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Abstract. The paper presents an example of model updating of both
the mass and stiffness parameters of a curved cable-stayed bridge in
Venice (Italy). Conventional optimization problems of mass and stiff-
ness using ambient vibration data are prone to ill-posedness and ill-
conditioning, and generally, the scholar must assume one of the two to
achieve a reliable estimate. However, it is possible to assess the mass and
stiffness from ambient vibration tests in cable-stayed bridges following
a two-step procedure. In the first step, the scholar can assess the mass
matrix from the cable forces estimated from the natural frequencies of
the cables. Then, the unscaled mode shapes and natural frequencies are
used to tune the stiffness matrix in a second step. The authors proved this
updating approach with two variance-based sensitivity analyses. The for-
mer is the sensitivity of the cable forces to the specific mass and bearing
deformability. The latter is the sensitivity of the natural frequencies to
Young’s moduli. Two global optimization algorithms for mutual valida-
tion, differential evolution (DE) and particle swarm optimization (PSO),
are then implemented for the model calibration.
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1 Introduction

Since operational modal analysis (OMA) provides mass-unscaled mode shapes,
the optimization of stiffness and mass matrix simultaneously consequently turns
into an ill-posed problem [15,17,19]. Thus, current traditional vibration-based
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Fig. 1. Illustration of the followed procedure.

finite element (FE) model updating (MU) procedures fail on large-scale struc-
tures [7,23]. Nevertheless, in cable-stayed bridges it is possible to experimental
determine both deck’s modal parameters and cables’ natural frequencies [28],
which may also provide an indirect estimate of cable forces [12,29]. In this bridge
typology, a well-posed FE-MU may be obtained by estimating both mass mode
shape scaling factors and cable forces. Regarding the above-mentioned aspects,
in the existing literature on cable-stayed bridges, few efforts have been done
hitherto [4,6,10,11]. In the current document, the authors attempted to pro-
vide an almost complete FE-MU from ambient vibration of the iconic curved
cable-stayed case study bridge located in Venice (Italy) at the Marghera harbor
[3,9]. A comprehensive description of the case study may be found in [2,5]. The
deck curvature provides functional and aesthetic features, as well as additional
complications, e.g. construction issues. Moreover, in order to reduce cable eccen-
tricities, the current bridge presents an inclined tower. These peculiarities affect
the experimental OMA, which thus becomes a determinant aspect for assess-
ing the reliability of the structural model. Moreover, each cable-stayed bridge
is stand-alone due to specific peculiarities, and it is not simple to generalize a
unique FE-MU procedure. However, bridges belonging to the above-mentioned
category are commonly characterized by three main parts: the deck, the bearings,
and the tower. Therefore, the stiffness of the deck, bearings, and tower, jointly
with the deck’s mass may influence both cable forces and modal parameters.
In the current study, the authors followed a step-wise FE updating procedure,
as depicted in Fig. 1. In the first step, the mass matrix is determined from the
cable forces, in turn, estimated from the natural frequencies of the cables. Then,
the unscaled mode shapes and natural frequencies are used to tune the stiff-
ness matrix in a second step. The authors proved the validity of uncoupling the
updating procedure by two variance-based sensitivity analyses (SA) [21]. The
former is the sensitivity of the cable forces to the specific mass and bearing
deformability. The latter is the sensitivity of the natural frequencies to Young’s
moduli.

2 Finite Element Model Problem Statement

A variance-based SA has been implemented to select which parameters affect
at the most the two unknowns, i.e. the cable forces and the modal parameters.
It is worth mentioning that since these parameters may be different for vari-
ous cable-stayed bridges, the optimization formulation cannot be generalized.
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Fig. 2. Marghera bridge overview and dynamic identification results from [26].

The optimization problem can be formulated as follows in which the objective
function (OF) considers both the outputs of the OMA and the SA [7]:

min
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in which x refers to all the involved bridge parameters defined in an input space
Ω. The superscript m is referred to measured parameters, whereas c to the cal-
culated ones. T are the cables forces, ω the angular frequencies, Φ denote the
mode shapes, and γ are weighting factors.

3 Deck and Cables Dynamic Identification

In [3,26,27], the dynamic characterization of the Marghera bridge was con-
ducted finding out about 11 modes in the 0-6 Hz frequency band and evidencing
both bridge and cable stays modal parameters, as shown in Fig. 2. The authors
selected the 11 experimental modes detected in 2011 [26] for the SA and the sub-
sequent optimization. On the other hand, the 18 cable stays’ frequencies were
determined from measurements collected by sensors placed on every single cable
at about 9 m away from the road surface [3]. The cables are progressively num-
bered from 1 to 9 starting from the tower symmetrically both toward the two
opposite directions, i.e. Mestre and Venice, as depicted in Fig. 2. The authors
analyzed the interpolating line between the mode order n each natural frequency
fn, concluding that the simplified mechanical model of a fixed-fixed vibrating
string can be used to derive the cable forces, which states:

fn =
1

2L

(
T
ρ

)0.5
=⇒ T = ρ

[

2L
(
∂ fn
∂n

)]2
(2)

Each cable force T is related to the n-th natural frequency fn of the cable, its
length L, and its density ρ. Therefore, the cable force may be obtained by the
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Table 1. Cable forces identified from vibration data in the tests of 2011 [26].

Mestre side Venice side
Cable 1 2 3 4 5 6 7 8 9 1 2 3 4 5 6 7 8 9
T [kN] 458 757 2359 3715 3842 4199 4828 5289 4771 614 860 2381 3704 3961 4352 4698 5310 4655

Fig. 3. Marghera bridge SAP2000 FE model and SA results graphs by Eq. (2).

derivative of the interpolating law n- fn [12]. The cables force estimates retrieved
from [26] with the simplified approach are reported in Table 1. It is worth not-
ing that factors like sag extensibility, cable bending stiffness, and intermediate
springs do not play a significant role in affecting the cable forces [3,8,16]. How-
ever, remarkable discrepancy of the cable forces between the two tower sides
have been evidenced.

4 Sensitivity Analysis

A linear FE model shown in Fig. 3 was developed in SAP2000 without con-
sidering any geometrical or mechanical non-linearity [1,3,24]. Initial values have
been assumed for concrete Poisson’s ratio (0.2) and Young’s modulus (25.0
kN/m3), and for the steel’s specific weight (78.5 kN/m3) and Young’s modu-
lus (205 GPa). Before MU, a consistent gap exists between model simulated
dynamic response and experimental modal parameters, preventing any accurate
cable forces estimation. A SA was performed in order to catch the relative influ-
ences of the modeling parameters affecting the modal properties and the OF (1).
An error function g1 was set as the first part of (1), accounting for the 18 force
values discrepancy between the estimated Tm

i and the numerical Tc
i values:

g1 =

nc∑

i=1

(
Tm
i − Tc

i

Tm
i

)2
(3)

From mechanical considerations, the authors identified that the most reason-
able influencing parameters of cable forces and their domain space may be:
the stiffness of the tower Ec,t ∈ [30, 50] GPa, the abutments supports’ stiff-
ness ka ∈ [10, 500] kN/mm, the steel mass ρs ∈ [75, 80] kN/m3 and concrete
mass ρc ∈ [24, 30] kN/m3 of the deck, and its stiffness Ec,d ∈ [30, 50] GPa. The
cables’ geometry and material properties are accurately known, thus they were
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Table 2. Sensitivity indicators S1 for the error function Eq. (2) and for the cable forces.

S1 on Mestre Side cables S1 [%] Venice side cables S1 [%]
(2) [%] 1 2 3 4 5 6 7 8 9 1 2 3 4 5 6 7 8 9

Ec, t 5.14 87.13 38.14 9.06 1.32 0.01 0.27 0.97 2.10 4.22 82.85 30.49 6.76 1.18 0.12 0.00 0.08 0.21 0.44
ρs 0.34 0.08 0.25 0.27 0.23 0.17 0.12 0.07 0.05 0.03 0.18 0.39 0.41 0.36 0.29 0.20 0.12 0.05 0.01
ρc 4.13 12.57 61.29 86.05 78.93 55.23 31.74 16.75 9.23 6.82 17.14 68.93 93.46 94.99 78.15 48.68 22.88 8.28 2.06
Ec,d 1.21 0.51 1.37 1.35 1.12 0.79 0.47 0.24 0.11 0.07 0.22 0.95 1.32 1.44 1.28 0.91 0.48 0.15 0.02
ka 93.14 0.48 0.69 4.79 19.18 43.59 66.41 80.52 86.86 87.17 0.19 0.83 0.01 3.79 21.13 50.04 75.34 89.66 95.70

Table 3. Sensitivity indicators S1 for f (x), f1(x) and f2(x), and for the frequency of
each modes (see Fig. 2).

S1 on S1 on S1 on S1 on each frequency mode [%] (see Fig. 2)
f (x) [%] f1(x) [%] f2(x) [%] 1 2 3 4 5 6 7 8 9 10 11

Ec,t 0.30 0.60 0.40 3.20 94.40 17.00 3.80 0.10 0.00 0.00 1.40 0.00 1.90 0.00
ρs 0.50 0.90 0.70 0.30 0.00 5.30 17.80 0.70 1.20 0.50 3.90 5.30 4.30 2.00
ρc 3.70 61.40 1.30 42.20 4.40 75.40 52.90 48.90 65.40 49.30 65.80 60.20 54.80 52.00
Ec,d 0.00 0.10 0.00 0.10 0.00 0.60 0.70 0.10 0.10 0.10 0.10 0.60 0.00 0.80
ka 94.60 41.60 97.20 54.60 4.40 23.30 39.20 53.20 33.80 51.00 34.10 52.30 48.30 51.90

excluded from the SA assessment. The SA permitted to decompose of the model
output variance into fractions related to each analyzed mechanical parameter
[18]. Saltelli’s sampling scheme has been adopted [20] to define the total num-
ber of simulations required. The variance-based SA provides the first-order (not
accounting for input variables’ interactions) Sobol sensitivity indicators S1 [18],
which have been reported in Table 2 and also depicted in Fig. 3. These outcomes
proved that ka mainly affects the cable forces estimated by (2), thus being the
most influential parameter in the subsequent FE-MU. Ec,t and ρc also fairly
affects the cable forces by (2). From the cable forces point of view, three main
trends may be evidenced from the SA results. ka affects at the most the extreme
cables (6–9), whereas Ec,t plays a significant role for cables closer to the tower
(1–2). The intermediate cables (3–5) appeared to be mainly affected by ρc. In
summary, the SA results reported in Table 2 and also depicted in Fig. 3 aided to
define the optimal set of parameters to be considered in the FE-MU procedure.
Specifically, it is also possible to redefine the parameter space domain as follows:
Ec,t > 30MPa, ρc < 25 kN/m3, and ka < 100 MN/mm.

On the other hand, the SA has been also conducted considering the modal
parameters influence according to the second term of (1), since numerical modal
parameters (ωc, φc) are functions of modeling parameters x. The second term of
(1) can be synthetically rewritten as f (x) = f1(x)+ f2(x). f1(x) denotes the part
depending on the angular frequencies of (1), whereas the f2(x) the MAC-related
part. The Sobol sensitivity indicators have been reported in Tables 3 and 4.

Inspecting Table 4, ρc generally appears as the most influential parameter in
terms of natural frequency, immediately followed by ka. Conversely, inspecting 3,
ka appears to be the most influential with respect to mode shapes. As expected
both mass and stiffness parameters play a crucial role in the dynamic part of the
FE-MU problem (1). Focusing on mode 2, it is the only case where the sensitivity
indicators showed a strong influence of Ec,t in terms of frequencies. With deeper
insights, modes 2–4 in Table 4 report comparable values of Ec,t , ρc, and ka, and
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Table 4. Sensitivity indicators S1 for for the MAC of each modes (see Fig. 2).

S1 on MAC of each mode [%] (see Fig. 2)
1 2 3 4 5 6 7 8 9 10 11

Ec,t 2.80 49.60 41.50 24.30 1.40 1.60 0.00 1.60 0.00 0.60 0.00
ρs 2.60 0.20 16.30 58.30 3.80 48.80 0.00 0.60 0.90 0.60 0.60
ρc 2.20 25.40 57.70 41.60 11.60 24.20 0.40 4.80 1.60 0.70 1.70
Ec,d 0.00 0.00 0.20 0.40 0.00 0.10 0.00 0.20 0.00 0.00 0.00
ka 95.70 74.10 30.20 36.30 97.90 87.20 99.60 98.50 99.40 98.40 96.90

in modes 4 and 6 also ρs is quite influential. In conclusion, on average, the SA
provided a ranking from the most to the less influential selected parameters: ka,
ρc, Ec,t , Ec,d, ρs.

5 Finite Element Model Updating

It is worth mentioning that the preliminary model already approaches the agree-
ment with experimental modal information, thus any MU only driven by modal
parameters may produce an identity of the updated parameters. On the con-
trary, considering both mass and stiffness parameters would be an indetermi-
nate problem. Moreover, the possible discontinuities in the natural frequency
or mode shape parameters’ subspaces, may prevent an effective meta-heuristic
optimization process. Therefore, the FE-MU driven by both cable forces and
modal characteristics would be beneficial. Specifically, due to the uncorrelation
of the above-selected parameters with respect to the cable forces (see Tables 2,
3 and 4), a lower number of parameters may be considered for FE-MU such as:

1. Assuming an Ec,t , the optimization refers only to ρc and ka for cables from
3 to 9, using the OF in (2).

2. Assuming ρc and ka from the previous step, the optimization is limited to
Ec,t for cables 1–2 and mode shape 2, using the OF in (1) limited to the just
mentioned conditions.

3. Assuming ρc, ka, and Ec,d from the previous steps, a final optimization involv-
ing deck’s Ec,d, using the general OF statement of (1).

The authors adopted metaheuristic global optimization algorithms, i.e. the par-
ticle swarm optimization (PSO) [14] and the differential evolution (DE) [25] by
their Python implementations, leveraging the SAP2000-OAPI. No significant dis-
crepancies were obtained between the two algorithms, thus the authors reported
only PSO results. The three optimizations led to the final values of the OFs
0.4306, 0.0347, and 1.0296, and the final optimal results are reported in Table 5.

The optimum values are still consistent with the engineering judgment,
except for the tower stiffness which appears slightly overstated than usual val-
ues. However, it is worth noting that beyond its physical meaning, Young’s
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Table 5. Cable forces and modal parameters associated with the optimum set of
parameters and percentage error before and after the updating. In the bottom right
part of the table, the optimum parameters are listed with the upper (U.B) and lower
(L.B.) bounds. In the cable notation, M indicates the Mestre side, whereas V the Venice
side.

Cable Exp. Num. Error Initial Mode Exp. Num. MAC Freq. Initial Initial freq.
Label [kN] [kN] error Label [Hz] [Hz] error MAC error

M1 458 408 11% 52% V1 0.635 0.699 97.10% -10.1% 97.41% -6.5%
M2 757 1228 -62% -77% V2 0.996 0.975 93.79% 2.1% 93.06% 2.1%
M3 2359 2372 -1% -2% V3 1.143 1.226 82.41% -7.3% 85.58% -7.3%
M4 3715 3852 -4% 5% T1 1.387 1.395 95.03% -0.6% 95.26% -0.5%
M5 3842 4271 -11% 12% M1 1.523 1.650 78.13% -8.3% 80.01% -8.1%
M6 4199 4453 -6% 29% T2 1.602 1.513 75.38% 5.5% 75.56% 5.7%
M7 4828 4540 6% 48% V4 1.963 2.073 97.04% -5.6% 96.91% -5.5%
M8 5289 5041 5% 56% T3 2.646 2.559 94.04% 3.3% 94.19% 3.3%
M9 4771 4618 3% 58% T5 4.072 3.995 89.03% 1.9% 89.10% 1.9%
V1 614 530 14% 43% T6 4.951 4.826 93.29% 2.5% 91.61% 2.2%
V2 860 1279 -49% -86% T7 5.625 5.539 94.48% 1.5% 94.48% 1.5%
V3 2381 2460 -3% -19%
V4 3704 3872 -5% -10% Optimized parameters

V5 3961 4284 -8% 0% Param. Unit L.B. U.B. Optimum
V6 4352 4563 -5% 18% ρc kN/m3 23 30 24
V7 4698 4573 3% 40% ka kN/mm 100 10000 1350
V8 5310 5229 2% 57% Ec,d GPa 30 1 40
V9 4655 4791 -3% 76% Ec,t GPa 30 70 51.1

modulus acts as a modeling parameter in FE-MU procedures, governing global
dynamic properties, and thus it is affected by a high level of uncertainties [22].
These uncertainties may be mainly related to modeling errors, due to complex
structure simplifications or even meshes discretization, or to modeling parame-
ters intrinsic errors due to material and geometric properties uncertainties. As
demonstrated in [13], the herein obtained results are still reasonable. Further-
more, the FE-MU results are consistent with the ones discussed in [3]. It is
worth noting that the analyses also revealed that the agreement between modal
parameters does not improve significantly, since the average percentage error
remains almost equal before and after the updating. Conversely, the cable forces
exhibited a noteworthy consistent improvement.

6 Conclusions

In this study, a finite element model updating procedure is discussed, espe-
cially contextualized on the Marghera curved cable-stayed bridge case study.
The authors adopted a model updating procedure involving both cable forces
estimates and modal parameters in order to overcome the indeterminate MU
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modal-based standard problem when dealing with stiffness and mass parame-
ters simultaneously. This optimization problem is usually challenging, especially
concerning large-scale structures with numerous degrees of freedom. Therefore,
the authors carried out a preliminary variance-based sensitivity analysis to evi-
dence and select the most influencing parameters for the subsequent model
updating process. Specifically, five parameters were selected: the concrete mass
(ρc), Young’s modulus of the concrete deck (Ec,d), Young’s modulus of the con-
crete tower (Ec,t), and the bearing stiffness (ka). The sensitivity indicators were
obtained for both the objective function related to the cable forces and to the
one related to the experimental-numerical discrepancy of natural frequencies and
mode shapes. This analysis revealed that the tower’s stiffness played a crucial
role in the cables closer to the tower. Conversely, the extreme cables appeared
influenced the most by the abutments bearing stiffness. For the intermediate
cables, a major influence of the concrete mass parameter. Regarding the modal
features, the strongest influence was provided by the bearing stiffness and the
concrete mass parameter, except for mode 2 in which also the stiffness of the
tower presented a significant sensitivity indicator. Therefore, the authors accom-
plished an almost complete finite element multi-objective model updating proce-
dure with a simplified step-wise procedure, i.e. by solving in sequence simplified
single-objective sub-problems. The global optimization was conducted with the
meta-heuristic particle-swarm (PSO) and differential evolution (DE) algorithms.
This study also revealed that meta-heuristic optimization algorithms can be chal-
lenging to use in finite element model updating of cable-stayed bridges, especially
when many parameters must be contradictorily optimized simultaneously. How-
ever, the sensitivity analysis represents a critical step to correctly identify the
most relevant parameters which deserve to be considered in the finite element
model updating procedure of complex large-scale structures.
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