
Chapter 2
Creep-Damage Processes in Cyclic Loaded
Double Walled Structures

Holm Altenbach, Dmytro Breslavsky, and Oksana Tatarinova

Abstract The paper presents an approach to determining the level of creep defor-
mation and long-term strength of structural elements that operate under conditions
of cyclic loading and heating. The method for solving the boundary - initial value
problem is described. It is based on the combination of FEM and difference methods
of integration for initial problems. The basis of the method is the developed and
verified constitutive equations for modeling the cyclic creep-damage processes in the
material. The main feature of the method is the transformation of the initial cyclic
problem to a new at uniform loading and heating, but with constitutive equations of
developed type. The case of the cycle stresses varying in a wide range, including in
the conditions where they exceed the yield stress, as well as the case of creep when
it is not exceeded by stresses, are considered. The numerical model of double-walled
blade is considered and different cyclic creep modes of its operation were analyzed.

2.1 Introduction

Creep processes, which are accompanied by the accumulation of hidden damage,
significantly limit the lifetime of various structural elements operating in high-
temperature fields and high pressures. First of all, this applies to power machines,
such as steam and gas turbines, gas turbine engines (GTE) etc. The modes of operation
of their structural elements, leading to a complex form of boundary conditions, as
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well as the very complex geometric shape of these elements, led to the need to use
numerical methods of calculation, primarily the Finite Element Method (FEM). By
now, approaches and methods of FE analysis of creep under a complex stress state,
implemented in modern versions of engineering calculation systems, can already be
considered satisfactorily developed.

Methods for numerical FE analysis of creep-damage processes, as well as of the
development of macroscopic defects resulting from the long-term action of these
processes, are also being developed quite successfully [1–5], although they have not
yet become standard for engineers. This is largely due to the complexity of constructing
the defining constitutive and evolution equations, and, most importantly, obtaining
the constants that are included in them, followed by verification of the resulting
relationships. The choice of approach - the use of a scalar or tensor expression for the
damage parameter also either limits the possibility of a more adequate description of
the process of defect development in the material, or requires a very large amount of
expensive and lengthy experimental investigations.

Recent years have been characterized by increased interest in the use of cooled
blades operating at elevated temperatures in gas turbine engines (GTE). It is noted that
double wall transpiration cooling (DWTC) systems allow to increase the operating
temperature of gas turbines in comparison with a further increase in engine efficiency
[6]. Creep calculations and analysis of the long-term strength of cooled and double-
walled blades continue to be the focus of researchers [7–13].

Today thermomechanical stresses are one of the most serious problems in the
implementation of these systems, and they must be taken into account, along with
aerothermic characteristics, at the initial stages of design [8]. With the help of the
proposed computational method, which combines both parts of the analysis, the
modelling of the long-term behavior of double walled blades was performed. The
calculated temperature distribution was used in thermomechanical FEA to determine
the stresses in the double wall under thermal loading.

The fracture of aviation turbine blades at high temperatures was studied in [7].
Constitutive creep equations with temperature interpolation are constructed, and heat
transfer is analyzed. The deformed state of the blade before failure is analyzed. The
creep fracture time of the blades is determined to be 91 hours.

According to the data presented in [9], it can be concluded, that temperature
differences have a greater impact on the service life of the blade than pressure
differences. In [13], the effect of holes on the creep of samples with holes simulating
a cooling blade was investigated. It was shown that the creep term was longer in
thin-walled specimens with one central hole and shorter in specimens with multiple
holes due to their interaction.

In [10–12], an analysis of the typical behavior of a cooled turbine blade was
performed. The authors used an original approach in which the complex three-
dimensional design of the turbomachine blade is represented by simplified two -and
one dimensional models. The possibilities of analytical solution for the problem
components, which represent such nonlinear deformation processes, as plasticity,
ratchetting, creep, etc., were used.
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GTE blades used on vehicles operate under conditions of complex temperature-
force cyclic loading. For such conditions of their operation, it is known [14] that
the supposition of varying components on constant load values or temperatures can
significantly increase the creep rate and damage accumulation in the material. In this
regard, the problem of an adequate description of the processes of cyclic deformation
continues to be relevant [15–22].

Cyclic deformation processes are more complex than static ones. In this regard,
experimental studies are carried out to construct constitutive equations for the de-
scription of cyclic deformation and to understand the processes taking place in the
material. The processes of the interaction of creep and low-cycle fatigue are studied
[15, 17] and the dependence of the main values on the strain, the strain rate, static
recovery and the average stress ranges were experimentally verified [15]. The effects
of previous cyclic loading on the creep of steel were studied [22]. For the case of the
interaction of creep and cyclic plasticity, data on the change in the slope of the "creep
strain rate - stress" curve when a certain stress value is reached, were determined [19].
For static load conditions with cyclic fatigue, the process of stress relaxation was
studied [21]. Cyclic strengthening processes were studied, the influence of maximum
plastic deformation due to preloading and ratcheting was analyzed [20].

The experimental results obtained in these and other studies are used to formulate
and verify the constitutive equations to reflect all the main effects that occur during
cyclic deformation - creep, plasticity, strengthening, damage, etc. The approaches of
continuum mechanics and continuum damage mechanics, models of Hayhurst [22],
Chaboche [14–16, 23], physical based and micromechanical models [17, 18, 21] are
used now. The built constitutive equations are used in the simulation of a complex
stress state in FEA.

The presented paper contains a description of the calculation method and consti-
tutive equations for creep-damage processes under cyclic loads and heating, which
is used for the analysis of a simplified DWTC system model. The large number of
cooling channels and the complex geometric shape of the blades lead to the fact
that direct numerical analysis often cannot be satisfactorily applied to elucidate the
qualitative patterns of their deformation and damage accumulation leading to fracture.
In this regard, a simplified two-dimensional model, includes a number of typical
DWTC system operating modes are considered. FEM was used for numerical model-
ing, which allows transferring all the main approaches and algorithms to a general
three-dimensional model.

2.2 Constitutive Equations

To carry out computational studies of creep using FE approaches, it is necessary to
use creep-damage constitutive equations, as well as plasticity at the stages of forcing
engines, which can be implemented to the general method and algorithms that support
it. The incremental theories of creep and plasticity are used.
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2.2.1 Static Loading

To determine plastic strains, we apply the flow rule with isotropic hardening [24] and
use the Huber-von Mises plasticity condition:

𝑓
(
𝜎𝑖 𝑗

)
=

3
2
𝑆𝑖 𝑗𝑆𝑖 𝑗 −

[
Φ

(∫
𝑑𝑝𝑖

)]2
(2.1)

where
𝑆𝑖 𝑗 = 𝜎𝑖 𝑗 − 𝛿𝑖 𝑗𝜎𝑖𝑖

are the components of stress deviator, ∫
𝑑𝑝𝑖

is the Odquist parameter, 𝜎𝑣 is von Mises equivalent stress. In this case, the compo-
nents of plastic strain Y𝑝

𝑖 𝑗
increments are determined as follows:
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Classical creep-damage laws (strain hardening or Norton creep, Kachanov-Rabotnov
damage equation for scalar parameter, Arrhenius-type temperature function [3, 24])
are used
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3
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¤𝜔 = 𝐷
(𝜎𝑣𝑑)𝑚

(1−𝜔)𝑙
exp

(
−𝑄𝑑
𝑇

)
; 𝑄𝑑 =

𝑈𝑑

𝑅
. (2.4)

Here 𝑐𝑖 𝑗 are the components of creep strain tensor, 𝑐𝑣𝑀 is von Mises equivalent
creep strain,𝑈𝑐,𝑈𝑑 are the values of activation energies for creep and creep damage
accumulation processes, 𝑅 is universal constant. 𝜎𝑣𝑑 is equivalent stress has to be
estimated by use of strength criteria at the step of governing the conditions of hidden
damage accumulation finishing. As is known [3], the values of material constants
𝐵,𝐷,𝑛,𝑚, 𝑙,𝛼 included in (2.3) – (2.4), can be obtained by use of experimental data
processing.

2.2.2 Cyclic Loading. Stresses Lower the Yield Limit

Let us consider the main equations for the case of cyclic varying of temperatures and
stresses. In this case, by cyclicity we understand the alternation of long periods of
gas turbine or turbine operation (hours in the first case and months in the other) with
stop periods. We will demonstrate it by a simplified dependence of temperature and
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stress on time (Fig. 2.1), in which we neglect the regions of increase and decrease.
Here 𝑡1 is the operating time, 𝑡2 is the dwell time. Further, in this approximation,
we consider the periods 𝑇𝑐, defined as 𝑇𝑐 = 𝑡1 + 𝑡2, to be the same for the entire time
of further operation. In fact, the rectangular approximation is often quite sufficient,
since the integration operation (see below) is used to obtain the equations, and the
value of the corresponding area under the curve is decisive.

Let us use the constitutive equations (2.3) – (2.4), and for the sake of simplicity
we use Norton’s law and assume 𝛼 = 0. To perform an analysis of the behavior of
structural elements operating under a complex stress state, it is first necessary to
analyze the one-dimensional behavior of the materials from which they are made.
Behavior patterns obtained at the same time can also be detected when solving two-
and three-dimensional problems, which will facilitate their analysis.

First, we consider the one-dimensional case with the action of tension stress 𝜎𝑢
. For the case of stress cycling, it can be represented by the sum of constant 𝜎 and
time-varying components 𝜎1: 𝜎𝑢 = 𝜎 +𝜎1 . Similarly, the temperature function has
a constant part 𝑇 and periodically varying 𝑇1: 𝑇 = 𝑇 +𝑇1 . The law of cyclic varying
for above stress is represented by a polyharmonic law with a period 𝑇𝑝:

𝜎𝑢 = 𝜎 +𝜎1 = 𝜎

(
1+

∞∑︁
𝑘=1

𝑀𝑘 sin
(
2𝜋𝑘
𝑇𝑝

𝑡 + 𝛽𝜎𝑘
))

(2.5)

where 𝑀𝑘 =
𝜎𝑎𝑘

𝜎
, 𝜎𝑎𝑘 are the coefficients of stress function 𝜎1 expansions into

Fourier series. First, we will assume that the temperature has a constant value 𝑇
and the exponential factor in (2.3) – (2.4) will be equal to 1. We will expand the
creep strain and damage parameter functions into an asymptotic series with a small
parameter

𝜇 =
𝑇𝑝

𝑡∗
,

where 𝑡∗ is the time of finishing the hidden damage accumulation. We limit ourselves
to two terms of the these series, which is the usual procedure of asymptotic methods
[25, 26]:

𝑐 � 𝑐 (0) (𝑡) + 𝜇𝑐 (1) (𝜉); 𝜔 � 𝜔 (0) (𝑡) + 𝜇𝜔 (1) (𝜉) (2.6)

where 𝑐 (0) (𝑡),𝜔0 (𝑡), 𝑐 (1) (𝜉),𝜔 (1) (𝜉) are the functions which reflect creep and dam-
age processes in slow time (0) and fast time (1). Here we consider two time variables:

Fig. 2.1 Representation of
simplified temperature and
stress cycle.
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a slow time 𝑡 that varies from 0 to the time to the fracture time value 𝑡∗ and fast time

𝜏 =
𝑡

𝜇
or 𝜉 =

𝜏

𝑇𝑝
,0 ≤ 𝜉 ≥ 1.

Now let us substitute the asymptotic series (2.6) into equations (2.3) – (2.4) and
average the obtained equations [25, 26] by the period of stress varying. After these
transformations, we get the expressions of the creep strain and the damage parameter
on the time interval:〈

𝑐 (0) (𝜉)
〉
=

∫ 1

0
𝑐0 (𝑡)𝑑𝜉 = 𝑐0 (𝑡);
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〉
=
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〈
𝜔 (0) (𝜉)

〉
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〈
𝜔 (1) (𝜉)

〉
=

∫ 1

0
𝜔1 (𝜉)𝑑𝜉 � 0. (2.8)

The next step is to substitute (2.7) and (2.8) into the system of equations (2.3)-(2.4).
The results change the basic system to the following

¤𝑐 = 𝐵𝑔𝑛 (𝑀𝑘)
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𝜎𝑚

(1−𝜔)𝑙
; 𝜔(0) = 𝜔0, 𝜔(𝑡∗) = 1; (2.9)
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1∫
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(
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𝑀𝑘 sin (2𝜋𝑘𝜉)
)𝑚
𝑑𝜉.

Here, the functions 𝑔𝑛 (𝑀𝑘) and 𝑔𝑚 (𝑀𝑘) reflect the influence of the cyclicity of the
processes of creep and damage accumulation.

After that, let us add to the consideration the cyclic temperature varying:

𝑇 = 𝑇 +𝑇1 = 𝑇

(
1+

∞∑︁
𝑖=1

𝑀𝑇
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; 𝑀𝑇
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𝑇𝑎
𝑖

𝑇
(2.10)

where 𝑇𝑎
𝑖

are the coefficients of expansion the temperature function 𝑇1 in Fourier
series. We similarly use two time scales with a small parameter �̂� = 𝑇𝑇/𝑡∗:

𝑇 � 𝑇 (0) (𝑡) + �̂�𝑇 (1) (𝜉). (2.11)

Using transformations similar to those described above for creep strain (see, for
example, [27, 28]), it is possible to obtain expressions for the similar influence
functions 𝑔𝑇 (𝑇) for creep and 𝑔𝜔 (𝑇 )

𝑇
for damage equation:
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𝑔𝑇 (𝑇) = 𝐵
1∫
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So, now the creep-damage laws, taking into account temperature and stress varying,
can be written in the following form:

¤𝑐 = 𝑔𝑛 (𝑀𝑘)𝑔𝑇 (𝑇)
𝜎𝑛

(1−𝜔)𝑙
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System (2.13) – (2.14) can be considered as a new system of governing equations
for the averaged cyclic creep-damage process. Its analysis shows that when using it,
there is no need to integrate over the cycle.

Next, after passing to the general case of a complex stress state with the usual use
of the corresponding invariants of the stress tensor or their combination, we obtain:
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2.2.3 Cyclic Load. Overloading with Transition to Plastic
Deformation

As was noted above, under forced operating modes of a gas turbine engine, in addition
to the already developing creep strains, plastic strains can occur in the material of its
structural elements. First, we also consider uniaxial deformation.

Let us formulate the problem. The uniaxial sample is instantly loaded in the elastic
area, then deformed by creep with stress 𝜎 during time 𝑡1. Then, for time 𝑡2, a load is
added incrementally, which realizes the stress 𝜎1, and its value exceeds the value of
the yield limit 𝜎𝑦 for the given temperature. After that, the sample is also gradually
unloaded to the value 𝜎. Next, the process of loading and unloading is repeated
(Fig. 2.1).

It is known [29] that an adequate description of the step load during creep can be
implemented using the strain hardening theory. Let us consider it. With a stepped load
from 𝜎 to 𝜎1, the strain rate is determined by the angle of inclination of the tangent
to the strain curve with stress 𝜎1 at a point that can be found by parallel transfer to it
along the time axis of the point from the curve constructed at stress 𝜎. After the onset
of stress 𝜎1, the creep strain increases according to the law corresponding to the law
of its varying at the mentioned point. In the case when the stress 𝜎1 exceeds the yield
point, we assume that the total strain also increases by stepped law by addition of
plastic part. Its value can be determined by the deformation curve (𝜎− Y).

Let us consider creep deformation of the rod made from high-chromium corrosion-
resistant foundry heat-resistant nickel based alloy (Ni 57%, Cr 16%, Co 11%, W 5%)
and heated evenly to temperature 950 C [30]. The creep curves of this material for
4 stress values for a deformation time of 1h are presented in Fig. 2.2. Note that the
first two curves correspond to the deformation in which the stress values exceed the
yield strength of this alloy at the given temperature 𝜎𝑦 = 390 MPa, the other two are
obtained during the initial elastic deformation. As can be seen, the curves do not

Fig. 2.2 Creep curves of heat-
resistant nickel based alloy.
Static loading. Stress values:
1 - 450 MPa, 2 - 420 MPa,
3 - 250 MPa, 4 - 145 MPa.
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differ qualitatively. In this regard, they were processed using one dependency (2.3).
It was done by use of strain hardening law. For the case of creep without damage, the
following values of constants were obtained after calculations:

𝐵 = 5.26 ·10−27MPa−𝑛/h, 𝑛 = 5.508, 𝛼 = 4.678.

Let us apply the obtained constants to Eq. (2.3) for the analysis of deformation
processes with a step varying of stresses and a uniaxial stress state. To do this, we
will conduct a numerical simulation of the creep process with cyclic loadings, using
calculations based on strain hardening theory. A number of calculations were carried
out with different input data, and below we present typical results. First, consider
the loading due to Program 1 corresponding to stress varying that do not exceed the
yield limit at this temperature.

2.2.3.1 Program 1

Initial value of stress 𝜎 = 250 MPa, the greater value 𝜎1 = 350 MPa, 𝑡0=0.166 h (10
min), 𝑡1 = 0.083 h (5 min), 𝑡2 = 0.25 h. Loading time is equal to 1 h. The results
are presented in Fig. 2.3, where the dependence of the total strain Y (Y = Y𝑒𝑙𝑎𝑠𝑡 + 𝑐)
on time is given. Here, curve 1 and 3 correspond to the static load at 𝜎 = 350 MPa,
curve 3 – at 𝜎 = 250 MPa. Curve 2 is built for data from cyclic loading according to
program 1. As can be seen from the figure, the curve for cyclic loading is similar to

Fig. 2.3 Creep curves of heat-
resistant nickel based alloy.
Static (curves 1 - 350 MPa and
3 - 250 MPa) and cyclic (curve
2) loading.
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the curves for static loading, therefore, it is possible to use the ratio of type (2.13) to
describe the averaged process.

2.2.3.2 Program 2

Now consider the load according to program 2, in which the load in the plastic zone
is cyclically added to the creep caused by the stress, which exceeds the yield strength.
We analyse the case of deformation with hardening of the material in each cycle of
additional loading, when the yield stress changes due to hardening process, as shown
in Fig. 2.4.

Initial value of stress 𝜎 = 370 MPa, the greater value 𝜎1 = 420 MPa, 𝑡0 = 0.25 h,
𝑡1 = 0.083 h, 𝑡2 = 0.083 h. Loading time is equal to 1 h. The results are shown in
Fig. 2.5. As can be seen from the comparison of the location of curves 2 in Figs.
2.3 and 2.5, they are qualitatively different, which is due to the instantaneous plastic
additional loading in the cycle of program 2. With a rather small difference between
the stress values 𝜎 and 𝜎1 in 50 MPa, we observe jumps in deformation during
additional loading. During unloading, there is an elastic reduction, but the plastic
strain accumulated during the cycle remains and is added to the full value. It is
also possible to see that with each cycle as the yield strength increases, the amount

Fig. 2.4 Dependence of the
yield limit on the number of
the loading cycle.

Fig. 2.5 Creep curves of heat-
resistant nickel based alloy.
Static (curves 1 - 420 MPa,
and 3 - 370 MPa) and cyclic
cyclic step loading according
to program 2 (curve 2).
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of reduction in total strain also decreases. This means that when loading has a lot
of cycles, the shape of the strain curve will approach a smoother one. A similar
conclusion is confirmed by the shape of the strain curve with 10 similar cycles of
program 2, which is presented in Fig. 2.6. A loading time of 2 h was set.

From the analysis of the curve in Fig. 2.6, built according to program 2 of the step
loading, it can be seen that when the current value reaches the yield strength value
of the acted stress 𝜎1 = 420 MPa, the deformation begins to proceed similarly to
the process with initially elastic stresses (as according to program 1). Such loading
processes are similar to ratcheting processes [31], but with continued growth of creep
strains.

The method of obtaining the averaged equations discussed in the previous section
cannot be used directly to obtain the averaged equation in the case when there is
an overloading in the cycle, which leads to the occurrence of plastic strains with
material hardening. This is due to the different nature of curves for the cyclic creep
with plastic strains creep under static loading. In this regard, an approach is proposed
that allows obtaining an approximate form of such an averaged equation, for its use
in numerical modeling of structural elements of turbomachines.

Let us assume that due to experiments or numerical modeling using strain harden-
ing law (it is this that makes it possible to calculate the case of additional loading [29])
a set of uniaxial creep curves under purely static loading and a corresponding set of
curves for the case of cyclic overloads is obtained (Fig. 2.7). The set should consist
of as many calculated curves as possible (three are shown in the figure to better
understand the appropriate arrangement). As can be seen after analyzing the curves
of the Fig. 2.7, the cyclic overload curves in the case under consideration with stress
values from 390 to 420 MPa are of the same type. They are characterized by higher
values of strains in the cycle at higher values of overload stresses. After the overload
is completed, the strains follow the same segments of the curves corresponding to
the main static load. This means that the function of irreversible cyclic deformation
does not depend on the value of the overload stresses, but only on the stress of basic
loading.

Next, for eachcurve of cyclic creep withoverloads,using approximation procedures,
we obtain averaged curves, i.e., curves that correspond exactly to the irreversible

Fig. 2.6 Cyclic creep curve
of heat-resistant nickel based
alloy (program 2).
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a) b)

c)

Fig. 2.7: Creep curves of heat-resistant nickel based alloy for static stresses (a) 330 MPa, b)
350 MPa, c) 370 MPa) and cyclic overloading up to 420, 440 and 460 MPa.

strain accumulated in the sample. This is shown in Fig. 2.8, where the cyclic creep
curve with the overload amplitude 𝜎1 (curve 1), the averaged curve 2 and the curve
under static loading (3) are presented for one set of applied stress values. Points used
for approximation are marked with circles.

Using classical methods of processing the static creep curves, we find the values of
the constants 𝐵,𝑛,𝛼 , included in the equation for the static creep strain rate function:

¤𝑐 = 𝐵𝑐−𝛼𝜎𝑛 (2.16)

Further, by integrating Eq. (2.16), we obtain an expression for the dependence of
creep strains on time:

𝑐 𝑗 = 𝑏𝜎
𝑟
𝑗 𝑡
𝑎, 𝑗 = 1 . . . 𝑁, (2.17)

Fig. 2.8: Schematic presentation of the cyclic creep curve (1), averaged curve (2) and static creep
curve (3).
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where 𝐵,𝑟, 𝑎 are the constants, 𝑁 is the number of curves obtained. According to
the procedure described above for obtaining averaged curves of irreversible strain
(curve like curve 2 in Fig. 2.8), we obtain approximation dependencies for these
functions 𝑓 𝑗 (𝑡;𝜎𝑗 ), 𝑗 = 1 . . . 𝑁. Than it is possible to determine the influence function
in the form of the additional coefficient 𝑘 𝑗 (𝑡;𝜎𝑗 ), multiplied by which the value of
the function of static creep strains (curve 3 in Fig. 2.8) the demanded value on the
averaged curve 2 will be obtained:

𝑘 𝑗 (𝑡;𝜎𝑗 ) =
𝑓 𝑗 (𝑡;𝜎𝑗 )
𝑏𝜎𝑟

𝑗
𝑡𝑎

, 𝑗 = 1 . . . 𝑁, (2.18)

Next, using the values of the obtained functions 𝑘 𝑗 (𝑡;𝜎𝑗 ) at 𝑁 points on the plane
(𝑡,𝜎) for each of the set of points (𝑡𝑖 ,𝜎𝑗 ) (𝑖 = 1 . . . 𝑀) we obtain the values of the
function 𝐾 (𝑡𝑖 ,𝜎𝑗 ), which reflects the effect of cyclic loading on creep. With the
help of approximation procedures in the two-dimensional domain, we obtain the
expression of the function 𝐾 (𝑡,𝜎) for the all possible values of times and stresses. It
is already possible to include it in calculations for cyclic loading. For the function of
cyclic creep strains, we obtain

𝑐 = 𝐾 (𝜎, 𝑡)𝑏𝜎𝑟 𝑡𝑎, (2.19)

or for the cyclic creep strain rate function

¤𝑐 = ¤𝐾 (𝜎, 𝑡)𝑏𝜎𝑟 𝑡𝑎 + 𝑎𝐾 (𝜎, 𝑡)𝑏𝜎𝑟 𝑡𝑎−1 (2.20)

For the case of a complex stress state, we get:

¤𝑐𝑖 𝑗 =
3
2
𝑏𝜎𝑟−1

𝑣

(
¤𝐾 (𝜎𝑣, 𝑡)𝑡𝑎 + 𝑎𝐾 (𝜎𝑣, 𝑡)𝑡𝑎−1

)
𝑆𝑖 𝑗 (2.21)

The analysis of expression (2.21) shows that it provides the possibility of simulating
creep processes with overload stresses in the cycle exceeding the yield limit, using
only the formulation of the creep problem under static loading, but with an governing
equation of the type (2.21).

To illustrate the method of obtaining an equation of type (2.21), which allows
calculations for a wide range of stresses of the main loading process 𝜎, let us continue
the analysis of the deformation of considered alloy at a temperature of 950◦C. As
an example, consider curves 2 and 3 of Fig. 2.5. The value of the static stress
𝜎 = 370 MPa. We will use curve 2 to obtain a new curve that will correspond to curve
2 in Fig. 2.8, which is an averaged curve that collectively describes the development
of irreversible strains during creep with overloads. Such a curve is constructed - it
is curve 1 in Fig. 2.9. The points show the values taken from curve 2 of Fig. 2.5 at
moments of partial unloading.

Next, it was necessary to construct a function that would approximate above
mentioned curve 1 from Fig. 2.9. After a number of mathematical experiments, it
was found that the hyperbolic function best satisfies the conditions of approaching
the experiment in the first cycles and reaching the asymptote at larger time values. It
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Fig. 2.9 The averaged defor-
mation curve during creep
with overloads (1) and the
approximated curve (2).

was accepted in the following form:

𝑐 =
𝑡

𝑏0 + 𝑏1𝑡
(2.22)

The values of constants are included in (2.22): 𝑏0 = 742.61 min, 𝑏1 = 33.82. The
graph of this function is represented by the curve 2 in Fig. 2.9. As can be seen from
the comparison of the values presented on curves 1 and 2 of this figure, the worst
difference that occurs in the area after the fourth unloading does not exceed 10%. On
other sections, and most importantly, on larger time values, the differences are 2-3%.
This is satisfactory for calculations.

Next, let us consider the deriving of function 𝐾 (𝑡,𝜎). For this, it was necessary to
carry out similar actions with the curves obtained for other stress values like presented
above for the case of 𝜎 = 370 MPa. The stress values were taken in the range of
295-370 MPa with a step of 15 MPa. For each of these creep curves with overloads,
an approximation algorithm was performed and constants to Eq. (2.22) were found.
They were close enough to presented in (2.22). After that, it was possible to determine
the values of the coefficients 𝑘 𝑗 (𝑡;𝜎𝑗 ) for expression (2.18). The calculations were
carried out for the above stress values and time of 100 min with a step of 20 min. Thus,
for each of the 36 points, the coefficients 𝑘 𝑗 (𝑡;𝜎𝑗 ) were found. They are represented
by the surface 𝐾 (𝑡,𝜎) in Fig. 2.10.

Fig. 2.10 Dependence of the
function 𝐾 (𝑡 , 𝜎) , reflects
the influence of the cyclic
overloads on creep rates, from
the stress values of the main
process and time.



2 Creep-Damage Processes in Cyclic Loaded Double Walled Structures 33

After that, the obtained digital values function 𝐾 (𝑡,𝜎) of two coordinates in
the plane, time and stresses, were used for the numerical determination using the
approximation algorithm of the function of two variables. The analytical expression
of the function 𝐾 (𝑡,𝜎) was obtained as follows:

𝐾 (𝑡,𝜎) =𝑉0𝜎
𝑣1 𝑡𝑣2 (2.23)

where numerical constants included have the following values:

𝑉0 = 0.785MPa−𝑣1h−𝑣2, 𝑣1 = −0.32, 𝑣2 = 0.15.

To use this function when calculating a complex stress state, it is necessary to make a
transition to equivalent stresses and strains due to (2.21) according to relations (2.23)
as well as to obtain the expression of creep strain rate. We obtain:

¤𝑐𝑖 𝑗 =
3
2
𝑏𝑉0 (𝑎 + 𝑣2)𝜎𝑟−1+𝑣1

𝑣 𝑡𝑣2+𝑎−1𝑆𝑖 𝑗 (2.24)

2.3 Problem Statement

Let us consider the general mathematical formulation of the boundary initial value
problem of the creep of deformed solids for the volume𝑉 with isotropic properties in
the Cartesian coordinate system 𝑥𝑖 (𝑖 = 1,2,3). It us supposed, that non-varied in time
displacement values are known in the part of solid’s surface 𝑆1 𝑢𝑖 |𝑆1 = �̄�𝑖 . Another
surface part 𝑆2 is loaded by traction 𝑝 with constant in time 𝑝0

𝑖
(𝑥) and cyclically

varied in time Φ𝑖 (𝑥, 𝑡) components:

𝑝𝑖 (𝑥, 𝑡) = 𝑝0
𝑖 (𝑥) +Φ𝑖 (𝑥, 𝑡) , 𝑥 ∈ 𝑆2 (2.25)

where

Φ𝑖 (𝑥, 𝑡) = 𝑝𝑎𝑖 (𝑥)Φ (𝑡) = 𝑝𝑎𝑖 (𝑥)
∞∑︁
𝑘=1

𝐴𝑘 sin
(
Ω𝑘 𝑡 + 𝛽𝑝𝑘

)
(2.26)

are the periodical expansions with period 𝑇𝑝;

𝑝𝑎𝑖 (𝑥) , 𝐴𝑘 =
√︃
𝑎2
𝑘
+ 𝑏2

𝑘
, Ω𝑘 = 2𝜋𝑘/𝑇𝑝 , 𝛽𝑝𝑘 = arctan (𝑎𝑘/𝑏𝑘)

are known values.
The solid 𝑉 is an inhomogeneous temperature field, which is set on the surface 𝑆

by the sum of the constant 𝑇 and periodically varying 𝑇1 components:

𝑇 (𝑥, 𝑡) = 𝑇 (𝑥) +𝑇1 (𝑥, 𝑡) , 𝑥 ∈ 𝑆 , (2.27)

where
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𝑇1 (𝑥, 𝑡) = 𝑇𝑎 (𝑥)𝜃 (𝑡) = 𝑇𝑎 (𝑥)
∞∑︁
𝑘=1

𝐴𝑇𝑘 sin
(
Ω𝑇𝑘 𝑡 + 𝛽

𝑇
𝑘

)
, (2.28)

are the periodical expansions with period 𝑇𝑇 ;

𝑇𝑎 (𝑥), 𝐴𝑇𝑘 =
√︂(

𝑎𝑇
𝑘

)2
+

(
𝑏𝑇
𝑘

)2
, Ω𝑇𝑘 = 2𝜋𝑘/𝑇𝑇 , 𝛽𝑇𝑘 = arctan

(
𝑎𝑇𝑘 /𝑏

𝑇
𝑘

)
are known values.

Due to Lagrange approach we consider the small strains and displacements that
usually occur in the structural elements of power engineering. The following notations
are used: u for displacement vector with components 𝑢𝑖 (𝑥, 𝑡); 𝜎𝜎𝜎, YYY are the stress
and strain tensors with components 𝜎𝑖 𝑗 = 𝜎𝑗𝑖 (𝑥, 𝑡) and Y𝑖 𝑗 = Y 𝑗𝑖 (𝑥, 𝑡). Both of them
are functions of co-ordinates 𝑥𝑖 (𝑖 = 1, 2, 3) and time 𝑡. Let us assume that at any
time the strain tensor is the sum of elastic and temperature strain tensors, tensors of
irreversible plasticity and creep strains:

Y𝑖 𝑗 = Y
𝑒
𝑖 𝑗 + Y𝑇𝑖 𝑗 + Y

𝑝

𝑖 𝑗
+ 𝑐𝑖 𝑗 , (2.29)

whereY𝑒Y𝑒Y𝑒,Y𝑇Y𝑇Y𝑇 are the elastic and thermal strain tensors with components Y𝑒
𝑖 𝑗
(𝑥), Y𝑇

𝑖 𝑗
(𝑥);

Y𝑝Y𝑝Y𝑝 is plastic strain tensor with components Y𝑝
𝑖 𝑗
= Y

𝑝

𝑖 𝑗
(𝑥); c is creep strain tensor with

components 𝑐𝑖 𝑗 = 𝑐 𝑗𝑖 (𝑥, 𝑡) , 𝑐𝑖 𝑗 (𝑥,0) = 0, (𝑖, 𝑗 = 1,2,3).
For thermal strains, let’s limit ourselves to the generalized law of thermoelasticity

of homogeneous isotropic solids [24], known as the Duhamel-Neumann law, so that
at any time the relationship between stresses, strains and temperature is written as
follows:

𝜎𝑖 𝑗 = 𝜆Y0𝛿𝑖 𝑗 +2𝐺 (Y𝑖 𝑗 − Y𝑝𝑖 𝑗 − 𝑐𝑖 𝑗 ) − (3𝜆+2𝐺)Y𝑇𝑖 𝑗 ; (2.30)

Y0 = Y𝑘𝑚𝛿𝑘𝑚; 𝜆 =
𝜈𝐸

(1+ 𝜈) (1−2𝜈) ; 𝐺 =
𝐸

2 (1+ 𝜈) ; Y𝑇𝑖 𝑗 = 𝛼𝑇𝑒𝑇𝛿𝑖 𝑗

where 𝜆,𝐺 are Lamé parameters; 𝛼𝑇𝑒, 𝛿𝑖 𝑗 are coefficient of thermal expansion and
Kronecker delta.

As in [25–27], we present the basic system of equations for determining the stress-
strain state of the solid during creep under the conditions of a known temperature
field 𝑇 (𝑥, 𝑡)

𝜎𝑖 𝑗 , 𝑗 = 𝜌 ¥𝑢𝑖; 𝑥𝑖 ∈ 𝑉 ; 𝜎𝑖 𝑗𝑛 𝑗 = 𝑝0
𝑖 (𝑥) + Φ𝑖 (𝑥, 𝑡), 𝑥𝑖 ∈ 𝑆2; (2.31)

Y𝑖 𝑗 =
1
2

(
𝑢𝑖, 𝑗 +𝑢 𝑗 ,𝑖

)
, 𝑥𝑖 ∈ 𝑉 ; 𝑢𝑖 |𝑆1 = �̄�𝑖 , 𝑥𝑖 ∈ 𝑆1;

𝜎𝑖 𝑗 = 𝜆Y0𝛿𝑖 𝑗 +2𝐺 (Y𝑖 𝑗 − Y𝑝𝑖 𝑗 − 𝑐𝑖 𝑗 ) − (3𝜆+2𝐺)𝛼𝑇𝑒𝑇𝛿𝑖 𝑗
where, in addition to the previously defined notations, n is a unit vector with compo-
nents 𝑛𝑖 , 𝑖 = 1,2,3 of the external normal to the solid’s surface.

The system of differential equations (2.31), which should be specified by adding
to it the constitutive equations of the material (2.15), will describe the general mathe-
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matical formulation of boundary- initial value creep-damage problem at periodically
varying temperatures and stresses. To apply the constitutive equations, let us trans-
form the system of differential equations (2.30) using the method of two time scales
and averaging over the period of the cyclic varying the components of temperature
and stress.

Let us assume that the time of the creep process until the completion of the
hidden damage is much longer than the periods of the cyclic components of stress
and temperature 𝑡∗ ≫ max(𝑇𝑝 , 𝑇𝑇 ), and limit ourselves to the first approximation of
the asymptotic expansions for the components u, YYY and 𝜎𝜎𝜎 with a small parameter
𝜇 = min[

(
𝑡∗/𝑇𝑝

)−1
, (𝑡∗/𝑇𝑇 )−1], 𝜇≪ 1:

𝑢𝑖 � 𝑢
(0)
𝑖

(𝑥, 𝑡) + 𝜇 𝑢 (1)
𝑖

(𝑥, 𝜉), Y � Y (0) (𝑥, 𝑡) + 𝜇 Y (1) (𝑥, 𝜉);

Y𝑇𝑖 𝑗 � Y
𝑇 (0)
𝑖 𝑗

(𝑥, 𝑡) + 𝜇Y𝑇 (1)
𝑖 𝑗

(𝑥, 𝜉), Y𝑝
𝑖 𝑗
� Y

𝑝 (0)
𝑖 𝑗

(𝑥, 𝑡) + 𝜇Y𝑝 (1)
𝑖 𝑗

(𝑥, 𝜉); (2.32)

𝜎𝑖 𝑗 � 𝜎
(0)
𝑖 𝑗

(𝑥, 𝑡) + 𝜇𝜎 (1)
𝑖 𝑗

(𝑥, 𝜉), 𝑐𝑖 𝑗 � 𝑐 (0)𝑖 𝑗 (𝑥, 𝑡) + 𝜇𝑐 (1)
𝑖 𝑗

(𝑥, 𝜉)

where 𝑥, 𝑡 and 𝜉 are formally independent variables. Then, after performing the
transformations that can be found in [25, 26], we obtain two systems of equations -
the main (2.33) and auxiliary (2.34).

System (2.33) describes the motion of a system of material points during irre-
versible deformation on a slow time scale:

𝜎𝑖 𝑗 , 𝑗 = 0, 𝑥𝑖 ∈ 𝑉 ; 𝜎𝑖 𝑗𝑛 𝑗 = 𝑝0
𝑖 , 𝑥𝑖 ∈ 𝑆2; (2.33)

Y𝑖 𝑗 = (𝑢𝑖, 𝑗 +𝑢 𝑗 ,𝑖)/2, 𝑥𝑖 ∈ 𝑉 ; 𝑢𝑖 |𝑆1 = �̄�𝑖 , 𝑥𝑖 ∈ 𝑆1;

𝜎𝑖 𝑗 = 𝜆Y0𝛿𝑖 𝑗 +2𝐺 (Y𝑖 𝑗 − Y𝑝𝑖 𝑗 − 𝑐𝑖 𝑗 ) − (3𝜆+2𝐺)𝛼𝑇𝑒𝑇𝛿𝑖 𝑗 .

Here, and in following text, the superscript “0”, that describe the creep processes
of heterogeneously heated solids that occur on a slow time scale, is omitted in the
functions.

The system of equations (2.33) should be supplemented with the creep-damage
constitutive equations (2.15). This system describes the general mathematical formu-
lation of the boundary initial value creep-damage problem at periodically varying
temperatures and stresses.

To specify the system of equations (2.33), which must be applied with use of
constitutive equations (2.15), it is necessary to define the stress fields𝜎𝑎𝑘

𝑖 𝑗
, 𝑘 = 1,2, ....

as well as temperature fields 𝑇𝑎
𝑖
, 𝑖 = 1,2, ...., which describe the periodically varying

processes of the stress-strain state and temperature over time 𝜉, 0 ≤ 𝜉 ≤ 1 . Auxiliary
systems of equations are intended for this purpose. A system of equations is obtained
for time scale (0 ≤ 𝜉 ≤ 1) [26, 27]:

𝜎
(1)
𝑖 𝑗 , 𝑗

= 𝜌𝜇−3𝑢
(1)
𝑖, 𝜉 𝜉

; 𝜎 (1)
𝑖 𝑗
𝑛 𝑗 = 𝜇

−1Φ𝑖 , 𝑥𝑖 ∈ 𝑆2; (2.34)

Y
(1)
𝑖 𝑗

= (𝑢 (1)
𝑖, 𝑗

+𝑢 (1)
𝑗 ,𝑖
)/2, 𝑥𝑖 ∈ 𝑉 ; 𝑢

(1)
𝑖

���
𝑆1

= 0, 𝑥𝑖 ∈ 𝑆1;
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𝜎
(1)
𝑖 𝑗

= 𝜆Y
(1)
0 𝛿𝑖 𝑗 +2𝐺Y (1)

𝑖 𝑗
− (3𝜆+2𝐺)𝛼𝑇𝑒𝑇1 −𝜎 (1) 𝑝

𝑖 𝑗
.

The system of equations (2.34) corresponds to the equations of thermoelasticity
(thermoplasticity in the case of the presence of plastic overloads in the cycle) of the
solid at given periodically varying loading with frequencies which is significantly
lower from lower solid’s natural frequency Ω0: (Ω𝑝 = 2𝜋/𝑇𝑝 , Ω𝑇 = 2𝜋/𝑇𝑇 ) ≪ Ω0.
The traction and temperature functions are specified on the corresponding parts of
the solid’s surface:

Φ𝑖 (𝑥, 𝜉) = 𝑝𝑎𝑖 (𝑥)Φ (𝜉) = 𝑝𝑎𝑖 (𝑥)
∞∑︁
𝑘=1

Φ𝑘 (𝜉), Φ𝑘 (𝜉) =𝐴𝑘 sin
(
𝜇Ω𝑘𝜉 + 𝛽𝑝𝑘

)
, (2.35)

𝑇1 (𝑥, 𝜉) = 𝑇𝑎 (𝑥)𝜃 (𝜉) = 𝑇𝑎 (𝑥)
∑︁
𝑘=1

𝜃𝑘 (𝜉), 𝜃𝑘 (𝜉) = 𝐴𝑇𝑘 sin
(
𝜇Ω𝑇𝑘 𝜉 + 𝛽

𝑇
𝑘

)
.

This allows us to consider system (2.34) as corresponding to the non-stationary
deformation of the body under the action of harmonically varying pressure on the
surface 𝑆2 𝑝

(1)
𝑖𝑘

= 𝑝𝑎
𝑖
(𝑥)𝜑𝑘 (𝜉), where 𝜑𝑘 (𝜉) = Φ𝑘 (𝜉) /𝜇, 𝜑k, 𝜉 𝜉 = −𝜇2Ω2

𝑘
𝜑𝑘 (𝜉) (as

a harmonic function). If the periods of traction and temperature are assumed to
coincide, then, as is known, in (2.34) it is possible to separate the variables by
coordinates and time

𝜎
(1)
𝑖 𝑗

=
∑︁
𝑘

𝜎𝑎𝑘𝑖 𝑗 (𝑥) 𝜑𝑘 (𝜉), (2.36)

𝑢
(1)
𝑖

=
∑︁
𝑘=1

𝑢𝑎𝑘𝑖 (𝑥) 𝜑𝑘 (𝜉),

𝑇1 =
∑︁
𝑘=1
𝑇𝑎𝑘 (𝑥) 𝜑𝑘 (𝜉).

Boundary value problems for amplitude values of unknowns periodically varying on
a fast time scale will have the following form (𝑘 = 1,2, . . .):

𝜎𝑎𝑘𝑖 𝑗, 𝑗 = −Ω𝑘2𝜇−1𝜌𝑢𝑎𝑘𝑖 , 𝜎
𝑎𝑘
𝑖 𝑗 𝑛 𝑗 = 𝑝

𝑎
𝑖 (𝑥)𝐴𝑘 , 𝑥 ∈ 𝑆2; (2.37)

Y𝑎𝑘𝑖 𝑗 = 1/2
(
𝑢𝑎𝑘𝑖, 𝑗 +𝑢𝑎𝑘𝑗,𝑖

)
; 𝑥 ∈ 𝑉 ; 𝑢𝑎𝑘𝑖 = 0, 𝑥 ∈ 𝑆1;

𝜎𝑎𝑘𝑖 𝑗 = 𝜆Y𝑎𝑘0 𝛿𝑖 𝑗 +2𝐺Y𝑎𝑘𝑖 𝑗 − (3𝜆+2𝐺)𝛼𝑇𝑒𝑇𝑎 (𝑥)𝐴𝑇𝑘 −𝜎
𝑝𝑎𝑘

𝑖 𝑗
.

Inertial components in the first equations of system (2.37) are formally preserved
when deriving the equations, meanwhile, they can be neglected in calculations,
under the conditions of considering the processes with far from resonant frequencies
Ω𝑝 = Ω𝑇 ≪ Ω0. Under this assumption, systems (2.37) can be considered as a static
problem of thermo-elasticity (thermo-plasticity).

Amplitude values of unknowns periodically varying on a fast time scale are
calculated after solving the problem of non-stationary thermal conductivity for the
heating-cooling cycle and determining the value of the function 𝑇 (1) . This makes it
possible to solve systems of Eqs. (2.37).
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According to the algorithm proposed above, after solving the initial-boundary
value problem (2.33), the stress-strain state of the solid’s creep-damage process with
cyclic varying of temperature and external force fields is determined. Its integration
is carried out until the finish of hidden damage accumulation or until the time for the
analysis of the deformation process, which is specified by the problem conditions.

2.4 Comparison Between Data of Direct Approach and Use of
Averaged Function 𝑲

Next, let us proceed to the analysis of the results of solving the problem of creep
under intermittent overloads, which lead to the occurrence of plastic deformation. In
this case, the traction 𝑝 varyings according to the time law, which is similar to the
presented in Fig. 2.1.

Let us consider the creep of a long plate (beam) subjected to bending in its plane
by a traction part 𝑝𝑏=1 MPa and tensed by an another traction part 𝑝𝑒, which has a
constant value of 25 MPa up to the middle of the plate, and then increases linearly to
75 MPa. Such a load can be considered as simulating the behavior of a turbomachine
blade, which is loaded by surface pressure from the working body (bending) and
tensed by centrifugal forces. The left edge of the plate is rigidly fixed.

Plate dimensions: length 100 mm, width 12 mm, thickness 1 mm. The plate is
periodically loaded with both types of load in such a way that plastic strains occur
in a certain part of it. At the same time, 𝑝𝑏 reaches the value 𝑝𝑏𝑜=1.45 and 𝑝𝑒𝑜
= 1.45𝑝𝑒. It has a constant value of 36.25 MPa up to the middle of the plate, and
then increases linearly to 109 MPa. The material of the plate is the above considered
nickel based alloy at a temperature of 950◦C. The considered conditions correspond
to a two-dimensional plane stress state.

For the direct numerical modeling of considered cyclic creep process, it was
necessary to solve a number of boundary and initial-boundary problems, namely:

1. creep under tensile load 𝑝𝑏 and 𝑝𝑒 during 𝑡0 =0.25 h;
2. instantaneous elastic-plastic loading with load 𝑝𝑏𝑜 + 𝑝𝑒𝑜;
3. creep under load 𝑝𝑏𝑜 + 𝑝𝑒𝑜 during 𝑡1 =0.25 h to 0.5 h;
4. unloading to 𝑝𝑏 + 𝑝𝑒;
5. creep under load 𝑝𝑏 + 𝑝𝑒 during 𝑡2 =0.25 h to 0.75 h;
6. instantaneous elastic-plastic loading to load 𝑝𝑏𝑜 + 𝑝𝑒𝑜;
7. creep under load 𝑝𝑏𝑜 + 𝑝𝑒𝑜 during 𝑡1 =0.25 h to 1 h.

After studies of the convergence of the solutions, a FE mesh with 600 elements and
357 nodes was involved in the calculations. Computer simulation was carried out
and the results of sequential data calculation of these 7 problems were obtained. The
results in the form of the final distribution of von Mises strains in the beam are shown
in (Fig. 2.11a). The areas of the beam where irreversible plastic strains take place are
marked with ovals. As you can see, they occupy a very limited area near the fixed
side.
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a)

b)

Fig. 2.11: Distributions of von Mises equivalent strain in a beam area. a) - direct solution of 7
creep and plastic problems; b) – calculations with use of Eq. (2.24).

Next, the same elastic-plastic-creep behavior of the beam under consideration was
modeled using the obtained Eq. (2.24), which uses the influence function 𝐾 (𝜎𝑣𝑀 , 𝑡)
and reflects the effect of cyclic overloads. The result in the form of a similardistribution
of von Mises strains in the beam is shown in (Fig. 2.11b). Comparing the distributions
obtained by direct integration (Fig. 2.11a) and by using the influence function (Fig.
2.11b), we conclude that calculations based on the equivalent rate of irreversible
strains qualitatively and quantitatively correctly determine the location and level of
maximum strains. In the rest beam area, the deviations between the distributions are
also minimal. Somewhat larger strains occur around the zones near the fixed side,
which are about 0.5%. Such a deviation can be considered as satisfactory, taking
into account the fact that when determining long-term strength based on calculations
of accumulated damage, the area of maximum stresses and strains is decisive. The
obtained conclusion regarding the satisfactory degree of accuracy when solving
problems with overloading in the cycle, which leads to the occurrence of plastic
strains, allows us to use the proposed approach for the modeling the deformation of
more complex structural elements.

2.5 Numerical Simulation of the Cyclic Creep-damage in DWTC
System Model

As noted in the literature review, cooled systems and blades (common name Double-
wall transpiration cooling system - DWTC system) are now widely used in practice -
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both in gas turbines and in turbines [6, 8]. Real blades are three-dimensional objects
with a rather complex geometric shape, with a large number of different cooling
channels. Correct numerical simulation of such objects by FEM using requires the
meshes with a very large number of finite elements (of the order of 106) as well as
large amounts of computer resources. In the presence of such data volumes, their
processing in order to identify qualitative patterns of deformation and damage is not
a simple task, and errors in solving physically nonlinear problems that accumulate
when using models with a large number of elements can lead to incorrect conclusions.

In this regard, the papers have been published, in which the behavior of DWTC
systems is simulated using simpler models (for example, rod models in [12]). Using
analytical and approximate methods for such a model, it was possible to obtain a
number of qualitative regularities of the behavior of the systems under consideration.
But the important factors of non-homogeneous temperature and stress distributions,
stress redistribution during physically nonlinear deformation remained unconsidered.

However, it is proposed to develop this approach in the direction of, on the one
hand, the complication of the model, so that it reflects the main features inherent in a
complex stress state, and on the other hand, so that the correct numerical simulation
can take place in an acceptable time frame (the calculation time of one variant should
not exceed 20-30 min). Also, this model should be built based on those approaches
that are used in the engineering analysis of structural elements, namely the FEM
approaches. Therefore, in this paper, the construction of a simplified two-dimensional
model of a cooled turbine blade is proposed. At the same time, the main components of
the thermal load inherent in the deformation of such blades will be taken into account:
non-uniform temperature distribution due to the effect of the cooling, non-uniform
pressure on the blade and the contribution of centrifugal forces. There remains the
possibility of expanding the field of research, for example, due to the addition of
new cooling channels to the model, the possibility of making a blade from different
materials, etc.

2.5.1 Description of the Calculation Model

A model of a structural element with a plane cross-section, which has two walls and
a bridge between them, simulating the effect of a blade’s shelf (Fig. 2.12), is involved
in the simulation. The following dimensions were set: total height ℎ = 0.3 m, shelf
length 𝐿 = 0.09 m, shelf height ℎ1 = 0.06 m, blade height ℎ2 = 0.235 m, blade wall
thickness ℎ𝑤 = 0.024 m, cooling channel width 𝑎 = 0.018 m. The lower surface is
rigidly fixed. The load consist of pressure from the gas flow, action of centrifugal
loads.
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Fig. 2.12 FE scheme and
main dimensions of the blade
model.

2.5.2 Determination of the Temperature and Stress Field in the
Blade

In this modelling cycle, we will consider the steady-state temperature field that
is created in the blade during its steady-state cooling. For calculations, we use the
developed research program FEM Temperature 2d. Let us use the boundary conditions
of the 1𝑠𝑡 kind and set the temperature distribution along the model’s boundaries.

Let us consider several boundary conditions of the same type, which differ by
the level of blade heating. On the left edge (see Fig. 2.12) the temperature 𝑇𝑙 is set,
inside the model, on the edges of the cooling channel 𝑇𝑖𝑛, on the right side is the
temperature that varies from 𝑇𝑙 on the shelf to 𝑇𝑟𝑚𝑖𝑛 on the blade.

A special preprocessor program for generating FE meshes has been developed for
numerical modelling. An example of its operation for a model with 18 FE in wall
thickness, a total of 1170 elements, is shown in Fig. 2.12. The results of solving the
stationary thermal conductivity problem in the form of temperature distribution in
finite elements are shown in the figures in the corresponding subsections.

Let us discuss the problem of the refinement of stress state. In the case of solving
the problem of thermo-elasticity at the initial stage of integration, the considered
calculation scheme has a defect associated with the presence of large unphysical
values of stresses in the boundary. In the real design, the blade is further continued by
the root, which is in contact with the locking joint. To clarify the stress-strain state in
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the proposed model, a real complex analysis of the stress-strain state of such a blade
was performed. The used calculation scheme is presented in Fig. 2.13.

The results of the thermoelastic analysis of the stress-strain state for the three-
dimensional model of the blade are presented in Fig. 2.14 a) (temperature distribution)
and 2.14 b) (distribution of von Mises equivalent stress). From the analysis of the
stress state calculation, it can be seen that there are increased stress values in the area
of the transition from the blade to the root.

In this regard, for the creep-damage simulation in the blade model using the
calculation scheme presented in Fig. 2.12, stress values in a von Mises stress range
from 360 MPa to 260 MPa are considered in the area of the model’s fixation.

2.5.3 Creep Calculations for a Two-dimensional Model of a Blade
Made of Nickel Based Alloy

Let us consider the results of the cycle of calculations of the stress-strain state
accumulation in the blade model given in Fig. 2.12. Blade material is high-chromium
corrosion-resistant foundry heat-resistant nickel basedalloy (Ni 57%,Cr16%,Co 11%,
W 5%) [30]. Temperature range: 950-850◦C. 𝑇1 = 950◦C,𝑇in = 850◦C,𝑇rmin = 900◦C.
The distribution of the temperature field along the cross section of the model, which
is consistent with that obtained for the 3D model (2.14) a), is given in Fig. 2.15.

Let us consider the case of loading the lateral face of the blade with pressure from
the gas flow, which varies according to the functional dependence on the height of
the blade as a set of linear sections. The graph of this dependence is shown in Fig.
2.16 a).

The action of centrifugal loads with an intensity of 8 MPa is given. Temperature
stresses are taken into account. The results of the calculations in the form of distri-
butions of the von Mises stress fields along the cross section of the model are given
in Fig. 2.16. Figure 2.16 b) contains data obtained for the case of pressure acting

Fig. 2.13 A sketch of a
simplified blade model and its
FE mesh.
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a) b)

Fig. 2.14: Calculation results in a three-dimensional statement: a) – temperature distribution; b) –
distribution of von Mises equivalent stresses. 𝑡 = 0 h.

Fig. 2.15 Temperature distri-
bution along the cross-section
of the FE model, blade made
from nickel based alloy (Ni
57%,Cr 16%,Co 11%,W 5%).

according to the law given in Fig. 2.16 a), as well as Fig. 2.16 b) for the case of
constant pressure with a value of 13 MPa, which corresponds to the average value of
pressure when using the law presented in Fig. 2.16 a). Comparing these distributions,
we come to a conclusion about the practical closeness of the results. In this regard,
further calculations were performed for the case of constant pressure. Note that the
stress values obtained in the thermoelastic calculation do not exceed the yield strength
for the given temperature of 950◦C, 𝜎y = 390 MPa.

First, let us consider the results of numerical modeling of the blade behavior under
the action of only static loads. The constitutive equations (2.3), (2.4) are applied. Let
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a) b)

Fig. 2.16: Distributions of pressure (a) and of von Mises stress (b). Blade made from nickel based
alloy (Ni 57%, Cr 16%, Co 11%, W 5%). Static loading. 𝑡 = 0 h..

us present in addition to described creep constants of considered alloy the values of
constants are included in damage evolution equation (2.4): 𝐷 = 1.1810−17MPa−𝑚/h,
𝑚 = 𝑙 = 5.69. The result of calculations show that the time of hidden damage accu-
mulation is equal to 24.16 h. The obtained distributions of von Mises strains (a) and
damage parameter (b) for this time value are presented in Fig. 2.17.

It can be seen from the obtained data that the largest strains are in the left side of a
blade not so far to the transition zone to the blade root. The maximum value reaches
1.7%. Also, the similar strain values occur in the area of stress concentration near

a) b)

Fig. 2.17: Distribution of the von Mises strain (a) and damage parameter (b), blade made from
nickel based alloy (Ni 57%, Cr 16%, Co 11%, W 5%). Model 1, static loading. 𝑡= 24.16 h.
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the blade shelf. The fracture occurs in this place, but traditional type of the fracture
in the blade fixed area is possible due to fairly high values of damage parameter
(0.2-0.3) here. This area is characterized by joint action of temperature stresses and
gas pressure.

Further let us present the data of calculation with considering cyclic overloading
of blade with plastic deformation through a cycle. The influence function 𝐾 (𝜎𝑣, 𝑡)
(2.24) was used in simulation. Similar distributions of strains and damage parameter
are presented in Fig. 2.18.

An analysis of the resulting strain distribution shows that, due to an increase in
the rate of accumulation of irreversible strain in the case of cyclic overloads, the
level of strain accumulated by the time of failure in the latter case is much higher, by
about 20–30%. The maximum strain increases from 1.7 to 2.2%. From the analysis
of the distributions, it can be seen that the zones with maximum deformation remain
practically the same as in the case of static loading.

The fracture time was changed insignificantly, this was only due to processes of
stress varying due to more intensified creep. However, it is possible to stress the
expansion of the zones of possible fracture: now it is practically equally likely in both
places with maximum damage - both near the fixed side of the blade and in the area
of the shelf.

The obtained results cannot be considered completely satisfactory from the point
of view of design demands for blades with the necessary long-term strength. The
lifetime of 22-24 hours corresponds to approximately the same number of GTE work
cycles, which is insufficient. In this regard, we will demonstrate the possibility of
making corrections to the model by increasing the thickness of the blade walls by
25%, and the height of the shelf by 15%. The developed FE preprocessor allows
you to quickly switch to a new model. Further in the text, we will refer to the model

a) b)

Fig. 2.18: 17 Distribution of the von Mises strain (a) and damage parameter (b), blade made from
nickel based alloy (Ni 57%, Cr 16%, Co 11%, W 5%). Model 1, cyclic loading. 𝑡 = 22.47 h.
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considered above as model number 1, and the new one with increased dimensions as
model number 2.

For model 2, a similar cycle of calculations was carried out, as presented above
for model 1. Additionally, the influence of the pressure level from the gas flow on the
deformation and damage in the blade was studied. The value of constant pressure in
one of the options was reduced by 4 times, to 3.3 MPa. This version of the calculation
model will be given the number 2.2, and the model in which the pressure value of 13
MPa is used will have the number 2.1. Note that due to the increase in the thickness
of the walls and the size of the shelf, the overall level of stresses in the problems
presented by models 2.1 and 2.2 is 10-15% lower.

The results of the calculations are given in Figs. 2.19-2.22, to model 2.1 a) and 2.2
b), respectively. Figures 2.19 and 2.20 show the distributions of von Mises strains,
as well as Figs. 2.21 and 2.22 built for damage parameter distributions. All results
are given for time t = 57.1 h, which precedes the moment of completion of hidden
fracture.

Based on the analysis of the obtained results, it is possible to draw the following
conclusions. The general level of strains remains approximately the same for all three
analyzed variants. The maximum values for static load reach 1.6-1.7%, for cyclic
loading, when rates are higher, 2.2-2.3%. The same strain level in this particular
case is due, most likely, to the compensation of the higher strain rate in model 1
(higher stress level) and twice the time of deformation until the completion of hidden
fracture for models 2.1 and 2.2. A significant strain level in all cases occurs in the
area of the fixed side. In model 2.1, in which a higher level of pressure is set, during
cyclic deformation, a significant strain level, up to 1%, also occurs on the inner side
of the first wall. When the lateral pressure decreases (model 2.2), this distribution
practically disappears. In general, it is possible to note that the impact of load cyclicity
is reflected only on the general increased strain level while preserving the main areas
of more intensive deformation.

a) b)

Fig. 2.19: Distribution of the von Mises strain, blade made from nickel based alloy (Ni 57%, Cr
16%, Co 11%, W 5%). Model 2.1 (a) and Model 2.2 (b), static loading. 𝑡 = 57.1 h.
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a) b)

Fig. 2.20: Distribution of the von Mises strain, blade made from nickel based alloy (Ni 57%, Cr
16%, Co 11%, W 5%). Model 2.1 (a) and Model 2.2 (b), cyclic loading. 𝑡 = 57.1 h.

a) b)

Fig. 2.21: Distribution of the damage parameter, blade made from nickel based alloy (Ni 57%, Cr
16%, Co 11%, W 5%). Model 2.1 (a) and Model 2.2 (b), static loading. 𝑡 = 57.1 h.

When moving from model 1 to model 2, there is a qualitative change in the nature
of the place of completion of hidden fracture. In model 2, the failure occurs in the
area near fixed side, where the maximum stresses occur under elastic loading. Such
a change is due to a decrease in the load on the first wall of the blade, which leads to
a lower rate of accumulation of damage. Reducing the pressure on the blade (model
2.2) leads to the fact that practically all the damage is localized in the area of the
fixed side.

Due to the non-linearity of the processes of stress redistribution during creep,
it is not possible to draw a conclusion about the place of failure in advance, this
is determined by the composition of the stress level. With the help of numerical
simulation of creep and damage, as shown by the given results, it is possible to make
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a) b)

Fig. 2.22: Distribution of the damage parameter, blade made from nickel based alloy (Ni 57%, Cr
16%, Co 11%, W 5%). Model 2.1 (a) and Model 2.2 (b), cyclic loading. 𝑡 = 57.1 h.

such a conclusion. That is, in the case under consideration, even a slight change in
the thickness of the blade walls can lead to qualitative changes in the nature of the
fracture. Note that the nature of the fracture in model 2, i.e. in the places of transition
to the blade root, is more acceptable from the point of view that the real stress level
in the three-dimensional model of the blade, which takes into account the contact
interaction between the blade and the rotor, will be lower.

2.5.4 Creep Calculations for a Two-dimensional Model of a Blade
Made of an Inconel X Alloy

As a second example of the behaviour the considered double-walled blade is creep-
damage analysis in more suitable from the point of view of possibility of deformation
and fracture occurrence range of temperature-loading conditions. The case of stresses
which do not exceed the yield limit is considered. Dimensions are equal to presented
for model 2 in previous section.

Blade material is Inconel X alloy, temperature range - 730-830◦C. 𝑇𝑙 = 830◦C,
𝑇𝑖𝑛 = 730◦C, 𝑇𝑟𝑚𝑖𝑛 = 780◦C. The load is pressure of 0.66 MPa from the gas flow,
assumed to be constant over the height of the blade, the action of centrifugal forces
with an equivalent intensity that varies linearly from 12 MPa on the outer wall to 8
MPa on the inner wall. The same operations for the stress determining near blade
root in 3D statement were done.

For the Inconel X alloy, the creep curves given in [32] were considered at a constant
temperature of 1003K and stresses of 168.8 MPa and 211 MPa to determine the Norton
creep law material parameters 𝐵,𝑛 and the long-term strength curve at stresses of
168.8 MPa, 211 MPa and 235 MPa for finding the material damage parameters 𝐷,𝑚, 𝑙.
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For a temperature of 1088 K, curves at the same stress values were used to find the
material parameters . After their determining at two different temperatures, them were
found for the total temperature range T = 1003 K-1088 K: 𝐵 = 1.07 · 103MPa−𝑛/h,
𝑛 = 6.33, 𝐷 = 1.1 ·108MPa−𝑚/h,𝑚 = 4.86, 𝑙 = 1.054,𝑄𝑐 =𝑄𝑑 = 5.083 ·104 K.

First, we consider the results obtained for the case of a purely static load and
temperatures that do not varying over time. The distribution of temperatures in the
cross-section of the FE model is presented in Fig. 2.23; von Mises stresses under
thermoelastic initial loading: Fig. 2.24; the values of the von Mises strains in this
time (a) and damage parameter before the end of the process of hidden damage
accumulation (b), 𝑡∗ = 61.1 h: Fig. 2.25.

Next, consider the case of cyclic loading of the blade under consideration, in which
the stresses do not exceed the yield limit. In this case, it is possible to apply the
constitutive equations obtained using the methods of two time scales and averaging
over the period (2.15) when solving the boundary – initial value creep problem (2.33).
Let us take for modeling the case with five overloads in a cycle within one hour
(Fig. 2.25): 𝑡1 = 7 min, 𝑡2 = 𝑡3 = 5 min, 𝑇𝑐 = 1 h. This cycle simulates the operation
of a gas turbine for one hour.

Fig. 2.23 Distribution of
temperatures through the
cross-section of the FE model,
blade made of alloy Inconel X.

Fig. 2.24 Distribution of von
Mises stresses through the
cross-section of the FE model,
blade made of alloy Inconel X,
𝑡 = 0.
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a) b)

Fig. 2.25: Distribution of von Mises strains a) and damage parameter b) through the cross-section
of the FE model, blade made of alloy Inconel X, static loading 𝑡 = 61.1 h.

After performing the transformations and expanding the stress and temperature
functions into Fourier series, the expressions for the influence functions of the type
included in Eq. (2.15) were obtained:

𝑔𝑛

(
𝑀
𝜎𝑖

𝑘

)
=

1∫
0

(
𝑎0

(
𝑀
𝜎𝑖

𝑘

)
+

∞∑︁
𝑘=1

𝑀
𝜎𝑖

𝑘
cos (2𝜋𝑘𝜉)

)𝑛
𝑑𝜉, (2.38)

𝑔𝑚

(
𝑀
𝜎𝑒

𝑘

)
=

1∫
0

(
𝑎0

(
𝑀
𝜎𝑒

𝑘

)
+

∞∑︁
𝑘=1

𝑀
𝜎𝑒

𝑘
cos (2𝜋𝑘𝜉)

)𝑚
𝑑𝜉,

𝑔𝑇

(
𝑀𝑇
𝑘

)
=

1∫
0

exp©«−𝑄𝑐𝑇𝑚
(
𝑎0

(
𝑀𝑇
𝑘

)
+

∞∑︁
𝑘=1

𝑀𝑇
𝑘 cos (2𝜋𝑘𝜉)

)−1ª®¬ 𝑑𝜉,
𝑀
𝜎𝑖

𝑘
=

(𝜎𝑎)𝑖
(𝜎𝑚)𝑖

, 𝑀
𝜎𝑒

𝑘
=

(𝜎𝑎)𝑒
(𝜎𝑚)𝑒

, 𝑀𝑇
𝑘 =

𝑇𝑎

𝑇𝑚
,
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+ cos
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.

The representation of the coefficients 𝑎𝑘 does not look very simply, but from a
practical point of view, the implementation of constitutive equations with influence
functions of the type (2.38) is not a problem: this expression is added to just one
small function of the software tool.

Let us consider the results of the calculation analysis of cyclic creep processes,
which is accompanied by damage. We consider the case when the pressure on the
blade and its heating-cooling occur according to the law presented in Fig. 2.25. The
relationship between the components of the stress tensor during additional loading
and temperatures during heating is considered to be as follows

𝜎𝑎𝑖 𝑗 = (1+ 𝐿)𝜎𝑚𝑖 𝑗 , 𝑇𝑎 = (1+𝐻)𝑇𝑚

where 𝐿 < 1, 𝐻 < 1 are coefficients of the overloading and heating.
First, we present the numerical simulation data for different values of 𝐿 and

𝐻 = 0 m. They are presented in Fig. 2.26 and in Table 2.1. Analyzing the table, we
come to the conclusion that the increase in cycle stress values leads to a reduction
in the lifetime values and an increase in strains. Similar results were obtained earlier
with other cycle parameters [25–28] and simple geometry.

Fig. 2.26 Dependence of
stress and temperature from
time through the loading cycle.
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Table 2.1: Dependence of the time to fracture and maximum von Mises strains on the coefficient of
additional loading.

𝐿 0 0.16 0.25 0.33 0.5

Time to fracture, ℎ 0.6 54.95 53.37 51.65 47.88

Maximum von Mises strain,% 1.6 1.2 1.3 1.35 1.4

As an example, Fig. 2.27 shows the distribution of the damage parameter and the
von Mises strains at 𝐿 = 0.5 along the cross-section of the blade. For other values of
𝐿, the distributions are qualitatively similar.

Finally, we present the results of the numerical simulation taking into account the
cyclical varying of both loads and temperatures. As an example, consider the case
𝐿 = 𝐻 = 0.25. The results are shown in Fig. 2.28, where the distributions of the von
Mises strains (a) and the damage parameter (b) along the cross-section of the blade
are presented. The time to complete the hidden fracture was 44.45 hours.

Comparing the results of calculations taking into account the cyclical effect of
temperatures (Fig. 2.28) and without it (Fig. 2.27) for the same value of load increase
in the cycle 𝐿 = 0.25, it is possible to conclude that, despite the fact that the value
of the time to completion hidden fracture did not change significantly, only for three
hours, in the area of the transition to the shelf, a higher value of the damage parameter
was obtained, which may indicate the occurrence of an additional fracture place. The
level of damage in the fixed side area changes slightly.

Analyzing the change in the strain level, we see that the additional cyclical varying
in temperature increases it almost twice, the maximum values from 1.4% increase to
2.7%. Such a difference between varying in strains and the level of damage can be

a) b)

Fig. 2.27: Distribution of von Mises strains a) and damage parameter b) through the cross-section
of the FE model, blade made of alloy Inconel X, cyclic loading 𝑡 = 47.88 h.
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a) b)

Fig. 2.28: Distribution of von Mises strains a) and damage parameter b) through the cross-section
of the FE model, blade made of alloy Inconel X, cyclic loading and heating 𝑡 = 44.45 h.

explained by a greater dependence of the creep rate on stresses for a given material
and temperature range than the dependence of the damage parameter on them. This is
reflected in the difference of approximately 1.5 times between the values of exponents
n and m in the corresponding constitutive equations.

Calculations at other values of 𝐿 and 𝐻 provide the corresponding results of the
intensification of the level of strains and the reduction of the lifetimes when the values
of these coefficients increase.

2.6 Conclusions

An approach to determining the deformation level and long-term strength of structural
elements that are under conditions of cyclic loading and heating and in the material
of which creep develops is presented. The method for solving the boundary - initial
value problems is described. It is based on the traditional combination of FEM and
difference methods of integration for initial problems. The basis of the method is the
developed and verified constitutive equations for describing the creep and damage
of the material. The cases of the cycle stresses varying in a wide range, including
the conditions where they exceed the yield stress, as well as the creep when it is not
exceeded by stresses, are considered.

The basis of the calculation method is the formulation and description of equivalent
creep processes, which allows you to significantly reduce the calculation time due to
the absence of the need for direct integration by cycle, which, if there is a sufficiently
large number of them, makes it impossible to effectively analyze options during
design. Also, cycle integration is a rather complex procedure that cannot ensure
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in all cases the convergence of results with average computing resources. Finally,
the transition to the modeling of averaged processes provides an opportunity to use
modern engineering software complexes, which effectively implement the methods
of creep analysis under static loading.

In the case when the cycle stress values do not exceed the yield stress, due to
the similarity of the strain and damage accumulation curves under static and cyclic
loading, it is possible to apply asymptotic methods together with period averaging
and to formulate the form of a new boundary- initial value problem with new averaged
constitutive equations. However, in the case of cyclic overloads with exceeding the
yield stress, the creep curves under static and cyclic deformation are different. For the
latter case, the paper proposes an approach that allows, based on the approximation
of cyclic creep curves in a wide range of stresses, to obtain an expression for a new
function that reflects the effect of creep acceleration due to load cyclicity.

The proposed approaches and solution methods were used to analyze the creep-
damage processes in a model of a GTE blade with double walls. DWTC systems are
currently being intensively developed, but due to the complexity of the geometry and
significant three-dimensionality of the problem, direct computational analysis of the
regularities of long-term high-temperature processes developing in their material is
difficult and requires a large amount of resources and time. Due to this, the use of
such system‘s models is one of the effective ways to better understand the processes
that take place in them.

This paper proposes an approach to construct a simplified model of a blade with
double walls, which, on the one hand, takes into account all types of temperature-
force influences and stress levels, and on the other hand, thanks to the transition to a
two-dimensional scheme, provides the possibility of both rapid modeling and visual
displaying the results in one plane. It is clear that in the future it is necessary to move
the main conclusions to three-dimensional modeling case.

The main conclusions obtained during numerical modeling can be summarized as
follows. As with the analysis of cyclic creep and damage in simpler implementations of
the geometry of structural elements obtained earlier [25–28], it was demonstrated that
the addition of cyclic loads and temperatures in comparison with the corresponding
static process leads to an increase in the rate of creep and damage accumulation,
which is reflected by a greater level of accumulated strains and a shorter time to
fracture.

The paper demonstrates the possibilities of the proposed approach to the analysis
of the stress-strain state and long-term strength, taking into account the impact of load
cyclicity by reducing of the problem dimension. It is clear that for a comprehensive
analysis of the behavior of such complex systems as the considered double-wall
blade, similar studies should be continued to take into consideration other important
influencing factors, such as corrosion, multi-cycle fatigue, thermal shock, and others.
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