B)

Department of Informatics, The University of Electro-Communications, Tokyo, Japan
ruangwises@gmail.com

Abstract. In this paper, we develop a physical protocol to verify the
first nonzero term of a sequence using a deck of cards. This protocol
enables a prover to show a verifier the value of the first nonzero term in a
given sequence without revealing which term it is. Our protocol uses Θ(1)
shuffles, making it simpler and more practical than a similar protocol
recently developed by Fukusawa and Manabe in 2022, which uses Θ(n)
shuffles, where n is the length of the sequence. We also apply our protocol
to construct zero-knowledge proof protocols for two famous logic puzzles:
ABC End View and Goishi Hiroi. These zero-knowledge proof protocols
allow a prover to physically show that he/she know solutions of the
puzzles without revealing them.

Keywords: zero-knowledge proof · card-based cryptography ·
sequence · ABC End View · Goishi Hiroi

1 Introduction

A zero-knowledge proof (ZKP) is an interactive protocol between a prover P
and a verifier V , which enables P to convince V that a statement is correct
without revealing any other information. The concept of a ZKP was introduced
by Goldwasser et al. [8] in 1989. A ZKP with perfect completeness and soundness
must satisfy the following three properties.

1. Perfect Completeness: If the statement is correct, then V always accepts.
2. Perfect Soundness: If the statement is incorrect, then V always rejects.
3. Zero-knowledge: V obtains no information other than the correctness of

the statement.

Goldreich et al. [7] proved that a computational ZKP exists for every NP
problem. Therefore, one can construct a computational ZKP for any NP prob-
lem via a reduction to an NP-complete problem with a known ZKP. Such con-
struction, however, requires cryptographic primitives and thus is not intuitive
and looks unconvincing. As a result, many researchers instead aim to construct
ZKPs using physical objects such as a deck of cards. These protocols have ben-
efits that they do not require computers and allow external observers to check
c© Springer Nature Switzerland AG 2023
M. Li et al. (Eds.): IJTCS-FAW 2023, LNCS 13933, pp. 171–183, 2023.
https://doi.org/10.1007/978-3-031-39344-0_13

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-39344-0_13&domain=pdf
http://orcid.org/0000-0002-2820-1301
https://doi.org/10.1007/978-3-031-39344-0_13

172 S. Ruangwises

that the prover truthfully executes the protocol (which is often a challenging
task for digital protocols). They also have didactic values and can be used to
teach the concept of a ZKP to non-experts.

1.1 Related Work

In the recent years, card-based ZKP protocols for many popular logic puzzles
have been developed: ABC End View [6], Akari [2], Ball sort puzzle [20], Bridges
[25], Heyawake [16], Hitori [16], Juosan [12], Kakuro [2,13], KenKen [2], Makaro
[3,26], Masyu [11], Nonogram [4,19], Norinori [5], Numberlink [23], Nurikabe
[16], Nurimisaki [17], Ripple Effect [24], Shikaku [22], Slitherlink [11], Sudoku
[9,21,27], Suguru [15], Takuzu [2,12], and Usowan [18].

Many of these protocols employ methods to physically verify specific
sequence-related functions, as shown in the following examples.

– A protocol in [27] verifies that a sequence is a permutation of all given numbers
in some order without revealing their order.

– A protocol in [3] verifies that a term in a sequence is the largest one in that
sequence without revealing any term in the sequence.

– A protocol in [23] counts the number of terms in a sequence that are equal to
a given secret value without revealing that value, which terms in the sequence
are equal to it, or any term in the sequence.

– A protocol in [24], given a secret number x and a sequence, verifies that x
does not appear among the first x terms in the sequence without revealing x
or any term in the sequence.

Protocol of Fukusawa and Manabe. One of interesting work is to develop a
protocol that can verify the first nonzero term of a sequence. Given a sequence
S = (x1, x2, ..., xn) of numbers, P wants to show V the value of the first nonzero
term in S without revealing which term it is, i.e. show the term ai with the
lowest index i such that ai �= 0 without revealing i.

Very recently, Fukasawa and Manabe [6] developed a protocol to verify the
first nonzero term of a sequence in the context of constructing a ZKP protocol
for a logic puzzle called ABC End View. However, their protocol uses three cards
(one numbered card and two binary cards: ♣ , ♥) to encode each term in the
sequence, which is not optimal. Also, their protocol involves computing multiple
Boolean functions using the binary cards, making it very complicated. It also
uses as many as Θ(n) shuffles, where n is the length of the sequence, making it
very impractical to implement in real world.

1.2 Our Contribution

In this paper, we develop a much simpler protocol to verify the first nonzero
term of a sequence. Our protocol uses only Θ(1) shuffles and uses only one card
to encode each term in the sequence.

Physically Verifying the First Nonzero Term in a Sequence 173

We also apply our protocol to construct ZKP protocols for two popular logic
puzzles: ABC End View (the same as in [6] but with asymptotically better
performance) and Goishi Hiroi (which is more complicated than that of ABC
End View).

2 Preliminaries

2.1 Cards

Each card used in our protocol has a number written on the front side. All cards
have indistinguishable back sides denoted by ? .

2.2 Pile-Shifting Shuffle

Given a matrix M of cards, a pile-shifting shuffle [28] shifts the columns of M
by a uniformly random cyclic shift unknown to all parties (see Fig. 1). It can be
implemented by putting all cards in each column into an envelope, and taking
turns to apply Hindu cuts (taking several envelopes from the bottom of the pile
and putting them on the top) to the pile of envelopes [29].

Note that each card in M can be replaced by a stack of cards, and the protocol
still works in the same way as long as every stack in the same row consists of
the same number of cards.

? ? ? ? ?

? ? ? ? ?

? ? ? ? ?

? ? ? ? ?

4

3

2

1

1 2 3 4 5

⇒
? ? ? ? ?

? ? ? ? ?

? ? ? ? ?

? ? ? ? ?

4

3

2

1

4 5 1 2 3

Fig. 1. An example of a pile-shifting shuffle on a 4 × 5 matrix

2.3 Chosen Cut Protocol

Given a sequence of n face-down cards C = (c1, c2, ..., cn), a chosen cut protocol
[10] enables P to select a card ci he/she wants (to use in other operations)
without revealing i to V . This protocol also reverts C back to its original state
after P finishes using ci.

174 S. Ruangwises

? ? ... ? ? ? ... ?
c1 c2 ci−1 ci ci+1 cq

? ? ... ? ? ? ... ?
0 0 0 1 0 0

1 0 ... 0 0 0 ... 0

Fig. 2. A 3 × n matrix M constructed in Step 1 of the chosen cut protocol

1. Construct the following 3 × n matrix M (see Fig. 2).
(a) In Row 1, place the sequence C.
(b) In Row 2, secretly place a face-down 1 at Column i and a face-down 0

at each other column.
(c) In Row 3, publicly place a 1 at Column 1 and a 0 at each other column.

2. Turn over all face-up cards and apply the pile-shifting shuffle to M .
3. Turn over all cards in Row 2. Locate the position of the only 1 . A card in

Row 1 directly above this 1 will be the card ci as desired.
4. After finishing using ci in other operations, place ci back into M at the same

position.
5. Turn over all face-up cards and apply the pile-shifting shuffle to M .
6. Turn over all cards in Row 3. Locate the position of the only 1 . Shift the

columns of M cyclically such that this 1 moves to Column 1. This reverts
M back to its original state.

Note that each card in C can be replaced by a stack of cards, and the protocol
still works in the same way as long as every stack consists of the same number
of cards.

3 Verifying the First Nonzero Term in a Sequence

Given a sequence S = (x1, x2, ..., xn) of numbers, P wants to show V the value
of the first nonzero term in S without revealing which term it is, i.e. show the
term ai with the lowest index i such that ai �= 0 without revealing i. Optionally,
P may publicly edit the value of that term. The protocol also preserves the
sequence S.

We propose the following protocol, which we call the FirstNonZero protocol.
Let xk be the first nonzero term of S. P constructs a sequence A = (a1, a2, ...,

an) of face-down cards, with each ai being a face-down xi . Then, P performs
the following steps.

1. Publicly append cards b1, b2, ..., bn−1, all of them being 0 s, to the left of A.
Call the new sequence C = (c1, c2, ..., c2n−1) = (b1, b2, ..., bn−1, a1, a2, ..., an).

2. Turn over all face-up cards. Apply the chosen cut protocol to C to choose the
card ck+n−1 = ak.

Physically Verifying the First Nonzero Term in a Sequence 175

3. As the chosen cut protocol preserves the cyclic order of C, turn over cards
ck, ck+1, ..., ck+n−2 to show that they are all 0 s (otherwise V rejects). Also,
turn over card ck+n−1 to show that it is not a 0 (otherwise V rejects).

4. Optionally, P may publicly replace the card ck+n−1 with a card he/she wants.
5. End the chosen cut protocol. Remove cards b1, b2, ..., bn−1. The sequence S is

now reverted back to its original order.

Note that in step 3, V is convinced that ak is not zero while a1, a2, ..., ak−1

are all zeroes without knowing k.
Our protocol uses Θ(n) cards and Θ(1) shuffles, in contrast to the similar

protocol of Fukusawa and Manabe [6], which uses Θ(n) cards and Θ(n) shuffles.
Moreover, our protocol uses one card to encode each number, while their protocol
uses three. This will benefit the performance when the protocol is applied several
times.

4 ZKP Protocol for ABC End View

ABC End View is a logic puzzle consisting of an n × n empty grid, with some
letters written outside the edge of the grid. The player has to fill letters from
a given range (e.g. A, B, and C) into some cells in the grid according to the
following rules.

1. Each row and column must contain every letter exactly once.
2. A letter outside the edge of the grid indicates the first letter in the corre-

sponding row or column from that direction (see Fig. 3).

A A

B

B

A C

B C

A A

B

B

A C

B C

C A B

B C A

C A B

A B C

B A C

Fig. 3. An example of a 5× 5 ABC End View puzzle with letters from the range A, B,
and C (left) and its solution (right)

The construction of a ZKP protocol for ABC End View is very straightfor-
ward. We use a 1 to encode letter A, a 2 for letter B, a 3 for letter C, and
so on, and use a 0 to encode an empty cell.

176 S. Ruangwises

We can directly apply the FirstNonZero protocol to verify the second rule
for each letter outside the edge of the grid. To verify the first rule, we apply the
following uniqueness verification protocol for each row and column.

4.1 Uniqueness Verification Protocol

The uniqueness verification protocol [27] enables P to convince V that a sequence
σ of n face-down cards is a permutation of different cards a1, a2, ..., an in some
order, without revealing their orders. It also preserves the orders of the cards
in σ.

P performs the following steps.

σ: ? ? ... ?

1 2 ... n

Fig. 4. A 2 × n matrix constructed in Step 1

1. Publicly place cards 1 , 2 , ..., n below the face-down sequence σ in this
order from left to right to form a 2 × n matrix of cards (see Fig. 4).

2. Turn over all face-up cards. Rearrange all columns of the matrix by a uni-
formly random permutation. (This can be implemented by putting both cards
in each column into an envelope and scrambling all envelopes together.)

3. Turn over all cards in Row 1. V verifies that the sequence is a permutation
of a1, a2, ..., an (otherwise, V rejects).

4. Turn over all face-up cards. Rearrange all columns of the matrix by a uni-
formly random permutation.

5. Turn over all cards in Row 2. Rearrange the columns such that the cards
in the bottom rows are 1 , 2 , ..., n in this order from left to right. The
sequence in the Row 1 now returns to its original state.

Our ZKP protocol for ABC End View uses Θ(n2) cards and Θ(n) shuffles, in
contrast to the similar protocol of Fukusawa and Manabe [6], which uses Θ(n2)
cards and Θ(n2) shuffles. Moreover, as our protocol uses one card to encode each
cell, the number of required cards is actually n2+Θ(n), while their protocol uses
three cards to encode each cell, resulting in the total of 3n2 + Θ(n) cards.

We omit the proof of correctness and security of this protocol as it is a
straightforward application of the FirstNonZero protocol, and a similar proof
was already given in [6].

5 ZKP Protocol for Goishi Hiroi

Goishi Hiroi or Hiroimono is a variant of peg solitaire developed by Nikoli, a
Japanese publisher famous for developing many popular logic puzzles including

Physically Verifying the First Nonzero Term in a Sequence 177

Sudoku, Numberlink, and Slitherlink. In a Goishi Hiroi puzzle, m stones are
placed in an n × n grid with each cell containing at most one stone. The player
has to pick all m stones one by one according to the following rules [14].

1. The player can pick any stone as the first stone.
2. After picking a stone, the player has to travel horizontally or vertically to

pick the next stone.
3. During the travel, if there is a stone on the path, the player must pick it.

After that, that player may continue traveling in the same direction or turn
left or right, but cannot go in the backward direction (see Fig. 5).

10

11

12

2

1

6

7

5

9

3

4

8

Fig. 5. An example of a 6× 6 Goishi Hiroi puzzle with 12 stones (left) and its solution
with each number i indicating the i-th stone that was picked (right)

Determining whether a given Goishi Hiroi puzzle has a solution has been
proved to be NP-complete [1].

We will develop a ZKP protocol for Goishi Hiroi based on the FirstNonZero
protocol.

5.1 Idea of the Protocol

The idea is that we can apply the chosen cut protocol to select a stone we want.
After that, we take the n − 1 stones on each path from the selected stone in the
direction to the north, east, south, and west (we extend the grid by n−1 cells in
all directions to support this), and apply the chosen cut protocol again to select
the direction we want to travel. Then, we can apply the FirstNonZero protocol
to select the first stone on that path.

Note that we also have to keep track of the direction we are traveling; the
direction opposite to it will be the “forbidden direction” that we cannot travel
in the next move. So, in each move, after selecting the direction, we have to also
verify that it is not the forbidden direction.

178 S. Ruangwises

5.2 Setup

First, publicly place a 1 on each cell with a stone and a 0 on each empty cell
in the Goishi Hiroi grid. Also, extend the grid by n − 1 cells in all directions
by publicly placing “dummy cards” 3 s around the grid. Then, turn all cards
face-down. We now have an (3n − 2) × (3n − 2) matrix of cards (see Fig. 6).

0 0 1

1 0 1

1 0 0

⇒⇒

3 3 3 3 3 3 3

3 3 3 3 3 3 3

3 3 0 0 1 3 3

3 3 1 0 1 3 3

3 3 1 0 0 3 3

3 3 3 3 3 3 3

3 3 3 3 3 3 3

Fig. 6. The way we place cards on a 3 × 3 Goishi Hiroi grid during the setup

Note that if we arrange all cards in the matrix into a single sequence C =
(c1, c2, ..., c(3n−2)2), starting at the top-left corner and going from left to right in
Row 1, then from left to right in Row 2, and so on, we can locate exactly where
the four neighbors of any given card are. Namely, the cards on the neighbor to
the north, east, south, and west of a cell containing ci are ci−3n+2, ci+1, ci+3n−2,
and ci−1, respectively.

5.3 Main Protocol

To pick the first stone, P performs the following steps.

1. Apply the chosen cut protocol to select a card corresponding to the first stone.
2. Turn over the selected card to show that it is a 1 (otherwise V rejects).

Replace it with a 2 and place it back to the grid.

To pick the second stone, P performs the following steps.

1. Apply the chosen cut protocol to select a card corresponding to the first stone.
2. Turn over the selected card to show that it is a 2 (otherwise V rejects).

Replace it with a 0 .
3. Take the n − 1 cards on a path from the selected card in the direction to the

north. Let A1 = (a(1,1), a(1,2), ..., a(1,n−1)) be the sequence of these cards in
this order from the nearest to the farthest. Analogously, let A2, A3, and A4

be the sequences of the n − 1 cards on a path from the selected card in the
direction to the east, south, and west. Stack each sequence into a single stack.

Physically Verifying the First Nonzero Term in a Sequence 179

4. Place a 0 , called a(i,0), on top of Ai for each i = 1, 2, 3, 4. Now we have
Ai = (a(i,0), a(i,1), ..., a(i,n−1)) for i = 1, 2, 3, 4.

5. Apply the chosen cut protocol to select a stack Ak corresponding to the
direction towards the second stone.

6. Apply the FirstNonZero protocol to the sequence (a(k,1), a(k,2), ..., a(k,n−1))
to select a card corresponding to the second stone. V verifies that it is a 1
(otherwise V rejects). Replace the selected card with a 2 .

7. Replace a(k,0) with a 1 . Also, replace each a(i,0) for i �= k with a 0 .
8. Place all cards back to the grid.

To pick each p-th stone for p ≥ 3, the steps are very similar to picking the
second stone. The only additional step is that, after P selects a direction, P has
to show to V that it is not a forbidden direction. The formal steps are as follows.

1. Retain the cards a(1,0), a(2,0), a(3,0), a(4,0) from the previous iteration without
revealing them. Swap a(1,0) and a(3,0). Swap a(2,0) and a(4,0). (The forbidden
direction in this iteration is the direction opposite to the direction we were
traveling in the previous iteration.)

2. Apply the chosen cut protocol to select a card corresponding to the (p−1)-th
stone.

3. Turn over the selected card to show that it is a 2 (otherwise V rejects).
Replace it with a 0 .

4. Take the n − 1 cards on a path from the selected card in the direction to
the north. Let A1 = (a(1,1), a(1,2), ..., a(1,n−1)) be the sequence of these cards
in this order from the nearest to the farthest. Analogously, let A2, A3, and
A4 be the sequences of the n − 1 cards on a path from the selected card in
the direction to the east, south, and west. Stack each sequence into a single
stack.

5. Place the card a(i,0) on top of Ai for each i = 1, 2, 3, 4. Now we have Ai =
(a(i,0), a(i,1), ..., a(i,n−1)) for i = 1, 2, 3, 4.

6. Apply the chosen cut protocol to select a stack Ak corresponding to the
direction towards the k-th stone.

7. Turn over the card a(k,0) to show that it is a 0 (otherwise V rejects).
8. Apply the FirstNonZero protocol to the sequence (a(k,1), a(k,2), ..., a(k,n−1))

to select a card corresponding to the k-th stone. V verifies that it is a 1 (oth-
erwise V rejects). Replace the selected card with a 2 . Replace the selected
card with a 2 .

9. Replace a(k,0) with a 1 . Also, replace each a(i,0) for i �= k with a 0 .
10. Place all cards back to the grid.

If the verification passes for all p = 1, 2, ...,m, then V accepts.
Our ZKP protocol for Goishi Hiroi uses Θ(n2) cards and Θ(m) shuffles.

6 Proof of Correctness and Security

We will prove the perfect completeness, perfect soundness, and zero-knowledge
properties of our protocol for Goishi Hiroi.

180 S. Ruangwises

Lemma 1 (Perfect Completeness). If P knows a solution of the Goishi
Hiroi puzzle, then V always accepts.

Proof. Suppose P knows a solution of the puzzle. Consider when P picks the
p-th stone (p ≥ 3) from the grid.

At the beginning of Step 1, the only card a(i,0) that is a 1 is the one
corresponding to the direction of travel in the previous iteration. So, after P
swaps the cards, the only 1 will be the one corresponding to the opposite
direction of the direction of travel in the previous iteration.

In Step 3, the selected card was changed to 2 in the previous iteration, so
the verification will pass.

In Step 7, as the direction of travel cannot be the opposite direction of the
previous iteration, the card must be a 0 , so the verification will pass.

In Step 8, as the stone has not been picked before, the card must be a 1 ,
so the verification will pass. Also, when invoking the FirstNonZero protocol, as
the stone is the first one on the path, the FirstNonZero protocol will also pass.

As this is true for every p ≥ 3, and the case p = 2 also works similarly, while
the case p = 1 is trivial, we can conclude that V accepts. ��
Lemma 2 (Perfect Soundness). If P does not know a solution of the Goishi
Hiroi puzzle, then V always rejects.

Proof. We will prove the contrapositive of this statement. Suppose that V
accepts, meaning that the verification passes for every iteration. Consider the
p-th iteration (p ≥ 3).

In Step 3, the verification passes, meaning that the card is a 2 . As there is
only one 2 in the grid, which is the card selected in the previous iteration, the
move in this iteration must start from that cell.

In Step 7, the verification passes, meaning that the card is a 0 , which means
the current direction of travel is not the opposite direction of the direction of
travel in the previous iteration, satisfying the rule of Goishi Hiroi.

In Step 8, the verification passes, meaning that the card is a 1 , which means
there is a stone on the corresponding cell. Also, when invoking the FirstNonZero
protocol, it also passes, meaning that the stone must be the first one on the
path, satisfying the rule of Goishi Hiroi.

This means the p-th iteration corresponds to a valid move of picking a stone
from the grid. As this is true for every p ≥ 3, and the case p = 2 also works
similarly, while the case p = 1 is trivial, we can conclude that P must know a
valid solution of the puzzle. ��
Lemma 3 (Zero-Knowledge). During the verification, V obtains no infor-
mation about P ’s solution.

Proof. It is sufficient to show that all distributions of cards that are turned
face-up can be simulated by a simulator S that does not know P ’s solution.

Physically Verifying the First Nonzero Term in a Sequence 181

– In Steps 3 and 6 of the chosen cut protocol in Sect. 2.3, due to the pile-shifting
shuffle, a 1 has an equal probability to be at any of the n positions. Hence,
these steps can be simulated by S.

– In Step 3 of the FirstNonZero protocol in Sect. 3, the cards ck, ck+1, ..., ck+n−2

are all 0 s, and the card ck+n−1 is public information known to V . Hence,
this step can be simulated by S.

– In the main protocol, there is only one deterministic pattern of the cards that
are turned face-up, so the whole protocol can be simulated by S.

Therefore, we can conclude that V obtains no information about P ’s
solution. ��

7 Future Work

We developed a card-based protocol to verify the first nonzero term of a sequence.
We also construct card-based ZKP protocols for ABC End View and Goishi Hiroi
puzzles. A possible future work is to explore methods to physically verify other
interesting sequence-related functions, as well as developing ZKP protocols for
other popular logic puzzles.

Acknowledgement. The author would like to thank Daiki Miyahara and Kyosuke
Hatsugai for a valuable discussion on this research.

References

1. Andersson, D.: HIROIMONO is NP-complete. In: Crescenzi, P., Prencipe, G.,
Pucci, G. (eds.) FUN 2007. LNCS, vol. 4475, pp. 30–39. Springer, Heidelberg
(2007). https://doi.org/10.1007/978-3-540-72914-3 5

2. Bultel, X., Dreier, J., Dumas, J.-G., Lafourcade, P.: Physical zero-knowledge proofs
for Akari, Takuzu, Kakuro and KenKen. In: Proceedings of the 8th International
Conference on Fun with Algorithms (FUN), pp. 8:1–8:20 (2016)

3. Bultel, X., Dreier, J., Dumas, J.-G., Lafourcade, P., Miyahara, D., Mizuki, T.,
Nagao, A., Sasaki, T., Shinagawa, K., Sone, H.: Physical zero-knowledge proof
for Makaro. In: Izumi, T., Kuznetsov, P. (eds.) SSS 2018. LNCS, vol. 11201, pp.
111–125. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-03232-6 8

4. Chien, Y.-F., Hon, W.-K.: Cryptographic and physical zero-knowledge proof: from
Sudoku to Nonogram. In: Boldi, P., Gargano, L. (eds.) FUN 2010. LNCS, vol.
6099, pp. 102–112. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-
642-13122-6 12

5. Dumas, J.-G., Lafourcade, P., Miyahara, D., Mizuki, T., Sasaki, T., Sone, H.:
Interactive physical zero-knowledge proof for Norinori. In: Du, D.-Z., Duan, Z.,
Tian, C. (eds.) COCOON 2019. LNCS, vol. 11653, pp. 166–177. Springer, Cham
(2019). https://doi.org/10.1007/978-3-030-26176-4 14

6. Fukusawa, T., Manabe, Y.: Card-based zero-knowledge proof for the nearest neigh-
bor property: zero-knowledge proof of ABC end view. In: Batina, L., Picek, S.,
Mondal, M. (eds.) SPACE 2022. LNCS, vol. 13783, pp. 147–161. Springer, Cham
(2022). https://doi.org/10.1007/978-3-031-22829-2 9

https://doi.org/10.1007/978-3-540-72914-3_5
https://doi.org/10.1007/978-3-030-03232-6_8
https://doi.org/10.1007/978-3-642-13122-6_12
https://doi.org/10.1007/978-3-642-13122-6_12
https://doi.org/10.1007/978-3-030-26176-4_14
https://doi.org/10.1007/978-3-031-22829-2_9

182 S. Ruangwises

7. Goldreich, O., Micali, S., Wigderson, A.: Proofs that yield nothing but their valid-
ity and a methodology of cryptographic protocol design. J. ACM 38(3), 691–729
(1991)

8. Goldwasser, S., Micali, S., Rackoff, C.: The knowledge complexity of interactive
proof systems. SIAM J. Comput. 18(1), 186–208 (1989)

9. Gradwohl, R., Naor, M., Pinkas, B., Rothblum, G.N.: Cryptographic and physical
zero-knowledge proof systems for solutions of Sudoku puzzles. Theory Comput.
Syst. 44(2), 245–268 (2009). https://doi.org/10.1007/s00224-008-9119-9

10. Koch, A., Walzer, S.: Foundations for actively secure card-based cryptography. In:
Proceedings of the 10th International Conference on Fun with Algorithms (FUN),
pp. 17:1–17:23 (2020)

11. Lafourcade, P., Miyahara, D., Mizuki, T., Robert, L., Sasaki, T., Sone, H.: How to
construct physical zero-knowledge proofs for puzzles with a “single loop” condition.
Theor. Comput. Sci. 888, 41–55 (2021)

12. Miyahara, D., et al.: Card-based ZKP protocols for Takuzu and Juosan. In: Pro-
ceedings of the 10th International Conference on Fun with Algorithms (FUN), pp.
20:1–20:21 (2020)

13. Miyahara, D., Sasaki, T., Mizuki, T., Sone, H.: Card-based physical zero-knowledge
proof for Kakuro. IEICE Trans. Fundam. Electron. Commun. Comput. Sci.
E102.A(9), 1072–1078 (2019)

14. Nikoli: Goishi Hiroi. https://www.nikoli.co.jp/ja/puzzles/goishi hiroi/
15. Robert, L., Miyahara, D., Lafourcade, P., Libralesso, L., Mizuki, T.: Physical

zero-knowledge proof and NP-completeness proof of Suguru puzzle. Inf. Comput.
285(B), 104858 (2022)

16. Robert, L., Miyahara, D., Lafourcade, P., Mizuki, T.: Card-based ZKP for con-
nectivity: applications to Nurikabe, Hitori, and Heyawake. New Gener. Comput.
40(1), 149–171 (2022). https://doi.org/10.1007/s00354-022-00155-5

17. Robert, L., Miyahara, D., Lafourcade, P., Mizuki, T.: Card-based ZKP protocol
for Nurimisaki. In: Devismes, S., Petit, F., Altisen, K., Di Luna, G.A., Fernandez
Anta, A. (eds.) SSS 2022. LNCS, vol. 13751, pp. 285–298. Springer, Cham (2022).
https://doi.org/10.1007/978-3-031-21017-4 19

18. Robert, L., Miyahara, D., Lafourcade, P., Mizuki, T.: Hide a liar: card-based ZKP
protocol for Usowan. In: Du, D.Z., Du, D., Wu, C., Xu, D. (eds.) TAMC 2022.
LNCS, vol. 13571, pp. 201–217. Springer, Cham (2022). https://doi.org/10.1007/
978-3-031-20350-3 17

19. Ruangwises, S.: An improved physical ZKP for Nonogram. In: Du, D.-Z., Du, D.,
Wu, C., Xu, D. (eds.) COCOA 2021. LNCS, vol. 13135, pp. 262–272. Springer,
Cham (2021). https://doi.org/10.1007/978-3-030-92681-6 22

20. Ruangwises, S.: Physical zero-knowledge proof for ball sort puzzle. In: Della
Vedova, G., Dundua, B., Lempp, S., Manea, F. (eds.) CiE 2023. LNCS, vol 13967,
pp. 246–257. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-36978-
0 20

21. Ruangwises, S.: Two standard decks of playing cards are sufficient for a ZKP
for Sudoku. New Gener. Comput. 40(1), 49–65 (2022). https://doi.org/10.1007/
s00354-021-00146-y

22. Ruangwises, S., Itoh, T.: How to physically verify a rectangle in a grid: a physical
ZKP for Shikaku. In: Proceedings of the 11th International Conference on Fun
with Algorithms (FUN), pp. 24:1–24:12 (2022)

23. Ruangwises, S., Itoh, T.: Physical zero-knowledge proof for numberlink puzzle and
k vertex-disjoint paths problem. New Gener. Comput. 39(1), 3–17 (2021). https://
doi.org/10.1007/s00354-020-00114-y

https://doi.org/10.1007/s00224-008-9119-9
https://www.nikoli.co.jp/ja/puzzles/goishi_hiroi/
https://doi.org/10.1007/s00354-022-00155-5
https://doi.org/10.1007/978-3-031-21017-4_19
https://doi.org/10.1007/978-3-031-20350-3_17
https://doi.org/10.1007/978-3-031-20350-3_17
https://doi.org/10.1007/978-3-030-92681-6_22
https://doi.org/10.1007/978-3-031-36978-0_20
https://doi.org/10.1007/978-3-031-36978-0_20
https://doi.org/10.1007/s00354-021-00146-y
https://doi.org/10.1007/s00354-021-00146-y
https://doi.org/10.1007/s00354-020-00114-y
https://doi.org/10.1007/s00354-020-00114-y

Physically Verifying the First Nonzero Term in a Sequence 183

24. Ruangwises, S., Itoh, T.: Physical zero-knowledge proof for ripple effect. Theor.
Comput. Sci. 895, 115–123 (2021)

25. Ruangwises, S., Itoh, T.: Physical ZKP for connected spanning subgraph: applica-
tions to bridges puzzle and other problems. In: Kostitsyna, I., Orponen, P. (eds.)
UCNC 2021. LNCS, vol. 12984, pp. 149–163. Springer, Cham (2021). https://doi.
org/10.1007/978-3-030-87993-8 10

26. Ruangwises, S., Itoh, T.: Physical ZKP for Makaro using a standard deck of cards.
In: Du, D.Z., Du, D., Wu, C., Xu, D. (eds.) TAMC 2022. LNCS, vol. 13571, pp.
43–54. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-20350-3 5

27. Sasaki, T., Miyahara, D., Mizuki, T., Sone, H.: Efficient card-based zero-knowledge
proof for Sudoku. Theor. Comput. Sci. 839, 135–142 (2020)

28. Shinagawa, K., et al.: Card-based protocols using regular polygon cards. IEICE
Trans. Fundam. Electron. Commun. Comput. Sci. E100.A(9), 1900–1909 (2017)

29. Ueda, I., Miyahara, D., Nishimura, A., Hayashi, Y., Mizuki, T., Sone, H.: Secure
implementations of a random bisection cut. Int. J. Inf. Secur. 19(4), 445–452
(2020). https://doi.org/10.1007/s10207-019-00463-w

https://doi.org/10.1007/978-3-030-87993-8_10
https://doi.org/10.1007/978-3-030-87993-8_10
https://doi.org/10.1007/978-3-031-20350-3_5
https://doi.org/10.1007/s10207-019-00463-w

Mechanism Design in Fair Sequencing

Zhou Chen1, Yiming Ding2, Qi Qi2(B), and Lingfei Yu3(B)

1 School of Business, Hangzhou City University, Hangzhou, China
chenzhou@zucc.edu.cn

2 Gaoling School of Artificial Intelligence, Renmin University of China,
Beijing, China

{dingym97,qi.qi}@ruc.edu.cn
3 Zhejiang Gongshang University Hangzhou College of Commerce, Hangzhou, China

ylf@mail.zjgsu.edu.cn

Abstract. Sequencing agents to ensure fairness is a common issue in
various domains, such as project presentations, job interview scheduling,
and sports or musical game sequence arrangement. Since agents have
their own positional preferences, we investigate whether extra credits
can be assigned to some agents, so that all agents can choose their pre-
ferred positions. We propose an auction system to determine the fair
number of credits that an agent may sacrifice for a position they like or
request for a position they dislike. The system is modeled as a problem
of pricing sequence positions, which demands budget-balanced and egal-
itarian conditions. We prove that deterministic protocols that guarantee
DSIC (dominant-strategy incentive compatibility), budget-balance and
egalitarianism do not exist. Furthermore, we design a randomized proto-
col that ensures being truthful is always the optimal response for every
player. A particularly significant technical contribution we make is the
establishment of the uniqueness of a randomized protocol with respect
to the incentive compatible condition, which serves as the most suitable
proxy when incentives are compatible.

Keywords: budget-balance · egalitarian · sequence positions · DSIC

1 Introduction

The sequence is crucial in various contexts, such as the athletic track in sprint-
ing, the swimming lane, the diving and gymnastics competition order, the music
or singing sequence, the project presentation order, and the job interview sched-
ule. Previous studies indicate that people have varying preferences for music
with different sequences [4,17]. Judges or audiences tend to be more impressed

This paper is supported by Beijing Outstanding Young Scientist Program NO.
BJJWZYJH012019100020098, the Fundamental Research Funds for the Central Uni-
versities, and the Research Funds of Renmin University of China No. 22XNKJ07, and
Major Innovation & Planning Interdisciplinary Platform for the “Double-First Class”
Initiative, Renmin University of China.

c© Springer Nature Switzerland AG 2023
M. Li et al. (Eds.): IJTCS-FAW 2023, LNCS 13933, pp. 184–194, 2023.
https://doi.org/10.1007/978-3-031-39344-0_14

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-39344-0_14&domain=pdf
https://doi.org/10.1007/978-3-031-39344-0_14

Mechanism Design in Fair Sequencing 185

with recent events than past ones due to the memory decay effect [1]. This phe-
nomenon is extensively researched in various real-world scenarios, such as adver-
tising campaigns [22], news coverage [22], and new product [13]. The impact of
the presentation order on the final outcome of a selection process, particularly
when information systems are evaluated, is widely acknowledged. The order
effects have been demonstrated in various studies. Eisenberg and Barry [9] pro-
vide evidence that users’ determination of document relevance in information
systems is biased by the order and quantify the extent of this bias. Parker and
Johnson [19], on the other hand, examine the impact of both the order and
the number of presentations on reviewers’ judgments. Hogarth and Einhorn [10]
and Bruine de Bruin [5] identify the key task variables that account for the
order effects in updating beliefs and build a belief-adjustment model through
experimental examination and validation.

Studies on the order effect have a long history, dating back to Asch’s [3]
work on the change-in-meaning hypothesis, Anderson and Hubert’s [2] research
on attention decrement, and Clancy and Wachsler’s [7] study on the fatigue
factor’s account of the order effect. More recently, Bruine de Bruin and Keren
[6] examine the novelty effect of the direction of comparison on a judge’s opinion,
while Bruine de Bruin [5] further studies the effect in song contests and figure
skating competitions. Xu and Wang [23] conceptualize the dynamics of judgment
psychology by exploring the order effect forming mechanism. Page and Page [18]
conduct a large-scale data analysis of bias in the case of idol series and show
a systemic bias toward later contestants in sequential evaluation of candidate
performance. Kondo et al. [12] extend the presence of the sequential effect to the
domain of subjective decision-making through a face-attractiveness judgment
task.

All these studies suggest that sequence arrangement plays a crucial role in
subjective judgment across various applications. However, there have been few
successful attempts in the literature to systematically resolve its bias. Random
ordering is often used, such as in the Van Cliburn International Piano Competi-
tion, while diving follows a reversed order of presentation according to the play-
ers’ early performance, echoing the observation that “last should be the first”.
In this study, we adopt a mechanism design approach to study the problem in
terms of guiding principles that result in a fair solution.

Our goal is to develop a compensation scheme that charges players who gain
an advantage to compensate players who would otherwise be disadvantaged by
the presentation order, ensuring fairness such that every player obtains the same
utility by their private evaluation. This is typically referred to as the egalitarian
condition, as per Pazner and Schmeidler’s [20] definition. Such a condition, if
satisfied in the designed rule, guarantees that all parties have equal utility. Many
studies have considered this egalitarian requirement for resource distribution
problems. For example, Demange [8] proposed a “divide and choose” method
for a set of agents to allocate a bundle of divisible goods, which could reach
an efficient and egalitarian equilibrium. Olivier et al. [33] examine an egalitarian
mechanism for a “one-sided” model, where the demanders do not act strategically
and require their demands to be fulfilled precisely.

186 Z. Chen et al.

Another critical condition for the compensation scheme is that it must be
budget-balanced, meaning any compensation for advantages must be paid by
the players who gain them. Additionally, the scheme must not incentive any
players to cheat to obtain a more favorable outcome. Ohseto [16] proves that
even under some very strict conditions, there is still no deterministic allocation
that satisfies DSIC, budget-balance, and egalitarianism. Thus, they provide the
conditions for a mechanism that is DSIC and egalitarian without considering
budget-balance. While our model is similar to Ohseto’s for deterministic pro-
tocols, our work focuses on randomized protocols to find an mechanism that
satisfies both egalitarianism and budget-balance while Ohseto only considers
deterministic ones. Moulin [35], on the other hand, improves the VCG mecha-
nism to make it both truthful and almost budget-balanced and applies it to solve
the problem of assigning p identical objects to a group of n agents where p < n.
Mishra and Sharma [26] design a mechanism for a private values single object
auction model and prove that the mechanism is a dominant strategy incentive
compatible and budget-balanced while satisfying equal treatment of equals.

Besides, there are also some other articles about designing mechanism for fair
auction or allocation. Bei et al. [27] consider a variant problem of cake-cutting
aiming to design a truthful and fair cake sharing mechanisms mechanism. Their
research demonstrates that the leximin solution not only ensures truthfulness
but also leads to the highest level of egalitarian welfare across all truthful and
position oblivious mechanisms. Albert et al. [28] consider the multi-attribute
resource allocation problem. They propose the multi-dimensional fairness taking
into account all the attributes involved in the allocation problem. The results
indicate that multi-dimensional fairness motivates agents to stay in the mar-
ket, while improving the equity of wealth distribution without compromising
the quality of allocation attributes. Ajay Gopinathan et al. [29] study the auc-
tions for balancing social welfare and fairness in secondary spectrum markets.
They incorporate randomization into the auction design to ensure the local fair-
ness in that this way can guarantee each user a minimum probability of being
assigned spectrum. And for global fairness, they adopt the max-min fairness
criterion. They customize a new auction using linear programming techniques
to achieve a balance between social welfare and max-min fairness, as well as to
identify feasible channel allocations. What’s more, mechanism design has been
used to enhance fairness in ML algorithms. Finocchiaro et al. [30] introduce a
mechanism towards algorithmic fairness. They developed a comprehensive frame-
work that effectively links together the distinct frameworks of mechanism design
and machine learning with the fairness guarantee. Menon and Williamson [34]
propose choosing distinct thresholds for each group in a way that maximizes
accuracy and minimizes demographic parity. Zafar et al. [31] suggest applying
the preference-based fairness metrics that draw from concepts in economics and
game theory to machine learning. They propose the preferred treatment and
which can guarantee the envy-free fairness. More mechanism applied to enhance
the fairness of the ML algorithms can be found in the survey of D. Pessach and
E. Shmueli [32].

Mechanism Design in Fair Sequencing 187

Contribution
We study the problem of finding a truthful auction protocol for a presentation

ordering problem that is both budget-balanced and egalitarian.

– Firstly, we analyze the situation of deterministic mechanism. We present an
analysis that shows that such mechanisms have a specific payment function.
However, we also prove that no deterministic incentive compatible protocol
exists under these conditions.

– To overcome this limitation, we move on to design a randomized mechanism
that satisfies both egalitarianism and budget-balance. In this mechanism,
truth-telling is the dominant strategy for all players, ensuring that no player
can benefit from lying about their valuation. The randomized mechanism
offers a viable solution for designing truthful mechanisms that satisfy the
desired properties of being budget-balanced and egalitarian.

– However, the significance of our research does not end here. While previ-
ous research has established the uniqueness of randomized mechanisms for
two-player case, the case of n-player (where n ≥ 3) has never been proven.
Therefore, we extend the existing results by Deng and Qi [36], who proved the
uniqueness of randomized mechanisms for two-player case, to a more general
scenario where n ≥ 3, ensuring the completeness of the theorem.

In summary, we offer a viable solution in the form of a randomized mecha-
nism that satisfies the desired properties of being budget-balanced, egalitarian,
and incentive compatible. Moreover, we extend the existing results to the case
of n-player case, which has never been proven before. Our findings can give
implications for the design and implementation of truthful mechanisms in fair
sequencing problem.

The paper is structured as follows. In Sect. 2, we define our model and intro-
duce relevant concepts and definitions. In Sect. 3, we demonstrate that a deter-
ministic protocol is not feasible and present our randomized protocol, which
is proven to satisfy the properties of dominant strategy incentive compatibility
(DSIC), budget-balance, and egalitarianism. Section 4 establishes the unique-
ness condition and presents two cases where the theorem is proven. Section 5
concludes the paper.

2 Mathematical Modeling and Definitions

The sequencing problem is considered as an assignment problem, in which indi-
viduals are assigned to sequence positions. This assignment can be determined
by an auction with predefined pricing rules and allocation rules.

Sequence positions can be considered heterogeneous commodities for sale in
the auction: n(n ≥ 2) different goods are assigned to n players, each of whom
has his/her own preferences. Suppose the valuation of these n goods by player
i, (1 ≤ i ≤ n) is vi = (vi1, vi2, · · · , vin) and vi1+vi2+· · ·+vin = 0. If vij > 0, this
means good j is a position preferred by player i, with a larger number indicating
a more preferable position. If vij < 0, this indicates a position disliked by the

188 Z. Chen et al.

player. In this game, players bid a price for each position: bi = (bi1, bi2, · · · , bin).
In addition, the bids should satisfy bi1 + bi2 + · · · + bin = 0. We refer to this as
the fair sequencing problem (called FSP for short).

Let oij(b) ∈ {0, 1} and oij(b) = 1 if player i receives the good j, oij(b) = 0
otherwise. One item j can only be assigned to one player: ∀j, ∑n

i=1 oij(b) = 1.
One player i also only receives one item: ∀i, ∑n

j=1 oij(b) = 1. At the same time,
player i is charged ti(b), which is positive for the winner and negative for the
loser, and indicates the amount paid to the loser as compensation. With these
notations, we consider the usual quasi-linear utility functions for players.

Definition 1. Quasi-linear utility functions: the player i’s , i = 1, 2, · · · , n,
utility function is

ui(b) =
n∑

j=1

oij(b) × vij − ti(b).

In order to formally describe the transfer of payments from the winner to the
loser, we introduce the following definition.

Definition 2. Budget-balance: a protocol for sequence positions assignment
is budget-balanced if the net charge to all players is zero, i.e.,

n∑

i=1

ti(b) = 0.

We introduce the egalitarian condition to even out differences in the players’
private values. Pazner and Schmeidler [20] propose a general concept of egalitar-
ian equivalence that equalizes two agents when their allocations are equivalent
to a reference bundle comprised of both goods and money. However, for our
purposes, we require a simple, purely monetary bundle. In other words, an egal-
itarian solution is one in which all players have equal utility.

Definition 3. Egalitarian: a protocol for sequence positions assignment is
egalitarian if the mechanism leads to equal utilities for all players: u1(b) =
u2(b) = · · · = un(b).

Vickrey et al. [24], Clarke [21] and Groves [25] lay down a fundamental prin-
ciple in auction design to provide bidders with an incentive to submit their true
value.

Definition 4. Dominant-strategy incentive compatibility(DSIC): a pro-
tocol for sequence positions assignment is dominant-strategy incentive compatible
if truthfulness is the dominant strategy among all players under the mechanism:

ui(vi, b−i) ≥ ui(v′
i, b−i) (1)

for every v′
i and b−i.

Informally, in a dominant-strategy incentive compatible protocol, every
player has an incentive to bid truthfully.

Mechanism Design in Fair Sequencing 189

3 An Incentive Compatible Mechanism

In this section, we begin by providing a characterization of the pricing rule in
our model. Specifically, we consider the conditions of egalitarianism and budget-
balance, which allow us to derive an immediate corollary: the impossibility result
for deterministic incentive compatible protocols in our model. This result has
important implications for our further discussion on randomized protocols for
the problem at hand.

3.1 Analysis for Egalitarian and Budget-Balanced Mechanisms

This subsection aims to provide a characterization of incentive compatible pro-
tocols that satisfy both the budget-balanced and the egalitarian conditions in
our model. Specifically, we seek to identify protocols that not only ensure that
the total payments made by all players are zero, but also that the resulting
allocation is distributed as equally as possible among the players.

Lemma 1. For a dominant-strategy incentive compatible mechanism with n
players, it is both budget-balanced and egalitarian if and only if

ti =
n∑

j=1

oij(b)bij − 1
n

n∑

j=1

n∑

i=1

oij(b)bij

After analyzing the properties of dominant-strategy incentive compatibility,
budget-balance, and egalitarianism in the n-player FSP problem, we arrive at
a conclusion that may disappoint those seeking a deterministic solution. Our
findings reveal that there is no deterministic mechanism that satisfies all three
conditions simultaneously.

Theorem 1. For n-player FSP, there does not exist a deterministic mechanism
that satisfies dominant-strategy incentive compatibility, budget-balance, and egal-
itarianism.

While this may seem discouraging at first, it underscores the importance
of considering randomized protocols as a potential solution. By exploring such
protocols, we can find a mechanism that is not only feasible but also fulfills the
desired properties.

3.2 Design and Analysis of Randomized Incentive Compatible
Mechanisms

As the impossibility of a deterministic mechanism to satisfy the necessary con-
ditions in n-player FSP has been established, we turn our attention to exploring
randomized mechanisms. We present the details of our randomized protocol for
n-player FSP in the following section, including a description of the allocation
mechanism, the payment scheme, and the satisfaction for incentive compatibil-
ity, budget-balance and egalitarianism. Through our analysis, we demonstrate
that the randomized protocol is capable of achieving all three of these desirable
properties.

190 Z. Chen et al.

Protocol 1.

1. Each player submits its own bid: bi = (bi1, bi2, · · · , bin), i = 1, · · · , n
2. The system randomly select a winner sequence k1, k2, · · · , kn, i.e. ok11 =

ok22 = · · · = oknn = 1, set price as bk11, bk22, · · · , bknn.
3. Every player earns a compensation of (bk11 + bk22 + · · · + bknn)/n.

In this protocol, each agents will submit its own bid for every positions. Then
the protocol will allocate each position with equal probability and ask each agents
to pay for their position. At last, each agent will earn a compensation which can
guarantee the property of budget-balance. Also, this can be regarded as the
compensation for other agents by the agent who has obtained better positions.

Theorem 2. Protocol 1 is a dominant-strategy incentive compatible protocol and
satisfies budget-balanced and ex-ante egalitarian conditions.

4 Uniqueness for Randomized Incentive Compatible
Protocols

In this section, we present a uniqueness theorem that establishes protocol 1
as the only auction protocol that satisfies the conditions of being egalitarian,
budget-balanced, and dominant-strategy incentive compatible. The result of this
theorem is split into two parts: the case of two players and the case of n(n ≥ 3)
players. The two-player case has been previously established by Deng and Qi [36]
in the GO game settings. However, their result only covers the two-player case
and is not comprehensive enough for our purposes. Therefore, in this section, we
provide a more comprehensive result that covers the case of n ≥ 3. Additionally,
for the sake of completeness, we also present Deng and Qi’s results in Sect. 4.1.

Theorem 3. The protocol 1 is the unique mechanism that satisfies DSIC,
budget-balance and egalitarianism.

4.1 Uniqueness of Randomized Mechanism in Two-Player FSP

First consider a two-player case. Suppose both players prefer the first position
in a sequence. We can simplify the notation in this case: two players’ valuation
of the two items are (v1,−v1) and (v2,−v2) respectively. In this auction, they
only need to bid for the first position with a bidding price bi, i = 1, 2, and hence
their bid for the other item is −bi.

Then, the protocol 1 degenerates into the following form:

Protocol 2 (FSP for two-player).

1. Each player submits its own bid: bi, i = 1, 2.
2. The system sets its price at (b1 + b2)/2 and randomly selects a winner for the

first position.
3. The winner compensates the opponent with (b1 + b2)/2.

Mechanism Design in Fair Sequencing 191

Proposition 1. Any protocol with two players that satisfies DSIC, budget-
balance and egalitarianism must choose the winner with equal probability and
set the payment at (b1 + b2)/2.

4.2 Uniqueness of Randomized Mechanism in n-Player FSP

We will now prove Theorem 3 for the case of n-player FSP, where n ≥ 3, by
considering Protocol 1. We prove the following proposition, which forms the basis
of the uniqueness theorem: First, we utilize the budget-balance and egalitarian
conditions to derive the pricing rule, which is established in the conclusion of
Lemma 1. Subsequently, we demonstrate the equal probability of each allocation
by varying the true values in the incentive compatibility conditions.

It’s important to note that our proof differs from the two-player case pre-
sented by Deng and Qi [36]. Specifically, we extend their findings to a more
general scenario where n ≥ 3, thus ensuring the completeness of the theorem.
Our proof offers a comprehensive approach to the uniqueness theorem for ran-
domized incentive compatible protocols in n-player FSPs.

Proposition 2. The protocol 1 is the unique mechanism that satisfies DSIC,
budget-balanced and egalitarian conditions for n-player FSP(n ≥ 3).

We omit the details of the proof and only give the insight of this proof. Firstly,
we can assume wij(b1, b2, · · · , bn) is the probability player i wins position j when
the bids are b1, b2, · · · , bn. Then, similar to lemma 1, we can get the payment as
a function of wij under condition budget-balance and egalitarian. At last, with
the condition of DSIC and some mathematical derivation, we can prove that
wij = 1

n for all i, j ∈ {1, · · · , n} is the only possible solution.

5 Conclusion and Discussion

Our research is motivated by the challenge of allocating sequence positions in a
competitive environment, such as determining the presentation order in a musical
competition. We address this challenge by designing an incentive compatible
mechanism to determine the compensation losers receive from the winner, while
ensuring both egalitarianism and budget-balance.

We provide a non-existence theorem for designing a deterministic incentive
compatible protocol that simultaneously satisfies budget-balanced and egalitar-
ian conditions. Furthermore, we develop a randomized protocol that encourages
honesty as an optimal response to opponents’ strategies. While the protocol
may be weak for risk-neutral players, for whom any bid profile is optimal, the
uniqueness of the protocol supports it as a plausible solution.

In our model, each player assigns a value to the positions in a sequence. Pro-
tocols that are incentive compatible can induce players to speak honestly, such
as those developed by Vickrey [24] , Clarke [21] and Groves [25] for auctions.
Unfortunately, we prove that no deterministic incentive compatible protocol can
satisfy budget-balanced and egalitarian conditions. So we proposed a randomized
protocol. As we have mentioned in the introduction, our model is similar to

192 Z. Chen et al.

Ohseto’s deterministic protocols. But, our model requires that losers have nega-
tive utility, which is not the case in Ohseto’s model as it lacks a strategy-proof
protocol. Positive results for any protocol designed using Ohseto’s model would
imply the same in our model while his non-existence result for a general model
does not apply to our more restricted models.

Our study of randomized protocols is unique in this field, particularly due
to its distinctiveness from existing research. We show that truth-telling is the
optimal response strategy for risk-averse players. However, it is worth noting that
Nisan and Ronen [15] proposed a definition of strong dominant-strategy incentive
compatibility, stating that strongly DSIC requires a guarantee that there is at
least one agent in Eq. 1 such that the inequality sign holds as following:

Definition 5. (strong) Dominant-strategy incentive compatibility: a
protocol for sequence positions assignment is strongly dominant-strategy incen-
tive compatible if truthfulness is the weak dominant strategy among all players
under the mechanism:

ui(vi, b−i) ≥ ui(v′
i, b−i), ∀ v′

i , b−i

And ∃j, s.t.
uj(vj , b−j) > uj(v′

j , b−j), ∀ v′
j , b−j

Our mechanism can only satisfy weak dominant-strategy incentive compati-
bility. It cannot guarantee the strong dominant-strategy incentive compatibility.

In a risk-averse scenario where there is a difference in utility, protocol 1 serves
as a Nash implementation of budget-balanced and egalitarian conditions. The
Nash implementation theory was specifically developed for situations in which
impossibility hampers the achievement of social goals with certain properties
([11,14]). Our results can be considered as a positive contribution in the above
cases.

References

1. Anderson, J.R.: Learning and Memory: An Integrated Approach. John Wiley &
Sons Inc, Hoboken (2000)

2. Anderson, N.H., Hubert, S.: Effects of concomitant verbal recall on order effects
in personality impression formation. J. Verbal Learn. Verbal Behav. 2, 379–391
(1963)

3. Asch, S.E.: Forming impressions of personality. J. Abnorm. Soc. Psychol. 41, 258–
290 (1946)

4. Baucells, M., Smith, D., Weber, M.: Preferences over constructed sequences: empir-
ical evidence from music (2016)

5. de Bruin, W.B.: Save the last dance for me: unwanted serial position effects in jury
evaluations. Acta Psychol. 118, 245–260 (2005)

6. Bruine de Bruin, W., Keren, G.: Order effects in sequentially judged options due
to the direction of comparison. Organ. Behav. Hum. Decis. Process. 92, 91–101
(2003)

7. Clancy, K.J., Wachsler, R.A.: Positional effects in shared-cost surveys. Public Opin.
Q. 35, 258–265 (1971)

Mechanism Design in Fair Sequencing 193

8. Demange, G.: Implementing efficient egalitarian equivalent allocations. Economet-
rica: J. Econometric Soc. 52, 1167–1177 (1984)

9. Eisenberg, M., Barry, C.: Order effects: a study of the possible influence of pre-
sentation order on user judgements of document relevance. J. Am. Soc. Inf. Sci.
39(5), 293–300 (1988)

10. Hogarth, R., Einhorn, H.J.: Order effects in belief updating: the belief-adjustment
model. Cogn. Psychol. 24(1), 1–55 (1992)

11. Jackson, M.O.: A crash course in implementation theory. Soc. Choice Welfare 18,
655–708 (2001)

12. Kondo, A., Takahashi, K., Watanabe, K.: Sequential effects in face-attractiveness
judgment. Perception 41(1), 43–49 (2012)

13. Mahajan, V., Muller, E., Sharma, S.: An empirical comparison of awareness fore-
casting models of new product introduction. Mark. Sci. 3(3), 179–197 (1984)

14. Maskin, E., Sjostrom, T.: Implementation theory. In: Arrow, K.J., Sen, A.K., Suzu-
mura, K. (eds.) Handbook of Social Choice and Welfare 1st edn, vol. 1, pp. 237-.288.
chapter 5. Elsevier (2002)

15. Nisan, N., Ronen, A.: Algorithmic mechanism design. In: Proceedings of the Thirty-
First Annual ACM Symposium on Theory of Computing, Atlanta, Georgia, USA.
ACM, pp. 129–140 (1999)

16. Ohseto, S.: Implementing egalitarian-equivalent allocation of indivisible goods on
restricted domains. Econ. Theor. 23, 659–670 (2004)

17. Rozin, A., Rozin, P., Goldberg, E.: The feeling of music past: how listeners remem-
ber musical affect. Music Percept. Interdiscip. J. 22(1), 15–39 (2004)

18. Page, L., Page, K.: Last shall be first: a field study of biases in sequential perfor-
mance evaluation on the Idol series. J. Econ. Behav. Organ. 73, 186–198 (2010)

19. Parker, L.M.P., Johnson, R.E.: Does order of presentation affect users’ judgement
of documents? J. Am. Soc. Inf. Sci. 41, 493–494 (1990)

20. Pazner, E., Schmeidler, D.: Egalitarian-equivalent allocations: a new concept of
economic equity. Q. J. Econ. 92, 671–687 (1978)

21. Clarke, E.H.: Multipart pricing of public goods. Public Choice, 11, 17–33 (1971)
22. Watt, J.H., Mazza, M., Snyder, L.: Agenda-setting effects of television news cov-

erage and the effects decay curve. Commun. Res. 20(3), 408–435 (1993)
23. Xu, Y., Wang, D.: Order effect in relevance judgment. J. Am. Soc. Inform. Sci.

Technol. 59, 1264–1275 (2008)
24. Vickrey, W.: Counter speculation, auctions, and competitive sealed tenders. J.

Financ. 16, 8–37 (1961)
25. Groves, T.: Incentives in teams. Econometrica: J. Econometric Soc. 41, 617–631

(1973)
26. Mishra, D., Sharma, T.: A simple budget-balanced mechanism. Soc. Choice Welfare

50, 147–170 (2018)
27. Bei, X., Lu, X., Suksompong, W.: Truthful cake sharing. In: Proceedings of the

AAAI Conference on Artificial Intelligence, vol. 36(5), pp. 4809–4817 (2022)
28. Pla, A., Lopez, B., Murillo, J.: Multi-dimensional fairness for auction-based

resource allocation. Knowl.-Based Syst. 73, 134–148 (2015)
29. Gopinathan, A., Li, Z., Wu, C.: Strategyproof auctions for balancing social welfare

and fairness in secondary spectrum markets. In: 2011 Proceedings IEEE INFO-
COM, pp. 3020–3028 (2011)

30. Finocchiaro, J., et al.: Bridging machine learning and mechanism design towards
algorithmic fairness. In: Proceedings of the 2021 ACM Conference on Fairness,
Accountability, and Transparency, pp. 489–503 (2021)

194 Z. Chen et al.

31. Zafar, M.B., Valera, I., Rodriguez, M., Gummadi, K., Weller, A.: From parity
to preference-based notions of fairness in classification. In: Advances in Neural
Information Processing Systems, p. 30 (2017)

32. Pessach, D., Shmueli, E.: A review on fairness in machine learning. ACM Comput.
Surv. (CSUR) 55(3), 1–44 (2022)

33. Bochet, O., Ilkılıç, R., Moulin, H.: Egalitarianism under earmark constraints. J.
Econ. Theory 148(2), 535–562 (2013)

34. Menon, A.K., Williamson, R.C.: The cost of fairness in binary classification. In:
Proceedings of the Conference on Fairness, Accountability, and Transparency, pp.
107–118 (2018)

35. Moulin, H.: Almost budget-balanced VCG mechanisms to assign multiple objects.
J. Econ. Theory 144(1), 96–119 (2009)

36. Deng, X., Qi, Q.: Priority right auction for Komi setting. In: Internet and Network
Economics: 5th International Workshop. WINE 2009, pp. 521–528 (2009)

Red-Blue Rectangular Annulus Cover
Problem

Sukanya Maji1, Supantha Pandit2, and Sanjib Sadhu1(B)

1 Department of CSE, National Institute of Technology, Durgapur, India
sm.20cs1102@phd.nitdgp.ac.in , sanjib.sadhu@cse.nitdgp.ac.in

2 Dhirubhai Ambani Institute of Information and Communication Technology,

Gandhinagar, Gujarat, India

Abstract. We study the Generalized Red-Blue Annulus Cover problem
for two sets of points, red (R) and blue (B). Each point p ∈ R ∪ B is
associated with a positive penalty P(p). The red points have non-covering
penalties and the blue points have covering penalties. The objective is
to compute a rectangular annulus A such that the value of the function
P(Rout)+P(Bin) is minimum, where Rout ⊆ R is the set of red points
not covered by A and Bin ⊆ B is the set of blue points covered by A.
We study the problem for various types of rectangular annulus in one as
well as two dimensions. We design a polynomial-time algorithm for each
type of annulus.

Keywords: Annulus cover · Bichromatic point set · Rectangular
annulus · Polynomial time algorithms

1 Introduction

An annulus is a closed region bounded by two geometric objects of the same type
such as axis-parallel rectangles [9], circles [13], convex polygons [6], and many
more. The minimum width circular annulus problem is related to the problem
of finding a shape that fits in a given set of points in the plane [1]. Further, the
largest empty annulus of different shapes has many potential applications [7,12].

One of the generalizations of “the problem of computing a minimum width
annulus” is computing an annulus for a bichromatic point set where each point
has a positive penalty. In this problem, a set of red and a set of blue points are
given. Each red (resp. blue) point has a positive penalty called the non-covering
(resp. covering) penalty, i.e. if a red point is not covered then its penalty is
counted, and if a blue point is covered then its penalty is counted. The objective
is to find an annulus A with minimum weight, where the weight of A is the total
penalty of the red points not covered plus the total penalty of the blue points
covered by A. We define this problem as follows.

c© Springer Nature Switzerland AG 2023
M. Li et al. (Eds.): IJTCS-FAW 2023, LNCS 13933, pp. 195–211, 2023.
https://doi.org/10.1007/978-3-031-39344-0_15

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-39344-0_15&domain=pdf
https://doi.org/10.1007/978-3-031-39344-0_15

196 S. Maji et al.

Generalized Red-Blue Annulus Cover (GRBAC) problem. Given
a set of m blue points B = {p1, p2, . . . , pm} and a set of n red points
R = {q1, q2, . . . , qn}, and a penalty function P : R∪B → R

+. The objective
is to find an annulus (of certain type and orientation) A such that the
quantity δ =

∑
q∈Rout P(q) +

∑
p∈Bin P(p) is minimum, where Rout ⊆ R is

the set of points not covered by A and Bin ⊆ B is the set of points covered
by A.

If the penalty of each red point is ∞ and a blue point is a unit, then the
GRBAC problem becomes computing an annulus that covers all the red points
while covering a minimum number of blue points. We refer to this as the Red-
Blue Annulus Cover (RBAC) problem. We focus our study on the RBAC and
GRBAC problems that compute an axis-parallel rectangular annulus. There
exists multiple annuli covering the same set of blue and red points that min-
imizes δ. Throughout this paper, we report the one among these annuli, whose
boundaries pass through some red points as an optimal solution.

Motivation: The oncologists remove the cancer cells while avoiding the healthy
cells as much as possible, during the surgery or radiation therapy of the patients.
We denote these two types of cells with two different colors. The excision of the
tumor leads us to various geometric optimization problems, e.g. determining
the smallest circle that encloses the red points or that separates the red points
from the blue points. Instead of computing the smallest enclosing circle, the
computation of a minimum width annulus which covers largest number of tumor
cells with a minimum number of healthy cells, leads us to less wastage of healthy
cells while performing surgery. This motivates us to formulate a problem of
covering bichromatic point set by a minimum width annulus that covers a red
colored point set completely while minimizing the blue colored point set covered
by it. We can also assign different weights called penalties to each cancer cell
depending on the stage of the cancer cells and the importance of the healthy
cells, where removing a healthy cell and keeping cancer cells within the body
during surgery leads to a penalty that is to be minimized. This motivates us to
study the annulus problem by assigning penalties to each point.

2 Related Works

Finding the largest empty annuli of different shapes in a given point set is well-
studied. This problem has many potential applications [7,12]. Dı́az-Báñez et
al. [8] first studied the problem for circular empty annulus, and proposed an
O(n3 log n)-time and O(n)-space algorithm to solve it. Bae et al. [5] studied
the problem of computing a maximum-width empty axis-parallel square and
rectangular annulus in O(n3) and O(n2 log n) time, respectively. Both of these
algorithms require O(n) space. Paul et al. [11] computed the maximum empty
axis-parallel rectangular annulus that runs in O(n log n) time. Abellanas et al.
[1] presented an O(n)-time algorithm for the rectangular annulus problem such

Red-Blue Rectangular Annulus Cover Problem 197

that the annulus covers a given set of points. They considered several variations
of this problem. Gluchshenko et al. [9] presented an O(n log n)-time algorithm
for the square annulus, and proved that this is optimal. Also, it is known that a
minimum width annulus over all orientations can be found in O(n3 log n) time
for the square annulus [3] and in O(n2 log n) time for the rectangular annulus
[10]. Bae [4] addressed the problem of computing a minimum-width square or
rectangular annulus that contains at least (n−k) points out of n given points in
the plane. The k excluded points are considered outliers of the n input points.
Bae presented several fast algorithms for the problem.

Recently, Abidha and Ashok [2] studied the geometric separability problem.
Given a bichromatic point set P = R∪B of red and blue points, a separator is an
object of a certain type that separates R and B. They studied this problem when
the separator is (i) a rectangular annulus of fixed orientation, (ii) a rectangular
annulus of arbitrary orientation, (iii) a square annulus of fixed orientation, (iv)
an orthogonal convex polygon. They constructed these separators in polynomial
time and at the same time optimize given parameters.

3 Preliminaries and Notations

The x and y-coordinates of a point p are denoted by x(p) and y(p), respec-
tively. The left, right, top, and bottom sides of a rectangle R are denoted by
left(R), right(R), top(R) and bottom(R), respectively. A rectangular annulus A
is defined by two parallel rectangles, one lying completely inside the other, and
we denote these inner and outer rectangles of A by Rin and Rout, respectively.
Throughout this paper, we study only the axis-parallel rectangular annulus and
hence, we use annulus to imply axis-parallel rectangular annulus unless other-
wise stated. The rectangles Rin and Rout define four widths of A: w�, wr, wt,
and wb, where the left width w� (resp. right width wr) is the horizontal distance
between the left (resp. right) boundaries of Rin and Rout. Similarly, top width
wt (resp. bottom width wb) is the vertical distance between the top (resp. bot-
tom) sides of Rin and Rout. A point p is said to be covered by an annulus A if
p lies on or inside Rout but does not lie inside Rin.

A rectangular annulus A is said to be uniform if w� = wr = wt = wb

(Fig. 1(a)). Otherwise, we say that A is non-uniform (Fig. 1(b),1(c)). It is
observed that in a uniform annulus A, the two rectangles Rin and Rout must be
concentric. Further, in a non-uniform concentric annulus, w� = wr and wt = wb

(Fig. 1(c)).
In this paper, we first study one-dimensional versions of the RBAC and

GRBAC problems before proceeding to the two-dimensional versions. In a one-
dimensional problem, the red and blue points lie on the real line L.

Our Contributions: Table 1 shows our contributions. We need to mention that,
each solution needs O((m+n) log(m+n)) preprocessing time and O(m+n) space.

198 S. Maji et al.

(a) (b) (c)

Fig. 1. (a) uniform annulus, (b) non-uniform annulus, and (c) non-uniform concentric
annulus. Points depict the centers of the rectangles.

Table 1. Results obtained for different annulus covering problems

Problems Dims Type Rectangular annulus Time

RBACN-1D

1D

RBAC
Non-uniform O(m + n)

RBACU-1D Uniform O(m + n)

GRBACN-1D
GRBAC

Non-uniform O(m + n)

GRBACU-1D Uniform O(n2(m + n))

RBACN-2D-non-concentric

2D

RBAC

Non-uniform non-concentric O(n(m + n))

RBACN-2D-concentric Non-uniform concentric O(n(m + n))

RBACU-2D-uniform Uniform O(n(m + n))

GRBACN-2D-non-concentric

GRBAC

Non-uniform non-concentric O(n6(m + n))

GRBACN-2D-concentric Non-uniform concentric O(n5(m + n))

GRBACU-2D-uniform Uniform O(n4(m + n))

4 One-Dimensional Red-Blue Annulus Cover Problem

We consider the rectangular annulus covering problem in one dimension where
the red-blue point set lies on a given straight line L (assuming L is horizontal). It
is to be noted that, in one dimension, the rectangular annulus A defines two non-
overlapping intervals, say the left interval IL = [Lo, Li] and the right interval
IR = [Ri, Ro], where Lo (resp. Ro) and Li (resp. Ri) are the left (resp. right)
outer and the left (resp. right) inner endpoints (see the Fig. 2). We use p ∈ I to
denote that the point p is covered by the interval I. Length of an interval I is
denoted by |I|. The distance between any two points a and b is |ab|.

In the rest of this section, a rectangular annulus A indicates a pair of non-
overlapping intervals IL and IR. We say a pair of intervals to be uniform if they
are equal in length; otherwise, they are non-uniform. The IL and IR are said
to be optimal, if they cover together all the red points and a minimum number
of blue points in the RBAC problem or have a minimum penalty in GRBAC
problem, among all possible pair of intervals. We discuss four different variations
of this problem based on the choice of penalty for the red and blue points. As a
pre-processing task, we sort and store all the blue points (p1, p2, . . . , pm) as well
as all the red points (q1, q2, . . . , qn) in two separate arrays.

Red-Blue Rectangular Annulus Cover Problem 199

Fig. 2. Rectangular annulus A defines two non-overlapping intervals IL and IR

Observation 1. If the intervals are non-uniform, then each endpoint of the
optimal pair (IL, IR) must be on some red point in B, provided each interval
(IL and IR) covers at least two red points. As a case of degeneracy, only one
red point, say qi, may exist in an interval, say IR, of ε (> 0) width whose one
endpoint is at the qi.

Observation 2. In case of uniform intervals IL and IR, the endpoints of one
of them must be any two red points.

Justification of Observation 2. Suppose for the sake of contradiction, only
one endpoint, say Lo of the interval IL of the optimal pair (IL and IR) is a red
point. If the endpoints of IR do not lie on any point, then we shift IR so that
it’s one endpoint, say Ri lies on a blue point without changing the penalty of
IR. Now anchoring the IL and IR at their endpoint Lo and Ri, respectively, we
decrease both the IL and IR by equal length until a red point is touched either
by the endpoints Li or Ro. Shortening of IL and IR may cause a reduction in
their penalty if a blue point is eliminated from IL or IR. If Li touches a red
point, then we are done; otherwise, anchoring IR at Ro, we further decrease IL

and IR until another red point is touched by Ri or Li and thus contradicting
our assumption, and hence the statement is proved. ��

4.1 The RBACN-1D Problem

This problem computes two non-overlapping non-uniform intervals IL and IR

that cover together all the red points in R (|R|=n) and a minimum number of
blue points in B (|B|=m). As per the Observation 1, we place the left endpoint
of IL, i.e., Lo at q1 and the right endpoint of IR, i.e., Ro at qn so that none
of the red points lie to the left of IL and right of IR. Now we determine the
other two endpoints Li and Ri of IL and IR, respectively so that all the red
points in R and minimum number of blue points in B are covered by IL ∪ IR.
The two endpoints Li and Ri must be any two consecutive red points qi and
qi+1, 2 ≤ i ≤ n − 2. In a linear scan, we can compute the number of blue points
lying inside each pair of consecutive red points. We select such a pair (qi, qi+1)
that contains a maximum number of blue points, and choose these red points qi

and qi+1 as the right endpoint Li of IL and left endpoint Ri of IR, respectively.
We report these two intervals IL and IR as a solution. We can also handle the

200 S. Maji et al.

degeneracy case by counting the number of blue points lying inside the pairs (q1,
q2) and (qn−1, qn). If such a pair, say (q1, q2), contains the maximum number of
blue points among all possible consecutive pairs (qi, qi+1), for 1 ≤ i ≤ (n − 1),
then we report (q1, q1 + ε) and (q2, qn) as the intervals IL and IR, respectively.
If the other pair (qn−1, qn) contains the maximum number of blue points, then
we report (q1, qn−1) and (qn, qn + ε′) as the two intervals. Note that we choose
ε (resp. ε′) such that the pair (q1, q1 + ε) (resp. (qn, qn + ε′)) does not contain
any blue points.

Proof of Correctness: Our solution covers all the red points ∈ R. It discards
all the blue points that lie before (resp. after) and the leftmost (resp. rightmost)
red point. It also discards the maximum number of blue points lying between
the two consecutive red points. Hence our solution is optimal, and we obtain the
following result.

Theorem 1. The RBACN-1D problem can be solved optimally in O(m+n) time
and O(m + n) space, after O((m + n) log(m + n)) preprocessing time.

4.2 The RBACU-1D Problem

We compute two uniform intervals IL and IR that cover all red points and
a minimum number of blue points. The Observation 2 holds for this problem.
Depending on the color of the endpoints of each interval, the following two cases
are possible.

Case (i): The Endpoints of IL are Red. We choose a red point qi such
that |q1qi| > |qi+1qn| and |q1qi−1| < |qiqn|. Take the interval [q1, qi] as IL and
compute its corresponding interval IR so that |IR| = |IL|, IL∩IR = φ, IR covers
the remaining red points those are not covered by IL and IR covers minimum
number of blue points. We determine this IR in the following way.
We sequentially search for a blue point, say pj , that lie between qi and qi+1, so
that |pjqn| is as large as possible and |pjqn| ≤ |IL|. We take IR with its right
endpoint placed at qn and compute its left endpoint (which lies on or to the left
of pj) so that |IR| = |IL|. We compute the number of blue points covered by
IL ∪IR. Next, we shift this IR (keeping its length the same) toward the right so
that one of its endpoints coincides with the blue point which occurs immediately
next to the right of the corresponding previous endpoint, depending on whichever
occurs earlier. Note that one endpoint of such IR is a blue point, and so we shift
IR by a very small distance ε > 0 toward left or right to discard that blue point
and reduce one of the blue points covered by IR. We update the number of blue
points covered by the two intervals. The above process continues until the left
endpoint of IR crosses the red point qi+1. For this IL = [q1, qi], we choose that
position of IR where the number of blue points covered by the IR is minimized.

Now, in the next iteration, we increase the length of IL by extending its
right endpoint to its next red point qi+1 and repeat the above steps to choose
its corresponding IR while minimizing the number of blue points covered. This
process is repeated until the right endpoint of IL covers qn−1.

Red-Blue Rectangular Annulus Cover Problem 201

Lemma 1. The overall running time (amortized) to compute the IR for all such
IL is O(m + n).

Proof. At each step, either the left endpoint or the right endpoint of IR moves
rightward through the blue or red points, and no point is reprocessed twice by
the same endpoint of IR, and this proves the result. ��

Case (ii): The Endpoints of IR are Red. We can deal with this case simi-
larly to Case (i). In this case, we take the right interval IR = [qi, qn] with the red
point qi satisfying |q1qi−1| < |qiqn| and |q1qi| > |qi+1qn|, and compute its cor-
responding left interval IL while minimizing the number of blue points covered.
Then we increase the length of IR toward left only by placing its left endpoint
on a red point lying before qi, at each iteration and compute its corresponding
IL. Such increase of IR and computation of the corresponding IL, is repeated
until IR covers {qn, qn−1, . . . , q2}.

Finally, among all the pairs of intervals generated in the above two cases, we
report the one with the minimum number of blue points covered.

Proof of Correctness: Our algorithm generates all possible uniform annulus
covering all the red points and the minimum number of blue points following the
Observation 2. This algorithm reports the pair covering minimum blue points
among all such feasible solutions, and thus the solution is optimal.

The Lemma 1 leads to the following theorem.

Theorem 2. The RBACU-1D problem can be solved optimally in O(m+n) time
and O(m + n) space, with O((m + n) log(m + n)) preprocessing time.

5 One-Dimensional Generalized Red-Blue Annulus Cover
Problem

5.1 The GRBACN-1D Problem

The two intervals IL and IR are non-uniform, and hence the Observation 1 also
holds for this problem. We sequentially process all the red points rightwards
starting from q1 ∈ R. We associate a positive penalty to each blue or red point.
Consider a red point qi. Let U1 (resp. U2) be the set of red points ∈ R (resp.
blue points ∈ B) that lie on or to the left of x(qi). We compute two non-uniform
non-overlapping optimal pair of intervals (IL and IR) up to point qi such that
the following function is minimized.

δ = P(IL ∪ IR) =
∑

p∈Bin

P(p) +
∑

q∈Rout

P(q)

where Bin ⊆ U2 is the set of blue points covered by IL ∪ IR and Rout ⊆ U1 is
the set of red points not covered by IL ∪ IR.

202 S. Maji et al.

Note that
∑

q∈Rout P(q) = P(R) − ∑
q′∈R′ P(q′), where P(R) is the sum of

penalties of the red points ∈ U1 and R′ is the set of red points covered by IL∪IR.
Now, we compute this function up to qn. We use an incremental approach to
process each red point in R sequentially in increasing order of their x-coordinate.
Before processing the point qi+1, we maintain the four intervals I1, IL, IR and
Iqi up to the red point qi where the endpoints of each such interval are on some
red points (see Observation 1).

(i) A single interval, say I1 = [u, v] of minimum penalty among all possible
intervals up to the point qi, where u, v ∈ R are the two endpoints of I1.

(ii) A pair of intervals IL = [a, b] and IR = [c, d] with minimum penalty among
all the pair of intervals up to the point qi, i.e. an optimal pair (IL, IR) up to
qi.

(iii) An interval Iqi having minimum penalty with its right endpoint at qi.

The algorithm executes the following while processing the next red point
qi+1.

We first determine Iqi+1 . The optimal pair of intervals IL and IR up to qi

either remains optimal or needs to be updated. We compute the penalties of the
following pairs of intervals and return the optimal pair with a minimum penalty
up to qi+1.

(I1, Iqi+1), (IL, Iqi+1), (IR, Iqi+1), and (IL, I = [c, qi+1]).

We must update the pair of intervals (IL, IR) with the reported pair. We
also update the single interval I1 to be used in the next iteration. Note that the
width of one of the intervals can be ε (if the interval contains a single red point
with a very large penalty) which corresponds to the degeneracy case.

Proof of Correctness: If the optimal pair (IL, IR) up to point qi, is to be
updated while processing the point qi+1, then the right endpoint of IR (after
update) must be the red point qi+1. So we compute Iqi+1 . If the left endpoint of
Iqi+1 does not overlap with I1, IL and IR in the previous iteration (i.e. up to qi),
then one of these intervals becomes the left interval IL in the current iteration
(i.e. up to qi+1), and the Iqi+1 becomes the right interval IR up to point qi+1.
If the left endpoint of Iqi+1 overlaps, with IR = [c, d], then the left endpoint
of Iqi+1 will be c. So we compare I = [c, qi+1] with IL. Note that Iqi+1 cannot
overlap with IL otherwise IL and IR would not have been optimal pair up to
point qi. Thus our algorithm produces the correct result up to qi+1 and, hence
optimal solution after processing qn.

To update the four intervals at each point qi ∈ R, it needs O(ki + 1) time,
where ki is the number of blue points lying between qi−1 and qi. Hence, we
obtain the following result.

Theorem 3. We can compute the non-uniform annulus of minimum penalty in
the GRBACN-1D problem in O(m + n) time using O(m + n) space.

Red-Blue Rectangular Annulus Cover Problem 203

5.2 The GRBACU-1D Problem

Here, we compute an optimal pair (i.e. of minimum penalty) of uniform inter-
vals IL = [Lo, Li] and IR = [Ri, Ro]. In this case, |IL| = |IR|. Without loss of
generality, we assume that the colors of both the endpoints of IL are red (see
the Observation 2). For a given such IL, we find an interval IR lying to the right
of IL so that penalty of IR is minimized. For this, first, we consider an interval
IL and then take another interval I of length |IL| whose left endpoint coincides
with a blue or red point that is not covered by IL. Then we shift this interval
I rightward sequentially either with its left or right endpoint coinciding with a
blue or red point lying immediately next to its previous left or right endpoint,
depending on whichever occurs first. If one endpoint of such I is a blue point,
then we shift it by a very small distance ε > 0 toward the left or right to discard
that blue point and thereby the penalty gets reduced. In this way, we compute
the penalties of this interval I with one of its endpoints being at each different
red or blue point (which are not covered by IL). We choose the one with min-
imum penalty as IR for the given IL. Similarly, we can repeat the above tasks
to search for a IL by taking both the endpoints of IR as red points. Finally, we
choose the pair with minimum penalty.

Proof of Correctness: Our algorithm generates all possible pairs of intervals of
equal length satisfying the Observation 2, and reports the pair with the minimum
penalty, thus providing the optimal solution.

The above procedure needs O(m + n) time. Since there are O(n2) distinct
positions of IL, we obtain the following result

Theorem 4. We can compute the uniform annulus with a minimum penalty in
the GRBACU-1D problem in O(n2(m + n)) time with O(m + n) space.

6 Two Dimensional Red-Blue Annulus Cover Problem

We compute an annulus A for a given set of bichromatic points lying on R
2,

which covers all the red points and the minimum number of blue points. We
denote the left-most (resp. right-most) red point in R by q� (resp. qr), and the
bottom-most (resp. top-most) red point in R by qb (resp. qt). An annulus A is
said to be feasible if it covers all the red points in R. Among all feasible annuli
the one that covers the minimum number of blue points is called minimum-
A. Four points are sufficient to uniquely identify a rectangle. It can also be
defined by its two opposite corner points. The two rectangles Rout and Rin

of the annulus A may or may not be concentric. Depending on this, we study
the two different variations (non-concentric and concentric) of the non-uniform
annulus cover problem.

The four widths of a non-uniform non-concentric annulus are different (See
Sect. 3), and we obtain the following result

Lemma 2. Eight red points are sufficient to uniquely define the boundaries of
a non-uniform non-concentric rectangular annulus.

204 S. Maji et al.

Proof. In non-concentric non-uniform annulus A, the four widths w�, wr, wt

and wb are different. To define w� (resp. wr), we need two red points on the
left (resp. right) side of both Rout and Rin. Similarly two red points on the top
(resp. bottom) side of both Rout and Rin will be required to define wt (resp.
wb). Therefore, a total of eight red points are sufficient to uniquely define a
non-concentric non-uniform annulus A covering the minimum number of blue
points. ��
The two horizontal (resp. vertical) widths of a non-uniform concentric annulus
are the same, i.e. w� = wr (resp. wt = wb) and we obtain the following result.

Lemma 3. Six red points are sufficient to uniquely define the boundaries of a
non-uniform concentric rectangular annulus.

Proof. To define the horizontal (resp. vertical) width wh (resp. wv) of a con-
centric non-uniform annulus A, two points must lie on the same vertical (resp.
horizontal) side (either on the left side or on the right side) of Rout and Rin.
If these two points are on the left(Rout) and left(Rin) (resp. right(Rout) and
right(Rin)) then a single point on either the right(Rout) (resp. left(Rout)) or
right(Rin) (resp. left(Rin)) is needed to define the right (resp. left) boundaries
of these rectangles. So, three points must lie on any three vertical sides of Rout

and Rin. Similarly, three points will be needed on any three of the horizontal
sides of Rout and Rin. Hence, a total of six red points are sufficient to uniquely
define a concentric non-uniform annulus A covering the minimum number of
blue points. ��
All the four widths of a uniform annulus are the same and, hence we obtain the
following result.

Lemma 4. Five red points are sufficient to uniquely define the boundaries of a
uniform rectangular annulus.

Proof. The four widths of a uniform rectangular annulus are equal. Two points
lying on the same side of both Rin and Rout define the width of the annulus.
So, another three points that lie on any of the six remaining boundaries of the
annulus are sufficient to define the uniform rectangular annulus uniquely. So,
in total five points are sufficient to define a uniform annulus uniquely. This
proves the result. ��

6.1 The RBACN-2D-Non-Concentric Problem

In this problem, the annulus A is non-concentric and its width is non-uniform.
Since A covers all the red points, we observe the following

Observation 3. The left, right, top, and bottom sides of Rout are defined by
q�, qr, qt, and qb, respectively.

We consider the set of red points {qi}, (qi ∈ R \ {q�, qr, qt, qb}) to generate Rin

of all feasible annuli (as per Observation 3). For this, we take such a red point
qi to construct all feasible annuli with the left side of Rin being defined by that

Red-Blue Rectangular Annulus Cover Problem 205

qi. For such a qi, we consider all possible red points qj ∈ R \ {q�, qr, qt, qb, qi} so
that qj defines the right side of all Rin which are generated as follows. We first
construct a rectangle Rin being defined by two opposite corners qi and qj . Then
we process the remaining red points sequentially in the increasing order of their
x-coordinate to update the Rin and take each such red point as current qj . We
update the Rin so that its left and right sides pass through qi and current qj ,
respectively and Rin does not contain any red point inside it.

Lemma 5. It needs a constant amount of time to update the Rin.

Proof. While updating Rin with current qj , we need to check only the four
boundary points of Rin constructed in the previous iteration by the red point
qj−1. If qj lies above the top side of Rin (see Fig. 3(c)) or below the bottom
side of Rin (see Fig. 3(d)), then no update of Rin is possible since a red point
becomes inside Rin. In other cases, we can update Rin as shown in Fig. 3(a) and
Fig. 3(b). Thus it needs a constant amount of time to update Rin. ��

Fig. 3. Rin can be updated only in (a) and (b) as shown by the shaded rectangle.

We repeat the above procedure for all such qi and report the minimum-A.

Proof of Correctness: Our algorithm generates all possible annuli which are
feasible and satisfy the Lemma 2. Finally, it chooses the annulus with minimum
blue points covered, and thus the optimal result is obtained.

The above algorithm computes all possible rectangles Rin with qi on its left
side (containing no red points inside it) and counts the respective number of
blue points covered by the annulus A in O(m + n) amortized time (using the
Lemma 5). Since there are O(n) red points, we obtain the following result.

Theorem 5. For a set of bichromatic points lying on R
2, the RBACN-2D-non-

concentric problem can be solved in O(n(m + n)) time using O(m + n) space.

6.2 The RBACN-2D-Concentric Problem

In the non-uniform concentric annulus A, it’s left (resp. top) width w� (resp. wt)
and right (resp. bottom) width wr (resp. wb) are the same and we say this width

206 S. Maji et al.

Fig. 4. Rectangular annulus defined by six red points

as the horizontal (resp. vertical) width, which is denoted by wh (resp. wv). The
annulus A has either four points on the Rin and the remaining two points on
Rout or vice versa, or three points on both Rin and Rout (See Fig. 4).

Fact 1. Since the annulus A covers all the red points, the left (resp. right) side
of the Rout cannot lie to the right (resp. left) of q� (resp. qr), and the top (resp.
bottom) side of the Rout cannot lie below (resp. above) the qt (resp. qb).

Fact 1 states that one of the following four cases must be true for the annulus A.

– Case (i): The left and bottom sides of Rout pass through q� and qb, respec-
tively.

– Case (ii): The left and top sides of Rout pass through q� and qt, respectively.
– Case (iii): The right and bottom sides of Rout pass through qr and qb,

respectively.
– Case (iv): The right and top sides of Rout pass through qr and qt, respec-

tively.

We generate all possible annuli for Case (i) as follows (the annuli for the other
three cases can be generated similarly):

We use two vertical sweep lines L1 and L2, where L2 lies to the right of L1

and these two lines generate the left and right sides of Rin, respectively. These
lines sweep in the rightward direction. The red points lying to the right of q�

and above qb are the event points for the sweep lines L1 and L2.

Fact 2. Among six red points (see Lemma 3), two red points must lie on any
two adjacent sides of the Rin and Rout to define both the widths wh and wv.

Using Fact 2, we first generate all possible annuli with horizontal width wh

defined by q� and qi, i.e. wh = |x(qi) − x(q�)|, where the red point qi lies to the
right of q�. We take L1 passing through qi. Next, we take the vertical line L2

at a distance wh to the left of the rightmost point qr. Next, we choose two red
points qu and qv among the region bounded by the two lines L1 and L2 in such a
way that qu and qv lies immediately above and below the horizontal line passing
through qi, respectively. Let wv = |y(qv) − y(qb)| (see Fig. 5(a)). We construct
rectangular annulus of vertical width wv. There are two cases:

Red-Blue Rectangular Annulus Cover Problem 207

Fig. 5. Instance of Case(i) in RBACN-2D-concentric problem

(i) |y(qt) − y(qu)| < |y(qv) − y(qb)| : We create two concentric annuli as
follows
(a) top(Rout) passes through qt and top(Rin) lies below it by a distance wv

(see Fig. 5(b)).
(b) top(Rin) passes through qu and top(Rout) lies above it by a distance wv

(see Fig. 5(c)).
If any such annulus A is feasible, then we count the number of blue points
covered by it.

(ii) |y(qt) − y(qu)| > |y(qv) − y(qb)|: In this case, no feasible annulus A
having vertical width wv with its left(Rout), bottom(Rout), left(Rin) and
right(Rin) being defined by q�, qb, qi and L2, respectively, is possible.

Similarly, we can construct annulus of vertical width wv = |y(qt) − y(qu)|. Note
that, if there are no such aforesaid red points qu and qv inside the region bounded
by L1 and L2, then we take the top (resp. bottom) side of the Rin at a small
distance ε > 0 below (resp. above) the top (resp. bottom) side of Rout.

In the next iteration, the line L2 sweeps rightward to its next event point, say
a red point qj , and also the right(Rout) shifts toward right keeping the horizontal
width of A same. If qj lies below (resp. above) the bottom (resp. top) side of Rin

in the previous iteration, then no new feasible rectangle Rin is possible using
qi and qj as the defining point of the left(Rin) and right(Rin), respectively;
otherwise, we construct a new Rin using the point qj and Rin of the previous
iteration and make this Rin as large as possible without making it infeasible.
Then we create the corresponding annulus and count the number of blue points
inside it. In this way, the line L2 iterates over all the red points qj (lying to the
right of qj and above qb) to create all possible feasible annulus of the Case (i)
in O(m + n) amortized time.

In a similar way, all possible annuli for the remaining three cases can be
generated. Among all possible annuli, we report the annulus that covers the
minimum number of blue points.

Note that the above algorithm for generating the annuli of Case (i) with
horizontal width wh being defined by two red points on the left boundaries
of Rout and Rin. So, it does not generate the annulus with the right width
defined by two red points. However such types of annuli will be generated while
determining the annuli for Case (iii) or Case (iv) (mentioned earlier). The above

208 S. Maji et al.

four cases generate exhaustively all possible annuli that cover all the red points.
We report the minimum-A.

Proof of Correctness: Since the algorithm generates all possible feasible Rin

(with no red points inside it) with its left side and the right side is defined by all
possible pairs (qi, qj) (where qi, qj ∈ R \ {q�, qt, qr, qb}), it generates all possible
feasible annuli following the Fact 1 and Fact 2. Thus, we have the following
result.

Theorem 6. For a set of bichromatic points in R
2, the RBACN-2D-concentric

problem can be solved in O(n(m + n)) time along with O(m + n) space.

6.3 The RBACU-2D Problem

We have six configurations (see Fig. 6) of uniform rectangular annulus defined
by five red points (see the Lemma 4) which are as follows.

• The Rout (resp. Rin) is defined by four points, and Rin (resp. Rout) is defined
by one point.

• The boundary of Rin (resp. Rout) contains three points and that of Rout

(resp. Rin) contains two points on its two adjacent sides or vice versa.

Fig. 6. Six possible configurations of uniform annulus defined by five red points

First, we consider the configuration where Rout is defined by four points, and
these points must be the red points q�, qt, qr and qb. We take a vertical sweep line
L, that sweeps from left to right (resp. right to left) over the remaining (n − 4)
red points to search a red point qi, for which a feasible annulus of uniform
width, say w, exists. If such feasible annulus exists, then qi defines the left
(resp. right) side of the Rin. Similarly, we can sweep a horizontal line downward
(resp. upward) to find a feasible annulus where qi defines the top (resp. bottom)
side of Rin. Among all such annuli, we choose the one that covers the minimum
number of blue points. This procedure needs O(m + n) time.

We can generate the annuli of other configurations also. Suppose the width,
say w, is defined by the q� and qi. To generate the annuli of the width w, we
need to move the boundaries of Rin and Rout as follows:

(i) Maintaining the horizontal distance between the right sides of Rin and Rout

as w, we shift both these sides toward the right until the right side of Rin

hits the first red point that lies to the right of qi and inside an open-sided

Red-Blue Rectangular Annulus Cover Problem 209

rectangular zone whose top, bottom and left side is defined by the top, bot-
tom and left side of Rin, respectively. Thus we generate the right boundaries
of the annulus with width w by sequentially scanning all the points once.
Similarly, we can construct the upper and lower boundaries of the annulus
with the same width w.

(ii) On the other hand, if qi defines the right width w (=|x(qr) − x(qi)|) of the
annulus, then we shift the left, top, and bottom sides of both Rin and Rout

in the leftward, upward, and downward direction, respectively, to generate
the left, top and bottom boundaries of the annulus with same width w.
Depending on the configurations to be generated, we need to move any three
sides or two adjacent sides or two non-adjacent sides, or one side of the afore-
said annulus A. Among all the feasible annuli, we report the minimum-A.

Proof of Correctness: We choose all the red points as the aforesaid point
qi ∈ R and then generate feasible annuli of all possible configurations (men-
tioned above) following the Lemma 4. Finally, we choose the one that covers the
minimum number of blue points. Thus, our algorithm gives the correct result.
Since |R| = n, we obtain the following result.

Theorem 7. For a set of bichromatic points lying on R
2, the RBACU-2D prob-

lem can be solved optimally in O(n(m + n)) time and O(m + n) space.

7 Two Dimensional Generalized Red-Blue Annulus Cover
Problem

The bichromatic points in R
2 are associated with different penalties. We compute

the annulus A of non-uniform width with the minimum penalty and there are
two versions (non-concentric and concentric) of this problem depending on the
positions of the Rout and Rin.

7.1 The GRBACN-2D-Non-Concentric Problem

Lemma 2 holds for this problem. We take any four red points, say q1, q2, q3 and q4
to construct Rout (see Fig. 7). We choose any two red points, say qi and qj inside
Rout. We construct Rin with its left side and right side passing through qi and
qj , respectively. Consider two vertical lines Vi and Vj passing through qi and qj ,
respectively. We denote the horizontal line passing through any point, say qi by Hi.
Suppose that y(qi) > y(qj). The top (resp. bottom) side of Rin cannot lie below
(resp. above) the Hi (resp. Hj). We sequentially scan all the points lying within the
yellow (resp. green) colored region (see Fig. 7) bounded by the intersection of Vi,
Vj , Hi (resp. Hj) and top (resp. bottom) side of Rout. We choose two red points,
say qa and qb within the yellow and green shaded region, to define the annulus
having minimum penalty in O(m + n) time. We can choose the six points (q1, q2,
q3, q4, qi, qj) in

(
n
6

)
ways, and hence we obtain the following result.

Theorem 8. The GRBACN-2D-non-concentric problem can be solved optimally
in O(n6(m + n)) time using O(m + n) space.

210 S. Maji et al.

Fig. 7. The GRBACN-2D-Non-Concentric Problem.

7.2 The GRBACN-2D-Concentric Problem

Lemma 3 holds good for this problem, and hence, we obtain the following result

Theorem 9. The GRBACN-2D-concentric problem can be solved in O(n5(m +
n)) time and O(m + n) space.

7.3 The GRBACU-2D-Uniform Problem

Lemma 4 holds good for this problem, and hence, we obtain the following result.

Theorem 10. The GRBACU-2D-uniform problem can be solved optimally in
O(n4(m + n)) time and O(m + n) space.

References

1. Abellanas, M., Hurtado, F., Icking, C., Ma, L., Palop, B., Ramos, P.A.: Best fitting
rectangles. In: EuroCG (2003)

2. Abidha, V.P., Ashok, P.: Geometric separability using orthogonal objects. Inf. Pro-
cess. Lett. 176, 106245 (2022)

3. Bae, S.W.: Computing a minimum-width square annulus in arbitrary orientation.
Theor. Comput. Sci. 718, 2–13 (2018)

4. Bae, S.W.: Computing a minimum-width square or rectangular annulus with out-
liers. Comput. Geom. 76, 33–45 (2019)

5. Bae, S.W., Baral, A., Mahapatra, P.R.S.: Maximum-width empty square and rect-
angular annulus. Comput. Geom. 96, 101747 (2021)

6. Barequet, G., Goryachev, A.: Offset polygon and annulus placement problems.
Comput. Geom. 47(3), 407–434 (2014)

7. de Berg, M., Cheong, O., van Kreveld, M.J., Overmars, M.H.: Computational
Geometry: Algorithms and Applications. Springer, Berlin, Heidelberg (2008).
https://doi.org/10.1007/978-3-540-77974-2

8. Dı́az-Báñez, J.M., Hurtado, F., Meijer, H., Rappaport, D., Sellarès, J.A.: The
largest empty annulus problem. Int. J. Comput. Geom. Appl. 13(4), 317–325 (2003)

https://doi.org/10.1007/978-3-540-77974-2

Red-Blue Rectangular Annulus Cover Problem 211

9. Gluchshenko, O., Hamacher, H.W., Tamir, A.: An optimal O(n logn) algorithm
for finding an enclosing planar rectilinear annulus of minimum width. Oper. Res.
Lett. 37(3), 168–170 (2009)

10. Mukherjee, J., Mahapatra, P.R.S., Karmakar, A., Das, S.: Minimum-width rectan-
gular annulus. Theor. Comput. Sci. 508, 74–80 (2013)

11. Paul, R., Sarkar, A., Biswas, A.: Finding the maximum empty axis-parallel rect-
angular annulus. In: IWCIA, pp. 139–146 (2020)

12. Preparata, F.P., Shamos, M.I.: Computational Geometry - An Introduction. Texts
and Monographs in Computer Science. Springer, New York (1985). https://doi.
org/10.1007/978-1-4612-1098-6

13. Roy, U., Zhang, X.: Establishment of a pair of concentric circles with the minimum
radial separation for assessing roundness error. Comput. Aided Des. 24(3), 161–168
(1992)

https://doi.org/10.1007/978-1-4612-1098-6
https://doi.org/10.1007/978-1-4612-1098-6

Applying Johnson’s Rule in Scheduling
Multiple Parallel Two-Stage Flowshops

Guangwei Wu1,2(B), Fu Zuo1, Feng Shi2,3, and Jianxin Wang2

1 College of Computer and Information Engineering, Central South University
of Forestry and Technology, Changsha, People’s Republic of China

will99031827@hotmail.com
2 School of Computer Science and Engineering, Central South University,

Changsha, People’s Republic of China
3 Xiangjiang Laboratory, Changsha, People’s Republic of China

Abstract. It is well-known that the classical Johnson’s Rule leads to
optimal schedules on a two-stage flowshop. However, it is still unclear
how Johnson’s Rule would help in scheduling multiple parallel two-stage
flowshops with the objective of minimizing the makespan. Thus within
the paper, we study the problem and propose a new efficient algorithm
that incorporates Johnson’s Rule applied on each individual flowshop
with a carefully designed job assignment process to flowshops. The algo-
rithm is successfully shown to have a runtime O(n logn) and an approx-
imation ratio 7/3, where n is the number of jobs. Compared with the
recent PTAS result for the problem, our algorithm has a larger approxi-
mation ratio, but it is more efficient in practice from the perspective of
runtime.

Keywords: scheduling · two-stage flowshops · approximation
algorithm · cloud computing

1 Introduction

Recently, there have been increasing interests in the study of scheduling multiple
parallel two-stage flowshops [3–6,11,14,17,19–22], due to its wide applications in
the area of cloud computing, industrial manufacturing, transportation, etc. [1,2,
11]. Our study was partially motivated by the research in cloud computing and
data centers [19]. In certain applications of cloud computing, a client request can
be regarded as a two-stage job, consisting of a disk-reading stage and a network-
transformation stage, where the network-transformation stage cannot start until
the disk-reading stage brings the required data into main memory, and each

This work is supported by the National Natural Science Foundation of China
under Grants 62072476; Natural Science Foundation of Hunan Province under Grant
2020JJ4949 and 2021JJ40791; Excellent Youth Project of Scientific Research of Hunan
Provincial Education Department under Grant 19B604; the Open Project of Xiangjiang
Laboratory (No. 22XJ03005).

c© Springer Nature Switzerland AG 2023
M. Li et al. (Eds.): IJTCS-FAW 2023, LNCS 13933, pp. 212–224, 2023.
https://doi.org/10.1007/978-3-031-39344-0_16

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-39344-0_16&domain=pdf
https://doi.org/10.1007/978-3-031-39344-0_16

Applying Johnson’s Rule 213

server can be regarded as a two-stage flowshop that can handle both the disk-
reading and network-transformation for each client request. It has been observed
that the costs of the two stages of a request are comparable, not necessarily
closely correlated, and depend on different cloud services, the involved servers
in the cloud, and bandwidth of local I/O (disk or flash) and of network [23].

The current paper studies algorithms that schedule two-stage jobs on multi-
ple parallel two-stage flowshops with the objective of minimizing the scheduling
makespan (i.e., the completion time of all jobs). It is clear that the problem is at
least as hard as the classical Makespan problem that has been studied exten-
sively (for more details, please refer to the survey [10]), which can be regarded
as scheduling one-stage jobs on multiple one-stage flowshops. As a result, the
problem in our study is NP-hard even for two flowshops and becomes strongly
NP-hard when the number of flowshops in the system is part of the input [7]. Our
aim is to present an approximation algorithm for the problem, thus we introduce
the related approximation algorithm work in the following.

Scheduling on a fixed number of two-stage flowshops has been studied. Kova-
lyov seems the first one to study the problem [14]. Vairaktarakis and Elhafsi [18]
proposed a formulation that leads to a pseudo-polynomial time algorithm for the
problem on two flowshops. Zhang and van de Velde [22] proposed approximation
algorithms with approximation ratios 3/2 and 12/7, respectively, when the num-
ber of flowshops are 2 and 3. Using a formulation similar to that in [18], Dong
et al. [4] gave a pseudo-polynomial time algorithm and a fully polynomial-time
approximation scheme for the problem on a fixed number of flowshops. Wu et al.
[19] proposed a new formulation different from that given in [4,18], which leads
to a fully polynomial-time approximation scheme with an improved runtime for
the problem. The problem where the number of flowshops is part of the input
has also been studied. Wu et al. [20] studied two restricted cases of the prob-
lem and presented approximation algorithms with ratio 11/6 for both cases. An
approximation algorithm with ratio 2.6 for general case was developed [21]. Dong
et al. presented a PTAS for the problem [6], using the classic scaling technique
for the classical flowshop scheduling problem [16]. Recently, the multiple parallel
two-stage flowshops scheduling problem with a deadline got lots of attentions,
where the objective is to achieve the maximum total profit of selected jobs that
can be finished by the deadline. For the case that the number of flowshops is part
of the input, Chen et al. [3] first gave an efficient algorithm with approximation
ratio 4, then improved the ratio to 3 but at the cost of a more expensive time
complexity. For the case that the number of flowshops is fixed, Chen et al. [3]
gave a 2-approximation algorithm, then Tong et al. [17] presented a PTAS.

Scheduling on a single two-stage flowshop is the classical Two-Stage Flow-
shop problem, which has been studied extensively in the literature. It is well-
known that the classical Johnson’s Rule can give a schedule with the opti-
mal completion time on the flowshop [13]. However, it has been unclear how
Johnson’s Rule would help to schedule on multiple parallel two-stage flowshops
with the objective of minimizing the makespan. None of the previous research
[4,6,14,18,21] was able to take advantage of Johnson’s Rule. In fact, Johnson’s

214 G. Wu et al.

Rule seems to somehow conflict with the optimization goal in the process of
assigning jobs to flowshops: for jobs whose first stage is less costful than their
second stage, Johnson’s Rule sorts the assigned jobs in increasing order in terms
of the first stage costs in flowshop, while in the study of the classical Makespan
problem, it has been well-known that assigning the jobs to machines in increasing
order in terms of costs can result in schedules with poor makespan [8,9].

Thus it is meaningful and necessary to study the relationship between John-
son’s Rule and scheduling in multiple two-stage flowshops, which can further
deepen our understanding on the problem of two-stage flowshop scheduling and
lead to better algorithms for the problem. In this paper, we make a step toward
this direction. We first pre-arrange the given set of two-stage jobs into a sequence,
then propose rules of assigning the jobs to flowshops based on the pre-arranged
order, finally apply Johnson’s Rule on the jobs assigned to each flowshop. The
pre-arranged order is very different from the one specified by Johnson’s Rule but
it, plus the rules of assigning the jobs to the flowshops, eliminates the anoma-
lies of assigning the jobs to the flowshops in a very unbalanced manner. By a
thorough analysis, we show that Johnson’s Rule applied on each flowshop can
nicely be incorporated with the pre-arranged order and the job assignment rules,
which provides effective methods to derive upper bounds on the completion time
of a flowshop in terms of the optimal solution of the problem instance. Conse-
quently, an approximation algorithm is successfully given, based on the method
given above for the problem in which the number of flowshops is part of the input.
The algorithm has an approximation ratio 7/3 and runs in time O(n log n), indi-
cating that it can be effectively implemented in practical applications.

2 Preliminaries

For a set G of two-stage jobs to be scheduled on m identical two-stage flowshops,
we make the following assumptions:

1. each job consists of an R-operation and a T -operation;
2. each flowshop has an R-processor and a T -processor that can run in parallel

and can process the R-operations and the T -operations, respectively, of the
assigned jobs;

3. the R-operation and the T -operation of a job must be executed in the R-
processor and the T -processor, respectively, of the same flowshop, in such a
way that the T -operation cannot start unless the R-operation is completed;

4. there is no precedence constraint among the jobs; and
5. preemption is not allowed.

Under this model, each job J can be given as a pair J = (r, t) of non-negative
integers, where r, the R-time, is the time for processing the R-operation of J
by an R-processor, and t, the T -time, is the time for processing the T -operation
of J by a T -processor. A schedule S of a set of jobs on m flowshops consists of
an assignment that assigns each job to a flowshop, and for each flowshop, the
execution orders of the R- and T -operations of the jobs assigned to that flowshop.

Applying Johnson’s Rule 215

The completion time of a flowshop M under a schedule S is the time when M
finishes all R- and T -operations of the jobs assigned to M . The makespan Cmax of
S is the largest flowshop completion time under the schedule S over all flowshops.
Following the 3-field notation α|β|γ suggested in [10], we refer to the scheduling
model studied in this paper as P |2FL|Cmax, formally defined as follows:

P |2FL|Cmax

Given a set of n two-stage jobs and an integer m, construct a schedule of
the jobs on m identical two-stage flowshops whose makespan is minimized.

Note that the number m of two-stage flowshops is given as part of the input.
Like most previous work on flowshop scheduling, our algorithm is based on per-
mutation scheduling [15]. Thus, we will use an ordered sequence 〈J1, J2, . . . , Jt〉
to represent a schedule S of the two-stage jobs on a single two-stage flowshop
if both executions of the R- and the T -operations of the jobs, by the R- and
the T -processors of the flowshops, respectively, strictly follow the given order. If
our objective is to minimize the makespan of schedules, then we can make the
following assumptions (where τ̄0 = t0 = 0) (see [19] for detailed discussions).

Lemma 1 ([19]). Let S = 〈J1, J2, . . . , Jt〉 be a two-stage job schedule on a single
two-stage flowshop, where Ji = (ri, ti), for 1 ≤ i ≤ t. Let ρ̄i and τ̄i, respectively,
be the times at which the R-operation and the T -operation of job Ji are started.
Then for all i, 1 ≤ i ≤ t, we can assume:

(1) ρ̄i =
∑i−1

k=1 rk; and (2) τ̄i = max{ρ̄i + ri, τ̄i−1 + ti−1}.
The problem of scheduling two-stage jobs on a single two-stage flowshop is

the classical Two-Stage Flowshop problem, which can be solved optimally in
time O(n log n) by sorting the given jobs using Johnson’s Rule [13], which gives
a schedule of the given jobs with the minimum completion time on the flowshop.
Johnson’s Rule can be formally stated as follows:

Johnson’s Rule [13].
On a set of two-stage jobs (ri, ti), 1 ≤ i ≤ n, divide the jobs into two
disjoint groups G1 and G2, where G1 contains all jobs (rh, th) with rh ≤ th,
and G2 contains all jobs (rg, tg) with rg > tg. Order the jobs in a sequence
such that the first part consists of the jobs in G1, sorted in non-decreasing
order of R-times, and the second part consists of the jobs in G2, sorted in
non-increasing order of T -times.

Johnson’s order of a set of two-stage jobs is to order the jobs into a sequence
that satisfies the conditions given in Johnson’s Rule above.

3 The Algorithm

We start with a description of the algorithm. Given a set G of n two-stage jobs
and an integer m representing the number of two-stage flowshops, our algo-
rithm involves three main steps. The first sorting step sorts the jobs in G into

216 G. Wu et al.

a job sequence S∗ = 〈J∗
1 , . . . , J∗

d , J∗
d+1, . . . , J

∗
n〉, where the subsequence S∗

1 =
〈J∗

1 , . . . , J∗
d 〉 contains the jobs J∗

h = (r∗
h, t∗h) with r∗

h ≤ 3t∗h/2, in non-increasing
order by T -time, and the following job subsequence S∗

2 = 〈J∗
d+1, . . . , J

∗
n〉 contains

the rest jobs in G, in non-increasing order by R-time. The second assignment
step assigns the jobs, in the order of the job sequence S∗, to the m flowshops, in
such a way that each job in the subsequence S∗

1 is assigned to the flowshop with
the minimum ψ-value, while each job in the subsequence S∗

2 is assigned to the
flowshop with the minimum ρ-value (the ψ-value and ρ-value of a flowshop will
be defined precisely in the algorithm). Finally, in the third permutation step, for
each flowshop Mq, the algorithm sorts the jobs assigned to the flowshop Mq into
Johnson’s order. The algorithm is given in Fig. 1.

Fig. 1. An approximation algorithm for P |2FL|Cmax

The sorting and assignment steps of the algorithm Approx are the same as
that in the algorithm proposed in [21]. The difference is the additional permuta-
tion step in the algorithm, which sorts the jobs on each flowshop into Johnson’s
order. The permutation step is obviously natural in practice, because Johnson’s
order is an optimal permutation for scheduling on a single two-stage flowshop
[13]. However, it is unclear how such a step benefits scheduling algorithms for
multiple two-stage flowshops, which is the focus of the current paper.

Theorem 1. The algorithm Approx runs in time O(n log n).

Proof. As showed in [21], the sorting and assignment steps (steps 1–4) take time
O(n log n). The permutation step of sorting jobs on each flowshop into Johnson’s
order runs in time O(n1 log n1)+O(n2 log n2)+ . . .+O(nm log nm) = O(n log n),

Applying Johnson’s Rule 217

where nq (1 ≤ q ≤ m) is the number of jobs assigned to the flowshop Mq, and
n1 + . . . + nm = n. Thus, the algorithm runs in time O(n log n). ��

We use τopt as the optimal makespan for the job set G scheduled on m two-
stage flowshops. The following lemma gives lower bounds on the value τopt.

Lemma 2. For any job Ji = (ri, ti) in the set G, ri + ti ≤ τopt. Thus,
min{ri, ti} ≤ τopt/2. Moreover, if Ji belongs to the sequence S∗

2 , then ti <
2τopt/5.

Proof. It is obvious that ri + ti ≤ τopt because both R- and T -operations of
the job Ji are executed by the same flowshop, and the T -operation cannot start
until the R-operation is completed. In case the job Ji is in S∗

2 , the inequality
ti < 2τopt/5 follows from ri + ti ≤ τopt and ri > 3ti/2. ��

For the convenience of discussion, we introduce the following notations:

• Mh: the flowshop where the schedule S by Approx achieves its makespan;
• τ∗: the makespan of the schedule S, i.e., the completion time of Mh under S;
• Gh: the set of jobs assigned to Mh by the schedule S;
• Sh: the sequence 〈J1, . . . , Jz〉 for Gh on Mh constructed by step 5 of Approx;
• H1: the set of jobs Ji = (ri, ti) in Gh satisfying ri ≤ ti;
• H2: the set of jobs Ji = (ri, ti) in Gh satisfying ti < ri ≤ 3ti/2;
• H3: the set of jobs Ji = (ri, ti) in Gh satisfying ri > 3ti/2.

According to the algorithm Approx, the sequence Sh is in Johnson’s order.
Thus, Sh is an optimal schedule of the job set Gh on the flowshop Mh, and can
be written as a concatenation of two subsequences: Sh = 〈Sh,1, Sh,2〉, where Sh,1

consists of the jobs in H1, sorted in non-decreasing order by R-time, and Sh,2

consists of the jobs in H2 ∪ H3, sorted in non-increasing order by T -time. Note
that the sequence Sh is very different from the one given by the assignment step
of the algorithm (steps 3–4) to the flowshop Mh, which first assigns the jobs in
the set H1 ∪ H2 ⊆ S∗

1 to Mh, in non-increasing order by T -time, then assigns
the jobs in the set H3 ⊆ S∗

2 to Mh, in non-increasing order by R-time.

Lemma 3 ([21]). (1) The sum of the T -times of the jobs in the set H1 ∪ H2 is
bounded by 4τopt/3; (2) for any job Ji in H1 ∪H2, the sum of the T -times of the
jobs in the set (H1 ∪H2) \ {Ji} is bounded by τopt; and (3) there are at most two
jobs in H1 ∪ H2 whose T -time is larger than τopt/3.

4 The Analysis of the Algorithm

In this section, we study the approximation ratio of the algorithm Approx. We
divide the analysis into two cases, based on whether the set H3 is empty. The
main result of this section, which is also the main result of the paper, is

Theorem 2. The algorithm Approx is a (7/3)-approximation algorithm.

The theorem is a direct consequence of Theorem 3 and Theorem 4, which
will be shown in the following subsections.

218 G. Wu et al.

4.1 Case 1. H3 = ∅
We first consider the case where H3 = ∅, i.e., no job J = (r, t) assigned to the
flowshop Mh satisfies the condition r > 3t/2.

In this case, consider the schedule (i.e., the sequence) Sh = 〈J1, J2, . . . , Jz〉,
which consists of the jobs in Gh sorted in Johnson’s order, and has completion
time τ∗. Let x (1 ≤ x ≤ z) be the minimum job index in the sequence Sh such
that the T -operations of the jobs Jx, Jx+1, . . ., Jz are executed continuously
with no idle time by the T -processor of Mh. Let

a0 =
x−1∑

i=1

ri, b0 =
x−1∑

i=1

ti, a1 =
z−1∑

i=x+1

ri, b1 =
z−1∑

i=x+1

ti.

The analysis for Case 1 is further divided into two subcases.

Subcase 1.1. H3 = ∅, Jx ∈ H1, and Jz ∈ H1 ∪ H2; and
Subcase 1.2. H3 = ∅, and both Jx and Jz are in H2.

Note that the case where Jx is in H2 while Jz is in H1 is impossible because
in Johnson’s order Sh, all jobs Ji = (ri, ti) in H1 (with ri ≤ ti) appear before
any jobs Jj = (rj , tj) in H2 (with rj > tj).

The configuration of the schedule Sh in Subcase 1.1 is given in Fig. 2. The
execution of the jobs in the block “for b0” may not be continuous, but this has
no impact on our analysis.

a0 rx a1 rz

for b0 tx b1 tzT

R

τ∗

Fig. 2. The configuration of the flowshop Mh in Subcase 1.1

Lemma 4. In Subcase 1.1, we have τ∗ ≤ 11τopt/6.

Proof. By Lemma 1, the R-processor of the flowshop Mh runs with no idle time.
By the definition of the index x, the T -operations of the jobs Jx, . . . , Jz are
executed with no idle time. The operation tx must start right after the operation
rx is completed: otherwise by Lemma 1, the execution of tx would be waiting for
the completion of tx−1, and would start right after tx−1 is completed. Thus the
T -operations of the jobs Jx−1, Jx, . . . , Jz would be executed with no idle time,
contradicting the minimality of the index x. Combining all these facts gives:

τ∗ = a0 + rx + tx + b1 + tz.

Because Sh is in Johnson’s order, the assumption that Jx belongs to the set
H1 implies that all jobs J1, . . ., Jx−1 are also in the set H1, where each job
Ji = (ri, ti) satisfies ri ≤ ti. Therefore, a0 ≤ b0, which gives:

Applying Johnson’s Rule 219

τ∗ ≤ b0 + rx + tx + b1 + tz = rx + (b0 + tx + b1 + tz) ≤ τopt

2
+

4τopt

3
=

11τopt

6
,

where in the last inequality, we have used rx ≤ τopt/2 because of Lemma 2 and
Jx ∈ H1, and b0 + tx + b1 + tz ≤ 4τopt/3 by Lemma 3(1). ��

We now consider Subcase 1.2, where both jobs Jx and Jz are in the set H2.
Thus, the job sequence Sh = 〈Sh,1, Sh,2〉, where Sh,1 consists of the jobs in H1

sorted in non-decreasing order by R-time, and Sh,2 consists of the jobs in H2

sorted in non-increasing order by T -time, has both Jx and Jz in the subsequence
Sh,2. Thus, the sum a0 =

∑x−1
i=1 ri of R-times of the jobs in {J1, . . . , Jx−1}

can be written as a0 = a01 + a02, where a01 is the sum of R-times for the
jobs in H1 ∩ {J1, . . . , Jx−1} while a02 is the sum of R-times for the jobs in
H2 ∩ {J1, . . . , Jx−1}. Similarly, the sum b0 =

∑x−1
i=1 ti is partitioned into b0 =

b01 + b02 based on the sets H1 and H2. By the definitions of the sets H1 and H2,
we have a01 ≤ b01 and b02 ≤ a02 ≤ 3b02/2 (where we use b02 ≤ a02 instead of
b02 < a02 because a02 could be 0). Moreover, by Lemma 2, and because both Jx

and Jz are in H2, we have tx ≤ τopt/2 and tz ≤ τopt/2.

Lemma 5. In Subcase 1.2, we have τ∗ ≤ 7τopt/3.

The proof of Lemma 5 will be given in a complete version. Combining Lem-
mas 4 and 5, we derive

Theorem 3. In Case 1 where the set H3 is empty, the makespan τ∗ of the
schedule S constructed by the algorithm Approx is bounded by 7τopt/3.

4.2 Case 2. H3 �= ∅
Now we consider the case where the set H3 is not empty. The schedule Sh =
〈Sh,1, Sh,2〉 on the flowshop Mh follows Johnson’s Rule, where Sh,1 consists of
the jobs in H1, sorted in non-decreasing order by R-time, and Sh,2 consists of
the jobs in H2 ∪ H3, sorted in non-increasing order by T -time.

Suppose that the sequence Sh is 〈J1, . . . , Jx, . . . , Jz〉, where again we let x
be the smallest index such that in the sequence Sh, the T -operations of the jobs
Jx, Jx+1, . . ., Jz are executed continuously. Let Ji = (ri, ti) for all i. Slightly
different from that in Case 1, let a0 =

∑x−1
i=1 ri, b0 =

∑x−1
i=1 ti, a1 =

∑z
i=x+1 ri,

and b1 =
∑z

i=x+1 ti. Let Jc be the last job assigned to Mh by the algorithm
Approx. Then Jc belongs to H3 thus is in the subsequence Sh,2 because H3 is
not empty. Note the schedule Sh is in Johnson’s order, so Jc may not be Jz.

Lemma 6. For any job Jy = (ry, ty) in the set H3, ty < 2τopt/5. In Case 2,
for the job Jc last assigned to Mh by the algorithm Approx,

∑z
i=1 ri −rc ≤ τopt.

Proof. The inequality ty < 2τopt/5 follows directly from Lemma 2 since all jobs
in H3 are in the sequence S∗

2 .
Since Jc = (rc, tc) is the last job assigned to Mh by the algorithm and H3 is

not empty, Jc is in the sequence S∗
2 . When Jc was being assigned, the flowshop

220 G. Wu et al.

Mh had the minimum ρ-value, which is
∑z

i=1 ri − rc, among all flowshops. Thus
the total sum

∑n
i=1 r∗

i of R-times of the input job set G is at least m(
∑z

i=1 ri−rc),
which implies that

∑z
i=1 ri − rc ≤ τopt. ��

Now we are ready to study Case 2. Our analysis is based on the schedule

Sh = 〈Sh,1, Sh,2〉 = 〈J1, . . . , Jx, . . . , Jz〉.
Case 2 is divided into four subcases.

Subcase 2.1. Jx ∈ H2 ∪ H3, thus in Sh,2;
Subcase 2.2. Jx ∈ H1 is the last job in Sh,1;
Subcase 2.3. Jx ∈ H1 is the first job in Sh,1; and
Subcase 2.4. Jx ∈ H1 is in Sh,1, but neither the first nor the last in Sh,1.
We start with Subcase 2.1. The related proofs will be given in a complete

version.

Lemma 7. In Subcase 2.1, we have τ∗ ≤ 2τopt.

Now we consider Subcase 2.2, where Jx ∈ H1 is the last job in Sh,1.

Lemma 8. In Subcase 2.2, we have τ∗ ≤ 98τopt/45.

The proof of Lemma 8 will be given in a complete version.
Now consider Subcase 2.3, where Jx is the first job in Sh,1 so a0 = b0 = 0.

Lemma 9. In Subcase 2.3, we have τ∗ ≤ 7τopt/3.

Proof. Subcase 2.3 is further divided into two cases, based on whether H2 = ∅.
First consider the case where H2 �= ∅. The jobs for a1 and b1 are given in

two consecutive sequences: a sequence for the jobs in H1 (let a11 and b11 be
the sum of the R-times and T -times of these jobs, respectively), followed by a
sequence for the jobs in H2 ∪ H3 (let a1,23 and b1,23 be the sum of the R-times
and T -times of these jobs, respectively). The set of jobs for a11 and b11 can be
assumed to be not empty – otherwise, the case would become Subcase 2.2.
See Fig. 3. Let a12 and a13 be, respectively, the sum of R-times for the jobs in
H2 ∩ {Jx+1, . . . , Jc−1, Jc+1, . . . , Jz} and in H3 ∩ {Jx+1, . . . , Jc−1, Jc+1, . . . , Jz},
and let b12 and b13 be for the sums of T -times for these jobs. We have a1,23 =
a12 + a13 + rc and b1,23 = b12 + b13 + tc. Since H2 �= ∅, the set of jobs for a12

and b12 is not empty. We have

τ∗ = rx + tx + b11 + b1,23 = rx + tx + b11 + b12 + b13 + tc

= rx + tx + b11 +
1
3
b12 +

2
3
b12 + b13 + tc

≤ rx + tx + b11 +
1
3
b12 +

2
3
a12 +

2
3
a13 + tc (1)

=
2
3
(rx + a12 + a13) +

1
3
rx + tx + b11 +

1
3
b12 + tc

≤ 2
3
(τopt − a11) +

1
3
rx + tx + b11 +

1
3
b12 + tc, (2)

Applying Johnson’s Rule 221

where in inequality (1), we have used the relations a12 ≥ b12 and a13 ≥ 3b13/2
because a12 and b12 are for jobs in H2 while a13 and b13 are for jobs in H3. In
inequality (2), we have used the relation rx +a11 +a12 +a13 ≤ τopt by Lemma 6.

As explained above, the set of jobs for the value a11 is not empty. Thus,
a11 ≥ rx because the job Jx and the jobs for the value a11 are in the sequence
Sh,1 that is sorted in non-decreasing order by R-time. Thus,

τ∗ ≤ 2
3
(τopt − rx) +

1
3
rx + tx + b11 +

1
3
b12 + tc ≤ 2

3
τopt + tx + b11 +

1
3
b12 + tc

=
2
3
τopt +

1
3
(tx + b11 + b12) +

2
3
(tx + b11) + tc

≤ 2
3
τopt +

1
3

· 4
3
τopt +

2
3
τopt +

2
5
τopt =

98
45

τopt, (3)

where in inequality (3), we have used the following relations: (i) by Lemma 3(1),
tx + b11 + b12 ≤ 4τopt/3, because the job Jx and the jobs for b11 and b12 are in
the set H1 ∪ H2; (ii) by Lemma 3(2), tx + b11 ≤ τopt, because H2 �= ∅ so the set
of jobs for b12 is not empty; and (iii) by Lemma 6, tc ≤ 2τopt/5.

rx a11 a1,23

tx b11 b1,23T

R

τ∗

Fig. 3. The configuration of the flowshop Mh for Subcase 2.3.

Now consider the case where H2 = ∅. Again we can assume that the set of
jobs for a11 and b11 is not empty (to distinguish from Subcase 2.2). We have

τ∗ = rx + tx + b11 + b1,23 = rx + tx + b11 + b13 + tc

= rx + tx + b11 +
1
4
b13 +

3
4
b13 + tc ≤ rx + tx + b11 +

1
4
b13 +

1
2
a13 + tc (4)

=
1
2
(rx + a13) +

1
2
rx + tx + b11 +

1
4
b13 + tc

≤ 1
2
(τopt − rx) +

1
2
rx + tx + b11 +

1
4
b13 + tc (5)

=
1
2
τopt + tx + b11 +

1
4
b13 + tc ≤ 11

6
τopt +

1
4
b13 + tc, (6)

where in inequality (4), we have used the relation a13 ≥ 3b13/2 because the jobs
for a13 and b13 are in the set H3. For inequality (5), observe that by Lemma 6,
rx + a11 + a13 ≤ τopt so rx + a13 ≤ τopt − a11. Moreover, since the set of jobs for
a11 is not empty, we have a11 ≥ rx. Combining all these gives rx+a13 ≤ τopt−rx.
Inequality (6) has used the relation tx + b11 ≤ 4τopt/3 by Lemma 3(1).

222 G. Wu et al.

If the set of jobs for a13 and b13 has at most one job, which is in the set H3,
then by Lemma 6, b13 ≤ 2τopt/5. By the same lemma, since the job Jc is in the
set H3, tc ≤ 2τopt/5. Thus, from (6) we have

τ∗ ≤ 11
6

τopt +
1
4

· 2
5
τopt +

2
5
τopt =

7
3
τopt.

If the set of jobs for a13 and b13 has at least two jobs, then by Lemma 6,
a13 ≤ τopt. Since the job Jc is the last job assigned on Mh thus has the smallest
R-time over all jobs in H3, and there are at least two jobs for a13, we have
rc ≤ a13/2. Thus, a13+rc ≤ 3a13/2 ≤ 3τopt/2. Since the job Jc and all jobs for a13

and b13 are in H3, we have b13+tc ≤ 2(a13+rc)/3 ≤ τopt, and tc ≤ 2rc/3 ≤ τopt/3.
Bringing all these in (6) gives

τ∗ ≤ 11
6

τopt +
1
4
(b13 + tc) +

3
4
tc ≤ 11

6
τopt +

1
4
τopt +

3
4

· τopt

3
=

7
3
τopt.

This completes the proof that in Subcase 2.3, τ∗ ≤ 7τopt/3. ��
Finally, we consider Subcase 2.4, in which Jx ∈ H1 is neither the first nor

the last job in the sequence Sh,1. The related proofs will be given in a complete
version.

Lemma 10. In Subcase 2.4, we have τ∗ ≤ 98τopt/45.

Based on Lemmas 7–10, we derive directly

Theorem 4. In Case 2 where the set H3 is not empty, the makespan τ∗ of the
schedule S constructed by the algorithm Approx is bounded by 7τopt/3.

5 Conclusion and Final Remarks

We proposed an approximation algorithm for scheduling multiple parallel two-
stage flowshops where the number of flowshops is part of the input. We proved
that the algorithm runs in time O(n log n) and has an approximation ratio
bounded by 7/3. Although the known PTAS for the problem [6] has a bet-
ter approximation ratio, it and the algorithms adopting the similar framework
with it always have impractical runtime. Just take the first step of the PTAS
for example. The PTAS needs to enumerate all distinct configurations of flow-
shop before applying mixed integer linear program. The number of all possible
distinct configurations reaches ((43/ε)2 + 2)2((43/ε)2+2)+((43/ε)2+1)2·((43/ε)4+1)2 ,
where ε > 0 is an error parameter, which prevents the PTAS from practical
applications even when ε = 4/3 (the reason considering the setting ε = 4/3 is
that 1 + 4/3 is our approximation ratio). Therefore, one of our contributions
is using the traditional algorithmic techniques such as sorting and searching to
ensure the feasibility of the algorithm in practice. Another contribution of the
paper is showing how the classical Johnson’s Rule can be used in the design and

Applying Johnson’s Rule 223

analysis of approximation algorithms for scheduling multiple parallel two-stage
flowshops.

A direct future study is to design algorithms with better approximation ratio
while keeping the feasibility in practice. Since optimal schedules for a single two-
stage flowshop can be constructed using Johnson’s Rule, the most difficult part of
the problem of scheduling multiple parallel two-stage flowshops is to decide how
to assign jobs among flowshops. Techniques studied in the classical Makespan
problem for one-stage machines do not seem directly applicable because there
both jobs and machines are measured by a single parameter, i.e., the cost of a
job and the load of a machine that is the sum of the costs of the jobs assigned
to the machine, while in scheduling multiple parallel two-stage flowshops, both
jobs and flowshop load are measured by at least two parameters, i.e., the R-
time and T -time of a job, and the ψ-value and the ρ-value of a flowshop (see
the algorithm Approx in Fig. 1). We point out that the difference of the R-
time and T -time of a job, and the configuration of a flowshop seem to also have
significant impact in the scheduling. The sum of R-time and T -time of a job
does not seem to be a good measure for the cost of the job because their differ-
ence can also impact the completion time of a flowshop. Moreover, well-known
techniques in the study of one-stage machine scheduling, such as list scheduling
and LPT (largest processing time) schedule [10] seem to somehow conflict with
Johnson’s Rule. For instance, an LPT schedule for one-stage machine schedul-
ing assigns jobs to machines in non-increasing order in job cost, while Johnson’s
Rule requires assigning two-stage jobs whose T -time is larger than its R-time in
non-decreasing order in R-time. In summary, it seems to require development of
new techniques for scheduling multiple parallel two-stage flowshops.

References

1. Artiba, A., Tahon, C.: Production planning knowledge-based system for pharma-
ceutical manufacturing lines. Eur. J. Oper. Res. 61(1–2), 18–29 (1992)

2. Blazewicz, J., Ecker, K.H., Schmidt, G., Weglarz, J.: Scheduling in Computer and
Manufacturing Systems. Springer, Berlin (2012)

3. Chen, J., Huang, M., Guo, Y.: Scheduling multiple two-stage flowshops with a
deadline. Theor. Comput. Sci. 921, 100–111 (2022)

4. Dong, J., et al.: An FPTAS for the parallel two-stage flowshop problem. Theor.
Comput. Sci. 657, 64–72 (2017)

5. Dong, J., et al.: Corrigendum to “An FPTAS for the parallel two-stage flowshop
problem”. Theor. Comput. Sci. 687, 93–94 (2017)

6. Dong, J., Jin, R., Luo, T., Tong, W.: A polynomial-time approximation scheme for
an arbitrary number of parallel two-stage flow-shops. Eur. J. Oper. Res. 218(1),
16–24 (2020)

7. Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory
of NP-completeness. W.H. Freeman and Company, New York (1979)

8. Graham, R.L.: Bounds for certain multiprocessing anomalies. Bell Labs Tech. J.
45(9), 1563–1581 (1966)

9. Graham, R.L.: Bounds on multiprocessing timing anomalies. SIAM J. Appl. Math.
17(2), 416–429 (1969)

224 G. Wu et al.

10. Graham, R.L., Lawler, E.L., Lenstra, J.K., Kan, A.R.: Optimization and approxi-
mation in deterministic sequencing and scheduling: a survey. Ann. Discret. Math.
5, 287–326 (1979)

11. He, D.W., Kusiak, A., Artiba, A.: A scheduling problem in glass manufacturing.
IIE Trans. 28(2), 129–139 (1996)

12. Hochbaum, D.S., Shmoys, D.B.: Using dual approximation algorithms for schedul-
ing problems: theoretical and practical results. J. ACM 34(1), 144–162 (1987)

13. Johnson, S.M.: Optimal two- and three-stage production schedules with setup times
included. Nav. Res. Logist. Q. 1(1), 61–68 (1954)

14. Kovalyov, M.Y.: Efficient epsilon-approximation algorithm for minimizing the
makespan in a parallel two-stage system. Vesti Academii navuk Belaruskai SSR,
Ser. Phiz.-Mat. Navuk 3, 119 (1985). (in Russian)

15. Ruiz, R., Maroto, C.: A comprehensive review and evaluation of permutation flow-
shop heuristics. Eur. J. Oper. Res. 165(2), 479–494 (2005)

16. Schuurman, P., Woeginger, G.J.: A polynomial time approximation scheme for the
two-stage multiprocessor flow shop problem. Theor. Comput. Sci. 237, 105–122
(2000)

17. Tong, W., Xu, Y., Zhang, H.: A polynomial-time approximation scheme for parallel
two-stage flowshops under makespan constraint. Theor. Comput. Sci. 922, 438–446
(2022)

18. Vairaktarakis, G., Elhafsi, M.: The use of flowlines to simplify routing complexity
in two-stage flowshops. IIE Trans. 32(8), 687–699 (2000)

19. Wu, G., Chen, J., Wang, J.: Scheduling two-stage jobs on multiple flowshops.
Theor. Comput. Sci. 776, 117–124 (2019)

20. Wu, G., Chen, J., Wang, J.: On scheduling inclined jobs on multiple two-stage
flowshops. Theor. Comput. Sci. 786, 67–77 (2019)

21. Wu, G., Chen, J., Wang, J.: On scheduling multiple two-stage flowshops. Theor.
Comput. Sci. 818, 74–82 (2020)

22. Zhang, X., van de Velde, S.: Approximation algorithms for the parallel flow shop
problem. Eur. J. Oper. Res. 216(3), 544–552 (2012)

23. Zhang, Y., Zhou, Y.: TransOS: a transparent computing-based operating system
for the cloud. Int. J. Cloud Comput. 4(1), 287–301 (2012)

The Fair k-Center with Outliers Problem:
FPT and Polynomial Approximations

Xiaoliang Wu1,2, Qilong Feng1,2(B), Jinhui Xu3, and Jianxin Wang2,4

1 School of Computer Science and Engineering, Central South University,
Changsha 410083, China

wuxiaoliang@csu.edu.cn, csufeng@mail.csu.edu.cn
2 Xiangjiang Laboratory, Changsha 410205, China

3 Department of Computer Science and Engineering, State University of New York
at Buffalo, New York 14260-1660, USA

jinhui@cse.buffalo.edu
4 Hunan Provincial Key Lab on Bioinformatics, Central South University,

Changsha 410083, China
jxwang@mail.csu.edu.cn

Abstract. The fair k-center and k-center with outliers problems are
two important variants of the k-center problem in computer science,
which have attracted lots of attention. The previous best results for
the above two problems are a 3-approximation (ICML 2020) and a 2-
approximation (ICALP 2016), respectively. In this paper, we consider
a common generalization of the two mentioned variants of the k-center
problem, denoted as the fair k-center with outliers (FkCO) problem. For
the FkCO problem, we are given a set X of points in a metric space
and parameters k and z, where the points in X are divided into sev-
eral groups, and each point is assigned a color to denote which group it
belongs to. The goal is to find a subset C ⊆ X of k centers and a set Z
of at most z outliers such that C satisfies fairness constraints, and the
objective maxx∈X\Z minc∈C d(x, c) is minimized. In this paper, we study
the Fixed-Parameter Tractability (FPT) approximation algorithm and
polynomial approximation algorithm for the FkCO problem. Our main
contributions are: (1) we propose a (1 + ε)-approximation algorithm in
FPT time for the FkCO problem in a low-dimensional doubling met-
ric space; (2) we achieve a polynomial 3-approximation algorithm for the
FkCO problem with the reasonable assumptions that all optimal clusters
are well separated and have size greater than z.

Keywords: k-center · fair k-center · approximation algorithm

This work was supported by National Natural Science Foundation of China (62172446),
Open Project of Xiangjiang Laboratory (22XJ02002), and Central South University
Research Programme of Advanced Interdisciplinary Studies (2023QYJC023).
c© Springer Nature Switzerland AG 2023
M. Li et al. (Eds.): IJTCS-FAW 2023, LNCS 13933, pp. 225–238, 2023.
https://doi.org/10.1007/978-3-031-39344-0_17

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-39344-0_17&domain=pdf
https://doi.org/10.1007/978-3-031-39344-0_17

226 X. Wu et al.

1 Introduction

Clustering is one of the most popular problems in machine learning, and has lots
of applications in data mining, image classification, etc. Given a set of points,
the goal of clustering is to partition the point set into several disjoint clusters
such that the points in the same cluster are close to each other, and the points in
different clusters are far away from each other. Several classic clustering models
have been extensively studied, such as k-center, k-median, and k-means. In this
paper, we focus on the k-center problem that is known to be NP-hard [22], and
admits a 2-approximation algorithm [23,28]. Many variations of the k-center
problem have been studied in the literature, including fair k-center [5,16,29,33],
k-center with outliers [10,12,19,36], capacitated k-center [4,17], fault-tolerant
k-center [13,20,31], lower-bounded k-center [1,3], etc.

The fair k-center problem has received lots of attention recently. For the
fair k-center problem, we are given a set X of n points in a metric space,
where X comprises m disjoint groups X1, . . . , Xm, and the points in Xh are
colored with color h ∈ {1, . . . , m}. We are also given a parameter k and a vec-
tor γ = (k1, . . . , km) with

∑m
h=1 kh = k. The goal is to find a subset C ⊆ X

of k centers such that |C ∩ Xh| = kh for any h ∈ {1, . . . , m}, and the objec-
tive maxx∈X minc∈C d(x, c) is minimized. Chen et al. [14] studied the matroid
center problem, which generalizes the fair k-center problem, and proposed a
3-approximation with running time Ω(n2 log n). For the fair k-center problem,
there was a (3 · 2m−1 − 1)-approximation with running time O(nkm2 + km4)
based on a swap technique [33]. Jones, Lê Nguyên, and Nguyen [29] improved the
time complexity to O(nk), and maintained the approximation factor 3 using the
maximum matching method. Chiplunkar, Kale and Ramamoorthy [16] consid-
ered the distributed algorithm for the fair k-center problem under the massively
parallel computation model. Recently, Angelidakis et al. [5] considered the lower-
bounded version of the fair k-center problem, and proposed a 15-approximation
algorithm that runs in time O(nk2 + k5). Additionally, there are lots of works
on other definitions of fairness, including group fairness [2,7,8,26], proportional
fairness [15,34,37], individual fairness [35,38], etc.

For the k-center with outliers problem, we are given a set X of n points in a
metric space and parameters k and z. The goal is to find a subset C ⊆ X of size k
and a set Z of at most z outliers such that the objective maxx∈X\Z minc∈C d(x, c)
is minimized. Charikar et al. [12] first considered the k-center with outliers prob-
lem, and proposed a 3-approximation using a greedy algorithm. Recently, the
approximation ratio was improved to 2 [10,27] using the linear programming
method. In [19], a bi-criteria approximation algorithm was given, which achieves
a 2-approximation by admitting (1 + ε)z outliers to be removed, where ε is a
parameter used to control the number of outliers. Malkomes et al. [36] con-
sidered the distributed algorithm for the k-center with outliers, and proposed a
4-approximation algorithm. The approximation ratio was improved to (2+ε) [9].

The Fair k-Center with Outliers Problem 227

In this paper, we consider a common generalization of the two mentioned vari-
ants of the k-center problem, denoted as the fair k-center with outliers (FkCO)
problem. For the FkCO problem, we are given a set X of n points in a metric
space, where X comprises m disjoint groups X1, . . . , Xm, and the points in Xh

are colored with color h ∈ {1, . . . , m}. We are also given parameters k and z,
and a vector γ = (k1, . . . , km) with

∑m
h=1 kh = k. The goal is to find a subset

C ⊆ X of k centers and a set Z of at most z outliers such that |C ∩Xh| = kh for
any h ∈ {1, . . . , m}, and the objective maxx∈X\Z minc∈C d(x, c) is minimized.

There exist some obstacles to obtain FPT approximation algorithm and poly-
nomial approximation algorithm for the FkCO problem.

– The coreset construction and sampling are commonly used techniques in
designing the FPT approximation algorithms for the clustering problems.
However, for the FkCO problem, the coreset technique fails because there
are no results of coreset working for the problem, and the sampling-based
algorithms rely heavily on the properties of Euclidean space resulting in the
hardness of extending the technique to metric space. Goyal and Jaiswal [24]
considered the FPT approximation algorithm for the k-center with outliers
problem under fairness constraints. However, the definition of fairness in [24]
is different to ours. Therefore, the method in [24] is hard to work for the
FkCO problem.

– For the k-center with outliers and fair k-center problems, the best known
results have approximation ratios 2 [11] and 3 [29], respectively. One natural
idea of solving the FkCO problem is firstly to apply the method in [11], and
then adjust the obtained result to satisfy the fairness constraints. However,
the major obstacle of the above method is that the result returned by the
algorithm in [11] is hard to be converted a solution satisfying fairness con-
straints, since a feasible solution may not exist due to the process of removing
outliers without considering the colors of points. Similarly, another natural
idea is firstly to use the algorithm in [29] to obtain a set of k centers satisfying
fairness constraints, and then remove outliers based on the above k centers.
However, how to compute the loss in approximation guarantee remains trou-
blesome. Therefore, none of the algorithms for the k-center with outliers and
fair k-center problems works for the FkCO problem.

– In [39], a 3-approximation algorithm with polynomial time was presented
for the FkCO problem. The approximation algorithm starts with a set of
candidate points without outliers by using the algorithm in [12]. In fact, some
points that are not outliers may be removed in the above process of obtaining
candidate points, resulting in the hardness on the finding of feasible solution.
Han et al. [25] gave a 4-approximation algorithm in polynomial time for the
individual fair k-center with outliers problem. However, the method in [25] is
not workable for the FkCO problem due to the different definitions of fairness.

228 X. Wu et al.

1.1 Our Results and Techniques

In this paper, we obtain the following results for the FkCO problem.

Theorem 1. Given an instance I = (X, d, k, z,G,H, γ) of the FkCO problem
and a parameter ε, assume that D is the doubling dimension of X. Then, there
exists an algorithm that obtains a (1+ε)-approximate solution of I in FPT time.
i.e., in f(k, z, ε) · nO(1) time.

We now give the general idea of our algorithm. Given an instance I =
(X, d, k, z,G,H, γ) of the FkCO problem and a parameter ε, our algorithm starts
with the reduction of the number of points in X. We make use of the method
given in [9] to obtain a set T ⊆ X with O((k + z) · (16/ε)D) points, where D
is the doubling dimension of C. The set T has a property that for any point in
X, the distance between the point and T is at most ετo, where τo is the cost
of optimal solution of I. Note that many real world datesets often have lower
intrinsic dimensions [6]. As in [19], we assume that the set X has a low doubling
dimension D. Then, based on T , we prove theoretically that there must exist a
feasible solution (Ĉ, Z) of I, where Ĉ ⊆ X satisfies fairness constraints, and Z
is a subset of X with at most z outliers, respectively. Moreover, we prove that
for any point in X\Z, the distance between the point and Ĉ is at most (1+ ε)τo.
To find such a solution (Ĉ, Z), we consider each subset C of T with size k, use
the matching method to convert C into Ĉ, and output the set satisfying fairness
constraints with minimal clustering cost.

We also consider a polynomial approximation algorithm for the FkCO prob-
lem under some practical assumptions. In practice, compared with the outliers,
the number of points in each optimal cluster is usually not too small, i.e., it is a
rare to have an optimal cluster with size less than z. Moreover, we also consider
another practical assumption that the optimal clusters are well separated. This
property has been studied in practical applications for other clustering prob-
lems [18,30]. Based on the above assumptions, we have the following result.

Theorem 2. Given an instance I = (X, d, k, z,G,H, γ) of the FkCO problem,
assume that each optimal cluster of I has size greater than z, and the distance
between any two optimal centers is greater than 4τo, where τo is the cost of opti-
mal solution of I. Then, there exists an algorithm that achieves a 3-approximate
solution of I in polynomial time.

We now give the general idea of our algorithm. Given an instance I =
(X, d, k, z,G,H, γ) of the FkCO problem, assume that τo is the cost of optimal
solution of I. Otherwise, we can guess the cost τo of optimal solution by con-
sidering a binary search over all the possible distances between points, resulting
in at most a factor O(n2) of the running time, where n is the number of points
in X. The above method has been widely used in literature [16,26,32] to solve
the k-center problem and related problems. Our main idea is to select a point
from each optimal cluster by a greedy strategy, which ensures the existence of a
feasible solution. To find such a feasible solution, we use a matching method to
get k centers satisfying fairness constraints based on the obtained centers.

The Fair k-Center with Outliers Problem 229

2 Preliminaries

In this section, we give some formal definitions of related problems. Given a set
X of points in a metric space (X , d), for a point x ∈ X and a subset C ⊆ X,
let d(x,C) = minc∈C d(x, c) denote the minimum distance of x to any point in
C. For any positive integer m, let [m] = {1, . . . ,m}. For any nonempty subset
C ⊆ X of centers and any c ∈ C, a ball B(c, r) is the set of points that are
within a distance r from c, i.e., B(c, r) = {x ∈ X | d(c, x) ≤ r}.

Definition 1 (the k-center problem). Given a set X of points in a metric
space (X , d) and an integer k, the goal is to find a subset C ⊆ X of k centers
such that the cost maxx∈X d(x,C) is minimized.

Definition 2 (the k-center with outliers problem). Given a set X of points
in a metric space (X , d) and two integers k, z, the goal is to find a subset C ⊆ X
of k centers and a set Z of at most z outliers such that the cost maxx∈X\Z d(x,C)
is minimized.

Given an instance (X, d, k, z) of the k-center with outliers problem, a pair
(C,Z) is called a feasible solution of the instance if C is a subset of X with k
centers, and Z is a set with at most z outliers.

Definition 3 (the FkCO problem). Given a set X of points in a metric
space (X , d), two integers k, z, a set of colors H = {1, . . . , m}, m disjoint groups
G = {X1, . . . , Xm} with ∪m

h=1Xh = X, and a vector γ = {k1, . . . , km} with∑m
h=1 kh = k, where the points in Xh are colored with color h ∈ H, the goal is

to find a subset C ⊆ X of k centers and a set Z of at most z outliers such that
the cost maxx∈X\Z d(x,C) is minimized, and C satisfies the following fairness
constraints.

|C ∩ Xh| = kh,∀h ∈ H (1)

Given an instance (X, d, k, z,G,H, γ) of the FkCO problem, a pair (C,Z) is
called a feasible solution of the instance if C ⊆ X satisfies constraint (1), and Z
is a set with at most z outliers. Moreover, we use cost(C,Z) = maxx∈X\Z d(x,C)
to denote the cost of (C,Z).

Definition 4 (doubling dimension). Given a set X of points in a metric
space (X , d), the doubling dimension of X is the smallest number D such that
for any radius r and a point x ∈ X, all points in the ball B(x, r) are always
covered by the union of at most 2D balls with radius r/2.

Since many real world datesets often have lower intrinsic dimensions [6], in
this paper, we assume that the set X has a low doubling dimension D as in [19].
Throughout this paper, let |X| = n. Given an instance I of the FkCO problem,
let (C∗, Z∗) denote an optimal solution of I, where C∗ = {c∗

1, . . . , c
∗
k} is the set

of k optimal centers, and Z∗ is the set of z optimal outliers, respectively. Thus,
for any h ∈ H, we have |C∗ ∩ Xh| = kh. Let O∗ = {O∗

1 , . . . , O
∗
k} be the set of k

optimal clusters. Thus, we have O∗ =
⋃k

i=1 O∗
i = X\Z

∗.

230 X. Wu et al.

Algorithm 1. An FPT approximation algorithm for the FkCO problem
Input: An instance I = (X, d, k, z, G, H, γ) of the FkCO problem and parameters ε, τo
Output: A feasible solution of I
1: T ← reduce the number of points in X using method in [9];
2: Cmin ← ∅, Zmin ← ∅;
3: for each subset C = {c1, . . . , ck} ⊆ T with size k do
4: B ← ∅;
5: for i = 1 to k do
6: Bi ← {x ∈ X | d(x, ci) ≤ (1 + ε)τo};
7: B ← B ∪ {Bi};
8: end for
9: (Ĉ, Z) ← Get-Solution(X, C, d, k, G, H, γ, τo, ε, B);

10: if Ĉ = ∅ or |Z| > z then
11: continue;
12: end if
13: if cost(Ĉ, Z) < cost(Cmin, Zmin) then
14: Cmin ← Ĉ, Zmin ← Z;
15: end if
16: end for
17: return (Cmin, Zmin).

3 An FPT Approximation Algorithm for the FkCO
Problem in Doubling Metric Space

In this section, we present a (1 + ε)-approximation algorithm for the FkCO
problem with FPT time in a low-dimensional doubling metric space. The running
time of the algorithm is f(k, z, ε) · nO(1), where f(k, z, ε) = ((k + z) · ε−1)O(k).
We now give the general idea of solving the FkCO problem. For a given instance
I = (X, d, k, z,G,H, γ) of the FkCO problem and parameters ε, τo, our algorithm
starts with the reduction of the number of points in X by using the method in [9]
(see Subsect. 3.1). Then, based on the reduced points, we prove theoretically the
existence of a (1 + ε)-approximate solution of I. To find such a solution, we
consider all subsets with size k of the above reduced points. For each subset, we
try to convert it to one satisfying fairness constraints (see Subsect. 3.2). Finally,
we output the set satisfying fairness constraints with minimum clustering cost.
The specific process is given in Algorithm 1.

3.1 Reduce the Number of Points

In this section, we show how to reduce the number of points. For a given instance
I = (X, d, k, z,G,H, γ) of the FkCO problem and a parameter ε, we apply the
method proposed in [9] to obtain a set T ⊆ X with size O((k+z) · (24ε)D), where
ε is a parameter used to control the size of T , and D is the doubling dimension of
X, respectively. As in [19], we assume that D is a low doubling dimension of X.
Moreover, by Lemma 4 and Lemma 6 from [9], we have the following theorem.

The Fair k-Center with Outliers Problem 231

Theorem 3 ([9]). Given an instance I = (X, d, k, z) of the k-center with out-
liers problem and a parameter ε, assume that D is the doubling dimension of X.
Then, we can obtain a subset T ⊆ X with size O((k + z) · (24ε)D) in polynomial
time such that for any x ∈ X, d(x, T) ≤ ετ , where τ is the cost of optimal
solution of I.

Note that for a given instance (X, d, k, z,G,H, γ) of the FkCO problem and
a parameter ε, Theorem 3 still holds due to the fact τ ≤ τo, where τo is the
optimal cost of the FkCO problem instance. Therefore, for any x ∈ X, we have
d(x, T) ≤ ετo.

Lemma 1. Given an instance I = (X, d, k, z,G,H, γ) of the FkCO problem and
parameters ε, assume that Z∗ is the set of optimal z outliers of I, and τo is the
cost of optimal solution of I, respectively. Let T be the set of points returned by
step 1 in Algorithm 1. Then, there must exist a subset C ⊆ T with size k such
that for any x ∈ X\Z

∗, d(x,C) ≤ (1 + ε)τo.

Proof. Let (C∗, Z∗) be an optimal solution of I, where C∗ = {c∗
1, . . . , c

∗
k} is the

set of k optimal centers, and Z∗ is the set of z optimal outliers, respectively.
Let O∗ = {O∗

1 , . . . , O
∗
k} be the set of k optimal clusters. Thus, we have O∗ =

∪k
i=1O

∗
i = X\Z

∗. Assume that τo is the cost of optimal solution of I. Let T
be the set of points returned by step 1 in Algorithm 1. For any i ∈ [k], let
π(c∗

i) = arg minx∈T d(x, c∗
i) denote the closest point in T to c∗

i . By Theorem 3,
we have that there exists a point in T with distance at most ετo to c∗

i . Thus, we
have d(c∗

i , π(c∗
i)) ≤ ετo, because π(c∗

i) is the closest point in T to c∗
i . Then, for

any x ∈ O∗
i (i ∈ [k]), by the triangle inequality, we have

d(x, π(c∗
i)) ≤ d(x, c∗

i) + d(c∗
i , π(c∗

i)) ≤ τo + ετo ≤ (1 + ε)τo.

Thus, there exists a subset C = {π(c∗
1), . . . , π(c∗

k)} ⊆ T such that for any x ∈
∪k

i=1O
∗
i = X\Z∗, d(x,C) ≤ (1 + ε)τo. �	

Lemma 1 implies that there must exist a subset C of T that induces a (1+ε)-
approximation without satisfying fairness constraints by removing the points in
X with distance greater than (1 + ε)τo from the centers in C. More formally, we
call C a set of ε-optimal clustering centers of I. In fact, there are |T |k subsets with
size k of T , and one of them induces a (1 + ε)-approximation without satisfying
fairness constraints of I. To determine which one is the set of ε-optimal clustering
centers, we need to consider each subset with size k of T , and output the subset
with the minimum clustering cost.

3.2 Find a Feasible Solution

Recall that in the previous section, for the FkCO problem, we prove the existence
of a (1 + ε)-approximate solution without satisfying the fairness constraints. In
the section, we first prove that for the FkCO problem, there must exist a (1+ε)-
approximate solution (note that the solution satisfies fairness constraints).

232 X. Wu et al.

Lemma 2. Given an instance I = (X, d, k, z,G,H, γ) of the FkCO problem and
a parameter ε, let T be the set of points returned by step 1 in Algorithm 1, and let
C = {c1, . . . , ck} ⊆ T be the set of ε-optimal clustering centers of I, respectively.
Then, there must exist a (1 + ε)-approximate solution of I.
Proof. Let (C∗, Z∗) be an optimal solution of I, where C∗ = {c∗

1, . . . , c
∗
k} is the

set of k optimal centers, and Z∗ is the set of z optimal outliers, respectively.
Let O∗ = {O∗

1 , . . . , O
∗
k} be the set of k optimal clusters. Thus, we have O∗ =

∪k
i=1O

∗
i = X\Z

∗. Assume that τo is the cost of optimal solution of I. Let T be
the set of points returned by step 1 of Algorithm 1.

We now prove the existence of a (1+ε)-approximate solution of I. Recall that
the set C of ε-optimal clustering centers has the property that for each c∗

i ∈ C∗

(i ∈ [k]), there exists a center in C from c∗
i with distance at most ετo. Thus,

for each ci ∈ C (i ∈ [k]), there must exist a point, denoted by f(ci), that has
the same color as c∗

i (possibly c∗
i itself), with distance at most ετo from ci. Let

Ĉ = {f(c1), . . . , f(ck)}. Then, for any x ∈ O∗
i (i ∈ [k]), by the triangle inequality

and Lemma 1, we have

d(x, f(ci)) ≤ d(x, ci) + d(ci, f(ci)) ≤ (1 + ε)τo + ετo ≤ (1 + 2ε)τo.

Thus, for each x ∈ ∪k
i=1O

∗
i = X\Z

∗, we have d(x, Ĉ) ≤ (1 + 2ε)τo. Let ε′ = 2ε.
Therefore, (Ĉ, Z∗) is a (1 + ε′)-approximate solution of I. �	

Lemma 2 implies that the existence of a (1 + ε)-approximate solution. To
find such a (1 + ε)-approximate solution, we present an algorithm, called Get-
Solution, that gives a feasible solution in polynomial time. Assume that we
have found the set of ε-optimal clustering centers C = {c1, . . . , ck}, and τo is the
cost of optimal solution of I, respectively. For each i ∈ [k], let Bi = {x ∈ X |
d(x, ci) ≤ (1 + ε)τo} be the set of points with distance at most (1 + ε)τo to ci.
Let B = {B1, . . . , Bk}. The general idea of Get-Solution is as follows. For a
given instance I = (X, d, k, z,G,H, γ) of the FkCO problem, parameters ε, τo, a
set C of k centers, and a set B of k balls, Get-Solution starts with a bipartite
graph G based on C and B. Then, it finds a maximum matching on G to obtain
a set Ĉ of k centers satisfying fairness constraints.

Lemma 3. Given an instance I = (X, d, k, z,G,H, γ) of the FkCO problem and
parameters ε, τo, let C = {c1, . . . , ck} be the set of ε-optimal clustering centers of
I, and let B = {B1, . . . , Bk} be the set of k balls corresponding to C, respectively.
Then, Get-Solution gives a (1 + ε)-approximate solution of I in polynomial
time.

Proof. Recall that Lemma 2 shows the existence of a (1 + ε)-approximate
solution of I. We now prove that algorithm Get-Solution can give such
a solution. Get-Solution starts with the construction of a bipartite graph
G = (A1 ∪ A2, E). The left vertex set A1 contains k vertices in total, where
for each center ci ∈ C (i ∈ [k]), it contains one vertex ui. The right vertex set
A2 = ∪m

h=1Vh, where for each color h ∈ H, Vh contains kh identical vertices.

The Fair k-Center with Outliers Problem 233

Algorithm 2. Get-Solution
Input: An instance I = (X, d, k, z, G, H, γ) of the FkCO problem, parameters ε, τo, a
set C = {c1, . . . , ck} of k centers, and a set B = {B1, . . . , Bk} of k balls
Output: A feasible solution of I
1: Let A1 = A2 = ∅, and E = ∅;
2: for i = 1 to k do
3: Construct a vertex ui, and add it to A1;
4: end for
5: for h = 1 to m do
6: Construct a set Vh of kh identical vertices, and add the vertices in Vh to A2;
7: end for
8: Let G = (A1 ∪ A2, E);
9: For any vertices a ∈ A1 and b ∈ A2, let (a, b) denote the edge between a and b;

10: for i = 1 to k do
11: for h = 1 to m do
12: if ∃x ∈ Xh and d(ci, x) ≤ ετo then
13: for each vertex w in Vh do
14: Add edge (ui, w) to E;
15: end for
16: end if
17: end for
18: end for
19: Find the maximum matching M of G;
20: if M = ∅ then
21: return (∅, X\ ∪k

i=1 Bi).
22: end if
23: Ĉ ← ∅;
24: for each edge (a, b) ∈ M do
25: Let p be a point with color h such that d(ci, p) ≤ ετo, where a is the corresponding

vertex of center ci ∈ C, and b is in Vh, respectively;
26: Ĉ ← Ĉ ∪ {p};
27: end for
28: return (Ĉ, X\ ∪k

i=1 Bi).

For each i ∈ [k] and h ∈ H, if there exists a point x ∈ Xh with d(x, ci) ≤ ετo,
then the corresponding vertex ui is connected to all vertices in Vh. Let M be
the maximum matching returned by the Ford-Fulkerson algorithm [21] on G.
Then, M immediately induces a set Ĉ of k centers as follows. For each edge
(a, b) in M , assume that vertex a corresponds to center ci ∈ C, and vertex b
is in Vh. We add a point p ∈ Xh to Ĉ. Since |Vh| = kh, Ĉ contains kh points
with color h. Therefore, Ĉ is a set of k centers satisfying fairness constraints. Let
Z = X\ ∪k

i=1 Bi. By Lemma 1, it is easy to get that |Z| ≤ z. Therefore, (Ĉ, Z)
a (1 + ε)-approximate solution of I.

The remaining task is to bound the running time of Get-Solution. It is
easy to get that steps 1–9 can be executed in time O(k) + O(m). The running
time of steps 10–18 is O(km). Since Ford-Fulkerson algorithm can be executed
in polynomial time, step 19 has a polynomial running time. Steps 24–27 can be

234 X. Wu et al.

done in time O(nk) due to the fact |M | = k. Therefore, the total running time
of Get-Solution is polynomial. �	

To complete the proof of Theorem 1, we now analyze the running time of
Algorithm 1. By Theorem 3, the running time of obtaining the set T is polyno-
mial. Since |T | = O((k+z)·(24/ε)D), there are at most |T |k = O((k+z)·(24ε)D)k

subsets of size k. Therefore, for constant D, the number of iterations in step 3
of Algorithm 1 can be bounded by

O((k + z) · (
24
ε

)D)k ≤ ((k + z) · ε−1)O(k).

For each subset, by Lemma 3, the running time of Get-Solution can be
bounded in time polynomial in n, i.e., nO(1) time. Therefore, the total run-
ning time of Algorithm 1 can be bounded by nO(1) · ((k + z) · ε−1)O(k), which is
FPT. By the above discussion, Theorem 1 can be proved.

4 A Polynomial Approximation Algorithm for the FkCO
Problem

In this section, we present a polynomial time 3-approximation algorithm (see
Algorithm 3) for the FkCO problem under some reasonable assumptions. we
assume that the optimal clusters are far away from each other, and have size
greater than z. The first assumption implies that the optimal clusters are well
separated, and it has been used in literature to solve the k-center with outliers
problem [19] and other clustering problems as well [18,30]. The second assump-
tion is practical, because in most case the optimal clusters are not too small
compared with the number of outliers.

We now give the general idea of our algorithm, which is inspired by the
method presented in [12] for solving the k-center with outliers problem. For
a given I = (X, d, k, z,G,H, γ) of the FkCO problem and a parameter τo, our
algorithm starts by obtaining a solution (C,Z) (steps 1–7 of Algorithm 3), where
C is a set of k centers without satisfying fairness constraints, and Z is a set of
at most z outliers, respectively. Specifically, we execute the following process k
times to obtain (C,Z). Initially, let Z = X. Then, we select a point c from Z
such that the ball B(c, τo) contains the most number of points in Z, add the
point c to C, and delete the points in B(c, 2τo) from Z. Based on the above
assumptions, we can prove that the selected k centers in C fall into each optimal
cluster separately. Finally, based on (C,Z), we call algorithm Get-Solution
to obtain a feasible solution (Ĉ, Z), where Ĉ satisfies fairness constraints. The
specific process is given in Algorithm 3.

Let (C∗, Z∗) be an optimal solution, where C∗ = {c∗
1, . . . , c

∗
k} is the set of

k optimal centers. Let O∗ = {O∗
1 , . . . , O

∗
k} be the set of k optimal clusters.

Formally, we have the following lemma.

Lemma 4. Given an instance I = (X, d, k, z,G,H, γ) of the FkCO problem and
a parameter τo, assume that each optimal cluster O∗

i (i ∈ [k]) has size greater

The Fair k-Center with Outliers Problem 235

Algorithm 3. A polynomial 3-approximation algorithm for the FkCO problem
Input: An instance I = (X, d, k, z, G, H, γ) of the FkCO problem and a parameter τo
Output: A feasible solution of I
1: C ← ∅, Z ← X, B ← ∅;
2: while |C| < k do
3: c ← argmaxc∈Z |B(c, τo) ∩ Z|;
4: C ← C ∪ {c};
5: B ← B ∪ {B(c, 2τo)};
6: Z ← Z\B(c, 2τo);
7: end while
8: (Ĉ, Z) ← Get-Solution(X, C, d, k, G, H, γ, τo, 1, B);
9: return (Ĉ, Z).

than z, and for any j, j′ ∈ [k] (j
= j′), d(c∗
j , c

∗
j′) > 4τo. Then, Algorithm 3 gives

a 3-approximate solution of I in polynomial time.

Proof. Let (C,Z) be the output of Algorithm 3 after steps 1–7 are executed.
Let C = {c1, . . . , ck}. Recall that in each iteration of the while-loop, we select a
point c ∈ Z such that the ball B(c, τo) contains the most number of points in
Z, and then delete the points in B(c, 2τo) from Z. We now prove that in each
iteration, c falls into one optimal cluster in O∗, and does not fall into the set
Z∗ of optimal outliers. If c falls into one optimal cluster in O∗, denoted by O∗

i

(i ∈ [k]). For any x ∈ O∗
i , by triangle inequality, we have

d(x, c) ≤ d(x, c∗
i) + d(c∗

i , c) ≤ 2τo.

Thus, the ball B(c, 2τo) can cover all points in O∗
i . Since for any j, j′ ∈ [k]

(j
= j′), d(c∗
j , c

∗
j′) > 4τo, B(c, 2τo) will not cover any point from other optimal

cluster in O∗ different from O∗
i . Moreover, since in step 3 we select a point c

such that B(c, τo) contains the most number of points in Z, and each optimal
cluster has size greater than z, c does not fall into the set Z∗ of outliers. By
the above discussion, we have that c1, . . . , ck fall into the k optimal clusters
O∗

1 , . . . , O
∗
k separately. Moreover, we have that ∪k

i=1B(ci, 2τo) covers all points
in O∗. Therefore, after steps 1–7 are executed, the number of outliers in Z is at
most z, i.e., |Z| ≤ z.

We now prove that there exists a subset Ĉ ⊆ X\Z satisfying fairness con-
straints. Recall that the process of selecting centers to C, we have that c1, . . . , ck

fall into each optimal clusters separately. Therefore, for each c∗
i ∈ C∗ (i ∈ [k]),

we have d(ci, c
∗
i) ≤ τo. Moreover, for each ci ∈ C (i ∈ [k]), there must exist a

point, denoted by f(ci), that has the same color as c∗
i (possibly c∗

i itself), with
distance at most τo from ci. Let Ĉ = {f(c1), . . . , f(ck)}. Then, for any x ∈ O∗

i

(i ∈ [k]), by the triangle inequality, we have

d(x, f(ci)) ≤ d(x, ci) + d(ci, f(ci)) ≤ 2τo + τo ≤ 3τo.

Thus, for each x ∈ ∪k
i=1O

∗
i ⊆ X\Z, we have d(x, Ĉ) ≤ 3τo. Therefore,

(Ĉ, Z) is a 3-approximate solution of I. By Lemma 3, we have that Get-

236 X. Wu et al.

Solution(X,C, d, k,G,H, γ, τo, 1, B) can give such a solution (Ĉ, Z), where ε
is set to 1. The proof is similar to Lemma 3.

The remaining task is to prove that the running time of Algorithm 3 is poly-
nomial. It is easy to get that step 1 and steps 4–6 can be executed in time O(1).
Step 3 can be executed in time O(n2), because for each point in the current set
Z, we compute all the points in Z within distance τo from the point. Therefore,
the running time of steps 1–7 can be bounded by O(n2k). By Lemma 3, Get-
Solution can be executed in polynomial time. Therefore, the total running time
of Algorithm 3 is polynomial. �	

Theorem 2 follows from Lemma 4.

5 Conclusions

In this paper, we consider the FkCO problem, which generalizes the well-studied
fair k-center and k-center with outliers problems. We present several algorithms
to solve the FkCO problem from the perspective of FPT approximation and poly-
nomial approximation. An open question is that whether it is possible to design
a constant-factor polynomial approximation algorithm for the FkCO problem
without any assumptions. We believe that solving this question would be of
great interest.

References

1. Aggarwal, G., et al.: Achieving anonymity via clustering. ACM Trans. Algorithms
6(3), 49:1–49:19 (2010)

2. Ahmadian, S., Epasto, A., Kumar, R., Mahdian, M.: Clustering without over-
representation. In: Proceedings of the 25th ACM SIGKDD International Confer-
ence on Knowledge Discovery and Data Mining, pp. 267–275 (2019)

3. Ahmadian, S., Swamy, C.: Approximation algorithms for clustering problems with
lower bounds and outliers. In: Proceedings of the 43rd International Colloquium
on Automata, Languages, and Programming, pp. 69:1–69:15 (2016)

4. An, H., Bhaskara, A., Chekuri, C., Gupta, S., Madan, V., Svensson, O.: Centrality
of trees for capacitated k-center. Math. Program. 154(1–2), 29–53 (2015)

5. Angelidakis, H., Kurpisz, A., Sering, L., Zenklusen, R.: Fair and fast k-center clus-
tering for data summarization. In: Proceedings of the 39th International Conference
on Machine Learning, pp. 669–702 (2022)

6. Belkin, M.: Problems of learning on manifolds. The University of Chicago (2004)
7. Bera, S.K., Chakrabarty, D., Flores, N., Negahbani, M.: Fair algorithms for clus-

tering. In: Proceedings of the 33rd International Conference on Neural Information
Processing Systems, pp. 4955–4966 (2019)

8. Bercea, I.O., Groß, M., Khuller, S., Kumar, A., Rösner, C., Schmidt, D.R., Schmidt,
M.: On the cost of essentially fair clusterings. In: Proceedings of the 22nd Interna-
tional Conference on Approximation Algorithms for Combinatorial Optimization
Problems and 23rd International Conference on Randomization and Computation,
pp. 18:1–18:22 (2019)

The Fair k-Center with Outliers Problem 237

9. Ceccarello, M., Pietracaprina, A., Pucci, G.: Solving k-center clustering (with out-
liers) in mapreduce and streaming, almost as accurately as sequentially. Proc.
VLDB Endowment 12(7), 766–778 (2019)

10. Chakrabarty, D., Goyal, P., Krishnaswamy, R.: The non-uniform k-center problem.
In: Proceedings of the 43rd International Colloquium on Automata, Languages,
and Programming, pp. 67:1–67:15 (2016)

11. Chakrabarty, D., Goyal, P., Krishnaswamy, R.: The non-uniform k-center problem.
ACM Trans. Algorithms 16(4), 1–19 (2020)

12. Charikar, M., Khuller, S., Mount, D.M., Narasimhan, G.: Algorithms for facility
location problems with outliers. In: Proceedings of the 12th Annual ACM-SIAM
Symposium on Discrete Algorithms, pp. 642–651 (2001)

13. Chechik, S., Peleg, D.: The fault-tolerant capacitated k-center problem. Theoret.
Comput. Sci. 566, 12–25 (2015)

14. Chen, D.Z., Li, J., Liang, H., Wang, H.: Matroid and knapsack center problems.
Algorithmica 75(1), 27–52 (2016)

15. Chen, X., Fain, B., Lyu, L., Munagala, K.: Proportionally fair clustering. In: Pro-
ceedings of the 36th International Conference on Machine Learning, pp. 1032–1041
(2019)

16. Chiplunkar, A., Kale, S., Ramamoorthy, S.N.: How to solve fair k-center in massive
data models. In: Proceedings of the 37th International Conference on Machine
Learning, pp. 1877–1886 (2020)

17. Cygan, M., Hajiaghayi, M., Khuller, S.: LP rounding for k-centers with non-
uniform hard capacities. In: Proceedings of the 53rd Annual Symposium on Foun-
dations of Computer Science, pp. 273–282 (2012)

18. Daniely, A., Linial, N., Saks, M.: Clustering is difficult only when it does not
matter. arXiv preprint arXiv:1205.4891 (2012)

19. Ding, H., Yu, H., Wang, Z.: Greedy strategy works for k-center clustering with
outliers and coreset construction. In: Proceedings of the 27th Annual European
Symposium on Algorithms, pp. 40:1–40:16 (2019)

20. Fernandes, C.G., de Paula, S.P., Pedrosa, L.L.C.: Improved approximation algo-
rithms for capacitated fault-tolerant k-center. Algorithmica 80(3), 1041–1072
(2018)

21. Ford, L.R., Fulkerson, D.R.: Maximal flow through a network. Can. J. Math. 8,
399–404 (1956)

22. Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory
of NP-Completeness. WH Freeman (1979)

23. Gonzalez, T.F.: Clustering to minimize the maximum intercluster distance. Theo-
ret. Comput. Sci. 38, 293–306 (1985)

24. Goyal, D., Jaiswal, R.: Tight FPT approximation for constrained k-center and
k-supplier. Theoret. Comput. Sci. 940, 190–208 (2023)

25. Han, L., Xu, D., Xu, Y., Yang, P.: Approximation algorithms for the individually
fair k-center with outliers. J. Glob. Optim. 1–16 (2022)

26. Harb, E., Lam, H.S.: KFC: A scalable approximation algorithm for k-center fair
clustering. In: Proceedings of the 34th International Conference on Neural Infor-
mation Processing Systems, pp. 14509–14519 (2020)

27. Harris, D.G., Pensyl, T., Srinivasan, A., Trinh, K.: A lottery model for center-type
problems with outliers. ACM Trans. Algorithms 15(3), 1–25 (2019)

28. Hochbaum, D.S., Shmoys, D.B.: A best possible heuristic for the k-center problem.
Math. Oper. Res. 10(2), 180–184 (1985)

http://arxiv.org/abs/1205.4891

238 X. Wu et al.

29. Jones, M., Lê Nguyên, H., Nguyen, T.: Fair k-centers via maximum matching.
In: Proceedings of the 37th International Conference on Machine Learning, pp.
4940–4949 (2020)

30. Kanungo, T., Mount, D.M., Netanyahu, N.S., Piatko, C.D., Silverman, R., Wu,
A.Y.: An efficient k-means clustering algorithm: analysis and implementation.
IEEE Trans. Pattern Anal. Mach. Intell. 24(7), 881–892 (2002)

31. Khuller, S., Pless, R., Sussmann, Y.J.: Fault tolerant k-center problems. Theoret.
Comput. Sci. 242(1–2), 237–245 (2000)

32. Khuller, S., Sussmann, Y.J.: The capacitated k-center problem. SIAM J. Discret.
Math. 13(3), 403–418 (2000)

33. Kleindessner, M., Awasthi, P., Morgenstern, J.: Fair k-center clustering for data
summarization. In: Proceeding of the 36th International Conference on Machine
Learning, pp. 3448–3457 (2019)

34. Li, B., Li, L., Sun, A., Wang, C., Wang, Y.: Approximate group fairness for clus-
tering. In: Proceedings of the 38th International Conference on Machine Learning,
pp. 6381–6391 (2021)

35. Mahabadi, S., Vakilian, A.: Individual fairness for k-clustering. In: Proceedings of
the 37th International Conference on Machine Learning, pp. 6586–6596 (2020)

36. Malkomes, G., Kusner, M.J., Chen, W., Weinberger, K.Q., Moseley, B.: Fast dis-
tributed k-center clustering with outliers on massive data. In: Advances in Neural
Information Processing Systems, vol. 28 (2015)

37. Micha, E., Shah, N.: Proportionally fair clustering revisited. In: Proceedings of the
47th International Colloquium on Automata, Languages, and Programming, pp.
85:1–85:16 (2020)

38. Negahbani, M., Chakrabarty, D.: Better algorithms for individually fair k-
clustering. In: Proceedings of the 35th International Conference on Neural Infor-
mation Processing Systems, pp. 13340–13351 (2021)

39. Yuan, F., Diao, L., Du, D., Liu, L.: Distributed fair k-center clustering problems
with outliers. In: Proceedings of the 22nd International Conference on Parallel and
Distributed Computing, Applications and Technologies, pp. 430–440 (2022)

Constrained Graph Searching on Trees

Lusheng Wang1,3, Boting Yang2(B), and Zhaohui Zhan1

1 Department of Computer Science, City University of Hong Kong, Kowloon Tong,
Hong Kong, Special Administrative Region of China

{lusheng.wang,zhaohui.zhan}@cityu.edu.hk
2 Department of Computer Science, University of Regina, Regina, SK, Canada

boting.yang@uregina.ca
3 City University of Hong Kong Shenzhen Research Institution, Shenzhen, China

Abstract. Megiddo et al. (1988) introduced the edge searching prob-
lem, which is to find the minimum number of searchers to capture the
robber in the edge searching model. Dyer et al. (2008) introduced the
fast searching problem that is to find the minimum number of searchers
to capture the robber in the fast searching model. In this paper, we con-
sider these two graph searching problems under some constraints. One
constraint is that a subset of vertices, called start vertices, are initially
occupied by searchers before we place additional searchers on the graph.
Another constraint is that some of the searchers must end their search
at certain vertices called halt vertices. We focus on trees with n vertices.
Let k be the number of times to move searchers from start vertices. For
the edge searching problem, we give an O(kn)-time algorithm for com-
puting the edge search number of a tree that contains only start vertices
or only halt vertices. For a tree that contains both start vertices and halt
vertices, we present an O(n2)-time algorithm to compute the edge search
number. We show that all these problems are monotonic. For the fast
searching problem, we propose a linear-time algorithm for computing the
fast search number of a tree that contains only start vertices or only halt
vertices. For a tree with n vertices that contains s start vertices and h
halt vertices, we give an O((s+h)n)-time algorithm to compute the fast
search number.

Keywords: edge search number · fast search number · graph
searching · tree

1 Introduction

Graph searching was first studied in 1976 by Parsons [14], who introduced a
continuous version of the graph searching problem. Megiddo et al. [13] discretized
this model. They showed that deciding the edge search number of a graph is NP-
hard. They also provided a linear time algorithm for computing the edge search
number of trees. The edge search number of a graph is closely related to some
other graph parameters. Let G be a graph and let es(G) denote the edge search

c© Springer Nature Switzerland AG 2023
M. Li et al. (Eds.): IJTCS-FAW 2023, LNCS 13933, pp. 239–251, 2023.
https://doi.org/10.1007/978-3-031-39344-0_18

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-39344-0_18&domain=pdf
https://doi.org/10.1007/978-3-031-39344-0_18

240 L. Wang et al.

number of G. Ellis et al. [8] showed that vs(G) ≤ es(G) ≤ vs(G) + 2, where
vs(G) is the vertex separation number of graph G. Kinnersley [10] showed that
pw(G) = vs(G), where pw(G) is the pathwidth of G. Hence pw(G) ≤ es(G) ≤
pw(G) + 2. LaPaugh [11] and Beinstock and Seymour [3] proved that the edge
searching problem is monotonic, which implies that the problem of finding the
edge search number is in NP, and thus finding the edge search number of a graph
is NP-complete.

Dyer et al. [7] introduced the fast searching problem. They considered trees
and complete bipartite graphs and presented results on the fast search number
of these graphs. Yang [19] proved that the problem of finding the fast search
number of a graph is NP-complete. The fast searching problem remains NP-
complete for Eulerian graphs. Even the problem of deciding whether the fast
search number of G is a half of the number of odd vertices in G is NP-complete;
it remains NP-complete for planar graphs with maximum degree 4. Dereniowski
et al. [6] showed that the fast searching problem is NP-hard for multigraphs and
for graphs. Stanley and Yang [15] gave a linear time algorithm to compute the
fast search number of Halin graphs. They also gave a quadratic time algorithm
for computing the fast search number of cubic graphs. Note that the problem
of finding the edge search number of cubic graphs is NP-complete [12]. Xue et
al. [17] presented lower bounds and upper bounds on the fast search number of
complete k-partite graphs. They also solved the open problem of determining the
fast search number of complete bipartite graphs. Xue and Yang [16] proved an
explicit formula for computing the fast search number of the Cartesian product
of an Eulerian graph and a path. Very recently, Xue et al. [18] propose a new
method for computing the fast search number of k-combinable graphs. Using
this method, they gave a linear time algorithm for computing the fast search
number of cactus graphs.

Besides the edge searching and the fast searching mentioned above, many
other graph searching models have been studied; see [1,2,4,5,9] for surveys.

For the problems that we will investigate in this paper, we have two special
subsets of vertices of a given graph: the set of start vertices, denoted Vs, and the
set of the halt vertices, denoted Vh. The start vertices and halt vertices are also
simply called starts and halts respectively. A constrained graph searching with
respect to starts and halts satisfies the following three conditions:

1. Before the searching process, every start vertex is initially occupied by exactly
one searcher.

2. During the entire searching process, each start vertex remains clear, that is,
either it is occupied by a searcher or all its incident edges are clear.

3. Once a halt vertex is occupied by a searcher, it must be occupied by at least
one searcher for the remainder of the searching process.

Such constrained graph searching problems are referred to as Graph Searching
with Starts and Halts (briefly, GSSH). In a GSSH problem, the searchers that
occupy start vertices initially are called starting searchers. All other searchers
that are placed on the graph during the searching process are called additional
searchers.

Constrained Graph Searching on Trees 241

Note that our algorithms for GSSH problems can be used as subroutines for
searching algorithms that has the divide-and-conquer style. This is one of our
major motivations to study GSSH problems. In this kind of algorithms, we first
decompose a given graph into two or more subgraphs; we then solve the problem
on these subgraphs; and finally we compose the solutions of subgraphs to solve
the original problem on the given graph. When we search a subgraph, some
vertices may have been occupied by searchers because these searchers stopped
on these vertices at the end of the searching process when we clear previous
subgraphs. So these vertices can be considered as start vertices of this subgraph
and can also be considered as halt vertices of the previous subgraphs. As an
application, our algorithms presented in this paper can be used to search the
cycle-disjoint graphs [20], where there are many induced subgraphs that are
trees.

Another motivation for studying GSSH problems comes from real applications.
For example, suppose there is a robber hiding in an area of the city which
is modelled by a graph. In this scenario, the starting searchers (or cops) are
deployed at street intersections connecting the area containing the robber with
the rest of the city. The cops can divided the area into neighborhoods, and
then they search for the robber neighborhood by neighborhood. In this case, the
cops first search a particular neighborhood, during which if a cop arrives at an
intersection that leads to another neighborhood, this cop stays at the intersection
until the particular neighborhood is cleared. These intersections can be modelled
by the halt vertices in an instance of the GSSH problem. So GSSH problems can
be seen as a particular type of subgraph searching.

All the GSSH problems discussed in this paper take place on trees. We will
investigate these problems on two graph searching models: the edge searching
model and the fast searching model.

2 Preliminaries

Let G = (V,E) be a graph with vertex set V and edge set E. We also use V (G)
and E(G) to denote the vertex set and edge set of G respectively. A leaf is a
vertex that has degree one. A vertex is odd (resp. even) when its degree is an
odd (resp. even) number.

Given a graph G that contains a robber hiding on vertices or along edges, in
the edge searching problem introduced by Megiddo et al. [13], a team of searchers
want to capture the invisible robber. The robber can move at a great speed at
any time from one vertex to another vertex along a searcher-free path between
the two vertices. Initially, G contains no searchers. So all edges are dirty initially.
In order to clear all edges, the searchers have the following three actions:

1. placing a searcher on a vertex in the graph,
2. removing a searcher from a vertex, and
3. sliding a searcher along an edge from one endpoint to the other.

242 L. Wang et al.

There are two ways to clear an edge: (1) at least two searchers are located on one
endpoint of the edge, and one of them slides along the edge from this endpoint
to the other; (2) a searcher is located on one endpoint of the edge, and all edges
incident on this endpoint, except the edge itself, are clear and the searcher slides
along the edge from this endpoint to the other.

A search strategy for a graph G is a sequence of searchers’ actions such that all
edges of G are cleared after the last action is carried out. The edge search number
of G, denoted by es(G), is the minimum number of searchers required to clear G.
An edge search strategy is optimal if at each step it uses at most es(G) searchers.
A search strategy S = {a1, a2, . . . , am} is called monotonic if Ai−1 ⊆ Ai, for all
1 ≤ i ≤ m, where Ai is the set of edges that are clear after the action ai and
A0 = ∅. A searching problem is monotonic if there exists an optimal search
strategy that is monotonic for each instance of the searching problem. When a
searcher is removed or slides from a vertex v in a search strategy, if the graph
has a path containing v that connects a dirty edge to a clear edge and this path
is not occupied by any searchers, then the clear edge becomes recontaminated
immediately because the robber moves exceedingly fast. Such a strategy is not
monotonic.

The edge searching problem has a strong connection with the fast searching
problem, which was first introduced by Dyer et al. [7]. The fast searching model
has the same setting as the edge searching model except that (1) every edge
is traversed exactly once by a searcher and (2) a searcher cannot be removed
from a vertex and then placed on another vertex later. The minimum number of
searchers required to clear G in the fast searching model is the fast search number
of G, denoted by fs(G). A fast search strategy is a sequence of actions such that
the final action leaves all edges of G cleared. Since every edge is traversed exactly
once by a searcher, we know that a fast search strategy for a connected graph
with m edges contains exactly fs(G) placing actions and m sliding actions. A fast
search strategy is called optimal if at each step it uses at most fs(G) searchers.
Note that all fast search strategies are monotonic because searchers are allowed
to slide along each edge exactly once. So the fast searching problem is monotonic.

3 Edge Searching with Starts

In this section we study the edge searching with start vertices, which is formally
described as follows.

Edge Searching with Starts (ESS)
Instance: A tree T and a set of start vertices Vs ⊆ V (T), such that each v ∈ Vs

is occupied by exactly one starting searcher.
Question: What is the minimum number of additional searchers for clearing T
in the edge searching model such that each vertex from Vs remains clear during
the entire search?

We define the ESS number of T with respect to Vs, denoted by ess(T, Vs),
as the minimum number of additional searchers required to clear T in the ESS

Constrained Graph Searching on Trees 243

model. An ESS search strategy is optimal if it uses ess(T, Vs) searchers to clear
T in the ESS model. We say that a vertex v is clear if all edges incident with v
are clear or v is occupied by a searcher. A searcher on a vertex v ∈ Vs is called
moveable if there is only one contaminated edge incident with v and all other
edges incident with v are clear.

Given a tree T and a subset of vertices V ′ ⊆ V (T), define T � V ′ to be the
set of maximal induced subtrees {T1, T2, . . . , Tk} of T such that

⋃
1≤i≤k{Ti} = T

and for each v ∈ V ′ ∩ V (Ti) where 1 ≤ i ≤ k, v is a leaf in Ti.
During the progression of an edge search strategy for a tree T , a searcher

can be removed from a vertex without causing recontamination if all its incident
edges are clear. A searcher is called free when it is not currently occupying a
vertex of T .

A formal description of our algorithm EdgeSearchS for computing
ess(T, Vs) is given in Algorithm 1.

Algorithm 1. EdgeSearchS(T, Vs) (Edge Search with Starts)
Input: A tree T with a nonempty set of start vertices Vs.
Output: ess(T, Vs, Ec).

1: es ← 0; f ← 0; Ec ← ∅.
2: While there exists a moveable searcher on a vertex u ∈ Vs: let uv be the only

dirty edge incident with u; slide this searcher from u to v to clear the edge uv;
Vs ← (Vs \ {u}) ∪ {v}; Ec ← Ec ∪ {uv}.

3: While there exists a searcher on a clear vertex v ∈ Vs: remove the searcher from v,
Vs ← Vs \ {v} and f ← f + 1.

4: Compute T � Vs; let {T1, T2, . . . , Tk} be the set of the completely dirty trees in
T � Vs. Find a subtree, say T1, with the smallest edge search number, that is,
es(T1) ≤ es(Ti), for 2 ≤ i ≤ k.

5: Clear all edges of T1 using es(T1) searchers; Ec ← Ec ∪ E(T1); es ←
max{es, es(T1) − f}.

6: If Ec = E(T) then return es; otherwise, go to Step 2

We now consider the correctness of Algorithm 1. We will first prove that the
actions performed in Steps 2 and 3, are part of some optimal ESS search strategy.
We then prove that ess(T, Vs) is at least as large as the edge search number of
the subtree T1 which is cleared in Step 5. Once we prove the above in Lemmas
1 and 2, the correctness of Algorithm 1 follows. We begin with the following
property of the algorithm.

Lemma 1. For an instance (T, Vs) of the ESS problem, there is an optimal
ESS strategy for (T, Vs) that contains the actions performed in Steps 2 and 3 of
Algorithm 1.

From Lemma 1, we can prove the following result.

244 L. Wang et al.

Lemma 2. For an instance (T, Vs) of the ESS problem, let T1 be the subtree
computed in Step 4 of Algorithm 1. Then

ess(T, Vs) ≥ es(T1) − f,

where f is the number of free searchers removed from T in Step 3.

From Lemma 2, we can show one of our main results.

Theorem 1. For an instance (T, Vs) of the ESS problem, the value of es at the
termination of Algorithm 1 is equal to ess(T, Vs).

Theorem 2. Let (T, Vs) be an instance of the ESS problem with |V (T)| = n.
Then ess(T, Vs) can be computed in O(kn) time, where k is the number of times
when Step 4 is run in Algorithm 1.

Now we turn our attention to considering the monotonicity.

Theorem 3. The ESS problem is monotonic.

4 Fast Searching with Starts

In this section we consider the following fast searching problem with start
vertices.

Fast Searching with Starts (FSS)
Instance: A tree T and a set of start vertices Vs ⊆ V (T), such that each v ∈ Vs

is occupied by exactly one starting searcher.
Question: What is the minimum number of additional searchers for clearing T
in the fast searching model such that each vertex from Vs remains clear during
the entire search?

We define the FSS number of T with respect to Vs, denoted fss(T, Vs), as the
minimum number of additional searchers required to clear T in the FSS model.
An FSS search strategy is optimal if it uses fss(T, Vs) searchers to clear T in the
FSS model.

A description of our algorithm FastSearchS for computing fss(T, Vs) is
given in Algorithm 2.

Now we turn our attention to proving the correctness of our algorithm in the
following theorem.

Theorem 4. Let (T, Vs) be an instance of the FSS problem which is the input
of Algorithm 2. Then the output fs at the termination of the algorithm is equal
to fss(T, Vs).

Next, we show the running time of Algorithm 2.

Theorem 5. Let (T, Vs) be an instance of the FSS problem with |V (T)| = n.
Algorithm 2 can be implemented in O(n) time.

Constrained Graph Searching on Trees 245

Algorithm 2. FastSearchS(T, Vs) (Fast Search with Starts)
Input: A tree T , and a set of start vertices Vs.
Output: fss(T, Vs).

1: Initially fs ← 0.
2: If Vs contains a vertex u that is a leaf in T such that the component in T that

contains u has an odd vertex v ∈ V (T) \ Vs, then: update T by deleting all edges
on the path between u and v from T and deleting isolated vertices from T ; update
Vs by deleting the start vertices that are not on the current T ; repeat Step 2 until
the condition is not satisfied.

3: If there is a component T ′ in T such that all odd vertices of T ′ belong to Vs, then:
update T by deleting all edges and vertices of T ′ from T ; update Vs by deleting
the vertices that are not on the current T ; repeat Step 3 until the condition is not
satisfied.

4: If E(T) �= ∅, then:
(4.1) arbitrarily select two leaves u and v in the same component of T ;
(4.2) update T by deleting all edges on the path between u and v from T and deleting

isolated vertices from T ; update Vs by deleting the vertices that are not on the
current T ; fs ← fs + 1; go to Step 2.

5: Return fs.

5 Searching Trees with Halts

In this section we consider the searching problems where we have only halt
vertices. We formally state our problems as follows.

Edge/Fast Searching with Halts (ESH/FSH)
Instance: A tree T with a set of halt vertices Vh ⊆ V (T).
Question: What is the minimum number of searchers for clearing T in the
edge/fast searching model such that once a searcher occupies a vertex v ∈ Vh, v
remains occupied by at least one searcher for the remainder of the search?

The ESH number (resp. FSH number) of T with respect to Vh, denoted by
esh(T, Vh) (resp. fsh(T, Vh)), is defined as the minimum number of searchers
required to clear T under the ESH model (resp. FSH model).

Note that the ESH problem can be considered as an inversion of the ESS
problem. In the ESS problem, recall that initially all edges of the graph are dirty,
each v ∈ Vs is occupied by exactly one starting searcher and none of the vertices
in V \ Vs contains a searcher. Notice that a search strategy is a sequence of
searchers’ actions that result in every edge in the graph being cleared. Let s be
an action of searchers. The reverse of s, denote s−1, is defined as follows:

– If s is “sliding a searcher from v to u”, then s−1 is “sliding a searcher from u
to v”;

– if s is “removing a searcher from v”, then s−1 is “placing a searcher on v”;
– if s is “placing a searcher on v”, then s−1 is “removing a searcher from v”.

For a search strategy S = (s1, s2, . . . , sk), the inverse of S, denoted by S−1, is
defined as S−1 = (s−1

k , . . . , s−1
2 , s−1

1).

246 L. Wang et al.

Let S be an ESS strategy satisfying the following condition: during the pro-
gression of S, if there is a vertex v such that all edges incident with v are cleared
and v is occupied by searcher(s), then the searcher(s) are removed from v in the
next action(s). Such an ESS strategy S is called standard. It is not hard to see
that a standard ESS strategy has the following property.

Lemma 3. For any instance (T, Vs) of the ESS problem, there is a monotonic
standard ESS strategy that clears T using ess(T, Vs) searchers.

In the ESH problem, initially all edges of the graph are dirty; during the pro-
gression of an ESH strategy, once a searcher occupies a vertex v ∈ Vh, v remains
occupied by at least one searcher for the remainder of the search. Suppose that
S′ is an ESH strategy satisfying the following condition: during the progression of
S′, (1) if there is a vertex u ∈ Vh such that all edges incident with u are cleared
and u is occupied by at least two searchers, then one searcher stays still on u
and the other searcher(s) are removed from u in the next action(s); (2) if there
is a vertex v ∈ V \ Vh such that all edges incident with v are cleared and v is
occupied by at least one searcher, then all the searchers on v are removed from
v in the next actions. Such an ESH strategy S′ is called standard. Similarly to
Lemma 3, we can prove the following property for the ESH problem.

Lemma 4. For any instance (T, Vh) of the ESH problem, there is a monotonic
standard ESH strategy that clears T using esh(T, Vh) searchers.

From Lemmas 3 and 4, we can establish the following relations between an
ESS strategy and its reverse.

Lemma 5. Let (T, Vs) be an instance of the ESS problem and let (T, Vh) be an
instance of the ESH problem such that Vs = Vh. Then S is a monotonic standard
ESS strategy for (T, Vs) if and only if S−1 is a monotonic standard ESH strategy
for (T, Vh). Furthermore, esh(T, Vh) = ess(T, Vs) + |Vh|.

From Lemma 5, Theorems 1 and 2, we have the following result.

Theorem 6. Let (T, Vh) be an instance of the ESH problem with |V (T)| = n.
The search number esh(T, Vh) can be computed in O(kn) time by modifying Algo-
rithm 1, where k is the number of times when Step 4 is run in Algorithm 1.

The next result follows from Theorem 3 and Lemma 5.

Corollary 1. The ESH problem is monotonic.

We now consider the FSH problem. We first modify the FSS strategy by adding
removing actions after all edges are cleared. An enhanced FSS strategy is an FSS
strategy satisfying the following condition: all additional searchers are placed
before the first sliding action and all searchers are removed from the graph after
all edges are cleared. An enhanced FSS strategy has the following property.

Lemma 6. For any instance (T, Vs) of the FSS problem, there is an enhanced
FSS strategy that clears T using fss(T, Vs) searchers.

Constrained Graph Searching on Trees 247

In the remainder of this section, we consider the FSH problem, which can be
seen as an inversion of the FSS problem. We define an enhanced FSH strategy to
be an FSH strategy satisfying the following condition: all placing actions happen
before the first sliding action, and after all edges are cleared, remove searchers
from the graph such that no vertex in V (T) \ Vh contains a searcher and each
vertex in Vh is occupied by exactly one searcher.

Lemma 7. For any instance (T, Vh) of the FSH problem, there is an enhanced
FSH strategy that clears T using fsh(T, Vh) searchers.

Just like the ESH problem, we can define the reverse actions and the reverse
strategy in the same way.

Note that fast search strategies are always monotonic. Similarly to Lemma 5,
we can prove the following lemma.

Lemma 8. Let (T, Vs) be an instance of the FSS problem and let (T, Vh) be an
instance of the FSH problem such that Vs = Vh. Then S is an enhanced FSS
strategy for (T, Vs) if and only if S−1 is an enhanced FSH strategy for (T, Vh).
Furthermore, fsh(T, Vh) = fss(T, Vs) + |Vh|.

From Lemma 8, we have the following result.

Theorem 7. Let (T, Vh) be an instance of the FSH problem with |V (T)| = n.
We can compute fsh(T, Vh) in O(n) time by modifying Algorithm 2.

6 Edge Searching with Starts and Halts

In this section we study the following edge searching problem.

Edge Searching with Starts and Halts (ESSH)
Instance: A tree T , a nonempty set of start vertices Vs ⊆ V (T), and a nonempty
set of halt vertices Vh ⊆ V (T), such that Vh ∩Vs = ∅, and each v ∈ Vs is initially
occupied by exactly one starting searcher.
Question: What is the minimum number of additional searchers for clearing T
in the edge searching model such that once a searcher occupies a vertex v ∈ Vh,
v remains occupied by at least one searcher for the remainder of the search, and
each vertex from Vs remains clear during the entire search?

The ESSH number of T with respect to Vs and Vh, denoted essh(T, Vs, Vh),
is defined as the minimum number of additional searchers required to clear T
in the ESSH model. An ESSH search strategy is optimal if it uses essh(T, Vs, Vh)
searchers to clear T in the ESSH model.

Our algorithm for computing essh(T, Vs, Vh) is described in Algorithm 3.
Similar to Lemma 1, Algorithm 3 has the following property.

Lemma 9. For an instance (T, Vs, Vh) of the ESSH problem, there is an optimal
ESSH strategy for (T, Vs, Vh) that contains the actions performed in Steps 3 and
4 of Algorithm 3.

248 L. Wang et al.

Algorithm 3. EdgeSearchSH(T, Vs, Vh) (Edge Search with Starts and Halts)
Input: A tree T , a nonempty set of start vertices Vs and a nonempty set of halt vertices
Vh.
Output: essh(T, Vs, Vh).

1: esh ← 0; f ← 0; Ec ← ∅.
2: If Ec = E(T), then return esh.
3: While there exists a moveable searcher on vertex u ∈ Vs: let uv be the only dirty

edge incident with u; slide this searcher from u to v to clear the edge uv; Ec ←
Ec ∪ {uv}; if v ∈ Vh, then Vs ← Vs \ {u}, otherwise, Vs ← (Vs \ {u}) ∪ {v}; if v
contains two searchers then remove this searcher and f ← f + 1.

4: While there exists a searcher on a clear vertex v ∈ Vs: remove the searcher, Vs ←
Vs \ {v} and f ← f + 1.

5: Compute T � Vs; let T be the set of the completely dirty trees in T � Vs; let Th

be a subset of T such that T ′ ∈ Th if and only if T ′ contains a halt vertex, let
T ′ = T \ Th .

6: If T ′ �= ∅, then: find the subtree T1 ∈ T ′ that has the smallest edge search number
in T ′; clear T1 using es(T1) searchers; Ec ← Ec∪E(T1); esh ← max{esh, es(T1)−f};
go to Step 2.

7: Find the subtree T1 ∈ Th such that T1 maximizes the difference esh(Ti, Vh∩V (Ti))−
|Vh∩V (Ti)| for all Ti ∈ Th ; clear T1 using the method from Sect. 5; Ec ← Ec∪E(T1);
esh ← max{esh, esh(Ti, Vh ∩ V (Ti)) − f}; go to Step 2.

Now we show that the strategy used in Algorithm 3 that clears the subtree
T1 in Step 6 or Step 7 is a part of an optimal ESSH strategy.

Lemma 10. For an instance (T, Vs, Vh) of the ESSH problem, there is an opti-
mal ESSH strategy for (T, Vs, Vh) that contains the clearing actions performed in
Steps 6 and 7 of Algorithm 3.

By Lemmas 9 and 10, we can use induction to show the main result of this
section.

Theorem 8. For an instance (T, Vs, Vh) of the ESSH problem, the value of esh
at the termination of Algorithm 3 is equal to essh(T, Vs, Vh).

From Theorems 2 and 6, we have the following result.

Theorem 9. If (T, Vs, Vh) is an instance of the ESSH problem with |V (T)| = n,
then essh(T, Vs, Vh) can be computed in O(n2) time.

Similarly to Theorem 3, an analysis of the actions used by Algorithm 3 implies
the following:

Theorem 10. The ESSH problem is monotonic.

Constrained Graph Searching on Trees 249

7 Fast Searching with Starts and Halts

In this section we consider the following fast searching problem.

Fast Searching with Starts and Halts (FSSH)
Instance: A tree T , a nonempty set of start vertices Vs ⊆ V (T), and a nonempty
set of halt vertices Vh ⊆ V (T), such that Vh ∩Vs = ∅, and each v ∈ Vs is initially
occupied by exactly one starting searcher.
Question: What is the minimum number of additional searchers for clearing T
in the fast searching model such that once a searcher occupies a vertex v ∈ Vh,
v remains occupied by at least one searcher for the remainder of the search, and
each vertex from Vs remains clear during the entire search?

We define the FSSH number of T with respect to Vs and Vh, denoted
fssh(T, Vs, Vh), as the minimum number of additional searchers required to clear
T in the FSSH model. An FSSH search strategy is optimal if it uses fssh(T, Vs, Vh)
searchers to clear T in the FSSH model.

Algorithm 4. FastSearchSH(T, Vs, Vh) (Fast Search with Starts and Halts)
Input: A tree T , a nonempty set of start vertices Vs, and a nonempty set of halt vertices
Vh.
Output: fssh(T, Vs, Vh).

1: Initially fsh ← 0.
2: If Vh contains a vertex whose degree is even, place a searcher on it and fsh ← fsh+1;

repeat this step until the condition is not satisfied.
3: If Vs contains a vertex u that is a leaf on a component in T such that this component

contains an odd vertex v ∈ Vh, then: delete all edges of the path between u and v
from T ; delete isolated vertices from T ; update Vs and Vh by deleting the vertices
that are not on the current T ; repeat this step until the condition is not satisfied.

4: If there is a component T ′ in T that does not contain a halt vertex with odd
degree, then: let V ′

s be the set of start vertices in T ′ (V ′
s can be an empty set); call

FastSearchS(T ′, V ′
s) to compute fss(T ′, V ′

s); fsh ← fsh + fss(T ′, V ′
s); repeat this

step until the condition is not satisfied.
5: If there is a component T ′ in T that contains a halt vertex with odd degree but

does not contain a start vertex with odd degree, then: let V ′′ be the set of odd
halt vertices in T ′; call FastSearchS(T ′, V ′′) to compute fss(T ′, V ′′) (refer to
Lemma 8); fsh ← fsh + fss(T ′, V ′′) + |V ′′|; repeat this step until the condition is
not satisfied.

6: If E(T) �= ∅, then:
(6.1) arbitrarily select a leaf u and an odd vertex v ∈ Vh that are in the same

component of T ;
(6.2) update T by deleting all edges on the path between u and v from T and deleting

isolated vertices from T ; update Vs and Vh by deleting the vertices that are
not on the current T ; fsh ← fsh + 1; go to Step 3.

7: Return fsh.

Our method for computing fssh(T, Vs, Vh) is described in Algorithm 4.

250 L. Wang et al.

Theorem 11. For an instance (T, Vs, Vh) of the FSSH problem, the output fsh
at the termination of Algorithm 4 is equal to fssh(T, Vs, Vh).

Theorem 12. If (T, Vs, Vh) is an instance of the FSSH problem with |V (T)| = n,
then essh(T, Vs, Vh) can be computed in O((|Vs| + |Vh|)n) time.

Acknowledgments. Lusheng Wang’s research was supported by GRF grants for
Hong Kong Special Administrative Region, P.R. China (CityU 11210119 and CityU
11206120) and National Science Foundation of China (NSFC: 61972329). Boting Yang’s
research was supported in part by an NSERC Discovery Research Grant, Application
No.: RGPIN-2018-06800.

References

1. Alspach, B.: Sweeping and searching in graphs: a brief survey. Matematiche 59,
5–37 (2006)

2. Bienstock, D.: Graph searching, path-width, tree-width and related problems (a
survey). DIMACS Ser. Discrete Math. Theoret. Comput. Sci. 5, 33–49 (1991)

3. Bienstock, D., Seymour, P.: Monotonicity in graph searching. J. Algorithms 12,
239–245 (1991)

4. Bonato, A., Nowakowski, R.: The Game of Cops and Robbers on Graphs. American
Mathematical Society, Providence (2011)

5. Bonato, A., Yang, B.: Graph searching and related problems. In: Pardalos, P.,
Du, D.-Z., Graham, R. (eds.) Handbook of Combinatorial Optimization, 2nd edn.,
pp. 1511–1558. Springer, Heidelberg (2013). https://doi.org/10.1007/978-1-4419-
7997-1 76

6. Dereniowski, D., Diner, Ö., Dyer, D.: Three-fast-searchable graphs. Discret. Appl.
Math. 161(13), 1950–1958 (2013)

7. Dyer, D., Yang, B., Yaşar, Ö.: On the fast searching problem. In: Fleischer, R., Xu,
J. (eds.) AAIM 2008. LNCS, vol. 5034, pp. 143–154. Springer, Heidelberg (2008).
https://doi.org/10.1007/978-3-540-68880-8 15

8. Ellis, J., Sudborough, I., Turner, J.: The vertex separation and search number of
a graph. Inf. Comput. 113, 50–79 (1994)

9. Fomin, F., Thilikos, D.: An annotated bibliography on guaranteed graph searching.
Theor. Comput. Sci. 399(3), 236–245 (2008)

10. Kinnersley, N.: The vertex separation number of a graph equals its path-width.
Inf. Process. Lett. 42, 345–350 (1992)

11. LaPaugh, A.: Recontamination does not help to search a graph. J. ACM 40, 224–
245 (1993)

12. Makedon, F., Papadimitriou, C., Sudborough, I.: Topological bandwidth. SIAM J.
Algebraic Discret. Methods 6, 418–444 (1985)

13. Megiddo, N., Hakimi, S., Garey, M., Johnson, D., Papadimitriou, C.: The com-
plexity of searching a graph. J. ACM 35, 18–44 (1998)

14. Parsons, T.D.: Pursuit-evasion in a graph. In: Alavi, Y., Lick, D.R. (eds.) Theory
and Applications of Graphs. LNM, vol. 642, pp. 426–441. Springer, Heidelberg
(1978). https://doi.org/10.1007/BFb0070400

15. Stanley, D., Yang, B.: Fast searching games on graphs. J. Comb. Optim. 22, 763–
777 (2011)

https://doi.org/10.1007/978-1-4419-7997-1_76
https://doi.org/10.1007/978-1-4419-7997-1_76
https://doi.org/10.1007/978-3-540-68880-8_15
https://doi.org/10.1007/BFb0070400

Constrained Graph Searching on Trees 251

16. Xue, Y., Yang, B.: The fast search number of a cartesian product of graphs. Discret.
Appl. Math. 224, 106–119 (2017)

17. Xue, Y., Yang, B., Zhong, F., Zilles, S.: The fast search number of a complete
k-partite graph. Algorithmica 80(12), 3959–3981 (2018)

18. Xue, Y., Yang, B., Zilles, S., Wang, L.: Fast searching on cactus graphs. J. Comb.
Optim. 45, 1–22 (2023)

19. Yang, B.: Fast edge searching and fast searching on graphs. Theor. Comput. Sci.
412(12), 1208–1219 (2011)

20. Yang, B., Zhang, R., Cao, Y., Zhong, F.: Search numbers in networks with special
topologies. J. Interconnection Netw. 19, 1–34 (2019)

EFX Allocations Exist for Binary
Valuations

Xiaolin Bu, Jiaxin Song, and Ziqi Yu(B)

Shanghai Jiao Tong University, Shanghai, China
{lin bu,sjtu xiaosong,yzq.lll}@sjtu.edu.cn

Abstract. We study the fair division problem and the existence of
allocations satisfying the fairness criterion envy-freeness up to any item
(EFX). The existence of EFX allocations is a major open problem in the
fair division literature. We consider binary valuations where the marginal
gain of the value by receiving an extra item is either 0 or 1. Babaioff et al.
(2021) proved that EFX allocations always exist for binary and submod-
ular valuations. In this paper, by using completely different techniques,
we extend this existence result to general binary valuations that are not
necessarily submodular, and we present a polynomial time algorithm for
computing an EFX allocation.

Keywords: Fair Division · EFX · Binary Valuations

1 Introduction

Fair division studies how to allocate heterogeneous resources fairly among a
set of agents. It is a classical resource allocation problem that has been widely
studied by mathematicians, economists, and computer scientists. It has a wide
applications including school choices (Abdulkadiroğlu et al., 2005), course allo-
cations (Budish and Cantillon, 2012), paper review assignments (Lian et al.,
2018), allocating computational resources (Ghodsi et al., 2011), etc. Traditional
fair division literature considers resources that are infinitely divisible. The fair
division problem for infinitely divisible resources is also called the cake-cutting
problem, which dated back to Steinhaus (1948, 1949) and has been extensively
studied thereafter (Aumann and Dombb, 2015; Aumann et al., 2013; Brams et
al., 2012; Caragiannis et al., 2012; Cohler et al., 2011; Bei et al., 2012, 2017; Tao,
2022; Bu et al., 2023). Among those fairness notions, envy-freeness (EF) is most
commonly considered, which states that each agent values her own allocated
share at least as much as the allocation of any other agent. In other words, each
agent does not envy any other agent in the allocation.

Recent research in fair division has been focusing more on allocating indi-
visible items. It is clear that absolute fairness such as envy-freeness may not
be achievable for indivisible items. For example, we may have fewer items than
agents. Caragiannis et al. (2019b) proposed a notion that relaxes envy-freeness,
called envy-freeness up to any item (EFX), which requires that, for any pair of
c© Springer Nature Switzerland AG 2023
M. Li et al. (Eds.): IJTCS-FAW 2023, LNCS 13933, pp. 252–262, 2023.
https://doi.org/10.1007/978-3-031-39344-0_19

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-39344-0_19&domain=pdf
https://doi.org/10.1007/978-3-031-39344-0_19

EFX Allocations Exist for Binary Valuations 253

agents i and j, i does not envy j after the removal of any item from j’s bun-
dle. Despite a significant amount of effort (e.g., (Plaut and Roughgarden, 2020;
Chaudhury et al., 2020, 2021; Caragiannis et al., 2019a; Babaioff et al., 2021;
Berger et al., 2022; Akrami et al., 2022; Feldman et al., 2023)), the existence
of EFX allocations is still one of the most fundamental open problems in the
fair division literature. The existence of an EFX allocation is only known for
two agents (Plaut and Roughgarden, 2020) or three agents with more special
valuations (Chaudhury et al., 2020; Akrami et al., 2022).

For a general number of agents, the existence of EFX allocations is only
known for binary and submodular valuations, also known as matroid-rank valu-
ations (Babaioff et al., 2021). Under this setting, Babaioff et al. (2021) designed
a mechanism that outputs an EFX allocation and maximizes the Nash social
welfare at the same time, where the Nash social welfare of an allocation is the
product of all the agents’ values. Unfortunately, Babaioff et al.’s techniques can-
not be extended to the setting with binary valuations that are not necessarily
submodular, as it is possible that all Nash social welfare maximizing allocations
can fail to be EFX. For example, consider a fair division instance with n agents
and m > n items, and the valuations of the n agents are defined as follows:

– for agent 1, she has value 1 if she receives at least m − n + 1 items, and she
has value 0 otherwise;

– for each of the remaining n− 1 agents, the value equals to the number of the
items received.

It is easy to check that the valuations are binary in the instance above. However,
the allocation that maximizes the Nash social welfare must allocate m − n + 1
items to agent 1 and allocate one item to each of the remaining n− 1 agents, as
this is the only way to make the Nash social welfare nonzero. It is easy to check
that such an allocation cannot be EFX if m is significantly larger than n.

As a result, studying the existence of EFX allocations for general binary
valuations requires different techniques from Babaioff et al. (2021).

1.1 Our Results

We prove that EFX allocations always exist for general binary valuations which
may not be submodular. In addition, we provide a polynomial-time algorithm
to compute such an allocation. Our technique is based on the envy-graph pro-
cedure by Chaudhury et al. (2021). Chaudhury et al. (2021) proposed a pseudo-
polynomial-time algorithm that computes a partial EFX allocation such that
the number of the unallocated items is at most n − 1 and no one envies the
unallocated bundle. We show that, for binary valuations, we can always find a
complete EFX allocation, and it can be done in a polynomial time. In particular,
binary valuations enable some extra update steps which can further allocate the
remaining unallocated items while guaranteeing EFX property.

254 X. Bu et al.

1.2 Related Work

The existence of EFX allocations in general is a fundamental open problem in
fair division. Many partial progresses have been made in the previous literature.
Plaut and Roughgarden (2020) showed that EFX allocations exist if agents’
valuations are identical. By a simple “I-cut-you-choose” protocol, this result
implies EFX allocations always exist for two agents. Chaudhury et al. (2020)
showed that EFX allocations exist for three agents if the valuations are additive
(meaning that the bundle’s value equals to the sum of the values to the individual
items). The existence of EFX allocations for three agents is extended to slightly
more general valuation functions by Feldman et al. (2023).

For binary valuations, Babaioff et al. (2021) showed that EFX allocations
always exist if the valuation functions are submodular. More details about this
work have already been discussed in the introduction section, and this is the
work most relevant to our paper.

Since the existence of EFX allocations is a challenging open problem, many
papers study partial EFX allocations. Chaudhury et al. (2021) proposed a
pseudo-polynomial-time algorithm that computes a partial EFX allocation such
that the number of the unallocated items is at most n − 1 and no one envies
the unallocated bundle. For additive valuations, Caragiannis et al. (2019a)
showed that it is possible to obtain a partial EFX allocation that achieves 0.5-
approximation to the optimal Nash social welfare; Berger et al. (2022) showed
that, for four agents, we can have a partial EFX allocation with at most one
unallocated item.

Budish (2011) proposed envy-freeness up to one item (EF1), which is weaker
than EFX. It requires that, for any pair of agents i and j, there exists an item
from j’s allocated bundle whose hypothetical removal would keep agent i from
envying agent j. It is well-known that EF1 allocations always exist and can be
computed in polynomial time (Lipton et al., 2004; Budish, 2011).

Other than fairness, previous work has also extensively studied several effi-
ciency notions including social welfare, Nash social welfare, Pareto-optimality,
and their compatibility with fairness (Barman et al., 2018; Caragiannis et al.,
2019b; Murhekar and Garg, 2021; Aziz et al., 2023; Barman et al., 2020; Bu et
al., 2022; Bei et al., 2021b; Caragiannis et al., 2019a; Chaudhury et al., 2020).
We will not further elaborate on it here.

2 Preliminaries

Let N be the set of n agents and M be the set of m indivisible items. Each agent
i has a valuation function vi : 2M → R≥0 to specify her utility to a bundle, and
we abuse the notation to denote vi({g}) by vi(g). Each valuation function vi is
normalized and monotone:

– Normalized: vi(∅) = 0;
– Monotone: vi(S) ≥ vi(T) whenever T ⊆ S.

EFX Allocations Exist for Binary Valuations 255

We say a valuation function vi is binary if vi(∅) = 0 and vi(S ∪ {g}) − vi(S) ∈
{0, 1} for any S ⊆ M and g ∈ M \ S. In this paper, we will consider exclusively
binary valuation functions. Note that we do not require the valuation function
to be additive.

An allocation A = (A1, A2, . . . , An) is a partition of M , where Ai is allocated
to agent i. A partial allocation A = (A1, A2, . . . , An, P) is also a partition of M ,
where P is the set of unallocated items. Notice a partial allocation is an allocation
if and only if P = ∅. It is said to be envy-free if vi(Ai) ≥ vi(Aj) for any i and
j. However, an envy-free allocation may not exist when allocating indivisible
items, for example, when m < n. In this paper, we consider a relaxation of
envy-freeness, called envy-freeness up to any item (EFX) (Caragiannis et al.,
2019b).

Definition 1 (EFX). An allocation A = (A1, . . . , An) satisfies envy-freeness
up to any item (EFX) if vi(Ai) ≥ vi(Aj \ {g}) for any i, j and any item g ∈ Aj.

Definition 2 (Strong Envy). Given a partial allocation (A1, . . . , An, P), we
say that i strongly envy j if vi(Ai) < vi(Aj \{g}) for some g ∈ Aj. Notice that
we can extend this definition to a complete allocation by setting P = ∅.

It is clear that an allocation is EFX if and only if there is no strong envy
between every pair of agents.

Given an allocation A, its utilitarian social welfare, or simply social welfare,
is defined by

USW(A) =
n∑

i=1

vi(Ai).

2.1 Envy-Graph

Definition 3 (Envy-Graph). Given a partial allocation A = {A1, A2, . . . ,
An, P}, the envy graph G = (V,E) is defined as follows. Each vertex in V
is considered as an agent. For agents i, j ∈ N , (i, j) ∈ E if and only if i envies
j, i.e. vi(Ai) < vi(Aj).

Definition 4 (Cycle-Elimination). For a cycle u0 → u1 → · · ·uk−1 → u0,
the cycle-elimination procedure is performed as follows. Each agent ui

receives the bundle from ui+1 for i ∈ {0, 1, . . . , k − 1}(indices are modulo k).
This process terminates when there is no cycle in the envy-graph.

It can be verified that a cycle-elimination step will not break the EFX property,
since all bundles remain unchanged, what we have done is just exchanging these
bundles. Also, the social welfare will increase since every agent in the cycle gets
the bundle which is of higher value than her previous one.

Definition 5 (Source agent). An agent is called a source agent if the in-
degree of her corresponding vertex in the envy-graph is 0. In other words, an
agent is a source agent if no one envies her bundle.

256 X. Bu et al.

2.2 Binary Valuations and Pre-Envy

Recall that we focus on binary valuations in this paper. When valuation functions
are binary, there are some special properties compared with general valuation
functions. In this case, the marginal gain of a single item is 0 or 1.

Proposition 1. In an EFX allocation, if i envies j, then vi(Aj) − vi(Ai) = 1.

Proof. Since i envies j, vi(Aj) − vi(Ai) > 0. Also, suppose vi(Aj) − vi(Ai) ≥ 2.
Since we focus on the binary valuation profile, for any g ∈ Aj

vi(Ai) + 2 ≤ vi(Aj) ≤ vi(Aj \ {g}) + 1.

However, by the definition of EFX, we have vi(Ai) ≥ vi(Aj \{g}) for any g ∈ Aj ,
which leads to a contradiction. 	

Proposition 2. Suppose j does not envy i’s bundle, i.e., vj(Aj) ≥ vj(Ai). If j
envies i’s bundle after adding an item g to it, then vj(Aj) = vj(Ai)

Proof. If not so, then vj(Aj) ≥ vj(Ai) + 1. Then vj(Ai ∪ {g}) ≤ Vj(Ai) + 1 ≤
Vj(Aj), which contradicts to the fact that j will envy i’s bundle after adding an
item to it. 	

By Proposition 2, suppose a new edge (j, i) appears in the envy graph after
adding an item to i’s bundle. Then, if we do not add this item, we have vj(Aj) =
vj(Ai). To better illustrate this observation, we introduce the following notion
and consider this new relationship in the envy graph.

Definition 6 (Pre-Envy). Suppose i, j ∈ N are two agents. We say j pre-
envies i, if vj(Aj) = vj(Ai). In the envy graph, j pre-envies i will be represented
by j ��� i.

In the binary valuation profile, we can jointly consider envy and pre-envy. Let
G = (V,E,E′), where V is the set of all agents, E is the set of all envy relation-
ships and E′ are the pre-envy ones. If edges in E ∪E′ form a cycle, we can also
use the cycle-elimination procedure.

As a remark, for a cycle with pre-envy edges only, it may still exist after
applying the cycle-elimination procedure. For the cycle with pre-envy edges,
we do not always eliminate it. Our algorithm only eliminates this type of cycles
under some particular scenarios. We will provide more details in the next section.

As another remark, our notion of pre-envy edge is the same as the equality
edge in the paper (Bei et al., 2021a). We choose a different word in this paper
as we will sometimes use “pre-envy” as a verb.

3 Existence of EFX Allocations

In this section, we prove our main result.

Theorem 1. For any binary valuation profile (v1, . . . , vn), there exists an EFX
allocation, and it can be computed by a polynomial-time algorithm.

EFX Allocations Exist for Binary Valuations 257

3.1 The Main Algorithm

We describe our algorithm in Algorithm 1.

Algorithm 1: Computing an EFX allocation with binary marginal gain
Output: an EFX allocation (A1, A2, . . . , An, P) with P = ∅

1 Let Ai = ∅, i ∈ N , and P = M ;
2 while P �= ∅ do
3 find an arbitrary item g ∈ P ;
4 (A1, A2, . . . , An, P) ← Update(A, g);
5 Update the envy graph;
6 Perform the cycle-elimination procedure (Definition 4);
7 end

The algorithm starts with the allocation A = (A1, . . . , An, P) where A1 =
· · · = An = ∅. In each iteration, it will consider an unallocated item g and invoke
the update function Update(A, g). In particular, we attempt to allocate g to a
source agent by applying one of the two update rules U0 and U1. After that, we
update the envy graph and perform the cycle-elimination procedure to guarantee
the existence of source agents.

Rule U0. If there exists a source agent i ∈ N , such that no agent will strongly
envy Ai ∪ {g}. In this case, U0 just allocates g to this source agent i.

Rule U1. If U0 fails, then for every source agent i, adding g to i’s bundle will
cause at least one strong envy. Suppose {s1, . . . , sk} is the set of source agents.
By assumption, after adding g to s1’s bundle, some agents will strongly envy s1.

Before describing the update rule U1, we first define some notions which are
used later.

Definition 7 (Safe Bundle and Maximal Envious Agent). Suppose a par-
tial allocation A = (A1, A2, . . . , An, P), an agent i and an item g ∈ P satisfy
that

(a) A is a partial EFX allocation, and
(b) adding g to Ai causes someone strongly envy i.

We say that S ⊆ Ai ∪ {g} is a safe bundle with respect to A, i, g, if

1. There exists j ∈ N such that j envies S.
2. For each agent j that envies the bundle Ai∪{g} (i.e., vj(Ai∪{g}) > vj(Aj)),

j does not strongly envy S (i.e., for all items s ∈ S, vj(S \ {s}) < vj(Aj)).

The maximal envious agent is one of the agents who envies S.

Intuitively, a safe bundle S is a minimal subset of A∪{g} such that someone
still envies S. The minimal property guarantees that no one will strongly envy S.

We also remark that, according to our definition, the maximal envious agent
of A, i, g may be agent i herself.

258 X. Bu et al.

Lemma 1. For every triple (A, i, g) satisfying (a) and (b) in Definition 7, a
safe bundle S ⊆ Ai ∪{g} and the corresponding maximal envious agent a always
exists, and they can be found in a polynomial time.

We defer the proof of Lemma 1 to Sect. 3.2.
By Lemma 1, we can always find S ⊆ As1 ∪ {g} and the maximal envious

agent c1 ∈ N , such that

– Agent c1 envies S, i.e., vc1(S) > vc1(Ac1).
– No agent strongly envies S.

Since agent c1 does not envy s1 before g is added to As1 (as s1 is a source
agent) and envies s1 after the addition of g, according to Proposition 2, agent c1
pre-envies s1 in the allocation A (where g has not been added yet). We will use
c1 ���g s1 to denote this special pre-envy edge where c1 is a maximal envious
agent for A, s1, g. We say that ���g is a maximal envy edge.

Since we have assumed adding g to each source agent causes strong envy, by
Lemma 1, for each source agent si ∈ {s1, . . . , sk}, there exists an agent ci such
that ci ���g si. It is possible that si ���g si. In this case, we add a self-loop to
the envy graph.

In the lemma below, we show that, if the pre-condition of U0 fails, then there
must exist a cycle that only consists of edges in the original G and the maximal
envy edges.

Lemma 2. For a partial EFX allocation A and an unallocated item g, if Ai∪{g}
is strongly envied by someone for every source agent i, there must exist a cycle
containing at least one source agent that only consists of edges in the original
G and the maximal envy edges. Moreover, the cycle can be found in polynomial
time.

Proof. We have shown that, for any si, there exists ci such that ci ���g si. We
start from s1, and we find c1 such that c1 ���g s1. We find the source s2 from
which c1 is reachable, and we find c2 ���g s2. We keep doing this: whenever
we are at ci, we find the source si+1 from which ci is reachable; and we find
ci+1 such that ci+1 ���g si+1. Notice that we are traveling backward along a
path that consists only of graph edges and maximal envy edges. We can keep
traveling until we find a source that has been already visited before, in which
case we have found a cycle.

It is also easy to check that the above procedure can be done in polynomial
time. 	

Next, we find an arbitrary source agent s in the cycle described in Lemma 2.
We apply Lemma 1 and find a safe bundle S ⊆ As ∪ {g}. We replace As by S,
and perform an operation that is similar to cycle-elimination: let each agent in
the cycle receives the bundle of the next agent. In particular, the agent preceding
s is the one that maximally envy s; she will receive S and get a higher value.

The lemma below justifies the correctness of U1.

EFX Allocations Exist for Binary Valuations 259

Lemma 3. After applying the update rule U1, the partial allocation remains
EFX.

Proof. In the update, a bundle As is replaced by S. Definition 7 implies that no
one strongly envies S and the agent in the cycle preceding s receives a higher
value by getting S. Each remaining agent in the cycle receives a weakly higher
value. Thus, the resultant allocation is EFX after the update for the same reason
that the cycle-elimination procedure does not destroy the EFX property.

Algorithm 2: The update rules for allocation A and item g ∈ P

1 Function Update(allocation A = (A1, . . . , An, P), item g ∈ P)
2 if there exists a source agent i such that adding g to Ai does not break

the EFX property, perform U0(A, g);
3 otherwise, perform U1(A, g);
4 end
5 Function U0(A, g)
6 Allocate g to i: Ai ← Ai ∪ {g};
7 Update pool: P ← P \ {g};
8 end
9 Function U1(A, g)

10 find a cycle C described in Lemma 2;
11 for a source agent s on C, find the safe bundle S for (A, s, g) by

Lemma 1;
12 let As ← S and P ← P ∪ As ∪ {g} \ S;
13 let each agent on C receive the bundle of the next agent;
14 end

3.2 Proof of Theorem 1

We first prove the fact that a safe bundle always exists and can be calculated
in polynomial time. Notice that the updating rule U1 makes sense if and only if
Lemma 1 holds.

Proof of Lemma 1: Suppose SE := {a1, a2, . . . , ak} is the set of agents who
strongly envy i after adding g to Ai. In other words, they strongly envy Ai∪{g}.
Firstly, we claim that there exists S ⊆ Ai ∪ {g} such that

va1(S) > va1(Aa1) ≥ va1(S \ {g′}) for any g′ ∈ S.

In other words, a1 envies S but does not strongly envy S.
The set S can be found by letting agent a1 iteratively remove an item from

Ai ∪{g} until agent a1 does not strongly envy the bundle. If S does not exist, it
must be that 1) agent a1 strongly envies some S′ ⊆ Ai ∪ {g}, and 2) removing
any single item g′ from S′ will cause a1 no longer envy this bundle, i.e.,

va1(S
′ \ {g′}) ≤ va1(Aa1).

However, this contradicts to the fact that a1 strongly envies S′. Hence, such S
always exists.

260 X. Bu et al.

Update SE such that it is the set of agents who strongly envy S. By the above
procedure, a1 is no longer in SE. If SE is empty now, then S is the safe bundle
and a1 is the corresponding maximal envious agent. If SE is not empty, then
choose a′ ∈ SE and do the same procedures above. After this, S and SE will
be further reduced and a′ is no longer in SE. Since the size of SE is decreased
at least by 1 every round, there exists an agent aj ∈ SE who is the last one to
remove items from the bundle. Suppose S ⊆ Ai ∪ {g} to be the final version of
the bundle after item removals. Then S is the safe bundle and aj ∈ SE is the
corresponding maximal envious agent. The following algorithm illustrates these
processes. Here we use S, a to store the last version of the bundle and the last
agent who remove items, respectively.

Algorithm 3: Computing safe bundle and corresponding the maximal
envious agent
Input: A partial allocation A, i, g
Output: a safe bundle S and a maximal envious agent a

1 S ← Ai ∪ {g};
2 let SE be the set of agents who strongly envies S;
3 while SE is non-empty do
4 Find an index j, such that aj ∈ SE;
5 While aj strongly envies S, ask aj to remove an item from S such that

vaj
(Aaj

) < vaj
(S);

6 If some items in S have been removed in the process above, update
a ← aj ;

7 Remove aj from SE;
8 end
9 return S, a

Notice that this algorithm will perform at most n rounds, as at least one agent
is removed from SE in each iteration. Each round obviously costs a polynomial
time. Then the safe bundle and the maximal envious agent can be found in
polynomial time. 	

Proof of Theorem 1: Firstly, the social welfare is increased by at least 1 after
each application of U1(A, g) in update(A, g): for U1, Definition 7 and Lemma 1
ensure that the agent receiving the safe bundle S gets a strictly higher value than
before. Secondly, U0 can be applied for at most m times between two applications
of U1, as there can be at most m items in P and U0 decreases |P | by exactly 1.
Since the social welfare can be at most mn, the algorithm terminates in at most
mn applications of U1. Therefore, the algorithm terminates with at most m2n
applications of U0 or U1, which runs in a polynomial time.

Also, the EFX property is preserved after each round. Condition U0 clearly
preserves the EFX by its definition. Lemma 3 guarantees that the allocation
remains EFX after applying U1.

Hence, an EFX allocation always exists and it can be found in polynomial
time. 	

EFX Allocations Exist for Binary Valuations 261

4 Conclusion

In this paper, we studied the existence of an EFX allocation under a binary
valuation profile. In particular, we proved that such an EFX allocation always
exists and proposed a polynomial-time algorithm to compute it. Compared with
the general valuation, “pre-envy” makes sense in binary valuation profiles and
gives us extra properties to cope with EFX.

References

Abdulkadiroğlu, A., Pathak, P.A., Roth, A.E.: The New York City high school match.
Am. Econ. Rev. 95(2), 364–367 (2005)

Akrami, H., Chaudhury, B.R., Garg, J., Mehlhorn, K., Mehta, R.: EFX allocations:
Simplifications and improvements. arXiv preprint arXiv:2205.07638 (2022)

Aumann, Y., Dombb, Y.: The efficiency of fair division with connected pieces. ACM
Trans. Econ. Comput. 3(4), 1–16 (2015)

Aumann, Y., Dombb, Y., Hassidim, A.: Computing socially-efficient cake divisions.
In: Proceedings of the International Conference on Autonomous Agents and Multi-
Agent Systems (AAMAS), pp. 343–350 (2013)

Aziz, H., Huang, X., Mattei, N., Segal-Halevi, E.: Computing welfare-maximizing fair
allocations of indivisible goods. Eur. J. Oper. Res. 307(2), 773–784 (2023)

Babaioff, M., Ezra, T., Feige, U.: Fair and truthful mechanisms for dichotomous val-
uations. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 35,
pp. 5119–5126 (2021)

Barman, S., Bhaskar, U., Shah, N.: Optimal bounds on the price of fairness for indi-
visible goods. In: Chen, X., Gravin, N., Hoefer, M., Mehta, R. (eds.) WINE 2020.
LNCS, vol. 12495, pp. 356–369. Springer, Cham (2020). https://doi.org/10.1007/
978-3-030-64946-3 25

Barman, S., Krishnamurthy, S.K., Vaish, R.: Finding fair and efficient allocations. In:
Proceedings of the ACM Conference on Economics and Computation (EC), pp. 557–
574 (2018)

Bei, X., Chen, N., Hua, X., Tao, B., Yang, E.: Optimal proportional cake cutting
with connected pieces. In: Proceedings of AAAI Conference on Artificial Intelligence
(AAAI), pp. 1263–1269 (2012)

Bei, X., Chen, N., Huzhang, G., Tao, B., Wu, J.: Cake cutting: envy and truth. In:
IJCAI, pp. 3625–3631 (2017)

Bei, X., Li, Z., Liu, J., Liu, S., Lu, X.: Fair division of mixed divisible and indivisible
goods. Artif. Intell. 293, 103436 (2021a)

Bei, X., Lu, X., Manurangsi, P., Suksompong, W.: The price of fairness for indivisible
goods. Theory Comput. Syst. 65(7), 1069–1093 (2021b)

Berger, B., Cohen, A., Feldman, M., Fiat, A.: Almost full EFX exists for four agents. In:
Proceedings of the AAAI Conference on Artificial Intelligence, vol. 36, pp. 4826–4833
(2022)

Brams, S.J., Feldman, M., Lai, J., Morgenstern, J., Procaccia, A.D.: On maxsum fair
cake divisions. In: Proceedings of the AAAI Conference on Artificial Intelligence
(AAAI), pp. 1285–1291 (2012)

Bu, X., Li, Z., Liu, S., Song, J., Tao, B.: On the complexity of maximizing social welfare
within fair allocations of indivisible goods. arXiv preprint arXiv:2205.14296 (2022)

http://arxiv.org/abs/2205.07638
https://doi.org/10.1007/978-3-030-64946-3_25
https://doi.org/10.1007/978-3-030-64946-3_25
http://arxiv.org/abs/2205.14296

262 X. Bu et al.

Xiaolin, B., Song, J., Tao, B.: On existence of truthful fair cake cutting mechanisms.
Artif. Intell. 319(2023), 103904 (2023). https://doi.org/10.1016/j.artint.2023.103904

Budish, E.: The combinatorial assignment problem: approximate competitive equilib-
rium from equal incomes. J. Polit. Econ. 119(6), 1061–1103 (2011)

Budish, E., Cantillon, E.: The multi-unit assignment problem: theory and evidence
from course allocation at harvard. Am. Econ. Rev. 102(5), 2237–2271 (2012)

Caragiannis, I., Gravin, N., Huang, X.: Envy-freeness up to any item with high nash
welfare: the virtue of donating items. In: Proceedings of the ACM Conference on
Economics and Computation (EC), pp. 527–545 (2019a)

Caragiannis, I., Kaklamanis, C., Kanellopoulos, P., Kyropoulou, M.: The efficiency of
fair division. Theory Comput. Syst. 50(4), 589–610 (2012)

Caragiannis, I., Kurokawa, D., Moulin, H., Procaccia, A.D., Shah, N., Wang, J.: The
unreasonable fairness of maximum nash welfare. ACM Trans. Econ. Comput. 7(3),
1–32 (2019b)

Chaudhury, B.R., Garg, J., Mehlhorn, K.: EFX exists for three agents. In: Proceedings
of the ACM Conference on Economics and Computation (EC), pp. 1–19 (2020)

Chaudhury, B.R., Kavitha, T., Mehlhorn, K., Sgouritsa, A.: A little charity guarantees
almost envy-freeness. SIAM J. Comput. 50(4), 1336–1358 (2021)

Cohler, Y.J., Lai, J.K., Parkes, D.S., Procaccia, A.D.: Optimal envy-free cake cutting.
In: Proceedings of AAAI Conference on Artificial Intelligence (AAAI), pp. 626–631
(2011)

Feldman, M., Mauras, S., Ponitka, T.: On optimal tradeoffs between EFX and nash
welfare. arXiv preprint arXiv:2302.09633 (2023)

Ghodsi, A., Zaharia, M., Hindman, B., Konwinski, A., Shenker, S., Stoica, I.: Dom-
inant resource fairness: fair allocation of multiple resource types. In: Proceedings
of USENIX Symposium on Networked Systems Design and Implementation (NSDI)
(2011)

Lian, J.W., Mattei, N., Noble, R., Walsh, T.: The conference paper assignment problem:
using order weighted averages to assign indivisible goods. In: Proceedings of the
AAAI Conference on Artificial Intelligence (AAAI), pp. 1138–1145 (2018)

Lipton, R., Markakis, E., Mossel, E., Saberi, A.: On approximately fair allocations of
indivisible goods. In Proceedings of the ACM Conference on Electronic Commerce
(EC), pp. 125–131 (2004)

Murhekar, A., Garg, J.: On fair and efficient allocations of indivisible goods. In: Pro-
ceedings of the AAAI Conference on Artificial Intelligence (AAAI), pp. 5595–5602
(2021)

Plaut, B., Roughgarden, T.: Almost envy-freeness with general valuations. SIAM J.
Discrete Math. 34(2), 1039–1068 (2020)

Steinhaus, H.: The problem of fair division. Econometrica 16(1), 101–104 (1948)
Steinhaus, H.: Sur la division pragmatique. Econometrica 17(1949), 315–319 (1949)
Tao, B.: On existence of truthful fair cake cutting mechanisms. In: Proceedings of the

23rd ACM Conference on Economics and Computation, pp. 404–434 (2022)

https://doi.org/10.1016/j.artint.2023.103904
http://arxiv.org/abs/2302.09633

Maximize Egalitarian Welfare for Cake
Cutting

Xiaolin Bu and Jiaxin Song(B)

Shanghai Jiao Tong University, Shanghai, China
{lin bu,sjtu xiaosong}@sjtu.edu.cn

Abstract. A major problem in cake-cutting is how to both fairly and
efficiently allocate the cake. Egalitarian welfare, which prioritizes agents
with the worst utilities, is a compelling notion that provides guaran-
tees for both fairness and efficiency. In this paper, we investigate the
complexity of finding a maximized egalitarian welfare (MEW) allocation
when all the value density functions are piecewise-constant. We design an
FPT (fixed-parameter tractable) algorithm (with respect to the number
of the agents) for computing an MEW allocation when all the bundles
are requested to be contiguous. Furthermore, we show that this problem
is NP-hard to approximate to within any constant factor.

Keywords: Cake-cutting · Egalitarian Welfare · Fair Division

1 Introduction

The cake-cutting problem is one of the most fundamental research problems
explored in social science, economics, computer science, and other related
fields (Steinhaus 1948, 1949; Aumann and Dombb 2015; Brams et al. 2012;
Cohler et al. 2011; Bei et al. 2012, 2017; Tao 2022). Its primary objective is to
fairly distribute a heterogeneous and divisible resource (also called a cake) among
a group of agents, each with their own preferences for different portions of the
resource. Although the setting seems simple, the problem becomes interesting
and nontrivial when specific properties (e.g., fairness, efficiency, truthfulness,
etc.) must be met by the output allocation.

How to design an allocation that obtains a high efficiency when fairness is
guaranteed is an important research question of cake-cutting and has garnered
significant interest due to its wide range of applications (e.g., network routing,
public traffic, etc.). Many previous studies have attempted to investigate the
correlation between fairness and efficiency. For example, there are some topics
like the price of fairness (Bertsimas et al. 2011; Roughgarden 2010; Caragiannis
et al. 2012), the complexity of computing the most efficient allocation subject
to fairness constraints (Cohler et al. 2011; Bei et al. 2012; Aumann et al. 2013).
The term “efficiency” mentioned above mostly refers to social welfare, which
is defined as the sum of the agents’ utilities, and the above-mentioned papers

c© Springer Nature Switzerland AG 2023
M. Li et al. (Eds.): IJTCS-FAW 2023, LNCS 13933, pp. 263–280, 2023.
https://doi.org/10.1007/978-3-031-39344-0_20

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-39344-0_20&domain=pdf
http://orcid.org/0009-0008-3997-4650
http://orcid.org/0000-0002-4847-9183
https://doi.org/10.1007/978-3-031-39344-0_20

264 X. Bu and J. Song

formulate the problem as a constrained optimization problem where a fairness
notion is served as a constraint and the social welfare is the object that we would
like to optimize.

Other than considering a combination of two separate notions (one for effi-
ciency and one for fairness), there are other allocation criteria/measurements
that embed both fairness and efficiency. Egalitarian welfare, defined as the mini-
mum utility among all agents, is a measurement of both efficiency and fairness. It
is a natural measurement of allocation efficiency. Moreover, from a fairness per-
spective, acquiring excess value for an arbitrary individual may not contribute
to the improvement of egalitarian welfare, as it primarily focuses on the agent
with the lowest value, so we tend to allocate the remaining resources to this
specific agent to make the allocation fairer. In addition, an allocation that maxi-
mizes the egalitarian welfare also satisfies some common fairness criteria such as
proportionality, where an allocation is proportional if each agent receives a share
that is worth at least 1/n fraction of her total value of the entire cake (where n is
the number of the agents).1 In our work, we study the complexity of computing
an allocation with maximum egalitarian welfare (MEW) in the setting where all
the value density functions are piecewise-constant and all the agents are hungry.

Comparison with Other Notions. Other than egalitarian welfare, other notable
notions concerning both efficiency and fairness are Nash welfare and leximin.

Nash welfare is defined as the product of agents’ utilities. It is known that
an allocation maximizing the Nash welfare satisfies the fairness notion envy-
freeness (Kelly 1997), which is stronger than the proportionality mentioned ear-
lier. Compared with Nash welfare, egalitarian welfare puts more focus on the
least happy agent.

An allocation is leximin if it maximizes the utility to the least happy agent,
and, subject to this, it maximizes the utility to the second least happy agent, and
so on. Clearly, a leximin allocation always maximizes egalitarian welfare, and the
notion of leximin places further requirements on the other agents. However, in
many settings, maximizing egalitarian welfare is already NP-hard. We can then
study the design of approximation algorithms for maximizing egalitarian welfare.
Unlike egalitarian welfare which has a single objective to maximize, it is unclear
how to define the approximation version of leximin.

1.1 Related Work

Fairness Notions. Apart from egalitarian welfare, a well-studied fairness notion
is proportionality, which states that each agent receives at least an average value
from her perspective. When there are two agents, proportionality can be easily
achieved through the “I cut, you choose” algorithm, where the first agent cuts

1 It is well known that a proportional allocation always exists even if we require each
agent to receive a connected piece (see, e.g., (Dubins and Spanier 1961)). Therefore,
there exists an allocation with egalitarian welfare of at least 1/n, and the allocation
with optimal egalitarian welfare is proportional.

Maximize Egalitarian Welfare for Cake Cutting 265

the cake into two pieces that she thinks to be equal, then the second agent
chooses one piece that she thinks of higher value. For any number of agents, two
well-known algorithms to guarantee proportional are Dubins-Spanier Dubins and
Spanier (1961) devised in 1961 and Even-Paz Even and Paz (1984) in 1984.

Another fairness notion is envy-freeness, which means each agent prefers her
bundle over any other agent. It is a stronger notion than proportionality, and
an envy-free allocation is also proportional. For two agents, the “I cut, you
choose” still works. However, Dubins-Spanier and Even-Paz algorithms for gen-
eral number of agents are not envy-free. For three agents, an elegant algorithm to
compute an envy-free allocation is Selfridge-Conway (Brams and Taylor 1995).
Furthermore, it has been confirmed that for any number of agents, an envy-free
allocation always exists Aziz and Mackenzie (2017), even if only n − 1 cuts are
allowed (Brams and Taylor 1995).

The third wide-studied notion is equitability. Incomparable to envy-freeness
or proportionality, each agent is assigned a piece of the same value. An equitable
allocation can be achieved by Austin moving-knife procedure for two agents, and
if only one cut is allowed, it can be calculated with full knowledge of the partners’
valuations Jones (2002); Brams et al. (2006). Further, if more than two cuts are
allowed, we can achieve an equitable allocation that is also envy-free Barbanel
and Brams (2011). Austin moving-knife and full revelation procedure can also
be extended to any number of agents, while the latter one still works under con-
tiguous constraints. However, equitability and envy-freeness are not compatible
under such constraints for three or more agents Brams et al. (2006).

Price of Fairness. The price of fairness (POF) is defined as the worst-case ratio
between the optimal welfare obtained and the maximum welfare obtained by a
fair allocation. In Caragiannis et al. (2012)’s work, they have shown, the price of
envy-freeness and proportionality for two agents is 8 − 4

√
3. For n agents, they

show the price of proportionality is Θ(
√

n) and the price of equitability is Θ(n).
The price of proportionality directly implies that the lower bound of the price
of envy-freeness is Ω(

√
n) as envy-freeness implies proportionality. Bertsimas et

al. (2011) further shows the upper bound of the price of envy-freeness is O(
√

n),
concluding the price of envy-freeness is also Θ(

√
n).

MEW in Fair Division. In cake-cutting, the problem of computing MEW (Max-
imum Egalitarian Welfare) has been proven to have a 2-inapproximation ratio
by Aumann et al. (2013).2 With the number of agents being the parameter, they
also developed an FPT PTAS (Polynomial Time Approximation Scheme) for
egalitarian welfare objectives. For indivisible goods, the best-known polynomial-
time algorithm can achieve an approximation factor of O

(√
n log3 n

)
(Asadpour

and Saberi 2010), and this problem has been proven to have a 2-inapproximation
ratio (Aumann et al. 2013).

2 The 2-inapproximation result is in the arXiv version of the paper Aumann et al.
(2013).

266 X. Bu and J. Song

1.2 Our Results

In our paper, we mainly study the complexity of computing MEW allocation in
two settings. In the first setting, each bundle is not required to be contiguous
(i.e. each agent could receive a lot of scattered intervals). This case is relatively
straightforward, and we demonstrate that the MEW allocation can be directly
obtained through linear programming. In the second setting, a stricter constraint
is imposed where each bundle must be contiguous. Despite the moving-knife
procedure being able to output an allocation with 1

n egalitarian welfare, it fails
to extend for computing an MEW allocation. We design an FPT algorithm
with respect to the number of agents for computing an MEW allocation, which
improves the previous result of FPT PTAS by Aumann et al. (2013). Finally, we
prove that this problem is NP-hard to approximate to within any constant factor
by a reduction from 3-SAT, which significantly improves the 2-inapproximability
by Aumann et al. (2013).

2 Preliminaries

Let [n] = {1, . . . , n}. In the cake-cutting problem, the cake is modeled as an inter-
val [0, 1] and is required to allocate to a set of N = [n] agents. Each agent i has a
non-negative value density function fi over the cake [0, 1]. In particular, agent i’s
utility vi to a subset X of the cake is defined as vi(X) =

∫
X

fi(x)dx. Through-
out this paper, we assume her value density function is piecewise-constant, that
is, fi is constant on each contiguous interval separated by a finite number of
breakpoints. We also assume the agents are hungry and normalized, that is, fi

is strictly positive at any point of [0, 1] and for any i ∈ [n], vi ([0, 1]) = 1.
An allocation A = (A1, . . . , An) is a partition of the cake, where Ai ∩Aj = ∅

for any i, j and ∪n
i=1Ai = [0, 1]. Among those bundles, bundle Ai is allocated to

agent i. We say an allocation A = (A1, . . . , An) is equitable if all the agents get
the exact same utility (by their own valuations). Formally, for each i, j ∈ [n],
vi(Ai) = vj(Aj). Bundle Ai is called contiguous if it contains a single interval.
An allocation with contiguous pieces requires that each bundle in the allocation
is contiguous, so such an allocation contains only n − 1 cuts.

The egalitarian welfare (EW) of an allocation A is defined as

EW(A) � mini∈[n]vi(Ai).

Clearly, if an allocation A is proportional (i.e. vi(Ai) ≥ 1
nvi([0, 1])), then EW(A)

is at least 1
n . A common approach for computing a proportional allocation is

called moving-knife procedure, which is defined as follows,

Definition 1 (Moving-knife Procedure). We set a threshold θ = 1
n , and let

a knife moves from the left of the cake to the right. An agent calls ‘stop’ when
her value to the interval left to the knife reaches θ, and we cut the cake and
allocate it to this agent.

Maximize Egalitarian Welfare for Cake Cutting 267

In our paper, we mainly study the problem of computing an allocation that
maximizes egalitarian welfare (MEW). We respectively discuss two scenarios
when the bundles could be non-contiguous and all of them must be contiguous.

Our technique for solving the above problem includes linear programming,
and it is known that an optimal vertex solution can be found in polynomial time.

Lemma 1 (Güler et al. (1993)). For a linear program max{c�x : Ax ≤
b,x ≥ 0}, an optimal solution (if exists) can be found in polynomial time.

To warm up, let us consider a simple scenario where each bundle may not be
contiguous. In Theorem 1, we demonstrate that the MEW allocation can always
be efficiently obtained via linear programming in polynomial time.

Theorem 1. If all the bundles are not required to be contiguous, an MEW allo-
cation can be found in polynomial time.

Proof. First, assume all the different breakpoints of f1, . . . , fn are 0 = p0 < p1 <
. . . < pm = 1, where m ∈ Z

+. Let variable xi,k represent the fractional ratio
that agent i receives from the interval [pk−1, pk]. Consider the following linear
program:

max EW(A)
subject to x1,k + . . . + xn,k = 1, k ∈ [m] (1)

m∑

k=1

xi,kvi ([pk−1, pk]) ≥ EW(A), i ∈ [n] (2)

0 ≤ xi,k ≤ 1, i ∈ [n], k ∈ [m] (3)

Within the above linear program, the constraints (1) ensures each interval
is exactly allocated and the constraints (2) ensure each agent’s utility is no less
than the objective function EW(A). Clearly, {xi,k}i∈[n],k∈[m] could describe an
allocation and it is MEW. Since the linear program can be solved in polynomial
time, the theorem concludes. �

3 Maximize Egalitarian Welfare with Contiguous Pieces

In this section, we will discuss our results when only n − 1 cuts are allowed (i.e.
each agent’s bundle should be contiguous). As mentioned before, the moving-
knife procedure could find a proportional and contiguous allocation, whose egal-
itarian welfare is already 1

n . Inspired by this, a natural idea to compute an MEW
allocation is to first guess the value of the egalitarian welfare, then adopt the
moving-knife algorithm where θ is set as the guessed value. If the moving-knife
procedure works, we can trivially achieve a PTAS algorithm. Unfortunately,
when the threshold θ exceeds 1

n , moving-knife may fail to find an allocation
with egalitarian welfare θ when such allocation exists.

268 X. Bu and J. Song

f1(x) =

{
2 − ε, x ∈ [0, 1

4
] ∪ [3

4
, 1]

ε, x ∈ (1
4
, 3
4
).

f2(x) = f3(x) =

{
4
3

− 2ε
3

, x ∈ [0, 3
4
]

2ε, otherwise.

Counter-Example of Moving-Knife. Consider a counter-example with three
agents. Assume ε is sufficiently small, and we are given the value density func-
tions as follows,

In the example, the optimal allocation is A1 = [34 , 1], A2 = [0, 3
8] and A3 =

[38 , 3
4] with MEW as 1

2 − ε
4 . However, it cannot be found through the moving-knife

algorithm, as agent 1 first calls stop at 1
4 , and assume we allocate the second

interval with value 4
3 − ε

3 to agent 2. When ε → 0, agent 3 can only receive the
remaining part with value

(
4
3 − 2ε

3

) × (34 − 1
4 − 3

8) = 1
6 − ε

12 < 1
2 − ε

4 . Further, in
Sect. 3.2, we provide a constant-inapproximability result.

3.1 Agents with Fixed Permutation

We first consider an easy case when the order of agents receiving the cake is
fixed, that is, for two agents i and j where i < j in the permutation, i needs to
receive a bundle before j. We show that the optimal allocation could be found
in polynomial time. An observation is that we could directly extend it to the
general case of constant n by enumerating all the permutations and handling
each of them.

Next, we begin to present our algorithm for a fixed permutation. As shown
in Algorithm 1, we design a linear programming-based algorithm to compute
an optimal allocation. In our latter analysis, without loss of generality, we
assume the fixed permutation is just (1, 2, . . . , n). We define a series of knifes
{δ0, δ1, . . . , δn} where δi ∈ [0, 1], and let δ0 = 0. For each agent i, we consider
allocating the interval [δi−1, δi] to her. Denote all the different breakpoints of
f1, . . . , fn by 0 < p0 < p1 < · · · < pm = 1, where m ∈ Z

+. Let di be the distance
between knife δi and its right-closest breakpoint pσ(i) (i.e. di � minpk

(pk − δi)
where pk > δi, and pσ(i) � arg minpk

(pk − δi)). Specifically, if δi = 1, by this
definition, pσ(i) and di would be 1 and 0, respectively.

max ŷ (4)
subject to 0 ≤ xi ≤ di, i ∈ [n] (5)

v1,σ(1)x1 = ŷ, (6)
vi+1,σ(i+1)xi+1 − vi+1,σ(i)xi = ŷ, i ∈ [n − 1]. (7)

Now, we move each knife δi from left to right within distance di to achieve
a maximum increase in egalitarian welfare using linear program 4. In the linear
program, we use ŷ to denote the increase of egalitarian welfare and use xi to
denote the distance that knife δi moves. For simplicity, we denote agent i’s
value to an interval [xj , xj+1] with a constant value density as vi,j+1. The linear

Maximize Egalitarian Welfare for Cake Cutting 269

Algorithm 1: Algorithm for computing maximum egalitarian welfare
Input: Each agent i’s value density function fi with all the breakpoints pi∈[m],

and a permutation of agents (i1, i2, . . . in).
Output: An allocation A that maximizes egalitarian welfare.

1 Let y ← 0 denote the maximum egalitarian welfare under this permutation;
2 Let δk ← 0 denote the knife position for agent ik for each k ∈ [n];
3 Let ŷ ← ∞ denote the increment of y within each iteration;
4 while ŷ �= 0 do
5 Let pσ(k) denote the right-closest breakpoint of δk and dk ← pσ(k) − δk;
6 Run linear program 4 to solve the optimal ŷ and xk;
7 Update δk ← δk + xk and y ← y + ŷ ;

8 Let Ai ← [δi−1, δi] for each i ∈ [n];
9 return A = (A1, . . . , An)

program is subject to, first, each agent’s utility to her bundle has the same
increase ŷ, hence, the output allocation is equitable. Second, to compute such
an increase for each agent, we need to focus on the interval with constant value
density, so the maximum distance that δi moves cannot exceed di. If δi moves
and y increases, we update di and repeat the process. If ŷ = 0, we further prove
y is the MEW value.

Theorem 2. Algorithm 1 will output an MEW allocation for a fixed permuta-
tion of agents in polynomial time.

Proof. Let OPT = ([0, o1], . . . , [on−1, on]) represent the optimal allocation. We
first claim that OPT is both equitable and unique via the following two lemmas.

Lemma 2. OPT is equitable.

Proof. For the sake of contradiction, we assume there exist i
= j ∈ [n] such
that vi([oi−1, oi])
= vj([oj−1, oj]). Hence, there exist two adjacent agents such
that one has the smallest utility and the other has a higher utility. Otherwise,
the utilities of all the agents would be equal, which violates our assumption.
Without loss of generality, we assume agent i and agent i + 1 are such two
agents. Due to the intermediate value theorem, we could find o′

i such that
vi ([oi−1, o

′
i]) = vi+1 ([o′

i, oi+1]). This operation clearly improves agent i’s util-
ity and does not decrease agent i + 1’s utility to the original minimum. By
repeating this operation, we can improve egalitarian welfare, which contradicts
the assumption of the optimal solution. Note that the case where agent n has
the smallest utility can be handled in a similar way. �

Lemma 3. An equitable allocation is also unique.

Proof. By contradiction, we assume there are two equitable allocations, and
denote their cut points as {x0 = 0, x1, . . . , xn = 1} and {y0 = 0, y1, . . . , yn = 1}
respectively. Since the allocations are different, we can find a minimal interval

270 X. Bu and J. Song

[xi, xj] and [yi, yj] such that xi = yi, xj = yj , and for any k ∈ [i + 1, j − 1],
xk
= yk. Without loss of generality, we assume xi+1 < yi+1. We consider the
following two cases.

1. For all k ∈ [i + 2, j − 1], xk < yk. Since [xi, xi+1] is a subset of [yi, yi+1]
and each agent is hungry, we have vi+1([xi, xi+1]) < vi+1([yi, yi+1]). Simi-
larly, vj([xj−1, xj]) > vj([yj−1, yj]). However, since the two allocations are
equitable, we have vi+1([xi, xi+1]) = vj([xj−1, xj]) and vi+1([yi, yi+1]) =
vj([yj−1, yj]), which leads to a contradiction.

2. Otherwise, there exists at least one index k ∈ [i + 2, j − 1] such that xk > yk,
We further assume k is the smallest index, i.e. for all � ∈ [i+2, k−1], x� < y�.
We already know vi+1([xi, xi+1]) < vi+1([yi, yi+1]). As [xk−1, xk] is a superset
of [yk−1, yk], we have vj([xk−1, xk]) > vj([yk−1, yk]). Same to the analysis in
the above case, this leads to a contradiction.

Combining the two above cases, the lemma is concluded. �

Back to the original proof. Due to our previous description, the utilities
of these agents keep the same during running Algorithm 1. If δn = 1 when the
algorithm terminates, according to Lemma 2 and Lemma 3, the output allocation
must be the unique optimal solution. Otherwise, there will be an interval of cake
left, and ŷ will be zero. We claim this case cannot happen and δn will reach 1
when Algorithm 1 terminates.

Lemma 4. If ŷ = 0, then δn = 1.

Proof. According to the definition of linear program 4, if ŷ = 0, that implies
x1 = . . . = xn = 0. If the proposition is false (i.e. δn < 1), our main idea is to
add a sufficiently small constant to each of xi and ŷ so that the solution remains
feasible but has a larger objective value. Let x′

i (for i = 1, . . . , n) and ŷ′ be the
new values of xi and ŷ. Consider the following three constants λ, μ, ε and the
new objective value ŷ′,

λ = max
i∈[n−1]

{
vi+1,σ(i)

vi+1,σ(i+1)

}
, μ = max

i∈[n−1]

{
1

vi+1,σ(i+1)

}
,

ε = min
i∈[n]

{
di

2λi−1
,

1
v1,σ(1)

· di(1 − λ)
2μ (1 − λn−1)

}
, ŷ′ = v1,σ(1)ε.

Next, we set x′
1 = ε and x′

i+1 = vi+1,σ(i)

vi+1,σ(i+1)
x′

i + ŷ′

vi+1,σ(i+1)
for i = 1, . . . , n − 1.

Clearly, ŷ′ is strictly positive. After that, we claim that (x′
1, . . . , x

′
n, ŷ′) is also an

feasible solution. It is not hard to verify the constraints (6) and (7) are satisfied
by the definition of x′

i and ŷ′. Additionally, since x′
1 = ε ≤ 1

2 mini∈[n]

(
di

λi−1

) ≤
1
2d1 ≤ d1. For i = 1, . . . , n − 1, constraints (5) can be verified by the following
inequality:

Maximize Egalitarian Welfare for Cake Cutting 271

x′
i+1 =

vi+1,σ(i)

vi+1,σ(i+1)

x′
i +

ŷ′

vi+1,σ(i+1)

≤ λx′
i + μŷ′ ≤ . . .

≤ λix′
1 + μ

(
1 + . . . + ai−1

0

)
ŷ′ (By the definition of a0 and b0)

≤ 1

2
di+1 + μ

(
1 + . . . + λi−1

)
ŷ′ (By the first part of the definition of ε)

≤ 1

2
di+1 +

1

2
di+1 = di+1. (By the second part of the definition of ε)

Thus, (x′
1, . . . , x

′
n, ŷ′) is also feasible and has a larger objective value, leading to

a contradiction. �

Due to Lemma 4 and our prior statements, the output allocation is equitable.
Since the optimal allocation is unique and also equitable, we conclude that our
algorithm achieves the optimal allocation.

Finally, we show this algorithm also runs in polynomial time. Within each
iteration, we will find an optimal solution at a vertex of the feasible region.
Since there are 3n constraints of the linear program and the vertex has n + 1
dimensions, then at least one of the constraints (5) is tight. Suppose xi satisfies
xi = 0 or di. If xi = 0, then xi, . . . , x1 would be all zero, and ŷ would also be
zero, which contradicts to the assumption of ŷ
= 0. Hence, xi = di and δi will
be updated to pσ(i) at the end of this iteration.

We observe that all the knives would keep moving rightward during the
algorithm and at least one would encounter a breakpoint within each iteration.
Since there are only m breakpoints, the number of total iterations is at most
n · m. Within each iteration, the time complexity of solving the linear program
is also polynomial. Thus, the overall time complexity is polynomial. �

Note that for general number of agents, we can still enumerate all the per-
mutations and adopt Algorithm 1. This directly leads to the following result.

Corollary 1. For general cases without any constraint on the permutation of
the agents, the problem of computing an MEW allocation can be solved within a
complexity of fixed-parameter tractable with respect to the number of agents n.

3.2 Agents Without Permutation Constraints

In this section, we present the inapproximability results for a general number
of agents and no constraints on the permutation of the agents. To illustrate our
reduction, we first provide proof of the inapproximability of 2 in Theorem 3.
Although it has been demonstrated by Aumann et al. (2013), we also give our
proof here. Following that, we expand upon this theorem and adapt it to demon-
strate a c-inapproximation ratio in Theorem 4, where c can be any constant.

Theorem 3 (Aumann et al. (2013)). The problem of computing an MEW
allocation with contiguous pieces is NP-hard to approximate to within factor 2
for a general number of agents with no constraint on permutation.

272 X. Bu and J. Song

We present a reduction from the 3-SAT problem. Given a 3-SAT instance Φ
with m clauses and 3m literals, we construct an instance of maximizing egalitar-
ian welfare with contiguous pieces with four types of agents: literal agents, clause
agents, logic agents, and blocking agents. Let Φi∈[m] denote the i-th clause and
Φj∈[3m] denote the j-th literal in Φ. Before presenting the formal construction
of our reduction. We first show some high-level ideas as follows.

Ideas of Construction. For each clause, we introduce a clause agent ci and three
literal agents �3i−2, �3i−1, �3i for the literals within it. Then, for each literal
agent j ∈ {3i + 1, 3i + 2, 3i + 3}, let her have three disjoint valued pieces of
cake I

(1)
j , I

(2)
j , I

(3)
j such that there is a spacing between every two pieces. We

denote those spacing by s
(1)
3i−2, s

(2)
3i−2, s

(1)
3i−1, s

(2)
3i−1, s

(1)
3i , s

(2)
3i . Within those spac-

ing, we design to put other agents’ valued intervals.
First, as shown in Fig. 1, we let the clause agent ci have three valued pieces

within s
(2)
3i−2, s

(2)
3i−1, s

(2)
3i . For each of the three literal agents, we refer to the first

two of her valued pieces I
(1)
j , I

(2)
j including the spacing s

(1)
j as her true interval

and I
(2)
j , I

(3)
j including the spacing s

(2)
j as her false interval. If Φ is satisfiable,

we aim to let each literal agent receive her true interval I
(1)
j , s

(1)
j , I

(2)
j if the

corresponding literal is true in the assignment and false interval I
(2)
j , s

(2)
j , I

(3)
j

if the corresponding literal is false. If Φ is unsatisfiable, there always exists a
clause such that all three literals are assigned false under any assignment. If we
insist that the allocation represents a valid boolean assignment for Φ, there will
exist a clause such that the literal agents of it will all receive their false intervals
at the same time. That will cause the value received by the corresponding clause
agent to be zero, which will lead to egalitarian welfare being zero. Hence, we
could no longer make the allocation represent a valid boolean assignment.

To guarantee the consistency and validity of the assignment, we further add
some constraints by introducing logic agents. There are two types of logic agents.
The first type of logic agent ensures any literal agent �j cannot get a complete
interval including I

(1)
j , I

(2)
j and I

(3)
j (so that we cannot assign both “false” and

“true” to a single literal). Otherwise, there will exist a logic agent receiving zero
utility. The second type of logic agent guarantees the consistency of the literals.
For example, if a variable x occurs twice as the form of x in two literals Φj1

and Φj2 , then we introduce two logic agents t1x and t2x. The logic agent t1x has
two valued pieces within s

(1)
j1

and s
(2)
j2

, and t2x has two valued pieces within s
(2)
j1

and s
(1)
j2

. In this case, the literal agent �j2 cannot receive her false interval if
�j1 receives her true interval, and the literal agent �j2 cannot receive her true
interval if �j1 receives her false interval. Otherwise, t1x or t2x will receive a utility
of zero. The case is similar when the literal agent �j1 receives her false interval.

Construction. The detailed construction is defined as follows:

– For each clause Φi, we construct a clause agent ci.
– For each literal Φj , we construct a literal agent �j .

Maximize Egalitarian Welfare for Cake Cutting 273

Fig. 1. Construction of clause agents and literal agents.

– Logic agents further contain two types: (1) For each literal Φj , we construct
a logic agent tj . (2) If a variable x as well as its negation x̄ appear totally k
times where k > 1, we construct 2(k − 1) logic agents t1x, . . . , t2k−1

x .
– Further, we construct 9m blocking agents d1, . . . , d9m.

For simplification, we extend the cake from interval [0, 1] to [0, 36] while each
agent’s value to the cake remains normalized. We refer to the interval [0, 18m] as
the actual cake, and [18m, 36m] as the dummy cake. Each agent’s value density
function to the cake is constructed as follows.

Let ε > 0 be a sufficiently small real number. In order to simplify the descrip-
tion of the value density function, we will only define the parts where the density
is not equal to ε. In fact, in our later argument, we will regard ε as 0. It will not
affect our proof of inapproximability ratio.

Figure 2 illustrates our construction of the value density functions for both
literal agents and clause agents on the actual cake. For clarity, for each literal
agent �j∈[3m], she has three disjoint valued intervals on the actual cake.

f�j
(x) =

1
6
, for x ∈ [6j − 6, 6j − 5] ∪ [6j − 4, 6j − 3] ∪ [6j − 2, 6j − 1].

Let k̂ be the maximum number of occurrences of any variable x in Φ, formally,

k̂ � max
x

∑

j∈[3m]

1
(
Φj = x ∨ Φj = x̄

)
.

Then, we evenly divide the spacing interval [6j − 5, 6j − 4] into k̂ disjoint sub-
intervals and [6j − 3, 6j − 2] into k̂ + 1 disjoint sub-intervals. For each clause
agent ci∈[m], she only has value to three disconnected intervals. When x ∈ [18i−
14− 1

k̂+1
, 18i−14]∪ [18i−8− 1

k̂+1
, 18i−8]∪ [18i−2− 1

k̂+1
, 18i−2], fci

(x) = k̂+1
3 .

As shown in Fig. 3, for each logic agent tj of the first type constructed from
Φj , we define her value density function as follows,

ftj
(x) =

{
k̂
2 , x ∈ [6j − 5, 6j − 5 + 1

k̂
]

k̂+1
2 , x ∈ [6j − 3, 6j − 3 + 1

k̂+1
].

274 X. Bu and J. Song

Fig. 2. Value density function of literal agents and clause agents.

For each logic agent of the second type, we consider her corresponding variable
y. Assume y and ȳ appears k times totally in Φ. We only focus on the case where
k > 1. Assume y first appears in literal Φa, and without loss of generality, assume
its (including ȳ) s-th appearance (2 ≤ s ≤ k) is in literal Φb. We construct two
literal agents of the second type t2s−3

y and t2s−2
y .

If Φb = y, we define their value density functions as

ft2s−3
y

(x) =

{
k̂
2 , x ∈ [6a − 5 + s−1

k̂
, 6a − 5 + s

k̂
]

k̂+1
2 , x ∈ [6b − 3 + s−1

k̂+1
, 6b − 3 + s

k̂+1
],

ft2s−2
y

(x) =

{
k̂+1
2 , x ∈ [6a − 3 + s−1

k̂+1
, 6a − 3 + s

k̂+1
]

k̂
2 , x ∈ [6b − 5 + s−1

k̂
, 6b − 5 + s

k̂
].

If Φb = ȳ, we swap the second interval of the two agents.

ft2s−3
y

(x) =

{
k̂
2 , x ∈ [6a − 5 + s−1

k̂
, 6a − 5 + s

k̂
]

k̂
2 , x ∈ [6b − 5 + s−1

k̂
, 6b − 5 + s

k̂
],

ft2s−2
y

(x) =

{
k̂+1
2 , x ∈ [6a − 3 + s−1

k̂+1
, 6a − 3 + s

k̂+1
]

k̂+1
2 , x ∈ [6b − 3 + s−1

k̂+1
, 6b − 3 + s

k̂+1
].

In addition to the above intervals for literal agents, each literal agent also
has three disconnected valued intervals on the dummy cake. When x ∈ [18m +
6j −6, 18m+6j −5]∪ [18m+6j −4, 18m+6j −3]∪ [18m+6j −2, 18m+6j −1],
f�j

(x) = 1
6 (Fig. 4).

The blocking agents are designed to block the valuable intervals of the above
agents. Each blocking agent has value to one piece between them:

fdj
(x) = 1, for x ∈ [18m + 2j − 1, 18m + 2j] and j ∈ [1, 9m].

Under this construction, the integral of the value density function for each
agent over the entire cake is equal to 1. Now we are ready to provide the formal
proof.

Maximize Egalitarian Welfare for Cake Cutting 275

Fig. 3. The value density function of tj . In this case, literal agent �j (whose value
density function is colored red) cannot receive the three intervals [6j − 6, 6j − 5], [6j −
4, 6j − 3] and [6j − 2, 6j − 1] at the same time. Otherwise, the utility of logic agent tj

(whose value density function is colored green) will be zero. (Color figure online)

Fig. 4. The value density functions of t2s−3
y and t2s−2

y when literals Φa, Φb are both y.
In this case, when literal agent �a (whose value density function is colored red in the
above figure) receives her true intervals, literal agent �b (whose value density function is
colored yellow) is forbidden to receive her false intervals. Otherwise, logic agent t2s−3

y

(whose value density function is colored green) will have zero utility. For a similar
reason, literal agents �a and �b cannot respectively receive their true intervals and false
intervals at the same time. Otherwise, logic agent t2s−2

y (whose value density function
is colored blue) will have zero utility. The construction of the case when Φa = y and
Φb = ȳ is similar. (Color figure online)

276 X. Bu and J. Song

Proof. Suppose the 3-SAT instance is a yes instance (i.e., there exists a valid
assignment such that Φ = true). We construct an allocation as follows.

In the assignment, if a literal Φj is assigned true, then we let the literal
agent �j receive her true interval [6j − 6, 6j − 3]. If the clause agent c�j/3� has

not received any interval, we let her take the interval
[
6j − 2 − 1

k̂+1
, 6j − 2

]
.

Further, we let all the logic agents that have value on
[
6j − 3, 6j − 2 − 1

k̂+1

]

receive their valued intervals. Otherwise, if Φj is assigned false, we let �j receive
her false interval [6j − 4, 6j − 1], and let all the logic agents receive their valued
intervals on [6j−5, 6j−4]. Further, we let each blocking agent receive her valued
interval. For each contiguous interval that remains unallocated, we allocate it to
an arbitrary agent who receives the interval adjacent to it.

Under this allocation, it is straightforward to find that each literal agent
receives value 1

3 , while each blocking agent receives a value of 1. For each clause
Φi, there exists at least one literal Φj∈[3i−2,3i] assigned true. Therefore, the
interval received by each clause agent ci will be at least 1

3 . For each logic agent
tj of the first type, since �j only receives one of [6j −5, 6j −4] and [6j −3, 6j −2],
she can always receive an interval with value 1

2 . For each logic agent of the second
type tjy, denote the two intervals that she has value to by Jj

y1
and Jj

y2
. Assume

y appears k times, then k − 1 logic agents can receive Jj
y1

and obtain value 1
2 on

the first appearance of y. Since the assignment is consistent, by our construction,
the other k − 1 agents can always receive Jj

y2
with value 1

2 .
Hence, the maximum egalitarian welfare under a yes instance is at least 1

3 .
Suppose the 3-SAT instance is a no instance, that is, there is no assignment

such that Φ = true. We prove the maximum egalitarian welfare will be at most
1
6 by contradiction.

Assuming the maximum egalitarian welfare is more than 1
6 , then, each literal

agent �j needs to receive a length of more than 2 on the cake (since the maximum
density of f�j

is 1
6). She cannot receive anything from the dummy cake, otherwise,

at least one blocking agent will receive a utility of zero. Therefore, we only
consider the case that each literal agent receives only part of the actual cake,
hence she will surely receive an interval containing either [6j − 5, 6j − 4] or
[6j − 3, 6j − 2].

Denote the corresponding variable of Φj as y. To ensure each logic agent of
the second type receives more than 1

6 , all the literal agents �a where Φa = y
cannot receive [6j − 3, 6j − 2] and all the literal agents �b where Φb = ȳ cannot
receive [6j − 5, 6j − 4]. Moreover, to ensure each clause agent receives more
than 1

6 , at least one literal agent in each clause cannot receive [6i − 3, 6i − 2]. If
such allocation exists, we can construct an assignment that if the literal agent
�j receives [6j − 5, 6j − 4], we assign Φj = true. If the literal agent �j receives
[6j − 3, 6j − 2], we assign Φj = false. The assignment is consistent according to
the above analysis, and a literal is assigned true in each clause.

Hence, we conclude Φ is satisfiable, which leads to the contradiction. There-
fore, the inapproximability is at least

1
3
1
6

= 2 and the theorem holds. �

Maximize Egalitarian Welfare for Cake Cutting 277

Theorem 4. The problem of computing MEW with contiguous pieces is NP-
hard to approximate within any constant factor for a general number of agents
with no constraint on permutation.

Construction. We follow the same idea as the construction in the above exam-
ple on the actual cake while the dummy cake is not needed in the following
construction. Let r ∈ Z

+ be a constant integer.

– For literal Φj , we still construct a literal agent �j . Instead of constructing
three disconnect intervals that she has value to, we construct 2r + 1 such
disconnect intervals. Denote these intervals by Ij = {I

(1)
j , . . . , I

(2r+1)
j }, and

the interval that splits I
(k)
j and I

(k+1)
j by s

(k)
j . All these intervals are disjoint

with each other. In our new construction, we call the interval from I
(1)
j to

I
(r+1)
j as the agent �j ’s true interval Tj (which begins at the leftmost point of

I
(1)
j and ends at the rightmost point of I

(r+1)
j), and the interval from I

(r+1)
j

to I
(2r+1)
j as false interval Fj (which begins at the leftmost point of I

(r+1)
j

and ends at the rightmost point of I
(2r+1)
j).

Our goal is to make a literal agent receive the entire true interval when the
3-SAT instance is a yes instance. In the case of a no instance, we want to
limit her bundle to at most one interval of Ij .

– For clause Φi, we construct r3 clause agents instead of only one clause agent
in the previous construction. In particular, for each of the r3 combinations
{s

(j1)
3i−2 ⊂ F3i−2, s

(j2)
3i−1 ⊂ F3i−1, s

(j3)
3i ⊂ F3i}, we construct a clause agent that

has value to a sub-intervals of each of the three disconnect intervals. The
design of the clause agent in this context is adapted from the previous proof.
If the three literal agents of the same clause all receive their false interval,
there will always exist a clause agent receiving zero utility.

– For each literal, we construct r2 logic agents of the first type. In particular,
for each of the r2 combinations {s

(j1)
i ⊂ Ti, s

(j2)
i ⊂ Fi}, we construct a logic

agent of the first type that has value to a sub-intervals of each of the two
disconnected intervals. These agents are also used to prevent any literal agent
from receiving her true and false intervals at the same time.

– For each variable z, assume it first appears in Φi. If it appears more than
once, for each of its appearances in Φ, we construct 2r2 logic agents of the
second type. In particular, if Φj = z, the first r2 agents have value to the sub-
intervals of each combination {s

(i′)
i ⊂ Ti, s

(j′)
j ⊂ Fj}, and the latter r2 agents

have value to the sub-intervals of each combination {s
(i′)
i ⊂ Fi, s

(j′)
j ⊂ Tj}.

Otherwise, if Φj = z̄, the first r2 agents have value to the sub-intervals of
each combination {s

(i′)
i ⊂ Ti, s

(j′)
j ⊂ Tj}, and the latter r2 agents have value

to the sub-intervals of each combination {s
(i′)
i ⊂ Fi, s

(j′)
j ⊂ Fj}.

After constructing these three types of agents, if there are n′ agents that
have value to a sub-interval of s

(j)
i , we divide s

(j)
i into n′ disjoint intervals, and

278 X. Bu and J. Song

let each agent has value only on one sub-interval. Moreover, for each agent, if
there are multiple intervals that she has value to, we let her value to each of
these intervals equal and normalized to 1 in total.

Formal Proof. Assume Φ is a yes instance, then there exists a valid assignment
such that Φ = true. We construct an allocation A from a satisfying assignment
as follows.

We traverse j from 1 to 3m. If the literal Φj is assigned true, then we let literal
agent �j receive her true interval Tj (i.e., A�j

= Tj). If a corresponding clause
agent or a logic agent has not received any interval, we let her receive a sub-
interval of s

(k)
j ∈ Fj that she has value to. If Φj is assigned false, we let �j receive

her false interval Fj (i.e., A�j
= Fj). We also let each of the corresponding logic

agents that has value on Tj and has not received any bundle receive an interval
that she has value to. For each contiguous interval that remains unallocated, we
allocate it to an arbitrary agent who receives the interval adjacent to it.

Then we show that EW(A) is at least 1
3 . Since each literal agent takes either

her true interval or false interval, she will receive 1
2 in A. Since Φ = true under

this assignment, in each clause, there is at least one literal that is assigned true,
so all the r3 clause agents can receive an interval from this literal agent’s false
interval and obtain value 1

3 . Each logic agent of the first type can receive value
1
2 as the corresponding literal agent can only receive either her true interval
or her false interval. Since the assignment is consistent, each logic agent of the
second type can also receive 1

2 for the same reason as we have shown in the
2-inapproximation result. Therefore, the maximum egalitarian welfare under a
yes instance is 1

3 .
Now we consider the case that Φ is a no instance, so no assignment can satisfy

Φ = true. We prove EW(A) will be no more than 1
2r+1 for any allocation A by

contradiction.
Suppose the maximum egalitarian welfare is more than 1

2r+1 , we show that

there will exist a satisfying assignment. Assume for each literal agent �i, |I(j)i | =
|s(j)i | = 1. Then, each literal agent needs to receive an interval Ji with |Ji| > 2,
|Ji ∩Ii| > 1 and |Ji \Ii| ≥ 1. Ji cannot intersect with both Ti and Fi, otherwise,
there will be at least one logic agent of the first type that receives 0. We assume
Φi = z and, without loss of generality, Ji ⊆ Ti. Then, to avoid any logic agent
of the second type receiving 0, for any j such that Φj = z, we need to allocate
an interval Jj ⊆ Tj to �j using the similar analysis in the 2-inapproximation
result. If Φj = z̄, �j needs to receive an interval Jj ⊆ Fj . Further, to avoid any
clause agent receiving 0, at least one literal agent corresponding to this clause
cannot receive any sub-interval from s

(r+1)
j to s

(2r)
j . Hence, she needs to receive

a bundle on the true interval. Then, we consider the following assignment. For
a literal agent �i, if Ji ⊆ Ti, we assign Φi as true. If Ji ⊆ Fi, we assign Φi as
false. From the above analysis, the assignment is consistent, and there is a true
literal in each clause, indicating Φ = true under this assignment and leading to
a contradiction.

Maximize Egalitarian Welfare for Cake Cutting 279

We have shown that the inapproximability factor is 1/3
1/(2r+1) = 2r+1

3 . Since r

can be any constant, Theorem 4 holds. �

4 Conclusion and Future Work

In this paper, we consider the problem of maximizing egalitarian welfare for hun-
gry agents with and without contiguous constraints respectively. In the absence
of contiguous constraints, the problem can be readily solved using linear pro-
gramming. With contiguous constraints, there exists a non-trivial algorithm to
output an optimal allocation for agents with fixed permutation in polynomial
time, which indicates a fixed parameter tractable algorithm with respect to the
number of agents n. Moreover, if a fixed permutation is not required, we provide
a constant-inapproximability result.

As we consider hungry agents in our work, an interesting future direction is
to generalize the setting to agents without hungry assumption. An intuitive idea
is to first apply our algorithm, however, as an agent may have a value of 0 to the
next interval, the egalitarian welfare we calculate may not increase and the knives
may not move. In this case, we may deploy another linear program to maximize
the summation of the distance of each knife’s position while maintaining that
each agent’s utility to her contiguous piece does not decrease. Further, we may
consider a more general case where the constraints for contiguous are subjective
to the agents, which means some agents can receive a non-contiguous bundle
while others need to receive a contiguous one.

References

Asadpour, A., Saberi, A.: An approximation algorithm for max-min fair allocation of
indivisible goods. SIAM J. Comput. 39(7), 2970–2989 (2010). https://doi.org/10.
1137/080723491

Aumann, Y., Dombb, Y.: The Efficiency of Fair Division with Connected Pieces. ACM
Trans. Econ. Comput. 3(4), 1–16 (2015)

Aumann, Y., Dombb, Y., Hassidim, A.: Computing socially-efficient cake divisions.
In: Proceedings of the International Conference on Autonomous Agents and Multi-
Agent Systems (AAMAS), pp. 343–350 (2013)

Aziz, H., Mackenzie, S.: A discrete and bounded envy-free cake cutting protocol for
any number of agents. arXiv:1604.03655 [cs.DS] (2017)

Barbanel, J.B., Brams, S.J.: Two-person cake-cutting: the optimal number of cuts.
Available at SSRN 1946895 (2011)

Bei, X., Chen, N., Hua, X., Tao, B., Yang, E.: Optimal proportional cake cutting
with connected pieces. In: Proceedings of AAAI Conference on Artificial Intelligence
(AAAI), pp. 1263–1269 (2012)

Bei, X., Chen, N., Huzhang, G., Tao, B., Wu, J.: Cake cutting: envy and truth. In:
IJCAI, pp. 3625–3631 (2017)

Bertsimas, D., Farias, V.F., Trichakis, N.: The price of fairness. Oper. Res. 59(1), 17–31
(2011)

https://doi.org/10.1137/080723491
https://doi.org/10.1137/080723491
http://arxiv.org/abs/1604.03655

280 X. Bu and J. Song

Brams, S.J., Feldman, M., Lai, J., Morgenstern, J., Procaccia, A.D.: On maxsum fair
cake divisions. In: Proceedings of the AAAI Conference on Artificial Intelligence
(AAAI), pp. 1285–1291 (2012)

Brams, S.J., Jones, M.A., Klamler, C., et al.: Better ways to cut a cake. Not. AMS
53(11), 1314–1321 (2006)

Brams, S.J., Taylor, A.D.: An envy-free cake division protocol. Am. Math. Monthly
102(1), 9–18 (1995). http://www.jstor.org/stable/2974850

Caragiannis, I., Kaklamanis, C., Kanellopoulos, P., Kyropoulou, M.: The efficiency of
fair division. Theory Comput. Syst. 50(4), 589–610 (2012)

Cohler, Y.J., Lai, J.K., Parkes, D.C., Procaccia, A.D.: Optimal envy-free cake cutting.
In: Proceedings of AAAI Conference on Artificial Intelligence (AAAI), pp. 626–631
(2011)

Dubins, L.E., Spanier, E.H.: How to cut a cake fairly. Am. Math. Monthly 68(1P1),
1–17 (1961)

Even, S., Paz, A.: A note on cake cutting. Discret. Appl. Math. 7(3), 285–296 (1984)
Güler, O., den Hertog, D., Roos, C., Terlaky, T., Tsuchiya, T.: Degeneracy in interior

point methods for linear programming: a survey. Ann. Oper. Res. 46(1), 107–138
(1993)

Jones, M.A.: Equitable, envy-free, and efficient cake cutting for two people and its
application to divisible goods. Math. Mag. 75(4), 275–283 (2002)

Kelly, F.: Charging and rate control for elastic traffic. Eur. Trans. Telecommun. 8(1),
33–37 (1997)

Roughgarden, T.: Algorithmic game theory. Commun. ACM 53(7), 78–86 (2010)
Steinhaus, H.: The problem of fair division. Econometrica 16(1), 101–104 (1948)
Steinhaus, H.: Sur la division pragmatique. Econometrica 17(1949), 315–319 (1949)
Tao, B.: On existence of truthful fair cake cutting mechanisms. In: Proceedings of the

23rd ACM Conference on Economics and Computation, pp. 404–434 (2022)

http://www.jstor.org/stable/2974850

Stackelberg Strategies on Epidemic
Containment Games

Tingwei Hu , Lili Mei(B) , and Zhen Wang

School of Cyberspace, Hangzhou Dianzi University, Hangzhou, China
{retrieve,wangzhen}@hdu.edu.cn, meilili@zju.edu.cn

Abstract. In this paper, we discuss epidemic containment games, where
agents are vertices of a graph G. Each agent has two strategies: being
vaccinated or not. The cost of each agent for being vaccinated is 1. Con-
sider an induced subgraph Gs consisting of all non-vaccinated agents in
G. If an agent is isolated in Gs then her cost is 0; otherwise her cost
is infinity. Each agent wants to minimize her cost. It is a pure Nash
Equilibrium (NE) if every agent does not want to change her strategy
unilaterally. Naturally, the NE with the minimum (maximum) total cost
is defined as the best (worst) NE. In this paper, we focus on Stackelberg
games, where a leader injects some agents compulsorily. Due the budget
constraint, we require that the total cost of the leader is strictly less than
the total cost of the best NE. The rest agents which is a group called
followers perform a worst NE on the rest of graph.

We first show that it is NP-hard to find the minimum total cost includ-
ing the leader and the followers’ strategies. Then we turn to consider
the effectiveness of Stackelberg strategies, which means that the total
cost of the leader and the followers is within the worst NE without the
leader. We mainly show that there exist effective Stackelberg strategies
for graphs including one-degree vertices or a pair of vertices having inclu-
sive social relationships. Finally, a complete characterization of effective-
ness on bipartite graphs is established.

Keywords: Epidemic containment games · Stackelberg strategies ·
Effectiveness

1 Introduction

Epidemics or computer viruses have caused enormous economic loss, such as
COVID-19 spreading in the past years and the famous WannaCry Ransomware
2017. For individuals, it might spend a lot of money or time to recover from
an infection. Fortunately, by taking simple precautions like injecting vaccines or
installing firewalls, the great expenditure can be avoided. However, not everyone

This work was supported by Shanghai Key Laboratory of Pure Mathematics and Math-
ematical Practice [Project NO. 18dz2271000], and National Natural Science Foundation
of China [Project NO. 62176080, 12201594].

c© Springer Nature Switzerland AG 2023
M. Li et al. (Eds.): IJTCS-FAW 2023, LNCS 13933, pp. 281–294, 2023.
https://doi.org/10.1007/978-3-031-39344-0_21

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-39344-0_21&domain=pdf
http://orcid.org/0009-0005-0844-7506
http://orcid.org/0000-0002-6536-0328
http://orcid.org/0000-0002-3399-5281
https://doi.org/10.1007/978-3-031-39344-0_21

282 T. Hu et al.

would voluntarily adopt these measures. Once all their neighbors have taken the
measures, they can be safe without taking any measure. In this paper, we discuss
an epidemic containment game on networks.

The virus spreads in a social network or a computer network. Each edge rep-
resents a possible transmission path for the virus. Each vertex can either inject
vaccines/install firewalls or do nothing. If a vertex takes the former way then
her cost is set to be 1. If a vertex does nothing and her neighbours all injecting
vaccines/installing firewalls, which means she is safe, then the cost is 0; other-
wise, she is infected, and the cost is infinity. Everyone aims at minimizing her
cost. A scenario, where no vertex can make her cost less by changing her action
unilaterally, is named as a Nash Equilibrium (NE). It’s easy to see that finding
a NE is equivalent to finding a maximal independent set. Hence, finding a min-
imum/maximum total cost NE is NP-hard, since finding a maximum/minimum
maximal independent set is NP-hard [6]. To simplify the statement, in the con-
text, let MinNE and MaxNE be the injected vertices in the NEs with the
minimum and maximum total cost, respectively.

In this paper, we mainly focus on Stackelberg games. The game consists
of two stages: A leader injects some vertices in advance, then the rest vertices
perform a Nash Equilibrium in the rest network. It is easy to see that the total
cost is minimized if the leader injects all vertices in MinNE. Therefore, the
budget of the leader is restricted to strictly less than |MinNE|. This paper
considers the worst case where the rest vertices always perform the worst NE
in the network removing the vertices injected by the leader. We call the action
of the leader as the Stackelberg strategy, who aims at minimizing the total cost
(the total cost of the leader and the followers).

Our Contributions. We first show that finding an optimal Stackelberg strat-
egy is NP-hard. Then we propose the concept of effectiveness, where the total
cost involving the leader and the followers should be no more than the cost of
MaxNE on the original network. We find that some networks do not exist effec-
tive Stackelberg strategies. Hence, we mainly focus on what kinds of networks
have effective Stackelberg strategies. Our results are as follow.

– Injecting a vertex who has one-degree neighbors is an effective Stackelberg
strategy in networks including one-degree vertices;

– In graphs including a couple of vertices with inclusive social relationships,
injecting all the neighbors of the vertex who has fewer neighbors in the couple
is an effective Stackelberg strategy;

– Finally, we demonstrate an exhaustive characterization of effective Stackel-
berg strategies in bipartite graphs G = (V1 ∪ V2, E). If |MinNE| = 1 or
the graph is a complete bipartite graph with |V1| = |V2|, there do not exist
effective Stackelberg strategies; if the graph is a complete graph with differ-
ent number of vertices in two sides, without loss of generality, assume that
|V1| < |V2|, then injecting any subsets of vertices in V2 with the cardinality
no more than min{|V1| − 1, |V2| − |V1|} are effective Stackelberg strategies;

Stackelberg Strategies on EC Games 283

Otherwise, i.e., the bipartite graph is not complete and |MinNE| > 1, there
exist an effective Stackelberg strategy. The effective Stackelberg strategies are
demonstrated in Algorithm 1

Related Work. In our game, finding a Max/Min NE is equivalent to finding a
minimum maximal/maximum independent set. Some useful bounds and approxi-
mation algorithms are given in [2,3,8,9]. Meanwhile, our game is a special case of
epidemic containment games based on spectral radius of the components [5,17].
In our game, the spectral radius of non-vaccinated vertices is no more than
1. Another highly-related problem is the Nodal Spectral Radius Minimization
(NSRM) problem whose goal is to reduce the spectral radius under a threshold
by removing the fewest vertices proposed by Mieghem et al. [19]. They intro-
duce a heuristic algorithms based on the components of the first eigenvector.
Later, Saha et al. [18] give an O(log2n)-approximation algorithm for the NSRM
problem.

There are other different ways to model the spread of epidemics and the
behaviors of vertices in the networks. Games with interdependent actions are
often modeled as Interdependent Security games [10,12]. One way to model the
propagation of an epidemic is that the virus starts from a vertex randomly and
spreads along paths consisting of non-vaccinated vertices [1]. It is shown that a
centralized solution can give a much better total cost than an equilibrium solu-
tion. Kumar et al. [15] study the setting in [1] with appending a hop-limit on the
spread of infection. In some models, individuals either reduce the communication
range to suppress the spread of epidemic or maintain the range but take more
risks [13]. Based on economic incentives, insurance is also considered in [7,16].

Organization. In the reminder of the paper, the Stackelberg epidemic contain-
ment games are well defined in Sect. 2. In Sect. 3, the hardness of the game is
discussed and the concept of effectiveness is proposed. In the next section, we
give a full characterization of the effectiveness for graphs including one-degree
vertices, graphs including couples of inclusive social relationships and bipartite
graphs. The conclusion and future work are in Sect. 5.

2 Preliminaries

2.1 Epidemic Containment (EC) Games

The virus spreads in an undirected graph G(V,E), where V represents the vertex
(agent) set and E represents the edge set. Let |V | = n and |E| = m. A vertex vi
is a neighbor of vj if there is an edge between them. Let A = {a1, a2, ..., an} ∈
{0, 1}n be a strategy profile of agents. Each agent i has two strategies: ai = 1 if
the agent is vaccinated, otherwise ai = 0. Let ci(·) be the cost function of agent
i. If ai = 1, then the cost ci(·) = 1. Otherwise, there are two kinds of costs with
related to the strategies of her neighbors. If all neighbors of vi is vaccinated,

284 T. Hu et al.

then vi is isolated and its cost is zero. In the other case, the cost of agent i is
set as positive infinity. To sum up, the cost of agent i is

ci(A) =

⎧
⎪⎨

⎪⎩

1, if ai = 1
0, if ai = 0 and aj = 1 ∀j ∈ N(i),
+∞, otherwise

(1)

where N(i) is the set of all the neighbors of vi.
Each agent wants to minimize her cost. Thus, an agent will inject herself

if one neighbor is non-vaccinated. A vaccinated agent will regret and switch
to be non-vaccinated, when she finds that all neighbors has been vaccinated.
That is, if one of the neighbors is non-vaccinated, the vertex will choose to be
vaccinated; if all neighbors are vaccinated, the vertex will choose to be non-
vaccinated. Eventually, all vertices reach a stable state, i.e. a Nash equilibrium
(NE), where no one can benefit from switching her strategy.

Definition 1. A strategy profile A = {a1, a2, ..., an} is a Nash Equilibrium
(NE) if for any agent i, and any strategy a′

i for agent i, we have ci(ai,a−i) ≤
ci(a′

i,a−i), where a−i is the strategy profile of all agents without i.

We define the social cost as sc(A) =
∑n

i=1 ci(A). Note that in any NE,
agents actually only have two kinds of cost, 0 and 1. Thus the social cost of
a NE is exactly the number of vertices vaccinated. Due to the fact that there
are probably more than one NE in a graph, we denote the NE with the largest
number of vaccinated vertices as MaxNE and the NE with the fewest number
of vaccinated vertices as MinNE. With a slight abuse of notation, we also use
the symbol NE (MaxNE/MinNE) to represent the set of vaccinated vertices
in the Nash Equilibrium. Let |NE| (|MaxNE|, |MinNE|) denote the number
of vaccinated vertices and also the social cost.

Lemma 1. In a NE, the non-vaccinated set I is a maximal independent set.

Proof. A single edge with two ends of non-vaccinated vertices would make the
cost infinity. Thus, the set of non-vaccinated vertices I should be an independent
set of G. Suppose that I is not maximal in a NE. Then there exists an agent i
such that all her neighbors and herself have been vaccinated. Then agent i will
regret being vaccinated, which contradicts that this is a NE. ��

Then we have, finding a Max/Min NE is equivalent to obtain a minimum
maximal/maximum independent set. Two NEs on an instance are shown in
Fig. 1.

2.2 Stackelberg Epidemic Containment Games

In this subsection, we focus on Stackelberg epidemic containment games (Stack-
elberg EC games), where a leader compulsorily injects part of the agents in
advance, then followers perform MaxNE on the rest of the graph.

Stackelberg Strategies on EC Games 285

(a) MinNE (b) MaxNE

Fig. 1. Two NEs on the above network. (a) |MinNE| = 5. (b) |MaxNE| = 6.

Note that after the followers take action, for each non-vaccinated agent, there
does not exist non-vaccinated agent. Hence, the costs of a vaccinated agent and
a non-vaccinated agent are 1 and 0, respectively. The only difference is that the
vertices vaccinated by the leader can not change their strategies to reduce the
personal costs. Denote the vertices vaccinated by the leader as L. Let G′ denote
the rest graph by removing L and the edges adjacent to L from G. We define
the vertex set of followers as F = V − L. Let the vertices vaccinated in G′ be
S′ and the vertices non-vaccinated be I ′ = F − S′. To simplify the statement,
in the context, let MinNED and MaxNED denote the best and worst NE with
respect to graph D. If we use the notation without subscript, it denotes the
corresponding NE in original graph G.

If the budget is sufficient, the leader can always inject MinNE to achieve
the optimal solution. Thus we only focus on the case that leader has a limited
budget strictly less than |MinNE|.

According to the above statement, the Stackelberg EC game is well
defined. The game aims to minimize the social cost, which is the number of
vaccinated vertices by the leader and followers, i.e. |L| + |S′|. Firstly, the leader
compulsorily injects a set L. The cost of injecting L should be strictly smaller
than |MinNE| on G. Then, the followers always perform a MaxNE on the graph
G′, i.e. S′ = MaxNEG′ . An instance of Stackelberg games is demonstrated in
Fig. 2.

3 Hardness

Finding a maximum independent set (MinNE) and a minimum maximal inde-
pendent set (MaxNE) are showed to be NP-hard [6]. Next we show that finding
an optimal strategy profile in our Stackelberg games is also NP-hard. Before
that, we give a lower bound of the social cost.

Lemma 2. The minimum social cost in the Stackelberg EC game is no less
than |MinNE|.

286 T. Hu et al.

Fig. 2. An instance of Stackelberg EC games. Single dashed lines are removed by the
leader. Double dashed lines are removed by followers. The leader injects {v4}. Then
the followers may inject {v1, v3, v5, v7, v8}. The social cost is 6.

Proof. In Stackelberg EC games, the strategy of the leader leads to two cases.
One is that some vertices vaccinated by the leader are regretted but can’t change
their actions. The other is that no one regrets thus it’s also a NE in EC games. If
there are regretted vertices, then in each time we switch the action of a regretted
vertex until we can’t find one. Then the strategy profile must be a NE for no
one regrets. The cost of this NE is certainly not less than the |MinNE|. Thus
the cost before switching is not less than the |MinNE|. ��

Lemma 2 implies that if we find a feasible solution of the leader which makes
a social cost |MinNE|, then the solution is optimal. Furthermore, given any
graph to find MinNE, if we are able to construct another graph of Stackelberg
games, where MinNE is the only optimal solution, then finding an optimal
solution of our games is NP-hard.

Theorem 1. Finding a strategies set A of the minimum total cost is NP-hard.

Proof. We prove by reduction from the MinNE problem in EC games. Given an
instance of EC games on G(V,E), we construct a three-layer graph G∗(V ∗, E∗)
of Stackelberg games. Layer1 is exactly the same as G. For every vertex in G,
we add a pendant vertex (one-degree vertex) to it and these pendant vertices
constitute Layer2. Similarly, we add a pendant vertex to every vertex in Layer2
and get Layer3. The new graph G∗ is showed in Fig. 3(a). Note that each vertex
in Layer2 or Layer3 has a matching vertex in Layer1. The second and third
layers can be seen as copies of the vertices of Layer1 without edges.

Denote the MinNE (vaccinated vertices) in Layerj as Sj , and the set of
non-vaccinated vertices in Layerj as Ij . According to Lemma 2, the minimum
social cost is no less than the MinNE on G∗. Two steps are followed in the
next paragraph. Firstly, we give a feasible leader’s strategy including S1, with a
social cost of exactly |MinNEG∗ |. It means that an optimum strategy has been
found. Secondly, we demonstrate that any strategies at the cost of |MinNEG∗ |
must include S1. In other words, if the optimum strategy is found, the MinNE
problem on G is solved.

Stackelberg Strategies on EC Games 287

(a) G∗ (b) MinNEG∗

Fig. 3. (a) The constructed graph G∗. (b) MinNE on G∗.

One of the feasible strategy is that the leader injects S1 and I2, i.e. L = S1∪I2.
After L is removed, the followers’ graph G′ is divided into three parts, I1, I3 and
S2∪S3. The sets I1 and I3 are both independent sets, for they only connect to L
on G∗. The set S2 ∪S3 is in a graph with |S2| edges. For each edge, one end is in
Layer2, the other end is in Layer3. The only NE that followers could perform
on G′ is to inject one end for every edge in S2 ∪ S3, such as MaxNEG′ = S3.
The social cost is |L| + |S3| = |V | + |S1|. Next, it will be shown that the set
S1 ∪ I2 ∪ S3 is a MinNE on G∗, as Fig. 3(b) showed. For every edge between
Layer2 and Layer3, one of its end must be vaccinated, that is |V | in total. And
on Layer1, the cost |S1| is optimum because it’s MinNE on G. On the other
hand, if we obtain an optimum strategies set A and the cost |V |+ |S1|, knowing
that the cost on Layer2 and Layer3 is at least |V |, then the cost on Layer1
should be at most |S1|. And we also know that the cost on Layer1 is no less
than |MinNE| = |S1|. Thus, if we find a strategies set A at the minimum cost,
we must find a MinNE on G, which is NP-hard. ��

Finding the optimum solution can be very hard. Then, the leader would like
to know whether her compulsory strategy increases the social cost of the original
case. So we next introduce the concept of effectiveness.

Definition 2. A strategy profile of the leader is effective if the total cost of the
Stackelberg EC game is no more than the cost of MaxNE on G.

Fig. 4. A counter-example of no effective strategies.

288 T. Hu et al.

Unfortunately, an effective strategy doesn’t always exist. We demonstrate
this by giving a counter-example.

Take Fig. 4 as an example. One of the MinNE is {v0, v2}, which is also
MaxNE. Thus, the leader can only inject one vertex. No matter which vertex
is vaccinated by the leader, either {v0, v2} or {v1, v3} will be vaccinated by
followers. sc > |MaxNE|.

4 Effectiveness

In this section, we mainly focus on the existence of effective Stackelberg strate-
gies. Three kinds of graphs with effective strategies are given, which are graphs
with one-degree vertices, graphs with couples of inclusion social relationships,
and bipartite graphs. Note that isolated vertices can be ignored because they
can be removed from the original graph.

4.1 Graphs Including One-Degree Vertices

One-degree vertices are usually referred to as pendant vertices. We will show that
any graph including a pendant vertex has an effective strategy if |MinNE| > 1.
In the next lemma, we show if the neighbour of a pendant vertex is in a NE, then
we have an efficient strategy. Let NE(S, I) denote a NE which injects vertices
in S and vertices in I is non-vaccinated.

Lemma 3. If |MinNE| > 1 and there exists a NE(S, I) with a pendant vertex
y ∈ I and its neighbor x ∈ S, then L = {x} is an effective strategy.

Proof. We denote δ as the difference between |MaxNE| and |NE(S, I)|, i.e.
δ = |MaxNE| − |NE(S, I)|. After compulsorily vaccinating x, the rest should
perform their MaxNE on G′. There is a set T1 ∈ S that turns to be non-
vaccinated and there is a set T2 ∈ I that turns to be vaccinated. In order to
group vaccinated vertices together, we say that T1 and T2 is swapped when
they come to the other set. Then the MaxNE(S′, I ′) on G′ is performed, where
|S′| = |S| − 1 + |T2| − |T1|.

If |T2| − |T1| ≤ δ, then the social cost is no more than |MaxNE|, for sc =
|L| + |F | = 1 + |S′| ≤ |S| + δ = |MaxNE|. The strategy L = {x} is effective.

If |T2|−|T1| > δ, we prove it by contradiction. Assume that L = {x} is not an
effective strategy. We try to find a |NE| on G that is larger than |MaxNE|, so
that the contradiction holds. But before that, we first show y ∈ I ′. Suppose that
y ∈ S′, y must regret being vaccinated for its only neighbor x is vaccinated. Then
(S′, I ′) can not be a NE. Thus y ∈ I ′. Next it is easy to show that (S′ ∪ x, I ′)
is a NE. We have already known that (S′, I ′) performs a MaxNE on G′, which
means I ′ is a maximal independent set. Now adding x back to the S′, I ′ is still
maximal because x has at least one neighbor y ∈ I ′. The number of vaccinated
vertices in this new NE is |S′| + 1 = |S| + |T2| − |T1| > |S| + δ = |MaxNE|,
which is contradict to the fact that MaxNE(S, I) is maximum. ��

Stackelberg Strategies on EC Games 289

Through Lemma 3, we show that if there is a case that x appears in the
vaccinated set S of some NE and y appears in the non-vaccinated set I, then
L = {x} is effective. Next, it only remains to show that we can always find a NE
where y ∈ I and x ∈ S.

Theorem 2. If |MinNE| > 1 and there exists a pendent vertex y and its
neighbor x, then L = {x} is an effective strategy.

Proof. It’s easy to see that we can always find a NE(S, I) where y ∈ I and x ∈ S.
A simple algorithm is given to find the maximal independent set I including y.
Initially, I = {y}. Each round we select a vertex that has no neighbor in I, until
we cannot find one. Then I is a maximal independent set and y ∈ I, x /∈ I. ��
It is easy to see that whether MinNE is greater than one. Special graphs (|V | >
2), such as trees, paths, absolutely have vertices of one degree, so that effective
strategies always exist.

4.2 Graphs Including a Couple of Inclusive Social Relationships

In this subsection, we consider graphs with a couple of inclusive social relation-
ships. In this graph G = (V,E), there exist two vertices x and y satisfying that
(x, y) ∈ E and N(y) − {x} ⊆ N(x). This type of graphs is frequent, like as one
spouse knows everyone the other knows.

Theorem 3. If any couple of vertices x, y satisfy the following three condi-
tions: (1) there is an edge between x and y, (2) all neighbors of y except x are a
subset of the neighbors of x, i.e. N(y)−{x} ⊆ N(x), and (3) N(y) < |MinNE|,
then there exists an effective strategy L = N(y).

Proof. Let k = |N(y)|. If k = 1, then y is a pendant vertex and x is its only
neighbor. According to Theorem 2, we already have that L = {x} is an effective
strategy. Let the graph with k = 1 be G1. A new graph Gk is obtained from Gk−1

by adding a new vertex lk which at least connects to x and y. It will be shown
that Lk = {x, l2, ..., lk} = N(y) is an effective strategy on Gk (k ≥ 2). In other
words, given any graphs Gk satisfying the three conditions, we can conversely
obtain Gk−1, ..., G1 by vaccinating lk, ..., l2, and easily know Lk = N(y) is an
effective strategy.

Let G′
k be the graph after removing Lk on Gk. In G1, L1 = {x} is an

effective strategy, that is sc = 1 + |MaxNEG′
1
| ≤ |MaxNEG1 |. For Gk (k ≥ 2),

by adding k − 1 vaccinated vertices, the social cost has increased by k − 1.
We get sc = k + |MaxNEG′

1
| ≤ |MaxNEG1 | + k − 1. The rest is to show

|MaxNEG1 | + k − 1 ≤ |MaxNEGk
|. It’s impossible that both x and y are

vaccinated in MaxNEG1 . In that case, y will regret. Due to one of them must
belong to the non-vaccinated set, their neighbor lj (2 ≤ j ≤ k) can not be in the
non-vaccinated set. Then the maximal independent set on G1 is still maximal on
Gk. The set MaxNEG1∪{l2, ..., lk} is a NE on Gk and its cost |MaxNEG1 |+k−1
is no more than |MaxNEGk

|. ��

290 T. Hu et al.

Remark: In Theorem 3, note that the graph must satisfy N(y) < |MinNE|,
which is easy to satisfy in an enormous network.

4.3 Bipartite Graphs

In this subsection, we research on a kind of special graphs, bipartite graphs. Let
V1, V2 be the two parts of the graph. Note that finding a MinNE on bipartite
graphs can be in polynomial time [11,14], while finding a MaxNE is NP-hard [4].

We will give a complete characterization of effective strategies in bipartite
graphs, which is showed by Lemmas 4, 5, 6. We first show the existence of
effective strategies in complete bipartite graphs.

Lemma 4. For a complete bipartite graph, if |V1| �= |V2| and |MinNE| > 1,
there must exist an effective strategy. If |V1| = |V2|, any strategies are ineffective.

Proof. It’s easy to see that MaxNE on a complete graph is always the larger
part. If |V1| �= |V2|, we simply let |V2| be the larger one, i.e. MaxNE = V2. To
be effective, the leader only need to inject a number of vertices ranging from one
to min{|MinNE|− 1, |V2|− |V1|} in V2. Then the followers would inject the rest
of vertices in V2 as the MaxNEG′ . The social cost is |V2| = |MaxNE|.

If |V1| = |V2|, there are two possible cases for L. One is that L belongs to
only one of the sets (L ⊆ V1 or L ⊆ V2). Then MaxNEG′ is the larger part
on the rest graph, i.e. MaxNEG′ = V1 or MaxNEG′ = V2. The social cost is
|L| + |V1|, which must be greater than |V1|.

The other case is that L belongs to both sets (L ⊆ V1 and L ⊆ V2).
Then MaxNEG′ following is still the larger part on the rest graph. No matter
MaxNEG′ is on which side, the part including MaxNEG′ must all be vacci-
nated. In addition, there are some vertices vaccinated in the other part. Thus
the social cost must be greater than |V1|. ��

Next, for general bipartite graphs, we consider two cases based on one side
or two sides of the MinNE. We first discuss the case that MinNE is on two
sides.

Lemma 5. For a bipartite graph, if MinNE ∩ V1 �= ∅, MinNE ∩ V2 �= ∅, then
there exists an effective strategy.

Proof. Let S1, S2 be the vaccinated sets of MinNE and I1, I2 be the non-
vaccinated sets of MinNE, i.e. S1 = MinNE ∩ V1, S2 = MinNE ∩ V2, I1 =
V1 − L1, I2 = V2 − L2. We will prove that L = S1 or L = S2 is an effective
strategy. Since the proofs of two cases are the same, let L = S1 for simplicity.
Now we have divided the bipartite graph into four sets by MinNE and L is
compulsorily vaccinated. Recall that the vaccinated set of MaxNE′

G is denoted
as S′. It is easy to see that S′ cannot include any vertices in I2. As parts of
non-vaccinated vertices in MinNE, I1 and I2 are independent of each other. On
G′, the set L has been removed by the leader and S2 is at the same side with
I2 in a bipartite graph. Thus I2 turns out to be an independent set on G′ which

Stackelberg Strategies on EC Games 291

cannot be vaccinated. Clearly, only three cases are left for S′: (1) S′ ⊆ S2, (2)
S′ ⊆ I1 and (3) some vertices are in S2, the others are in I1.

In case 1, even if the set S′ is all the vertices in S2, the social cost is |L1| +
|L2| = |MinNE| ≤ |MaxNE|. In case 2, even if the set S′ is all the vertices in
I1, the social cost is |L1| + |I1| = |V1| ≤ |MaxNE|. In case 3, when the set S′

includes some vertices in I1 and some vertices in S2, we show that the set L∪S′

is a NE on G which certainly satisfies |L| + |S′| ≤ |MaxNE|. It is known that
I ′ = V −L−F is a maximal independent set on G′. The rest is to show it’s still
maximal on G. Any vertices in L must have at least one neighbor in I2. If they
don’t, the only set they connect is S2 and would regret in MinNE = L1 ∪ L2.
Thus no one in L is independent of I ′ so that I ′ is still maximal. Above all, there
always exist an effective strategy. ��

Fig. 5. Schematic diagrams of Lemma 6.

Finally, we discuss that MinNE is on one side.

Lemma 6. For a bipartite graph which is not a complete bipartite graph, if
MinNE ⊆ V1 or MinNE ⊆ V2, there must exist an effective strategy.

Proof. Since the way of naming V1 and V2 are arbitrary, we’re just going to let
MinNE ⊆ V2. For a bipartite graph, it’s easy to see that MinNE ⊆ V2 is
actually equivalent to MinNE = V2. If there is a vertex in V2 but not in the
vaccinated set of MinNE, then it must be zero-degree and should be ignored.
Because the graph G is not a complete graph, we are always able to find a vertex
x ∈ V2 that does not connect to all vertices in V1 but just connect to a proper
set of V1.

Denote the neighbors of x as J1. The vertices in V2\x which only have
neighbors in J1 are denoted as J2. Let the remaining vertices be L1 = V1\J1,
L2 = V2\(J2 ∪ x). None of them is empty for G is not complete. Fig. 5 shows a
diagram of this case.

Next we show that L = L2 is an effective strategy. Recall that S′ is the
MaxNE on G′, I ′ is the non-vaccinated set on G′. Our goal is to prove that the
set L∪S′ is a NE on G so that immediately the social cost |L|+|S′| ≤ |MaxNE|.
We have known that I ′ is a maximal independent set on G′. It only remains to

292 T. Hu et al.

prove I ′ is still maximal on G. Firstly, L1 must be in I ′, for any vertices in L1

is independent of J1 and J2 ∪ x. Secondly, any vertices in L2 have at least one
neighbor in L1, otherwise, they only connect to J1 and would be grouped to
J2 by denotation. Thus, no one in L2 is independent of I ′, so that I ′ is still a
maximal independent set on G. ��

Algorithm 1: Effective strategies on bipartite graphs
Input: A bipartite graph G(V,E) with two parts V1 and V2.
Output: An effective strategy L.

1 Find a MinNE on G;
2 if |MinNE| = 1 return False;
3 if G is complete then
4 if |V1| = |V2| return False;
5 else
6 return L is any one node in the larger part;

7 else
8 if MinNE ∩ V1 �= ∅ and MinNE ∩ V2 �= ∅ then
9 return L = MinNE ∩ V1.

10 else
11 Find a vertex x ∈ MinNE satisfying N(x) �= Vj (j = 1 or 2);
12 Find a vertex set J2, where ∀y ∈ J2, N(y) ⊆ N(x);
13 return L = MinNE − J2 − x.

Above all, we have discussed all cases in bipartite graphs demonstrated by
Algorithm 1. It is worth to note that in bipartite graph the maximum indepen-
dent set can be found in polynomial time [14] which implies that Algorithm 1 is
polynomial.

Theorem 4. For a bipartite graph which is |MinNE| = 1 or a complete bipar-
tite graph with |V1| = |V2|, any strategies are ineffective. For other bipartite
graphs, there must exist an effective strategy.

5 Conclusion and Future Work

We study a Stackelberg EC game on networks. It is shown that finding an
optimal Stackelberg strategy is NP-hard. Further, the effectiveness of the leader’s
strategy is studied on three kinds of graphs. For graphs with one-degree vertices,
an effective strategy always exists by compulsorily vaccinating any neighbor of
the one-degree vertex. For graphs with couples of inclusive social relationships,
an effective strategy exists by vaccinating all neighbors of the one with fewer
neighbours. For bipartite graphs, we give a exhaustive of the existence of the
effective Stackelberg strategies.

Stackelberg Strategies on EC Games 293

It is an interesting direction to consider the effective Stackelberg strategies
in general graphs. Besides it is also another direction to study approximation
Stackelberg strategies on networks aiming at minimizing the total cost.

References

1. Aspnes, J., Chang, K., Yampolskiy, A.: Inoculation strategies for victims of viruses
and the sum-of-squares partition problem. J. Comput. Syst. Sci. 72(6), 1077–1093
(2006)

2. Balliu, A., Brandt, S., Hirvonen, J., Olivetti, D., Rabie, M., Suomela, J.: Lower
bounds for maximal matchings and maximal independent sets. J. ACM (JACM)
68(5), 1–30 (2021)

3. Berman, P., Fürer, M.: Approximating maximum independent set in bounded
degree graphs. In: Proceedings of the Fifth Annual ACM-SIAM Symposium on
Discrete Algorithms (SODA), pp. 365–371 (1994)

4. Corneil, D.G., Perl, Y.: Clustering and domination in perfect graphs. Discret. Appl.
Math. 9(1), 27–39 (1984)

5. Ganesh, A.J., Massoulié, L., Towsley, D.F.: The effect of network topology on the
spread of epidemics. In: Proceedings of the 24th IEEE Annual Joint Conference of
the Computer and Communications Societies (INFOCOM), pp. 1455–1466 (2005)

6. Garey, M.R., Johnson, D.S.: Computers and Intractability. Freeman San Francisco
Press (1979)

7. Grossklags, J., Christin, N., Chuang, J.: Secure or insure? A game-theoretic anal-
ysis of information security games. In: Proceedings of the 17th International Con-
ference on World Wide Web (WWW), pp. 209–218 (2008)

8. Halldórsson, M., Radhakrishnan, J.: Greed is good: approximating independent
sets in sparse and bounded-degree graphs. In: Proceedings of the Twenty-Sixth
Annual ACM Symposium on Theory of Computing (STOC), pp. 439–448 (1994)

9. Haviland, J.: On minimum maximal independent sets of a graph. Discret. Math.
94(2), 95–101 (1991)

10. Heal, G., Kunreuther, H.: IDS models of airline security. J. Conflict Resolut. 49(2),
201–217 (2005)

11. Kashiwabara, T., Masuda, S., Nakajima, K., Fujisawa, T.: Generation of maximum
independent sets of a bipartite graph and maximum cliques of a circular-arc graph.
J. Algorithms 13(1), 161–174 (1992)

12. Kearns, M., Ortiz, L.E.: Algorithms for interdependent security games. In: Pro-
ceedings of the 16th International Conference on Neural Information Processing
Systems (NeurPIS), pp. 561–568 (2003)

13. Khouzani, M., Altman, E., Sarkar, S.: Optimal quarantining of wireless malware
through reception gain control. IEEE Trans. Autom. Control 57(1), 49–61 (2011)

14. Korte, B.H., Vygen, J., Korte, B., Vygen, J.: Combinatorial Optimization.
Springer, Heidelberg (2011)

15. Kumar, V.A., Rajaraman, R., Sun, Z., Sundaram, R.: Existence theorems and
approximation algorithms for generalized network security games. In: Proceedings
of the 30th IEEE International Conference on Distributed Computing Systems
(ICDCS), pp. 348–357 (2010)

16. Lelarge, M., Bolot, J.: Economic incentives to increase security in the internet: the
case for insurance. In: Proceedings of the 28th IEEE Annual Joint Conference of
the Computer and Communications Societies (INFOCOM), pp. 1494–1502 (2009)

294 T. Hu et al.

17. Saha, S., Adiga, A., Kumar, V.S.A.: Equilibria in epidemic containment games. In:
Proceedings of the 28th AAAI Conference on Artificial Intelligence (AAAI), pp.
777–783 (2014)

18. Saha, S., Adiga, A., Prakash, B.A., Kumar, V.S.A.: Approximation algorithms for
reducing the spectral radius to control epidemic spread. In: Proceedings of the 2015
SIAM International Conference on Data Mining (SDM), pp. 568–576 (2015)

19. Van Mieghem, P., et al.: Decreasing the spectral radius of a graph by link removals.
Phys. Rev. E 84(1), 016101 (2011)

Author Index

B
Bu, Xiaolin 252, 263

C
Chan, T.-H. Hubert 29, 85
Chen, Jingwen 15
Chen, Zhou 184
Cheng, Yukun 147

D
Diao, Zhuo 71
Ding, Yiming 184

F
Fang, Qizhi 105
Feng, Qilong 225
Fritsch, Robin 1

H
Hu, Tingwei 281

K
Khodabakhsh, Ali 42

L
Lee, Younjoo 1
Li, Bo 42
Li, Min 116
Li, YuYing 116
Liu, Qian 116
Lu, Tianhang 105

M
Maji, Sukanya 195
Mei, Lili 281
Meier, Adrian 1

N
Nikolova, Evdokia 42
Nip, Kameng 58

P
Pandit, Supantha 195
Pountourakis, Emmanouil 42

Q
Qi, Qi 184

R
Ruangwises, Suthee 171

S
Sadhu, Sanjib 195
Shi, Feng 212
Song, Jiaxin 252, 263
Sun, Enze 29

T
Tang, Zhihao Gavin 85
Tang, Zhongzheng 15, 71
Tao, Yichen 160

W
Wang, Bo 29
Wang, Chenhao 15
Wang, Jianxin 212, 225
Wang, Lusheng 239
Wang, Shuo 160
Wang, Xinxin 147
Wang, Ye 1
Wang, Zhen 281
Wattenhofer, Roger 1
Wu, Guangwei 212
Wu, Xiaoliang 225
Wu, Yutong 42

X
Xiao, Han 105
Xu, Jinhui 225
Xue, Quan 85

© Springer Nature Switzerland AG 2023
M. Li et al. (Eds.): IJTCS-FAW 2023, LNCS 13933, pp. 295–296, 2023.
https://doi.org/10.1007/978-3-031-39344-0

https://doi.org/10.1007/978-3-031-39344-0

296 Author Index

Y
Yang, Boting 239
Yang, Kuan 160
Yao, Zhanghao 147
Yu, Lingfei 184
Yu, Ziqi 252

Z
Zhan, Zhaohui 239
Zhong, Zhixian 129
Zhou, Yang 116
Zou, Haoyang 71
Zuo, Fu 212

	 Preface
	 Organization
	Keynote Speeches
	 Majority Game in Blockchain
	 Mechanism Design with Data Correlation
	 Optimal Composition Ordering for 1-Variable Functions
	 Contents

	Understanding the Relationship Between Core Constraints and Core-Selecting Payment Rules in Combinatorial Auctions
	1 Introduction
	2 Related Work
	3 Formal Model
	3.1 Combinatorial Auctions
	3.2 Winner Determination
	3.3 Payment Functions

	4 Non-decreasing Payment Rules and Single Effective Core Constraints
	5 Graph Representation of Auction Classes
	6 Conclusion
	References

	An Improved Analysis of the Greedy+Singleton Algorithm for k-Submodular Knapsack Maximization
	1 Introduction
	2 Preliminaries
	3 A Key Lemma for Unconstrained k-Submodular Maximization
	4 Greedy+Singleton for k-Submodular Knapsack
	5 Conclusion
	References

	Generalized Sorting with Predictions Revisited
	1 Introduction
	2 Preliminaries
	3 Path Decomposition
	4 Modified Method for Finding Certificates
	5 Conclusion
	References

	Eliciting Truthful Reports with Partial Signals in Repeated Games
	1 Introduction
	1.1 Our Contribution
	1.2 Related Works

	2 Problem Statement
	3 Bernoulli Distributions
	3.1 Basic Strategies
	3.2 Main Theorems

	4 A Reduction for Arbitrary Distributions
	5 Extension: A Cost-Sharing Model
	6 Conclusion and Open Problems
	References

	On the NP-Hardness of Two Scheduling Problems Under Linear Constraints
	1 Introduction
	2 Single Machine Scheduling Under Linear Constraints
	2.1 Problem Definition and Literature Review
	2.2 Computational Complexity
	2.3 Algorithms

	3 No-Wait Two-Machine Flow Shop Scheduling Problem Under Linear Constraints
	3.1 Problem Definition and Literature Review
	3.2 Computational Complexity
	3.3 Algorithms

	4 Conclusions
	References

	On the Matching Number of k-Uniform Connected Hypergraphs with Maximum Degree
	1 Introduction
	1.1 Related Works
	1.2 Our Results

	2 The Lower Bound of Matching Number with Maximum Degree
	3 The Extremal Hypergraphs on Matching Number with Maximimum Degree
	References

	Max-Min Greedy Matching Problem: Hardness for the Adversary and Fractional Variant
	1 Introduction
	1.1 Our Results
	1.2 Related Work

	2 Preliminaries
	3 Hardness for the Adversary Side
	3.1 Proof of Theorem 1: Reduction from the MBB Problem

	4 The Power of Fractional Permutations
	4.1 Integral Item Permutation vs Fractional Player Permutation

	5 Tight Analysis of the Fractional Round-Robin Algorithm
	References

	Approximate Core Allocations for Edge Cover Games
	1 Introduction
	2 Preliminaries
	3 The Approximate Core of Edge Cover Games
	3.1 Computing an Optimal Half-Integral Edge Cover
	3.2 Integrality Gap of Edge Cover Problems
	3.3 Characterizing Approximate Core with Integrality Gap

	4 Conclusion
	References

	Random Approximation Algorithms for Monotone k-Submodular Function Maximization with Size Constraints
	1 Introduction
	2 Preliminaries
	3 Maximizing a Monotone k-Submodular Function with a Total Size Constraint
	4 Maximizing a Monotone k-Submodular Function with the Individual Size Constraint
	5 Discusstion
	References

	Additive Approximation Algorithms for Sliding Puzzle
	1 Introduction
	2 Preliminaries
	2.1 Basic Definitions
	2.2 Some Properties
	2.3 Algorithms

	3 Approximation Algorithm for n2 Rectangular Puzzle
	3.1 Partition
	3.2 Solve Two Parts

	4 Approximation Algorithm for (n2-1)-Puzzle
	4.1 Algorithm when n=k4
	4.2 Algorithm in General

	5 Application: Average/Worst Case Analysis
	5.1 Analysis for n2 Rectangular Puzzle
	5.2 Analysis for (n2-1)-Puzzle

	6 Conclusion
	References

	Differential Game Analysis for Cooperation Models in Automotive Supply Chain Under Low-Carbon Emission Reduction Policies
	1 Introduction
	2 Problem Assumptions and Notations
	2.1 Model Assumptions

	3 Model Formulation
	3.1 Decentralized Model
	3.2 Stackelberg Leader-Follower Game Model

	4 Numerical Analysis
	4.1 Changes in Manufacturer's and Retailer's Profits over Time
	4.2 Changes of Low-Carbon Reputations and Supply Chain Profits over Time

	5 Conclusion
	References

	Adaptivity Gap for Influence Maximization with Linear Threshold Model on Trees
	1 Introduction
	1.1 Our Results
	1.2 Related Works

	2 Preliminaries
	2.1 Linear Threshold Model
	2.2 Independent Cascade Model
	2.3 Non-adaptive Influence Maximization
	2.4 Adaptive Influence Maximization
	2.5 Adaptivity Gap

	3 Adaptivity Gap for In-Arborescence
	4 Discussions and Open Questions
	References

	Physically Verifying the First Nonzero Term in a Sequence: Physical ZKPs for ABC End View and Goishi Hiroi
	1 Introduction
	1.1 Related Work
	1.2 Our Contribution

	2 Preliminaries
	2.1 Cards
	2.2 Pile-Shifting Shuffle
	2.3 Chosen Cut Protocol

	3 Verifying the First Nonzero Term in a Sequence
	4 ZKP Protocol for ABC End View
	4.1 Uniqueness Verification Protocol

	5 ZKP Protocol for Goishi Hiroi
	5.1 Idea of the Protocol
	5.2 Setup
	5.3 Main Protocol

	6 Proof of Correctness and Security
	7 Future Work
	References

	Mechanism Design in Fair Sequencing
	1 Introduction
	2 Mathematical Modeling and Definitions
	3 An Incentive Compatible Mechanism
	3.1 Analysis for Egalitarian and Budget-Balanced Mechanisms
	3.2 Design and Analysis of Randomized Incentive Compatible Mechanisms

	4 Uniqueness for Randomized Incentive Compatible Protocols
	4.1 Uniqueness of Randomized Mechanism in Two-Player FSP
	4.2 Uniqueness of Randomized Mechanism in n-Player FSP

	5 Conclusion and Discussion
	References

	Red-Blue Rectangular Annulus Cover Problem
	1 Introduction
	2 Related Works
	3 Preliminaries and Notations
	4 One-Dimensional Red-Blue Annulus Cover Problem
	4.1 The RBACN-1D Problem
	4.2 The RBACU-1D Problem

	5 One-Dimensional Generalized Red-Blue Annulus Cover Problem
	5.1 The GRBACN-1D Problem
	5.2 The GRBACU-1D Problem

	6 Two Dimensional Red-Blue Annulus Cover Problem
	6.1 The RBACN-2D-Non-Concentric Problem
	6.2 The RBACN-2D-Concentric Problem
	6.3 The RBACU-2D Problem

	7 Two Dimensional Generalized Red-Blue Annulus Cover Problem
	7.1 The GRBACN-2D-Non-Concentric Problem
	7.2 The GRBACN-2D-Concentric Problem
	7.3 The GRBACU-2D-Uniform Problem

	References

	Applying Johnson's Rule in Scheduling Multiple Parallel Two-Stage Flowshops
	1 Introduction
	2 Preliminaries
	3 The Algorithm
	4 The Analysis of the Algorithm
	4.1 Case 1. H3 =
	4.2 Case 2. H3 =

	5 Conclusion and Final Remarks
	References

	The Fair k-Center with Outliers Problem: FPT and Polynomial Approximations
	1 Introduction
	1.1 Our Results and Techniques

	2 Preliminaries
	3 An FPT Approximation Algorithm for the FkCO Problem in Doubling Metric Space
	3.1 Reduce the Number of Points
	3.2 Find a Feasible Solution

	4 A Polynomial Approximation Algorithm for the FkCO Problem
	5 Conclusions
	References

	Constrained Graph Searching on Trees
	1 Introduction
	2 Preliminaries
	3 Edge Searching with Starts
	4 Fast Searching with Starts
	5 Searching Trees with Halts
	6 Edge Searching with Starts and Halts
	7 Fast Searching with Starts and Halts
	References

	EFX Allocations Exist for Binary Valuations
	1 Introduction
	1.1 Our Results
	1.2 Related Work

	2 Preliminaries
	2.1 Envy-Graph
	2.2 Binary Valuations and Pre-Envy

	3 Existence of EFX Allocations
	3.1 The Main Algorithm
	3.2 Proof of Theorem 1

	4 Conclusion
	References

	Maximize Egalitarian Welfare for Cake Cutting
	1 Introduction
	1.1 Related Work
	1.2 Our Results

	2 Preliminaries
	3 Maximize Egalitarian Welfare with Contiguous Pieces
	3.1 Agents with Fixed Permutation
	3.2 Agents Without Permutation Constraints

	4 Conclusion and Future Work
	References

	Stackelberg Strategies on Epidemic Containment Games
	1 Introduction
	2 Preliminaries
	2.1 Epidemic Containment (EC) Games
	2.2 Stackelberg Epidemic Containment Games

	3 Hardness
	4 Effectiveness
	4.1 Graphs Including One-Degree Vertices
	4.2 Graphs Including a Couple of Inclusive Social Relationships
	4.3 Bipartite Graphs

	5 Conclusion and Future Work
	References

	Author Index

