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Abbreviations

[M + H]+ Protonated ion
1H NMR Proton nuclear magnetic resonance
2D-NMR Bidimensional nuclear magnetic resonance
CE-MS Capillary electrophoresis-mass spectrometry
cmQTL Canalization metabolite quantitative trait loci
Da Dalton
DART-MS Direct analysis in real time-mass spectrometry
DEGs Differentially expressed genes
DESI Desorption electrospray ionization
FACS Fluorescence-activated cell sorting
FT-ICR-MS Fourier transform ion cyclotron resonance-mass spectrometry
GC Gas chromatography
GC-MS Gas chromatography-mass spectrometry
GC-QqQ-MS Gas chromatography-triple quadrupole-mass spectrometry
GC-TOF-MS Gas chromatography-time-of-flight mass spectrometry
GLC Gas-liquid chromatography
HPLC High-performance liquid chromatography
LC Liquid chromatography
LC-ESI-MS Liquid chromatography-electrospray-mass spectrometry
LC-HRMS Liquid chromatography-high-resolution mass spectrometry
LCM Laser-capture microdissection
LC-MS Liquid chromatography-mass spectrometry
LMD Laser microdissection
LMPC Laser microdissection and pressure catapulting
m/z Mass-to-charge ratio
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MALDI Matrix-assisted laser desorption/ionization
mGWAS Metabolite genome-wide association studies
mQTL Metabolite quantitative trait loci
MS Mass spectrometry
MS/MS Tandem mass spectrometry, fragmentation
MSI Mass spectrometry imaging
NMR Nuclear magnetic resonance
PCA Principal component analysis
PCR Polymerase chain reaction
PLS-DA Partial least squares discriminant analysis
SIMS Secondary ion mass spectrometry
SNPs Single-nucleotide polymorphisms
UHPLC-MS Ultrahigh-pressure liquid chromatography-mass spectrometry
UPLC Ultra-performance liquid chromatography
VOC Volatile organic compounds
WGCNA Correlation and weighted gene coexpression network analysis

1  Introduction

Plant metabolomics is an emerging research field focusing on the comprehensive 
analysis of metabolites, small molecules (<1500 Da) that play a critical role in plant 
growth, development, and response to environmental changes. By applying 
advanced analytical techniques, such as mass spectrometry and nuclear magnetic 
resonance spectroscopy, researchers can identify and quantify thousands of metabo-
lites in a single sample, providing a holistic view of the metabolic pathways and 
processes that occur in plants. The insights gained from plant metabolomics research 
have broad implications for plant biology, agriculture, and biotechnology, as well as 
for human health and the environment.

Metabolomics is crucial to studying abiotic stress tolerance, pathogen resistance, 
robust ecotypes, and metabolic-assisted breeding of crops. The plant kingdom con-
tains a considerable diversity of metabolites of approximately 200,000 compounds; 
the majority are still unknown. It is estimated that around 10,000 secondary metabo-
lites have been discovered in different plant species [1], since metabolites have a 
wide range of physicochemical properties and functions. This makes it challenging 
for metabolomics techniques to study their diversity and gain insights into plant 
biology.

Since the word “metabolomics” was mentioned for the first time in the literature, 
it has evolved and been applied to many disciplines, such as plant biology. Plant 
metabolomics has become hugely modernized in the last decade. This chapter 
describes novel applications of mass spectrometry-based metabolomics approaches 
in recent fundamental plant research. We first commented on different metabolo-
mics techniques, mass spectrometry, and nuclear magnetic resonance-based metab-
olomics. Mass spectrometry-based metabolomics is the widest in use; the main 
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approaches are targeted or quantitative metabolomics and untargeted, nontargeted, 
or discovery metabolomics, also known as global metabolomics. We then explored 
contemporary literature on gene identification and their functional characterization 
for crop improvement enabled by applying nontargeted and targeted metabolomic 
analysis in combination with genome-wide association studies, metabolite quantita-
tive trait loci, and transcriptomics.

From there, we explored the current application of metabolomics methods for 
plant species identification, a trendy topic that is enabling researchers to support 
many aspects of food authentication, food quality control, and traceability; plant 
species identification is an essential factor in understanding biodiversity, the discov-
ery of bioactives from herbal medicines and correlating chemical components from 
plants with chemical markers of patients who intakes herbal medication, in the same 
manner monitoring food intake in foodomics studies.

We exemplified by commenting on the use of molecular networking analysis and 
its application to classify plant species; by providing an example of the Malpighiaceae 
family, chemotaxonomic studies guided by metabolomics methods become hugely 
in use as it allows rapid classification of plant samples based on the endogenous 
chemical content. We also discussed pioneering work on classifying and discrimi-
nating cinnamon, vanilla, and coffee plant species using different metabolomics 
techniques.

We then explored the impact of climate change on the root metabolome and the 
differences in root abiotic and metabolic changes associated with other biotic fac-
tors interactions, highlighting key metabolites involved in root exudates when 
exposed to these types of stresses. In addition, we reviewed recent literature on plant 
biomarker discovery outlining different application areas, such as the food industry, 
where the identification of biomarkers has also worked in quality processes for food 
authenticity and food traceability matrices of plant origin. We outlined a list of key 
metabolites identified in various plant species using different analytical techniques 
including metabolites detected in transgenic plants.

Finally, we briefly explored the emerging field of single-cell metabolomics 
methods. We describe the latest development in mass spectrometry imaging, includ-
ing different approaches for collecting single-cell from plant tissues and a revision 
of some essential techniques on mass spectrometry imaging. Mention has also been 
made on the challenging and future needs for plant metabolomics research.

2  Novel Gene Identifications and Their Functional 
Characterization for Crop Improvement

Metabolomics studies all small molecules – metabolites – content of a cell or whole 
organism. Plant metabolomics refers to comprehensive, nonbiased, high-throughput 
analyses of complex metabolite mixtures typical of plant extracts. The role of 
metabolomics in such studies is twofold: (1) to identify the spatial and temporal 
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Fig. 1 Schematic presentation of metabolomics applications in crop improvement programs: (1) 
A representative sampling source of vegetable crop plants (tomato) as a biological source from 
which cellular metabolome can be extracted from almost all the plant parts and the rhizosphere 
under varying experimental environmental conditions; (2) data acquisition approach in metabolo-
mics to be applied whether unbiased nontargeted fingerprinting is required or the analysis and 
quantification of a few selected target molecules is the need of the experiment; (3) study outcomes 
which needs biological interpretation for hypothesis questions; (4) possible answers to the hypoth-
esis questions in the cellular chemistry and its entwining relations with the environmental impacts; 
(5) functional targets that could be achieved through metabolomics analysis of the vegetable 
plants; (6) result-oriented applications of the data outcomes in crop improvement practices; and (7) 
the “end product” of the experimental metabolomics exercise in vegetable crops. (Reproduced 
from Ref. [2])

distribution of the target compounds as influenced by plant development and envi-
ronmental cues and (2) to identify related phytochemicals, which may be consid-
ered as either intermediate of biosynthesis or alternative or alternative products of 
promiscuous enzymes that support the biosynthesis of the target phytochemical [1].

This chapter describes the latest development and application of plant metabolo-
mics in combination with metabolite genome-wide association studies (mGWAS), 
metabolite quantitative trait loci (mQTL), and transcriptomics for the discovery and 
characterization of genes and enzymes associated with the biosynthesis of special-
ized metabolites in significant crops such as maize, rice, and tomato (Fig. 1).

Different metabolomics techniques have been developed in the last two decades, 
including mass spectrometry-based metabolomics (MS); nuclear magnetic 
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Fig. 2 Illustrative diagram of possible plant environmental interactions, which are supposed to 
influence the metabolic status of the crop plants. Analyzing the metabolome of plants exposed to 
such challenges using metabolomics approaches can yield competitive vegetables crops with better 
yield, high level of defense and stress-mitigating capabilities. (Reproduced from Ref. [2])

resonance spectroscopy (NMR); gas-chromatography-mass spectrometry (GC-
MS); capillary electrophoresis-mass spectrometry (CE-MS); liquid chromatography- 
mass spectrometry (LC-MS); and more recently the implementation of 
high- resolution metabolomics with the aid of Fourier transform ion cyclotron reso-
nance mass spectrometry (FT-ICR MS). Mass spectrometry-based metabolomics is 
one of the most used in plant metabolomics, where researchers can undertake two 
main approaches: targeted and untargeted metabolomics (Fig. 2). Targeted metabo-
lomics is a hypothesis-driven approach focusing on a specific set of metabolites. 
This approach is often used when the researcher has prior knowledge about the 
metabolites of interest or when a specific metabolic pathway is under investigation. 
In targeted metabolomics, a set of known metabolites is selected, and the mass spec-
trometer is set up to detect these specific metabolites. Targeted metabolomics can 
provide more accurate and quantitative information about specific metabolites, but 
it requires prior knowledge of the metabolites under investigation; on the other 
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hand, untargeted metabolomics is an exploratory approach that aims to identify all 
metabolites in every biological sample. This approach does not require prior knowl-
edge of the metabolites under investigation, and it allows for detecting unexpected 
or unknown metabolites. In untargeted or nontargeted metabolomics, the mass spec-
trometer is set up to detect all metabolites within a certain mass range. The resulting 
data is analyzed using statistical methods and bioinformatics tools to identify 
metabolites. Untargeted metabolomics can provide a more comprehensive view of 
the metabolic profile of a biological sample. Still, it may miss some metabolites 
outside the mass spectrometer’s detection range.

The combination of several omics has been recently implemented on gene dis-
covery and their functional characterization to investigate gene relationship to 
metabolites supporting and accelerating crop improvements. For example, Wu et al. 
established a high-quality chromosome-level genome assembly of Melilotus albus, 
by resequencing 94 Melilotus accessions to characterize their phylogenetic relation-
ships, the genetic exchange between M. albus and M. officinalis, and the differentia-
tion of flower color and coumarin content. In addition, transcriptomics, 
metabolomics, and bulked segregant analysis (BSA) have been used to investigate 
M. albus near-isogenic lines segregating at the coumarin level to identify the key 
metabolites and enzymes in the coumarin biosynthesis pathway [3]. Similarly, Li 
et al., based on the integrative analysis of the transcriptomics and targeted carot-
enoid research, found that differentially expressed genes (DEGs) related to carot-
enoid metabolism had a stronger correlation with the critical carotenoid metabolite 
content in the panicle of foxtail millet. Correlation and weighted gene coexpression 
network analysis (WGCNA) identified and predicted the gene regulation network 
related to carotenoid metabolism [4].

Zheng et al. used a combination of metabolome and transcriptome of 11 tea cul-
tivars and then a WGCNA-based biological system strategy to interpret metabolo-
mic flux, predicted gene functions, and mined critical regulators involved in the 
flavonoid biosynthesis pathway; in this manner, they revealed new uncharacterized 
transcription factors (TFs) such as MADS, WRKYs, and SBP; and microRNAs 
(including 17 conserved and 15 novel microRNAs) that are potentially implicated in 
different steps of the catechin biosynthesis. In addition, they applied the metabolic- 
signature- based association method to capture additional critical regulators involved 
in the catechin pathway. This provides important clues for the functional character-
ization of five SCPL1A acyltransferase family members, which might be implicated 
in the production balance of anthocyanins, galloylated catechins, and proanthocya-
nins in tea cultivars [5].

Another approach has been implementing metabolite genome-wide association 
studies (mGWAS) and metabolite quantitative trait loci (mQTL), especially in 
cereal grains such as wheat. Chen et al. developed an approach that has also been 
applied in other major crops such as maize, barley, tomato, and blueberry, while the 
mQTL approach has been used in crops sunch as soybean, rice, and carrot [6]. 
Traditionally the output of mQTL/mGWAS was merely linkages/associations 
between chromosomal locations and metabolite contents, and this was basically due 
to the lack of genomic information for some crops until very recently, a wheat 
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mGWAS successfully identified 26 candidate genes with high confidence, among 
them two were validated to be involved in flavonoid metabolism pathway of 
wheat [6, 7].

This way, by combining interval mapping and genome-wide association studies 
(GWAS), the genetic determinants of tocochromanol accumulation in tomato 
(Solanum lycopersicum) fruits have been unveiled. Specifically, the content of vita-
min E has been enhanced in tomato plants by identifying the genes involved in the 
chorismate-tyrosine pathway [8]. With this approach, Alseekh et  al. reported a 
large-scale metabolic quantitative trait loci (mQTL) analysis on the well- 
characterized Solanum pennellii introgression lines to investigate the genomic 
regions associated with secondary metabolism in tomato fruit pericarp [9]. In total, 
679 mQTLs were detected across the 76 introgression lines. Heritability analyses 
revealed that the environment affected mQTLs of secondary metabolism less than 
mQTLs of primary metabolism. Network analysis allowed to assess the intercon-
nectivity of primary and secondary metabolism and compare their respective asso-
ciations with morphological traits. Additionally, a real-time quantitative PCR 
platform demonstrated a transcriptional control mechanism of a subset of the 
mQTLs, including those for hydroxycinnamates, acyl-sugar, naringenin chalcone, 
and a range of glycoalkaloids. Intriguingly, many of these compounds displayed a 
dominant-negative mode of inheritance, contrary to the conventional wisdom that 
secondary metabolite contents decreased on domestication. Additionally, two can-
didate genes for glycoalkaloid mQTLs via virus-induced gene silencing were also 
validated [9].

More recently, Alseekh et al. identified several metabolite quantitative trait loci 
that reduce variability for both primary and secondary metabolites (phenylalanine, 
glucose-6-P, fructose-6-P, and maltose), which they named canalization metabolite 
quantitative trait loci (cmQTL); on their study nine cmQTL were validated using an 
independent population of backcross inbred lines, derived from the same parents, 
which allows increased resolution in mapping the QTL previously identified in the 
introgression lines. These cmQTL showed little overlap with QTL for the metabo-
lite levels themselves. Moreover, the intervals they mapped harbor few metabolism- 
associated genes, suggesting that regulatory genes largely control the canalization 
of metabolism [10].

Maize has also been favored by the combination of GWAS and metabolomics 
profiling to highlight genes involved in the biosynthesis of several metabolites. 
Among these compounds, Liang et  al. reported the identification of metabolites 
biomarkers for the tolerance to salt-induced osmotic stress; a citrate synthase, a 
glucosyltransferase, and a cytochrome P450 were found to be responsible for con-
trolling the associations between the genotype and metabolites that induced the tol-
erance [11]. Owens et al. reported essential genes controlling maize grain carotenoid 
composition by using GWAS of quantified seed carotenoids across a panel of maize 
inbreeds ranging from light yellow to dark orange in grain color; significant associa-
tions at the genome-wide level were detected within the coding region of zep1 and 
lut1, carotenoid biosynthetic genes not previously shown to impact grain carotenoid 
composition in association studies, as well as within previously associated lcyE and 
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crtRB1 genes [12]. Similarly, Li et al. examined the genetic architecture of maize oil 
biosynthesis in a genome-wide association study using 1.03 million SNPs charac-
terized in 368 inbred maize lines, including “high-oil” lines. Seventy-four loci were 
significantly associated with kernel oil concentration and fatty acid composition [4]. 
Another combination of maize metabolic profiling with GWAS has been reported 
by Riedelsheimer et al. who outlined an association of genetic variants and concen-
tration of 118 metabolites in leaves of 289 diverse maize inbred lines from world-
wide sources; genome-wide association mapping with correction for population 
structure and cryptic relatedness identified for 26 distinct metabolites with strong 
associations with SNPs explains up to 32.0% of the observed genetic variance [13]. 
Similarly, Chen et al. described a comprehensive profiling of 840 metabolites and a 
further metabolic genome-wide association study based on ~6.4 million SNPs 
obtained from 529 diverse accessions of Oryza sativa. They identified hundreds of 
common variants influencing numerous secondary metabolites with significant 
effects at high resolution. They observed substantial heterogeneity in the natural 
variation of metabolites and their underlying genetic architectures among different 
rice subspecies [13, 14]. Data mining identified 36 candidate genes modulating 
metabolite levels that are potentially physiological and nutritionally important. As a 
proof of concept, they functionally identified (annotated) five candidate genes influ-
encing metabolic traits; the study provides first-time insights into the genetic and 
biochemical bases of rice metabolome variation and can be used as a powerful com-
plementary tool to classical phenotypic trait mapping for rice improvement. Besides, 
Dong et al. reported a comprehensive metabolic profiling and natural variation anal-
ysis of phenolamides in rice using a liquid chromatography (LC)-mass spectrome-
try (MS)-based targeted metabolomics method; spatiotemporal controlled 
accumulations were observed for most phenolamides, together with their differen-
tial accumulations between the two major subspecies of rice.

Further GWAS on rice leaves identified Os12g27220 and Os12g27254 as sper-
midine hydroxycinnamoyl transferases that might underlie the natural variation of 
spermidine conjugate levels in rice [15]. Likewise, Chen et al. identified 32 candi-
date genes underlying metabolic traits in rice grains; 8 candidate genes were 
involved in the biosynthesis and transportation of amino acids and their derivatives. 
Three candidates were assigned to the choline levels and its lysophosphatidyl deriv-
atives. Precise signals for trigonelline, a bioactive compound implicated in cell 
cycle control, resulted in the assignment of seven candidate genes for this metabo-
lite. Furthermore, mGWAS in rice grains revealed 40 candidates (both regulatory 
and structural genes) involved in the biosynthesis, modification, and transportation 
of phenylpropanoids, including the C-glycosyl flavones, the primary class of flavo-
noids in cereals [7]. More recently, Yang et al. reported the identification of a gene 
s07g32020 (UGT707A3) that encodes a glucosyltransferase that converts narin-
genin and uridine diphosphate-glucose to naringenin-7-O-β-D-glucoside; the func-
tion of Os07g32020 was verified with CRISPR/Cas9 mutant lines, which 
accumulated more naringenin and less naringenin-7-O-β-D-glucoside and 
apigenin-7-O-β-D-glucoside than wild-type Nipponbare [16].
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It is evident that when working with a crop with a reference genome sequence, 
such as maize, rice, and wheat, to mention some of the global agricultural impor-
tance, enormous advances have been made in elucidating genes and their functional 
annotation for their improvements; sadly this is not the case for minor crops, medic-
inal plants, and other regional staple foods. Therefore, considerable effort must be 
made to genome sequence minor crops and develop a collection of segregating crop 
populations. On the other hand, plant metabolome lacks a free online accessible 
metabolite database for support in the annotation of unknown metabolites, and most 
of the studies carried out under a nontargeted metabolomic approach remain with 
several novel metabolites, making association studies such as transcriptomics, 
mQTL, and GWAS difficult when searching for gene annotation and their func-
tional characterization. A summary of mQTL and mGWAS is presented in Table 1.

Table 1 Summary of mQTL and mGWAS studies in plants [17]

Species Tissue Population type Method Metabolic traits Ref.

mQTL study
Arabidopsis Harvested seed Recombinant inbred 

lines
HPLC Tocopherol [18]

Arabidopsis Leaf Recombinant inbred 
lines

GC-TOF-MS Metabolome [19]

Arabidopsis Seed Recombinant inbred 
lines

LC-MS Flavonoids [20]

Arabidopsis Seedling RILs and 
introgression lines

GC-TOF-MS Metabolome [21]

Brassica 
napus

Leaf/seed Double haploid lines HPLC Glucosinolates [22]

Maize Leaf RILS and natural 
accessions

GC-TOF-MS Primary 
metabolites

[23]

Rice Seed Chromosomal 
segment substitution 
lines

LC-Q- 
TOF-MS

Metabolome [24]

Rice Seed F2, F2-derived lines GC-MS Lipids [25]
Rice Flag leaf/

germinating 
seed

RILs LC-EI-MS Metabolome [26]

Tomato Fruit Introgression lines GC-MS Metabolome [27]
Tomato Fruit Introgression lines GC-MS Metabolome [28]
Tomato Fruit Introgression lines LC-MS Metabolome [29]
Tomato Fruit Introgression lines GC-MS Primary 

metabolites
[30]

Tomato Fruit Introgression lines UPLC Secondary 
metabolites

[9]

Wheat Flag leaf Doubled haploid 
lines

LC-ESI-MS Metabolome [31]

Wheat Flag leaf Doubled haploid 
lines

GC-MS Metabolome [32]

(continued)

Metabolomics in Fundamental Plant Research



396

Table 1 (continued)

Species Tissue Population type Method Metabolic traits Ref.

mGWAS study
Arabidopsis Seed Natural accessions LC-MS Branched-chain 

amino acids
[33]

Arabidopsis Leaf/seedling Natural accessions LC-MS Glucosinolates [34]
Arabidopsis Leaf Natural accessions GC-TOF-MS Metabolome [35]
Maize Kernel Natural accessions UPLC-MS Metabolome [36]
Maize Grain Natural accessions HPLC Carotenoid [12]
Maize Grain Natural accessions HPLC Tocochromanol [37]
Maize Leaf Natural accessions GC-MS Metabolome [38]
Maize Leaf Natural accessions GC-MS Metabolome [13]
Maize Kernel Natural accessions LC-MS Metabolome [39]
Potato Tuber Natural accessions GC-MS Primary 

metabolites
[40]

Rice Leaf Natural accessions LC-QTOF-MS Secondary 
metabolites

[41]

Rice Leaf Natural accessions LC-MS Metabolome [14]
Rice Leaf Natural accessions LC-MS Phenolamides [15]
Tomato Fruit Natural accessions GC-MS Metabolome [42]

3  Plant Species Identification

The plant metabolome constitutes an enormous reservoir of bioactive compounds; 
many of these are products of secondary or specialized metabolism. Their taxo-
nomic distribution is in relatively narrow phylogenetic clades within Plantae [1]. 
While the identification of plant species based on morphological characteristics is a 
well-established practice in botany, being able to identify plant species is an essen-
tial factor in understanding biodiversity, the discovery of bioactives from herbal 
medicines, and correlating chemical components from plants with chemical mark-
ers of patients who intake herbal medication, as well as monitoring food intake in 
foodomics studies, food authentication, and fraud detection, among other applica-
tions. Since the small-molecule profile of an organism ultimately reflects the genes 
that distinguish it, the information content of the metabolome might be just as well 
suited to genomic fingerprinting and assessment of genetic relatedness between spe-
cies as the genomes themselves [43].

Despite its practical importance, the establishment of phylogenetic diversifica-
tion and distribution patterns of secondary plant metabolites is still in its early steps, 
and several plant families have not been deeply explored to date in this context; 
Mannochio-Russo et  al. described a strategy for chemotaxonomic investigations 
using the Malpighiaceae botanical family as a model; their workflow (Fig. 3) was 
based on MS/MS untargeted metabolomics, spectral searches, and recently 
described in silico classification tools, which were mapped into the latest molecular 
phylogeny accepted for this family, the workflow combines several approaches to 
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Fig. 3 Experimental workflow followed for the metabolomics and chemosystematics analyses of 
Malpighiaceae samples. (1) The samples were initially collected. (2) The extracts were prepared 
with different solvents (EtOH:H,0 (4:1. v/v) or EtOAc) and then (3) subjected to LC-ESI-MS/MS 
analysis in positive and negative ionization modes in an untargeted method. (4) The data acquired 
were processed for feature finding, and the exported data were used for multivariate analysis. The 
clustering groups observed were merged to the phylogeny using the maximum likelihood estima-
tion (MLE) for preliminary chemotaxonomic investigations. (5) The data were also used for 
feature- based molecular networking and library searches workflows to observe clade-specific 
molecular families. (6) A chemical hierarchy analysis and in silico classifications were obtained 
and finally (7) merged to the currently accepted Malpighiaceae phylogeny to determine the ubiq-
uitous and the taxa-specific in silico classes. (Reproduced from Ref. [44])

perform a comprehensive evolutionary chemical study. It is expected to be used in 
further chemotaxonomic investigations [44].

The metabolomic analysis revealed that different ionization modes and extrac-
tion protocols significantly impacted the chemical profiles, influencing the chemo-
taxonomic results. In addition to the library searches for metabolite annotation, the 
MS/MS data generated were visualized by molecular networking analysis (Fig. 4). 
Molecular families constructed by such analysis represent the similarity of frag-
mentation patterns obtained by tandem mass spectrometry (MS/MS) analysis. 
These molecular families consisted of nodes (representing MS/MS spectra) and 
edges of connecting these nodes (representing the cosine similarity between two 
nodes, which measure the relatedness in MS/MS spectra). The library matches 
retrieved from the analysis obtained in the positive ionization mode showed the 
presence of a high diversity of compound classes, including C-glycosylated and 
O-glycosylated flavonoids, lipids, alkaloids, quinic acid derivatives, amides, triter-
penes, iridoids, and lignans [44].

Cinnamon is one of the oldest spices used in the world. A growing number of 
studies have illustrated varied phytochemical compositions among cinnamon spe-
cies. Primary cinnamon metabolites, such as coumarin, cinnamaldehyde, cinnamic 
acid, cinnamyl alcohols, and proanthocyanidins, are shown to be differentially pro-
duced among various species; in this context, Zhang et al. developed a metabolomic 

Metabolomics in Fundamental Plant Research



398

Fig. 4 Molecular families obtained from the feature-based molecular networking workflow and 
annotated based on spectral matches within the GNPS platform: (a) phenolic compounds, (b) 
alkaloids, and (c) lipids and terpenoids. Each node represents a tandem mass spectrometry spectra 
(MS/MS), while the edges that connect them represent the MS/MS fragmentation similarity 
(cosine >0.7). Pie charts indicate the relative abundance of ion features in each Malpighiaceae 
phylogenetic clade (A–J). Node sizes are relative to the summed peak areas of the precursor ion in 
MS1 scans. These are level 2 or 3 annotations according to the 2007 metabolomics standards ini-
tiative [45]. (Reproduced from Ref. [44])

ratio rule-based classification method for the automated metabolite profiling and 
differentiation of four cinnamon species using ultra-performance liquid chromatog-
raphy-high-resolution mass spectrometry. Among the species studied were 
Cinnamomum cassia (Chinese cinnamon), C. loureiroi (Vietnamese cinnamon), 
C. verum (Ceylon cinnamon), and C. burmannii (Korintje cinnamon); proanthocy-
anidins, coumarin, and cinnamaldehyde were the preselected metabolites allowing 
the classification [46].
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The genus Vanilla, a source of the most appreciated flavor worldwide, comprise 
over 110 species. Currently, only three species have commercial relevance, Vanilla 
planifolia Andrews, V. tahitensis J. W. Moore, and V. pompona Schiede. V. planifo-
lia are preferred by industry due to its higher content of vanillin, the main flavor 
component; more attention needs to be made to other Vanilla species. Leyva et al. 
developed a nuclear magnetic resonance (NMR) metabolomic platform to profile 
for the first-time leaves that are known to accumulate putative vanillin precursors of 
V. planifolia and those of Peruvian V. pompona, V. palmarum, and V. ribeiro to 
determine metabolite difference among them. Their NMR analysis identified 36 
metabolites, and multivariate analysis identified malic and homocitric acids, 
together with 2 vanillin precursors (glucoside A and B), as relevant markers for spe-
cies identification [47].

Coffee is appreciated worldwide for its aroma, flavor, and stimulant properties. 
Souard et al. examined leaves of nine Coffea species grown in the same environ-
mental conditions by an untargeted liquid chromatography high-resolution mass 
spectrometry (LC-HRMS) approach, with the primary objective of identifying 
metabolites that significantly contribute to the classification between Coffea spe-
cies. Based on their results of multivariate analyses, 1637 variables (metabolites) 
were analyzed, from which 92% (1505 metabolites) were significantly different 
overall taxa. Among the species studied, when two well-known C. arabica and 
C. canephora were compared, a feature with an m/z = 195.0870 corresponding to 
[M + H]+ of caffeine came out as the main discriminant compound. Caffeine con-
centration was approximately 800 times higher in C. arabica leaves than in 
C. canephora. Another feature observed at an m/z value of 247.0598 had much 
higher intensities in C. arabica than in C. canephora, but unfortunately, this feature 
was not identified. This metabolic fingerprinting study aimed to determine the spe-
cific differences between the metabolomes. All nine clusters of each species studied 
were observed on both PCA and PLS-DA score plots, with good discrimination 
between the eight Coffea species [48].

Several studies have described the use of metabolomics to distinguish herbal 
medicinal plants. For example, Lesiak et al., using seeds of the genus Datura plants, 
outlined direct analysis real-time mass spectrometry (DART-MS), which could pro-
vide diagnostic fingerprint profiles of nine Datura species seeds and whether che-
mometric processing of the observed profiles could enable species-level identification 
and differentiation. They confirmed that the seeds could be analyzed by DART-MS 
directly in a high-throughput manner without using a solvent extract. Each species 
exhibits a distinct chemical signature, and the processing of this data by multivariate 
statistical methods enables species-level differentiation. In addition, they observed 
that while intraspecies chemical signatures are similar, interspecies fingerprints are 
distinct enough to be discriminated against using multivariate statistical analysis 
tools [49]. Another example using seed samples of Polygonatum species was 
reported by Qi et al.; Polygonatum plant species have properties that make them 
sound like medicine and food in China. There were almost no differences in the 
contents of the metabolites in the amino acids and derivatives, nucleotides and prod-
ucts, and others (e.g., saccharides, alcohols, and vitamins) classes among the seed 
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samples. In contrast, the seed samples had some diversity in the contents of lipids, 
phenolic acids, lignans and coumarins, tannins, and quinones. The flavonoid, ste-
roid, and terpenoid classes and contents varied among the Polygonatum seed sam-
ples; these compounds have relatively strong pharmacological effects; their findings 
indicate that different Polygonatum seeds differ in terms of their medicinal and 
nutritional value [50].

Other plant species that have been classified and identified using metabolomic 
approaches are Mentha species [51]; Acorus [52] – plants in Acorus have been used 
as herbal medicine by various linguistic groups for thousands of years; and 
Phyllanthus species [53]; among other medicinal plant species.

4  Plant Root Metabolome and Climate Change

Climate change is a relevant issue due to its adverse and high-impact consequences 
it can cause directly and indirectly at social, ecological, biological, and health levels 
[54, 55]. The main factors promoting climate change comprise natural and anthro-
pogenic activity; agriculture can produce 30–40% of the total greenhouse gas emis-
sions [56]. In addition, due to these issues, an increase in the use of pesticides is 
expected, which will significantly affect global crop production, as well as pathogen 
diseases, abiotic stress, and the decrease in the production of the major crops world-
wide [57]. Quality and crop productivity are negatively affected by global warming. 
It is expected that dramatic increase in the following years due to the increasing 
annual temperature, solar radiation, changes in precipitation, and high CO2 levels 
[54, 56, 57]. Some other factors which reduce crop production quality are floods 
and droughts [58, 59] and are affected by alterations in rainy seasons, pest inva-
sions, crop disease, water supplies, price of products for agricultural processes, and 
premature consumption of fertilizers [54].

Humanity’s well-being and economics depend strongly on the agricultural sec-
tor, which simultaneously depends on the ability to adapt crops to environmental 
conditions and is therefore considered a climate-dependent industry [58]. To 
improve productivity, nutrient quality, and crop resilience, it is necessary to adapt 
strategies and design technologies to help mitigate climate change’s effects [55, 60]. 
The leading crop breeding technologies for adaptation comprise biotechnology 
techniques, such as next-generation sequencing and RNA-mediated silencing [58, 
61, 62]. Another strategy to improve crops and their resistance to biotic and abiotic 
stress is the engineering of the root microbiota, which represents a promising tech-
nology in the future to face climate change [63]. This strategy arises from analyzing 
the plant microbiome in the rhizosphere and endosphere, in which several interac-
tions occur between the plant, microorganisms, their metabolites, and the metabo-
lites of the surrounding plants. Once the relevance of these interactions on plant 
development is understood, the rhizosphere microbiome should be manipulated and 
thus increase production and their well-being; reduce the need for farmland, 
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pesticides, and fertilizers; and thus reduce the intrinsic carbon footprint associated 
with these activities [64–66].

Plant evolution gave way to the adaptation through metabolite excretion to the 
soil (exudates) to interact with rhizosphere composition. The exudates may alter the 
composition and activity of the microbiome around, changing the pH, soil structure, 
and availability of oxygen or supplying organic compounds as a source of energy 
[67]. Some of the compounds exudated can also act as chemotrophic signals, which 
can attract pathogenic microorganisms to the plant, nematodes, or herbivorous 
arthropods [68]; however, these compounds can also work in the recruitment of 
beneficial microorganisms which can aid the plant in defense against pathogens, 
diseases, biotic stress conditions or enhance nutrient absorption [63, 64]. Under 
stress conditions, plants trigger the production of many secondary metabolites, with 
defense signals that promote the cope against pathogen organisms. Synthesis of 
secondary metabolites can relieve stress by modifying root microbiota to further 
degradation of different types of pollutants to carry out bioremediation [63, 69].

Among the strategies proposed for manipulating the rhizosphere microbiome is 
the direct inoculation of microorganisms in the soil. However, one of the biggest 
challenges to achieve is the determination of the species that act on the mechanisms 
involved, the competitive behavior with the native microbiota, and the effects it has 
on agricultural conditions. Alternatively, the metabolites observed in rhizosphere 
exudates should be used and applied in specific areas to stimulate native microor-
ganisms [67]. Therefore, it is necessary to determine qualitatively and quantitatively 
the composition of the exudates under particular conditions, as well as the metabo-
lomic analysis of the prominent participants in the interactions described and rea-
sonably link the production of metabolites and their primary function in the face of 
possible types of stress [65, 70].

A metabolomic analysis is an excellent choice to study plant-rhizosphere inter-
actions due to the complexity and quantity of compounds involved in the metabolic 
relation between roots and microorganisms. Instrumentation such as LC-MS, GC- 
MS, and NMR are the most widespread techniques and powerful tools used for 
identifying the compounds present in the rhizosphere [68, 71]. On the other hand, 
the exometabolomics concept consists of analyzing the metabolic traces of microor-
ganisms present in certain conditions to understand the underlayer mechanisms that 
exist in the rhizosphere and the determination of substrate consumption by microor-
ganisms [64]. In this context, we reviewed recent literature in metabolomics and 
exometabolomics, the findings in primary metabolites, and their function on spe-
cific rhizosphere interactions.

4.1  Metabolome Changes in Roots by Abiotic Stress

Metabolome alterations in the rhizosphere due to interactions result in significant 
interest in setting the defense mechanisms that play plants against external agents 
and expanding the landscape about key metabolites to degrade specific 
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contaminants. Therefore, Wang et al. explored changes in chemical composition in 
root exudates of the urban greening trees exposed to phenanthrene. In Loropetalum 
chinense, Gardenia ellis, and Rhododendron simsii, carbohydrate levels increased 
in the presence of phenanthrene, indicating a regulatory function mediated by the 
biopolymer’s degradation, whereas in Osmanthus fragrans levels decreased, sug-
gesting different behavior between species. Phenolic compounds increased in the 
presence of phenanthrene in Ligustrum japonicum, R. simsii, O. fragrans, Gardenia 
jasminoides, and Camellia sasanqua, implying an adaptation to attract rhizobia bac-
teria, with the aim of cope with exposure to phenanthrene [72]. Regarding heavy 
metals stress, Lu et al. analyzed two wheat genotypes with different tolerance to Cd: 
Aikang 58 with low accumulation and Zhenmai 10 with high accumulation. Both 
phenotypes showed an increase in phenylalanine and tyrosine in the presence of Cd, 
relating these changes in the shikimate-phenylpropanoid pathway. The rise in 
acetylglycine and histidine indicates a chelating activity to chelate Cd in vacuoles. 
At the same time, glutamate, glutamine, aspartic acid, asparagine, and lysine per-
form an osmotic balance to detoxify heavy metals. In the presence of Cd, an increase 
in maltose, isomaltose, sorbose, tagatose, and polyols assists the cell wall’s struc-
ture. In contrast, the addition of glyceric acid, cis-aconitate, malic acid, salicylic 
acid, and citrate indicates a deterioration in the activity of the tricarboxylic acid 
cycle activity to assimilate carbon under stress conditions. These alterations in the 
metabolism promote a high ability to take out and defend the plant against reactive 
oxygen species, inducing molecular signaling and antioxidant enzymes [73].

A report studying the effect of acid drainage contamination on Phragmites aus-
tralis by Kalu et  al. analyzed root and rhizosphere metabolome. The main com-
pounds found in roots at contaminated sites were adenosine, inosine, methionine, 
carnitine, and dimethylglycine. On the other hand, uridine, dopa, asymmetric 
dimethylglycine, adenosine, and phenylalanine had a lower abundance in contami-
nated sites. This alteration has the purpose of recruiting microorganisms that pro-
mote the growth of the plant while at the same time attracting microorganisms 
specialized in heavy metal detoxification. As for bacterial communities, the main 
phylum in samples grown at contaminated sites was proteobacteria, β-proteobacteria, 
and the Methylocystis, Rhizobium, and Delftias genera [74]. In salinity stress, Wang 
et al. analyzed the canola roots metabolome in the presence of NaCl. The abundance 
of proline and soluble sugars increased in canola roots under saline stress. However, 
the metabolites with the most significant difference between groups were lipids, 
primarily fatty acids, which increased compared to controls. In saline stress, lipids 
affect membrane permeability, fluidity, integrity, and protein transport activity; 
therefore, the reconstitution of lipids in cells becomes transcendental. This stress 
triggers the production of polyunsaturated fatty acids, which can help the activation 
of membrane ATP-loop activity, which is responsible for maintaining homeostasis, 
facilitating the pumping of Na+ from the cytosol to the external medium, and block-
ing K+ channels [70].

Finally, it is essential also to consider UV radiation stress. Mannucci et al. ana-
lyzed the effect of UV exposure on tomato plants and their metabolomic changes in 
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roots and leaves. In the roots of plants exposed to UV radiation, terpenoids and 
phenylpropanoid derivatives pathway synthesis increased compared to controls. For 
carbohydrates, degradation processes increased in radiation treatments, suggesting 
a wide degree of mobilization of reserve compounds to produce necessary precur-
sors for secondary metabolites synthesis, such as flavonoids. As an effect of a rear-
rangement of lipid membrane composition, monogalactosylglycerol was found in 
the plants exposed, while 4α-carboxy-5α-cholesta-7,24-dien-3β-ol levels decreased. 
Finally, phenolic compounds and p-coumaroyl glycolic acid decreased in the UV 
treatments, a compound with anti-inflammatory properties [75].

4.2  Metabolic Changes Associated with Root and Other Biotic 
Factor Interactions

The most relevant biotic factors that transcend the metabolome analysis include 
plant pathogenic microorganisms; it is essential to decipher the compounds pro-
duced by plants to counteract the conditions and even the mutual organisms that 
help defend against these agents. Another biotic stress to consider is the neighbor-
hood of other plant species competing for nutrients. In addition, the importance of 
the interaction of mycorrhizal fungi and the benefits they have in association with 
root plants is known. Both metabolisms are relevant to develop strategies that can 
help to improve crops.

To find out how rye competition affects Vicia villosa Roth, Hazrati et al. analyzed 
the metabolic effect on the roots of these plants. Kaempferol-Rha-Xyl-Gal was the 
main compound found. This compound decreased in V. villosa when it was grown 
in the presence of rye. Thus, it is estimated that competition produces a deficit of 
several nutrients in hairy vetch, decreasing the production of flavonoids [76]. 
Phytophthora sojae is known to cause phytophthora root rot disease in soybean; 
Zhang et al. analyzed the rhizosphere of Glycine max inoculated with P. sojae. The 
post-inoculated rhizosphere of a resistant species had a greater abundance of metab-
olites related to cutin biosynthesis, suberin, wax, arginine, ansamycins, pyrimidine, 
galactose, linoleic acid, ABC transporters metabolism, and lysine degradation. Most 
of the metabolites in the post-inoculated rhizosphere include antibiotics, which are 
responsible for conferring plant resistance to pathogens. On the other hand, some 
compounds in the control rhizosphere contained compounds to attract possible 
pathogenic microorganisms to the plant, such as daidzein and genistein. Although 
some flavones and isoflavones repel zoospores, others have the opposite effect, each 
specific to the conditions the plants were exposed to. Besides, cutin, suberin, and 
wax biosynthesis are inferred to provide drought tolerance by preventing water loss 
and insect tolerance [77].

Finally, interaction with symbiotic microorganisms focuses on knowing the ben-
efits they bring and how they achieve them. Therefore, a view with a metabolomic 
approach is interesting to know the main compounds in the rhizosphere used to 
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improve crop capacity. In this context, Zhang et al. analyzed the interaction between 
Medicago truncatula and rhizobium bacteria to get the metabolites in the formed 
nodules. Oxylipin-9-HODE decreased during the application of rhizobia bacteria, 
indicating decreased jasmonic acid precursors and inhibition due to the interaction 
[78]. Oxylipins are critical signaling molecules in the defensive response of plants 
to protect their tissues from attacks by herbivores or pathogens, and some contain 
antimicrobial properties.

Similarly, Sebastiana et  al. analyzed cork oak roots colonized with Pisolithus 
tinctorius, an ectomycorrhizal fungus. In the study, the inoculated roots showed 
higher levels of γ-aminobutyric acid, alanine, β-glucose, and citrate. It was also 
demonstrated that the inoculated samples decreased quercitol, glycine-betaine, 
α-glucose, fructose, malate, and lactate levels. Inoculated samples influenced alka-
loids, terpenoids, oxylipins, lipids, carbohydrates, amino acids, nucleic acids, and 
vitamins. In addition, a decrease in isomers of glucose, sucrose, sorbitol, and man-
nosyl glycerate was observed, as well as a reduction of isomers of fatty acids and 
compounds involved in the metabolism of tyrosine and histidine. The decrease of 
organic acids and glycine-betaine is related to apoplastic protective barriers, indi-
cating the transfer of these metabolites to fungi, in the case of lipids, including 
monoacylglycerols, which are the main components of suberin and bark. This layer 
accumulates on the most exposed face of tree stems and roots and protects against 
drying and pathogen attack [79].

Another example was shown by Hernández et al. who analyzed the beneficial 
activity of Rhizobium tropici in Phaseolus vulgaris growth under phosphorous defi-
ciency. It was observed that some organic acids, polyhydroxy acids, sugars, and 
polyols increased significantly in nodules with phosphorus (P) deficiency. In con-
trast, some amino acids and nitrogenous compounds decreased, reducing N fixation 
in P-deficient plants. In addition, they presented sugar accumulation, indicating 
demand for root photosynthate due to the decrease in the photosynthesis network. 
On the other hand, changes in carbohydrate content mean glycolysis/C binding 
pathways are induced in nodules under P deficiency stress [80]. P-deficient roots 
showed a decrease in the organic acid concentration, suggesting their exudation 
toward the rhizosphere; this has also been recently demonstrated in a study by 
Gomez-Zepeda et al. when using mass spectrometry imaging to locate organic acid 
exudates in P-deficient Arabidopsis plants. Organic acid exudation by roots is con-
sidered a core response to different types of abiotic stress and the interaction of 
roots with soil microbes. For decades it has been a target trait to produce plant vari-
eties with increased capacities of inorganic orthophosphate uptake and aluminum 
tolerance [81].

Microbiota may vary according to the plant growing zone. In this way, Li et al. 
analyzed metabolome and microbiota in the roots of Aconitum vilmorinianum 
grown in two different sites in China (Luquan and Weixi). The difference observed 
in the metabolites was an increase in yunnaconitin and vilmorranine A in Weixi and 
a decrease in amino acids and some derivatives in Luquan. A correlation was found 
between 137 bacteria and 17 fungi with 75 differential metabolites in the 2 regions, 
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among which the fungus on Cladosporium stands out, with a high probability con-
ditional on aconitine, demonstrating the appearance of this metabolite in Weixi 
samples. Regarding Luquan, three bacterial and six fungal biomarkers were found, 
while Weixi showed the presence of five bacterial and five fungal biomarkers. This 
finding in the microbiome may be due to the environmental temperature, while in 
Weixi usually snows, and Luquan rarely occurs [82].

Knowledge about metabolome interaction between roots and their environment 
is crucial to identify the relevant metabolites produced in this medium. With this, it 
is intended to know which metabolic pathways are altered in plants to produce 
detoxifying compounds, antibiotics, or those that recruit beneficial microorganisms 
for plants. On the other hand, the compounds produced by microorganisms and their 
identification are also convincing to analyze the possibilities of the inoculation of 
different bacterial species in scenarios of various types of stress. However, it is 
important to specifically identify these conditions since not all species will behave 
similarly under the same state or stress. Herewith, it is essential to trace how crops 
can be treated to face biotic and abiotic stress caused mainly by climate change and 
improve their production and development.

5  Plant Biomarker Identification

Metabolomics is one of the most recent powerful tools for studying plants and other 
organisms and is becoming a complementary technique to genomics, transcrip-
tomics, and proteomics [83]. Metabolomics addresses the activity of small mole-
cules (<1500  Da) produced by cells during their life cycles, that is, products of 
primary or secondary – specialized – metabolism, found in various biological sys-
tems, studying how metabolic profiles change within an organism in response to 
some situations, such as disease or stress [84].

Therefore, unlike other “omics,” metabolomics best describes phenotypes, can 
give instantaneous information on the physiological state of cells and thus provide 
a broader view of the biochemical state of an organism, and can track the metabolic 
network of a biological system and its perturbation in response to stimuli. 
Metabolomics aims not to identify every metabolite observed but to compare pat-
terns of metabolites that change in each biological system. When these analyses are 
performed on enough biological replicate samples, it allows researchers to discrimi-
nate and classify samples and gain insight into changes in metabolome composition 
related to a particular physiological state, influence of stress or stimulus, genetic 
modification, or interaction with other organisms.

Metabolites provide a “fingerprint” of the complex interaction between the 
genome and the environment. They can generally be divided into two groups: pri-
mary metabolites, essential for maintaining processes directly involved in plant sur-
vival, growth, and reproduction, and secondary metabolites, which contribute to 
specialized processes in each organism synthesized to fulfill a nonessential function 
in the plant.

Metabolomics in Fundamental Plant Research



406

Due to the structural heterogeneity of metabolites and their different ranges of 
magnitude and concentration, their identification and measurement present a con-
siderable challenge. For the plant kingdom alone, researchers have reported more 
than 400,000 plant species worldwide [85]. As for structurally distinct secondary 
metabolites, there are approximately 200,000 to 1,000,000 [86], which is why the 
field of plant metabolomics is the most advanced with a wide range of applications 
[1, 85].

All this information and understanding of the metabolome as it is affected by 
factors including environmental changes, physical changes, biotic stresses, abiotic 
stresses, and even internal changes in the plant as a function of its developmental 
stage can be used to monitor significant variations in metabolites and in the search 
for metabolites that can act as biomarkers.

The study of metabolomic biomarkers is one of the least explored areas in metab-
olomics. By 2022 only 16% of the publications examined the discovery or discrimi-
nation of biomarkers, while 46% of the publications refer to metabolic mechanisms 
and 33% examined metabolic profiles. However, many of these publications on 
metabolic profiles include preliminary and descriptive findings for more detailed 
analysis of the machine tool and discovery of biomarkers [87].

A metabolomic biomarker differs greatly from a protein biomarker and tran-
scriptomic biomarkers because of the close relationship between individual metabo-
lites. Factors measured in other “omics” technologies are independent, although 
there may be patterns of abundance that reflect a disease state. A metabolomic bio-
marker is not just a chain of changes in individual metabolites. Instead, it is com-
posed of co-related metabolites that change together [88].

For the discovery and characterization of a metabolomic biomarker, validation 
based on the environment and research design is necessary to determine whether the 
proposed biomarker can distinguish between the changes to which plants are sub-
jected [88], that is, for a biomarker to be classified as such, it must meet specific 
characteristics: be measurable, reflect the qualitative or quantitative interaction of 
the plant with the chemical of interest, be precise and sensitive, and be commonly 
shared among individuals in a population and plant species.

In this way, and through preliminary findings of metabolic profiling, some bio-
markers have been identified in plants in response to exposure to stress factors: For 
example, a study on biomarker discovery [89] demonstrated that volatile organic 
compound (VOC) profiles could be used as diagnostic markers of stress in grape-
vine; this study shows that VOC emission can be considered as a universal response 
of grapevine to plant defense elicitors, given that the elicitors evaluated induced the 
emission of a standard set of VOCs encompassing chemically different compounds, 
including the sesquiterpenes α-farnesene and β-caryophyllene and that such a 
response is analogous with the induction of stilbene phytoalexins.

Similarly, plant metabolomics can help to identify resistant metabolites in plants 
that are subjected to stress conditions [17]; the selected biomarker can be used as a 
diagnostic metabolite for plant stress, as in the case of the study of wheat and barley 
resistance against F. graminearum infection where they point to various plant 
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hormones that respond to this infection [90]. Such is also the case of phenylpro-
panoids and organic acids, metabolites identified as biomarkers of nitrogen defi-
ciency in leaves and roots of tea plants (Camellia sinensis) that are elevated when 
there is a nitrogen deficit [91]. For example, hexadecanoic acid and dotriacontane, 
highly expressed metabolites, were identified as potential biomarkers in rice seeds 
infected with Rhizoctonia solani toxin, metabolites involved in several important 
rice biosynthetic pathways, such as the biosynthesis of saturated fatty acids and the 
unsaturated fatty acids cutin, suberin, and wax [92].

However, the identification of metabolites not only corresponds to stress 
responses, but the detection of metabolic changes at different developmental stages 
also contributes to finding metabolites characteristic of each stage (biomarkers), as 
in the case of metabolomic analysis of rice where developmentally controlled phe-
nolamide accumulation patterns are observed [15] or in Arabidopsis where patterns 
of glucosinolate, raffinose, and galactinol accumulation are present at the base of 
leaves during the senescence stage [90]. Analysis of the spatiotemporal metabolic 
profile of plant development also allows the identification of potential biomarkers to 
capture intrinsic genetic features of plant development, as in the study of rice tiller-
ing (branching), in which 21 metabolites captured nearly 83% of the metabolic 
variation [93], and the developmental phase of soybean during the transition from 
vegetative to reproductive stage, in which eight flavonoid kaempferol glycosides 
were identified as potential growth markers [94].

In the food industry, the identification of biomarkers has also worked in quality 
processes for food authenticity and food traceability matrices of plant origin, espe-
cially in the field of aromatic herbs and spices, which are very susceptible to food 
fraud, as in the case of thyme, an aromatic herb traditionally used for food purposes 
due to its organoleptic characteristics and medicinal properties. In this particular 
case, it was possible to determine the geographical traceability of thyme based on 
different origins (Spain, Poland, and Morocco), as well as to evaluate its processing 
by comparing sterilized thyme with non-sterilized thyme, where 24 differential 
markers belonging to different classes were identified: among monoterpenoids, 
diterpenoids, sesquiterpenoids, alkylbenzenes, and other diverse compounds for its 
authenticity [95].

Another example of this application that helps to detect adulterants in plants that 
are used commercially is observed in the study by Ivanovic et al. using wild garlic 
(Allium ursinum) and poisonous adulterants Convallaria majalis and Arum macula-
tum as a model for the detection of adulterants in edible plants; the metabolites 
isovitexin, vicenin II, azetidine-2-carboxylic acid, and trigonelline were elucidated 
as biomarkers of adulteration [96].

On the other hand, metabolomics approaches have also been used to characterize 
and diagnose plant diseases and thus crop improvement, for example, during the 
study of the interaction maize-Fusarium graminearum-Bacillus amyloliquefaciens 
or soybean-Rhizoctonia-B. amyloliquefaciens, a better understanding of the meta-
bolic regulation of all interacting systems has been achieved, providing valuable 
insights potentially useful in plant breeding and metabolic bioengineering [97].
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Metabolite markers against drought stress (malonate, leucine, 5-oxo-L-proline, 
saccharic acid, trans-cinnamate, succinate, and glyceric acid) have been reported by 
Khan et al. who identified biomarkers in the metabolome of chickpea (Cicer arieti-
num L.) when treated with plant growth regulators (salicylic acid and putrescine) 
and the PGPR growth consortium (B. thuringiensis, Bacillus subtilis, and Bacillus 
megaterium). Deliberative metabolic reprogramming of chickpea targeting bio-
marker synthesis pathways resulted in drought-tolerant chickpea varieties [98].

Biomarker identification can also be applied to predict phenotypic traits and pro-
vide early detection tools to identify and use them in plant breeding development 
[99]. In China, for example, hybrid rice combinations have been created using ster-
ile lines and restorer lines to reduce seed deterioration during storage and establish 
galactose and gluconic acid as metabolic biomarkers that reflect the degree of seed 
aging [100]. Also, in understanding the functioning of plants growing under extreme 
conditions, the identification of biomarkers in these plants could provide informa-
tion that would benefit crop improvement; for example, it was possible to identify 
associated metabolic biomarkers in an alpine medicinal plant (Rhodiola crenulata) 
that can survive in extreme altitude conditions where the shikimic acid- 
phenylalanine- phenylpropanoid flavonoid pathway was enhanced with phenylpro-
panoids upregulating much more than flavonoids [101].

Surveillance for potential pathogens is critical to plant innate immunity, so plants 
depend on the perception of pathogen-derived molecules to activate defense-related 
signaling cascades and specialized metabolites in response; in studies of the tomato 
plant (Solanum lycopersicum), by monitoring metabolic profiles of signaling cas-
cades in response to pathogens, significant biomarkers were noted for several 
classes of metabolites including amino acid derivatives, lipid species, steroidal gly-
coalkaloids, hydroxybenzoic acids, hydroxycinnamic acids, and products, as well 
as flavonoids [102].

Other metabolites identified as biomarkers in the plant defense response to 
pathogens are hydroxycinnamic acids; the conjugation of these acids with amide 
groups contributes to the regulation of the dynamic metabolic pool of hydroxycin-
namates; a wide range of biogenic amine compounds found in most plant cells and 
these conjugates can scavenge radicals, confer antimicrobial activity, and can be 
deposited in the cell wall; so finding the activity of these metabolites is indicative of 
the plant-pathogen response [103]. A summary of primary and secondary or spe-
cialized metabolites identified in various plant species is presented in Table 2.

The identification of biomarkers in plants can have diverse applications, as 
described above; however, to reach the validation of these metabolites, metabolic 
profiling studies are necessary; metabolomics has been widely applied in the study 
of plants showing a breakthrough in understanding how the phenotype is related to 
the metabolome and therefore the function of metabolites under normal conditions, 
stress, and during their development.

J. J. Ordaz-Ortiz et al.



409

Table 2 Identifying key metabolites in various plant species using different analytical 
methods [104]

Plant species Class
Analytical 
tools Key metabolites Ref.

Primary metabolites
Plantago ovata Fatty acids GC-MS α-Linolenic acid, linoleic acid, and 

palmitic acid
[105]

P. ovata Fatty acids GC-MS Pentadecanoic acid, palmitic acid, 
heptadecanoic acid, stearic acid, oleic 
acid, linoleic acid, γ-linoleic acid, and 
arachidic acid

[106]

Jatropha curcas Fatty acids GC Oleic acid, palmitic acid, and linoleic acid [107]
Paeonia rockii, 
P. potaninii, 
and P. lutea

Fatty acids GC-MS α-Linolenic acid, oleic acid, and linoleic 
acid

[108]

Cicer arietinum Fatty acids GC-MS Pentadecanoic acid, palmitic acid, 
palmitoleic acid, stearic acid, oleic acid, 
linoleic acid, α-linolenic acid, and 
arachidic acid

[109]

P. ovata Amino 
acids

HPLC Isoleucine, threonine, leucine, histidine, 
and lysine

[105]

P. ovata Amino 
acids

HPLC Aspartate, glutamine, glycine, alanine, 
arginine, serine, proline, isoleucine, and 
methionine

[106]

Fritillaria 
thunbergii

Amino 
acids

GC-MS Tryptophan, phenylalanine, and histidine [110]

C. arietinum Amino 
acids

GC-MS L-glutamic acid, L-tryptophan, 
phenylalanine, glycine, serine, 
L-threonine, L-valine, L-ornithine, and 
L-proline

[109]

C. arietinum Sugars and 
sugar 
alcohols

GC-MS Sucrose, cellobiose, galactose, methyl 
galactoside, and myo-inositol

[109]

C. arietinum Sugar 
alcohols

GC-QqQ-MS Galactitol, erythritol, arabitol, xylitol, 
mannitol, and inositol

[111]

Secondary metabolites
Beta vulgaris Terpenes HPLC-MS Oleanolic acid, hederagenin, akebonoic 

acid, and gypsogenin
[112]

Ocimum 
gratissimum

Terpenes GC-MS m-Chavicol, t-anethole, germacrene-D, 
naphthalene, ledene, eucalyptol, azulene, 
and camphor

[113]

Mentha 
piperita

Terpenes GC-MS Menthone, menthol, pulegone, and 
menthofuran

[114]

M. arvensis Terpenes GLC Menthol, isomenthone, L-methone, and 
menthyl acetate

[115]

Achyranthes 
bidentata

Terpenes HPLC Oleanolic acid and ecdysterone [116]

(continued)
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Table 2 (continued)

Plant species Class
Analytical 
tools Key metabolites Ref.

Arabidopsis 
thaliana

Phenolics UHPLC-MS Scopoletin, unbelliferone and esculetin, 
scopolin, skimming, and esculin

[117]

P. ovata Phenolics LC-MS Luteolin, quercetagetin, syringetin, 
kaempferol, limocitrin, helilupolone, and 
catechin

[105]

P. ovata Phenolics LC-MS Kaempferol, 
3-(2″,3″-diacetylrhamnoside)-7- 
rhamnoside and apigenin 7-rhamnoside

[106]

P. ovata Alkaloids LC-MS Lunamarine, hordatine B, and pinidine [105]
Dendrobium 
snowflake “red 
star”

Alkaloids 1H and 2D 
NMR

Dendrobine and nobilone [118]

Understanding the adaptative physiology and biochemistry of plants, as well as 
the underlying metabolic events, is relevant to have a global perception of the 
metabolomic status of plants, with the identification of biomarkers providing help-
ful information on metabolites involved in resistance responses, stress, growth, a 
better understanding of intra- and interspecific microbial interactions occurring at 
different heterogeneous levels within the plant habitat, identification of systemic 
responses of various crops to pathogen stress, and pathogens and their biological 
control, would allow crop scientists to identify unique metabolic markers that can 
be applied to early detection of a plant pathogen as well as to the development of bio 
fungicides, for example, for use during pre-harvest, post-harvest, and harvest stor-
age and large-scale storage of crops. Identifying and applying metabolic biomarkers 
could favor controlled and semi-controlled planting systems shortly, and if properly 
integrated into crop protection strategies, food security could be mitigated. However, 
the applications of these biomarkers could be helpful in various areas, such as the 
food and pharmaceutical industry in food quality and safety processes, diagnosis 
and treatment of plant diseases, crop improvement, and analyzing genetic-modified 
crops. Still, the work done so far is relatively new, and efforts should continue to 
cover the tremendous potential presented by identifying metabolic biomarkers. 
Table 3 summarizes the identification of some metabolites in transgenic plants using 
different analytical techniques.
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Table 3 Identification of important metabolites in transgenic plants using different analytical 
tools [104]

Transgenic 
plant

Analytical 
techniques Key metabolites Ref.

Artemisia 
annua

GC-TOF-MS Borneol, phytol, (3-farnesene, germacrene-D, 
artemisinic acid, dihydroartemisinic acid, and 
artemisinin

[119]

Lactuca sativa NMR Asparagine, glutamine, valine, isoleucine, 
cx-ketoglutarate,
succinate, fumarate, malate, sucrose, and fructose

[120]

Lycopersicum 
esculentum

GC-MS y-Aminobutyric acid, histidine, proline, pyrrol-2- 
carboxylate, galactitiol/sorbitol, glycerol, maltitol, 
3-phosphoglyceric acid, allantoin, homocysteine, 
caffeate, gluconate, ribonate, lysine, threonine, 
homoserine, tyrosine, tryptophan, leucine, arginine, and 
valine

[121]

Nicotiana 
tabacum

NMR Chlorogenic acid, 4-O-caffeoylquinic acid, malic acid, 
threonine, alanine, glycine, fructose, (3-glucose, 
cx-glucose, sucrose, fumaric acid, and salicylic acid

[121]

N. tabacum GC-MS 4-Aminobutanoic acid, asparagine, glutamine, glycine, 
leucine, phenylalanine, proline, serine, threonine, 
tryptophan, chlorogenic acid, quininic acid, threonic 
acid, citric acid, malic acid, and ethanolamine

[122]

Oryza sativa GC-MS Glycerol-3-phosphate, citric acid, linoleic acid, oleic 
acid,
hexadecanoic acid, 2,3-dihydroxypropyl ester, sucrose, 
9-octadecenoic acid, 2,3-dihydroxypropyl ester, 
sucrose, mannitol, and glutamic acid

[123])

O. sativa LC-MS Tryptophan, phytosphingosine, palmitic acid, 
5-hydroxy-2-octadenoic acid 
9,10,13-trihydroxyoctadec-ll-enoic acid, and 
ethanolamine

[124]

Populus GC-MS, 
HPLC

Caffeoyl and feruloyl conjugates, syringyl-to-guaiacyl 
ratio,
asparagine, glutamine, aspartic acid, y-amino-butyric 
acid,
5-oxo-proline, salicylic acid-2-O-glucoside, 2, 
5-dihydroxybenzoic acid-5-O-glucoside, 
2-methoxyhydroquinone-l-O-glucoside, 
2-methoxyhydroquinone-4-0-glucoside, salicin, gallic 
acid, and dihydroxybenzoic acid

[125]

Solanum 
tuberosum

LC-TOF-MS Glutathione, y-aminobutyric acid, 3-cyanoalanine, 
5-oxoproline, sucrose, glucose-1-phosphate, glucose-6- 
phosphate, fructose-6-phosphate, ethanolamine, 
adenosine, and guanosine

[126]

Triticum 
aestivum

GC-MS Guanine and 4-hydroxycinnamic acid [127]

(continued)
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Table 3 (continued)

Transgenic 
plant

Analytical 
techniques Key metabolites Ref.

T. aestivum LC-MS Aminoacyl-tRNA biosynthesis, phenylalanine, tyrosine, 
tryptophan glyoxylic, tartaric acid, oxalic acids, 
sucrose, galactose, mannitol, leucine, valine, glutamate, 
proline, pyridoxamine, glutathione, arginine, citrulline, 
adenosine, hypoxanthine, allantoin, and adenosine 
monophosphate

[128]

Zea mays 1H NMR Lactic acid, citric acid, lysine, arginine, glycine- 
betaine, raffinose, trehalose, galactose, and adenine

[129]

6  Plant Single-Cell Metabolomics

In the past, genomics, transcriptomics, and metabolomics techniques have been 
applied in bulk plant samples consisting of many cells; in such experiments, the 
biological process leading to cell heterogeneity is often considered not to be bio-
logically relevant. However, cell heterogeneity has been shown to play important 
biological roles in many situations for which averaging would mask relevant meta-
bolic processes [130]. Plants contain several cell types and exhibit complex regula-
tory mechanisms. Studies at the single-cell level have gradually become more 
common in plant science. Single-cell transcriptomics, spatial transcriptomics, and 
spatial metabolomics techniques have been combined to analyze plant develop-
ment. These techniques have been used to study the transcriptomes and metabo-
lomes of plant tissues at the single-cell level, enabling the systematic investigation 
of gene expression and metabolism in specific tissues and cell types during defined 
developmental stages [131]. However, single-cell technologies require labor- 
intensive protocols for plant cell isolation. On that respect several attempts have 
been developed; these strategies can be classified into three main groups: those that 
attempt to isolate material of specific cell type to perform the analysis on platforms 
used for regular metabolomics, which we will refer to as single-cell type metabolo-
mics [132]; those based on micromanipulation of single cells; and those based on 
mass spectrometry imaging [130].

Several methods for harvesting cells have been developed for single-cell and 
single-cell type metabolomics, whereby cells can be obtained or extracted in situ. 
The in situ techniques include micropipetting for isolating the contents of specific 
cells, laser microdissection (LMD), laser microdissection and pressure catapulting 
(LMPC), laser capture microdissection (LCM), and fluorescence-activated cell sort-
ing (FACS). Laser microdissection and pressure catapulting and laser capture 
microdissection use laser to excise single cells or microareas from fixed or frozen 
intact tissues and are becoming very popular for plant cell and tissue sampling. 
FACS, on the other hand, is used to obtain specific cell types; for example, those 
identified from root developmental zones by transgene-labelled nuclei or by 
immunolabelled- based collection and microfluidic sorting-based methods that 
exploit intrinsic cell properties [129]. Figure 5 summarizes different approaches for 
cell-specific metabolomics.
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Fig. 5 Overview of experimental steps and data structure from the different approaches for cell- 
specific metabolomics. (Reproduced from Ref. [130])

However, to obtain single-cell suspension, it is a very challenging activity and 
deeply laborious. In addition, plant cells are rigid cells when compared to animal 
cells; rigid cell walls remain the main obstacle for single-cell technologies in plants. 
Since protoplasts must remain alive and be subjected to a minimal level of distur-
bance during isolation, for example, for protoplast isolation, the cell wall digestion 
procedure requires optimization for suitability for the tissue under study [133].

Mass spectrometry imaging (MSI) technique can provide spatially resolved 
information on the structure and content of metabolites including know and unknow 
endogenous metabolites, and it thus produces tissue molecular imaging maps. Three 
MSI techniques have been developed based on different ions sources: secondary 
ions MS (SIMS), desorption electrospray ionization (DESI), and matrix-assisted 
laser desorption/ionization (MALDI) [131]. Figure 6 summarizes different ioniza-
tion techniques used for MSI. Among them, MALDI is the most popular ionization 
technique for MSI experiments. In MALDI mode a matrix applied to the sample is 
excited by a laser; this energy is further transferred to the sample resulting in the 
desorption/ionization event. Preparation for MALDI usually comprises cryo- 
sectioning and lyophilizing a frozen sample before applying the matrix by either a 
sprayer or a special device, as well solvent free sublimation [130]. However, MALDI 
remains a technique that still lacks significant improvement, for example, matrix 
selection and the choice of matrix method application, tissue sectioning technique, 
embedding protocols, sample preparation, and mounting. In other words, MALDI 
imaging technique requires optimization for every tissue and metabolites of inter-
est; for example, Pérez-López et al. developed a protocol of MALDI imaging by 
sample imprinting in nylon membranes to locate fructans in stem and rhizome tis-
sues of Agave tequilana plants [134]; in addition, the combination of ion mobility 
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Fig. 6 Schematic representation of the different ionization strategies used for mass spectrometry 
imaging (MSI). (a) MALDI, (b) secondary ion mass spectrometry (SIMS), (c) desorption electro-
spray ionization (DESI), (d) laser-ablation electrospray ionization (LAESI). (Reproduced from 
Ref. [130])

spectrometry allowed the detection of fructan isomers even if these have not been 
mapped on their images obtained; Fig. 7 outlines the protocol developed.

More recently, DESI have become the newest development for mass spectrom-
etry imaging to visualize plant metabolites; DESI offers a great advantage being 
matrix-free ionization alternative to MALDI. In DESI, a solvent stream originating 
from an electrospray probe is directed at an angle (most important parameter) 
toward the sample at ambient pressure, propelling secondary ions to the mass ana-
lyzer, enable direct analysis of unprocessed frozen samples sections which simplify 
samples preparation [135, 136]. Very recently, some metabolites detected with 
DESI source ranged from monoterpenoid alkaloids, which were localized in several 
of the major parts of the Rauvolfia tetraphylla plant when analyzed by MALDI and 
DESI-MSI [137], alkaloids in the leaves of Gelsemium elegans [138] through can-
nabinoids and flavonoids in the leaves of Cannabis sativa [139], among other recent 
applications of DESI.
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Fig. 7 Outline of tissue printing technique. (a) Agave tequilana plant showing the crown region 
(leaf/stem to root transition). Dotted red line indicates the longitudinal axis; dotted blue line indi-
cates the transversal axis. (b) A. tequilana plant as in (a) with leaves and most roots removed and 
dissected longitudinally. (c) Longitudinal stem section. (d) Transverse stem section. (e) 
Representation of tissue printing process. (f) Tissue-printed transverse section mounted on MALDI 
Imaging plate. (g) PAS staining of a tissue-printed longitudinal section. (h) MALDI-ToF-MSl of a 
tissue-printed longitudinal section obtained, using a sprayer for matrix application and a QTOF 
SYNAPT G1 spectrometer with a spatial resolution of 100  pm per pixel. (Reproduced from 
Ref. [134])

7  Concluding Remarks

The utilization of a model plant like Arabidopsis or a crop with a reference genome 
sequence, such as - maize, rice, tomato, and wheat, to mention some of the global 
agricultural importance  - offers a unique opportunity,  where approaches such as 
mQTL, GWAS, mGWAS, and transcriptomics can effectively provide a vast poten-
tial to reveal gene annotation and their functional characterization. On the contrary, 
enormous efforts must be made for other minor crops, medicinal plants, and regional 
staple foods. However, plant metabolomics research needs to be focused on devel-
oping strategies to develop confident metabolite annotation through implementing a 
free online accessible database for metabolite identification. Plant metabolomics 
showed, as reviewed here, great potential to assist crop improvements, supporting 
exploring species identification for diversity and botanical purposes, food authenti-
cation, fraud, and traceability.

Without forgetting the knowledge of metabolome interaction between roots and 
their environment to identify the relevant metabolites produced, on the other hand, 
metabolomics approaches can play a crucial role in studying the interaction between 
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plants with biotic and abiotic stresses. Knowing the compounds produced by micro-
organisms and their identification in climate change conditions that enhance crop 
production and development is crucial.

Identifying and applying metabolic biomarkers could favor controlled and semi- 
controlled planting systems shortly, and if properly integrated into crop protection 
strategies, food security could be mitigated. However, the applications of these bio-
markers could be helpful in various areas, such as the food and pharmaceutical 
industry in food quality and safety processes, diagnosis and treatment of plant dis-
eases, and crop improvement. Still, the work done so far is relatively new, and 
efforts should continue to cover the tremendous potential presented by identifying 
metabolic biomarkers.

Plant metabolomics could benefit in developing new strategies to face challenges 
and demands in crop improvement. Spatiotemporal metabolomics can effectively 
support plant-soil interactions studies; the implementation of mass spectrometry 
imaging in combination with ion mobility spectroscopy could potentially reveal 
metabolites’ location in plant tissue without the need for extraction, in addition, to 
providing isomer identification without forgetting the need to develop metabolite 
databases that can support full plant metabolome coverage.
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