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Abstract. Traditional bridge inspection is a manually performed visual process
that is time-consuming, costly, and requires significant support from equipment
and resources. Recent advances in artificial intelligence (AI) have accelerated the
advances toward inspection automation enabled by robotic imaging and machine
vision. Prolific studies in recent literature have reported that damage types and
their locations can be identified in 2-dimensional (2D) imageswith complex scenes
using deep learning (DL) based techniques (e.g., semantic object detection or seg-
mentation). However, these efforts have not achieved a level of applicability as
meaningful as those from traditional human-based bridge inspection. To enable
practical applicability, structural elements and damage patterns must be identified
(including detection, localization, and quantification) in a 3D space. To this end,
one significant research challenge is the lack of 3D databases for learning both
structural elements and damage patterns. This study first developed a unique 3D
dataset based on a real bridge structure, and a low-cost LiDAR-enabled imaging
device (Intel RealSense) was adopted during the data collection process. Seman-
tic annotations were added for structural elements and damage based on the point
clouds and the associated RGB imagery data. Furthermore, a DL-based method
was developed to benchmark the usefulness and validity of the dataset. The pro-
posed dataset and DL methods will be open-sourced and expected to facilitate the
advances toward engineering inspection automation for bridge structures.

Keywords: structural damage · inspection automation ·Machine Vision · Point
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1 Introduction

By 2023, approximately 43% out of about 700,000 bridges in Japan will exceed 50 years
of service which will require periodic inspection and maintenance [1]. Aside from that,
in 2019, around 42% out of 617,000 bridges across the United States have been put into
service for at least 50 years and 7.5% are in poor condition [2]. The continued aging
can render bridges more vulnerable when resisting extreme events, and more likely to
impact human safety and economy. Conventional visual bridge inspection requires a lot
of manpower, equipment, and time. Thus, it is important to have more efficient ways of
inspection and maintenance for infrastructures such as bridges.
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Researchers have proposed to use advanced to improve the bridge inspection pro-
cess. Machine vision based deep learning (DL) methods are among recent advances,
which attract much attention from both researchers and practitioners. To realize dam-
age segmentation and classification, DL architectures based on convolutional neural
networks (CNN) were proved to be promising. It is noted that most of these efforts
adopt a data-centric approach by using, tuning, or modifying existing architectures. For
instances, Mask R-CNN model was used to segment multiple damages like corrosion,
cracks, spalling, etc. on bridges using a large dataset of bridge inspection reports [3].
YOLO v3 was applied to classify different bridge damages like cracks and corrosion
[4]. For specific bridge components, such as rubber bearings, VGG-Unet model was
proposed to segment the cracks on the rubber cover [5]. Aside from the detection of
damages, damage quantification was also proposed by estimating the width of structural
cracks using deep learning [6].

For bridge component recognition, different convolutional neural network models
were proposed to segment bridge components against complex scene in images. Struc-
tural components such as columns, beams and slabs, other structural members, and
nonstructural components were considered [7]. Due to the limited availability of real
data, synthetic data was simulated, and the road bridges components and damages were
extracted and annotated. After that, a CNN model was proposed to segment the compo-
nents and bridge damages [8]. A continued study of [8] proposed a method for bridge
component segmentation using the images collected by a UAV. The images were used
to reconstruct a point cloud data then the components were categorized [9]. The bridge
component using 3-dimensional data has an extra dimension that can be useful for fur-
ther assessment that’s why this study trained a CNN model that can segment the bridge
component from a point cloud data collected by a laser scanner. The points in point
cloud data were classified into three categories: deck, pier, and background [10].

In order to visualize the damage and its location on the bridge, 3Dmodel reconstruc-
tion using Structure from Motion (SfM) and other techniques are useful tools. Inadomi
and Chun proposed a method to convert the point cloud data of a bridge into 2D images
to segment the components using DeepLab v3+ model, then the segmented components
can be reflected to the original point cloud model [11]. Yamane and Chun furtherly
improved the method by introducing deep learning methods to detect damages in 2D
image and then projected them back the 3D model [12].

In our previous effort, we proposed to use DeepLab v3+ to segment the corrosion
from the RGB images of a steel bridge [13]. Then, the segmented corrosion damages
were visualized into the 3D bridge model. The feature points of the damages were
projected into a 3D bridge model reconstructed using structure frommotion to know the
location of the damages. In addition to that, the 3D model was saved and can be viewed
remotely through mixed reality platform. However, the corrosion was segmented using
the 2D images then there is a need to conduct SfM to reconstruct the 3D bridge model
which takes time depending on the hardware used.

It seems that the component detection and the damage segmentationswere conducted
in separated works and for different purpose. However, it is important for the stage of
AI and 3D damage detection and diagnose to let AI understand the relationship between
damage and its location in the bridge to enhance its ability to further understand the
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reason of damage and diagnose the cause and propose the countermeasure for them. The
bridge structural component and existing damages have a relationship which can help in
the evaluation and prediction of the cause or progression of the damage. In addition to
that, the usage of 3-dimensional data contains additional information such as component
surfaces and the damage continuation patterns which are highly significant. However,
one of the main challenges is how to incorporate and know the location of the damage
to the bridge component. In addition to that, segmenting the bridge component and
existing damages in a three-dimensional environment have lack of available real-world
3-dimensional bridge data.

Therefore, this study aims to incorporate the segmented bridge damages to the spe-
cific bridge component for further determination of the damage cause and diagnosis.
Using a low-cost lidar device, RGBD data was collected during the onsite bridge inspec-
tion and annotated using two open-sourced software’s. A CNN model was proposed to
do the point cloud bridge component segmentation and RGB damage segmentation. The
raw and annotated point cloud dataset of the bridge component and RGB damages is
open accessed.

2 Proposed 3D Damage and Component Segmentation Method

This study created a unique 3-dimensional dataset based on a real bridge structure using a
low-cost LiDAR-enabled imaging device (Intel RealSense) and proposed a CNN model
for segmentation of bridge components in 3-dimention and damage segmentation in
RGB images as shown in Fig. 1. Semantic annotation for the structural elements using
the point-cloud data through an open-sourced software were conducted. The damages
were also annotated using the RGB image data. Furthermore, a deep learning method
was established as a benchmark model to validate the dataset. The proposed dataset and
DLmethods are open-sourced and expected to facilitate the advances toward engineering
inspection automation for bridge structures.

As a future study as shown in Fig. 2, after the creation of point cloud dataset and train-
ing of the deep learning model for component and damage segmentation. The trained
weights will be used to deploy in smartphones applications, UAV onboard processing,
and HoloLens for the segmentation of damages and component in the actual bridge
inspection. The data collected will be transfer through cloud which will be used for the
damage diagnosis and bridge 3D model reconstruction for the whole bridge considering
the original data and the data with segmented damages and components. The damage
diagnosis report will consist of the type of component, damage type, and damage loca-
tion, cause of damage, and further evaluation. The 3Dmodel can be saved and repeatedly
done through periodic inspection to compare the deterioration of the bridge through time.

3 Proposed 3D Damage and Component Segmentation Method

The bridge as shown in Fig. 3, is a concrete pedestrian bridge located inside Saitama
University campus in Japan. A low-cost Lidar device as shown in Fig. 4 was used to
collect the bridge point cloud, RGB image, and depth data as shown in Fig. 5. The dataset
for bridge components segmentation focuses on beam, column, transverse girder, and



Integrated 3D Structural Element and Damage Identification 715

Fig. 1. Proposed Methodology.

Fig. 2. Proposed bridge inspection automation and report generation.

main girder, while the damages include corrosion, spalling, cracks, and leaking water.
Using the Intel® RealSense™ Lidar camera, both RGB image and depth image can be
captured at the same time. The resolution of RGB image is 640 by 480 pixels, while the
depth image size is 320 by 240 pixels. Some challenges in gathering the data include the
lighting condition, distance of the Lidar from the surface, and the quality of the point
cloud data. The point cloud annotation and RGB annotation are all in json file.

Fig. 3. Bridge site and structure.
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Fig. 4. Intel® RealSense™ Lidar Camera L515.

(a) (b) (c) 

Fig. 5. Captured 3D data: (a) RGB Image, (b) Depth Image, and (c) Point Cloud Data

The open-source VGG image annotator [14] was used to annotate the damages using
the RGB images. A sample annotation is shown in Fig. 6, in which corrosion damage is
labeled. In our dataset, the damage categories include cracking, corrosion, spalling, and
moisture marks (the latter creates an adverse condition enabling potential damage).

(a) (b)

Fig. 6. Damage annotation in color images: (a) color image and (b) annotated imagewith damage.

The bridge component point cloud annotation was conducted using an open-sourced
software named “supervisely” [15]. The structural component class names are “main
girder”, “transverse girder”, “deck” and “column”. The point cloud annotation result
can be visualized as shown in Fig. 7, in where the components were marked by different
colors: main girder as violet, transvers girder as green, column as blue, and deck as
yellow. The final annotation output is in “json” format prior to training.
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(a) (b)

Fig. 7. Point Cloud Bridge Component Annotation (a) RGB (b) Annotation

4 Enhanced 3D GNN for Bridge Damage and Component
Segmentation

Representing data in 3D is becoming increasingly important in computer vision. In
recent years, more and more point cloud has been used to show 3D data. For the color
point cloud database, we have considered its practicability in multiple aspects. Here, the
author proposes a semantic segmentation network based on 3D data points to verify the
practical significance and usability of our database.

In computer vision, the task of semantic segmentation is to segment images or
point clouds and distinguish different objects. When semantic segmentation is used,
it divides an image or point cloud into semantically meaningful parts and then seman-
tically labels for each part as one of the predefined classes. Identifying objects within
different point clouds or image data is useful in many applications. However, more dif-
ficulties are encountered when performing semantic segmentation on point cloud data
than in semantic segmentation of 2D images.

A big challenge is the sparseness of points between point clouds, which makes it
possible to see through objects. This makes it difficult to see the structure in the point
cloud and distinguishwhich object a point belongs to. In order to deal with this challenge,
this paper chooses the 3D GNN network [16] as the basic model, which is an end-to-end
3D graph neural network that can learn representations directly from 3D point clouds.
On this basis, we added TransformNetwork to the network and proposed a chain training
method. Here, Fig. 8 shows the structure of the Enhanced 3D GNN network:

In this network, we use the chain method of training, because some disaster types
will only appear on specific components, such as spalling only appearing on columns.
We hypothesize that mentioning component type as one of the inputs to damage type
detection part can provide such meaningful information that can improve model per-
formance. The component map needs to be obtained from the first step of the network.
We all know that in the real world, buildings or bridges have their specific geometric
structure, which plays a vital role in determining the component type, and the best way
to express the geometric structure and spatial position is 3D point cloud information.

Therefore, we first take the colored point cloud image as the input of the SubNet1,
using the location information to build a directed graph. Here we treat each pixel as a
node and connect it to KNN in 3D space through directed edges. After constructing the
graph, we use the color information in the color point cloud and transformed CNN to
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Fig. 8. Enhanced 3D GNN network structure

calculate the feature of each pixel as the initial information of the corresponding node, so
as to ensure that the graph neural network can utilize texture and geometric information
at the same time. The output of the network in the first step will be the component
prediction map corresponding to the input.

The second step is to re-assign initial information and weights to each node based
on the results of the previous sub-network and the constructed graph network. Here we
combine the color information and element types of nodes and perform initial convolu-
tion through CNN and use this as the initial node information of the second network for
training. The output of the network in this step will be the damage type prediction map
of the input image.

In summary, the Enhanced 3D GNN network we proposed contains two sub-
networks, which share directed graphs with each other, but have different initial
information, and can output different results for different applications.

For the network model we proposed, we used it as the benchmark model of the
database for experiments. First, we used 70% of the database as training data and 30%
as validation data. After 100 epoch training, we obtained Tables 1 and 2 as our validation
results. Through the analysis of experimental results, it is not difficult to see that themodel
has relatively excellent performance for small sample databases and can successfully
ignore noise and accurately identify most components. Of course, since there are too
few training samples of the damage type in this database, like there are only two cracks,
the prediction result of the damage type is not ideal even if the transform layer model is
used. But even so, it is not difficult to see that with enough data, such as spalling data,
the model can still successfully identify the type of disaster at that location.
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Table 1. Validation results for component and damage type detection.

Component Type IoU % Accuracy %

Deck 69.498 89.781

Transverse Girder 63.347 78.908

Main Girder 37.440 86.484

Column 78.655 97.900

Total Mean 62.235 88.265

Damage Type IoU % Accuracy %

Crack 0 99.531

Corrosion 0 98.802

Leaking Water 78.455
91.567

Spalling 57.483
85.749

Total Mean 33.984 93.914

Table 2. Validation confusion matrix for component and damage type prediction.

Prediction
Label Deck Transverse 

Girder Main Girder Column

Deck 2604725 449267 51876 3215

Transverse 
Girder 488386 3999856 337310 64976

Main Girder 117533 894973 871795 69558

Column 2006 59874 29155 838634

Prediction
Label Crack Corrosion Leaking Water Spalling

Crack 2 9 316 10

Corrosion 3 8 767 89

Leaking Water 0 2 51009 5005

Spalling 0 0 5185 9821

5 Conclusion

This study created an open-accessed 3D annotated dataset of a real bridge component
and damages which can be used for future segmentation training. A low cost lidar was
used to gather the RGB, depth, and converted point cloud data of the bridge compo-
nents and damages. The dataset was published and can be access publicly for future 3D
segmentation training.

The proposed benchmark model for 3D semantic segmentation achieved a relatively
good results given the limitation of the training data. The mean IoU for component type
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is 62% and 34% for the damages. Increasing the database might improve the accuracy
and IoU.

The segmentation of bridge component and identification of the existing damages
on the specific component surfaces can greatly help to further diagnose the cause of
damage and the relationship of the nearby damages. Future studies include the bridge
3D model reconstruction and damage evaluation.
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