
Vijay Soni
Travis E. Hartman   Editors

Metabolomics
Recent Advances and Future 
Applications



Metabolomics



Vijay Soni • Travis E. Hartman
Editors

Metabolomics
Recent Advances and Future Applications



ISBN 978-3-031-39093-7    ISBN 978-3-031-39094-4 (eBook)
https://doi.org/10.1007/978-3-031-39094-4

© The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature 
Switzerland AG 2023
This work is subject to copyright. All rights are solely and exclusively licensed by the Publisher, whether 
the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse of 
illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and 
transmission or information storage and retrieval, electronic adaptation, computer software, or by similar 
or dissimilar methodology now known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication 
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant 
protective laws and regulations and therefore free for general use.
The publisher, the authors, and the editors are safe to assume that the advice and information in this book 
are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the 
editors give a warranty, expressed or implied, with respect to the material contained herein or for any 
errors or omissions that may have been made. The publisher remains neutral with regard to jurisdictional 
claims in published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Switzerland AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

Paper in this product is recyclable.

Editors
Vijay Soni 
Division of Infectious Diseases
Weill Department of Medicine
Weill Cornell Medicine
New York, NY, USA

Travis E. Hartman
Division of Infectious Diseases
Weill Department of Medicine
Weill Cornell Medicine
New York, NY, USA

https://doi.org/10.1007/978-3-031-39094-4
https://orcid.org/0000-0002-3395-7429


v

Foreword

This book by editors Soni and Hartman, Metabolomics: Recent Advances and 
Future Applications, is an excellent resource for researchers and students interested 
in this field, as it covers a wide range of topics and provides a comprehensive over-
view of the current state of the art. Metabolomics is a rapidly growing field of 
research that has the potential to revolutionize our understanding of biological sys-
tems. The development of advanced analytical techniques and computational tools 
has enabled researchers to explore the metabolome, yet the technologies and their 
application are in a constant state of flux. This book aims to make these technolo-
gies more accessible.

The book is organized into 14 chapters, each covering a different aspect of 
metabolomics research. The first chapter introduces metabolomics, including defi-
nitions, types of metabolomics, sample preparation, and methods of separation. 
This sets the foundation for the subsequent chapters, which delve deeper into spe-
cific topics, including network development and comparison, analysis and interpre-
tation of metabolite associations, biomarker discovery, pharmacometabolomics, 
microbial metabolomics, and metabolomics in autoimmunity, infections, and physi-
ological diseases. One of the most exciting aspects of metabolomics is its potential 
to reveal new insights into complex biological systems. For example, in chapter 
“Network Development and Comparison in Lipidomics and Metabolomics”, the 
authors discuss the importance of network analysis and investigation in lipidomics 
and metabolomics. By studying the interactions between metabolites in these sys-
tems, researchers can gain a better understanding of the underlying mechanisms and 
identify potential therapeutic targets.

Chapter “Metabolomics Approach to Identify Biomarkers of Epidemic Diseases” 
focuses on the use of metabolomics for biomarker discovery in epidemic diseases, 
such as COVID-19, HIV, and tuberculosis. The authors discuss the various applica-
tions of metabolomics in disease diagnosis, risk factor characterization, and data 
integration and management. This chapter highlights the importance of translational 
research and the potential impact of metabolomics on public health. In chapter 
“Pharmacometabolomics: General Applications of Metabolomics in Drug 
Development and Personalized Medicine”, the authors explore the use of 
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metabolomics in drug development and personalized medicine. By studying the 
metabolites present in an individual’s body, researchers can predict how they will 
respond to different drugs, potentially leading to more effective treatments with 
fewer side effects. The integration of pharmacometabolomics and pharmacogenom-
ics in clinical studies is discussed, emphasizing the importance of a multidisci-
plinary approach to personalized medicine.

Chapters “Microbial Metabolomics: An Overview of Applications” and 
“Metabolomics in Autoimmunity, Infections, and Physiological Diseases” focus on 
microbial metabolomics and metabolomics in autoimmunity, infections, and physi-
ological diseases, respectively. These chapters demonstrate the wide range of appli-
cations of metabolomics and its potential to impact many areas of research and 
medicine. In addition to its applications in biology and medicine, metabolomics 
also has important implications for nutrition research and natural product discovery, 
as discussed in chapters “Nutrimetabolomics: Metabolomics in Nutrition Research” 
and “Metabolomics in Natural Product Discovery and Their Applications”. The 
authors highlight the importance of machine learning approaches and analytical 
methods for the purification and quantitation of analytes of interest.

Chapter “Metabolomics Approach in Environmental Studies: Current Progress, 
Analytical Challenges, and Future Recommendations” discusses the use of metabo-
lomics in environmental health research, emphasizing the challenges and opportu-
nities of ecometabolomics and biomonitoring. The authors discuss the technical 
challenges of environmental metabolomics and the future perspective of this excit-
ing field. The final four chapters of the book explore the technical advances and 
challenges of metabolomics, including single-cell metabolomics, spatial metabolo-
mics, metabolic sensors, and industrial applications. These chapters provide insights 
into the future of metabolomics research, including the miniaturization of instru-
ments, automation in sample preparation and data processing, and collaboration and 
data exchange. Overall, Metabolomics: Recent Advances and Future Applications is 
a comprehensive and informative book that provides an excellent overview of the 
current state of the art in metabolomics research. It is an important contribution for 
anyone interested in this exciting field, and it will undoubtedly be a valuable 
resource for researchers and students alike.

Scripps Research Institute  Gary E. Siuzdak 
San Diego, CA, USA

Foreword
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Preface

The study of living organisms has involved an exploration of a broad range of top-
ics. From adaptation and evolution, to the complexity of cellular development and 
their networks of interacting parts, to metabolism. For millennia, the ancient Indian 
medical system of Ayurveda has identified metabolism as “Agni” (Fire), which was 
considered one of the five fundamental elements of life. Sir Michael Foster was the 
first in Western medicine to use the term “metabolism” in his A Text Book of 
Physiology, which was first published in 1883. The term metabolism is broad, cov-
ering the various chemical processes of living organisms, the production of energy 
and essential biomolecules for survival, reproduction, growth, and homeostasis. 
While metabolites are the chemical entities that participate in this process, regard-
less of their role. In the late 1940s, Roger Williams first introduced the concept of 
“metabolic profile.” Using paper chromatography, he suggested that the composi-
tion of biological fluids (such as urine and saliva) could be associated with diseases 
like schizophrenia. However, precise measurement of these compounds was not 
feasible until 1968 when Horning et  al. demonstrated the abilities of gas- 
chromatography- mass spectrometry to identify lipids from urine and tissue samples.

In 1940, nuclear magnetic resonance (NMR) spectroscopy was discovered, and 
was later used by Seeley et al. for metabolite detection from biological samples. In 
1984, J. K. Nicholson et al. first showed the potential of 1H NMR spectroscopy for 
an inexpensive and non-destructive bioanalytical method for chemical structure elu-
cidation and used it to define metabolic patterns for disease diagnosis, such as dia-
betes. Critical early work in the field of metabolomics also includes the use of liquid 
chromatography-mass spectrometry by Richard Lerner, Gary Siuzdak, and 
Benjamin Cravatt in 1994 and 1996, who analyzed cerebral spinal fluid to identify 
a molecule called “oleamide” in sleep-deprived animals. These developments led to 
the inception of a novel field called “Metabolomics” which can be referred to as 
“the quantitative measurement or evaluation of multiparametric and dynamic meta-
bolic processes of living organisms in response to diseases, treatment, or any genetic 
adjustments.”

Metabolomics is a growing field and is widely applicable to all branches of life 
sciences, biomedical research, agriculture, biotechnology, and environmental 
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science. As innovative research accumulates, and novel technologies are developed, 
it is now possible to study the global metabolic changes in the patient’s biological 
fluids to delineate disease-related biomarkers and use them to monitor disease pro-
gression and treatment success and to develop personalized therapies. This method-
ology brings new tools to diagnose and treat difficult ailments like cancer, diabetes, 
Alzheimer’s disease, cardiovascular diseases, and rare genetic and metabolic dis-
eases. Further, metabolomics has become an indispensable tool in drug discovery to 
identify drug-related biochemical pathways and possible modes of action. Metabolic 
profiles can be employed to define the drug response in patient subgroups in pre-
clinical stages to shortlist the lead drug candidates with high efficacy and low 
toxicities.

Metabolomics has also revolutionized nutrition by spotlighting the biochemical 
effects of various dietary components on the human body’s metabolism. This infor-
mation has been used to develop novel methods of personalized dietary interven-
tions and recommendations and their relationship with disease prevention, 
treatments, and aging. Agriculture is another field that has extensively benefited 
from metabolomics. It can help researchers to understand plant metabolism, and 
investigate the biochemical connections between environmental stresses and dis-
eases to increase crop yield and quality. Further, metabolomics has been used in 
biotechnology to optimize microbial strains and bioproduction. Applications of 
ecometabolomics have also been applied to monitor the impact of pollutants on 
biological systems through the identification of biological markers and the develop-
ment of different methods for bioremediation.

In this book, we want to introduce the extensive applications of metabolomics 
from a broad range of areas of research and development so that not only can an 
undergraduate understand the advancement of metabolomics, but an entrepreneur 
can harness the knowledge to address possible problems to make a perfect tool to 
address their research question. We intend to present up-to-date research advance-
ments from our diverse research network so that the global research community can 
learn the mega powers of metabolomics and recognize various metabolomics 
experts from different parts of the world to extend their collaborations. Availability 
of metabolomics research and various applications in this book will provide the 
opportunity for researchers and industries to bridge the gap in diverse areas to 
develop even better alternatives to tackle global challenges such as drug develop-
ment, antimicrobial resistance, novel diagnostics, better nutrition, agriculture, etc.

Each chapter is written by experts in the field, providing valuable insights into 
the current state of metabolomics research and future directions. We started with the 
introduction of metabolomics in the first chapter and provided an overview of the 
terminology and technologies currently used in the field. Next, we included a gen-
eral introduction to network development and comparison in lipidomics and metab-
olomics. This is followed by chapter “Analysis and Interpretation of Metabolite 
Associations Using Correlations” discussing various methods of analysis and their 
applications to interpret metabolites using various mathematical models and net-
work topology. Further, we started covering various applications of metabolomics. 
Chapter “Metabolomics Approach to Identify Biomarkers of Epidemic Diseases” 
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discusses about metabolic approaches to identify biomarkers of epidemic diseases 
and their use in disease diagnosis and management. Chapter “Pharmacometabolomics: 
General Applications of Metabolomics in Drug Development and Personalized 
Medicine” describes developments in pharmacometabolomics in novel drug discov-
ery and personalized medicine. This is followed by chapter “Microbial Metabolomics: 
An Overview of Applications”, which is concerned with microbial metabolomics – 
encompassing various biochemical applications of metabolomic profiling to under-
stand bacterial metabolism and their use in a different area of research. 
Immunometabolomics is another developing avenue and we have covered it in 
chapter “Metabolomics in Autoimmunity, Infections, and Physiological Diseases” 
by presenting a metabolic-level understanding of different autoimmune diseases, 
infections, and other physiological diseases. Then progressively, readers are taken 
through the application of nutrimetabolomics in chapter “Nutrimetabolomics: 
Metabolomics in Nutrition Research”. It includes different analytical and computa-
tional methods to process and identify crucial diet-related biomarkers and their role 
in precision nutrition. This is followed by chapter “Metabolomics in Natural Product 
Discovery and Their Applications”, which discusses how metabolomics impacts 
natural product discovery to reveal their medicinal properties. Further, chapter 
“Metabolomics Approach in Environmental Studies: Current Progress, Analytical 
Challenges, and Future Recommendations” describes ecometabolomics and expo-
somics and their use in environmental health monitoring. Chapter “Deciphering 
Plant- Pathogen Interactions Through Plant Metabolomics: From Technical 
Advances to Applied Research” provides an overview of plant-pathogen interac-
tions, while chapter “Metabolomics in Fundamental Plant Research” shows how 
metabolomics can be applied in fundamental plant research. Chapter “Spatial 
Metabolomics Using Imaging Mass Spectrometry” is a review of modern spatial 
metabolomics and multi-omics approaches and their applications. Finally, the book 
concludes with chapter “Future Perspectives of Metabolomics: Gaps, Planning, and 
Recommendations”, describing future perspectives and recommendations on 
metabolomics.

We intend to compile a concise and application-oriented book as a guideline for 
metabolomic advancements. We believe that this book will serve university profes-
sors, researchers, technocrats, engineers, and advanced-level scientists who are 
exploring different avenues in metabolomics. Availability of this concise informa-
tion in one place will aid scientists by expanding their arsenal of techniques and can 
be helpful to bring more collaborations and to identify the expert at the global level. 
This book will also be helpful to those industries that are developing novel tools, 
methodologies, and drugs with the help of metabolomics in different research areas. 
We believe that metabolomics is not a scientific tool but an advanced research field 
with immense powers to understand life at the molecular level. With interdisciplin-
ary collaborations and the use of modern techniques, the “Metabolomics” field can 
change many sectors of science and we want to invite you to join us on this journey.

New York, NY, USA  Vijay Soni
  Travis E. Hartman   

Preface



xi

Acknowledgments

Writing a book is a journey that cannot be accomplished alone. We are deeply grate-
ful for the support, guidance, and inspiration many people have given us throughout 
this project.

First and foremost, we would like to thank all the contributors and authors who 
agreed to take on the challenge of writing the chapters. Their consent efforts, 
patience, time, and enthusiasm made this project possible. Additional thanks to 
those exceptional authors who agreed to write at the last moment, despite time con-
strain, and successfully made it on time.

We would like to express our gratitude to the publisher’s team at Springer Nature, 
Tiffany Lu, Merry Stuber, Amrita Unnikrishnan, and Deepak Ravi, for their guid-
ance, patience, expertise, and professionalism. Their commitment to excellence and 
their tireless efforts to ensure the success of this project has been invaluable.

Special thanks to our panel of reviewers, Yogita Soni, Yogesh Chawla, Sonia 
Jain, Brendon Lee, Fernanda Teixeira Subtil, and Arka Banerjee, who constantly 
helped us to access the scientific quality of the manuscripts of every chapter.

We also wanted to thank our family for their unwavering support, encourage-
ment, and patience. Their love and belief in us have been the driving force behind 
our work, and we could not have completed this project without them. We are also 
indebted to our friends, colleagues, and mentors who have been a constant source of 
motivation and inspiration. Their constructive feedback and insightful comments 
have helped us to refine the structure of the book.

We would like to express our appreciation to the broader metabolomics research 
community for their ongoing contributions to this dynamic field. Lastly, we would 
like to thank our readers for their interest in this book. It is an honor to share our 
ideas with you, and we hope that this book will enrich your understanding and 
inspire you to explore new horizons in the field of metabolomics.

Division of Infectious Diseases
Weill Department of Medicine  Vijay Soni
Weill Cornell Medicine
New York, NY, USA

Travis E. Hartman



xiii

Contents

  Introduction of Metabolomics: An Overview . . . . . . . . . . . . . . . . . . . . . . . .    1
Travis E. Hartman and Hannah Jane Lees

  Network Development and Comparison in Lipidomics and Metabolomics   39
Thao Nguyen-Tran, Qassim Alkassir, Steffany A. L. Bennett, and 
Miroslava Cuperlovic-Culf

  Analysis and Interpretation of Metabolite Associations Using 
Correlations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .   59
Edoardo Saccenti

  Metabolomics Approach to Identify Biomarkers of Epidemic Diseases  . .   93
Pooja Rani Mina

  Pharmacometabolomics: General Applications of Metabolomics in Drug 
Development and Personalized Medicine . . . . . . . . . . . . . . . . . . . . . . . . . . .  127
Dung Thuy Tran and Amber Dahlin

  Microbial Metabolomics: An Overview of Applications . . . . . . . . . . . . . . .  165
Pieter M. M. van der Velden and Robert S. Jansen

  Metabolomics in Autoimmunity, Infections, and Physiological Diseases . .  209
Suyasha Roy

  Nutrimetabolomics: Metabolomics in Nutrition Research . . . . . . . . . . . . .  241
Upasna Srivastava, Swarna Kanchan, Minu Kesheri, and Satendra Singh

  Metabolomics in Natural Product Discovery and Their Applications . . . .  269
Seema Nath and Láisa Gomes Dias

  Metabolomics Approach in Environmental Studies: Current Progress, 
Analytical Challenges, and Future Recommendations . . . . . . . . . . . . . . . .  307
Vijay Soni, Nicholas Bartelo, Ramya Venkataraman, and Bhupendra 
Singh Rawat



xiv

  Deciphering Plant-Pathogen Interactions Through Plant  
Metabolomics: From Technical Advances to Applied Research . . . . . . . . .  363
Marisa Maia, Stefania Savoi, and Andreia Figueiredo

  Metabolomics in Fundamental Plant Research . . . . . . . . . . . . . . . . . . . . . .  387
José Juan Ordaz-Ortiz, Anita Arroyo-Silva, and Moisés 
Guerrero-Esperanza

  Spatial Metabolomics Using Imaging Mass Spectrometry . . . . . . . . . . . . .  423
Kanchustambham Vijaya Lakshmi

  Future Perspectives of Metabolomics: Gaps, Planning,  
and Recommendations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  479
Vijay Soni, Nicholas Bartelo, Annalise Schweickart, Yogesh Chawla, 
Ankita Dutta, and Sonia Jain

  Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  513

Contents



xv

Contributors

Qassim  Alkassir Department of Biochemistry, Microbiology, and Immunology, 
University of Ottawa, Ottawa, ON, Canada

Neural Regeneration Laboratory, Ottawa Institute of Systems Biology, Brain and 
Mind Research Institute, University of Ottawa, Ottawa, ON, Canada

Anita Arroyo-Silva Metabolomics and Mass Spectrometry Laboratory, Unidad de 
Genómica Avanzada, Irapuato, Gto, Mexico

Nicholas  Bartelo Department of Physiology and Biophysics, Weill Cornell 
Medicine, Institute for Computational Biomedicine, Englander Institute for 
Precision Medicine, New York, NY, USA

Steffany  A.  L.  Bennett Department of Biochemistry, Microbiology, and 
Immunology, University of Ottawa, Ottawa, ON, Canada

Neural Regeneration Laboratory, Ottawa Institute of Systems Biology, Brain and 
Mind Research Institute, University of Ottawa, Ottawa, ON, Canada

Department of Chemistry and Biomolecular Sciences, Centre for Catalysis Research 
and Innovation, University of Ottawa, Ottawa, ON, Canada

Yogesh Chawla Department of Immunology, Mayo Clinic, Rochester, MN, USA

Miroslava  Cuperlovic-Culf Department of Biochemistry, Microbiology, and 
Immunology, University of Ottawa, Ottawa, ON, Canada

Neural Regeneration Laboratory, Ottawa Institute of Systems Biology, Brain and 
Mind Research Institute, University of Ottawa, Ottawa, ON, Canada

Digital Technologies Research Centre, National Research Council of Canada, 
Ottawa, ON, Canada

Amber Dahlin Channing Division of Network Medicine, Department of Medicine, 
Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, USA

Láisa  Gomes  Dias School of Agronomy, Federal University of Goiás (UFG), 
Goiás, Brazil



xvi

Ankita Dutta International AIDS Vaccine Initiative, Gurugram, Haryana, India

Andreia Figueiredo Grapevine Pathogen Systems Lab, Biosystems and Integrative 
Sciences Institute (BioISI), Plant Biology Department, Science Faculty of Lisbon 
University, Lisbon, Portugal

Moisés Guerrero-Esperanza Metabolomics and Mass Spectrometry Laboratory, 
Unidad de Genómica Avanzada, Irapuato, Gto, Mexico

Travis  E.  Hartman Division of Infectious Diseases, Weill Department of 
Medicine, Weill Cornell Medicine, New York, NY, USA

Sonia Jain Department of Radiation Oncology, Mayo Clinic, Rochester, MN, USA

Robert  S.  Jansen Radboud University, Department of Microbiology, Radboud 
Institute for Biological and Environmental Sciences, Heyendaalseweg, Nijmegen, 
The Netherlands

Swarna Kanchan INRIA, Bordeaux Sud-Ouest, Talence, France

Boise State University, Boise, ID, USA

Minu Kesheri Boise State University, Boise, ID, USA

Hannah Jane Lees Memorial Sloan Kettering Cancer Center, New York, NY, USA

Marisa  Maia Grapevine Pathogen Systems Lab, Biosystems and Integrative 
Sciences Institute (BioISI), Plant Biology Department, Science Faculty of Lisbon 
University, Lisbon, Portugal

Pooja Rani Mina Department of Immunology, Mayo Clinic, Scottsdale, AZ, USA

Seema Nath University of Texas Health Science Center San Antonio (UTHSCSA), 
San Antonio, TX, USA

Thao Nguyen-Tran Department of Biochemistry, Microbiology, and Immunology, 
University of Ottawa, Ottawa, ON, Canada

Neural Regeneration Laboratory, Ottawa Institute of Systems Biology, Brain and 
Mind Research Institute, University of Ottawa, Ottawa, ON, Canada

Department of Chemistry and Biomolecular Sciences, Centre for Catalysis Research 
and Innovation, University of Ottawa, Ottawa, ON, Canada

José  Juan  Ordaz-Ortiz Metabolomics and Mass Spectrometry Laboratory, 
Unidad de Genómica Avanzada, Irapuato, Gto, Mexico

Bhupendra Singh Rawat Center for Immunity and Inflammation, Rutgers New 
Jersey Medical School, Newark, NJ, USA

Suyasha  Roy Laboratory of Molecular Immunology, National Heart, Lung and 
Blood Institute, National Institutes of Health, Bethesda, MD, USA

Edoardo  Saccenti Laboratory of Systems and Synthetic Biology, Wageningen 
University & Research, Wageningen, The Netherlands

Contributors



xvii

Stefania Savoi Department of Agricultural, Forest and Food Sciences, University 
of Turin, Turin, Italy

Annalise Schweickart The HRH Prince Alwaleed Bin Talal Bin Abdulaziz Alsaud 
Institute for Computational Biomedicine, Weill Cornell Medicine, New 
York, NY, USA

Tri-Institutional Computational Biology and Medicine Program, Weill Cornell 
Medicine, New York, NY, USA

Satendra Singh Department of Computational Biology and Bioinformatics JSSB, 
Sam Higginbottom Institute of Agriculture, Technology and Sciences (Formerly 
Allahabad Agriculture Institute), Allahabad, Uttar Pradesh, India

Vijay Soni Division of Infectious Diseases, Weill Department of Medicine, Weill 
Cornell Medicine, New York, NY, USA

Upasna Srivastava University of California, San Diego, CA, USA

School of Medicine, Yale University, New Haven, CT, USA

Dung Thuy  Tran Channing Division of Network Medicine, Department of 
Medicine, Brigham and Women’s Hospital and Harvard Medical School, 
Boston, MA, USA

Pieter M. M. van der Velden Radboud University, Department of Microbiology, 
Radboud Institute for Biological and Environmental Sciences, Heyendaalseweg, 
Nijmegen, The Netherlands

Ramya  Venkataraman Laboratory of Innate Immunity, National Institute of 
Immunology, New Delhi, India

Kanchustambham  Vijaya  Lakshmi Proteomics Center of Excellence, 
Northwestern University, Evanston, IL, USA

Contributors



1

Introduction of Metabolomics: 
An Overview

Travis E. Hartman and Hannah Jane Lees

1  Introduction

Any survey of recently published literature would leave the reader with the impres-
sion that a sizable majority of the scientific endeavor relies on the use of an omics 
technology.1 In support of this, the number of published works containing reference 
to an omics has continued to rise over the last decade (Fig. 1). There are numerous 
causes for their popularity, like the drop in cost as a result of recent technological 
advances and economies of scale, but their widespread adoption is undoubtedly an 
attestation to their utility across scientific disciplines. The four big omics technolo-
gies (genomics, transcriptomics, proteomics, and metabolomics) basically rely on 
two distinct technologies: nucleotide sequencing and spectroscopy. The switch to 
next-generation sequencing (NGS) has driven down the costs of deploying genom-
ics methods to a point where they are accessible to more biological and biomedical 
researchers [1]; unfortunately, the cost of high-end mass spectrometers has hardly 
budged in the same period. Still, these tools have proven indispensable in many 
cases and have spawned investigations of new basic science and therapeutic avenues 
that were once only dreamt of [2, 3].

1 Note that we refer to omics technologies with reference to the actual methodologies – as opposed 
to the general concept of the comprehensive classification of a field.
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Fig. 1 Trends in publications containing some reference to one of the four big omics technologies

Beginning in the mid-1980s, pivotal advances in sequencing technology pro-
pelled studies involving genomics into the mainstream, followed soon by advances 
in technologies allowing relatively easy access to transcriptome and proteome data 
[4]. Although genomics continues to eclipse reports of other omics surveys, there 
has been a discernable increase in the volume of research reporting transcriptome 
and metabolome data since the turn of the millennium. It is fair to say that it was this 
early success of genomics that has spawned the revolution in big-data science. Soon 
after the complete human genome was first published, we came to the realization 
that genomics alone wasn’t going to solve all of our health problems; but the top- 
down viewpoint that we have become accustomed to was attractive enough to apply 
to the study of message, protein, and small molecules. Today we refer to these tech-
niques that seek to classify pools of small molecules from experimental samples 
collectively as omics. These omics technologies share the same nominal objective: 
to provide biological insights via high-throughput analysis of their respective data-
sets. One might state that the aspirational goal of these approaches is to provide a 
complete dataset containing all relevant biological information of a sample in a 
particular condition or at a particular time. While this perfect picture remains unre-
alized, our efforts have certainly they have helped us develop a more thorough 
understanding of many biological systems. This understanding is at the core of 
much of modern scientific research [4–6] and has proven useful across a wide array 
of disciplines.

While there are volumes of curated information about the technology and various 
methodologies for nucleotide-based omics, we have found fewer resources for the 
small molecule-based omics. This can be partly attributed to the aforementioned 
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boom in genomics, but we posit that there is additionally a gap in basic understand-
ing of the fundamentals for these fields. The sequencing methods that are applied to 
genomics/transcriptomics and even peptides are stepwise chemical procedures in 
which each step in the reaction is predetermined and the results are often not open 
to interpretation. This is not the case for the analytical methodologies used to probe 
small molecules. The hurdles therein are daunting for newcomers because mastery 
of these omics requires both a conceptual command of the technology and an exe-
getical expertise usually borne of experience. We hope that this text will help to 
foster an understanding of these techniques so that more scientists will feel comfort-
able employing them for their specific research questions.

2  The “Omics”

While genomics and transcriptomics rely on nucleotide sequencing to provide 
information on an organism’s genetic makeup, proteomics and metabolomics use 
spectroscopic technologies to monitor the functional activity of the organism. 
Although they utilize the same analytical instruments (mass spectrometers paired to 
liquid or gas chromatography (LC-MS/GC-MS) or nuclear magnetic resonance 
spectroscopy (NMR)), they are considered complimentary approaches for studying 
biological systems. Proteomics is primarily concerned with the identification, char-
acterization, and quantification of all the proteins present in a given sample. This is 
accomplished most frequently via the digestion of the protein fraction of a cell 
lysate followed by quantitative sequencing of the resulting peptides. In contrast, 
metabolomics is concerned with the identification, characterization, and/or quantifi-
cation of all small molecules2 present in a given sample.3 We should also mention 
that the terms metabolomics and metabonomics are used interchangeably. Since 
metabolites are the products of metabolic pathways, they reflect the biochemical 
activity of the organism at a systems level. Although the instrumentation to collect 
this information is the same (in most cases), there are challenges specific to isolat-
ing these samples that we will discuss below.

As is often the case in the annals of scientific inquiry, technological innovations 
developed by seemingly disparate disciplines have been co-opted to answer biologi-
cal questions. Such was the case when J.J Thompson’s dogged exploration of 
charged particles produced by cathode ray tubes (Crookes tubes) led to the discov-
ery of the electron and subsequently the first mass spectrometer in 1912 (https://
www.aps.org/publications/apsnews/200104/history.cfm). The machine he 
developed was the first instrument capable of robust measurement of the mass-to-
charge ratio (m/z) of ions. The m/z is an important measurement in metabolomics 

2 This is widely accepted to refer to biomolecules <1500 Da.
3 We will focus on metabolomics exclusively in this text, but we refer the reader to an excellent text 
published by Springer for a thorough examination of proteomics [97].
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and is defined as the mass of the cation divided by its charge. Thompson described 
the benefit of assaying charged molecules as such: “An unelectrified atom is so elu-
sive that unless more than a million are present we have no means sufficiently sensi-
tive to detect them, or, to put it another way, unless we had a better test for a man 
than for an unelectrified molecule, we should be unable to find out that the earth was 
inhabited” [7]. Thomson’s early work paved way for the development of more 
sophisticated mass spectrometers. In the 1920s, German physicist Wolfgang Paul 
and American physicist Arthur J. Dempster independently developed time-of-flight 
(TOF) mass spectrometers. The TOF uses electric fields to accelerate ions and each 
ions time of flight across a known distance is determined by its mass, thus greatly 
improving the resolution of these instruments. In the 1950s and 1960s, mass spec-
trometry technology continued to evolve, with the development of quadrupole and 
ion trap mass spectrometers which allow tandem mass spectrometry experiments to 
be performed. In the 1980s, matrix-assisted laser desorption/ionization (MALDI) 
and electrospray ionization (ESI) were developed. These soft ionization techniques 
are useful for ionizing biomolecules without generating fragment ions and have 
improved our ability to assay important biomolecules. Richard R. Ernst was awarded 
the Nobel Prize for his contribution to the development of NMR in 1991, and these 
instruments are now used for metabolomics studies – primarily for their ability to 
help solve molecular structures. The advent of these technologies has had a great 
impact on modern biological research and ushered in a new era of small molecule 
research.

3  Why (and How) We Use Metabolomics to Answer 
Biological Questions

The Many Applications of Metabolomics
The last 20 years has seen both a precipitous increase in the number of metabolo-
mics studies published and also a clear maturation of the field. Consider (Fig. 2) [8], 
whereas early metabolomic-centric publications were focused on technological 
development and the bioinformatic challenges of dealing with big-data  – more 
recent work trends toward the clinical applications of metabolomics and its applica-
tion to an expanding web of scientific lines of inquiry. A closer look at these key-
words (Fig.  3) reveals the breadth of studies that benefit from a metabolomic 
perspective. This progression of the field is a clear sign of the maturation of metabo-
lomics as a discipline.

Metabolomics is a field in transition. It can act to complement other omics, as we 
collect metabolome data and add it to databases that are mirrors of big data deposi-
tories that were assembled to store DNA sequencing, transcriptome, and proteome 
data. However, an important distinction must be made between the genetic sequence 
(which is mostly fixed at birth) or the transcriptome, and the metabolome – which is 
highly dynamic and under the influence of the physio-chemical milieu at short time 
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Fig. 2 Keyword trends in published articles containing “metabolomics” in Pubmed [8]

Fig. 3 Keywords associated with “metabolomics” since 2016 in the Web of Science

scales. In this way, it is more responsive to external stimuli and is thus closer to 
phenotype than the other omics. The metabolome is the product of the other omics 
and provides insights into the function of DNA/RNA/proteins. But it is also swift to 
respond to a change in conditions. This characteristic makes it so attractive to apply 
to biological investigations.

Naturally, the trend in big data science has been followed by more recent efforts 
to integrate all of these into a multiomic description of phenotype. Tools are being 
developed via the contributions of talented bioinformaticians to handle information 
on a scale that was once an impediment to progress. Multiomic workflows to inte-
grate data collected for the individual omics methodologies into a comprehensive 
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picture (or as close as possible) are an active area of interest [9]. It is hard to over-
state the power that this type of perspective can lend to an investigation of pheno-
type. Yet, the challenges associated with this integration of three or more (already 
complex) datasets are formidable. The mechanics of the investigation are complex 
because they employ have to accommodate diverse analyses methods [10] and 
apply novel statistical processes [11]. And the interpretation of this dynamic multi-
layered data will occupy researchers for decades to come.

Every scientist can appreciate the complexity of the relationships between 
genetic material, proteins, and metabolites. The discipline of systems biology is 
entirely devoted to understanding each of these parts – but this discipline is suffi-
ciently expansive to deserve its own textbook and will not be otherwise addressed 
here. There are some areas of research that employ metabolomics methods but rely 
on the techniques of systems biology that are worth mention, however. An example 
is the so-called interactome, which started as a study of protein–protein interactions 
[12] but has now developed to encompass others: like the protein-metabolite axis 
[13], cell-to-cell interactions [14], the signal transduction cascades involved in pro-
liferation [15]. There is a related field called ecometabolomics that takes this 
approach to study the interactions across species, including host and microbes [16], 
plants and microbes [17], or plants and animals [18]. To assess the interaction 
between complex systems, tools are being developed that allow us to make sense 
from apparent chaos.

One other emerging field that will not be covered in detail here is precision medi-
cine. Metabolomics techniques have already begun to play a role in the shifting 
focus in clinical research toward individualized treatment (reviewed in [3]). From 
the discovery of specific disease-associated biomarkers (reviewed in [19, 20]) and 
metabolic risk factors [21–28] to measurements of the bioavailability and pharma-
codynamics of drugs [29–31], treatment can be more precisely applied to the unique 
physiology of the individual. To add to this, work is ongoing to collect metabolite 
profiles to deconvolute the influence of the external environment (the “exposome”) 
and disease risk [32–34]. The power of metabolomics to simultaneously measure 
thousands of molecules will allow deep phenotyping of patient samples that can be 
mined for biomarkers associated with good health, longevity, and physical fitness 
[35, 36]. In the review above, David Wishart poses the question succinctly: 
“Metabolomics is changing biomedical research. The question is: can it change 
health delivery? [3]” We concur; as researchers accumulate and analyze more 
patient health data, the publication of reviews and textbooks dedicated to the subject 
to focus attention on the development of our discoveries into clinical applications is 
required.

As is true for everything we call an omics technology, the vast amount of data 
generated by even a single experiment can be overwhelming without an efficient 
strategy for data manipulation and analysis. We have dedicated Chapter 2: Network 
Development and Comparison in Lipidomics and Metabolomics to describe ways to 
overcome this specific hurdle. Within, the reader will find that  – given a well-
planned experiment – specific analytical techniques have been developed which can 
be modified to address almost any question of interest.

T. E. Hartman and H. J. Lees
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We will devote the following chapters in this book to an examination of how 
metabolomics can benefit a wide range of research questions. The authors of these 
chapters are leaders in their field of study and have compiled detailed summaries 
that we hope will open the eyes of the reader to the potential of this field and encour-
age them to embark on the same journey that we have – once the potential for this 
type of analysis becomes apparent. This introductory chapter will hopefully acquaint 
the reader with some key concepts and terminology. We regard this background 
information to be essential to understanding the work that follows and to familiarize 
the reader with a foundation that will allow them to avoid certain well-known pit-
falls in metabolomic analysis.

4  Methodologies in Metabolomics

4.1  Instrumentation

Below we will describe the analytical methods most commonly used in metabolo-
mics analysis, but the primary instruments used in modern metabolomics studies are 
the MS and NMR. When we employ these technologies to analyze biological mate-
rials in metabolomics, each method has advantages and disadvantages  – but the 
platforms are sufficiently developed to tailor methods to answer specific metabolo-
mic questions. The analytical method and workflow for the user will depend largely 
on the goal of the study and whether a targeted or untargeted design is appropriate. 
The choice of instrument will depend on the characteristics of the molecules the 
researcher expects to analyze. A rough comparison of the most popular instruments 
for metabolomics is given in Table 1 [37, 38], but experience is often a better guide. 
It is always worthwhile to search the published literature for work done on similar 
systems and we will present guidance and best practices in the later chapters of 
this book.

Table 1 Analytical parameters of metabolomics instrumentation [37, 38]

Instrument
Mass resolution 
(amu)

Mass accuracy 
(ppm) Sensitivity m/z range

Dynamic 
range

QqQ 1 × 103 100–1000 fM-aM 10–4000 6 × 106

Qq-linear ion 
trap

2 × 103 100–500 fM 5–2800 4 × 106

Qq-TOF 2 × 104 <5 fM No upper limit 1 × 104

FTICR 5 × 104 to 
7.5 × 105

<2 fM 50–2000; 
200–4000

1 × 103

Orbitrap ~105 <5 fM 50–2000; 
200–4000

4 × 103

NMR ??? 0.2 to <2.5 mM-uM <2000 Various
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4.2  The Mass Spectrometer

Fundamentally all mass spectrometers are based on the same three elements (an ion 
source, a mass analyzer, and a detector). Figure  4 depicts the workhorse of the 
metabolomics world – the triple quadrupole MS. The first step in this process is that 
a charge is imparted with the help of the ion source. As Thompson alluded to, mass 
spectrometers can only analyze gaseous ions, and the ionization source is where an 
electrical current is used to generate electrons that then impact the sample to ionize 
them. The ions generated from target molecules are very reactive, so the mass spec-
trometer is kept under a hard vacuum (about 760 torr) to prevent unwanted interac-
tions with these short-lived species.

The principle of mass spectrometry is actually very simple when viewed 
stepwise:

 1. Sample Introduction: The process begins by introducing the sample into the 
mass spectrometer. This can be done in various ways depending on the nature of 
the sample, such as direct injection, gas-phase sampling, or sample vaporization.

 2. Ionization: When the vaporized sample enters the ionization chamber, it is bom-
barded with electrons from the ion source. The goal is to convert the sample 
molecules into ions, which are atoms or molecules with an electric charge. These 
electrons displace an electron from the sample molecules, resulting in the cre-
ation of charged ions called the molecular or parent ions. The parent ion is com-
monly denoted as [M+] or [M−] depending on ion mode. There are different 
ionization techniques available, including electron ionization (EI), electrospray 
ionization (ESI), matrix-assisted laser desorption/ionization (MALDI), and oth-
ers. Each technique has its advantages and is suitable for specific types of 
samples.

 3. Acceleration and Separation: The ionized sample ions are then accelerated using 
electric fields to impart kinetic energy to them. Subsequently, the ions are sepa-
rated based on their mass-to-charge ratio (m/z) using a mass analyzer (which we 
will discuss below). Each type of mass analyzer operates on different principles 
but aims to separate ions based on their mass-to-charge ratio.

Fig. 4 Triple quadrupole. (Created in Biorender)
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 4. Detection: After the ions are separated based on their mass-to-charge ratio, they 
are detected by a detector system. The detector measures the abundance or inten-
sity of ions at different m/z values, generating a mass spectrum.

 5. Data Analysis: The mass spectrum obtained from the detector is then processed 
and analyzed. The data analysis involves interpreting the mass spectrum to deter-
mine the presence of different ions and their relative abundances. This informa-
tion can provide insights into the molecular composition, structure, and 
fragmentation patterns of the sample molecules.

 6. Identification and Quantification: By comparing the mass spectrum with data-
bases or reference spectra, the identified ions can be matched to known com-
pounds. This process allows the identification of the molecules present in the 
sample. Additionally, the relative abundance of ions can be used to quantify the 
concentration of specific compounds.

4.2.1  The Ion Source

When the charge applied to the target molecule comes from electrons generated by 
the ion source itself, spectrometrists refer to the process as a hard ionization. Hard 
ionization is sufficiently energetic (~70 eV) to break the covalent bonds in the target 
molecule and is usually reserved for nonpolar molecules and compounds that are 
not thermolabile – thus making it useful for inorganic materials – but not most bio-
molecules. Because we wish to analyze the molecules of interest in metabolic path-
ways intact, and these molecules are polar (or moderately polar) and less than 
1000 m.wt., a more gentle approach is used [39].

Soft ionization techniques can accomplish ionization of small molecules without 
fragmentation. There are a number of methods to accomplish both the vaporization 
(gasification) and the charging of sample material – commonly electrospray ioniza-
tion (ESI), chemical Ionization (CI), and matrix-assisted laser desorption ionization 
(MALDI) are employed for the purposes of metabolomics. The most popular of 
these is ESI, in which the sample liquid is pumped through a specialized needle at a 
high temperature (220–500 °C) and at a high voltage (2–4 kV). The resulting fine 
spray quickly evaporates into charged droplets that then desolvate as the solvents 
evaporate, leaving protonated (or deprotonated in the case of negative mode ioniza-
tion) molecules. CI techniques are even gentler (including atmospheric pressure 
chemical ionization (APCI)) and combine the sample with an ionized reagent gas to 
form a plasma. Different gases can be used to alter the charge on the molecule 
(which we denote as M – for mass) to form the positive ion [M + H]+ or the negative 
ion [M − H]−. While these techniques are suitable for soluble samples, MS can be 
performed on intact specimens (such as tissue samples) using MALDI, in which a 
laser is pulsed tangentially to the surface of the sample thus ablating molecules as 
singly charged ions.

The choice of ionization method depends largely on the information the 
researcher expects to get from the analysis of the sample (see Fig. 5). Molecular 
structure determination can be performed using hard ionization techniques in which 
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Fig. 5 Ionization techniques used in metabolomics

the fragmentation pattern of the molecule of interest can be interpreted to deduce 
likely structure. However, soft ionization techniques are better suited to simple 
identification and quantification of biomolecules from solutions, where fragmenta-
tion would create superfluous signals that could obscure or confuse the identity of 
the molecular species of interest. Because MALDI uses a laser for ionization of 
matrix-fixed sample, the resulting signal can be used for mapping biomolecules in a 
tissue slice or even microbial identification.

4.2.2  The Mass Analyzer

The sole job of the mass analyzer in a mass spectrometer is to move the ions coming 
from the ion source toward the detector, while filtering them based on m/z. This is 
accomplished by focusing the ions into a beam and applying an electrostatic field 
across either an arrangement of electrodes or a strong magnetic field. One might 
surmise that there are many ways to accomplish this (and one would be right), but a 
thorough description of these is outside of the scope of this text. Instead, we will 
focus on the analyzers that a practitioner of metabolomics should be familiar with. 
There are only five of these: the quadrupole mass analyzer, the time of flight mass 
analyzer (TOF), the ion trap mass analyzer, the ion cyclotron resonance (ICR), and 
the Orbitrap™.4

4 The Orbitrap Mass Analyzer is a version of the ion trap that is licensed exclusively to ThermoFisher 
Scientific. It is worth mentioning here because of its utility and popularity in metabolomics [98].
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The quadrupole MS is the simplest of the instruments used in modern metabolo-
mics studies. The quadrupole itself consists of four parallel cylindrical electrodes 
inside a vacuum chamber arranged so that ions can be shuttled through the space 
between them (Fig.  4). The ions flying through the field at their center oscillate 
based on the current (either DC or AC) or radiofrequency (RF) that are applied to 
the electrodes. These parameters can be tuned electronically to allow only the ions 
within a specified m/z range to successfully pass through the quadrupole. Ions that 
fall outside of this range are shunted from the electric field in the center of the quad-
rupole and are lost to the vacuum. In this way, a quadrupole works as a mass filter – 
which is a useful property when attempting to identify or quantify specific molecular 
species.

To take advantage of this filtering ability, a team of brilliant researchers 
(ja00475a072) arranged a pair of quadrupoles in tandem with an RF – only quadru-
pole between them in an arrangement now known as the triple quadrupole (abbrevi-
ated QqQ). The lowercase q is meant to denote that the middle quadrupole functions 
instead as a collision cell, in which ions can be fragmented by the introduction of a 
neutral gas that transfers translational energy to the ions that collide with it. The 
fragmentation of molecular ions that occurs within the collision cell is referred to as 
collision-induced dissociation (CID). This process makes tandem mass spectrome-
try (or MS/MS) possible. In the realm of metabolomics, MS/MS is especially useful 
when attempting to determine the structure of a compound or to distinguish between 
molecules with a similar m/z value (216_2021_Article_3425). The QqQ is also 
often the instrument of choice when attempting quantification of biomolecules in a 
complex sample (i.e., whole blood or serum samples, urine, cerebrospinal fluid 
(CSF), etc.) because this mass filtering ability allows the removal of interfering 
signals from the matrix.

This particular arrangement of quadrupoles enables the QqQ to perform a num-
ber of convenient tricks that are useful for the quantification of small molecules or 
analysis of experimental samples. As mentioned above, a quadrupole can scan a 
mass range (the full scan mode) by allowing all ions in that range to pass through to 
the detector or act as a mass filter in which only selected ions are allowed to pass. 
The latter mode is known as selected ion monitoring (SIM). Now if we apply this to 
an instrument outfitted as a QqQ, we can perform different scan modes to isolate 
particular ions. These scan modes are the precursor/product ion scan, the neutral 
loss scan, and multiple reaction monitoring (MRM). In describing these, it is useful 
to think of the QqQ as a set of pinholes in two pieces of paper – through which a 
light shine. If they don’t line up, then the light doesn’t reach the other side (the 
detector) (Fig. 6).

The product ion scan is perhaps the most intuitive of the scan modes to describe. 
In the product scan, the first quadrupole Q1 allows only an ion of a specified mass 
to pass through. This ion (and only this ion) is then fragmented in the collision cell 
(q2). Then Q3 scans the entire m/z range, revealing the sizes of every molecular ion 
fragment that was produced by the CID of the specified compound. This is particu-
larly helpful when seeking information about molecular structure, and the specific 
change in m/z of the fragment ions are known as transitions. Similarly, the 
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Fig. 6 Overview of scan modes for a triple quadrupole

precursor scan can be viewed as the opposite arrangement. In the precursor scan, a 
large range of m/z’s is allowed to pass Q1, but only a certain product ion is allowed 
to pass through Q3. This can be used to detect ions with a particular functional 
group (like a glycosylated peptide).

The neutral loss scan method can be particularly useful if one is looking for modi-
fications of a small molecule or peptide, such as a phosphorylation or hydroxylation. 
To perform this scan, the two quadrupoles (Q1 and Q3) operate in scan mode, with 
the m/z values of each scan offset by a user-specified amount. For example, if the 
user were looking for a phosphorylation event, the specific difference between the 
phosphorylated ion [+HPO3] and the non-phosphorylated ion would be 79.97 m/z. 
So, to detect the neutral loss of the phosphate, the user would set Q1 to scan all mol-
ecules, but when the scan reaches each specific point (e.g., 181.07 m/z), Q3 would be 
scanning at a specific offset mass (filter out everything that isn’t 101.1  m/z) 
(nihms130718, App-Note-332-Data-Dependent-Neutral-Loss-Mass-Spectrometry-
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for-the-  Identification-of-Protein-Phosphorylation). Remember that the detector only 
registers a signal when both Q1 and Q3 are permitting ions through the filter. This 
allows the user to distinguish the molecules in the sample that were modified because 
only molecules that lost that specific neutral mass – at that time in the scan – are 
detected.

The other important trick of the QqQ is SIM, also known as selected reaction 
monitoring (SRM). In this scan mode, both Q1 and Q3 are set to allow a specified 
m/z to pass, but Q3 is set to an offset in which only a distinct fragment ion can be 
detected. The important advantage of this mode is in increased sensitivity because 
the quadrupoles filter out all of the signals from interfering ions, allowing noise-free 
quantification. Another flavor of this mode is called multiple reaction monitoring 
(MRM), where Q1 and/or Q3 is set to more than 1 m/z to maximize the efficiency 
of quantification of multiple ions.

4.2.3  The Detector

Regardless of the manipulations we apply to the ions that flow through the vacuum 
of the MS, our analytical power is only as good as the tool we use to measure them. 
This measurement takes place at the detector, which must make an electronically 
readable signal when it registers a collision with an ion. Thankfully we have made 
great strides in this area over the century since J.J. Thompson’s first work using his 
parabola spectrograph. It is useful to consider though that Thompson first detected 
his cathode rays (that he would later reveal were actually electrons) using a dis-
charge tube that consisted of a sealed glass container of inert gas [40]. Thompson 
and his collaborator Francis William Aston soon switched over to photographic film 
before replacing that with a Faraday cup (FC). These early detectors were able to 
provide evidence of charged particles but were subject to interference from outside 
sources. Although Faraday cups are still used, the detectors on modern instruments 
are usually electron multipliers (EM), photomultiplier conversion dynodes, or array 
detectors.5

The simplest of these, the FC, is essentially a metal cup that intercepts the beam 
of ions coming through the mass analyzer. When an ion (or packet of ions) impacts 
the cup, it induces a positive charge as it is neutralized against the metal. That posi-
tive charge induces a quantifiable current in the FC equivalent to +1.602 × 10−19 C 
(or the current carried by a proton), and thus directly measures the number of ions. 
In the base FC design, there is no amplification – so these detectors are considered 
to suffer from low sensitivity. However, since there is a direct relationship between 
the ions that strike the FC dynode and the electrons released, the generated current 
can be amplified when paired with an EM.

5 Almost every MS manufacturer freely provides detailed information about the configuration of 
the detectors fitted to their instruments. There are many variations on the few that are listed here, 
but an exhaustive description of all the configurations is outside of the scope of this text.
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More commonly used is the EM, which consists of a series of aluminum oxide 
dynodes that are kept at increasing potentials. When an ion strikes the first dynode, 
it ejects some of the electrons from the material – that then strike the second dyn-
ode – and so on. This process cascades and can amplify the ion current by ~108. The 
benefits of this amplification are that sensitivity is greatly increased by the magni-
fied signal intensity gain. In their native state, the EM cannot detect negative ions, 
so a “conversion dynode” with a high positive voltage is placed in front of the 
EM. This allows the negative ions to strike the dynode first, thus releasing electrons 
down the EM chain.

Less common is the photomultiplier conversion dynode detector – a type of scin-
tillation counter. In this configuration, the ions from the mass analyzer strike either 
a positively charged conversion dynode or a negatively charged conversion dyn-
ode – either of which releases secondary electrons. These electrons then strike a 
phosphor screen which in turn releases photons that pass into an EM. This arrange-
ment is known to have a longer lifespan than simpler detectors and is as sensitive as 
an EM alone.

4.3  High-Resolution Mass Spectrometry (HRMS)

Despite its robust suite of configurations and practical versatility, the QqQ design 
does suffer from a drawback in that its m/z resolution is functionally limited at 
about 1 atomic mass unit (amu). This is because the resolving power of a quadru-
pole depends on the number of RF cycles the ion is exposed to while it flies through 
its center (in a perfect scenario). So, if an ion is exposed to ~200 RF cycles during 
its passage, the resolution would work out to roughly 1000 full width at half maxi-
mum (FWHM – more on this later). Importantly, as the mass of the ion increases, 
its velocity falls, thus increasing the number of RF cycles it is exposed to, which 
increases the resolution. This resolution is fine for known compounds in relatively 
clean solutions but is less useful for identification or quantification of isobaric com-
pounds or small molecules in more complex matrices.

Since metabolomics benefits from analysis of both of these, HRMS instruments 
are more frequently employed. These designs add another dimension to the ion path 
that helps us discriminate between m/z’s to several decimal places. This allows us 
to measure molecules with exact mass (rather than nominal mass), which in turn 
allows us to assign a chemical formula to our compound/s of interest. The exact 
mass is measured in Daltons (Da) and is determined by summing the individual 
isotopes of the molecule (it is also known as the monoisotopic mass). For example, 
to find a signal for glucose in our sample, we know that the molecular formula of 
glucose is C6H12O6, so we calculate based on the monoisotopic masses of the ele-
ments in the formula (Table 3). So [6 × 12.011 + 12 × 1.008 + 6 × 16.00] comes out 
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Fig. 7 HR instruments commonly used in metabolomics. (Created in Biorender)

to an exact mass of 180.162 Da for glucose.6 Vendors offer a number of categories 
of instruments with different resolving power that fit distinct research needs, but the 
most commonly used instruments for current metabolomics are the QqQ, the ion 
trap, the Q-TOF, the Orbitrap, and the FTIR (Fig. 7).

Around the same time, as Wolfgang Paul was working on the quadrupole mass 
analyzer, he also conceived of the ion trap mass analyzer. The physics behind the 
two analyzers are the same, but the ion path in an ion trap is three dimensional rather 
than the linear (corkscrew) pattern in a quadrupole. The ion trap itself can have 
multiple configurations, but the Paul, Penning, and Kingdon (Orbitrap) traps are the 
most common. Paul’s trap consists of a ring electrode (that looks like a donut) 
placed between a pair of end-cap electrodes. An oscillating RF field is generated 
within, and the ions orbit around the center of the trap until their orbit destabilizes. 
The point at which ions of different m/z will form a stable orbit is determined by the 
voltage applied to the electrodes. As the voltage increases, smaller ions destabilize 
more quickly and exit the trap to the detector [41]. The Penning trap uses axial elec-
tromagnetic fields in combination with a quadrupole electric field to trap the ions in 
a hyperboloid shape. Because the fields in a Penning trap are static, the trap can hold 
an ion for up to several days; this stability offers sufficient sensitivity and precision 
to measure even sub-atomic particles [42, 43]. The Kingdon design will be dis-
cussed below, but there is another version of the ion trap worth mentioning here: the 
linear ion trap (LIT). The chief difference between these is that the field applied to 
the ion trap is a two-dimensional (2D) RF field, so the ion path looks similar to that 

6 In actuality, when looking for a signal for glucose on a QqQ, commonly a signal is found at 
73 m/z in negative mode; we will see why in the next section.
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of a quadrupole. This configuration is known to have impressive dynamic range and 
is dependable for quantitative studies.

The quadrupole time-of-flight (Q-TOF) MS and Orbitrap MS are similar in con-
cept but utilize different geometries for separating ions. The Q-TOF is known as a 
hybrid instrument because it combines Q1 and q2 with a TOF tube to separate ions 
based on the time it takes for an ion (or packet of ions) to travel through a vacuum- 
sealed “flight tube” and reach the detector. Within this flight tube, ions are acceler-
ated with a high voltage pulse that sends them through the tube toward an electrostatic 
mirror that repels them back down the opposite side of the tube toward the detector. 
In this configuration, smaller molecules pick up more velocity than larger ones – 
and thus reach the detector first. The amount of time that the ion travels (the flight 
time) is determined by the formula for kinetic energy and is sensitive to the distance 
it has to travel through the flight tube.

In place of a flight tube, an Orbitrap has a chamber known as a high-field com-
pact trap with electrode cups sandwiching a central electrode. When ions enter the 
trap, they deflect toward the detector based on the applied electric field, which then 
spirals them around the central electrode core (orbiting) until they reach the ampli-
fier and then the detector. Both configurations offer fast sensitive scans and deliver 
high-resolution data, and both are suited to most metabolomics workflows [44].

4.4  The Mass Spectrum

Once a sample has been analyzed, each of the MS instruments listed above will 
produce a datafile with some proprietary format. Generally, these can be converted 
by third-party programs to be manageable by different analysis software (msconvert 
and Rawconvertor are two examples). The output files are made up of the mass 
spectrum that was detected at each scan over the course of a run. Each scan of the 
mass spectrum (the m/z’s detected over the mass range – usually 100–~3200 Da) 
can be performed many times per second. An FTIR might scan once per second but 
with a resolving power of ~1 M while a QTOF might perform up to 500 scans per 
second with a resolution of 60,000. Note that the term resolving power is measured 
in m/dm where m refers to mass and dm is the peak width necessary for separation 
measured in full width at half maximum (FWHM). After each scan, the mass spec-
trum is collected and represented in the datafile for that sample. Since the mass 
analyzer and detector of the MS are always on during a sample run, a different mass 
spectrum is collected over user-defined intervals.

The mass spectrum itself is represented as a table or in graphical form where the 
m/z ratios of the ions are plotted on the x-axis and their intensities are plotted on the 
y-axis. Each peak in a mass spectrum shows a component of unique m/z in the 
sample, and heights of the peaks connote the relative abundance of the various com-
ponents in the sample. If a specific molecule of interest is expected to be represented 
in the spectrum, the analysis software can query (extract) that specific m/z from the 
sample run and display the times that it was detected. This is represented as the ion 
chromatogram.
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Fig. 8 Stylized mass spectrum and ion chromatogram for alanine. (Created in Biorender)

Figure 8 depicts a stylized mass spectrum for alanine (an amino acid). The parent 
molecule is composed of three carbons, an amine group, and seven protons. When 
the molecular ion of alanine is ionized in positive mode, it acquires a proton to yield 
a mass of 90 (the exact mass is 89.04768 +  the mass of the hydrogen adduct is 
1.007825 = 90.0560). There are two other ions to note in this spectrum. The ion at 
~91 m/z corresponds to alanine where one of the carbons (with an exact mass of 
12.00000, aka 12C was substituted with the naturally occurring 13C to yield a frag-
ment that is 1.003355 amu heavier). The natural abundance of 13C in the environ-
ment is about 1.07%, so we would expect about that percentage of alanine would 
contain one of these heavy carbons. The presence of this peak is useful in compli-
cated spectra where it is important to determine if the parent ion is genuine or a 
fragment of another ion (the fragment won’t have a daughter ion that is ~1.07% of 
its height). The other ion is at 44.0490 m/z. That ion happens to be a fragment ion 
corresponding to the left half of the molecule (when viewed as depicted in the inset). 
Fragment ions are created not only intentionally (as in CID) but also unintentionally 
as a result of the conditions in the ion source

It is important to verify that a peak on the mass spectrum is an in-source frag-
ment using a QC step for metabolomics experiments. This is most frequently 
accomplished using an authentic standard consisting of a purified molecule spiked 
into a sample matrix or solvent and subjected to the same analytical conditions as 
the sample. If the same fragment appears in the standard as was observed in the 
complex sample mixture, this gives the user confidence of the identity of the 
molecule.

4.5  NMR

Nuclear magnetic resonance (NMR) spectroscopy is a key analytical tool used in 
metabolomic studies, with unique strengths compared to GC- and LC-MS based 
methods. NMR is non-destructive, allowing samples to be rerun using different 
pulse programs; it requires limited sample preparation; it is quantitative; cost per 
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sample is low; it is particularly suited for comprehensive untargeted analysis, detect-
ing a wide range of metabolites in a single experiment; it’s application in structural 
elucidation allows for the identification and characterization of novel compounds 
and positional information can be generated for isotopomers [45]. In addition, NMR 
can add value for molecules that may not ionize well, require derivatization, or can-
not be separated based on mass. Furthermore, NMR experiments are highly repro-
ducible, with very limited batch effects and no carry-over between samples. It is this 
benefit, combined with the short duration of experimental analyses (a typical 1D 1H 
NMR analysis can be acquired in a few minutes) and automation of experiments, 
which make NMR ideal for high-throughput metabolomics studies [46, 47].

The major limitation of NMR is its low sensitivity, which translates to a reduced 
number of biomarkers in metabolomic analyses (typically 50–200 identified metab-
olites in metabolomic studies). In addition, sample complexity can hinder interpre-
tation of NMR spectra and quantitation of molecules, with resonances from highly 
abundant or high molecular weight molecules, such as lipids and lipoproteins, over-
lapping with and obscuring peaks from other molecules. Furthermore, a greater 
sample volume is required, instrument costs are high, and the footprint of lab space 
required is large, compared to LC-MS instruments [48, 49].

The versatility and capabilities of NMR continues to grow, with increases in 
sensitivity owing to developments in field strength and cryoprobe technology, and 
the use of hyperpolarized probes (capable of achieving detection limits in the nano-
molar range [50]). Neither NMR nor MS used alone has the ability to detect all 
metabolites in a metabolomics study; however, efforts to integrate both methodolo-
gies and harness their collective advantages will offer a more comprehensive cover-
age of the metabolome and improve the accuracy of metabolite identification [51].

4.6  FTIR

Fourier transform infrared spectroscopy (FTIR) is a vibrational spectroscopy tech-
nique that uses infrared radiation to excite a sample. In a modern FTIR, infrared 
radiation (IR) is generated from a radiation source (usually an inert solid that is 
heated to 1000–1800 °C) and is then passed through a sample. Some of that radia-
tion is absorbed, and some reflected through to the monochromator (or inferometer 
depending on the application), which then disperses it to the detector. Either a ther-
mal detector or photon detector measures the heat produced by the IR and generates 
an electric (IR spectroscopy Hsu) interferogram plot. This IR spectrum can then be 
mined for information about the constitution of the sample. Generally, a background 
spectrum is generated containing the solvent that the sample was prepared in, and 
this background can be subtracted to generate a clean sample spectrum. Data analy-
sis consists of matching the frequency bands of the sample spectrum which is then 
converted through an (fast Fourier transform) algorithm into a high-resolution 
molecular fingerprint. FTIR excels at identification of unknown molecules and 
structure elucidation [52] and is amenable to both solid and liquid samples.
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4.7  Other Analytical Techniques

In addition, there are a number of ways to measure aspects of metabolism that we will 
not be covered in detail in this text. These include enzymatic analyzers that are designed 
to accurately measure a specific set of biomolecules (often biologically relevant carbo-
hydrates or amino acids) using proprietary technology. Often these methods include a 
purpose-built instrument, but many are available as multiwell plates prepared with a 
substrate that functions as a biosensor (fluorescent or chemiluminescent). Also, several 
fluorescent probes have been developed that can be exogenously applied to cell prepara-
tions, or genetically encoded [53] to function as in situ biosensors of aspects of cellular 
metabolism. These methods are often useful for testing specific hypotheses or for verify-
ing findings made using one of the canonical metabolomics methodologies.

5  Separation Techniques

The mass accuracy and resolution of HRMS, NMR, and FTIR instruments are more 
than sufficient to accurately detect and quantify most small molecules. However, the 
metabolome is a series of complex networks of interacting molecules. These net-
works include biomolecules with chemically diverse structures from organic and 
amino acids to nucleotides to carbohydrates or lipids. It is this vast chemical diversity 
that poses the greatest challenge to the analysis of small molecules. We used alanine 
as an example of what one would see in a mass spectrum above (Fig. 8), but the mass 
spectrum that is typical of a metabolomics experiment contains hundreds or thou-
sands of biomolecules. Each has the potential to form its own in-source fragments. 
When molecules with similar structural features are fragmented, identical in-source 
fragments can be produced, complicating positive identification. The solution to this 
is to separate the sample based on some physical characteristic like size or charge.

Currently, there are no analytical platforms capable of assaying all of the classes 
of biomolecules simultaneously, but separation methods have been developed that 
provide fairly extensive distribution of important biomolecules over time. Although 
variations in instrumentation exist, protocols designed to assay ions with dissimilar 
molecular characteristics generally rely on biophysical separation techniques like 
chromatography. There are (of course) an ever-growing number of variations in 
separation techniques. The methods are sufficiently diverse as to demand dedicated 
journals, but we will focus on a few popular methods here [54–56].

5.1  Liquid Chromatography

By far the most common separation method for metabolomics is liquid chromatog-
raphy [57]. It involves the separation of metabolites based on their physicochemical 
properties, such as polarity and hydrophobicity, using a liquid mobile phase and a 
stationary phase.
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The mobile phase is composed of two solvents selected for the solubility of the 
class of molecules being targeted and their compatibility with the chosen ionization 
technique. The experimental sample is injected into a stream containing the first 
mobile phase solvent (in which the sample should be soluble) and it is guided to the 
LC column were it adsorbs to the material within. The second mobile phase solvent 
is then introduced at a concentration gradient, which elutes the sample from the 
column and passes it to the ion source. The stationary phase is a solid matrix con-
fined to the inside of an LC column and is usually made of a tightly packed silica or 
alumina-based adsorbent. It is generally a good practice to refer to the existing lit-
erature for help selecting the mobile phase and solid phase components for the 
specific class of metabolites one wishes to target. There are two points of caution to 
use when selecting solvents: the first is to seek out MS-grade solvents that have 
been sufficiently processed to remove impurities that may appear on the mass spec-
trum. The second is to avoid buffers and salts (Na+, K+, and PO4), which can reduce 
the overall signal.

Different LC modes, such as reverse-phase liquid chromatography (RPLC), 
hydrophilic interaction chromatography (HILIC), and ion-exchange chromatogra-
phy (IEC), are utilized to achieve specific separation objectives. RPLC is based on 
the differential partitioning of metabolites between a non-polar stationary phase and 
a polar mobile phase. It is suitable for separating non-polar and moderately polar 
metabolites. Unfortunately, highly polar and ionic metabolites are not retained in 
RPLC and appear in an unseparated bolus prior to the addition of the second sol-
vent. The metabolites that are not compatible with RPLC include nucleotides, some 
carboxylic acids, and sugar phosphates. Still, when global metabolite coverage is 
the goal of the researcher, RPLC is often a good place to start because it has been 
successfully used to separate a wide range of important biomolecules that are solu-
ble in aqueous solvents [57].

HILIC [58] is a version of RP which employs a polar stationary phase and a less 
polar mobile phase, making it ideal for separating highly polar metabolites [59]. 
There are still some questions about the exact mechanism of retention in HILIC 
columns [60], but generally they use an elution solvent that has a high water con-
tent. It has become a popular secondary methodology for metabolomics because so 
many critical metabolites can be resolved using this technique. Critical metabolites 
like amino acids, carboxylic acids, phosphorylated compounds, nucleotides, and 
sugars are well separated and many useful workflows have been published for vari-
ous sample types.

IEC separates metabolites based on their charge by utilizing a charged stationary 
phase and adjusting the pH and ionic strength of the mobile phase. The separation 
provided is based on charge and columns with both anionic and cationic resins 
being available to separate negatively charged or positively charged ions (respec-
tively). The IEC column with a charge opposite to that of the target ions is fitted to 
the LC system, and when the sample is loaded at a particular pH, appropriately 
charged ions bind to the resin via electrostatic interactions. Then the column is 
washed and a salt gradient is introduced as the second mobile phase solvent is added 
to elute the ions from the resin. This technique is useful for separation of proteins, 
peptides, amino acids, or nucleotides. IEC has been proven to be useful for excellent 
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coverage of some features that are troublesome for other methods [61], but it is quite 
sensitive to changes in pH.

5.2  Gas Chromatography

Gas chromatography is a separation technique primarily used for volatile and ther-
mally stable metabolites. It involves the vaporization of metabolites and their sepa-
ration using a gaseous mobile phase and a stationary phase. In GC, ions are separated 
based on their volatility and affinity for the stationary phase, that is, either packed 
or capillary columns (although the latter are more popular). The sample is injected 
into a heated injection port, where it vaporizes and is pushed by an inert gas through 
a long, thin capillary column (commonly 30-m-feet long). Metabolites interact with 
the stationary phase, and their separation is achieved based on differences in their 
boiling points and chemical interactions. The separated metabolites are then 
detected by the MS detector, enabling their identification and quantification. 
Importantly, the amount of time that the individual ions are retained in the capillary 
(the retention time or RT) is very stable and predictable, making GC a robust 
method. In fact, GC-based metabolomics was the cornerstone of the field until 
LC-based methods supplanted it [62]. The RTs of GC-based workflows are suffi-
ciently standardized that researchers around the world can query existing validated 
databases to annotate the signals from their samples with a high degree of confidence.

GC-MS is highly sensitive, capable of analyzing a wide range of metabolites, 
and provides reproducible results. It is particularly useful for metabolite profiling in 
areas such as lipidomics, volatile metabolites analysis, and stable isotope labeling 
studies. In practice, metabolite samples are frequently chemically derivatized to 
improve their volatility. Derivitization reagents like N,O-bis(trimethylsilyl)trifluo-
roacetamide (BSTFA) are added to the sample prior to loading where they add a 
trimethylsilyl (TMS) functional group to the sample compounds. Using derivitiza-
tion procedures can increase the coverage of experiments to over 300 unique 
compounds.

5.3  Capillary Electrophoresis (CE)

Capillary electrophoresis is a separation technique that utilizes an electric field to 
separate metabolites based on their charge and size [63]. The techniques use hollow 
glass capillary tubes filled with an electrolyte solution wherein the inner surface of 
the capillary maintains a negative charge through its silanol groups. Then an electric 
field is generated by applying a voltage to both ends of the capillary and the metabo-
lite ions migrate based on variations in their charge-to-size ratio. The separation is 
achieved due to differences in electrophoretic mobility, and various detection meth-
ods such as UV-Vis absorbance, fluorescence, or mass spectrometry can be coupled 
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with CE for metabolite detection and quantification. It offers high separation effi-
ciency, short analysis time, and requires minimal sample volume.

CE is particularly suitable for the separation of polar and charged metabolites. 
Small polar metabolites, amino acids, organic acids, and other charged compounds 
are readily separated. It offers high resolution and can be used for both qualitative 
and quantitative analyses. CE-MS coupling further enhances metabolite identifica-
tion capabilities.

5.4  Ion Mobility Spectrometry (IMS)

IMS is an electrophoretic technique that separates ions based on their size, shape, 
and charge in the gas phase. In IMS, metabolite ions are introduced into a drift tube 
filled with a buffer gas, typically nitrogen, and subjected to an electrical field. One 
advantage of IM is that it can perform separations of ions on a millisecond times-
cale. It also works to increase the number of detectable features by as much as 20% 
over an LC-MS experiment [64]. These advantages have made it increasingly popu-
lar in metabolomics due to its ability to provide rapid and sensitive separations of 
metabolites.

6  Sample Preparation

Sample preparation is a critical step in metabolomics, as it can greatly impact the 
quality and accuracy of results. However, the optimal sample preparation method 
can vary depending on the type of sample, the metabolites of interest, and the ana-
lytical technique used. Proper sample preparation can ensure optimal recovery, sta-
bility, and reproducibility. Metabolomics can be performed from a range of 
specimens including blood, urine, tissues, cultured cells, biofluids, plant exudates, 
stool, etc. Dedicated protocols exist for each of these, so we will instead focus on 
general principles of extraction – independent of the first few steps of isolation that 
differ between samples. It is important to emphasize that our goal for this section is 
to give an overview of sample preparation to familiarize the reader with the basic 
concepts of sample preparation. Any researcher is advised to seek out peer-reviewed 
protocols prior to committing to a specific technique. We will also cover intracel-
lular metabolites independently of extracellular/excreted molecules. Regardless of 
the sample, the most critical factor in the success of metabolomics studies is how 
fast the sample is quenched and how well it is kept cold [65]. The quenching step in 
particular is crucial because many metabolites are unstable or rapidly interconvert 
[66]. The four steps are: cell isolation, quenching, lysis/homogenization, and aque-
ous phase collection/storage.
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• Cell isolation: To extract metabolites into an aqueous solution that can be sub-
jected to one of the separation protocols detailed above, the cells of interest must 
be separated from the water or media that surrounds them. This step involves 
removal of mass that the researcher does not wish to measure. Isolating cultured 
cells from the culture media can be accomplished with a quick, gentle centrifu-
gation step that avoids cell lysis, but fast filtration is preferred. Isolation of tissue 
might involve resection or laser-microdissection. Stool and urine samples are 
already sufficiently concentrated and can often be diluted in water or solvent [67].

• Quenching: For almost all samples with active metabolism, rapid quenching can 
be accomplished by plunging the isolated sample into liquid nitrogen or cold 
methanol. Rapid boiling accomplishes the same goal, but at the expense of the 
degradation of thermolabile compounds. Either of these is sufficient to stop 
enzymatic activity, which would otherwise lead to undesirable catalysis that 
occurs post-isolation.

• Cell lysis/homogenization: Metabolite extraction requires the release of metabo-
lites from the sample matrix. Various extraction techniques are employed depend-
ing on the sample type and the metabolites of interest. Common extraction 
methods include liquid-liquid extraction (LLE) and solid-phase extraction (SPE). 
LLE and SPE can be accomplished by rapidly lysing cells in the extraction sol-
vent using a homogenizer. Because the metabolites of interest reside (mostly) in 
the cytosol, the cell lysis step releases them into the extraction solvent, which can 
be stored and measured with less concern for degradation.

• Sample collection and storage: Appropriate sample collection and storage meth-
ods are essential to maintain metabolite integrity. Samples should be collected 
under standardized protocols, considering factors such as timing, sample matrix, 
and storage conditions (temperature, light exposure, freeze-thaw cycles). Storage 
of samples at temperatures at or lower than-80 °C is preferred. The consequences 
of improper storage are sample degradation, oxidation, and residual enzymatic 
activity, the latter of which can lead to artifactual metabolite abundances [68].

Post-extraction, sample clean-up steps are performed to remove unwanted com-
pounds such as proteins, lipids, salts, and other interfering substances that can affect 
metabolite analysis. Techniques like centrifugation, filtration, solid-phase extrac-
tion, and liquid-liquid partitioning are employed for sample cleanup. Methods such 
as ultrafiltration, immunoaffinity depletion, and size-exclusion chromatography can 
be employed for protein removal, but using acetonitrile or methanol or a  methanol/
chloroform precipitation is sufficient [67]. Derivatization also can be performed 
post-extraction and before storage.

It is important to select sample preparation techniques that are compatible with 
the analytical methods employed in metabolomics, such as liquid chromatography- 
mass spectrometry (LC-MS) or gas chromatography-mass spectrometry (GC-MS). 
Optimization and validation of sample preparation protocols are necessary to ensure 
consistent and accurate metabolite profiling. It is also a good idea to perform pilot 
experiments prior to attempting extraction with precious samples.
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Fig. 9 Targeted vs untargeted data (fictional)

7  Study Design

One of the first considerations one must take when embarking on this path also hap-
pens to be the most intuitive. The researcher should consider how they would like to 
present their data – as a direct comparison of specific metabolites between groups 
or as a scatterplot (or perhaps a heatmap) that highlights a systemic difference in 
response. Figure 9 depicts how this data might be represented between a control and 
experimental group using metabolomics data. The difference between these repre-
sentations illustrates the two broad categories used to describe distinct metabolo-
mics studies: targeted metabolomics and untargeted (or “discovery”) metabolomics.

Targeted methods are focused on specific metabolites and can refer to a single 
molecule of interest or up to thousands of specific molecules. When referring to 
targeted methods, researchers are generally referring to identification of metabolites 
rather than their absolute or relative quantification, though both can be accom-
plished with proper consideration of method design. The distinction is that the mol-
ecules in targeted metabolomics are known and are usually validated7 prior to 
performing the analysis. The unequivocal validation of a molecule requires the 
reporting of an exact mass, so HRMS instruments are preferred. One caveat to this 
is that good sample preparation along with a validated analytical method is suffi-
cient for quantification of a pre-validated molecule, and this can be accomplished 
on an LRMS. Structure determination studies are better suited to NMR or an ion 
trap. With a sufficiently established analytical method, one can acquire reliable tar-
geted information for many hundreds of molecules that have been pre-validated.

Untargeted methods are much more open-ended and are frequently used for 
hypothesis generation. A typical untargeted workflow involves preparing samples 
from experimental and control groups and acquiring all of the peak data from 

7 Validation of a biomolecule refers to the unambiguous confirmation of a molecule’s identity 
(including an empirical formula) in a specific method, and it is not a trivial task. Fortunately, guid-
ance exists for small molecules [99, 100], proteins [101], and lipids [102]. Additionally, the FDA 
offers its own guidance for small molecules [103] but has separate guidelines for validation of 
analytical methods [104].
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whichever assay is chosen. Once the data is processed and analyzed, univariate or 
multivariate bioinformatical analysis methods are applied for relative quantification 
of features (putative metabolites) across groups. These features are presumed to be 
qualitative and require further validation, but there are freely available databases 
and libraries for >150,000 metabolites (https://www.metabolomicsworkbench.org/
data/index.php) to aid in identification. It is then the researchers’ job to develop an 
actionable hypothesis from the data profile. This is the design of choice for a follow-
 up study after the discovery of an interesting phenotype or phenomenon. As we will 
discuss later in the chapter, the staggering heterogeneity of biomolecules (in their 
polarity, solubility, pKa, log P, stability, reactivity, etc.) makes untargeted analysis 
dependent on discreet analytical techniques. There is a common aphorism uttered in 
this field that is usually phrased something like: “there is no one method to fit all 
cases.” Most methods are designed for molecules with specific characteristics, but 
even robust methods that can reliably assay broad categories of molecules will be 
opaque to other (potentially biologically relevant) factors. Absolutely requisite is 
the understanding by the researcher that the choice of methodology will influence 
the results of the study. However, untargeted methods can be powerful discovery 
tools and metabolite fingerprinting delivers a useful snapshot of the physiological 
state of the sample at the moment of its preparation. Outside of these two broad 
categories of study design, there are a number of other precautions that must be 
addressed when designing a metabolomics study.

8  Challenges in Metabolomics

8.1  Challenges Common to All Omics

The omics all share a similar set of challenges: the rapid pace of technological inno-
vation, the necessity for exacting experimental procedures, the requirement for 
unique analytical pipelines for big data, and the integration of the findings into a 
format that is conducive to the formation of biological insight. These concerns are 
both technical and analytical in nature. Today, diligent work on method develop-
ment in the individual omics fields has alleviated a large part of the technical hur-
dles. Protocols for sample handling and preparation, analytical techniques, 
pre-processing (including library construction in the case of next-generation 
sequencing (NGS) – or derivitization in the case of proteomics/metabolomics), data 
storage, and data hosting have been developed and refined. Publicly available free 
repositories exist for vast majority of published datasets, thanks to the investment 
and hard work of scientists around the world [69]. The force of scientific persever-
ance has turned most of the sample preparation techniques into routine protocols 
that can be accomplished in most laboratories around the world.

The technical challenges that remain are largely related to – or are the direct 
consequences of – the data dimensionality of omics studies. These are noise and 
reproducibility. It seems fairly obvious that these are two sides of the same coin, but 
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the intrinsic underlying causal factor for them is amplified in datasets with small 
sample number and large numbers of measurements. That factor is the spectacular 
heterogeneity and stochasticity of biological systems. This stochasticity leads to an 
inconveniently wide distribution of mRNA expression or protein abundance, even 
in a carefully prepared biological sample [70]. The resulting variation is classified 
as noise and is compensated for using repeated measurements or biological repli-
cates [71]. We acknowledge that this factor affects genomic studies less than other 
omics, but even in the case of a next-generation sequencing (NGS) workflow, the 
quality among reads always varies. The reason for this is also rooted in dimension-
ality as we will see below.

Reproducibility remains a challenge across all of science [72, 73]. Omics studies 
are no exception to this concern. The myriad causes for the so-called “replication 
crisis” don’t have a single solution, but the aforementioned biological noise cer-
tainly contributes. The publication of noisy datasets is not in any way reflective of a 
lack of sufficient precautions or scientific expertise, but findings that cannot be rep-
licated lead to suspicion of fraud. Other concerns are the numerous legitimate ways 
of analyzing a complex dataset, human error in the form of confirmation bias [74], 
and statistical mismanagement [75]. There is the hope that this concern can be 
mediated through organizational means [76], and best practices are being developed 
to address the issue [77].

The analytical challenges for omics are considerably more intractable. Omics 
studies usually start with the desire to answer a biological question and end with a 
dataset that can then be analyzed for the generation of a testable hypothesis. The 
analysis of the dataset is much more complex than that of a classical experiment 
with a single or a few variables of interest. Classical experimentation comprises 
dependent, independent, and control variables that are then measured to determine 
correlation. While the experimental design of omics experiments is conceptually 
similar, the fundamental structure of the data is different than in classical experi-
mentation [78]. This discrepancy is well known to informaticians; and mathemati-
cian Richard Bellman coined a phrase to describe it: The Curse of Dimensionality 
[79]. It suggests that as the number of dimensions (features or measurements in this 
case) increases, the volume of Euclidean space (the error) increases exponentially. 
This has become to be commonly known as the “big-p, little-n” problem (abbrevi-
ated p >> n), where p represents the number of observed variables and n indicates 
the sample size. Omics experiments fit this description [80]. In omics experiments, 
the variables are a large number of metabolites or genes and a small number of 
samples. The consequence of this sparsity is that observations become harder to 
cluster making it harder to detect meaningful trends in the data.

Let’s take the simple decision tree that we use to determine which statistical 
analysis is appropriate for our experimental design. Classical experimentation may 
be interested in a categorical variable where the number of groups would dictate 
whether we should use (for example) a Fisher test or a t-test to determine our effect 
size. If we wish to measure multiple variables, we might employ a multinomial 
logistic regression or apply a Pearson test. These multivariate analyses are designed 
to find patterns and correlations, but small sample sizes risk overfitting the data. In 
order to increase power, sample size must increase [81]. This is often infeasible in 
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omics experiments due to cost and complex sample processing. Omics experiments 
simultaneously test hundreds or thousands of hypotheses. Their analysis relies on a 
more complicated suite of statistical tools for proper investigation [82] and interpre-
tation [83].

8.2  Challenges Specific to Metabolomics

The goal of metabolomics is to identify and quantify the metabolites present in a 
sample in order to gain insight into the metabolic pathways and processes occurring 
in a particular organism or tissue. There are several challenges specific to metabolo-
mics that make this process more difficult compared to other “omics” fields such as 
genomics or proteomics. Greater chemical diversity and dynamic range, complex 
profiles, multiple peaks representing individual molecules, standardization and vali-
dation, and sample collection bias are all technical hurdles that make metabolomics 
more difficult to perform properly than the other omics fields.

Genomics and transcriptomics are concerned with four nucleotide bases that are 
relatively stable (or can be stabilized in solution) and a handful of modifications in 
epigenomic studies. The chemical diversity of the proteome covers about four 
orders of magnitude [87] (Fig. 10). An important contrast is that the variety in the 
properties of small molecules makes them much more difficult to assay in a single 
experiment or method. A typical metabolomic experiment will provide information 
about a thousand unique metabolites [88], and the Human Metabolite Database 
(https://hmdb.ca/) currently references over a quarter of a million molecules.

Whereas one can sequence all of the DNA or RNA or proteins in a cell, complete 
measurements of all small molecules are problematic for a number of reasons. Cells 
and tissues are made up of small molecules with substantial chemical diversity. 
Researchers are interested in biomolecules with widely divergent chemical 

Fig. 10 Omics at a glance [84–86]. (Created with BioRender.com)
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properties like lipids, sterols, nucleotides, amino acids, carbohydrates, terpenes, 
ketones, and organic acids. This diversity makes metabolomics a challenge in ana-
lytical chemistry as the solubility and stability of these molecular classes vary 
greatly. There are several considerations to make regarding the class of biomolecule 
that the researcher is interested in measuring. Chromatographic columns poorly 
retain biomolecules that are polar or ionic, such as many amino and organic acids, 
carbohydrates, and nucleotides [56]. Also, some molecular classes fare poorly in 
some of the solvents used in LC methods based on their pKa in specific solvents. 
Fortunately, there is a method to predict the pKa of a target molecule to aid solvent 
selection [89]. Although they are a special case, volatile molecules may require 
precautions to be taken at the time the sample is gathered to be properly measured 
[38]. These attributes can hinder the positive identification of important metabolites 
(see Table  2), so alternate chromatographic systems were developed to increase 
their separation. There are no sample preparation methods that allow for the com-
plete ionization of all biomolecules in a single sample, so methodologies have been 
developed to target specific classes.

To add to this analytical challenge, the metabolome is highly complex and 
dynamic. Metabolites differ in natural abundance with a dynamic range that covers 
ten orders of magnitude [90]. Physiological concentrations of metabolites in cytosol 
are present in quantities ranging from femtomolar to millimolar, challenging the 
detection limits of even sensitive instruments. Moreover, some metabolites have 
turnover times in the cytoplasm of microseconds, while some are longer lived and 
enjoy half-lives on the order of seconds [91]. These high turnover rates demand 

Table 2 Polarity and volatility of biomolecules

Nonpolar and 
nonvolatile

Nonpolar and 
volatile Polar and nonvolatile

Polar and 
volatile

Carbohydrates No No Yes No
Proteins No No Yes No
Nucleic acids No No Yes No
Fatty acids Yes No No No
Triglycerides Yes No No No
Phospholipids No (amphipathic) No Yes (polar head) No
Steroids Yes No No No
Amino acids No No Yes No
Organic acids No Yes Yes Yes
Alcohols No Yes Yes Yes
Ketones No Yes Yes Yes
Aldehydes No Yes Yes Yes
Esters No Yes Yes Yes
Amides No No Yes No
Amines No Yes Yes Yes
Hydrocarbons Yes Yes No Yes
Halogenated 
compounds

Depends on specific 
compound

Yes Yes or no (depending on 
the level of halogenation)

Yes
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careful sample handling precautions. Analytically they are challenging to measure 
for another reason: volatile metabolites with high vapor pressure and low molecular 
weight can diffuse freely in air and avoid capture during sample prepara-
tion steps [92].

8.3  Technical Hurdles to Metabolomics

In the previous sections, we introduced the instrumentation used in most metabolo-
mics experiments. Some of the fundamental analytical obstacles to metabolomics 
analysis are due to the instrumentation that we chose to perform our analysis. These 
include the existence of multiple signals for a single metabolite, the remarkable 
chemical diversity of metabolites, and their range of physiological concentrations 
and volatility. If one thinks of the MS/FTIR/NMR as fundamentally a molecule 
detector with a series of (ingenious) approaches to separate those molecules, it is 
easy to see how the rate of signal might affect the accuracy and precision of the 
detection of our signals of interest. Each is a powerful tool for small molecule char-
acterization, but each has strengths and weaknesses that confound interpretation. 
Fortunately, the pitfalls of each are well characterized and existing methods of sam-
ple preparation and separation techniques largely ameliorate the drawbacks. There 
are several reasons for which an experimental sample might provide a signal too low 
to be detected or too high, resulting in saturating the detector and masking further 
signals.

Some terminologies that describe these cases are listed below. First, there is a 
hard floor on the amount of signal that is necessary to trigger a detector of an instru-
ment resulting in a signal. This is referred to as the instrument detection limit. It is 
determined by analyzing blank samples and determining a background level (usu-
ally the signal arising from the matrix itself). Then there is the limit of quantification 
(LOQ); this is the lowest amount of analyte that can be quantified with a degree of 
certainty. To faithfully measure the LOQ, one must take repeated measurements of 
the same analyte under the same conditions. If our analyte-of-interest has a signal 
above the LOQ, we can be confident that we can distinguish between different 
amounts of that analyte.

Metabolite profiling via MS is complicated by the presence of multiple peaks 
representing individual molecules, standardization and validation, and sample col-
lection bias. The process of ionizing these already unstable molecules can lead to 
unwanted fragmentation when the energy transferred by the electrons from the 
source overcomes the thermal energy of the molecule. This is known as in-source 
fragmentation and is the cause of many confounding extraneous peaks on the mass 
spectrum. Thanks to work done by the Patti lab, there is a workflow to help detect 
and credential in-source fragments [93], thus avoiding false positives.

Two more complexities of the standard MS-based metabolomics workflow are 
the matrix effect and ion suppression. The matrix effect is the straightforward con-
sequence of components or endogenous impurities in the sample that interfere with 
the ionization and detection of the compounds of interest. In settings that require 
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rigorous controls and validation data, this effect must be compensated for experi-
mentally [94]. This can be accomplished using reagent blanks or method blanks that 
contain the extraction solvent used to prepare the samples. Better still is the addition 
of a matrix spike duplicate (MSD) containing a precise amount of a specific target 
analyte to determine the level of interference. Note that these blanks and/or MSDs 
are assayed in addition to the standard quality control samples. If the interference 
from the sample matrix results in the disruption of detection, precision, and/or accu-
racy of a target compound, that interference is deemed to be ion suppression. Ion 
suppression can often be overcome by changing ion modes (from positive to nega-
tive or vise-versa) or dilution of the sample.

9  Conclusion

Hopefully the readers of this text will appreciate the utility and potential of metabo-
lomics as a discipline  – but to formalize the rationale for its use: the ability of 
metabolomics to provide a “global” picture of a biological sample is nigh irreplace-
able for expanding knowledge of fundamental biological/biochemical questions, 
discovery of biomarkers, and to investigate connections within metabolic networks. 
If we encapsulate its definition as the systems-level study of biology at the bio-
chemical level, it is clear how the simultaneous measurement of the small molecules 
in a sample might be applied to a host of interesting scientific avenues.

Many researchers have found that there are countless benefits of this type of 
comprehensive measurement. This text, Metabolomics: Recent Advances and 
Future Applications, aims to do keep the reader abreast of the state of the art for the 
discipline of metabolomics. In this text, we have solicited works by experts in the 
field that communicates the state of the art for relevant topics but does so in a way 
that is accessible to both undergraduates and experts. The general application of 
metabolomics to biomedical and pharmaco-biological research has grown to such 
an extent that an attempt at comprehensive summation of contemporary research is 
a fool’s errand. Instead, we opted to focus this work on some of the areas which 
show the greatest focus of recent investigations, while attempting to honor the depth 
and breadth of fields which benefit from the core techniques described above. These 
were presented as a broad overview rather than a comprehensive treatment in the 
hope that the reader would easily grasp the fundamentals to aid in the understanding 
of the chapters that follow.

In the following chapters, we will focus on the use of metabolomics to develop a 
comprehensive understanding of metabolic pathways, identifying health/disease 
biomarkers, predicting drug efficacy and toxicity, and understanding the molecular 
mechanisms of biological processes and their interactions. Through the integration 
of metabolomics data with other omics disciplines such as genomics, transcrip-
tomics, and proteomics, we can gain a more holistic view of biological systems and 
uncover novel insights into their functioning.

Looking ahead, future advancements in metabolomics will focus on enhancing 
analytical sensitivity, expanding metabolite coverage, and improving data 
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processing and analysis workflows. Metabolomics will be applied to clinically 
important questions and enable the dream of personalized medicine. Additionally, 
the integration of metabolomics with systems biology approaches and artificial 
intelligence algorithms will enable more accurate predictions and modeling of met-
abolic pathways and networks. There is little doubt that the future of science will 
rely more heavily on global and systems-level studies to bring us to the goal of 
predictive modeling for biology (Table 3).

Table 3 Exact mass and isotopic abundance

Element Isotope Exact mass Natural abundance

Hydrogen H(1) 1.007825 99.99
Hydrogen H(2) 2.014102 0.015
Carbon C(12) 12 98.9
Carbon C(13) 13.003355 1.1
Nitrogen N(14) 14.003074 99.63
Nitrogen N(15) 15.000109 0.37
Oxygen O(16) 15.994915 99.76
Oxygen O(17) 16.999131 0.038
Oxygen O(18) 17.999159 0.2
Fluorine F(19) 18.998403 100
Sodium Na(23) 22.98977 100
Magnesium Mg(24) 23.985045 78.9
Magnesium Mg(25) 24.985839 10
Magnesium Mg(26) 25.982595 11.1
Phosphorus P(31) 30.973763 100
Sulfur S(32) 31.972072 95.02
Sulfur S(33) 32.971459 0.75
Sulfur S(34) 33.967868 4.21
Chlorine Cl(35) 34.968853 75.77
Sulfur S(36) 35.967079 0.02
Chlorine Cl(37) 36.965903 24.23
Potassium K(39) 38.963708 93.2
Calcium Ca(40) 39.962591 96.95
Potassium K(40) 39.963999 0.012
Potassium K(41) 40.961825 6.73
Calcium Ca(42) 41.958622 0.65
Calcium Ca(43) 42.95877 0.14
Calcium Ca(44) 43.955485 2.086
Calcium Ca(46) 45.953689 0.004
Calcium Ca(48) 47.952532 0.19
Iron Fe(54) 53.939612 5.8
Manganese Mn(55) 54.938046 100
Iron Fe(56) 55.934939 91.72
Iron Fe(57) 56.935396 2.2

(continued)
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Table 3 (continued)

Element Isotope Exact mass Natural abundance

Iron Fe(58) 57.933278 0.28
Copper Cu(63) 62.929599 69.17
Zinc Zn(64) 63.929145 48.6
Copper Cu(65) 64.927792 30.83
Zinc Zn(66) 65.926035 27.9
Zinc Zn(67) 66.927129 4.1
Zinc Zn(68) 67.924846 18.8
Zinc Zn(70) 69.925325 0.6
Selenium Se(74) 73.922477 0.9
Selenium Se(76) 75.919207 9
Selenium Se(77) 76.919908 7.6
Selenium Se(78) 77.917304 23.5
Selenium Se(80) 79.916521 49.6
Selenium Se(82) 81.916709 9.4
Molybdenum Mo(92) 91.906809 14.84
Molybdenum Mo(94) 93.905086 9.25
Molybdenum Mo(95) 94.905838 15.92
Molybdenum Mo(96) 95.904676 16.68
Molybdenum Mo(97) 96.906018 9.55
Molybdenum Mo(98) 97.905405 24.13
Molybdenum Mo(100) 99.907473 9.63

Exact mass and isotopic abundances for biomolecules and some trace elements. Exact mass mea-
surements for common biomolecules including natural abundance. Table includes some essential 
trace elements – iron, zinc, fluoride, selenium, copper, chromium, iodine, manganese, and molyb-
denum [95] – and biomolecules [96].
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scRNAseq Single-cell RNA sequencing
UNC Unknown node correspondence methods
WGCNA Weighted network approach

1  Introduction

Biological networks can be described as a set of biological molecules represented as 
nodes (also called vertices) connected, via a measure of the strength of a biomolecu-
lar interaction, by edges. Metabolic and lipidomic networks connect metabolites 
and lipids as nodes through edges representing the chemical or metabolic reactions 
that generate product from substrate (or reactant). The association (edges) between 
molecules (nodes) can stem from different types of relationships or interactions that 
provide information about the chemical or metabolic reactions that link two nodes, 
their correlation or co-behavior in a specific condition, or their chemical properties 
that define node relationships. Metabolic reaction networks, connecting metabolites 
as nodes through chemical reactions as edges, describe systems that are responsible 
for maintaining homeostasis and regulating cellular functions. The construction of 
complete chemical reaction networks of metabolism are informed by the following:

 (i) The precursor and product of an enzymatic reaction
 (ii) Reaction stoichiometry and enzyme kinetics
 (iii) Reaction directionality
 (iv) Subcellular localization of reaction

Pathway is a set of context-dependent interactions with clear beginning and end and 
often delineated directionality.

Network is any structure of nodes connected with edges. Metabolic network aims to 
provide context-free representation of the complete process often by combining 
pathways.

Inclusion of all these properties would allow both network analysis and simula-
tion. Alternatively, network development that only includes undirected, correlation 
information provide networks of relationships without causality or modeling utility.

Another layer of metabolic network complexity is that the subcellular membrane- 
bound compartments allow for the separation of different environments within the 
cell while at the same time bringing enzymes and their corresponding substrates in 
close proximity. Consequently, compartmentalization provides the optimal condi-
tion for enzymatic reaction. In constructing metabolic networks, information asso-
ciated to subcellular compartmentalization of enzymatic reaction can be incorporated 
when either data or knowledge is available. Compartments provide optimal condi-
tions for function of enzymes and additionally allow equivalent chemicals to be 
utilized for different purposes. Enzymes from the same family can reside across 
different compartments with members possibly functioning under slightly different 
conditions.

T. Nguyen-Tran et al.



41

Networks or graphs, consist of nodes, i.e. vertices that correspond to objects, for 
example metabolites or lipids, and edges that show connections between objects. 
Edges can have weights indicating strengths of connections. In undirected graphs, 
edges have no direction, and only show relationship not causality. In directed 
graphs, edges have direction indicating one-way relationships showing that edge 
can only transverses in a single direction. In a bipartite graph, vertices are separated 
into two sets, where nodes from one set can be unidirectionally connected to any 
node in the other set, but there are no edges within nodes of the same set. Graphs 
can be also multi-edge containing multiple edges between same two nodes, for 
example, edge for data and edge for knowledge. Hypergraph consists of nodes and 
hyperedges, where an edge can join any number of vertices. Graph is called con-
nected if there is a connection between any two points and complete if every pair of 
vertices is connected by a unique edge.

Through the web of metabolic reactions, biological systems are in constant flux 
with metabolites in a dynamic interaction with other biological molecules, experi-
encing continual chemical change. Metabolites concentrations, their destiny in a 
system, are thus determined by other members of the network, and greater under-
standing of either individual metabolites’ behavior or the biological systems can 
only come from the analysis of the network of associates.

2  Network Development Methods

High-throughput bioanalytical methods are providing increasingly detailed molecu-
lar coverage in a variety of sample types delivering range of datasets that can be 
explored through network investigation. At the same time, our knowledge about 
metabolite and lipid functions and processes is increasing, and there is a growing 
appreciation of the importance of their relationships within pathways and networks. 
Metabolic networks can be derived from data – data-driven networks, from biologi-
cal information in knowledge-driven networks or in a hybrid approach combining 
knowledge and data. Each of these approaches comes with its own set of advantages 
and disadvantages and the road taken has to be optimized based on the application 
of interest.

Knowledge-based network development includes combining enzymatic reaction 
information from databases or known pathways as well as literature derivation of, 
for example, possible enzyme-metabolite relationships. Derivation of this informa-
tion can be done directly from existing databases (some examples shown in Table 1) 
or from literature search, manually or with the help of Natural Language Processing 
methods (NLP). Clearly, in this approach, the network depends on the level of prior 
biological knowledge provided in selected information resource. These types of net-
works provide a map for observing interactions from the data in a context of pre-
defined possibilities. Knowledge-based networks can be small, for example, only 
observing individual pathways and showing relationships between only small 
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subset of molecules based on some property of interest. Alternatively, these net-
works can represent a large-scale efforts in building genome-scale, i.e. complete, 
metabolic processes networks for subsequent system modeling [11]. Some exam-
ples of metabolic knowledge resources as well as knowledge-based networks are 
listed in Table 1. An advantage of knowledge-based networks is that they do not rely 
on the quality, quantity, or accuracy of the data in user’s possession and thus will not 
be biased by small, sparse, or erroneous datasets. However, as knowledge-based 
networks depend on the current biological knowledge, it is natural to assume that 
they still have gaps or missing links in information that have not been discovered yet 
or is not readily available in resources utilized for creation of a network. Also, with 
different level of knowledge available for  distinct biological systems number of 
known interactions varies between species as well as metabolic processes. As an 
example, Recon3D represents the most comprehensive human metabolic network 
model to date. The version of this genome-scale model made available on 
MetabolicAtlas has 13,070 reactions and 8369 metabolites (current version avail-
able in metabolicatlas.org [32]. When building metabolic networks for other spe-
cies, a number of methods are made available including PathoLogic [20], which is 
used to build pathways from predicted enzymes that can be further validated using 
Semi-Automated Validation infrastructure (SAVI) software applying range of cura-
tion decisions [34]. With lipidomics methods becoming increasingly powerful and 
providing concentrations for hundreds of individual lipid molecules, there is an 
increasing effort to also deliver corresponding knowledge-based networks for lipi-
dome. BioPAN [14] and LINEX [21] provide users with the pathway mapping for 
lipidomic dataset, where in both cases knowledge-based lipid networks are used to 
provide insights about functional lipid associations.

An alternative knowledge-based approach relies on the knowledge of properties 
of the molecular set rather than knowledge of biological interactions. In this case, 
chemical ontologies or molecular characteristics can be used to educate building of 
relationships among compounds. In the example of ChEBI approach [15], users’ 
entry is represented in a network based on chemical properties information. This is 
a very useful approach for exploring known properties for molecules of interest; 
however, in this case network is developed for representation of properties, not for 
further utilization and can be a useful way to analyze chemical properties of a 
selected set of compounds. However this approach does not provide avenue for 
analysis of network interactions, only organization of known information. An alter-
native way to explore statistical enrichment of molecular groups based on chemical 
ontologies as well as structural similarities is provided by ChemRICH [6]. In this 
method, the goal is to step away from reliance on often limiting pathway informa-
tion in obtaining representation of the set and instead use structural similarities and 
chemical ontologies to map molecules (metabolites or lipids). This approach fol-
lows the notion that chemically similar compounds remain in biochemical proxim-
ity [7], thus possibly providing a way for assigning unknown molecules based on 
their properties and network clusters. Chemical ontology or properties networks can 
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Fig. 1 Most methods for network development are combining knowledge and data to give the 
most accurate network for features of interest. Based on information in databases and literature in 
knowledge-based approach, the user creates connections between features. In data-driven 
approach, the user relies on data and mathematical procedure to establish relationships. Combining 
the results of two approaches is done in order to reduce errors of the two methods and establish 
closest network to reality

be utilized to determine related compounds through their shared class belongings, 
where graph distance between molecular node and a class node can be used to quan-
tify relatedness between pairs of compounds (Fig. 1).

As a rule, data-driven methods for network derivation depend on the availability 
of datasets of sufficiently high quality and quantity and rely on a variety of mathe-
matical tools to build network directly from the data. Network edge determination, 
in this case, searches for dependences or similarities between node behaviors in 
samples or similarities in node properties based on a measure of choice. Applications 
for these highly versatile approaches range from spectral assignments [35] to deri-
vation of metabolic or signaling processes functions or dependencies between fea-
tures or samples (reviewed recently in [3]. A number of methods have originally 
been developed for general graph theory and a number of them are applied to other 
omics datasets, but they are in general also appropriate for metabolomics or lipido-
mics data as well. Data-driven methods can be further combined with knowledge- 
based networks in hybrid approaches. In hybrid methods the  attempt  is to take 
advantage of the available knowledge to either initiate network development from 
the data by using known interactions as a base for growing more extensive networks 
from data or to threshold fully data-derived networks at the end of the process. 
Several different approaches have been developed and tested for data-driven appli-
cations, without or with combination to knowledge-based networks. These method-
ologies can be broadly divided into correlation and classification-based network 
development methods.
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3  Correlation-Based Methods for Molecular 
Network Derivation

Metabolites and lipids that are linked through enzymatic or signaling pathways 
often show co-dependencies in the values that are represented through correlated 
changes in their concentrations across samples. Calculation of these pairwise cor-
relations based on the data from metabolomics or lipidomics measurements can 
provide data-derived adjacency matrix, where it is hypothesized that two metabo-
lites are linked if their correlation value is statistically significant and larger than a 
user-defined threshold. Correlation between molecules can then be viewed as the 
network edge value and a way to construct molecular network. General steps in 
constructing network from correlation analysis of the data are shown in Fig. 2.

The standard approach for correlation derivation is Pearson method, where  

correlation is calculated as r
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X X Y Y

i
N

i i

i
N

i i
N

i

�
� �� � �� �

� �� � � �� �
�

� �

1

1

2

1

2

 for features X and 

Y measured across N samples and having mean values of X  and Y , respectively. 
Pearson’s correlations are easy to interpret and calculate; however, this method does 
not accurately determine nonlinear dependencies. Alternative methods include 
Spearman  – rank-based method, distance correlation [38]  – calculating distance 
covariance, or mutual information [37] – machine learning-based correlation analy-
sis method. Correlation network design with any of these approaches does not guar-
antee the capture of biologically relevant mechanisms nor does it ensure selection 
of only direct relationships. A number of additional approaches have been devel-
oped in order to help narrow correlations down to only significant ones. The 

Fig. 2 Steps involved in the construction of molecular network from data using correlation-based 
methods including (a) data quantification and preprocessing; (b) determination of pairwise corre-
lations; (c) selection of correlations that are statistically significantly different from zero through 
comparison of p-value for significance of the difference of correlation from zero with a signifi-
cance level observed after appropriate multiple hypothesis testing. Finally, remaining edges can be 
represented in a network plot with either binary or weighted edges
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simplest approach utilizes threshold parameters for selection of relevant edges 
through p-value of correlation level significance as well as direct correlation level 
thresholding. In addition, regardless of the method of choice, correlation values are 
sample size dependent and thus networks have to be constrained by appropriate 
thresholds for statistical significance (p-value) and/or correlation level for reduction 
of the effect of sample size as shown by [40]. Once the significant correlation values 
are selected in a hard-threshold approach, they can be combined in an Adjacency 
matrix A =  [aij] with entries that are either 1 or 0 decided up on using threshold 
values as

 
a

r r p p
ij

ij ij�
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otherwise

threshold threshold

 

Alternatively, actual correlation values can be kept as edge weights showing pairs’ 
“closeness” level in the soft threshold application.

The statistical significance can be determined using T value calculation forcor-

relation as T r N
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, where rij is the correlation value between nodes i and j 

and N is a number of samples used for correlation calculation. P-value can be deter-
mined from T using Student’s t cumulative distribution function if normal distribu-
tion can be assumed for correlations. Fisher’s z-transformation of correlation levels 
establishes normal distribution for correlation values. Fisher’s z-transformed corre-

lation is obtained as z
r
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ln  and corresponding p-values are calculated as 

p z N Mij ij� � �� � � �� �� �2 1 3 2� (  for a sample set with N samples and M fea-
tures; θ corresponds to cumulative distribution function of standard normal distribu-

tion. It is important to notice that p-value in both approaches depend on the sample 
size or both size of sample and feature space. Correlation values are generally sam-
ple size dependent, where in small sample sizes, it is more likely to get spuriously 
large correlation values due to random sample variations, while with sample size 
increase individual sample variations contribute less and correlations become a bet-
ter reflection of the population levels. In smaller populations p-value for correla-
tions is larger, thereby making higher correlation values statistically insignificant 
and reducing the error caused by artificially large correlations of small sets. Although 
thresholding to the significance level helps reduce number of low significance 
edges, it does not guaranty that only direct relationships are kept in the network.

Selection of an optimal p-value correlation coefficient threshold depends on the 
distribution of the number of edges at different p-values [40] similarly to p-value 
threshold selection performed based on the p-value distribution in Benjamini- 
Hochberg FDR multiple hypotheses testing corrected set [9]. Therefore, multiple 
testing correction should be applied to significance thresholding of correlations, 
where Bonferroni correction, as the most conservative approach, has been utilized 
to determine nominal significance level of a = 0.01 for a given sample size and can 
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then be used to determine corrected p-value correlation threshold. In this way, 
p-value thresholding follows statistical rules and is determined appropriately for the 
sample size. Setting of correlation value threshold is less clearly defined. Shen et al. 
[36] have proposed a theoretically derived threshold for distance correlation that 

depends exclusively on sample size and is determined as � �N F
N

� ��
�
�

�
�
� �

�
2 1

0 02
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1 .
, 

where F�
�1  is the inverse cumulative distribution function with symmetric Beta dis-

tribution with shape parameter equal to 
1

2
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2
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� . This approach pro-

vides an interesting, theory-based method for general threshold dependence on 
sample size in a random dataset giving theoretical lower bound for the threshold; 
however, it does not include any specific properties of data. Toubiana and Maruenda 
[40] proposed an iterative approach where topologies of the correlation networks 
constructed at different levels of threshold are compared and the point of significant 
change is selected as an analysis threshold. In principle, this approach can be applied 
to any correlation analysis methodology. In the vicinity of the optimal threshold 
level for correlation value, the number of network edges is expected to remain stable 
with gradual increase in p-value stringency, going from 0.05 to 0.01 as a cut-off 
point for statistical significance. Following this assumption, the analysis of the sig-
nificance of changes in the edge number, using statistical methods such as modified 
Cox method can be implemented to determine optimal thresholds for both correla-
tion and p-value [40].

Edges between nodes in correlation matrix should ideally correspond to meta-
bolic fluxes, that is, reactions in the metabolic network. However, a number of fac-
tors influence the correlation results including short-term changes in enzymatic 
activity due to inhibitors or activations, random fluctuations due to noise in the data 
or reactions, metabolic processes compartmentalization in cells and organs, involve-
ment of metabolites in multiple pathways, or incomplete experimental coverage. 
Additionally, through the network, interaction between metabolites could result in 
indirect correlations leading to highly dense networks. Pairwise correlations that are 
caused by the presence of mediators can be high and thus remain after correlation 
thresholding. Issue of indirect correlations is addressed in the Gaussian graphical 
model approach used to determine partial correlations, that is, remove indirect 
dependencies. Briefly, Krumsiek et al. [23] showed that when dataset includes many 
more samples then features correlation matrix has a full rank andit is possible to 
calculate an inverse of correlation matrix. Following our nomenclature above, par-
tial correlation coefficients can be calculated as � � � �ij ij ii jj� � / , where (ϑij) = R−1 
and R is the correlation adjacency matrix. Partial correlation values correspond to 
pairwise correlation of metabolites i, j after correction for the correlation through all 
the other metabolites. Partial correlation in this way accounts for the presence of 
confounders and covariates, that is, correlation between features through the net-
work. This is a very powerful approach when significant number of samples is made 
available (Fig. 3 shows graphical explanation of the approach).

In a case when the number of features is larger than the number of samples or if 
any of the features are a linear combination of other features in the set, the resulting 
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Fig. 3 Geometrical representation of the partial correlation through removal of orthogonal inter-
actions. (a) Correlation between two features, a and b with values across measurements repre-
sented vectors in the figure. a and b are not orthogonal to vector representing feature c and are thus 
correlated with feature c. (b) Projections of vectors a and b onto a plane orthogonal to vector of 
feature c provide value for correlation between and b with contributions of c removed represented 
as a cosine of angle between projects

covariance matrix is ill-conditioned, that is, singular and matrix inversion and thus 
partial correlation calculation through inversion is not possible. GeneNet [30, 33] is 
initially built for analysis of genomics data; however, it has been now successfully 
applied to metabolomics as well [12]. In order to allow determination of partial cor-
relations in smaller sample sizes, GeneNet utilizes novel algorithm for shrinking 
correlation (covariance) matrix making it nonsingular and allowing inversion and 
derivation of partial correlation matrix possible for all sample sizes. The methodol-
ogy used for correction of covariance matrix in this approach is analytical shrinkage 
estimation of covariance and partial correlation matrices on model selection using 
local FDR multiple testing [33]. In GeneNet, authors decided to shrink correlation 
matrix toward identity matrix while leaving empirical variances unchanged. The 
goal of GeneNet is to provide a graph, where edges show direct dependencies 
between nodes. Alternative methods for covariance matrix shrinkage have been pro-
posed in order to provide improvement in network reconstruction performance [10].

Benedetti et al. [8] proposed an algorithm that optimizes correlation level cutoff 
selection through maximization of the overlap between the inferred network and 
available biological, prior, knowledge. With this approach, the focus is on finding 
network threshold that has the highest overlap with the known biological network, 
rather than utilizing predefined p-value threshold. Several methods have been com-
pared in the analysis including Pearson correlation network, inversion of covariance 
matrix, and GeneNet, where the approach of Benedetti et al. showed the best perfor-
mance overall. Interestingly, even in the optimization using a very limited 
knowledge- based network, authors were able to obtain significantly better network 
overall.

An alternative approach replaces need for user-defined cut-off point with the 
user-specified power value for correlations in weighted network approach (WGCNA) 
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[25]. WGCNA produces a fully connected network with edge weights and can be 
utilized to determine clusters of co-regulated molecules. In the original version, 
WGCNA is based on Pearson’s correlation matrix; however, recently other correla-
tion approaches have been tested with this method [42]. In WGCNA, the initial step 
is the calculation of correlation matrix that is transformed by rising all values to a 
“soft threshold power,” that is, value that is used to power the correlation of feature 
thereby emphasizing strong correlations. Soft power and threshold for the trans-
formed correlation matrix are optimized in this approach for maximal scale-free 
properties of the selected network. The scale-free network property is optimized by 
selecting threshold for soft power transformed correlation values that leads to a best 
linear fit for log10(H(d)) vs log10(d), where d corresponds to a degree and H(d) is 
distribution of a degree d across the network. Soft power and threshold are deter-
mined for each sample set separately by maximizing R2 value for the scale-free plot. 
Specific criteria in selecting correlation exponent in soft thresholding with weights 
are as follows (following recommendations of [41]: (a) power leads to a network 
satisfying scale-free topology at least approximately; (b) the mean connectivity 
should be high so that the network contains enough information (e.g., for module 
detection); (c) the slope of the regression line between log(p(k)) and log(k) should 
be negative (typically smaller than −2). The main result of a WGCNA method is 
network that is used for the determination of clusters, that is, node modules. These 
modules often represent specific processes, and highly connected modules have 
been shown to have, for example, major regulatory role. Although this is an interest-
ing approach for selection of major nodes through correlation analysis as well as 
clustering, WGCNA does not focus on the determine of single-step enzymatic reac-
tions although they are of major interest in metabolomics and lipidomics analysis. 
Additionally, WGCNA method’s assumption of a scale-free network topology is not 
always appropriate, particularly in metabolic networks.

It should be underlined that all correlation approaches thus far can only be 
viewed as exploratory methods developed to identify functionally related groups of 
metabolites or lipids and are not guaranteed to provide only direct mechanistic 
interactions. Even in the case of partial correlation analysis, it cannot ensure presen-
tation of only direct interaction particularly in a case of partial metabolite or lipid 
coverage with a range of latent variables. Results of these networks need to be fur-
ther validated and interpreted using biological knowledge and focused experimental 
analysis; however, they provide very valuable information to guide future experi-
ments. In spite of their approximate nature, they provide valuable information about 
network changes across experimental conditions or phenotypes.
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Fig. 4 Steps involved in the construction of molecular network from data using general 
classification- based methods including (a) data quantification and preprocessing; (b) determina-
tion of regression relationship between features; (c) selection of significant edges based on regres-
sion analysis and continuing to grow network for all features

4  Classification-Based Methods

Network derivation using classification approaches is once again developed exten-
sively for genomics with metabolomics and lipidomics only starting to benefit from 
these methods. In this type of approaches, regression of each feature i ∈ {1, …., N} 
is estimated against all the remaining N-1 features. Edge between pair of features is 

calculated as r signij i
j

i
j

j
i� � �� � � � � �� � � , where �i

j� �
is the regression coefficient of 

predictor variable xi for the response xj (Fig. 4). This approach can be used for the 
determination of regression-based edges using a variety of methods, outlined in 
great detail in [33].

Random forest (RF), a classification method, has been proposed by several 
authors as a base for data-driven network derivation. Two interesting examples are 
GENIE3 [17], directly applying RF to the dataset and iRafNet [31], combining dif-
ferent data types under a unified RF framework. Both approaches have been devel-
oped for genomics but are directly applicable to metabolomics or lipidomics data as 
well. The GENIE3 model considers characteristics (e.g., concentration or expres-
sion level) of each feature as a function of values for all other features sampled 
randomly from the complete dataset. iRafNet, a subset of potential network part-
ners, is selected based on the information in other provided datasets. When addi-
tional data or information is available, iRafNet generally performs better, as it 
includes prior knowledge, but in the case of fully unique dataset-driven dataset, two 
methods are equivalent. In this approach, determination of network is viewed as a 
collection of M subproblems trying to find regulators for M features, where determi-
nation of regulators is viewed as a classification equivalent to feature selection prob-
lem in classification.

In both approaches, the measure of feature xi is modeled as a function of the 
values for other features using RF, that is, tree ensemble. Features that are strong 
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predictors of xi are considered as regulators of this feature. Specifically, the impor-
tance score for feature xk as a predictor of xi, Ski is equal to the total decrease in node 
impurity following the splitting of samples based on the measurements of feature xk.

Partial least squares (PLS) regression is also presented as a powerful method for 
exploring relationships between biological molecules, with application for lipid net-
work derivation presented by Kujala et al. [24]. Connectivity score in this approach 
is based on the fitting of n PLS models one for each lipid, where each lipid measure-
ments are predicted with n-1 remaining lipids. The latent factors t j

l� �  for lipid j are 
a linear combination of values for all other lipids with PLS determined regression 

coefficient c j
l� �  such as x tj

l

l j
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�
� �

1
; ϑ is number of orthogonal latent factors 

used for the fitting, that is, number of PLS components used in the model. The con-
nectivity score that can be viewed broadly as the edge between pair of lipids is cal-

culated from PLS parameters as s
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for the network.
A number of other supervised machine learning methods have been explored as 

possibly powerful ways to derive feature edges. Applications of LASSO regulariza-
tion method and Bayesian network inference have been recently reviewed [16]. 
With LASSO, regularization is explored as a way to reduce model complexity. L1 
regularization of LASSO is used as a way to push edge coefficients toward zero, in 
a way providing a variable selection thereby reducing model complexity. Bayesian 
networks are directed acyclic graphs providing both dependence and causality 
between features. In this approach, Markov-Chain-Monte-Carlo (MCMC) proce-
dure is used to estimate precision matrix by searching for the best fit with the data 

of large space of possible graph configurations in total 2
1

2

M M �� �
, where M is number 

of nodes, features. Recently, Graph Neural Network (GNN) approach was used by 
Alghamdi et  al. [2] to model cell-wise metabolic flux from single-cell RNA-seq 
data. The scFEA method assumes that the modeling of the flux variations of meta-
bolic modules can be performed using nonlinear function of the changes in enzyme 
levels obtained using transcriptomics and that in all single cells total intermediate 
substrates flux imbalance is minimized. Using scRNAseq data and GNN, this 
approach can model flux through metabolic network from transcriptomics data 
while at the same time providing graph of metabolic modules. Application of neural 
network analysis directly to metabolomics and lipidomics data for network deriva-
tion or analysis is thus far only done by a handful of authors, with an example of 
deep learning use presented by [5]. Further applications of modern classification, 
machine learning, and neural network methodologies in metabolomics and lipido-
mic network derivation and analysis are desired.
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5  Analysis of a Network

Once network is built, it motivates exploration using a variety of methods from 
graph analysis and data mining. Generally, learning based on networks can be 
broadly divided into node classification, link, that is, edges prediction, network clas-
sification, and embedding [29].

Node classification can find a role in the prediction of function of biomolecules 
using semi-supervised learning by grouping nodes within the entire network. In the 
context of metabolic or lipidomic networks, node classification can be used to 
obtain functional similarities between metabolites in one network, for example, bio-
logical system, using information known from other biosystems. Similarly, link, 
that is, edge prediction can be performed as an ML task where known edges are 
used to train the model that is then used to predict additional, missing links from 
network data. Graph classification or regression is utilized to predict properties of 
graphs. When graph is a representation of a molecule, this approach can be used to 
predict molecular properties. In the context of lipidomic or metabolomics network, 
this approach can be used to determine similar metabolic outcomes. Graph embed-
ding is most often a preprocessing step that is used to devise representation of nodes 
or graphs as fixed size vectors making subsequent machine learning analysis easier. 
Graph Neural Networks (GNNs) are a class of deep learning AI methods designed 
to analyze network, graph data, unlike regular deep learning approaches appropriate 
for analysis of vector data. Examples of some GNNs used in biological network 
data analysis are recently reviewed in [29].

6  Network Comparison Methods

Increasing sizes of datasets and abundance of network development methods and 
models introduces the next challenge of trying to derive biological information from 
networks. Analysis can be either aimed at specific characteristics of nodes and 
edges or overall network structure or, more often, investigation of similarities and 
differences between networks in different conditions, that is, health and disease or 
treatment and placebo or changes in the network during time course analysis. 
Comparison between networks in the context of metabolome or lipidome can be 
broadly divided into three different goals:

• Comparison of the overall network equality through analysis of the distance 
between complete networks. In this approach, the goal is to provide numeric 
estimate of the change for the whole network.

• Determination of the major changes between nodes through either/or analysis of 
differences in the number of edges or edge weights, where in the context of meta-
bolic network, this would be an indication of changes in metabolite or lipid 
behavior.
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• Determination of the major changes in edges through analysis of the changes in 
the edge weights. In a metabolic network, this would be an indication of changes 
in reactions, that is, enzymatic functions.

7  Overall Network Comparison

With network analysis becoming a staple in variety of areas, there is an abundance 
of methods for network comparison, and the main issue is the selection of the most 
appropriate approach for the dataset and analysis goals. In an effort to help select 
optimal methodology, Tantardini et al. [39] have recently presented an appraisal of 
several popular network comparison methods for mostly undirected, unweighted 
graphs as well as few methodologies for comparison of directed or weighted net-
works. Although most methods have been developed to deal with significantly 
larger networks than what is generally seen in metabolomics and lipidomics, they 
can easily be applied in these areas as well. Network analysis methods deal with 
either networks with the same node sets (known node correspondence methods, 
KNC) or networks with possibly different node sets (unknown node correspondence 
methods, UNC). UNC methods can be of interest in, for example, comparison of 
metabolic networks between different species, while KNC methods provide direct 
comparison of networks derived from data exploring related sample types (e.g., 
disease vs. control).

The initial task in network comparison is the determination of optimal distance 
metric for graph analysis. An obvious approach is to directly compute differences 
between adjacency matrices between networks using any of the distance calculation 
methods (Euclidean, Jaccard, weighted Jaccard, etc.). Alternatively, the method 
based on the direct node distance comparison is DeltaCon [22]. DeltaCon compares 
similarity between all node pairs in two graphs using Matusita distance:
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ij
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ij
B� �� ��  are similarity 

matrices for network A and B defined as S = [I + ϵ2D − ϵA]−1 and A is network 
adjacency matrix, D =  diag (ki) is degree matrix of node degree (ki), and ϵ is a small 
positive constant. Computational cost of DeltaCon is (N2) thus for networks in 
metabolomics and lipidome that rarely have more than few hundred nodes this is 
acceptable. This approach provides more significant change for larger weight 
changes or for removing edges, while random changes favorably lead to a smaller 
impact on distance measure.

An alternative method to direct distance analysis is the network alignment or 
graph isomorphism analysis used to directly compare networks in order to deter-
mine conserved and missing nodes and edges across two, pairwise, or multiple net-
work comparisons. Alignment can be performed locally or globally, where local 
alignment tries to align small regions accurately risking failing in finding large, 
conserved connections between subgraphs. Global alignment searches for one-to- 
one mapping of nodes in different networks aiming to overcome shortcomings of 

Network Development and Comparison in Lipidomics and Metabolomics



54

local alignment methods. In general, all alignment methods define an objective 
function, measure, or a score of alignment quality and utilize a search algorithm that 
tries to find an optimal solution.

An interesting method developed for metabolic network alignment is H-GRAAL 
[28] specifically designed for the comparison of metabolic networks between differ-
ent species. H-GRAAL and a number of related methods are based on the original 
GRAAL algorithm, which detects statistically significantly similar topological 
regions in large networks in order to highlight conserved or missing nodes and 
edges between two or multiple networks. GRAAL approach introduces concept of 
graphlets that include more detailed description of nodes by incorporating consider-
ation of its degree based on its local neighborhood of connections. Graphlet similar-
ity search is performed over a pair of aligned nodes independently, locally, of all 
other nodes. Large-scale networks make prioritizing of curation challenging and 
with uncertainty in the parts of the network that need further consideration and 
make comparison of networks as well as simulation of systems difficult. Medlock 
and Papin [27] have recently introduced a ML-based approach for automated meta-
bolic model ensemble-driven uncertainty elimination using statistical learning 
(AMMEDEUS) as a way to guide curation of genome-scale metabolic models as 
well as databases.

Clustering of network provides modules of nodes, in our case modules of lipids 
or metabolites, where molecules within a same module are connected by a short 
edge paths and strong connections. Node modules can be determined for any net-
work regardless of the method for network derivation. Kujala et  al. have shown 
module cluster comparison method based on PLS-derived association scores [24]. 
The differences between modular structures in two networks is calculated as 
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, where Fkr(j) is the module, L0 in network k that con-

tains lipid j. |L0| shows the number of lipids that belong to modules in both net-
works. If N = 0, modular structures of the two networks are identical; otherwise, 
p-value for the statistical significance of the modules difference can be calculated as 
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provides information about the changes in network modules. Differential connectiv-
ity for a single node can be obtained using mean absolute distance statistic as 
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  . With this approach, it is possible to obtain differ-

ences bws of nodes as well as for each individual node.
Analysis of maximally dysregulated subnetworks, proposed by Mamano and 

Hayes [26], uses simulated annealing-supported local search for biological network 
alignment. In this approach, simulated annealing was shown to provide the optimal 
solution with better node pairing between networks and good topological and func-
tional similarity scores. Simulated annealing, as a metaheuristic algorithm, is not 
developed for any specific problem and can be applied to any optimization problem 
as long as there is a defined objective function and neighbor relationship and there 
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are solutions for different states. Although the example presented by [26] is in 
protein- protein interaction network, similar approach can be utilized in metabolo-
mics and lipidomics network comparisons, where score function can combine vari-
ous topological and biological similarity measures and simulated annealing 
approach can provide global optimization solution. Once again, methods developed 
for network comparison in different applications present themselves to metabolo-
mics and lipidomics applications, but it is up to the analyst to select the most appro-
priate comparison approaches for the network type, size, and analytical question.

8  Network Visualization

Visualization of networks and network components is an extremely important, intu-
itive way for the interpretation of results, but with variety of network sizes, data 
types, and applications, there is no single solution. Visualization methods range 
from the simplest ones showing adjacency matrices to more complex methods that 
are visualizing force directed layouts in 2D or 3D. Some examples of freely avail-
able network visualization software application are listed in Table 2 in addition to 
many libraries available in different programming languages dedicated to network 
visualization.

We recommend to the reader to freely explore many possible ways for the visual 
presentation of networks as the complexity and size of metabolic network necessi-
ties optimization of visualization for each application.

9  Conclusions

A number of methods for knowledge-based, chemical ontology, or data analyses 
network derivation combined with methods for network analysis, comparison, and 
visualization provide abundance of possibilities, all with their strengths and weak-
nesses. Knowledge-based networks are clearly limited by gaps in current 

Table 2 Examples of free software tools for network visualization

Software 
application Brief outline Reference and Site

Cytoscape Network visualization and analysis tool with a number 
of applications developed for bioinformatics

https://cytoscape.org/

OmicsNet WebGL-based method https://omicsnet.ca
[43]

Gephi General open graph visualization platform. https://gephi.org/
Arena3D Interactive 3D visualization of multimodal networks 

particularly appropriate for polyomics datasets
http://bib.fleming.
gr:3838/Arena3D
[19]
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information and can create incomplete networks. Ontologies can possibly represent 
different concepts at different levels of representation. Data-driven networks in gen-
eral only show co-behaviors and cannot ensure representation of metabolic relation-
ships or direct interdependencies. Major developments are under way and further 
improvements are absolutely required before modeling of complete metabolic net-
work becomes possible.

Only by combining knowledge, large and diverse datasets and appropriate statis-
tical, machine learning, and modeling tools, we will be able to ultimately obtain 
truly a complete in silico representation of biological systems’ weird and wonderful 
metabolic network.
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Analysis and Interpretation of Metabolite 
Associations Using Correlations

Edoardo Saccenti

Abbreviations

COVSA Covariance Simultaneous Component Analysis
PCA Principal Component Analysis

1  Introduction

Metabolomics is the study of small molecules, called metabolites, produced by liv-
ing organisms. These molecules are important indicators of the state of a biological 
system, providing insights into the metabolic pathways involved in various pro-
cesses. The complexity of metabolomics data, which can involve hundreds or thou-
sands of metabolites, requires statistical methods to identify relationships 
between them.

Correlation analysis is an essential tool in metabolomics research for identifying 
metabolite associations and gaining insights into underlying biological processes. 
By measuring the strength and direction of the relationship between two metabo-
lites, correlation analysis can provide insights into metabolic pathways and biologi-
cal systems.

As the field of metabolomics continues to expand, new techniques and approaches 
are being developed to better understand the complex metabolic pathways involved 
in various biological systems.

This chapter provides a detailed overview of how correlation analysis can be 
used to identify metabolite associations in complex metabolomics data. The advan-
tages and limitations of each method are discussed, providing guidance on when to 
use each approach.

It discusses the correlation between metabolites in biochemical networks and 
explores possible reasons behind these correlations, including global perturbations, 
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local perturbations, intrinsic variability, experimental noise, and data pre- processing. 
Molecular mechanisms that lead to correlations in replicated experiments of meta-
bolic networks are also discussed, providing an overview of how equilibrium and 
mass conservation, asymmetric control, enzyme variability, and the systemic nature 
of metabolic control can lead to patterns of correlation.

The chapter covers diverse types of correlation analysis, such as Pearson’s, 
Spearman’s, and Kendall’s correlation, and how to assess the significance of corre-
lation analysis results. It also discusses the importance of correcting for multiple 
testing and taking biological factors into account when interpreting correlation anal-
ysis results. The chapter presents mutual Information and its relationship with cor-
relation coefficients.

The chapter explores how correlation analysis can be integrated with other statis-
tical methods, such as network analysis. Analysis of a set of correlation matrices 
using component methods is presented. The chapter includes several case studies 
that demonstrate the practical applications of correlation analysis in metabolomics 
research. These case studies illustrate how correlation analysis can be used to iden-
tify metabolite associations in different biological systems.

By covering the principles, methods, and applications of correlation analysis, 
this chapter serves serves as a resource for researchers seeking to identify metabo-
lite associations and gain insights into the complex metabolic pathways and biologi-
cal systems involved in various biological processes.

2  Correlation Among Metabolites in Metabolomic Data

In metabolomics, correlation refers to the relationship between the levels of differ-
ent metabolites in a biological sample. Quantifying and analyzing correlations 
among metabolites is important because it can help to identify groups of metabo-
lites that are co-regulated or interact with each other in a biological pathway or 
process. This information can be used to gain insights into the underlying biological 
mechanisms that are responsible for a particular metabolic phenotype or disease 
state. Additionally, correlation analysis can be used to identify potential biomarkers 
or therapeutic targets and to prioritize features for further investigation in subse-
quent studies. Therefore, understanding the correlations between metabolites can 
provide valuable insights into the underlying biology and aid in the interpretation of 
metabolomics data.

A typical experimental metabolomic study involves collecting multiple samples 
from replicates of a biological system and measuring a large number of metabolites. 
Metabolites are organic molecules that are not directly encoded in the DNA 
sequence of an organism. Instead, they are produced by other metabolites through 
chemical reactions, which are mostly mediated by a vast array of different enzymes 
[20]. Metabolite concentrations are regulated by a network of biochemical reactions 
that result in a level of interdependence that is not observed in proteins and tran-
scripts [20].
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In metabolomic data, it is often observed that some metabolites show high cor-
relation when correlations are calculated on replicate samples (i.e. biological repli-
cates of a system under identical conditions), while the majority show little or no 
correlation. One of the first observations of this phenomenon was reported in 
Roessner et  al. [69] and later observed in subsequent studies [17, 29, 56, 104]. 
These early metabolomics studies were conducted on plants or unicellular organ-
isms. However, such correlation patterns are easily observed when metabolite con-
centrations are measured in biofluids such as blood, urine, and saliva. When 
analyzing correlations in metabolomics data, it is important to not only examine the 
strength and direction of the correlations but also the distribution of these correla-
tions. By examining the distribution of correlations, one can identify outlier correla-
tions that may not reflect true biological relationships or correlations that are highly 
dependent on a small subset of samples.

Figure 1 shows the distribution of pairwise correlation coefficients between 
metabolite concentrations measured in biofluids (urine and blood) in animal and 
human metabolomic studies. The two distributions are skewed towards low values, 
with a few pairs of metabolites strongly positively correlated and relatively few 
negative correlations. These patterns are typical of the correlations observed in 
metabolomics data.

Fig. 1 Distribution of metabolite correlations (Pearson’s coefficient rP) observed in two metabo-
lomic studies. (a) Correlation between the 1891 metabolites pairs obtained from 62 metabolites 
measured using NMR on 79 urine samples collected from pigs. (Data from Lusczek et al. [54] 
obtained from https://www.ebi.ac.uk/metabolights/with accession number MTBLS123). (b) 
Correlation between the 8778 metabolites pairs obtained from 133 metabolites measured using 
UPLC-MS on 2139 blood samples collected from humans. (Data from Magnusson et  al. [55] 
obtained from https://www.ebi.ac.uk/metabolights/with accession number MTBLS93)
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3  Why Are Metabolites Correlated?

A legitimate question to ask is from where and why these correlation patterns arise. 
A good starting point would be to consider Fig. 2, where the correlation among 
three metabolites is shown [20]: Glutamine is produced from glutamate through a 
biochemical reaction enzymatically mediated by glutamine synthetase, and thus, 
they are direct neighbours in the metabolic map (see Fig. 3, top). However, their 
concentrations are not correlated, as shown in Fig. 2a. On the contrary, the concen-
trations of methionine and valine, which belong to two different metabolic path-
ways (see Fig. 3, bottom), are highly correlated (see Fig. 2b).

Since metabolites are organized in interdependent biochemical networks, the 
naive explanation is that metabolites that are directly connected in the reaction 
chain are highly correlated, while metabolites far away in the network are less cor-
related. However, as this example shows, this is generally not true [20].

After establishing that concentrations between metabolites do not arise due to 
topological characteristics of the metabolic network, the question remains about 
what mechanisms generate the observed correlation patterns. The Pearson’s correla-
tion (Eq.  1) used to quantify metabolite associations in Fig.  1 is a standardized 
measure of co-variation. The existence of a correlation presupposes the existence of 
a source of variability for some of the metabolites [90]. Steuer [90] defined three 
scenarios in which variation (or perturbations) can be induced in a biological sys-
tem, resulting in correlations among metabolite concentrations:

Fig. 2 Scatter plot of standardized concentrations of (a) Glutamate and glutamine and (b) 
Methionine and valine. Glutamate and glutamine are direct neighbours in the metabolic map, 
being glutamine directly produced from glutamate: Nonetheless their concentrations are uncor-
related (rS = 0.02). On the contrary, methionine and valine are far apart in the metabolic network 
(see Fig. 3): nonetheless their concentrations are highly correlated (rS = 0.95). (Data extracted 
from Fig. 1 in Camacho et al. [20]. Data originally published in Weckwerth et al. [104])
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Fig. 3 Metabolic map of the cysteine and methionine metabolism (top) and of valine, leucine, and 
isoleucine metabolism (bottom). Methionine and valine (highlighted in red) are far apart in the 
metabolic network; nonetheless, their concentrations are highly correlated, as shown in Fig. 2b. 
(Figure assembled with metabolic maps map00270 and map00290 from KEGG (https://www.
genome.jp/kegg/) [47, 48]. Reproduced with permission a.)
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 1. Global perturbations: If the metabolic network is perturbed globally such that 
many metabolite concentrations are affected, this results in correlation among 
metabolites. This can happen when external factors like temperature, light, or 
stress are manipulated or when a treatment is imposed on the system, influencing 
many metabolites simultaneously.

 2. Local perturbations: This happens when a specific point of the network (or a 
specific reaction) is perturbed, for instance, by inactivating an enzyme.

 3. Intrinsic variability: Correlation can also arise in the absence of external pertur-
bations due to variability and fluctuations inherent in all biological systems. For 
example, small differences in enzyme concentrations that depend on (slightly) 
different gene expression levels result in the correlation patterns observed in 
biological replicates, that is, when copies of systems are measured under identi-
cal (experimental) conditions. Such intrinsic variability is what causes the cor-
relation patterns observed in Fig. 2b, bottom.

To these three biological scenarios, we can add two further possible technical, 
non-biological, reasons for the observed correlation among metabolites:

 1. Experimental noise: Metabolites are usually measured and quantified using 
comprehensive omic experimental platforms like nuclear magnetic resonance 
(NMR) [27, 101] or mass spectrometry (MS) [23, 33], both of which require 
sample preparation before measurements can be performed. Any error in the 
sample preparation may affect all metabolite in the same direction, introducing 
spurious correlation [59]. Internal standards are often added with the aim of 
achieving exact quantification. Any error in the quantity of internal standard 
added will result in a spurious correlation between metabolite concentrations. 
Metabolomics (and proteomics) data acquired with MS are often processed 
using deconvolution tools to enable mathematical separation and quantification 
of co-eluting peaks. Any positive error on one of the deconvoluted peaks will 
result in a negative error on the other(s) since the area under the peaks is con-
stant. These errors will introduce negative correlations among concentra-
tions [76].

 2. Metabolomics data are often pre-processed before statistical analysis: This may 
entail scaling, normalization, or transformation [98]. Normalization, in particu-
lar, is a very critical step since it can induce spurious correlations [73]. Some 
examples are discussed in Sect. 5.4.

As discussed in Sect. 5.1, the calculation of correlation between two or more 
metabolites is appropriate and statistically meaningful only if all samples come 
from the same distribution and are identically distributed (see Fig. 6). This implies 
that correlations are meaningful only when taken over homogeneous biological 
replicates. This assumption resonates with the observation that high correlations 
are often observed in metabolomic data measured on replicate experiments per-
taining to replicas of the same system under identical conditions (see Figs. 1 and 
3). Therefore, it is of interest to understand where these correlation patterns 
arise from.
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Figure 4a shows a metabolic network consisting of five metabolites involved in 
five reactions (Fig. 4b). The reaction network includes a conserved moiety (i.e. the 
total concentration [A1] +  [A2] of metabolites A1 and A2 is constant) and a rapid 
reversible equilibrium reaction (S1 ↔ S2). The correlation among the concentrations 
at steady state of these metabolites is shown in Fig. 4c. The negative correlation 
between the concentration of A1 and A2 is expected since the sum must be constant. 
If one increases, the other must decrease and vice versa. S1 and S2 are neighbours in 
the reaction network and are also correlated. However, S1 and S3 are not neighbours, 
and still, they are highly correlated. These correlations arise as a consequence of the 
data generation procedure: Small differences (random perturbations) among the 
parameters of the dynamic system (i.e. in the parameters of the system of differen-
tial equations) have been introduced between different runs, resulting in slightly 
different time profiles and steady-state concentrations. This mimics the differences 
observed between similar, albeit not identical, biological systems, like two bacteria 
or plants of the same species or two humans. For more details, see the Methods sec-
tion of Steuer [90]. Strategies for the simulation of metabolomics data can be found 
in Jahagirdar et al. [42].

This example shows how correlation patterns are a systemic characteristic of the 
metabolic network. All reactions contribute to the observed patterns of correlations, 
and any two metabolites can be correlated or not depending on the entire complex 
of biochemical reactions, regulatory interactions, and fluctuations characterizing 
the system [90].

Fig. 4 (a) Reaction network consisting of five metabolites A1, A2, S1, S2 and S3. (b) The reactions 
include a reversible rapid equilibrium reaction (S1 ↔ S2) and conserved moiety [A1] + [A2] = const. 
All reaction rates follow mass-action kinetics. For more details see caption of Figure 3 in Steuer 
[90]. (c) Correlation patter among metabolite concentrations measured at steady state. Replicate 
samples have been obtained introducing small perturbations in the model parameters. (Figure 
adapted from Steuer [90]. Reproduced with permission)
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4  Molecular Mechanisms Responsible for Observed 
Correlations in Replicate Experiments

Camacho et al. [20] used a fairly complex model of yeast glycolysis containing 17 
reactions [67, 95] (in particular, see Figure 1 in Pritchard and Kell [67]) to investi-
gate the underlying characteristics of the metabolic network that contribute to the 
observed correlation patterns in replicated experiments. The authors introduced 
variability among replicates by slightly altering the initial enzyme concentrations, 
ranging between 90% and 110% of a base model, and employed co-response profile 
analysis to identify the enzymes that influenced the system and the extent of their 
impact [38, 46]. They found and discussed several mechanisms:

 1. Equilibrium. If two metabolites are near to or in chemical equilibrium (like S1 
and S2 in the reaction network of Fig. 4a, b), their concentrations at steady state 
will exhibit positive correlation. This is because at equilibrium, the ratio [S1]/[S2] 
of the two concentrations at steady state is (approximately) equal to the equilib-
rium constant, Ke = [S1]/[S2]. Hence, the concentration of S1 and S2 is (almost) 
perfectly correlated. Any change in the concentration of S1 results in a change in 
the concentration of S2 in the same direction.

 2. Mass conservation. If two metabolites are involved in a mass conservation rela-
tion, they exhibit correlated concentration. This happens, for instance, in moiety- 
conserved species, i.e. chemical subunits that are conserved throughout the 
chemical cycle. The constraint of mass conservation imposes that the correlation 
must be negative. Metabolites A1 and A2 in the reaction network in Fig. 4a are in 
a conserved moiety; thus, the sum [A1] + [A2] is constant, and the concentration 
of A1 and A2 are necessarily anticorrelated. Any change in the concentration of A1 
results in a change in the concentration of A2 in the opposite direction.

Correlations arising from equilibrium and mass conservation are necessarily 
large, but metabolomics data analysis shows that they are also quite uncommon. 
Referring to the examples in Fig. 1, the fraction of large correlations (|rP| > 0.8) 
is relatively small: 1.8% (Example A) and 1.2% (Example B).

 3. Asymmetric control. If the concentrations of two metabolites are controlled by 
the same enzyme(s), they will exhibit correlated behaviour, no matter how far or 
close they are in the metabolic network. The correlation arises from the amplifi-
cation of the variation of that enzyme as a consequence of the summation theo-
rem for concentration control [38].

 4. High variability of one enzyme. If the concentration of one enzyme differs 
greatly between replicates, that is, if it is poorly controlled, its high variance will 
lead to a negative correlation between its substrate and the product metabo-
lites [90].

Correlations arising because of these two latter mechanisms are usually mod-
erate in magnitude: 0.6 < |rP| < 0.8. Despite being more common than strong 
correlations, they are far from being abundant: With reference to the data sets 
from Fig. 1, the fraction of moderate correlations is 23.4% (Example A) and 
3.5% (Example B). In fact, the vast majority of correlations is small, with |rP| < 
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0.6: 95.3% (Example A) and 74.8% (Example B). This a results of the  
Systemic nature of metabolic control

 5. Systemic nature of metabolic control. Two metabolites can be produced by reac-
tions catalyzed by the same enzyme, and despite this metabolic constraint, their 
concentration can be uncorrelated. This is because at the overall systemic level, 
they can be influenced by other enzymes that affect them with the same strength 
but in different directions. This explains why metabolites that are close in the 
metabolic network may show little or no correlation despite being directly 
related.

5  Measures of Association

Correlation and associations among metabolite concentrations can be quantified 
using different measures (or indexes) of correlations. This section reviews the most 
commonly used correlation coefficients (Pearson’s, Spearman’s, and Kendall’s) 
together with mutual information. Characteristics and assumptions of each index 
are discussed together with pitfalls. An overview is given in Table 1, together with 
other approaches used to analyze correlation matrices.

5.1  Pearson’s Correlation

The Pearson’s correlation coefficient rP (also called moment-product correlation) is 
probably the oldest and most used measure of association between two variables. It 
dates back to the work of Bravais [15] and Galton [31] and was defined, in modern 
terms, by Pearson [63, 65]. Given two variables x and y (representing metabolite 
concentrations, or any other biological feature), measured on n observations, the 
Pearson’s correlation coefficient rP is defined as:

 

r
x y

x yP

,

std std
�

� �
� � � �
cov

 

(1)

where cov(x,y) is the covariance between x and y and std(x) and std(y) are the stan-
dard deviation of x and y, respectively. Variance and covariance are estimated from 
the sample observations. The Pearson’s coefficient rP can be interpreted in various 
ways, with different, albeit equivalent, algebraic, geometric, and trigonometric 
reformulations [53].

The Pearson’s correlation is a measure of linear association between x and y 
(Fig. 5a) and, as such, should not be used when the relationship is not linear: This 
will result, in general, in correlation coefficients which are biased downwards, as 
shown in Fig.  5b. Non-linear, monotonic relationships are, in general, better 
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Table 1 Overview of methods for analyzing correlations discussed in this chapter

Method Description
Equation 
in text References

Pearson’s 
correlation

Quantifies the degree of linear association between 
two variables. Not suitable for not linear 
relationship.

Eq. (1) Pearson [63, 
65]

Spearman’s 
correlation

It is a non-parametric measure of association and is 
often used when the relationship between two 
variables is not linear, but rather monotonic. It is 
calculated by converting the values of each variable 
to their ranks and then calculating the Pearson’s 
correlation coefficient between the two sets of ranks. 
This allows for the detection of non-linear 
relationships between the variables.

Eqs. (2), 
(3), and 
(4)

Spearman 
[87]

Kendall’s tau 
corelation

Like Spearman’s correlation, it is often used when 
the relationship between variables is not linear, but 
rather monotonic. It is calculated by comparing the 
number of concordant and discordant pairs of 
observations in the two variables being compared.

Eqs. (5), 
(6), and 
(7)

Kendall [49]

Mutual 
information

It is a measure of the dependence between two 
variables. It quantifies the amount of information 
that is shared between two variables and measures 
how much knowing the value of one variable 
reduces the uncertainty about the other variable.

Eqs. (8), 
(9), (11), 
and (12)

Kullback 
and Leibler 
[52]

Winsorization A data pre-processing technique that involves 
limiting extreme values in a dataset by replacing 
them with less extreme values. It is often used to 
mitigate the effect of outliers on statistical analysis.

Hastings Jr 
et al. [36]

COVSCA Covariance Simultaneous Component Analysis. A 
component model used to analyze sets of 
covariance/correlation analysis. It transform each 
matrix into a point in low dimensional space.

Eq. (16) Smilde et al. 
[85]

described by Spearman’s and Kendall’s correlation (see Sects. 5.2 and 5.3) or 
mutual information. For a discussion on the use of mutual information (see Sects. 6 
and 5.5).

The calculation and use of the Pearson’s correlation coefficient rest on several 
assumptions [60]:

 1. The covariation between x and y is linear.
 2. The observations of x and y are normally distributed.
 3. The observations of x and y are identically distributed.
 4. The observations of x and y are independently distributed.

Apart these fundamental “statistical” assumptions, there are other practical 
assumptions that should be considered:

 1. The value of x is not used to calculate y (and vice versa).
 2. There are no outliers in the observations.
 3. The value of x (or y) is not experimentally controlled.
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Fig. 5 (a) Concentrations [a.u.] of two metabolites, x and y, are linearly associated: Pearson’s 
correlation rP  =  0.74. (b) Two metabolites that are monotonically associated: rP  =  0.75 and 
Spearman’s correlation rS = 0.81

From the definition of rP, it follows that the Pearson’s correlation coefficient is a 
standardized form of covariance: The covariance between x and y can vary, in prin-
ciple, between 0 and ±∞ (where the sign depends on the sign of the relationship). 
When the correlation is taken, this variability is mapped to the interval −1, 1. Since 
the standard covariance is a measure of linear relationship, also rP is a measure of 
linear relationship. In fact, rP relates to the correlation parameter of the bivariate 
normal distribution, which is, in most cases, assumed to be linear [99]. The Pearson’s 
coefficient rP is also related to regression, being the standardized slope of the regres-
sion of x on y (or vice versa).

The assumption of normal distribution of the observation is often stated, and it is 
here repeated, but has been often debated in literature. Kowalski [51] reviewed 
existing literature which provided contrasting results: However, based on simula-
tions, it was shown that the distribution of rP can rather sensitive to deviation from 
normality and that Pearson’s correlation analyses should be limited to situations in 
the distribution of x and y is almost normal. The key point here is that the non- 
normality of the observations distorts the distribution of rP: This has direct implica-
tion for hypothesis testing. Most software tools used to calculate rP also output a 
P-value, which results from the testing of the null hypothesis

 H0 0: �P �  

against the alternative

 H1 0: ,�P �  

where the observed rP is compared with its expected reference distribution under H0 
being true. Since the reference distribution of rP is defined under the condition of 
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normality of the observations, if the correlation is calculated for non-normally dis-
tributed data, the P-value cannot be interpreted at its face value: In other words, 
while rP can be used, in principle, as a measure of linear association between vari-
ables that may not be normally distributed, the correct interpretation of its statistical 
significance depends on data being normally distributed. In general, deviation from 
normality increases the number of false positives [8].

Hypothesis testing for rP under non-normality of data is discussed in Edgell and 
Noon [26] and Bishara and Hittner [8]; confidence intervals are discussed in Bishara 
and Hittner [9]. The effect of non-normality is also explored and discussed in 
Calkins [19], Havlicek and Peterson [37], Wilcox [108], and Ventura-León et al. 
[100]. When data are not normal, transformations can be applied like log-scaling or 
square-rooting (see Sect. 5.4).

Calculation of rP assumes that the observations of x (and of y, respectively) come 
from the same population, that is, all follow the same distribution. If observations 
from different distributions are mixed, this can severely affect the correlation coef-
ficient. Figure 6 shows an example where two sets of observations two uncorrelated 
variables, x and y, coming from two different distributions: If the observations are 
taken all together to calculate the correlation coefficient, the result is that the two 
variables are correlated when actually there are not. The contrary can also happen: 
Correlated variables may result to be uncorrelated (see Figure 4 in Saccenti [74]). 
Havlicek and Peterson [37] also briefly discussed this topic.

The assumption of independence of observations is violated, for instance, when 
repeated measures are considered, such as in the case of metabolite measured on 
multiple occasions on the same subject(s) [5] or when time series are considered 

Fig. 6 (a) Correlation plot of 200 observations of two variables x and y: the Pearson’s sample cor-
relation between x and y is rP = 0.76. (b) The same scatter plot as in Panel (a), but with data points 
colour-coded to highlight the actual data structure: When taken separately, the n = m = 100 obser-
vations of x and y (condition A: blue; condition B: red)are uncorrelated: rP = 0.01 (data set A) and 
rP = = 0.08 (data set B). (Figure reproduced and adapted from Saccenti [74] under the CC BY 4.0 
license)
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[113]. Caution should be taken when dealing with these kinds of measurements, 
since special statistical tools are needed.

A common mistake that violates this assumption is when technical replicates are 
used to increase the sample size, under the wrong presumption of increasing the 
sample size. A simulated example is shown in Fig. 7a.

We have already mentioned how experimental error can introduce correlation 
across measurements. The effect of measurement error on correlation is very com-
plicated: a discussion can be found in [76]. Figure 7b shows an example of indepen-
dent variables which become dependent because of additive correlated 
experimental noise.

The rP is extremely sensitive to outliers: Just one outlier is sufficient to steer the 
correlation from 0.014 to 0.82, as shown in Fig. 8a. For this reason, it is imperative 
not to trust blindly numerical values but also to explore visually the relationship 
between (measured) variables to protect against the effect of outliers. For extended 
discussion about the impact of outliers on statistical analysis see [1, 40, 100].

When analyzing (metabol)omic data and visual exploration of all possible cor-
relation plots is not feasible, Principal Component Analysis (PCA) [39, 43, 64] can 
be used to detect the presence of outlying observations or unwanted data structure 
and variation (see, for instance, Figure 9 in Saccenti [74]). Jolliffe and Cadima [45], 
Jolliffe [44], Bro and Smilde [16], and Sainani [79] provide a good introduction to 
this topic.

Fig. 7 (a) Effect of the use of replicated observations on the Pearson’s correlation coefficient: 
n = 10 observations of two variables, x and y (blue dots •), and of three replicates for each observa-
tion (red open circles °). The sample correlation between the n = 10 observations is rP = 0.91. If the 
replicates are considered using a total of 30 observations, the sample correlation reduces to 
rP = 0.76. (b) Effect of correlated measurement noise: Uncorrelated variables becomes correlated 
in presence of additive correlated noise. (Figure reproduced and adapted from Saccenti [74] under 
the CC BY 4.0 license)
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Fig. 8 Effect of outlier(s) on the correlation coefficient: n = 100 observations of two uncorrelated 
metabolites, x and y (blue dots •, encircled), to which 1 outlier is added. (a) Pearson’s correlation 
(rP): The larger the outliers (i.e. the large its distance from the bulk of observation), the larger the 
correlation coefficient. (b) Spearman’s correlation rS: The outlier has less impact on the correla-
tion. Since Spearman rS is a rank measure, it does not depend on the magnitude of the outlier. 
However, it must be reminded that rS depends on the number of outliers: See, for instance, 
Figure 6A in Saccenti (2023). (Figure reproduced and adapted from Saccenti [74] under the CC 
BY 4.0 license)

5.1.1  Testing the Significance of Correlations and Multiple Testing

In the omic setting, testing the significance of the correlation coefficients will usu-
ally result in a large number of tests to be performed: This naturally leads to the 
problem of multiple testing and Type 1 errors, hence the necessity of correcting for 
false positives. Unfortunately, no method for correction is perfect and there is 
always the risk of increase the false negative rate, which usually increases with the 
number of tests performed: If p metabolites are measured, there are 0.5p(p − 1) tests 
to be performed, which can be exceptionally large. The Bonferroni correction 
(which is a familywise error rate (FWER) controlling procedures) [12] is often sug-
gested as a conservative approach, but precedence should be given to the Benjamini- 
Hochberg [7] or to Storey’s [92, 93] methods (which are False Discovery Rate 
controlling procedures designed to control the expected proportion of wrongly 
rejected null hypotheses). The reason is twofold. The Bonferroni correction has 
basically no power when the number of test is larger and results in a dramatic infla-
tion of false negatives [25]: With more than 70 tests performed (a threshold attained 
when more than thirteen metabolites are measured), the probability of a false nega-
tive with Bonferroni is twice as with Benjamini-Hochberg [105]. The Bonferroni 
correction is recommended for testing a single universal null hypothesis that all 
correlations are not significant [3], a situation that is seldom of interest in the case 
for omic studies. There are no consolidated strategies to alleviate this problem: As 
usual, there is a trade-off between the number of missed new discoveries and the 
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necessity of protecting against false discoveries, and such trade-off depends on cir-
cumstances and consequences of committing an error. A recommendation is to pro-
vide, if possible, the analysis of both corrected and uncorrected results.

An optimal solution would be to validate observed significant correlations in an 
independent data set. If this is not available, data splitting strategies could be 
employed [21, 72]. Basically, a portion of the data is used to suggest a hypothesis 
(i.e. to calculated metabolite correlations), and a second independent portion is used 
to test it, i.e. to assess it significance. This approach can be rephrased in an inferen-
tial setting [72] after correction for multiple testing. Reducing the sample size can 
potentially reduce the power, but this approach is effective in giving valid inference 
after the selection of a hypothesis, estimating nuisance parameters, and avoiding 
overfitting [72]. An application is given in Di Cesare et al. [24], where data splitting 
was used to estimate the reproducibility and robustness of metabolite correlations 
with age.

5.1.2  Robust Correlation Coefficients

The effect of outliers can be counteracted by using robust methods for the calcula-
tion of the correlation coefficient. The Spearman’s correlation rS, being a rank mea-
sure (see Sect. 4.3), is less sensitive to outliers than the Pearson’s coefficient rP, as 
shown in Fig. 7b: However, it can be distorted if there are several outliers: see, for 
instance, Fig. 6a in Saccenti (2023). The same is true for Kendall’s tau (see Sect. 
4.4). Moreover, it is known that these two measures do not deal with outliers con-
sidering the overall structure of the data [106, 109]. For example, see Fig. 1 and the 
discussion, thereof, in Wilcox [110].

Alternative robust approaches that can be considered are Winsorized correla-
tions, skipped correlations, and bootstrapping.

Winsorization [36] consists in replacing the k smallest observations with the 
(k + 1)st smallest observation, and the k largest observations with the (k + 1)st larg-
est observation: This procedure winsorizes both left and right tails of the data distri-
bution: The Pearson’s correlation coefficient is then calculated on the Winsorized 
variables [107]. For an application to metabolomics data, see Di Cesare et al. [24]. 
The problem of testing for the null hypothesis for Winsorized correlations is 
addressed in Wilcox [107].

The term skipped correlation refers to the procedure of using some outlier detec-
tion method that takes into account the overall structure of the data, remove any 
outliers that are found, and then compute Pearson’s correlation using the remaining 
data [106]. Wilcox [106] also discusses projection in combination with bootstrap-
ping [66] to obtain skipped correlations.

Bootstrapping pertains to resampling with replacement of the data and the calcu-
lation of a measure of interest; in this case, correlation coefficient, from this sample. 
When the procedure is repeated many times, the properties of the obtained distribu-
tion of the measure of interest can be explored to investigate the effect of outliers 
considering the overall data structure. Common approaches are the classical 
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percentile bootstrap method [96] and the method proposed by Zou [115]. These 
approaches are reviewed and compared in Wilcox [110].

5.2  Spearman’s Correlation

The Spearman’s rank correlation rS [87] is a measure of monotonic association 
between two variables (metabolite concentration), x and y, based on the ranks of 
each observation. It is defined as
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where R(*) indicated the rank(s) of the observations of x and y and amounts to the 
Pearson’s correlation among the ranks of the observations. If the ranks are all inte-
ger numbers, rS can be expressed as
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where di is the difference between the two ranks of each observation and n is the 
number of observations.

Since the correlation is taken among the ranks of the observations, rather than on 
the value of the observations themselves, the Spearman’s rS can be used to measure 
non-linear associations as long they are monotonic, i.e. strictly increasing or 
decreasing. An example is shown in Fig. 5b.

The Spearman’s correlation is less sensitive to outliers, as shown in Fig. 6b: In 
this case, rS = 0.06 as it should be since x and y are uncorrelated, while the Pearson’s 
correlation is rS = 0.79. This happens because each observed value is transformed 
into its rank, and this reduces its overall impact. However, if the number of outliers 
is substantial, also this measure is distorted (see, for instance, Figure  6  in 
Saccenti [74]).

Spearman’s and Pearson’s coefficients are mathematically related. For n nor-
mally distributed observations and in absence of ties, the relationship is [50]:
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If the two variables, x and y, are positively and linearly correlated, the Spearman’s 
correlation is biased downwards (in absolute value). The difference |rS – rP| between 
the two measures is maximal for rP = ±0.577 (where the sign depends on the sign of 
the correlation). The difference depends on the number n of observations, however 
for large n (n > 50) the difference between the two is negligible [114].
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5.3  Kendall’s τ Correlation Coefficient

The Kendall’s τ (tau) correlation coefficient [49] between n observations of two 
variables, x and y, is also a rank statistic. If the ranks of the observations (xi, xj) and 
(yi, yj) agree, i.e. if the sorting orders xi > xj and yi > yj or (xi < xj and yi < yj) hold, the 
pair (xi, xj) and (yi, yj) is said to be concordant; otherwise, it is said to be discordant. 
Given c the number of concordant pairs and d the number of discordant pairs, τ is 
given by:
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An alternative formulation is
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Kendall’s and Pearson’s coefficients are mathematically related. For n normally 
distributed observations and in the absence of ties, the relationship is:
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The use of the Kendall’s correlation coefficient correlation is not commonly 
observed in the metabolomic literature. However, it has been shown that this mea-
sure possess an adequate control of type I errors, was nearly as powerful as Pearson’s 
r, provided much tighter confidence intervals and had a clear interpretation than the 
Spearman’s index [4] and appears also to be more robust to outliers than Spearman’s.

5.4  Correlations and Data Pre-processing: Transformation 
and Normalization

Pearson’s correlations are scale independent: the correlation between x and y is the 
same of that between x + a and y + a. If variables are transformed with an increasing 
monotonic transformation which maintains ordering (like logarithmic, square root-
ing, squaring, etc...) the Pearson’s correlation is affected. With reference to the 
examples shown in Fig.  5a, the correlation rP between the original variables is 
rP = 0.74, for log-transformed is rP = 0.93, for square-rooted is rP = 0.83, for squared 
is rP  =  0.58. Spearman’s and Kendall’s indexes are not affected: rP  =  0.63 and 
τ = 0.48 in all cases.

As mentioned in Sect. 4.1, data transformation can be applied to correct for non- 
normality of the data when Pearson’s correlation is used. Log-scaling can be used 
and are almost always applicable since concentration are positive by definition. 

Analysis and Interpretation of Metabolite Associations Using Correlations



76

However, Log-scaling is not applicable in presence of zeros. Square-rooting can be 
used as an alternative. Cubic-rooting can be used in presence of negative values 
when necessary. Square-rooting and Log-transformation are two examples of Box- 
Cox transformations [14, 80].

Metabolomics data are usually normalized to correct for variability between 
samples arising from instrumental drift and/or sample preparation or unwanted bio-
logical variation, like different dilution factors in urine samples [73]. However, nor-
malization affects correlation patterns [73]: Fig.  9 shows correlation profiles of 
some metabolite pairs in the raw data and after normalization to creatinine concen-
tration. Panels c and d show how the overall patterns of correlations (small, medium, 
large) and their significance change when different normalization methods are 
applied. Care should be taken when calculating and interpreting correlations on 
normalized data. An in-depth discussion can be found in Saccenti [73].

Fig. 9 Scatter plots of the correlation values (raw data vs creatinine normalized). Creatinine nor-
malization affects (a) the magnitude of correlations and (b) their sign. Percentage (%) of (c) high, 
medium, and low correlations; (d) statistically significant correlations; (e) positive and negative 
correlations; and (f) correlations that change sign (with respect to raw data) after different normal-
ization methods have been applied to the data. (Data from Lusczek et al. [54]). For details and 
discussion on the normalization methods applied, see Saccenti [73]. (Figure adapted and repro-
duced with permission from Saccenti [73])
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5.5  Mutual Information

The mutual information MI(x,y) of two (random) variables, x and y, describes the 
mutual dependence between x and y and can be defined in term of the entropy of the 
two variables as

 
MI , ,x y H x H y H x y� � � � � � � � � � �,  (8)

where H(x) and H(y) are the entropy of x and y, respectively, and H(x, y) is the 
entropy of x and y.

The entropy H is a measure of the uncertainty about the values that random vari-
able x, distributed with probability distribution p(x), can assume. It is given, for 
discrete variables, by
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The higher the entropy, the higher the uncertainty on that variable: If a metabo-
lite shows little variability, its entropy is also low(er), while if it has large variability, 
it has also large(er) entropy. Thus, the entropy describes the content of information 
of a random variable: The higher the entropy, the higher the information content. If 
(the concentration of a) metabolite that does not vary, thus, is x = c with probability 
1, p(x = c) = 1, its entropy is H(x) = 0, which nullifies the information associated to 
it [41]. Recall that in statistics and data analysis, the absence of variation translates 
to the absence of information.

As a numerical illustrative example [41], we can consider a metabolite whose 
concentration x can assume only the values x1 = 0.4, x2 = 0.9, and x3 = 1.3 with prob-
ability p(x = x1) = 0.2, p(x = x2) = 0.7, and p(x = x3) = 0.1: Its entropy H(x) is:
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In real-life situations, the theoretical distribution of x is not known and must be 
estimated from the data, for instance by computing the relative frequency of the 
occurrence of each value (i.e. estimation from the empirical probability distribu-
tion) [57]. Other commonly used approaches are the Miller-Madow Asymptotic 
Bias Corrected Empirical Estimator [62], shrinkage estimation [81, 82], or the 
Schürmann-Grassberger estimation [83].

The mutual information between x and y is commonly expressed by taking the 
distance between the joint distribution p(x, y) and product distribution p(x)p(y) 
using the Kullback-Leibler divergence [52]:
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from which Eq. (9) can be derived (see Jahagirdar and Saccenti [41] for 
calculations).

The mutual information is well suited to capture non-linear relationships as those 
often observed among metabolite concentrations, and it is expected to be a better 
metric of dependence than the Pearson’s correlations correlation coefficient, which 
can underestimate the dependence between variables when the dependence trans-
lates into non-linear relationships [86]. Figure 10 shows four simulated metabolite 
concentration patterns of two metabolites A and B that have the same mutual infor-
mation 1.32 nats: 1 nat is the information content of the uniform distribution on the 
interval [0,e], where e is the basis of the natural logarithm. In all four cases, there is 
obvious dependence between the two metabolites, but the Pearson’s correlation can 
only capture the linear dependence (Panel a and b), while mutual information can 
capture even the highly non-linear relationship (Panel c and d). Also the Spearman’s 
and Kendall’s correlations fail to capture the latter two situations since the relation-
ship is not monotonic.

Fig. 10 Mutual information can capture highly non-linear and non-monotonic relationships 
whereas the Pearson’s correlation coefficient cannot. Simulated concentrations of two metabolites 
A and B showing: (a) Positive linear relationship, rS = 0.96 (Pearson’s correlation); (b) negative 
linear relationship, rS = −0.96; (c) Sine-wave relationship, rS = 0; (d) bell-shaped relationship, 
rS = 0.28. In all four cases, the mutual information MI is 1.32 nats (or 1.90 bits). (Figure adapted 
from Table 1 from Smith [86] and reproduced from Jahagirdar and Saccenti [41] under the CC BY 
4.0 license)
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Under certain conditions, an exact relationship exists linking mutual information 
and the Pearson’s correlation coefficient rS: If two variables are linearly correlated 
and normally distributed, it holds that
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from which follows that the mutual information is almost always smaller than the 
correlation coefficient. Precisely,
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Figure 11a presents a plot of the theoretical relationship in Eq. (12), showing the 
intersection at approximately 0.916. This relationship is maintained with good 
approximation for variables generated under a linear correlative model (Fig. 11b). 
In case of experimental data (Fig. 11c), the approximation is less good because the 
correlation among measured metabolite abundances is, in most cases, not linear and 
Eq. (12) does not hold exactly anymore.

Equations (4), (7), and (12) link mutual information and the Spearman’s and 
Kendall’s correlation coefficients. Formulas have been derived that relate the 
Kendall’s τ (tau) correlation and other families of bivariate distributions [11], 
including t- [35], Cauchy- [34], or elliptical distributed variables.

Fig. 11 Relationship between mutual information and the Pearson’s correlation coefficient for (a) 
bivariate linearly correlated variables x and y, as given by Eq. 1. (b) Variable with an average cor-
relation of 0.6 (for details on the simulation strategy see Jahagirdar and Saccenti [41], Sect. 3.4.3). 
(c) Metabolite concentrations from experimental data set [91] containing 669 observations of 371 
metabolites, measured using LC-MS on subjects using oestrogen-only or oestrogen plus progestin. 
(Figure adapted and reproduced from Jahagirdar and Saccenti [41] under the CC BY 4.0 license)
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6  Which Measure of Association to Use?

The central tenet of statistics and data analysis has always been that the Pearson’s 
correlation index is a measure of liner to linear association, while Spearman’s and 
Kendall’s indices are measures of monotonic associations and should be used as 
such, with Pearson’s correlation not to be used in presence of non-linear associa-
tions. There is indeed ample literature agreeing on this point [51, 58, 88], and the 
converse has also been highly supported [13, 28, 32, 51].

In the null hypothesis test setting, the power (i.e. the probability of rejecting the 
null hypothesis of the population correlation being zero) of the different correlation 
indexes depends heavily on the underlying data distribution [68]. For normally dis-
tributed data the Pearson’s index has been found to have the largest power. For non- 
symmetrical and low-peaked distribution, the Pearson’s correlation has larger power 
than the Spearman’s correlation. For non-symmetrical and high-peaked distribu-
tions, the Spearman’s index performed better that the Pearson’s index. The same 
authors [68] explored different interesting association indexes, like the Gini’s cor-
relation coefficients [10, 112], which are not discussed here.

Van den Heuvel and Zhan [99] have presented empirical and theoretical evidence 
that for certain families of bivariate distribution functions with non-linear mono-
tonic associations, the Pearson’s correlation is a better measure than Spearman’s 
and Kendall’s indices; conversely they also presented families of bivariate distribu-
tion functions with linear associations for which Spearman’s and Kendall’s are to be 
preferred to the Pearson’s index. How this translates and applies to metabolomic 
data has to be ascertained, since it is not yet clear if these distribution families may 
represent data pattern observed in metabolomic data.

From theoretical considerations, mutual information should be able to provide 
more information about metabolite associations than standard correlation measures 
like Pearson’s and Spearman’s correlation. However, the advantage of its use for the 
analysis of metabolomic data is not clear. Jahagirdar and Saccenti [41] found that 
using mutual information does not provide better results in comparison with 
Pearson’s correlation when used for differential association analysis in a differential 
network analysis setting.

Which index to use will depend ultimately on the type of data at hand and its 
distributional properties and presence/absence of outliers. The recommendation is 
that any index used should not be taken at its face value but considered and inter-
preted in context. We have shown how correlation indexed are sensitive to outliers, 
in particular the Pearson’s correlation. We have also shown how and why metabolo-
mic data do usually contain a limited fraction of large correlations (i.e. larger than 
0.8), so large observed correlation should always be carefully double-checked to 
avoid the risk that they arise from outliers or other distortion in the data.

When analyzing omic data and a large number of correlation pair are calculated, 
a simple strategy is to calculate both Pearson’s and Spearman’s or Kendall’s indexes 
and compare them for the same metabolite pair: If the two measures diverge greatly, 
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there is a chance that outliers are present OR that non-linearity exists, and as such, 
correlation plots should be explored visually to detect problems in the data. Outlier 
detection is a complicate matter as it is outlier removal. The physics approach (that 
we recommend) is that a sample/observation is an outlier is such only when there is 
an explanation for its outlying behaviour (for instance: Is the outlier due to a 
machine breakdown or an error in the sample preparation?). In the absence of an 
apparent reason, removing the sample/observation is, in principle, not justified. For 
some strategy for outlier detection applicable to metabolomic data, see, for instance, 
Walach et al. [103], Rousseeuw and Bossche [71], and Sun et al. [94].

7  Comparing Correlations

Correlation patterns reflect aspects of regulation, and as such, comparing correla-
tion between two (or more) multiple states can provide insights on modifications 
and/or disruptions of the underlying molecular mechanisms. Correlation patterns 
can be different between different conditions, with two or more metabolites being 
correlated in one condition and uncorrelated in the other, as in the example of 
Fig. 12a, b; in other situations, the sign of the correlation can be opposed in two 
different conditions, as shown in Fig. 12c.

Fig. 12 Correlation between amino acids and metabolites participating in the tricarboxylic acid 
(TCA) cycle measured in a plant (Arabidopsis thaliana) under different environmental conditions. 
(a) Heat and (b) dark (no light). Blue and red lines depict positive and negative correlations, 
respectively. Under dark conditions, metabolite and amino acid concentrations are highly corre-
lated, which is not the case under light conditions. (Adapted and reproduced with permission from 
Figure 8 in Caldana et al. [18]). (c) Correlation between sucrose and ornithine in in a wild type and 
a transgenic potato tuber (INV-33). (Adapted and reproduced with permission from Figure 8 in 
Camacho et al. [20]. Data from Roessner et al. [69]). In both cases, the remodulation of correlation 
patterns indicate different regulation modes
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7.1  Comparing Two Correlations

The statistical significance of the difference between two correlation coefficients 
measured over two different conditions like those showed in Fig. 12 can be assessed 
using hypothesis testing. Given two sample correlation (Pearson’s) coefficients r1 
and r2 measured on two different conditions, the testing procedure is

 H0 1 2: � ��  

against the alternative

 H1 1 2: .� ��  

The testing procedure is usually carried on after z-transformation (Fisher’s trans-
formation [30]) of r1 and r2 since after z-scoring the z statistics can compared in a 
1-tailed or 2-tailed fashion using a standard normal distribution [89]. Such transfor-
mation is defined as
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Care should be taken, when performing statistical testing, that all underlying 
hypotheses are met and that the appropriate test is chosen. Most statistical software 
packages offer testing procedures for different correlation types.

7.2  Averaging Correlations

Sometimes it is of interest to average two or more corelations. Correlation coeffi-
cients cannot be directly averaged because they are not additive. The standard 
approach to average correlations is first to z-transform them (Eq. 14), average them, 
and then back transform the average value using the inverse z-transformation [84]:
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For instance, the average correlation between r1 = 0.1 and r2 = 0.7 is not r = 0.4. 
Z-transforming gets z1 = 0.1003 and z2 = 0.8673, whose average is z = 0.4838 which 
back transformed (Eq. 15) gives r = 0.4493, which is quite different from 0.4. Other 
approaches for averaging have been also suggested [2].
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Fig. 13 Correlation networks of lipoprotein and lipid main fractions in healthy subjects. Each 
node represents a lipid/lipoprotein specie. Edges connecting the nodes represent the existence of a 
correlation between two nodes. Partial correlation estimated with a Gaussian Graphical Model [61] 
in combination with the PCLRC probabilistic algorithm [78]. (a) Women, (b) men, (c) young men, 
(d) old men, (e) young women, and (f) old women. Positive associations are coloured in red; nega-
tive correlations are coloured in blue. The edge weights are proportional to the correlation magni-
tude. Nodes are colour-coded according to the five lipid groups considered: Apo (dark blue), 
cholesterol (yellow), free cholesterol (grey), phospholipids (red), and triglycerides (light blue). 
(Figure reproduced from Balder et al. [6] under the CC BY 4.0 license)
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7.3  Analysis and Comparison of Correlation Matrices

When analyzing multivariate data, of which metabolomics data are just an example, 
all the possible pairwise correlations are collected in a correlation matrix (see 
Fig. 14 for two examples). For a data set containing n observations of p metabolites 
(variables), the correlation matrix C has dimension p × p, it is symmetric and con-
tain p(p − 1)/2 unique correlation pairs. In some situations, there are more than one 
correlation matrix, with different matrices pertaining to different conditions: The 
interest is then in analyzing this set of matrices in a comprehensive way and visual-
izing the relationship existing among them.

A convenient approach to analyze a set of K correlation (covariance matrices) is 
to use COVSCA (Covariance Simultaneous Component Analysis) [85]. Loosely 
speaking, COVSCA is a dimensionality reduction technique which reduces the set 
of K (high- dimensional) correlation matrices to a set of points on a low- dimensional 
component space, each point representing one of the correlation matrices. When the 
components are plotted against each other, patterns of (dis)similarity between the 
points (i.e. correlation matrices) can be highlighted like in a conventional Principal 
Component Analysis: Points close in the COVSCA space indicate matrices contain-
ing similar correlation patterns. The variables (metabolites) contributing to those 
patterns can be obtained through the analysis of the associated loadings.

More specifically, the K matrices are modeled as a combination of L low dimen-
sional prototypes (L ≪ K) matrices. The k-th correlation matrix Ck is modelled as

 
C Zk
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L

lk l l
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�
�

1

Z
 

(16)

where ckl ≥ 0(l = 1, 2, …, L) are weight coefficients and Zl are prototypical sym-
metric matrices consisting of loading Z of size J × Rl that hold simultaneously for 
all Sk. A brief introduction to the fitting procedure of a COVSCA model and its 
analysis can be found in Saccenti and Camacho [75].

Figure 15 shows correlation networks obtained from lipid and lipoprotein pro-
files measured on six groups of healthy subjects (women, men, young women, 
young men, old women, old men). The overall structure of the six networks is simi-
lar across and differences mostly concern variation of the strength of the correla-
tion: For instance, the correlation between cholesterol and triglycerides (HDL) is 
stronger in the association network for men (Fig.  15b) than in that for women 
(Fig. 15a). These six networks can be analyzed comprehensively using COVSCA. The 
score plot is shown in Fig. 15a and can be interpreted in a PCA-like fashion. Every 
point on the plot correspond to one of the networks in Fig. 15: Points (networks) 
close in the space have similar characteristics; thus, networks have similar charac-
teristics. The loadings shown in Fig. 15b, c quantify the importance of each lipopro-
tein to explain the different pattern of correlation observed. Other examples of 
application of COVSCA to the analysis of sets of correlation matrices in 
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Fig. 14 Visualization of correlation matrices from metabolites correlations. When p metabolites 
measured the pairwise correlation are arranged in a p × p, symmetric matrix and containing p2 cor-
relations values of which p(p − 1)/2 are unique. (a) Classical visualization of the full correlation 
matrix. (Adapted from Trupp et al. [97] under the CC BY 4.0 license). (b) Visualization of the 
unique part of the correlation matrix calculated on metabolomic and in farm data. (Adapted from 
Xu et al. [111]. Reproduced from Balder et al. [6] under the CC BY 4.0 license)

Fig. 15 Covariance Simultaneous Component Analysis (COVSCA) of the lipoprotein and lipid 
fractions correlation networks shown in Fig.  13. (a) COVSCA score plot: Each dot is a low- 
dimensional representation of lipid association network. (b, c) Loadings of the COVSCA model 
quantifying the importance of each lipoprotein and lipid fraction to describe the different correla-
tion structure observed in the six correlation networks specific to each sex and age group. 
(Reproduced from Balder et al. [6] under the CC BY 4.0 license)
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metabolomics can be found in Saccenti and Camacho [75], Smilde et  al. [85], 
Dekker et al. [22], Vignoli et al. [102], and Saccenti [73].

8  Conclusions

Correlations are abundant in metabolomics data and in omic data, in general. 
Although there is not always a direct relationship between correlations and the 
structure of the network of metabolic reactions governing metabolite concentrations 
and their relationships, such correlations arise as a consequence of well-defined 
molecular mechanisms. The analysis of correlation patterns and comparison of the 
variability of such patterns across different conditions can help to highlight modifi-
cations and/or alterations of the underlying metabolic processes.

When estimating and analyzing correlations, it is necessary to carefully consider 
the type of correlation analysis that is most appropriate for the specific research 
question and dataset. As discussed in the article, the Pearson’s correlation coeffi-
cient is most commonly used to measure linear relationships, while Spearman’s and 
Kendall’s correlations are better suited for non-linear, monotonic relationships. 
Therefore, researchers should carefully consider the nature of the relationship they 
expect to observe in their data before choosing a correlation analysis method. 
Another critical point is also to understand the potential for confounding factors, 
such as outliers and batch effects, and, when possible, correct for them.

Correlations are also exploited by many multivariate tools [77] and form the 
basis for the construction of associations networks [70]. For this reason, the analysis 
of correlations can provide intriguing biological hypotheses. However, there is a 
need to shift from using correlations as hypothesis-generating tools to using them as 
tools that can unlock the full potential of metabolomic data. This can only be 
achieved by a full understanding of the characteristics, advantages, and limitations 
of the different correlation indexes used to quantify metabolite associations and of 
the tools used to analyze and manipulate them within a systems biology context of 
which metabolomics is one of the most powerful and versatile tools [70].

Finally, it is important to recognize that correlation analysis alone cannot estab-
lish causality. While correlation can provide insight into potential relationships 
between metabolites, additional experimental evidence is necessary to establish a 
causal relationship. Therefore, researchers should carefully interpret their correla-
tion results in the context of existing biological knowledge and other lines of 
evidence.
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NF-κB Nuclear factor kappa-light-chain-enhancer of activated B cells
NMR Nuclear magnetic resonance
OPLS-DA Orthogonal Projections to Latent Structures Discriminant 

Analysis
PC Phosphatidyl choline
PCR Polymerase chain reaction
PG 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphoglycerol
PUFA Polyunsaturated fatty acids
Q-TRAP Quadropule Ion Trap
ROC Receiver operating characteristic
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mass spectrometry method
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TMAO Trimethylamine N-oxide
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Resolution Accurate Masses Spectrometry
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1  Introduction

Diseases characterised by a gradual or sudden increase in cases within certain global 
areas for a short time period are referred to epidemics. Epidemic diseases could be 
infectious or not, but most of them concern with infectious disease spread. Epidemic 
diseases are restricted to locations of certain countries or can spread to other areas 
or different countries and continents too, if uncontrolled. For an instance, the 
COVID-19 epidemic, which is highly spreadable (2019 to October 2022 6.2 billion 
cases recorded), was declared a pandemic, which have been recorded higher than 
any previously reported infectious disease [1]. Each disease encounter in a different 
illness phases initial mild infection to acute and chronic by the time. If a disease is 
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can be identifiedy at an initial stage, its severity can be managed by initial medica-
tion. Hence some biological molecule that could predict the disease onset condition 
of a subject always remain to interest for researchers. Disease phases can be distin-
guished well by either certain disease specific gene or protein or metabolite changes. 
The omics approach provided large advanced technologies for analysing high- 
throughput biological molecules in a cost effective manner [2]. System biology 
approaches (i.e. proteomics, metabolomics and transcriptomics) are useful in find-
ing the biomarkers in the prediction of predisease, acute and chronic diseases 
changes at the mRNA, protein and metabolite level, including susceptible and toler-
ant individual identification [3]. Multiomics researchers are moving now from 
genomics to phenomics studies. Proteome and metabolome of cells or tissues are 
two main components of phenome and are equally important for scientific discovery 
of disease-based biomarkers. Metabolome study includes characterisation of metab-
olites of all the low-molecular weight molecules (typically, 3000 m/z) present in 
cells in a particular physiological or developmental state. Metabolites are the final 
products in a biological system and intermediate molecules in pathways of lipids, 
nucleotides, sugars, and amino acids that govern and regulate several essential bio-
chemical pathways, either directly or indirectly [4]. Multiple factors like genetics, 
the external and internal environment, drugs, and diet are associated with metabo-
lome variation. Metabolites play important roles in signalling molecules, immune 
modulators, endogenous toxins, and environmental sensors. These metabolomics 
variations could create inaccuracy in width and depth of metabolomics. Along with 
studying metabolome, defining their accuracy is also a challenge, which requires a 
highly sensitive and reproducible methodology to maximize coverage of metabolo-
mics variations. It is remarkable to uncover changes in metabolites at different dis-
ease stages in the blood, stool and tissue with their identification and validate for 
disease progression biomarkers (Fig. 1), which render crucial prognostic and diag-
nostic tool investigating toward impact of disease [5], along with data accuracy to 
imply at clinical level. Epidemiological studies have also been served with applied 
metabolomics, including different kind of study design. The majority of epidemic 
diseases have been case control or cross-sectional studies that allow comparison of 
metabolomics phenotype of an individual to gain exposure to potential metabolite 
change. Prospective studies require a large follow up time upon large sample size, 
however providing biomarker identification opportunity sensitive toward disease, 
predecease phase elaborating disease etiology [6]. Presently, studies that comprise 
efficient nested-designs case-cohort are increasing, providing epidemiological stud-
ies using metabolomics data. Advanced development of metabolomics technologies 
for a large set data study, analytical platform and data refining tools has made 
metabolomics studies possible [7]. There is no distrust considering application of 
metabolomics to growing epidemiological studies to better characterize exposures, 
markers to detect early disease, improve diagnosis of disease, tracking response 
towards treatment or disease progression and make disease etiology understandable 
[8, 9]. There are approaches for metabolomics, including nuclear magnetic reso-
nance (NMR) spectroscopy, mass spectrometry (MS) and Fourier-transform infra-
red (FTIR) spectroscopy, to achieve metabolic finger prints, foot prints and target 
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Fig. 1 Depicting the method for analysis of biological samples, blood (plasma, serum), urine, 
stool, cells and tissue from organs, for metabolomics analysis. Extracted sample is then subjected 
to different types of suitable platforms based on the chemical class of metabolites. Raw MS data is 
statistically analysed, followed by target validation and biomarker discovery (Biorender.com 
licenced)

analys. Metabolomics has proven to be valuable for new drug discovery targets, and 
diagnostic biomarker discovery like in the differences in host response observed 
in vitro and in vivo in energy producing pathways (glycolytic, kreb’s cycle) and 
inflammatory pathways  [10]. Bacteria-infected (Streptococcus pneumoniae and 
Staphylococcus aureus pneumonia) mouse model showed distinct metabolic pattern 
between infected and non-infected mice while using different biological samples 
[11]. Hence, infection progression is evident from publication, including fungal 
[12], parasitic [13, 14], protist [15] and viral infections [16]. For non-communicable 
diseases (NCD), high degree of interconnectivity with cardiovascular and type 2 
diabetes has been shown.  A meta-analysis study which compared CD64 and IL-6 in 
adult sepsis patient predict as a biomarker for bacterial infection along with highest 
diagnostic value [17]. Multifactorial diseases could not be addressed by diet promo-
tion or physical activities, because lifestyle intervention requires wide-ranging eval-
uation of an individual’s diagnostic biomarkers. This chapter will summarise 

P. R. Mina

http://biorender.com


97

yielding of metabolites in a number of epidemics categorised into communicable 
and non-communicable diseases. We elaborate how metabolic modelling, together 
with the integration of metabolomics and other multiomics datasets, can be used as 
a tool to understand cellular metabolism.

2  Top Spread Epidemics

For international agencies and national government organisation, public health is a 
major concern which has been affecting their financial growth. According to the 
different timelines of the last few decades, several new pathogens have adapted to 
current therapies and come with more severity. Cholera, plague, and yellow fever 
resurgence accompanied with immunity change highly affected by biological and 
environmental changes in the current lifestyle [18]. These changes have enabled 
epidemics to spread and faster than before, due to decreased immune response to 
disease phenotype. The recent wreaking havoc of COVID-19 is a supportive exam-
ple, which caused 3.3 million deaths and affected everyday lives of people globally. 
To control the increase in cases of global diseases, increased efforts are efficiently 
made for controlling infectious diseases and designing new mitigation strategies. 
For viral diseases like SARS in 2003, H1N1 influenza in 2005, Ebola epidemic in 
2019 along with corona virus disease in 2020, accelerate disease outbreak was 
accelerated by increased social connections  [19]. This increased disease burden 
brought global crisis to national economy, disaster to people lives and colossal tur-
moil to international community [20].

3  Communicable

Communicable diseases are contagious diseases transmitted from one person to 
another in a short time span by contact with body fluid, blood, airborne virus parti-
cles or insect bites [21]. Reporting of disease is important for evaluation of disease 
prevention and control for assuring appropriate medical therapy in the locality of 
the outbreak. Tuberculosis, polio, small pox, measles, hepatitis and diphtheria are 
some of the human diseases having adverse effects in the form of substantial mortal-
ity and morbidity [22]. The media by which diseases spread are the fecal-oral route, 
intercourse, skin contact, contaminated fomites, insect bites (ref), etc.. For example, 
hepatitis is spread through the oral-fecal route, where a person is exposed to con-
taminated water or blood product or pre-infected food consumption. Some of the 
communicable diseases require serious attention of health departments. The over-
arching goal of metabolomics is to assess metabolic changes quantitatively and 
qualitatively for their diagnostic, therapeutic and prognostic potentials.
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3.1  COVID-19

COVID-19 was reported first to WHO on 31 Dec 2019; it caused a major global 
crisis with economic burden to several countries. From 2019 to July 2022, 567 mil-
lion cases and 6.3M deaths reported globally, which highest data has been recorded 
[23]. This disease ranges in severity, from asymptomatic to critical illness and mor-
tality. Pre-existing conditions like diabetes, asthma, obesity and heart disorders 
increase disease complications. All these disorders make an individual disease- 
prone because of pre-altered metabolic pathways [24]. Quantitative PCR (poly-
merase chain reaction) was the only successful technique for qualitative detection 
of COVID. Now, metabolic profiling has become a diagnostic and prognostic tool 
critical for future epidemics [25]. COVID-19-positive patient data showed elevated 
levels of kynurenine and tryptophan [26]. Ratio of arginine/ornithine got elevated, 
while glutamine/glutamate ratios has been seen to be reduced and increased glu-
tamic acid levels in COVID-19 patients, indicative of severity scaling, triglycerides 
(TG 20:1_32:3) and TG (22:4_32:2) were consistent with initial 2 waves [27]. In 
COVID-19 patients, bile acid level was also depleted compared to healthy control. 
Studies analysed markers associated with different waves of covid and showed 
elevation of glutamine in wave 1. Elevated methionine sulfoxide (Met-SO) in wave 
2 was not common in wave 1. Level of cortisol, the stress chemical, was signifi-
cantly lower in wave 2 compared to wave1. A set of metabolites including glyco-
lithocholic acid (GLCA), glutamic acid (Glu), aspartic acid (Asp) TG (22:1_32:5), 
TG (18:0_36:3), and methionine sulfoxide (Met-SO), were able to distinguish 
healthy vs infected wave 1 and 2 patients. (TG (18:0_36:3 and aspartic acid could 
be used as healthy and disease state markers as they recover with return to a health 
state. Metabolites changed differentially across time and phase of infection but are 
still able to distinguish covid disease group. SARS-CoV-2 patients showed acylcar-
nitines accumulation, which came to be decreased in recovery phase [28]. Lineloic 
acid could reduce the interaction of spike protein with angiotensin-converting 
enzyme receptor (ACE2), which hydrolyses angiotensin II (a vasoconstrictor pep-
tide) into angiotensin [29]. A set of metabolites ratio is introduced for rapid routine 
practice; glutamine/glutamate ratio, kynurenine/ tryptophan ratio (valine + leucine 
+ isoleucine)/(phenylalanine + tyrosine), also known as BCAA/aromatic amino 
acids ratio [30]. Some of the markers could be used to identify disease severity and 
recovered infection state, but they need to be precise based on the time span of the 
infection. Some metabolites could be utilised as distinct biomarker.

3.2  Tuberculosis

In 2021 WHO reports 9.9M new cases of Mycobacterium tuberculosis (M.tb) and 
1.5 million deaths [31]. The death rate of M.tb is higher in Asian countries. A rapid 
true diagnostic test plays an important role in identifying the infection at acute level, 
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as it’s hard to control chronic stage infection. Currenty, few tests are widely used, 
such as purified protein derivative (PPD), M.tb nucleic acid test and Xpert/MTB 
system. These tests are old and can distinguish positive and negative phenotypes. 
More studies on metabolites are required due to increased resistance reports that 
could also affect host metabolic pathways that are quite different to sensitive strain 
of TB. Metabolites could distinguish different species and infection type specific to 
mycobacterium and other genus. Inositol and myo-inositol characterise the 
Mycobacterium species M. tuberculosis, M. avium, M. bovis, M. kansasiiand 
P. aeruginosa. Indole-acetic acid, cadaverine, purine and putrescine were detected 
exclusively in P. aeruginosa [32]. Succinic acid was uniquely identified in M. kan-
sasii. Sputum is the commonly used matrix for diagnosing pulmonary TB; viscosity 
and uneven consistency of sputum bring about the need for additional, time- 
consuming sample pre-processing steps before metabolomics analyses. Plasma/
serum and urine analysis require less effort in sample preparation. Human sub-
ject metabolites research showed that The OPLS-DA models showed two groups 
were able to clearly separate between comparison groups. Results showed a set of 
upregulated and downregulated metabolites. Phosphatidylethanolamine (PE), 
sphingomyelin (SM), phosphatidylcholine (PC) and ceramide (Cer) upregulated at 
higher extent compared to other group metabolites [33].  Metabolites that are of 
interest for development as biomarker are those which are elevated and have more 
chances of true positive result rather than result by error. Amino acid, ceramides and 
fatty acids downregulated in patient [34]. ROC curve analysis of metabolites spe-
cific to TB at 95% CI value showed clear sensitivity and specificity in diagnostic 
test. Based on clinical practicability and feasibility metabolites specifically increased 
in osteoarticular tuberculosis are PC(o-16:1 (9Z)/18:0), 
PC(20:4(8Z,11Z,14Z,17Z)/18:0), PC(18:0/20:3 (5Z,8Z,11Z)), PC(18:0/22:5(4Z,7
Z,10Z,13Z,16Z)), SM(d18:1/ 20:0), SM(d18:1/24:1(15Z)), SM(d18:0/16:1(9Z)), 
SM(d18:0/ 18:1(11Z)), and SM(d18:1/18:1(11Z)) which have an AUC of 0.7, indi-
cating better diagnostic performance at clinical level. Combining AUC and ROC 
curve data, PC (o-16:1(9Z)/18:0), PC (20:4). (8Z,11Z,14Z,17Z)/18:0), PC(18:0/22:
5(4Z,7Z,10Z,13Z,16Z)), SM (d18:1/20:0), and SM(d18:1/18:1(11Z)) may be 
potentially relevant metabolic biomarkers for the diagnosis of osteoarticular tuber-
culosis [35]. Two diagnostic models were established (Models A and B), and AUC 
values of these two models were 0.8820 and 0.7940, respectively. Metabolites spe-
cific to M.tb infection were involved in necroptosis, retrograde endocannabinoid 
signaling, sphingolipid metabolism, choline metabolism, sphingolipid signaling 
and glycerophospholipid metabolism and are maybe the main pathways. In most 
cases, these metabolites are related to lipid accumulation and obesity in the body. 
About ¼ th of the population has latent TB, and less than 10% develop active in 
their life [36]. A rapid test that could detect latent to active TB stage could save 
many lives with a pre-treatment stage. A set of metabolite including valine, hypo-
xantine, inosine, creatine, citrate fucose and fructose was significantly elevated, but 
less abundant in patients not parallel with TB patient. In active TB fatty acids, amino 
acids and lipids were identified as biomarkers, (lysophosphatidylcholine (18:0), 
behenic acid, threoninyl-γ-glutamate and presqualene diphosphate) allowed for 
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discrimination between active TB and control samples with an AUC value of 0.991 
[37]. Increased lactate in patient sera correspond to high anaerobic glycolysis, 
which could be an index of tissue hypoxia and an extent of necrosis as the infection 
progresses [38]. A logistic regression model between patients with active M.tb [PG 
(16:0_18:1), Lyso-PI (18:0) and m/z 1321.9177] provided excellent classification 
accuracy of active TB cases [39]. The ROC curve demonstrated an area under the 
curve (AUC) of 0.97 (95% CI 0.93–1). The AUC was reduced to 0.94 when using 
only phosphatidylglycerol (PG 16:0_18:1) and Lyso-PI (18:0) and 0.82 when 
PG16:0_18:1 alone. Host generate hydrogen peroxide to eliminate infection,  in 
clinical practice  elevated  hydrogen peroxide level could be used for diagnosis. 
Metabolites related to increased oxidative stress and glutaminolysis in lung lesions, 
like Aspartate, glutathione, betaine and trim ethylamine N-oxide, are in the easy 
detectable range [40]. Elevated levels of isopropyl acetate and o-xylene, accompa-
nied by reduced levels of 3-pentanol, dimethyl styrene and cymol in urine sample 
discriminate the TB-positive patient from healthy controls and from patients with 
other lung associated disorders [41].

3.3  Malaria

Malaria is a serious global health problem affecting 40% of the global population 
every year. Malaria has evolved as a colossal infectious killer posing health chal-
lenges for many developing countries, affecting socioeconomic growth. Malaria 
affects about 229 million people globally, with around 409,000 deaths annually 
[42], most of which comprise children below 5 years of age. P. falciparum is the 
deadliest among the Plasmodium species that are known to cause malaria in humans; 
hence, combined global efforts are needed for its prevention and control [43]. The 
increasing burden of malaria and longtime ineffectiveness of current drugs pose 
challenges in malaria elimination programmes [44]. In a human body, Plasmodium 
can cause asymptomatic to severe disease spectrum and, hence, have an intercon-
nection between hosts. Parasite share nutrient and signalling molecules, from host, 
cause perturbations in the amino acids, lipids, fatty acids, sugars and heme metabo-
lites [45]. Arginine, tryptophan and glutamine have attention as these metabolites 
successively decrease in infected patients, coming from reduced nitric oxide, endo-
thelial disruption, and vasodilation [46]. Diminished levels of arginine and its bio-
synthetic pathway metabolites (e.g. ornithine and citrulline) also affect the blood of 
malaria-infected host. P. falciparum-infected hosts have elevated lactate in blood-
stream, causing a condition called metabolic acidosis [47], and glycolysis metabo-
lites perturbed in the bloodstream. Glutamine levels are depleted in the human host 
in both falciparum and vivax malaria, which cause severe malarial anaemia in chil-
dren. Glutamine is a ‘double-edged sword’ in malaria pathogenesis, because of its 
opposing disease manifestation effect. In cerebral malaria production of neurotoxic 
metabolites (e.g., quinolinic and kynurenic acid) from conversion of tryptophan to 
kynurenine are elevated and a decrease in indolepropionate which is derived from 

P. R. Mina



101

tryptophan [48]. Metabolite corresponds to beta oxidation of fatty acids in mito-
chondria as a means of energy production. Host derived metabolites are of quite 
importance while a bunch of metabolites also derived from Plasmodium species. 
Pipecolic acid is detectable in in vitro P. falciparum cultures, murine malaria mod-
els, and humans with P. falciparum, but not in healthy uninfected control [49]. 
Metabolites of alpha-linoleic acid pathway, which are common to plants, are found 
in P. falciparum culture and plasma of infected patient as well [50]. During 
Plasmodium infection, microbes from gut also translocate from gut barrier and 
break into the bloodstream. Elevated diaminopimelic acid was observed concomi-
tant with depletion in L-citrulline [51]. Rapid diagnostic tests that include both 
Plasmodium infection markers (elevated pipecolic acid and pinene) and disease 
severity markers (e.g. depleted arginine, glutamine, and citrulline) could have diag-
nostic and prognostic benefit.

3.4  Dengue

Dengue is a mosquito-spread disease caused by a virus from family Flaviviridae 
[52]. Dengue has different antigenicity 4 serotype in humans which infect 390 mil-
lion people worldwide every year [53], along with a billion people at risk. It cause 
sudden fall in platelets and serious bleeding in the jaw and other tissue and blood 
pressure shock, causing death. Its affects the liver, reported by change in liver 
enzymes like aspartate aminotransferase (AST) and Alanine transaminase (ALT), 
which can be higher during the critical phase [54]. Kynurenine metabolite from 
liver elevated in early febrile phase and was higher in hemmoregic dengue fever 
compared to fever caused by dengue [55]. Kynurenine could be a distinguishing 
marker, suggesting its potential as a predictor of severe dengue. In the early stage of 
dengue fever phenylalanine levels increased, for which Tetrahydrobiopterin (BH4) 
works as a cofactor, which further changed to tyrosine [56]. This metabolic change 
aggravated into elevated oxidative stress in dengue fever patient. Acylcarnitines are 
an intermediate of fatty acid β-oxidation (FAO) regulation suppressed during infec-
tion or inflammation [57]. Polyunsaturated fatty acids are released from cell mem-
brane of infected dengue patients, representing elevated arachidonic acid, linoleic 
acid, docosahexaenoic acid and α-linoleic acid [58]. Another human study on urine 
sample highlighted elevated acetoacetic acid, valerylglycine, fructose, 
4- hydroxyphenylpyruvic acid, Ssulfocysteine and betaine compared to healthy indi-
viduals [59]. Majority of dysregulated metabolites are involved in the tricarboxylic 
acid intermediates cycle and β-oxidation, amino acid metabolism, fatty acids related 
to dengue infection [60]. In same study creatinine, myo-inositol, creatine, succinic 
acid, citrate and 3-hydroxy-3- methylglutarate observed to be depleted (with signifi-
cance of p < 0.001). A serum metabolite study on humanized mice having dengue 
infection showed deregulated acylcarnitines, phosphatidylcholines, lysophosphati-
dylcholines, phosphatidylethanolamines, acylglycines, sphingomyelins, and bile 
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acids, which all showed a parallel increse like dengue patients at the early or acute 
stage of DENV infection and gradually returned to the control levels at the late 
stage [61].

3.5  Typhoid

Salmonella infection results from consumption of contaminated food and conse-
quent E. coli infection. Gastroenteritis, septicaemia and enteric fever are the major 
symptoms caused by Salmonella in humans as well as in animals. Humans and 
other chordate cattle, such as pig, showed delayed clearance due to increased resis-
tance to different classes of antibiotics (ampicillin, chloramphenicol, sulfamethoxa-
zole and tetracycline). Highlighting metabolic pathways differences in  antibiotic 
sensitive and resistance strains, along with scientific evidence of metabolite expres-
sion from various hosts. An untargeted metabolomics approach identified distinc-
tive biomarker from S. Typhimurium, which was variable among host species. A 
significant change in methionine, pantothenate, nicotinamide, pyroglutamic acid, 
nicotinate, phenylalanine, proline, pyruvate, serine, threonine, tryptophan, tyrosine, 
uracil and valine and decreases in alanine, aspartate, citrate, cysteine, glutamate, 
glycerate observed in patient [62]. Majority of affected pathways include glycine, 
serine, and threonine metabolism; alanine, aspartate and glutamate metabolism; 
amino acyltRNA biosynthesis; pantothenate and CoA biosynthesis. A study found 
that pathways which enriched in drug resistant strain confer to amino acid biosyn-
thesis, phenyl propanoid and nucleotide metabolism and concurred antibiotic resis-
tance in Salmonella [63]. Increased expression of aspartate is critical for β-lactamases 
[64]. Increased expression of serine and the decreased expression of glutamate are 
also critical in resistance development. Exogenous glucose and alanine increase 
susceptibility to antibiotic treatment by increasing TCA flux and thereby increasing 
drug uptake by the cell [65]. Decreased concentration of glutamate and pyruvate 
could be a lead marker for developing diagnostic biomarker for sensitive and resis-
tance strain differentiation, which are involved into tricarboxylic acid cycle [66]. 
Coinfection of Salmonella Typhi and Salmonella Paratyphi causes chronic carriage 
in the gallbladder formed by biofilm formation [67]. A study conducted to discrimi-
nate Salmonella carriage samples from non-carriage control samples. OPLS-DA 
model obtained when comparing S.  Typhi and S.  Paratyphi A carriage samples 
resulted in a glutaric acid and caproic acid ROC curve with an AUC value of 0.833 
[68]. Two different cohort studies of Nepal and Bangladesh showed 24 metabolites 
which were able to potentially to identify typhoid fever patients.Phospholipid bio-
synthesis precursor glycerol-3-phosphate, liposome component stearic acid and lin-
oleic acid, creatinine and pyruvic acid [69] . Furthermore, leucine and phenylalanine 
were consistently up- or downregulated between all collections (Table 1).
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4  Non-communicable Diseases

Unlike communicable disease, non-communicable diseases are not mediated by any 
external agent/pathogen  or transmitted from one person to another. Non- 
communicable diseases are chronic disease that reside in human body for a longer 
duration and take time to eliminate. Non-communicable diseases are the  conse-
quences of genetic, environmental, behavioural and physiological disturbance. 
NCDs such as diabetes, heart disease, cancer, stroke and lung disease contribute to 
74% mortality worldwide. Seventy percent of deaths due to NCDs, responsible for 
premature death at the age of 70s occurs in low-/middle-income countries. The field 
of non-communicable diseases is immense. The major causes of NCD-attributable 
mortality are cardiovascular diseases (30% of total global mortality), cancers (13%), 
chronic respiratory disease (7%) and diabetes (2%). Metabolic factors contribute to 
risks associated with metabolite change and can be  responsible for obesity, high 
blood pressure, hyperglycaemia and hyperlipidaemia. Some non-communicable 
diseases are aging disorders, such as Parkinson’s, Alzheimer’s, arthriti and, other 
neurological disorders.

4.1  Chronic Respiratory Diseases

Chronic respiratory diseases (CRDs) are the greatest risk to the population with the 
global estimated cases, 262 Million people suffer with CRD and asthama is more 
common in children (WHO 2021). This lies in both communicable and noncom-
municable category and is leading causes of mortality, morbidity for causing eco-
nomic and societal burden to society. CRDs include infection in different respiratory 
system of airways, pulmonary vasculature and parenchyma. Based on the mode of 
transmission and disease pathology CRD categorised broadly in communicable 
(e.g. tuberculosis and pneumonia) and non-communicable (asthma, interstitial lung 
disease, cystic fibrosis and lung cancer) disease. Total 400 million individuals across 
the globe have mild to moderate conditions of Asthma and COPD (chronic obstruc-
tive pulmonary disease) [85]. Unlike other diseases, metabolites had significant dif-
ference among COPD and pulmonary langerhans cells histiocytosis (PLCH), a type 
of lung disease. Isobutyrate and 2-propanol are able to characterise COPD with 
respect to PLCH, high/low in COPD and low/high in PLCH [86].

In pediatric study 1-methylnicotinamide and trimethylamine N-oxide (TMAO) 
were significantly lower in urine samples of asthamatic children compared healthy 
children [87]. These detected metabolites changed upto higher extent in severe ast-
hama cases. Dimethylamine has an important role in asthama development, along 
with guanidoacetic acid, allantoin and 1-methylnicotinamide correlated with ast-
hama [88]. The major dysregulated pathways in asthama children urine samples are 
sphingolipid metabolism, protein biosynthesis and citric acid cycle [89], transient 
wheezing phenotype showed different urinary metabolites compared to children 
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with early-onset asthma. Aspartic acid, stearic acid, heptadecanoic acid, threitol, 
acetylgalactosamine, xanthosine, hypoxanthine and uric acid) have a good ability to 
distinguish asthma in urine samples [90]. In bronchial epithelial cells (BECs) of 
asthama patients purine metabolism, amino acid biosynthesis, and glycolysis were 
dysregulated [91]. Clinical differential diagnosis of asthma and COPD remains a 
major challenge, especially for individuals who smoke. In COPD, ethanol and meth-
anol are high while acetone/acetoin is low compared to asthma [92]. N-acetyl- 
glycoprotein (NAG), lipoprotein are important metabolites to differentiate control 
and COPD [93]. Linear and polynomial LS-SVM classifiers can achieve the total 
accuracy rates of 80.77% and 84.62% and the AUC values of 0.87 and 0.90 for 
COPD diagnosis using these metabolites. In another study on plasma, it was found 
that glutamylphenylalanine and taurine decreased significantly in Chinese COPD 
patients but were highly expressed in the healthy group [84]. These metabolites 
could be used as key involver in disease onset and progress. Acylcarnitine, an inter-
mediate of fatty acid β-oxidation (FAO), displayed an increased tendency in COPD 
which activate inflammatory signal pathways via inducing IL-8 production and 
nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) activation 
[94]. Ceramide, an intermediate product of sphingomyelin metabolism, abnormally 
accumulates in lung tissue and may damage endothelial-defense, induce alveolar 
epithelial cell apoptosis, promote inflammatory response and cause macrophage 
dysfunction [95]. Leukotriene A4 (LTA4), prostaglandin E2 (PGE2) and 5-hydroxy- 
eicosatetraenoic acid are initial markers of inflammation that increased in COPD, 
while low concentration of eicosapentaenoic acid and docosahexaenoic acid prevent 
inflammation. Inflammation marker (LTB4, TNF- α, IL-8) significantly reduced 
when patient took long-term omega-3 PUFAs supplementation [96]. Three biomark-
ers, 411.3208 (4a-formyl-5a-cholesta-8,24-dien-3b-ol), 459.3493 and 568.5661 
(Cer (d18:0/18:0)), were verified to show good diagnostic of Mycoplasma pneumo-
nia against healthy control and infectious disease cases in children plasma sample 
analysed using liquid chromatography-quadrupole time-of-flight mass spectrome-
try. A group of compounds including glycolic acid, glyceric acid and xanthine were 
elevated in the cystic fibrosis group. A large group of acylcarnitines and aldehydes 
were found to be decreased in cystic fibrosis [97]

4.2  Cardiac Disorders

Cardiovascular diseases and respiratory diseases are the major causes of mortality 
throughout the world. Cardiac disorders cover 32% of deaths, with an estimated 
17.9 million deaths each year (WHO 2021). Sudden heart attack is the major cause 
of death among men and women. Cardiovascular disorders are associated with 
blood vessel structural changes which are responsible for disruptive blood supply to 
the body organ and causing heart stroke [98]. Along with blood carrying vessels, 
muscles of heart also get out of rhythm (cardiac myopathy). A routine diagnosis is 
important to avoid the development risk associated with heart failure. Elevated 
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deposition of unwanted lipids and other fat particles are responsible for blocking of 
blood vessels as well as in muscles [99]. Metabolite investigations associated with 
prevention and development of treatment strategies could support lower mortality 
rate. Surgical examination of vessel and heart showed low density lipoproteins, 
which are part of lipid oxidation form plaque [100, 101], which is responsible for 
irregular or discontinuous supply of blood to heart or clogging Whereas measure-
ment of these parameters is not possible to detect by surgery, biological fluids urine/
blood are always options to detect changes in healthy and diseased person. 
Untargeted metabolomics study of 65 coronary heart disease (CHD) patients 
detected 3069 molecular features. Oxyneurine, acetylcarnitine, PC(17:0/0:0) and 
isoundecylic acid were four most dysregulated metabolites with AUC range 
0.610–0.779 in patient vs control, with highest sensitivity and specificity. Oxyneurine 
is more sensitive and specific for CVD detection with 69.7 sensitivity and 78.8 
specificity [102]. In a targeted study of 101 CVD patient, oxyneurine along with 
acetylcarnitine,and PC (17:0/0:0)] significantly differentiated from control. In an 
early diagnosis model, a clinical model of these metabolites showed AUC value of 
combined diagnostic model only 0.579; the sensitivity was 75.5% and the specific-
ity was 46.5%. Combining oxyneurine, TG and weight considerably increased the 
accuracy of the clinical model with AUC 0.731 sensitivity 83% and specificity 64%.

4.3  Inflammatory Bowel Disease

Crohn’s disease and ulcerative colitis are in the spectrum of inflammatory bowel 
disease (IBD), which has inflammation and ulcers in gastrointestinal tract, including 
symptoms like diarrhea, bloody stool, abdominal pain and increased influx of 
immune cells (neutrophils, macrophage) which produce inflammatory cytokines and 
proteolytic enzymes [103]. IBD is more common in Western countries, including 
1.3% of the adult population of the United States. It is one of the five pathologies 
with the greatest social burden, with a mean annual cost (1998–2000) of 1.7 billion 
USD in healthcare services. The intestine metabolome is a product of host and gut 
microbiota derived enzymatic conversion of food nutrients and is better represented 
in a stool sample. Any change in metabolome directly confers to change in mucosal 
homeostasis and microbial dysbiosis [104]. Previous studies showed perturbations of 
the gut microbiota by antibiotic administration to mice affected the host’s systemic 
metabolic phenotype [105]. The detected similar co metabolite can also be utilized 
for monitoring human intestine inflammation stage in human stool, as supported by 
mice ileum tissue [106]. Stool samples contain large and small molecules produced 
by intestinal bacteria from consumed food that is subsequently absorbed in the gas-
trointestinal tract (GIT) [107]. Hence, stool metabolites are a co-presentation of gut 
microbiota as well as intestinal tract joint activity in both healthy and diseased state. 
Using  tissue biopsies to test metabolites is a time  consuming and uncomfortable 
procedure  for patients, but biological fluid collection is quite feasible. Fecal and 
serologic biomarkers can be used in the diagnosis and management of inflammatory 
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bowel disease. Fecal calprotectin and lactoferrin are current biomarker for IBD iden-
tification [108]. These markers can detect IBD but not its subtype to CD or UC, in 
current report there are other liver complications with UC called primary sclerosing 
cholangitis, which also needs to be detect for better treatment [109]. In a study faecal 
volatile metabolite analysis, heptanal, 1-octen-3-ol, 2-piperidinone and 6-methyl-
2-heptanone were able to separate based on disease location, small bowel CD from 
healthy controls and those with colonic CD from UC (P < 0.001) [110]. Citrate levels 
in serum can differentiate between CD and UC, since CD patients showed higher 
levels compared to UC [111]. Daniluk and colleagues reported for the first time that 
there were increased levels of the sphingolipid lactosylceramide in CD patients com-
pared to the UC cohort, a promising biomarker, which might help in the specific 
diagnosis of CD or UC [112]. Hence, ergothioneine seems to be a potential bio-
marker to distinguish between CD and UC, since its transporter is only expressed in 
the small intestine [113]. Dopaquinone was increased in fecal samples of CD patients 
in comparison to healthy controls [114]. Urinary hippurate is a product of the micro-
bial metabolism of certain dietary compounds to benzoic acid, with subsequent renal 
and hepatic conjugation of benzoic acid with glycine [115]. Hippurate levels have 
been found to be significantly lower in CD and UC patients compared to controls 
[115]. Tryptophan level is significantly lower in IBD while sialic acid is elevated in 
patient serum and has a stronger association with C-reactive protein in CD than in 
UC [116]. Significant decrease in Kreb’s cycle metabolites including citrate, aconi-
tate, α-ketoglutarate, succinate, fumarate and malate are observed in IBD compared 
to controls [117]. A significant increase in succinate is found in CD patients com-
pared with control subjects. Succinate level is increased in stool samples of paediat-
ric CD patients infected with Clostridioides difficile compared with paediatric CD 
patients without infection [118]. Docosahexaenoic acid, linolenic acid and arachi-
donic acid and MCFAs such as pelargonic acid and caprylic acid in serum of CD 
patients. In a study authors discriminate neutrophil to albumin ratio (NAR) discrimi-
nate UC (n = 146) from controls, in ROC analysis, showing that NAR had larger 
AUC (AUC  =  0.8670) compared to neutrophil (AUC  =  0.7750) or albumin 
(AUC = 0.7569) alone [119]. Taken together, these data suggest that NAR could be a 
practical, rapid and easily accessible biomarker for UC diagnosis. In stool, neoptarin 
is abundant in active CD patient compared to active CD patient, while in urine able 
to differentiate active IBD from IBD. Along with studying metabolomics changes, 
researchers are interested in analysing the link between the microbiota and the 
metabolome through integrated approaches. Studies reported that abundance of 
decline in certain bacterial population cause significant alteration in host-microbial 
co-metabolite. The category of co-metabolites including amino acids, biogenic 
amines and lipids increased significantly in IBD and B group vitamin B3 and B12 
significantly decreased [120]. Mingxiao Li et al. in their study on serum metabolites 
of UC patient and in experimental colitis mouse model showed receiver operating 
characteristic (ROC) analysis of palmitoyl glucuronide, isobutyrylglycine, PC (20:3 
(5Z, 8Z, 11Z)/15:0) and L-arginine under AUC >0.80 which was specific to DSS 
remission between control and model groups [121].
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4.4  Liver Disorder

The liver is one of the vital organs in the human body which plays several critical 
roles in maintaining human health and well-being. Its main functions are metabo-
lism of nutrients and excretion of toxic substances [122]. Diseases of the liver are 
complex and require extensive and often invasive investigations, like liver biopsy, 
which remains, currently, the most reliable test, if not the “gold standard’. Uncovering 
non-invasive diagnostic tools and scientific research into these has yielded multiple 
scoring systems, formulae and imaging modalities to diagnose liver disease and to 
monitor the disease activity. Due to vital role of liver in various complex metabolic 
and synthetic functions, any pathological insult to hepatic parenchyma leads to 
altered concentration of toxic metabolites in the systemic circulation [123]. Cirrhosis 
patients develop high risk of acute decompensation and require hospital admission. 
Early diagnosis of high risk patients could save  their lives if diagnosed on time 
[124]. Serum samples study of cirrhosis patient showed metabolites change which 
were related to amino acid metabolism, linoleic acid metabolism, glyoxylate and 
dicarboxylate metabolism, fatty acid metabolism, α-linolenic acid metabolism, and 
arachidonic acid metabolism [125]. Panel of metabolite associated with hepatitis B 
virus (HBV) is associated with cirrhosis development are glutamine, acetate, for-
mate and pyruvate in the serum [126]. A predictive model development used to dif-
ferentiate fibrosis and cirrhosis at early and advanced stage has high sensitivity to 
taurocholate, tyrosine, valine and linoelaidic acid. These metabolites were validated 
in another cohort showing AUC >0.8, which confirmed the strength of their predic-
tive models. In Hepatitis C virus (HCV) and human immunodeficiency virus (HIV) 
coinfected patient plasma Glycolic acid, LPC (16:0), and taurocholic were he most 
discriminated metabolites for decompensation stage. The AUC value showed higher 
sensitivity of set of metabolite compared to individual metabolite [127]. Other stud-
ies showed increased taurochenodeoxycholate, phosphatidylcholine, taurocholate, 
glycocholate, PC (16:0/16:0) and tyrosine in patients with advanced cirrhosis [128]. 
Taurocholate increased in cirrhosis due to increased bile acid synthesis because of 
cholestasis. In urine samples where metabolites represents host and microbiome 
metabolites a study found decreased level of 1-methyluric acid, cinnamic acid, 
N6-methyladnosine, deconoylcarnitine and phenacetylglutamine derived from 
decreased microbiota associated sugar fermentation [129]. Study employed GC-MS 
and targeted LC-MS of serum samples for hepatocellular carcinoma (HCC) and cir-
rhosis. Methionine, ornithine, proline, octanoylcarnitine and pimelylcarnitine dem-
onstrated higher AUC (AUC: 0.75), which was validated showing reliability of the 
established model [130]. Sensitivity of a large study of HCC increased when com-
bined with alpha-fetoprotein (AFP) with AUC of 0.946 and 0.829 [131] (Table 2).
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Table 2 List of reported metabolic biomarker for noncommunicable diseases

Disease Metabolite/pathway
Fluid 
origin

Analytical 
platform Ref.

Type 2 diabetes glycine, lysophosphatidylcholine (LPC) 
(18:2) and acetylcarnitine

Serum LC-MS [132]

Pre-diabetic valine, palmitic acid, 2-aminoadipic acid 
andproline, tyrosine, lysine and glutamate, 
isoleucine, alanine, proline, glutamate, lysine, 
leucine, isoleucine glycine, serine, and 
citrulline

Serum 
and 
plasma

LC- and 
FIA-ESI-MS/
MS

[133]

alanine, glutamate and palmitic acid (C16:0) Blood UHPLC- 
MS- MS

[134]

Autosomal 
dominant 
polycystic 
kidney disease 
(ADPKD)

creatinine, lactate, pyruvate, and succinate Urine Analytical 
enzyme assay

[135]

Chronic Renal 
Failure

7,8-Heptahydroxyflavone, threoninyl- 
aspartate, paraquat dichloride, Azelaic acid, 
(10E, 12Z)-9-HODE, N-acetylglutamine, 
4-acetamidobutanoic acid, Isoleucyl-alanine, 
beta-solamarine, kynurenic acid, 
alcophosphamide,1-(Beta-D-ribofuranosyl)-1, 
4-dihdronicotinamide, Thelephoric acid, 
5′-Methylthioadenosine, 
3-Methylglutarylcarnitine, 
formiminoglutamic acid, solacauline, PC (20: 
5 (5Z, 8Z, 11Z, 17Z)/(20: 5 (5Z, 8Z, 11Z, 
17Z)), serylalanine, 5,6-dihydrouridine, 
l-beta-aspartyl-l-threonine, kynurenic acid, 
tiglic acid, N-acetylserine, glutamyltheronine, 
1-methylhypoxanthine, beta-carboline, 
arabinofuranobiose, valdecoxib, glycerol 
tripropanoate, 4-Guanidinobutanoic acid, 
3-methoxy-4- hydroxyphenylethyleneglycol 
sulfate presqualene diphosphate, lycoperoside 
D,2-O-(6-Phospho-alpha-mannosyl)-D- 
glycerate, 2, 8-Di-O-methylellagic acid
perlolyrine, 3, 3′, 4′, 5, 6, N-acetyl-L-alanine, 
mycophenolic acid, formylanthranilic acid, 
trehalose
prostaglandin F3a, thymine and creatinine

Serum Q-Exactive 
HFX Orbitrap 
LC-MS/MS

[136]

Nonalcoholic 
fatty liver 
disease

Ratio of 13-hydroxyoctadecadienoic acid 
(13-HODE) to linoleic acid,

Serum LC/ESI/ MS/
MS)

[137]

Early 
nonalcoholic 
fatty liver 
disease

L-lysine,leukoterine C5, oleic acid, indole, 
succinic acid, lysoPC(20:3(5Z,8Z,11Z)

Serum UPLC- 
Orbitrap mass 
spectrometry

[138]

(continued)
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Table 2 (continued)

Disease Metabolite/pathway
Fluid 
origin

Analytical 
platform Ref.

Alzheimer 
disease

Gamma-aminobutyric acid, 17-ββ estradiol, 
homocysteine to methionine, choline, 
lecithin, L-carnitine and betaine

Urine NMR 
spectroscopy 
and 
UHPLC-MS

[139]

Lithocholic acid Plasma UHPLC- 
QTRAP

[140]

3-hydroxykynurenine, homogentisate and 
allantoin

Urine NMR [141]

Parkinson Alanine, valine pyruvate, serine, betaine, 
β-hydroxybutyrate, dimethyl sulphone, 
glycine, lactate and threonine

Serum HNMR [142]

Cardiovascular Acylcarnitines, TCA cycle intermediates, 
Branched chain amino acid, cardiolipins, 
succinate, short-chain dicarboxylacylcarnitine 
and rimethylamine N-oxide

Heart, 
plasma

LC-MS/MS; 
GC-MS

[143]

Respiratory 
disease

Urate, tyrosine Amino Acid,3- 
(hydrocinnamate) Amino Acid,pseudouridine, 
phenylpropionate, 3-(4-hydroxyphenyl)
lactate, 1 glutamine amino acid

Serum Meta- 
analysis by 
multivariate 
regression

[144]

5  Analytical Methods for Metabolomics

In metabolomics, low molecular weight compounds serve as critical biological reg-
ulators including cell signalling and networking with other metabolites [145]. These 
metabolites could be utilised as a disease distinguishing biomarker and target for 
drug development. Spectroscopic techniques have been successful in identify and 
quantifying the metabolite in biological samples, though they have certain limita-
tions. NMR is a pioneer method for metabolites study, in which principle of energy 
absorption and re-emission employed by atomic nuclei due to variations in an exter-
nal magnetic field  are applied [146]. The advantage of NMR is that it is a non- 
destructive and highly reproducible technique, and does not require extensive 
sample preparation. On the other hand, NMR has a lower sensitivity, it requires high 
concentration of compound to detect and compounds less than micro or pico molar 
levels are out of its detection limit; hence, a range of desired or significant metabo-
lites might be masked by larger peaks. Mass spectroscopy (MS) has advantage over 
NMR; MS is able to detect metabolite which are even present at nano or pico level, 
but require more précised sample preparation compared to NMR [147]. LC-MS 
is  the most the widely used platform for polar, non-polar, and moderately polar 
compounds with more specificity to chemical class like fatty acids, alcohols, phe-
nols, vitamins, organic acids, polyamines, nucleotides, polyphenols, terpenes, fla-
vonoids, lipids and other compounds [148]. MS platforms commonly used for 
metabolomics study include low-resolution techniques such as 5 triple quadrupole 
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(QQQ) and quadrupole-ion trap (QIT) and high-resolution techniques such as 6 
quadrupole-time of flight (Q-TOF), quadrupole-Orbitrap (Q-Orbitrap) and Fourier 
transform ion 7 cyclotron resonance mass spectrometry (FTICR-MS) [149]. Some 
of the biological samples are out of LC-MS detection because of their volatile prop-
erty; so for such compounds, MS is paired with gas chromatography, but before 
detection, compounds needs to be derivatised [150]. GC-MS can detect amino 
acids, organic acids, fatty acids, sugars, polyols, amines, sugar phosphates and other 
substances. Based on type of detection platforms choose like capillary electropho-
resis (CE), and supercritical fluid chromatography (SFC) are other platforms [151]. 
LC separation works on reverse phase liquid chromatography employed for separa-
tion of hydrophobic/hydrophilic metabolites [152]. Along with different platform 
selection based on their chemical classes, ionization mode can be chosen from elec-
trospray ionization, atmosphere pressure chemical ionization (APCI) and atmo-
spheric pressure photoionization (APPI) [153]. Large-scale targeted metabolomics 
quantification and untargeted metabolomics profiling is the primary strategies for 
metabolomics study. The untargeted metabolomics profiling strategy provides high- 
resolution full-scan MS data covering all metabolites in a sample. To manage large 
spectra and their reliable annotation, data-dependent acquisition (DDA) and MSE36 
strategies have been targeted for metabolite quantification [154]. DDA permits reli-
able identification of unknown metabolites, but quantitative analysis is not accurate. 
Consecutive isolation window based data independent acquisition strategy (SWATH) 
has also been applied in untargeted metabolomics study. Untargeted metabolomics 
profiling has the best metabolite coverage, but its reliability is suboptimal due to 
poor reproducibility and quantitative performance. Data processing such as metabo-
lite identification and data mining is complicated and requires significantly more 
effort than targeted quantification methods.

Targeted metabolomics is considers as gold standard because of its high sensitiv-
ity, wide dynamic range, reliable quantification accuracy and stability, but it is only 
able to measure limited number of known pre-selected analytes. Coverage by global 
profiling assay is still outpaces to characterise metabolite by annotating signal with 
their nearest metabolite identity.

In metabolomics-based study, there is a high demand of reliable quantitative 
assays of large number of metabolites. Multiple reaction monitoring (MRM) and 
parallel reaction monitoring (PRM) are frequently used for large-scale targeted 
quantification [155]. MRM strategy is capable of monitoring both specific precursor 
ions and characteristic product ions for each metabolite. MRM is most popular on 
triple quadrapole LC-MS system for simultaneous quantitation. MRM metabolite 
coverage is low which limits its use in complex biological system. Continuous 
efforts are attempting to improve large scale metabolomics analyses with enhance 
ease and stability. PRM-based targeted metabolomics has also been developed for 
Q-Orbitrap instrument. PRM scan entire group fragment ions at high resolution in 
targeted metabolomics and proven to be a powerful means of targeted 
quantification.
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6  MS Strategies for Large-Scale Metabolite Analysis

Interpretation of global profiling data is fruitless without considering effort toward 
conversion into biochemical interpretation. This represents a substantial barrier to 
the success of LC-MS-based metabolomics in clinical and translational research. 
LC-MS instrument based detection needs marked improvement is in progress for 
making powerful biological study. Multiple reactions monitoring (MRM) mode has 
been successful for high-quality metabolite quantitation, but is limited by its rela-
tively low metabolite coverage and throughput capacity. A strategy is needed that 
enables extended coverage of metabolite, while maintaining reliable quantification 
performance. The Partner relationship management (PRM) strategy allows a greater 
range of choices for large-scale untargeted metabolomics quantification. In PRM- 
based metabolites detection m/z (metabolite precursor) is first selected quadrapole 
and then fragmented by HCD/CID, altering all fragments of the precursor detected 
by HCD/CID in a single scan. However, in order to maximize the analytical power 
of large-scale targeted metabolomics strategies, some issues must be addressed.

7  Data Integration and Management Across Studies

Biology inside cells and organisms is heterogeneously structured, and can be stud-
ied at the  gene, transcript, protein and metabolite  level. Different omics based 
approaches are available for these studies named genomics, transcriptomics, pro-
teomics and metabolomics. In biological systems, information is transferred from 
nucleic acids to proteins and then metabolites in order to shape function and pheno-
type. These macromolecules and small metabolites could provide data about the 
phenotypes  of healthy and diseased individuals. Integrating two or more omics 
approach provide understanding of relationship among molecules which provide 
redundancy free information from data sources with overlapping contents. Data 
mining from knowledge databases provide integration of existing data files. In a 
study of 16  TB and 32 Mycobacterium tuberculosis-exposed plasma  samples, 
metabolite integrated with whole blood transcriptomics 3 metabolites pyridoxate, 
N-acetylneuraminate, quinoline were correctly able to identify TB and its duration 
during treatment ranging AUC value 0.66–0.87 [156] with additional 4 metabolite 
set gamma-glutamylglycine, gammaglutamylalanine, glutamine and pyridoxate. 
Transcriptional data correlated pyridoxate with p53-regulated metabolic genes in 
mitochondria and N-acetylneuraminate with immunoregulation of lymphoid and 
non-lymphoid cells. Based on decision tree analysis mRNA transcript increased 
upto the extent of metabolite. Transcript metabolite integration data identified high- 
yield tests for both diagnosis and response to anti-tubercular treatment. COVID-19 
patient immunometabolites correlated with circulating cytokines, showed elevated 
succinate inter acted with inflammatory cytokine production [157] with auxiliary 
involvement of tryptophan, arginine, and purine metabolism in proinflammatory 
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responses. Elevated succinate has been crucial for SARS-CoV-2 replication [158] 
and cytokine production in monocyte. IL-1β and IL-18 production in stimulated 
macrophages manifest by choline uptake. Dietary supplement of α-ketoglutarate 
was able to suppress chronic inflammation inducing IL-10 production. Serum kyn-
urenine and tryptophan correlate with IL-6 in COVID-19 patients. Downstreaming 
of arginine;, ornithine and citrulline are essential for T cell activation and regulate 
innate and adaptive immunity [159]. Arginase metabolism upon infection restricts 
inflammation by negative-feedback loop. Integrated comparative genomics and 
machine learning of saliva, serum, and sebum metabolite identified 11 regions in 
the  SARS-CoV-2 genome, which can predict high fatality unlike other diseases 
metabolome IBD is a representation of microbiome, which produces metabolites 
using host enzymes. Microbial dysbiosis is reported to affect the host genetics and 
linked with a variety of diseases. Studies are being conducted to find the actual 
cause of IBD, linking microbiome and inflammation as well as multiple sequencing 
assays for data integration [160]. Reduced antimicrobial peptides E-cadherin and 
claudins have been observed in IBD patients, supporting excess microbial translo-
cation to epithelium junction through impaired epithelial barrier [161]. CpG oligo-
deoxynucleotides to stimulate TLR9 signalling and induce the production of IFN-γ 
in the lamina propria. Proteomics data of IBD patient showed reduced tight junction 
protein expression like E-cadherin and claudins. Loss of tight junction protein 
integrity allows microbial antigen translocation to host bowel aberruptive mucosal 
immune response [162]. Membrane-bound molecules having pivotal role in cell 
signalling and sphingomyelin are processed by gut microbiota [163]. These results 
have been proven in mice model administrating PC or SM effect on microbiome and 
metabolome [164]. Another study showed strong correlation between indolepyru-
vate (aryl hydro-carbon receptor agonist) and Lactobacillus, Klebsiella responsible 
to increased gut inflammation [165]. Phosphatidylcholine administration amelio-
rates this metabolic imbalance greater than sphingomyelin. Dysregulated bile acid 
in ileum of CD patient have a link to host intestine permeability observed which 
consequences of bile acid processing microbial gene and alters host Angiopoietin- 
like 4 transcripts [166]. Bifidobacterium sp. produced anti-inflammatory metabolite 
indoleacetic acid, lower levels of which strongly correlated to host immune tone. 
Increased levels of benzoic acids, and phenols have been associated with enriched 
in Bacteroides sp dominant in ulcerative colitis patient [167]. Stool metaproteomics 
has shown high fidelity clinical marker for gut diseases. Metatranscriptomics and 
metabolomics data revealed decreased bile salt hydrolases, highlighting the role of 
bile acids in microbial metabolic output and host physiology. The role of gut micro-
biota derived metabolites not only has importance to gut vicinity, but to other dis-
eases originating  at different tissue sites. Integration provides us the microbial 
strain, and metabolite to manifest the disease condition. A large set of metabolites 
are common to inflammatory conditions and overlap to each other, but do not pro-
vide contrasting result toward disease specificity. In dengue haemorrhagic fever 
(DHF), elevated IFN-γ is enriched with kynurenin, tryptophan and serotonin which 
could be used in combination for accurate early disease progression metrics [168]. 
Dengue virus use mosquito feed blood for de novo phospholipid precursor 

P. R. Mina



115

synthesis which is required for viral genome replication to modify the endomem-
brane to facilitate replication complex, a process unique to dengue [169]. Multiomics 
integration identified eight target gene (ACTG1, CALR, ERC1, HSPA5, and 
SYNE2) involved in protein-protein interaction that could be used as drug reposi-
tioning to treat DHF. Valparoic acid resveratrol, vorinostat, sirolimus andY-27632 
drug have been reported effective previously against flavivirus-induced diseases 
[170]. Combined transcriptomics and metabolomics analyses in malaria provide 
profound approaches to link biological responses to oxidative stress and corrobo-
rate the transcriptomic response at the time of malaria diagnosis. In malaria, myeloid 
cells metabolites have substantial effect and reprogramming of metabolites could 
have clinical tolerance to P. vivax relapse [171]. The metabolite set elicited during 
infection modulate genes related to platelet activation, interferon and innate immu-
nity and for chemokines and T cell signalling associated with linoleate and glycero-
phospholipid metabolism in human [172]. Plasma metabolites associated with 
platelet activation genes in blood were enriched in platelets in blood. Studies proved 
P. vivax infection associated with host metabolic response governed immune 
response later on. Metabolomics and transcriptomics revealed concerted events dur-
ing infection which are associated with platelet activation genes were indeed 
enriched in the platelet metabolome. Metabolite interactions and biomarkers rela-
tionship between diseases provide disease understanding and shed light on potential 
mechanism behind diseases. Pathways and network connections of candidate tran-
scripts provide tool to researcher increasing knowledge on the molecular interac-
tion. Although metabolomics provide metabolite alteration which indeed a result of 
change in proteome and transcriptome along with affected environmental factors, 
epigenetics, genetics and influence cellular biochemistry. In Chronic lung disease 
lipids are leading factors in TH1 immune response [173]. Impaired lipolysis/lipo-
genesis and hypoxia response is associated with SCD1, ROS VEGF, ATP, AMPK, 
MAPK, EGFR, UCP2 and PLA2 which are key crosstalk molecules [174]. 
Upregulation of sphingolipids has a negative impact on VEGF signalling where 
ceramide inhibit VEGF and upregulate sphingosine-1-phosphate (S1P) signalling 
[175]. Decreased HIF1α and VEGF lead to pulmonary vasculature impairment dur-
ing hypoxia [176]. As  a result of increased hypoxia, ceramide inhibits FABP4, 
PPAR, SCD1, ACOT4 and UCP2 genes, which are key regulator of lipid trafficking 
and energy metabolism. Dysregulation of UCP2 expression is related to the polyun-
saturated fatty acids linoleic acid and arachidonic acid [177]. Aggregation of the 
features that correlate with genotypic data and can be matched to one or several 
metabolites could function as a novel type of quantitative biomarker for cardiovas-
cular disease as well. In ischemia and idiopathic heart failure patient, two metabo-
lites functionally associated with gene expression change are nitric oxide (NO) and 
the synthesis of N-acetylneuraminic acid (Neu5Ac) [178]. NO and Neu5Ac meta-
bolic function associated with genes involved in heart failure evidenced across stud-
ies and also serve as biomarker and potential target for disease treatment. Neu5Ac 
de novo synthesis data showed decreased expression of five genes in ischemic 
strock. In plasma samples increased Neu5Ac is attributed to glycosylation of circu-
lating lipoproteins, which is correlated with increased triglyceride levels [179]. A 
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mouse study demonstrated that protein glycosylation inhibition through a sialyl-
transferase (ST3Gal4), caused development of dilated cardiomyopathy (DCM) 
[180]. These results were further validated in a genetic knockout in zebrafish. 
Increased trimethylamine N-oxide (TMAO) is linked to micro biome metabolism, 2 
flavin monoxygenase class of enzyme oxidise trimethylamine to TMAO with FMO3 
expression change [181]. Mice expressing high variants of these genes  have 
increased susceptibility to atherosclerosis. Genetic biomarkers are heritable compo-
nents responsible for disease manifestation in early childhood; molecular detection 
may serve lifestyle control for delaying disease response.

8  Conclusion

Metabolomics is a rapidly growing field of study that aims to quantify the small 
molecule metabolites present in biological samples. The integration of metabolo-
mics data with other omics data, such as transcriptomics, proteomics and genomics, 
has become increasingly important in order to gain a more comprehensive under-
standing of biological systems. There are several emerging technologies that are 
playing a key role in the integration of metabolomics data, including machine learn-
ing algorithms such as random forest, support vector machines and neural networks, 
which are being used to integrate metabolomics data with other omics data and 
identify new biomarkers for disease diagnosis and prognosis. Integration of metabo-
lomics data with electronic health record (EHRs) can provide a more complete pic-
ture of patient health and enable personalized medicine. MetaboAnalyst and 
OmicsDI are data integration platforms being developed to enable the integration of 
multiple omics data sets, including metabolomics data, in a single platform. RNA- 
seq and metagenomics are being used to generate large amounts of transcriptomics 
and metagenomics data, respectively, which can be integrated with metabolomics 
data to gain a more comprehensive understanding of biological systems. Mass spec-
trometry imaging (MSI) is a rapidly growing field that enables the spatially resolved 
analysis of metabolites in tissues. The integration of MSI with other omics data is 
providing new insights into the relationship between metabolite distribution and 
disease development. The Importance of integrating multi-omics data is evident in 
real life disease research as it aids the discovery of fundamental causes of serious 
health conditions. Genome, proteome to phenotype governed by metabolome build 
string attached genotype to phenotype and offered improved prediction of disease 
for future treatment strategies. Hence, the emerging technologies are advancing the 
field of metabolomics and improving our understanding of biological systems. They 
are expected to have a significant impact on the development of new diagnostics and 
therapies for a wide range of diseases.
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Pharmacometabolomics: General 
Applications of Metabolomics in Drug 
Development and Personalized Medicine

Dung Thuy Tran and Amber Dahlin

1  Introduction to Pharmacometabolomics

Metabolomics is the study of small molecules (metabolites) present in cells, organs, 
and body fluids. In contrast to genomic, proteomic, transcriptomic, and other 
“omics” data types, metabolomics is representative of the actual physiological sta-
tus of patients in real time, as it profiles biochemicals that are most closely related 
to the metabolic status of cells or tissues [32].

The responses of patients to xenobiotics (drugs) are influenced by a variety of 
factors (genetic and environmental) that can be interrogated using various “omics”-
based approaches. Pharmacogenomics is the study of how genetic information 
influences patient responses to drug treatment, or the extent of contribution of 
genetic variation to a drug response phenotype. “Drug response” broadly refers to 
the net effect of drug treatment or exposure on the disease, symptom, target organ 
or tissue, and it is influenced by numerous host and environmental factors. Through 
the development of methodology to conduct high-throughput genetic studies in 
patients, and the availability of large-scale population genomic data through the 
Human Genome Project and related resources, scientists have identified and charac-
terized numerous genetic variants that contribute to patients’ drug responses. 
Although a number of clinically relevant pharmacogenomic relationships underly-
ing drug responses have been identified to date, leading to 500 drug label warnings 
for FDA-approved drugs or therapies (Table of Pharmacogenomic Biomarkers in 
Drug Labeling; https://www.fda.gov/drugs/science- and- research- drugs/table- 
pharmacogenomic- biomarkers- drug- labeling), the ability of clinicians to predict 
patient responses to drug therapies has been limited. Host genetics accounts for 
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20–40% of the variation of patients’ responses to drugs [116], with the remaining 
60–80% resulting from epigenetic and environmental factors including diet, life-
style, and microbiome [9]. Therefore, well-defined strategies that account for the 
influence of non-genetic factors is necessary, and pharmacometabolomics repre-
sents a promising approach to better understand and predict drug response.

Pharmacometabolomics involves the collection of quantitative data on a large 
number of metabolites to discover biochemicals and biochemical pathways related 
to drug response outcomes [57]. Pharmacometabolomics was firstly defined as “the 
prediction of the outcome of a drug or xenobiotic intervention in an individual based 
on a mathematical model of pre-intervention metabolite signatures” [17]. In this 
chapter, we will discuss the application of pharmacometabolomics in drug discov-
ery and development, describe methodological details and challenges, present com-
pelling evidence from pharmacometabolomics studies published to date, and 
highlight examples of these applications in treatment of different diseases.

2  Methods and Resources 
for Pharmacometabolomics Investigations

From the perspective of metabolite data generation, a targeted or untargeted 
approach can be considered. The targeted approach is applicable in profiling a set of 
specific, well-defined metabolites [83]. This approach has been used in drug devel-
opment when the target of a drug or disease process is relatively understood [9]. In 
contrast, the untargeted approach profiles the global pool of metabolites, many of 
which are novel or un-named, in a biological fluid, tissue, or cell [83]. Targeted 
metabolomics is useful for evaluating metabolites associated with specific condi-
tions, such as comparisons of healthy vs. pathological groups [9]. Targeted metabo-
lomics could be considered hypothesis-driven, whereas untargeted metabolomics is 
discovery-based. In both cases, the resulting dataset will include a list of identified 
metabolites and concentrations or fold changes across samples, which can then be 
investigated using statistical models to discern relationships between exposure 
(metabolite) and outcome (e.g., disease outcome or drug response).

2.1  Analytical Techniques

The development of analytical methods routinely employed in metabolomics stud-
ies, including nuclear magnetic resonance (NMR) and mass spectrometry (MS) 
coupled with different separation techniques, has rapidly accelerated pharmacome-
tabolomics discoveries (Fig. 1) (Zeki et al. [135]). Liquid and gas chromatography, 
and electrophoresis (LC, GC, and CE, respectively), are the leading technologies for 
metabolite separation, while NMR and MS are state-of-the-art methods for 
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Fig. 1 Analysis methods of various molecular metabolites. (Adapted from Zeki et al. [135])

Table 1 The advantages and disadvantages of different analysis techniques in metabolomics 
studies [30, 59]

Analysis 
technique Method Application Advantages Disadvantages

GC-MS Causes high- 
resolution separation 
of compounds in the 
gas phase using gas 
chromatography

Analysis of 
volatile 
metabolites

High resolution, able 
to resolve complex 
samples, can analyze 
different classes 
simultaneously

Cannot analyze 
thermolabile 
compounds, 
non-volatile 
metabolites must be 
derivatized, hard to 
identify unknown 
compounds after 
derivatizations

LC-MS Combines high 
pressure liquid 
chromatography 
(HPLC) and MS to 
separate then 
quantify molecules

Metabolite 
profiling 
studies

High sensitivity, 
good 
chromatographic 
resolution

Not appropriate for 
polar and ionic 
species including 
metabolites that are 
components of 
biochemical 
pathways

CE-MS Combines the liquid 
separation process of 
capillary 
electrophoresis with 
MS

Analysis of 
metabolites in 
small volumes

High resolution, 
small volumes

High complexity, still 
in development phase

NMR Measures molecular 
structures by 
identifying signals 
from protons 
resonating within a 
magnetic field

Untargeted 
metabolomics 
methods

Can detect high 
number of 
metabolites quickly, 
allows absolute 
quantification with 
less steps

Costly, low 
sensitivity, requires 
large sample size, 
high complexity

metabolite detection [50]. NMR is generally a stand-alone technology, while MS is 
used with LC or GC separations to reduce sample complexity [78]. Each analytical 
technique has respective advantages and disadvantages (Table 1) [30, 59], so it is 
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often recommended to analyze samples using different analytical methods in order 
to obtain comprehensive and reliable data.

2.1.1  Mass Spectrometry (MS)-Based Approaches

MS-based methods have high sensitivity, facilitating a wide range of metabolomics 
studies, by monitoring mass over charge number (m/z) values [128]. It is a powerful 
technique to identify unknown or novel metabolites [128]. The combination of GC 
separation with MS (GC-MS) is well established, with nearly 50 years in applica-
tion, and is capable of analyzing amino acids, steroids, hormones, fatty acids, and 
intermediates of primary metabolism [33]. It confers several advantages including 
low cost, ease of operation, and high separation efficiency, making it the leading 
technology in metabolomics. Generally, the sample transits a gas chromatography 
unit resulting in a high-resolution separation of volatile compounds in the gas phase. 
As a result, the method is mainly utilized for the analysis of volatile metabolites 
[136]. Non-volatile samples need to be derivatized prior to analyzing to reduce 
polarity and increase stability, which can be tedious for sample processing [136].

LC-MS combines liquid chromatography (LC) and MS into a complete process 
from separation to quantification of molecules. LC-MS changes the mobile phase 
from gas to liquid to overcome the limitations of GC-MS. This change means that 
LC-MS does not need metabolites to be volatile before analyzing; hence, sample 
derivatization is not required. It has several advantages including column separa-
tion, the ability to detect many chemicals, need for smaller sample volumes, and is 
less expensive compared to NMR [62]. It is also suitable for relatively polar com-
pounds from low to high molecular weights [31]. For flexible and efficient separa-
tion, high performance liquid chromatography (HPLC) allows separation of 
compounds with different polarity ranges using isocratic or gradient elution meth-
ods (Yukta [132]). HPLC first separates molecules based on different physical and 
chemical properties such as molecular size, polarity, and affinity, using the reversed 
phase mode. Next, in the stationary phase, the movement of molecules based on 
their molecular sizes is limited, facilitating separation. Column chromatography 
then can be used to purify individual chemical compounds from the mixture [21]. 
Currently, HPLC is widely used in different fields including medicine and biochem-
istry. This technique can analyze over 70% of organic compounds with an average 
analysis time of 15–30 minutes [121]. HPLC can also couple with fluorescent detec-
tion (FLD) with high sensitivity, high selectivity, and repeatability. For example, 
HPLC-FLD performed through direct or indirect methods can be applied for quan-
tification of steroids, as shown in Fig.  2 [44]. Some non-native steroids such as 
trenbolon can be quantified without the derivatization due to the fluorescence prop-
erties while substances which do not exhibit fluorescence need to undergo derivatiza-
tion before analysis.

In 2004, ultra-high-performance LC (UHPLC) was introduced [89]. Similar to 
HPLC, UHPLC is a liquid chromatography technique, but UHPLC operates at 
higher pressure (15,000 psi) and is suitable for smaller particle sizes [89], while 
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Fig. 2 High performance liquid chromatography with fluorescence detection for quantification of 
steroids through direct or indirect method. (Adapted from Hameedat et al. [44])

HPLC performs at lower pressure (< 6000  psi) [122]. Therefore, compared to 
HPLC, UHPLC is faster, which decreases solvent consumption and shortens run 
times. As a result, UHPLC can potentially increase the number of metabolites 
detected by MS. Wilson et al. [123] reported that UHPLC provided more than dou-
ble peak capacity, tenfold increase in speed, and up to fivefold increase in sensitiv-
ity. Additionally, another study also indicated UHPLC-MS offered a 20% increase 
in detected components in human serum, compared to HPLC [82]. Currently, it has 
become more popular in metabolomic profiling and is considered a novel LC tech-
nique for various human biofluids [24]. Hydrophilic interaction liquid chromatogra-
phy (HILIC) is another new and popular LC-based separation technique that couples 
with MS [64]. HILIC combines a silica- or polymer-based stationary phase, a 
mobile phase in reversed phase separation mode, and ion exchange chromatography 
(IEX) [65]. The HILIC separation technique confers several advantages, with the 
capability of analyzing polar metabolites due to improved retention capability. 
HILIC has been used to separate proteins including histones, membrane proteins, 
and neoglycoproteins [37]. Additionally, HILIC can also separate different lipid 
classes based on their polar head and charge. For instance, positional isomers of 
polar lysophospholipids, including lysophosphoglycerols, lysophosphocholines, 
and lysophosphoethanolamines, were analyzed using HILIC-MS [72].

In addition to GC and LC separation techniques, the capillary electrophoresis 
(CE-MS) method was introduced in 2003 by Soga et al. [101]. CE is a separation 
technique based on the movement of ions through the capillary at different rates due 
to different electrophoretic charges [39]. Therefore, compared to other methods, the 
CE-MS method has greater resolution for quantifying polar metabolites including 
amino acids and carbohydrates [101]. Unlike GC-MS, CE-MS does not need 
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derivatization. CE-MS was employed to analyze large-scale studies with high- 
resolution power and high reproducibility, and the advantage of requiring lower 
sample and solvent volumes [11]. For example, CE-MS analyzed polar metabolites 
in plasma samples from 11,002 individuals, providing absolute quantification of 94 
polar and charged metabolites [45]. Additionally, CE-MS can quantify metabolites 
from different biofluids [92]. Saliva samples are a preferred fluid for metabolomic 
profiling due to simplicity, non-invasiveness, and lower cost [92]. In a metabolo-
mics study of oral cancer patients, CE-MS was utilized to analyze saliva samples to 
determine optimal sample collection times. Concentrations for 58 metabolites were 
significantly different between control and oral cancer patients at the 12-hour fast-
ing time point [49]. Despite its many advantages, CE-MS has not been as widely 
used compared to LC-MS. Several disadvantages of this technique include limited 
loading capacity (which prohibits the loading of large sample volumes), limits of 
detection [127], and unsuitability for analyzing high molecular weight proteins 
(>20 kDA) [10].

2.1.2  Nuclear Magnetic Resonance (NMR)

NMR is a powerful spectroscopic method used to determine the molecular struc-
tures of metabolites by measuring signals from protons resonating within a mag-
netic field [85]. NMR is able to detect a large number of metabolites (<1 kDa) in 
different biological samples including urine, plasma, saliva, and tissues [36]. NMR 
can detect many metabolites over a short time period; for example, a single proton 
spectrum quantified 100 metabolites in human urine samples [20]. NMR is appli-
cable for both targeted and untargeted metabolomics approaches [30]. The tech-
nique is also suitable for detection of amino acids, carbohydrates, alcohols, and 
organic acids [118]. A major advantage of NMR is that it does not require additional 
steps of sample preparation including separation and derivatization [29]. However, 
compared with MS, NMR has lower sensitivity and is limited to identifying 50–200 
metabolites with concentrations <1 μM, while MS is able to identify >1000 metabo-
lites with concentrations >10 nM [30]. NMR also requires highly skilled and trained 
operators, and machine costs are higher than MS [29].

The two major types of NMR include 1H NMR and 13C NMR; these techniques 
differ in their detection of the type and number of hydrogen (proton) or carbon 
nuclei, respectively, that are present within a molecule. Both also differ in their 
methodologies used to obtain NMR spectra. The continuous wave method (slower) 
and Fourier transform (faster) are utilized by 1H NMR and 13C NMR, respectively. 
The two techniques also differ in the type of spectral data generated [90]. 
Metabolomics studies generally utilize 1H NMR due to its superior sensitivity. 
However, 13C NMR is also performed in tandem with 1H NMR due to advantages it 
confers over 1H NMR in the breadth and type of molecules containing carbon back-
bones that can be detected [18].
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2.2  Repositories and Databases 
for Pharmacometabolomics Studies

Publicly available, online databases of metabolites and metabolite reactions con-
dense complex information for thousands of metabolites from multiple species into 
a single resource. These databases are useful for annotating and characterizing 
metabolites of interest and performing straightforward bioinformatic or statistical 
analyses. A list of current resources is presented in Table 2.

Currently, HMDB is the largest and most comprehensive database, containing 
217,920 annotated metabolites [125]. A new version, HMDB 5.0, includes a new 
Chemical Functional Ontology (ChemFOnt), which describes the biological and 
industrial function of metabolites [125]. Each metabolite entry provides informa-
tion including chemical structures, identifiers, descriptions, and other chemical and 
biological information, which are stored in a “MetaboCard” web page. Each 
MetaboCard page also links to many other databases (including KEGG, BioCyc, 
PubChem, ChEBI, PubMed, Genbank, and dbSNP) [126]. The Small Molecular 
Pathway Database (SMPDB) for human metabolites consists of over 600 hand- 
drawn pathways, 280 of which are unique to SMPDB, describing metabolic and 
physiological action pathways [35, 51]. SMDB 2.0 also includes information about 
reactions occurring in cellular compartments, organs, and tissues, and the organs 
targeted by drugs or toxic metabolites. SMDB 2.0 links to other databases including 
HMDB, DrugBank, UniProt (protein search), TextQuery (text searching utilities), 

Table 2 Metabolomic databases

Database Description Link

BioCyc 20,024 pathway/genome database for 
eukaryotes providing reference to 
genome and metabolic pathway

https://biocyc.org/

Metabolite database Structures and annotations of 167,000 
metabolites

https://www.
metabolomicsworkbench.org/

Human Metabolome 
Database (HMDB)

Comprehensive collection of human 
metabolites with a total of 220,945 
metabolites

https://hmdb.ca/

Human fecal 
metabolome database 
(HFMDB)

Freely database with ~6000 human 
fecal metabolites

https://fecalmetabolome.ca/

Metabolite and 
tandem MS database 
(METLIN)

Over a million molecules ranging such 
as lipids, steroids, small peptides. From 
MS/MS analysis

https://metlin.scripps.edu/l

Massbank Public database of mass spectra of 
small chemical compounds

https://massbank.eu/
MassBank/

LipidMaps Structures and annotations of biological 
relevant lipids

https://www.lipidmaps.org/

Chemical Entities of 
Biological Interest 
(ChEBI)

Freely resources of small chemical 
compounds

https://www.ebi.ac.uk/chebi/
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ChemQuery (chemical searching), Sequence Search, SNP-Browse (pathway brows-
ing), and others [51]. Another helpful online metabolomics resource is the 
Metabolomics Workbench Metabolite Database (www.metabolomicsworkbench.
org), a public repository containing 60,000 chemical structures and annotations of 
biologically relevant metabolites [103]. Currently, it includes over 130,000 entries 
collected from over 2000 public sources. Other similar metabolic data repositories 
and databases include MetaboLights, KEGG, LIPID MAPS, CheBI, HMDB, 
ChemSpider, and MetaCy. As new pharmacometabolomics information is gener-
ated, published online, and curated within these repositories, these useful resources 
will continue to develop.

In addition to these databases, web-based software tools are available for analyz-
ing metabolites and performing statistical procedures to evaluate outcomes and 
infer biological relevance. MetaboAnalyst (https://www.metaboanalyst.ca/) is the 
most widely used and comprehensive platform for high-throughput metabolite anal-
ysis informed by biological knowledge, and it is relevant for analyzing data from 
both targeted and untargeted assays. The most current version (V5.0) facilitates 
multiple analytical approaches from processing of raw MS spectra to performing 
statistical tests including meta-analyses and integration of multiple “omics” data 
types [84]. Multiple types of statistical analyses can be conducted using a list of 
metabolite identifiers and their concentrations or fold change, from simple (e.g., 
t-test, correlation analysis) to complex, including machine learning approaches 
such as supervised classification. MetaboAnalyst also facilitates biomarker identifi-
cation through receiver operating characteristic (ROC) curve analysis, in addition to 
metabolite set enrichment and pathway analysis. Molecules of interest can also be 
visually described in the context of biological and biochemical networks using the 
network analysis function. A limitation of MetaboAnalyst is that it currently accepts 
only one kind of metabolite identifier (e.g., KEGG or HMDB identifier) at a time as 
input data, which can reduce the number of metabolites included in the analysis if 
the dataset includes identifiers from different sources. Chemical Similarity 
Enrichment Analysis for Metabolomics (ChemRICH) (https://chemrich.fiehnlab.
ucdavis.edu/) is a pathway enrichment approach to metabolite set analysis that can 
overcome this limitation as it facilitates multiple input identifiers, yielding sets of 
metabolites that do not overlap [7]. ChemRICH relies on chemical ontologies and 
structural similarities rather than pathway or biochemical annotations to group 
metabolites. Because P values are not derived using a background database (as for 
pathway mapping), the statistics generated through enrichment analysis are superior 
to those derived from annotation-driven pathway enrichment. The output of 
ChemRICH takes the form of multiple enrichment plots of metabolite clusters 
ordered by ontology and chemical similarity; interactive tables also include metabo-
lite annotations to clusters, representations of metabolites within clusters, and the 
direction of change in metabolite effect (increase or decrease), with raw and adjusted 
P values [7].
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3  Pharmacometabolomics as an Innovative Solution 
for Enhancing the Discovery and Development 
of Novel Drugs

The processes of drug discovery and development aim to identify new medications 
with novel modes of action or clinical indications [77]. Drug development com-
prises five stages: discovery and development, preclinical research, clinical research, 
FDA review, and FDA post-market safety monitoring (Fig. 3) [3]. The discovery 
step begins with the identification and validation of a biological target of interest 
(e.g., a receptor or gene) [93]. Target validation involves the application of various 
techniques including functional analysis (using in vitro assays or animal models) 
and expression profiling (of mRNA or protein) to demonstrate specificity and estab-
lish that a therapeutic benefit exists within an adequate range of safety [48]. After 
successfully validating the target, the next process is hit identification and charac-
terization. A hit is a compound that interacts with the validated target and has 
desired activities. A hit can be identified by high-throughput screening using a large 
number of compounds or other screening approaches [48]. After identifying prom-
ising compounds, information related to how they are absorbed, distributed, metab-
olized, and excreted is determined, as is any presence of off-target effects or potential 
interactions of the compounds with other drugs. Prior to human testing, candidate 
drugs are investigated in vitro as well as in vivo using appropriate cellular and ani-
mal models. Both provide detailed information regarding activity, dosing, and tox-
icity, which can help to determine whether the drug can be prioritized for clinical 
research. After preclinical and clinical trials, if the candidate drug is determined to 
be safe and effective, a company can file an application to market the drug and the 
FDA review team examines all submitted information to make the decision to 
approve or decline. For the last stage, drugs are reviewed post-market to determine 
additional information including dosage or other clinical indications [93].

Fig. 3 The application of metabolomics in five stages of drug discovery and development phases. 
(Adapted from Alarcon-Barrera et al. [3])
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Time and expense remain the greatest challenges for drug development. 
Approximately 12 years, on average, are required to develop a new medication from 
the time it is discovered to when it is available to patients [77]. The average cost for 
research and development for an approved medication is over $2 billion USD [77]. 
Not every drug can be marketed successfully, and the average rate of approval of 
new drugs by the FDA was ~40% over the past decade [1]. After entering clinical 
studies, generally, nine out of ten drug candidates will fail during the phase I-III 
clinical trials and drug approval stages [104]. Possible reasons for failure include a 
lack of clinical efficacy, unmanageable toxicity, issues with formulation, insuffi-
cient commercial need, and lack of efficient strategic planning [25, 46]. To account 
for these limitations, pharmacometabolomics approaches have become increasingly 
informative and valuable in minimizing development failure and saving resources 
from the initial drug discovery to preclinical and clinical stages [110]. We discuss 
the application of pharmacometabolomics in the drug discovery and development 
processes below.

3.1  Pharmacometabolomics as a Resourceful Tool in Drug 
Discovery and Development

3.1.1  Target Identification

Most drug discovery programs initially pursue identification of the molecular 
target(s) (mRNA, gene, protein, or receptor) directly related to disease pathogene-
sis, followed by screening for possible interactions [77]. Ideal drug targets have the 
property of “druggability,”that is, the ability to efficiently bind to small molecules, 
leading to therapeutic benefit [48]. This property is investigated through screening 
of chemical libraries and relevant cell lines or in vitro models. In traditional screen-
ing, a macromolecular target is selected, and an assay is performed to monitor the 
ability of small molecules to perturb the target [98]. One of the problems of this 
approach is that it can lead to misidentification of drug targets; in addition, tradi-
tional chemical screening can be time-consuming due to the large number of com-
pounds that are interrogated. Pharmacometabolomics has the potential to overcome 
some of these limitations. Tiziani et al. [111] demonstrated an NMR-based metabo-
lomics approach to develop a method for high-throughput screening of drug librar-
ies in cancer cell lines. The authors monitored the global, intracellular, and 
extracellular metabolomic profiles following treatment of the cell lines with 56 
kinase inhibitors [111]. PCA models of the metabolomic data proved clear group 
separation based on drug treatment or cell line, demonstrating the feasibility of a 
metabolomics-based approach for large-scale screening of drug-treated samples 
[111]. Recently, Holbrook-Smith et al. [47] also demonstrated the effectiveness of 
high-throughput metabolomics approaches for rapidly and accurately predicting 
drug-target relationships to speed the rate of discovery. This method required less 
than one minute per sample using flow injection time of flight mass spectrometry; 
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therefore, thousands of samples could be profiled in a single assay, facilitating large 
amounts of data for candidate drug identification [47]. The authors compared the 
metabolomic profiles of Saccharomyces cerevisiae samples that were subjected to 
either chemical perturbation or inducible overexpression of six intracellular and 
membrane bound proteins. Metabolomic profiles were collected from two groups of 
yeast that were either treated with 1280 drugs or were subjected to gene overexpres-
sion by a β-estradiol inducible overexpression system (Fig. 4). The authors imple-
mented a synthetic promoter system, Z4EV, that replaced the native gene promoter. 
In the absence of an inducer, Z4EV was inactive. Following treatment of the samples 
with inducers, mRNA transcripts and intracellular metabolites were profiled and 
compared with profiles from the pre-treatment state [47]. If the post-treatment 
metabolite and gene overexpression profiles were highly correlated, a drug was con-
sidered a candidate for target prioritization. Using this approach, the authors identi-
fied 86 druggable genes for validation of the method, and validated five novel 
antagonists for the G protein coupled receptor, GPR1 [47]. These results revealed 
the potential of high-throughput metabolomics in the identification of drug-target 
relationships [47].

The use of metabolomics data to map changes in biochemical characteristics 
onto canonical metabolic pathways and networks is also valuable for drug-target 
identification. With this approach, it is possible to explore the appropriateness of a 
particular drug or target before further investment in development. A detailed map 
of the relationships between known chemicals and metabolic networks for several 
species was provided by Adams et  al. [2]. The authors used similarity ensemble 
approach (SEA) to link metabolic reactions and drug classes by their chemical 

Fig. 4 High-throughput metabolomics for prediction of drug-target relationships in Saccharomyces 
cerevisiae by comparison of metabolomics profile between induced overexpression genes and drug 
treatments. (Adapted from Holbrook-Smith et al. [47])
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Fig. 5 Workflow of similarity ensemble approach (SEA) to link metabolic reactions and drug 
classes by chemical similarity among ligands. (Adapted from Adams et al. [2])

similarity, which were measured by comparing patterns of bonding between sets of 
molecules (Fig. 5) [2]. The map was then used to predict interactions between drug 
classes and metabolic targets.

3.1.2  Determining Mode of Action

Understanding the mode of action (MOA), which describes the functional cellular- 
level changes induced by exposure to a substance, is an essential component of the 
early drug discovery process [112]. Traditionally, the study of MOA has been based 
on biochemical and functional genomic approaches, but these are limited by reli-
ability, scalability, and time/labor consumption [133]. Metabolomics-based 
approaches show great potential for assessing MOA. For example, Yao et al. [130] 
introduced a novel metabolomic workflow to investigate dose-response relation-
ships for compounds that targeted multiple proteins with different potencies [100, 
130]. A second example of applying metabolomics in MOA studies is shown in 
Fig. 6. An interaction network analysis of lipidomic and metabolomic data, per-
formed by Xu et  al. [129], identified regulatory enzymes involved in metabolic 
pathways affected by triphenyl phosphate (TPhP) (Fig.  6). Global metabolomics 
and lipidomics were applied to screen dysregulated metabolites and lipids; an inter-
action network analysis for the metabolites and lipids was conducted to target the 
most affected pathways and enzymes. The enzymes connected to two dysregulated 
metabolites or enzymes related to significantly dysregulated metabolic pathways 
were selected for docking. Next, molecular docking analysis was applied to model 
the interaction between small molecules at the atomic level by scoring binding 
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Fig. 6 “Bottom up” oriented target finding approach based on metabolomics and in silico docking 
for novel molecular target discovery. (Adapted with permission from Xu et al. [129]. Copyright 
2022 American Chemical Society)

affinities and comparing binding energies. The next step involved the evaluation of 
selected enzymes based on their endogenous substrate concentration, followed by 
validation of interactions between molecules using biophysical and in vitro activity 
assays. This analysis revealed that TPhP showed relatively strong binding affin-
ity [129].

Untargeted metabolomics was applied to investigate the MOA and short-term 
responses of Escherichia coli (E.coli) to nine antibiotics [134]. Changes in the lev-
els of ~750 intracellular metabolites in E. coli cultures were observed after antibi-
otic exposure from 1 to 60 minutes. Post-treatment metabolic changes were both 
dose- and drug-dependent; in particular, levels of arginine were increased. Short- 
term responses of E.coli showed dynamic metabolic changes that were time depen-
dent and reliant upon a sequence of events related to cell death through 
antibiotic-induced stress [134]. Later, the same group combined untargeted 
MS-based metabolomic profiling with ad hoc data mining to predict the MOA of 
small molecules [133]. The authors first created a reference database of metabolic 
responses following treatment of Mycobacterium smegmatis with 62 compounds, 
and then classified the responses [133]. The approach was validated against 212 
anti-tuberculosis compounds with unknown MOAs. Of the 212 compounds, 77% 
could be classified and the MOA of seven compounds could be experimentally vali-
dated [133]. In another study, [6] used untargeted metabolomics to investigate the 
MOA of pretomanid, an antibiotic used to treat multi-drug-resistant tuberculosis, in 
comparison to eight different anti-tubercular drugs with known MOAs. Principal 
component analysis (PCA) indicated that pretomanid treatment generated a distinct 
metabolomic profile at all time points in Mycobacterium smegmatis compared with 
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other known antibiotics [6]. A high level of phosphate sugars related to the accumu-
lation of a toxic metabolite, methylglyoxal, was also observed following pretoma-
nid treatment [6].

Metabolomics data may be combined with other “omics” datasets to investigate 
MOA. In a recent study from Campos and Zampieri [12], the metabolic response of 
E.coli to exposure to 1279 drugs was monitored by high-throughput metabolomic 
analysis. Compounds that induced specific metabolic changes were mapped to pre-
viously generated genomic network to identify genes associated with drug response 
[12]. Together, these studies collectively demonstrate how metabolomic analysis 
can elucidate MOA for various candidate drugs.

3.1.3  Drug Repurposing

Drug repurposing is a strategy for investigating new uses for approved drugs [91]. 
Drug repurposing confers numerous advantages including a lower risk of failure, 
and reduced time and cost for development [91]. Drug repurposing is a relatively 
new focus for pharmaco-“omics” investigations. Khosravi et al. integrated genetic, 
biomedical, transcriptomic, and metabolomic data with information from drug data-
bases in a drug repurposing strategy to identify new targets and potential drug can-
didates for melanoma. Thirty-five drugs approved for other indications were 
identified that had promise for treatment of melanoma [63]. Recently, two com-
pounds, sertraline and thimerosal, were repurposed for serine/glycine synthesis- 
addicted breast cancer treatment using isotope tracer metabolomics, enzymatic 
assays, and drug-target interaction studies; the authors found that sertraline, an anti-
depressant, can inhibit the serine/glycine synthesis enzyme, serine hydroxymethyl-
transferase (SHMT) [38]. Together, these studies demonstrate the potential of 
integration of metabolomics with other kinds of data in pursuit of advancing drug 
repurposing strategies.

3.1.4  Drug Safety Evaluation

Drug safety evaluation is a critical component of drug development and a top prior-
ity for regulatory agencies. Safety evaluation begins in preclinical studies and con-
tinues in the post-approval stages. Safety evaluation includes performing biochemical 
and histological analyses, but these approaches have disadvantages including tox-
icities originating from off-target effects, lack of information regarding the mecha-
nisms of drug toxicity, and the fact that not all adverse effects are directly related to 
drug exposure or dosage. As an alternative, metabolomics has been successfully 
applied to investigate drug toxicity. Animal toxicology screens are among the earli-
est applications of metabolomics in pharmaceutical studies. The best known exam-
ple is provided by the Consortium for Metabonomic Toxicity (COMET), a 
consortium of five major pharmaceutical companies and Imperial College London, 
UK, which predicted kidney and liver toxicity of drug-like compounds in rodents 
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[71]. Below, we highlight various applications of metabolomics in profiling drug 
metabolism and drug toxicity.

Based on the pharmacological and toxicological properties of a drug, its 
metabolite(s) are classified into three types: active, inactive, and reactive. Active 
metabolites arise through biotransformation of a parent drug into a modified form(s), 
which produces the desired therapeutic effects. In some cases, drugs are metabo-
lized into an inactive form that either has little or no direct effects, or requires bio-
transformation to an active form to exert its effects. Finally, reactive metabolites are 
biotransformation products that play a role in toxicity [88]. Reactive metabolites 
bind to cellular macromolecules including protein and DNA, thereby altering cel-
lular function and leading to toxic effects. The earlier such reactivity is detected, the 
greater the chances that toxic effects can be mitigated or avoided [5]. However, as 
reactive metabolites are unstable, they are often difficult to directly detect [70].

Three techniques are used to evaluate reactive metabolite formation, including 
(i) evaluation of covalent binding of metabolites to proteins; (ii) trapping and char-
acterizing reactive metabolites; and (iii) time- and co-factor-dependent cytochrome 
P450 (CYP) inhibition [74]. Of these, trapping reagents are more commonly used to 
identify reactive metabolites. Nucleophilic chemical trapping reagents, such as glu-
tathione tri-peptide (GSH), potassium cyanide (KCN), or semicarbazide, are able to 
form stable adducts with many reactive species. GSH is a tripeptide in mammalian 
systems and its nucleophilic cysteinyl thiol group can trap electrophilic species to 
form GSH conjugates [81]. LC-MS has been used to screen trapped reactive metab-
olites [70]. In this investigation, GSH was used to trap reactive metabolites in human 
liver microsomes, and the trapped metabolites were analyzed with UPLC and time 
of flight mass spectrometry (TOFMS) [70]. This method identified a large number 
of stable and reactive metabolites formed through bioactivation of xenobiotics [70].

3.2  Pharmacogenomic and Pharmacometabolomic 
Approaches in Studies of Drug Response Outcomes

The recent inclusion of pharmacometabolomics with pharmacogenomics research 
increases the potential to better predict treatment outcomes for patients. Below, we 
discuss how pharmacogenomics and pharmacometabolomics can provide new 
insights into drug responses, using the treatment of asthma as an example.

Asthma is chronic inflammatory disorder of the airways and is a common com-
plex disease worldwide, affecting >300 million people [8]. The goal of asthma treat-
ment is to achieve and maintain symptomatic control using commonly prescribed 
medications including inhaled corticosteroids, long-acting agonists, leukotriene 
modifiers, methylxanthines, and omalizumab. However, treatment response demon-
strates significant inter-individual variation among patients, which can be attributed 
to genetics and other host factors. Patient genetics may actually be responsible for 
60–80% of the observed variation in response to asthma medications [26]. Poor 
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responsiveness to asthma medications increases the severity of asthma symptoms 
and can lead to increased risk of exacerbations and risk of death. For example, 
reduced responsiveness to inhaled short-acting β2 agonist was associated with a 
45% increase in risk of asthma exacerbations after 3 months of treatment [34]. In 
2019, the updated Global Strategy for Asthma Management and Prevention (GINA) 
guideline recommended replacing short-acting β2 agonist with other treatments 
such as inhaled corticosteroids (ICS) for safety [4]. ICS is a preferred medication 
for asthma patients, but significant variability in response to ICS has been reported, 
with more than 30% of patients demonstrating poor or non-response [13]. One 
study showed that only 15% of patients taking ICS for asthma symptom control had 
adequate response [106]. The PRICE study also reported 40% of patients were ICS 
non-responders after 6-week ICS treatment [76]. Therefore, a fixed treatment regi-
men could not reliably treat all individuals with the same diagnosis. 
Pharmacogenomics approaches have been employed to obtain a deeper understand-
ing of variation within drug response, with the ultimate goal of individualizing 
asthma therapy. In recent years, an increasing number of studies have incorporated 
pharmacometabolomics to address this issue.

The relationship between genetic variability in patients and differential respon-
siveness to ICS has been widely investigated, with over 150 studies related to this 
outcome reported to date. The first large-scale GWAS to identify determinants of 
ICS response in asthma patients was performed in 2011. The study combined geno-
type and phenotype data from multiple cohorts including Childhood Asthma 
Management Program (CAMP), Childhood Asthma Research and Education 
(CARE), and Asthma Clinical Research Network (ACRN) to investigate the poten-
tial association of genetic variation with measures of lung function in asthma 
patients taking budesonide, an ICS [109]. GWAS identified a SNP (rs37972) located 
in glucocorticoid induced transcript 1 (GLCCI1) that was significantly associated 
with changes in forced expiratory volume in one second (FEV1) [109]. This study 
was one of the first to directly implicate a role of genetic variation within the gluco-
corticoid pathway on ICS-related changes in lung function. Another study by same 
group reported results from a GWAS to evaluate ICS response in 418 children and 
adults with asthma participating in the Single Nucleotide Polymorphism Health 
Association Asthma Resource Project (SHARP) [108]. The authors identified 47 
SNPs significantly associated with ICS response [108]. Two replicating SNPs 
(rs6456042 and rs3127412) were annotated to a haplotype block with three SNPs 
present in functional regions of T gene [108]. Of the three SNPs, patients with 
rs1134481-T demonstrated an improved response to ICS (>10% increase in FEV1 at 
the end of 8th week) [108]. In 2014, these authors performed a GWAS evaluating 
asthma symptoms (that were tracked using diary cards) in 124 children on ICS from 
the CAMP trial, and identified three significantly associated SNPs (rs1558726, 
rs2388639, and rs10044254) that also independently replicated [87]. Notably, 
rs10044254 was annotated to F-box and leucine-rich repeat protein 7 (FBXL7) 
gene, which also showed decreased expression in immortalized B lymphocytes 
derived from CAMP subjects [87]. In 2020, a genome-wide interaction study 
(GWIS) reported the interaction of genetic variation with age on the outcome of 
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frequency of exacerbations occurring on ICS, in over 1000 adult and pediatric 
patients with asthma [22]. Two SNPs annotated to the THSD4 and HIVEP2 genes 
were significantly associated with poorer ICS response with increasing age [22]. 
Recently, four novel SNPs on chromosome 6 were significantly associated with dif-
ferential ICS response in older adult asthma patients from the Genetic Epidemiology 
on Adult Heath and Aging (GERA) cohort of 5710 participants [120].

These asthma pharmacogenomic studies established multiple genetic loci associ-
ated with different measures of ICS response (and age). However, the discovery of 
metabolites associated with ICS response in asthma is currently in its infancy. In a 
recent study, Kachroo et al. [53] investigated an association of plasma metabolomic 
profiles with asthma exacerbations in patients taking ICS, and also determined 
whether these profiles changed with age from adolescence to adulthood, using data 
from 170 asthma patients on ICS from the Mass General Brigham Biobank [53]. 
The authors evaluated metabolites associated with exacerbations as well as the 
potential effect modification of age, and identified eight metabolites with an effect 
modification by sex and 38 metabolites demonstrating a significant interaction with 
age at a nominal p-value threshold of 0.05 [53]. In particular, hexadecanedioate and 
tetradecanedioate were the most highly significant metabolites associated with 
exacerbations. Amino acid metabolism pathways including valine and arginine 
were also implicated [53]. A subsequent study by the same group also indicated that 
ICS use was linked to adrenal suppression, an adverse effect of long-term exoge-
nous corticosteroid use, providing rationale for recommendation of treatment moni-
toring. Indeed, from blood samples of over 14,000 individuals from multiple asthma 
cohorts, 17 steroid metabolites including as DHEA-S and cortisol were significantly 
reduced in asthma patients and patients taking low-dose ICS [54]. Together with 
pharmacogenomic markers, these pharmacometabolomics studies also provide evi-
dence of metabolites contributing to variation in ICS response, expanding knowl-
edge of affected molecular pathways driven by specific genes and metabolites, and 
increasing the number of potential therapeutic targets for asthma treatment.

3.3  The Importance of Pharmacometabolomics for Predicting 
Patients’ Responses to Drugs

Non-response or poor response to drugs is a serious issue in clinical care as well as 
clinical trials. Approximately 40–50% of clinical development programs are dis-
continued due to treatment failures [104]. In clinical care, several routinely used 
drugs including anti-inflammatories, anti-depressants, and anti-virals demonstrate 
limited efficacy within patients. A randomized trial of 326 patients taking aspirin 
showed that 5% developed resistance to aspirin [43]. Chen et al. [15] investigated 
the effect of aspirin resistance on myonecrosis among 151 patients taking clopido-
grel; 29 developed aspirin resistance and increased risk of myonecrosis. Further, 
among patients taking peginterferons for hepatitis C treatment in two clinical trials, 
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18–20% of patients failed to respond and needed to retreat within 48 weeks [131]. 
Responses to drug treatment of major depressive disorder are often inconsistent, 
with over 30% of patients failing to respond to the first antidepressant prescribed 
and fewer than 50% of treated patients resolving symptoms [68]. In summary, as 
patients can respond differently to the same medication and treatment regimen, it 
becomes increasingly important to be able to predict a patient’s response and tailor 
their treatment, saving time and healthcare costs.

Over the past decade, 3196 pharmacometabolomics studies have been published 
investigating the impact of many drug classes on metabolite profiles in patients [41]. 
Most of these studies have focused on identifying biomarkers, metabolic patterns 
associated with drug metabolism, characterizing responders vs. non-responders, 
and adverse drug effects. Samples can be collected before, during, and/or after drug 
treatment, and statistical models can then be built to evaluate treatment outcomes. 
The baseline metabolomics profile is useful for discerning the underlying metabo-
lite profiles of subjects in the absence of treatment, while comparison of baseline 
metabolomics profiles with profiles collected during and after drug treatment can be 
used to predict whether a patient may have favorable or unfavorable drug 
responses [41].

A number of recent studies have identified biomarkers or metabolic patterns 
associated with responders and non-responders [9]. A paper published in 2010 
firstly demonstrated that pharmacometabolomics could be used to predict clinical 
response [55]. This lipidomics study profiled plasma samples from 944 patients 
with differential responses to simvastatin. Simvastatin is used to treat cardiovascu-
lar disease, which one of the leading causes of death in the USA.  In this study, 
participants took simvastatin for 6 weeks, after which their plasma lipid profiles 
were interrogated. Approximately 40 metabolites were altered by simvastatin in the 
adequate responders, but not in the poor responders [55]. Later, Kapoor et al. [60] 
used NMR spectroscopy to evaluate urine samples from patients undergoing treat-
ment with anti-tumor necrosis factor α. The response rate of patients was variable 
and showed strong separation in baseline urine metabolites between patients with or 
without adequate response at 12 months of treatment. The authors identified key 
metabolites responsible for the differences between the two groups, including hista-
mine, glutamine, xanthurenic acid, and ethanolamine; of these, histamine was the 
strongest discriminator for the baseline metabolites. Of these key metabolites, the 
concentrations of glutamine and xanthurenic acid were increased in the urine sam-
ples from responders. Nam et al. [80] used UPLC-MS techniques to determine pre- 
dose biomarkers in sera that could distinguish differential drug responses to oral 
acamprosate [80]. Samples from 120 participants (71 responders vs. 49 non- 
responders) were collected at baseline and 12 weeks following acamprosate treat-
ment. This study revealed that pre-dose glutamate levels were significantly higher in 
responders than non-responders, which was also consistent with findings from a 
replication cohort of 20 responders and 10 non-responders. Glutamate levels 
decreased after 12  weeks of treatment relative to baseline, while there was no 
change in glutamate levels in the non-responders. In responders, ammonia levels 
also increased at baseline and reduced after treatment, suggesting that it has an 
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important role in the pharmacological effect of acamprosate. Another study identi-
fied urinary biomarkers related to variation in metformin responses within patients 
with newly diagnosed type 2 diabetes mellitus [86]. Twenty-two patients used met-
formin for 6 months; urine samples were collected at baseline and at 3 and 6 months 
after treatment. Multivariate analyses including principal component analysis 
(PCA) and partial least squares-discriminant analysis (PLS-DA) models showed 
differences between responders and non-responders after 3  months of treatment 
[86]. The concentrations of three metabolites including citric acid, myoinositol, and 
hippuric acid were significantly different between two groups at baseline. For 
instance, the amount of citric acid was 54.6% lower in non-responders, while myo-
inositol was 18% higher in non-responders compared to responders. These three 
metabolites might be potential to be diagnostic biomarkers that could predict met-
formin response in patients with type 2 diabetes mellitus [86].

As a final example, although there was no difference between responders and 
non-responders at baseline, healthy patients showed variation in their metabolomic 
profiles soon after dosing with acetaminophen [124]. Seventy-one participants were 
treated with acetaminophen for a week, and then urine and serum samples were col-
lected for metabolomic analysis. Using PCA, two clusters corresponding to meta-
bolic profiles of responders and non-responders were separated after treatment, 
suggesting that treatment promoted changes in individual metabolism in response to 
acetaminophen [124].

3.4  The Role of Pharmacometabolomics in Adverse 
Drug Reactions

Adverse drug reactions (ADRs) also represent a significant barrier for clinical care, 
with more than two million cases (including 329,838 serious cases and 187,949 
mortalities) reported in 2021, based on the US Food and Drug Administration 
(FDA) Adverse Event Reporting System (FAERS) dataset (available at the link: 
https://www.fda.gov/drugs/questions- and- answers- fdas- adverse- event- reporting- 
system- faers/fda- adverse- event- reporting- system- faers- public- dashboard). ADRs, 
also known as unintended and undesirable side effects related to drug usage [27], 
are ranked as the fourth significant cause of death and serious illness in patients 
undergoing medical care in the USA [79]. The FAERS dataset also indicates an 
increasing trend of ADR cases in the last decade. More specifically, the annual num-
bers of ADR cases have increased from 930,211 in 2012 to over two million cases 
in 2021(FAERS database US FDA, 2022) (Fig. 7). While some ADRs are the result 
of prescription or treatment errors, others may occur despite correct medication use 
[61], potentially due to variable responses to drugs among patients [114].

The first pharmacometabolomics study investigating adverse drug reactions was 
conducted in 2006 [17]. The pre- and post-treatment urinary metabolite profiles of 
rats were used to differentiate treatment responses to acetaminophen [17]. The study 
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Fig. 7 The annual number of adverse drug reactions cases from 2012 to 2021 (FAERS database 
US FDA, 2022)

identified a significant change in concentrations of four acetaminophen-related 
metabolites after treating rats with a single dose [17]. Baseline urinary metabolites 
related to acetaminophen-induced liver injury were also identified. Higher concen-
trations of taurine were associated with a lower degree of hepatotoxicity, while 
increased concentrations of trimethylamine-N-oxide and betaine were associated 
with greater severity of liver damage [17]. This study demonstrated how metabolo-
mic analysis before drug exposure could predict drug-related side effects [17]. In 
2009, the first pharmacometabolomics study in humans was conducted to identify 
risk factors related to acetaminophen-induced liver injury. NMR spectroscopy iden-
tified p-cresol as a pre-treatment urinary biomarker of acetaminophen metabolism 
[16]. P-cresol is derived from tyrosine and phenylalanine via gut microbial metabo-
lism, and high baseline levels of p-cresol were associated with a lower acetamino-
phen sulfate:acetaminophen glucuronide ratio after treatment [16]. After this first 
demonstration that endogenous metabolites could predict susceptibility to adverse 
effects of a drug, several additional studies have reported other drug-related adverse 
effects, including cardiovascular events, hyperglycemia, and dyslipidemia, caused 
by atenolol and hydrochlorothiazide, and kidney disease caused by metformin [96]. 
Pregnant women with epilepsy require continuous treatment with anti-epileptic 
drugs (AED), including lamotrigine and levetiracetam, to avoid fetal risk and mater-
nal seizure, but treatment also confers an increased risk of abnormal fetal neurode-
velopment. Comparison of metabolomic profiles of plasma samples from treated vs. 
untreated women identified changes in metabolic pathways including one carbon 
metabolism, neurotransmitter biosynthesis, and steroid metabolism [119]. Folate 
metabolites were also decreased following lamotrigine treatment [119]. Another 
study found key metabolites that could serve as biomarkers for adverse effects 
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caused by anti-hypertensive drugs [94]. An untargeted metabolomics study identi-
fied 489 metabolites in patients taking hydrochlorothiazide (HCTZ) and atenolol 
(ATEN), respectively, of which 29 baseline metabolites were significantly associ-
ated with effects of ATEN and 170 metabolites were associated with HCTZ treat-
ment [94]. In particular, palmitoleic acid was positively associated with home 
diastolic blood pressure (HDBP) in patients treated with HCTZ, while baseline 
5-methoxytryptamine was negatively associated with HDBP response in patients 
treated with ATEN. Using these data, a predictive model of metabolite profiles for 
HDMP treatment was generated [94]. Through pathway analysis, metabolic path-
ways for gluconeogenesis, plasmalogen synthesis, and tryptophan metabolism were 
also enriched in patients treated with HCTZ [94].

3.5  Pharmacometabolomics and the Microbiome

The human microbiome plays a significant role in the biotransformation and metab-
olism of xenobiotics, and a variety of microbial species with an established impact 
on drug disposition and activity have been identified. The composition of bacteria 
within the microbiome also varies tremendously among individuals, contributing to 
significant differences in drug metabolism. The first human pharmacometabolomics 
investigation to demonstrate the impact of the microbiome on drug response 
revealed that, in individuals taking acetaminophen, baseline levels of p-cresol sul-
fate in urine were higher and the ratio of acetaminophen sulfate to acetaminophen 
glucuronide was lower after treatment [16]. P-cresol is derived from tyrosine and 
phenylalanine metabolism by species within the Firmicutes, Bacteroidetes, 
Actinobacteria, and Fusobacterium phyla, indicating a relationship between gut 
microbiome activity and acetaminophen metabolism [97]. The gut microbiome was 
subsequently proven to be extensively involved in the metabolism of a number of 
xenobiotics. In a study by Zimmermann et al. [138], 75% of 271 drugs that were 
screened for interaction with 76 human gut microbes demonstrated some degree of 
metabolism by these bacteria.

The exposure of a drug to the microbiome often results in inactivation of the drug 
through metabolism, resulting in reduced activity and efficacy of the drug (or its 
active metabolites). The gut microbiome significantly impacts the efficacy of 
digoxin, a cardiac glycoside used to treat atrial fibrillation and congestive heart 
failure. As digoxin has a very narrow therapeutic window (with a target concentra-
tion range of 0.5–2 mcg/L), it requires careful monitoring to ensure sufficient con-
centrations for adequate response while avoiding cardiotoxicity. Strains of the 
Actinobacterium Eggerthella lenta produce an enzyme associated with reductive 
metabolism of digoxin leading to its inactivation, thereby contributing to the dif-
ferential responsiveness among patients [66]. The immunosuppressive drug tacroli-
mus is metabolized extensively by gut bacteria including Faecalibacterium 
prausnitzii; a positive correlation was found among kidney transplant patients 
requiring higher doses of tacrolimus and the presence of larger populations of this 
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microbe in the gut [69]. The efficacy of levodopa, which is used to treat symptoms 
of Parkinson’s disease, is highly variable among patients, and genetic and other 
host-related factors do not entirely explain this variability. Levodopa is a prodrug 
that must first cross the blood-brain barrier and be converted to dopamine, its active 
metabolite. The gut bacterium Enterococcus faecalis reduces the activity of levodopa 
through a conserved tyrosine decarboxylase with the ability to metabolize levodopa 
to dopamine prior to the drug crossing the blood-brain barrier, reducing the effec-
tiveness of this medication [75]. Additional bacterial species also contribute to the 
inactivation of levodopa. Recently, Clostridium sporogenes was shown to be capa-
ble of deaminating levodopa in the gut [115]. Collectively, these studies provide 
evidence of the importance of the gut microbiome as a major driver of inter- 
individual variation in response to numerous drugs.

4  Applications of Pharmacometabolomics 
in Complex Diseases

4.1  Breast and Lung Cancer

The most recent data from the Global Cancer Observatory (GLOBOCAN (https://
gco.iarc.fr)) reports ~19 million new cancer cases and nearly ten million deaths 
related to cancer, in 2020. Of 36 reported cancer types in GLOBOCAN, the top 10 
with highest mortality rates include cancers of the lung, liver, stomach, breast, 
colon, esophagus, pancreas, prostate, rectum, and cervix (Fig. 8). Breast cancer is 
the leading cause of global cancer cases, with an estimate of 2.3 million new cases 
representing 11.7% of all cancer incidences (Fig. 8a). It is ranked as the fifth leading 
cause of cancer mortality. Breast cancer treatment includes surgery, radiation ther-
apy, chemotherapy, hormone therapy, and targeted therapy. In breast cancer treat-
ment, drug resistance is a serious concern leading to disease progression [107]. 
Over the past decade, four randomized controlled trials related to metabolomic pro-
filing of drug response outcomes in breast cancer were published. Paclitaxel is rou-
tinely used for breast cancer treatment, but approximately 25% of patients experience 
treatment delays or discontinuation due to the development and progression of 
paclitaxel-induced peripheral neuropathy [102]. Paclitaxel-induced peripheral neu-
ropathy can reduce patients’ quality of life, and up to 80% of affected patients still 
experience symptoms of neuropathy after discontinuation of treatment. Sun et al. 
[105] analyzed blood samples from 60 breast cancer patients (stage I to stage III) to 
characterize the baseline and post-first-treatment metabolomics profiles associated 
with the occurrence of paclitaxel-induced peripheral neuropathy. Three metabo-
lites – histidine, phenylalanine, and threonine – were potentially predictive for the 
severity of paclitaxel-induced peripheral neuropathy [105]. Another study related to 
the response to gemcitabine-carboplatin therapy was conducted by Jiang et al. [52]. 
In this work, serum samples of 29 metastatic breast cancer patients were collected 
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Fig. 8 Top 10 with high mortality rates. (a) Proportions of new cases in 2020. (b) Proportions of 
mortality in 2020. (Data and graphs were accessed from https://gco.iarc.fr)
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and metabolomic profiles were characterized before and after gemcitabine- 
carboplatin treatment. Using NMR and PLS-DA, formate and acetate significantly 
differentiated groups of patients achieving clinical benefit and those who had pro-
gressive disease ([52]. The authors reported high values (>0.8) of area under the 
curve (AUC) and receiver operating characteristic (ROC) curves for the classifica-
tion model, which validated the potential of formate and acetate in predicting treat-
ment response. These findings indicate that patients with significantly lower 
concentrations of these metabolites might need alternative treatment [52]. Another 
clinical study was conducted to evaluate metabolic effects of neoadjuvant chemo-
therapy in breast cancer patients [23]. Based on serum metabolomics profiles, 
patients receiving bevacizumab could be differentiated from those treated only with 
chemotherapy after 12 weeks of treatment. There were lower levels of leucine, ace-
toacetate, and tri-hydroxybutyrate, and higher levels of formate, in patients receiv-
ing bevacizumab [23].

Lung cancer is also one of the most commonly diagnosed cancer types, with 2.3 
million new cases in 2020, and is the leading cause of cancer mortality with an esti-
mated 1.8 million deaths (Fig. 8b) (https://gco.iarc.fr). Metabolomics studies to date 
have focused on the diagnosis and classification of different types of lung cancer, or 
diagnosis of stages of cancers. Pemetrexed plus platinum doublet chemotherapy is 
the standard treatment for lung adenocarcinoma patients who are not eligible for 
target therapy. However, the response rates in these patients are only ~30–40% [99]. 
Gong et al. [42] analyzed serum metabolites of 130 patients before and after treat-
ment to predict responses to pemetrexed plus platinum-based chemotherapy in lung 
adenocarcinoma. The study found 157 metabolites that could differentiate response 
and non-response groups [42]. Pathway analysis of the 157 metabolites identified 
enrichment of pathways related to phospholipid biosynthesis and glycerolipid 
metabolism [42]. Fifteen lipid metabolites were also identified as potentially predic-
tive biomarkers [42]. In addition, this study also found 76 metabolites associated 
with hematological toxicity related to pemetrexed plus platinum chemotherapy 
[42]. Those metabolites were annotated to alanine metabolism and glutathione 
metabolism pathways [42]. Another 54 metabolites, primarily involved in galactose 
metabolism, lactose degradation, and ketone body metabolism, were also associated 
with hepatotoxicity, which is a common adverse side effect of pemetrexed plus 
platinum chemotherapy [42].

4.2  Cardiovascular Disease

4.2.1  Statins

Cardiovascular disease is a leading cause of death worldwide, with the annual 
deaths due to atherothrombosis expected to increase to 24 million by 2030 [14, 73]. 
Statins are the largest class of drugs prescribed for cardiovascular disease. They act 
by competitive inhibition of 3-hydroxy-3-methyl-glytaryl-CoA reductase, resulting 
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in reduced cellular cholesterol synthesis and upregulation of low-density lipopro-
tein receptors (LDL), thus lowering plasma LDL levels [40]. However, clinical trials 
have demonstrated a residual CVD risk of approximately 50–80% in statin-treated 
patients. There are considerable variations in LDL response due to genetic, demo-
graphic, and environmental factors [67]. Additionally, statins have a variety of 
pleiotropic effects, and treatment is also associated with the occurrence of adverse 
events. Pharmacometabolomics can provide a broad map of the effects of statin 
treatment. A targeted lipidomics study assessed changes in lipid profiles during a 
6-week trial of simvastatin in a group of 944 men and women of European and 
African American ancestries [67]. There were consistent changes in “good” vs. 
“poor” responders, for arachidonic acid and linoleic acid. “Good” responders had a 
significant increase in the ratio of arachidonic acid to its precursor. The concentra-
tions of the purine metabolite xanthine were the most significantly different between 
“good” and “poor” simvastatin responders. Xanthine is a substrate of xanthine oxi-
dase, which produces hydrogen peroxide and hence is implicated in mechanisms of 
oxidative stress. Because free radicals can decouple nitric oxide synthase enzymatic 
activity, the lower basal level of xanthine in “good” responders might be expected 
to yield more robust nitric oxide synthase signaling, further supporting a link 
between the benefits of statins on lipids and endothelial function. Baseline levels of 
2-hydroxyvaleric acid (2-hydroxypentanoic acid) also strongly discriminated 
between “good” and “poor” statin responders, with lower levels associated with 
greater response [67]. Taken together, the studies demonstrate that simvastatin has 
a wide range of metabolic effects beyond those directly involved in cholesterol 
metabolism that may contribute to its efficacy in reducing risk of CVD, as well as 
to its pleiotropic effects and the risk of adverse events. A follow-up study was con-
ducted by Trupp et  al. [113], using a non-targeted gas chromatography time-of- 
flight MS-based metabolomics to evaluate the global metabolic effects of simvastatin 
from plasma samples of LDL-C responders before and after treatment. Pathway 
analysis revealed that the metabolites generated from simvastatin exposure were 
enriched for amino acid degradation. Using orthogonal PLS-DA, baseline meta-
bolic profiling could discriminate between “good” and “poor” responders based on 
significant metabolites including xanthine, 2-hydroxyvaleric acid, succinic acid, 
stearic acid, and fructose. These results may help clinicians to discern the beneficial 
effect vs. adverse event risk of statin therapy within individual patients [113].

4.2.2  Aspirin

Aspirin is the most commonly used drug worldwide for both primary prevention of 
cardiovascular disease and secondary prevention of recurrent cardiovascular events. 
However, about 25% of high-risk patients show persistent platelet reactivity while 
using aspirin. Using mass spectrometry–based metabolomics, Ellero-Simatos et al. 
[28] found that aspirin induced strong changes in the serum metabolomic profiles of 
745 patients; in particular, serotonin levels were higher in those from the fourth 
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quartile of aspirin response. The authors suggest that measuring serotonin could 
prevent hemorrhages and increase antiplatelet efficacy in high-risk patients [28].

4.3  Type 2 Diabetes Mellitus

Type 2 diabetes mellitus (T2DM) is considered a global pandemic, and its incidence 
is steadily increasing [137]. Metformin, a biguanide antihyperglycemic agent used 
as the first-line therapeutic agent for T2DM, has numerous benefits in lowering lipid 
levels and decreasing diabetes-related mortality [117]. High inter-individual varia-
tion is reported among patients using metformin. Previous studies showed metfor-
min might fail to control glucose levels adequately in approximately 50% of patients 
[19]. Several studies reported the correlation between the risk of type 2 diabetes 
mellitus progression and certain metabolites or changes in metabolites following 
antidiabetic drug treatment. Rotroff et  al. [95] showed that 12 metabolites were 
significantly associated with metformin-induced changes in glucose in non-diabetic 
participants following an oral glucose tolerance test. Of the 12, 2-hydroxybutanoic 
acid was a potential predictor of metformin response [95]. Another study identified 
urinary biomarkers associated with inter-individual variation in metformin response 
of patients newly diagnosed with T2DM. Urine samples from 22 patients taking 
metformin for 6 months were collected before treatment and also 3 and 6 months 
after starting metformin, and profiled using an untargeted pharmacometabolomics 
approach [86]. Multivariate analysis identified seven metabolites, including citric 
acid, myoinositol, pseudouridine, p-hydroxyphenyl acetic acid, hippuric acid, hypo-
xanthine, and 3-(3-hydroxulphenyl)-3-hydroxypropanoic acid, as prominent dis-
criminators between responders and non-responders to metformin [86]. Of the six, 
the relative intensity values of citric acid, myoinositol, and hippuric acid at baseline 
showed significant differences between the two groups [86]. The level of citric acid 
in the non-response group was 54.6% lower than that of the responders at baseline, 
then increased at 3 and 6  months of treatment [86]. Myoinositol levels were 
increased in the non-responder group and decreased in both groups at 3 and 6 months 
of treatment [86]. Responders with lower levels of myoinositol at baseline also had 
a small decrease in this metabolite at 3 and 6 months [86]. Therefore, urinary citric 
acid and myoinositol may represent biomarkers of metformin responsiveness in 
patients with T2DM.

4.4  Neurological Diseases

Several pharmacometabolomics studies have implicated potential markers for treat-
ment response in neurological diseases including schizophrenia. Using a special-
ized lipidomics platform, 300 polar and non-polar lipid metabolites across seven 
lipid classes were measured in patients with schizophrenia before and after 
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treatment with three commonly prescribed atypical antipsychotics: olanzapine, ris-
peridone, and aripiprazole [58]. Before treatment, major changes were noted for 
two phospholipid classes, phosphatidylethanolamine and phosphatidylcholine [58]. 
Olanzapine and risperidone affected a much broader range of lipid classes than did 
aripiprazole, and approximately 50 lipids increased after exposure to olanzapine 
and risperidone but not aripiprazole [58]. This study showed the potential of lipids 
to serve as biomarkers for schizophrenia medications. In another study of bipolar 
affective disorder, 246 metabolites were profiled in plasma samples from patients 
before and after treatment with lithium [56]. There was a clear separation of groups 
by treatment response using PCA and PLS, and 20 metabolites demonstrated sig-
nificant fluctuations related to lithium treatment [56].

5  Conclusion

5.1  Limitations and Future Directions 
of Pharmacometabolomics Research

Despite its promise, the application of pharmacometabolomics faces multiple 
potential challenges, primarily related to study design, sample selection and analyti-
cal approaches, and metabolite annotation. We discuss each of these limitations, and 
their implications, below.

5.1.1  Study Design

Samples and data needed for pharmacometabolomic studies of clinical outcomes 
are increasingly sourced from databases and sample repositories such as electronic 
medical records databases, previously published datasets, and biobanks. These 
resources may be prospective, with ongoing collections (such as biobanks) or retro-
spectively collected, with no new subjects enrolled. Prospective studies such as ran-
domized controlled trials and cohort studies are costly in terms of time and resources, 
and prospective data from ongoing sample collections (e.g., through biobanks) is 
limited by slow accrual rates. In addition, the sample sizes sufficient to confer high 
statistical power may be required to be much larger for pharmacometabolomics 
studies. There is often limited ability for investigators to obtain sufficient numbers 
of samples with the appropriate drug response/effect phenotypes for different 
patient populations. Patient selection and recruitment for prospective clinical stud-
ies can also be challenging, as these studies investigate highly specific phenotypes 
that may not be readily available within the general patient population, and which 
also makes replication of findings in comparable populations more difficult. 
Analyzing retrospective data can avoid many of the challenges involved in recruit-
ing new pharmacometabolomic cohorts, but it is also limited in terms of the type, 

Pharmacometabolomics: General Applications of Metabolomics in Drug Development…



154

number, completeness, and appropriateness of the variables or other data collected 
to address a particular study question or hypothesis. Meta-analysis of multiple stud-
ies or cohorts as a pharmacometabolomic strategy is also analytically challenging, 
and may be limited by a dearth of relevant studies or the inability to generalize the 
outcome across cohorts. As with other pharmaco-“omics” studies, the ability to gen-
eralize findings from pharmacometabolomics studies is challenging in different 
populations.

Another concern related to the design of pharmacometabolomic studies is related 
to time and resources, as the large-scale profiling and quality control of data from 
thousands of metabolites, for even a few hundred samples, can be prohibitively 
expensive. Repositories may also be few in number, and sample or data availability 
may be very limited. Finally, many pharmacometabolomics study protocols suffer 
from a lack of standardization, which would help facilitate replication and general-
izability of the findings.

5.1.2  Sample Selection and Measurement of Metabolites

Often, pharmacometabolomics studies are limited to sampling readily accessible 
biofluids, such as saliva, blood, plasma, or urine. Different types of samples demon-
strate different metabolomic profiles, which vary significantly both at baseline and 
during drug treatment. The relationship between metabolites in circulation and 
within specific organs and tissues is not well understood, limiting the ability to vali-
date results in different biofluids. Moreover, metabolomic changes in different sam-
ples over time due to other external factors such as health status, age, sex, nutrition, 
and the presence of concomitant medications also frustrate reproducibility of 
results. There is need for studies that investigate alterations in metabolic pathways 
correlated with a given state and its progression over time. Furthermore, an avail-
able biofluid may not be the best source for profiling metabolites related to a par-
ticular outcome, in which case the ability to correlate metabolites across different 
biofluids (e.g., plasma and urine) is relevant.

Chromatographic separation coupled to mass spectrometry has become the pre-
ferred technique for metabolomics; however, the sensitivity of analytical methods 
requires improvement. A limitation of interpretation of MS-based metabolomics is 
the limited fraction of signals assigned to a known metabolite. The development of 
more sensitive, comprehensive, rapid, and specific analytical methods would greatly 
increase the number of known and novel metabolites available for profiling in a 
pharmacometabolomics study.

5.1.3  Annotation of Metabolites

Metabolite annotation is one of the major limitations for untargeted metabolomics 
pipelines, and successful pharmacometabolomics studies require accurate identifi-
cation of metabolites. While over 30,000 endogenous metabolites have been 
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annotated in public databases, many metabolites in untargeted assays escape char-
acterization, rendering it difficult to further apply biologically informative methods 
such as pathway or network analysis. Inaccuracies in identification and overlap in 
metabolite annotations can introduce errors in the analysis. For example, although 
PubChem identifiers are more widely represented across many platforms, dupli-
cated metabolite entries may result in misidentified metabolites. Missing, ambigu-
ous, or redundant entries have also been found in multiple databases including 
KEGG, HMDB, and ChEBI. Inaccurate and missing annotation is a critical problem 
for investigators attempting to connect observed metabolite-phenotype associations 
with accurate biochemical pathway information.

6  Summary

Pharmacometabolomics is an emerging field based on the practical measurement 
and comparison of metabolite profiles in patients with drug response phenotypes. 
With recent advancements in instrumentation and computational methods, pharma-
cometabolomics confers the ability to predict the effectiveness of a drug prior to 
dosing, and to improve efficacy and outcomes while avoiding ADRs. The use of 
pharmacometabolomics to repurpose existing drugs, identify novel drug candidates, 
and also to identify and validate biomarkers for complex diseases such as cancer, 
cardiovascular disease, and asthma, reveals new potential opportunities in treatment 
strategies. Through identifying relationships between the gut microbiome and spe-
cific drug classes, it is possible to circumvent poor responsiveness related to drug- 
microbe interactions. Particularly through integration with other “omics” data types, 
pharmacometabolomics represents a powerful approach to achieve the goal of per-
sonalized medicine: tailoring the right drug, at the optimal dose, to the right patient.
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KEGG Kyoto Encyclopedia of Genes and Genomes
LC-MS Liquid chromatography-mass spectrometry
MALDI-MSI Matrix-assisted laser desorption/ionization-mass spectrome-

try imaging
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sis and optimization
MS Mass spectrometry
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nanoSIMS Nanoscale secondary ion mass spectrometry
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SeMeCos Self-establishing metabolically cooperating yeast communities
TCA Tricarboxylic acid
VMH Virtual Metabolic Human
WoM Web of Microbes

1  Introduction

Microbes are everywhere, from hypersaline polar lakes, to the superheated walls of 
hydrothermal vents, our guts, and sites of infection teeming with hostile immune 
cells [25, 159]. To achieve this, they have developed impressive adaptations to not 
only survive but even thrive in environments that seem physically inhospitable and 
devoid of nutrients. For humans, microbes can be friend or foe. The human gut 
microbiome, for example, is essential for nutrient uptake and health, but disbalances 
or infections can cause life-threatening illnesses. Similarly, some environmental 
microorganisms help mitigating environmental pollution by devouring harmful 
chemicals, like heavy metals and pharmaceuticals, while others produce lethal 
agents like botulinum toxin. Microbial metabolism is, therefore, relevant to fields 
ranging from biotechnology to medicine and environmental sciences. In this chapter 
we describe the various ways in which metabolomics can be used to study microbial 
metabolism.

Microbial metabolism enables microorganisms to use nutrients and energy 
sources required for essential cell functions but also shapes the interactions with 
other organisms and the environment. Microbial metabolomics can therefore pro-
vide insights into fundamental aspects of life, like the link between metabolism and 
cell replication, as well as specialized functions like the role of a gut community 
member in health.

Microbial metabolomics aims to study all aspects of microbial metabolism 
by measuring the metabolites inside and outside microbes. Consequently, 
microbial metabolomics is a very diverse field with diverse techniques and 
applications. Many of the applications we describe can also be applied to mul-
ticellular organisms, but relatively easy and controllable cultivation of many 
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microbes, in combination with genetic tractability, makes microbes popular 
organisms for most metabolomic applications.

Like the microbes under study, the field of microbial metabolomics is extremely 
diverse (reviewed in [6, 11, 50, 180]). Therefore, it is impossible to provide an all- 
encompassing overview in a single chapter. Instead, we aim to highlight important 
applications and refer to key literature for further reading. Microbial metabolomics 
can be subdivided into application areas like medical microbiology, environmental 
microbiology, and biotechnology, but since the experimental approaches are similar 
across these application areas, this chapter provides an overview organized by 
experimental approach. The first part of this chapter focuses on applications related 
to microbial monocultures, progressing from relatively simple techniques to assess 
nutrient consumption to complex metabolic models of single microorganisms. The 
second part focuses on microbial communities, progressing from studies on com-
munity isolates to studies on complex microbial communities. Throughout the 
chapter, microbial metabolomics approaches are highlighted using selected exam-
ples from environmental, medical, and biotechnological microbiology.

2  Metabolomics on Microbial Monocultures

Historically, pure monocultures have been essential to study microorganisms. 
Although technological advances now allow studying complete microbial commu-
nities (see Sect. 3), pure cultures still enable the most in-depth biochemical and 
physiological studies today. Applying current metabolomics techniques to pure 
microbial cultures provides insight into properties ranging from basic metabolic 
pathways and nutrient use to specialized metabolism, stress responses, and meta-
bolic regulation. Integrating these properties with other omics data ultimately allows 
constructing genome-scale metabolic and kinetic models.

Bioinformatics tools are increasingly adept at distilling metabolic pathway 
potential from microbial genomes [147], but their reliance on correct gene annota-
tions renders them far from flawless. Moreover, genomes harbor information on 
metabolic potential, not on actual metabolic activity. Unlike genomics, metabolo-
mics does not depend on gene annotation and measures actual metabolic activity. 
Therefore, metabolomics is a powerful technique to explore known and unknown 
metabolic pathways involved in core and secondary metabolism.

In this section we will provide an overview the various ways in which metabolo-
mics can be applied to study microbial monocultures, moving from simple ques-
tions to complex models. After describing extraction methods (Sect. 2.1), Sects. 2.2, 
2.3, and 2.4 focus on metabolism that is essential for growth and replication, also 
known as primary metabolism. Sections 2.4 and 2.5 then progress into secondary 
metabolism – metabolism that is inessential but that confers a selective advantage in 
environmental interactions. In Sects. 2.6 and 2.7, we describe how metabolomics 
can be used to improve culture media and optimize strain engineering. Finally, in 
Sect. 2.8, we will discuss how metabolomics can be used to infer system-level infor-
mation on microbial metabolism.
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2.1  Extraction Methods

Metabolomic analysis almost always requires the extraction of metabolites. Various 
techniques can be used to extract metabolites from microbes, but the most com-
monly techniques are based on rapid filter-based sampling followed by quenching 
in a water-organic solvent mixture [16, 83, 99, 119, 123, 125, 128, 131, 136, 182]. 
The mere presence or consumption of pathway-specific metabolites is often suffi-
cient to confirm activity of a pathway, but tracing of stable isotopes enables detailed 
analysis of the metabolic fluxes carried by various pathways.

2.2  Nutrient Use

Every single organism across the microbial world requires nutrients for energy con-
servation and as building blocks for growth. Therefore, microbes have evolved a 
wide diversity of metabolic pathways to dissimilate or assimilate and distribute a 
plethora of carbon, nitrogen, and other element sources. Various metabolomics 
approaches have proven useful for the characterization of these pathways (Fig. 1).

2.2.1  Exometabolomics to Measure the Consumption of Nutrients

Exometabolomics is the subfield of metabolomics that profiles extracellular metab-
olites, for example, in culture media [74, 96, 124]. The exometabolome is linked to 
intracellular metabolism through metabolite consumption and secretion and is par-
ticularly well suited to profile nutrient consumption (Fig. 1a). Antunes et al., for 
example, applied exometabolomics to identify host-derived nutrients that the 

Fig. 1 Metabolomic approaches to characterize microbial nutrient use. Exometabolomics focuses 
on the extracellular metabolome, which is linked to intracellular metabolism (panel a). In com-
parative metabolomics, metabolite levels are compared between different conditions, for example, 
two types of microorganisms, or the same microorganism grown on different nutrients (panel b). 
Stable isotope tracing uses the resolving power of mass spectrometry to follow the metabolic faith 
of stable isotope-labeled nutrients (panel c). Metabolites are represented as circles. In panel c, 
labeled metabolites are represented as filled circles, and non-labeled metabolites as open circles
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pathogen Salmonella enterica serovar Typhimurium  – the bacterium that causes 
typhoid fever – consumes during infection [3]. Despite the antibacterial action of 
bile, Salmonella thrives in the gastrointestinal tract, in the liver, and even in the 
gallbladder, suggesting that it can feed on bile-derived nutrients. To find these nutri-
ents, Antunes et al. incubated extracted mouse bile with Salmonella and profiled the 
consumption of its components using direct-infusion ion-cyclotron-resonance 
Fourier- transform mass spectrometry (DI-FT-ICR-MS) [3]. A reduction of several 
glycerophospholipids suggested that these metabolites were used as nutrients. 
Similar changes were found when the bile of uninfected mice was compared to that 
of infected mice. Finally, in vitro growth experiments confirmed that the glycero-
phospholipid lyso-phosphocholine could serve as sole carbon source in a minimal 
medium [3].

To link metabolite consumption with specific genes, Baran et al. expanded the 
exometabolomics approach by applying high-throughput exometabolomics to 
mutant libraries of Escherichia coli and Shewanella oneidensis [7]. From an initial 
screen for consumed metabolites, ten metabolites were selected for high-throughput 
profiling using a rapid liquid chromatography-mass spectrometry (LC-MS) method. 
In a technical tour de force, the researchers profiled spent media of 3901 E. coli and 
4141 S. oneidensis mutants and found several mutants that were less proficient in 
taking up or using the metabolites. Subsequent validation confirmed the role of 
previously characterized genes in nutrient use and also identified the function of 
genes of unknown function [7].

2.2.2  Comparative Metabolomics to Identify Nutrient-Related 
Metabolic Pathways

While exometabolomics is a powerful tool to screen for nutrient consumption, com-
parative intracellular metabolomics is a powerful tool to identify pathways associ-
ated with the use of known nutrients. In comparative metabolomics, metabolite 
levels are compared between different conditions, for example, two types of micro-
organisms, or the same microorganism grown on different nutrients (Fig. 1b), as 
exemplified by work from Griffin et al. [54]. Mycobacterium tuberculosis, the caus-
ative agent of tuberculosis, has evolved from a soil bacterium into one of the most 
successful obligate pathogens. As a consequence, it has metabolically adapted from 
a soil-derived diet to a host-derived one. Because M. tuberculosis harbors a gene 
cluster encoding cholesterol catabolism that is essential for growth on cholesterol 
and infection, cholesterol has been considered an important host-derived carbon 
source [120, 165]. The final products of this pathway were unclear, however, leav-
ing the metabolic adaptations required for growth on cholesterol unknown. To iden-
tify key metabolic pathways involved in cholesterol catabolism, Griffin et  al. 
performed LC-MS and gas chromatography-mass spectrometry (GC-MS) metabo-
lomics on M. tuberculosis grown on various carbon sources, including cholesterol 
[54]. Growth on cholesterol resulted in the accumulation of several intermediates of 
the methylcitrate cycle, a variant of the TCA cycle that detoxifies 
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propionyl- CoA. Subsequent experiments showed that methylcitrate cycle-deficient 
mutants were unable to grow on cholesterol, confirming that propionyl-CoA detoxi-
fication through the methylcitrate cycle is essential for cholesterol catabolism.

2.2.3  Stable Isotope Tracing to Track the Metabolic Fate of Nutrients

Although the presence or accumulation of pathway-specific metabolites is often 
sufficient to show pathway activity, stable isotope tracing provides information 
about metabolic fluxes through pathways, even when pathways share the same 
metabolites. Stable isotope tracing builds on the capacity of mass spectrometers to 
distinguish light isotopes (e.g., 12C, 14N, and 1H) that are dominant in nature from 
heavy isotopes (e.g., 13C, 15N, and 2H) that can artificially be incorporated into 
metabolites. Compounds enriched in heavy isotopes, along with their “heavy” met-
abolic products, can thus be traced over time (Fig. 1c).

Anaerobic ammonium-oxidizing (anammox) bacteria are microorganisms capa-
ble of converting ammonium and nitrite into dinitrogen gas [156]. Anammox bacte-
ria are estimated to be the source of up to 50% of N2 production in the ocean and are 
successfully applied in wastewater treatment plants [4, 73]. Based on genomic pre-
dictions, anammox bacteria use the Wood-Ljungdahl pathway to fix carbon from 
CO2, but the absence of an annotated citrate synthase has led to the hypothesis that 
the TCA cycle runs in the reductive direction [82, 157]. Lawson et al. exposed a 
highly enriched (~97%) bioreactor culture of the anammox bacterium Candidatus 
“Kuenenia stuttgartiensis” to 13C-bicabonate and traced the incorporation of 13CO2 
into metabolites using ion-pairing LC-MS [82]. Notwithstanding the lack of an 
annotated citrate synthase, 13C-labeling of α -ketoglutarate was faster than labeling 
of succinate, suggesting the presence of a functional citrate synthase operating in 
the oxidative TCA cycle. To confirm this, the authors performed a labeling experi-
ment with 13C-formate which would lead to single- or double-labeled α-ketoglutarate 
with a reductive or oxidative TCA cycle, respectively. The dominant presence of 
M + 2 α-ketoglutarate confirmed the 13C-bicarbonate results and confirmed the pres-
ence of an oxidative TCA cycle. Using stable isotope tracing metabolomics, Lawson 
et al. thus corrected an erroneous genome prediction and functionally identified a 
non-canonical citrate synthase. A non-canonical pathway for methionine biosynthe-
sis was similarly identified [82]. Both enzymes remain to be identified. Concluding, 
stable isotope tracing can be used to elucidate the metabolic pathways used to 
metabolize a single carbon source.

With a related approach, isotope tracing has been used to define the direction of 
metabolic pathways during growth on multiple carbon sources. Bacteria are classi-
cally considered to use nutrients one by one, resulting in diauxic growth. M. tuber-
culosis, however, can use multiple carbon sources at the same time [31]. De Carvalho 
et al. used 13C-isotope tracing to individually define the metabolic fate of dextrose, 
acetate, and glycerol catabolism during growth on a mixture of these substrates. 
Each carbon source had a distinct metabolic fate. Dextrose-derived carbon, for 
example, was enriched in the glycolytic and pentose phosphate pathway, while 

P. M. M. van der Velden and R. S. Jansen



171

acetate- derived carbon was enriched in the TCA cycle. In some cases, M. tubercu-
losis metabolized the carbon sources in contradictory directions, such as simultane-
ous glycolysis and gluconeogenesis. Since the same pathway cannot operate in two 
directions at the same time, these results imply that carbon metabolism in M. tuber-
culosis is compartmentalized [31].

Because nitrogen is rapidly exchanged between amino acids, 15N-isotope tracing 
is less frequently applied than 13C-isotope tracing. Still, 15N-isotope tracing has been 
instrumental in elucidating specific metabolic pathways. Kurczy et al., for example, 
applied metabolomics to trace the fate of 15NO3 in three nitrate-reducing 
Pseudomonas strains [81]. To assimilate nitrogen, soil bacteria commonly prefer 
ammonia over other nitrogen sources [102]. In one of the three strains, Kurczy et al. 
indeed observed that the level of nitrogen-containing metabolites changed when 
ammonia was added to a nitrate-containing medium. However, two of the three 
strains showed much less metabolic perturbations, indicating that these strains did 
not prefer ammonia over nitrate. To confirm this hypothesis, Kurczy et al. traced the 
fate of 15NO3 in the presence and absence of unlabeled ammonia. The single strain 
did not assimilate 15N from nitrate in the presence of ammonia, while the two other 
strains did, confirming that these strains had the unexpected capability of using 
nitrate and ammonia as nitrogen sources at the same time.

To characterize nitrogen metabolism in M. tuberculosis, Agapova et al. traced the 
metabolic fate of a panel of 15N-labeled amino acids and 15NH4 [1]. In contrast to 
common views, the pool size and labeling patterns of alanine suggested a role for 
alanine dehydrogenase in nitrogen liberation from alanine. Growth experiments 
subsequently confirmed that an alanine dehydrogenase-deficient strain was unable 
to grow on alanine as a sole nitrogen source. In similar work, Jansen et al. combined 
15N- and 13C-isotope tracing experiments to demonstrate the essential role of the 
main aspartate aminotransferase in M. tuberculosis [67]. In vitro experiments indi-
cated that the uncharacterized protein Rv3722c is an aspartate aminotransferase, an 
enzyme that transfers the amino group between aspartate and glutamate [67]. To 
explore the function of this enzyme in  vivo, Jansen et  al. incubated Rv3722c- 
proficient and Rv3722c-deficient M. tuberculosis with 13C-aspartate, 13C-glutamate, 
15N-aspartate, and 15N-glutamate. Isotope tracing showed that Rv3722c is required 
to channel the carbon from aspartate into the TCA cycle and also to channel assimi-
lated nitrogen from glutamate into essential amino acids, cofactors, and nucleotides.

As exemplified in the work by Jansen et  al., carbon metabolism and nitrogen 
metabolism are closely linked. Diazobacteria are biotechnologically interesting 
microorganisms because they can fix atmospheric dinitrogen gas to ammonia using 
the enzyme nitrogenase. To characterize the adaptations in central carbon metabo-
lism that allow diazobacteria to fix nitrogen, Wu et al. applied 13C-metabolic flux 
analyses on Azotobacter vinelandii [175]. Although the activity of the glycolytic 
Entner-Doudoroff pathway positively correlated with the growth rate, the activity of 
the respiratory TCA cycle correlated with increased nitrogenase activity, leading the 
authors to conclude that the TCA cycle supplies ATP and reducing equivalents to 
sustain nitrogenase activity.
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Taken together, exometabolomics, comparative, and isotope-tracing metabolo-
mics approaches have provided invaluable insights into microbial nutrient use.

2.3  Energy Conservation

In addition to nutrients that serve as building blocks (Sect. 2.1), microorganisms 
also need energy to fuel metabolism. To conserve energy and generate ATP, micro-
organisms can perform fermentation and respiration. Metabolomics can distinguish 
between these modes of energy conservation and helps identifying metabolites 
involved in redox balance (Fig. 2). In addition, metabolomics can define the energy 
status of microbes.

2.3.1  Measuring Energy Charge

In its conceptually simplest form, metabolomics can determine the status of a cell 
by measuring key intermediates like AMP, ADP and ATP (adenylate energy charge), 
or NAD+ and NADH (redox balance). Though conceptually simple, accurate deter-
mination of these metabolites is technically challenging due to their enzymatic and 
chemical instability. Comparing several extraction strategies for mammalian cells, 
Lu et  al. concluded that extraction with a mixture of acetonitrile, methanol, and 
water with 0.1 M formic acid minimized interconversion of NADPH/NADP+ and 
NADH/NAD+ [90]. After extraction, rapid pH neutralization furthermore prevented 
acid-catalyzed degradation. For microorganisms, rapid sampling and quenching 
techniques have been indispensable to accurately determine energy and redox status 
[13, 131, 137]. Using these techniques in combination with 13C-based absolute 

Fig. 2 Microbial energy conservation. Microbes can perform respiration and fermentation to gen-
erate ATP and reducing equivalents. Metabolites (represented as circles) can directly serve as elec-
tron (e-) donor or acceptor but can also indirectly support energy conservation. Overflow 
metabolism is characterized by the excretion of fermentation products
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quantification, Radoš et al. showed that the energy charge in E. coli is almost con-
stant across 19 different growth conditions, demonstrating highly regulated energy 
homeostasis [132].

2.3.2  Respiration

Shewanella and Geobacter spp. are bacteria capable of using extracellular metals as 
terminal electron acceptors for respiration through extracellular electron transfer 
[149]. Since they can also transfer electrons to electrodes, these microorganisms 
hold great promise for biotechnology. To explore the metabolic adaptations to dif-
ferent electron donor-acceptor ratios, Wang et  al. profiled the metabolome of 
S. oneidensis using GC-MS [167]. Most extracellular reduction occurred at limiting 
electron acceptor concentrations at which the reducing power was stored in the form 
of lactate and pyruvate. Under conditions with excess electron acceptor, metabolites 
from non-energy-yielding pathways like putrescine were more abundant. Based on 
these metabolomics results, the authors conclude that the central metabolism of 
Shewanella is streamlined to yield energy under conditions with low electron accep-
tors. Shi et al. similarly show that the metabolome of Geobacter sulfurreducens is 
dependent on the type of electron acceptor supplied [150].

13C-based metabolic flux analysis (13CMFA) is a technique to assess metabolic 
fluxes that is widely used in combination with metabolomics. Using 13CMFA, Yang 
et al. assessed the effect of various electron donor (acetate and hydrogen) and accep-
tor (FeIII and fumarate) conditions on the metabolism of G. sulfurreducens [178]. In 
contrast to previous conceptions, the flux analysis suggested that fumarate can serve 
as carbon source and even electron donor in addition to its role as an electron 
acceptor.

When respiring via an electrode in a microbial fuel cell, microorganisms like 
G. sulfurreducens can couple chemical conversions to electric currents [15]. Song 
et al. used targeted LC-MS and GC-MS metabolomics to explore the effect of elec-
trode potential on intracellular metabolites [154]. When comparing cells grown on 
−0.2 V with those grown on +0.2 V, Song found that levels of TCA cycle intermedi-
ates and the ATP/ADP ratio were increased in the +0.2 V condition, while metabo-
lites involved in gluconeogenesis and the NAD(P)H/NAD(P)+ ratio were decreased. 
These results suggest that a larger electric current is associated with defined changes 
in intracellular metabolism and show that the electrode potential can be used to steer 
microbial metabolism in microbial fuel cells [154]. Similar work with Alcanivorax 
xenomutans linked the presence of oxygen to metabolism and power output [93].

2.3.3  Fermentation and Overflow Metabolism

In the absence of substrates to respire, organisms can switch to less energy-efficient 
fermentative metabolism to generate ATP. Many organisms, however, also use fer-
mentative metabolism when conditions would allow more energy-efficient 
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respiration [106]. This phenomenon, which is known as the Crabtree effect in 
microorganisms, is characterized by overflow metabolism in which metabolites like 
ethanol, lactate, and acetate are excreted into the extracellular environment. The 
Crabtree effect has been known for almost a century, but the underlying mecha-
nisms and evolutionary advantages are still incompletely defined [9, 115]. To iden-
tify defining metabolic features for the Crabtree effect, Christen and Sauer applied 
intracellular 13C-flux analysis on seven different yeast strains [24]. As expected, 
Crabtree-negative strains showed higher fluxes through respiratory pathways, but 
the metabolite concentrations were mainly species-specific and independent of the 
Crabtree effect. Only fructose-1,6-bisphosphate and dihydroxyacetone phosphate 
correlated with the Crabtree effect across all strains, indicating a key role in the 
switch between respiratory and fermentative metabolism. In a similar work, Yasid 
et al. used 1H NMR to monitor the intracellular and extracellular metabolites in an 
E. coli culture while shifting it from anaerobic to aerobic growth [179]. Most 
metabolites gradually changed upon air exposure, but pyruvate only changed extra-
cellularly and not intracellularly. Subsequent electron microscopy studies revealed 
that pyruvate kinase, a key enzyme in pyruvate metabolism, relocates to the cell 
membrane upon aeration and potentially facilitates pyruvate excretion while main-
taining constant intracellular levels.

Owing to recent advances in metabolomics, it has become apparent that excreted 
metabolites are more diverse than previously thought. Paczia et al., for example, 
profiled the exometabolome of E. coli, Corynebacterium glutamicum, Bacillus 
licheniformis, and Saccharomyces cerevisiae and detected a surprisingly wide vari-
ety of central metabolic intermediates and amino acids [119]. After carefully ruling 
out sampling artifacts, they termed this phenomenon “extended” overflow 
metabolism.

Although ATP and electron carriers are common energy intermediates of all 
microbes, the pathways generating them vary widely. Clostridium sporogenes is a 
mutualistic bacterium and common component of our gut microbiome. C. sporo-
genes belongs to a group of anaerobic bacteria that obtain their energy by coupling 
the oxidation of one amino acid to the reduction of another through the Stickland 
fermentation [86]. The oxidative pathways are assumed to produce ATP, while the 
reductive pathways are thought to balance redox. Liu et al. used metabolomics to 
profile metabolites excreted by C. sporogenes and identified four of them in plasma 
of gnotobiotic mice colonized with C. sporogenes. In vitro incubation with 
deuterium- labeled amino acids confirmed that these four metabolites were end 
products of reductive Stickland metabolism, confirming activity of the reductive 
Stickland pathways in vivo. To explore whether the reductive pathways can also 
produce ATP, Liu et al. grew C. sporogenes on substrates specific for the reductive 
Strickland pathways. Subsequent formation of ATP confirmed that reductive 
Strickland pathways can produce ATP, a process in which the Rhodobacter 
nitrogenase- like (Rnf) complex was previously implied. Metabolomics analysis of 
Rnf mutants revealed an increase in oxidative products and a block in reductive 
metabolism, confirming the role of Rnf in ATP generation though the reductive 
Stickland reaction [86].
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Taken together, these examples show that the determination of energy charge, 
comparative metabolomics, and isotope tracing are valuable techniques to deter-
mine the interplay between respiration, fermentation, and metabolism.

2.4  Metabolism and Cell Replication

Beyond its role in nutrients and energy homeostasis, metabolism supports and often 
even regulates many secondary processes that take place in microorganisms. In this 
section, we will highlight how metabolomics can be applied to discover the intimate 
links between metabolism, cell structure, and replication (Fig. 3).

Cell shape and size are closely linked with cellular metabolism [155]. In a recent 
study, Irnov et al. applied metabolomics to assess the effect of deleting hfq on the 
metabolite profile of Caulobacter crescentus, a model microorganism for cell divi-
sion [64]. Hfq is an RNA chaperone that affects the expression of up to one in five 
genes and causes morphological defects in various bacteria through an uncharacter-
ized mechanism. Metabolomic analysis revealed a 35-fold increase in α-ketoglutarate, 
pointing towards a role of this TCA cycle intermediate in cell morphology. The 
authors reasoned that α-ketoglutarate could be linked with cell morphology via suc-
cinyldiaminopimelate aminotransferase (DAP-AT), an enzyme that produces the 
peptidoglycan precursor meso-diaminopimelate via an α-ketoglutarate-forming 
reaction. The accumulation of UDP-N-acetylmuramoyl-L-alanyl-D-glutamate, the 
intermediate in the peptidoglycan biosynthesis pathway immediately before 

Fig. 3 Metabolism and 
cell replication. Cell 
division is a highly 
organized series of events 
which is reflected by 
specific cell cycle-
dependent metabolic 
changes. Metabolomics 
has been used to discover 
the intimate links between 
metabolism and cell 
structure

Microbial Metabolomics: An Overview of Applications



176

meso- diaminopimelate, corroborated this hypothesis. Furthermore, the addition of 
diaminopimelate, a precursor of meso-diaminopimelate, rescued the morphological 
defect. Thus, by applying metabolomics to a microbe with a morphological defect, 
this study revealed that α-ketoglutarate is a regulator of peptidoglycan biosynthe-
sis [64].

Cell division is a highly organized series of events in which metabolism takes an 
equally important role [71]. To discover key cell cycle-related metabolites, Hartl 
et al. performed untargeted metabolomics on synchronized C. crescentus cells pro-
gressing through the cell cycle [59]. By mixing experimental extracts from cells 
grown on 12C-glucose with a standard extract from cells grown on 13C-glucose fol-
lowed by extensive bioinformatic filtering for 12C/13C pairs and removing MS arti-
facts like adducts and multimers, the authors were able to reduce over 5000 LC-MS 
features to approximately 400 high-confidence metabolites. Of these features about 
50% could be annotated, 17 of which showed cell cycle-related changes. Among 
these metabolites were well-known cell cycle-dependent metabolites like cyclic-di- 
GMP and precursors for de novo purine biosynthesis but also metabolites involved 
in sulfur metabolism like methionine, S-adenosylmethionine, glutathione, O-acetyl- 
serine, and O-acetyl-homoserine. Flux analysis with 13C-glucose confirmed cell 
cycle-dependent changes in the biosynthesis of glutathione, a major antioxidant in 
many bacteria. To establish a driving role of glutathione in cell cycle progression, 
the authors generated a C. crescentus strain lacking the glutathione synthetase gene 
(gshB). This gshB mutant displayed uncoordinated cell division, confirming the pre-
viously unknown role of glutathione in bacterial cell cycle progression. The work 
by Hartl et al. showcases that following metabolite profiles during the cell cycle can 
elucidate the role of metabolism therein. Moreover, the work includes an elegant 
workflow to extract high-confidence metabolites from untargeted LC-MS data [59].

2.5  Metabolic Flexibility and Adaptation

Microorganisms often live in rapidly changing and sometimes even extreme envi-
ronments. To survive these conditions, microorganisms display impressive meta-
bolic flexibility towards the environmental changes and adapted to almost all 
habitats on Earth (Fig. 4). Metabolomics has provided invaluable insights into the 
flexibility and adaptation of microbial metabolism [151].

2.5.1  Metabolic Adaptation to Nutrient Availability

For environmental microorganisms, key nutrients like carbon and nitrogen can 
change seasonally but also from hour to hour. To elucidate how cyanobacteria 
respond to nitrogen fluctuations, Zhang et  al. exposed the cyanobacterium 
Synechocystis sp. PCC 6803 to an upshift in its nitrogen source nitrate and moni-
tored the metabolic response using LC-MS metabolomics [187]. In addition to 
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Fig. 4 Metabolic flexibility and adaptation. Microorganisms have evolved metabolic adaptation 
strategies to cope with environmental changes. Metabolomics has been instrumental in under-
standing these changes

expected changes in α-ketoglutarate and glutamine, unexpected increases were 
observed in arginine-biosynthetic-pathway intermediates like N-acetylornithine, 
ornithine, citrulline, and argininosuccinate. Next, 15N- and 13C-isotope tracing and 
modeling revealed that arginine was converted into ornithine by an unknown 
enzyme. Knocking out the uncharacterized gene sll1336 resulted in arginine accu-
mulation and ornithine depletion, suggesting it functions as an arginine dihydrolase. 
Finally, growth experiments revealed that sll1336-deficient bacteria grew slower 
than wild-type bacteria under nitrogen-oscillating culture conditions. By measuring 
the metabolic response to nitrogen availability, Zhang et al. thus discovered a new 
mechanism to cope with rapidly fluctuating nitrogen concentrations [187].

Pathogenic microorganisms are similarly exposed to changes in nutrient avail-
ability in their host. Metabolic adaptations to these changing conditions have been 
found to play a key role in virulence [41, 42, 60, 135].

2.5.2  Metabolic Adaptation to Stress

Metabolism also plays a major role in the protection of other stresses, like oxidative 
stress, hypoxia, and osmotic stress. Using 13C-isotope tracing with glucose, Eoh 
et al. showed that metabolites accumulating in M. tuberculosis after hypoxia were 
mainly unlabeled [44]. This indicated that the carbons in these metabolites origi-
nated from a preexisting carbon source, not from 13C-glucose. Subsequent experi-
ments revealed that M. tuberculosis liberates carbons from its cell surface trehalose 
mycolates and preferentially uses them to synthesize peptidoglycan precursors. The 
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authors reason that these peptidoglycan precursors are pre-made to quickly initiate 
the cell cycle when oxygen reappears and named the effect “metabolic anticipa-
tion” [44].

Sévin et al. applied untargeted metabolomics to define the salt stress response of 
12 bacteria and 2 yeasts strains and found species-specific accumulation of osmo-
lytes like trehalose, amino acids, and N-acetylated amino acids but also changes in 
pathways unrelated to osmoprotection [145]. For exometabolomics of salt-tolerant 
microorganisms, a special LC-MS method has been developed [127]. Metabolomics 
has also been used to characterize the microbial metabolic adaptations to extreme 
temperatures [45, 70, 77, 95, 160], acidity [108], sun light [26] salt concentrations 
[79], and oxidative stress [172].

2.5.3  Metabolism and Antibiotics

It is increasingly clear that metabolism and metabolic enzymes play an essential 
role in microbial resistance against antibiotics [88]. Metabolomics can detect 
endogenous metabolites, while at the same time detecting antibiotics and their 
metabolites, making it an attractive technique to study the microbial defense against 
antibiotics.

Using a screen for the isolation of M. tuberculosis mutants with increased antibi-
otics survival, Schrader et al. discovered that perturbations in arginine biosynthesis 
result in resistance to diverse antibiotics [142]. Metabolomic analyses revealed that 
these perturbations resulted in the accumulation of several arginine biosynthesis 
intermediates. Next, transcriptomic analyses showed that perturbed arginine bio-
synthesis led to increased transcription of the transcription factor whiB7, which was 
subsequently shown to be responsible for the high-survival phenotype. How pertur-
bations in arginine biosynthesis lead to increased whiB7 expression remains to be 
investigated.

While this example demonstrates the power of metabolomics to understand the 
effect of metabolism on the effect of antibiotics, metabolomics can also be used to 
profile the effect of an antibiotic on metabolism [68]. Metabolomics can, for exam-
ple, identify the mechanism of action of an uncharacterized antimicrobial com-
pound by revealing specific metabolic changes that point to metabolic enzyme 
inhibition [169]. On a more global scale, metabolomics analyses have revealed that 
antibiotic efficacy is linked to cellular respiration [87] and that distinct antibiotics 
all lead to oxidative stress [110]. Finally, metabolic profiling of antibiotics with 
known and unknown mechanisms of action enables the classification of metabolic 
responses. This classification allows predicting the mechanism of action of unchar-
acterized antibiotics [56, 183, 184]. Similarly, classifying the metabolic profiles of 
genetically silenced mutants with drug-treated bacteria enables functional annota-
tion of uncharacterized antimicrobial compounds [2].
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2.6  Discovery and Biosynthesis of Secondary Metabolites

Microorganisms are proliferous producers of secondary metabolites. Secondary 
metabolites are inessential for microbial core metabolism but fulfill important roles 
in ecological interactions such as inhibiting the growth of competitors (antibiotics) 
acquiring metals (siderophores) and modulating the host immune system (diverse 
metabolites). Discovering these bioactive molecules and understanding their bio-
synthesis and function increase our fundamental understanding of the physiology of 
microorganisms and pave the way for their biotechnological and medical applica-
tion. Many secondary metabolites are encoded by biosynthetic gene clusters (BGCs) 
consisting of neighboring biosynthetic genes [101]. Although bioinformatic tools 
like antiSMASH can identify BGCs, the exact chemical structure of the encoded 
secondary metabolites can be ill-defined. Moreover, many secondary metabolites 
are not encoded in BGCs and therefore difficult to predict. Metabolomics fills these 
shortcomings of genomic predictions and plays a pivotal role in secondary metabo-
lite discovery [139].

From a medical and societal perspective, antibiotics are extremely important sec-
ondary metabolites. Globally, antibiotic resistance is increasing resulting in reduced 
treatment options for infectious diseases [46]. Although most of the currently used 
antibiotics are of microbial origin, it is estimated that only a fraction of microbial 
secondary metabolites have been discovered. Classical phenotypic screens often 
result in the rediscovery of known antibiotics, so approaches to discover completely 
new antibiotics classes are highly desired [65]. As reviewed elsewhere, metabolo-
mics represents such a tool to identify new antibiotics, along with their biosynthetic 
pathways [173, 176].

2.6.1  Monitoring the Products of Biosynthetic Gene Clusters

One hurdle in secondary metabolite discovery is that many BGCs are not expressed 
(cryptic) under standard lab culture conditions. Metabolomics can be used to moni-
tor the appearance of novel secondary metabolites while changing culture condi-
tions or genetically inducing cryptic BGC expression [152]. Wu et al., for example, 
induced cryptic BGC expression by exposing Streptomyces sp. MBT28 to strepto-
mycin and used NMR metabolomics to monitor the biosynthesis of novel secondary 
metabolites [174]. Using multivariate data analysis, they were able to link a specific 
NMR signal to the antibiotic activity of several streptomycin-resistant strains. 
Chromatographic purification of this signal led to the identification of 7- prenylisatin, 
a previously unknown isatin-type antibiotic. In a high-throughput version of this 
approach, Covington et  al. challenged Burkholderia gladioli with 750 potential 
elicitors – chemicals that can induce the expression of cryptic BGCs [28]. Using a 
bioinformatic application named Metabolomics Explorer, they discovered several 
cryptic metabolites that were induced by previously unknown elicitors. Though 
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powerful, approaches like these still have a high chance of rediscovering (replicat-
ing) previously known antibiotics or analogs thereof.

2.6.2  Dereplicating Secondary Metabolites

Recent advances in molecular networking now enable dereplicating secondary 
metabolites by comparing their MS2 fragmentation spectra with a growing library 
of microbial metabolites, thereby selecting for new families of metabolites [105, 
112, 130, 168]. Duncan et al., for example, generated a molecular network of the 
metabolites present in 35 strains of Salinispora, a genus of marine actinomycetes 
known to produce a wide variety of secondary metabolites [40]. The network 
consisting of 1137 MS2 spectra was compared with a spectral database containing 
authentic standards, which revealed the presence of 7 metabolite classes known to 
be produced by Salinispora. Associated with these known secondary products 
were several putative demethylated, methylated, and hydrated analogs. Though 
similar to known secondary products, such analogs could still represent interest-
ing antibiotics. The network also contained completely novel metabolites which, 
by screening for co-occurrence of BCGs and metabolites in the strains, could be 
linked to uncharacterized BCGs. One unknown metabolite was structurally eluci-
dated and named “retimycin A” after the Latin word “reticulum” (network). 
Molecular networking can, thus, recognize completely novel metabolites and is 
now widely used to mine secondary metabolites and link them to BGCs [91, 92, 
161, 166, 177].

2.6.3  Linking Secondary Metabolites to Biosynthetic Gene Clusters

Similar to the examples above, linking the presence of secondary metabolites with 
the presence of BGC across hundreds of microorganisms has also been the basis 
of recent large-scale data acquisition and mining approaches [20, 35, 103]. 
McCaughey et  al. developed a general approach to link natural products with 
biosynthetic gene clusters by comparing measured isotope labeling profiles of 
secondary metabolites with the expected labeling profiles of predicted products of 
uncharacterized biosynthetic gene clusters [98]. First, microorganisms are grown 
in the presence of a single- labeled precursor like 1-13C-acetate, 1-13C-propionate, 
[methyl-13C]methionine, or 15N-glutamate, along with parallel unlabeled cultures. 
Next a bioinformatics pipeline called IsoAnalyst compares the labeling of detected 
secondary products to the theoretical labeling of annotated BGCs. The approach 
successfully predicted previously known BGCs for erythromycins and erythro-
chelin in Saccharopolyspora erythraea but also identified known and unknown 
desferrioxamine derivatives and a new lobosamide macrolactam in an environ-
mental Micromonospora sp. [98].
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2.7  Metabolic Engineering

Microbes can perform an amazing variety of chemical reactions. Many of these 
reactions are difficult and expensive to perform using industrial organic chemistry, 
making microbes attractive “factories” to efficiently carry out complex chemistry. 
Metabolic engineering aims to optimize the production of desired metabolites by 
altering the metabolic properties of a cell, often by genetic engineering [23]. 
Classically, only a subset of key metabolites has been measured to steer a targeted 
engineering process and increase metabolite production. Metabolomics has been 
used in a similar semi-targeted way to map the metabolic effect of rational engineer-
ing steps in, for example, CO2 fixation by cyanobacteria [72] and tryptophan pro-
duction in E. coli [140].

2.7.1  Reverse Metabolic Engineering

By measuring a multitude of metabolites, untargeted metabolomics can be a power-
ful tool to identify unexpected metabolic bottlenecks and steer metabolic engineer-
ing [37]. Omics techniques like genomics, transcriptomics, and metabolomics now 
also allow “reverse metabolic engineering.” Reverse engineering is a process in 
which high producers are first selected through non-targeted evolution or mutagen-
esis screens. Next, the mechanisms underlying the high production are investigated 
and used for further optimization [117].

Hong et al., for example, performed metabolomics on three yeast mutants that 
evolved to grow fast on galactose [63]. Although the intermediates of galactose 
metabolism were similar to rationally engineered strains, reserve carbohydrates 
were higher in the evolved strains. Genomic analysis revealed mutations in Ras/
PKA pathway which is important for global carbon sensing. Genetically inhibiting 
this pathway in wild-type yeast increased the growth rate on galactose, confirming 
that mutations in the Ras/PKA pathway drive increased galactose use. In this exam-
ple, Hong et al. thus successfully applied metabolomics to identify unexpected driv-
ers of galactose use.

Valle et al. similarly used metabolomics to guide the metabolic engineering of 
succinic acid production in E. coli [164]. Succinate production is increased in E. coli 
strains with an activated glyoxylate shunt or inactivated pentose phosphate pathway, 
but since the underlying mechanism is unknown, steps for further improvement are 
unknown. Using metabolomics, Valle et al. found that such overproducing strains 
contained increased levels of fructose 1,6-biphosphate, trehalose, isovaleric acid, 
and mannitol, suggesting a loss of succinate production capacity through these 
metabolites. To further increase succinate production, mannitol biosynthesis was 
reduced by inactivating mannitol dehydrogenase. Mannitol dehydrogenase was 
never implicated in succinate production, but deleting it resulted in a 20% increase 
in succinate production. This example thus demonstrates how metabolomics can 
reveal unexpected ways to optimize metabolite production.
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Finally, metabolomics also provides valuable information to build and test meta-
bolic models that can be used for metabolic engineering [30, 76]. We will not dis-
cuss this approach in detail, but metabolic models are discussed in Sect 2.8.

2.8  Improving Culture Media

Since the birth of microbiology, the development of new culture media has been a 
major driver of discoveries [5]. However, despite intensive research, the majority of 
microorganisms remains unculturable [85]. Moreover, many culturable microorgan-
isms can only be grown in complex, non-defined media which hampers accurate 
metabolic modeling of nutrient use and often misrepresents natural habitats. 
Metabolomic analyses of natural habitats now allow rational design of defined 
media that closely mimic environmental conditions in vitro.

To mimic saprolite soil, for example, Jenkins et al. applied LC-MS and GC-MS 
to profile water-soluble metabolites in a soil extract [69]. Combining these tech-
niques, a total of 96 metabolites were identified of which 25 were quantified. Based 
on these results, the authors formulated two “soil defined media” which, at a 10x 
concentration, supported the growth of approximately half of 30 bacteria of a range 
of taxa. An improved formulation of these defined media was later found to support 
the growth of 108 out of 110 phylogenetically diverse soil bacteria and allowed 
quantifying metabolite use by various soil bacteria [32].

In similar work with Trypanosoma brucei, Creek et  al. used metabolomics to 
assess metabolite consumption in the standard artificial culture medium HMI11 and 
found that over 30 metabolites were present at levels that were irrelevant for growth 
[29]. Removing these metabolites from the medium simplified the formulation and 
improved its resemblance to blood and thereby increased the sensitivity towards 
some drugs by over 100-fold.

2.9  Systems Microbiology: Towards Complete 
Metabolic Models

Up to now we have mainly discussed how metabolomics can help to answer specific 
question like “What nutrient does a microorganism use?” or “How does metabolism 
support cell growth?.” Ultimately, however, we would like to describe the complete 
metabolism of a microbe in terms of metabolic fluxes through all of its metabolic 
pathways. In practice, our current understanding of metabolism is too incomplete to 
allow accurate kinetic models of metabolism under varying conditions. However, 
models describing specific metabolic pathways have generated valuable insights 
into metabolism. Metabolomics is a key technique to build, test, and refine such 
metabolic models, often in combination with genomics, transcriptomics, and pro-
teomics [133].

P. M. M. van der Velden and R. S. Jansen



183

2.9.1  Functional Gene Annotation

One major hurdle to construct accurate metabolic models is that even in extensively 
studied model organisms like E. coli, the function of approximately one in three 
genes is unknown [43]. Although several approaches successfully use metabolo-
mics to annotate enzymes, most have a limited throughput and have been applied 
gene per gene [22, 43, 129]. Technical advances in genomics and metabolomics 
now also allow linking genes to metabolites on a global scale. Fuhrer et  al., for 
example, profiled the metabolomes of 3800 E. coli mutants with single-gene dele-
tions. Linking these mutations with over 7000 LC-MS features revealed unexpected 
metabolic influences of annotated genes and predicted the function of 72 unanno-
tated genes [49]. A similar work in yeast found that 1 in 3 genes affects metabolism 
and clustered 3923 genes according to function [109]. In a related in vitro approach, 
Sévin et al. screened 1275 uncharacterized E. coli genes for metabolic activity by 
incubating purified protein with a metabolite extract and monitoring the effect on 
metabolite pools over time [144]. This high-throughput approach led to the putative 
annotation of 241 enzymes, of which 12 were validated.

2.9.2  Allosteric Regulation

Even when the function of all genes would be known, accurate prediction would 
still be challenging because the kinetics, genetic regulation, and allosteric regula-
tion of many enzymes are ill-defined. To characterize allosteric binding of E. coli 
proteins, Diether et al. incubated 29 enzymes with a set of 55 metabolites and used 
NMR to assess protein binding. Of the 98 detected interactions, 76 were new, indi-
cating that protein-metabolite binding is prevalent but understudied [34].

Using well-controlled bioreactors, enzyme kinetics, genetic regulation, and allo-
steric regulation can also be studied in vivo. To explore the effect of metabolites on 
gene transcription, Lemmp et al. switched an E. coli culture between starvation and 
growth monitored metabolite levels and activation of transcriptional regulators 
across ~30 timepoints [84]. By applying advanced statistical tools, they identified 
513 putative metabolite-transcription factor interactions. Similar approaches have 
provided key insight into the allosteric control of nitrogen assimilation and amino 
acid biosynthesis in E. coli [36, 58, 138] but also showed that overflow metabolism 
regulates the levels of pyrimidines [134].

Systems-level analysis of metabolomics data collected under various culture 
conditions further demonstrated that substrate levels in yeast and E. coli are impor-
tant determinants of fluxes in general, while enzymes and allosteric regulators are 
important for irreversible reactions specifically [55, 78].

The insights gained from these and similar studies [19, 121, 143] serve as input 
for more refined models that might ultimately be able to accurately describe and 
predict the metabolism of a single organism under various conditions.
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3  Metabolomics on Microbial Communities

Although monocultures are extremely useful to study microorganisms in a lab, 
microbes in the environment usually live in mixed communities (Fig. 5). Natural 
microbial communities are incredibly diverse and can harbor thousands of species 
spanning the three domains of life. The interactions between these microorganisms 
and between them and their environments are equally diverse. The interactions in 
these communities can be cooperative or competitive and are often mediated through 
metabolites. Because these systems are genetically, physiologically, and metaboli-
cally extremely complex, studying them often requires a combination of scientific 
disciplines with microbiology at the center. To understand the dynamics of micro-
bial communities and the role of metabolism therein, we must uncover what micro-
organisms are present and what they are doing. In other words, the question “who is 
doing what?” must be answered.

Historically, investigating microbial communities has been challenging due to a 
lack of systems-wide approaches. Functional properties of community members 
had to be investigated by isolating them, which is slow and labor intensive. Moreover, 
many microorganisms are currently unculturable, making isolation of a pure culture 
impossible. Technical advances and reduced costs of sequencing now enable routine 
sequencing of the DNA of complete communities. As a result, metagenomics has 
become a cornerstone of research on microbial communities. Currently, the DNA of 
millions of species has been sequenced in myriad environments. This data not only 
provides information on who is present in the communities but, using bioinformatic 
tools, also provides information on what they might be doing. Based on genomes, 
these bioinformatic tools predict the metabolic potential of individual community 

Fig. 5 Metabolic interactions between microorganisms and their environments. Microbes of, for 
example, the gut microbiome or soil microbiome can engage in a multitude of metabolic interac-
tions with other microorganisms and their environment. These interactions can be positive, for 
example, in a mutualistic or syntrophic relation, or detrimental, for example, in the case of parasit-
ism or competition. (The figure was partly generated using Servier Medical Art, provided by 
Servier, licensed under a Creative Commons Attribution 3.0 unported license)

P. M. M. van der Velden and R. S. Jansen



185

members, which can then be used to infer community interactions [147]. However, 
as discussed in Sect. 2, these tools only distill metabolic potential and not actual 
metabolic activity. Though closer to metabolic activity, metatranscriptomics and 
metaproteomics similarly reveal metabolic potential and not actual activity. By 
measuring actual metabolites, metabolomics overcomes the limitations of other 
omics, especially when they are combined [10].

In this section we explore the different ways in which metabolomics-based 
approaches can be applied to investigate microbial communities, starting with the 
relatively simple study of community isolates and ending with tools to predict com-
munity metabolomes.

3.1  Studying Natural Isolates to Understand 
Complex Communities

Microbial communities can consist of thousands of species. These species all have 
their own intracellular metabolome but also continuously take up and release extra-
cellular metabolites. These extracellular metabolites can be nutrients that serve 
cooperative interactions but also toxins or siderophores that confer competitive 
advantages over others. As a result, the cellular metabolomes and extracellular exo-
metabolomes of microbial communities are incredibly complex. Therefore, many 
microbial interactions can currently not be studied in complete communities. 
Studying representative isolates and synthetic communities, however, can provide 
detailed mechanistic insights into the dynamics of a microbial community (Fig. 6).

Soil is home to some of the most diverse microbial communities [14]. Baran 
et  al. investigated the metabolic interplay between Microcoleus vaginatus, a pri-
mary producer isolated from desert soil, and six isolated sympatric heterotrophs [8]. 
Using metabolomics, they showed that many metabolites present in the M. vagina-
tus exometabolome were used by the heterotrophs. Limited overlap in the consumed 
metabolites demonstrated a high level of niche partitioning among the heterotrophs. 
While M. vaginatus was the largest producer of metabolites taken up by the hetero-
trophs, it was also the largest consumer, demonstrating that community interactions 
can be more complex than the classical primary producer-heterotroph paradigm. In 
a follow-up study, Swenson et al. tested how well the isolate study by Baran et al. 
recapitulated the complete natural community metabolome and found that 69% of 
the metabolite dynamics in desert soil could be explained by the tested isolates [158].

In a similar study, Brisson et al. investigated metabolic interplay between four 
isolated microalgae [17]. Untargeted metabolomics demonstrated that these algae 
excreted a wide variety of metabolites, of which eight were tested for their effect on 
growth. Most of these excreted metabolites showed stimulated growth in one spe-
cies while inhibiting the growth of others. These results thus revealed a mechanism 
by which microorganisms can compete in a community.
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Fig. 6 Deconvoluting the metabolome of complex communities by studying isolated community 
members. The contribution of community members to the community metabolome can be studied 
by studying the metabolome of isolated community members

Our gut microbiome has been implicated in almost every disease, and metabo-
lites are considered important mediators. To link metabolites to specific strains, Han 
et al. profiled the levels of 833 metabolites across 178 gut microorganism strains 
in vitro [57]. In vitro metabolite profiles were recapitulated in mice colonized with 
the same strain, which allowed linking specific species to metabolites. In a similar 
approach, Kešnerová et al. colonized bees with single members of the wild-type bee 
microbiome [75]. Using untargeted metabolomics, they found that the consumption 
and production of many metabolites were highly specialized across the tested spe-
cies, indicating a high level of niche partitioning in the bee gut microbiome.

Zimmerman et al. applied metabolomics to 76 human gut microbiome members 
to screen for their involvement in metabolizing 271 orally administered drugs [188]. 
A total of 176 drugs were metabolized, and each species was found to metabolize 
11–95 different drugs. When mice where colonized with drug-metabolizing bacte-
ria, their pharmacokinetics changes accordingly, demonstrating an important role of 
the gut microbiome in drug metabolism.

Taken together, these examples show that metabolomics analyses on individual 
community members represent a powerful bottom-up approach to understand com-
plex microbial communities.
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Fig. 7 Synthetic microbial community with a defined set of microorganisms. By establishing a 
synthetic community, metabolic interactions between community members can be investigated 
while controlling or applying conditions that are beyond control in natural communities

3.2  Synthetic Microbial Communities

Like natural isolates, synthetic communities grown under well-defined conditions 
allow studying mechanisms that are hard to study in complex undefined communi-
ties (Fig. 7). Yu et  al., for example, used metabolomics to explore the effects of 
auxotrophs in a microbial community [181]. Auxotrophs are unable to synthesize 
essential metabolites and therefore rely on other community members. Despite this 
parasitic behavior, auxotrophs are commonly present in natural communities. To 
explore whether auxotrophs are beneficial to microbial communities, Yu et al. gen-
erated self-establishing metabolically cooperating yeast communities (SeMeCos) 
[18, 181]. SeMeCos are grown from a his3Δ leu2Δ met15Δ ura3Δ S. cerevisiae 
parental strain with corresponding rescuing vectors. As the his3Δ leu2Δ met15Δ 
ura3Δ S. cerevisiae proliferates, the rescuing vectors dilute throughout the popula-
tion, resulting in a mix of different histidine, leucine, methionine, and uracil auxo-
trophs. With a targeted metabolomics approach, Yu et  al. found that SeMeCos 
S. cerevisiae started sharing not only large amounts of histidine, leucine, methio-
nine, and uracil but also many other metabolites. This increased sharing conferred 
resistance to antifungal azoles, potentially by increased efflux transporters. Using 
metabolomics, Yu et al. thus showed that auxotrophs alter the metabolic interactions 
in a microbial community of similar species.

Metabolic modeling of natural communities suggests that cross-feeding is also 
common between different species [185]. Ponomarova et al. used exometabolomics 
to explore interspecies cross-feeding between S. cerevisiae and two lactic acid bac-
teria and found it to be mediated by an overflow of yeast amino acids [126]. Like 
isolates, synthetic communities thus allow studying metabolic community interac-
tions by a bottom-up approach. Both approaches are culture-dependent, however, 
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limiting their application to the subset of culturable microbes. In the next sections, 
we will discuss culture-independent techniques that can be applied to natural 
communities.

3.3  Gnotobiotic Animals

Gnotobiotic animals have a defined microbiome and represent excellent models to 
study the causal effect of microbiomes on host metabolomes and health (Fig. 8) [27].

In an early metabolomic study with gnotobiotic mice, Wikoff et al. found that 
hundreds of plasma metabolites were significantly altered in the absence of a gut 
microbiome, demonstrating the importance of microbiomes to their hosts [171]. 
More recently, gnotobiotic mice have been “humanized” by colonization with 
human gut microbiomes, leading to metabolomic profiles that reflected those of the 
human donors [97].

Sharon et  al. applied untargeted metabolomics to the colon content of mice 
humanized with the gut microbiomes of typically developing individuals and indi-
viduals with autism spectrum disorder (ASD) [148]. They found that two GABAA 
receptor agonists, 5-aminovaleric acid and taurine, were significantly less abundant 
in ASD mice. Dietary supplementation of these metabolites alleviated ASD-like 
behavior in these mice, suggesting a causal link. However, it remained unclear what 
microorganisms contributed to ASD-like phenotypes.

Metabolomics on gnotobiotic animals thus represents an approach to study com-
plex microbial communities under relatively controlled conditions.

Fig. 8 Gnotobiotic animal with a defined microbiome. Gnotobiotic animals allow studying the 
metabolic interplay between specific microbiome members and their host. (The figure was partly 
generated using Servier Medical Art, provided by Servier, licensed under a Creative Commons 
Attribution 3.0 unported license)
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3.4  Molecular Networking to Characterize 
Community Metabolomes

Microbial communities and their metabolomes are incredibly complex and contain 
thousands of features that cannot be identified [10]. These high numbers of 
unknowns have long hampered the application of untargeted metabolomics to 
microbial communities, but this has changed with the rise of metabolic networking. 
Molecular networks reveal chemical relatedness between known and unknown 
metabolites and thereby show the presence of chemical classes rather than specific 
metabolites [10, 168].

In a landmark study, Nguyen et  al. applied molecular networking to over 60 
microorganisms and identified several molecular families of peptide natural prod-
ucts produced by various microbes. The presence of these families could subse-
quently be linked to the presence of biosynthetic gene clusters, which led to the 
discovery of a biosynthetic gene cluster for a molecular family of bromoalterochro-
mides [112].

Molecular networking is a breakthrough in the representation of complex metab-
olomes and is applied in a wide variety of ways, as highlighted throughout this 
manuscript.

3.5  Stable Isotope Tracing in Natural Communities

To gain insight into the metabolic dynamics in natural communities, researchers 
have successfully applied stable isotope tracing (Fig. 9).

Jang et al., for example, fed mice 13C-labeled fructose and glucose and followed 
their fate by metabolomics on intestinal content, blood, and various tissues [66]. In 
contrast to the wide belief that fructose is mainly metabolized in the liver [104], 
Jang et al. demonstrated that fructose is mainly metabolized in the small intestine 

Fig. 9 Stable isotope tracing in microbial communities. Stable isotope tracing can be used to trace 
the fate of metabolites in complex microbial communities, revealing microbial interactions
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and only reaches the liver at high intake levels. Glucose metabolites, however, did 
accumulate in the muscles and liver. Using isotope labeling, Jan et al. thus revealed 
that the small intestine plays an important role in fructose metabolism.

Zeng et  al. similarly fed mice stable isotope-labeled nutrients but combined 
metabolomic analyses with metaproteomics to reveal which community members 
consume which metabolites [186]. Metabolic analyses first showed that inulin, a 
plant-derived dietary fiber, mostly remained undigested, while a small fraction was 
broken down into short-chain fatty acids and subsequently labeled microbiome gly-
colytic and TCA cycle intermediates. The 13C-label of starch, however, was mostly 
recovered in portal blood glucose, lactate, and alanine. Similarly, the carbons of 
13C-labeled algal proteins accumulated in the microbiome, while the carbon of 
amino acids quickly appeared in the portal blood. These metabolomics data thus 
suggest that the microbiome preferably consumes nutrients from sources that are 
hard to digest. Subsequent proteomic analysis revealed that the 15N-label of dietary 
proteins accumulated in Acetatifactor muris, while their 13C-label accumulated in 
Bacteroides uniformis, a well-known commensal in the human microbiome.

3.6  Mass Spectrometry Imaging of Microbial Communities

Natural microbial communities are not only phylogenetically complex but also spa-
tially. This spatial organization is essential for metabolic interactions but is often 
lost during sample preparation. Mass spectrometry imaging preserves spatial orga-
nization and can reveal its role in metabolic interactions. Garg et al., for instance, 
sectioned a human lung into slices and analyzed the metabolome and microbiome 
at multiple sites using conventional techniques [51]. Mapping the metabolites and 
species data onto a computer model of a human lung visualized the spatial organiza-
tion of microbes and metabolites in the lung of a cystic fibrosis patient, albeit at a 
low spatial resolution. A higher spatial resolution can be achieved with matrix- 
assisted laser desorption/ionization-mass spectrometry imaging (MALDI-MSI). 
Carrell et al. applied MALDI-MSI to a coculture of Sphagnum angustifolium, a peat 
moss, and Nostoc muscorum, a cyanobacterium species, to visualize their metabolic 
interactions [21]. This approach showed that xanthosine, choline O-sulfate, and 
adenine accumulated at the interface between the S. angustifolium and N. muscorum 
cultures, which confirmed cross-feeding experiments.

To explore how Streptomyces coelicolor responds to the presence of other acti-
nomycetes, Traxler et al. combined MALDI-MSI with nanospray desorption elec-
trospray ionization mass spectrometry (NanoDESI MS) imaging [162]. In this 
study, NanoDESI MS was used to obtain fragmentation spectra which can be used 
to build a molecular network [170]. This network revealed a family of unknown 
metabolites which were subsequently identified as desferrioxamines, siderophores 
known to play a role in species interactions.

Combining MS imaging with other imaging techniques allows linking metabo-
lites to species at a high spatial resolution. With an approach called metaFISH, 
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Geier et al. combined MS imaging with fluorescent in situ hybridization (FISH) to 
spatially link metabolites to species [53]. Applying metaFISH to a deep-sea mussel 
and its intracellular symbiotic bacteria led to the discovery of a family of specialized 
metabolites at the host-microbe interface that remain to be identified. A similar 
approach combined FISH with nanoscale secondary ion mass spectrometry (nano-
SIMS), which allowed linking species information with 13C and 15N abundance at a 
high spatial resolution [12].

The examples above demonstrate the unique ability of MS imaging to explore 
the spatial distribution of community metabolomes.

3.7  Integrating Omics Within Microbial Communities

As already shown in previous examples, combining metabolomics with other omics 
techniques provides a much deeper insight into metabolic community interactions 
than metabolomics alone. In this section we highlight studies applying additional 
omics combinations to study metabolism within microbial communities.

3.7.1  Metabolomics and Metagenomics

The combination of metabolomics with metagenomics allows linking the presence 
of metabolites with the abundance of species. Franzosa et al., for example, com-
bined untargeted metabolomics and shotgun metagenomics to link the changes in 
the gut microbiome of patient with inflammatory bowel disease (IBD) with changes 
in the gut metabolome [48]. Applying untargeted metabolomics to stool samples 
from patients and controls revealed IBD-specific changes in metabolite classes like 
sphingolipids, bile acids, and triacylglycerols. Shotgun metagenomics similarly 
revealed IBD-specific changes in species composition. Combining these data 
revealed 122 strong associations between species and metabolites, which could 
therefore be drivers of the IBD phenotype. For example, caprylic acid, a medium- 
chain fatty acid enriched in non-IBD patients, correlated positively with several 
health-associated microbiome species and negatively with Ruminococcus gnavus, 
an IBD-associated bacterium. To test for a causative relation, Franzosa et al. grew 
R. gnavus in the presence of caprylic acid and found reduced growth.

Dekkers et al. combined metabolomics and metagenomics on a large cohort of 
8583 participants and found that the gut microbiota explain up to 58% of the vari-
ance in human plasma metabolites [33]. Large studies like these enable the identifi-
cation of subtle, but potentially important, microbiome-metabolite associations.

In a similar environmental study, Shaffer et al. analyzed 880 microbial commu-
nity samples from the Earth Microbiome Project by metagenomics and untargeted 
metabolomics, revealing intricate relations between sample sites, microbial com-
munity composition, and metabolites [146].
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By combining metabolomics and metagenomics, these studies thus link metabo-
lites to microbiota and phenotypes, identifying potential underlying mechanisms.

3.7.2  Metabolomics and Metatranscriptomics

By combining metabolomics with metatranscriptomics, changes in metabolite lev-
els can be linked to species-specific gene transcription and vice versa. Malik et al., 
for example, integrated metabolomics and metatranscriptomics to study the response 
to drought of microbial communities living on plant litter [94]. Metatranscriptomics 
revealed increased transcription of bacterial genes associated with housekeeping, 
carbohydrate metabolism, extracellular polysaccharides metabolism, and inorganic 
ion transport, along with a vastly diminished number of eukaryotic transcripts. At 
the same time, metabolomics showed reduced amounts of free amino acids and 
sugars, along with an increase in compatible solutes like ectoine, 5-oxo-proline, and 
trehalose. Together, these results indicate a coordinated metabolic adaptation to 
drought.

3.7.3  Metabolomics and Metaproteomics

Similar to metatranscriptomics, metaproteomics can be combined with metabolo-
mics to link metabolites with species-specific proteins.

McGivern et  al. combined metabolomics with metagenomics and metapro-
teomics to study how polyphenols can be degraded in anoxic peatlands [100]. 
Peatlands are widely recognized as some of the most important global carbon sinks. 
Only the Northern peatlands, for example, are estimated to contain over a 1000 Gt 
of carbon, which is over 100 times the total global yearly anthropogenic carbon 
emissions [114]. Peatlands are anoxic and rich in polyphenols, plant metabolites 
that are thought to inhibit microbial activity at high concentrations. In soil, it is 
generally believed that microbial degradation of polyphenols requires oxygen and 
does not occur in anoxic environments [47]. To test whether polyphenols could be 
degraded in anoxic environments, McGivern et al. performed anoxic batch incuba-
tions with wetland subsurface soil and condensed tannin, a model polyphenolic 
compound [100]. High-resolution Fourier-transform ion-cyclotron-resonance MS 
(FTICR-MS) in combination with Kendrick mass defect analyses demonstrated bio-
logical breakdown of the added condensed tannin. Concomitantly, LC-MS and 
NMR analyses revealed the appearance of tannin-derived C15 flavonoids and (mono)
phenolic compounds like caffeic acid, 3,4-dihydroxy phenylalanine, and 
3,4- dihydroxy phenylethanol. To gain mechanistic insights into tannin degradation, 
the batch incubations were analyzed with metagenomics and genome-resolved 
metaproteomics, which led to the discovery of metabolic pathways that could be 
responsible for anoxic tannin breakdown. By integrating several omics, McGivern 
et  al. thus showed that anoxic polyphenol degradation is possible, contrary to 
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previous beliefs. Using the same techniques, Solden et al. studied the rumen micro-
biome of moose and discovered new enzymes involved in carbohydrate degrada-
tion [153].

Taken together, these examples demonstrate that integrating metabolomics with 
other omics can lead to mechanistic insights that were impossible to discover using 
metabolomics alone.

3.8  Integrating Data Across Microbial Communities 
and Studies

As we have seen in the previous section, integrating metabolomics with other omics 
can link metabolites to specific species and proteins within microbial communities. 
Recent approaches aim to integrate datasets on a much bigger scale and across dif-
ferent communities and studies [89]. Ultimately, these data-mining approaches 
could link known and unknown metabolites to species and proteins on a scale that 
is currently impossible.

Web of Microbes (WoM) is a repository for exometabolomes and metadata like 
community composition and environment [80]. By analyzing the co-occurrence of 
metabolites, species, and environmental information, WoM aims to, for example, 
identify metabolite-producing species and predict competition and metabolite 
exchange between microbes.

Schorn et al. similarly developed the Paired Omics Data Platform, a platform that 
stores metadata, like growth media, extraction solvent, and ionization mode, to link 
metabolomics and genomics data, thereby identifying natural product biosynthetic 
origins and metabolite structures [141]. Focusing on host-microbe interactions, the 
Virtual Metabolic Human (VMH) seeks to integrate human genetics, microbiome 
genetics, biochemical pathways, metabolomes with data on diseases, and nutri-
tion [116].

Other platforms do not store data but provide data analysis pipelines. Microbiome 
and metabolome integrative analysis (M2IA), for example, is an analysis pipeline 
specialized in integrating metabolomics data and 16S rRNA sequences or metage-
nomes of microbiomes [113]. M2IA implements a variety of statistical analyses to 
correlate metabolites in the metabolome with species detected in the metagenome 
or 16S rRNA gene library. It extracts predicted reaction pathways from the Kyoto 
Encyclopedia of Genes and Genomes (KEGG), returning probability scores of 
microbes participating in a specific metabolic reaction or pathway. M2IA can pro-
cess metabolomics data from sources including feces, plasma, serum, and urine. To 
the best of our knowledge, M2IA has not been tested on environmental 
communities.

NPLinker similarly integrates genomic end metabolomic data, but with a focus 
on finding biochemical relations [62]. NPLinker collapses annotated biosynthetic 
gene clusters (BGCs) of a given sample into gene cluster families (GCFs) based on 
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similarity-based distances inferred with BiG-SCAPE [111] and links these to 
metabolites or metabolic networks, thereby relating GCFs to molecules or molecu-
lar families, respectively.

3.9  Predicting Community Metabolomes

Ultimately, advanced knowledge on species-metabolite links should allow accurate 
prediction of community metabolomes based on other omics data.

Currently, several tools integrate omics data to predict community metabolomes. 
Metabolomic analysis of metagenomes using flux balance analysis and optimiza-
tion (MAMBO), for example, is metagenomic-based predictor of metabolic micro-
bial community dynamics [52]. MAMBO uses the ModelSEED pipeline to generate 
genome-scale metabolic models (GSMMs) that encompass the metabolic reactions 
annotated within reference genomes [61]. A quantitative metabolic model is then 
constructed from metagenomics-derived abundance data and the reference GSMMs. 
Similar to NPLinker, Biosynthetic Gene cluster Meta’omics Abundance Profiler 
(BiG-MAP) uses the BiG-SCAPE tool to collapse BGCs into GCFs [122]. BiG- 
MAP then calculates GCF expression levels or abundances to model metabolite 
dynamics in microbial communities. Microbe-metabolite vectors (mmvec) are a 
neural network that specializes in predicting whole metabolomes from genomic 
data [107]. The mmvec neural network is iteratively trained with (meta)genomic 
and metabolomic data and learns co-occurrence probabilities. With several bench-
marking tests and in four microbial communities, mmvec outperformed commonly 
used correlation estimation methods, showcasing the great promise machine learn-
ing holds in predicting community metabolomes.

4  Conclusions

In this chapter we provided a broad overview of microbial metabolomics. 
Metabolomics has helped understanding how single microbes consume and process 
nutrients and how they adapt their metabolism to cope with stress and antibiotics. 
Similarly, metabolomics has been instrumental in uncovering the complex interac-
tions in microbial communities in our gut and the environment. Metabolomics has 
thus become a core technique in modern microbiology.

In the past decades, technical advances in mass spectrometry have pushed 
metabolomics to the forefront of many life sciences, including microbiology. We 
expect that in the next decade, advances in data analysis tools will push the boundar-
ies of microbial metabolomics further. Since the field is extremely broad in terms of 
microbes, environments, and analyses, we focus on overarching trends and chal-
lenges here.
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Some of the most promising new trends are, in our view, new data analysis tools. 
Molecular networking, for example, already represents a major development in 
microbial metabolomics, but given its power to characterize complex metabolomes, 
its future in the study of microbial communities appears particularly bright [10, 168].

Characterizing complex metabolomes using molecular networking does not 
allow linking metabolites to specific members of microbial communities though. 
However, as more microbial metabolomics and metagenomics datasets become 
available, data mining strategies will become more powerful. Ultimately, big data 
approaches like the Earth Microbiome Project will enable linking groups of 
microbes to groups of metabolites, whether annotated or not.

Annotating metabolites represents another major hurdle in microbial metabolo-
mics for which we foresee a bright future for advanced data analysis. The huge 
annotation gap in metabolites and genes strongly limits the level of insight we gain 
from metabolomics studies. Recent advances in in silico structure prediction are 
promising, however, and will be of pivotal importance for microbial metabolomics 
[38, 39, 163]. Awaiting better in silico structure prediction tools and sharing of 
unannotated features through platforms like Global Natural Products Social 
Molecular Networking (GNPS) allow recognizing interesting unknowns across 
datasets.

Integrating omics data within and across studies thus represents a next frontier in 
microbial metabolomics but will allow leveraging technical and data analysis 
advances across omics fields. To apply these big data mining approaches at their full 
potential, it will be essential to share datasets in formats that allow interoperabil-
ity [118].

With these exciting developments ahead, we expect a bright future for microbial 
metabolomics.
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HPLC High performance liquid chromatography
IBD Inflammatory bowel disease
LC Liquid chromatography
LDL Low-density lipoprotein
MI Myocardial infarction
MS Mass spectrometry
MS Multiple sclerosis
Mtb Mycobacterium tuberculosis
NAC N-acetylcysteine
NAD Nicotinamide adenine dinucleotide
NADPH Nicotinamide adenine dinucleotide phosphate
NMR Nuclear magnetic resonance
NO Nitric oxide
PC Phosphatidylcholine
PD Parkinson’s disease
PE Phosphatidylethanolamine
PPP Pentose phosphate pathway
PUFA Polyunsaturated fatty acids
RA Rheumatoid arthritis
ROS Reactive oxygen species
SARS-COV-2 Severe acute respiratory syndrome coronavirus 2
SLE Systemic lupus erythematosus
SM Sphingomyelin
TB Tuberculosis
TCA Tricarboxylic acid
TMAO Trimethylamine-N-oxide
Tregs Regulatory T cells
UC Ulcerative colitis

1  Introduction

Metabolites are the derived products from cellular metabolism and executes essen-
tial cellular functions such as signal transduction, cell growth and survival, and 
energy production. Metabolites are also derived from microorganisms, dietary, exo-
geneous, and xenobiotic sources [1]. Since metabolites have a wide range of cellular 
functions and physiological role, it is imperative to identify metabolites and com-
prehend different metabolic pathways associated with a unique biological pheno-
type. Metabolomics is the profiling of metabolites in the biological samples such as 
cells, tissues, and biofluids including blood serum, plasma, urine, saliva, etc. which 
could be implemented as a biomarker for providing insights into the mechanisms 
underlying diseases [2].

There are various methodologies used for carrying out metabolomics to under-
stand the normal physiology and pathophysiology in diseases. Mass spectrometry 
(MS) is the main analytical platform which provides a highly sensitive, versatile, 
and reproducible metabolomic analysis. Targeted and untargeted (global) mass 
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spectrometry-based metabolomics are the major approaches for performing quanti-
tative metabolite analysis in the biological samples. Untargeted (global) metabolo-
mics measures a broad range of metabolites without a prior information of the 
metabolome; in contrast, targeted metabolomics relies on the prior knowledge of 
the metabolome and have a greater sensitivity and specificity [2].

Recent advancements in innovative informatics have made it possible for more 
accurate quantification and broader coverage of metabolites with the identification 
of novel or previously unknown functions of metabolites in health and diseases. In 
this chapter, applications of metabolomics in the context of autoimmunity, infec-
tions, and physiological diseases have been discussed to unveil new frontiers in the 
diagnosis, prognosis, treatment, and drug discovery for the amelioration of diseases.

2  Metabolomics in Autoimmune Diseases

2.1  Metabolomics in Rheumatoid Arthritis (RA)

Rheumatoid arthritis (RA) is a systemic autoimmune disorder characterized by 
inflammation of synovial joints which progresses to disability [3]. Since RA still 
remains uncured, metabolomics can have a paramount importance in the early diag-
nosis and better understanding of the pathogenesis of RA. Biological samples such 
as synovial fluid, plasma, or serum from RA patients have been exploited for LC or 
GC coupled MS-based metabolomics studies. Serum-based metabolomics showed 
an increase in pyruvate and decrease in glucose in RA patients [4]. Elevated levels 
of ribose, fumarate, and citrate were found in the serum of RA patients indicative of 
active pentose phosphate pathway (PPP) and TCA cycle [5]. Amino acids such as 
glutamate and tryptophan were higher, while threonine, isoleucine, methionine, 
valine, histidine, serine, and alanine were lower in RA patients as compared to 
healthy individuals [6].

Plasma lipidomic profiling in RA patients identified variations in different classes 
of lipids with remarkable differences in lysophosphatidylinositol, dihydrocerami-
des, phosphatidylserine, alkyl phosphatidylethanolamine, and alkenyl phosphati-
dylethanolamine, in comparison to healthy controls [7]. Further, significant rise in 
the concentrations of monounsaturated and polyunsaturated fatty acids and decline 
in saturated fatty acids were evident in RA patients [5, 6]. Metabolomic studies 
employing synovial fluid from RA patients observed increased lactate concentration 
marking enhanced glycolytic activity [8, 9]. These studies also reported a down-
regulation of TCA cycle with reduction in citrate and ATP production and a decrease 
in acylcarnitine and LDL-lipids in RA patients [8, 9].

Macrophages and T lymphocytes are the most relevant disease-specific cells in 
RA and possess immunometabolic abnormalities [10]. In RA, these cells display 
unusual metabolic demands due to abnormal proliferation and pro-inflammatory 
effector functions. Increased glucose uptake and production of reactive oxygen 
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species (ROS) and ATP in macrophages and lower levels of ATP and high NADPH 
and glucose shunting into the PPP in T cells are striking features in RA (Fig. 1) [10, 
11]. Different metabolomic studies have been conducted to predict the response of 
RA patients to various treatment regimens exploiting biological agents such as TNF 
inhibitors, rituximab, and abatacept [12, 13]. These studies profiled serum samples 
to distinguish RA patients who were responders from non-responders before and 
after the treatment [12, 13]. Lastly, NMR-based serum metabolomics could be 
exploited for identifying pathogenic pathways in the RA patients [14].

2.2  Metabolomics in Systemic Lupus Erythematosus (SLE)

Systemic lupus erythematosus (SLE) is a chronic autoimmune inflammatory dis-
ease manifested by the production of autoantibodies with the activation of different 
types of immune cells affecting multi-organ system [15]. The pathogenesis of SLE 
is not completely understood, highlighting the need to fully understand the factors 
contributing to the development and progression of the disease. Metabolites have 
been ascribed critical roles in providing valuable insights on the pathogenesis of 
SLE owing to the modulation of immune responses mounted by different immune 
cells. In addition to genomics, transcriptomics, and proteomics, metabolomics has 
shed light on the pathophysiology underlying SLE which has substantially improved 
our understanding of SLE pathogenesis [16].

Fig. 1 Immunometabolic perturbations in rheumatoid arthritis (RA): Metabolomics showed 
increased glucose uptake with higher ATP and ROS production in macrophages while lower levels 
of ATP in T cells of RA patients
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Metabolomics in SLE patients have reported perturbations in glycolysis, TCA 
cycle, fatty acid oxidation, and amino acid metabolism [17]. Evidences suggests 
lowering levels of lactate and pyruvate in SLE patients [17]. In the context of TCA 
cycle metabolites, there was decline in malate, alpha-ketoglutarate, fumarate, and 
citrate in patients suffering from SLE. With regard to metabolites of the amino acid 
metabolism, there was a diminution of amino acids in SLE patients including tyro-
sine, tryptophan, histidine, alanine, phenylalanine, valine, leucine, isoleucine, glu-
tamine, lysine, glycine, asparagine, proline, serine, and aspartate [18–20]. Lipidomic 
profiling demonstrated fluctuations in fatty acid metabolism with surge in LDL and 
VLDL, whereas levels of cholesterol and HDL were diminished in SLE patients 
[20]. Lipidomic studies revealed lower levels of glycerol, polyunsaturated fatty 
acids (PUFA), and oleic and arachidonic acids and increased levels of monoacylg-
lycerols [17, 18]. Li et al. showed elevation in sphingomyelin, ceramide, phosphati-
dylethanolamine, and diacylglycerol with concomitant decrease in acylcarnitine in 
SLE patients [17, 21]. Yan et al. also reported the differences in metabolites as bio-
markers for distinguishing SLE patients with inactive and active disease, among 
them are linoleic acid, glutamate, citrate, propylparaben, 2-hydroxyisobutyrate, and 
glycerol [18].

Bengtsson et al. illustrated a reduction in amino acid, arginine which induces 
nitric oxide (NO) production leading to oxidative stress, and aggravated nitro- 
oxidative stress could modulate disease severity further regulating the SLE patho-
genesis [22, 23]. Thus, oxidative stress promotes SLE by modulating signal 
transduction and cytokine secretion, and the hallmark of oxidative stress includes 
accumulation of kynurenine, cystine, and threonate and lower levels of cysteine and 
glutathione (GSH) in the serum of SLE patients [18]. N-acetylcysteine (NAC) is a 
precursor of GSH which improves disease severity in SLE by overcoming GSH 
depletion and blocking mTOR activation [24]. mTOR is known to inhibit the devel-
opment of regulatory T cells (Tregs) which are deficient in SLE patients, and so 
mTOR blockade would restrain this inhibitory effect on Tregs resulting in disease 
remission [25]. Xanthine is another metabolite related to oxidative stress which 
generates ROS and was found in higher levels in SLE patients [21]. Lastly, increase 
in lipid metabolites in the serum and lower citrate levels in the urine after the treat-
ment with the drug cyclophosphamide has been considered as a non-invasive bio-
marker for evaluating the response to treatment in SLE patients [26, 27].

2.3  Metabolomics in Inflammatory Bowel Disease (IBD)

Inflammatory bowel disease (IBD) is an autoimmune condition including Crohn’s 
disease (CD) and ulcerative colitis (UC) and involves inflammation of the colon and 
small intestine in the digestive tract, respectively [28]. IBD is marked by disrupted 
immune regulation, perturbed intestinal permeability, and altered gut microbiota 
[28]. At present, there is no cure for IBD, and the etiology is not completely known. 
The pathogenesis of IBD is complex due to the interplay of the immune system, gut 
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microbiota, environmental factors, and the genome. Thus, understanding the pathol-
ogy of IBD is critical; in lieu of this, metabolomics has explicitly contributed to 
identify metabolic biomarkers associated with disease pathogenesis providing 
insights into the mechanisms underlying IBD.

IBD metabolome is quite diverse with serum and plasma metabolic profile attrib-
uting to changes in the host metabolism; on the other hand, fecal and urine meta-
bolic profile corresponds to the gut microbial activity or diet [29]. In IBD, alterations 
in metabolic signatures of energy metabolism were quite evident with significant 
decrease in TCA cycle metabolites, including malate, succinate, aconitate, fuma-
rate, citrate, and alpha-ketoglutarate in biological samples from IBD patients as 
compared to healthy individuals [30]. Concerning the lipid profile in IBD, ketone 
bodies were found in higher levels in serum on account of increased fatty acid oxi-
dation with concomitant accumulation of glucose due to the body’s inability to uti-
lize glucose resulting in the elevation of ketone bodies in the serum of IBD patients 
[31]. Lower levels of amino acids in the blood and urine while increased levels of 
amino acids in the feces of IBD patients were remarkable due to malabsorption of 
amino acids which results from compromised gut epithelial barrier by inflamma-
tion [32].

Gut dysbiosis is a common phenomenon in IBD pathogenesis and is character-
ized by diminution in Faecalibacterium prausnitzii and Clostridium cluster IV 
which are important for maintaining intestinal homeostasis [33]. Hippurate is a 
microbial product of dietary metabolism and was found in diminishing levels in 
urine of patients with UC and CD [34]. Williams et al. also showed that p-cresol 
sulphate, a metabolic product derived from tyrosine and produced by Clostridium 
spp., was lower in the urine of CD patients [34]. Further, studies have shown increas-
ing concentrations of tyrosine in the feces and 3-methylindole in serum and declin-
ing levels of indole-3-acrylic acid and indole-3-propionic acid in the serum samples 
of CD patients due to impaired microbiota as compared to healthy subjects [35, 36]. 
Lastly, metabolomics has been valuable in distinguishing CD and UC patients upon 
the diagnosis of IBD by identifying distinct metabolic profile including alterations 
in TCA cycle metabolites, fatty acids, and amino acids [37].

3  Metabolomics in Infectious Diseases

3.1  Metabolomics in COVID-19

Coronavirus disease 2019 (COVID-19) is a respiratory pandemic caused by severe 
acute respiratory syndrome coronavirus 2 (SARS-CoV-2). The virus infects lungs 
and respiratory tract of humans resulting in cough, fever, myalgia and in some 
instances culminates in acute respiratory distress syndrome (ARDS) [38]. While 
most patients have mild-to-moderate symptoms, in some patients the infection leads 
to severe respiratory distress, multi-organ dysfunction, and failure eventually 
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resulting in death. The sudden outbreak of this pandemic in December 2019 led to 
unprecedented million deaths worldwide, intensifying the need to understand the 
pathobiology of SARS-CoV-2  in humans. In the fight against the COVID-19, 
metabolomics has been employed to dissect the metabolic fluctuations and predict 
the disease progression caused by SARS-CoV-2 infection by recognizing the diag-
nostic and prognostic biomarker metabolites [39].

A recently published study done in a large cohort of COVID-19 patients and 
healthy individuals elucidated metabolic perturbations associated with the periph-
eral immune responses with SARS-CoV-2 infection which could be helpful in pre-
dicting disease severity and survival probability [40]. GC-MS, LC-MS/MS, and 
NMR techniques have been performed for metabolite detection using biofluids such 
as serum, plasma, or urine of COVID-19 patients. Plasma metabolomics of 
COVID-19 patients revealed differences in the proportion of lipids such as decreased 
diacylglycerols (DAGs) and higher levels of monosialodihexosylgangliosides 
(GM3s) and sphingomyelins (SMs) suggesting the utilization of host-derived lipid 
membranes by SARS-CoV-2 [41]. Further, decreasing concentrations of phosphati-
dylcholines (PCs) and higher levels of free fatty acids, diglycerides, and triglycer-
ides were observed in the plasma lipidomic profile of patients with severe COVID-19 
symptoms [42]. Reduction in carbohydrate metabolites such as glycerol-3- phosphate 
and malic acid was a metabolic signature in symptomatic COVID-19 patients [42]. 
Blasco et al. showed changes in the metabolism of pyrimidine, nicotinamide, and 
tryptophan with two key metabolites, indole-3-acetic acid, and cytosine as major 
distinguishing feature for COVID-19 patients [43]. The indole-3-acetic acid is 
derived from tryptophan degradation, and nicotinamide is derived from nicotinic 
acid which serves as a precursor for NAD+ and NADP+, coenzymes important for 
various biochemical processes. Danlos et al. carried out the plasma metabolomics in 
COVID-19 patients at different stages of SARS-CoV-2 infection [44]. Among the 
77 metabolites that were found to have changed in patients with severe COVID-19, 
remarkably tyrosine, phenylalanine, arginine, glutamate, leucylproline, aspartate, 
and S-adenosylmethionine were higher [44]. Moreover, changes in tryptophan 
metabolism were evident in critical COVID-19 patients with increase in kynurenine 
metabolite since tryptophan converts into NAD (nicotinamide adenine dinucleo-
tide) through kynurenine pathway [44].

Urine metabolome also showed the dysfunction in purine metabolism, energy 
metabolism, and NAD+ synthesis in COVID-19 patients [45]. Similar to plasma, 
metabolomics of serum from COVID-19 patients indicated alterations in tryptophan 
metabolism with higher levels of glucose and fatty acids which was linked to the 
presence of inflammatory markers such as IL-6, C-reactive protein, and renal func-
tion markers such as blood urea nitrogen [46]. Further, increased glucuronate, glu-
cose, products derived from bilirubin breakdown, and bile acid derivatives were 
found in the serum of COVID-19 patients suggesting disrupted liver detoxification 
functions associated with SARS-CoV2 infection [47]. Consistently, Xiao et  al. 
demonstrated changes in tryptophan metabolism with increased levels of kynuren-
ine and nicotinic acid and inflammatory response accompanied by cytokine release 
syndrome along with alterations in purine and arginine metabolism, as a 
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Fig. 2 Metabolic changes in COVID-19 patients: Metabolomics of biological samples from 
COVID-19 patients showed increased kynurenine concentration as a consequence of enhanced 
tryptophan metabolism with higher levels of cytokine production

consequence of SARS-CoV-2 infection (Fig. 2) [48]. Dei Cas et al. identified in the 
sera of severe COVID-19 patients, lower levels of diacylglycerols, sphingomyelins, 
and higher levels of phosphatidylethanolamines (PE) and acylcarnitine [49]. 
GC-MS- based serum metabolomics of COVID-19 patients revealed fluctuations in 
the amino acid catabolism such as glutamate, glutamine, threonine, and alterations 
in energy metabolism as evident in Warburg effect and Krebs cycle [50]. Further, 
Shi et  al. detected a combination of cholesterol, succinate, 3-hydroxybutyrate, 
2-hydroxy- 3-methylbutyrate, oleic acid, palmitate, and ornithine in the patient’s 
sera as a prognosis of COVID-19 severity [51]. Finally, Kaur et al. showed elevated 
concentrations of arachidonic acid, sphingomyelins (SM), phosphatidylcholines 
(PC), and tryptophan metabolites in the serum of severe COVID-19 patients which 
is helpful in differentiating severe cases from recovered patients [52].

3.2  Metabolomics in HIV Infection

Human immunodeficiency virus (HIV) is a retrovirus causing acquired immunode-
ficiency syndrome (AIDS) with high morbidity and mortality rates worldwide [53]. 
Despite the lack of cure, HIV patients can survive with undergoing antiretroviral 
therapy (ART). HIV binds, infects, and replicates within cells resulting in disease 
progression which is embraced by gradual decline in CD4+ T cells [54]. Retroviruses 
such as HIV have shown to alter host cell metabolism [55]. By virtue of this, metab-
olomics has been applied for the identification of biomarkers from biofluids of HIV 
patients assisting in better disease diagnosis and development of AIDS vaccines. 
Initial studies distinguished HIV+ patients receiving ART from HIV− individuals 
exploiting metabolomics-based profiling of serum which reported remarkable fluc-
tuations in the concentrations of glucose and lipids [56, 57]. Consistently, these 
findings were validated in plasma and cerebrospinal fluid (CSF) from HIV+ patients 
using ultrahigh-performance liquid chromatography mass spectrometry (UHLC/MS/
MS) and GC/MS [58].

Human immunodeficiency virus type 1 (HIV-1) accounts for most global AIDS 
cases, while only 30% of individuals infected with human immunodeficiency virus 
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type 2 (HIV-2) eventually manifest AIDS [59]. HIV-1 is more transmissible and 
virulent ensuing a much faster deficit in CD4+ T cells as compared to HIV-2 infec-
tion which is characterized by a slower decrease in CD4+ T cells [54]. Although the 
glycolytic and TCA metabolic profiles were alike among HIV-1 and HIV-2 infec-
tions, metabolomics of HIV-2 infections showed a characteristic higher level of 
deoxynucleotide triphosphates (dNTPs), which tends to be associated with viral 
protein x (Vpx) [60]. Vpx degrades SAMHD1, a host antiviral factor which dimin-
ishes the availability of dNTPs required for reverse transcription of virus on account 
of its dNTPase activity [60]. HIV-infection in macrophages is generally long- 
lasting, whereas CD4+ T cells exhibits acute lytic infection. HIV infection in mac-
rophages resulted in decreasing levels of glycolytic metabolites, while CD4+ T cells 
demonstrated higher concentrations of glycolytic metabolites upon HIV infection 
[61]. LC-MS/MS-based metabolomics revealed elevated levels of glyceraldehyde- 3- 
phosphate (G3P) and fructose 1,6-bisphosphate (FBP), key glycolytic intermedi-
ates, in HIV-1-infected macrophages while accumulation of quinolinate with HIV-2 
infection. Quinolinate is involved in NAD+ production in kynurenine pathway, 
which is initiated by tryptophan degradation, and diminishing levels of tryptophan 
is indicative of T-cell exhaustion and immunosuppression [62].

HIV metabolomic studies have utilized biofluids such as blood, CSF, urine, etc., 
from patients and control subjects to identify metabolite biomarkers defining the 
pathogenic signatures of HIV infection and assists in understanding the disease pro-
gression and immunological responses to treatment [63]. Metabolomics of blood 
plasma from HIV-infected patients reported higher levels of L-aspartate, dicarbox-
ylic acylcarnitines, and phosphatidylcholines and lower levels of dopamine and 
sphingomyelins [64]. HIV-induced oxidative stress such as changes in amino acid 
metabolism has been studied using both targeted and untargeted metabolomics [65]. 
A study conducted in HIV+ sub-Saharan populations revealed soaring levels of 
indoleamine 2,3-dioxygenase (IDO) after performing GC/MS analysis of plasma 
samples from HIV+ patients [66]. This increase led to accelerated degradation of 
tryptophan attributing to increased concentration of kynurenine pathway intermedi-
ate, quinolinate [66], thus, reflecting a correlation between tryptophan levels and the 
development of HIV in HIV+ patients in comparison to healthy individuals.

3.3  Metabolomics in Tuberculosis (TB)

Tuberculosis (TB) is the leading cause of most of the deaths in the world due to the 
infection caused by bacterial pathogen Mycobacterium tuberculosis (Mtb) [67]. Mtb 
causes latent TB infection and only 10% of cases with latent infection progress to 
active TB disease. In TB, the bacterial pathogen adapts its metabolism to the host 
environment in order to survive and cause latent infection [68]. Metabolism of both 
Mtb and host plays an important role in the disease progression and is utilized for 
the development of biomarkers for a better disease diagnosis since the existing diag-
nostic tests for TB has poor sensitivity. Mtb primarily infects macrophages, and 
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thus, macrophage metabolism has been greatly studied in Mtb infection [69–71]. 
Metabolomics in alveolar and interstitial macrophages with Mtb infection helped to 
unravel whether these belong to M1 or M2 phenotypes [72, 73]. Interstitial macro-
phages displayed M1 phenotype with diminished bacterial replication, while alveo-
lar macrophages exhibited M2 phenotype with optimal bacterial replication [72, 
73]. Interstitial macrophages showed increased lactate production as compared to 
alveolar macrophages and blocking glycolysis using 2-deoxy-D-glucose (2-DG) in 
bone marrow-derived macrophages (BMDMs) promoted bacterial growth reflecting 
that increased glycolysis is helpful in restraining Mtb growth [73].

Carbon metabolism is particularly essential for Mtb growth since deficiency of 
carbon sources inhibits its replication and survival as demonstrated in animal mod-
els [74]. Metabolomics using 13C-labeled carbon substrates fueling Mtb growth 
showed the utilization of different carbon substrates such as glycerol, acetate, and 
dextrose supporting the growth and survival of Mtb [75]. Global metabolite profil-
ing of murine lung tissues infected with Mtb identified increased succinate metabo-
lism and alterations in the metabolites involved in the oxidative stress and redox 
pathways such as xanthine oxidase-related metabolites and inducible nitric oxide 
synthase (iNOS) [76]. Levels of xanthine and hypoxanthine subsides after 4 weeks 
of Mtb infection in the murine lungs which surges again after 9 weeks of infection. 
Further, elevated levels of iNOS metabolites, citrulline, and arginine were detected 
at both weeks 4 and 9 in the lungs of Mtb-infected mice [76]. LC/MS and GC/MS 
studies of biological samples such as sputum, plasma, and serum from TB patients 
revealed fluctuations in the concentration of metabolites which allowed the dis-
crimination of TB-positive individuals from healthy controls [77–79]. Further, 
HPLC-MS-based metabolomics of urine samples from active Mtb-infected patients 
showed that metabolites such as N-acetylhexosamine, neopterin, diacetyl-spermine, 
and sialic acid could be used as potential urinary biomarkers for the diagnosis of TB 
patients [80].

Amino acids such as aspartate, glutamate, and sulfoxy methionine were found in 
increasing concentrations, while declining concentrations of asparagine, glutamine, 
and methionine were reported in the serum of active TB patients in comparison to 
healthy individuals or individuals with latent TB infection [81]. Tryptophan metab-
olism is particularly critical for Mtb survival, and increased catabolism of trypto-
phan to kynurenine was observed in the plasma of both active and latent TB patients 
[82]. Tryptophan catabolism promotes Mtb survival and persistence at the site of 
infection by triggering immune tolerance and regulating CD4+ T-cell responses. 
Metabolomics has been useful in distinguishing latent and active TB patients by 
identifying immunometabolic pathways linked to the development of TB [83]. It 
was also shown that the advancement of TB infection to disease is correlated with 
the aminoacyl tRNA pathway [83]. Lastly, fatty acids are also important for TB 
infection as Mtb has a selective metabolic preference for fatty acids as a source of 
nutrients which is evident by enhanced expression of genes associated with the fatty 
acid metabolism [84, 85].
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4  Metabolomics in Physiological Diseases

4.1  Metabolomics in Cancer

Cancer is one of the most dreadful human diseases which causes majority of mor-
talities worldwide, and despite numerous advancements in cancer research, there is 
still a challenge for its accurate diagnosis and treatment. There is a rewiring of 
metabolism which supports the uncontrolled growth and proliferation of cancer 
cells that is essential for them to adapt to the tumor microenvironment. Cancer cells 
have selective preference towards anaerobic glycolysis even in the presence of suf-
ficient oxygen and produces higher amounts of lactate with increased glucose con-
sumption which is popularly known as the “Warburg effect” (Fig. 3) [86, 87]. By 
switching to anaerobic glycolysis, which is faster than oxidative phosphorylation, 
cancer cells meet their increased demand for energy and biosynthetic molecules in 
order to adapt to hypoxic tumor microenvironment. Thus, cancer cells have increased 
influx of glucose for glycolysis and produces metabolites needed to support their 
abnormal growth [88, 89]. Tumor cells primarily uses glucose and glutamine to 
produce energy and synthesizes carbohydrates, amino acids, fatty acids, and nucleo-
tides to support their unrestrained proliferation and increased protein synthesis 
(Fig. 3). Since tumor cells modulate the cellular metabolism, metabolomics is pres-
ently being exploited for the detection of altered metabolic pathways and biomark-
ers. This helps in the early cancer diagnosis and evaluation of effectiveness of the 
cancer drug therapies that primarily targets altered metabolic pathways [90]. It has 

Fig. 3 Warburg effect in cancer cell: Cancer cells produce higher amounts of lactate and ATP 
through anaerobic glycolysis even in the presence of oxygen primarily utilizing glucose and gluta-
mine as substrates with increased synthesis of carbohydrates, fatty acids, and protein to support 
their growth and proliferation
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been shown that renal carcinoma cells have higher levels of enzymes such as hexo-
kinase- 1 pyruvate kinase and lactate dehydrogenase A, which are involved in gly-
colysis [91]. Perturbations in glucose metabolism has been shown to be associated 
with lung cancer carcinogenesis, while breast cancer cells have shown to poorly 
proliferate in low-glucose environment [92, 93]. In human hepatocellular carci-
noma, arginine N-methyltransferase 6 (PRMT6) regulates the Warburg effect and 
glycolysis by controlling the nuclear re-localization of pyruvate kinase M2 (PKM2) 
[94]. Apart from glycolysis, pentose phosphate pathway (PPP), hexosamine path-
way, and glycogenesis also need glucose and are all reprogrammed in cancer cells 
which endows the possibility to target cancer cells with specificity [95].

In addition to glucose metabolism, tumor cells also display changes in the lipid 
metabolism which includes enhanced fatty acid β-oxidation and lipid synthesis [96, 
97]. Increased lipid synthesis provides surplus energy required for the rapid prolif-
eration and membrane synthesis in the tumor cells. Metabolomics have shown an 
accelerated utilization of fatty acids by cancer cells as depicted in kidney cancer 
[98], and altered cholesterol metabolism with amended peroxisome proliferator- 
activated receptor (PPAR) signaling in tumor cells with similar tissue origin [95]. 
High-throughput metabolomics demonstrated higher levels of β-hydroxybutyrate, 
heptanoic acid, hexadecenoic acid, and docosahexaenoic acid in gastric cancer [99]. 
By virtue of its reliance on fatty acids, tumor cells showed retarded growth in the 
presence of fatty acid inhibitors such as the PPARα antagonist GW6471 as tested in 
the renal cell cancer models [100]. It has been shown that within the tumor micro-
environment, oxysterols activate transcription factor, liver X receptor (LXR) in 
macrophages which halts the migration of dendritic cells, and neutrophils recruit-
ment at the tumor site leading to immunosuppression [101]. Alterations in the lipid 
metabolism activates carcinogenic signaling pathways such as Hippo/YAP and 
Wnt/β-catenin pathways, along with increased biomass and energy production in 
cancer stem cells (CSCs) [102].

Amino acids such as glycine, glutamine, and serine, etc. have been valuable for 
identifying cancer biomarkers and understanding the carcinogenesis of different 
malignant tumors [103]. Glutamine, being the most abundant free amino acid, has 
shown to be involved in bioenergy production, biomolecule synthesis, and signal 
transduction pathways supporting the survival of cancer cells [104, 105]. Glutamine 
aids in driving the TCA cycle under glucose deprivation with higher levels of 
malate, fumarate, and citrate in tumor cells [106]. Metabolomic-based assessment 
revealed lower levels of serum aspartate in the breast cancer patients. Aspartate 
induces apoptosis in tumor cells through Akt pathway and inhibits their growth and 
thus, serves as a biomarker for indicating the risk of breast cancer [107]. Further, 
abnormal levels of arginine and alanine were found to be directly correlated with the 
occurrence of gastric cancer [108]. Thus, molecules targeting amino acid synthesis 
are currently being developed and tested clinically for cancer therapy [109].

Since metabolic reprogramming is a hallmark of cancer progression, metabolic 
biomarkers have been discovered to trace the cancer pathogenesis. There are differ-
ent types of biological samples such as blood plasma, urine, cerebrospinal fluid 
(CSF), saliva, etc., which have been used to discover biomarkers and perform 
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metabolomics studies for cancer [95]. NMR spectroscopy identified accumulation 
of amino acids and reduction in fatty acids in plasma and thyroid tissues from papil-
lary thyroid microcarcinoma patients [110]. For pancreatic cancer, metabolomics of 
blood plasma showed that metabolites such as glycocholic acid, inosine, sphinga-
nine, β-sitosterol, creatine, phosphatidylcholine, and phosphatidylethanolamine 
were directly correlated with the clinical outcome and survival of patients [111, 
112]. Metabolomics has identified metabolites as potential biomarkers in the plasma 
of patients suffering from lung, liver, and breast cancer [113, 114]. Further, urine 
biomarkers are non-invasive, making them apt for understanding tumor pathology 
and cancer diagnosis. In patients with renal cancer, fatty acid metabolism was 
altered with increased production of acetyl coenzyme A (acetyl-CoA) resulting in 
higher levels of acylcarnitine in the urine [115]. Other than kidney cancer, urine 
biomarkers are also critical in understanding the tumorigenesis and distinguishing 
among non-urinary tumors such as liver, cervical, stomach, and breast cancers 
[116]. Omran et  al. showed accumulating concentrations of 8-hydroxy-2′-
deoxyguanosine, 1-methylguanosine (1-MG), and 1-methyl adenosine (1-MA) in 
the urine, an indication of early stages of breast cancer [117].

Cerebrospinal fluid (CSF) has been used to assess metabolites to characterize 
brain tumors particularly glioma. The first metabolomics study using CSF was car-
ried out in patients with malignant glioma which showed the correlation between 
glioma malignancy and CSF metabolites [118]. The analysis of CSF metabolites in 
patients with metastatic tumors and glioma showed the presence of amino acids 
such as methionine, tryptophan, and products of TCA cycle [119]. In addition to 
CSF, urine and blood, saliva has been valuable for the early diagnosis of specific 
cancers. Comprehensive metabolomics analysis of saliva samples from patients suf-
fering with oral cancer reported higher levels of polyamines, piperidine and taurine, 
reflecting specific biomarkers aiding in the screening of oral cancer [120]. Sugimoto 
et  al. also identified cancer-specific biomarkers using capillary electrophoresis 
time-of-flight mass spectrometry (CE-TOFMS)-based saliva metabolomics in 
patients with breast and pancreatic cancers [120]. Using CE-TOFMS, 
S-adenosylmethionine and pipecolate were identified as promising markers for dis-
tinguishing oral cancer patients from healthy individuals [121]. There are other 
studies depicting the identification and validation of the metabolite profiles of saliva 
from breast and pancreatic cancer patients which is important in discriminating dis-
crete tumors [122, 123]. Therefore, metabolomics is a powerful tool for cancer 
prognosis, diagnosis, and monitoring the efficacy of cancer drug therapies and inter-
ventions by identifying key biomarkers and drivers of tumorigenesis.

4.2  Metabolomics in Neurological Diseases

Neurodegenerative diseases are characterized by the progressive destruction of the 
brain and nerves which leads to irreversible damage and inflammation of the neu-
rons. Despite rigorous efforts, there is no cure for neurological disorders, and their 
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treatment is mainly based on the usage of medications aimed towards reducing the 
symptoms [124, 125]. Metabolomics has emerged as a valuable tool aiding in the 
identification of symptoms of neurodegeneration by profiling changes in the brain 
metabolism (Fig.  4). Perturbations in the metabolic pathways contribute to the 
pathogenesis of neurodegeneration, and so the assessment of global metabolic pro-
files of biofluids and biomarker discovery defining the disease status will profoundly 
enhance the clinical diagnostics for the neurological disorders [126]. Cerebrospinal 
fluid (CSF) serves as the most promising biomarker for neurodegenerative diseases 
succoring in evaluating the efficacy of clinical diagnosis and early detection of 
response to therapy through metabolomic profiling [127].

Amyotrophic lateral sclerosis (ALS) is a devastating motor neuron disease 
marked by the degradation of both lower and upper motor neurons (Fig. 4) [128]. 
The pathophysiology involved in ALS are complex, and due to limited reliable diag-
nostic procedures, high-throughput metabolomics has garnered much interest for 
the detection of biomarkers [129]. GC-TOFMS (gas chromatography coupled to 
time-of-flight mass spectrometry) has been exploited to study the CSF metabolome 
in ALS patients [130]. Hundreds of metabolites were studied in the CSF of ALS 
patients using GC-TOFMS detecting changes in the metabolite concentrations 
[131]. H1 NMR spectroscopy analyzed biomarkers in CSF of ALS patients in the 
early stages of the disease with increased levels of pyruvate, ascorbate, and acetone 
and lower levels of acetate which showcased perturbations in brain glucose metabo-
lism [132]. Among different metabolites, glutamate was identified as an important 

Fig. 4 Key metabolites in neurological diseases: Different neurological diseases such as 
Parkinson’s disease, amyotrophic lateral sclerosis (ALS), multiple sclerosis (MS), Alzheimer’s 
disease with their key metabolites defining their disease status
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circulating metabolite in ALS patients [131–134]. An increase in glutamate concen-
tration with a concomitant reduction in glutamine levels in ALS patients was indica-
tive of excitotoxicity which occurs due to an imbalance in the glutamate-glutamine 
conversion cycle [134]. ALS patients harboring mutations in superoxide dismutase 
1 (SOD1) have a more distinct metabolomic profile with strikingly reduced levels of 
creatinine, glutamate, and glutamine in CSF [131]. Alterations in lipid metabolism 
have been found to be associated with early phases of disease progression support-
ing the previous report using animal model showing the metabolic preference for 
lipids such as cholesteryl ester and phosphatidylcholine during asymptomatic stage 
of the disease [135, 136]. Higher levels of ketone bodies were evident in symptom-
atic ALS patients [134]. The limited usage of lipids as a source of energy by motor 
neurons results in oxidative stress leading to neuroinflammation, mitochondrial 
dysfunction, excitotoxicity, and cell death [137, 138]. Metabolomic examination of 
spinal cord samples from ALS patients revealed higher levels of lipid metabolite 
docosahexaenoic acid (DHA), which is critical for nervous system homeostasis. 
The accumulation of docosahexaenoic acid-derived resolvin D, and lipid 
peroxidation- derived molecules leads to exacerbated cell stress resulting in aggre-
gation of TDP-43 and loss of motor neurons [139]. Thus, metabolomics has pro-
vided strong assistance to understand the underlying molecular mechanisms of ALS.

Alzheimer’s disease (AD) is the most prevalent neurological disease and the 
leading cause of dementia mostly affecting the elderly people beyond the age of 60. 
AD is characterized by atrophy, deterioration of the cerebral cortex, and progressive 
brain degeneration with loss of memory and reasoning (Fig. 4) [140, 141]. AD is a 
complex disease, and its pathogenesis is poorly understood which embarks the 
necessity for the development of novel biomarkers for early diagnosis and detec-
tion. Advancements in metabolomics has showcased a significant decline in etha-
nolamine plasmalogens in both the brain and plasma in animal models and human 
subjects suffering from AD [142–146]. Plasmalogens are antioxidants providing 
protection to lipid and lipoproteins from oxidative stress [147]. The metabolic 
imbalance leading to oxidative stress in AD patients was evident in CSF and blood 
samples as well with reduced levels of plasmalogens, sphingolipids, phosphatidyl-
cholines, phosphatidylinositols, phospholipids, and sterols [148, 149]. Studies have 
shown the correlation between altered plasma ceramide levels and serum triglycer-
ides to neuropathological perturbations in AD [150, 151]. The findings suggest that 
polyunsaturated fatty acid-containing triglycerides and apolipoprotein E (APOE) ε4 
were linked with entorhinal cortical thickness and CSF β-amyloid1–42 values 
[151]. In AD patients, elevated levels of glutamate and glutamine and lower levels 
of branched-chain amino acids (BCAAs), creatinine, and taurine were detected 
[152–155]. Further, increased lactate concentration in CSF reflects mitochondrial 
alteration due to tau proteins, impeding oxidative phosphorylation in patients suf-
fering from AD [156–158]. A recent study has done comparison of systemic meta-
bolic AD biomarkers in blood and CSF samples and corroborated with previous 
findings in reporting higher levels of glutamine in plasma [159, 160]. This study 
proclaimed a positive association between levels of CSF p-Tau181 and t-Tau with 
apolipoprotein E (APOE) ε4 genotype [159]. Moreover, the study showed 
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diminishing piperine levels attributing to its antioxidant, anti-secretase, and anti- 
inflammatory functions, which were discordantly correlated with CSF p-Tau18 
[161–163]. Therefore, the complexities associated with AD have been well exem-
plified with the evolution in the field of metabolomics underscoring challenges with 
the progress of potent therapeutic interventions [164].

Multiple sclerosis (MS) is a chronic autoimmune neurological disorder mani-
fested by inflammation and demyelination of the central nervous system (CNS) 
(Fig. 4) [165]. MS is characterized by episodes of clinical deterioration and periods 
of relapsing-remission gradually transforming into irreversible neurodegeneration 
[165]. The harmful effects of MS could be attenuated if the symptoms are diagnosed 
at an early stage. However, the diagnosis of MS is often confounded with other 
neurological diseases with non-specific clinical symptoms emphasizing the need to 
discover novel biomarkers for early diagnosis and therapeutic interventions [166]. 
Metabolomic approaches seems attractive for monitoring the pathogenesis of MS 
and have been gaining attention for the potential use of metabolic biomarkers in the 
early diagnosis of the disease [166]. Metabolomic studies have identified reduction 
in the levels of mannose, citrate, acetate, and phenylalanine while increasing levels 
of glucose, lactate, formate, acetone, choline, threonate, and myoinositol in CSF of 
MS patients [167–170]. Patients with progressive and relapsing-remitting MS wit-
nessed variations in the levels of phenylalanine, tryptophan, and pyrimidine in CSF 
as compared to healthy controls [171]. NMR-based metabolomics in plasma and 
serum of MS patients identified changes in the energy and xenobiotic metabolism 
with altered metabolites such as glucose, lactate, glutamine, glutamate, acetate, 
valine, lysine, and scylloinositol [172, 173]. Elevated levels of phospholipids and 
fatty acids were also observed in the serum of MS patients [174]. Lipidomic studies 
revealed decreased levels of phosphatidylcholines (PCs) and altered sphingolipid 
metabolism in MS patients [175–177]. A distinctive lipid profile was observed in 
CSF samples of MS patients with reduction in triglycerides and upregulation of 
diglycerides [178]. Further, an increased lipid peroxidation was evident with higher 
levels of 8-iso-prostaglandin in CSF from MS patients [179]. Thus, metabolomics 
could be applied to correctly diagnose MS and distinguish it from other neurologi-
cal diseases having overlapping symptoms.

Parkinson’s disease (PD) is a progressive neurological disease manifested by the 
degeneration of dopaminergic neurons within the substantia nigra and the accumu-
lation of intracellular inclusions known as Lewy bodies containing a protein, 
α-synuclein in the CNS (Fig. 4) [180, 181]. However, the exact mechanism underly-
ing the pathogenesis of PD remains unclear, emphasizing the need to identify bio-
markers assisting in the accurate diagnosis of the disease and evaluating the efficacy 
of the therapies. Metabolomic-based blood biomarker investigations revealed an 
increase in glutathione in response to oxidative damage and lower concentrations of 
uric acid in plasma from PD patients [182]. Oxidative damage was also evident with 
decreased levels of bilirubin/biliverdin ratio in the blood serum of PD patients 
[183]. Oxidative damage also leads to accumulation of ROS resulting in mitochon-
drial dysfunction in PD [184]. Mitochondrial dysfunction has been linked with 
increased fatty acid oxidation resulting in elevated levels of hexanoylcarnitine, 
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decanoylcarnitine, and myristoleoylcarnitine in the blood serum and hexanoylgly-
cine, malonylcarnitine, and furoylglycine in the urine of PD patients, respectively 
[185–188]. Further, higher concentration of branched-chain amino acids (BCAAs) 
such as valine, leucine, and isoleucine was found in the animal model and patients 
with PD and found to be associated with oxidative damage and mitochondrial dys-
function [187–189]. Thus, metabolomics could be exploited as a powerful tool for 
discovering drug targets and elucidating molecular mechanisms related to PD [190].

Huntington’s disease (HD) is a rare heritable neurological disorder caused by 
repeated trinucleotide (CAG) of the HTT gene encoding Huntington’s protein and 
is characterized by loss of neurons responsible for voluntary movements [124, 191]. 
Despite advances in the diagnostic procedures, there is still a need for better clinical 
management of HD since the exact pathogenesis remains unclear [192]. Since HD 
affects metabolism, investigating magnitude of metabolites possesses a valuable 
biomarker strategy for the accurate diagnosis of HD.  Metabolomics profiling 
showed branched-chain amino acids (BCAAs), which is important for neurotrans-
mitter synthesis, act as an important biomarker for HD with reduced levels of tyro-
sine, valine, phenylalanine, leucine, and isoleucine in the postmortem brain and 
plasma of HD patients [193–195]. Lower levels of phosphatidylcholine and lyso-
phosphatidylcholine were found in the blood of HD patients as a consequence of 
downregulated expression of PCYT1A and higher phospholipase A2 enzymatic 
activity [193, 196]. Further, CSF metabolome showed higher concentrations of glu-
cose and lactate in HD patients [197]. Studies have shown that dysregulated C/EBP 
represses argininosuccinic acid synthetase and argininosuccinase acid lyase result-
ing in increased accumulation of citrulline due to defective urea and NO cycles in 
preclinical and clinical models of HD [198–200]. Thus, a defect in energy metabo-
lism substantially directs biomarker discovery for the better treatment of rare neu-
rological diseases such as HD.

4.3  Metabolomics in Cardiovascular Health and Diseases

Cardiovascular diseases (CVDs) are multifactorial diseases accompanied by altera-
tions in the cardiac function and myocardial metabolism. Emerging metabolomic- 
based fingerprinting of patients provide insight into the pathophysiology of CVDs 
by highlighting novel biomarkers through the quantification of metabolites in body 
fluids or biopsies. This aids in a better understanding of the complexities associated 
with the diagnosis and ramification of CVDs such as atherosclerosis, heart failure, 
and ischemic and non-ischemic cardiomyopathy.

One of the leading causes of CVDs is “atherosclerosis” which is manifested by 
the progressive constriction of the arteries. Blood-based metabolomics showcased 
the circulating trimethylamine-N-oxide (TMAO) as a prognostic marker for athero-
sclerosis and cardiovascular risk prediction for myocardial infarction and stroke 
[201, 202]. Hazen and colleagues described in their study that the TMAO levels 
were higher in CVD patients gradually leading to stroke, heart attack, or 
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Fig. 5 TMAO as a prognostic biomarker in atherosclerosis: Gut microbiota in combination with 
dietary metabolites, phosphatidylcholine, and carnitine results in the production of TMAO. TMAO, 
in turn, inhibits cholesterol transport, which leads to plaque progression and platelet hyperactivity

heart-related death [203]. The gut microbiome plays an integral role in determining 
the circulating levels of host metabolite, trimethylamine (TMA) production from 
dietary phosphatidylcholine, carnitine, and choline, which serve as a precursor for 
the formation of TMAO. The interaction between gut bacteria with dietary phospha-
tidylcholine and carnitine results in the production of TMAO. After releasing into 
the bloodstream, TMA is converted to TMAO in the liver where it hinders the cho-
lesterol transport, thereby accelerating the plaque progression resulting in enhanced 
cardiovascular risks and platelet hyperactivity (Fig. 5) [201, 202]. Moreover, TMAO 
is a uremic toxin which impairs kidney functions, increasing the likelihood of 
adverse cardiac events. This phenotype was replicated in apolipoprotein E−/− mice 
in which mice were fed with high-TMAO and high-choline diets shown to be highly 
susceptible to the formation of atherosclerotic plaques [2]. Furthermore, in a mouse 
model of atherosclerosis, reduced levels of circulating TMAO were achieved by 
compromising the gut microbiome’s ability to convert dietary carnitine or choline 
into TMA, by inhibiting bacterial TMA lyase with 3,3-dimethyl-1-butanol (a struc-
tural analogue to choline), mitigating the progression of atherosclerotic lesions 
[204]. Thus, these studies reflect a strong correlation between levels of TMAO in 
plasma and atherosclerotic lesion development which could serve as a diagnostic 
biomarker for atherosclerosis.

Blood-based metabolomic profiling also showed that lipid intermediates such as 
phosphatidylcholines, sphingomyelins, palmitate, or diacylglycerols are other 
potential biomarkers shown to be associated with higher risk of myocardial infarc-
tion [205]. Decreased levels of 18:2 lysophosphatidylcholine and 28:1 sphingomy-
elin and increased levels of 18:2 monoglyceride in the plasma were associated with 
increased risk for myocardial infarction [206]. There was an increased abundance of 
unsaturated fatty acids comprised lysophosphatidylcholines and lower levels of cir-
culating lysophosphatidylcholines containing saturated fatty acids in patients with 
angina or myocardial infarction [205].

Coronary artery disease (CAD) remains one of the leading causes of death in 
both men and women in the world. CAD can be classified into stable and unstable 
angina, myocardial infarction (MI), and sudden cardiac death. During ischemic 
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cardiomyopathy, there are remarkable changes in the myocardial energy metabo-
lism due to the reduced supply of oxygen and nutrition to the affected myocardium. 
In the course of ischemic periods, glycolytic rate increases with overall reduction in 
the oxidative metabolism. The duration and intensity of ischemia is directly propor-
tional to an enhanced myocardial glycolysis [207]. During ischemia, myocardial 
lactate levels increase consequently due to enhanced glycolytic rates and glycoge-
nolysis with reduced glucose oxidation rates [208–210]. This reflects accelerated 
anaerobic glycolytic metabolism with higher lactate levels in the circulation as 
observed in patients with acute ischemia and CAD [211, 212]. Due to reduced levels 
of oxygen during ischemia, aerobic oxidation gets impaired leading to decreased 
production of TCA cycle intermediates such as succinate and fumarate [213–215]. 
In a mouse model of ischemia-reperfusion injury, mitochondrial ROS accumulates 
because of enhanced oxidation of elevated succinate levels in the ischemic heart 
tissue [216].

Circulating branched-chain amino acids (BCAAs) such as proline, methionine, 
glutamine, glutamate, leucine, isoleucine, and valine have shown to be promising 
biomarkers reflecting the risk of coronary artery disease (CAD) [217]. Amino acids 
such as tyrosine and lysine break down while levels of alanine, leucine, and isoleu-
cine rise during ischemic myocardium [215]. During ischemia, glutamic oxaloace-
tic transaminase levels rise in the serum which inhibits the transamination of 
glutamate into α-ketoglutarate enhancing the glutamate levels in the tissue during 
myocardial ischemia which could activate ROS production directing toward cardio-
myocyte death [218, 219]. Active amino acid biosynthesis is an indicative of acute 
myocardial infarction with higher levels of N-phenylacetyl-L-glutamine, arginine, 
leucine, and tryptophan in acute MI patients [212, 220].

Fatty acid oxidation drops as a result of reduced oxygen supply in patients with 
CAD [221]. Higher levels of short-chain (SC) dicarboxylic acylcarnitines predicted 
the risk for cardiovascular events in CAD patients [208]. During ST-segment eleva-
tion myocardial infarction (STEMI), fatty acids such as palmitic acid, oleic acid, 
linoleic acid, and stearic acid were found to be increased in the plasma reflecting the 
ischemia-induced perturbations in the cardiac metabolism [222]. Inflammation 
induced during myocardial infarction is reflected by the increased levels of eicosa-
tetraenoic acid and eicosatrienoic acid [223]. The impairment of β-oxidation of 
unsaturated fatty acids during myocardial infarction contributes to myocardial isch-
emia [224, 225]. Patients with MI were shown to have elevated levels of sphingo-
myelin and ceramide and perturbed sphingolipid metabolism which is critical for 
vascular maturation and wound healing [205, 226]. Glycerophospholipids such as 
linoleamide glycerophosphate choline, phosphatidylserine, lyso-PC (C16:0), lyso-
 PC (C18:1), and lyso-PC (18:2) appear to lower down during MI [224]. Since 
altered lipid metabolism is evident during ischemic cardiomyopathy, metabolomics- 
based assessment of CAD is desirable, particularly when angiography, which is 
widely used for the diagnosis of CAD, is both expensive and invasive.
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5  Future Perspectives

Metabolomics is an evolving and rousing research area, extending from biomarker 
discovery to providing valuable cognizance toward mechanisms underlying normal 
physiology and pathophysiology in diseases. Metabolomics have been foremost 
impactful as a global profiling tool in the discovery of metabolites and metabolic 
pathways pivotal for maintaining physiological homeostasis in humans. Interestingly, 
the combination of different “omics” technologies such as genomics and proteomics 
with metabolomics has furnished novel insights into local and global disease pro-
cesses. Cumulatively, the amalgamation of metabolomics into basic and biomedical 
research is immensely upgrading the understanding of diseases through precise and 
swift diagnosis, prognosis, evaluating response to treatments, and prediction of dis-
ease outcomes. Therefore, the future prospect of metabolomics relies on the integra-
tion of “multi-omics” strategy into systems biology in view to impart unique 
biological information in a given physiological milieu.
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1  Introduction

Life sciences are currently transformed by the developments in molecular biology- 
based analysis [55, 56], which include important advances in the instrumental anal-
ysis as well bioinformatics analysis (including machine learning approaches) of 
genes, RNA, proteins, metabolites, etc. [57–61, 63, 64] and drug development [54, 
62, 66], revolutionizing the pharma [65]; and life sciences industries. Now the 
focus has broadened unlike to drug molecules, called as metabolites, because the 
molecular profile of the metabolites represents the actual healthy/unhealthy condi-
tion of a human. The modern age employs diverse strategies to handle various 
forms of single-cell omics methodologies, including computational pipelines for 
transcriptomics such as sc-RNA sequencing, metabolomics, and epigenomics like 
scATAC. Additionally, it focuses on the integration of omics techniques, method-
ologies, and the associated challenges within the context of crop plants. According 
to Srivastava and Singh [67], nutrimetabolomics is a further extension of metabo-
lomics which represents the application of metabolomics in nutrition research and 
investigates the effects of whole diets, specific foods, and food components on the 
human metabolome. Nutrimetabolomics is the study of the metabolic responses of 
biological systems to nutritional interventions. It combines the fields of nutrition, 
metabolomics, and systems biology to investigate the impact of nutrients on bio-
chemical pathways, gene expression, and overall physiological responses. It can 
help identify the specific metabolic pathways that are influenced by different nutri-
ents, providing insights into how nutrients are processed by the body and how they 
contribute to the overall health. Besides this by analyzing the metabolites produced 
in response to different nutrients, nutrimetabolomics can identify biomarkers that 
can be used to monitor nutrient status and predict health outcomes. With recent 
advancements, nutrimetabolomics is found to be very helpful in identifying indi-
vidual differences in nutrient metabolism and in defining personalized nutrition 
strategies that are tailored to an individual’s unique metabolic profile. Interestingly, 
experts are not using this methodology to identify the bioactive compounds in 
foods and supplements that have specific health benefits and to develop new func-
tional foods and supplements that target specific metabolic pathways. Undoubtedly, 
nutrimetabolomics is playing an important role in advancing our understanding of 
the complex interactions between nutrition, metabolism, and health. Therefore, in 
this chapter we have discussed various methodologies of nutrimetabolomics and 
their applications to identify important dietary biomarkers. We have also discussed 
the role of machine learning-based approach to develop novel strategies towards 
precision medicine. Overall, we believe that this chapter would serve as a good 
starting point to understand the revolutionizing area of the study of nutrition and 
metabolism, thus called nutrimetabolomics.
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2  Metabolomics: A Multidisciplinary Approach

The metabolome is defined as qualitative and quantitative agglomeration of all low- 
molecular- weight molecules, which are called metabolites, present in the cell which 
are participants in general metabolic reactions. These metabolites are required for 
the maintenance, growth, and normal function of a cell. Collectively, metabolites 
and their interactions within a biological system are termed as the metabolome.

Metabolomics is the large-scale study of all low-molecular-weight molecules, 
commonly known as metabolites, which are present within cells. Metabolomics has 
yielded many important insights into biological processes and diseases [1–5]. In 
other words, metabolomics is the “systematic study of the unique small-molecule 
metabolite-based chemical fingerprints generated after every cellular process. 
Moreover, metabolomics can give a blueprint of the physiology of that cell, and 
thus, metabolomics provides a direct actual condition of the physiological state” of 
an organism.

There are three different strategies applied to study metabolomics – untargeted, 
semi-targeted, and targeted. Both untargeted and semi-targeted approaches are 
applied in hypothesis-generating-based metabolomics studies, while targeted assays 
are usually applied to validate the novel hypothesis-generating metabolomics stud-
ies. The major differences between untargeted, semi-targeted, and targeted studies 
are based on:

• The level of sample preparation required
• The number of metabolites detected
• The level of quantification of the metabolites

Based on the objectives of the metabolomics studies, one of the above three ana-
lytical strategies are applied.

2.1  Technical Approaches to Nutrimetabolomics and Analysis

There are generally two main approaches to metabolomic analysis as illustrated 
in Fig. 1.

2.1.1  Targeted Metabolomics

Targeted metabolomics is applied to study a relatively small and specific number of 
metabolites, typically up to 20 metabolites. These metabolites are chemically char-
acterized first, followed by biochemical annotation with established biological 
importance. Targeted metabolomics-based approaches have a greater selectivity and 
sensitivity compared to untargeted methods. Targeted metabolomics is applied 
when authenticated chemical standard of the metabolite is available which are used 
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Fig. 1 Approaches to nutrimetabolomics as untargeted and targeted metabolomics strategy 
pipeline

to construct calibration curves for each of the metabolite under study. In targeted 
metabolomics-based studies, sample preparation methods are optimized to retain 
the metabolites of interest and to discard other biological species and analytical 
artifacts. Here, only the metabolites of interest are carried through to the down-
stream analysis. Since the number of metabolites under study is less and limited in 
numbers, therefore, the analysis of the data and interpretation of biological signifi-
cance are much simpler in targeted metabolomics-based studies.

2.1.2  Untargeted Metabolomics

These approaches provide the most appropriate route to detect unexpected changes 
in metabolite concentrations; the aim is to maximize the number of metabolites 
detected and therefore provide the opportunity to observe unexpected changes. In 
an untargeted metabolomics, hundreds to thousands of metabolites are measured 
together. However, for measuring a large number of metabolites, a single analytical 
method is not considered appropriate to detect all of the metabolites in a biological 
system. It is therefore desirable to combine multiple analytical approaches (such as 
complementary UPLC methods) to maximize the number of metabolites detected 
and increase the coverage of the metabolome.

In untargeted metabolomics-based studies, sample preparation involves the 
extraction of the metabolites from the biological sample using a suitable solvent. 
The extracted sample is analyzed by an appropriate analytical method, for example, 
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reversed-phase liquid chromatography, mass spectrometry, etc. Liquid 
chromatography- mass spectrometry-based peaks are used as the parameter in the 
statistical analysis to signify the concentration differences between the different 
biological samples measured. This is referred to as relative quantification as there is 
no comparison with calibration curves that are required for full quantification, con-
structed with chemical standards. The biological importance of each metabolite is 
determined through metabolite identification followed by biological interpretation 
which is performed at the end of the experimental pipeline. The chemical identity of 
each metabolite in the study is performed after data acquisition.

One of the major limitations in untargeted approaches is the identification of 
metabolites. Due to the presence of a large number of metabolites considered in 
untargeted metabolomics, it becomes impossible to identify all the metabolites 
highlighted in the statistical analysis. Metabolite identification is a major area of 
concern in metabolomics study-based projects.

2.2  Mass Spectrometry LC-MS Methods

LC-MS analysis and data acquisition strategies are defined by the analytical process 
which needs to first choose between a targeted and an untargeted approach. In the 
targeted metabolomics data analysis, the compounds of interest are known, and the 
entire pipeline is focused towards the detection of these metabolites. However, the 
range of molecules of interest must also be restricted to something reasonable in the 
untargeted strategy (e.g., according to polarity, m/z range, etc.). On the basis of the 
properties of the expected molecules and the complexity of the sample, an extrac-
tion method (disintegration method, solvents, centrifugation, filtration, etc.) and a 
separation method need to be defined, after which the ionization method, polarity, 
and a suitable mass analyzer need to be chosen appropriately.

An automated precursor-ion fragmentation process, also known as data- 
dependent acquisition (DDA), provides structural information for the identification 
of compounds. However, conventional DDA methods with MS and alternating MS2 
scans suffer from low efficiencies due to scan-cycle time limitations. Therefore, 
separate target-directed DDA experiments for the acquisition of fragmentation data 
provide superior results [6]. In addition, the additional data provided by MS full 
scan mode (i.e., without intermittent fragmentation scans) deliver a higher data den-
sity for quantitative analyses. For the same reason, the sensitivities towards ions can 
be improved by selecting the ions of interest. In selected ion monitoring (SIM), only 
the defined ions of interest are recorded, thereby maximizing the sensitivities for 
those signals. In addition, only MS ions of a defined m/z precursor can be acquired 
in selected reaction monitoring (SRM). Consecutive Reaction Monitoring (CRM) 
pertains to a multi-stage involving three or more stages of m/z separation. In this 
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approach, the focus is on detecting products resulting from sequential fragmenta-
tion or bimolecular reactions. Finally, SRM can be applied to multiple product ions 
from one or more precursor ions, resulting in multiple reaction monitoring (MRM). 
Data are collected in either profile or centroid mode. As explained above, centroid 
spectra contain fewer data points, but are less bulky, and data are acquired faster by 
the mass analyzer. The acquisition of centroid data is often preferable, especially in 
time-critical applications such as LC-MS (proteomics and metabolomics) and imag-
ing. For producing spectra of the highest possible quality, the collection of profile 
spectra is recommended. Multiple sample types (organs, tissues, liquids, etc.), 
extraction methods (polar, nonpolar, pH, etc.), and analytical strategies (MS, NMR, 
etc.) need to be combined to obtain a comprehensive picture of the physiology of a 
complex organism, such as a human being or a plant [7, 8].

3  Analysis of Nutrimetabolomics Data

The analysis of the acquired data has been divided in various sections. Interestingly, 
there are various machine learning and statistical analysis-based methods which 
could be used in the nutrimetabolomics approach such as (1) data analysis and com-
pound identification; (2) transformation, normalization, centering, and scaling; and 
(3) imputation of missing values. Here, we categorized them as follows in Fig. 2.

3.1  Clustering Analysis

Clustering analysis is an effective method to visualize the metabolomics data where 
grouping of the metabolites and samples based on similarities and abundance pro-
file in their metabolite is performed. Different types of methods can be used for 
clustering, such as k-means, hierarchical clustering, fuzzy clustering, density-based 
clustering, and model-based clustering. It also provides visualization in the form of 
a heat map. We utilize k-means clustering and hierarchical clustering analysis 

Footnote
NMR spectroscopy provides qualitative and quantitative information on dif-
ferent small molecules which could be present in a biological sample, without 
a prior selection of specific biochemical pathways, thus enabling a broad 
unbiased approach. Additionally, NMR allows a high-throughput analysis and 
high reproducibility, and it is an intrinsically quantitative technique over a 
wide dynamic range, thanks to the linear response of NMR signals within 
concentration and with the use of just one internal reference compound.
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Fig. 2 Machine learning approaches to enhance the dynamics of nutrimetabolomics analysis

methods, which is helpful to group the metabolites into separate clusters and into a 
hierarchy tree, respectively. k-means clustering is most important where the optimal 
number of clusters can be estimated using the NbClust package. Also, it uses the 
fviznbclust function for visualizing the results. In case of hierarchical clustering, 
hclust package creates clusters with sets of data that are similar internally but differ-
ent from each other externally, and here dendrogram serves as useful graphical rep-
resentation of molecular clusters. After clustering analysis, the heat maps generated 
from the analyses can be used to assess the impact of the intervention and the num-
ber and proportion of metabolites behaving in a certain manner. There are several R 
packages that generate heat maps between the identified metabolites and their asso-
ciations with clinical phenotypes, which shows additional information that may be 
added to each cell, such as the statistical significance with circles, where a larger 
circle represents a lower p-value. In case of the hierarchical clustering, we can select 
whether to cluster only the features or samples as well. Pearson correlation and 
average linkage clustering are also important. In another clustering method  – 
k-means clustering – we choose cluster genes, based on Pearson correlation, calcu-
late k-means, and repeat the procedure by increasing the number of clusters until no 
more clusters with a unique pattern emerge, and finally the highest number of clus-
ters is chosen based on this visual optimization.
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3.2  Statistical Analysis Tools

Statistical analysis is performed to identify important features in the datasets that 
vary significantly in any metabolic experiment. Additional data processing steps are 
also required sometimes prior to statistical analysis, e.g., batch correction, normal-
ization, filtering, and imputation of missing values. For univariate statistical analy-
sis, analysis of variance (ANOVA) or t-tests are implemented in smaller 
metabolomics studies. Moreover, advanced multivariate statistical methods that uti-
lize multiple experimental factors are used in most metabolomics studies. Both 
unsupervised and supervised methods are used in various metabolomics studies. 
Unsupervised method such as principal components analysis (PCA) is mainly used 
as a first approach to identify the variations in metabolomics datasets, whereas 
supervised methods such as partial least squares discriminant analysis (PLS-DA) 
and orthogonal partial least squares (OPLS) are used to identify different features in 
the metabolomics data. Moreover, clustering, linear discriminant analysis, random 
forest, and neural networks are also implemented in the development of software 
tools dedicated for statistical analysis of metabolomics datasets.

3.3  Functional Analysis Tools

Functional analysis mainly utilizes information such as annotated peak intensities 
and their corresponding properties to infer changes in metabolic reaction modules – 
pathways to facilitate biological interpretation related to experiment. The functional 
annotation of metabolomics datasets acts as metabolomic markers which are also 
associated with disease and phenotype and not just an altered pathway. Mostly, 
functional analysis utilizes various known metabolites to integrate into the species/
context-dependent metabolic network of the biological system. Reconstruction of 
the metabolic network is also required sometimes based on prior knowledge of 
enzymes, reactions, and pathways using automated text mining or manual curation 
of the metabolomics datasets.

3.4  Nutrimetabolomics Modeling Tools

These tools represent enzymes or biochemical reactions using appropriate kinetic 
and thermodynamic parameters as a mathematical model. This facilitates the devel-
opment of kinetic or flux models of metabolic networks as well as provides a 
dynamical assessment of metabolic model networks and enables prediction or esti-
mation of metabolic fluxes from metabolomics measurements.
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3.5  Chemical Property Prediction Tools

It is designed to build or augment libraries of chemical properties that can be mea-
sured in metabolomics experiments (i.e., relative intensities, m/z, retention times, 
collision cross sections, chemical shifts, MS/MS spectra, isotopic signatures, etc.). 
Libraries can consist of properties derived from laboratory analysis of authentic 
reference standards (the traditional gold standard approach) or from the use of prop-
erty prediction software to create in silico libraries. Historically, predicted m/z val-
ues have been routinely used in MS-based metabolomics analysis, as this property 
is readily calculated at higher accuracy than is achievable experimentally. Recently, 
various software tools based on molecular dynamics, quantum chemical calcula-
tions, and machine learning are being used to predict NMR chemical shifts, chro-
matographic retention times, isotopic signatures, ion-mobility collisions, MS peak 
shifts, and other chemical properties.

4  Computational Pipeline for Nutrimetabolomics

There are various metabolomics software which could be helpful to analyze the 
metabolomics data such as MetaboAnalyst, MZmine2, MS-DIAL, XCMS, GNPS, 
XCMS online, Mummichog, chemical property prediction tools, etc. The metabolo-
mics pipeline is basically composed of five steps. In general, these steps involve:

 (a) Experimental design: This step shows how one could prepare the sample for 
analysis.

 (b) Sample preparation and (c) data acquisition: The metabolomics workflow 
starts with detecting mass spectrometry peaks. Peak 60 identification is com-
monly performed using open-source tools like XCMS [9], or we need to do data 
cleaning after the sample preparation. The objective of data cleaning was to 
remove the least informative metabolites and samples, using a number of sub-
jective criteria. First, the pipeline excluded metabolites and samples exceeding 
a certain threshold of missingness in each sample at least 50%. After that for (d) 
data processing, we can use the data-dependent spectra files for further statisti-
cal analysis.

 (e) Statistical analysis: The statistical analysis approach generally involves apply-
ing a multivariate statistical strategy such as univariate and multivariate statisti-
cal methods, principal component analysis (PCA), and k-means cluster analysis 
to dietary data to identify dietary patterns and then through the use of regression 
statistical method, linking these to metabolomic profiles in order to identify 
dietary biomarkers. Shapiro-Wilk test and Leven test are used to test normal 
distribution of the data and homogeneity of variances, respectively. One-way 
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Fig. 3 Computational nutrimetabolomics pipeline

ANOVA is conducted to compare metabolic data as phenolic metabolites, 
immune markers, SCFAs, and MCFAs. The least significant differences are cal-
culated by Tukeýs test (p < 0.05). A paired-samples t-test is also conducted to 
assess differences in metabolic data. Additionally, the relationships between 
metabolic parameters could be investigated by using the Pearson correlation 
coefficient (Fig. 3).

4.1  R Packages and Software Tools 
for Nutrimetabolomics Studies

Many untargeted metabolomics analysis tools such as MetaboAnalyst, CDK-R, 
mzR, and some other as MALDIquant package (provides a complete analysis pipe-
line for MALDITOF and other 2D mass spectrometry data) supporting packages are 
found for processing and analyzing of such metabolomics data, which are based on 
R platform. These R-based packages are used to perform mass spectral peak annota-
tion and identify metabolites and molecular pathways associated to various metabo-
lites. These R-based packages are also helpful to identify, design, and perform 
chemometric analysis that helps in designing drugs against potential targets. 
Additionally, MetDNA is useful for metabolite annotation and dysregulated net-
work analysis of untargeted metabolomics. MetaboAnalyst is a popular platform 
dedicated for metabolomics data analysis via user-friendly, web-based interface 
which is freely accessible for which R code is freely available at GitHub as the 
MetaboAnalystR (https://github.com/xia- lab/MetaboAnalystR).
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4.2  R Codes for Importing and Visualization of Chemical 
Molecules Using R Packages

#Downloading R packages
source("https://bioconductor.org/biocLite.R")
biocLite("ChemmineR")
library(rcdk)#
library(chemometrics)#
library(rJava)
library (ChemmineR)
library(cluster)
library(rgl)
library(ggplot2)
library(vegan)
library(factoextra)
library(fingerprint)
library(fmcsR)
source("https://bioconductor.org/biocLite.R")
biocLite("fmcsR")
library (NbClust)
library(iqspr)
library(ggplot2)
library(gridExtra)
library(fpc)
###############################################
#Reading and visualizing the methotrexate molecule in SMILES format
mol <- parse.smiles('CCOC(=O)C1=C(CN=C1C)\\N=N\\C1=C(O)
C=CC2=C1C=C(O)C=C2',kekulise=TRUE)[[1]]
mol
view.molecule.2d(mol)
#Reading and visualizing the methotrexate (CMP1) in sdf format
CMP1 <- load.molecules( c('CMP1.sdf') )
 view.molecule.2d(CMP1[[1]])
#########################################################
#General properties of methotrexate molecule
cat('No. of atoms =', length(atoms), '\n')
cat('No. of bonds =', length(bonds), '\n')
atoms <- get.atoms((CMP1[[1]]))
atoms
bonds <- get.bonds((CMP1[[1]]))
bonds
coords <- get.point2d(atoms[[1]])
coords
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coords <- do.call('rbind' , lapply(atoms, get.point2d))
coords
############################################################
#Descriptors categories in rcdk package:
descNames <- unique(unlist(sapply(get.desc.categories(), get.
desc.names)))
descNames
dc <- get.desc.categories()
dc
descriptors = get.desc.names(type="all")
descriptors
#"Constitutional" descriptors
dn <- get.desc.names(dc[2])
dn
#Calculus of a descriptor - 14 "AlogP"
aDesc <- eval.desc(CMP1, dn[14])
aDesc

# Topological Polar Surface Area, xlogp, alogp, total charge
get.tpsa(mol)
get.xlogp(mol)
get.alogp(mol)
get.total.charge(mol)

#Calculus of all the descriptors -1
allDescs <- eval.desc(CMP1, dn)
allDescs
require(rcdk)
#Calculus of all the descriptors -2
drug.mols <- load.molecules(molfiles="CMP1.sdf")
descNames <- unique(unlist(sapply(get.desc.categories(), get.
desc.names)))
drug.descs <- eval.desc(drug.mols, descNames, verbose=T)
drug.descs
descs <- eval.desc(mols, descNames)

##########################################################
#Calculs of the molecular fingerprint for methotrexate (CMP1)-maccs
fps <- get.fingerprint(CMP1[[1]], type='maccs')
fps
#Calculs of the molecular fingerprint for methotrexate (CMP1)-extended
fps <- get.fingerprint(CMP1[[1]], type='extended')
fps
## Reading and visualizing the set of 24 molecules
mols <- load.molecules(c('CMP1.sdf', 'CMP2.sdf', 'CMP3.sdf','CMP4.
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sdf', 'CMP5.sdf', 'CMP6.sdf', 'CMP7.sdf', 'CMP8.sdf', 'CMP9.sdf', 
'CMP10.sdf', 'CMP11.sdf', 'CMP12.sdf', 'CMP13.sdf', 'CMP14.sdf', 
'CMP15.sdf','CMP16.sdf', 'CMP17.sdf','CMP18.sdf', 'CMP19.
sdf','CMP20.sdf','CMP21.sdf','CMP22.sdf', 'CMP23.
sdf','CMP24.sdf'))

view.molecule.2d(mols, ncol = 4,width = 200, height = 200, depic-
tor = NULL, type="isomeric")
view.molecule.2d(mols)
mols

#The molecular fingerprints for the set of molecules
fps <- lapply(mols, get.fingerprint, type='extended')
fps
fp.sim <- fp.sim.matrix(fps, method='tanimoto')
fp.dist <- 1 - fp.sim
fp.dist

#Identification of molecules located at a certain distance from 
the target
query.fp<-get.fingerprint(CMP1[[1]], type = 'maccs')
target. mols <-mols
target.fps <- lapply(target.mols, get.fingerprint, type='maccs')
target.fps
sims <- data.frame(sim=do.call(rbind, lapply(target.fps,
 fingerprint::distance,
 fp2=query.fp, method='tanimoto')))
subset(sims, sim >= 0.5)
hits <- which(sims >= 0.5)
hits

#Distances between CMP1 and the rest of molecules
query.mol<-load.molecules( c('CMP1.sdf') )
query.mol
target. Mols <- mols
target.mols
fp.sim <- fingerprint::fp.sim.matrix(fps, method='tanimoto')
fp.dist <- 1 - fp.sim
fp.dist
##########################################################
##########
#Assessment of the optimal number of clusters using NbClust 
R package
fviz_nbclust(fp.dist, kmeans, method = "wss") +
 geom_vline(xintercept = 3, linetype = 2)
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#Hierarchical clustering with hclust using Ward's method
d <- dist(fp.dist, method = "euclidean")
res.hc <- hclust(d, method = "ward.D2" )
grp <- cutree(res.hc, k = 3)
plot(res.hc, cex = 0.6)
rect.hclust(res.hc, k = 3, border = 2:5)

#K-means clustering
fviz_nbclust(fp.dist, method = "gap_stat")
km.res <- kmeans(fp.dist, 3, nstart = 5)
km.res
fviz_cluster(km.res, data = fp.dist, ellipse.type = "convex")
theme_minimal()

####################################
#Clustering analysis
#Clusters statistics for K-mean
silinfo <- km.res$silinfo
names(silinfo)
km_stats <- cluster.stats(fp.dist, km.res$cluster)
km_stats

# Silhouette coefficient of observations
library("cluster")
sil <- silhouette(km.res$cluster, dist(fp.dist))
head (sil[, 1:3], 10)
plot (sil, main ="Silhouette plot - K-means")

#####################################
#Visualisation of the molecules from cluster
molsc <- load.molecules(c('CMP1.sdf', 'CMP2.sdf', 'CMP3.sdf', 
'CMP5.sdf', 'CMP6.sdf', 'CMP7.sdf', 'CMP8.sdf'))
view.molecule.2d(molsc)

4.3  R-Code for Preprocessing of Mass Spectrometry Imaging 
(MSI) Data Using MALDIquant

[10] where he used the publicly available dataset submitted by Brittney 
Gorman(PNNL) published on 28 November, 2022.
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library (MALDIquant)
library (MALDIquantForeign)
library(irlba)
library(viridis)
# Importing ImzML
#Importing of publicly available datasets on METASPACE2020 
(https://metaspace2020.eu/)
We call the function importImzML from MALDIquant to load the MSI 
dataset imzML file. The dataset is in centroided mode, so we will 
set the option (centroided = TRUE). This operation usually takes 
few minutes, depending on the dataset size.
peaks <- importImzMl ('Exampledataset.imzML', centroided = TRUE, 
verbose = FALSE)
# Total number of pixels
print(length(peaks))
# Spatial dimensions (same metadata for all pixels)
print(peaks[[1]]@metaData$imaging$size)
orderPixels <- function(peaks) {
 require(MALDIquant)
 coords <- coordinates(peaks)
 ord <- c()
 for (y in sort(unique(coords[, 2]))) {
 curr.y <- which(coords[, 2] == y)
 ord <- c(ord, curr.y[order(coords[curr.y, 1])])
 }
return(ord)
}
px.ord <- orderPixels(peaks)

# To reorder the peaks
peaks <- peaks[px.ord]
# Let’s have a look at the distribution of the number of detected 
peaks and pixels mean intensities (in the log-space):
n.peaks <- unlist(lapply(peaks, function(x) length(mass(x))))
#histogram plot
hist(n.peaks)
mu.peaks <- unlist(lapply(peaks, function(x) mean(intensity(x)))
hist(log1p(mu.peaks))
# We can check that we have a set of MS peaks (class MassPeaks):
print(class(peaks[[1]]))
plot(peaks[[3000]])
# A quick way to check the spatial properties of an MSI dataset is 
to plot the TIC image. In this image, each pixel represents its 
total peaks intensity:
tic <- unlist(lapply(peaks, function(x) sum(intensity(x))))
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tic <- matrix(tic, peaks[[1]]@metaData$imaging$size)
image(tic, col=viridis(64))
title('TIC')
# if we calculate the TIC of the log-transformed intensities:
tic.log <- unlist(lapply(peaks, function(x) 
sum(log1p(intensity(x)))))
tic.log <- matrix(tic.log, peaks[[1]]@metaData$imaging$size)
#Peak binning (or peak matching)
This can be done by calling the function binPeaks from MALDIquant. 
We save the new masses in the same list of MassPeaks.
image(tic.log, col=viridis(64))
title('TIC (log)')
# Normalization and log-transformation
scaling.factor <- apply(X, 1, sum)
X <- X / scaling.factor
# Be sure that the empty pixels are set to 0
X[scaling.factor == 0, ] <- 0
X <- log1p(X)
results <- irlba::prcomp_irlba(X, center = TRUE, scale. = 
TRUE, n = 3)
# First rescale the scores in [0, 1]
p c 
<- apply(results$x, 2, function(x) (x - min(x)) / (max(x) - min(x)))
# Create the RGB
im <- rgb(pc[, 1], pc[, 2], pc[, 3])
im <- matrix(im, peaks[[1]]@metaData$imaging$size)
# Plot the image as a raster (transpose before)
plot(as.raster(t(im)), interpolate = FALSE)

5  Applications and Importance of Nutrimetabolomics

Nutrimetabolomics is an integrative action for metabolomic analyses in human 
nutritional studies. Target-Approaches could be used for finding the effects of a 
drug on a specific enzyme, where the therapeutic and genetic modifications that 
occur because of drug metabolism are studied. Metabolomics therefore has a great 
potential for improving diagnosis, therapeutic treatment, and care of disease. In the 
past decade, metabolomics has already proved to be useful for the characterization 
of several pathological conditions and offers promises as a clinical tool. In future 
work, the potential biomarkers should be further validated with a large enough 
patient cohort to achieve earlier diagnosis.
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5.1  Food Metabolome and Dietary Biomarkers

Food-Metabolomics is defined as the composition of human metabolism which is 
derived from the digestion and biotransformation of food composition and these 
complete set of food metabolites in a biological cell, tissue, organ, or organism, 
which are the end products of cellular processes. So, nutrimetabolomics is a power-
ful approach because food metabolites and their concentrations, unlike other 
“omics” measures, directly reflect the underlying biochemical activity and the state 
of cells or tissues. The most promising application of nutrimetabolomics studies in 
the nutrition sciences is the identification of new dietary biomarkers. New dietary 
biomarkers are usually determined using supervised analysis models since they are 
capable to aggregate the evidence of multiple nutrimetabolomics data, analyzing 
dietary patterns in conjunction with metabolomic profiles to identify biomarkers 
and nutrition types.

5.2  In Physiological Monitoring of Diet and Nutrition Studies

5.2.1  Requirement for Measuring Dietary Intake

Traditional dietary intake methods are mainly divided into three distinct categories 
which are based on the information reported by the subjects. These methods include 
food records, food frequency questionnaires (FFQs), and 24-h recalls. Food records 
are commonly documented for 3–7 days, but 7-day records are considered as “gold 
standard” for validating other methods. Food records are mainly based on self- 
reported information by the subjects. In this method, biomarkers measured in body 
fluids or tissues are variables which reflect the intake of various food components 
due to variability in biomarker content; therefore, this method is not considered as 
a good method.

FFQs are most commonly used for groups of people usually for a period of 
6 months to 1 year to provide estimates of usual dietary intake. FFQs are mainly 
used in large cohort studies to place individuals into broad categories. FFQs provide 
specific foods sometimes based on culture (e.g., Japanese, Korean, Indian, etc.) to 
eat. The major drawback of FFQs is that the FFQs method is not designed to assess 
current energy intake. The measurement of current energy should be considered 
because it is considered an important component of diet therapy for obesity treat-
ment. Modified FFQs such as quick screening questionnaires have been developed 
to identify people with a high intake of fat and a low intake of fiber/fruit/vegetable 
[11]. FFQs method was developed to categorize groups of people by their long-term 
intake of various nutrients for epidemiological studies.

The 24-hour recall could be conducted in person or by telephone, and it is mainly 
focused on quantitative assessment of current nutrient intake [12]. The 24-hour 
recall method is popular in low-income countries, and it is also popular in 
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low-literacy populations because the subjects do not need to read or write to com-
plete the recall [13]. The major drawback of the 24-hour recall includes the inability 
of a single day’s intake to describe the usual diet [14]. Food records and 24-hour 
recalls are designed to estimate current nutrient intake.

Nutrition monitoring in the United States is a group of coordinated activities that 
provides information about the dietary, nutritional, and related health status of 
Americans. Nutrition monitoring also includes the relationships between diet and 
health and the factors affecting dietary and nutritional status.

5.2.2  Requirements for Measuring Physical Activity 
and Sedentary Behavior

Physical inactivity is strongly associated with bad health, increasing an individual’s 
risk for developing cardiovascular disease. On the other hand, physical activity (PA) 
broadly includes all activities above the resting stage including all physical move-
ment performed during purposeful activities (i.e., aerobic/resistance exercise), 
occupational, household, active transportation, and/or recreation.

The degree of physical activities to which health benefits are acquired depends 
on the frequency, intensity, time, and the volume of PA performed. Regular routine 
exercises are very advantageous to us because they improve cardiorespiratory fit-
ness, body composition, resting blood pressure, blood glucose, and circulating lipo-
protein levels in blood.

Greater volumes of physical activity contribute to the protection against various 
diseases/conditions such as premature cardiovascular disease (CVD), certain types 
of cancers, metabolic disorders, obesity, dementia, and morbidity [15]. Nowadays, 
adopting a physical activity in daily life is highly recommended by many health 
organizations of repute to combat the development of noncommunicable diseases 
(NCDs) [16–18]. Increasing physical activity and exercise levels from low to nation-
ally recommended volumes is known to contribute to increases in cardiovascular 
fitness of the people of a country. Recent studies have therefore emphasized report-
ing the quantity of participants favorably and meaningfully “responding” to varying 
amounts and intensities of exercise. Therefore, exercise prescription is promoted in 
the context of precision medicine [19, 20] in recent times.

5.3  In the Study of Diet-Related Diseases

5.3.1  From Health to Disease Status

Good health can be described as a state of complete physical, mental, and social 
well-being. Tracking trends in general health status can help us in identifying vari-
ous interventions which have improved the health of a population or where inter-
ventions may be required (e.g., by exploring causative factors and preventive 
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measures). The health status of a population can be measured by a wide range of 
factors such as birth and death rates, life expectancy, quality of life, morbidity from 
specific diseases and conditions, environmental risk factors, use of ambulatory care 
and inpatient care, financial and geographical accessibility of health personnel and 
facilities, health insurance coverage, and many other factors. Any impairment of 
normal physiological function affecting all or part of an organism or any pathologi-
cal change caused by infection, stress, etc., producing characteristic symptoms, ill-
ness, or sickness, in general is called disease.

5.3.2  Discovering Disease-Related Dietary Factors

Approximately 11 million deaths worldwide were estimated in 2017 attributed to 
dietary risk factors. Diet-related noncommunicable diseases (NCDs) include obe-
sity, cardiovascular diseases (such as arterial hypertension, myocardial infarction, 
stroke), diabetes mellitus, cancers, osteoporosis, etc. An unhealthy diet which is 
associated with numerous dietary risk factors contributes to the development of 
diseases/disorders commonly known as metabolic syndrome [21, 22]. However, an 
excessive sodium intake and a low intake of whole grains as well as fruits and veg-
etables are considered the most important dietary risk factors. Sugar intake is also 
considered as an important dietary risk factor, which increases the risk for tooth 
decay, obesity, and cardiovascular diseases. Moreover, the excessive consumption 
of saturated and trans fats also contributes to cardiovascular diseases [23].

A healthy eating plan includes eating of green vegetables, salads, fruits, whole 
grains, and fat-free or low-fat dairy products. It also includes eating of lean meats, 
poultry, fish, beans, eggs, and nuts. In a healthy eating plan, we should limit the 
intake of saturated and trans fats, sodium, and added sugars. A regular healthy eat-
ing plan can lower the risk for heart disease, stroke, diabetes, and other health con-
ditions. However, many natural resources such as fishes (good source of animal 
protein) are excessively exploited, which needs our attention. The rapid urbaniza-
tion and industrialization have forced us to change our lifestyles as well as our 
dietary and nutritional patterns, especially in developing countries [24–26]. Other 
factors such as a large amount of food intake and eating out, as well as an increase 
in food portion sizes, were also observed [26] as contributors of various diseases. 
For example, Poland (a high-income country in Central and Eastern Europe (CEE)) 
has undergone a significant transition in terms of food intake (based on change in 
food market) and especially after joining the European Union (EU) over the past 
few decades [27, 28]. The dietary patterns of the people of Poland have changed a 
lot due to an increase in the gross domestic product (GDP), urbanization, and agri-
cultural sector [28]. Changes in nutritional behaviors led to an increase in obesity 
among adults in Poland [28, 29]. The portion of obese adults in Poland (58%) is 
higher than the EU average (53%) [29] leading to high cancer and myocardial 
infarction reported in Poland [30].

To better understand how different dietary components affect the risk for various 
diseases such as heart disease, stroke, and type 2 diabetes, a research was conducted 
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by a team of researchers led by Dr. Dariush Mozaffarian at Tufts University in the 
United States. Dr. Dariush Mozaffarian conducted a research and analyzed the data 
from the Centers for Disease Control and Prevention (CDC) in the United States 
and elucidated the relationships of ten different foods/nutrients with deaths attrib-
uted to heart disease, stroke, and type 2 diabetes. In their research they also included 
various other factors such as participants’ age, sex, ethnicity, and education. In this 
research, they observed that the cardiometabolic diseases were responsible for 
around 50% deaths in the United Sates in 2012 which were mainly associated with 
suboptimal eating habits. Deaths due to heart disease, stroke, and type 2 diabetes 
were linked with inadequate consumption of certain foods and nutrients. Around 
10% of cardiometabolic disease-related deaths was due to the consumption of 
excess amount of sodium. Eating a low amount of nuts and seeds, seafood omega-3 
fats, vegetables, and fruits also increased the risk of deaths due to various metabolic 
disorders. The lower consumption of whole grains or polyunsaturated fats also 
increased the risk of death due to certain metabolic disorders compared with people 
having an adequate amount of these foods/nutrients. Eating too much processed 
meat (8.2%), sugar-sweetened beverages (7.4%), and unprocessed red meat (0.4%) 
also increased the risk of heart disease-, stroke-, and type 2 diabetes-related deaths. 
The results showed that a suboptimal diet which varied in men (higher) and women 
(lower) was the main reason behind the large proportion of deaths. This proportion 
was observed to be higher among blacks and Hispanics compared to whites and 
among those with lower education levels.

6  Role of Nutrimetabolomics in Precision Nutrition

“Precision nutrition” is an emerging area of nutrition research that focuses on 
understanding metabolic variability within and between individuals. Precision 
nutrition helps us in developing customized dietary plans and interventions to main-
tain optimal individual health. One of the ultimate goals of the precision nutrition is 
the design of tailored nutritional recommendations to treat or prevent metabolic 
disorders. Precision nutrition includes various disciplines such as nutritional 
genomic (gene-nutrient interactions), epigenetic, microbiome, and environmental 
factors.

6.1  Deep Phenotyping: High-Quality Phenotypes 
to Stratify Obesity

Various factors such as obesity, body composition, resting energy expenditure, sati-
ety, satiation, eating behavior, affect, and physical activity were used to classify 
obesity phenotypes measured by validated methods and questionnaires [31]. In a 
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study of 450 patients, 4 phenotypes of obesity were identified in 382 of 450 partici-
pants (85%) which includes hungry brain (mainly controlled by the brain-gut axis 
and abnormal calories needed to reach fullness), emotional hunger (desire to eat to 
cope with positive or negative emotions), hungry gut (abnormal duration of full-
ness), and slow burn (decreased metabolic rate) [31]. In many cases, biological and 
behavioral phenotypes are associated with human obesity and can be targeted with 
medications to promote weight loss.

6.2  Metabolomics: Towards a Better Characterization 
of Eating

A healthy condition of a living being works properly when it is properly backed by 
optimal nutritional inputs. Inadequate or poor nutritional intakes are linked with a 
number of metabolic diseases, such as diabetes, obesity, atherosclerosis, hyperten-
sion, and osteoporosis. Metabolomics science deals with genomics, transcriptomics, 
and proteomics, in order to understand the changes in the profiles of low-molecular- 
weight metabolites. Metabolomics qualitatively and quantitatively defines metabo-
lites (small molecules) present in biological samples, which has become popular 
and important in nutritional research. Metabolomics approaches enable monitoring 
of metabolites in people, taking into consideration their age, gender, drug toxicol-
ogy, lifestyle, health status, and most notably nutrition intake, in correlation with 
genetic and environmental components [32, 33, 40]. The changes in the metabolite 
profiles in a person could be due to genetics, the environment, and dietary intake 
[34]. In brief, metabolomics is “the measurement of metabolite concentrations in 
cells and tissues”. Metabolomics employs various analytical platforms including 
high-performance liquid chromatography (HPLC) [35, 36], Fourier transform infra-
red (FTIR) spectroscopy [37], mass spectrometry (MS) [38, 39], and nuclear mag-
netic resonance (NMR) spectroscopy [41].

Not only the variety of diet is directly responsible for the metabolites but also the 
gut microbial population and our own metabolism [34, 42] are responsible for vari-
ous metabolites. Approximately 1014 bacterial cells are present in the gastrointesti-
nal tract of a human, which is about 10 times the total number of human cells in the 
body, with a total biomass of 2 kg [43, 44]. Approximately, 1000 different bacterial 
species [44], some of which are crucial for our well-being, such as lactic acid bac-
teria and bifidobacteria, are present in the human gut. These bacterial species syn-
thesize vitamin K as well as many B vitamins, such as biotin, cobalamin, folate, 
nicotinic acid, pantothenic acid, pyridoxine, riboflavin, and thiamine [45, 46]. The 
microbiota population and various metabolic pathways are influenced by the genet-
ics, geographical regions, diets, antibiotics, and other therapies of the host [47]. 
Metabolomics also helps us to obtain information on an individual’s diet from food- 
induced shifts in metabolites. The analysis of dietary patterns allows researchers to 
gain a broader insight into dietary intake, applying metabolomics to achieve this. In 
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a study by Posma and colleagues [48], urine was collected from 1848 Americans, 
and 1H NMR spectroscopy was used to measure the urinary metabolome, producing 
a wide range of chemical profiles of metabolites. It was observed that 46 metabo-
lites can differentiate people with healthy and unhealthy dietary patterns. These 46 
metabolites in association between sodium and calcium with citrate and format have 
effect on blood pressure, adiposity, and renal function, and a correlation between 
fructose, glucose, and vitamin C with biomarkers of citrus fruit consumption [48]. 
In another research study, intake of a Western diet (WD), which is rich in saturated 
fats and simple sugars, is associated not only with weight gain, diabetes, and meta-
bolic diseases but also with impaired hippocampal-dependent memory and hippo-
campal pathologies. Nowadays, various therapeutic diets have become an integral 
part of the clinical treatment for obesity, dyslipidemias, diabetes, cardiovascular 
disease, and hypertension [49]. Metabolomics also helps us not only in the analysis 
of nutrients in single food products but also in the analysis of complete diet. A study 
conducted by Jin and co-workers showed the importance of metabolomics approach 
in investigating the effects of a Mediterranean diet and the role of the microbiome 
[50]. In brief, metabolomics is helping researchers to understand the mechanisms 
following dietary interventions, which in turn advances our knowledge of the rela-
tionships between diet and health/disease. Chromatography and NMR spectros-
copy, separately or combined, deliver qualitative and quantitative data on the 
molecular contents of all food types, which can be collected and disseminated by 
databases to the scientific community. Each metabolomics workflow starts with a 
biological sample preparation, metabolite extraction, separation and analysis, data 
processing, statistical analysis and classification, identification, and biological path-
way mapping. Each metabolomics workflow needs to satisfy standards for the cho-
sen analytical method. The numerous analytical data are analyzed with statistical 
methods and then gathered in the databases which provide various information 
about the product of interest from NMR/MS reference spectra of a product’s metab-
olites, gene structures and expression profiles of genes, etc. For example, the Tea 
Metabolome Database (TMDB) [51] provides users with information about small 
chemical compounds found in Camellia sinensis. MS/MS data can be obtained 
from this database for the purpose of identification of metabolites. At the time of the 
database creation in 2014, it contained more than 1473 compound (713 compounds 
in green tea, 497 in black tea, 140 in oolong tea, and 445 for dark tea) entries [51]. 
The entries included in TMDB were collected based on the information obtained in 
364 published books, journal articles, and electronic databases. Out of 1473 com-
pounds, most of the compounds (74%) collected in the database have a molecular 
weight of less than 500 Da.

FooDB (https://foodb.ca/, accessed on 24 November 2022) is another world’s 
largest open-access database that provides information on macronutrients and 
micronutrients as well as compound nomenclature, descriptions, information on 
structure, chemical class, physicochemical data, food source(s), color, aroma, taste, 
physiological effects, presumptive health effects (from published studies), and con-
centrations in various foods. Currently in 2022, approximately 800 types of prod-
ucts are listed in this database, with more than 70,000 compounds characterized. 
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PhytoHUB (http://phytohub.eu/, accessed on 24 November 2022) is a freely avail-
able electronic database containing detailed information about dietary phytochemi-
cals and their human and animal metabolites [52]. The content of PhytoHUB 
consists of about 1850 entries of which around 1200 are polyphenols, terpenoids, 
alkaloids, and other plant secondary metabolites, with 560 human or animal metab-
olites. The total number of plant-based foods featured in PhytoHUB, as of 2022, is 
381 [52].

7  Challenges and Future Prospects for Nutrimetabolomics

Since the last 7–8 years, nutrimetabolomics approach has produced a number of 
robust biomarkers of dietary intake. This approach has resulted in the identification 
of a number of putative biomarkers of specific foods and drinks such as citrus fruit, 
cruciferous vegetables, red meat, coffee, tea, sugar-sweetened beverages, and wine, 
and the search for biomarkers of specific foods can also be carried out through the 
use of cohort studies for which the dietary data are collected using a traditional 
method to identify consumers and nonconsumers of a specific food. After that, 
nutrimetabolomics profiles are then compared between these groups in order to 
identify potential dietary biomarkers. These cohort studies rely on self-reported 
dietary assessment methods which are prone to error, due to which it also needs to 
be highlighted that the biomarkers identified in cohort studies do not assess the 
direct relationships of food amounts consumed, and on the basis of statistical test; 
they are simply correlations between the food and the metabolites, and therefore the 
relationship only shows an association (Brennan et al. 2015).

Precision nutrition integrates genetic, metagenomic, metabolomic, physiopatho-
logical, behavioral, and sociocultural cues to understand metabolism and human 
well-being and implement health actions. Personalized nutrition considers the dif-
ferential response to dietary intake due to individual endogenous aspects that influ-
ence nutrient intake and uptake, metabolism, assimilation, and excretion [53]. 
Personalized nutrition focuses on the assessment of diet and health along with the 
use of “omics” technologies (nutrigenomics, metagenomics, and metabolomics) to 
develop optimal and customized dietary support. Personalized nutrition also pro-
motes health maintenance and disease prevention for each individual.

8  Conclusion

In conclusion, nutrimetabolomics is a rapidly evolving field that aims to understand 
the complex interactions between nutrition and metabolism. It combines analytical 
techniques such as mass spectrometry and nuclear magnetic resonance spectros-
copy with bioinformatics tools to identify and quantify metabolites in biological 
samples. Nutrimetabolomics has the potential to reveal biomarkers of dietary intake 
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and to elucidate the mechanisms underlying the health benefits of certain foods and 
nutrients. This chapter has demonstrated the utility of nutrimetabolomics in the 
identification of dietary biomarkers, the characterization of metabolic pathways, 
and the investigation of the effects of dietary interventions on metabolism. However, 
challenges such as data integration and standardization, as well as the need for 
larger sample sizes and diverse populations, still need to be addressed. We have also 
discussed various computational and machine learning pipelines for the data analy-
sis and interpretation. Despite many challenges, nutrimetabolomics holds great 
promise for advancing our understanding of the intricate relationship between diet 
and health. It has the potential to inform the development of personalized nutrition 
recommendations, aid in the prevention and management of chronic diseases, and 
ultimately improve human health and well-being. Further research in this field will 
undoubtedly yield valuable insights and innovations in the years to come.
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MS Mass spectrometry
MSI Metabolomics standards initiative
MTBE Methyl tert-butyl ether
NIST National Institute of Standards and Technology
NMR Nuclear magnetic resonance
NP Natural product
OPLS-DA Orthogonal partial least squares discriminant analysis
OSMAC One strain many compound
OTC Over the counter
PCA Principal component analysis
PDA Photodiode array
PEFE Pulsed electric field extraction
PLE Pressurized liquid extraction
PLS-DA Partial least squares discriminant analysis
PTFE Polytetrafluoroethylene
QC Quality control
RI Retention indices
SFE Supercritical fluid extraction
SM Secondary metabolite
SPE Solid-phase extraction
TIC Total ion chromatogram
TOF Time-of-flight
UAE Ultrasound-assisted extraction
UHPLC Ultrahigh-performance liquid chromatography
UPLC-QqQ MS Ultrahigh-performance liquid chromatography-triple 

quadrupole mass spectrometry
UPLC-QTOFMS Ultrahigh-performance liquid chromatography- 

quadrupole time-of-flight mass spectrometry

1  Introduction

Natural products (NPs) are defined as organic compounds produced by primary 
and/or secondary metabolisms of any living creatures, and the systematic study of 
these metabolic processes is broadly termed as metabolomics [1]. NPs could be 
broadly divided into three categories – (i) growth factors, energy producing units, 
nucleotides, amino acids, etc. which are produced due to primary metabolism func-
tion as the building blocks of living beings [1–3]; (ii) secondary metabolites (SMs), 
which are characteristic features of plants and few microorganisms are produced as 
response factors to external stimuli by plants, fungi, bacteria, and marine species 
and are involved in the survival and adaptation processes; and (iii) high-molecular- 
weight compounds such as cellulose, lignin, proteins, etc. The bioactive constitu-
ents of NPs studied so far are mostly SMs, and more than 40% medicines have been 
derived from NPs [2]. SMs are also believed to play a pivotal role in the defense 
mechanisms in plants against pathogens and predators [4, 5]. They are produced by 
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different biosynthetic pathways and are classified according to their pathways. 
Different classes of compounds belong to SMs – phenolics and phenylpropanoids, 
terpenes and steroids, polyketides and fatty acids, alkaloids, specialized amino 
acids and peptides, and specialized carbohydrates [2, 6]. Due to their diverse chemi-
cal nature and biological activities, SMs are endowed with diverse range of func-
tions and have profound effects in the well-being of human health [7–9]. The wealth 
and strength of technologies have contributed to the existing knowledge of the 
structural and functional aspects of NPs and due to their economical values, espe-
cially SMs have been found to possess immense usages in different industries and 
hold a wide range of possibilities for their valorization and reuse in the circular 
economy as well [10, 11].

The description of obtaining oil from Cupressus sempervirens (cypress), 
Commiphora species (myrrh), Glycyrrhiza glabra (licorice), and Papaver som-
niferum (poppy juice) as documented on clay tablets in cuneiform from Mesopotamia 
(2600 BC) is believed to be the first record of NP extraction from natural sources. 
Till date, these extracts are still used for treating cold and cough, parasitic infec-
tions, inflammation, and other ailments. The ancient records of Egyptian medicines, 
traditional Chinese medicines, Indian Ayurveda, Tibetan medicine, African Tribal 
medicine, and Greek compilation of medicinal herbs recognized the importance of 
NPs, extracted mostly from plant sources, and are being used in treating different 
diseases. The Arabs were the pioneer in establishing privately owned drug stores 
harnessing the strength and knowledge of Indo-Western world of medicinal herbs. 
The discovery of the antimalarial drug, quinine, from the bark of Cinchona species 
by French pharmacists Caventou and Pelletier followed by the isolation of the anal-
gesic morphine from the opium poppy, Papaver somniferum, by the German phar-
macist Serturner strengthens the premise of using NPs as potential drug targets. In 
1929, the discovery and broad therapeutic use of penicillin from the filamentous 
fungus, Penicillium notatum, by Fleming opened the door of exploring other living 
beings as potential sources for extracting NPs [12].

Some other examples of NPs obtained from different sources are as follows: 
natural rubber or latex which is formed by condensation of one of the SMs called 
isoprene obtained from different species of rubber trees (Hevea brasiliensis, Russian 
dandelion) [13]; curcumin (diferuloylmethane), a low-molecular-weight polyphe-
nol isolated from the rhizome of Curcuma longa L. (turmeric) that has been shown 
to possess wide range of biological and pharmacological properties [14, 15]; and 
hyrtiomanzamine 4, a β-carboline alkaloid, isolated from the marine sponge H. erec-
tus that exhibits in vitro immunosuppressive activity [16, 17]. Gradually the bioac-
tive compounds present in NPs have widely been recognized as valuable products in 
drug discovery, food additives, cosmetics, and pigments and have been used in dif-
ferent industries. Table 1 summarizes the importance of some bioactive compounds 
known as NPs and extracted by different methods from a wide range of sources.
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Table 1 Different extraction methods employed for bioactive compounds obtained from 
diverse sources

Bioactive 
compound Source Method Importance References

Pectin Dried mango peel Hot acid extraction 
followed by 
purification steps

Used in food 
industry

[18]

Cellulose and 
microcrystalline 
cellulose

Rice straw and 
banana plant waste

Chemical treatment 
followed by pulping 
and bleaching 
technique

Used as raw 
material for fuel 
and other 
chemical 
production

[19]

Bromelain 
(protease), 
cellulose and 
hemicellulose, 
polyphenol,

Pineapple waste 
(peel, pomace, core, 
and crown)

Buffer extraction 
followed by 
purification

Used as food 
additive, 
therapeutic agent, 
and polymer 
industry

[20]

succinic acid, and 
essential oil

Citrus peel waste Extraction and acid 
and enzyme 
hydrolysis

Energy-intensive 
bioprocess of 
succinic acid 
production

[21]

Steviol glycosides Extract of candy leaf 
(Stevia rebaudiana)

Extracted in water: 
acetonitrile (80:20, 
v/v) followed by 
UHPLC purification

Used as a natural 
sweetener

[22].

Taxol Stem bark of the 
western yew (Taxus 
brevifolia)

Enrichment of 
alcoholic extract of 
the stem bark 
followed by 
partitioning between 
water and 
chloroform

The most 
well-known 
natural source of 
cancer drug

[23]

Azadirachtin Seed kernels of 
neem (Azadirachta 
indica)

Pressurized liquid 
extraction followed 
by HPLC analyses

Natural 
insecticide

[24]

Eugenol Abundantly found in 
clove buds; also 
found in cinnamon 
bark and leaves, 
tulsi leaves, 
turmeric, pepper, 
ginger, oregano, and 
thyme

Solvent extraction, 
hydrodistillation/
microwave-assisted 
extraction/
supercritical carbon 
dioxide extraction/
ultrasound-based 
extraction

Used as essential 
oil

[25]

(continued)
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Table 1 (continued)

Bioactive 
compound Source Method Importance References

Resin Poplar shoots Extracted in 
dichloromethane 
followed by 
evaporation under 
nitrogen and 
resuspension in 
methanol and HPLC/
MS-TOF analyses

Important 
compound in 
pharmacy and 
chemotaxonomy

[26]

Pyrethrin Petals of 
Chrysanthemum 
cinerariaefolium

Solvent extraction 
(petroleum ether and 
methanol) followed 
by HPLC analyses

Natural 
insecticide

[27]

Anthocyanin Blueberry fruits Microwave 
extraction of 
blueberry powder 
followed by ethanol 
wash

Medicinal and 
nutritional value

[28]

Glycyrrhizic acid 
(triterpene 
glycoside) and 
glabridin 
(isoflavonoid)

Licorice roots Solvent extraction 
followed by 
reverse-phase HPLC

Used in food and 
pharma industry

[29]

2  Metabolomics in NP Discovery

The term metabolome was first coined in 1998 by Steven Oliver in a review article 
on yeast functional genomics adding the newest member of the triad – genome, 
transcriptome, and proteome [30, 31]. This article reviews the quantitative analyses 
of gene function in the context of analyzing metabolic control and explores the 
effect of deletion or overexpression of genes on changing concentrations of metabo-
lites. Followed by this, several articles explored the possibilities of using metabolite 
profiling to study metabolic regulation and extend it to cellular functions. A brief 
summary of those articles is provided in Table 2.

The aim of metabolomics is comprehensive qualitative and/or quantitative analy-
ses of all metabolites present in a living system at a specific time and under specific 
influencing factors [37–40]. This approach also addresses the relationship between 
biochemical status and gene functions of the sourced organism and can further be 
used as biological fingerprinting of natural extracts [41]. Before the metabolomics 
approaches, well-characterized compounds were used as references to identify the 
functional roles of metabolites. The development of metabolomics methodology 
has been proved to be useful in investigating the metabolite variation unraveling the 
multiple pathways affected by external factors [42]. For example, an MS-based 
metabolomic study of the red algae Gracilaria vermiculophylla in response to 
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Table 2 Metabolite profiling of different classes of compounds from diverse sources

Metabolites Source Method References

326 compounds: fatty acids, fatty 
alcohols, sterols, and aliphatics, 
hydroxy and amino acids, sugars, 
sugar alcohols, organic 
monophosphates, (poly)amines, 
and aromatic acids

Arabidopsis thaliana 
leaf extract

Solvent extraction, 
derivatization, and 
GC-MS

[32]

Isoprenoids: carotenes, 
xanthophylls, ubiquinones, 
tocopherols, and plastoquinones

Arabidopsis thaliana 
and tomato fruits

Solvent extraction and 
HPLC-PDA

[33]

Homoserine Sycamore (Acer 
pseudoplatanus) and 
weed (Echinochloa 
colonum)

Perchloric acid 
extraction and NMR

[34]

Compounds generated in sucrose 
metabolism

Potato tuber tissue 
(Solanum tuberosum)

Solvent extraction, 
derivatization and 
GC-MS

[35]

Bioactive natural products such as 
barettin (brominated alkaloid) and 
8,9-dihydrobarettin

Extracts from the 
marine sponge 
Geodia macandrewii

Lyophilization of frozen 
samples followed by 
aqueous and organic 
solvent extraction and 
UHPLC-ESI-HR-MS 
analysis

[36]

herbivory showed upregulated metabolites with some compounds increasing more 
than 100-fold in concentration, illustrating the biochemical pathway involved in the 
defense mechanism [43]. Modern approaches to identifying, analyzing, and quanti-
fying NPs are heavily based on traditional methodologies of sample collection, har-
vesting, and extraction which with time have sophisticated in terms of employing 
cutting-edge technologies. Nuclear magnetic resonance (NMR) spectroscopy and 
mass spectrometry (MS) are two common analytical approaches to generate metab-
olomic data [44]. Spectral data obtained in both methods are used to characterize 
the chemical nature and quantification of metabolites [45, 46]. Unlike the MS 
approach which requires a rigorous sample preparation step involving the separa-
tion of the analyte of interest from complex biological matrices, NMR needs a less 
stringent sample process [45, 46]. Liquid chromatography (LC) and gas chromatog-
raphy (GC) are generally used for separating the analytes before MS and together 
termed as LC-MS and GC-MS techniques [47]. A generalized workflow is described 
in Fig. 1.

The improved methodologies in extracting and characterizing NPs as potential 
components for different industries, especially as drug targets, have led to the rise 
of more than several thousands of NPs sourced from plants, fungi, and bacteria. 
Table 3 summarizes the list of NPs derived from different microbial sources and 
their potential use as therapeutic agents [48].
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Sample 
preparation

Sample 
purification 
(optional)

Detection 
and analyses

Data processing 
and statistical
analyses

Submission to
appropriate 
database

Fig. 1 Steps involved in metabolomic workflow start with sample preparation. Sample purifica-
tion or enrichment is an optional step applicable to selected samples followed by detection and 
analyses by different analytical tools. The acquired data is thus processed and undergoes statistical 
analyses before submitting to the database

Table 3 Usages of different classes of NPs as potent therapeutic agents [48]

Name of NP Class of NP
Name of microbial 
source Potential usage References

Erythromycin 
A

Polyketide Saccharopolyspora 
erythraea

Macrolide group of 
antibiotics

[49–51]

Tetracycline Polyketide Streptomyces genus of 
Actinobacteria

Polyketide antibiotic [52, 53]

Vancomycin Amphoteric 
glycopeptide

Amycolatopsis 
orientalis

Antibiotic [54, 55]

Streptomycin Aminoglycoside Streptomyces griseus Antibiotics [56, 57]
Nisin A Polycyclic peptide Lactococcus and 

Streptococcus species
Antibiotic [58, 59]

Amphotericin 
B

Polyene Streptomyces nodosus Antifungal antibiotic [60, 61]

Bleomycin Glycopeptide Streptomyces 
verticillus

Chemotherapy agent [62, 63]

Rapamycin Macrolide Streptomyces 
hygroscopicus

Immunosuppressive 
agent

[64–68]

In some cases, NP derivatives and mimics serve the purpose as well. The Food 
and Drug Administration (FDA) has approved a significant number of modern drugs 
that are unaltered NPs and NP derivatives and mimetics along with synthetic drugs 
[69]. The growing number of reports of discovery and probable effects of NPs have 
led to the creation of databases [70]. The list of NP databases available to date is 
given in Table 4.

This chapter discusses the role of metabolomics in the qualitative and quantita-
tive estimation of NPs elucidating the steps – sample preparation techniques and 
analytical methods. In addition, computational tools used in metabolomics data pro-
cessing and metabolite identification are also discussed. Finally, the applications 
and challenges of metabolomics in the identification and quality control of NPs are 
outlined.
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Table 4 List of various NP databases available to date [70]

Databases About Number of NPS References

Commercial databases

Reaxys
https://www.reaxys.
com/

Database for substances, reactions 
and documents compiled

>200,000 n/a

SciFinder The biggest collection of curated 
chemicals, and, subsequently, of 
NPs

>300,000 [71]

National Institute of 
Standards and 
Technology-NIST 
(version 17)
https://www.nist.
gov/

Standard reference databases for 
mass spectra (MS)

>250,000 molecules 
of natural origin 
(separation of NPs is 
not clearly marked)

n/a

Natural Product 
Discovery System 
(NADI)

Natural compounds from Malaysian 
plant species

>3000 natural 
compounds

[72]

Open-access databases

ChEBI Main focus is chemical ontologies >15,000 [73]
ChEMBL Considered as a repository for 

experimentally elucidated molecular 
structures and, in particular, drugs 
and drug-like chemical

>1800 [74]

ChemSpider Chemical database offering very 
rich metadata, cross-references to a 
lot of other chemical sources, and 
advanced search

>9700 [75]

PubChem Is an integrated platform of small 
molecules and biological activities

>3500 [76]

KEGG Metabolites, chemicals that are 
produced by living organisms and 
that are involved in primary and 
secondary metabolisms

No estimate [77]

MetaCyc Metabolites, chemicals that are 
produced by living organisms and 
that are involved in primary and 
secondary metabolisms

No estimate [78]

Databases for dereplication

METLIN Characterization of known 
metabolites and a technology 
platform for the identification of 
known and unknown metabolites 
and other chemical entities

>1 million molecules 
including primary 
metabolites, toxins, 
small peptides, and 
NPs

[79]

Databases for dereplication for NMR data

NMRdata
http://www.nmrdata.
com/

Chinese initiative for the storage 
and elucidation of NP structures 
from NMR data

About 1,167,468 
spectra

n/a

(continued)
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Table 4 (continued)

Databases About Number of NPS References

Generalistic databases of natural products

SuperNatural II Is a database that contains NPs 
together with their two-dimensional 
structures, computed 
physicochemical properties and 
predicted toxicity.

>300,000 [80]

NP from microorganisms

Natural Products 
Atlas (NP Atlas)
https://www.npatlas.
org/

Cover NPs from microbes (bacteria, 
fungi, lichens, and cyanobacteria)

>33,000 n/a

Databases of drug-like natural compounds

ChemIDplus Database part of the TOXicology 
DataNETwork and chemicals that 
have a relationship with diseases, 
environment, environmental health, 
and poisoning

>9000 entries [81]

Food

FooDB
https://foodb.ca/

Reference database on chemical 
food constituents associated with 
extremely rich and diverse metadata

>22,000 n/a

3  Metabolomic Workflow

When a whole set of metabolites present in a given biological matrix (plant, bacte-
ria, fungi, animal, human, etc.) becomes the subject of experiment, then it is termed 
as untargeted or global analysis. In the case of targeted analysis, only selected 
metabolites treated in the similar physicochemical properties or involved in the 
same biochemical pathway are analyzed and quantified [82]. In both analyses, sam-
ple size, sample preparation, and statistical analysis of the data obtained are crucial 
to validate the hypothesis [83]. Randomization and biological replicates are impor-
tant while selecting the samples [84, 85]. In this chapter, we will limit the workflow 
within the sample preparation and analyses of NPs.

The diverse chemical nature, wide concentration range, and influences of exter-
nal stimuli complicate the extraction and quantitation process of NPs and give rise 
to different metabolomic strategies such as metabolite profiling, metabolic finger-
printing, metabolite target analysis, metabonomic, etc. Since, metabolomic analyses 
represent the snapshot of metabolites present in a certain time frame, minor changes 
in any step(s) of the workflow may highly affect the data interpretation and final 
outcome of the investigation. For plant sources, cultivation parameters, type of tis-
sue collected, season of collection, developmental stage of the plant, harvesting 
time, etc., should be reported as metabolites are greatly affected by such parameters 
[86, 87]. For bacterial sources, the type of media used, bacterial strains, and condi-
tions of growing bacterial cultures significantly affect the production of metabolites 
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[88]. External factors such as environmental conditions may induce both qualitative 
and quantitative variations in the metabolite composition of both primary and sec-
ondary metabolites [89]. Hence each step in metabolomic experiment starting from 
sample procuring to data analysis require meticulous attention to details [40, 90, 91].

3.1  Sample Preparation

(i) Identification of source, harvesting and storage: The metabolomic workflow 
starts with the identification of appropriate source to procure the sample followed 
by proper harvesting and storage [37, 85]. Minor changes in the sample collection, 
harvesting, or storage steps may highly impact the final analyses of metabolites 
leading to major changes in the observed metabolome [37]. The samples should be 
collected in a fast and uniform way to minimize technical bias and changes due to 
external factors, especially in the case of volatile compounds [92, 93]. In order to 
minimize enzyme-induced metabolic changes, sample should be frozen using dry 
ice or liquid nitrogen while harvesting fresh samples. In case of plant sources, 
unwanted components such as soil particles and dried foliage are also recommended 
to be removed before collection. Long-term storage should be avoided, and for 
short-term storage, samples are better stored using liquid nitrogen or kept in a 
freezer at −80°C [94].

Depending on the nature of metabolites obtained from plant samples, drying is 
an extra step to minimize decomposition due to enzymatic activity in the presence 
of moisture. Also, varying levels of water in the sample may affect the quantitation 
of metabolites as well [87]. Drying can be carried out by airdrying, oven-drying, 
freeze-drying, and trap-drying [95]. Among these, freeze-drying (lyophilization or 
cryodesiccation) is the most suitable method to dry plant material [87]. In this 
method, the tissue is rapidly frozen and dehydrated at a temperature below −30°C 
under vacuum with a desiccant. The dried tissue is then infiltrated with paraffin 
under a vacuum. Leaf tissue and root tips are the easiest and the most difficult to 
freeze and dry, respectively [96]. The microwave heating method can also be used 
for drying samples as metabolomic changes due to enzyme activities such as peroxi-
dase and glycosidase are almost destroyed in this method [97]. For example, classi-
cal extraction showed the presence of multiple glycosides as found in fresh flowers 
compared to only one glycoside while the sample was given a short microwave 
treatment [98]. The Metabolomics Standards Initiative (MSI) is by far the best 
approach to determining the minimum parameters related to experimental design, 
sample extraction to data analysis for validating plant metabolomics studies [94].

The bacterial strains used for metabolomics study can significantly affect the 
sample preparation, e.g., the presence/absence of cell wall, chemical composition, 
and permeability of cell membranes of gram-positive and gram-negative bacteria 
require different sample preparation protocols. Bacterial cells growing in culture 
flasks/bioreactors are harvested by centrifugation or fast vacuum filtration [88]. 
This step separates the bacterial cells from the culture media followed by the 
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extraction of intracellular metabolites from bacterial cell pellets and extracellular 
metabolites from the supernatant secreted by the bacteria during its different growth 
stages [99]. In this context, it is important to note the time point when the cells are 
harvested as bacterial cultures which produce different types and levels of metabo-
lites at its different growth phases which indicate the dynamics of physiological 
processes [88].

Marine organisms, for example, coral is recommended to be harvested from a 
sheltered lagoon or reef flat in shallow water, whereas the collection of coral from 
deeper water follows a completely different technique [100]. Again the production 
of peloruside A from aquaculture of the sponge Mycale hentscheli is affected by 
parameters such as light and fouling intensity in the farm setting [101]. Different 
biotic and abiotic conditions greatly affect the production of distinct metabolites 
indicating that factors responsible for metabolite production are important in the 
discovery of novel compounds [102, 103]. This has led to the development of 
“OSMAC” (one strain many compounds) and co-culture methodologies to produce 
differential compounds by modifying the abiotic or biotic culture [104, 105].

(ii) Sample quenching and extraction: Followed by the previous steps, the 
quenching of the samples at a specific time is necessary to stop the physiological 
processes of plant or microbial source and “freeze” the metabolic snapshot [106, 
107]. Although quenching with cold methanol is regarded as gold standard for plant 
and microbial samples, leakage of intracellular metabolites from microbial sources 
were reported [108]. Alternative solvent systems and the fingerprinting study was 
used to minimize the leakage and/or compensate for the error induced by leakage 
[109]. The use of liquid nitrogen compared to ethanol/methanol/ice-cold buffer was 
reported to have less influence on cell viability [110]. However, the ratio of quench-
ing solvent to sample, solvent concentration, presence of additives, processing time, 
and growth phase of microbial culture play important roles in minimizing the 
metabolite leakage [108].

Due to the diverse chemical nature of metabolites and complex biological matri-
ces, different extraction protocols are employed for obtaining the bioactive 
compound(s) [111]. Depending on the biological material, sometimes the harvested 
and quenched samples may require an extra processing step by lyophilization, cell 
lysis, and/or grinding prior to extraction. Based on the physiochemical nature of the 
metabolites, different methods such as solvent extraction, distillation, pressing, and 
sublimation could be used. Generally, organic solvents are selected and combined 
depending on respective solvent polarity index and miscibility (when more than 
one solvent is used) according to HPLC Solvent Guide, solvent miscibility and vis-
cosity chart [112]. In the solvent extraction method, factors such as chemical prop-
erties of the extracting solvent and analytes, particle size of the sample, 
solvent-to-solid sample ratio, solubility, dissolution rate, extraction temperature, 
processing time and method (ultrasonic treatment), and miscibility of solvents affect 
the extraction efficiency [87, 112]. Solvent polarity, selectivity, toxicity, and inert-
ness plays a major role in the extraction step affecting both the quality and quantity 
of the metabolites. Generally, hydrophilic solvents are used to extract polar and 
semipolar metabolites, whereas lipids can be extracted with more hydrophobic 
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Table 5 The use of different solvent systems and extraction methods applied to diverse classes of 
metabolites

Class of metabolites Solvent(s) used
Extraction method 
used References

Untargeted large-scale 
plant metabolomics

Ice-cold 99.875% methanol 
acidified with 0.125% formic 
acid

Sonication at 40 Hz for 
15 min at 20°C 
followed by 
centrifugation and 
filter through 0.2-μM 
PTFE membrane

[118]

Sinapates, 
glucosinolates, 
flavonoids, and 
anthocyanins and 
primary metabolites 
from Arabidopsis 
leaves

Methyl tert-butyl ether and 
methanol (3:1, v/v), solvent 1
Water and methanol (3:1, v/v), 
solvent 2

Briefly vortexed after 
adding solvent 1 
followed by 
incubation, sonication, 
and phase separation 
with solvent 2

[119]

(i) Primary metabolites 
(lipids, proteins, cell 
wall polymers) from 
Arabidopsis seeds
(ii) Phytohormones 
from Arabidopsis seeds

(i) Extraction in ice-cold methyl 
tert-butyl ether followed by 
phase separation in water and 
methanol (3:1, v/v)
(ii) Extracted in pre-cooled 
buffer (2-propanol:H2O:HCl, 
2:1:0.002) followed by 
incubation at 4°C and liquid- 
liquid separation by 
dichloromethane

Briefly vortexed, 
incubated, and 
centrifuged for 5 min 
at 4°C followed by 
drying and 
resuspension of the 
samples

[120]

Phytohormones from 
Arabidopsis rosettes

Extracted with 80% (v/v) 
methanol

Frozen ground material 
was extracted and 
analyzed

[121]

(i) Lipids and (ii) 
primary metabolites 
from soft corals

(i) Methyl tert-butyl ether and 
methanol (3:1, v/v), solvent 1
Water and methanol (3:1, v/v), 
solvent 2
(ii) Methoxyamine-HCl/pyridine 
solution

(i) Incubated at 4°C in 
solvent 1 followed by 
sonication 15 min in an 
ice-cooled bath and 
phase separation with 
solvent 2
(ii) Resuspended and 
heated at 37°C for 
1.5 h

[122]

Biosurfactants from 
Rhodococcus bacterial 
cultures

MTBE, dichloromethane, 
chloroform-methanol (1:2 or 
2:1 v/v) and MTBE-chloroform 
(1:1 v/v)

Extracted followed by 
sonication, phase 
separation, and rotary 
evaporation at 50°C 
under reduced pressure

[123]

solvents. Metabolomic studies are designed to detect as many metabolites as pos-
sible in an organism; thus, solvents capable of extracting diverse groups of metabo-
lites are preferable [87].

As extraction is a preliminary step of purifying or concentrating the analytes 
from the sourced samples, liquid-liquid fractionation (LLF) method which employs 
solvent extraction and partitioning is useful in removing contaminants or interfering 
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compounds, e.g., removing complex carbohydrates while extracting polyphenols or 
deproteinization [37, 87]. Chloroform/methanol mixture in different proportions is 
the gold standard of LLF [113, 114]. Other alternatives are chloroform/methanol/
water and methyl tert-butyl ether for the analysis of lipids and polar metabolites 
from plant, microbes, and mammalian sources [32, 115–117]. Few examples of dif-
ferent solvents and extraction methods used are outlined in Table 5.

Apart from LLF several other methods such as Soxhlet extraction, distillation, 
reflux extraction, decoction, percolation, maceration, solid-phase extraction (SPE), 
supercritical fluid extraction (SFE), pulsed electric field extraction (PEFE), 
microwave- assisted extraction (MAE), pressurized liquid extraction (PLE), enzyme- 
assisted extraction (EAE), and ultrasound-assisted extraction (UAE) are also used 
for metabolite extraction. Soxhlet extraction has been a standard technique for over 
a century where the extract from the sample is continuously condensed at best ambi-
ent temperature. Although shortcomings in terms of the final yield of the product 
have been reported about this technique, it has been improvised in recent years by 
introducing high pressure, automation,microwave assistance and ultrasound assis-
tance [124, 125].

3.2  Analytical Methods of Purification and Quantitation 
of the Analyte of Interest

Between the metabolite extraction and its analyses, they are further processed/puri-
fied for enrichment [87]. Liquid chromatography (LC) and gas chromatography 
(GC) are the main methods used in this step. The interaction between the metabo-
lites and the materials used in LC and GC columns is responsible for the separation 
of the analytes of interest. Due to the diversity of physical-chemical properties – 
polarity, molecular weight, solubility, and volatility – the simultaneous character-
ization of all metabolites is difficult, requiring the combination of techniques 
expanding the metabolite profile [40, 126]. The determination of the best techniques 
to be used is directly related to the experimental objective, the sample matrix, and 
its properties [126, 127]. Hence GC-MS or LC-MS and (NMR) spectroscopy have 
been the most commonly used analytical techniques for metabolomics studies; as 
well as capillary electrophoresis (CE), which combined with mass spectrometry 
(CE-MS), has become a promising tool [126, 128]. This section discusses these 
analytical techniques for metabolomics studies, highlighting the advantages, draw-
backs, and differences in the applicability of each technique.

 (i) Gas Chromatography-Mass Spectrometry (GC-MS)

GC is one of the most used and pioneering techniques for metabolic profiling in 
different research fields coupled with mass spectrometry (MS). It is a suitable tool 
for identification and quantification of metabolites, especially volatile and semi- 
volatile organic compounds, as it combines high-separation efficiency with 
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selective and sensitive mass detection [126, 129]. GC-MS has been widely applied 
in metabolomics studies and is considered as one of the most efficient and reproduc-
ible analytical technique for metabolomics research for metabolite profiling and 
quantification [127]. Other important attributes to GC-MS are its versatility in 
detecting compounds of a wide range of molecular weights and polarities, robust-
ness, separation capacity, selectivity, sensitivity, and reproducibility [37, 40, 127].

In this technique, the sample analytes obtained in the extraction step is passed 
through the chromatographic column, composed of a stationary phase and a mobile 
phase (gaseous), called “carrier gas,” which must have a high degree of purity and 
inert to the sample. The most commonly used carrier gases are helium and nitrogen. 
Often hydrogen is also used. Two types of columns are used in gas chromatogra-
phy – packed columns and capillary columns which differ in diameter, length, and 
material. Capillary columns are the most used due to better separation resolution 
and are of the liquid-on-solid type, which can be polar (e.g., polyethylene glycol) or 
nonpolar (e.g. 5%-phenyl-methylpolysiloxane). The separation occurs based on the 
boiling point of the compound and its interaction with the stationary phase [130]. 
Gas chromatography can be coupled to different detectors, such as a flame ioniza-
tion detector (FID) or mass spectrometry (MS), the latter being the most widespread 
technique for identifying and quantifying metabolites. MS is capable of detecting 
all ionizable compounds and obtaining mass spectra at each time point, providing 
information on the molecular structure of compounds, and can be used for auto-
mated search and match with that of mass spectrum library [131].

Temperature is one of the most critical parameters that must be strictly con-
trolled, especially in GC-MS analysis, as high temperatures increase the possibility 
of thermal degradation of analytes leading to multiple peaks [132]. Volatile metabo-
lites, released by plants, for example, during their growth and development function 
in the defense mechanism against predators, also attract pollinators [127]. The 
untargeted approach to identify this group of compounds resulted in the creation of 
the term “volatome” or “volatilome,” designated for the comprehensive analysis of 
volatile compounds in any matrix. Detection of polar, thermolabile, nonvolatile 
metabolites require chemical derivatization prior to analysis. Silylation, acylation, 
and alkylation are common types of derivatization methods used prior to injecting 
samples to the GC-MS [127, 132]. This improves volatility, thermal stability, sensi-
tivity, and detector response. Several classes of volatile and nonvolatile metabolites, 
such as phenolics, fatty acids (FAs), alkaloids, and terpenoids, have been analyzed 
and identified by GC-MS [37, 126, 127].

The use of a metabolomics approach based on target and nontarget GC-MS in 
natural products has been reported to investigate the chemical profile of the lipo-
philic extract of the bark of Vitex pinnata and reveal the presence of several classes 
of phytochemicals, such as hydrocarbons, terpenes (monoterpenes, diterpenes, ses-
quiterpenes and triterpenes), and phytosterols (γ-sitosterol and stigmasterol) [133]. 
The extract of V. pinnata bark in n-hexane was analyzed using GC-MS equipped 
with RTX-5MS fused bonded column (30 m × 0.25 mm i.d., × 0.25 μm film 47 
thickness). The initial column temperature was 45°C to final temperature of 
300°C. Injector temperature was 250°C; ionization voltage, 70 eV; and ion source, 
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200°C. The sample was injected at a split ratio 1: 15. To identify the compounds, the 
retention indices (RI) were calculated by injecting the standard n-alkanes series 
(C8–C40) under similar conditions. Subsequently, the mass spectra and RI were 
compared with those of the National Institute of Standards and Technology NIST 
chemistry webbook library and other literature. Another example of using GC-MS 
is to discriminate the metabolic profiles of whole sorghum containing high tannin 
and low tannin and its derivatives obtained by fermentation [134]. GC-MS has also 
been used for the identification of sugars and phenolic compounds in honey pow-
ders [135], as well as the use of two-dimensional GC × GC-MS to investigate vola-
tile compounds in the samples of green tea grown at low and high altitudes, detecting 
more than 200 sensory and bioactive compounds in each of them [136].

However, this method has limited capacity to separate and identify low- 
molecular- weight compounds (50–600  Da) with high-vapor pressures (volatile 
compounds). As complex matrices are generally analyzed, the sample preparation 
steps are expensive and time-consuming and often require extra steps of derivatiza-
tion to adequately vaporize the desired analyte [129]. Another challenge is the sepa-
ration of overlapping peaks in the raw chromatogram. However, this limitation has 
been overcome with the use of two-dimensional GC  ×  GC together with high- 
resolution mass spectrometry. In this way, the compounds could be separated into 
two columns with different properties (nonpolar versus polar), thereby producing 
enhanced resolution and peak capacity [37].

 (ii) Liquid Chromatography-Mass Spectrometry (LC-MS)

Liquid chromatography-mass spectrometry (LC-MS) has become a widely used 
technique due to its applicability to measure a wide range of metabolites. The 
advantages being (i) direct injection of extracts obtained with (ii) easy sample prep-
aration and (iii) easy extraction, unlike GC-MS where derivatization is prerequisite 
[137]. GC-MS and LC-MS techniques are often used in a complementary way to 
improve the identification of metabolites; however, this choice increases analysis 
time and cost. A correct selection of instrumental parameters and separation mecha-
nisms corroborate to obtain satisfactory results. For LC-MS, chromatographic sepa-
ration is one of the important factors. According to their chemical properties, the 
metabolites are separated using specialized columns, such as C8 and C18, reverse- 
phase column. Due to its ability to separate semipolar compounds such as phenolic 
acids, flavonoids, glycosylated steroids, alkaloids, and other glycosylated species, 
C18 is often the popular choice of column [138, 139]. Ion exchange and hydropho-
bic interaction columns (HILIC) are also used. As every technique has its limita-
tions, the most exhausting step in LC-MS is the identification of the metabolites 
obtained, making it one of the biggest challenges of this tool for metabolomic anal-
ysis [139].

Examples of LC-MS-based NP studies include analyses of extracts obtained 
from different parts of the Brazilian plant Annona crassiflora to discover com-
pounds with larvicidal activity against Aedes aegypti [140]. The Annona crassiflora 
extract was partitioned using Diol cartridges using hexane, ethyl acetate, and metha-
nol as mobile phases followed by chromatographic separation in C18 column. The 
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results confirmed the ability of metabolomics to discriminate metabolites between 
active and inactive samples using LC-MS and LC-MS/MS data. Other authors 
observed that LC/MS-PCA, known as secondary metabolomics, was effective in the 
selection of natural bacterial products derived from the sea, helping in the discovery 
of new drugs, in addition to highlighting the use of the technique as a way to reduce 
the time of LC/MS analysis of chromatographic data [141]. Furthermore, metabolic 
profiles and variations among five truffle species using untargeted metabolomics 
technology based on an ultrahigh-performance liquid chromatography tandem mass 
spectrometry method (UHPLC-MS/MS) were also reported [142].

 (iii) Nuclear Magnetic Resonance Spectroscopy (NMR)

Another important analytical technique in metabolomics is NMR. Although 
NMR and MS can be used as isolated techniques, they are often considered as com-
plementary way to improve analytical performance [143]. Among the main advan-
tages of NMR are the identification of unknown compounds, with the elucidation of 
structures and recovery of used samples [143, 144]. Low sensitivity and require-
ment of higher amount of sample compared to MS are the drawbacks. The consider-
able signal overlap in the NMR spectra could make it difficult to identify and 
properly integrate the peaks [144, 145]. However, the development of NMR hard-
ware could improve the sensitivity, and the use of two-dimensional NMR may serve 
as a partial solution of the peak overlapping problem since it presents much better 
resolution than one-dimensional 1H NMR [144].

The greater applicability of NMR is observed for compounds of moderate to 
high polarity (Kim et al., 2010). NMR-based metabolomics analysis has been suc-
cessfully applied to NPs produced by endophytic fungi and isolated from the leaves 
of medicinal plants Hypericum perforatum. Using NMR metabolomics, two natural 
products, lignicol and isolignicol, have been isolated [146].

 (iv) Capillary Electrophoresis Coupled with Electrospray Mass 
Spectrometry (CE-MS)

Another extremely important separation method in the metabolomics approach 
is electrophoresis. While GC is limited to volatile and thermostable compounds, or 
compounds that can be derivatized to produce volatile products, LC is more robust 
with the ability to separate semipolar compounds. Despite these advantages, many 
metabolites are too polar to be significantly retained by the most used reverse-phase 
columns. As most metabolites are polar and ionic, a good option is to use capillary 
electrophoresis (CE-MS). This separation technique is based on their mass-to- 
charge ratios. This could be regarded as a complementary technique to GC and 
LC. The advantages of CE technique are the (i) low sample demand, (ii) speed, (iii) 
separation efficiency, (iv) minimal pre-treatment of the sample, and (v) low cost. As 
a limitation, there is low sensitivity to concentration, which can be mitigated with 
the use of MS detector, confirming CE-MS as an important ally for metabolomics 
investigations [147].
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A capillary electrophoresis method using nonaqueous separation solutions in 
combination with MS and MS/MS for the identification and quantification of gly-
coalkaloids and their relative aglycones has been reported [148].

3.3  Data Processing and Curation

The aim of MDP is to extract biologically relevant information from the acquired 
data and use it in the subsequent steps to interpret the significance of various meta-
bolic pathways. Analyses of metabolomic data are comprised of four steps: (1) raw 
data preprocessing including compound identification, (2) data processing includ-
ing data transformation and data normalization, (3) statistical analysis, and (4) data 
interpretation [149]. Firstly, the raw data collected as signals and peaks from ana-
lytical techniques  – nuclear magnetic resonance (NMR) and mass spectrometry 
(MS), respectively – are preprocessed which include noise reduction, background 
correction, peak picking, and compound identification [150]. In the data transfor-
mation step, the preprocessed or clean data from the previous step is converted into 
more useful forms either by mathematical operations or by changing formats [149]. 
This converted format is then normalized to minimize systematic and technical 
variations before statistical evaluation [150]. Statistical analyses and subsequent 
data interpretation are used to screen metabolites based on the experimental design 
and hypothesis followed by a downstream process of the network- and pathway- 
based data analyses [151].

For untargeted metabolomics study using NMR, the cleaned data excluding the 
noise region can be used as the input for principal component analysis (PCA) and 
partial least squares discriminant analysis (PLS-DA) or orthogonal partial least 
squares discriminant analysis (OPLS-DA) to find out the metabolite features [85]. 
For untargeted MS data, detection of chromatographic peaks, extracted ion chro-
matograms (EICs), annotated features, and chromatogram alignment are important 
aspects for downstream process [152]. The raw MS data contain mass-to-charge 
ratio (m/z); retention time, i.e., specific time when the mass is acquired; and relative 
abundance of each m/z ratio. Data preprocessing is done in two steps: Firstly, the 
m/z ratio and relative abundance for each retention time are processed, and sec-
ondly, the retention time and relative abundance for a particular m/z ratio or all 
mass-to-charge ratios are calculated. The relationship between the retention time 
and the summation of relative abundance values for all the m/z ratios produces the 
total ion chromatogram (TIC), whereas that between the retention time and relative 
abundance values for a particular mass-to-charge ratio gives the EIC [85].

For metabolomics data, some of the available tools for preprocessing are [153] 
cloud version of XCMS [154]; open-source software MZmine [155], MS-DIAL 
[156], and MAVEN [157]; SIEVE by Thermo Fisher, Python Package-TidyMS 
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[158], and NeatMS [159]; and R-package: AutoTuner [160], MetumpX [161], 
MeTaQuaC [162], Dbnorm [163], and MetaClean [164]. Data obtained from NMR 
spectroscopy is subjected to chemometric analysis [165]. Then commercially avail-
able softwares including ACD (www.acdlabs.com), Chenomx (www.chenomx.
com), and MestreNova (http://mestrelab.com/) are used for preprocessing the raw 
data during which the added internal standard is assigned to 0 ppm [166].

For metabolomics data, some of the available data-based normalization tools are 
[167] R-based, MetabR [168]; Microsoft Excel based, MetaboDrift and 
NormalizeMets [169, 170]; and web-based, NormalyzerDE [171], NOREVA [172], 
MetaboGroupS [173], and PseudoQC [174].

While processing one-dimensional NMR spectra several elements like protons 
coming from water, urea, proton resonances of noise regions of upfield to sodium 
trimethylsilylpropanesulfonate or DSS peak and downfield of metabolites are need 
to be removed prior to statistical analyses [166]. Also, the pH-based chemical shift 
needs to be taken care of by using NMR peak alignment tools [175] or pH-sensitive 
NMR libraries such as Chenomx (https://www.chenomx.com/) or using a buffer 
solution to control pH [166].

Large metabolomics datasets generated by MS contain thousands of features 
identified falsely or with imperfect integration. Hence filtering methods are crucial 
to remove noise prior to explaining the metabolome. Programs like Metaboanalyst 
and Workflow4Metabolomics could be used apart from manual filtering to remove 
the noise. In manual filtering, the cleaned data is separated into high/low features 
followed by appropriate cutoff [176].

For metabolomics data, the most popular statistical methods are univariate and 
multivariate. Principal component analysis (PCA) and partial least squares (PLS) 
are established methods for multivariate analysis of metabolomics data. Some of the 
available statistical analyses and data interpretation/visualization tools are: 
R-package including struct (statistics in R using class-based templates) [177] and 
rawR [178]; web-based  – EpiMetal [179], Metabolite-Investigator [180], and 
VIIME (VIsualization and Integration of Metabolomics Experiments) [181]; web- 
based and R-package  – NORmalization and EVAluation (NOREVA 2.0) [172], 
Metabolite AutoPlotter [182]; SAS-based %polynova_2way [179]; standalone soft-
wares – Metaboverse [183], JavaScript mass spectrometry (JS-MS) 2.0 [184].

Finally, the output is used for enrichment and pathway analyses to identify sig-
nificant expression changes among the functionally related metabolites [150]. 
MetPA and MSEA are web-based tools used for pathway analysis and data visual-
ization based on the Kyoto Encyclopedia of Genes and Genomes (KEGG) [185, 186].

For broader application-based research, metabolomics works need to be repli-
cated and reproduced in laboratories of diverse backgrounds. Availability of detailed 
experimental protocols which are prerequisite to generate metabolomics data with 
highest level accuracy are often not found in the publications due to various reasons. 
Hence there are specified standards for reporting minimum meta-data metabolo-
mics studies developed over the years by CAWG including sample preparation, 
extraction protocol, details of analytical techniques used, data processing strategies, 
annotation, and statistical analyses [94, 99, 187].
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4  Applications of Metabolomics in NPs

4.1  Dereplication of NPs

NPs being the source of important bioactive compounds bear wide-spectrum appli-
cations, especially in drug discovery. To find the “lead compounds,” screening of 
NPs follows two types of procedures – (i) using previously purified natural com-
pounds obtained from commercially purified NP libraries and (ii) the crude extract 
of NP subjected to a primary screening followed by the detection and activity- 
guided purification of the bioactive constituent [80]. Open-access spectral reposi-
tory like Global Natural Products Social Molecular Networking (GNPS; http://
gnps.ucsd.edu) provides raw, processed, or identified tandem mass (MS/MS) spec-
trometry data useful in the discovery of new NPs [188]. Dereplication uses the 
chemical information of a known natural product to identify that compound in an 
experimental sample without repeating the steps of isolation and structure determi-
nation [189]. Figure 2 illustrates the steps involved in the dereplication process.

An example of combinatorial approaches to dereplicate NPs from bacteria grown 
on corals involve both in silico and experimental procedures coupled with genome 
analyses where metabolomics data is useful in selecting the appropriate candidates 
involved in symbiotic relationship between the bacteria and coral [190]. 
Computational approaches of dereplication method includes algorithms like 
DEREPLICATOR and VarQuest to identify NPs from mass spectra database 
[189, 191].

Extraction of NPs

Biological assays to 
identify fractions 

containing bio-active 
and/ unknown 

compounds

Targeted and/ 
untargeted analyses 

using LC-MS/GC-
MS/NMR Statistical analyses Metabolite database

Fig. 2 Steps in dereplication process of NPs – the extracted NP either directly subjected to tar-
geted or untargeted metabolomics followed by biochemical assays for identifying bioactive com-
pounds followed by metabolomics depending on the sample or the reverse way. The acquired data 
is processed, analyzed, and submitted to database
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4.2  Metabolic Map Profiling of NPs

Metabolic profiles of NPs help in understanding their respective pharmacological 
significance and toxicity, if any, along with other biological activities [37]. For 
example, the metabolic map of siamenoside I profiled in rat by a high-performance 
liquid chromatography-electrospray ionization-ion trap time of flight-multistage 
mass spectrometry (HPLC-ESI-IT-TOF-MS) method identified 86 metabolites, of 
which 8 were already established as bioactive compounds [192]. Siamenoside I is 
the sweetest mogroside (glycoside of cucurbitane, a plant triterpene) obtained from 
a fruit, Siraitiae sp. Different morgosides and morgol generated by the metabolism 
of siamenoside I have been shown to have hypoglycemic, antioxidant, anti- 
inflammatory, anticarcinogenic, and antitumor targeting effects [193]. Of these, the 
metabolism of morgoside V in healthy and type 2 diabetic rats has potential for 
developing new drugs for treating insulin resistance and diabetes [194, 195].

4.3  Quality Control (QC) of NPs

Increased interests in using plant-derived medicines to prevent diseases and/or to 
improve the overall quality of life have attracted the attention of scientists and phar-
macists [196]. They have been shown to have fewer side effects and are convenient 
and economical to use [197]. As NP-derived products, especially drugs, contain 
multiple compounds, it is important to use metabolic profiling of multiple constitu-
ents to produce quality compounds especially NP-derived drugs [86]. HPLC was 
used to be the technique for QC, e.g., turmeric (Curcuma longa rhizoma), which 
was shown to have antiparasitic, antimutagenic, and antimicrobial properties, was 
analyzed using HPLC, and curcumin, desmethyoxycurcuin, and bisdesmethoxycur-
cuin were found to be the main bioactive substances [198]. Red ginseng (Ginseng 
radix rubra) contains ginsenoside Rg3 and white ginseng (Ginseng radix alba) con-
tains ginsenoside Rb1, ginsenoside Rg1, and panaxadiol as bioactive compounds as 
analyzed by HPLC and GC [199, 200]. Ginsenoside has been shown to possess 
anticarcinogenic, immunomodulatory, anti-inflammatory, antiallergic, antiathero-
sclerotic, antihypertensive, antidiabetic, and antistress activity and effects on the 
central nervous system [201]. Due to the presence of multiple constituents in 
NP-derived drug, HPLC-based QC methods have now been replaced with other 
analytical tools including GC-MS, ICP-MS, LC-MS, and multivariate statistical 
analyses to quantify the ingredients of NP-derived drugs [202, 203]. Figure 3 illus-
trates the application of plant metabolomics in the quality control of Chinese mate-
rial medicines derived from various plant sources [204].
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Fig. 3 Application of plant metabolomics in the quality control of Chinese material medicines 
derived from various plant sources [193]. From identification of medicinal plant sources to com-
mercial production of herbal product, metabolomics is used in qualitative and quantitative analyses

4.4  Metabolomics in Revealing the Medicinal 
Properties of NPs

Over the past 20 years, more than one-third of FDA-approved therapeutic agents are 
derived from NPs, and more than 50% small-molecule drugs have been sourced 
from NPs, semisynthetic NPs, and NP-derived mimetics [205]. Till date, FDA has 
approved two NPs sourced from plants as prescribed botanical drug products after 
those have fulfilled the Botanical Guidance definition – Veregen® ointment 15% 
and Fulyzaq™. Along with these, some other botanical drugs that are included in 
the over-the-counter (OTC) drug review is cascara, psyllium, and senna (https://
www.fda.gov/). Veregen™ ointment 15% is a topical medicine for skin use only for 
the treatment of warts on the outside of the genitals and around the outside of the 
anus. The active ingredient of Veregen™ ointment is sinecatechins (15%), a par-
tially purified fraction of the water extract of green tea leaves from Camellia sinen-
sis (L.) O Kuntze. A total of 150 mg of sinecatechins is present per gram of the 
ointment in a water-free ointment base consisting of isopropyl myristate, white pet-
rolatum, white wax, propylene glycol palmitostearate, and oleyl alcohol. It includes 
epigallocatechin gallate (EGCg), epicatechin (EC), epigallocatechin (EGC), epicat-
echin gallate (ECg), and some additional minor catechin derivatives, i.e., gallocat-
echin gallate (GCg), gallocatechin (GC), catechin gallate (Cg), and catechin (C). 
Apart from that the extract also contains gallic acid, caffeine, and theobromine and 
undefined botanical constituents derived from green tea leaves.

The protocols used for metabolite analyses of Camellia sinensis extract and sub-
sequent biological studies explain how the metabolomic workflow helps in unravel-
ling various usages of available bioactive compounds in NPs [206, 207]. The excised 
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tea leaves from different cultivars were immediately frozen in liquid nitrogen upon 
collection and stored at −80°C until analysis. The frozen tea leaves were individu-
ally ground to fine powders using precooled mortars and pestles followed by lyophi-
lization and cold methanol extraction. In one method, the extracted sample was then 
centrifuged and run on UPLC-QTOFMS and UPLC-QqQ MS for both nontargeted 
and targeted metabolite analyses, respectively. The acquired data were processed 
using Progenesis QI software for peak picking, normalization (normalized to all 
compounds), signal integration, and initial peak assignments followed by PCA and 
PLS-DA analyses. Finally, metabolites were identified by comparing accurate 
masses, MS/MS fragmentation patterns, and isotope patterns with authentic stan-
dards as available in different metabolite databases such as Metlin, HMDB, 
MassBank, ReSpect, and KNApSAcK, and literature references. The individual 
mass spectrum was manually inspected to verify if the software-predicted frag-
ments were from a single metabolite [208]. In the other method, the methanolic 
extract was derivatized using BSTFA and subjected to GC–TOF-MS.  The chro-
matograms were processed using ChromaTOF software followed by noise removal, 
peak picking, normalization, and metabolite annotation with the NIST 05 Standard 
mass spectral database and Fiehn database. The normalized datasets were analyzed 
using SIMCA-P+11.5 for multivariate statistical analysis followed by PCA and 
PLS-DA analyses. Finally, the Kyoto Encyclopedia of Genes and Genomes (KEGG) 
database was used to explain the biological significance [209]. For 1H NMR method, 
the collected spectra were analyzed for chemical shift w.r.t. deuterated metha-
nol [210].

Fulyzaq™ is orally consumable tablet administered for noninfectious diarrhea in 
patients with HIV/AIDS on antiretroviral therapy. It contains 125 mg of crofelemer, 
NP with clinical significance and derived from the red latex of Croton lechleri. 
Crofelemer is an oligomeric proanthocyanidin and mixture of catechin, epicatechin, 
gallocatechin, and epigallocatechin monomer units linked in random sequence. The 
whole plant except root was dried in shade for about 10 days and then grounded 
using a laboratory mill followed by solvent extraction using solvents of different 
polarity and maceration. The extracted sample was then dried, resuspended, and 
subjected to HPLC-MS and one-dimensional and two-dimensional NMR stud-
ies [211].

5  Future Directions – Challenges and Prospects

In the past few years, the enormous advancement in technologies like separation 
science, spectroscopic-based methods, ultrasensitive in vitro assays, and high- 
throughput screening (HTS) have had a profound impact in NP-based research 
[212]. It envisaged the increased applications of NP-derived products, especially in 
the pharma industry. Green chemistry and circular economy are a few of the benefi-
cial by-products of increased use of NP-derived products [213]. However, like other 
fields, existing methodologies used in NP works have some barriers, and steps 
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involved in metabolomics, one of the major techniques in NP research, have chal-
lenges as well. Starting from the sample preparation to data analyses in the metabo-
lomics workflow as represented in Fig. 1, shortcomings have been seen from the 
beginning and rerouted accordingly to streamline the process leading to the present- 
day cutting-edge technology.

Many NPs have poor or low solubility, and chemical stability, toxicity, and the 
concentration of different metabolites are greatly affected by parameters like har-
vesting time, condition/growth stage of sources, etc. which make the sample prepa-
ration steps non-reproducible [42]. NMR and MS are the two important analytical 
tools for identification and quantitation of NPs so far. Unlike MS spectrometry, 
NMR spectroscopy is a direct quantitation method involving fewer and simpler 
sample preparation steps. However, the sensitivity of MS outweighs NMR in many 
cases [214]. The apparent strength of MS in terms of sensitivity is often compro-
mised due to a phenomenon called ion suppression caused by the matrix effect of 
diverse chemical compounds present in a biological sample [93]. Another problem 
caused by matrix effect is frequent occurrence of contamination of the MS source 
and adduct formation. The SPE (solid-phase extraction) method is often employed 
to efficiently remove matrix components such as proteins and salts [215]. The use 
of isotopic standards in quantitative analyses of metabolites is important for under-
standing flux and biomarker discovery. However, synthesizing stable isotopic stan-
dard is often difficult and expensive adding to a bottleneck in accurate quantitation 
of metabolites [216]. Few of the major challenges in the identification of compounds 
from natural sources is frequently encountering already-discovered compounds 
while analyzing the big pool of spectral data and the manual curation of spectral 
interpretation in MS/MS-based metabolomics data [205, 217]. In order to enable 
this time-consuming and tedious way of NP screening to become more efficient, 
dereplication method is employed to analyze the extracts of microbial and plant 
samples [202]. Again, for untargeted metabolomics, annotation of metabolites is 
often a bottleneck which is being addressed by ion mobility-mass spectrometry 
(IM-MS) technology. It provides the ion mobility CCS atlas, known as AllCCS, 
useful in predicting both known and unknown metabolite annotations from biologi-
cal samples while combined with in silico MS/MS spectra [218].

Integration of metabolomics with other high-throughput omics technologies like 
transcriptomics and genomics and bioassays could be more effective in understand-
ing the molecular mechanisms of metabolite production and identification of potent 
bioactive compounds [219, 220].

Apart from the troubleshooting in the technical steps, there’s a major concern 
about the environmental impact preceded by the exploitation of NPs [205]. For 
example, natural rubber obtained as latex from Hevea brasiliensis has shifted the 
economic condition of small-holding farmers overnight due to huge demand of 
rubber-based products, high income, government incentives, surge of investors, etc., 
impacting natural resources and biodiversity to a great extent. Intercropping, substi-
tutes of rubber tree with native plants producing latex, could be remedial actions to 
control the ecological damages [221]. Regarding marine organism-derived NPs, 
coral reefs are experiencing rapid global degradation due to both climate change 
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and exploitation to fulfill the demand for reef-derived natural resources [222]. 
Another example is 13 tons of the marine bryozoan Bugula neritina were harvested 
producing 18 g of bryostatin 1 for clinical phase 1 studies as anticancer compound 
[223]. One way of freezing the present decay and restoration of the marine environ-
ment could be achieved by controlled and ecologically feasible ways of collecting 
samples – another way of encouraging marine biotechnology or by chemical syn-
thesis [224].

6  Conclusion

Metabolomics has emerged as one of the powerful tools in the discovery of bioac-
tive compounds available in natural resources. However, the amount or concentra-
tion of those compounds vary greatly with time and within different parts of the 
same source. Also, the NPs are heavily compacted with millions of metabolites, 
each with varying degree of concentration and produced by continuous physiologi-
cal processes which in turn are under the direct/indirect influence of environmental 
stimuli. The interconnected metabolic pathways also impart positive/negative feed-
back effects on each other with accelerated/deaccelerated rate of generation, con-
version, and degradation of different metabolites. In this complex cellular milieu, it 
is needless to say that sample preparation for metabolomic studies require a great 
deal of meticulous practices in each step – sample collection, harvesting, and stor-
age with an additional step of sample quenching to freeze the metabolome snapshot. 
This intact sample is then passed through a pipeline to generate the information of 
metabolites captured in that snapshot. The pipeline is composed of processing steps 
to extracting detectable and quantifiable amount, identifying, characterizing, and/
quantifying the bioactive compounds present in the crowd of metabolites with mini-
mum perturbation. The presence of a large number of metabolites belonging to dif-
ferent classes of diverse physiochemical natures complicates the steps in the 
pipeline. The choice of solvent system plays a pivotal role in the dissolution of the 
sample and acts as a preliminary round of separation of several class of metabolites. 
The mixture is further processed to remove the impurities by different separation 
techniques for enrichment of metabolites of interest. The purified sample is then 
subjected to analytical tools like NMR and MS to generate raw data which goes 
through processing steps to tidy up the acquired data by removing background 
noise, bad signals. Different web-based and standalone programs perform the data 
processing, analyses, and visualization steps. Finally, the detected compounds are 
assigned as tentative metabolites present in the sample based on matching their 
mass/spectra with publicly available database or mass/spectral libraries. The data is 
then deposited in suitable database following the rules of minimum requirements of 
submission. However, metabolomics tools involved in each step has respective pit-
falls, and no generalized protocol is applicable to all samples. The latter part of the 
workflow as discussed in automated although labor-intensive human interventions 
are prerequisites up to the point of acquiring raw data. Metabolomics results 
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obtained from plants, microbial sources, have already been shown to contain pro-
found pharmacological effects against hepatitis, cancer, and diabetes, and few of the 
NPs have already been approved by the FDA as prescribed drugs. The technical 
advancements and growing number of metabolite libraries and populated databases 
are catalyzing the discovery of more NPs valuable to mankind.
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1  Introduction

When asked to describe the power of metabolomics, most would immediately men-
tion patient studies in which food, drink, drugs, etc., are consumed and metabolized, 
and the effect on health through computational analyses is reported. A less-known 
role of metabolomics is its integral part in our understanding of the environment, 
including environmental changes in response to manmade products. Many of us 
have heard the continual news stories about the population struggle of one of the 
world’s most popular pollinators, the honeybee. The honeybee endured a sharp 
decline in 2006 and many years following [2]. Still recovering from this population 
reduction, metabolomics is at the forefront of methodologies to discover responses 
to different stimuli. This area of research attempts to experimentally test different 
factors of nutrition to create an optimal metabolic response in bees.

Similar to current trends in human healthcare, the scientific approach to develop-
ing a desired metabolic response in honeybees provided with different environmen-
tal conditions has presented great strides in precision nutrition for bees. Targeted 
and untargeted metabolomic approaches compared metabolite abundances for bees 
with different levels of carbohydrates in their diets to identify the impact of low- 
carbohydrate nutritional stress on metabolism [3]. Machine learning classification 
models of select metabolites showed perfect discrimination between bees in differ-
ent treatment groups, and the authors concluded that increased protein catabolism 
resulted from nutritional stress [3]. Ricigliano et al. performed untargeted metabo-
lomics on caged honeybees fed sugar, pollen, Chlorella, and spirulina diets to com-
pare the metabolomes of a natural pollen diet with those of artificial, microalgae- based 
diets [4]. This work concluded similar nutritional and metabolic impacts of 
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microalgae-based and pollen diets, suggesting microalgae-based additions to feed 
can be important as health modulators and further experiments can create precise, 
diet-inducing changes using metabolomic analyses [4]. In addition to nutrition, 
experiments focused on the effects of pesticides on metabolomes of bees fed pollen 
or nectar with different phytochemicals have provided recommendations such as the 
use of flavonoids to increase detoxification systems which reduce the concentration 
of the pesticide tau-fluvalinate [5]. These studies provide recommendations and 
assessments for bee health status in different environmental conditions aimed to 
help bees thrive and multiply. Through the power of metabolomics, we can create an 
optimal future for honeybees and many other living organisms.

This is just an example to show how the environment is important, and we need 
better tools to monitor adulteration. Ecometabolomics is an emerging field that 
combines the techniques of metabolomics and ecological research to understand the 
metabolic processes of organisms in their natural environments (Fig. 1) [1]. It offers 
a promising avenue for investigating the complex interactions between living organ-
isms and their surrounding environment, from the molecular to the ecosystem level. 
This chapter aims to provide a comprehensive overview of the current progress, 
applications, challenges, and future recommendations of ecometabolomics. We will 
discuss the analytical techniques and tools used in ecometabolomics research, the 
ecological and environmental factors influencing metabolite production, and the 
advancements of ecometabolomics. Moreover, we will address the challenges fac-
ing ecometabolomics, including data analysis and interpretation, and standardiza-
tion of protocols. Finally, we will provide future recommendations for advancing 
ecometabolomics research, including novel tools for monitoring, multipollutant 
prospective, different technical improvements, and application of exposome wear-
ables. We believe that this chapter will be a valuable resource for researchers 

Fig. 1 Schema of the different data associations linking exposures and adverse effect/disease 
outcomes in exposome studies, with emphasis on the role of metabolomics to investigate the 
molecular responses to chemical pollutant exposure. (Figure and caption are adopted from [1])
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interested in ecometabolomics and its potential for advancing our understanding of 
the complex interactions between living organisms and their environment.

2  General Techniques in Environmental Metabolomics

Normally, for biomonitoring purposes, targeted analysis is in use, but it cannot be 
applied to identify the toxic derivatives of that chemical or pollutant. Therefore, the 
exposomic approach is the key to the development of targeted and untargeted assess-
ment of pollutants and their byproducts [6]. Starting with sample preparation, which 
involves two primary steps: the first being sample collection and the second being 
sample extraction. The process of sample extraction from biofluids and low-mass 
tissue samples has always been rather laborious, inundated by inconsistency, proving 
to be a bottleneck for high-throughput metabolomics [7]. However, new technologies 
are changing the landscape of sample preparation methodologies for ecometabolo-
mics. Depending upon the properties of the metabolites, researchers can opt for acid-
based extraction or organic solvent-based extraction. The former is employed for 
polar metabolites and the latter for moderately polar, nonpolar, or hydrophobic 
metabolites [7]. A biphasic solvent system utilizing chloroform/methanol/water 
(2/2/1.8, v/v/v) was employed for extracting both polar (methanol/water phase) and 
nonpolar (chloroform phase) compounds at the same time. But this method had a few 
drawbacks, one of them being an accumulation of cellular debris between the upper 
polar and lower nonpolar phases, hindering the clean aspiration of the lower phase 
[8]. Due to these reasons, the quest for a better method of extraction has been ongo-
ing. This method was succeeded by the Matyash method, which replaced chloroform 
with methyl tert-butyl ether (MTBE), which is noncarcinogenic [9]. In a recent study 
by Sostare et al. on Daphnia magna, the Matyash method has further been modified 
leading to an increased yield and reproducibility in samples [8].

Two techniques most commonly employed for the identification of metabolites 
include nuclear magnetic resonance (NMR) and mass spectrometry (MS), and with 
technological advancements, the precision and sensitivity of these tools have 
improved manifold in the past few years [10]. Though NMR is one of the most 
widely utilized methods for metabolite identification and quantification, its limited 
sensitivity does not allow the entire sample metabolome to be unraveled. 
Furthermore, most NMR spectrometers in environmental metabolomics laborato-
ries require large sample volumes. However, a recent study by Poynton et  al. 
reported using just 3-μl hemolymph from six adult water fleas (Daphnia magna) for 
measurement of metabolites by employing a 1-mm TXI microliter NMR probe [11] 
acquiring spectra from such a small sample volume opens up the possibility of con-
ducting many more chemical risk assessments in important species using metabolo-
mics [12]. Extraction of metabolites from samples, a step preluding performing 
NMR, is not only time-consuming, but it can also lead to sample loss or degrada-
tion. High-resolution magic angle spinning (HR-MAS) NMR eliminates the extrac-
tion procedure, directly allowing the use of tissue samples [13]. HR-MAS is being 
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widely employed for analyzing the plant metabolome under the influence of differ-
ent biotic and abiotic stressors [14–17]. In an interesting study, Sarou-Kanian et al. 
employed HR-MAS slice-localized spectroscopy and chemical shift imaging to 
obtain metabolic profiles in  localized regions of live Drosophila [18]. HR-MAS 
NMR has further been modified to use a microprobe, wherein high-quality data can 
be acquired even from samples in microgram quantities and this technique has been 
successfully used for generating localized metabolic profiles of four different 
regions of a garlic clove with less than 0.5 mg sampling mass [19]. These tech-
niques provide a unique opportunity for performing localized metabolomic analysis 
of organ or tissue-specific changes in response to various stressors, even with a 
limited amount of sample.

MS is suitable for high-sensitivity and high-throughput analysis and depending 
upon the metabolite properties, samples can be analyzed either with gas chromatog-
raphy (GC), liquid chromatography (LC), or capillary electrophoresis (CE) equipped 
with MS [10]. Nowadays, LC coupled with high-resolution MS (HRMS) is being 
employed in several plant metabolomic studies for further enhanced performance. 
In one study, a multifunctional mass analyzer, triple quadrupole QTRAP mass spec-
trometry, has been employed with multiple reaction monitoring for identifying 
important metabolites responsible for antioxidant activity in Foeniculum vulgare 
[20]. HRMS is ideal when adopting an untargeted approach for comparing and ana-
lyzing hundreds of metabolites in an unbiased manner [10].

Both NMR and MS provide an abundant amount of information about the dam-
age caused by metabolism-disrupting chemicals (MDCs), but it needs to be vali-
dated by more precise methods to characterize the exact molecule and for potential 
disease prevention. Most of the exposomic and metabolomics-based data are com-
ing from a single type of sample which may not be a proper reflective of the expo-
sure or damage. Therefore, it is important to confirm the results by taking repeated 
samples from other possible sources and bio reservoirs [21]. For a broad cumulative 
risk assessment, it is important to include better technology and advanced computa-
tional methods along with adverse outcome pathways (AOPs) research models [22]. 
In a review, Vermeulen et  al. have proposed different exposomic frameworks to 
manage ecometabolomics and associated risk assessment [23]. For example, a mul-
tilayer network-based framework can combine exposomic data with genomics and 
artificial intelligence-based data analysis. It provides an urban exposome frame-
work to access public health disparities and detection of vulnerable people with 
better disease surveillance [24–26].

3  Environmental Exposure and Role of Metabolomics

Environmental stressors are categorized into two groups: abiotic and biotic [27]. 
Abiotic stressors include pollution, other toxic chemicals, and climate change. 
Biotic stressors include pathogens and predation. Analysis of the metabolome of 
organisms exposed to environmental stressors provides insights into biological 

Metabolomics Approach in Environmental Studies: Current Progress, Analytical…



312

pathways which are being directly altered, allowing for a deeper comprehension of 
resulting phenotypic changes. In addition to environmental stressors, metabolomics 
has been used to study agricultural practices, such as fertilizer efficiency and fertil-
izer effect on animals. The measurement of metabolic changes due to fertilizer in 
plants and animals will aid in the development of the largest crop yield with lowest 
negative impact on the surrounding ecosystem. As in most biological domains, 
model organisms for the study of environmental metabolomics have been deter-
mined. These species have the greatest influence on our understanding of metabolic 
changes due to the ability to directly test variables of interest in controlled experi-
mental setups.

Xenobiotics are human-made, chemical substances, foreign to living organisms 
[28], which encompass pollutants and other toxic chemicals released into the envi-
ronment. Examples of xenobiotics include personal care products, pesticides, nano-
materials, and heavy metals. These materials are transferred into the atmosphere (air 
pollution), water (water pollution), and soil (land pollution). Each type of pollution 
can affect the metabolism of organisms living in different ecosystems, and metabo-
lomics has been utilized to study the influence of these toxins, demonstrating the 
negative impacts of pollution on the environment.

3.1  Pollutants Cause Changes in the Metabolome

Air pollution is composed of a combination of gaseous, volatile, semi-volatile, and 
particulate matter [29]. Air pollution has been shown to change lipid metabolism. 
Rat studies by Wang et al. [30] and Zhang et al. [31] concluded PM2.5, a fine par-
ticulate matter which is a major air pollutant, altered phospholipid and sphingolipid 
metabolism, and short-term air pollution resulted in an increase of lysophosphati-
dylcholines (LPCs) due to the activation of phospholipase A2, respectively. Human 
studies have also demonstrated an association between LPC changes and air pollu-
tion using a meet-in-the-middle approach with the SAPALDIA and EPIC cohorts 
[32] and randomized crossover trials using the Oxford Street II (London) and the 
TAPAS II (Barcelona) studies [33]. Air pollution also effects inflammatory and oxi-
dative stress pathways [29, 34]. Gaskins et al. conducted an experiment to study 
human reproduction in which the authors concluded N-methyltryptamine, 
1- methylnicotina-mide, and methyl vanillate were found to significantly mediate 
the association between air pollution and live birth [34]. Ritz et al. [35] studied air 
pollution exposure in third-trimester pregnancy and found associations between air 
pollution exposures with lipid-related metabolic pathways including fatty acid acti-
vation, de novo fatty acid biosynthesis, fatty acid metabolism, the carnitine shuttle, 
and glycerophospholipid metabolism. Oxidative stress in newborns can result due 
to modifications of these pathways. These studies reveal the power of metabolomic 
analysis on the determination of biomarkers that can be used as a potential screen-
ing for a successful pregnancy and healthy newborn, as women exposed to pollution 
with higher susceptibility to pregnancy termination can be better identified. Nassan 
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et al. studied the short-term [36] and long-term [37] exposure to air pollution in the 
same human cohort. Short-term exposure to air pollution was associated with sphin-
golipid and butanoate metabolisms, whereas long-term exposure was associated 
with glycerophospholipid, propanoate, sphingolipid, and glutathione metabolism. 
The overlap of sphingolipid alteration due to air pollution again amplifies the impact 
on lipid metabolism. Both studies identified pathways related to inflammation, oxi-
dative stress, immunity, and nucleic acid damage and repair. Gruzieva et al. pub-
lished a review containing ten studies related to air pollution influences on the 
metabolome [38]. Culmination of research involving air pollution exposure led to 
the conclusion that metabolites with pro-inflammatory effects generally tended to 
be upregulated, while anti-inflammatory metabolites appeared to be downregulated. 
Additionally, they stated that air pollution can perturb metabolic pathways in popu-
lations defined by asthma status, age, and sex. Analysis of organisms exposed to air 
pollution using metabolomics has increased our knowledge of specific alterations in 
metabolite abundance and metabolic pathways. This may lead to the ability to sug-
gest changes to current air pollution regulations and identify those who are most 
susceptible of negative health impacts in the future.

In addition to air pollution, the effects of water pollution on organisms have been 
elucidated using metabolomic analyses. Many wastewater treatment plants remove 
most, but not all, chemicals in contaminated water, including personal care products 
and pharmaceuticals. To understand the effect on the animal life surrounding two 
different wastewater treatment plants on Colorado’s South Platte River which pro-
duce increased estrogen levels downstream of each plant, NMR spectroscopy was 
performed on caged male fathead minnows [39]. Minnows downstream of the 
wastewater treatment plants were characteristic of higher levels of vitellogenin, a 
protein secreted by the liver in the presence of estrogen, and more abundant alanine 
and glutamate. These two amino acids were likely increased due to the high demand 
needed to perform biosynthesis of vitellogenin. Koubova et al. studied the meta-
bolic response of common carp previously living in a severely polluted treated 
wastewater pond, transferred from unpolluted water into a severely polluted treated 
wastewater pond, or transferred from a severely polluted treated wastewater pond 
into unpolluted water [40]. Carp moved from unpolluted water to polluted water had 
detectable pharmaceutically active compounds in their metabolism within 7 days. 
However, carp moved from polluted water to unpolluted water eliminated pharma-
ceutically active compounds 2 weeks after removal. This suggests it is possible for 
fish to expel pollution in a relatively short period of time. However, the metabolo-
mic analysis demonstrated alterations in fish metabolism 60 days after movement to 
unpolluted water. If testing was only performed to find the presence of pollutants in 
the fish, it is possible it would be unknown that the metabolome of the fish was dif-
ferent than a fish not effected by pollution. As humans consume fish living in these 
conditions, it is important to understand how the metabolic makeup of these fish 
differ from those living in unpolluted water, as there is a potential impact on the 
health of the person eating a fish with metabolic changes due to toxins. Mercury is 
an important water pollutant worldwide due to its ability to bioaccumulate as it is 
consumed through the food chain. Brandao et  al. used metabolomics to study 
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mercury toxicity by identifying changes in metabolites between fish in a severely 
contaminated region and fish from the same region in unpolluted water [41]. The 
fish in mercury-polluted waters had significantly increased levels of alanine, phos-
phocholine, glucose, and glutathione and significantly decreased concentrations of 
tyrosine, phenylalanine, taurine, and hypoxanthine. The most differential metabo-
lite between populations was phosphocholine, which was characterized by a 93% 
increase in fish living in mercury-polluted waters. It may be possible to use phos-
phocholine levels as a biomarker to measure mercury concentration. In addition to 
fish, other aquatic animals have been used to study the effect of water pollution. 
Damselfly larvae, aquatic invertebrates, were subject to metabolomic analysis 
before and after exposure to wastewater treatment plant effluents [42]. Metabolomic 
pathway analysis revealed significant differences in the D-glutamine and 
D-glutamate metabolism, and a nonsignificant, yet highly impacted, difference in 
the alanine, aspartate, and glutamate metabolism. This research by Spath et al. was 
also novel because the authors additionally studied behavioral responses of the 
damselfly larvae, which revealed an association between negative fitness conse-
quences and pollution exposure, even though larvae were only exposed to pollutants 
for 7 days. Metabolomics has allowed for a unique insight into changes in aquatic 
animals due to pollution, allowing for future tools to identify animals highly influ-
enced by contaminants, new data to support updating environmental practices from 
a political angle, and a deeper understanding of how polluted waterways can affect 
humans who are unable to obtain clean water.

Nanoparticles range in size from 1 to 100  nm and are waste products from 
numerous applications such as electronics, healthcare, energy, and consumer prod-
ucts, which are released into the soil and landfills to create land pollution [28]. 
These materials can affect the metabolome of plants exposed. Metabolomic analysis 
of pinto beans before and after exposure to CeO2 by spray or through soil resulted 
in downregulation of carotene, lycopene, and rhodopsin derivatives and upregula-
tion of keto-echinenone and glucosinolates [43]. Vecerova et al. studied the differ-
ence between metabolite concentrations for barley exposed to CdO nanoparticles 
and barley without exposure to understand the pollutant’s effect on fully developed 
higher plants [44]. The authors measured differences in concentration for primary 
metabolites such as amino acids and saccharides between the treatment groups. 
Experiments involving soil application of TiO2 nanoparticles to rice demonstrated 
an increase in proline, aspartic acids, glutamic acids, palmitic acid, glycerol, inosi-
tol, ribitol, phosphoric acid, and glycerol-3-phosphate and a decrease in organic 
acids, fatty acids, and sugars [45]. Interestingly, the uptake of nanoparticles was not 
observed in the crops, yet metabolic changes were present. Therefore, metabolomic 
analysis uncovered biological alterations in rice that may have been overlooked 
given the lack of measured contaminant. This is a very important takeaway because 
in situations where pollution may not be detected, organisms may still incur nega-
tive effects at a metabolic level. In addition to nanoparticles, polybrominated diphe-
nyl ethers (PBDEs) have been used as additives to consumer products and have been 
found in soil [28]. Metabolomic analysis of two strains of rice, YY-9 and LJ-7, upon 
exposure to the PBDE 2,2′,4,4′-tetrabromodiphenyl ether demonstrated different 
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responses for each rice strain [46]. LJ-7 was characteristic of increased abundance 
of 13 amino acids and 24 organic acids, whereas measurement of YY-9 metabolites 
resulted in decreased abundance of 13 amino acids and 19 organic acids. These 
outcomes suggest LJ-7 is tolerant of 2,2′,4,4′-tetrabromodiphenyl ether, and YY-9 is 
susceptible. Therefore, this analysis has demonstrated the ability of metabolomics 
to identify superior species for specific land effected by pollution. Metabolomic 
analyses have added an extra dimension to our understanding of land pollutants on 
biological mechanisms of plants, as controlled experiments allow for the precise 
measurement of changing metabolites, a more sensitive approach to identifying 
plants affected by pollutants, and the ability to determine optimal species for future 
farming in polluted areas.

3.2  Natural Sources Cause Metabolomic Alterations:  
Climate Change, Pathogens, and Predation

Climate change is another abiotic environmental stressor established to produce 
modifications of metabolomic markers. Under stressors due to climate change, such 
as drought, temperature, and salinity, increased production of amino acids, soluble 
sugars, the raffinose family of oligosaccharides, polyols, and polyamines has been 
validated in forest trees [47]. Correia et  al. studied drought-tolerant Eucalyptus 
globulus clones under stresses of drought, heat, and a combination of drought and 
heat [48]. Eucalyptus globulus subject to drought only had reductions in the levels 
of sugar phosphates, α-glycerophosphate, and shikimate, as well as increases in 
starch and nonstructural carbohydrates. Under heat stress alone, sugar alcohols and 
several amino acids increased, whereas starch, fructose-6-phosphate, glucose- 6- 
phosphate, and α-glycerophosphate were reduced. Unlike the drought-only condi-
tion, heat stress activated the shikimic acid pathway. When drought and heat stress 
were combined, accumulation of cinnamate was observed. Therefore, it was con-
cluded that the sum of individual stresses does not create the same effect as the 
combination of the stresses. This has important applications in future work studying 
ecosystems suffering from multiple influences of climate change. Ottow et al. ana-
lyzed metabolites of the tree Populus euphratica Olivier exposed to an environmen-
tal gradient of increasing salinity [49]. As more salt stress was added to the tree, 
increases in free amino acids, ammonia, γ-amino butaric acid, and citrulline were 
observed, demonstrating the effect of salinity levels on plant metabolism. A com-
prehensive review focused on metabolomic analyses of fruit under heat, drought, 
and irradiance stress provides an overview of changes in primary metabolites of 
sugars, organic acids, amino acids, and fatty acids, as well as secondary metabolites 
including polyphenols and terpenoids [50]. Climate change is driven by the addition 
of carbon dioxide (CO2) released into the atmosphere. The effect of multiple CO2 
levels, low to very high, on eelgrass plants from two different thermal environments 
demonstrated increased photosynthetic energy capture, sucrose formation, and 
growth [51]. This analysis suggests eelgrass under increased CO2 enrichment had 
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higher thermal tolerance, an indicator that eelgrass may counteract some effects of 
global warming. Using metabolomics, humans can determine the biological mecha-
nisms altered due to environmental changes for major food sources and attempt to 
rectify these alterations to create climate-resistant plants.

Pathogens are biotic environmental stressors, and the understanding of plant- 
pathogen interactions has been enhanced through metabolomics. Cultured tobacco 
cells were treated with different concentrations of the fungal sterol, ergosterol, and 
varying incubation times to uncover the metabolic response to the pathogen [52]. 
The metabolome alterations due to ergosterol addition, labeled the “defensome,” 
included an increase in terpenoid metabolites and other metabolites such as abscisic 
acid and phytosterols. Reviews by Heuberger et al. in 2014 [53] and Castro-Moretti 
et al. in 2020 [54] provide an overview of research using metabolomics to character-
ize multiple aspects of plant immunity. In addition to plant-pathogen interactions, 
metabolomics is beginning to be used to identify biomarkers as a diagnostic for 
pathogens in drinking water. Yu et al. showed the ability to separate between differ-
ent types of bacteria and N. fowleri, a lethal brain-eating amoeba, using principal 
component analysis of four metabolite profiles: two lipids, a nucleobase, and an 
amine [55]. This study demonstrates the power metabolomics has to discriminate 
between pathogens to identify potential safety hazards. As pathogens are abundant, 
it is imperative to recognize their impact on the organisms they effect, and metabo-
lomics is a powerful tool to assess the exact biological mechanisms altered upon 
interaction.

A biotic stressor, perhaps not receiving as much spotlight as the other environ-
mental stressors, is predation. Metabolomics allows for the study of physiological 
response to pressures from predators, an area not well understood. Differential 
metabolites in stool between cattle raised in low and high wolf pack interaction 
locations included amino acids and analogues, carbohydrates, carboxylic acids and 
derivatives, fatty acids, organonitrogen compounds, phenylpropanoic acids, and 
phenylacetic acids [56]. Zhang et al. measured the metabolome of the water flea 
Daphnia magna subject to different amounts of predators over 16 years [57]. This 
study concluded that increased predation pressure resulted in shifts in amino acid 
and sugar metabolism, and the subpopulation of water flea with the most predators 
had the strongest phenotypic response. To understand how the mud crab reacts to 
odor released by a predator, blue crabs were fed a diet which consisted of entirely 
mud crabs, partially mud crabs, and no mud crabs, and metabolomic analysis of the 
urine was conducted, as well as the recording of mud crab behavior [58]. The ability 
for mud crabs to detect varying levels of metabolites in the urine of blue crabs fed 
different diets was evident, as foraging decreased in the presence of blue crab urine 
produced after consumption of any proportion of mud crabs. Research involving 
mechanistic changes in response to predation may determine biomarkers that can be 
utilized to study current food chains, allowing for any necessary intervention if the 
prey is coming close to extinction, and may reveal new mechanisms used by organ-
isms to communicate the presence of danger.
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3.3  Fertilizer Exposure Disrupts Biological Mechanisms 
of Plants and Animals

Fertilizers perturb the metabolome of plants. Ehime Kashi 34, a hybrid cultivar with 
fruit, was exposed to three levels of potassium to test the change in metabolic pro-
files involved in fruit splitting [59]. Treatment of potassium resulted in upregulation 
of various glycoside metabolites and downregulation of levels of gibberellin and 
glycoside. The authors hypothesize the decrease of gibberellin in the flesh made the 
fruit easier to split. By measuring the change in metabolites, the authors were able 
to identify specific markers correlated with improvement of fruit splitting. Therefore, 
this method could be generalized to study the effect of fertilizers on numerous 
plants, allowing for the creation of optimal fertilizers and food with specific charac-
teristics. Ciampa et al. compared the effect of mineral and organo-mineral fertilizers 
on the metabolome of cultivar grape berries [60]. Valine, leucine, isoleucine, pro-
line, and malic acid were significantly different between berries under different fer-
tilizer usage, showing the ability to easily change the biological mechanisms of 
plants given specific nutrients. In addition, fertilizer combination with another agri-
cultural additive, pesticides, can have a large influence on the metabolome of ani-
mals. Metabolites of juvenile leopard frogs exposed to combinations of one fertilizer 
and two pesticides were compared to frogs without chemical exposure [61]. Treating 
frogs with each pesticide separately and together resulted in positive correlations 
with glycine, an important metabolite in glutathione metabolism. Frogs subject to 
fertilizer alone were characteristic of the most alterations of metabolites compared 
with controls, totaling 23. The authors concluded the main perturbations from expo-
sure to individual and combinations of agrochemicals had the greatest influence on 
gluconeogenesis/glycolysis, the glucose-alanine cycle, glutathione metabolism, and 
the urea cycle. Dichlorodiphenyltrichloroethane (DDT) is a well-known pesticide 
due to its detrimental environmental impacts. Transgenic injection of human p-tau 
protein, a biomarker of Alzheimer’s disease, in C. elegans with and without expo-
sure to DDT was performed to test the hypothesis that metabolomic analysis can 
determine whether DDT influences p-tau accumulation and, if so, its driving mech-
anisms [62]. The conclusion from this study was mitochondrial function was inhib-
ited by DDT exposure and p-tau, and DDT exacerbated the mitochondrial inhibitory 
effects of p-tau accumulation. Therefore, a synergistic effect of DDT and p-tau 
accumulation was discovered by studying the metabolome of C. elegans. This study 
is important because it portrays further evidence of the harmful effects of DDT and 
provides a methodology which other researchers can follow to probe the impact of 
other pesticides on animals. Meng et al. exposed male mice to the fungicide penco-
nazole and its enantiomers ((±) – PEN, (+) – PEN, and (−) – PEN) to understand 
metabolic changes on liver function in nontarget animals [63]. All penconazole 
treatments resulted in the development of liver metabolic disorder, and mice exposed 
to (±) – PEN and (−) – PEN had observed regulation of fatty acid and triglyceride 
synthesis, as well as regulated fatty acid β-oxidation pathways, leading to the sig-
nificant accumulation of lipids. Finally, pink shrimp were exposed to the 
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benzoylurea chitin synthesis inhibitor teflubenzuron, an insecticide widely used 
against sea lice, showing an association between teflubenzuron and reduced 
N-acetylglucosamine, due to the insecticide’s inhibitory effect on chitin synthesis, 
and energy metabolism [64]. Metabolomics provides a tool to assess the current 
impacts of fertilizers and pesticides on a multitude of organisms. It may be possible 
to formulate optimal chemicals which induce the necessary growth additives and/or 
insect deterrents while also guaranteeing a non-harmful effect on the environment.

3.4  Model Organisms Allow for the Scientific Study 
of Environmental Factors

The use of model organisms is widespread in biological disciplines. Environmental 
metabolomics has adopted many of these models to study a multitude of stressors in 
different ecological systems, as each organism provides a unique characteristic that 
makes it an optimal candidate for studying the effects of the environment. Danio 
rerio (zebrafish) has cost-effective breeding conditions, a genome similar to the 
human genome, and high productivity [1]. Caenorhabditis elegans has a well- 
characterized genome, easy maintenance, body transparency, and sensitivity to 
chemical toxicants [1]. Oryza sativa (rice) is a part of diets worldwide, and there-
fore its maintenance and optimization are a necessity for the growing population. 
Kim and Kang published a review in 2021 of environmental toxicants on model 
organisms, summarizing the effects of different pollutants on model organisms, 
shown in the table below (Table 1) [65].

3.5  Specific Compounds and Their Effects on Human Health

In addition to the extensive research conducted on plants and animals to understand 
environmental stressors, the effect of specific compounds, such as heavy metals, 
organohalogens, and persistent organic pollutants (POPs), on human health has 
been deduced. Heavy metals have been demonstrated to cause changes to metabolic 
processes. Volunteers surrounding a closed zinc smelter which increased environ-
mental cadmium levels gave urine samples to test if there were associations between 
urinary cadmium and metabolite abundance, thus defining the metabolic signatures 
of exposure to cadmium [89]. The authors reported a negative correlation between 
urine cadmium and 3-HV, DMG, creatinine, creatine and 4-DEA, and a negative 
correlation between urine cadmium and citrate. This study demonstrates the ability 
for metabolomics to identify biomarkers of response to pollutants at true environ-
mental concentrations. A study of 610 pregnant women found an association 
between aluminum concentration and gestational diabetes mellitus (GDM) [90]. 
Additional metabolomic profiling conducted found correlations between plasma 
aluminum and polyunsaturated fatty acids (PUFAs) and led to the conclusion that 
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n-6 PUFAs could be potential mediators for the relationship between aluminum 
exposure and the risk of developing GDM. At multiple time points, arsenic was 
measured in the water supply of an area in Bangladesh and in 112 participant urine 
samples from this area, and participant metabolite abundances were taken [91]. 
Significant associations with water or urine arsenic included 1,2-dithiane-4,5-diol, 
l-threonine, phosphoric acid, pyroglutamic acid, (R*,S*)-3,4-dihydroxybutanoic 
acid, and succinic acid. This study determined long-term reproducible urinary 
metabolites associated with arsenic exposure.

Organohalogens, compounds with at least one halogen bonded to a carbon, are 
associated with metabolic disorder. Trichloroethylene (TCE) has been linked to dif-
ferent cancers, and therefore 80 exposed workers and 95 controls were included in 
a metabolomic analysis to discover TCE’s mode of action [92]. Response to TCE 
included disruption in purine catabolism and decreases in sulfur amino acid and bile 
acid biosynthesis pathways. Many metabolites were associated with TCE exposure 
including uric acid, glutamine, cystine, methylthioadenosine, taurine, and chenode-
oxycholic acid. An enriched level of uric acid has been identified as a marker of 
kidney disease, thus suggesting TCE has the potential to drive this phenotype. Wang 
et al. investigated the effects of polycyclic aromatic hydrocarbons (PAHs) on 566 
subjects split into a control and exposed group [93]. Significant changes elicited by 
PAHs were observed in amino acid, purine, lipid, and glucuronic acid metabolism, 
and 1-hydroxyphenanthrene and dodecadiene-L-carnitine were identified as poten-
tial biomarkers for PAH exposure, allowing for the potential to create a future diag-
nostic through metabolomic screening.

Persistent organic pollutants (POPs) are highly lipophilic compounds resistant to 
degradation with a tendency to bioaccumulate [29]. Hu et al. analyzed DDT and its 
degradation products DDE, specifically p,p’-DDT, o,p’-DDT, and p,p’-DDE, in 397 
maternal serum samples collected during pregnancy to identify their impact on the 
metabolome [94]. Results indicated two shared pathways (glycine, threonine, ala-
nine, and serine metabolism and phosphatidylinositol phosphate metabolism) 
between all exposures, three pathways (urea cycle/amino groups, arginine and pro-
line metabolism, aspartate and asparagine metabolism) between p,p’-DDT and o,p’-
DDT but not p,p’-DDE, and multiple pathways including fatty acid metabolism and 
carnitine shuttle uniquely impacted by p,p’-DDE.  Interestingly, the degradation 
products of DDT initiated a very different response from DDT itself, demonstrating 
the specificity of each toxicant on the metabolome. Perfluoroalkyl substances 
(PFASs) are POPs which have been studied in a cohort of 965 individuals in Sweden 
to determine correlations between metabolites with 6 different PFAS levels [95]. A 
total of 15 metabolites, most from lipid pathways including glycerolipids, glycero-
phospholipids, and fatty acids were associated with one or more PFAS. Significant 
enrichment of glycerophospholipid metabolism, linoleic acid metabolism, and 
α-linoleic acid metabolism was discovered using metabolic pathway analysis tool 
MetaboAnalyst 3.0. A type 2 diabetes (T2D) case-control study of 187 matched 
pairs was conducted under the hypothesis that there is an association between T2D 
and PFAS [96]. The authors concluded a positive correlation with PFAS and nega-
tive correlation with T2D for glycerophospholipids, and a negative correlation with 
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PFAS and positive correlation with T2D for diacylglycerols, suggesting the influ-
enced lipid species of PFAS have opposite relations with T2D.  Polychlorinated 
biphenyls (PCBs), in the class of POPs, was studied in maternal and umbilical cord 
serum in 93 patients to determine changes in biological pathways and identify bio-
markers of PCB exposure [97]. In a machine learning random forest model of 
metabolite abundances, citraconic acid level in maternal serum, as well as ethanol-
amine, p-hydroxybenzoate, and purine in umbilical cord serum, predicted high or 
low level of PCB with an area under the receiver operating characteristic curve 
greater than 0.70. This result suggests a relatively high ability for few metabolites to 
discriminate between high- and low-PCB exposure, potentially to be used as bio-
markers in the future to determine the risk of PCB-related health problems for the 
fetus. A study encompassing multiple POPs across populations from Europe dis-
covered sphingolipid and glycerophospholipid families to be significantly altered 
upon comparison of subjects exposed to both the class and concentration (high and 
low) of POPs [98]. The authors conclude, through metabolomic profiling, biomark-
ers of different types of POP exposure can be discovered. Metabolomics provides 
the foundation upon which researchers can identify specific physiological changes 
in humans due to environmental stressors, determine populations at high risk for 
developing health problems by profiling different geographical locations likely to 
be impacted by pollutants, and discover specific metabolites to be used as diagnos-
tic tools in healthcare through large studies.

3.6  Precision Environmental Health Monitoring

As metabolomics has been utilized on large-scale studies to uncover mechanisms 
for human interactions with the environment, a very new focus on precision medi-
cine has influenced the development of research involving the study of a single 
individual with substantial amounts of data measured multiple times over a speci-
fied time period, published in 2022 by Gao et al. [99]. The goal of this experiment 
was to dissect the complexity and heterogeneity of individualized environmental 
exposures, i.e., the physical, chemical, and biological components collectively in 
the human external and internal environment, termed the exposome. Over 52 days, 
blood and stool samples were taken from the participant to perform tests on the gut 
microbiome, proteome, metabolome, toxins and carcinogens, cytokines, and blood 
tests. Exposome-metabolome analysis identified positive metabolite correlations 
with the biological component fungi, and the chemicals salicylic acid, dinoseb, and 
dibromoethane. Protein digestion and absorption and aminoacyl-tRNA biosynthesis 
were metabolic pathways significantly correlated with both chemical and biological 
exposomes. The authors also discovered 19 highest-degree metabolites related to 
protein metabolism, inflammation, and kidney and liver functions, indicating a pos-
sible link of these metabolites directly to responses of the exposome. This first of a 
kind study demonstrates the capability of metabolomics to discover personalized 
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metabolic changes, possibly leading to tailored recommendations for optimal health 
for the individual studied and will serve as a model for future research.

4  Recent Advancements in Ecometabolomics 
and Biomonitoring

Ecometabolomics is still at a nascent stage of development compared to the applica-
tion of metabolomics in other fields such as biomedicine and nutrition. Nevertheless, 
a continuum of developments in analytical techniques allows ecometabolomics 
applications to increase every year, making it a powerful tool for studying the envi-
ronment. There have been rapid advancements at every focal point of ecometabolo-
mics and biomonitoring that include technological improvements in sample 
preparation and identification methods, advancements in conducting field experi-
ments studying stress responses in organisms, and bioassessment strategies being 
employed for monitoring [12]. The number of applications for which environmental 
metabolomics is being utilized is also ever-increasing, including but not limited to 
understanding responses of organisms to biotic pressure, studying the effect of 
anthropogenic pollutants on aquatic and terrestrial life and assessing organismal 
responses, characterizing aerosol composition in the environment and its impact on 
ecosystem [100], etc. In this section, we would be highlighting recent examples and 
novel developments in the field of environmental metabolomics.

4.1  Advancements in Conducting Field Experiments

While ecometabolomics studies are being performed in the laboratory commonly 
for some time now, a huge effort is being made to extend effect-based monitoring to 
the field as well. Such field-based investigations have been conducted in terrestrial 
as well as aquatic environments. Metabolomic data gathered from on-field experi-
ments are proving to be a powerful tool for complementing laboratory-derived data, 
to gain deeper insight into the effect of various stressors on the environment [101].

In a study by Skelton et al., metabolomics was employed for in situ monitoring 
of surface waters impacted by point and nonpoint source water contaminants [101]. 
Male fathead minnows (Pimephales promelas) held in mobile monitoring units 
were exposed to surface waters upstream and downstream from the effluent release 
site and at the site of effluent release as well. NMR and GC-MS analysis success-
fully revealed significant differences in the liver metabolome of minnows exposed 
to surface water with varying degrees of agricultural and industrial activity [101]. 
Majority of the terrestrial studies performed focus on the aboveground tissues and 
belowground tissues are largely ignored. In recent years, there have been exciting 
developments in the collection and untargeted analysis of plant root exudates in 
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response to biotic and abiotic stressors [102–105]. Changes in the root exudate 
composition play a vital role on the plant itself, soil properties, soil microbes, and 
the plants around it. A study by Gargallo-Garriga et al. successfully establish an 
experimental drought gradient and subsequent recovery for identifying the changes 
in root exudates in Quercus ilex (Holm oak) [102]. In another laboratory bioassay, 
the allelopathic influence of Alfalfa genotypes on annual rye grass has been ana-
lyzed by conducting a metabolomic analysis of the root exudates of Alfalfa geno-
types using quadruple time of flight [105].

Aerosols play a pivotal role in controlling the functioning of the ecosystem and 
atmospheric composition. In a first-of-its-kind study by Guenther and group, an 
efficient and detailed methodology for characterizing the chemical composition of 
low-molecular-weight compounds, by employing liquid and gas chromatography- 
mass spectrometry (MS) and Fourier transform ion cyclotron resonance MS 
(FT-ICR-MS), has been described to gain a deeper insight into the aerosol-biosphere 
interface [100]. In the study, aerosols collected in different seasons, at different 
levels of biological activity, were analyzed, and despite the sample complexity, they 
could identify clear changes in the composition of aerosols at higher levels of bio-
logical activity. This strategy thus demonstrates a novel approach to understanding 
the biosphere-aerosols dynamics and could improve the identification and quantifi-
cation of biomarkers [100].

4.2  Advances in Biomonitoring and Bioassessment

Biomonitoring involves supervising an environment or organism based on biologi-
cal responses. Initially, sensitive species (sentinel species) in an environment such 
as planktons, lichens, bryophytes, etc. were monitored for assessing environmental 
health and detecting changes that may impact human society [106]. With advance-
ments in the omics approach especially metabolomics, minute changes in organ-
isms in response to stressors can now be monitored. Since the last decade, 
environmental metabolomics has been at the helm of monitoring the impact of vari-
ous biotic and abiotic stressors on the different components of the ecosystem [107]. 
Using a wide variety of both model and non-model organisms, metabolomics has 
assisted researchers in discovering and validating biomarkers with accurate diagno-
sis [108].

Identification of biomarkers in the terrestrial and aquatic environments is useful 
in assessing changes in signaling at the molecular level and preventing deleterious 
effects in the population [107, 108]. Changes in metabolome precede pathological 
changes, and identifying early response biomarkers would enable more efficient 
testing [109]. Furthermore, identifying early changes in metabolome also has the 
potential to predict changes at a higher level of organization [110]. Taylor et al. have 
employed metabolomic analyses to discover early response biomarkers that can pre-
dict chronic reproduction fitness in Daphnia magna, reducing the testing time from 
21  days to 24  h [109]. In another study by Hines et  al., a metabolic signature 
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predicting whole-body toxicological stress has been identified. They exposed 
marine mussels to copper and pentachlorophenol and measured the metabolic fin-
gerprint predictive of overall fitness and scope for growth. The identified signatures 
could accurately predict decreased fitness in animal samples from a contaminated 
site in comparison to a rural site [111].

Several metabolomic studies have successfully scrutinized data sets belonging to 
polluted and nonpolluted areas, identifying even minute changes between the two 
[107, 112–114]. To employ metabolomics as a diagnostic tool for ecotoxicological 
research in polluted areas, it is essential to test if biomarker profile analyzed across 
different field sites with varying physicochemical properties remains relevant. This 
has been assessed in a study by Bundy et  al. where they collected earthworms 
(Lumbricus rubellus) from sites with radically different soil types with metal con-
tamination, and despite the drastic difference in soil properties, the biomarker pro-
files from all the sites could discern metabolites specific for zinc contamination [115].

Further studies have also proven that metabolic responses in an organism are 
governed by its ontogeny. Wu et al. demonstrated differential metabolic responses 
in different life stages of mussels (Mytilus galloprovincialis) as a result of cadmium 
exposure. The contaminant induced osmotic stress in all three stages. The larval and 
juvenile mussels exhibited higher sensitivity to cadmium, while adult mussels inter-
estingly sustained cadmium exposure by decreasing their energy requirements 
[116]. Neonate and adult Daphnia magna were also found to respond uniquely to 
sub-lethal level exposure to atrazine and perfluorooctane sulfonic (PFOS) acid, but 
not so much difference was observed with propranolol exposure [113]. These 
reports indicate that the metabolic responses of species are controlled by the con-
taminant and stage of development. Unlike many monitoring techniques, metabolo-
mics has the potential to distinguish between stressors in a multi-stressor 
environment. This has been demonstrated in a study by Khan et al., where exposure 
to two different metals, lead, and cadmium resulted in different metabolic profiles 
for each metal toxicity supporting the applicability of metabolomics as an effective 
biomonitoring tool in presence of multiple stressors [117]. Additionally, Izral et al. 
exposed crayfish to varying nutrient and dissolved oxygen concentrations (high, 
medium, and low) to identify if metabolomic analysis can be effectively employed 
as a bioassessment tool [118].

Sun et al. published a review in 2022 identifying different biomarkers and associ-
ated metabolic diseases as a result of exposure to various metabolism-disrupting 
chemicals (MDCs) in both animal experiments (Table 2, Fig. 2) and human epide-
miological studies (Table 3, Fig. 2) detailed in the tables below [119].

5  Challenges of Eco-Metabolomics

The ecological system is complex and requires expert analysts with an extensive 
understanding of biology, chemistry, statistics, and data science. Besides this lim-
ited detection ranges and narrow molecular resolution of NMR and MS devises also 
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Fig. 2 Summaries of disrupted metabolic pathways within which biomarkers were identified 
responsive to metabolism disrupting chemicals (MDCs) in animal (left) and human (right) studies. 
The circular chart shows the number/proportion of major metabolic biomarkers identified after 
exposure to each type of environmental pollutants found through literature search. We labeled the 
four metabolic pathways and other metabolic pathways with different colors. (Figure and caption 
are adopted from reference [119])

require attention. Due to the multi-subject nature of environmental samples and 
narrow range of signals, it is important to have a single reliable analytical platform 
for consistent identification of all metabolites, chemicals, and pollutants within a 
single sample.

An additional challenge in the study of environmental metabolomics is the lack 
of agreement on a standardized pipeline for analysis. One fact important to under-
stand about the concentration of chemicals in organisms is that their exposure pat-
tern, uptake, metabolism, and half-life result in large fluctuations over time [120]. 
Therefore, it may be difficult to compare the effects of chemicals on different organ-
isms, or even on the same organism with multiple measurements taken. It is a neces-
sity to carefully design each experiment such that confounders have a minimal 
impact on the conclusions and potentially create guidelines for what confounders to 
consider for specific situations. As a result, metabolomic deductions will have a 
greater chance to be reproducible. The opinions of experts have been culminated to 
determine the best procedures for metabolomic studies. Evans et al. conducted a 
survey using a six-page questionnaire to collect the quality assurance (QA) and 
quality control (QC) practices used in the laboratories of 23 volunteers [121]. 
Commonly used methods included system suitability assessments, sample run- 
order randomization, balancing, authentic chemical standards, various quality con-
trol samples such as pooled-QC/intra-study QC samples and blanks, compound 
identification practices, assessment of integration accuracy, and PCA for quality 
tthe frequency of injections utilized by practitioners, the specific acceptance criteria 
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for the process of filtering/removing peaks based on the reproducibility of aligned 
peaks in the technical replicates of a pooled QC/intra-study QC sample, and some 
quality assurance practices. The difficulties with QC in metabolomics are mostly 
attributable to untargeted analyses, as targeted analyses have clear guidelines for 
analytical validation and the parameters to be reported are available [120]. Viant 
et al. name the ordered steps in the metabolomics pipeline, all of which need to be 
standardized to produce reproducible and reliable research: experimental design, 
quality assurance, quality control, sampling and extraction, data acquisition, data 
processing, statistical analysis, metabolite annotation and identification if an untar-
geted study, and data management (Fig. 3) [122]. Once there is consensus about this 
pipeline, there may be a large increase in metabolomics-based usage, as the benefits 
of using an unstandardized pipeline have already been shown to be extremely 
impactful on the study of the environment.

Data reporting is a necessity for all scientific studies, yet there is no standardized 
protocol of what is important to report for environmental metabolomics. One reason 
for the lack of a common data reporting standard is the many different applications 
metabolomics can be used for. The metabolomics standards initiative in toxicology 

Fig. 3 Proposed management strategy for metabolomics data from a regulatory toxicology study. 
The strategy benefits from several existing access-controlled and public resources and would allow 
compliance standards to be checked by the chemical regulator (illustrated here for Europe) as well 
as open the potential for (metabol)omics data reuse subject to approval by the industry owner. One 
area of development is to align metadata standards between the regulatory compliance and com-
plete data paths. (Figure and caption are taken from [122])
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(MERIT) project has attempted to bridge this gap by presenting multiple scenarios 
using metabolomic analysis and identifying components important from the pur-
pose, methods, data processing and analysis, and conclusions to report in scientific 
writing (Fig. 3) [122]. Numerous factors affect the metabolome and environmental 
chemical concentrations, including age, sex, ethnicity, health status, diet, and life-
style in general [120]. Therefore, it is important to report these attributes in both 
human and other organism studies when applicable, as these variables may have a 
larger effect size on the metabolome than the environmental stressor. If publications 
do not report these variables, different populations may be used, and results may not 
be reproducible. The OECD Extended Advisory Group for Molecular Screening 
and Toxicogenomics (EAGMST) created a metabolomic reporting framework 
(MRF) which suggests reporting extraction method details, internal reference stan-
dards, quality control samples, blank sample processing, details of mass spectrom-
etry and NMR acquisition data (instrument method, untargeted/targeted approach, 
chromatography details), data reduction approaches (feature detection/peak pick-
ing, retention time alignment, grouping), methods of metabolite quantification and 
identification, and the univariate/multivariate data analysis methods used [1]. These 
considerations are under review, as multiple trials are testing these guidelines to 
develop an optimal, standardized pipeline for metabolomics.

The development of new methods in environmental metabolomics will expedite 
the ability to determine the impact of current and future environmental practices, as 
well as the changing environment due to global climate change. To ensure reliability 
and reproducibility in a field characterized by the study of very large biological 
variation between measurements, the number of samples in an experiment must be 
high enough to determine an accurate representation of the health impacts of the 
variable of study [1]. However, it has been noted that it is difficult to estimate the 
sample size needed in exposomic studies, as this depends on multiple parameters 
including experiment design, analytical variability, and minimum measured con-
centration difference expected [1]. Therefore, suggestions to conduct a small pilot 
study to estimate the necessary sample size, optimally combined with multivariate 
simulation, have been made [1]. One area of focus in environmental metabolomics 
that would benefit greatly from these practices is the study of multiple compounds 
at once, as it will be necessary to ascertain the potential synergistic or antagonistic 
effects of these co-exposure and cocktail mixtures [119]. The determination of how 
many chemicals combine to produce a final impact will allow researchers to create 
new beneficial cocktails, as well as reduce current chemical mixtures which cause 
harmful effects.

6  Future Perspective of Environmental Metabolomic

Environmental metabolomics is an effective approach to studying ecotoxicity and 
the mode of action (MoA) of environmental contaminants. The last two decades 
have witnessed exciting advancements in metabolomics and have made it a routine 
approach in environmental science. With all the innovation in environmental 
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metabolomics, it has a fundamental problem of not having a simple and universally 
accepted approach for understanding the mechanistic details with reverse engineer-
ing from the metabolomic data. This problem persists in model species and becomes 
even more complicated in non-model organisms. Despite the tremendous progress, 
there are some critical challenges in metabolomics such as designing standardized 
methods, compatible software, and well-recognized databases to validate and inter-
pret the results. The progress in these aspects will primarily determine the future of 
environmental metabolomics. Keeping this in mind, here we are discussing some 
fundamental areas which need more effort for the rapid advancement of metabolo-
mics in environmental science.

6.1  The Need for Standardizing Protocols

The progress of ecometabolomics was directly impacted by the advancement in 
analytical chemistry. New analytical techniques, such as gas chromatography (GC) 
and high-performance liquid chromatography (HPLC) in combination with high- 
resolution mass spectrometry (MS), help in the detection, quantification, separation, 
and characterization of novel metabolites. In general, the current metabolomics 
research is driven mainly by NMR and chromatography-coupled MS approaches, 
which need to be improved to better identify and quantify critical metabolites in a 
sample. Despite the tremendous advancement, one primary challenge is the lack of 
standardized methods. The standard methodologies for the collection and pretreat-
ment of samples, data acquisition, processing, and analysis are still not well defined. 
To overcome these aspects, in addition to information on mass spectra and ioniza-
tion sources, well-defined analytical conditions and parameters, such as column 
type used in chromatography, could greatly help in metabolite identification. 
Including the information about the fragments and collision energy in the database 
can also be helpful. Inefficient metabolite recognition is one of the major limitations 
of metabolomic studies since many metabolites detected by NMR and MS have an 
unknown chemical nature.

Metabolomics can also be applied to detect molecular changes in organisms that 
are exposed to real mixtures of contaminants at an environmentally relevant concen-
tration. The combined use of NMR spectroscopy and MS can be more insightful in 
terms of providing a holistic picture of the altered metabolic pathways and MoA of 
contaminants. A single metabolomic profiling approach is not capable of detecting 
all the metabolites in a biological sample due to the huge complexity of the metabo-
lome. Therefore, it demands a combined usage of advanced analytical approaches 
to improve the coverage and propose useful biomarkers for environmental monitor-
ing. Consequently, a deep understanding of biomarkers will help in keeping track of 
the ecosystem in an effective, rapid, and routine manner. However, using metabolo-
mics to determine early threat signals for environmental biomonitoring and assess-
ing ecological risk is one of the primary challenges [123]. The environmental 
samples are very complex mixtures of organic material and toxic metals. Profiling 
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of the metal ions that take part in various biological processes in combination with 
proteins and metabolites is known as metallomics [124]. Combined application of 
metabolomics and metallomics can provide a deeper understanding of the detoxifi-
cation processes of living organisms after contamination.

Majority of the research done on environmental metabolomics has been focused 
on understanding aquatic environments. Accordingly, the research was aimed 
toward identifying biomarkers to assess pollution and have been based on whole 
organismal metabolomics using typical small fish models. Importantly, now bio-
fluid is expected to be examined thoroughly since it represents the organism’s health 
status at a given time and it is easy to collect and needs less sample preparation. For 
example, urine (a low-protein biofluid) can be directly used for analysis after dilu-
tion. Consequently, such approaches might facilitate the automation in metabolo-
mics, which is a crucial challenge in near future. More importantly, this will help in 
examining many samples in relatively less time for environmental monitoring. In 
addition, application of environmental metabolomics on plants is providing useful 
information about the soil contamination and helping the development of novel 
phytosanitary compounds. Altogether, this is facilitating a comprehensive environ-
mental assessment by involving test organisms with less ethical issues.

6.2  Developing Reliable Databases

Metabolomic studies are broadly grouped into two categories: targeted and untar-
geted metabolomics. Targeted metabolomics examines the qualitative data collected 
from a pre-defined set of compounds, whereas untargeted metabolomics investi-
gates a broader range of metabolites to identify new compounds [125]. The datasets 
in untargeted metabolomics are large and multidimensional. Even though tremen-
dous advancements have been done in developing computational programs to pro-
cess mass spectrometry data, better tools are still required for organizing metabolites 
and their associated metadata to compare different experiments. The information 
about organic compounds such as metabolites can be found in two types of data-
bases. The first type of databases includes PubChem [126], ChemSpider [127], and 
METLIN [128] simply store the chemical information of a compound without con-
sidering its source. These databases are useful in getting information of metabolites, 
but they do not provide the environmental context as they do not have metadata. 
Contrary to this, the second type of database that includes MetaboLights [129, 130] 
contains the experimental metadata. However, MetaboLights provides information 
about only known metabolites highlighting the need for a database giving informa-
tion about the unknown compounds along with the associated experimental meta-
data. In comparison to other omics databases, a metabolomic database has different 
complexities as the chemical nature of genes and proteins is simpler than metabo-
lites due to a fewer diversity of building blocks. For example, the genomic sequences 
are constituted by a combination of four or five nucleotides (A, G, C, T, or U). 
Therefore, a nucleic acid database like GenBank [131] has less chemical 
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complexity, and the errors are primarily due to the interpretation of the data such as 
annotation of genes and assessment homology. Opposite to this, metabolites are 
extremely diverse as they do not have common building blocks like nucleic acids 
even though they share common elements such as C, H, N, O, S, and P. In addition, 
interpreting mass spectrometry-based metabolomic data becomes more compli-
cated since a metabolite can be present in one or more adducts having different 
mass-to-charge value, e.g., [M+Na]+ or [M+H]+. Furthermore, there are errors in 
measuring mass- to- charge value depending upon the type of instrument used. 
Currently, available metabolomic reference databases have information about a 
huge number of metabolites (in hundreds of thousands), but only 5% of them have 
experimental data from pure standards [132]. Furthermore, in toxicological research, 
distinguishing the metabolic changes happening due to the toxicant or other dam-
age, and variability among individuals, and for an individual under different situa-
tions is often technically tricky. Altogether, these limitations are highlighting the 
need for well-designed databases that are recognized by the scientific community 
for validating and interpreting the results.

6.3  Advance Applications of Metabolomics in Assessing 
Occupational Health Exposure

The health concerns associated with chemical exposure at the workplace are con-
tinuously increasing [133–135]. Metabolomics has emerged as a novel method for 
measuring diverse chemicals in biological samples that can provide information 
about new biomarkers, toxicological mechanisms, and biological effects associated 
with occupational exposure [136, 137]. Appropriate measurement of harmful effects 
of occupational exposure to chemicals is a high priority for health workers. This is 
done mainly in two ways: air monitoring and biological monitoring [138]. In the 
traditional air monitoring process, samples are collected from the breathing zone of 
professionals for examination, but it has various limitations considering that many 
unknown chemicals have no streamlined pipeline for sampling and analysis [139, 
140]. Generally, with an established method, only a single chemical is measured 
even though exposures at workplaces are a complex mixture of chemicals. Variables 
such as diet, drinking, and smoking habits further complicate the analysis of these 
exposures [141, 142]. Consequently, these challenges can result in an incorrect 
assessment of occupational exposure studies. In addition to air monitoring, biologi-
cal monitoring also has challenges that include a lack of proper Biological Exposure 
Indices (BEI) for many frequently used chemicals in the industry limiting assess-
ment of their adverse health effects [143]. Together, these challenges highlight that 
assessment of occupational exposure is a relatively difficult task and therefore 
demands an urgent need to conduct experiments to get accurate and relevant infor-
mation regarding unexpected exposures. Metabolomics is used to characterize 
metabolomic modulations and biochemical responses in professionals with diverse 
chemical exposures [144]. To address these challenges, metabolomics can serve as 
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an important tool by using it for biomarker discovery, early diagnosis of occupa-
tional disease, investigating low-level exposure, interaction of mixed exposure, and 
dose-response relationship.

Metabolomic studies on occupational exposures highlight that metabolomic pro-
filing of professionals has great potential in biomarker discovery for exposure and 
disease, and provides deeper insight into the underlying mechanisms of these dis-
eases. Using metabolomics in their studies, the occupational health researcher can 
provide critical insights into exposure with very limited or no toxicological infor-
mation. Metabolomics has also empowered research directed toward examining the 
effects of chemical or nonchemical exposures and discovering key biomarkers to 
determine potential toxicity. Taken together, metabolomics serves as a key approach 
for facilitating occupational research and should be included in evaluating health of 
professionals suspected to encounter harmful occupational exposures.

6.4  Exposomes and Wearables

As consumer health monitoring has become increasingly common, driven by wear-
ables such as Fitbit, the emergence of an exposome tracking device has been created 
as a silicon wristband. This technology uses passive sampling to capture the per-
sonal exposure of individuals to chemicals encountered daily, including PAHs, oxy-
genated PAHs, flame retardants, and pesticides [145]. Studies have combined 
exposome readings of silicon wristbands with metabolomics to develop additional 
PAH exposure assessment tools, such as the wristband, to improve public health 
research pertaining to PAH exposure [145]. Identification of correlation between 
wristband PAH level and OH-PAH urine metabolites demonstrated the ability for 
the accurate discovery of some environmental toxins. This is important because 
PAHs metabolize quickly, and therefore exposure to PAHs even up to a few hours 
before urine collection may not be quantified using metabolomics. Research focus-
ing on the silicon wristband’s ability to capture semivolatile organic compounds 
(SVOCs) in nail salons discovered exposure to certain phthalates, phthalate alterna-
tives, and OPEs, with metabolites of DEHTP showing the largest increase across a 
workday [146]. Pre- and post-shift urine were sampled to measure changes in 
metabolites during this period, which led to the conclusion that phthalate alternative 
di(2-ethylhexyl) terephthalate (DEHTP): mono(2-ethyl-5-carboxypentyl) tere-
phthalate (MECPTP) more than tripled from 11.7 to 36.6 μg/g creatinine, the great-
est shift in the concentration of all metabolites. Detection of SVOCs was found 
using both wristbands and urine samples, making them a viable tool for examining 
potential occupational exposures to SVOC. The company MyExposome is the dis-
tributor of silicon wristbands designed to record the exposure of the individual to a 
wide variety of important chemical compounds, thereby informing that person, and 
society-at-large, about the presence or absence of critical chemical exposures in 
every tested individual’s environment [147]. Currently, wristbands can measure 
endocrine-disrupting compounds, consumer and personal care products, PAHs, 
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PCBs, pesticides, and flame retardants. As additional studies on environmental 
exposure are reported and the many effects of chemicals are realized first by scien-
tists and then the public, it is possible that an increase in consumer demand for the 
MyExposome silicon wristband will occur.

7  Conclusion

With the development of next-generation omics and analysis instruments (NMR 
and MS), applications of metabolomics are constantly expanding. Advanced devel-
opments in computational tools for feature determination, it is now easy to detect 
and characterize many unknown molecules and chemicals. This is opening new 
avenues to better understand living organisms and the environment. Ecometabolomics 
is arising as a unique branch of metabolomics and helping ecologists to find out the 
unexplored role of various environmental factors, chemicals, and pollutants in the 
ecosystem’s functioning.

This chapter has described expanding landscapes of ecometabolomics and 
described its applications, challenges, technicalities, and future perspectives. Due to 
the variable nature of the samples and models, it is difficult to develop a unified 
protocol with greater reproducibility. Besides this, a robust broad-spectrum metabo-
lite library would also be useful to reduce the complexities associated with variable 
results. It will enable global collaborations and data exchange among researchers 
from different disciplines and expertise. We have described several environmental 
stressors (abiotic and biotic) and their impacts and relationship with pollution and 
environmental health. The inclusion of metabolomic analyses has expanded our 
comprehension of the impact of land pollutants on plant biology. Controlled experi-
ments provide a precise measurement of fluctuating metabolites, offering a more 
discerning approach to identifying plants that are influenced by pollutants, and 
facilitating the determination of optimal plant species for future farming in polluted 
regions. We have learned that extensive research is being conducted using metabo-
lomics to understand the biological mechanisms perturbed by environmental stress-
ors on both animals and plants.

As humans continue to pollute extensively and use potentially harmful fertilizers 
and pesticides, it is imperative to continue researching the overall impacts on the 
metabolomes of organisms, as this may allow for the creation of novel methods 
which improve animal and plant health. These impacts would reach humans as eco-
systems would return to balance, food sources would become more stable, and pos-
sibly even increase production. Identification of metabolite biomarkers to specific 
chemicals may act as a diagnostic tool to identify organisms at risk of developing 
health problems due to exposure. While there is great potential for metabolomics to 
enhance the study of environmental impacts, there are still challenges that need to 
be overcome. Looking ahead, we also recommend some future directions for eco-
metabolomics such as method standardization, different efforts, and projects to 
develop reliable databases, applications in occupational health monitoring, and 
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futuristic wearable detecting exposome. In conclusion, ecometabolomics has the 
potential to understand the chemical ecology of our environment. However, chal-
lenges still exist, and more efforts are required toward collaborative research and 
data exchange. Ecometabolomics offers a multidisciplinary approach to guide our 
efforts to mitigate the detrimental effects of pollution and climate change.
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PAMPs  Pathogen-associated molecular patterns
PCA  Principal component analysis (PCA)
PLS-DA  Partial least squares discriminant analysis
PTI  Triggered immunity
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QTL  Quantitative trait loci
QTOF  Quadrupole time of flight
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UPLC  Ultrahigh-performance liquid chromatography

1  Introduction

Plant life plays an essential role in the world. The food, water, natural compounds 
for pharmaceuticals, air, habitats for a huge number of species, soil quality, and 
climate are only a few examples of resources that plants provide.

Pathogens can have a devastating impact in all of the above mentioned points. 
They can affect all plant tissues, cause damage, and reduce quality and yield, which 
lead to significant production losses and consequently affect production and com-
mercialization. Plant-pathogen interactions occur inherently to both host and patho-
gen evolution. Plants activate several defense layers, including the constitutive and 
inducible defenses [114], to restrain pathogen growth, while pathogens secrete mol-
ecules to deceive the host defense arsenal and establish disease. The success of the 
primary recognition of pathogen molecules by the plants may dictate the outcome 
of the interaction [30, 60], as it is crucial for the activation of the different layers of 
defense. When pathogen molecules, pathogen-/microbe-associated molecular pat-
terns (PAMPs/MAMPs), or damage-associated molecular patterns (DAMPs) are 
successfully recognized, pathogen-associated molecular pattern (PAMP)-triggered 
immunity (PTI) is established [60]. Pathogens may then secrete effector proteins to 
overcome PTI.  If plants recognize the secreted pathogen effectors through resis-
tance proteins, effector-triggered immunity (ETI) is established. ETI is often accom-
panied by a broader modulation of host’s defenses and the establishment of a 
hypersensitive response leading to rapid cell death at the infection sites [59]. 
Although ETI is generally associated with stronger local responses than PTI, they 
were suggested to co-occur and to present synergistic effects [7, 13, 136] (Fig. 1).

The establishment and modulation of host’s defense mechanisms, as well as the 
establishment of PTI and ETI, have been thoroughly studied over the years from 
both partners’ sides, but several gaps remain in our understanding of plant-pathogen 
interactions.

In that sense, it has been widely known that plants are able to synthesize a myriad 
of chemical compounds. It is also known that perturbations of plant metabolism 
play a central role in determining the outcome of an infection. In the last decade, 
advances in the metabolomics field have enabled us to deepen our understanding of 
the key roles of metabolites in the host signaling (e.g., oxylipins) and defense events. 
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Fig. 1 Pattern-triggered immunity (PTI) and effector-triggered immunity (ETI) following patho-
gen attack. PAMP pathogen-associated molecular pattern, MAMP microbe-associated molecu-
lar pattern

But the application of this omics to plant pathology is still lagging in comparison 
with other omics approaches.

This chapter discusses the application of metabolomics to the study of plant- 
pathogen interactions, highlighting the technical advances in the field. Moreover, 
recent visualization techniques such as matrix-assisted laser desorption/ionization 
mass spectrometry imaging (MALDI-MSI) are exploited in the interaction context. 
Finally, metabolomics data analysis and data integration with other omics are dis-
cussed, and metabolomics impact in the development of new approaches for breed-
ing programs is highlighted.

2  Looking into Plant-Pathogen Interactions 
from a Metabolic Point of View

Different omics approaches have been widely applied to study plant biotic interac-
tions, making metabolomics the newest and one of the most promising approaches 
[132]. Metabolites play a crucial role in plant-pathogen interactions, providing a 
snapshot that reflects the regulation at different cell layers (genetic, epigenetic, tran-
scriptomic, and proteomic).
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Metabolomic studies of plant-pathogen interactions are quite challenging due to 
the difficulties underlying the annotation of an entire cell metabolome, the chemical 
and structural diversity of metabolites, and the complex nature of metabolic regula-
tion and interaction networks applied to both partners. Plants are a metabolically 
complex system, with over 200,000 metabolites estimated in the plant kingdom 
[37, 38].

Plant-pathogen interactions represent an even more complex biochemical matrix 
as plant metabolites include an array of structurally and functionally diverse com-
pounds that may be constitutively present or synthesized in response to different 
stimuli [91]. Metabolites that present antimicrobial and perform antimicrobial prop-
erties and are released from constitutively stored precursors were named phytoanti-
cipins [91]. These compounds are diverse and include several metabolic groups 
such as saponins, glucosinolates, and cyanogenic and benzoxazinone glucosides 
[89, 91].

Reprogramming of host primary and secondary metabolisms occurs after a 
pathogen attack and often starts with the mobilization of photoassimilates to the 
infected tissues to meet the intensive demand for energy and carbon to fuel defense 
responses [11, 62, 74, 83]. These sugars play important roles in the regulation of 
host defense-related metabolic pathways, namely, strengthening the cell wall, 
enhancing the accumulation of secondary metabolites (e.g., isoflavonoids), and bio-
synthesis of defense hormones as jasmonic acid (JA) [31, 111], or in signaling 
mechanisms [43]. In addition, as part of the host defense strategy, several low- 
molecular- weight secondary metabolites, often with antimicrobial properties, are 
produced after MAMP recognition (e.g., phytoalexins) [2, 57, 58]. These secondary 
metabolites contribute to strengthening mechanical barriers, directly killing the 
invading pathogens, and attracting biocontrol species or beneficial symbionts 
(reviewed in [120]).

Looking into the pathogens, small molecules are produced and secreted to 
manipulate the host metabolism (e.g., soluble sugars in the apoplast are often used 
by pathogens as a source of carbon for their own development, leading to an increase 
in virulence [92]) and to subvert plant immunity. A well-studied example is the 
bacterial JA analog, coronatine, which is secreted to interfere with the JA/salicylic 
acid (SA) balance leading to a lowering of host SA levels [45, 46].

Although thousands of metabolomics studies devoted to plant-pathogen interac-
tions have been published in the past years, some points need to be taken into con-
sideration, and several questions remain to be answered. One of the most pertinent 
is how may we define the origin of a determined metabolite in a plant-pathogen 
interaction. This is quite challenging, particularly for biotrophic pathogens that can-
not be cultured in vitro. Some approaches have been proposed so far, such as dual 
metabolomics [132] or metabolite fingerprinting of both partners by mass spectrom-
etry imaging (MSI) [14, 17], but a long way is still ahead.
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3  Technical Advances in Plant Metabolomics

3.1  Sample Preparation

Multiple factors must be considered upon sample preparation for a metabolomics 
study. It goes from planning and carefully performing the experiments and collect-
ing the material to preparing the samples to be analyzed (Table 1).

When one intends to extract metabolites from plant tissues, it is important to 
understand plant organ diversity, morphology, and physiology to adapt the protocol 
according to it [29, 85, 126]. Also, due to tissue complexity, the selection of the 
solvent’s composition is essential to cover as many chemically diverse structures as 
possible [84]. When planning an experimental assay, the amount of sample needed 
for the analysis afterwards is another point to have in consideration. To ensure a 
proper extraction, the amount of sample should not be limited, being more difficult 
to control the test conditions leading to more errors, nor too much, which can affect 
the dissolution of metabolites in the solvents [65].

After these conditions are optimized, sample collection is normally performed 
by stopping all the metabolic machinery by using low temperatures, such as freez-
ing samples with liquid nitrogen, fast heating, addition of acid, or lyophiliza-
tion [127].

Table 1 Summary of the different points mentioned in this book section to consider when 
performing a plant-pathogen interaction experimental assay and metabolite extraction and analysis

Checklist to perform
Experimental assay of plant-pathogen 
interaction Metabolite extraction protocol and analysis

Selection of a plant organ
   Roots
   Stems
   Leaves
   Flowers
   Fruits

Selection of an extraction protocol adequate to the 
plant organ in study

Study the morphology and physiology 
of the plant organ

Selection of solvent(s) and proportions to extract the 
desired metabolites

Conditions of the experiment
   Control vs inoculated samples
   Time-points to be collected

Extraction time
Selection of the equipment needed for the extraction

Follow the extension of the damage of 
the pathogen

Optimization of the analysis parameters in the 
analytical technique according to the sample

Plant material collection
   Enough material for the analysis 

afterwards
   Number of replicates
   Selection of a method to stop all 

the metabolic machinery

Use of internal and external standards
Technical repetitions
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In metabolic extractions, although the main goal is to cover the highest number 
of metabolites with differing chemical properties, the extraction time and equip-
ment required as well as laboratory supplies are also important points to have in 
consideration to avoid wasting resources, manpower, and time [19, 22, 90, 95]. 
Nowadays, it is still difficult to combine all these aspects, so depending on the study 
some compromises need to be made.

Sample number is also worth mentioning. The number of samples and biological 
replicates for each condition used for analysis is important to avoid repeating differ-
ences, increase efficiency, and rule out experimental bias. This ensures that the data 
obtained is robust and scientifically significant. Finally, extraction protocols should 
be user-friendly to ensure reproducibility by any other operator.

Through the years, some metabolite extraction protocols for plant tissues and 
cellular compartments upon pathogenic challenges have been optimized, consider-
ing all the above mentioned settings, and published [29, 40, 80, 90, 98].

All these methods are focused on the total accumulation of metabolites in a sam-
ple pool of the tissues infected with the pathogens. Although the separation of 
metabolites in the different subclasses prior to analysis could be helpful to diminish 
the complexity of the samples, it is still unclear, upon interaction, which metabolites 
are in fact from the pathogen and/or from the plant.

3.2  Advances in Analytical Methods and Techniques

In the past years, different metabolomics techniques have been widely applied to 
study different pathosystems. Mass spectrometry (MS) and NMR (nuclear magnetic 
resonance) are the most commonly used techniques.

NMR is a nondestructive, high-throughput, and extremely reproducible tech-
nique [6, 24, 27, 125]. In addition, it has the advantage that the signal intensity 
detected for each metabolite in the spectrum is related to the concentration, allow-
ing the quantification of the metabolite as well as the undeniable identification of 
compounds through structure determination [82]. However, a lot of initial material 
is needed, and it lacks sensitivity, which is a bottleneck when it comes to analyzing 
highly complex samples [34, 95].

MS tends to be the most commonly used method for metabolomics studies [19, 
22, 44, 47, 78]. It is selective and highly sensitive and has high-resolution power, 
which allow the detection and identification of an enormous number of metabolites 
in complex samples [38, 104, 116]. Furthermore, the different ionization sources 
available nowadays allow researchers to cover almost all the different chemical 
structures present at different samples [49, 54, 88, 122]. Moreover, besides the 
detection of a mass-to-charge ratio of the different metabolites, another dimension 
can be added by coupling separative steps, such as gas (GC) or liquid chromatogra-
phy (LC) [8, 88, 122, 137]. All the analytical advances in MS equipment, applica-
tions, and improved protocols for the analysis of plant tissues and analysis for MS 
data have already been extensively reviewed in the past years.
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From the plethora of techniques, an interesting fairly new worth mentioning is 
leaf-spray mass spectrometry. It is an ambient ionization method that permits the 
analysis of living plants and provides real-time information on small molecules [41, 
73]. Also, it is suitable for examining various plant tissues and a wide variety of 
species. The determination of the different metabolites, such as sugars, fatty acids, 
lipids, alkaloids, and others, present at the surface of any plant tissue is highly rel-
evant to understand the compounds involved in the first moments of pathogen con-
tact as well as which compounds are constitutively produced by the plant acting as 
pathogen chemoattractants.

Albeit recent advances in metabolomics studies, the diversity of metabolites is 
still far from being overcome. Also, in plant metabolomics analysis challenged with 
any pathogen, another layer of complexity is added as the combined metabolomes 
are being analyzed simultaneously, being still extremely difficult to distinguish them.

The modulation of metabolites involved in plant-pathogen interaction remains a 
black box, and it is clear that there is still a lot of progress to be done.

To overcome these difficulties, combining different analytical techniques, and 
generating different datasets, is an approach commonly used to characterize the 
regulation happening in plants in defense against pathogens. For example, the com-
bination of MS and NMR studies or coupling LC or GC to MS is a type of approach 
frequently used.

In recent years, several works have been published with the combination of these 
techniques to study plant-pathogen interactions. In rice (Oryza sativa) infected with 
the blast fungus (Magnaporthe oryzae, Magnaporthaceae), an ultrahigh- performance 
liquid chromatography quadrupole time-of-flight mass spectrometry (UPLC- 
QTOF- MS) system was used to characterize this interaction using an untargeted 
metabolomics approach [87]. To metabolically investigate the interaction of tomato 
(Solanum lycopersicum) with Phytophthora infestans, liquid chromatography mass 
spectrometry (LC-MS) and matrix-assisted laser desorption/ionization mass spec-
trometry (MALDI-MS) were used [42]. The combination of GC-MS, LC-TOF-MS, 
and NMR allowed better understanding of the metabolic reprogramming and resis-
tance of barley against the biotrophic fungus Blumeria hordei [69].

Another example was the use of LC-MS/MS and GC-MS to identify and quan-
tify lipids, phenols, and primary compounds as well as GC-MS for the semi- 
quantification of volatile compounds in the interaction of grapevine (Vitis vinifera 
L.) with Plasmopara viticola [23].

Moreover, combining direct (allow the undeniable identification of the disease/
pathogen) and indirect methods (identification of the disease/pathogen through 
physiological changes in the plant) to study plant-pathogen interactions will provide 
an overall characterization of the biologically important pathways [36]. This will 
allow the research community to integrate the information obtained, reveal plant- 
pathogen metabolomics dynamics, and unveil the inherent resistance/susceptibility 
of plants as well as their defenses upon attack and a possibility to also characterize 
pathogen metabolome.

As an example of the combination of a direct method with metabolomics analy-
sis, after a primary metabolomics approach, discriminant metabolites can be 
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identified and mapped in metabolic pathways, and genes coding for key enzymes 
involved in their biosynthesis/catalysis can be selected [71, 75, 103]. A combined 
transcriptomics and metabolomics approach was used in rose plant (Rosa chinensis) 
after the infection with powdery mildew (Podosphaera pannosa) and after the treat-
ment with exogenous salicylic acid in order to explore the resistance mechanisms of 
rose plant [134]. Another study analyzed a resistant and a susceptible black pepper 
species (Piper flaviflorum and Piper nigrum, respectively) upon infection by the 
oomycete Phytophthora capsici. In this work, the authors highlight differences in 
the expression profiles of certain genes which are correlated to specific metabolic 
pathways [35].

On the other hand, upon pathogen interaction, it is known that several metabolic 
classes are modulated (e.g., flavonoids, lipids, and sugars) and that some com-
pounds are even directly related to photosynthesis modulation (sucrose and chloro-
plast lipids).

The combination of chlorophyll fluorescence imaging measurements (an indirect 
detection method) with metabolomics qualitative and quantitative data can show the 
state of the photosynthesis apparatus, upon pathogen infection, to understand how 
these pathogens modulate plant photosynthesis and how it affects the plant [55, 96, 
133]. Bonfig et al. [16] used this approach to examine the effects of virulent and 
avirulent strains of P. syringae in Arabidopsis thaliana to investigate the effect of 
the pathogen on the photosynthetic activity and carbohydrate metabolism [16]. Also 
with Arabidopsis thaliana, the chlorophyll content and carbohydrates were mea-
sured to examine the effect of Albugo candida (white blister rust) on the regulation 
of photosynthesis, carbohydrate metabolism, and gene expression [25].

Metabolomics has a high potential for trait screening. Ultimately, technological 
improvements could lead to portable devices that could analyze directly, in a user- 
friendly way, in vivo plant-pathogen data, detecting early pathogenic infections 
through metabolic biomarkers and controlling them in a more precise and sustain-
able way.

3.3  Metabolic Visualization Techniques: The Case of Mass 
Spectrometry Imaging

The selection of the most thorough extraction protocol and the choice of the analyti-
cal technique with the best resolution for the detection and identification of metabo-
lites have been helping researchers to slowly answer several questions, such as:

 – Which metabolites are constitutively present in plants that are used to counteract 
pathogen attack?

 – Which plant metabolites are produced after stress?
 – Is there any interplay between these metabolites?
 – Are these metabolites host- or pathogen-specific?
 – Where are the metabolites accumulated upon pathogen interaction?
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Metabolomics has the potential to tackle these questions, allowing a better 
understanding of a biochemically complex system as plant-pathogen interactions. 
Nevertheless, metabolome analyses are based on extracted metabolites from a pool 
of samples from a plant tissue (e.g., roots, stems, leaves, fruits), from a specific 
plant compartment (e.g., cytoplasm, apoplast, chloroplast, mitochondria), or from 
the pathogens. However, this information obtained is not locally specific. Therefore, 
the real location of these metabolites and their accumulation patterns through time 
could be crucial for plant survival upon pathogen interaction.

Several techniques have been used to allow the visualization of biomolecules in 
different cellular structures, such as immunolocalization [64]; microscopy tech-
niques [26], techniques that rely on the interaction between the molecule of interest 
and an external probe [28, 135]; and others [67].

These visualization techniques allow the identification of molecules. However, 
they require personnel experience to obtain good results reproducibly. In addition, 
sample preparation is sample-specific, the materials for analysis are costly, and 
most importantly, it is necessary to know the molecules of interest. This last point is 
quite challenging for any technique as it is estimated that plants possess an enor-
mous number of unknown metabolites with different properties and structures 
[50, 104].

Taking this into consideration, mass spectrometry imaging (MSI) has been 
pointed out as a promising technique for studying plant metabolites, particularly in 
the context of plant-pathogen interactions [77, 120]. This technique has the ability 
to identify and reveal the spatial distribution of specific biomolecules with a high 
mass accuracy and a high resolution across a sample in a label-free and non-targeted 
mode without having to consider the complexity of the sample and without prior 
knowledge of their content. Moreover, it has the advantage of allowing the analysis 
of all the different plant organs (roots, stems, leaves, flowers, and fruits) (Fig. 2).

In recent years, MSI has been widely applied to visualize differences in the dis-
tribution of specific metabolites at different maturity stages [129], determine the 
location of metabolites, correlate this information with tissue architecture [12], and 
study the plant contaminations with metals [3], the metabolites of interest for food 
analysis [66], and the migration and distribution behavior of pesticide residues 
[130]. But its application in plant-pathogen interactions is scarce [100].

Concerning MSI analytical techniques, currently, there are several approaches 
with different ionization sources, mass range detection, spatial resolution, and 
modes of analysis that can be applied to study plant metabolites. In the past years, 
different reviews have been published describing in detail how these techniques 
work and highlighting their advantages and analytical differences and capabilities 
[5, 14, 15, 17, 32, 44, 93, 108].

To perform any MSI analysis in plant tissues, with or without pathogen chal-
lenge, one needs to take into consideration the different challenges for the prepara-
tion of the tissue sections. Sample preparation and handling are crucial for not 
disrupting or causing any delocalization of the molecules, lateral displacement of 
the ions, achieving high-quality signals, correct ionization, and confirming the spa-
tial distribution of the molecules [14, 15, 17, 33, 48, 63]. Several protocols have 
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Fig. 2 Schematic representation of the different plant tissues which could be used for MSI 
experiments

already been proposed for different plant tissues; however, it is always necessary to 
perform some experiments and systematic observations and analyze some data to 
ensure to obtain good results. Plant tissues are overall more difficult to handle than 
animal tissues [17, 53]. Due to their physical properties upon sample preparation, 
several points need to be considered, such as water content, sample shrinkage, flak-
ing, dehydration, and fragility after freezing [20, 33, 117]. Moreover, plants are 
sessile organisms and rely on their physical structures to restrain pathogen attacks, 
penetration, and development. The first barriers of defense are the wax cuticle and 
trichomes. Although these structures act as active shields against different patho-
gens, their analysis is not straightforward as some MSI ionization techniques may 
not be able to penetrate through them and analyze their metabolites [33, 79, 121]. 
Also, cell walls, another barrier of defense, are highly complex due to their being 
actively remodeled and reinforced upon any stimuli, hampering the analysis of 
internal cell metabolites.

Moreover, another layer of concern is added when preparing plant tissues after 
pathogen interaction. Plant tissues become more fragile and lose structure, and the 
ion signal could be difficult to obtain depending on the pathogen life cycle. Also, 
some pathogens create structures on top of the tissues, becoming another physical 
barrier for the MSI technique to penetrate. Also, it can hamper the analysis of the 
tissue itself and can lead to inaccurate ion ionizations creating misleading results.
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To date, the literature on the application of MSI techniques to study plant- 
pathogen interaction is limited to the comparison between challenged and non- 
challenged plant tissues. The combination of high-performance liquid 
chromatography-ultraviolet (HPLC-UV) method with matrix-assisted laser desorp-
tion/ionization mass spectrometry imaging (MALDI-MSI) was used to quantify and 
investigate the localization of hesperidin in orange (Citrus sinensis) grafted onto 
mandarin lime (C. limonia) upon challenge with Xylella fastidiosa [110]. Also, 
imaging desorption electrospray ionization mass spectrometry (DESI-MS) was 
used to investigate fluctuations in glycoalkaloids present in sprouted potatoes 
(Solanum tuberosum) infected by the phytopathogen Pythium ultimum [118]. In 
Vitis vinifera L. (grapevine), different MSI techniques have been applied to study 
the leaf surface during the interaction with the biotroph oomycete Plasmopara viti-
cola. With laser desorption/ionization (LDI), it was reported the accumulation of 
stilbene phytoalexins (e.g., resveratrol, piceid, pterostilbene) around infection sites 
[9, 51], and with MALDI, it was shown a pattern of accumulation of resveratrol, 
piceid, and viniferins close to P. viticola lesions [10]. With MALDI, the localization 
of sucrose was linked to the development structures of P. viticola [79]. Germinating 
soybeans inoculated with Aspergillus oryzae [1] as well as pea (Pisum sativum) pod 
tissues exposed to Fusarium solani f. sp. phaseoli spores [107] were visually inves-
tigated using MALDI-imaging.

Despite the modest applicability of MSI to complex pathosystems, it has proven 
its value. The different techniques mentioned will certainly tackle the challenges of 
deciphering the tight host-pathogen communication and improve our understanding 
of pathogen infection and development in plant tissues.

4  Metabolomics Data Analysis and Omics Data Integration

As an omics technology, metabolomics, officially born at the beginning of the 
twenty-first century [39], outputs large datasets. These require a high data mining 
capacity to fulfill two objectives in the direction of linking a genotype to a pheno-
type [38] or from a relevant biological question to arrive at its biological interpreta-
tion (Fig. 3). The first is to identify and quantify as many organ- or plant-specific 
metabolites as possible and then to measure their modulation and association under 
different conditions or in time series. However, the metabolomics and data analysis 
challenges lie in the complexity of the metabolome, which entails highly different 
compounds that vary in sizes, chemical properties, and concentrations and where 
most remain unknown.

A precondition to guarantee reliable results is the thoughtful planning of a high- 
quality design of experiments (DoE), an imminent gold standard in metabolomics 
[56]. Among all, it requires a representative array of randomized and unbiased sam-
ples adequately collected, stored, prepared, measured, and analyzed in order to 
guarantee enough statistical power for answering and interpreting the research 
questions [105, 123].
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Fig. 3 Eight significant steps in metabolomics data analysis (panels a–h)

Metabolomic analyses can be tackled with a targeted or an untargeted approach. 
The choice is based on metabolite coverage and prior knowledge. The targeted 
method quantitatively analyzes a predefined array of known compounds extracted 
with an ad hoc analytical method. At the same time, the untargeted holistically aims 
to comprehensively measure the totality of the metabolites of a biological matrix. In 
any case, the repeated analysis of pooled quality control (QC) samples, intended to 
represent the sample variability, is needed for monitoring and adjusting the perfor-
mance of the analytical instrument in terms of retention time shift, signal intensity 
stability, and mass calibration, removing systematic trends and batch effects. These 
corrections can also be controlled by measuring samples spiked with one or multi-
ple internal standards or by analyzing several reference standards [18, 123].

Once the spectra have been acquired, data analysis is a significant element of the 
metabolomics workflow, where compound identification can be extremely time- 
consuming as well as the most critical rate-limiting bottleneck. In a nutshell, metab-
olomics data analysis involves feature extraction, statistical analysis, compound 
identification, and marker discovery and interpretation. In every analytical tech-
nique utilized (e.g., liquid/gas chromatography often coupled with mass spectrom-
etry (LC-MS or GC-MS), Fourier-transform ion cyclotron resonance mass 
spectrometry (FT-ICR MS), or nuclear magnetic resonance spectroscopy (NMR)), 
each metabolite is recognized and characterized by a set of highly correlating differ-
ent signals such as a suite of mass-to-charge ratio (m/z) ions or proton peaks. These 
signals or features (possibly converted in open-source formats) need to be extracted 
within a processing method by performing actions such as peak picking, retention 
time correction, noise reduction, baseline correction, spectra deconvolution, etc., to 
finally get a raw data matrix containing the corresponding list of peaks and associ-
ated areas across all samples analyzed. Several tools are available for processing 
metabolomics data [81]. The users can opt for commercial software (e.g., Analyst, 
Chromeleon CDS, Compound Discoverer, MassLynx, MarkerView, Mass Profiler 
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Professional, Progenesis QI, etc.), open-source packages that can be downloaded 
and executed offline (e.g., MS-DIAL, MZmine, XCMS, etc.), or web- based solu-
tions to run online (e.g., MetaboAnalyst, XCMS online) [21, 70]. Often, this data 
matrix needs to be transformed, scaled, and normalized before performing any other 
analysis by applying, for example, a logarithmic or square root transformation, a 
Pareto, or unit variance scaling [123, 124]. Statistical data analysis for modeling, 
marker discovery, and data visualization relies mainly on multivariate analysis, such 
as principal component analysis (PCA), partial least squares discriminant analysis 
(PLS-DA), and ANOVA-simultaneous component analysis (ASCA); on deep learn-
ing methods; and, to some extent, on univariate approaches, based on t-test, linear 
mixed models, and analysis of variance [97, 123]. Finally, the last step in a metabo-
lomics workflow data analysis is the identification of the key compounds that drive 
differences among groups of samples. Again, if a targeted scenario has been used, 
this task is facilitated by comparing and identifying (often manually) the spectra 
with reference standards or with known metabolite libraries available online (mass 
spectral library of NIST, METLIN, MassBank, mzCloud, etc.) or by using personal 
libraries built in-house. More challenging is the identification of unknown features 
extracted from untargeted analysis. Currently, three methods guide the users in find-
ing the appropriate annotation confidence levels to adapt when reporting their find-
ings. The first one published was based on four levels of annotation summarized in 
decreasing order as (i) identified compounds, (ii) putatively annotated compounds, 
(iii) putatively characterized compound classes, and (iv) unknown compounds 
[115]. It was refined by the work of Schymanski et al. [106], which proposed the 
identification of metabolites in five confidence levels described as (i) confirmed 
structure by reference standards, (ii) probable structure by library spectrum match, 
(iii) tentative candidates, (iv) unequivocal molecular formula, and (v) exact mass of 
interest. Lastly, in 2019 the Metabolomics Society’s Metabolite Identification Task 
Group released a document with a more detailed definition and information for 
metabolite annotation based on seven confidence levels, from A to G (document 
available at https://drive.google.com/file/d/1PJLdPCkz8ymX8SgZ4Wl5Sw4ZG- 
dlyWWU/view, accessed in January 2023).

The demand for transparency in omics sciences and open data research has 
become increasingly urgent [113]. The publication of workflows, codes, analytical 
procedures, and data and metadata is necessary to evaluate and make the metabolo-
mics works reproducible according to the F.A.I.R. (Findable, Accessible, 
Interoperable, Reusable) principles [131]. To this scope, a step-by-step guideline for 
data and metadata management has been recently published addressing the entire 
metabolomics community [4] or specifically the grapevine and wine science [101], 
the latter one sponsored by the work of the EU-funded Cost Action CA17111 
INTEGRAPE. There are several benefits to data sharing. Since data are the basis of 
scientific research, the availability of complex datasets allows for deeper analysis 
and scientific progress (e.g., meta-analysis); complying with guidelines for mini-
mum reporting standards (strongly promoted by the Metabolomics Standards 
Initiative) allows for the reproducibility of the experiments by other users or the 
simple reanalysis of datasets with different inspection angles; the accurate metadata 
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description sustains plant phenotyping and grants biological significance to the 
data. This is possible only by ensuring data sharing and, therefore, by uploading 
experiments data and metadata to one of the existing public and freely accessible 
repositories, such as MetaboLights, the Metabolomics Workbench, etc. The more 
and more availability of curated open-access data can prompt more sophisticated 
analysis aimed at integrating metabolomics with other omics science, paving the 
way for a more comprehensive understanding of an organ/plant system and, ulti-
mately, attaining systems biology studies [94]. However, further progress is needed 
in providing different datasets from different analytical techniques and omics sci-
ences compatible [102].

5  Breeding Programs: The Impact 
of Metabolome-Based Knowledge

Disease management in crops is mainly achieved through chemical control of 
pathogens, which is neither sustainable nor environmentally friendly. Also, the 
pathogen evolution rate is relatively high, and many develop pesticide resistance 
[76]. Therefore, the development of disease-resistant varieties appears as one of the 
more sustainable approaches for crop disease management. It may ensure global 
food security and become an environmentally friendly measure to reduce chemi-
cal input.

Plant disease resistance is often under genetic control and of quantitative nature. 
Quantitative trait loci (QTL) identification is one of the most used approaches to 
identifying and associating genetic factors with complex trait control. The identifi-
cation of QTLs comes from genome-wide association studies (GWAS) that deter-
mine the genomic regions associated with a given phenotype [99]. These regions 
might be used to establish molecular marker-assisted selection (MAS) of a particu-
lar trait in breeding programs [52], shortening the time needed to obtain new com-
mercially suitable varieties.

Many studies have been conducted to identify resistance-associated QTLs for 
different crops to be used in breeding programs (recently reviewed in [61, 72, 99, 
109]). Recently, metabolomics has also contributed to the definition of new QTLs, 
metabolite QTLs (mQTLs) [86]. In plant-pathogen interactions, the identification of 
mQTLs is still poorly represented but present an enourmous potential for breeding 
programs.

In Brassica napus roots, mQTLs involved in resistance and in metabolic adjust-
ments were established for Plasmodiophora brassicae resistance [128], namely, the 
association between gluconasturtiin and two unknown metabolites in the resistance 
conferred by two QTLs and the association between glycine and glutathione and 
three main resistance QTLs [128] and also for glucosinolate content [112]. Also, for 
grapevine, mQTLs associated with flavonoid biosynthetic pathways that are likely 
involved in the production of secondary metabolites, including phytoalexins and 
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stilbenoids, were established on chromosome 18 [119]. Functional mapping of 
these mQTLs on the VitisNet network database revealed chromosome 18 as a major 
hotspot of disease-resistance motifs [119]. In carrot, mQTLs for Alternaria dauci 
resistance were also established, highlighting camphene, α-pinene, α-bisabolene, 
β-cubebene, caryophyllene, germacrene D, and α-humulene as the terpenes poten-
tially involved in carrot resistance [68]. Functional analyses revealed that 
α-humulene and caryophyllene exhibited fungitoxic properties, consistent with a 
direct role of these compounds in disease resistance [68].

These studies show the potential of metabolomics application in plant breeding. 
The definition of metabolic markers to evaluate performance and select plants with 
a desired trait will also improve MAS application in crop improvement.
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MALDI Matrix-assisted laser desorption/ionization
mGWAS Metabolite genome-wide association studies
mQTL Metabolite quantitative trait loci
MS Mass spectrometry
MS/MS Tandem mass spectrometry, fragmentation
MSI Mass spectrometry imaging
NMR Nuclear magnetic resonance
PCA Principal component analysis
PCR Polymerase chain reaction
PLS-DA Partial least squares discriminant analysis
SIMS Secondary ion mass spectrometry
SNPs Single-nucleotide polymorphisms
UHPLC-MS Ultrahigh-pressure liquid chromatography-mass spectrometry
UPLC Ultra-performance liquid chromatography
VOC Volatile organic compounds
WGCNA Correlation and weighted gene coexpression network analysis

1  Introduction

Plant metabolomics is an emerging research field focusing on the comprehensive 
analysis of metabolites, small molecules (<1500 Da) that play a critical role in plant 
growth, development, and response to environmental changes. By applying 
advanced analytical techniques, such as mass spectrometry and nuclear magnetic 
resonance spectroscopy, researchers can identify and quantify thousands of metabo-
lites in a single sample, providing a holistic view of the metabolic pathways and 
processes that occur in plants. The insights gained from plant metabolomics research 
have broad implications for plant biology, agriculture, and biotechnology, as well as 
for human health and the environment.

Metabolomics is crucial to studying abiotic stress tolerance, pathogen resistance, 
robust ecotypes, and metabolic-assisted breeding of crops. The plant kingdom con-
tains a considerable diversity of metabolites of approximately 200,000 compounds; 
the majority are still unknown. It is estimated that around 10,000 secondary metabo-
lites have been discovered in different plant species [1], since metabolites have a 
wide range of physicochemical properties and functions. This makes it challenging 
for metabolomics techniques to study their diversity and gain insights into plant 
biology.

Since the word “metabolomics” was mentioned for the first time in the literature, 
it has evolved and been applied to many disciplines, such as plant biology. Plant 
metabolomics has become hugely modernized in the last decade. This chapter 
describes novel applications of mass spectrometry-based metabolomics approaches 
in recent fundamental plant research. We first commented on different metabolo-
mics techniques, mass spectrometry, and nuclear magnetic resonance-based metab-
olomics. Mass spectrometry-based metabolomics is the widest in use; the main 
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approaches are targeted or quantitative metabolomics and untargeted, nontargeted, 
or discovery metabolomics, also known as global metabolomics. We then explored 
contemporary literature on gene identification and their functional characterization 
for crop improvement enabled by applying nontargeted and targeted metabolomic 
analysis in combination with genome-wide association studies, metabolite quantita-
tive trait loci, and transcriptomics.

From there, we explored the current application of metabolomics methods for 
plant species identification, a trendy topic that is enabling researchers to support 
many aspects of food authentication, food quality control, and traceability; plant 
species identification is an essential factor in understanding biodiversity, the discov-
ery of bioactives from herbal medicines and correlating chemical components from 
plants with chemical markers of patients who intakes herbal medication, in the same 
manner monitoring food intake in foodomics studies.

We exemplified by commenting on the use of molecular networking analysis and 
its application to classify plant species; by providing an example of the Malpighiaceae 
family, chemotaxonomic studies guided by metabolomics methods become hugely 
in use as it allows rapid classification of plant samples based on the endogenous 
chemical content. We also discussed pioneering work on classifying and discrimi-
nating cinnamon, vanilla, and coffee plant species using different metabolomics 
techniques.

We then explored the impact of climate change on the root metabolome and the 
differences in root abiotic and metabolic changes associated with other biotic fac-
tors interactions, highlighting key metabolites involved in root exudates when 
exposed to these types of stresses. In addition, we reviewed recent literature on plant 
biomarker discovery outlining different application areas, such as the food industry, 
where the identification of biomarkers has also worked in quality processes for food 
authenticity and food traceability matrices of plant origin. We outlined a list of key 
metabolites identified in various plant species using different analytical techniques 
including metabolites detected in transgenic plants.

Finally, we briefly explored the emerging field of single-cell metabolomics 
methods. We describe the latest development in mass spectrometry imaging, includ-
ing different approaches for collecting single-cell from plant tissues and a revision 
of some essential techniques on mass spectrometry imaging. Mention has also been 
made on the challenging and future needs for plant metabolomics research.

2  Novel Gene Identifications and Their Functional 
Characterization for Crop Improvement

Metabolomics studies all small molecules – metabolites – content of a cell or whole 
organism. Plant metabolomics refers to comprehensive, nonbiased, high-throughput 
analyses of complex metabolite mixtures typical of plant extracts. The role of 
metabolomics in such studies is twofold: (1) to identify the spatial and temporal 
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Fig. 1 Schematic presentation of metabolomics applications in crop improvement programs: (1) 
A representative sampling source of vegetable crop plants (tomato) as a biological source from 
which cellular metabolome can be extracted from almost all the plant parts and the rhizosphere 
under varying experimental environmental conditions; (2) data acquisition approach in metabolo-
mics to be applied whether unbiased nontargeted fingerprinting is required or the analysis and 
quantification of a few selected target molecules is the need of the experiment; (3) study outcomes 
which needs biological interpretation for hypothesis questions; (4) possible answers to the hypoth-
esis questions in the cellular chemistry and its entwining relations with the environmental impacts; 
(5) functional targets that could be achieved through metabolomics analysis of the vegetable 
plants; (6) result-oriented applications of the data outcomes in crop improvement practices; and (7) 
the “end product” of the experimental metabolomics exercise in vegetable crops. (Reproduced 
from Ref. [2])

distribution of the target compounds as influenced by plant development and envi-
ronmental cues and (2) to identify related phytochemicals, which may be consid-
ered as either intermediate of biosynthesis or alternative or alternative products of 
promiscuous enzymes that support the biosynthesis of the target phytochemical [1].

This chapter describes the latest development and application of plant metabolo-
mics in combination with metabolite genome-wide association studies (mGWAS), 
metabolite quantitative trait loci (mQTL), and transcriptomics for the discovery and 
characterization of genes and enzymes associated with the biosynthesis of special-
ized metabolites in significant crops such as maize, rice, and tomato (Fig. 1).

Different metabolomics techniques have been developed in the last two decades, 
including mass spectrometry-based metabolomics (MS); nuclear magnetic 

J. J. Ordaz-Ortiz et al.



391

Fig. 2 Illustrative diagram of possible plant environmental interactions, which are supposed to 
influence the metabolic status of the crop plants. Analyzing the metabolome of plants exposed to 
such challenges using metabolomics approaches can yield competitive vegetables crops with better 
yield, high level of defense and stress-mitigating capabilities. (Reproduced from Ref. [2])

resonance spectroscopy (NMR); gas-chromatography-mass spectrometry (GC-
MS); capillary electrophoresis-mass spectrometry (CE-MS); liquid chromatography- 
mass spectrometry (LC-MS); and more recently the implementation of 
high- resolution metabolomics with the aid of Fourier transform ion cyclotron reso-
nance mass spectrometry (FT-ICR MS). Mass spectrometry-based metabolomics is 
one of the most used in plant metabolomics, where researchers can undertake two 
main approaches: targeted and untargeted metabolomics (Fig. 2). Targeted metabo-
lomics is a hypothesis-driven approach focusing on a specific set of metabolites. 
This approach is often used when the researcher has prior knowledge about the 
metabolites of interest or when a specific metabolic pathway is under investigation. 
In targeted metabolomics, a set of known metabolites is selected, and the mass spec-
trometer is set up to detect these specific metabolites. Targeted metabolomics can 
provide more accurate and quantitative information about specific metabolites, but 
it requires prior knowledge of the metabolites under investigation; on the other 
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hand, untargeted metabolomics is an exploratory approach that aims to identify all 
metabolites in every biological sample. This approach does not require prior knowl-
edge of the metabolites under investigation, and it allows for detecting unexpected 
or unknown metabolites. In untargeted or nontargeted metabolomics, the mass spec-
trometer is set up to detect all metabolites within a certain mass range. The resulting 
data is analyzed using statistical methods and bioinformatics tools to identify 
metabolites. Untargeted metabolomics can provide a more comprehensive view of 
the metabolic profile of a biological sample. Still, it may miss some metabolites 
outside the mass spectrometer’s detection range.

The combination of several omics has been recently implemented on gene dis-
covery and their functional characterization to investigate gene relationship to 
metabolites supporting and accelerating crop improvements. For example, Wu et al. 
established a high-quality chromosome-level genome assembly of Melilotus albus, 
by resequencing 94 Melilotus accessions to characterize their phylogenetic relation-
ships, the genetic exchange between M. albus and M. officinalis, and the differentia-
tion of flower color and coumarin content. In addition, transcriptomics, 
metabolomics, and bulked segregant analysis (BSA) have been used to investigate 
M. albus near-isogenic lines segregating at the coumarin level to identify the key 
metabolites and enzymes in the coumarin biosynthesis pathway [3]. Similarly, Li 
et al., based on the integrative analysis of the transcriptomics and targeted carot-
enoid research, found that differentially expressed genes (DEGs) related to carot-
enoid metabolism had a stronger correlation with the critical carotenoid metabolite 
content in the panicle of foxtail millet. Correlation and weighted gene coexpression 
network analysis (WGCNA) identified and predicted the gene regulation network 
related to carotenoid metabolism [4].

Zheng et al. used a combination of metabolome and transcriptome of 11 tea cul-
tivars and then a WGCNA-based biological system strategy to interpret metabolo-
mic flux, predicted gene functions, and mined critical regulators involved in the 
flavonoid biosynthesis pathway; in this manner, they revealed new uncharacterized 
transcription factors (TFs) such as MADS, WRKYs, and SBP; and microRNAs 
(including 17 conserved and 15 novel microRNAs) that are potentially implicated in 
different steps of the catechin biosynthesis. In addition, they applied the metabolic- 
signature- based association method to capture additional critical regulators involved 
in the catechin pathway. This provides important clues for the functional character-
ization of five SCPL1A acyltransferase family members, which might be implicated 
in the production balance of anthocyanins, galloylated catechins, and proanthocya-
nins in tea cultivars [5].

Another approach has been implementing metabolite genome-wide association 
studies (mGWAS) and metabolite quantitative trait loci (mQTL), especially in 
cereal grains such as wheat. Chen et al. developed an approach that has also been 
applied in other major crops such as maize, barley, tomato, and blueberry, while the 
mQTL approach has been used in crops sunch as soybean, rice, and carrot [6]. 
Traditionally the output of mQTL/mGWAS was merely linkages/associations 
between chromosomal locations and metabolite contents, and this was basically due 
to the lack of genomic information for some crops until very recently, a wheat 
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mGWAS successfully identified 26 candidate genes with high confidence, among 
them two were validated to be involved in flavonoid metabolism pathway of 
wheat [6, 7].

This way, by combining interval mapping and genome-wide association studies 
(GWAS), the genetic determinants of tocochromanol accumulation in tomato 
(Solanum lycopersicum) fruits have been unveiled. Specifically, the content of vita-
min E has been enhanced in tomato plants by identifying the genes involved in the 
chorismate-tyrosine pathway [8]. With this approach, Alseekh et  al. reported a 
large-scale metabolic quantitative trait loci (mQTL) analysis on the well- 
characterized Solanum pennellii introgression lines to investigate the genomic 
regions associated with secondary metabolism in tomato fruit pericarp [9]. In total, 
679 mQTLs were detected across the 76 introgression lines. Heritability analyses 
revealed that the environment affected mQTLs of secondary metabolism less than 
mQTLs of primary metabolism. Network analysis allowed to assess the intercon-
nectivity of primary and secondary metabolism and compare their respective asso-
ciations with morphological traits. Additionally, a real-time quantitative PCR 
platform demonstrated a transcriptional control mechanism of a subset of the 
mQTLs, including those for hydroxycinnamates, acyl-sugar, naringenin chalcone, 
and a range of glycoalkaloids. Intriguingly, many of these compounds displayed a 
dominant-negative mode of inheritance, contrary to the conventional wisdom that 
secondary metabolite contents decreased on domestication. Additionally, two can-
didate genes for glycoalkaloid mQTLs via virus-induced gene silencing were also 
validated [9].

More recently, Alseekh et al. identified several metabolite quantitative trait loci 
that reduce variability for both primary and secondary metabolites (phenylalanine, 
glucose-6-P, fructose-6-P, and maltose), which they named canalization metabolite 
quantitative trait loci (cmQTL); on their study nine cmQTL were validated using an 
independent population of backcross inbred lines, derived from the same parents, 
which allows increased resolution in mapping the QTL previously identified in the 
introgression lines. These cmQTL showed little overlap with QTL for the metabo-
lite levels themselves. Moreover, the intervals they mapped harbor few metabolism- 
associated genes, suggesting that regulatory genes largely control the canalization 
of metabolism [10].

Maize has also been favored by the combination of GWAS and metabolomics 
profiling to highlight genes involved in the biosynthesis of several metabolites. 
Among these compounds, Liang et  al. reported the identification of metabolites 
biomarkers for the tolerance to salt-induced osmotic stress; a citrate synthase, a 
glucosyltransferase, and a cytochrome P450 were found to be responsible for con-
trolling the associations between the genotype and metabolites that induced the tol-
erance [11]. Owens et al. reported essential genes controlling maize grain carotenoid 
composition by using GWAS of quantified seed carotenoids across a panel of maize 
inbreeds ranging from light yellow to dark orange in grain color; significant associa-
tions at the genome-wide level were detected within the coding region of zep1 and 
lut1, carotenoid biosynthetic genes not previously shown to impact grain carotenoid 
composition in association studies, as well as within previously associated lcyE and 
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crtRB1 genes [12]. Similarly, Li et al. examined the genetic architecture of maize oil 
biosynthesis in a genome-wide association study using 1.03 million SNPs charac-
terized in 368 inbred maize lines, including “high-oil” lines. Seventy-four loci were 
significantly associated with kernel oil concentration and fatty acid composition [4]. 
Another combination of maize metabolic profiling with GWAS has been reported 
by Riedelsheimer et al. who outlined an association of genetic variants and concen-
tration of 118 metabolites in leaves of 289 diverse maize inbred lines from world-
wide sources; genome-wide association mapping with correction for population 
structure and cryptic relatedness identified for 26 distinct metabolites with strong 
associations with SNPs explains up to 32.0% of the observed genetic variance [13]. 
Similarly, Chen et al. described a comprehensive profiling of 840 metabolites and a 
further metabolic genome-wide association study based on ~6.4 million SNPs 
obtained from 529 diverse accessions of Oryza sativa. They identified hundreds of 
common variants influencing numerous secondary metabolites with significant 
effects at high resolution. They observed substantial heterogeneity in the natural 
variation of metabolites and their underlying genetic architectures among different 
rice subspecies [13, 14]. Data mining identified 36 candidate genes modulating 
metabolite levels that are potentially physiological and nutritionally important. As a 
proof of concept, they functionally identified (annotated) five candidate genes influ-
encing metabolic traits; the study provides first-time insights into the genetic and 
biochemical bases of rice metabolome variation and can be used as a powerful com-
plementary tool to classical phenotypic trait mapping for rice improvement. Besides, 
Dong et al. reported a comprehensive metabolic profiling and natural variation anal-
ysis of phenolamides in rice using a liquid chromatography (LC)-mass spectrome-
try (MS)-based targeted metabolomics method; spatiotemporal controlled 
accumulations were observed for most phenolamides, together with their differen-
tial accumulations between the two major subspecies of rice.

Further GWAS on rice leaves identified Os12g27220 and Os12g27254 as sper-
midine hydroxycinnamoyl transferases that might underlie the natural variation of 
spermidine conjugate levels in rice [15]. Likewise, Chen et al. identified 32 candi-
date genes underlying metabolic traits in rice grains; 8 candidate genes were 
involved in the biosynthesis and transportation of amino acids and their derivatives. 
Three candidates were assigned to the choline levels and its lysophosphatidyl deriv-
atives. Precise signals for trigonelline, a bioactive compound implicated in cell 
cycle control, resulted in the assignment of seven candidate genes for this metabo-
lite. Furthermore, mGWAS in rice grains revealed 40 candidates (both regulatory 
and structural genes) involved in the biosynthesis, modification, and transportation 
of phenylpropanoids, including the C-glycosyl flavones, the primary class of flavo-
noids in cereals [7]. More recently, Yang et al. reported the identification of a gene 
s07g32020 (UGT707A3) that encodes a glucosyltransferase that converts narin-
genin and uridine diphosphate-glucose to naringenin-7-O-β-D-glucoside; the func-
tion of Os07g32020 was verified with CRISPR/Cas9 mutant lines, which 
accumulated more naringenin and less naringenin-7-O-β-D-glucoside and 
apigenin-7-O-β-D-glucoside than wild-type Nipponbare [16].
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It is evident that when working with a crop with a reference genome sequence, 
such as maize, rice, and wheat, to mention some of the global agricultural impor-
tance, enormous advances have been made in elucidating genes and their functional 
annotation for their improvements; sadly this is not the case for minor crops, medic-
inal plants, and other regional staple foods. Therefore, considerable effort must be 
made to genome sequence minor crops and develop a collection of segregating crop 
populations. On the other hand, plant metabolome lacks a free online accessible 
metabolite database for support in the annotation of unknown metabolites, and most 
of the studies carried out under a nontargeted metabolomic approach remain with 
several novel metabolites, making association studies such as transcriptomics, 
mQTL, and GWAS difficult when searching for gene annotation and their func-
tional characterization. A summary of mQTL and mGWAS is presented in Table 1.

Table 1 Summary of mQTL and mGWAS studies in plants [17]

Species Tissue Population type Method Metabolic traits Ref.

mQTL study
Arabidopsis Harvested seed Recombinant inbred 

lines
HPLC Tocopherol [18]

Arabidopsis Leaf Recombinant inbred 
lines

GC-TOF-MS Metabolome [19]

Arabidopsis Seed Recombinant inbred 
lines

LC-MS Flavonoids [20]

Arabidopsis Seedling RILs and 
introgression lines

GC-TOF-MS Metabolome [21]

Brassica 
napus

Leaf/seed Double haploid lines HPLC Glucosinolates [22]

Maize Leaf RILS and natural 
accessions

GC-TOF-MS Primary 
metabolites

[23]

Rice Seed Chromosomal 
segment substitution 
lines

LC-Q- 
TOF-MS

Metabolome [24]

Rice Seed F2, F2-derived lines GC-MS Lipids [25]
Rice Flag leaf/

germinating 
seed

RILs LC-EI-MS Metabolome [26]

Tomato Fruit Introgression lines GC-MS Metabolome [27]
Tomato Fruit Introgression lines GC-MS Metabolome [28]
Tomato Fruit Introgression lines LC-MS Metabolome [29]
Tomato Fruit Introgression lines GC-MS Primary 

metabolites
[30]

Tomato Fruit Introgression lines UPLC Secondary 
metabolites

[9]

Wheat Flag leaf Doubled haploid 
lines

LC-ESI-MS Metabolome [31]

Wheat Flag leaf Doubled haploid 
lines

GC-MS Metabolome [32]

(continued)
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Table 1 (continued)

Species Tissue Population type Method Metabolic traits Ref.

mGWAS study
Arabidopsis Seed Natural accessions LC-MS Branched-chain 

amino acids
[33]

Arabidopsis Leaf/seedling Natural accessions LC-MS Glucosinolates [34]
Arabidopsis Leaf Natural accessions GC-TOF-MS Metabolome [35]
Maize Kernel Natural accessions UPLC-MS Metabolome [36]
Maize Grain Natural accessions HPLC Carotenoid [12]
Maize Grain Natural accessions HPLC Tocochromanol [37]
Maize Leaf Natural accessions GC-MS Metabolome [38]
Maize Leaf Natural accessions GC-MS Metabolome [13]
Maize Kernel Natural accessions LC-MS Metabolome [39]
Potato Tuber Natural accessions GC-MS Primary 

metabolites
[40]

Rice Leaf Natural accessions LC-QTOF-MS Secondary 
metabolites

[41]

Rice Leaf Natural accessions LC-MS Metabolome [14]
Rice Leaf Natural accessions LC-MS Phenolamides [15]
Tomato Fruit Natural accessions GC-MS Metabolome [42]

3  Plant Species Identification

The plant metabolome constitutes an enormous reservoir of bioactive compounds; 
many of these are products of secondary or specialized metabolism. Their taxo-
nomic distribution is in relatively narrow phylogenetic clades within Plantae [1]. 
While the identification of plant species based on morphological characteristics is a 
well-established practice in botany, being able to identify plant species is an essen-
tial factor in understanding biodiversity, the discovery of bioactives from herbal 
medicines, and correlating chemical components from plants with chemical mark-
ers of patients who intake herbal medication, as well as monitoring food intake in 
foodomics studies, food authentication, and fraud detection, among other applica-
tions. Since the small-molecule profile of an organism ultimately reflects the genes 
that distinguish it, the information content of the metabolome might be just as well 
suited to genomic fingerprinting and assessment of genetic relatedness between spe-
cies as the genomes themselves [43].

Despite its practical importance, the establishment of phylogenetic diversifica-
tion and distribution patterns of secondary plant metabolites is still in its early steps, 
and several plant families have not been deeply explored to date in this context; 
Mannochio-Russo et  al. described a strategy for chemotaxonomic investigations 
using the Malpighiaceae botanical family as a model; their workflow (Fig. 3) was 
based on MS/MS untargeted metabolomics, spectral searches, and recently 
described in silico classification tools, which were mapped into the latest molecular 
phylogeny accepted for this family, the workflow combines several approaches to 
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Fig. 3 Experimental workflow followed for the metabolomics and chemosystematics analyses of 
Malpighiaceae samples. (1) The samples were initially collected. (2) The extracts were prepared 
with different solvents (EtOH:H,0 (4:1. v/v) or EtOAc) and then (3) subjected to LC-ESI-MS/MS 
analysis in positive and negative ionization modes in an untargeted method. (4) The data acquired 
were processed for feature finding, and the exported data were used for multivariate analysis. The 
clustering groups observed were merged to the phylogeny using the maximum likelihood estima-
tion (MLE) for preliminary chemotaxonomic investigations. (5) The data were also used for 
feature- based molecular networking and library searches workflows to observe clade-specific 
molecular families. (6) A chemical hierarchy analysis and in silico classifications were obtained 
and finally (7) merged to the currently accepted Malpighiaceae phylogeny to determine the ubiq-
uitous and the taxa-specific in silico classes. (Reproduced from Ref. [44])

perform a comprehensive evolutionary chemical study. It is expected to be used in 
further chemotaxonomic investigations [44].

The metabolomic analysis revealed that different ionization modes and extrac-
tion protocols significantly impacted the chemical profiles, influencing the chemo-
taxonomic results. In addition to the library searches for metabolite annotation, the 
MS/MS data generated were visualized by molecular networking analysis (Fig. 4). 
Molecular families constructed by such analysis represent the similarity of frag-
mentation patterns obtained by tandem mass spectrometry (MS/MS) analysis. 
These molecular families consisted of nodes (representing MS/MS spectra) and 
edges of connecting these nodes (representing the cosine similarity between two 
nodes, which measure the relatedness in MS/MS spectra). The library matches 
retrieved from the analysis obtained in the positive ionization mode showed the 
presence of a high diversity of compound classes, including C-glycosylated and 
O-glycosylated flavonoids, lipids, alkaloids, quinic acid derivatives, amides, triter-
penes, iridoids, and lignans [44].

Cinnamon is one of the oldest spices used in the world. A growing number of 
studies have illustrated varied phytochemical compositions among cinnamon spe-
cies. Primary cinnamon metabolites, such as coumarin, cinnamaldehyde, cinnamic 
acid, cinnamyl alcohols, and proanthocyanidins, are shown to be differentially pro-
duced among various species; in this context, Zhang et al. developed a metabolomic 
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Fig. 4 Molecular families obtained from the feature-based molecular networking workflow and 
annotated based on spectral matches within the GNPS platform: (a) phenolic compounds, (b) 
alkaloids, and (c) lipids and terpenoids. Each node represents a tandem mass spectrometry spectra 
(MS/MS), while the edges that connect them represent the MS/MS fragmentation similarity 
(cosine >0.7). Pie charts indicate the relative abundance of ion features in each Malpighiaceae 
phylogenetic clade (A–J). Node sizes are relative to the summed peak areas of the precursor ion in 
MS1 scans. These are level 2 or 3 annotations according to the 2007 metabolomics standards ini-
tiative [45]. (Reproduced from Ref. [44])

ratio rule-based classification method for the automated metabolite profiling and 
differentiation of four cinnamon species using ultra-performance liquid chromatog-
raphy-high-resolution mass spectrometry. Among the species studied were 
Cinnamomum cassia (Chinese cinnamon), C. loureiroi (Vietnamese cinnamon), 
C. verum (Ceylon cinnamon), and C. burmannii (Korintje cinnamon); proanthocy-
anidins, coumarin, and cinnamaldehyde were the preselected metabolites allowing 
the classification [46].
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The genus Vanilla, a source of the most appreciated flavor worldwide, comprise 
over 110 species. Currently, only three species have commercial relevance, Vanilla 
planifolia Andrews, V. tahitensis J. W. Moore, and V. pompona Schiede. V. planifo-
lia are preferred by industry due to its higher content of vanillin, the main flavor 
component; more attention needs to be made to other Vanilla species. Leyva et al. 
developed a nuclear magnetic resonance (NMR) metabolomic platform to profile 
for the first-time leaves that are known to accumulate putative vanillin precursors of 
V. planifolia and those of Peruvian V. pompona, V. palmarum, and V. ribeiro to 
determine metabolite difference among them. Their NMR analysis identified 36 
metabolites, and multivariate analysis identified malic and homocitric acids, 
together with 2 vanillin precursors (glucoside A and B), as relevant markers for spe-
cies identification [47].

Coffee is appreciated worldwide for its aroma, flavor, and stimulant properties. 
Souard et al. examined leaves of nine Coffea species grown in the same environ-
mental conditions by an untargeted liquid chromatography high-resolution mass 
spectrometry (LC-HRMS) approach, with the primary objective of identifying 
metabolites that significantly contribute to the classification between Coffea spe-
cies. Based on their results of multivariate analyses, 1637 variables (metabolites) 
were analyzed, from which 92% (1505 metabolites) were significantly different 
overall taxa. Among the species studied, when two well-known C. arabica and 
C. canephora were compared, a feature with an m/z = 195.0870 corresponding to 
[M + H]+ of caffeine came out as the main discriminant compound. Caffeine con-
centration was approximately 800 times higher in C. arabica leaves than in 
C. canephora. Another feature observed at an m/z value of 247.0598 had much 
higher intensities in C. arabica than in C. canephora, but unfortunately, this feature 
was not identified. This metabolic fingerprinting study aimed to determine the spe-
cific differences between the metabolomes. All nine clusters of each species studied 
were observed on both PCA and PLS-DA score plots, with good discrimination 
between the eight Coffea species [48].

Several studies have described the use of metabolomics to distinguish herbal 
medicinal plants. For example, Lesiak et al., using seeds of the genus Datura plants, 
outlined direct analysis real-time mass spectrometry (DART-MS), which could pro-
vide diagnostic fingerprint profiles of nine Datura species seeds and whether che-
mometric processing of the observed profiles could enable species-level identification 
and differentiation. They confirmed that the seeds could be analyzed by DART-MS 
directly in a high-throughput manner without using a solvent extract. Each species 
exhibits a distinct chemical signature, and the processing of this data by multivariate 
statistical methods enables species-level differentiation. In addition, they observed 
that while intraspecies chemical signatures are similar, interspecies fingerprints are 
distinct enough to be discriminated against using multivariate statistical analysis 
tools [49]. Another example using seed samples of Polygonatum species was 
reported by Qi et al.; Polygonatum plant species have properties that make them 
sound like medicine and food in China. There were almost no differences in the 
contents of the metabolites in the amino acids and derivatives, nucleotides and prod-
ucts, and others (e.g., saccharides, alcohols, and vitamins) classes among the seed 
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samples. In contrast, the seed samples had some diversity in the contents of lipids, 
phenolic acids, lignans and coumarins, tannins, and quinones. The flavonoid, ste-
roid, and terpenoid classes and contents varied among the Polygonatum seed sam-
ples; these compounds have relatively strong pharmacological effects; their findings 
indicate that different Polygonatum seeds differ in terms of their medicinal and 
nutritional value [50].

Other plant species that have been classified and identified using metabolomic 
approaches are Mentha species [51]; Acorus [52] – plants in Acorus have been used 
as herbal medicine by various linguistic groups for thousands of years; and 
Phyllanthus species [53]; among other medicinal plant species.

4  Plant Root Metabolome and Climate Change

Climate change is a relevant issue due to its adverse and high-impact consequences 
it can cause directly and indirectly at social, ecological, biological, and health levels 
[54, 55]. The main factors promoting climate change comprise natural and anthro-
pogenic activity; agriculture can produce 30–40% of the total greenhouse gas emis-
sions [56]. In addition, due to these issues, an increase in the use of pesticides is 
expected, which will significantly affect global crop production, as well as pathogen 
diseases, abiotic stress, and the decrease in the production of the major crops world-
wide [57]. Quality and crop productivity are negatively affected by global warming. 
It is expected that dramatic increase in the following years due to the increasing 
annual temperature, solar radiation, changes in precipitation, and high CO2 levels 
[54, 56, 57]. Some other factors which reduce crop production quality are floods 
and droughts [58, 59] and are affected by alterations in rainy seasons, pest inva-
sions, crop disease, water supplies, price of products for agricultural processes, and 
premature consumption of fertilizers [54].

Humanity’s well-being and economics depend strongly on the agricultural sec-
tor, which simultaneously depends on the ability to adapt crops to environmental 
conditions and is therefore considered a climate-dependent industry [58]. To 
improve productivity, nutrient quality, and crop resilience, it is necessary to adapt 
strategies and design technologies to help mitigate climate change’s effects [55, 60]. 
The leading crop breeding technologies for adaptation comprise biotechnology 
techniques, such as next-generation sequencing and RNA-mediated silencing [58, 
61, 62]. Another strategy to improve crops and their resistance to biotic and abiotic 
stress is the engineering of the root microbiota, which represents a promising tech-
nology in the future to face climate change [63]. This strategy arises from analyzing 
the plant microbiome in the rhizosphere and endosphere, in which several interac-
tions occur between the plant, microorganisms, their metabolites, and the metabo-
lites of the surrounding plants. Once the relevance of these interactions on plant 
development is understood, the rhizosphere microbiome should be manipulated and 
thus increase production and their well-being; reduce the need for farmland, 
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pesticides, and fertilizers; and thus reduce the intrinsic carbon footprint associated 
with these activities [64–66].

Plant evolution gave way to the adaptation through metabolite excretion to the 
soil (exudates) to interact with rhizosphere composition. The exudates may alter the 
composition and activity of the microbiome around, changing the pH, soil structure, 
and availability of oxygen or supplying organic compounds as a source of energy 
[67]. Some of the compounds exudated can also act as chemotrophic signals, which 
can attract pathogenic microorganisms to the plant, nematodes, or herbivorous 
arthropods [68]; however, these compounds can also work in the recruitment of 
beneficial microorganisms which can aid the plant in defense against pathogens, 
diseases, biotic stress conditions or enhance nutrient absorption [63, 64]. Under 
stress conditions, plants trigger the production of many secondary metabolites, with 
defense signals that promote the cope against pathogen organisms. Synthesis of 
secondary metabolites can relieve stress by modifying root microbiota to further 
degradation of different types of pollutants to carry out bioremediation [63, 69].

Among the strategies proposed for manipulating the rhizosphere microbiome is 
the direct inoculation of microorganisms in the soil. However, one of the biggest 
challenges to achieve is the determination of the species that act on the mechanisms 
involved, the competitive behavior with the native microbiota, and the effects it has 
on agricultural conditions. Alternatively, the metabolites observed in rhizosphere 
exudates should be used and applied in specific areas to stimulate native microor-
ganisms [67]. Therefore, it is necessary to determine qualitatively and quantitatively 
the composition of the exudates under particular conditions, as well as the metabo-
lomic analysis of the prominent participants in the interactions described and rea-
sonably link the production of metabolites and their primary function in the face of 
possible types of stress [65, 70].

A metabolomic analysis is an excellent choice to study plant-rhizosphere inter-
actions due to the complexity and quantity of compounds involved in the metabolic 
relation between roots and microorganisms. Instrumentation such as LC-MS, GC- 
MS, and NMR are the most widespread techniques and powerful tools used for 
identifying the compounds present in the rhizosphere [68, 71]. On the other hand, 
the exometabolomics concept consists of analyzing the metabolic traces of microor-
ganisms present in certain conditions to understand the underlayer mechanisms that 
exist in the rhizosphere and the determination of substrate consumption by microor-
ganisms [64]. In this context, we reviewed recent literature in metabolomics and 
exometabolomics, the findings in primary metabolites, and their function on spe-
cific rhizosphere interactions.

4.1  Metabolome Changes in Roots by Abiotic Stress

Metabolome alterations in the rhizosphere due to interactions result in significant 
interest in setting the defense mechanisms that play plants against external agents 
and expanding the landscape about key metabolites to degrade specific 
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contaminants. Therefore, Wang et al. explored changes in chemical composition in 
root exudates of the urban greening trees exposed to phenanthrene. In Loropetalum 
chinense, Gardenia ellis, and Rhododendron simsii, carbohydrate levels increased 
in the presence of phenanthrene, indicating a regulatory function mediated by the 
biopolymer’s degradation, whereas in Osmanthus fragrans levels decreased, sug-
gesting different behavior between species. Phenolic compounds increased in the 
presence of phenanthrene in Ligustrum japonicum, R. simsii, O. fragrans, Gardenia 
jasminoides, and Camellia sasanqua, implying an adaptation to attract rhizobia bac-
teria, with the aim of cope with exposure to phenanthrene [72]. Regarding heavy 
metals stress, Lu et al. analyzed two wheat genotypes with different tolerance to Cd: 
Aikang 58 with low accumulation and Zhenmai 10 with high accumulation. Both 
phenotypes showed an increase in phenylalanine and tyrosine in the presence of Cd, 
relating these changes in the shikimate-phenylpropanoid pathway. The rise in 
acetylglycine and histidine indicates a chelating activity to chelate Cd in vacuoles. 
At the same time, glutamate, glutamine, aspartic acid, asparagine, and lysine per-
form an osmotic balance to detoxify heavy metals. In the presence of Cd, an increase 
in maltose, isomaltose, sorbose, tagatose, and polyols assists the cell wall’s struc-
ture. In contrast, the addition of glyceric acid, cis-aconitate, malic acid, salicylic 
acid, and citrate indicates a deterioration in the activity of the tricarboxylic acid 
cycle activity to assimilate carbon under stress conditions. These alterations in the 
metabolism promote a high ability to take out and defend the plant against reactive 
oxygen species, inducing molecular signaling and antioxidant enzymes [73].

A report studying the effect of acid drainage contamination on Phragmites aus-
tralis by Kalu et  al. analyzed root and rhizosphere metabolome. The main com-
pounds found in roots at contaminated sites were adenosine, inosine, methionine, 
carnitine, and dimethylglycine. On the other hand, uridine, dopa, asymmetric 
dimethylglycine, adenosine, and phenylalanine had a lower abundance in contami-
nated sites. This alteration has the purpose of recruiting microorganisms that pro-
mote the growth of the plant while at the same time attracting microorganisms 
specialized in heavy metal detoxification. As for bacterial communities, the main 
phylum in samples grown at contaminated sites was proteobacteria, β-proteobacteria, 
and the Methylocystis, Rhizobium, and Delftias genera [74]. In salinity stress, Wang 
et al. analyzed the canola roots metabolome in the presence of NaCl. The abundance 
of proline and soluble sugars increased in canola roots under saline stress. However, 
the metabolites with the most significant difference between groups were lipids, 
primarily fatty acids, which increased compared to controls. In saline stress, lipids 
affect membrane permeability, fluidity, integrity, and protein transport activity; 
therefore, the reconstitution of lipids in cells becomes transcendental. This stress 
triggers the production of polyunsaturated fatty acids, which can help the activation 
of membrane ATP-loop activity, which is responsible for maintaining homeostasis, 
facilitating the pumping of Na+ from the cytosol to the external medium, and block-
ing K+ channels [70].

Finally, it is essential also to consider UV radiation stress. Mannucci et al. ana-
lyzed the effect of UV exposure on tomato plants and their metabolomic changes in 
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roots and leaves. In the roots of plants exposed to UV radiation, terpenoids and 
phenylpropanoid derivatives pathway synthesis increased compared to controls. For 
carbohydrates, degradation processes increased in radiation treatments, suggesting 
a wide degree of mobilization of reserve compounds to produce necessary precur-
sors for secondary metabolites synthesis, such as flavonoids. As an effect of a rear-
rangement of lipid membrane composition, monogalactosylglycerol was found in 
the plants exposed, while 4α-carboxy-5α-cholesta-7,24-dien-3β-ol levels decreased. 
Finally, phenolic compounds and p-coumaroyl glycolic acid decreased in the UV 
treatments, a compound with anti-inflammatory properties [75].

4.2  Metabolic Changes Associated with Root and Other Biotic 
Factor Interactions

The most relevant biotic factors that transcend the metabolome analysis include 
plant pathogenic microorganisms; it is essential to decipher the compounds pro-
duced by plants to counteract the conditions and even the mutual organisms that 
help defend against these agents. Another biotic stress to consider is the neighbor-
hood of other plant species competing for nutrients. In addition, the importance of 
the interaction of mycorrhizal fungi and the benefits they have in association with 
root plants is known. Both metabolisms are relevant to develop strategies that can 
help to improve crops.

To find out how rye competition affects Vicia villosa Roth, Hazrati et al. analyzed 
the metabolic effect on the roots of these plants. Kaempferol-Rha-Xyl-Gal was the 
main compound found. This compound decreased in V. villosa when it was grown 
in the presence of rye. Thus, it is estimated that competition produces a deficit of 
several nutrients in hairy vetch, decreasing the production of flavonoids [76]. 
Phytophthora sojae is known to cause phytophthora root rot disease in soybean; 
Zhang et al. analyzed the rhizosphere of Glycine max inoculated with P. sojae. The 
post-inoculated rhizosphere of a resistant species had a greater abundance of metab-
olites related to cutin biosynthesis, suberin, wax, arginine, ansamycins, pyrimidine, 
galactose, linoleic acid, ABC transporters metabolism, and lysine degradation. Most 
of the metabolites in the post-inoculated rhizosphere include antibiotics, which are 
responsible for conferring plant resistance to pathogens. On the other hand, some 
compounds in the control rhizosphere contained compounds to attract possible 
pathogenic microorganisms to the plant, such as daidzein and genistein. Although 
some flavones and isoflavones repel zoospores, others have the opposite effect, each 
specific to the conditions the plants were exposed to. Besides, cutin, suberin, and 
wax biosynthesis are inferred to provide drought tolerance by preventing water loss 
and insect tolerance [77].

Finally, interaction with symbiotic microorganisms focuses on knowing the ben-
efits they bring and how they achieve them. Therefore, a view with a metabolomic 
approach is interesting to know the main compounds in the rhizosphere used to 
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improve crop capacity. In this context, Zhang et al. analyzed the interaction between 
Medicago truncatula and rhizobium bacteria to get the metabolites in the formed 
nodules. Oxylipin-9-HODE decreased during the application of rhizobia bacteria, 
indicating decreased jasmonic acid precursors and inhibition due to the interaction 
[78]. Oxylipins are critical signaling molecules in the defensive response of plants 
to protect their tissues from attacks by herbivores or pathogens, and some contain 
antimicrobial properties.

Similarly, Sebastiana et  al. analyzed cork oak roots colonized with Pisolithus 
tinctorius, an ectomycorrhizal fungus. In the study, the inoculated roots showed 
higher levels of γ-aminobutyric acid, alanine, β-glucose, and citrate. It was also 
demonstrated that the inoculated samples decreased quercitol, glycine-betaine, 
α-glucose, fructose, malate, and lactate levels. Inoculated samples influenced alka-
loids, terpenoids, oxylipins, lipids, carbohydrates, amino acids, nucleic acids, and 
vitamins. In addition, a decrease in isomers of glucose, sucrose, sorbitol, and man-
nosyl glycerate was observed, as well as a reduction of isomers of fatty acids and 
compounds involved in the metabolism of tyrosine and histidine. The decrease of 
organic acids and glycine-betaine is related to apoplastic protective barriers, indi-
cating the transfer of these metabolites to fungi, in the case of lipids, including 
monoacylglycerols, which are the main components of suberin and bark. This layer 
accumulates on the most exposed face of tree stems and roots and protects against 
drying and pathogen attack [79].

Another example was shown by Hernández et al. who analyzed the beneficial 
activity of Rhizobium tropici in Phaseolus vulgaris growth under phosphorous defi-
ciency. It was observed that some organic acids, polyhydroxy acids, sugars, and 
polyols increased significantly in nodules with phosphorus (P) deficiency. In con-
trast, some amino acids and nitrogenous compounds decreased, reducing N fixation 
in P-deficient plants. In addition, they presented sugar accumulation, indicating 
demand for root photosynthate due to the decrease in the photosynthesis network. 
On the other hand, changes in carbohydrate content mean glycolysis/C binding 
pathways are induced in nodules under P deficiency stress [80]. P-deficient roots 
showed a decrease in the organic acid concentration, suggesting their exudation 
toward the rhizosphere; this has also been recently demonstrated in a study by 
Gomez-Zepeda et al. when using mass spectrometry imaging to locate organic acid 
exudates in P-deficient Arabidopsis plants. Organic acid exudation by roots is con-
sidered a core response to different types of abiotic stress and the interaction of 
roots with soil microbes. For decades it has been a target trait to produce plant vari-
eties with increased capacities of inorganic orthophosphate uptake and aluminum 
tolerance [81].

Microbiota may vary according to the plant growing zone. In this way, Li et al. 
analyzed metabolome and microbiota in the roots of Aconitum vilmorinianum 
grown in two different sites in China (Luquan and Weixi). The difference observed 
in the metabolites was an increase in yunnaconitin and vilmorranine A in Weixi and 
a decrease in amino acids and some derivatives in Luquan. A correlation was found 
between 137 bacteria and 17 fungi with 75 differential metabolites in the 2 regions, 
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among which the fungus on Cladosporium stands out, with a high probability con-
ditional on aconitine, demonstrating the appearance of this metabolite in Weixi 
samples. Regarding Luquan, three bacterial and six fungal biomarkers were found, 
while Weixi showed the presence of five bacterial and five fungal biomarkers. This 
finding in the microbiome may be due to the environmental temperature, while in 
Weixi usually snows, and Luquan rarely occurs [82].

Knowledge about metabolome interaction between roots and their environment 
is crucial to identify the relevant metabolites produced in this medium. With this, it 
is intended to know which metabolic pathways are altered in plants to produce 
detoxifying compounds, antibiotics, or those that recruit beneficial microorganisms 
for plants. On the other hand, the compounds produced by microorganisms and their 
identification are also convincing to analyze the possibilities of the inoculation of 
different bacterial species in scenarios of various types of stress. However, it is 
important to specifically identify these conditions since not all species will behave 
similarly under the same state or stress. Herewith, it is essential to trace how crops 
can be treated to face biotic and abiotic stress caused mainly by climate change and 
improve their production and development.

5  Plant Biomarker Identification

Metabolomics is one of the most recent powerful tools for studying plants and other 
organisms and is becoming a complementary technique to genomics, transcrip-
tomics, and proteomics [83]. Metabolomics addresses the activity of small mole-
cules (<1500  Da) produced by cells during their life cycles, that is, products of 
primary or secondary – specialized – metabolism, found in various biological sys-
tems, studying how metabolic profiles change within an organism in response to 
some situations, such as disease or stress [84].

Therefore, unlike other “omics,” metabolomics best describes phenotypes, can 
give instantaneous information on the physiological state of cells and thus provide 
a broader view of the biochemical state of an organism, and can track the metabolic 
network of a biological system and its perturbation in response to stimuli. 
Metabolomics aims not to identify every metabolite observed but to compare pat-
terns of metabolites that change in each biological system. When these analyses are 
performed on enough biological replicate samples, it allows researchers to discrimi-
nate and classify samples and gain insight into changes in metabolome composition 
related to a particular physiological state, influence of stress or stimulus, genetic 
modification, or interaction with other organisms.

Metabolites provide a “fingerprint” of the complex interaction between the 
genome and the environment. They can generally be divided into two groups: pri-
mary metabolites, essential for maintaining processes directly involved in plant sur-
vival, growth, and reproduction, and secondary metabolites, which contribute to 
specialized processes in each organism synthesized to fulfill a nonessential function 
in the plant.
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Due to the structural heterogeneity of metabolites and their different ranges of 
magnitude and concentration, their identification and measurement present a con-
siderable challenge. For the plant kingdom alone, researchers have reported more 
than 400,000 plant species worldwide [85]. As for structurally distinct secondary 
metabolites, there are approximately 200,000 to 1,000,000 [86], which is why the 
field of plant metabolomics is the most advanced with a wide range of applications 
[1, 85].

All this information and understanding of the metabolome as it is affected by 
factors including environmental changes, physical changes, biotic stresses, abiotic 
stresses, and even internal changes in the plant as a function of its developmental 
stage can be used to monitor significant variations in metabolites and in the search 
for metabolites that can act as biomarkers.

The study of metabolomic biomarkers is one of the least explored areas in metab-
olomics. By 2022 only 16% of the publications examined the discovery or discrimi-
nation of biomarkers, while 46% of the publications refer to metabolic mechanisms 
and 33% examined metabolic profiles. However, many of these publications on 
metabolic profiles include preliminary and descriptive findings for more detailed 
analysis of the machine tool and discovery of biomarkers [87].

A metabolomic biomarker differs greatly from a protein biomarker and tran-
scriptomic biomarkers because of the close relationship between individual metabo-
lites. Factors measured in other “omics” technologies are independent, although 
there may be patterns of abundance that reflect a disease state. A metabolomic bio-
marker is not just a chain of changes in individual metabolites. Instead, it is com-
posed of co-related metabolites that change together [88].

For the discovery and characterization of a metabolomic biomarker, validation 
based on the environment and research design is necessary to determine whether the 
proposed biomarker can distinguish between the changes to which plants are sub-
jected [88], that is, for a biomarker to be classified as such, it must meet specific 
characteristics: be measurable, reflect the qualitative or quantitative interaction of 
the plant with the chemical of interest, be precise and sensitive, and be commonly 
shared among individuals in a population and plant species.

In this way, and through preliminary findings of metabolic profiling, some bio-
markers have been identified in plants in response to exposure to stress factors: For 
example, a study on biomarker discovery [89] demonstrated that volatile organic 
compound (VOC) profiles could be used as diagnostic markers of stress in grape-
vine; this study shows that VOC emission can be considered as a universal response 
of grapevine to plant defense elicitors, given that the elicitors evaluated induced the 
emission of a standard set of VOCs encompassing chemically different compounds, 
including the sesquiterpenes α-farnesene and β-caryophyllene and that such a 
response is analogous with the induction of stilbene phytoalexins.

Similarly, plant metabolomics can help to identify resistant metabolites in plants 
that are subjected to stress conditions [17]; the selected biomarker can be used as a 
diagnostic metabolite for plant stress, as in the case of the study of wheat and barley 
resistance against F. graminearum infection where they point to various plant 
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hormones that respond to this infection [90]. Such is also the case of phenylpro-
panoids and organic acids, metabolites identified as biomarkers of nitrogen defi-
ciency in leaves and roots of tea plants (Camellia sinensis) that are elevated when 
there is a nitrogen deficit [91]. For example, hexadecanoic acid and dotriacontane, 
highly expressed metabolites, were identified as potential biomarkers in rice seeds 
infected with Rhizoctonia solani toxin, metabolites involved in several important 
rice biosynthetic pathways, such as the biosynthesis of saturated fatty acids and the 
unsaturated fatty acids cutin, suberin, and wax [92].

However, the identification of metabolites not only corresponds to stress 
responses, but the detection of metabolic changes at different developmental stages 
also contributes to finding metabolites characteristic of each stage (biomarkers), as 
in the case of metabolomic analysis of rice where developmentally controlled phe-
nolamide accumulation patterns are observed [15] or in Arabidopsis where patterns 
of glucosinolate, raffinose, and galactinol accumulation are present at the base of 
leaves during the senescence stage [90]. Analysis of the spatiotemporal metabolic 
profile of plant development also allows the identification of potential biomarkers to 
capture intrinsic genetic features of plant development, as in the study of rice tiller-
ing (branching), in which 21 metabolites captured nearly 83% of the metabolic 
variation [93], and the developmental phase of soybean during the transition from 
vegetative to reproductive stage, in which eight flavonoid kaempferol glycosides 
were identified as potential growth markers [94].

In the food industry, the identification of biomarkers has also worked in quality 
processes for food authenticity and food traceability matrices of plant origin, espe-
cially in the field of aromatic herbs and spices, which are very susceptible to food 
fraud, as in the case of thyme, an aromatic herb traditionally used for food purposes 
due to its organoleptic characteristics and medicinal properties. In this particular 
case, it was possible to determine the geographical traceability of thyme based on 
different origins (Spain, Poland, and Morocco), as well as to evaluate its processing 
by comparing sterilized thyme with non-sterilized thyme, where 24 differential 
markers belonging to different classes were identified: among monoterpenoids, 
diterpenoids, sesquiterpenoids, alkylbenzenes, and other diverse compounds for its 
authenticity [95].

Another example of this application that helps to detect adulterants in plants that 
are used commercially is observed in the study by Ivanovic et al. using wild garlic 
(Allium ursinum) and poisonous adulterants Convallaria majalis and Arum macula-
tum as a model for the detection of adulterants in edible plants; the metabolites 
isovitexin, vicenin II, azetidine-2-carboxylic acid, and trigonelline were elucidated 
as biomarkers of adulteration [96].

On the other hand, metabolomics approaches have also been used to characterize 
and diagnose plant diseases and thus crop improvement, for example, during the 
study of the interaction maize-Fusarium graminearum-Bacillus amyloliquefaciens 
or soybean-Rhizoctonia-B. amyloliquefaciens, a better understanding of the meta-
bolic regulation of all interacting systems has been achieved, providing valuable 
insights potentially useful in plant breeding and metabolic bioengineering [97].
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Metabolite markers against drought stress (malonate, leucine, 5-oxo-L-proline, 
saccharic acid, trans-cinnamate, succinate, and glyceric acid) have been reported by 
Khan et al. who identified biomarkers in the metabolome of chickpea (Cicer arieti-
num L.) when treated with plant growth regulators (salicylic acid and putrescine) 
and the PGPR growth consortium (B. thuringiensis, Bacillus subtilis, and Bacillus 
megaterium). Deliberative metabolic reprogramming of chickpea targeting bio-
marker synthesis pathways resulted in drought-tolerant chickpea varieties [98].

Biomarker identification can also be applied to predict phenotypic traits and pro-
vide early detection tools to identify and use them in plant breeding development 
[99]. In China, for example, hybrid rice combinations have been created using ster-
ile lines and restorer lines to reduce seed deterioration during storage and establish 
galactose and gluconic acid as metabolic biomarkers that reflect the degree of seed 
aging [100]. Also, in understanding the functioning of plants growing under extreme 
conditions, the identification of biomarkers in these plants could provide informa-
tion that would benefit crop improvement; for example, it was possible to identify 
associated metabolic biomarkers in an alpine medicinal plant (Rhodiola crenulata) 
that can survive in extreme altitude conditions where the shikimic acid- 
phenylalanine- phenylpropanoid flavonoid pathway was enhanced with phenylpro-
panoids upregulating much more than flavonoids [101].

Surveillance for potential pathogens is critical to plant innate immunity, so plants 
depend on the perception of pathogen-derived molecules to activate defense-related 
signaling cascades and specialized metabolites in response; in studies of the tomato 
plant (Solanum lycopersicum), by monitoring metabolic profiles of signaling cas-
cades in response to pathogens, significant biomarkers were noted for several 
classes of metabolites including amino acid derivatives, lipid species, steroidal gly-
coalkaloids, hydroxybenzoic acids, hydroxycinnamic acids, and products, as well 
as flavonoids [102].

Other metabolites identified as biomarkers in the plant defense response to 
pathogens are hydroxycinnamic acids; the conjugation of these acids with amide 
groups contributes to the regulation of the dynamic metabolic pool of hydroxycin-
namates; a wide range of biogenic amine compounds found in most plant cells and 
these conjugates can scavenge radicals, confer antimicrobial activity, and can be 
deposited in the cell wall; so finding the activity of these metabolites is indicative of 
the plant-pathogen response [103]. A summary of primary and secondary or spe-
cialized metabolites identified in various plant species is presented in Table 2.

The identification of biomarkers in plants can have diverse applications, as 
described above; however, to reach the validation of these metabolites, metabolic 
profiling studies are necessary; metabolomics has been widely applied in the study 
of plants showing a breakthrough in understanding how the phenotype is related to 
the metabolome and therefore the function of metabolites under normal conditions, 
stress, and during their development.
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Table 2 Identifying key metabolites in various plant species using different analytical 
methods [104]

Plant species Class
Analytical 
tools Key metabolites Ref.

Primary metabolites
Plantago ovata Fatty acids GC-MS α-Linolenic acid, linoleic acid, and 

palmitic acid
[105]

P. ovata Fatty acids GC-MS Pentadecanoic acid, palmitic acid, 
heptadecanoic acid, stearic acid, oleic 
acid, linoleic acid, γ-linoleic acid, and 
arachidic acid

[106]

Jatropha curcas Fatty acids GC Oleic acid, palmitic acid, and linoleic acid [107]
Paeonia rockii, 
P. potaninii, 
and P. lutea

Fatty acids GC-MS α-Linolenic acid, oleic acid, and linoleic 
acid

[108]

Cicer arietinum Fatty acids GC-MS Pentadecanoic acid, palmitic acid, 
palmitoleic acid, stearic acid, oleic acid, 
linoleic acid, α-linolenic acid, and 
arachidic acid

[109]

P. ovata Amino 
acids

HPLC Isoleucine, threonine, leucine, histidine, 
and lysine

[105]

P. ovata Amino 
acids

HPLC Aspartate, glutamine, glycine, alanine, 
arginine, serine, proline, isoleucine, and 
methionine

[106]

Fritillaria 
thunbergii

Amino 
acids

GC-MS Tryptophan, phenylalanine, and histidine [110]

C. arietinum Amino 
acids

GC-MS L-glutamic acid, L-tryptophan, 
phenylalanine, glycine, serine, 
L-threonine, L-valine, L-ornithine, and 
L-proline

[109]

C. arietinum Sugars and 
sugar 
alcohols

GC-MS Sucrose, cellobiose, galactose, methyl 
galactoside, and myo-inositol

[109]

C. arietinum Sugar 
alcohols

GC-QqQ-MS Galactitol, erythritol, arabitol, xylitol, 
mannitol, and inositol

[111]

Secondary metabolites
Beta vulgaris Terpenes HPLC-MS Oleanolic acid, hederagenin, akebonoic 

acid, and gypsogenin
[112]

Ocimum 
gratissimum

Terpenes GC-MS m-Chavicol, t-anethole, germacrene-D, 
naphthalene, ledene, eucalyptol, azulene, 
and camphor

[113]

Mentha 
piperita

Terpenes GC-MS Menthone, menthol, pulegone, and 
menthofuran

[114]

M. arvensis Terpenes GLC Menthol, isomenthone, L-methone, and 
menthyl acetate

[115]

Achyranthes 
bidentata

Terpenes HPLC Oleanolic acid and ecdysterone [116]

(continued)
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Table 2 (continued)

Plant species Class
Analytical 
tools Key metabolites Ref.

Arabidopsis 
thaliana

Phenolics UHPLC-MS Scopoletin, unbelliferone and esculetin, 
scopolin, skimming, and esculin

[117]

P. ovata Phenolics LC-MS Luteolin, quercetagetin, syringetin, 
kaempferol, limocitrin, helilupolone, and 
catechin

[105]

P. ovata Phenolics LC-MS Kaempferol, 
3-(2″,3″-diacetylrhamnoside)-7- 
rhamnoside and apigenin 7-rhamnoside

[106]

P. ovata Alkaloids LC-MS Lunamarine, hordatine B, and pinidine [105]
Dendrobium 
snowflake “red 
star”

Alkaloids 1H and 2D 
NMR

Dendrobine and nobilone [118]

Understanding the adaptative physiology and biochemistry of plants, as well as 
the underlying metabolic events, is relevant to have a global perception of the 
metabolomic status of plants, with the identification of biomarkers providing help-
ful information on metabolites involved in resistance responses, stress, growth, a 
better understanding of intra- and interspecific microbial interactions occurring at 
different heterogeneous levels within the plant habitat, identification of systemic 
responses of various crops to pathogen stress, and pathogens and their biological 
control, would allow crop scientists to identify unique metabolic markers that can 
be applied to early detection of a plant pathogen as well as to the development of bio 
fungicides, for example, for use during pre-harvest, post-harvest, and harvest stor-
age and large-scale storage of crops. Identifying and applying metabolic biomarkers 
could favor controlled and semi-controlled planting systems shortly, and if properly 
integrated into crop protection strategies, food security could be mitigated. However, 
the applications of these biomarkers could be helpful in various areas, such as the 
food and pharmaceutical industry in food quality and safety processes, diagnosis 
and treatment of plant diseases, crop improvement, and analyzing genetic-modified 
crops. Still, the work done so far is relatively new, and efforts should continue to 
cover the tremendous potential presented by identifying metabolic biomarkers. 
Table 3 summarizes the identification of some metabolites in transgenic plants using 
different analytical techniques.
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Table 3 Identification of important metabolites in transgenic plants using different analytical 
tools [104]

Transgenic 
plant

Analytical 
techniques Key metabolites Ref.

Artemisia 
annua

GC-TOF-MS Borneol, phytol, (3-farnesene, germacrene-D, 
artemisinic acid, dihydroartemisinic acid, and 
artemisinin

[119]

Lactuca sativa NMR Asparagine, glutamine, valine, isoleucine, 
cx-ketoglutarate,
succinate, fumarate, malate, sucrose, and fructose

[120]

Lycopersicum 
esculentum

GC-MS y-Aminobutyric acid, histidine, proline, pyrrol-2- 
carboxylate, galactitiol/sorbitol, glycerol, maltitol, 
3-phosphoglyceric acid, allantoin, homocysteine, 
caffeate, gluconate, ribonate, lysine, threonine, 
homoserine, tyrosine, tryptophan, leucine, arginine, and 
valine

[121]

Nicotiana 
tabacum

NMR Chlorogenic acid, 4-O-caffeoylquinic acid, malic acid, 
threonine, alanine, glycine, fructose, (3-glucose, 
cx-glucose, sucrose, fumaric acid, and salicylic acid

[121]

N. tabacum GC-MS 4-Aminobutanoic acid, asparagine, glutamine, glycine, 
leucine, phenylalanine, proline, serine, threonine, 
tryptophan, chlorogenic acid, quininic acid, threonic 
acid, citric acid, malic acid, and ethanolamine

[122]

Oryza sativa GC-MS Glycerol-3-phosphate, citric acid, linoleic acid, oleic 
acid,
hexadecanoic acid, 2,3-dihydroxypropyl ester, sucrose, 
9-octadecenoic acid, 2,3-dihydroxypropyl ester, 
sucrose, mannitol, and glutamic acid

[123])

O. sativa LC-MS Tryptophan, phytosphingosine, palmitic acid, 
5-hydroxy-2-octadenoic acid 
9,10,13-trihydroxyoctadec-ll-enoic acid, and 
ethanolamine

[124]

Populus GC-MS, 
HPLC

Caffeoyl and feruloyl conjugates, syringyl-to-guaiacyl 
ratio,
asparagine, glutamine, aspartic acid, y-amino-butyric 
acid,
5-oxo-proline, salicylic acid-2-O-glucoside, 2, 
5-dihydroxybenzoic acid-5-O-glucoside, 
2-methoxyhydroquinone-l-O-glucoside, 
2-methoxyhydroquinone-4-0-glucoside, salicin, gallic 
acid, and dihydroxybenzoic acid

[125]

Solanum 
tuberosum

LC-TOF-MS Glutathione, y-aminobutyric acid, 3-cyanoalanine, 
5-oxoproline, sucrose, glucose-1-phosphate, glucose-6- 
phosphate, fructose-6-phosphate, ethanolamine, 
adenosine, and guanosine

[126]

Triticum 
aestivum

GC-MS Guanine and 4-hydroxycinnamic acid [127]

(continued)
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Table 3 (continued)

Transgenic 
plant

Analytical 
techniques Key metabolites Ref.

T. aestivum LC-MS Aminoacyl-tRNA biosynthesis, phenylalanine, tyrosine, 
tryptophan glyoxylic, tartaric acid, oxalic acids, 
sucrose, galactose, mannitol, leucine, valine, glutamate, 
proline, pyridoxamine, glutathione, arginine, citrulline, 
adenosine, hypoxanthine, allantoin, and adenosine 
monophosphate

[128]

Zea mays 1H NMR Lactic acid, citric acid, lysine, arginine, glycine- 
betaine, raffinose, trehalose, galactose, and adenine

[129]

6  Plant Single-Cell Metabolomics

In the past, genomics, transcriptomics, and metabolomics techniques have been 
applied in bulk plant samples consisting of many cells; in such experiments, the 
biological process leading to cell heterogeneity is often considered not to be bio-
logically relevant. However, cell heterogeneity has been shown to play important 
biological roles in many situations for which averaging would mask relevant meta-
bolic processes [130]. Plants contain several cell types and exhibit complex regula-
tory mechanisms. Studies at the single-cell level have gradually become more 
common in plant science. Single-cell transcriptomics, spatial transcriptomics, and 
spatial metabolomics techniques have been combined to analyze plant develop-
ment. These techniques have been used to study the transcriptomes and metabo-
lomes of plant tissues at the single-cell level, enabling the systematic investigation 
of gene expression and metabolism in specific tissues and cell types during defined 
developmental stages [131]. However, single-cell technologies require labor- 
intensive protocols for plant cell isolation. On that respect several attempts have 
been developed; these strategies can be classified into three main groups: those that 
attempt to isolate material of specific cell type to perform the analysis on platforms 
used for regular metabolomics, which we will refer to as single-cell type metabolo-
mics [132]; those based on micromanipulation of single cells; and those based on 
mass spectrometry imaging [130].

Several methods for harvesting cells have been developed for single-cell and 
single-cell type metabolomics, whereby cells can be obtained or extracted in situ. 
The in situ techniques include micropipetting for isolating the contents of specific 
cells, laser microdissection (LMD), laser microdissection and pressure catapulting 
(LMPC), laser capture microdissection (LCM), and fluorescence-activated cell sort-
ing (FACS). Laser microdissection and pressure catapulting and laser capture 
microdissection use laser to excise single cells or microareas from fixed or frozen 
intact tissues and are becoming very popular for plant cell and tissue sampling. 
FACS, on the other hand, is used to obtain specific cell types; for example, those 
identified from root developmental zones by transgene-labelled nuclei or by 
immunolabelled- based collection and microfluidic sorting-based methods that 
exploit intrinsic cell properties [129]. Figure 5 summarizes different approaches for 
cell-specific metabolomics.
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Fig. 5 Overview of experimental steps and data structure from the different approaches for cell- 
specific metabolomics. (Reproduced from Ref. [130])

However, to obtain single-cell suspension, it is a very challenging activity and 
deeply laborious. In addition, plant cells are rigid cells when compared to animal 
cells; rigid cell walls remain the main obstacle for single-cell technologies in plants. 
Since protoplasts must remain alive and be subjected to a minimal level of distur-
bance during isolation, for example, for protoplast isolation, the cell wall digestion 
procedure requires optimization for suitability for the tissue under study [133].

Mass spectrometry imaging (MSI) technique can provide spatially resolved 
information on the structure and content of metabolites including know and unknow 
endogenous metabolites, and it thus produces tissue molecular imaging maps. Three 
MSI techniques have been developed based on different ions sources: secondary 
ions MS (SIMS), desorption electrospray ionization (DESI), and matrix-assisted 
laser desorption/ionization (MALDI) [131]. Figure 6 summarizes different ioniza-
tion techniques used for MSI. Among them, MALDI is the most popular ionization 
technique for MSI experiments. In MALDI mode a matrix applied to the sample is 
excited by a laser; this energy is further transferred to the sample resulting in the 
desorption/ionization event. Preparation for MALDI usually comprises cryo- 
sectioning and lyophilizing a frozen sample before applying the matrix by either a 
sprayer or a special device, as well solvent free sublimation [130]. However, MALDI 
remains a technique that still lacks significant improvement, for example, matrix 
selection and the choice of matrix method application, tissue sectioning technique, 
embedding protocols, sample preparation, and mounting. In other words, MALDI 
imaging technique requires optimization for every tissue and metabolites of inter-
est; for example, Pérez-López et al. developed a protocol of MALDI imaging by 
sample imprinting in nylon membranes to locate fructans in stem and rhizome tis-
sues of Agave tequilana plants [134]; in addition, the combination of ion mobility 
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Fig. 6 Schematic representation of the different ionization strategies used for mass spectrometry 
imaging (MSI). (a) MALDI, (b) secondary ion mass spectrometry (SIMS), (c) desorption electro-
spray ionization (DESI), (d) laser-ablation electrospray ionization (LAESI). (Reproduced from 
Ref. [130])

spectrometry allowed the detection of fructan isomers even if these have not been 
mapped on their images obtained; Fig. 7 outlines the protocol developed.

More recently, DESI have become the newest development for mass spectrom-
etry imaging to visualize plant metabolites; DESI offers a great advantage being 
matrix-free ionization alternative to MALDI. In DESI, a solvent stream originating 
from an electrospray probe is directed at an angle (most important parameter) 
toward the sample at ambient pressure, propelling secondary ions to the mass ana-
lyzer, enable direct analysis of unprocessed frozen samples sections which simplify 
samples preparation [135, 136]. Very recently, some metabolites detected with 
DESI source ranged from monoterpenoid alkaloids, which were localized in several 
of the major parts of the Rauvolfia tetraphylla plant when analyzed by MALDI and 
DESI-MSI [137], alkaloids in the leaves of Gelsemium elegans [138] through can-
nabinoids and flavonoids in the leaves of Cannabis sativa [139], among other recent 
applications of DESI.
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Fig. 7 Outline of tissue printing technique. (a) Agave tequilana plant showing the crown region 
(leaf/stem to root transition). Dotted red line indicates the longitudinal axis; dotted blue line indi-
cates the transversal axis. (b) A. tequilana plant as in (a) with leaves and most roots removed and 
dissected longitudinally. (c) Longitudinal stem section. (d) Transverse stem section. (e) 
Representation of tissue printing process. (f) Tissue-printed transverse section mounted on MALDI 
Imaging plate. (g) PAS staining of a tissue-printed longitudinal section. (h) MALDI-ToF-MSl of a 
tissue-printed longitudinal section obtained, using a sprayer for matrix application and a QTOF 
SYNAPT G1 spectrometer with a spatial resolution of 100  pm per pixel. (Reproduced from 
Ref. [134])

7  Concluding Remarks

The utilization of a model plant like Arabidopsis or a crop with a reference genome 
sequence, such as - maize, rice, tomato, and wheat, to mention some of the global 
agricultural importance  - offers a unique opportunity,  where approaches such as 
mQTL, GWAS, mGWAS, and transcriptomics can effectively provide a vast poten-
tial to reveal gene annotation and their functional characterization. On the contrary, 
enormous efforts must be made for other minor crops, medicinal plants, and regional 
staple foods. However, plant metabolomics research needs to be focused on devel-
oping strategies to develop confident metabolite annotation through implementing a 
free online accessible database for metabolite identification. Plant metabolomics 
showed, as reviewed here, great potential to assist crop improvements, supporting 
exploring species identification for diversity and botanical purposes, food authenti-
cation, fraud, and traceability.

Without forgetting the knowledge of metabolome interaction between roots and 
their environment to identify the relevant metabolites produced, on the other hand, 
metabolomics approaches can play a crucial role in studying the interaction between 
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plants with biotic and abiotic stresses. Knowing the compounds produced by micro-
organisms and their identification in climate change conditions that enhance crop 
production and development is crucial.

Identifying and applying metabolic biomarkers could favor controlled and semi- 
controlled planting systems shortly, and if properly integrated into crop protection 
strategies, food security could be mitigated. However, the applications of these bio-
markers could be helpful in various areas, such as the food and pharmaceutical 
industry in food quality and safety processes, diagnosis and treatment of plant dis-
eases, and crop improvement. Still, the work done so far is relatively new, and 
efforts should continue to cover the tremendous potential presented by identifying 
metabolic biomarkers.

Plant metabolomics could benefit in developing new strategies to face challenges 
and demands in crop improvement. Spatiotemporal metabolomics can effectively 
support plant-soil interactions studies; the implementation of mass spectrometry 
imaging in combination with ion mobility spectroscopy could potentially reveal 
metabolites’ location in plant tissue without the need for extraction, in addition, to 
providing isomer identification without forgetting the need to develop metabolite 
databases that can support full plant metabolome coverage.
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1  Introduction

Complex networks of cells and molecules constitute the biological processes of an 
organism. The physiology of each tissue depends on the signaling and intercom-
munication between heterogeneous populations of cells, and gene regulatory net-
works in a cell. The systematic and hierarchical analysis of the biological networks 
within each cell, tissue, and organ in the body will greatly benefit the understanding 
of physiology and of disease pathogenesis at the molecular level [1]. Each single 
cell has its unique transcriptome with cell-type-specific transcription factors, and 
cis-regulatory sequences, proteome, and metabolome that ultimately poses cell with 
functional differences across populations of cells within each single species, and 
across kingdoms of life [2]. The current technological advances enabled the mea-
surement of molecular-based omics which can be subcategorized into genomics, 
transcriptomics, proteomics, and metabolomics, all of which provide functional 
state of biological systems [1, 3–6].

Lyons et al. have successfully applied integration of human transcriptomic data 
with mouse multi-omics data including RNA microarray, total protein mass spec-
trometry (MS), and phosphoprotein MS measurements, and has shown implication 
of elevated p21-activated kinase (Pak) signaling as a driver in chronic colonic 
inflammation (colitis) [8]. Through these studies, multi-omics integration provides 
translational insights in to the mechanisms of colitis pathogenesis and identify Pak 
as a potential therapeutic target for inflammatory bowel disease (IBD) of patients 
with liver cirrhosis who may develop minimal hepatic encephalopathy (MHE), 
multi-omics profiling of the transcriptome, metabolome, and a panel of cytokines of 
blood samples taken from cirrhotic patients with or without MHE suggested a rela-
tionship between cytokines CCL20, CX3CL1, CXCL13, IL-15, IL-22, and IL-6 
with alteration in chemotaxis and a link between long-chain unsaturated phospho-
lipids and the increased fatty acid transport and prostaglandin production. These 
findings together with transcriptomic analysis found altered immune pathways that 
may collectively contribute to the mild cognitive impairment phenotype in MHE 
which opens new insights to the understanding of the disease [9]. Wozniak et al. has 
performed metabolomics and multiplexed quantitative proteomics analysis on more 
than 200 patient serum samples infected with Staphylococcus aureus bacteremia 
(SaB) including uninfected controls, and identified post-translational modifications 
(PTMs) in carbamylation of albumin and serum transferrin, unmodified fetuin B, 
and glycosylated fetuin A of cystatin superfamily of proteins, and cytokine signa-
tures such as IL-6, TGF-β1, TNF, IL-1β, and IL-10 in mortality samples of SaB. The 
depth of analysis was enhanced through computational methods, which accelerated 
a number of findings focus on leveraging emerging multi-omics analyses to uncover 
previously unknown mechanisms of disease and to define biomarkers associated 
with clinical variables as shown in Fig.  1 [7].Imaging mass spectrometry (IMS) 
allows the investigation of the spatial distribution of molecules coupled with high 
mass accuracy and chemical specificity. The combination of molecular speciation 
with MS analysis renders a chemical microscope that can be used for the label-free 

K. Vijaya Lakshmi



425

Fig. 1 Multi-omics analysis of SaB patient serum. (a) Workflow for SaB serum analysis. (b) 
Hierarchical clustering (Pearson) for proteins detected across all samples. (c) Abundance of 
SERPINA5 in control (gray, NN and HN) and infected samples (blue, HS; red, HM). (d) ROC 
curve of SERPINA5 (control versus infected). Error bars represent interquartile range (IQR). For 
all tests, significance values are denoted as follows: ∗∗∗∗p  <  0.0001; ∗∗∗p  <  0.001; ∗∗p  <  0.01; 
∗p < 0.05; ns, not significant [7]. (Reprinted with permission from Wozniak et al., Cell, 2020, 182, 
1311–1327. copyright © 2020 Elsevier Inc.)

detection and mapping of a wide-range biomolecular characterization of small 
metabolites, lipids, peptides, and proteins and exogenous (drugs and drug metabo-
lites) species in histological tissue surfaces. Spatial information of analytes is tradi-
tionally lost through bulk omics analysis of tissue homogenates performed using 
liquid chromatography coupled to mass spectrometry (LC-MS).

IMS advantageously allows for the detection of the analytes of interest at the 
desired spatial resolution for its successful use in a multitude of clinical research 
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applications ranging from oncology, pathology, neurological disorders, cardiology, 
and rheumatology, diagnostics, and surgery to the drug discovery and precision 
medicine. This chapter will focus on highlighting the significant technological and 
methodological improvements in the mass spectrometry that have contributed to 
pushing the limits of high-throughput, spatial resolution, and sensitivity of IMS, and 
the application of this innovative technology in cancer tissue imaging for 
classification of normal and tumor, biomarker discovery in clinical applications, and 
drug distribution. Three commonly used ionization techniques in IMS, secondary 
ion mass spectrometry (SIMS), matrix-assisted laser desorption ionization 
(MALDI), desorption electrospray ionization (DESI); liquid extraction methods; 
the matrix-free laser-based methods of ionization; new instrumental developments; 
and high-resolution mass analyzers are discussed that extend spatial resolution, 
mass resolving power, mass accuracy, and tandem-MS capabilities and offer the 
post ionization electrophoretic separation capabilities for imaging techniques. It 
will be shown how the success of MS imaging is continuously grown toward clinical 
research. Finally, supervised and unsupervised data analysis strategies for the large 
imaging data sets will be briefly discussed.

2  Metabolomics

Metabolomics is often referred to as the youngest of the omics. Unlike genes and 
proteins, whose function is subject to epigenetic regulation and posttranslational 
modifications in the biological cascade from genes to proteins to metabolites, the 
small molecule metabolites represent the closest chemical read out to the expressing 
phenotype. Metabolomics provides a direct chemical signature of biological activity 
and can be correlated to the phenotype. Metabolomic studies can lead to enhanced 
understanding of disease mechanisms and to develop new diagnostic markers as 
well as study the mechanisms for drug response to individuals for precision medicine 
[10–13]. Figure  2 shows the biosynthetic pathway of a cellular endogenous 
metabolite lactate and the multi-omics framework representation of the complexity 
and interconnectivity of omics data sources [6]. Metabolites are small biomolecules, 
such as amino acids, sugars, and lipids, which constitute precursors, intermediates, 
and products in cellular processes such as energy production and storage, signal 
transduction, and apoptosis [14]. In addition, there is increasing evidence that 
metabolites directly initiate cellular signaling cascades and modulate diverse 
biological processes such as epigenetic mechanisms and posttranslational 
modifications [15–18]. As a result, metabolomics profiling can link cellular 
pathways to metabolic reactions, and biological mechanisms in health and disease. 
Metabolomics has a major impact on understanding of the upstream biological 
processes and developing therapeutics [15, 19–21].

The omics measurement involves the identification and quantification of biomol-
ecules, which is carried out with the overall aim of inferring the physiological state 
of an organism based on molecular type, location, and any change in abundance [2, 
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Fig. 2 Example of complexity and interconnectivity of omics data sources in a multi-omics 
framework. A simple cellular endogenous metabolite, lactate is biosynthesized enzymatically from 
pyruvate (another metabolite) with the help of lactate dehydrogenase (LDHA, a catalytic protein). 
In turn this LDHA can interact with several known and unknown proteins through protein-protein 
interactions to regulate its own function, and itself is subjected to diverse posttranslational 
modifications (PTMs) that regulate its catalytic function. Lactate measurement through techniques 
such as in  vivo brain imaging in human or other model animals can generate lactate’s spatial 
distribution. Gut microbiome via Lactobacillus and other microbes can synthesize lactate and 
release into human physiological systems to contribute to lactate levels. Lactate biosynthesis 
regulation can be due to various levels of genetic (e.g., SNPs, CNV), transcriptomic, post- 
transcriptomic (e.g., miRNA), and/or epigenetics (e.g., DNA methylation) changes on the LDHA 
gene. Though this is one of the well-studied sets of multi-omics interactions, one can expect more 
complex and unknown interactions while integrating multi-omics data sets [6]. (Reprinted with 
permission from Front. Genet., 2020, 11:610798. Copyright©2020 Krassowski, Das, Sahu, 
and Mishra)

15]. However, analysis of metabolites in biological samples is challenging due to 
the highly dynamic nature of metabolome, and the presence and abundance of 
metabolites are subjected to the response of cellular activities to the surrounding 
physical and chemical microenvironments [22–25]. In addition to the changes in 
metabolite concentrations, metabolite structures are highly diverse due to the 
presence of complex mixture of isomers and isobars that poses high demand for 
analytical technique with high resolution and high sensitivity. Metabolomics data 
sets contain enormous information of known and unknown metabolites, low and 
high abundant metabolites, while new metabolites are increasingly documented in 
the databases [26]. In the field of metabolomics, mass spectrometry (MS) has been 
invaluable as these methods are ubiquitously implemented for bulk characterization 
of metabolites extracted from homogenized tissue and cell lysates [27]. Recent 
advances in the mass spectrometry (MS) with increased high mass resolving power 
and sensitivity, in combination with the development of metabolite databases, 
provided an avenue for metabolomics studies [28].
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2.1  Traditional Mass Spectrometry Analysis of Metabolome

The types of biological samples include tissues, cells, and biofluids and can be ana-
lyzed using metabolomics. Traditionally, tissue analysis involves homogenization 
and extraction of the sample into a liquid form, from which the metabolite changes 
are averaged across the different cell types and regions of the analyzed tissue using 
either a targeted or an untargeted approach [10]. Untargeted metabolomics provides 
a complex data set with a broad range of metabolites present in an extracted sample 
and analyzed without a prior knowledge of the metabolome. Untargeted 
metabolomics requires the development of computational methods to identify and 
correlate metabolites between samples and connect metabolic pathways in relation 
to the phenotype or abnormality. On the other hand, targeted metabolomics approach 
provides higher sensitivity and selectivity compared to untargeted metabolomics; 
data sets are analyzed based on a preselected metabolite and metabolic pathways of 
interest, whereby methods are developed and optimized for the analysis of specific 
metabolites. Thus, targeted metabolomics can be helpful to validate untargeted 
metabolomics workflow and the analysis [15, 29–31]. Although bulk metabolomics 
approach is widely accepted and successfully implemented to study the metabolic 
reprogramming in an organism or tissues, and bodily fluids [12, 13, 32], it cannot 
pinpoint the localization of overall metabolic changes to a particular tissue, organ, 
or spatially localized aberration such as a tumor [33]. To overcome this problem, 
bulk metabolomics can be performed on individual dissected parts which is time- 
consuming and hard to scale up the analysis [34–36]. In addition to this total tissue 
analysis, subregional, cellular, and even subcellular metabolite profiles can provide 
further insight into structure-to-function relationships which is particularly valuable 
in the case of heterogeneous tissues such as the brain and cancers [37].

3  Imaging Mass Spectrometry (IMS) 
for Spatial Metabolomics

Tissue analysis is perhaps the most powerful approach for studying localized and 
specific responses to stimuli and pathogenesis and drug treatment yielding explicit 
biochemical information about the mechanisms of disease. Addressing the need for 
in situ metabolomics and to discern the metabolic differences at a cellular level, 
researchers have developed an imaging mass spectrometry (IMS)/mass spectrometry 
imaging (MSI) technology enabling the spatial metabolomics analysis with 
simultaneous detection of multiple molecular distributions of small metabolites, 
fatty acids, lipids, sugars, oligonucleotides, peptides, proteins, and xenobiotics such 
as drugs and their metabolites across the surface of a sample with two-dimensional 
(2D) or two-dimensional (3D) spatial resolution on the scales of biological samples 
such as organisms, organs, tissues, and cells. Spatial metabolomics is a rapidly 
emerging field, fueled by the strong and ever-growing need in biology and medicine 
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to characterize biological phenomena in situ and address a variety of biomedical 
questions, including the tumor molecular microenvironment, surgical margin 
evaluation, molecular histology and grading of tissue diagnosis, metabolic 
deregulation in cancer, neurodegeneration, cardiovascular diseases and other 
inflammation, metabolic regulation of epigenetics, functions of immune cells during 
homeostasis and immunotherapy, nanomedicine, host-microbiome interactions, and 
their contribution to the infections.

Despite the molecular images were obtained by mass spectrometers 40 years ago 
[38, 39], only recently new technologies have emerged that encompass a wide 
variety of ionization methods to produce ion maps of a biological sample. Imaging 
mass spectrometry (IMS) is a label-free molecular imaging technique, without the 
need for chemical labelling or antibodies which are the main strength of the method 
[40–42]. Over the past decade, this growing interest has stimulated rapid progress in 
the development of imaging mass spectrometry (IMS) and integration with the 
multimodal imaging techniques that have achieved unprecedented sensitivity, 
coverage, and robustness for its wide applicability in the scientific community. 
Figure 3 shows the growth of the imaging mass spectrometry field in terms of papers 
published over the past 34 years or so [42, 43], which shows that IMS has gained 
widespread applicability and use among biologists, chemists, and mass 
spectrometrists. Fortunately, now mass spectrometers with high-mass resolving 
power and increased sensitivity, in combination with the development of metabolite 
databases using computational approaches such as artificial intelligence (AI), 
machine learning, and deep learning used in IMS, have transformed the field with 
novel avenues for metabolomics [33, 44]. In this chapter, we will discuss three 
commonly used ionization techniques in IMS, secondary ion mass spectrometry 

Fig. 3 Number of scientific papers per year obtained from a search containing topical keywords 
of imaging mass spectrometry using Web of Science data search on December 31, 2022
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(SIMS), matrix-assisted laser desorption ionization (MALDI), desorption 
electrospray ionization (DESI), liquid extraction methods, and the matrix-free laser- 
based methods of ionization, sample preparation, new instrumental developments, 
and high-resolution mass analyzers are discussed that extend spatial resolution, 
mass resolving power, mass accuracy, and tandem-MS capabilities and offer the 
post ionization electrophoretic separation capabilities for imaging techniques. This 
chapter focuses on the applications of cancer tissue imaging for classification of 
normal and tumor, biomarker discovery in clinical applications, and drug distribution. 
Finally, data analysis using supervised and unsupervised methods for the large 
imaging data sets will be briefly discussed.

3.1  Imaging Mass Spectrometry (IMS): The State of the Art

Imaging mass spectrometry (IMS) has been demonstrated to be a powerful approach 
for label-free imaging of spatial distributions of molecular species in situ and does 
not need a priori knowledge of the potential target species. Although IMS is 
untargeted analysis by nature, the sample preparation can be tailored for targeted 
applications. MSI provides the distribution of both large and small molecules in 
sample systems ranging from cells to whole-body rat or mouse, and tissue sections 
of organs such as the brain, kidney, pancreas, and retina at high spatial resolution (as 
low as 1 μm) [45]. IMS enables the detection of thousands of molecules from both 
targeted or untargeted mode at the same time in a single experiment. There are two 
different modes of operation in imaging mass spectrometry, which differ significantly 
in a way how the spatial information is obtained from the tissue. The first one is 
called microprobe or scanning probe and the second is called microscope. The 
difference is schematically represented in Fig.  4 [44]. The basic workflow of 
imaging MS experiment involves the sequential acquisition of mass spectra of 
analytes simultaneously desorbed and ionized in situ by the ionizing probe from 
every pixel defined on the surface of the sample in a pre-defined raster pattern or 
array, termed microprobe mode [38, 46]. The molecular images are reconstructed 
from the individual mass spectra associated with each specific location that have 
been obtained from scanning the entire sample surface area. Alternatively, imaging 
MS in microscopy mode has been demonstrated, where a wide field of view is 
desorbed by an unfocused projectile following transfer and visualization of the 
desorbed ions using electromagnetic lenses [47]. Both methods generate the spatial 
intensity distribution maps of a distinct molecular species over the analyzed mass 
spectrometry analysis array of pixels [44].

The most prominent IMS techniques include matrix-assisted laser desorption 
ionization (MALDI) [38, 48], desorption electrospray ionization mass spectrom-
etry (DESI) [49], nanodesorption electrospray ionization mass spectrometry 
(nano- DESI) [50], nanostructure-imaging mass spectrometry (NIMS) [51, 52], 
laser ablation electrospray ionization (LAESI) [53, 54], laser desorption 
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Fig. 4 Schematic representation of microprobe mode and microscope mode used in imaging mass 
spectrometry [44]. (Reprinted with permission from, Histochem Cell Biol, 2010, 134(5):423–43, 
Copyright © 2010, Springer-Verlag)

ionization (LDI) [55], laser ablation-inductively coupled plasma mass spectrom-
etry (LA-ICP-MS) [56, 57], secondary ion mass spectrometry (SIMS) [58], and 
others that have been used to reveal the cellular localization of metabolites within 
the tissue sample. Each of these ionization techniques can be combined with dif-
ferent mass analyzers to obtain different spectral resolutions, increased dynamic 
ranges, or throughput; high- resolution mass spectrometers with mass analyzers 
such as time-of-flight (ToF) [59, 60], Fourier transform ion cyclotron resonance 
(FT-ICR) [61], Orbitrap [62], or triple quadrupole (QQQ) has revolutionized the 
development of imaging mass spectrometry and its potential for biomedical 
research and pharmaceutical applications. These combinations offer the ability to 
detect different molecular species with improved sensitivity and specificity and 
higher spatial resolution for imaging mass spectrometry (IMS) as shown in 
Fig. 5 [63].
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Fig. 5 Mass spectrometry imaging workflow. (1) Production of the charged ions by the ion source 
from the biological tissue section mounted on a slide. The ions are charged, positively or nega-
tively, which allow them to penetrate the analyzer. (2) The ions penetrate the analyzer and are sepa-
rated by their mass-to-charge ratio under vacuum condition by an electric/magnetic field. (3) The 
ions reach the detector; the lighter ions reach the detector first followed by the heavier ones. (4) 
Mass spectra are obtained with the different molecules corresponding to the peaks present in the 
spectra. (5) Ion images are generated from each peak corresponding to m/z value of interest in the 
mass spectrum, and displayed as a function of position in the tissue section and relative intensity. 
Hundreds of such images can be created from a single tissue section, and multiplexed for spatial 
mapping of molecules in the tissue. Each molecule can be selected to visualize its distribution in 
the tissue [63]. (Reproduced with permission from Curr Pharm Des, 2017, 23(13):1974-1984. 
Copyright© Bentham Science Publishers)

3.2  Sample Preparation for IMS: Tissue Embedding

Figure 6 shows the schematic representation of the complete workflow of imaging 
mass spectrometry (IMS). Sample preparation in imaging mass spectrometry (IMS) 
is effectively performed on fresh-frozen tissues that are prepared using powdered 
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Fig. 6 Overview of IMS workflow using DESI, SIMS, and MALDI. (1) The organ is harvested 
from the animal or patient and snap-frozen or embedded in gelatin. Fresh frozen or embedded tis-
sue is sliced (10 μm thickness) and mounted on a glass slide to perform SIMS or DESI.  For 
MALDI, the tissue section is mounted on a conductive glass slide, and the matrix is deposited 
uniformly on top of the tissue using matrix sprayer. (2) In DESI, an impinging electrospray of 
primary charged droplets extracts the ions into secondary charged from the tissue for MS detec-
tion. In SIMS, a primary ion beam bombards the surface of the tissue, generating secondary ions 
for MS detection. In MALDI, a laser beam UV/IR incident on the sample with UV absorbing 
matrix generates ions for MS detection. (3) MS data acquisition from the pre-determined array of 
pixels in microprobe mode, and the image reconstruction from the differential distribution of ana-
lytes using MS spectra associated with spatial coordinates and ion abundance from every pixel on 
the entire surface. (4) Image reconstruction is carried by plotting the ion intensities as a function 
of the x and y coordinates on the tissue, ion images are generated using softwares such as Biomap, 
and MSiReader. (The workflow of IMS is Created with BioRender.com)

dry ice, liquid nitrogen, liquid nitrogen-chilled isopentane, etc. Among these fresh- 
freezing methods, the tissue section morphology appears to be well-maintained 
when samples are frozen by liquid nitrogen-chilled isopentane commonly used in 
clinical practice [64].

However, it is important to ensure that tissue section morphology is well main-
tained with the use of optimal freezing method. If the samples are small, fragile, or 
amorphous, or if the sample is a plant section with a solid cell wall [65], or if the 
intracellular space inside the sample is large and filled with water, the samples 
should be embedded with specific materials such as optimum temperature cutting 
(OCT) [66, 67], carboxymethyl cellulose (CMC) [68], gelatin [69, 70], or ice [71]. 
Embedding of the tissue samples in OCT allows maintenance of tissue morphology 
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and precise sample sectioning. However, supporting materials are often smeared 
through tissue samples, and ionized during IMS data acquisition and poses ion sup-
pressors of molecules of interest [67, 72]. For this reason, it is very important to 
choose the right embedding material prior to sectioning in IMS. CMC and gelatin 
compounds are more suitable for MSI than OCT. While CMC is generally selected 
as the embedding material in relatively large tissues, gelatin compounds are used 
mainly for small tissue samples [66, 73]. Formaldehyde fixation and paraffin embed-
ding (FFPE) are the most used preservation techniques, which have limited use in 
IMS due to the formaldehyde-assisted protein cross- linking. The on-tissue proteo-
lytic digestion method in which proteins are denatured, and digested by enzymes, 
has been developed to overcome the limitation. However, FFPE samples cannot be 
used for lipid imaging [74].

3.3  Sample Preparation for IMS: Cryosectioning, Mounting, 
and Freeze-Drying

A common method to section frozen tissue samples is via cryosectioning using a 
microtome. The frozen or frozen embedded tissue sample is placed in a chamber set 
at approximately −20 °C and then subsequently sliced to an optimal thickness using 
a precooled blade. Because the sectioning process is performed at a low temperature, 
the metabolic process in the tissue can be quenched, and the tissue sectioning can be 
rapidly performed. Recommended temperatures for sectioning frozen tissues is 
summarized in Table  1. In IMS, animal tissue sections are generally cut to a 
thickness of 10–20 μm [72]. Optimization of the temperature and thickness are 
required to produce high-quality sections for imaging mass spectrometry 
applications [75]. The most-used method for mounting biological samples is the 
thaw-mounted method. In this method, a thin frozen section is placed on a precooled 
(−20 °C) glass slide, or metal plate or indium-tin-oxide (ITO) glass. Then, the tissue 
is attached to the slide by transferring heat from finger pressing against the surface 
of the slide [66]. In the case of low-adhesive samples such as plant sections, tissue 
sample is mounted using an adhesive tape [76, 77]. The mounted samples are stored 
at −80 °C freezer until use. The mounted tissue sample should be dried prior to IMS 
analysis.

In general, samples are dried using freeze-drying method [78, 79], air-drying 
under nitrogen purging conditions or dehydration through solvent washing for 
further treatment of the tissue surface, followed by drying at room temperature. In 
freeze-drying method, commonly used for TOF-SIMS, the cold sample is placed 
immediately on a precooled glass plates inside a vacuum chamber, evacuating the 
system and slowly allowing the sample to warm up to room temperature at constant 
pumping (<10−3 mbar) for 1–3 h, while water is removed from the tissue. Washing 
is often required for IMS analysis of peptides and proteins to remove the easily 
ionizable lipid species in the range of m/z 400–1000. The most common washing 
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Table 1 Recommended 
temperatures for sectioning 
frozen tissues

Tissue type Working temperature

Brain −12 °C
Liver −14 °C
Lymph node −14 °C
Kidney −16 °C
Spleen −16 °C
Muscle −20 °C
Thyroid −20 °C
Skin −25 °C
Breast −25 °C
Breast with fat −30 °C or below
Adipose tissue −30 °C or below
Fixed tissue −12 °C to −17 °C

Adapted from the reference [75] and the 
resource http://www.ihcworld.com/_
protocols/histology/frozen_section.htm

procedure used for MALDI-IMS of proteins is a fixation protocol; 70% ethanol for 
30 s, 90% ethanol, and final wash in 95% ethanol for 30 s, followed by drying under 
ambient conditions [75, 80]. The washing method show some delocalization of the 
proteins and significantly enhanced signal to noise [81]. Dilapidation is also 
performed to further remove lipids from tissues using solvents like chloroform and 
xylene for enhanced detection of proteins directly from tissue. The washing method 
is optimized for the targeted imaging applications and for removing the staining 
matrix in MALDI-IMS. For example, 2,5-dihydroxybenzoic acid (DHB) can be 
removed by methanol after completion of MALDI-IMS analysis, and the tissue 
samples can be used from hematoxylin-eosin (H&E) staining [81, 82].

4  Ionization Techniques Commonly Used for IMS

The front runners of IMS include MALDI-based IMS, time-of-flight secondary ion 
mass spectrometry (ToF-SIMS) imaging, and desorption electrospray ionization 
IMS (DESI) that are currently being used in the widest range of applications [41, 
63, 83–85]. In MALDI-IMS, tissue sections are precoated with a UV-light-absorbing 
matrix, and commonly a UV laser is used for ion desorption and ionization from the 
surface [38]. In ToF-SIMS, molecular species are desorbed and ionized using a 
focused beam of primary ions [86], while in DESI, mass spectrometry sampling is 
based on impinging spray of charged droplets focusing an electrospray onto the 
sample surface under atmospheric pressure shown in Fig. 5 [49]. The oldest of these 
three is the secondary ion mass spectrometry or SIMS, which has collected some of 
the first ion images of monolayers using ion microprobe mass analyzer [39, 58]. The 
different ionization methods employed in IMS are characterized by complementary 
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Table 2 Desorption and ionization methods in IMS

Source Examples Environment Energy Spot size (d)
Surface 
current

MW 
range 
(m/z)

Liquid 
metalion 
gun

Ga+, In+, 
Au+

Au2+, Au3+

UHV >25 eV >1 μm 1–10 nA 0–3000

Solid-state 
gun

Cs+ UHV 10 keV 2–3 μm <10 nA 0–3000

C60
+ 

cluster 
source

C60
+ UHV 5 eV–40 keV 200 nm–200 μm 0–3000

MALDI Nd:YAG, 
N2 Nd:YLF

UHV, 
HVambient

100–200 μJ/
pulse

5–300 μm n/a 100–
500,000

DESI H2O, 
MeOH, 
ACN, DMF

Ambient n/a >150 μm 0.5–
50 nA

100–
66,000

Adapted from the reference [88]

strengths and limitations, which concerns mainly the spatial resolution, mass 
accuracy and mass resolution, and chemical specificity and selectivity as well as 
molecular mass range of biological applications [87]. Table  2 summarizes the 
experimental conditions and important aspects of the desorption/ionization methods 
used in imaging mass spectrometry [88].

5  Secondary Ion Mass Spectrometry (SIMS)

Secondary ion mass spectrometry (SIMS) is the oldest mass spectrometry imaging 
(MSI) technique [58, 89, 90], which was traditionally applied in the domain of 
surface and solid-state physics [91]. SIMS primarily uses a focused ion beam of 
individual or clusters of high-energy particles, such as Bi+[92], Au3

+ [93, 94], and 
C60 [95, 96], where upon impact of a sample surface causes emission of secondary 
ions that are typically analyzed via a time-of-flight (TOF) mass analyzer as shown 
in Fig. 7a [97]. The particles are sputtered within 5–10 nm from the primary ion 
indent at high spatial resolution (~50 nm), but the mass range is limited to below 
1000 Da in biological samples due to the small fraction of atoms and molecules 
sputtered from the sample surface being ionized (typically less than 1% of the total 
sputtered material) and to source-induced fragmentation of surface molecules [98–
100]. The absence of matrix in typical TOF-SIMS analysis gains high spectral clar-
ity in the spatial imaging of small ions such as Na+, K+, and even H+ in the low mass 
range. However, the surface modifications in SIMS such as matrix-covered upper-
most layer of the surface in matrix-enhanced SIMS (ME-SIMS) [101], the sputter-
coated thin layer of metal in metal-assisted (MetA)-SIMS [102], and the 
incorporation of cluster ion sources [103, 104] have dramatically improved the 
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Fig. 7 NanoSIMS and its correlation to amperometric techniques. (a) Top: the principle of 
NanoSIMS analysis. Bottom: 13C14N–/12C14N– ratio image reveals the dopamine enrichment in 
single vesicles. Red arrows showing the three vesicles in the NanoSIMS image. (b) Amperometric 
techniques. Top: the principle of single-cell amperometry. Middle: the principle of intracellular 
vesicle electrochemical cytometry. Bottom: amperometric current transients allow, by applying 
Faraday’s law, calculation of the mole amount of dopamine that is oxidized from each exocytotic 
release or individual vesicle (N). Q is the charge calculated from the time integral of current peak 
from the amperometric trace, n is the number of electrons exchanged in the oxidation reaction (2e– 
for dopamine), and F is the Faraday constant (96,485 C mol−1) [106]. (Reprinted with permission 
from ACS Nano, 2017, 11, 4, 3446–3455. Copyright © 2016 American Chemical Society)

sputtering efficiency and the yields of secondary ion formation in biological sam-
ples to allow for sampling of peptides and oligonucleotides. However, the signal-to- 
noise ratio for molecules greater than 5 kDa drops off dramatically in ME-SIMS 
when compared with MALDI [105].

Advances in secondary ion mass spectrometry (SIMS) imaging, with improved 
detection limit and spatial resolution, have made the SIMS applicable for chemical 
imaging in biological and biomedical applications [97, 107–109], imaging cells 
[110], and tissue sections [111]. With different sample surface modifications, SIMS 
can analyze abundant lipids and small peptides [110, 112]. The new dynamic 
NanoSIMS ion probe with imaging capabilities at high spatial (50 nm) resolution 
has traditionally been used to analyze inorganic materials collecting either positively 
or negatively charged species [113]. The basic operation of NanoSIMS in negative 
mode involves a high-energy Cs + primary ion beam that scans the sample surface 
and sputters away secondary particles. The secondary ions are analyzed with a dual- 
focusing sector mass analyzer and separated based on their mass to charge ratio 

Spatial Metabolomics Using Imaging Mass Spectrometry



438

(m/z). The outstanding spatial resolution of NanoSIMS allows tracking the labeled 
molecules within single cells [106, 114]. Figure 7b shows the NanoSIMS imaging 
of the pheochromocytoma (PC12) cells loaded with dopamine biosynthesized from 
13C-l-DOPA inside of catecholamine vesicles, and its correlation to the electro-
chemical data to count the numbers of molecules in the vesicles, as well as those 
released in exocytosis. The transmitter release upon stimulation was measured with 
single-cell amperometry [115], whereas dopamine vesicle content was measured 
with an intracellular vesicle electrochemical cytometry [116]. Recently, the energy 
range of primary ions used in SIMS has been moved from keV into the MeV domain, 
which could desorb larger molecular fragments, and less fragmentation of molecu-
lar ions [117, 118]. One of the major limitations of SIMS is its low sensitivity to 
larger molecules, and ion suppression, thereby challenging to separate and identify 
the small isobaric species. This limitation has been overcome with the recent devel-
opments using the tandem MS imaging based on the precise monoisotopic selection 
of precursor ions from a TOF-SIMS secondary ion stream followed by the parallel 
and synchronous collection of the product ions. Thus, high- abundance sensitivity is 
achieved at low primary ion dose density with simultaneous surface screening of a 
complex matrix chemistry with TOF-SIMS (MS1) imaging and targeted identifica-
tion of matrix components with MS/MS (MS2) [119].

6  Matrix-Assisted Laser Desorption/Ionization (MALDI)

The second and most widely used technique is MALDI, which first came onto the 
IMS of biological tissue sections in the late 1990s where it was for peptides and 
proteins imaging mass spectrometry [38]. MALDI has seen incredible technological 
advances in its applications to biological systems and proven as a powerful analytical 
tool for the analysis of biological and clinical tissue samples as shown in Fig. 8 [46, 
71, 75, 120]. For example, MALDI imaging mass spectrometry (IMS) was used for 
characterization, localization, and relative quantification of striatal neuropeptides in 
a rat model of l-DOPA-induced dyskinesia (LID) in Parkinson’s disease (Fig. 8) 
[120]. MALDI imaging mass spectrometry (IMS) is a soft ionization probe that 
analyzes proteins, peptides (both endogenous and enzymatically produced), lipids, 
and small molecules (such as drugs and endogenous metabolites) from the biological 
samples ranging from whole body [121], tissue sections [122–124], and cells [41, 
85, 125–127]. In MALDI, an analyte is co-crystallized with a matrix in a molar ratio 
of 10−2–10−6. The sample is irradiated with UV or IR laser whose energy is absorbed 
by the matrix molecules and analytes are desorbed and ionized into the gas phase 
for MS analysis. Ions are produced by an excess of protons above the surface due to 
the fragmentation of the acidic matrix molecules [63, 128, 129]. Although the 
MALDI mechanism remains unclear, one of the accepted mechanisms of MALDI 
ionization processes involves gas-phase proton transfer between the analyte and the 
matrix molecules [128]. Therefore, protonated molecules are observed as the 
dominant ions in the positive ion mode, while sometimes sodiated ([M + Na]+) and 
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Fig. 8 MALDI imaging mass spectrometry. (a) Experimental workflow: sections of frozen rat 
brains are thaw-mounted onto MALDI compatible glass slides. The tissue section is covered with 
matrix as discrete spots in a quadratic pattern, irradiated by a pulsed laser beam, and the mass 
spectra from individual matrix deposits are acquired by means of MALDI TOF MS. MS images of 
different m/z peaks in tissue sections at different pixel size settings, and the intensity distribution 
of individual peaks is visualized using user-defined colors, here in green SP; in violet PEnk 
220–229; in red PEP-19 fragment; and in blue MBP fragment. (b) Behavioral analysis: High 
dyskinetic (HD) animals accumulated a tenfold higher dyskinesia score than low dyskinetic (LD) 
animals. (c) Unilateral DA denervation: Unilateral 6-OHDA-lesion model of experimental PD 
results in selective dopamine-denervation of striatum, revealed by a loss of tyrosine hydroxylase 
immunoreactivity. (d) Regional analysis: Several markers were visualized to delineate anatomical 
features, including myelin basic protein (m/z 2028; blue) that is predominantly abundant in the 
corpus callosum and a PEP-19 fragment (m/z 1755; red) that is exclusively observed in the striatum. 
The striatum was divided into a dorsomedial (DM) and a dorsolateral (DL) region of interest (ROI) 
for MS analysis. * p  <  0.01. Scale bar 2.5  mm [120]. (Reprinted with the permission from 
Molecular & Cellular Proteomics, 2011, 10, M111.009308. Copyright © The American Society 
for Biochemistry and Molecular Biology (2011))

potassiated ([M + K]+) molecules are also seen in the MS experiments. In negative 
ion mode, deprotonated molecules ([M–H]−) are observed in the MS experiments. 
The ionization process is influenced by the chemical properties of both the analyte 
and the matrix, the amount of matrix deposited with respect to the analyte, and the 
absorption of laser.

6.1  Application of Matrix for MALDI Imaging

By selecting different matrices and depending on the mass spectrometry instrumen-
tation used (MALDI-TOF or high-resolution mass spectrometry MALDI- FT- ICR), 
the analyte classes can be chosen for imaging experiments [46, 75]. The three most 
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Table 3 Matrix selection for MALDI-MS

Matrix Chemical name Biomolecule specificity

DHB 2,5-dihydroxybenzoic acid Lipids, peptides, <10 kDa proteins
DHB/aniline DHB + aniline Lipids, peptides, <10 kDa proteins
DHB/3-AP DHB + 3-acetyl pyridine Lipids, peptides, <10 kDa proteins
CHCA α-Cyano-4-hydroxycinnamic acid Peptides, small proteins (<10 kDa)
CHCA/aniline CHCA + aniline Peptides, <10 kDa proteins
SA 3,5-Dimethoxy-4-hydroxycinnamic acid Proteins (>10 kDa)
SA/aniline SA + aniline Proteins (>10 kDa)
SA/3-AP SA + 3-acetyl pyridine Proteins (>10 kDa)
SA/HFIP SA + 1,1,1,3,3,3-hexafluoro-2-propanol Proteins (>30 kDa)
SA/TFE SA + 2,2,2-trifluoroethanol Proteins (>30 kDa)

Adapted from the references [88, 134]

commonly used matrices for MALDI-IMS are 2,5-dihydroxybenzoic acid (DHB) 
[130], α-cyano-4-hydroxycinnamic acid (CHCA) [131], and 3,5-dimethoxy-4-hy-
droxycinnamic acid (SA, Sinapinic acid) [132]. However, there are many other use-
ful matrices that have been applied for tissue imaging experiments which are 
summarized below in the Table  3 [133, 134]. For a successful MALDI imaging 
experiment, homogeneous matrix deposition across the tissue surface is very impor-
tant and can be achieved by spraying, spotting, or sublimation using either hand-
held sprayers, or the automated commercial systems, for example, Bruker 
ImagePrep, SunChrome SunCollect, HTX TM-Sprayer, tardo iMatrixSpray, and 
TransMIT SMALDIPrep [135–137].

In MALDI, two different laser types, N2 laser (337 nm) or neodymium-doped 
yttrium aluminum garnet (Nd: YAG; 355  nm) laser, with repetition rates of 
200–1000 Hz and typical pulse lengths of ≤3 ns, are used for the analyte desorption/
ionization. In the mass spectrometer, the tissue specimens are then raster-scanned 
under the focused laser with a reduced spot size from 100–150 μm to 20 μm, gener-
ating a mass spectrum for each measuring spot and spatial mapping at a resolution 
ranging from 200 μm down to 20 μm as shown in Fig. 9 [135, 138, 139]. Over time, 
MALDI imaging mass spectrometry allowing the direct imaging of single cells and 
tissues at subcellular spatial using advanced optics that focuses the laser beam to 
diameters less than 1 μm [140–142], and using a transmission geometry configura-
tion [124]. In addition to achieving high spatial resolution, breakthroughs in acqui-
sition speed have recently been made possible with a 10-kHz laser and two scanning 
mirrors (e.g., rapifleX MALDI TissuetyperTM, Bruker) that allow the laser beam to 
be rapidly moved across the sample with which acquisition rates can go up to 50 
pixels/s [46]. Measurement speed plays an important role when comparing quanti-
tative differences between two biological conditions, and higher speed enables data 
acquisition over biological replicates to obtain more reliable results.

Due to its versatility in terms of spatial resolution and molecular coverage, 
MALDI-MSI has become the most popular MSI technique over the past few years 
and has been successfully used in many clinical research studies. MALDI imaging 
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Fig. 9 (a) Mouse brain (coronal section), pixel size 5 μm, 170 × 170 pixels. (b) Mouse brain (hori-
zontal section), pixel size 50 μm, 207 × 260 pixels. (c) Intestinal tract of rat (part of whole- body 
section), pixel size 200  μm, 128  ×  150 pixels [138, 142]. (Reprinted with permission from 
Analytical and Bioanalytical Chemistry, 2011, 401, 65–73. Copyright © 2013, Römpp et al.)

combines the sensitivity and selectivity of mass spectrometry with the spatially 
descriptive characteristics of classic histology which has demonstrated potential for 
biological and clinical applications of cancer research [139, 143–145], 
neurodegenerative diseases [146], imaging of pharmaceuticals [147–149], 
metabolites [150], lipids [151, 152], peptides, and proteins [38, 153] including the 
distribution of neuropeptides [153, 154], tumor delineation in glands and N-linked 
glycans in tissues [155–157], molecular phenotyping of CNS glial cells in the 
mammalian brain tissues [158], microbial communities [159], and in nanomedicine 
[63]. For each of these applications and molecular classes of interest, specific 
sample preparation protocols have been optimized in MALDI-IMS which include 
solvent washes and recrystallization for low-abundance intact proteins [160, 161], 
enzymatic on-tissue digestion for peptide imaging [162–164], and in situ derivatiza-
tion of analytes in order to increase their ionization efficiency [165–167].

6.2  Enzymatic On-Tissue Digestion of FFPE Tissues 
for MALDI Imaging

Enzymatic on-tissue digestion is particularly advantageous for analysis of formalin- 
fixed paraffin-embedded (FFPE) tissues because digestion liberates peptide frag-
ments from the chemically cross-linked tissue. The size of FFPE archives and the 
importance of spatial proteome data have led to a growing demand for the applica-
tion of MALDI-IMS to FFPE tissue, and the first being direct trypsin digestion 
followed by MS analysis [168, 169] and the second, antigen retrieval (AR) method, 
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Fig. 10 Ion intensity maps generated for peptides observed on CAAR-treated FFPE tissue. An 
archived FFPE (2008 FFPE sample) section of human ovarian cancer (a−f, top row) was mounted 
onto a slide and treated with CAAR. A fresh-frozen section of ovarian cancer tissue (a−f, bottom 
row) from the same patient was mounted onto a separate slide and washed using a previously 
published method [171]. An ImagePrep station was used to nebulize trypsin followed by CHCA 
onto both slides. MS acquisition used an ultraflex III MALDI-TOF/TOF instrument. Hematoxylin 
and eosin (H&E) stains of the FFPE section and fresh-frozen section (a) are included as well as ion 
maps for m/z (b) 1143, (c) 1198, (d) 1210, (e) 1390, and (f) 1553. An (g) enlarged H&E stain and 
(h) ion intensity map for m/z 1267 are also included. Scale bars = 2 mm. Ion intensity color scales 
are included [163]. (Reprinted with permission from J. Proteome Res. 2010, 9, 9, 4315–4328. 
Copyright © 2010 American Chemical Society)

whereby high-temperature treatment in a buffer solution partially reverses the cross-
linking in FFPE sections followed by in situ tryptic digestion and MALDI- TOF MS 
[161, 170]. On-tissue digestion coupled with MALDI-IMS enables the spatial pro-
teome analysis and the investigation of molecular markers of disease. Figure 10 
shows the imaging mass spectrometry analysis of an archived FFPE section of 
human ovarian cancer treated with citric acid antigen retrieval (CAAR) [163]. 
Figure  10 represents the spatial distribution of peptides observed at m/z 1143 
(Fig. 10b), 1198 (Fig. 10c), 1210 (Fig. 10d), 1267, (Fig. 10h), 1390 (Fig. 10e), and 
1553 (Fig. 10f) from both CAAR-FFPE (top row) and fresh-frozen ovarian tissue 
(bottom row). Hematoxylin and eosin (H&E)-stained images of the tissue section 
used for IMS are shown in Fig. 10a and g. As mentioned in the previous section, 
on-tissue digestion involves specific sample preparation protocol, which includes 
consecutive washes to avoid OCT embedding for IMS applications. Sample prepa-
ration appeared to have an effect of degree of delocalization as shown in Fig. 10b 
and Fig. 10c (bottom panels) [163].
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7  Desorption Electrospray Ionization (DESI)

Unlike MALDI and SIMS, which are both performed in vacuum, several ambient 
ionization methods have been developed recently for different applications reviewed 
elsewhere [172, 173]. These ambient ionization methods involve sampling of 
unmodified and fresh-frozen sections in the open environment using a solvent spray, 
laser beam, or plasma probe to desorb and ionize the analytes from the surface. 
Desorption electrospray ionization mass spectrometry or DESI is the newest and 
soft ionization tissue imaging technique among the three MALDI, SIMS, and DESI 
[49, 174]. In DESI, pneumatically assisted stream of charged solvent droplets 
impinging on the tissue surface where, upon contact with the sample subsequent 
collisions of charged droplets with the wetted sample surface, it desorbs the analyte 
into secondary-charged droplets sprayed to the mass spectrometer and analyzed as 
shown in Fig. 11 [175–177]. The DESI imaging mass spectrometry setup is shown 
in Fig. 11b, and the optimal parameters such as the spray geometry, gas pressure, 
and the solvent flow rate used in the DESI imaging experiments to attain a spot size 
of 150–200 μm are summarized in the Table 4 [176]. Figure 11a shows an average 
mass spectrum of a mouse-brain tissue section obtained with DMF/EtOH as the 
solvent system with two distinctive m/z regions in the negative-ion-mode MS spec-
trum indicating the lipid distributions of the gray and white matter substructures of 
the mouse brain [178, 179]. Figure 11c–f represents high-quality two-dimensional 
(2D) DESI-MS ion images and comparison with the optical image of the same tis-
sue section histologically stained with H&E after DESI-MS imaging (Fig. 11g).

While the sensitivity and spatial resolution for most applications of DESI are less 
than what is attainable by SIMS or MALDI, DESI offers a few unique characteris-
tics that allow it to analyze samples that are otherwise impossible to analyze [41, 
85]. For instance, DESI applications have been on cancer diagnostics [180–182] 
and grading [183], but it has also been used in other biological applications such as 
mapping changes in lipids associated with spinal cord trauma [184], analyzing pig-
ments and alkaloids in plant tissue [185], metabolic exchange in bacterial imprints 
[186], antifungal chemical defense [187], and mapping cholesterol in the brain 
using reactive DESI imaging [185]. Recently, significant progress has been achieved 
in optimizing the solvent spray for achieving minimal or nondestructive nature of 
tissue imaging using DESI. In particular, the development of dimethylformamide 
(DMF)-based solvent combinations has enabled DESI-MS imaging, a nondestruc-
tive and histologically compatible technique to be performed with preserving mor-
phological features, and the tissue can be subjected to histological and 
immunohistochemical staining post DESI-MS imaging experiment as shown in 
Fig. 11 [179]. Thus, DESI-MS imaging can be easily implemented into a workflow 
for tissue analysis.

New ionization techniques are continually emerging in the field of mass spec-
trometry, many of which are successfully applied to imaging mass spectrometry 
[188]. For instance, nanospray desorption electrospray ionization (Nano-DESI) 
improves DESI by substituting the charged aerosol with a continuous 
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Fig. 11 (a) Average DESI-MS mass spectrum of a mouse-brain coronal section including regions 
of white and gray matter obtained by using DMF/EtOH as the solvent system. (b) Picture of the 
DESI-MS imaging experiment. DESI-MS ion images show the distribution of (c) m/z 834.3, 
PS(18:0/22:6); (d) m/z 888.6, ST(24:1); (e) m/z 885.6, PI(18:0/20:4); and (f) m/z 303.3, FA(20:4). 
(g) Optical image of the same tissue section after first being imaged by DESI-MS and then H&E 
stained [179]. (Reprinted with permission from Chembiochem. 2011, 12(14):2129 32.Copyright © 
2011 WILEY-VCH Verlag GmbH & Co). (h) Schematic drawing of the nano-DESI ion source and 
(i) photograph of the nano-DESI probe taken during ambient imaging of a tissue sample on a glass 
slide (note that the liquid bridge is not visible to the eye); (j) optical image of a trace left by the 
nano-DESI probe on a rhodamine film on glass [50]. (Reprinted with permission from Anal. Chem. 
2012, 84, 1, 141–148. Copyright © 2011 American Chemical Society)

micro- extraction liquid (microjunction or bridge) formed between two solvent cap-
illaries and the surface leading to higher spatial resolutions of up to 7 μm, and the 
schematic of nano-DESI source is shown in Fig. 11h–j [50, 189–194]. Localized 
analyte extraction from a tissue section occurs within this microjunction, with a 
flow of liquid sampling the tissue, and the extracted analytes are analyzed by 
ESI. For native imaging mass spectrometry of proteins in tissue sections, liquid 
extraction surface analysis (LESA) based on liquid microjunction surface sampling 
(LMJ-SSP), is used to extract analytes from a liquid junction formed at the concen-
tric capillary and the sample surface, and the extracted analytes into the solvent are 
aspirated and ionized using ESI [195, 196]. LESA was successfully applied for 
studying distributions of a wide range of analytes, including proteins at the millime-
ter scale [197, 198]. Both LESA and nano-DESI allow real-time atmospheric sam-
pling and successfully implemented in proteomics, lipidomics, and the analysis of 
drugs and metabolites [199–204]. Proteoform imaging mass spectrometry by com-
bining nano-DESI with individual ion detection enabled the proteoforms detection 
in the higher mass ranges up to 70 kDa at a spatial resolution of 80 μm [205–207].

Like DESI, laser ablation electrospray ionization mass spectrometry (LAESI-MS) 
is performed under atmospheric pressure and does not need the matrix application 
to the sample [53]. LAESI uses a combination of mid-infrared laser ablation for 
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Table 4 Optimum parameters in desorption electrospray mass spectrometry

Parameter Optimal setting

Analyte type
Peptides, proteins, carbohydrates, 
nucleic acids

Explosives, lipids, aromatic 
hydrocarbons

Electrospray voltage 1–4 kV 3–8 kV
Electrospray flow rate 0.1–3 μl/min –
Nebulizing gas linear 
velocity

>350 m/s –

Heated capillary 
temperature

200–350 °C 200 °C

Tube lens potential 200–250 V for proteins 30–150 V for small molecules
Capillary inlet sample 
distance

1–2 mm 2–8 mm

Tip sample distance 1–2 mm 5–8 mm
Incident angle (α) 60–90° 20–50°
Collection angle (β) <10° 10–15°

Adapted from the reference [176]

desorption and an orthogonal electrospray for transferring multiple charges to the 
analytes, with subsequent MS/MS identification in a single run. LAESI has been 
applied to the molecular imaging of small molecules such as metabolites and lipids 
to larger biomolecules such as peptides and proteins. Finally, the matrix-free laser 
methods are laser-ablation inductively coupled plasma (LA-ICP), which enables 
analyzing elemental distribution in samples [208], and nanostructure initiator mass 
spectrometry (NIMS) [209] is also a worth-mentioning ambient ionization imaging 
mass spectrometry method. The emergence of novel techniques allowing near real- 
time analysis of patient material without extensive sample preparation and under 
ambient conditions should push MSI further in the fields of clinical research and 
diagnostics. Table 5 provides a list of the different MSI ionization methods.

8  IMS Instrumentation: Technical Developments in Mass 
Resolution, Accuracy, and Selectivity

Imaging mass spectrometry (IMS) has not only advanced in terms of speed, spatial 
resolution, and sample preparation but also improved mass analyzer technologies to 
enhance mass resolution and mass accuracy in IMS data [138, 141, 142, 210]. The 
key parameters that have the most profound impact on the IMS data are the sample 
preparation [211], source type, and polarity of the analyzer predetermine the 
molecular class that is desorbed and ionized, and thus highly inform the molecular 
content of the IMS data. However, these parameters do not directly affect the spec-
tral properties of the data, but the mass analyzer type in the mass spectrometer has 
a strong impact on the spectral properties and the size of the data which makes most 
of the signal processing, data analysis, and molecular analysis [33, 212]. The mass 
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Table 5 Overview of the main techniques used for clinical MSI [83]

Ionization Pretreatment Molecular classes Lateral resolution

MALDI
Laser ablation and 
desorption/ionization 
within the ablated plume

Application of matrix 
solution

Dependent on the matrix;
metabolites, lipids, 
neurotransmitters, 
peptides, or proteins

Commercial 
instruments 
<20 μm

SIMS
Sputtering of sample 
with a focused primary 
ion beam

Not necessary, 
matrix/metal 
coatings used to 
increase yield of 
molecular ions

Static SIMS (<1% of 
surface analyzed by 
primary ion beam) – 
elements, fatty acids and 
lipids
Dynamic 
SIMS – elements

Static SIMS 
>1 μm dynamic 
SIMS <1 μm

DESI
Molecules collected 
from surface by 
impinging droplets then 
ionized by an 
electrospray like 
mechanism

None Lipids, peptides, and 
proteins from standards. 
Mostly lipids and small 
metabolites from tissue

Generally 
>100 μm

LAESI
Gas-phase particles 
generated by laser 
ablation ionized through 
capture by an 
electropsray

None Metabolites, peptides, and 
proteins

<200 μm for 
imaging 
applications 
<50 μm in 
cell-by-cell 
LAESI

Nano-DESI
Surface molecules 
sampled by liquid 
bridge then ionization 
by nanoESI

None Dependent on solvent 
composition: metabolites, 
peptides, and proteins

<10 μm reported. 
Dependent on size 
of liquid bridge

LESA
Surface molecules 
sampled by liquid 
bridge then ionization 
by micro/nanoESI

None Dependent on solvent 
composition: metabolites, 
peptides, and proteins

>200 μm

MassTag/TAMSIM
Antibodies 
functionalized with 
mass spectrometric 
reporter groups

Addition of 
functionalized 
antibodies (+ 
MALDI matrix for 
MassTag)

Proteins Commercial 
instruments 
<20 μm

resolving power predetermines how well two molecules with similar m/z values can 
be resolved from each other, and the mass accuracy is, how accurately the measured 
centroids of the spectral peaks for a molecule represent its theoretical m/z value.

The mass resolving power and mass accuracy both are critical parameters in 
defining the size and the quality of the IMS data. The higher the spatial resolution, 
the smaller the histological features accessible in the study, whereas the higher the 
mass resolving power, the lower is the interferences between adjacent neighboring 
peaks which further helps improve the specificity of the spatial distribution 
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information. For instance, Fig. 12a shows a mass spectrum from a single 50-mm 
pixel of the measurement of tryptic digestion of mouse brain tissue, acquired using 
atmospheric-pressure (AP) MALDI source attached to a linearion trap/Orbitrap 
mass spectrometer. Figure 12c and e represents the selected ion images correspond-
ing to the peptide of the protein myelin (sequence HGFLPR, theoretical m/z 
726.4036 for the [M + H]+ion detected at a mass resolving power of R = 24,400 in 
this spectrum) (green) and the isotopomer of the ammonium adduct of the lipid 
phosphatidylserine 30:0 (theoretical m/z 726.5128, monoisotopic peak: m/z 
725.5075 detected at a mass resolving power of R = 25,800) (red) generated with a 
bin width of Δm/z = 0.01, and Fig. 12d represents the selected ion image generated 
with a larger bin width of Δm/z = 0.1. In the case of the larger bin width, the fine 
structures of lipid and peptide were not resolved, leading to incorrect representation 
of the spatial distribution of the peptide [213].

Fig. 12 Mouse brain (coronal section) after on-tissue tryptic digestion. (a) Mass spectrum from a 
single 50-μm pixel. (b) Optical image of adjacent section after staining for myelin (Luxol fast 
blue). (c–e) MS images, 50-μm pixel size, 92  ×  128 pixels: (c) selected ion image of 
m/z  =  726.40–726.41 corresponding to myelin peptide. (d) Selected ion image of 
m/z  =  726.40–726.60. (e) Selected ion image of m/z  =  726.51–726.52 corresponding to lipid 
isotopologue peak. (Details on method can be found in Schober et al. [138, 213]. Reprinted with 
permission from Histochem Cell Biol. 2013; 139(6): 759–783. Copyright © 2013, Römpp et al.)
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9  Different Types of Mass Analyzers

Mass analyzer constitutes an important component of the mass spectrometer, which 
takes the ionized masses and separates them based on their mass-to-charge ratio 
(m/z). Types of mass analyzers include time-of-flight (ToF), quadrupole, magnetic 
sector, ion trap and Orbitrap or a combination system such as tandem mass spec-
trometry (MS). The overview of the characteristics, and performance of the most 
commonly used mass analyzers is listed in Table 6. [44, 214, 215] Interestingly, all 
six mass analyzers can be utilized for imaging mass spectrometry, but time-of- flight 
(TOF) is by far the most frequent analyzer currently used in imaging mass spec-
trometers [60, 216]. Particularly, the introduction of orthogonal acceleration geom-
etry (oa-TOF) allows for hybridization between TOF and quadrupole mass 
analyzers, that is, QqTOF with mass resolving power up to 50,000 and with MS/MS 
ability have been demonstrated to the applications of small molecules [217–219]. 
TOF/TOF instrumentation that enables multiple fragmentation events per single-
laser shot was also demonstrated to the on-tissue quantitation of drugs [220].

The other type of mass analyzers are Fourier transform ion cyclotron resonance 
(FT-ICR) [61] and Fourier transform (FT)-Orbitrap [62] in which the ions undergo 
a periodic motion with different frequencies that depend on their m/z values. 
External electrodes measure an image current induced by the periodic motion of the 
ions called free induction decay (FID) and converted from time domain to frequency 
domain using Fourier transformation (FT). The individual frequencies are recalcu-
lated to m/z values, while amplitudes of the signals represent the abundances of the 
ions in the mass spectrum. FT-ICR provides the highest mass resolving power 
(≫100,000), and accuracy (<1 ppm) which allows for multistage MS/MS capabili-
ties [61, 142, 221, 222]. FT-ICR high-resolution MS imaging enables the acquisi-
tion of mass channels with a bin size as low as Δm/z = 0.005, thereby revealing new 
features that cannot be resolved with lower-resolution instrumentation [223]. On the 
other hand, FT-ICR is not routinely used for high-throughput/high-resolution 

Table 6 Overview of the mass analyzers used in mass spectrometry

Quadrupole Ion trap
Linear TOF 
(rTOF)

Magnetic 
sector FT-ICR FT-Orbitrap

Upper mass 
limit (m/z)

4000 6000 1,000,000 
(10,000)

20,000 30,000

Mass 
resolution

2000 4000 5000 (20,000) <100,000 500,000

Mass 
accuracy 
(ppm)

100 100 200 (10) 10 <5

Ion sampling Continuous Pulsed Pulsed Continuous Pulsed
Tandem MS 
experiment

Yes, 
low-energy 
collision

Yes, multiple 
low-energy 
collision

Yes, low- or 
high-energy 
collision

Yes, 
high-energy 
collision

Yes, multiple 
low-energy 
collision

Adapted from the reference [44]
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imaging due to the long in-cell accumulation. The Orbitrap, a compact but powerful 
mass analyzer [224], can produce a resolution of >100,000 at m/z 400 for a 1.5-s 
acquisition time, or 60,000 at a 1-Hz acquisition rate, which can resolve the local-
ization of analytes with similar m/z values [210, 225–227].

Analyzer developments in SIMS such as the hybrid SIMS–C60
+ Q-Star instru-

ment, the buncher-TOF configuration of the J105 3D chemical imager, the SIMS-
FT-ICR mass spectrometer, and the recently developed 3D OrbiSIMS and the 
improvements in the gas cluster ion sources (GCIB) have been successfully 
employed for the analysis on different tissues [212]. Figure 13 represents the differ-
ent SIMS methods and TOF-SIMS modes along with the experimental conditions 
used for the analysis of human bone tissue samples. TOF-SIMS analysis is more 
surface-sensitive and faster and routinely provides a lateral resolution in the low- to 
below-micrometer range. However, relatively hard ionization suffers from the 
severe fragmentation of the analytes. Thus, analysis is mostly limited to lipid frag-
ments at a lower mass resolution with routinely used time-of-flight mass analyzer. 
On the other hand, atmospheric pressure MALDI provides soft ionization and 
enables intact lipid characterization at high-mass resolution and high-mass accu-
racy with an Orbitrap mass analyzer. However, the analysis times for Orbitrap-
SIMS measurements are very long when compared to that of ToF-SIMS as shown 
in Fig. 13.

10  Ion Mobility Separation

Since imaging mass spectrometry does not involve chromatographic separation step 
prior to imaging data acquisition, in situ desorption and ionization of analytes from 
the tissue generates a very complex data set which requires a multivariate data 
analysis algorithm. Recently, ion mobility separation-based field asymmetric 
waveform ion mobility (FAIMS) has been introduced as a post-sampling and post- 
ionization gas-phase separation technique in an MS imaging workflow. Ion mobility 
separation is an electrophoretic separation based on collisional cross-section differ-
ences between ions [228, 229]. FAIMS coupled to DESI has been shown to enhance 
the sensitivity and signal-to-noise of gangliosides and cardiolipins in DESI [230]. 
Ion mobility separation coupled to MALDI has demonstrated to discriminate 
between ions of interest and interfering biological matrix ions [231]. IMS enables 
the separation of nominally isobaric species that cannot be resolved by time-of- 
flight mass spectrometers (TOF-MS). The utility of ion mobility separation in imag-
ing mass spectrometry has therefore increased considerably over the last few years. 
MALDI-MSI coupled with ion mobility separation has been applied to spatially 
localize and structurally identify acylcarnitines and other lipid species present in 
breast tumor xenograft models [232]. In DESI, ion mobility demonstrated its use in 
studying intact fragile lipid species such as multiply sialylated ganglioside and their 
acetylated forms that are detected directly from the murine brain tissue [233]. Ion 
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Fig. 13 Comparison of different SIMS methods and TOF-SIMS modes. First and second rows: 
TOF-SIMS spectrometry mode averaged mass spectrum and ion image for C5H15NPO4

+ at m/z 184 
(left), in delayed extraction mode (middle) and Orbitrap-SIMS measurement (right, visualized in 
RGB mode). Two additional peaks were measured from the tape background with Orbitrap-SIMS 
but not with the surface-sensitive TOF-SIMS. Third row: measurement parameters. m/z values are 
measured data [212]. (Reprinted with permission from Anal. Chem. 2018, 90, 15, 8856–8864. 
Copyright © 2018 American Chemical Society)
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mobility-enabled MS has been used for the analysis of small drugs, carbohydrates, 
and lipids to peptides, proteins, and protein complexes [135].

11  Tandem Mass Spectrometry

In MSI, tandem MS is particularly applied for targeted imaging and enables moni-
toring specific ion fragment transition(s) called selected reaction monitoring (SRM), 
thereby providing unprecedented selectivity and sensitivity for given compounds. 
Tandem MS has been performed directly from tissues to identify peptides or lipids 
using either TOF/TOF, Q-TOF, or Orbitrap analyzers [190, 195]. Despite their 
lower mass resolution, quadrupole and ion trap mass analyzers are particularly 
suited for targeted imaging of small molecules such as drug imaging studies with 
high selectivity and speed of SRM in MALDI and DESI [234–237]. In SIMS, paral-
lel MS1 and MS2 have been introduced for tandem-MS imaging [119]. For instance, 
tandem-MS imaging is used to find out the distribution of the drug in the rat slice by 
analyzing the structure of the molecule based on their fragmentation and assigning 
the molecules observed in the mass spectrum [236]. Figure 14a represents a specific 
transition of the parent drug (m/z 468.5 → 252.0) which was detected in the lung, 
tracheae, and the stomach with the administration of the compound. By using tar-
geted analysis, the file size remains very small and significantly accelerates data 
processing when compared with TOF data. Figure 14b shows the optical image of a 
rat slice before matrix coating. This study demonstrates the ability to acquire distri-
bution images of a complete rat section in less than 15 min at a resolution of 1 mm.

12  Identification Strategies for Metabolites, Peptides, 
and Proteins

The availability of high-resolution mass spectrometers, tandem-MS analysis, and 
additional separation techniques such as ion mobility separations have greatly 
improved the identity (ID) of detected m/z species. Molecular identification and 
confirmation of the identified target is the key to predict novel biomarkers and 
therapeutic targets and also gain insights to the biological and chemical information 
of the pathological specimen. Tandem-MS analysis of compounds either performed 
by MS/MS fragmentation experiments directly from tissue, or by matching the 
measured m/z value to a database is the very step in the molecular identification. 
On-tissue MS/MS analysis often suffers from the small concentrations of analytes 
per pixel (e.g., in a 50-μm pixel, there are about 25 cells) [135]. Ionization procedures 
that could increase the ion yield per pixel would be valuable or separate proteomics/
metabolomics experiments from tissue extracts into the appropriate solvents. 
Ionization procedure in which a second laser to initiate a second ionization wave in 
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the gas phase has been shown to increase ion yields by two orders of magnitude 
[238]. Overall, there are different identification procedures, which depend on the 
compounds of interest discussed elsewhere [135]. For small metabolites, and the 
lipids, the database approach is to first match the measured molecular weight with a 
small mass tolerance to a public database, such as human metabolome database 
(HMDB, http://www.hmdb.ca/), METLIN (https://metlin.scripps.edu), or lipid 
maps (http://www.lipidmaps.org/), and then check if the observed fragmentation 
spectra are matching with that of the proposed species. The final confirmation can 
be obtained by comparing the fragmentation pattern with a corresponding standard 
compound. For protein identification, protein fragmentation patterns were input 
into ProSight Lite software (http://prosightlite.northwestern.edu/) and compared 
with protein amino acid sequences that have been previously observed within the 
tissue types analyzed. The protein amino acid sequences are available from the 
UniProt database (https://www.uniprot.org/).

13  Image Generation and Data Analysis

Xcalibur RAW files were converted into mzML format using MSconvert (https://
proteowizard.sourceforge.io/) and imzML format using (https://ms- imaging.org/
imzml/) and then uploaded into the open-source imaging software packages such as 
MSiReader [239], Cardinal [240], Biomap [241], msiQuant [242], or 
SpectralAnalysis [243] for visualization of spatial distribution of analytes. All 
images are normalized to the maximum ion intensity within all the spectra (all 
pixels) used to create the image, and the raw data from each pixel were extracted for 
statistical analysis. The success of a MSI study is strongly dependent on the 
downstream data analysis of dozens to hundreds of samples to achieve the required 
statistical power. The data processing and handling of IMS data files in gigabyte 
range has become computationally demanding. Commercial software packages 
such as Multimaging (Imabiotech, France) or SCiLS (Bruker Daltonics, Germany) 
are developed to handle terabyte-sized, multi-sample data sets and include many 
statistical tools needed for biomarker discovery. Prior to data processing, several 
steps can be used to ensure accurate and efficient data analysis. These steps include 
normalization, baseline correction, spectra recalibration, smoothing, and data 
compression (unsupervised and supervised) [244, 245]. Depending on the goal of 
the experiment, researchers are continually developing data analysis techniques, 
which account for the very special nature of MSI data, for example, correlation of 
the multivariate patterns of a low-resolution MSI image with a higher-resolution 
optical image of the corresponding histological entities to create super-resolution 
IMS images [246]. Image fusion enhanced the resolution of an IMS image by a 
factor of ten. The first decision to be made in data analysis is to perform a super-
vised or an unsupervised analysis on the imaging MS data set.

In supervised analysis, prior knowledge about the samples is used to perform 
classification or tumor stratification by identifying profiles or specific biomolecular 
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Fig. 14 The product ion spectrum of the [M + H] + precursor ion at m/z 468.4 obtained at a raster-
ing speed of 1 mm/s. (a) SRM image (m/z 468.5 → 252.0) showing the compound distribution 
(intensity scale from black to white with increasing intensity). The acquisition of 106 lines 
corresponding to 10,000 data points (rastering mode: 1-mm distance between lines) took 15 min. 
(b) Optical image of the rat section. This figure is available in color online at www.interscience.
wiley.com/journal/rcm [236]. (Reprinted with permission from Rapid Commun. Mass Spectrom. 
2009;23: 733–736. Copyright © 2009 John Wiley & Sons, Ltd.)
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ions that discriminate the tumor from benign tissue. If information is known about 
patient outcome or response-to-treatment, a supervised analysis of the tumor- 
specific profiles is used to identify prognostic markers. In all instances it is essential 
that the model is validated using an independent validation set of imaging MS 
measurements. Statistical methods such as baseline least absolute shrinkage and 
selection operator (Lasso) [248], log-ratio Lasso [249–251], and a combined ridge 
regression linear model [252] are applied to select statistically significant molecular 
ion peaks in the imaging MS profiles to build a classifier that estimates the probability 
of an individual pixel in each tissue image to be normal or cancerous [247, 253, 
254]. Figure 15 shows the application of imaging mass spectrometry (IMS) to assess 
the N-glycome of the human pancreas and pancreatic cancer in a cohort of patients 
with pancreatic ductal adenocarcinoma (PDAC) represented by tissue microarrays 
and whole-tissue sections [247]. In this study, analysis of the mass data was 
performed using hierarchical clustering which has resulted in clusters with distinct 
glycan properties and patterns for adjacent normal and cancer cores (Fig. 15a), and 
the supervised machine learning method of LASSO-regularized logistic regression 
resulted in a subset of predictors with minimal collinearity and had an abundance 
that was significantly different between the tumor and the adjacent-normal cores 
(Fig. 15b). LASSO finds classifier masses or the predictors that are complementary 
to the carbohydrate biomarkers such as carbohydrate antigen 19-9 (CA19-9) and 
sialylated tumor-related antigen (sTRA) and demonstrated that nine masses in total 
with seven masses being associated with tumor cores. The area under the curve 
(AUC) in receiver-operating characteristic (ROC) analysis was 0.939 using the 
combination, greatly improved over the value of 0.717 using the biomarkers alone 
and moderately improved over the value of 0.910 using the masses alone (Fig. 15c, 
d) [247].

The unsupervised analyses seek unknown latent variables in the data, which are 
not focused on a particular recognition task, instead seek to discover the underlying 
structure within an IMS data set, uncovering trends, correlations, and associations 
along the spatial and spectral domains. The unsupervised methods can be categorized 
into dimensionality reduction (component analysis methods), spatial segmentation 
(or clustering of pixels), and clustering of ion images [33, 255]. The dimensionality 
reduction methods are performed using component analysis or factorization 
methods such as principal component analysis (PCA) and nonnegative matrix 
factorization (NMF). Both can visualize distinct spatial regions and the associated 
spectral patterns. Other methods have been evaluated and developed which are 
discussed in detail elsewhere [255–257]. Spatial segmentation aims at partitioning 
a sample into distinct regions of molecularly similar pixels and is one of the most 
popular approaches for data representation in imaging MS. Clustering is a powerful 
tool in in imaging MS and has been demonstrated to be capable of differentiating 
tumor types, visualizing intratumor heterogeneity, and segmenting anatomical 
structures [258, 259]. To enable statistical testing for differences in ion intensities 
between the regions of interest (ROI) within the data set, conditional autoregressive 
models, which account for the spatial autocorrelation of mass signals, within- 
sample statistical comparisons can be performed to determine significant differences 

K. Vijaya Lakshmi



Fig. 15 Mass abundance indicates glycan structures with potential complementary value to cur-
rent biomarkers. (a) Hierarchical clustering and LASSO-regularized logistic regression identified 
families of masses with potential complementary value to known PDAC biomarkers. Masses 
selected by LASSO regularization are highlighted and color-coded for tumor-core associated or 
normal-core associated. Cores predicted to be tumors are indicated by a yellow box on the right. 
(b) Individually, the masses selected by LASSO regularization used in the logistic regression 
model have significantly different abundances between adjacent-normal and tumor cores. (c) 
Receiver-operating characteristic curves of the use of the models to distinguish the tumor cores 
from the adjacent-normal cores indicate an improved accuracy using the combination of masses 
and biomarkers. (d) Example cores illustrate the complementary value of the masses and the bio-
markers. The yellow box indicates prediction as a tumor core. The addition of the masses correctly 
identified a tumor core missed by the biomarkers (2055) and correctly identified a normal core 
falsely called tumor by the biomarkers (3891). In other instances, the combination produced no 
change (2790) and falsely predicted a normal core to be a tumor core (2815). LASSO, least abso-
lute shrinkage and selection operator; PDAC, pancreatic ductal adenocarcinoma [247]. (Reprinted 
with permission from Mol Cell Proteomics 2021, 20, 10,001. Copyright © 2020 Colin T. McDowell 
et al. Published by Elsevier Inc on behalf of American Society for Biochemistry and Molecular 
Biology)
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in drug distributions within a tissue [135, 260]. Likewise, the project MetaSpace 
uses the spatial information of the detected isotopic patterns to increase the 
confidence of metabolite identification [33, 261]. The MetaSpace project is an 
open-data repository where every active user can see the data of other users and is a 
platform for artificial intelligence developments in the field of spatial metabolomics. 
MetaSpace provides a free cloud engine for metabolite annotation and encourages 
users to make their data public, thus creating an open knowledge base of spatial 
metabolomes.

14  Applications of Imaging Mass Spectrometry 
in Cancer Research

Imaging mass spectrometry has been gaining importance due to its ability to spa-
tially localize the biomolecules such as metabolites, lipids, drugs, peptides, and 
proteins which can be used for biomarker discovery that can stratify patients 
according to their diagnosis, disease state (staging), and prognosis to enable a more 
personalized therapy [262]. In 2003, Yanagisawa et al. were the first to report the 
successful use of MALDI-MS tissue profiling histologically selected 1-mm-diameter 
regions of single frozen sections from lung cancer tissue. Class prediction models 
based on differentially expressed proteins were used to accurately determine lung 
cancer histology, distinguish primary tumors from metastases, classify nodal 
involvement, and predict the prognosis of patients [263]. This study was not an 
imaging study, but it is a landmark paper that gave evidence of the potential for 
MALDI-MS imaging on 112 biopsies from lung-tumor patients to discriminate 
adenocarcinoma from squamous cell carcinoma [161]. In the subsequent years, 
many oncological studies have exploited the potential of imaging mass spectrometry 
to find biomarkers for diagnosis, prognosis, or therapy response prediction [135, 
264]. Some of the first cancer imaging MS studies using MALDI-IMS were finding 
protein fragment Reg alpha as the potential biomarker for ovarian cancer [265], and 
fragment of mitogen-activated protein kinase/extracellular signal-regulated kinase 2 
(MEKK2, m/z 4355) to accurately discriminate cancer from normal tissue, and by 
confirming the discriminatory power of biomarkers orthogonally by IHC [266]. 
MALDI-IMS was used for the classification of Her2 receptor status in breast and 
gastric cancer tissues [267, 268]. In colon cancer tissues, MALDI-IMS was used to 
record the protein expression patterns to distinguish between patients with and 
without metastasis formation [269]. In breast cancer, MALDI-MS tissue profiling 
and imaging enabled the identification of proteins in pretreatment biopsies that 
predict response to neoadjuvant taxane-based therapy [270]. In another study on 
esophageal adenocarcinomas, a protein signature was first found to be correlated 
with the chemosensitivity to fluorouracil and cisplatin administration [271]. In a 
separate study on esophageal adenocarcinoma, Walch et al. reported low levels of 
the mitochondrial protein COX7A2 as being indicative of poor survival [271, 272].
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In breast cancer study, MALDI-IMS was used to detect proteomic patterns asso-
ciated with human epidermal growth factor receptor 2 (HER2) status in breast 
tumors, in a discovery set (n = 30) and a validation set (n = 18) [267]. The very same 
section measured by MALDI-IMS was stained for H&E afterward, and the 
co-registered imaging mass spectrometric data with the histological features allowed 
a histology-directed analysis of tissue samples to identify the regions of interest 
(ROIs) containing cancer cells or non-neoplastic tissue components (e.g., normal 
terminal ductal lobular units or stroma. Figure 16 shows an average MALDI-IMS 
mass spectra observed within the mass range of m/z 2400 to 25,000 that were shown 
to discriminate invasive ductal cancer from normal terminal ductal lobular unit. The 
peak at m/z 4309 clearly shows that this feature is specific for terminal ductal lobu-
lar units, while peak at m/z 22,490 is specific for invasive ductal cancer cells but not 
present in tumor stroma or other tissue components. In this study, Sandra Rauser 
et  al. have shown that the overexpression of seven m/z species accurately define 
HER2-positive from HER2-negative tissues and identified the feature near m/z 8404 
as cysteine-rich intestinal protein 1 (CRIP1) strongly associated with HER2 overex-
pression which demonstrates the potential of MALDI-IMS for tissue diagnostics 
and provides insights to the biologically significant molecular pathways which are 
not limited to traditional high-abundance proteins [267].

In addition to the use of IMS for proteomic biomarker discovery, it is also 
increasingly used to investigate lipids and other small metabolites as biomarkers of 
cancer [273]. Lipid metabolism undergoes a dramatic change in cancer where the 
metabolism converges to lipid synthesis [274]. More precisely there is a shift from 
lipid uptake to de novo lipogenesis, which has an impact on the fatty acid (FA), and 
lipid compositions of the entire cell. However, the mechanisms of cancer progres-
sion’s and the metabolic reprogramming and the lipid biochemistry are still under 
investigation [275]. With the introduction of DESI in 2004, an increasing number of 
investigations focus on lipid and metabolic imaging mass spectrometry to character-
ize cancer and adjacent healthy tissues [176, 276, 277]. The biomarkers detected by 
DESI-MS include cancer-specific small metabolites, fatty acids (FAs), sphingomy-
elin (SM) and classes of phospholipids such as phosphatidylcholine (PC), phospha-
tidylserine (PS), phosphatidylinositol (PI), phosphatidylethanolamine (PE), 
phosphatidyl glycerides (PG), and cardiolipins (CL) [143]. For example, in a study 
on ovarian cancer, DESI-MSI was used to profile the lipidome of different epithelial 
ovarian carcinomas (EOC) and borderline ovarian tumors together with normal 
ovarian stroma and normal fallopian tube [278]. DESI-IMS revealed five distinct 
lipid classes which are responsible for the separation between the normal tissues 
and stroma/serous carcinoma tissues: phosphatidic acids (PA), PS, PE, PG, and 
ceramides (Cer). Figure 17 represents the distribution of the five different PAs iden-
tified, where the intensities are always greater in tumor tissue than in carcinoma- 
associated stromal tissue [278].

DESI imaging mass spectrometry for cancer diagnostics have been of pivotal 
focus in translating this technique from bench to bedside into the clinical setting as 
a validated cancer screening method [181, 182, 279]. Like histopathology 
examination, DESI requires surgical biopsy tissue cryosection into thin slices 
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Fig. 16 Direct tissue mass spectrometric analysis reveals cell-type-specific profiles as shown in 
this comparison of neoplastic (invasive ductal cancer) and non-neoplastic (terminal ductal lobular 
unit) tissue from an individual patient tissue sample analyzed by MALDI-IMS. Average spectra in 
the mass range of 2400−25,000 Da are obtained from the non-neoplastic (green) and the cancerous 
(red) tissue areas. Two examples of differentially expressed masses (m/z 4309 and 22,490) are 
indicated by arrows. The visualization of m/z 4309 within this histological context (overlay with 
the optical microscopic image of the measured and subsequently H&E stained tissue section) 
clearly shows that this feature is specific for terminal ductal lobular units, while m/z 22,490 is 
specific for invasive ductal cancer cells but not present in tumor stroma or other tissue components. 
Statistical analysis revealed in this experiment of this individual patient sample 81 differentially 
expressed m/z species at significant levels between invasive ductal cancer and terminal ductal 
lobular units. Scale bars = 2 mm [265]. (Reprinted with permission from J. Proteome Res. 2010, 9, 
4, 1854–1863. Copyright © 2010 American Chemical Society)

(5–20-μm thickness) and thaw mounted onto a glass slide and does not require 
pretreatment or matrix application. DESI-MS has been further exploited to diagnose 
various cancer types, based on the differences in lipid and metabolite profiles, for its 
application breast cancer [280, 281], prostate cancer [282, 283], gastric cancer 
[284], ovarian cancer [278, 285], brain tumors [286–288], thyroid oncolytic tumor 
[289], lymphoma [290], lymph node metastasis [291], pancreatic cancer [292], 
colorectal adenocarcinoma [293], and renal cell carcinoma [217, 250, 294, 295]. 
Air-flow-assisted desorption electrospray ionization-MSI (AFADESI-MSI) has 
demonstrated its application in spatial mapping of EGFR-mutation-associated bio-
markers and visualized EGFR mutation spatial distribution in lung adenocarcinoma 
(LADC) tissues [296].
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Fig. 17 Characterization of phosphatidic acid class (PA) in ovarian cancer. (a) Ion images of five 
different PA species in a serous ovarian carcinoma with (b) box plots of the same lipid species 
[278]. (Reprinted with permission from Scientific Reports, 6, Article number: 39219 (2016). 
Copyright © 2016, Maria Luisa Dória et al.)

15  Applications of Imaging Mass Spectrometry 
in Drug Imaging

The combination of imaging mass spectrometry and histology is now extensively 
used for pharmacological research, which simultaneously images the distributions 
of the drug compounds and their metabolites [227, 297]. Figure 18 represents the 
high-resolution mass spectrometry imaging of drug distribution of the anticancer 
drug imatinib (a tyrosine kinase inhibitor) which was analyzed in mouse kidney at 
35-μm-pixel size; Imatinib ([M + H]+, m/z 494.2662) is displayed in green, while 
two phospholipids (red and blue) are included to indicate the histological features of 
the kidney [142]. The colocalization of imatinib and PC (40:6) indicates that 
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imatinib is accumulated in the outer stripe of the outer medulla. With suitable cali-
bration curves, MSI has been shown to provide quantitative measurements of drug 
compound concentrations [219, 235]. Pharmacological imaging MS is increasingly 
integrated with histology to localize the compounds within the often highly hetero-
geneous tumor tissue microenvironments [217]. Recently, IMS was combined with 
digital image analysis of the tissue sections to relate pharmacokinetics to histologi-
cal features, in this case the degree of microvascularization [298]. In another study, 
imaging mass spectrometry was applied to track the localization of the drug-target-
ing BRAF in malignant melanoma [299]. The ability to determine drug uptake at the 
target sites, in the context of the tissue’s histology, provides important opportunities 
for understanding the mode of action of drug activity within the disease microenvi-
ronment and the mechanism of drug resistance.

Fig. 18 (a) Overlay of selected ion images: green, [PC(32:0)  +  K]+  =  772.5253 cortex; blue, 
[PC(40:6) + K]+ = 872.5566 outer stripe outer medulla; and red, [PC(38:5) + K]+ = 846.5410 inner 
stripe outer medulla; FTMS image, 225 × 150 pixels; 35-μm step size; bin width, Δm/z = 0.01. (b) 
Overlay of selected ion images: red, [PC(32:0)  +  K]+  =  772.5253; green, imatinib 
[M + H]+ = 494.2662; and blue, [PC(34:1) + H]+ = 760.5851; FTMS image, 225 × 150 pixels; 
35-μm step size; bin width, Δm/z  =  0.01. (c) Optical image of the investigated mouse kidney 
section; H&E stained after MS imaging measurement. (d) Single-pixel FTMS spectrum of the 
outer stripe outer medulla of the mouse kidney section [142]. (Reprinted with permission from 
Analytical and Bioanalytical Chemistry, 401, 65–73 (2011). Copyright © 2011, Andreas Römpp 
et al., Springer-Verlag)
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16  Concluding Remarks

For the successful biomedical application of imaging mass spectrometry as a molec-
ular histological tool to highlight tissue regions with distinct molecular signatures, 
it will require further investigation using additional data mining and bioanalytical 
tools to explore the biological pathways and mechanisms of disease progression 
such as in-depth protein analysis for elucidating signaling pathways. More recently, 
imaging mass spectrometry has been used to develop novel clinical applications, 
such as imaging endogenous metabolites and neurotransmitters and the detection of 
intratumor heterogeneity. Rapid and intraoperative classification of tissues in the 
operation setting based on biomarker profiles for surgical margin evaluation, diag-
nosis, and prognosis and response to therapy shows the potential of IMS to be trans-
formative from basic biomedical research to translational research. MSI 
developments with multimodality and high-resolution imaging at cellular length 
scales have been driven largely by academic and analytical chemists which will 
eventually be standardized at a large-scale multicenter validation study to demon-
strate its clinical utility and significance.
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ELISA Enzyme-linked immunosorbent assay
FDR False discovery rate
GC-FID Gas chromatography-flame ionization detection
GC-MS Gas chromatography-mass spectrometry
hCG Human chorionic gonadotropin
HDL High-density lipoprotein
IEM Inborn errors of metabolism
LAESI Laser ablation electrospray ionization
LC-HRMS Liquid chromatography coupled to high-resolution mass spectrometry
LC-MS Liquid chromatography-mass spectrometry
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1  Introduction

Metabolites are the connecting link between the genome and the environment. With 
the development of novel technologies and bioinformatics approaches, it is now 
possible to study the global metabolic changes in any organisms and cells. 
Metabolomes represent an organism’s physiological state and can be used to help 
diagnose and treat a variety of diseases. Metabolomics as a field emerged in the late 
1990s with the advent of proteomics [1] and is now rapidly evolving. It is the study 
of the metabolome that comprises the entire repertoire of small molecules with 
molecular weights of <1000 Da or <1500 Da excluding biopolymers like proteins 
or nucleic acids [2]. The small molecules are also referred to as metabolites and are 
present in human cells, tissues, and body fluids. They can be studied using large- 
scale detection, quantification, and analysis methodologies. Metabolites are organic 
and inorganic chemicals and are either reactants, intermediates, or end products 
generated during biological enzymatic reactions or may be of xenobiotic origin (i.e., 
the chemicals that are found in living organisms however are not produced by them) 
and are known to bridge gene functions and nongenetic or phenotypic end points 
[3–5]. They exhibit variable chemical properties that range from polar hydrophobic 
compounds and hydrophilic compounds including carbohydrate moieties to nonpo-
lar hydrophobic molecules such as lipids.
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Metabolomics has made significant progress in the past two decades. Nevertheless, 
several aspects of this field are still in the development phase and restrict its applica-
tion in various domains. These limitations include a restricted detection range, bulk 
analysis with precise molecular features, a lack of chromatographic methods for 
better resolution, and the high cost of analytical devices such as mass spectrometers 
and NMR. However, despite these constraints, metabolomics continues to be a valu-
able research tool in translational biology, pharmacological medicine, biomarker 
discovery, and diagnosis. By analyzing the metabolic profiles of patients with dif-
ferent diseases, researchers can gain insights into the underlying mechanisms and 
identify potential targets for therapy. Furthermore, it has tremendous potential to 
monitor disease progression and treatment response and detect the side effects of 
therapies. Besides, the broad range of metabolomics is enabling research in other 
areas such as agriculture, environmental surveillance, and nutritional biology.

In the coming years, advancements in basic research and healthcare technologies 
are expected to surpass our current understanding of living organisms. Metabolomics 
is one such field that holds great promise. Therefore, in this chapter, we aim to pro-
vide an overview of the future perspectives of metabolomics in various areas, 
including precision medicine, personalized nutrition, disease diagnosis, biomarker 
discovery, single-cell metabolism, the development of novel AI-/ML-based tools for 
data integration, applications in translational biology, and therapeutic development. 
Additionally, we will touch upon the topic of metabolic sensors and wearables for 
disease surveillance. Finally, we have provided recommendations to consider while 
developing new technologies using metabolomics results. Overall, the future of 
metabolomics looks bright, with the potential to revolutionize our understanding of 
biological processes and identify new strategies for enhancing human welfare.

2  Metabolomics for the Masses

While the field of metabolomics has many applications in a clinical setting, there is 
also a clear use for bringing metabolomics into everyday life. Technologies such as 
pregnancy tests, breathalyzers, and blood glucose monitors are familiar examples of 
tools implemented for simple readouts of our physiological state from biomolecular 
readouts. However, these technologies are only designed for the detection of single 
molecules: pregnancy tests detect human chorionic gonadotropin (hCG) in urine, 
breathalyzer tests measure alcohol levels from a breath,1 and blood glucose moni-
tors measure instantaneous plasma glucose levels. While these narrow searches for 

1 Breathalyzer tests have also been designed for diagnosis of viral and bacterial infections through 
volatile organic compound detection. Secondary electrospray ionization-mass spectrometry 
(SESI-MS) on mouse breath could detect infection as well as distinguish between different patho-
gens and strains [6], and a diagnostic breath test using gas chromatography-mass spectrometry 
(GC-MS) was approved for emergency use in the Covid-19 pandemic [7, 8].
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specific molecules achieve the designed task, the conclusions that can be drawn 
using these technologies are equally as narrow.

Recently, there has been an emergence of consumer products that expand bio-
molecule detection through large metabolomic analyses to provide wider insights 
into our physiological state. The promise of these products includes early disease 
detection, lifestyle recommendations to improve metabolic health, and future health 
outcome predictions, all without the need to visit a doctor’s office. While consumer 
products may bring metabolomics closer to everyday life, many challenges still 
need to be addressed to scale up these analyses.

2.1  Physiological Assessment Through Endogenous Molecules

The accessibility of high-throughput metabolomics has grown, and therefore asso-
ciations between individual, endogenously derived metabolites and physiological 
states have become easier to identify [9]. These findings can be leveraged for infer-
ence on a new individual’s physiology. However, high-throughput metabolomics on 
the same biological source must be used for the inference to be accurate.

Biofluids commonly used for such analyses are blood (either plasma or serum 
[10]), saliva, and urine [11]. While the latter two fluids are the easiest to obtain 
noninvasively, saliva is highly affected by external factors such as hygiene and food 
intake, and urine is a waste product, meaning its metabolic contents will heavily 
represent molecules being excreted rather than those being actively used [12]. Blood 
is therefore the fluid most reflective of bodily processes. Blood circulates in all 
organs and tissues, making it a “reasonably good metabolic proxy for the entire 
organism” [13]. As such, businesses building analytical pipelines to bring metabo-
lomics to the masses have opted for blood draw devices to collect samples for fur-
ther analysis.

Reflecting the methods of published metabolomics-disease associations again, 
blood is then profiled through liquid chromatography-mass spectrometry (LC-MS) 
methods, and the resulting spectra are mined for known physiological and disease 
biomarkers. From plasma draws, there are ways to discern the general function of 
our organs as each has a unique metabolomic footprint. Organs consume and excrete 
different metabolites, such as the liver’s production of bile acids, the thyroid’s pro-
duction of thyroxine, or the adrenal glands’ production of epinephrine and cortisol 
[13]. Such unique metabolomic footprints allow health-based conclusions to be 
drawn per organ from metabolomics analysis on a plasma sample.

There have been numerous studies identifying metabolites as biomarkers for 
non-organ-derived disease as well [14–16]. While such studies have faced criticism 
due to low sample size and statistical power [17], a 2021 study from Pietzner et al. 
established robust metabolomic effects in a population of just under 12,000 indi-
viduals [9]. Associations were found between both identified and unidentified 
metabolites and metabolic, heart, and lung diseases, as well as an array of cancer 
types. The detection of abnormally high or low levels of these metabolites in an 
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individual’s blood could potentially lead to the early detection of disease. This pros-
pect is what drives the establishment of metabolomics tools for the masses – with a 
single blood draw, a person could discover potentially life-saving information and 
seek intervention much earlier than they would with classical screening techniques. 
However, this promise has yet to be realized, and only time will tell if the masses are 
willing to participate in and act on metabolomics-based health insights.

2.2  Limitations of Current Technologies

2.2.1  Exogenous Molecule Identification

Beyond endogenous compounds, exogenous compounds that enter the body through 
the environment can also provide insight into the disease state, as discussed in chap-
ter “Exploring Ecometabolomics Landscapes: Progress, Applications, Challenges, 
and Future Recommendations”. In fact, most complex human diseases, from cancer 
to cardiovascular disease, can be attributed to the environment and the interplay 
between an individual’s genes and their environment [18, 19]. Unfortunately, these 
environmentally derived compounds, collectively known as our exposome, come 
from a vastly larger pool of chemicals than endogenous metabolites, and only a 
small fraction of these are known and have been measured in human tissues [20].

To make matters worse, the exposome is spatiotemporally dependent, meaning 
exogenous molecules in the blood will depend on the location and time of biofluid 
collection. Additionally, the physiological response to these molecules varies widely 
between individuals [21]. This, along with the only very recent development of 
high-throughput exposure data collection and experimental pipelines, means the 
number of known associations between exogenous molecules and disease lags 
behind those of endogenous molecules [22, 23]. The exposome contains contami-
nants, toxins, pollutants, and carcinogens, all molecules with potentially serious 
consequences to human health. Due to the aforementioned technological difficul-
ties, potential exogenous biomarkers for disease will be missed with current tools. 
Therefore, technologies for exposome data collection, identification, and quantifica-
tion are needed to bring the further benefit of metabolomics to the masses.

2.2.2  Commercial Affordability and Interest

Full metabolomics screens are not currently available as a part of everyday health-
care, and therefore access by individuals to their full metabolomics profiles must 
come from a direct-to-consumer business. From a commercial perspective, to pro-
vide helpful metabolomics-derived information to the masses, the masses must 
want, and therefore pay for, their metabolomics readouts. However, a viable busi-
ness model for a direct-to-consumer metabolomics product has yet to emerge. The 
multi-omics profiling company Arivale shut its doors in 2019, four years after its 

Future Perspectives of Metabolomics: Gaps, Planning, and Recommendations



484

founding, due to an inability to fund its consumer-based scientific wellness program 
which included genome, metabolome, and microbiome profiling [24]. Beyond the 
high technological costs, CEO Clayton Lewis also cited the high costs of customer 
acquisition and a lack of interest in this data as a regular part of healthcare [25]. 
While competitors have either lowered consumer costs or made licensing agree-
ments with large healthcare companies that could make molecular profiling more 
widespread, the future availability of metabolomics for the masses is going to 
depend on translational utility and the willingness of the masses to independently 
invest in health insights derived from metabolomics data [26].

3  Future Opportunities and Challenges 
in Translational Metabolomics

The emerging focus of personalized medicine is greatly due to the explosion of 
omics data: genomics, transcriptomics, proteomics, metabolomics, etc. While boun-
tiful research has shown the potential for biomarker detection, disease subtyping, 
drug repurposing and discovery, and other useful applications for patient care, the 
development of widespread healthcare tools has not followed suit equally for each 
type of omics data. Genomics has dominated clinical implementation, with more 
than 75,000 genetic tests available by 2017 [27]. On the contrary, 2 years later in 
2019, transcriptomics and proteomics were the basis for only five assays and one 
assay, respectively [28], in a clinical setting. Even more astounding, metabolomics 
is still without an FDA-approved test in 2023 [29]. While there are no current clini-
cal tools for metabolomics, there are many areas in healthcare research conducting 
extensive experiments that can benefit from their development.

Numerous branches of medicine have recognized metabolomics as a potential 
strategy to identify predictive, diagnostic, or prognostic markers of disease. 
Oncology has already made strides in this respect, as the ability to find metabolite 
biomarkers in serum and image-based applications has been explored. In breast 
cancer patients, the metabolome is representative of over 30 endogenous metabo-
lites, characteristic of low glucose, low glycerophosphocholine, and increased tCho 
levels [30]. The mapping of metabolic signatures has been conducted for additional 
cancers including ovarian [31], lung [32], and endometrial [33]. In addition, the 
detection of breast cancer tissue from noninvolved adjacent tissue using metabolo-
mics with simultaneous measurement of tumor size, lymph node status, hormone 
status, and histology was determined with accuracy, sensitivity, and specificity all 
around 90% [34]. As an increasing number of studies are performed to validate 
existing and discover new biomarkers of disease, the chemical fingerprint of the 
phenotype may become increasingly specific. In addition to diagnostic usage, 
metabolomics has been used to predict treatment outcomes, such as sensitivity and 
resistance of either chemotherapy- or hormonal therapy-treated samples of human 
glioma cell cultures [35]. This study demonstrates the ability to create diagnostic 
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tools using metabolomics that are detectable before changes in phenotype are evi-
dent using conventional imaging techniques [36].

Type 2 diabetes and other diseases under the umbrella of endocrinology have 
bountiful potential for metabolomic techniques to aide in our understanding of their 
etiology. Due to the current global type 2 diabetes epidemic and its worrying projec-
tions, a large focus has been placed on developing diagnostic biomarkers. An exam-
ple of type 2 diabetes-associated metabolite, 2-aminoadipic acid, was reported by 
Wang et al. [37]. Using the Framingham Heart Study, 2-aminoadipic acid was dis-
covered to be increased in diseased individuals up to 12 years before onset, and was 
not well correlated with other metabolites, suggesting a distinct metabolic pathway 
for risk assessment of phenotype outcome. As the nature vs nurture debate contin-
ues in the diabetes field, it has been demonstrated that metabolic markers are more 
predictive of type 2 diabetes development than genome-wide association studies or 
other genetic data [28]. This proposes a greater environmental role for disease onset, 
suggesting lifestyle changes are a viable solution. In rheumatology, 20 metabolites 
have been identified to decently discriminate rheumatoid arthritis from ankylosing 
spondylitis, Behcet’s disease, and gout with an area under the receiver operating 
characteristic curve (AUC) of 0.812 [38]. As additional metabolomics studies tar-
geting the classification between two groups are conducted with larger sample sizes, 
the validation and refinement of metabolic profiles associated with specific diseases 
will be attainable.

In neurological disorders, such as Alzheimer’s disease (AD) and Parkinson’s dis-
ease, the quest for metabolic biomarkers for early diagnosis and subtyping is of 
interest to many. As early AD diagnosis and AD treatment have had very limited 
success, metabolomics may provide novel insights into the underlying mechanisms 
driving AD development and progression. Metabolomics of plasma samples from 
AD cases compared with controls identified a higher abundance of free cholesterol 
in small HDL associated with a lower risk of AD and higher levels of glutamine 
associated with increased AD risk [39]. Additional metabolites were discovered to 
be correlated with general cognition. These results demonstrate potential biomark-
ers for further study which could be indicative of AD development and cognitive 
decline. If these metabolites are valid, it may be possible to create tools to aid in the 
diagnosis of AD and other cognition-centered conditions. In addition to biomarker 
detection in neurological disease, the stratification between patients with Parkinson’s 
disease versus controls, and Parkinson’s with dementia versus Parkinson’s without 
dementia, has been demonstrated by Han et  al. with AUC of 0.955 and 0.862, 
respectively [40]. The ability to distinguish between neurodegenerative stages pro-
vides a clinical application for diagnosing disease severity and necessary treatment.

A pediatric study focusing on the volatile organic compound (VOC) abundance 
for children with and without asthma has concluded an 80–100% accuracy of diag-
nosis with a combination of VOCs [41]. While still in its infancy, further focus on 
VOCs may lead to better risk assessment for identifying children with the greatest 
risk of adverse events. The metabolic profile of cardiovascular disease has shown 
promise for the discovery of new biomarkers for the diagnosis of heart-related 
adverse events. A significant increase in the discrimination between 150 individuals 
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developing atherosclerosis and 1445 not developing atherosclerosis between a 
6-year time interval resulted when low-density lipoprotein (LDL) cholesterol, high- 
density lipoprotein (HDL), docosahexaenoic acid, and tyrosine were added to tradi-
tional biomarkers [42]. This conclusion demonstrates the capability of metabolites 
to assist in the predictive power of traditional diagnostic methods.

As the metabolome is composed of thousands of compounds, there is a high 
potential for the discovery of metabolites indicative of early detection for many 
diseases. Vallejo et al. revealed perfect separation between plasma samples from 
patients with atherosclerosis and controls, and patients with acute coronary syn-
drome and controls, using gas chromatography-mass spectrometry [43]. This sug-
gests a metabolite-specific assay could be created to confidently identify patients 
with these heart problems. Heart failure patients and controls have been demon-
strated to be separable based on the measurement of pseudouridine, 2-oxoglutarate, 
2-hydroxy 2-methyl propanoic acid, erythritol, and 2,4,6-trihydroxy pyrimidine 
[44]. This research concluded that there are novel metabolic biomarkers of heart 
failure which can be further investigated to discover their potential to be used in 
prognosis.

Taken together, metabolomics has been utilized for many applications in a wide 
variety of medical fields. A list of metabolite biomarkers for use as diagnostics is 
located on the Mayo Clinic website (https://www.mayocliniclabs.com/) [28]. As the 
deployment of metabolomics continues to offer promising results with respect to the 
identification of novel predictive, diagnostic, and prognostic biomarkers that aid in 
the overall understanding of the biological mechanisms underlying a phenotype, 
new studies will result in the precise identification and refinement of a metabolic 
fingerprint of many diseases, which can be measured to make clinical assessments.

As interest in metabolomics increases in research, industrial efforts are aiding in 
the future translational capability by focusing on the creation of simpler and better 
LC-MS/MS systems [28]. Both Sciex and Waters have created instruments for use 
in clinical laboratories. In addition, enzyme-linked immunosorbent assay (ELISA) 
is a method by which targeted metabolites can be quantified for clinical use, although 
there are still limitations with this approach that need to be addressed [45]. Also, as 
the use of mobile device data and wearable data rapidly grows, metabolomic mea-
surements can accompany these sources to create a foundation for the metabolome 
of both diseased and healthy individuals on a massive scale. The influx of this data 
may be used to create personalized recommendations for numerous applications 
including exercise and nutrition.

As mentioned earlier, diseases such as type 2 diabetes have been suggested to be 
driven, on average, more by environmental than by genetic components. Therefore, 
the culmination of multiple modalities of data for a large population could lead to 
the identification of necessary lifestyle requirements for the prevention of disease 
development. Nutritional metabolomics focuses on how chronic or acute food 
intake causes a response in an organism’s metabolism [46]. Research involving 
medical foods and dietary supplements has shown promise as a solution to treat 
many inborn errors of metabolism, dietary deficiency diseases (such as rickets, 
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scurvy, and goiter), and other medical conditions such as coeliac disease (through 
gluten-free diets) and epilepsy (through ketogenic diets) [47].

Although cancer prevention guidelines have stated the association between the 
consumption of red meat, processed meat, and sugary drinks with the development 
of cancer, these products are still overeaten by some of the US population. Research 
focused on the resulting metabolic changes may aid in the discovery of direct mech-
anisms responsible for the correlation between these foods and drinks and cancer. 
As with smoking, as the evidence amounts to and becomes popularized, an incen-
tive for the government to intervene and create a policy limiting the ability of the 
population to consume these harmful products may be implemented. As more stud-
ies are conducted with a focus on medicinal food, an additional application may be 
the incorporation of a supplemented diet in addition to standard treatment in health-
care. As nutrition influences overall well-being, the potential of precision nutrition 
to create a healthier population has an enormous beneficial consequence and may 
promise a large market as technological advances demonstrate a positive impact.

Personalized medicine, drug discovery, and minimization of risk for blood con-
tamination are potential candidates for translational use of metabolomics. 
Laboratory-developed tests (LDTs) are defined by the FDA as “in vitro diagnostic 
tests that are manufactured by and used within a single laboratory,” which can mea-
sure either individual or multiple analytes [29]. Abnormalities in metabolic path-
ways and biomarkers unable to be detected by other means are measured by 
Metabolon’s Meta UDx™ test. For hereditary metabolic disorders, the diagnostic 
tests Meta IMD™ and Meta IMD™ + (Plus) were developed. Although not approved 
by the FDA, these LDTs may provide information for new tests that can be used in 
the clinic to gain more information about a patient than the current standard of care.

With the development of the chemical fingerprints of metabolic changes result-
ing from disease development, tailored recommendations can guide treatment of an 
individual given the metabotype of the patient [28]. There are many opportunities to 
expand metabolomics in the future to new sources, such as cerebrospinal fluid, 
human saliva, bronchoalveolar lavage, sweat, feces, semen, and amniotic fluid [48]. 
These studies will provide answers to current questions in multiple healthcare fields 
and may lead to the ability to investigate new topics. Also, by comparing metabolite 
abundance before and after drug treatment and studying the resulting phenotype, 
insight to the mechanistic impacts of drugs can be elucidated. This could also guide 
drug developers to create more effective therapeutics, as direct experimental evi-
dence would provide a more comprehensive understanding of the drug mecha-
nism [49].

Additionally, a treatment’s level of toxicity may be confidently measured by 
metabolomics, aiding in the development of optimal medications for a patient and 
also providing an avenue for the creation of predictive modeling of drug toxicity for 
the creation of new therapeutics [50]. Bacterial problems arising from contamina-
tion and antibiotic resistance may be solved through the study of metabolism. As 
pathogens can be transmitted by human blood and blood-derived products, metabo-
lomics may be a tool to minimize or eradicate this risk due to its sensitivity of mea-
surement through clinical screening [48]. Also, the rise in antimicrobial resistance 
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due to antibiotic use could be alleviated by the determination of metabolomic bio-
markers of resistance and the creation of methods for metabolic changes that can 
kill the bacteria. The implementation of these tools in healthcare could prevent the 
spread of resistant bacteria and save many lives in the future.

Although there are an impressive number of applications for translational metab-
olomics, there are numerous challenges that must be overcome to create valid, pre-
cise techniques for analyzing patient samples. Many logistical challenges provide 
impediments to an optimal workflow for the utilization of metabolomics in the 
clinic. As a relatively recent approach to omics technologies, its publicity is much 
less than others and often clouded by the successes more advanced omics have 
achieved [51]. One bottleneck is the high cost of the instruments needed to measure 
the samples and the laborious sample preparation methodologies [36]. The resources 
and armamentarium needed to store and measure metabolites before they undergo 
transformation and/or degradation may not be available at many healthcare institu-
tions and must be purchased to allow for metabolomic analyses to be made possible 
[51]. As trends in other omics have shown decreased time and cost for the genera-
tion of data [52], it is possible that as new measurement techniques are developed, 
economic and temporal barriers will be less of a factor. An additional issue is a 
current need for the culmination of experts in different research areas including 
biologists, analytical chemists, statisticians, data scientists, and bioinformaticians to 
successfully conduct and interpret a metabolomics-based experiment in its entirety 
[28]. The reason for this is that the data output from traditional metabolomics plat-
forms is rich and complex.

To be used in clinical settings, the number of metabolites must be reduced greatly 
for a clear interpretation of the results, thus making a risk assessment, diagnosis, 
and prognosis easier for the clinician. To select biomarkers for use in healthcare 
from large metabolomic datasets, there is a need for a user-friendly platform that 
can process, statistically interpret, and determine straightforward conclusions about 
data, demonstrating the direct effect of a change in phenotype on the metabolome. 
The market will also drive the availability of clinical tests. To make a product com-
mercially viable, it must be profitable, which will depend on an estimate of how 
many people will use it [28]. To increase the probability of incorporating new tech-
nology in healthcare, researchers can work with industrial organizations to develop 
easy-to-use, clinician-approved tools.

Numerous technical aspects of metabolomics need to be overcome to create reli-
able metabolite biomarkers for unique metabotyping of disease. One major obstacle 
for untargeted metabolomics is overcoming its semiquantitative nature. As data 
generation relies on the normalization of a signal, the definition of the normal con-
centration of metabolites is needed for reliable conclusions regarding the ability of 
a compound to be used as a biomarker of a phenotype [48]. A showcase example is 
the comparison of two studies analyzing roughly 45 total Crohn’s disease and ulcer-
ative colitis patients. One concluded that there is no discrimination using metabolo-
mics between ulcerative colitis and Crohn’s disease [53], while the other concluded 
that choline, lipoprotein, and N-acetylated glycoprotein levels were able to separate 
the conditions significantly with an AUC greater than 0.9 [54].
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Due to the wide range of biological variation in the metabolome, different cohorts 
may exhibit wide-ranging metabolic profiles. Therefore, absolute quantification of 
metabolite concentration is necessary for accurate benchmarking [28]. To ensure 
bias is not impacting the results of benchmarking experiments, validation needs to 
be repeated in multiple populations with large sample sizes. Currently, many bio-
markers determined through metabolomics are results from studies limited in valid-
ity, statistical robustness, and experimental design [48]. Quantification coupled with 
repeated validation must be performed to develop an understanding of the true met-
abolic pathway alterations characteristic of a disease. Another major challenge to 
translational metabolomics is the inability to identify metabolites and the difficulty 
of pathway mapping [28]. There are many metabolites unavailable for measurement 
in commercial products and/or cannot be identified using current spectral libraries 
such as METLIN or mzCloud. Thus, current methods lack the complete metabo-
lome as a whole. An extension of this is the inability to identify metabolic pathways 
perturbed by a disease, hindering the potential use of metabolomics for the proper 
determination of changing biological mechanisms, biomarker identification, and 
therapeutic development.

The future of translational metabolomics is contingent on the creation of stan-
dardized protocols for experimental design and measurement, simplification of data 
analysis and results, and the development of robust quantization methods leading to 
the reliable identification of metabolites. As groups such as the Metabolomics 
Standards Initiative (MSI) continue to meet and perfect the current procedures in 
metabolomic analysis, metabolomics continually progresses toward translational 
applications. Still, in its infancy, numerous unanswered questions in biology will be 
elucidated by metabolomics as it develops and its utilization increases, making it 
one of the most exciting technologies of the present. There is an enormous opportu-
nity for the study of the metabolome to influence global healthcare.

4   Metabolomics as a tool to Accelerate Therapeutics 
and Novel Drug Discoveries

To enable capturing of the diverse array of metabolites and their dynamic cellular 
concentrations, the detection of these molecules is primarily based on two technolo-
gies, namely, nuclear magnetic resonance (NMR) spectroscopy (1H or 13C) and 
mass spectrometry (MS). Mass spectrometry is often coupled with capillary electro-
phoresis (CE-MS), gas chromatography (GC-MS), gas chromatography-flame ion-
ization detection (GC-FID), direct infusion-mass spectrometry (DI-MS), or liquid 
chromatography (LC-MS). Due to the large chemical diversity and limited knowl-
edge on metabolism despite the implementation of these technologies coupled with 
a range of analytical methods, less than 5% of the metabolome is annotated [55].

As discussed in previous chapters, there are primarily two approaches for inves-
tigating the metabolome, i.e., targeted and global approach (also referred to as 
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non- targeted). The former refers to the identification and measurement of the well-
defined groups of chemically characterized metabolites that have been biochemi-
cally annotated as well using appropriate internal standards. Measurement is 
quantitative, and metabolite concentrations are expressed in molar units. This 
approach enables studying novel associations between the metabolites under vari-
able physiological conditions [56]. Owing to the high sensitivity of this approach, it 
is often used for studying the flux metabolic pathways and for the detection of well-
defined chemical compounds or validation of known biomarkers [57, 58]. 
Alternatively, the untargeted approach provides opportunities for comprehensive 
data analysis as it is possible to detect all measurable compounds or analytes within 
a given sample including putative annotated metabolites or chemically unknown 
samples. Due to this variability in detection, the data is examined in a semiquantita-
tive or relative manner using multivariate analysis, wherein the extensive dataset is 
divided into smaller datasets of manageable signals. Owing to the relative quantifi-
cation of the readouts as chromatographic peak areas, the data generally is expressed 
in terms of the intensity of ions or arbitrary units [56–59].

Moreover, these peak areas are determined by the experimental conditions under 
which the detection is performed using NMR, GC-MS, or liquid chromatography 
coupled to high-resolution mass spectrometry (LC-HRMS). Therefore, these varia-
tions make it difficult to directly compare the data from experiments done at differ-
ent time points within the same laboratory or by different laboratories. The current 
challenges associated with the non-targeted approach include the nonavailability of 
standardized workflows primarily for data generation, complexity of signatures 
detected, lower sensitivity of detection owing to lower abundance, identification of 
metabolites (only a small proportion of metabolites and their annotated features are 
known), automated processing of data through feature detection and integration 
with other omics data, and finally the availability of only limited well-defined 
interoperability frameworks. Moreover, the current platforms for detection and 
analysis are highly expensive. Therefore, these together lead to nonoptimal reuse or 
interoperability of the data. Additionally, the identification of medically important 
molecular signatures and the demand for participatory medicine will also impact the 
establishment of methodologies for simplifying the complex data and accelerating 
research in the field, and will subsequently catalyze the development of affordable 
and accessible alternative analytical methods for the nonspecialized end users [11, 
60]. Currently, the non-targeted approach is being used for the discovery of 
biomarkers.

There are multifaceted applications of metabolomics in various fields of biology 
[61]. For example, in environmental research, it is being used for addressing eco-
toxicological issues [62], and in plant biology and agricultural science, it is being 
used for understanding cellular functions and discovering biomarkers, for diagnos-
tics and phenotyping (specific metabolites and quantitative trait loci (mQTL) & 
metabolic genome-wide association studies (mGWAS)), and for predicting the 
metabolite-genome correlations [63, 64]. The current applications of metabolomics 
have also expanded to microbiome research [65–68]; animal health [69–71]; human 
healthcare including toxicology [72], epidemiology [73], cancer biology [36, 74, 
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75], cardiovascular diseases [36, 76], gastrointestinal diseases, [36, 77–79], aging 
research [80], and infectious diseases [81–83]; and nutrimetabolomics [83–85]. 
Toward biomedical research, metabolomics has furthered systems biology and sys-
tems medicine which has paved a pathway for personalized medicine (also referred 
to as precision medicine).

Personalized medicine or precision medicine is aimed at developing both disease 
prevention and clinical care strategies that account for variability in individuals that 
is affected by their environment, genetics, lifestyle, and molecular phenotype (deter-
mined by both genotype & metabolome) [60, 86]. It follows the concept of “P4 
medicine,” i.e., preventive, predictive, personalized, and participatory [87] in nature. 
The approach relies on the characterization of genetic, epigenetic, and clinical 
information of individuals and provides adept tailored medical treatment, which 
will consequently be safe and effective. As a trickle-down effect, it may enable 
reducing time and financial expenditure on healthcare, improve quality of life, and 
reduce side effects of the given treatment. Personalized medicine may have several 
implications including early detection of disease using medically relevant biomark-
ers and identification of key genetic and epigenetic parameters during the initiation 
and progression of the disease [60, 86, 88]. Overall, it is promising in providing 
deeper insights into the mechanism of disease emergence and progression and facil-
itates using noninvasive methods and easy-to-obtain clinical samples like body flu-
ids (blood, sweat, urine, etc.) or volatile breath components for diagnostic purposes 
and stratifying disease propensity. Consequently, it is promising in laying a founda-
tion for pharmacogenomics and targeted drug discovery, thereby enabling the mea-
surement of well-being.

Medical decision-making is based on the examination of biochemical parame-
ters, clinical assays, imaging scans, and rarely genetic markers. The drugs used 
either for treatment or for the drug discovery process are based on cellular proteins, 
for example, enzymes, receptors, transporters, etc. Thus, comprehensive measure-
ment of metabolites generated through this process may provide deeper insights 
[89]. Moreover, these metabolic signatures have started to emerge as new biomark-
ers for diseases and for responding to treatment [90–109]. Furthermore, the discov-
ery of new biomarkers can also be based on the co-metabolism of the gut microbiome 
along with that in humans, which have shown to modulate the levels of drugs in the 
blood and their effects, i.e., altering their pharmacokinetic (PK) profiles. Thus, these 
may be useful signatures for PK studies and PK modeling studies [110].

Toward the implementation of personalized medicine, research in pharmacome-
tabolomics has accelerated in the last decade. It is aimed at the identification of the 
detailed biochemical roadmap to facilitate understanding intraindividual heteroge-
neity for a given disease (especially for depression and cardiovascular disorders) 
and their variation in response to drug treatment [98, 100, 102, 106, 111–115]. It has 
been also shown that urinary drug metabolite profile before treatment or at baseline 
can inform about the metabolism of the drugs and their toxicity [116]. One of the 
key initiatives has been funded by the National Institutes of Health (NIH) through 
the Pharmacometabolomics Research Network (PMRN) (http://pharmacometabo-
lomics.duhs.duke.edu/) in partnership with the Pharmacogenomics Research 
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Network (PGRN; https://www.pgrn.org/) [89]. Studies from the same have shown 
that a patient’s genetic and metabolic data alone or their combinations are crucial in 
informing the treatment outcomes as well as the underlying cause for their variation 
in response to treatment including the contribution of ethnicity, sex, etc. [117].

Other studies have demonstrated that metabolomics can effectively complement 
genomics data for assessing the risk of a given disease and for its monitoring and 
management to enable precision care [118]. This has led to the emergence of 
pharmacometabolomics- informed pharmacogenomics for addressing various dis-
eases [100], wherein metabolic profiles are analyzed and further linked to the clini-
cal phenotypic manifestations and with relevant genetic variants (single nucleotide 
polymorphisms (SNPs)) to enable the identification of novel genetic variants or 
SNPs that are associated with these varied drug response phenotypes [115]. 
Moreover, this approach seems to be useful, especially in the case of complex dis-
eases, where similar phenotypes may arise owing to pathophysiologic processes and 
information from genomics data is not sufficient [115].

The upscaling of data generated in clinical pharmacology and the integration of 
knowledge from systems biology have led to the emergence of quantitative and 
systems pharmacology (QSP) [119]. This was led by the National Institute of 
General Medical Sciences (NIGMS) with the engagement of domain experts in 
pharmacology, systems biology, pharmacokinetics/pharmacodynamics, and com-
puter modeling. QSP is enriched by data from both pharmacometabolomics and 
pharmacogenomics datasets [89, 115]. Owing to the low success rate of the drugs 
that progress from preclinical to first in human studies, the data from QSP is based 
on an understanding of biological pathways, disease progression, and drug mecha-
nisms. This feeds into informing this translation that is critical for pharmaceutical 
R&D [119]. Thus, the combination of information from the metabolic and genetic 
markers can be used as unique identifiers for novel biomarker discovery.

Thus, metabolomics and the recent tools being developed are crucial in facilitat-
ing the identification of diseases through unique metabolic fingerprints or signa-
tures. The culmination of this information with genomic data will contribute to 
novel biomarker discovery. Besides, the examination of clinical characteristics and 
their variability will enable patient stratification for informing personalized drug 
treatment and inform clinical trial designs including their inclusion criteria. 
Additionally, the clinical characterization may enable the identification of new path-
ways for therapeutic discovery as well as provide novel insights into mechanisms of 
drug actions. This will provide scope for enhancing treatment outcomes by integra-
tion of the metabolomics data with fluxomics. Advanced methodologies and the 
integration of omics data along with computational methods and systems biology 
may enable higher success rates critical in drug discovery, development, and trans-
lation. Moreover, a comparative analysis of the metabolome under baseline versus 
the treatment and environmental variations (including knowledge of host gut micro-
biome) would further provide confirmatory results for the success of personalized 
medicine or treatment.
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5  AI-/ML-Based Approaches for Metabolomics Data Mining 
and Analysis

Machine learning (ML) and deep learning (DL) applications encompass everyday 
life, including product recommendations, spam filtering, language translation, and 
even customer service chatbots. The artificial intelligence revolution has gained 
considerable interest in healthcare, and its implementation of omics data is evident 
from a multitude of studies [120–122]. However, metabolomics analysis pipelines 
are much less developed than other omics, such as genomics and transcriptomics, 
which have a plethora of validated databases and tools at their disposal [123, 124]. 
While many challenges need to be overcome in the field of computational metabo-
lomics, numerous applications of ML and DL are working toward solutions. In 
addition, research has already begun to reveal the utility of ML and DL using 
metabolomics, and future work has the potential to transform our understanding of 
health and nature.

Two similar issues facing metabolite measurements are the inability to annotate 
metabolites and the misidentification of similar metabolites from the raw spectral 
data output by the mass spectrometer. The study of the entire metabolome is ongo-
ing, and there are many databases with metabolomic information (https://metabolo-
micsna.org/index.php/resources/databases). However, a majority of small 
compounds have not yet been added to the databases. This leads researchers to a 
dilemma, and the following questions are inevitable: Does one throw away metabo-
lites unable to be annotated given current databases to increase statistical power for 
identifiable metabolites? Alternatively, does one include all metabolites and keep 
them as m/z ratios when reporting results, discussing the need for unidentifiable 
compounds to be found in future analyses? Regardless of the researcher’s decision, 
valid identification of metabolites is paramount to the ability to interpret the find-
ings and create diagnostic tools.

By employing ML and DL, researchers are devising different strategies to 
increase the robustness of metabolomic annotations. D.D.  Matyushin, 
A.Y. Sholokhova, and A.K. Buryak created a deep convolutional neural network 
(CNN) to rank small molecules for identification using low-resolution electron ion-
ization mass spectrometry (EI-MS) [125]. This model used the NIST 17 database to 
train the CNN, and the validation sets were the Golm Metabolome Database, Human 
Metabolome Database, and FiehnLib. The CNN outperformed other methods in 
ranking the metabolites. This work demonstrates the superiority of DL approaches 
over other methods for this specific case of metabolite identification. Multiple 
reviews mention convolutional neural networks developed to automate the peak- 
picking process [126, 127]. Kantz et al. created a CNN which removed about 90% 
of false positives from a conventional peak-picking pipeline [128]. By precisely 
identifying true metabolites in noisy mass spec data, robust biological findings can 
be more readily discovered. Lauren M. Petrick and Noam Shomron discuss multiple 
ML and DL models for peak picking, including ML models WiPP and MetaClean, 
and DL models Peakonly, NeatMS, NPFimg, and Eva [129]. However, some of 
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these models were developed to work best for specific types of peaks and therefore 
may not be generalizable to all analyses. Nevertheless, the DL model Eva obtained 
a classification accuracy for good and bad peak shapes greater than 90% when 
applied to 22 publicly available LC-MS metabolomics datasets. This result is very 
promising and shows the power of DL when large datasets have culminated. 
Additional models have been developed to predict the absence of a mass spectrum 
in a database [130, 131]. This type of analysis allows for enhanced sensitivity of 
metabolite annotation, as only matched metabolites are kept for further analysis. If 
researchers are only interested in the metabolites that are already annotated, there 
will be widespread use of these tools and their successors. It is possible that attri-
butes from all these strategies using ML and DL will be combined to create a robust 
metabolomic analysis preprocessing pipeline.

One area of enormous potential that metabolomic analyses using ML and DL 
have already impacted is the safety and optimization of food. Wang et al. created a 
deep artificial neural network (ANN) to classify pathogenic and nonpathogenic 
microbes commonly found in food [132]. Although the plot of the linear dimension-
ality reduction PCA showed overlap between different microbes, the ANN was able 
to discriminate all microbe types in a model using only metabolite signals that 
increase during the incubation time with an accuracy of 99.2% [132]. Through the 
screening of microbes in food, it is possible to greatly reduce the risk of illness due 
to the large-scale distribution of infected food. Asakura et al. performed metabolo-
mic profiling on eight fish species and, using an ensemble deep neural network, 
revealed that there were metabolites that correlated with fish size [133]. This study 
demonstrates the potential to engineer animals with desired traits using the metabo-
lomic composition as biomarkers. Therefore, future applications using other ani-
mals could reshape current farming techniques and increase food supply.

Healthcare diagnoses and biomarker discovery using ML and DL with metabo-
lomic data have the potential to revolutionize healthcare standards. A widely cited 
study of DL using metabolomics was conducted by Alakwaa et al. [134]. One DL 
and six ML models were fit to ER+ and ER- breast cancer tissue metabolites. The 
DL model significantly outperformed the ML models, achieving an area under the 
receiver operating characteristic curve of 0.93. It also identified important metabo-
lites for separation of ER+ and ER- samples which were not identified by the ML 
algorithms, signifying DL’s superiority to find more complex relationships within 
the data. The tumor microenvironment is a topic of increasing interest. Metabolomic 
sampling can provide a snapshot of the small compounds in contact with a patient’s 
tumor. As databases become larger, it may be possible to identify better diagnostic 
markers of cancer and develop personalized therapies specific to cancer 
progression.

Breast cancer is one of the many phenotypes in which researchers have used ML 
or DL approaches with metabolomics data to classify samples by group. This type 
of research has already been conducted in tuberculosis [135], preterm delivery 
[136], colorectal cancer [137], influenza [138], renal cancer [139], acute myocardial 
ischemia diagnosis [140], systemic lupus erythematosus [141], NAFLD [142], 
Covid-19 [143], and depression [144]. Many of these analyses follow a similar 
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format such that metabolites from the optimal ML or DL approach which are most 
influential to the discrimination of the groups studied are validated by conducting 
literature searches for previous work correlating the metabolites with the disease. 
Proper use of ML and DL with sufficient sample sizes can produce powerful results 
because they quantify the extent to which potential sets of metabolites can be used 
as diagnostic markers of disease. After repeated validation using multiple datasets, 
diagnostic tools should be developed and deployed to better stratify risk for patients, 
and tailored treatments should be designed to provide patients with optimal recovery.

While the potential benefit of DL and ML using metabolomic data in the future 
is compelling, there are challenges that the field must overcome to advance to its 
greatest potential. As in all omics data analyses, there must be a comprehensive 
understanding of the precise question being asked and how the data will be mea-
sured to answer this question. In addition, the possibility of batch effects and con-
founding due to different species, sex, etc. within samples must be considered. ML 
and DL papers should provide and discuss numerous evaluation metrics. For exam-
ple, classification problems should report area under the receiver operating charac-
teristic curve, area under the precision-recall curve, F1 score, accuracy, sensitivity, 
specificity, positive predictive value, negative predictive value, etc. to grant the 
audience a better ability to understand how the model correctly makes predictions 
and where it lacks predictive power.

One reason metabolomics has fallen behind other omics is that there are not 
large, standard benchmarking datasets for many of the analyses. Therefore, it has 
been difficult to reliably compare different DL and ML techniques for data analysis, 
making a standardized pipeline, such as DESeq2 for transcriptomics, nonexistent. A 
universal feature of DL models is the need for large amounts of data. Large studies 
with metabolomic data are not widely available and are not easy to use or lack a 
high coverage of the metabolome. While there are openly accessible data on plat-
forms such as MetaboLights and Metabolomics Workbench, the abundance matri-
ces are often not shared, resulting in time-consuming replication using the raw data. 
Without an understanding of the files necessary to process, and which tools are 
available for processing the raw data, it is extremely difficult to correctly reproduce 
the data used in the study’s analysis. A recommendation would be to require the 
abundance matrix to be added to all studies, along with any necessary metadata to 
replicate the analysis that has been performed. This would likely bring a lot of atten-
tion to the metabolomics field from bioinformaticians and computer scientists who 
are interested in applying their knowledge to a new discipline, greatly accelerating 
the advancement of new techniques, technology, and the overall use of metabolo-
mics. As an increasing attraction to the field of metabolomics continues, an already 
AI-influenced world will inevitably incorporate new metabolomic technologies that 
will contribute to a healthier, happier population.
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6  Single-Cell Metabolomics

Cells are widely recognized as the most minimal, basic units of life. In biological 
systems, cells differentiate based on genetic expression to create heterogeneous 
populations which can then intercommunicate and organize from complex struc-
tures like tissues [145]. Biological function can vary greatly across cells, and there-
fore bulk analyses of pooled cells lose the ability to discern the differential function 
of distinct populations. To avoid losing this information, single-cell omics analyses 
have become increasingly prevalent as they have the potential to detect cellular 
heterogeneity within tissues [146–148]. Single-cell omics allow for the extraction 
and measurement of biomolecules specific to individual cells, which can then be 
compared to other cells to identify discrete populations that are invisible in bulk 
analyses [149]. While single-cell transcriptomics has seen the most rapid develop-
ment of all single-cell omics technologies, there has been a push for single-cell 
proteomics and metabolomics data to make the functional connection between 
single- cell genotype and molecular phenotype [150].

6.1  Current Single-Cell Metabolomics Technologies

Probe-based mass spectrometry, also known as mass spectrometry imaging, has 
emerged as the most useful technique for biomolecular profiling in single-cell 
metabolomics. MSI can detect the levels and localization of biomolecules using a 
probe, such as an ion beam or laser, to perform in situ chemical desorption and/or 
ionization [145, 151]. By overlaying MSI probe ablation coordinates with cell 
images from the same sample slide, mass spectra can be assigned to cells in tissue 
[152]. This circumvents the need for single-cell isolation, a costly, time-consuming 
process on which single-cell transcriptomic methods heavily rely [153].

In using MSI for biological applications, the spatial resolution of the probe is 
incredibly important as cells vary greatly in scale: most eukaryotic cells are 
10–20 μm, while bacterial cells are only 1–2 μm [145]. In addition, single cells can 
contain a large variety of metabolites at very low abundances as compared to bulk 
analyses, such that ion competition among molecules could lead to the detection of 
only the most abundant metabolites in the cell. Table 1 gives an overview of current 
MSI-based techniques to perform single-cell metabolomics measurements, along 
with their resolutions, sensitivities, and current areas for development.
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Table 1 An overview of MSI-based techniques for single-cell metabolomics

Technique
Resolution 
(μm) Sensitivity(fmol) Technique description

Areas for 
development and 
application

Secondary ion 
mass 
spectrometry 
(SIMS)

0.05–200 >10–4 A primary beam of 
positive or negative ions 
is focused on a sample, 
providing energy to 
ionize molecules in its 
focus. These “secondary 
ions” are then 
accelerated into a mass 
spectrometer [154]

Primary ion impact 
energies are high 
compared to bond 
energies within the 
analytes. This leads to 
molecular 
fragmentation, which 
complicates 
downstream data 
analysis [154]
The development of 
high-lateral resolution 
SIMS (NanoSIMS) 
makes this technology 
the best for smaller 
organisms such as 
microbes, with spatial 
resolution as low as 
30 nm [155]

Matrix- 
assisted laser 
desorption/
ionization 
(MALDI)

1–25 >1 A sample is covered 
with a chemical matrix. 
A laser, generally 
ultraviolet (infrared in 
IR-MALDI), is then 
focused on a point in the 
sample. The matrix 
absorbs energy from the 
laser, causing analytes to 
be desorbed and ionized 
into the gas phase, 
which are then measured 
by a mass spectrometer 
[156]

MALDI is the most 
popular technique for 
biological application 
due to its “soft” 
ionization technique 
that reduces 
fragmentation, 
leading to 
measurements of 
biomolecules with a 
wide range of 
molecular weights 
[157]
Methods to reduce 
probe size for a higher 
resolution in MALDI 
include transmission 
geometry MALDI 
(TG-MALDI) and 
scanning microprobe 
MALDI (SMALDI, 
[145]
Methods to increase 
sensitivity of MALDI 
include MALDI-2 
which integrates laser 
post-ionization to 
ionize molecules in 
the gas phase [158]

(continued)
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Table 1 (continued)

Technique
Resolution 
(μm) Sensitivity(fmol) Technique description

Areas for 
development and 
application

Laser ablation 
electrospray 
ionization 
(LAESI)

>30 >0.6 A mid-infrared laser is 
focused on a sample. 
The resulting ablation 
plume is intercepted by 
a highly charged 
aqueous spray 
(electrospray) to 
post-ionize the ablated 
molecules, which are 
then funneled into a 
mass spectrometer [159]

LAESI allows for 
sampling in ambient 
conditions as 
compared to SIMS 
and MALDI which 
occur in a vacuum
The IR wavelengths 
used by LAESI lead 
to large probe 
diameters. To increase 
resolution, LAESI 
uses optical fiber 
(f-LAESI) for IR laser 
transmission to the 
sample surface [160]

Desorption 
electrospray 
ionization 
(DESI)

>50 >0.5 Under ambient 
conditions, an 
electrospray is aimed at 
a sample where it 
desorbs and ionizes 
analyte molecules on the 
sample surface. These 
now ionized analytes 
then travel through the 
air into a mass 
spectrometer [161]

DESI is a 
combination of 
electrospray (ESI) and 
desorption ionization
Nanospray-DESI 
(NanoDESI) uses 
capillary action to 
desorb analytes which 
improves sensitivity 
and lateral resolution 
[162]

6.2  The Future of Single-Cell Metabolomics

The past decade has shown rapid technological advancement in the realm of MSI, 
addressing concerns about spatial resolution and biomolecular sensitivity, and 
recent developments are bringing this advancement into the coming decade. 
Preliminary research has already shown alternative ionization approaches for laser 
desorption through nanostructured surfaces and stable isotope tracking to detect 
metabolite incorporation into metabolic pathways at the single-cell level [145].

Beyond the development of single-cell metabolomics technologies, their appli-
cation is inevitable. Already, the most popular of these MSI techniques, MALDI, 
has produced mass spectra on tens of thousands of cells to define subpopulations 
with distinct metabolic states in human hepatocytes [152]. The distinction of meta-
bolic differences between cell populations could impact the fields of cancer research, 
as tumors are composed of different cell types, each with cell-type-specific metabo-
lism [163, 164], and viral infection, as elucidating the cell-specific metabolic path-
ways required in viral replication could propose new therapeutic targets for antiviral 
mechanism [153]. Single-cell metabolomics is the next step in understanding 
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cellular diversity in complex biological organisms. With the development of these 
technologies, we will finally be able to see the genetic and phenotypic profiles of 
individual cells in tandem.2

7  Metabolic Sensors and the Future of Healthcare

The development of metabolomic-based technology is leading to a new revolution 
in healthcare. Recent research has identified metabolites whose abundances are 
indicative of changes in phenotype. For example, one group of compounds receiv-
ing focus as diagnostic markers is volatile organic compounds (VOCs). This trend 
has been accompanied by sensors engineered to quickly measure unique metabo-
lites. The combination of these advances has the potential to produce personalized 
recommendations for nutrition, early detection of disease, food desirability, and 
many other applications.

VOCs are produced by a change in normal physiology and metabolic pathways 
in disease-affected tissues of the GI tract [166]. VOCs are measured using noninva-
sive techniques and could be key elements in the early detection of many diseases. 
Electronic nose (e-nose) instruments are tools developed that can measure many 
VOCs, utilizing many different sensor arrays. GI tract diseases detected using 
e-noses include colorectal cancer, Crohn’s disease, ulcerative colitis, irritable bowel 
syndrome, and cholera [166]. The development of disease-specific e-nose devices 
has increased specificity and sensitivity. A preprint describes work by Gladding 
et al. in which they demonstrate VOC patterns of heart failure using a unique breath 
sensor that was optimized to detect acetone [167]. As acetone is an early signal of 
future heart failure, this technology provides a noninvasive, inexpensive diagnostic 
tool that can be used to assess a user’s risk. Panebianco et al. conducted a study to 
compare the results of an untargeted GC-MS approach to GC-olfactometry (GC-O), 
a faster biomarker identification, on healthy and gastrointestinal cancer patients 
[168]. Their analyses showed that GC-O identified differentially abundant odor- 
active compounds that were not discovered using the GC-MS method. The targeted 
approach of GC-O exemplifies an increased sensitivity to compounds of interest, 
resulting in the identification of more biomarker candidates. These studies illustrate 
the potential for VOCs to be used in finding metabolites that correlate with a dis-
ease, leading to the ability to create screening and early diagnosis of several diseases.

We have already incorporated wearables, such as Fitbit, into our daily lives. 
These devices have sparked an interest, and sometimes an obsession, with personal-
ized health, as consumers can continuously track some health markers. The percep-
tion of increased longevity, the ability to live a longer, healthier life, through 
personal tracking of biomarkers, has become the forefront with no age 

2 Metabolomics analysis has been performed on an isolated mouse-embryonic fibroblast cell by 
sucking a cell’s contents into a nano-electrospray ionization tip and sent through a mass spectrom-
eter to measure compounds of low molecular weight [165].
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discrimination. Whereas previously the sick and elderly had access to continuous 
monitoring of biomarkers, all ages now have the ability, although still in a limited 
capacity compared to the standard of care in a medical center, to understand their 
current health and how it changes over time. With a focus on metabolomics, new 
technology is under development that will transform our understanding of personal-
ized health through the identification of biomarkers for various purposes, leading to 
recommendations for fitness, nutrition, early detection of disease, and optimal treat-
ments for a consumer.

As a pioneer of healthcare wearables, one of the major successes is the continu-
ous glucose monitor (CGM) [169]. These wearables are typically inserted into the 
interstitial fluid (ISF) in the skin and repeatedly measure the consumer’s glucose 
level at regular intervals. A CGM is traditionally worn by patients with type 1 or 
late-stage type 2 diabetes. Patients with diabetes must monitor their blood glucose 
levels because their pancreas does not produce insulin efficiently, resulting in the 
need for insulin intake through injection. A CGM monitors the healthy range for a 
patient, and some designs can send alerts when the blood glucose level is predicted 
to move outside the desired range. This intervention has reshaped the treatment 
landscape for diabetes, as patients can receive real-time readings of their glucose 
and, depending on the CGM provider, receive personalized information and recom-
mendations about diet and exercise. As increasing interest has been given to CGM 
devices, there has now been a noninvasive CGM designed, called GlucoWatch, 
which uses reverse iontophoresis to obtain glucose samples on the skin [170]. The 
development of a noninvasive CGM lays the foundation for future wearables which 
measure biomarkers traditionally through blood to design new ways to record these 
markers.

As CGMs have provided clear evidence of the success of metabolomic sensor 
deployment worldwide, new wearable technologies are being developed, targeting 
salivary and tear fluid metabolites. Both vectors are of great interest because they 
also provide noninvasive means of biomarker measurements. Mannoor et al. mea-
sured bacteria in saliva using a dental tattoo [171], demonstrating the ability to 
noninvasively detect harmful pathogens. Kim et al. have created multiple biosensors 
using noninvasive mouthguards, which have successfully measured lactate [172] 
and uric acid [173]. Google entered the CGM space in 2014 using tear fluid metabo-
lite measurements [174]. The demand for new wearables is evident, and there is a 
large potential benefit for both societal health and profits in emerging biotechnol-
ogy. This research is pioneering the metabolomics-centered wearable field with suc-
cess. As studies are validated, and new questions are asked and solved, an explosion 
of biomarker technology is likely imminent.

The wearables movement has largely been driven by private companies, as 
opposed to government agencies. As a benefit, the data that is collected can be used 
by these companies for internal research, new algorithms can be quickly developed, 
and more personalized recommendations for lifestyle changes can be given as a 
result. Conversely, consumers are, sometimes unknowingly, agreeing to share their 
health information with a source that could use this information to negatively affect 
them, for example, through increased healthcare costs if the company shares 
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information with insurance companies. We should be conversing about the potential 
benefits and drawbacks of continuous health monitoring and discussing possible 
regulations that should be enforced to keep consumer data secure and to help the 
consumer optimize health.

In addition to wearables, new devices which measure metabolites will impact a 
multitude of fields. To make metabolite measurement faster than current methods, 
Heinemann et al. created a microfluidic system that consists of a metabolite extrac-
tion chip (MEC) integrated with an automatic sampler, micropumps, and LC-MS 
detection [175]. Whole blood and urine samples can be analyzed in 7 min and 5 min, 
respectively. This innovation could severely enhance the possibility of clinical 
metabolomics becoming a reality, as samples could be taken, results could be 
received, and diagnoses could be made in the same patient visit. Measuring stool 
samples allows for a noninvasive method to determine a patient’s current nutritional 
status and future needs. Auggi, a startup acquired by Seed Health, aims to create an 
AI algorithm that uses the collection of stool samples over time to create connec-
tions between a consumer’s triggers and symptoms to suggest dietary needs [176]. 
This platform has the potential to increase biological knowledge about the influence 
of diet on overall gut health and demonstrate the use of stool as a method of bio-
marker development. It is possible that as more companies like Auggi are created, 
personalized healthcare usage of stool could become normalized as health benefits 
are discovered. Another area metabolomic devices have infiltrated is the criminal 
justice system. Abdelshafi et al. created a miniaturized device that can detect cocaine 
in bodily fluids using saliva and urine samples [177]. This technology may influence 
similar diagnostic tests to be developed for other drugs, increasing law enforce-
ment’s ability to correctly determine users under the influence. Finally, one amazing 
application of metabolomic devices in food is called ripeSense® [178]. This tool is 
the world’s first sensor that changes color to indicate how ripe a fruit is, allowing 
consumers to choose the fruit which is most suitable for their eating schedules. 
Through the engineering of new technologies designed to solve numerous problems 
using metabolomics, an applied metabolomics revolution is likely to begin as these 
exciting developments become part of our daily lives.

8  Recommendations

In the foreseeable future, major scientific endeavors will be focused on personalized 
care. Personalized care assumes that each of us has a biomolecular variation pattern 
determining the disease outcome entailing personalized medical interventions. This 
is best highlighted in twin studies; e.g., a multi-year study comparing pairs of mono-
zygotic and dizygotic twins found quantifiable differences in selected features of 
plasma proteome, which could not be explained, alone, by genetic similarity [179]. 
Similar studies have been conducted on metabolites [180], suggesting longitudinal 
and inter-individual phenotypic variability to differing degrees. It is now believed 
that certain biomolecular features with complex variation patterns may be 
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discovered which make a different person respond to treatments differently. The 
impact of the metabolomic approach versus the traditional biochemical approach 
can be appreciated by the work of Liu N. et al. wherein the use of untargeted metab-
olomics is employed to identify inborn errors of metabolism (IEM) [181]. Our next 
frontier to conquer in personalized medicine will be to identify physiological fea-
tures which can reasonably predict the upcoming pathological changes to optimize 
individual health. This would be achieved by both preventative biomarker utiliza-
tion to therapy response and monitoring biomarker discovery. Wearable devices 
which monitor heart rate, physical activity, sleep pattern, and other parameters are a 
start to this journey.

Metabolomics arguably holds more potential than other omics-based technolo-
gies, in detecting features (metabolites) mirroring the physiological state, with 
metabolites being a natural culmination of DNA-RNA-enzyme-metabolite dogma. 
However, we must be aware that metabolites change not only in disease vs healthy 
conditions but by age (citrate levels increase with age even in healthy controls), sex 
(hormonal differences along with level change with age), food habits, and popula-
tion niche as well. Something seemingly simple such as increased water uptake by 
the subject may alter the relative concentration of crucial metabolites and can have 
bearing on the interpretation of the data. This requires adopting a more careful 
approach, which can provide us with more information mirroring the person’s health.

To advance the field further, improvements need to be made at every step of the 
process. This involves sample collection, data acquisition, data processing, analysis, 
data storage, and sharing. Automation and standardization in sample collection 
practices must be followed. Sample type, collection method, storage conditions, and 
processing reagents all play a crucial role in the final output of experiments. 
Currently, absolute quantitation of metabolites (to achieve molar differences in key 
metabolites like cAMP or cGMP in healthy versus disease state) and untargeted 
metabolomics (to achieve complete metabolome endeavor) are two challenging 
aspects of metabolomics research. Absolute quantitation will open the field of bio-
marker discovery wherein key metabolites get perturbed in healthy versus disease 
state. Finding an array of key signature metabolites, which are altered, will be deter-
mining aspects of the success of metabolomics translation into clinics.

Further, to move the field forward, untargeted quantitative metabolomics is going 
to be of primary focus. For total metabolite detection and absolute metabolite quan-
tification, the approach of generating synthetic metabolite standards, including iso-
meric metabolites, will be a key aspect. In this endeavor, MSI is going to play a 
central role. Untargeted metabolomics is pursued to expand the breadth and totality 
of metabolome profiling. This can be realized with a rigorous and exhaustive pool 
of reference metabolites. Future work should lean toward collaborative approaches 
for metabolite synthesis, thorough characterization by atomic spectroscopy and/or 
NMR, and then inclusion into the reference metabolites list. A consortium with 
worldwide access will be essential to make these reference metabolites available for 
analytical, and reference material used. This would accelerate the field of biomarker 
discovery by identifying unknown metabolites, secondary metabolites, and person-
alized metabolic profiles for disease prognosis and treatment. To achieve this, the 
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research community, sample collection centers, analytical facilities/companies, 
statutory organizations, private device companies, and overseeing committees (e.g., 
bodies like MSI) need to come together and work for a common outcome. False 
discovery rate (FDR) is another factor that must be minimized by increasing the 
sample size to appropriate numbers (minimum 5, as recommended by MSI), with 
least perturbation by sample collection and preparation. This study discusses at 
length the promises and challenges in untargeted metabolomics [182].

Second, during the scientific discovery period, data acquisition of samples should 
be performed by utilizing different mass spectrometry modalities, which can 
increase the coverage of diverse types of metabolites from hydrophobic to hydro-
philic, uncharged to charged, cationic to anionic, and to different isomeric metabo-
lites, so that an exhaustive pool is generated, making the repository more exhaustive. 
This will feed into the system, and more and more metabolites will be discovered 
and characterized. We must appreciate that no single acquisition platform can 
achieve a global/total breadth of the metabolome. Hence, new discoveries ranging 
from diverse chromatography techniques, ultrasensitive mass spectrometers, and 
technological advancement will take us closer to our aim of profiling near-complete 
metabolome.

Third, the analysis of obtained data is one of the most crucial aspects of success 
in the metabolomics endeavor. For this, filtering out the most common metabolites 
and performing longitudinal studies wherein key metabolite is absent or more abun-
dant in condition A versus B.  For this, user-friendly software, training human 
resource, and automated data processing are the way forward. Open-sourcing the 
platforms and powerful analysis software would make it robust and conclusive. 
Further, combining the results from three different omics approaches (transcrip-
tomics, proteomics, and metabolomics) and integrating them to understand biologi-
cally relevant questions are crucial, and platforms like MetaCore, MetaboAnalyst, 
InCroMAP, and 3Omics are useful tools to analyze the metabolomic data in a stand-
alone or integrated manner. More robust open and connected platforms with robust 
statistical methodologies will greatly enhance the reach of the metabolomics 
approach.

Further, accessibility to the masses will be a key theme to bring metabolomics 
closer to life. For this, small yet sensitive instrumentation and pocket-size devices 
with the availability of reliable and easy-to-use detection kits will be a key advance. 
Metabolomics has a huge role to play in public safety like airports, sports adminis-
tration, and control (from detecting controlled/banned substances to measuring ath-
lete performance markers). This can be achieved by miniaturizing the instruments 
and making them available at the site of use. This will greatly translate the metabo-
lomic prowess to real-world use. Many of these current challenges, metabolomic 
technology updates, and opportunities for the future are discussed in good detail in 
different review articles for further reading [28, 61, 183].
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9  Conclusion

According to Gary Patti (one of the leading scientists in the field), “Metabolomics 
is like a molecular-level snapshot of what’s happening inside a cell or organism. It 
provides a unique perspective on the metabolic pathways that are active at a particu-
lar moment in time” [57]. It provides a molecular-level understanding of biology 
and connects it with the environment. A single human cell contains more than 
42,000 metabolites [184], and most of them are still uncharacterized. The use of 
advanced analytical technologies, coupled with the increasing availability of large- 
scale datasets, has enabled researchers to identify novel pathways that are associ-
ated with a wide range of biological phenomena and diseases. With these facts in 
mind, we believe that metabolomics would have a spectacular impact on biology 
and healthcare developments.

One of the key trends in metabolomics research is precision medicine, which 
aims to provide personalized treatment options based on an individual’s unique 
genetic makeup and metabolic profile. In this chapter, we have summarized the 
potential of metabolomics in precision medicine by identifying biomarkers that can 
be used to predict an individual’s response to different treatments. In the same direc-
tion, personalized nutrition is another area where metabolomics can have a signifi-
cant impact by identifying dietary biomarkers that can be used to develop 
personalized dietary recommendations. We have also reviewed the development of 
novel computational tools and their applications to integrate the metabolomics data 
with other omics (such as genomics, transcriptomics, and proteomics) and provide 
a more comprehensive understanding of biological systems. A comprehensive seg-
ment delineated the connection between translational biology and therapeutic prog-
ress, stemming from the comprehension of metabolic levels in diverse disease 
models and pathogens.

We hold the belief that interdisciplinary partnerships are vital for the advance-
ment of metabolomics research. Collaborating with experts from various fields, 
such as biology, chemistry, computer science, mathematics, and engineering, can 
uncover fresh insights into biological systems and facilitate the identification of 
novel biomarkers and pathways linked to disease. Moreover, the significance of 
metabolomics research in public health cannot be overstated. It has the potential to 
revolutionize healthcare by allowing for early disease detection, more precise diag-
nosis, customized treatment, and nutrition options. Nonetheless, some obstacles 
must be overcome to fully realize the potential of metabolomics in enhancing 
human health. These challenges involve standardizing sample collection, data 
acquisition, data processing, data analysis, data storage, and sharing. To sum up, the 
prospects for metabolomics research are bright and full of promise. With the con-
tinuous progress of advanced analytical technologies, along with the growing avail-
ability of large-scale datasets and the use of artificial intelligence and machine 
learning, researchers and clinicians will be able to make faster decisions.
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