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Abstract. Automated operational modal analysis of civil engineering structures
and suspension bridges based on vibrational monitoring data can be performed
at a reliable enough level to consider its outputs as correct interpretations of the
modal dynamics in the measurement data. This work proposes a new robust and
automatic algorithm for tracking the evolution of these detected modal properties
over time. The algorithm requires only a few inputs that are easy to define and does
not require prior knowledge of the target bridge. It can deal with imperfect modal
detection data and distinguish between closely spaced modes. The algorithms
functionality is illustrated using two numerical examples and one experimental
example from the Hardanger Bridge monitoring project.
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1 Introduction

Structural health monitoring (SHM) aims to identify, quantify, and qualify the state of
infrastructure to help make operational, maintenance, and safety-related decisions. A
research area within SHM is damage detection on bridges and although many different
approaches to this topic exist, a common one is to use a damage indicator that, based on
the input features from the bridge and prior knowledge of its behaviour pattern, can tell if
the bridge has been damaged. Common input features for damage indicators are modal
properties (frequencies, damping, mode shapes) of the structure [1–3]. This information
is readily available from vibration measurements of the bridge; however, it is not easy to
identify from one measurement series to the next if the new modal detections represent
the same set of detections as from the previous dataset. This labelling ofmodal detections
is crucial to compare one dataset to previous datasets. Labelling these modal detections
consistently throughout the datasets is known as modal tracking.

For bridge monitoring, few explicit applications of modal tracking have been dis-
cussed. A vast majority of modal tracking is performed implicitly and is not explained
(for example [4]). These cases need to be redefined for each specific application. They
rely on no errors in the modal detections and maintaining the variations in modal prop-
erties to a minimum. He et al. [5] propose a more robust tracking method where each
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new mode realisation is combined with the nearest mode in terms of frequency and
mode shape. This method tracks the evolution of modal parameters. Still, it requires that
there are no false detections within the modal detections, an assumption which cannot
be made in the case of AOMA. Favarelli and Giorgetti [6] suggest tracking the evolution
of modal frequencies using Gaussian kernels fitted to the frequency detections of each
structural mode. Although this method works with imperfect modal detection data, it
cannot track closely spaced modes in terms of frequency.

This work proposes a new robust modal tracking algorithm which responds to all
these problems, as it can be deployed on all structures with minor or no changes to the
algorithm’s parameters, can deal with imperfect and false modal detections, and can
detect closely spaced and overlapping modes in terms of frequency.

2 Theory

Note: In cases where confusion may arise, a single mode (point) detected from a stabili-
sation diagram is referred to as a mode realisation, and the eigen-properties of a structure
are referred to as structural modes.

The modes of a structure can be identified from vibration data recorded at differ-
ent locations along the structure simultaneously, through a process known as opera-
tional modal analysis (OMA). Many OMA algorithms exist, in both the time and the
frequency domain. For brevity’s sake, and because these methods are well documented
(see for example [7]), they are not explained here. Covariance-driven stochastic subspace
identification (cov-SSI) is used in this work.

The output of operational modal analysis traditionally needs to be interpreted manu-
ally to select the set of real modes detected from the dataset. As this is a time-consuming,
labour-intensive task, automating it has seen a lot of research since the early 2010s, lead-
ing to many automatic operational modal analysis (AOMA) algorithms. They vary in
their degree of automation (some need more fine-tuning and setting up than others) and
their output quality [8]. This work uses the AOMA algorithm Kvåle 2020 algorithm [9],
which has been shown to work well and requires minimal setup [8]. The Kvåle 2020
algorithm starts by clearing the stabilisation diagram resulting from the cov-SSI of the
vibration data, removing all poles with a too large relative change compared to their
nearest neighbour at the next inferior order. Once this is performed, the algorithm called
HDBSCAN is applied to the pairwise distance in frequency and mode shape between all
poles remaining in the diagram. This density-based clustering algorithm removes out-
liers within the data and returns clusters representing the structural modes. The outcome
of the Kvåle 2020 algorithm is the average features of each cluster.

Highlighting and quantifying the evolution of the outcome of the (automatic) opera-
tional modal analysis (A)OMA – the automatization step is not necessarily required – is
known as modal tracking. The outcome of AOMA is not always perfect. There can be
real modes which are not identified in the dataset, modes which are detected multiple
times, or false detections which do not represent a real mode. An ideal modal tracking
algorithm should be able to deal with these issues. In the following section, a modal
tracking algorithm is put forth capable of dealing with all these potential issues.
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2.1 The Proposed Modal Tracking Algorithm

We introduce a novel, near-automatic, probabilistic two-step algorithm for modal track-
ing. The first step is used to setup the modal tracking procedure, and the second step
is concerned with iteratively attributing new realisations to the existing modes. The
algorithm is near-automatic, as it only relies on a few intuitive and readily available
input parameters. It does not require prior modal information which can be difficult and
resource-consuming to obtain.

The modal tracking algorithm can be initiated once a threshold number of baseline
datasets containing modal information become available.

Step 1:Defining theStructuralModes. Once a threshold number of processed datasets
are available, the first step of the modal tracking algorithm is to detect which structural
modes are present and are supposed to be tracked.

Frequency, damping, and mode shape are the most common and naturally inter-
pretable attributes of a modal detection. Of these attributes, the mode shape is the most
likely to be a unique classifier. Two modes could have the same frequency or damping
values, but not likely the same mode shape. For this reason, the mode shape is used
to identify the number of structural modes. The MAC number is used to quantify the
similarity of two mode shapes; the inverse MAC value, define as (1 − mac(φ1, φ2)) is
calculated for eachmode realisation pair. The pair-wise similarity information is fed into
a hierarchical clustering algorithm which iteratively groups the two most similar mode
realisations into a single cluster, continuing until all the distances between the resulting
clusters are above a set limit. The mode realisations belonging to the same structural
mode are clustered together due to the high mode shape similarity, and simultaneously
they will be separated from all other mode realisations not belonging to the same struc-
tural mode, because of their mode shape dissimilarity exceeding the clustering limit.
The large clusters resulting from the hierarchical clustering process are selected as the
structural modes to be used in the second step.

Single linkage hierarchical clustering is used because when clusters are merged at
each step and the distance matrix is updated, the smallest values are retained, making
the subsequent cut-off limit selection a more data-related task, facilitating its selection
for the operator.

Once all the clusters are final, only the largest ones are retained. Large clusters are
determined as any cluster containing more mode realisations than a predetermined per-
centage of the total number of datasets used in this step. To account for the potentially
high variability of the mode realisations present in each dataset, due to different exci-
tations states of the structure when the data was recorded and the imperfect nature of
(A)OMA, the initial number of files is suggested to be around 100, the cut-off limit in
the hierarchical process to be chosen to match a MAC value of 0.85, and the minimum
number of mode realisations in a cluster for it to be considered large to be 15% of the
number of initial files.

Step 2: Iterative Modal Tracking. In the second step, new datasets containing mode
realisations are considered individually and one after the other as they become available.
This second step is decomposed into three sub-steps. A flow chart of the full modal
tracking algorithm is shown in Fig. 1. The zero-th, set-up, sub-step is to quantify the
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properties of each structural mode. To do so, the latest m ∈ N
+ datasets are selected to

determine the mean μ
(i)
f and variance σ

2,(i)
f of the frequency of the structural mode. m

is the memory of the tracking algorithm and is an operator-selected value, influencing
the adaptability speed to changes in the structural modes. A tally n(i)

m of the number of
mode realisations present for each structural mode iwithin the defined memory period is
constantly maintained. It is possible that some datasets do not contain a mode realisation
for each structural mode, hence: n(i)

m ≤ m∀i.
The first sub-step marks the first iterative step. A new dataset is analysed, and each

mode realisation within is compared to each structural mode to identify to which struc-
tural mode it belongs. If a mode realisation is too different from all structural modes, it
is regarded as a false detection of the (A)OMA and not attributed to any structural mode.
If two or more mode realisations are identified as belonging to the same structural mode,
only the mode realisation with the highest probability of belonging to the structural
mode is retained. The likelihood of a mode realisation R (with frequency rf and mode
shape rφ) belonging to a structural mode is calculated as the product of two probabilities
from two fitted distributions. One distribution is a student-t distribution describing the
frequency fit and the second is an exponential distribution describing the mode shape fit.

p(R) = p
(
rf

) · p(rφ
) = T

(
rf |μ(i)

f , σ
2,(i)
f , r(i)m

)
· Exp(mac

(
rφ

)|λ)
(1)

The student-t T (·), distribution of each structural mode is set based on the mean
and the variance of the last m realisations to be attributed to the structural mode, and
the degree of freedom is n(i)

m . The exponential distribution Exp(·) used to determine the
matching probability of the mode realisation shape to the structural mode is set using:

λ = 1
m2

∑

a∈M (i)

∑

b∈M (i)

(1 − mac(φa, φb)) (2)

The mode shape comparison of the new mode realisation and the structural mode is
calculated in a similar fashion:

mac
(
rφ

) = 1
m

∑

a∈M (i)

(
1 − mac

(
rφ, φa

))
(3)

If the new mode realisation is outside of the 98th percentile of any of the two
probability distributions, it is considered too different from all structural modes.

The second sub-step is to update the structuralmodes’ properties, known as the short-
term memory, before a new dataset is considered. A structural modal which saw a new
mode realisation associated with it, has its frequency and damping statistics updated
to include the latest mode realisation and exclude the oldest term in the memory. A
structural mode which sees no new association keeps the same properties as previously,
except that the tally n(i)

m is decreased by one.
Steps 1 and 2 are then repeated for each new dataset made available. During this

process, a ledger, a long-term memory, of all the associations is kept, as the short-term
memory does not maintain information dating further back than m iterations.
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Fig. 1. Flowchart illustrating the proposed modal tracking algorithm.

3 Examples and Test Results

The modal tracking algorithm’s performance is illustrated using three different cases.
Two are based on numerical data simulated from an 8-storey 2-D shear frame excited by a
white noise process, and a third is using real experimental data recorded at the Hardanger
bridge in South-Western Norway [10]. All three cases are composed of 450 datasets
from which the mode realisations have been extracted using the Kvåle 2020 automatic
operational modal analysis algorithm. The modal properties are obtained using cov-SSI.
In the first case, no alterations are made to the shear frame during the initial 100 datasets,
to provide a clear baseline for the first step of the modal tracking algorithm. During the
remaining 350 datasets, the one of the columns’ stiffness is gradually reduced. The
reduction in stiffness leads to a change in the natural frequencies of up to 1.5%. In the
second case, all the shear frames’ columns’ stiffnesses are reduced by 40% over the last
350 datasets, leading to large changes in the structural modes’ frequencies. Furthermore,
the reduction in stiffness is largely concentrated over 50 datasets. Like in the first case,
the first 100 datasets do not feature any variations to the shear frame to provide a clear
estimate of the initial modes. Both numerical simulation cases have added measurement
noise, are sampled at 200 Hz, and use a 2-min signal for the mode identification. For the
third case, all datasets are fromchronologically ordered vibration recordings.All datasets
are subject to the natural changes in modal characteristics of the structure exposed to
variable loading conditions, providing a more significant challenge for the first step of
the modal tracking algorithm to estimate the structural modes. Each vibration recording
is 10 min long and sampled at 10 Hz.



66 A. C. Dederichs et al.

3.1 Case 1: Shear Frame with Minor Variations

The shear frame with small gradual changes to one of its columns’ stiffness is designed
to be an easy reference case to highlight how the modal tracking algorithm deals with
the variations present in the outcome of (A). The memory length used in this case is
m = 20. Figure 2 and Fig. 3 illustrate all the mode realisations for all datasets (the inputs
into the modal tracking algorithm) (black points) and the result of the tracking process
(coloured points). As can be seen, all false detections made by the (A)OMA algorithm
are rejected by the modal tracking algorithm leaving clean and well-defined structural
modes.

Fig. 2. Shear frame 1, frequency values of all mode realisations of all datasets.

Fig. 3. Shear frame 1, subjected to the modal tracking algorithm.

3.2 Case 2: Shear Frame with Large Variations

The second shear frame casewhich is subject to a large and rapid decrease in all columns’
stiffnesses, is used to illustrate the modal tracking algorithm’s potential in tracking
marked changes to the structure’smodal properties. The best tracking results are achieved
with a memory m = 15 because this allows a quicker response to changes and a more
relaxed confidence interval for the modal frequency acceptance, due to the lower degrees
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of freedomof the student-t distribution. Figure 4 shows the outcomeof themodal tracking
results, which shows that all nine modes are tracked throughout the datasets. No false
detection made by the (A)OMA algorithm is retained in the tracking process. Mode 8
changes by approximatively 0.1Hz (7% relative change) in frequencywithin 20 datasets.
This abrupt change is tracked without issue by the modal tracking algorithm.

Fig. 4. Shear frame 2, result of the modal tracking process.

3.3 Case 3: Experimental Data from the Hardanger Bridge

TheHardanger bridge data contains natural variations inmodal properties due to changes
in wind excitation – the fluid-structure interaction leads to aerodynamic damping and
stiffness [11]. For lack of space, the reader is referred to [10, 12] for a description
of the bridge, the measurement system, and its dynamic properties. The variations are
also present in the initial data used to identify the structural modes, rendering this task
more complicated than idealised synthetic data. The results show that the modal tracking
algorithm can identify all 13modes known to be present and identifiable in the [0–0.425]
Hz range [12]. Figure 5 shows how the modal tracking algorithm follows all the modes
throughout all 350 tracking datasets. This includes structural modes which are closely
spaced in frequency, such as modes 1 and 2, and 6 and 7, structural modes which are
not regularly detected by the (A)OMA, such as mode 8 between datasets 200 and 300,
and structural modes which exhibit considerable variations to their frequency content
over few datasets, such as mode 2. Figure 6 is a focused view of modes 1 and 2 from the
Hardanger bridge data and highlights the variations in frequency for mode 2. The mode
varies between 0.11 Hz and 0.12 Hz over about 50 datasets, a change that the modal
tracking algorithm can follow.
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Fig. 5. Result of the modal tracking for the Hardanger bridge data.

Fig. 6. Result of the tracking of the Hardanger bridge data, with a zoom into modes 1 and 2. The
shaded areas around each mode mark the 95% confidence range used to accept or reject mode
realisations based on frequency for the given dataset while the tracking was performed. The solid
line indicates the mean value of the frequency of the short-term memory.

4 Discussion

The modal tracking algorithm can follow the structural modes’ evolution in a satisfac-
tory fashion for the right input parameters. The proposed algorithm is near-automatic,
requiring few inputs from the user. The required inputs are chosen to be as intuitive to
select as possible. Five parameters are required as inputs in this algorithm. Firstly, the
initial number of files is used to determine which structural modes are present in the
data. Ideally, this value should be as large as possible, as more files will lead to more
chance of detecting all the structural modes present in the data. An operator can select
this value as the largest reasonable amount of dataset they are willing to sacrifice from
what is tracked. For example, in an intense measurement campaign of one month with
measurements made around the clock every thirty minutes, 100 datasets would be equiv-
alent to two of the 30 days of data. This is a reasonable portion of the data. The minimal
number of mode realisations in each hierarchical cluster is more difficult to determine.
A low percentage increases the chance of detecting all the structural modes, but if too
low, false modes will also to be included as structural modes.

The MAC value threshold for the hierarchical clustering relates to the subjective
question of what value represents a good mode shape fit. This question does not have
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a definitive answer, but a value around 0.85 is considered a decent estimate of a good
mode shape fit.

Defining the confidence range of the student-t and exponential distributions intended
to catch false detections made by the (A)OMA is like well-known outlier detection
problems in statisticswhere 95%or 99%certainty is required to claim there is a statistical
difference. In this case, the higher the percentage, the more modes will be kept as part of
the modal tracking, at the risk of including a false detection. In a case where the modal
properties are not expected to change rapidly, a lower confidence bound can be used to
reduce the chance of including outliers. Conversely, if rapid changes in modal properties
are expected, it may be necessary to sacrifice some precision to keep up with the changes
by introducing a higher confidence bound.

The short-term memory length also affects the reactivity to change of the modal
tracking algorithm. A shorter memory will have a higher reactivity, but a memory length
too short can negate these gains, as the variance of the frequency values becomes more
sensitive with less points to define it. This leads to a smaller variance, which in turn
reduces the confidence range in which mode realisations are considered to match a
structural mode.

5 Conclusion

The proposed modal tracking algorithm can follow the modal properties of a structure
over chronologically ordered datasets which are pre-processed with (A)OMA to extract
their modal features. It is nearly fully automated with only a few easy-to-select param-
eters to be chosen. The algorithm uses a two-step approach. The first step is used to
identify the structural modes and the second step consists of matching and attributing
new modal detections to the pre-defined structural modes. It is shown to capture the
evolution of all the modes present in two synthetic test cases, with two different levels
of modal property changes, as well as for experimental data from the Hardanger bridge.
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