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Abstract. Over the last decade, the use of drive-by inspection tech-
nology for bridge damage assessment has been widely studied by schol-
ars. It consists of identifying bridge damage from the response of an
instrumented sensing vehicle. Most current methods are based on iden-
tifying bridge properties and supervised learning techniques. However,
these approaches require data from the bridge at its different states (i.e.,
healthy and damaged conditions), which is not always available. Hence,
this study proposes a fully unsupervised deep learning-based methodol-
ogy for bridge structural health monitoring (SHM) based on the time-
frequency domain analysis of the acceleration signal recorded by a two-
axle vehicle. A convolutional variational autoencoders (CVAE) algorithm
is trained only with the Continuous Wavelet Transform (CWT) of vehi-
cle acceleration response while passing over a bridge at its benchmark
state. The damage index is defined from the measured error between the
original and the reconstructed CWT images. During testing, the error
between the original and the reconstructed CWT is compared with the
damage index from the benchmark state to classify the new samples as
healthy or damaged. The method is tested on a numerical vehicle-bridge
interaction (VBI) model using finite elements. Different damage severi-
ties and the effect of road roughness are studied.

Keywords: Convolutional variational autoencoder · Deep learning ·
Indirect SHM · Bridge monitoring · Damage assessment

1 Introduction

Current worldwide society depends extensively on large infrastructures, espe-
cially on bridges. As Lin and Yoda in [1] mentioned in their work, bridges serve
as “lifelines” in social infrastructure since they constitute a major part of the
contemporary highway and railway systems. Likewise, bridges are susceptible
to continuous changes in the conditions they are subjected to (e.g. load his-
tory, environmental and hazardous events, material degradation, malfunctioning
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connecting elements) over their service life [2], which has entailed a new concern
over the structural health of bridges in the world.

SHM systems can be classified as direct or indirect, based on the informa-
tion used to assess the damage on the structure. Direct SHM systems involve
installing multiple sensors of different kinds at specific structure locations, to
continuously measure the structure’s response, which is used to assess the struc-
ture’s health condition [3]. However, the installation and maintenance process of
direct SHM systems is costly, labor-intensive, complex, and unsafe [4]. On the
other hand, indirect SHM systems based on drive-by inspection are more eco-
nomical and safer [3]. They consist of sensing the target bridge with an instru-
mented moving vehicle which is capable of measuring the combined response of
itself and the bridge, from which damage can be assessed [5,6].

Additionally, both direct and indirect SHM techniques can be classified in
physics-based approaches and data-driven approaches. The first one consists of
identifying damage from the variation of the dynamical properties of the bridge,
including natural frequencies and mode shapes [7–11]. However, such method-
ologies require previous knowledge of the structure, which is only sometimes
available. The latter focuses primarily on data analysis of the recorded responses
to assess the structural health [2,3,5,12–15].

In recent years, the interest in machine learning and deep learning approaches
for damage identification in indirect SHM has risen [14]. Nonetheless, few studies
have cover the bridge damage assessment problem from an unsupervised perspec-
tive [16]. This work presents a data-driven indirect SHM methodology for bridge
damage assessment based on drive-by inspection using an unsupervised learning
technique, which only utilizes information learned from the healthy state of the
bridge to determine the structure’s condition.

The structure of this paper is the following: Sect. 2 presents the details of
the VBI model adopted in the numerical simulations. Section 3 introduces the
numerical dataset. The unsupervised damage assessment framework is presented
in Sect. 4, and the results discussion is presented in Sect. 5. Lastly, Sect. 6 presents
conclusions and recommendations for future work.

2 Vehicle Bridge Interaction Model

2.1 VBI Governing Equations

This section presents the dynamic coupling equations describing the interaction
between a bridge and a vehicle traveling over it. The vehicle used in this work
is a half-car model consisting of two degrees of freedom (DOF) (i.e., bounce and
pitch respectively).

Figure 1 shows the half-car model associated with the two DOF, bouncing
vibration, zv(t), and pitching vibration, θv(t), from which the axles vibration is
measurable. The vehicle is described by eight parameters as follows: kvi

and cvi

correspond to the i-th axle stiffness and damping respectively, where i = 1, 2.
mv and Iv represent the mass and moment of inertia of the vehicle respectively.
di corresponds to the distance from the center of gravity (C.G.) to the i-th
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Fig. 1. VBI illustration of model used in numerical simulations

axle. A constant speed, v, of the vehicle while moving over the bridge, and no
separation between the tire and the road is assumed.

The bridge is modeled as a simply supported Euler-Bernoulli beam with
stochastic road profile r(xvi

), where xvi
represents the location of the i-th axle.

The governing equations of the sensing vehicle are described in Eqs. 1 and 2,
where {Zb(t)} = {Zb,1(t), Zb,2(t), · · · , Zb,i(t), · · · , Zb,n(t)} is the vector of the
nodal coordinates of the bridge system and, n is the number of DOF for the
bridge. {ιb(xvi

)} is a vector containing shape functions to interpolate the dis-
placement of the bridge system observed at the contact point of i-th axle, i.e.,
xvi

. Overdot and prime symbols represent the derivatives with respect to time
and space, respectively.

mv z̈v(t) + cv1 [żv(t) + d1θ̇v(t) − {ιb(xv1)}T {Żb(t)} + vr′(xv1)]

+cv2 [żv(t) − d2θ̇v(t) − {ιb(xv2)}T {Żb(t)} + vr′(xv2)]

+kv1 [z(t) + d1θv(t) − {ιb(xv1)}T {Zb(t)} + r(xv1)]

+kv2 [zv(t) − d2θv(t) − {ιb(xv2)}T {Zb(t)} + r(xv2)] = 0

(1)

Iv θ̈v(t) + d1
(
cv1 [żv(t) + d1θ̇v(t) − {ιb(xv1)}T {Żb(t)} + vr′(xv1)]+

kv1 [zv(t) + d1θv(t) − {ιb(xv1)}T {Zb(t)} + r(xv1)]
)

−d2
(
[cv2 [żv(t) − d2θ̇v(t) − {ιb(xv2)}T {Żb(t)} + vr′(xv2)]+

kv2 [zv(t) − d2θv(t) − {ιb(xv2)}T {Zb(t)} + r(xv2)]
)

= 0

(2)

The equilibrium equations of the system, using a finite element model (FEM),
are presented in Eqs. 3, 4 and 5,

[Mb]{Z̈b(t)} + [Cb]{Żb(t)}+
[Kb]{Zb(t)} + {ιb(xv1)}R1(t) + {ιb(xv2)}R2(t) = 0

(3)

R1(t) = −cv1 [żv(t) − {ιb(xv1)}T {Żb(t)} + vr′(xv1)]

−kv1 [zv(t) − {ιb(xv1)}T {Zb(t)} + r(xv1)] +
(

d2
d

)
mvg

(4)

R2(t) = −cv2 [żv(t) − {ιb(xv2)}T {Żb(t)} + vr′(xv2)]

−kv2 [zv(t) − {ιb(xv2)}T {Zb(t)} + r(xv1)] +
(

d1
d

)
mvg

(5)
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where, R1(t) and R2(t) are, respectively, the contact forces at axle locations,
xv1 and xv2 , and g is the gravitational acceleration. By combining Eqs. 1, 2,
and 3, the governing coupled equation for the vehicle-bridge interaction system
can be obtained [17]. The coupled dynamic equation is then solved using the
Newmark-Beta method.

2.2 Damaged Beam Model

The damage in the beam is simulated using the simplified crack model presented
by Sinha et al. [18]. The model consists of reducing the beam stiffness linearly
over a length of 1.5h at each side of the crack. Equation 6 represents the flexural
stiffness variation, EIe(ζ), in the vicinity of the crack [18]

EIe(ζ) =

⎧
⎪⎨

⎪⎩

EI0 − E(I0 − Ic)
ζ − ζ1
ζc − ζ1

if ζ1 ≤ ζ ≤ ζc

EI0 − E(I0 − Ic)
ζ2 − ζ

ζ2 − ζc
if ζc ≤ ζ ≤ ζ2

(6)

where E is the Young’s modulus of the beam, Io is the undamaged section’s
second moment of inertia, ζ is the spatial coordinate and ζc is the crack location.
ζ1 and ζ2 are the positions on the left and right sides of the crack, respectively,
where the stiffness reduction begins. Ic is the cracked section’s second moment
of the inertia given by Ic = b(h − hc)3/12, where b is the beam width, h is the
beam height, and hc is the crack depth.

2.3 Road Roughness Profile

The stochastic road roughness profile r(x) is modeled following the procedure
presented in ISO8608 [19]. The roughness type is described by the Power Spec-
tral Density (PSD) function, Gd(n) = Gd(n0)(n/n0)−w, where, n is the spatial
frequency per meter, w = 2, n0 = 0.1 cycle/m, and the functional value Gd(n0)
is determined by the roughness type in ISO 8608 (i.e., type A-D) [19]. The ampli-
tude of the road profile is given as η =

√
2Gd(n)Δn, where Δn is the sampling

interval of the spatial frequency. The road roughness profile is given in Eq. 7

r(x) =
∑

ηi cos(nix + θi) (7)

where ni is the i-th spatial frequency, and ηi and θi denote the amplitude and the
random phase angle, respectively, of the i-th cosine function. The phase angle
follows a uniform distribution in the interval of [0, 2π), the sampling interval
Δn for the spatial frequency is taken as 0.04 cycle/m, and the range of spatial
frequency n is 1-100 cycle/m [19]. It is important to mention that a road profile
type A is used throughout this work.
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3 Numerical Case Study

3.1 Bridge and Vehicle Properties

The bridge model is based on the studies performed by McGetrick et al. in
[12,20], and its properties are presented in Table 1.

Table 1. A summary of bridge’s physical properties.

Property Value Property Value

Span length, L 25 m Cross section area, A 16.68 m2

Young’s modulus, E 3.5 × 1010 N/m2 Second moment of inertia, Io 1.39 m4

Mass per unit length, μ 18, 358 kg/m Damping ratio, ξ 3%

First three natural frequencies, fb 4.09Hz, 16.36Hz and 36.8Hz

Four different states of the bridge, i.e., BC0, and BCM1:BCM3, are created,
where BC0 refers to the intact bridge, and BCM1:BCM3 refer to a damaged
bridge. Damage is induced at mid-span of the beam, using the model presented
in Sect. 2.2. Damage conditions BCM1 to BCM3 correspond to crack depth to
beam height ratios of 10%, 20%, and 30%, respectively. Additionally, BCM1,
BCM2 and BCM3 produce a reduction in the first natural frequency of 1.9%,
4.16% and 6.85% respectively.

The sensing vehicle properties are based on the relevant reference studies
in [12,20]. Table 2 shows the vehicle characteristics. The vehicle is assumed to
travel over the bridge at a constant speed in each pass. The speed at each pass
is defined randomly by a normal distribution with 2 m/s mean value and 0.2
m/s standard deviation.

Table 2. A summary of vehicle physical properties.

Property Value Property Value

Vehicle mass, mv 16,200 kg Axle damping, cv 1 × 104 Ns/m

Vehicle inertia, Iv 93,234 kg · m2 C.G to front axle distance, d1 2.375 m

Axle stiffness, kv 4 × 105 N/m C.G to rear axle distance, d2 2.375 m

Bouncing natural frequency, fz 1.1Hz

3.2 Numerical Dataset

For each bridge state (i.e., BC0 and BCM1:BCM3), the acceleration response
of the sensing vehicle’s axles is obtained based on the methodology presented in
Sect. 2. The response for each axle is only considered for the duration when they
are on the bridge. Figure 2 shows an acceleration response sample of both axles
at the healthy condition.

To create the dataset of vehicle responses for training the unsupervised data-
driven framework, the response of the vehicle’s axles traveling over the healthy
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Fig. 2. Illustration of the acceleration time response of the vehicle’s front and rear
axles while traveling over the healthy state of the bridge.

bridge 500 times is first obtained, and a training-testing ratio of 80:20 is used.
Then, 100 responses of the vehicle passing over each damaged bridge conditions
are collected for testing. Additionally, random road profiles on each vehicle pass
are considered.

4 Bridge Damage Assessment Framework

4.1 Convolutional Variational Autoencoders

CVAE is an adaptation of the Variational Autoencoders (VAE), in which the
dense layers are replaced by convolutional layers. It consist of two parts: an
encoder and a decoder convolutional neural networks. The first one, reduces the
input dimension to a latent space, while the latter attempts to reconstruct the
input from the latent variables [21]. Figure 3 shows the structure of the CVAE,
where the input corresponds to the continuous wavelet transform (CWT) of the
acceleration signal of the vehicle, for the purpose of this work. The encoder CNN
encodes the input to a smaller dimension output, used as latent variables z, which
are given by the mean, μ, and variance, σ2, of the probability distribution q(z|x)
[21]. x represents the features of the input. The decoder CNN, reconstructs a
sample from latent state distribution. The optimization function of the CVAE,
is to maximize the Evidence Lower Bound (ELBO) [21].

Input OutputEncoder Latent 
Atributes

Decoder

 z

Fig. 3. Structure of CVAE, used as unsupervised anomaly detection algorithm for
bridge damage assessment.
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The architecture of the CVAE is based on the reference studies [16,21]. The
size of the color input images for the CVAE is 224×224. The encoder consists
of six convolutional layers, with 3×3 filters, and stride of 2. The output of the
encoder has a dimension of 1×1×64, from which the z is obtained. Similarly,
the decoder is composed of seven transposed convolutional layers with 3×3 fil-
ters and stride of 2. Its output is a reconstructed image with same size as the
input of the encoder. Between each convolutional layer in both the encoder and
decoder, a Rectified Linear Unit (ReLU) activation function is applied. The
hyper-parameters used in the CVAE model are: 100 epochs, batch size of 32
images, and a learning rate of 1 × 10−3

4.2 Methodology

The methodology for the unsupervised learning framework proposed in this
paper is represented by the flowchart in Fig. 4. Additionally, the steps are
described next:

1. Time-Frequency domain analysis: The residual CWT, Cred, is obtained as
follows: Cres = Cfront−Crear, where Cfront and Crear are the CWT for each
axle’s acceleration in the frequency range 3.5Hz to 4.2Hz.

2. Signal averaging: The Cres from 30 samples are averaged to capture the
bridge-related information by nullifying external perturbations.

3. Training and testing CVAE: The CVAE presented in Sect. 4.1 is trained with
the healthy averaged Cres.

4. Damage index calculation: The Root Mean Square Error (RMSE) between
the original and the reconstructed sample is used as damage index.

T
ra

in
in

g Acceleration 
response from 
vehicle’s axles 
over healthy

bridge

Time-Frequency 
domain analysis

Signal 
Averaging Training CVAE 

T
es

ti
n
g

Time-Frequency 
domain analysis

Signal
 Averaging Trained CVAE 

Acceleration 
response from 
vehicle’s axles 
over damaged

bridge

Damage Index 
Calculation

Fig. 4. Flowchart of the unsupervised learning framework for bridge damage assess-
ment.
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5 Results

In this section, the proposed framework for bridge damage assessment is imple-
mented. The numerical dataset elaborated in Sect. 3 is used to show the proof
of concept of the proposed methodology. Figure 5 presents examples of samples
of the CWT for each of the bridge states BC0 and BCM1:BCM3 used in this
section to assess bridge damage. Figure 5a presents the CWT of a single accel-
eration signal from the front axle of the sensing vehicle. Figure 5b presents the
Cres of single samples, and Fig. 5c shows the averaged Cres using 30 samples. It
is evident from Fig. 5a that identifying the change in natural frequency from the
signal from the front axle is challenging since it is mainly controlled by external
factors like the road roughness. However, by obtaining the residual CWT, Cres,
(see Fig. 5b) the bridge-related information is more evident by observing the
frequency peak (i.e., yellow color), corresponding to the first natural frequency
of the bridge. Further removal of external perturbations like the road roughness
can be done by averaging the Cres as in Fig. 5c.
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Fig. 5. Examples of CWT of acceleration signals from sensing vehicle’s axles used for
training and testing the CVAE. (a) CWT of a single acceleration signal from the front
axle, (b) Cres of single sample, (c) Averaged Cres.

Recalling Sect. 3.2, 400 healthy samples are used for training, and 100 from
each bridge state are used for testing the CVAE for three different case scenarios.
The first one corresponds to training and testing the CVAE with the CWT from
the acceleration signals from the front and rear axle of the vehicle (as in Fig. 5a).
The second one uses the Cres from single samples (as in Fig. 5b), and the third
one uses the average of 30 samples of Cred (as in Fig. 5c).
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Front Axle
Rear Axle

(a) (b) (c)

Fig. 6. Box plot of damage indices for multiple bridge states including healthy state,
BC0 and damage states of BCM1:BCM3. (a) First case, (b) Second case, (c) Third
case.

From the box plots presented in Fig. 6a and b, it is evident that in the first
and second scenario, damage can not be identified or quantified, since there is
significant overlap between the damage conditions and the healthy condition.
The third scenario in Fig. 6c, is not only able to identify the damage, but also it
is able to quantify it by having different damage indices for the various bridge
states, with no significant overlap between the box plots. As expected, the larger
the damage severity, the larger the damage index. These results demonstrate the
advantage of utilizing CVAE together with the averaged Cred.

6 Conclusions

This paper proposed an unsupervised learning framework using CVAE to identify
and quantify damage on simply supported bridges using drive-by inspection
technology. A time-frequency domain representation of the recorded acceleration
signals from the front and rear axles is used to train and test the proposed
methodology. The results showed that the proposed framework is able to identify
and quantify different damage conditions of the bridge at mid-span when the
average residual CWT from different samples used. In terms of future work,
the authors are currently exploring the extension of the framework to bridge
damage localization, and its application in real-world context, specifically, on
several large-scale bridges located in the state of NSW in Australia.
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