
Chapter 19
A Temperature-Dependent Viscoelastic
Approach to the Constitutive Behavior of
Semi-Crystalline Thermoplastics at Finite
Deformations

Le Zhang, Bo Yin, Robert Fleischhauer, and Michael Kaliske

Abstract The contribution at hand aims at the formulation of a promising constitutive
model for solids exhibiting thermo-viscoelastic characteristics. Temperature depen-
dency and nonlinear creep properties are included into this material formulation. In
general, a phenomenological constitutive formulation considering isotropic thermo-
viscoelasticity at finite strains is introduced based upon a multiplicative split of the
deformation gradient. The evolution equations for the inelastic deformation gradient
are introduced in a thermo-dynamically consistent manner. In particular, the present
approach focuses on an inelastic incompressibility condition and the principle of
maximum of dissipation. The derivation starts from a well-defined Helmholtz en-
ergy function, which also includes a volumetric thermal deformation. For simplicity,
isotropic thermal conductivity behavior is taken into account. The set of constitutive
equations is consistently linearized and incorporated into a Newton-type solver.
The physical applicability of the present formulation is validated by a promising
numerical study, which has also demonstrated favourable numerical stability and
robustness.

19.1 Introduction

A special class of polymers with entangled but un-crosslinked macromolecules are
thermoplastics. They show significant creep phenomena, when subjected to static
mechanical loads, due to the special characteristics of their micro-structure. The
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contribution at hand aims at a thermo-dynamically consistent constitutive modeling
of the material behavior of semi-crystalline thermoplastics at finite deformations.
The material property, that is especially focused on, is characterized by an elastic and
viscous deformation, in order to model the creep behavior of thermoplastics.

The concept of the split of the deformation gradient into volumetric and isochoric
parts is applied. The isochoric part is further split into elastic and viscous contri-
butions and the volumetric part is considered to account for thermal and elastic
deformations. Based on these multiplicative kinematics, the isochoric elastic right
Cauchy-Green deformation tensor is introduced such that it is not influenced by
change of temperature. The determinant of the volumetric part of the deformation
gradient is used to account for the thermal expansion and stress-inducing volumetric
elastic deformations. This kinematic approach is based on the work of [1].

The specific heat capacity of thermoplastics is incorporated into the Helmholtz
energy and is assumed to be a material constant. The heat flux vector is assumed
to follow Fourier’s law and is a function of the thermal conductivity coefficient
for the appropriate thermoplastics, compare [2]. A suitable specific formulation
of the Helmholtz energy is introduced, based on [3], consisting of volumetric,
isochoric, thermal and latent parts. The energy formulation is used to derive the first
Piola-Kirchhoff stress as well as the external power, which is used to define
the change of entropy inside the thermoplastic material. Furthermore, the energy is
used to specify the dissipative behavior of the material for considering a change of
mechanical into thermal energetic parts, compare [4].

The viscous part of the deformation gradient is driven by its thermodynamic
consistent evolution equation. This evolution equation is based on a constitutive
viscous flow potential with respect to the viscous intermediate configuration and the
respective Mandel stress. The second internal variable, the hardening strain is
driven by the latent part of the Helmholtz energy and its thermodynamic consistent
evolution equation. The presented contributions are based on the developments in
[3].

All constitutive descriptions and developments are incorporated into a two-field
global finite element solver, considering the balance laws of non-linear thermo-
inelasticity at finite deformations [2], with respect to the reference configuration.
The Newton-type solver is based on the consistently linearized field equations for
the displacement and the temperature field, which form the global unknown fields.
The implicit function theorem is applied to consider the change of these global
unknowns, due to a change of the local internal variables, namely the viscous part of
the deformation gradient and the hardening strains. All computational developments
and constitutive descriptions are successfully validated by a representative numerical
study, where the experimental creep data for polyoxymethylene (POM) at 60◦C, taken
from [5], is used to identify the introduced material constants.

The framework of this paper is outlined as follows. In Sect. 19.2, the preliminaries
of the finite thermo-viscoelasticity are introduced, which pay particular attentions to
the basic kinematics and the multiplicative decomposition of the total deformation
gradient. In Sect. 19.3, a brief overview of the constitutive framework is summarized,
including the Helmholtz free energy and the nonlinear creep law. In the sequel, a
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representative numerical example is studied in Sect. 19.4, consisting of both stress-
controlled and strain-controlled loading conditions. Sect. 19.5 closes the paper by
summarizing the present work and proposing future perspectives.

19.2 Preliminaries of the Finite Thermo-Viscoelasticity

This section depicts the fundamental theoretical background of the constitutive
framework of the isotropic thermo-viscoelasticity. To classify the deformation process,
let B0 be the solid body in the reference configuration as a subset of the Euclidean
space B0 ⊂ R3 at 𝑡0 ∈ T | T ⊂ R+. For each material point 𝑃𝑡0 of B0, its position
vector is 𝑋𝑋𝑋 ∈ B0. At time 𝑡 ∈ T , the current configuration is denoted as B𝑡 and
the corresponding material point 𝑃𝑡 has a position vector 𝑥𝑥𝑥 ∈ B𝑡 . The mapping
𝜑𝜑𝜑𝑡 : B0×T → R3 denotes the motion of the solid domain at the time interval T . The
motion 𝜑𝜑𝜑𝑡 is a non-linear and bĳective mapping, reading 𝜑𝜑𝜑𝑡 : 𝑋𝑋𝑋 ↦→ 𝑥𝑥𝑥 = 𝜑𝜑𝜑𝑡 (𝑋𝑋𝑋) . The
deformation gradient 𝐹𝐹𝐹 is now defined as

𝐹𝐹𝐹 (𝑋𝑋𝑋) : = Grad
(
𝜑𝜑𝜑𝑡 (𝑋𝑋𝑋)

)
=
𝜕𝜑𝜑𝜑𝑡 (𝑋)
𝜕𝑋𝑋𝑋

= 𝑔𝑔𝑔𝑖 ⊗𝐺𝐺𝐺𝑖 (19.1)

having a determinant 𝐽 (𝑋𝑋𝑋) := det (𝐹𝐹𝐹) . The basis vectors 𝐺𝐺𝐺𝑖 and 𝑔𝑔𝑔𝑖 are defined with
respect to the reference and the current configuration, respectively.

The absolute temperature for a point of B𝑡 is denoted as 𝜃 ≥ 0K. Furthermore, it
is common to denote the reference temperature for a material point of B0 as 𝜃0 and
define the change of temperature 𝜗 as

𝜗 := 𝜃 − 𝜃0 . (19.2)

As a convention, the temperature is transferred into units of Kelvin [K] instead of
Celsius [◦C] or Fahrenheit [◦F], which naturally enables that temperature parts of
the Helmholtz energy can be introduced by a logarithmic form due to the strict
positiveness.

For a finite thermo-viscoelastic formulation, the deformation gradient 𝐹𝐹𝐹 is split
into the thermal and viscoelastic parts

𝐹𝐹𝐹 = 𝐹𝐹𝐹𝜗𝐹𝐹𝐹𝑣𝑒 . (19.3)

The thermal part of the deformation is constitutively assumed to be of purely volu-
metric nature, so that an increase of temperature ensures an increase of the volume of
the solid body and vice versa. Here, the volumetric thermal expansion is modeled by

𝐹𝐹𝐹𝜗 =

(
𝐽𝜗

) 1
3 111, where 𝐽𝜗 = exp(3𝛼𝑡 𝜗) , (19.4)

where 111 is the identity tensor and 𝛼𝑡 denotes the isotropic thermal expansion coeffi-
cient. Based on [4], herein an exponential form of the thermal expansion is introduced.
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The non-thermal part
𝐹𝐹𝐹𝑒𝑣 = (𝐽𝑒𝑣)

1
3 𝐹̄𝐹𝐹

𝑒𝑣

can also be further split based on a volume preserving formulation, namely

𝐹̄𝐹𝐹
𝑒𝑣

= 𝐹̄𝐹𝐹
𝑒
𝐹̄𝐹𝐹
𝑣 (19.5)

for the elastic and viscous parts; see e.g. [1, 6–10]. Therefore, the determinant of
deformation gradient 𝐽 satisfies 𝐽 = 𝐽𝜗𝐽𝑒𝑣.

The viscous part of the deformation 𝐹̄𝐹𝐹𝑣 describes the irreversible and inelastic part
of the total isochoric deformation. This portion can evolve e.g. due to the creep law,
leading to micro-structural rearrangements of the material and, thus, to dissipation
and temperature changes. Once 𝐹̄𝐹𝐹𝑣 evolves, the incompressibility condition

det
(
𝐹̄𝐹𝐹
𝑣
)
= 𝐽𝑣 = 1 ∀ 𝐹̄𝐹𝐹

𝑣 (19.6)

has to be ensured for most of the materials, especially for metals, see [11]. The time
derivative of inelastic deformation gradient is defined by

¤̄𝐹𝐹𝐹𝑣 = 𝐿̄𝐿𝐿
𝑣
𝐹̄𝐹𝐹
𝑣
, (19.7)

where 𝐿̄𝐿𝐿
𝑣 is the rate of deformation. The elastic part is defined by

𝐹̄𝐹𝐹
𝑒
= 𝐹̄𝐹𝐹

𝑒𝑣
𝐹̄𝐹𝐹
𝑣−1

. (19.8)

Using Eq. (19.8), the deformation measure

𝐶̄𝐶𝐶
𝑒
= 𝐹̄𝐹𝐹

𝑒𝑇

𝑔𝑔𝑔𝐹̄𝐹𝐹
𝑒
= 𝐹̄𝐹𝐹

𝑣−𝑇
𝐹̄𝐹𝐹
𝑇
𝑔𝑔𝑔𝐹̄𝐹𝐹𝐹̄𝐹𝐹

𝑣−1
(19.9)

is introduced as a function of the current metric tensor 𝑔𝑔𝑔, which represents a key
kinematic quantity for defining specific constitutive equations.

Furthermore, the heat flow 𝑞𝑛 out of the surface 𝜕B𝑡 of the current configuration
can be expressed as 𝑞𝑛 =: 𝑞𝑞𝑞·𝑛𝑛𝑛 , where 𝑞𝑞𝑞 denotes the spatial heat flux through a point
𝑥𝑥𝑥 ∈ 𝜕B𝑡 and 𝑛𝑛𝑛 is the current outward normal at the observed point, see Fig. 19.1. The
spatial heat flux vector 𝑞𝑞𝑞 at point 𝑥𝑥𝑥 ∈ B𝑡 , describing the heat conduction inside of the
solid body, is assumed to follow Fourier’s law

𝑞𝑞𝑞 =− 𝑘

𝐽
grad(𝜗) , (19.10)

where 𝑘 is a material constant. Eq. (19.10) sufficiently describes the spatial heat
conduction phenomena by the current state of the temperature gradient grad(𝜗).
Additionally, the conductive dissipation

D𝑐𝑜𝑛 := −1
𝜃
𝑞𝑞𝑞·grad(𝜗)
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Fig. 19.1 Schematic depiction
of the boundary 𝜕B𝑡 of the
current configuration and its
normal 𝑛𝑛𝑛 at point 𝑥𝑥𝑥 as well as
tractions 𝑡𝑡𝑡 and heat flux 𝑞𝑞𝑞

𝑛𝑛𝑛
𝑥𝑥𝑥 ∈ 𝜕B𝑡

d𝑎

B𝑡

𝑡𝑡𝑡 = 𝜎𝜎𝜎𝑛𝑛𝑛
𝑞𝑞𝑞

𝜕B𝑡

is also fulfilled.

19.3 Constitutive Formulation of Finite Thermo-Viscoelasticity

19.3.1 Helmholtz Energy

In order to define the isotropic thermo-viscoelastic material in a systematic manner,
the Helmholtz energy 𝜓 is particularly defined herein, reading

𝜓 = 𝜓𝑒𝑣𝑜𝑙 +𝜓
𝑒
𝑖𝑠𝑜 +𝜓𝜗 , (19.11)

where 𝜓𝑒
𝑣𝑜𝑙

denotes the volumetric part from both the elastic deformation and the
temperature changes. 𝜓𝑒

𝑖𝑠𝑜
represents the isochoric energy density. Additionally, a

pure thermal contribution 𝜓𝜗 captures the change of free energy due to any change
of temperature. The volumetric and isochoric part of Eq. (19.11) take the definition
of [12, 13], reading

𝜌0𝜓
𝑒
𝑣𝑜𝑙 (𝐽, 𝐽

𝜗) = 𝜅

2
· ln(𝐽𝑒𝑣)2, and 𝜌0𝜓

𝑒
𝑖𝑠𝑜 (𝐶̄𝐶𝐶

𝑒) = 𝜇

2
(𝐼1 −3), (19.12)

respectively, noting, 𝐼1 = tr (𝐶̄𝐶𝐶𝑒) = 𝛿𝑖 𝑗𝐶̄𝐶𝐶
𝑒

𝑖 𝑗 . The thermal part 𝜌0𝜓
𝜗 = 𝜌0𝜓

𝜗 (𝜗) is
defined as

𝜌0𝜓
𝜗 (𝜗) = −𝜌0𝑐

(
𝜃 ln

(
𝜃

𝜃0

)
−𝜗

)
+𝐶 (𝜗) . (19.13)

The corrector function 𝐶 (𝜗) is required in order to ensure the assumed constant heat
capacity at constant deformation. The specific heat capacity 𝑐 is defined by

𝜌0𝑐 := −𝜃 𝜕
2𝜌0𝜓

𝜕𝜗𝜕𝜗
= −𝜃

𝜕2𝜌0𝜓
𝑒
𝑣𝑜𝑙

(𝐽, 𝐽𝜗)
𝜕𝜗𝜕𝜗

− 𝜃
𝜕2𝜌0𝜓

𝜗 (𝜗)
𝜕𝜗𝜕𝜗

(19.14)

and determines the temperature-dependent part of the Helmholtz energy by

𝜕2𝜌0𝜓
𝜗 (𝜗)

𝜕𝜗𝜕𝜗
= −

𝜕2𝜌0𝜓
𝑒
𝑣𝑜𝑙

(𝐽, 𝐽𝜗)
𝜕𝜗𝜕𝜗

− 𝜌0𝑐

𝜃
. (19.15)
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An integration over the temperature domain together with the use of the constraints
𝜕𝜃𝜓𝜗 (𝜗 = 0) := 0 and 𝜕𝜃𝜃2𝜓𝜗 (𝜗 = 0) := 0 as well as considering 𝜃 = 𝜃0 ∀ 𝜗 = 0
would yield the specific formulation of 𝜓𝜗 and 𝐶 (𝜗), respectively.

Following [14], the Cauchy stress tensor 𝜎𝜎𝜎 and the Kirchhoff stress tensor 𝜏𝜏𝜏
are given by

𝜎𝜎𝜎 = 2𝜌
𝜕𝜓

𝜕𝑔𝑔𝑔
=

2
𝐽

𝜕𝜌0𝜓

𝜕𝑔𝑔𝑔
=

1
𝐽
𝜏𝜏𝜏 , (19.16)

where 𝜌 is the current density and𝑔𝑔𝑔 the currentmetric tensor. According to Eq. (19.11),
the Cauchy stresses are additively split into volumetric and isochoric parts, reading

𝜎𝜎𝜎vol =
1
𝐽

[
𝜅 ln(𝐽𝑒𝑣)𝑔𝑔𝑔−1] , and 𝜎𝜎𝜎iso = 2𝜇𝐽

𝜕𝐼1

𝜕𝑔𝑔𝑔
. (19.17)

The external power

𝜌𝑤ext := 𝜌𝜃

(
2
𝜕2𝜓

𝜕𝑔𝑔𝑔𝜕𝜗

)
: 𝑑𝑑𝑑 = 𝜃

𝜕𝜎𝜎𝜎

𝜕𝜗
: 𝑑𝑑𝑑 = 𝜃

𝜕𝜎𝜎𝜎

𝜕𝜗
: sym𝑙𝑙𝑙 , (19.18)

where 𝑙𝑙𝑙 = ¤𝐹𝐹𝐹𝐹𝐹𝐹−1 is the spatial velocity gradient and 𝑑𝑑𝑑 its symmetric part, influences
the change of entropy per time. After the specification of the Helmholtz energy,
𝜌𝑤ext takes the form

𝜌𝑤ext =
𝜅𝜃

𝐽

[
1
𝐽𝑒𝑣

𝜕𝐽𝑒𝑣

𝜕𝜗

]
𝑔𝑔𝑔−1 : sym𝑙𝑙𝑙 (19.19)

and represents the amount of energy that changes the temperature at 𝑥𝑥𝑥, due to an
arbitrarily applied deformation rate. This part of the entropy change is a function of the
volumetric energy, since temperature changes only affect the changes in volumetric
deformation of most materials.

The internal power is expressed as

𝜌𝑤int := 𝜌

(
𝜕𝜓

𝜕𝐹̄𝐹𝐹
𝑣 − 𝜃

𝜕2𝜓

𝜕𝐹̄𝐹𝐹
𝑣
𝜕𝜃

)
: ¤̄𝐹𝐹𝐹𝑣 , (19.20)

which models any change of temperature at 𝑥𝑥𝑥 ∈ B𝑡 due to the evolution of internal
variables in an irreversible manner, whenever ¤̄𝐹𝐹𝐹𝑣 ≠ 000. Eq. (19.19) captures the re-
versible change of temperature at any deformation rate, while Eq. (19.20) can be
interpreted as an underlying ground state temperature change response. If ¤̄𝐹𝐹𝐹𝑣 = 000 and
¤𝐹𝐹𝐹 ≠ 000, an entropic cooling at tension and heating at compression is present at 𝑥𝑥𝑥 ∈ B𝑡
and, if ¤̄𝐹𝐹𝐹𝑣 ≠ 000 and ¤𝐹𝐹𝐹 ≠ 000, the temperature is increased as time elapses.
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19.3.2 Creep Law

Having Eq. (19.7) at hand, the viscous evolution operator 𝐿̄𝐿𝐿𝑣 related to the viscous
intermediate configuration, needs to be defined. The standard arguments for defining
work conjugates at the intermediate configuration are the positiveness of the internal
dissipation, see e.g. [15]. If 𝜌0𝜓

𝑒
𝑖𝑠𝑜

(𝐶̄𝐶𝐶𝑒) represents the change of energy stored due
to viscoelastic loading, the internal dissipation can be defined by

Dint := P − 𝜌0 ¤𝜓𝑒𝑖𝑠𝑜 (𝐶̄𝐶𝐶
𝑒) ≥ 0 , (19.21)

where no temperature change is assumed while viscous evolution. The stress power
P := Σ̄ΣΣ : 𝐿̄𝐿𝐿, as a function of the Mandel stress

Σ̄ΣΣ = 2𝐶̄𝐶𝐶𝑒
𝜕𝜌0𝜓

𝑒
𝑖𝑠𝑜

(𝐶̄𝐶𝐶𝑒)
𝜕𝐶̄𝐶𝐶

𝑒 (19.22)

with respect to the intermediate configuration, is introduced, see [1]. The total rate of
deformation 𝐿̄𝐿𝐿 = 𝐹̄𝐹𝐹

𝑒
𝑙𝑙𝑙𝐹̄𝐹𝐹
𝑒−1

related to the intermediate configuration can be split into

𝐿̄𝐿𝐿 = 𝐿̄𝐿𝐿
𝑒 + 𝐿̄𝐿𝐿𝑣 , (19.23)

where 𝐿̄𝐿𝐿
𝑒
= 𝐹̄𝐹𝐹

𝑒−1 ¤̄𝐹𝐹𝐹𝑒, compared to [6]. A further evaluation of Eq. (19.21) yields

𝜌0 ¤𝜓𝑒𝑖𝑠𝑜 (𝐶̄𝐶𝐶
𝑒) =

𝜕𝜌0𝜓
𝑒
𝑖𝑠𝑜

(𝐶̄𝐶𝐶𝑒)
𝜕𝐶̄𝐶𝐶

𝑒 : ¤̄𝐶𝐶𝐶𝑒 =
[
2𝐶̄𝐶𝐶𝑒

𝜕𝜌0𝜓
𝑒
𝑖𝑠𝑜

(𝐶̄𝐶𝐶𝑒)
𝜕𝐶̄𝐶𝐶

𝑒

]
: 𝐿̄𝐿𝐿𝑒 , (19.24)

for the inelastic and isochoric part of the Helmholtz energy. Inserting Eq. (19.23)
and Eq. (19.24) into Eq. (19.21) and applying the standard arguments for the strict
positiveness of the internal dissipation leads to the constitutive description of Σ̄ΣΣ
(compare Eq. (19.22)), reading

Dint :=

[
Σ̄ΣΣ−2𝐶̄𝐶𝐶𝑒

𝜕𝜌0𝜓
𝑒
𝑖𝑠𝑜

(𝐶̄𝐶𝐶𝑒)
𝜕𝐶̄𝐶𝐶

𝑒

]
: 𝐿̄𝐿𝐿 +

[
2𝐶̄𝐶𝐶𝑒

𝜕𝜌0𝜓
𝑒
𝑖𝑠𝑜

(𝐶̄𝐶𝐶𝑒)
𝜕𝐶̄𝐶𝐶

𝑒

]
: 𝐿̄𝐿𝐿𝑣 ≥ 0 . (19.25)

The following constitutive definition for 𝐿̄𝐿𝐿𝑣 is introduced, reading

𝐿̄𝐿𝐿
𝑣 := ¤𝛾𝑣𝑁𝑁𝑁 = ¤𝛾𝑣 Σ̄ΣΣ

∥Σ̄ΣΣ∥
. (19.26)

Compare [16], the creep flow is defined as

¤𝛾𝑣 = ¤𝛾0

[
exp

((
∥ΣΣΣ∥
𝑠0

)𝑛)
−1

]
, (19.27)
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where ¤𝛾0 denotes the pre-exponential shear strain rate factor. 𝑛 and 𝑠0 are another
two material parameters. Here, both of them are given as constant coefficients. It
ensures the inequality of internal dissipation, see Eq. (19.25). Recalling Eq. (19.7),
the time integration is given by

¤̄𝐹𝐹𝐹𝑣 = [ ¤𝛾𝑣𝑁𝑁𝑁] 𝐹̄𝐹𝐹𝑣 . (19.28)

Within a standard time discretization, the implicit update algorithm

𝐹̄𝐹𝐹
𝑣

𝑛+1 = exp
[
Δ𝛾𝑣𝑛+1𝑁𝑁𝑁𝑛+1

]
𝐹̄𝐹𝐹
𝑣

𝑛 , (19.29)

is applied for a time increment {𝑡𝑛, 𝑡𝑛+1} ∈ R as an approximation.

19.3.3 Governing Equations

This section briefly summarizes the spatial formulation of the driving partial dif-
ferential equations (PDE) for evolving the global nodal unknowns, i.e. temperature,
displacements, velocities and accelerations. The local forms, where local means the
validity at any 𝑥𝑥𝑥 ∈ B𝑡 , are given by

𝜌 ¥𝑢𝑢𝑢 = 𝜌𝑏𝑏𝑏 +div(𝜎𝜎𝜎) , (19.30)

𝜌𝑐 ¤𝜃 = −div(𝑞𝑞𝑞) + 𝜌

(
𝜃 ·2 𝜕2𝜓

𝜕𝑔𝑔𝑔𝜕𝜃

)
: 𝒅− 𝜌

(
𝜕𝜓

𝜕𝐹̄𝐹𝐹
𝑣 − 𝜃

𝜕2𝜓

𝜕𝐹̄𝐹𝐹
𝑣
𝜕𝜃

)
: ¤̄𝐹𝐹𝐹𝑣 (19.31)

= −div(𝑞𝑞𝑞) + 𝜌𝑤ext − 𝜌𝑤int . (19.32)

The focus of the contribution at hand is a consistent solution of the path dependent
problem by use of a Newton-type solver considering initial condition at 𝑡0 for all
𝑋𝑋𝑋 ∈ B0 and boundary conditions for all 𝑥𝑥𝑥 ∈ B𝑡 and 𝑋𝑋𝑋 ∈ B0. The boundary of 𝐵 is
divided into 𝜕𝐵 = {𝜕𝐵𝑢 , 𝜕𝐵𝜃 } = {𝜕𝐵𝜎 , 𝜕𝐵𝑞}, compare Fig. 19.1, with prescribed
displacements, temperatures or tractions and heat flows for each of the configurations.

19.4 Numerical Study

In this section, a numerical example is conducted in comparison with the related
experimental investigation, in order to intuitively demonstrate the capability of the
present model. Based on [5], a flat specimen of polyoxymethylene (POM) with stress-
controlled load and strain-controlled load is modeled, respectively. The material
constants are shown in Table 19.1 The specimen geometry is depicted in Fig. 19.2 (a)
and the finite element discretization is shown in Fig. 19.2 (b).
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Table 19.1: Material parameters.

𝜅 𝜇 𝛼𝑡 𝑘𝑡 𝜌0𝑐 𝜃0 ¤𝛾0 𝑠0 𝑛

2000 MPa 110 MPa 2𝑒−3 0.3 N/s·K 2 N/(mm2 ·K) 333 K 7.5𝑒−9 12.5 MPa 2.37

(a) (b)

Fig. 19.2: (a) geometry of the flat specimen with all measures in mm; (b) setup for finite element
model.

19.4.1 Stress-Controlled loading

In the stress-controlled loading simulation, a set of nominal stresses
𝜎 = {27.5,30,33,35}MPa is considered, which can be mimicked alterna-
tively by applying a force 𝒇 to yield a same level of stress in the cross-section
of the central region in the specimen, see Fig. 19.2 (b). The longitudinal strain
𝜀1 = ln(𝑙/𝑙0) and lateral strain 𝜀2 = ln(𝜔/𝜔0) in a logarithmic formulation are
two essential parameters for analyzing the experimental outcomes. Hence, in the
numerical evaluation, a similar behavior is obtained for an effective comparison.

In comparison with experimental outcomes from [5], the simulation results by the
present model based on a stress-controlled loading are validated in Fig. 19.3 with
respect to all the stress states {27.5,30,33,35} MPa. It can be evidently seen that
the numerical prediction shows a good agreement to the experimental investigation
for all setups. Furthermore, the model also captures the characteristic that the strain
growth rate increases obviously with the larger nominal stress application. Therefore,
the given creep law in Eq. (19.27) is demonstrated to have a good performance in
fitting the overall experimental results.

Furthermore, the deformation process with the nominal stress 𝜎 = 33 MPa is
also shown in Fig. 19.4 for a straightforward visualization of the creep behavior.
Considering the original length 80 mm, the creep deformation is obviously observed
as time increases, e.g., it reaches more than 100 mm at 𝑡 = 1.78e4 s. In addition,
the temperature evolution along the time is investigated. Figure 19.5 depicts the
temperature change 𝜗 in the central point of the specimen along the time increase.

Moreover, another interesting comparison about temperature evolution is shown
in Fig. 19.6, which describes the temperature distribution for all nominal stress
applications but at the same specimen elongation state.
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Fig. 19.3: Model results under stress-controlled loading.

Fig. 19.4: Creep deformation of the numerical model at 𝑡 = [10, 4.3e3, 1.12e4, 1.78e4 ] s with
𝜎 = 33 MPa.
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Fig. 19.5: Temperature course in the central point of specimen under stress-controlled loading.

27.5MPa 30MPa 33MPa 35MPa

Fig. 19.6: Temperature distribution of the flat specimen with the stain state 𝜀1 = 0.185 under
stress-controlled loading.
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19.4.2 Strain-Controlled loading

The strain-controlled tension test is experimentally conducted by Schlegel &
Beiner. For the detail of experimental setup, one is referred to [5, 17]. As shown
in Fig. 19.2, the same material constants, the same specimen geometry and finite
element model are used with the only difference being the load application. The
applied strain rate is determined from the free length of the specimen between
the clamps. Herein, a machine speed of 𝑣 = 0.8 mm/min for a global strain rate
¤𝜀 = 0.01 min−1 and 𝑣 = 8 mm/min for ¤𝜀 = 0.1 min−1 approximation are used. With
respect to the experiment, results in the following are presented with the nominal
strain definition 𝜀1 = 𝑙/𝑙0 − 1 for the longitudinal strain and 𝜀2 = 𝜔/𝜔0 − 1 for the
lateral strain. Nominal stress 𝜎 is again given by measured force divided by the initial
size of the middle cross-section of the specimen.

(a) 27.5MPa (b) 30MPa (c) 33MPa (d) 35MPa

Figure 6: Temperature distribution of the flat specimen with the stain state ε1 = 0.185 under creep
loading.

4.2 Strain-controlled loading

The strain-controlled tension test is experimentally conducted by Schlegel & Beiner. For the

detail of experimental setup, one is referred to [5, 17]. As shown in Fig. 2, the same material

constants, the same specimen geometry and finite element model are used with the only difference

being the load application. The applied strain rate is determined from the free length of the

specimen between the clamps. Herein, a machine speed of v = 0.8 mm/min for a global strain rate

ε̇ = 0.01 min−1 and v = 8 mm/min for ε̇ = 0.1 min−1 approximation are used. With respect to the

experiment, results in the following are presented with the nominal strain definition ε1 = l/l0 − 1

for the longitudinal strain and ε2 = ω/ω0 − 1 for the lateral strain. Nominal stress σ is again given

by measured force divided by the initial size of the middle cross-section of the specimen.
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Figure 7: Longitudinal results for tension tests with strain rates: (a) ε̇ = 0.1min−1; (b) ε̇ =
0.01min−1.

10

Fig. 19.7: Longitudinal results for tension tests with strain rates:
(a) ¤𝜀 = 0.1min−1; (b) ¤𝜀 = 0.01min−1.

Results from the tension tests with two different strain rates are illustrated in
Fig. 19.7. Experiments show an initially stiff response until a nominal stress maximum
𝜎crit is reached. In the sequel, significant softening is observed until rupture. The
simulation results match the experimental results during the initially stiff phase.
Nevertheless, the peak stresses are unfortunately not appropriately predicted, which
yields an underestimation of the peak stress values. The possible reasons behind it can
be from the material constants fitting, as well as the measurement deviations. But the
good side is that the softening trends for both cases are also similar to the experimental
results. Therefore, further efforts, from both the experimental measurements and
model fitting aspects, are certainly required to overcome such imperfect predictions.
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19.5 Summary

The developments presented in this contribution successfully introduces a stable and
robust modeling approach to simulate a class of thermo-viscoelastic materials at
finite deformations. This is achieved by a consistent numerical framework, which is
introduced with respect to the linearization of the global and local driving evolution
equations. The constitutive descriptions, such as the presented Helmholtz energy
or the creep law, are examples. Herein, the applicability of the aforementioned
formulations is demonstrated mainly for polymeric materials. Nevertheless, it can be
easily exchanged to other materials, e.g., when thermo-plastic materials are required
to be modeled. Further physical validation with respect to temperature changes and
larger deformations of other classes of inelastic materials or composites is certainly
possible. Additionally,othermulti-physical phenomena can also be properly addressed
by considering further multiplicative splits of the deformation gradient.
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