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Abstract. Inthiswork,weproposeanumericalstrategytodetectdamages
in truss andbeamstructures exploiting lowest frequencies andmode shapes
that are employed to calculate the flexibility matrix. In particular, for truss
structures, the modal strain difference between damaged and healthy
structures is used to identify the element characterized by the highest
value of strain change, which corresponds to the most likely damaged
element in the structure. Conversely, for beam structures, the highest
value of modal curvature change is used as an index of element damage.
Both procedures are validated using pseudo-experimental data account-
ing for noise pollution in mode shapes components.
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1 Introduction

Recent bridge collapses in Italy (as Morandi bridge in 2018 and Massa Car-
rara bridge in 2020) have raised the attention of the stakeholders and of the
scientific community on the importance of early detection of damages in civil
engineering structures [1,2]. Within this context, the development of robust and
reliable Structural Health Monitoring (SHM) techniques is becoming of central
importance. Among the available SHM strategies, vibration-based (or dynamic)
techniques use recorded structural vibration responses to obtain an estimate
of structural modal parameters such as frequencies, mode shapes and damping
ratios. When during the monitoring phase, these parameters show a significant
change, this variation may be attributed to the occurrence of a possible damage
in the structure [3]. Numerous algorithms and procedures have been proposed in
literature to interpret changes in modal parameters in order to detect, localize
and assess the severity of damage [4].
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In this paper, we propose and discuss an algorithm for damage detection and
localization in planar truss and beam structures. The algorithm is based on the
flexibility matrix, which is accurately approximated by the lowest frequencies
and mode shapes of a structure. Such modal parameters can be easily iden-
tified by means of experimental and/or operational modal analysis techniques
applied to in-field measurements [5,6]. In particular, for the truss structures,
the techniques exploit the variation/increase in strain, with respect to the intact
state, due to the insurgence of damage in bar (reduction in modulus of elastic-
ity and/or cross-sectional area). From the flexibility matrix, where each column
represents displacement patterns for the structure due to unit forces applied to
the corresponding degrees of freedom, we calculate the modal strains. Follow-
ing this approach, the element with the largest variation in strain before and
after damage occurrence is identified as the damaged element [7,8]. A similar
idea is applied to beam structures. In this case, from the displacement patterns
extracted from the approximate expression of the flexibility matrix, modal cur-
vature changes between the healthy and damaged structure are evaluated [9].
The largest values of curvature change are then used to identify the presence
and location of damage [10,11].

To prove the reliability of the proposed method, simply supported truss and
beam structures are studied, considering several damage locations and intensi-
ties. To replicate an on-field procedure, modal data are corrupted with increasing
levels of noise to test the robustness of the proposed algorithm. The procedure
shows an accurate identification of all the damaged elements also in presence of
a high level of noise. Only for very low intensity of damage, some elements in
the truss and beam structures are not identified.

2 Damage Detection Method

Let us consider a generic structure with n degrees of freedom. Its flexibility
matrix F can be expressed in terms of the modal matrix Φ and spectral matrix
Ω as:

F = Φ(Ω−1)ΦT =
n∑

i=1

1
ω2
i

ΦiΦT
i (1)

being Φi the i-th column of matrix Φ, ωi the i-th circular frequency and sym-
bol T the transpose operator. Due to the rapid convergence of the flexibility
matrix for increasing natural frequencies and mode shapes, its computation can
be approximated considering the first m (< n) lower modes and frequencies of
the structure as:

F ≈
m∑

i=1

1
ω2
i

ΦiΦT
i (2)

Note that each column of the flexibility matrix represents a displacement pattern
of the structure corresponding to a unit force applied at the corresponding degree
of freedom, [7]. Hence, it is possible to extract from the j−th column of the
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flexibility matrix, the displacement vector uij , which collects the displacement
components of the i−th element as:

uij = Ti

⎡

⎢⎣
f1j
...

fnj

⎤

⎥⎦ i = 1..ne j = 1..n (3)

where Ti is the ndof ×n boolean operator used to extract from the j−th column
of flexibility matrix

[
f1j ... fnj

]T the displacement vector uij , being ndof the
number of degrees of freedom of each element in which the structure is divided.

Since damage in a structure leads to an increase in flexibility, such variation
in flexibility is employed to define the indexes to detect damage in a structure.
In what follows, we specify the indexes utilized for trusses and beam structure,
respectively.

2.1 Damage Index for Trusses

We consider a planar truss structure with ne bars, where each bar has two degrees
of freedom per node (horizontal displacement, u, and vertical displacement, v).
The 4 × 1 vector uij collects the nodal displacements

[
ū1 v̄1 ū2 v̄2

]T of the i−th
bar element for the j−th column of the flexibility matrix. Modal strain εij can
be evaluated from the displacement vector, Eq. (3), as

εij = Riuij (4)

where Ri is the 1 × 4 rotation matrix. Modal strains of the healthy truss are
collected in the MSH matrix of dimensions ne × n.

The same procedure is applied to the damaged structure: we evaluate the low-
est m circular frequencies and mode shapes, calculate the approximate expres-
sion of the flexibility matrix, Eq. (2), extract the n displacement vectors, Eq. (3),
and determine the strains for all the elements, Eq. (4). The modal strains of the
damaged structure are collected in the ne × n MSD matrix. The damage index
is thus introduced as follows. Given the modal strain change matrix MSC, as

MSC = MSD − MSH (5)

for each row the maximum of the absolute value of MSC is selected and collected
in the ne × 1 modal strain change vector denoted as msc:

msc = maxi=1..ne|MSC| (6)

According to this approach, the most likely damaged element is identified as the
bar corresponding to the highest value of strain change in vector msc, Eq. (6).
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2.2 Damage Index for Beams

Let us consider a generic beam structure modelled under the Euler-Bernoulli
hypothesis, thus neglecting the shear deformation. The beams are divided in ne

elements with two degrees of freedom per node (deflection, v, and rotation, φ).
Indicating with N = N(x) the 4 × 1 vector of the cubic shape functions [12],
being x the local coordinate and with uij the 4×1 vector of nodal displacements[
v̄1 φ̄1 v̄2 φ̄2

]T, the approximate expressions of the displacement and curvature
for the i−th element read:

vij = NTuij (7)

v′′
ij = BTuij (8)

where B is the vector of the second-order spatial derivatives of the shape func-
tions. As in the case of truss structures, the lowest frequencies and mode shape
vectors allow to obtain an approximate expression of the flexibility matrix F
according to Eq. (2). From the columns of the flexibility matrix, the displace-
ment vectors uij are derived, Eq. (3).

The displacement vectors are evaluated for the damaged and healthy struc-
ture, namely uD

ij and uH
ij , respectively. Following the approach described in [9],

the modal curvature change MCCij is calculated for each element and each
column of the flexibility matrix:

MCCij = ΔuT
ij

[∫ Li

0

BTBdx

]
Δuij (9)

where Li is the length of the i−th element and Δuij is defined as

Δuij = uD
ij − uH

ij (10)

For each element, we have n evaluations of the curvature change, Eq. (9), which
are collected in MCC matrix of dimensions ne × n. For each row of MCC the
maximum value is determined and collected in the ne×1 modal curvature change
denoted as mcc:

mcc = maxi=1..ne
|MCC| (11)

Similarly to the approach proposed for the truss structures, the most likely
damaged element is identified as the element corresponding to the highest value
of curvature change in vector mcc, Eq. (11).

3 Numerical Applications

In this section, the identification procedure is applied to two structures: a truss
structure and a simply supported beam.
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Fig. 1. Simply-supported truss structure under study. Dimensions in meters.

3.1 Truss Structure

The simply-supported truss under consideration is represented in Fig. 1, [13].
The structure is characterized by ne = 25 elements and 12 nodes for a total of
n = 21 DOFs. For all elements, the modulus of elasticity E and the material
density ρ are assumed equal to 200 GPa and 7800 kg/m3, respectively. The cross
sectional area of each element is equal to A1 = 1.8 × 103 mm2 for the elements
from 1 to 6, A2 = 1.5 × 103 mm2 for the elements from 7 to 12, A3 = 1.0 × 103

mm2 for the elements from 13 to 17 and A4 = 1.2 × 103 mm2 for the diagonal
elements (from 18 to 25). The change in stiffness due to damage is modelled as a
reduction in the modulus of elasticity of the elements. Each truss bar is damaged
with six increasing levels of damage d: 5%, 10%, 30%, 50%, 70% and 90%. In
order to check for the robustness of the procedure, the reduction of the modulus
of elasticity is imposed to each element e in turn. Additionally, four noise levels
are considered: no noise, 1%, 2% and 3%. In this study, mode shape components
are polluted by noise, while the frequencies are not affected by noise. For the
calculation of the flexibility matrix, we utilize the first m = 4 natural frequencies
and mode shapes of the structure before and after damage.

Identification results for zero noise level are collected in Table 1. In the table,
1 indicates that the procedure is able to identify all the damaged bars indepen-
dently from the level of damage. In presence of noise, 100 runs are performed for
each case scenario. The number of successful damage identifications is collected
in Tables 2, 3 and 4 for noise level equal to 1%, 2% and 3%, respectively. Over-
all, the performance of the identification is satisfactory for all the considered
noise levels. As expected, poorer performance is attained for the lowest levels of
damage (5% and 10% reduction of modulus of elasticity).

3.2 Beam Structure

The simply-supported beam represented in Fig. 2 is used to validate the pro-
posed method, [11]. The beam is a wide-flange W 12×16 type, with modulus of
elasticity E = 199.95 GPa and material density ρ = 7837.1 kg/m3, respectively.
The beam is divided into ne = 16 elements and the first m = 7 mode shapes and
frequencies are employed to approximate the flexibility matrix. As for the truss



Identification of Damage in Truss and Beam Structures 637

Table 1. Identifications of the damaged bar in each damage scenario of the truss
structure without noise.

d\e 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

5% 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

10% 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

30% 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

50% 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

70% 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

90% 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

Table 2. Identifications of the damaged bar in each damage scenario of the truss
structure with noise equal to 1%.

d\e 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

5% 100 100 100 100 100 100 100 100 100 100 100 100 100 83 84 59 100 97 100 95 98 100 98 100 85

10% 100 100 100 100 100 100 100 100 100 100 100 100 100 100 98 93 100 99 100 100 100 100 100 100 96

30% 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100

50% 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100

70% 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100

90% 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100

Table 3. Identifications of the damaged bar in each damage scenario of the truss
structure with noise equal to 2%.

d\e 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

5% 100 100 100 100 100 100 100 100 100 100 100 100 79 52 44 28 60 39 74 55 72 77 46 61 23

10% 100 100 100 100 100 100 100 100 100 100 100 100 97 86 73 40 98 73 94 85 98 93 92 97 55

30% 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100

50% 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100

70% 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100

90% 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100

Table 4. Identifications of the damaged bar in each damage scenario of the truss
structure with noise equal to 3%.

d\e 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

5% 100 99 100 99 100 100 100 100 100 100 99 100 44 23 16 23 42 10 39 14 27 34 13 36 4

10% 100 100 100 100 100 100 100 100 100 100 100 100 82 43 27 38 77 37 66 49 79 68 45 66 28

30% 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 98 100 100 100 100 100 100 100 100 100

50% 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100

70% 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100

90% 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100
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Fig. 2. Simply-supported beam under study. Measures in meters.

case, four noise levels, which pollute the mode shape components are considered:
no noise, 1%, 2% and 3%. Damages are applied to each element e, in turn, with
five increasing levels of damage d: 10%, 30%, 50%, 70% and 90%.
In absence of noise, all the elements are identified. When 1% noise is added, all
the identifications in Table 5 are successful, with an identification rate higher
than 50%. As expected, for higher levels of noise (2% and 3% in Tables 6 and
7, respectively), the identification rate decreases, even if the main issues remain
connected to the lower level of damage, equal to 10% of elastic modulus reduction
and not relevant for a possible structural failure.

It should be noted that all the components of the mode shapes are required in
order to build the flexibility matrix. However, in onsite campaigns this condition
is not feasible, in fact data related to the rotational degrees of freedom of a
beam are difficult to measure. The present approach can be easily modified to
take into account incomplete mode shape components that can be expanded by
means of common techniques of dynamic condensation available in literature,
see for example [14–16].

Table 5. Identifications of the damaged elements in each damage scenario of the beam
structure with noise equal to 1%.

d\e 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

10% 69 100 100 98 94 96 92 83 79 89 90 97 98 99 99 72

30% 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100

50% 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100

70% 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100

90% 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100

Table 6. Identifications of the damaged elements in each damage scenario of the beam
structure with noise equal to 2%.

d\e 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

10% 9 56 58 47 43 41 35 23 31 30 42 46 39 55 56 6

30% 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100

50% 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100

70% 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100

90% 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100
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Table 7. Identifications of the damaged elements in each damage scenario of the beam
structure with noise equal to 3%.

d\e 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

10% 0 8 16 15 19 21 24 16 17 21 22 17 14 17 13 0

30% 95 100 100 100 99 100 98 99 95 97 97 100 99 100 100 95

50% 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100

70% 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100

90% 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100

4 Conclusions

In this paper, an approach for localization of damage in truss and beam struc-
tures by using the flexibility matrix was presented. The flexibility matrix was
approximated considering the first frequencies and mode shapes of the structures
as obtained from experimental measures. The damage detection of a one-span
truss and a simply supported beam was performed calculating modal strain and
modal curvature changes to identify the damaged element. Results demonstrated
the efficiency of the proposed method for dealing with single damage cases con-
sidering different damage extents and increasing levels of noise. The procedure
can be easily extended to account for multiple damaged elements and incomplete
mode shape data.
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