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José Figueroa, José M. Saavedra, José F. Delpiano, and Rodrigo Astroza(B)

Faculty of Engineering and Applied Sciences, Universidad de los Andes,
Santiago, Chile

rastroza@miuandes.cl

Abstract. This paper presents a method for damage identification of
wind turbine blades based on vibration data and machine learning (ML)
techniques and their validation using experimental data collected at dif-
ferent states of artificially-induced damage. The acceleration responses
collected from accelerometers placed along the blades are preprocessed
according to the type of network used for damage diagnosis. The ML app-
roach is a supervised strategy in which a multilayered perceptron (MLP)
takes a vector of damage-sensitive features, calculated from the accelera-
tion time series. The accuracy of the approach is evaluated, and the effects
of the operational and environmental variables (EOV) are discussed.
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1 Introduction

Wind energy is one of the most widely used forms of renewable energy generation
in the world, providing (alongside solar) more than 10% of the world’s electric-
ity according to Renewables 2022 Global Status Report [9]. For the generation to
be optimal, the blades of the wind turbines (WTs) must be in operational condi-
tion, otherwise, the blade could fail due to the structural stresses caused by the
wind hitting it, delamination of the fiberglass layers, amongst others detailed in
[5], causing the disruption of operation to replace it or the exchange of the com-
plete generator, incurring in significant economic losses. Thus, knowing the state
of health (SoH) of the blades becomes a relevant indicator for reliability, safety, and
economic reasons. This creates the need to monitor and diagnose the health state
of the structure. Structural health monitoring (SHM) uses different techniques
to accomplish this task. To diagnose the structures, the system needs data and
as with most industrial machinery, WTs count with a Supervisory, Control, and
Data Acquisition system or SCADA that measures relevant information about the
structure (such as blade pitch, power generated, and wind speed) over a period of
time. This information paired with different machine learning techniques allowed
for several approaches to be raised. In Mylonas et al. [7] the authors introduce a
machine learning-based strategy to use this information, paired with simulations
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of the blades, to infer the accumulated deterioration of the WTBs. For this, a con-
ditional variational autoencoder was used to model the probability distribution
of said wear. Another approach is postulated by Chandrasekhar et al. [1], where
Gaussian Processes are trained to predict the edge frequency of WTBs based on
the SCADA information of another of the blades combined with the ambient tem-
perature, and then by calculating the residual error between the actual frequency
and the prediction; and by putting a threshold to this error the blade is catego-
rized as healthy or damaged. Another popular approach that tries to generate
more information than the SCADA system is by instrumenting the structure to
obtain, usually, acceleration responses that are analyzed and processed to obtain
features that allow the identification of the SoH of the structure. This vibration-
based SHM allows the calculation of new features that contain more information,
and that can represent the different states of the structure in a better way. This
allows for new types of analysis, such as modal analysis where the natural frequen-
cies and mode shapes are used to characterize the healthy state, and by using artifi-
cial neural networks (ANNs) [3], statistical and/or modal damage detection [8] the
same goal is achieved. Also, strategies based on outlier analysis, such as Tcherniak
et al. [10], where Principal Component Analysis (PCA) was applied to represent
the healthy state and uses Mahalanobis distance (MD) as a damage detection met-
ric in a laboratory environment, and, in the same line of research, Ulriksen et al.
[11] uses a similar strategy but in an operating WT. In the same manner, but with-
out using PCA, Movsessian et al. [6] introduces an ANN that is trained to output
this distance, and the damage detection is made by calculating the absolute log-
arithmic error between the output and the calculated MD. In another technique
presented by Feijóo et al. [2], the authors used an autoencoder to reconstruct the
healthy data obtained from accelerometer signals taken from an offshore wind tur-
bine jacket replica. Instead of using dimensionality reduction techniques, such as
PCA, the authors calculate damage-sensitive features (DSFs) by using statistical
values (mean and standard deviation) and frequency features (spectral entropy)
in different SoH of the structure, these states are artificially created by introducing
cracks on certain parts of the jacket. The approach is similar to the previously men-
tioned, as the output is used to calculate the reconstruction error that, by using a
threshold, classifies SoH.

In this paper, a different approach to the previously discussed is presented.
Instead of training only with healthy data, acceleration responses of the blade
with different types and levels of damage were collected, labeled, and then used
to train the network. For this, DSFs are calculated in a similar fashion to [2], and
then fed to an ANN that is trained to classify the input to their corresponding
damage state.

2 Experimenal Setup and Damage States

In this study, a replica of a 5 kW WT is used with three 2.4-meter-long blades.
The speed at which the replica rotates is controlled to simulate different oper-
ating wind speeds. On top of the simulated WT, a data acquisition system was
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designed to capture acceleration data. It is composed of three strips of three
accelerometers each placed along two of the three blades of the WT, as shown in
Fig. 1. Each sensor is an ADXL-345 triaxial accelerometer from Analog Devices,
controlled by an ESP32 that records and sends the acceleration data. The mea-
surements were made in ten-minute intervals with the sampling frequency of the
sensors set to 200 Hz. Vibration data was collected at different SoH of the blade
by inducing damage or modifications to the physical system. This was made
firstly by adding masses in specific sections of the blade to simulate events such
as ice accumulation and secondly by introducing cuts at specific blade locations
where cracks were previously observed during experimental tests conducted in
a laboratory environment [4]. The position of the masses and the location and
direction of the cuts are shown in Fig. 2. The combination between masses, cuts,

Fig. 1. Instrumentation of WT blades A (top) and B (bottom) with the respective
distances from the base. The directions represent the measurement axes of the sensors.

Fig. 2. Location of cuts and masses inflicted on the blade
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and rotation speed receives a label of ‘WT0# i’ where the ‘#’ indicates the
identification number of added mass or cuts and the sub-indices the velocity at
which the WT is spinning. Table 1 shows three different SoH used for this report.

Table 1. Test Protocols

Condition Test Rotor Speed [RPM] m1 [g] m2 [g] c1 [cm] c2 [cm] c3 [cm]

Healthy WT00 1 15 0 0 – – –

Healthy WT00 2 30 0 0 – – –

Healthy WT00 3 45 0 0 – – –

Healthy WT00 4 60 0 0 – – –

Added Mass WT01 1 15 120 120 – – –

Added Mass WT01 2 45 120 120 – – –

Damage WT03 1 15 0 0 2 – –

Damage WT03 2 30 0 0 2 – –

Damage WT03 3 45 0 0 2 – –

Damage WT03 4 60 0 0 2 – –

3 Damage Diagnosis Approach

As shown in Table 1, the different SoH can be categorized, so the approach
selected to diagnose the system is of a supervised classification problem, where
the data is fed through a neural network to obtain the class it belongs to at the
end. The chosen architecture is a multi-layer perceptron (MLP).

3.1 Data Preprocessing

For the input of the network, features have to be extracted from the responses
obtained. As shown by Feijóo et al. [2], the mean (μ), standard deviation (σ), and
spectral entropy (H) are representative features that contain enough information
for an artificial neural network (ANN) to learn to differentiate the states. These
features are calculated over 200 samples or one second of measurement.

3.2 Feature Vector

For the analysis, flapwise and edgewise accelerations (Z and X on Fig. 1, respec-
tively) are relevant as there should be no significant acceleration along the lon-
gitudinal axis of the blades. So for six sensors, two axes each, and three features
per axes, the input vector for the MLP is composed of these 36 features. The
feature extraction is defined by the following equations.

First, a set of measurements is defined by Eq. 1

As,d
t = [as,d

t1 , ..., as,d
tk

] (1)
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where as,d
t1 is the acceleration of the sensor s in the direction d at time t, and

k = 200 as it is the window for calculating the features. Then, the sets of sensors
is defined in Eq. 2

At = [A1,X
t , A1,Z

t , ..., A6,X
t , A6,Z

t ] (2)

where t represents the instant (or second) of the samples. After the sets of
sensors, the feature extraction is defined as the function shown in Eq. 3 where
the three features are extracted in each window.

F (At,s,d) = [μ(As,d
t ), σ(As,d

t ),H(As,d
t )] (3)

Then the feature vector can be defined the following way

vt = [F (At,1,X)), F (At,1,Z), F (At,2,X), ..., F (At,6,X), F (At,6,Z)] (4)

So for the same second, the features of the sensors are organized from one to
six or, by using the nomenclature of Fig. 1 from A1 to B3. Finally, each feature
is normalized independently using Z-Score as shown in Eq. 5.

fn =
f − μf

σf
(5)

where fn is the normalized feature, μf is the mean value of the feature in the
SoH, and σf is the standard deviation of the feature in said SoH. After the
normalization process, the vectors can be projected into 2D using UMAP. This
is done to understand the distribution of the points on their own dimensionality
as UMAP tries to maintain the topological characteristics of the sample when
it projects. Figure 3 shows that the classes are mostly separated, but there are
some vectors that are on top of others making the problem more complex.

Fig. 3. 2D UMAP projection of 5000 feature vectors, in green WT00, in purple WT01,
and in red WT03. Some overlap can be seen in the lower left corner between WT00
and WT03 vectors.
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3.3 MLP Architecture

The proposed architecture of the MLP is composed of three fully connected lay-
ers. As discussed in the previous section, the input layer has 36 input neurons,
the first hidden layer of 128 neurons, a second hidden layer of 32 neurons, and at
the end the output layer with three neurons (one per category); Fig. 4 shows the
summarised architecture. Due to the nature of the signals, even after normaliza-
tion, they have positive and negative values, this is why the chosen activation
function for both hidden layers is hyperbolic tangent (tanh), as the function
takes both positive and negative values. At the output, softmax activation is
used to obtain the probability of the input belonging to a certain label. Before
the training process, the data is divided into two sets of training and testing
with an 80%/20% split. For training, the loss function (also known as the cost
function), as is modeled as a multi-label classification problem, is cross-entropy
paired Stochastic Gradient Descent (SGD) as the optimizer. Finally, the network
was trained for 5 epochs with a batch size of 64.

Fig. 4. Proposed MLP Architecture

3.4 Metrics

To measure the performance of the network, a few metrics were used, these
are; Accuracy, Precision, Recall, F1-Score, and the confusion matrix. All of the
metrics are defined in relation to the amount of correctly classified samples
or True Positives (TP) and True Negatives (TN) and the incorrectly classified
samples False Positives (FP) and False Negatives (FN). The metrics are defined
in the following equations.

Accuracy =
TP + TN

TN + FP + FN + TP
(6)

Precision =
TP

TP + FP
(7)

Recall =
TP

TP + FN
(8)

F1 = 2
Precision · Recall

Precision + Recall
(9)
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4 Results and Discussion

Before the architecture was fixed, several parameters were changed and tested.
This was made by training different combinations of the number of neurons per
layer and the number of layers and keeping the best-performing based on con-
vergence time. This architecture, shown in Fig. 4, was then trained and modified
according to the experiment being performed. First, the classification using all
SoH.
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0.005 0.002 99.993

Fig. 5. Confusion Matrix of the trained MLP calculated with testing data, all values
are percentages

Table 2. Classification Metrics of the proposed methodology

Class Precision Recall F1-Score Number of Test Samples

WT00 100.0 100.0 100.0 192225

WT01 100.0 100.0 100.0 67339

WT03 100.0 100.0 100.0 166492

The network achieves 100% accuracy, this result also repeats on the different
metrics presented in Table 2. In addition to the metrics, the confusion matrix in
Fig. 5 shows how well the network classifies the data and how many samples it
confuses and with which label. For WT00 a 0.017% or 32 misclassified samples,
21 for WT01, and for WT03 11 samples. From these results, this methodology
has an auspicious future for damage detection, as all metrics are extremely good
with two different types of damage and healthy data. This could be attributed
to the conditions in which the replica was operated, as the rotation speed was
fixed and not dependent on the wind. Also, the temperature variability was
not significant during the tests. In order to check if these environmental and
operational variables (EOV) are relevant to the classification, the training, and
testing were repeated, including them in the input vector.

4.1 EOV Effect

As previously explained, the network takes three features calculated with the
acceleration obtained from the sensors. In addition to those vectors, the values
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of the mean rotor speed and mean temperature (over the same 200 samples)
were added to them. This means that the input changes to 38, but all the rest
of hyperparameters are maintained.

Table 3. Classification metrics of the MLP trained with EOVs

Class Precision Recall F1-Score Number of Test Samples

WT00 100.0 100.0 100.0 60242

WT01 100.0 100.0 100.0 34548

WT03 99.9 100.0 100.0 25098

With these new features, the results are maintained from the previous as
shown by the confusion matrix Fig. 6 and the metrics in Table 3. With the addi-
tion of EOVs, the confused samples are reduced, but not in a significant man-
ner. This means that the approach works only with the vibrational data and
the effects that EOVs have on the features are not meaningful enough to change
them, and the variables themselves do not have relevant information for the
classification. But, this methodology has to be validated with a working WT in
regular operational conditions.
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Fig. 6. Confusion Matrix of the trained MLP trained with EOVs, all values are per-
centages

4.2 Network Generalization

In addition to the network knowing the classification of the damage, it is impor-
tant to know how the network will respond when a new state is presented to it,
this is why a binary experiment was performed. In this case scenario, the labels
of the classes were changed to healthy or damaged (true or false), instead of
the corresponding ‘WT0# label, to create a binary classification problem. This
comes with the change of activation function and the number of neurons in the
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output layer. The neurons are changed to two, one per class, and the activation
function is changed to sigmoid. This is done to allow for the training of both
neurons, as the healthy data enters the network, the ‘healthy’ neuron trains to
converge to ‘1’ and the ‘damaged’ neuron converges to ‘0’ and vice-versa. For
this, the training and testing dataset are built using different SoHs. The train-
ing dataset is composed of WT00 and WT01 and the testing dataset is made up
from WT00 and WT03.

Healthy Damaged
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Fig. 7. Generalization experiment confusion matrix, all values are percentages

Table 4. Classification metrics for the generalization experiment

Class Precision Recall F1-Score Number of Test Samples

Healthy 60.0 100.0 75.2 288338

Damaged 100.0 23.9 38.6 249738

With this, the results show that the network is able to classify the healthy
state of the blade almost to a 100%. This is expected as the healthy state does
not change with respect to the features, but the damaged state behaves in a
completely different manner, as the metrics in Table 4 and the confusion matrix
in Fig. 7 show, the damaged state does not generalize in a useful manner, this
can be seen in Fig. 3 as the clusters in purple (WT01) are separated from the
clusters in red (WT03) so there is no overlap for the MLP to interpret both as
damages.

5 Conclusions

This paper presented a supervised machine-learning methodology for damage
identification in wind turbine blades (WTBs) that is capable of differentiating
between types of damage and correctly classifying them with an accuracy of
100%. The proposed approach has advantages compared to previous techniques
as it includes more information on the label, apart from the distinction between
healthy and damaged states. The methodology was validated using experimen-
tal data from a 2.4-meter-long wind turbine blade, which was tested with added
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masses and with artificially-induced damage. In addition, the effects of environ-
mental and operational variables (EOV) were also investigated. The proposed
methodology proves to be a promising strategy for structural health monitoring
(SHM) for WTBs. In addition to the high accuracy, it is remarkable the amount
of data needed for the diagnosis, as the features are calculated over 200 samples,
and the sampling frequency is 200 Hz, meaning that the network only needs one
second of measurements for the diagnosis.

In regard to the generalization experiment, the representation can be
improved by training with more types of damages, as the features locate differ-
ent damages in different regions of the feature vector space and similar damages
should be closer. Finally, the next step for this methodology is to be validated
with data obtained from an instrumented blade on a working wind farm and
explore how the features and performance of the network differ from the con-
trolled setup.
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3. Gantasala, S., Luneno, J.C., Aidanpää, J.O.: Identification of ice mass accumulated
on wind turbine blades using its natural frequencies. Wind Eng. 42(1), 66–84
(2018)

4. Jaramillo, F., Gutiérrez, J.M., Orchard, M., Guarini, M., Astroza, R.: A Bayesian
approach for fatigue damage diagnosis and prognosis of wind turbine blades. Mech.
Syst. Signal Process. 174, 109067 (2022)

5. Li, D., Ho, S.C.M., Song, G., Ren, L., Li, H.: A review of damage detection methods
for wind turbine blades. Smart Mater. Struct. 24(3), 033001 (2015)

6. Movsessian, A., Cava, D.G., Tcherniak, D.: An artificial neural network method-
ology for damage detection: demonstration on an operating wind turbine blade.
Mech. Syst. Signal Process. 159, 107766 (2021)

7. Mylonas, C., Abdallah, I., Chatzi, E.: Conditional variational autoencoders for
probabilistic wind turbine blade fatigue estimation using supervisory, control, and
data acquisition data. Wind Energy 24(10), 1122–1139 (2021)

8. Ou, Y., Chatzi, E.N., Dertimanis, V.K., Spiridonakos, M.D.: Vibration-based
experimental damage detection of a small-scale wind turbine blade. Struct. Health
Monit. 16(1), 79–96 (2017)

9. REN 21 Steering Committee: Renewables 2022 global status report (2022)
10. Tcherniak, D., Mølgaard, L.: Vibration-based SHM system: application to wind

turbine blades. J. Phys. Conf. Ser. 628 (2015). https://doi.org/10.1088/1742-6596/
628/1/012072

11. Ulriksen, M.D., Tcherniak, D., Damkilde, L.: Damage detection in an operating
vestas v27 wind turbine blade by use of outlier analysis. In: 2015 IEEE Workshop on
Environmental, Energy, and Structural Monitoring Systems (EESMS) Proceedings,
pp. 50–55. IEEE (2015)

https://doi.org/10.1088/1742-6596/628/1/012072
https://doi.org/10.1088/1742-6596/628/1/012072

	Structural Damage Diagnosis of Wind Turbine Blades Based on Machine Learning Techniques
	1 Introduction
	2 Experimenal Setup and Damage States
	3 Damage Diagnosis Approach
	3.1 Data Preprocessing
	3.2 Feature Vector
	3.3 MLP Architecture
	3.4 Metrics

	4 Results and Discussion
	4.1 EOV Effect
	4.2 Network Generalization

	5 Conclusions
	References




