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Abstract. The physics-informed neural network (PINN) was recently
introduced as a potential technique to solve both forward and inverse
structural dynamic problems by integrating physical differential equa-
tions and boundary conditions into the network to minimize the measure-
ment data required for model training. However, it was only in the stage
of solving the simple theoretical problems. This study applied PINN to
solve an inverse problem to identify dynamic structural parameters for
a prestressed concrete girder bridge built 40 years ago. The model input
data were acceleration data measured by three sensors under vehicle load
in two states (i.e., before and after strengthening by external prestress-
ing cable) and combined with the partial differential equation (PDE) of
beam bending and boundary conditions to minimize a loss function. The
modal properties obtained from the PDE with the parameters identi-
fied from PINN were compared with those experimentally identified by
Eigensystem Realization Algorithm (ERA) technique.
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1 Introduction

Structural Health Monitoring (SHM) is an inverse problem that involves deter-
mining the parameters of a structure based on measured data to understand its
state. In recent years, machine learning has emerged as a promising tool for SHM
applications [1–3]. However, traditional machine learning methods rely purely on
measured data to optimize loss functions, which require a huge amount of data.
Collecting enough data in different failure scenarios is challenging. Therefore,
models trained on limited data tend to overfit, leading to poor generalization.

Recently, physics-informed machine learning has emerged as a promising
method that combines the prior knowledge of physics with a data-driven machine
learning models, which increases the generalizability and yields reliable results.
Physics-Informed Neural Network (PINN) are a form of machine learning [4] that
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
M. P. Limongelli et al. (Eds.): EVACES 2023, LNCE 433, pp. 490–499, 2023.
https://doi.org/10.1007/978-3-031-39117-0_50

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-39117-0_50&domain=pdf
https://doi.org/10.1007/978-3-031-39117-0_50


A Preliminary Study on Physics-Informed Machine Learning 491

can integrate prior domain knowledge, such as the ordinary or partial differen-
tial equation, into the training process. However, the application of PINNs in
SHM is currently limited to theoretical problems [5–7]. Therefore, further studies
are necessary to investigate the applicability of PINNs to both theoretical and
practical issues in structural health monitoring.

The overall objective of this study was to investigate the applicability of the
PINN approach in determining the parameters of structures. This objective was
achieved by addressing the following tasks: 1) verifying the PINN method to
determine the parameters of the partial differential equation (PDE) of theoreti-
cal beam structures using their free vibration response data; and 2) investigating
the capability of the PINN approach to identify the parameters of an existing
single-span girder bridge based on the damped free vibration equation and mea-
surement data. The results were compared with those experimentally identified
by Eigensystem Realization Algorithm (ERA) technique.

2 Case Study 1: Theoretical Beam Structure

2.1 Methodology

In this case study, PINN method was applied to determine the parameters of the
partial differential equation of theoretical beam structure using its free vibration
acceleration data. The free vibration equation of beam is given by

EI
∂4w(x, t)

∂x4
+ m

∂2w(x, t)
∂t2

+ c
∂w(x, t)

∂t
= 0 (1)

where w, c, EI, and m are displacement, damping coefficient, stiffness, and
the mass per unit length of the beam, and x and t are space-time variables
of Eq. (1). In the case study, the damping coefficient c was considered as an
unknown parameter, and it was identified based on the acceleration field, PDE,
and boundary conditions.

To apply the method, we first created a fully connected neural network with
3 hidden layers, each with 100 nodes, and used the sinusoidal activation function
for the model (see Fig. 1). The input layer has two nodes corresponding to time
and space, while the output of the model has only one node corresponding to
the displacement field. The total loss function used in the model is given by:

L = λpdeLpde + λdataLdata + λbc1Lbc1 + λbc2Lbc2 (2)

where Lpde and Ldata are the loss terms of PDE residual and observation data,
while Lbc1 and Lbc2 are the loss terms for displacement and bending moment at
the boundary. λpde, λdata, λbc1 and λbc2 are the weights for each loss term.

To optimize the PINN model in this case study, weight values were chosen
manually for each loss term, as shown in Table 1. The learning rate was set to
5e−4, and the number of epochs was set to 18000 with a batch size of 100. The
value of epochs and batch size were the hyperparameters of the model.
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Fig. 1. Structure of PINN in case study 1

2.2 Data

Acceleration data were generated from the theoretical solution of beam structure
for the first three modes. The total solution of Eq. (1) is given by

w(x, t) =
3∑

n=1

Xn(x) × Tn(t) (3)

with Xn(x) = sin(nπ
L x) and Tn(t) = e−ξnωntcos(ωdt) with n = 1 → 3.

The data from three locations shown in Fig. 2a were used for training.
Figure 2b shows the acceleration data in Mode 1. Acceleration data in the first
three modes were used as constraints for optimizing the PINN model, and the
damping coefficient was identified for each mode.

Fig. 2. a) The location of observation acceleration and b) acceleration data of Mode 1
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2.3 Results

Table 1 presents the results of damping estimation for the first three modes
when the acceleration to train the model. The table also compares the estimated
damping coefficients (c) with the damping coefficients value used to generate the
data. The accuracy of the estimated damping coefficient decreased from Mode 1
to Mode 3 due to the complexity of the mode shape. The weight values (λdata,
λpde, λbc1, λbc2) used in each component of the loss function for this case study
were manually selected and significantly affected the results. In general, the
results showed that the PINN model works well with limited data.

Table 1. Summary the results in first three mode shape

Mode (n) λdata λpde λbc1 λbc2 cn (theory) cn (appr) error %

Mode 1 1 1/50 1 250 3.95 4.03 2.00

Mode 2 1 1/50 250 250 15.79 15.08 4.49

Mode 3 1 1/50 250 250 35.53 33.56 5.55

Figure 3a shows the estimated damping coefficient at different epochs for Mode
2. The model converged around 12500 epochs, and the estimated damping coef-
ficient (cn approximate) was close to the theoretical value (cn theory). Figure 3b
compares the estimated mode shape with the theoretical mode shape of Mode 2.

Fig. 3. a) Estimation damping coefficient at different epochs and b) comparison of
mode shapes for Mode 2

3 Case Study 2: Real Bridge

3.1 Methodology

The Eq. (1) is rewritten as

α
∂4w(x, t)

∂x4
+

∂2w(x, t)
∂t2

+ β
∂w(x, t)

∂t
= 0 (4)
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where α represents the normalized stiffness α = EI
m , and β represents normalized

damping coefficient β = c
m , which were unknown parameters of the girder. In

this case study, PINN is utilized to identify these unknown parameters. The
same neural network model used in case study 1 was set up (see Fig. 4).

Fig. 4. Structure of PINN in the study

The time-space grid was established and subsequently utilized by the model,
with the time and space coordinates serving as inputs (refer to Fig. 5). The
model needs to satisfy three conditions: Eq. (4), the recorded acceleration data,
and the boundary conditions. It can be described by the loss function as follows:

L = λdataLdata + λpdeLpde + λbc1Lbc1 + λbc2Lbc2

= λdata
1

ND

ND∑

xi,ti∈Ξ

∣∣∣ŵtt(xi, ti) − acc(xi, ti)
∣∣∣
2

+ λpde
1

NG

NG∑
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∣∣∣αŵxxxx(xk, ti) + ŵtt(xk, tk) + βŵt(xk, tk)
∣∣∣
2

+ λbc1
1

NB

NB∑

ti∈T

∣∣∣ŵ(0, ti) + ŵ(L, ti)
∣∣∣
2

+ λbc2
1

NB

NB∑

ti∈T

∣∣∣ŵxx(0, ti) + ŵxx(L, ti)
∣∣∣
2

(5)
where,

– ŵtt and acc are the approximation acceleration and observation accelerations.
ND is the number of observation data (red points in Fig. 5).

– NG is the all of points in the time-space domain. α and β are unknown param-
eters of PDE.

– ŵ and ŵxx are the approximation of displacement and curvature at the bound-
ary. NB is the number of points at the boundary location (blue points in
Fig. 5).
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Fig. 5. Description of the points in beam mesh

The loss function includes three main components. The first component, Ldata,
constrains the model’s output to satisfy the acceleration data recorded at each
sensor, with a weight of λdata = 1. The second component, λpde, constrains the
model’s output to satisfy the PDE by minimizing the PDE’s residual. Since the
number of points in the time-space domain in the grid is larger than the data
points and the number of points in the boundary condition, the effect of the
residual of the PDE on the loss value is the largest. To reduce the effect of Lpde

and increase the effectiveness of data and boundary conditions, the weight λpde

was given as 1
40 . The last components, Lbc1 and Lbc2, were used to constrain the

boundary condition of the model, and the weights were set to λbc1 = λbc2 = 100.
To optimize the PINN model in this case study, a learning rate of 5e−4 was

used. The number of epochs was set to 25000 and the batch size was set to 200.
The values of epochs and batch size were the hyper-parameters of the model. A
batch size of 200 was chosen to ensure efficient training and memory limitation.

3.2 Data

The road bridge investigated in the present study is a single-span post-tensioned
PC T-girder bridge that was constructed in 1975 and crosses the Iruma River
in Kawagoe, Japan. The bridge comprises of four main girders with a span
length of 24.25 m and a width of 8.35 m. During a routine inspection, bending
and diagonal cracks were identified in the two outer main girders (refer Fig. 6a).
Subsequently, a detailed survey revealed some decreases in prestress. To improve
the stress condition in the girders, it was decided to apply external prestressing
to all four girders, as shown in Fig. 6b.
For monitoring the response of the structure under traffic loads, acceleration
data were recorded before and after strengthening the structure with external
cables under vehicle loads. Data were collected and saved every 5 min, the total
measurement time was 1 h for both states.
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Fig. 6. a) Bending and diagonal cracks and b) External pre-stressing arrangement in
a main girder

Fig. 7. a) Free vibration acceleration at the middle and b) acceleration at three sensor
on the outer girder

In this study, it was assumed that the bridge behaved as a beam in free vibration,
as described in Eq. (4). Therefore, the free vibration zone was manually chosen
from the recorded acceleration data and used as a constraint for the PINN model.
An example of the extracted free vibration from the acceleration record at the
sensor located in the middle of the outer girder is shown in Fig. 7a. The extracted
free vibration at three sensors in the outer girder is also shown in the Fig. 7b.
Since the equation for a beam, i.e., Eq. (4), was used in this study, data from
only one outer girder were used.

3.3 Results

Figure 8a and 8b show values of α and β at different epochs in one sample of
measurement data before prestressing. There was no significant change in the
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value α observed in both states compared with the initial value α = 2.3e6.
However, the values of β before prestressing were significantly different from the
initial value of β = 1.

Fig. 8. a) Alpha value and b) Beta value depend on epochs

In this case study, we used four sets of free vibration acceleration data measured
before and after the bridge was reinforced with prestressing cables. The free
vibration data were chosen manually, and the normalized stiffness and damping
coefficients for each set of data were identified and shown in Table 2.

Table 2. Summary the results of α and β

No. Sample α β

Before Prest After Prestr Before Prestr After Prestr

1 2299995 2299995 0.237 1.549

2 2299995 2299991 1.65 5.143

3 2299996 2299996 7.25 3.808

4 2299993 2299983 0.0003 0.525

There is no significant change in the α value before and after the prestressing.
Additionally, there is no significant change in the α value in both states when
compared to the initial value of α = 2.3e6, which was assigned before training.
With regards to β, the identified variation of beta was large and significantly
different from the initial value of β = 1 in both states, except for one case.

The normalized stiffness, as found by the PINN model shown in Table 2, was
substituted into Eq. (4) to theoretically calculate the natural frequencies. Due
to the small effect of damping on the natural frequencies and the large variation
in the identified damping, damping was neglected in the calculation of natural
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frequencies. The angular frequency and natural frequency in each mode can be
obtained using the equation below.

ωi =
i2π2

L2

√
α =⇒ fi =

i2π
√

α

2L2
i = 1, 2, 3 (6)

The natural frequency of the first three modes was calculated based on Eq. (6)
and shown in Table 3. The results from the PINN technique in this case study
show that there are no differences between the first three natural frequencies of
the beam structure before and after prestressing.

Table 3. Averages of natural frequencies (f) by using PINN technique

Mode Before Prestressing After Prestressing %

f (Hz) f (Hz) difference

1st bending 4.03 4.03 0.0

2nd bending 16.14 16.14 0.0

3rd bending 36.31 36.31 0.0

To compare the results, the ERA technique [8] was used to identify the natural
frequency in each mode. The results obtained from the ERA technique were
compared with the results obtained from the PINN technique, and are shown in
Table 4.

Table 4. Comparison results between PINN and ERA technique

No. Sample PINN f(hz) % ERA f(hz) %

Before After difference Before After difference

1st bending 4.03 4.03 0.0 4.00 4.20 5.0

2nd bending 16.14 16.14 0.0 14.5 14.7 1.4

3rd bending 36.31 36.31 0.0 26.3 26.9 2.3

The natural frequencies obtained from the PINN technique were significantly
different from those identified experimentally using the ERA method, as shown in
Table 4. There could be several reasons for the differences in the results obtained
from the PINN technique, such as: 1) the initial parameters assigned for α and
β were chosen subjectively, and 2) 1D vibration equations were used to optimize
the loss function. In practice, the beam structure works as a network of girders,
and therefore, the results could potentially be improved by considering the effect
of the stiffness of the girder network.
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4 Discussion and Future Work

This study utilized an algorithm based on Physics-Informed Neural Networks
(PINN) to address the inverse problem of theoretical beam bending vibration
and free vibration response in an existing bridge. PINN was able to reconstruct
the acceleration field of the beam structure. However, the values of (α and β)
determined for the bridge did not display significant changes before and after
reinforcement with prestressing cables, despite experimental evidence of changes
in the natural frequency. The poor results in the real structure may have been
caused by the manual selection of weights for each component in the loss func-
tion, which may not have been reasonable. Improving the results requires deter-
mining the weights automatically for each loss term to maintain a balanced
interplay between the different components of the composite loss function dur-
ing model training.
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