
Chapter 13
Application of Nonlinear Viscoelastic Material
Models for the Shrinkage and Warpage Analysis
of Blow Molded Parts

Patrick Michels, Christian Dresbach, Esther Ramakers-van Dorp, Holm Altenbach,
and Olaf Bruch

Abstract The prediction of shrinkage and warpage of extrusion blow molded plastic
parts is a topic of high industrial demand. Nevertheless, simulation results are still
associated with uncertainties. One of the major difficulties is the description of
the complex time-, temperature- and process-dependent material behavior of semi-
crystalline polymers like high density polyethylene (HDPE). It is state of the art to use
linear viscoelastic material models for the shrinkage and warpage analysis. However,
linear viscoelastic behavior can only be assumed if the stresses are small. To increase
the prediction accuracy of the current simulation models, nonlinear viscoelastic
material models, such as the Abaqus Parallel Rheological Framework (PRF), are
investigated. The calibration of the PRF model can be quite challenging, especially if
a higher number of networks is used. Consequently, we present a calibration strategy
that uses functional relations to describe the parameters along the network elements
in order to reduce the dimensions of the design space for model calibration. To find
the best possible solution, the global optimization algorithm Adaptive Simulated
Annealing (ASA) is used. A simplified one-dimensional representation of the PRF
model is implemented in Matlab to further reduce the computational effort of the
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model calibration. The calibration workflow is successfully tested using a set of
relaxation tests with subsequent unloading at different strain and temperature levels.
A good agreement between the experimental material tests and the simulation results,
using the calibrated PRF model, is observed.

13.1 Introduction

The extrusion blow molding process is one of the most economic methods for the
production of hollow plastic parts like bottles, cans, fuel tanks and large containers.
The process itself can be divided into three main steps. In the first step a hollow tube,
which is called parison, is extruded. Once the parison has reached its final length,
the mold closes and the parison is inflated against the walls of the cooled mold. The
blowing pressure is then maintained until the part solidifies. During the cooling
under mold constraint, thermal stresses build up which lead to shrinkage and warpage
of the final part after demolding. These undesired shape deviations cause major
problems for the blow molding industry. In general, higher demolding temperatures
lead to higher shrinkage and warpage, whereas lower demolding temperatures lead to
a higher amount of residual stresses. In practice, there are several ways to deal with
these difficulties. First, the cooling time can be increased, which leads to a higher
amount of residual stresses and in most cases to an uneconomical production. On the
other hand, the part warpage can be reduced by specific changes to the mold design.
In the latter case, the use of Computer Aided Engineering (CAE) methods at an early
stage of the product development offers great potential. Nevertheless, the prediction
of the process-related shrinkage and warpage is still associated with uncertainties.
One of the major difficulties is the modeling of the complex time-, temperature- and
process-dependent material behavior of semi-crystalline polymers like HDPE. During
processing, the polymer passes various stages in which its mechanical and thermal
behavior drastically changes. The extrusion and inflation takes place at temperatures
above the crystallite melting temperature 𝑇m. In this temperature range, the material
can be assumed as an amorphous melt with low structural stiffness. Below 𝑇m the
material behaves like a thermo-viscoelastic solid.

In literature, only a few research groups have dealt with the shrinkage and warpage
analysis of blow molded parts. A first simulation approach considering the complete
blow molding process including parison formation, clamping, inflation, solidification,
and warpage was introduced by Laroche et al. [1]. They assumed the material
to behave like an isotropic thermorheologically simple solid during the cooling.
A linear viscoelastic material model (fluid-like generalized Maxwell) with three
relaxation times was used in conjunction with the reduced time concept to model
the temperature dependency [1, 2]. The shift function was approximated by the
WLF-equation according to Williams, Landel and Ferry [3]. A good qualitative
agreement between the warpage simulation and experimental measurements of a
plastic fuel tank (PFT) was observed. Debergue et al. [4] investigated the influence of
a small and large displacement approach on the warpage analysis of a blow molded
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automotive part. A fluid-like generalized Maxwell model with 4 relaxation times
was used. The investigation showed that the large displacement approach played a
rather subordinate role in the warpage analysis. In contrast, the authors stated that
part positioning after demolding in conjunction with gravity plays a critical role
for the shrinkage and warpage prediction. A comparison of the simulation results
with experimental warpage measurements under varying process conditions showed
inaccuracies both qualitatively and quantitatively. Further investigations based on
a fluid-like generalized Maxwell model with six relaxation times were carried out
by Benrabah et al. [5]. The main focus of their investigation was the influence of
deflashing on the component warpage. In [6], the implementation of a solid-like
generalized Maxwell model was presented and compared to the fluid-like model. The
warpage deformation of the solid-like model was less than the deformation of the
fluid-like model, which the authors suggested was due to the lower structural stiffness
of the fluid like model below the melting temperature. Finally, in a validation case
study Benrabah et al. [7] observed a good qualitative agreement between the warpage
simulation and experimental measurements of a blow molded PFT. A fluid-like
generalized Maxwell model with five relaxation times was used for the analysis.

In [8], the shrinkage behavior of simple blow molded parts was investigated
under varying process conditions and compared to simulation results. Anisotropic
shrinkage behavior of the investigated parts was observed at which the level of
anisotropy increased with higher degrees of stretching. Experimental measurements
of Ramakers-van Dorp et al. [9] and Grommes et al. [10] on extrusion blow molded
parts showed a rather small anisotropy of the elastic modulus, whereas experiments of
Ramakers-van Dorp [11] showed a pronounced anisotropy of the coefficient of thermal
expansion (CTE). Consequently, an isotropic generalized Maxwell solid model with
19 relaxation times in conjunction with the WLF-equation and orthotropic process-
and temperature-dependent CTE was used in [8]. The simulation results matched the
anisotropic shrinkage values reasonably well.

In summary, the use of linear viscoelastic models can be seen as state of the
art for the shrinkage and warpage simulation of blow molded parts. However, in
case of semi-crystalline polymers like HDPE, linear viscoelastic material behavior
can only be assumed for small stresses and strains. At higher stresses and strains,
HDPE reacts nonlinear viscoelastically. Creep experiments of Lai and Bakker [12] on
HDPE samples indicate a strong nonlinear behavior even at very small stresses. They
suggested that linearity exists only at vanishing small stresses [12]. In literature,several
constitutive equations for the description of nonlinear viscoelastic material behavior
are presented, among others in [13–16]. But only recently, nonlinear viscoelastic
models like the Abaqus (Dassault Systèms) PRF model [16–18] have become available
as standard in commercial finite element software products. However, the use of these
models in the shrinkage and warpage analysis is quite challenging. To cover the
extensive time and temperature range of the shrinkage and warpage analysis, the
model calibration might involve a huge number of material parameters which need
to be identified. Consequently, we present a calibration strategy which reduces the
dimension of the design space by the use of functional relations between the material
parameters. The Abaqus nonlinear viscoelastic PRF model is used, but the general
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procedure can also be applied to similar models like the Parallel Network (PN) model
[19] which is provided by the PolyUMod library (PolymerFEM LLC) [20].

13.2 Material Models

In this study, the Abaqus Parallel Rheological Framework model will be integrated
into the shrinkage and warpage anlysis presented in [8] and compared with the linear
viscoelastic model. In the following, the basic equations and the most important
features of the material models will be discussed. We start with the linear viscoelastic
model implemented in Abaqus which has already been used in [8]. Thereafter, the
nonlinear viscoelastic PRF model will be discussed.

13.2.1 Linear Viscoelastic Material Model

The stress response of a linear viscoelastic material can be described by the following
integral equation:

𝜎(𝑡) =
𝑡∫

0

𝐸R (𝑡 − 𝑠) ¤𝜀(𝑠) d𝑠, (13.1)

where 𝜎(𝑡) is the stress at time 𝑡, ¤𝜀 is the strain rate and 𝐸R (𝑡) is the time dependent
relaxation modulus. The relaxation modulus is often used in a normalized form so
that we obtain:

𝜎(𝑡) = 𝐸
𝑡∫

0

𝑔R (𝑡 − 𝑠) ¤𝜀(𝑠) d𝑠, (13.2)

where 𝐸 is the instantaneous modulus and 𝑔R (𝑡) is the dimensionless relaxation
function. In Abaqus, the normalized relaxation function 𝑔R (𝑡) is approximated by a
Prony series [18]

𝑔R (𝑡) =
𝐸R (𝑡)
𝐸

= 1−
𝑁∑︁
𝑖=1
𝑔𝑖 (1− 𝑒−𝑡/𝜏𝑖 ). (13.3)

In Eq. (13.3) 𝑔𝑖 and 𝜏𝑖 are material parameters, the so called Prony values and
relaxation times. Assuming isotropic material behavior, Eq. (13.2) can be generalized
to multiaxial loading by separating the strain tensor 𝜀𝜀𝜀 into deviatoric and volumetric
parts. For the time dependent Cauchy stress tensor, 𝜎𝜎𝜎 applies [19]:

𝜎𝜎𝜎(𝑡) = 2𝐺
𝑡∫

0

𝑔R (𝑡 − 𝑠) ¤𝜀𝜀𝜀dev (𝑠) d𝑠+𝐾
𝑡∫

0

𝜅R (𝑡 − 𝑠) ¤𝜀𝜀𝜀vol (𝑠) d𝑠, (13.4)
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with the instantaneous shear modulus 𝐺, the normalized shear relaxation function
𝑔R (𝑡), the instantaneous bulk modulus 𝐾 , the normalized bulk relaxation function
𝜅R (𝑡), and the time derivatives of the deviatoric 𝜀𝜀𝜀dev and volumetric 𝜀𝜀𝜀vol parts of
the strain tensor 𝜀𝜀𝜀. Thus, the three-dimensional material behavior can be defined
by two independent relaxation functions, the shear relaxation function, and the bulk
relaxation function.

Temperature effects can be included by the use of the time temperature superposi-
tion (TTS). Therefore, the reduced time 𝜉 (𝑡) is used in Eq. (13.5) [18]

𝜎𝜎𝜎(𝑡) = 2𝐺
𝑡∫

0

𝑔R (𝜉 (𝑡) − 𝜉 (𝑠)) ¤𝜀𝜀𝜀dev (𝑠) ds+𝐾
𝑡∫

0

𝜅R (𝜉 (𝑡) − 𝜉 (𝑠)) ¤𝜀𝜀𝜀vol (𝑠) d𝑠. (13.5)

The reduced time is defined by [18]:

𝜉 (𝑡) =
𝑡∫

0

d𝑠
𝛼(𝜃 (𝑠)) , (13.6)

where 𝛼(𝜃 (𝑡)) is the shift function which can be approximated using the WLF
equation (Eq. (13.7)) or the Arrhenius equation (Eq. (13.8))

log10 (𝛼) = − 𝐶1 (𝜃 − 𝜃Ref)
𝐶2 + (𝜃 − 𝜃Ref)

, (13.7)

ln(𝛼) = 𝐸A

𝑅

(
1
𝑇
− 1
𝑇Ref

)
. (13.8)

The variables 𝐶1 and 𝐶2 are material parameters, 𝐸A is the activation energy, 𝑅
the universal gas constant, 𝜃 the temperature, and 𝜃Ref the reference temperature. For
the Arrhenius equation the temperatures 𝑇 and 𝑇Ref must be specified in Kelvin. In
addition, the instantaneous modulus can also be defined as a function of temperature
[18].

To define thermal expansion behavior of the linear viscoelastic model, Abaqus
allows the use of isotropic and orthotropic thermal expansion coefficients which can
be constant or a function of temperature and field variables [18].

Instead of the previously described integral equation, the linear viscoelastic mate-
rial model can also be derived by differential equations, which in fact is equivalent to
the integral form [19]. The differential form is often used to build rheological models,
which can be constructed using simple rheological spring and dashpot elements.
Therefore, the linear viscoelastic model defined by the Prony series (Eq. (13.3)) is
equivalent to a generalized Maxwell model (Fig. 13.1) [19]. It consists of an arbi-
trary number of Maxwell elements (series of spring and dashpot) in parallel. If an
additional equilibrium network (spring) is used (Fig. 13.1), the material model will
represent a solid behavior [21]. In this case, the stress in a stress relaxation experiment
would relax to a non zero plateau, which is defined by the stress in the equilibrium
network. Without the equilibrium network, the stress would relax to zero, which
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Fig. 13.1 Illustration of the
generalized Maxwell solid
model which consists of a
series of Maxwell elements in
parallel and one equilibrium
network. ...

represents a fluid-like behavior [21]. Rheological models, such as the generalized
Maxwell model are often used as a starting point for the development of nonlinear
viscoelastic models [19]. In Subsect. 13.4.2, the setup of the generalized Maxwell
model is used to develop a simplified one-dimensional model which represents the
nonlinear viscoelastic PRF model.

13.2.2 Abaqus Parallel Rheological Framework Model

Similar to the generalized Maxwell model (Fig. 13.1), the Abaqus PRF model consists
of an arbitrary number of viscoelastic networks in parallel and an optional equilibrium
network [17]. The main difference to the generalized Maxwell model is that nonlinear
hyperelastic models are used for the springs and nonlinear creep laws for the dashpots.
The response of the equilibrium network can be purely elastic or elastoplastic [17]. For
each viscoelastic network 𝑖 = 1,2,3, . . . , 𝑁 , a multiplicative split of the deformation
gradient into an elastic and an inelastic part is assumed [17]

𝐹𝐹𝐹 = 𝐹𝐹𝐹el ·𝐹𝐹𝐹 in. (13.9)

The elastic response of the PRF model can be represented by any hyperelastic
model implemented in Abaqus [18]. Similar to the Prony values 𝑔𝑖 of the linear
viscoelastic model, the stiffness of each network is represented by a stiffness ratio 𝑠𝑖
where the sum of all stiffness ratios must be less or equal to one. In case the stiffness
ratio is equal to one, the model is defined without equilibrium network. The same
hyperelastic model is used for all networks. Using Abaqus, all hyperelastic models
are described by an energy potential𝑈 (𝜀) as a function of the strain [18].

Considering the shrinkage and warpage analysis, the strains are rather small so
that a linear elastic model would do well. Thus a simple Neo-Hookean hyperelastic
model is used in this study. The strain energy potential is given by [18]:

𝑈 = 𝐶10 (𝐼1 −3) + 1
𝐷1

(𝐽el −1)2. (13.10)
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Thereby 𝐶10 and 𝐷1 are material parameters, 𝐼1 is the first deviatoric strain invariant
and 𝐽el is the elastic volume ratio. The viscous behavior for each network is defined
using the creep potential 𝐺 in [18]. The creep potential is given by the equivalent
deviatoric Cauchy stress 𝑝, so that the flow rule can be described as follows [18]:

𝐷𝐷𝐷in =
3

2𝑞
¤̄𝜀in �̄�𝜏𝜏, (13.11)

with
𝑞 = 𝐽 𝑝, (13.12)

where 𝐷𝐷𝐷in is the symmetric part of the velocity gradient 𝐿𝐿𝐿in, �̄�𝜏𝜏 is the deviatoric
Kirchhoff stress, 𝐽 is the determinant of the deformation gradient 𝐹𝐹𝐹, the so called
Jacobien, and ¤̄𝜀in the equivalent creep strain rate. For the evolution of the creep strain
rate, several models are available in Abaqus. These are the power law model, the
strain hardening model, the hyperbolic-sine model, the Bergstrom-Boyce model, and
a user-defined creep model which can be implemented by a user subroutine [18]. In
this study, the strain hardening model (Eq. (13.13)) is used for the evaluation of the
creep strain rate [18]

¤̄𝜀in =
(
𝐴𝑞𝑛 [(𝑚 +1) 𝜀in]𝑚

) 1
𝑚+1

, (13.13)

where 𝜀in is the equivalent inelastic strain and 𝐴, 𝑚 and 𝑛 are material parameters. If
parameter 𝑛 is set equal to one and 𝑚 is set equal to zero, the evolution of the creep
strain rate ¤̄𝜀in is linearized [17].

Similar to the linear viscoelastic model, the reduced time concept can be used to
model temperature effects [18]. In contrast to the linear viscoelastic model where
the same WLF or Arrhenius parameters are used for all networks, the PRF model
allows the specification for each network individually. Alternatively, all parts of the
material model, the instantaneous modulus, the creep model, and the stiffness ratios 𝑠𝑖
can be defined temperature-dependently using tabular values [18]. For temperatures
between the specified temperatures, the material parameters are interpolated. In the
shrinkage and warpage analysis, the temperature changes continuously from a high
temperature to room temperature (RT). Therefore, the reduced time concept is used
in this study to realize a continuous function for the temperature dependence of the
material model.

Currently [18], only isotropic thermal expansion can be used with the Abaqus PRF
model. This excludes the use of orthotropic process-dependent expansion coefficients
as they were used in [8].

13.3 Shrinkage and Warpage Analysis

The simulation workflow for the shrinkage and warpage analysis of extrusion blow
molded parts has been described in detail in [8], so that we will only recall the most
important parts for this study. Considering a complex extrusion blow molded part, at



212 Patrick Michels et al.

least three simulation steps are necessary for the shrinkage and warpage prediction.
The first step is the process simulation of the parison inflation to determine the
process-related wall thickness distribution. After the process simulation, the cooling
of the part inside the closed mold and at ambient air after demolding is analyzed.
The transient temperature field is then used in a subsequent shrinkage and warpage
analysis to determine the part deformation. For the process simulation, currently
B-SIM of Accuform, a finite element based process simulation software for blow
molding applications, is used. The resulting wall thickness distribution as well as
local degrees of stretching and their orientation are mapped to the finite element
mesh of the following analysis steps using the MpCCI Mapper of Fraunhofer SCAI.
Since blow molded parts are thin-walled components, shell elements are used for
the cooling and warpage analysis. The part cooling is analyzed in two steps using
Simulia Abaqus (Dassault Systèms). In the first step, the part cools down under
mold constraint. Due to the contact with the cooled mold, the outer surface cools
down rapidly whereas the inner surface cools down much slower. After demolding,
further cooling takes place at ambient air until RT is reached. Similarly to the cooling
simulation, the shrinkage and warpage analysis is also carried out in two steps using
Abaqus. In the first step, all degrees of freedom of all nodes are fixed so that thermal
stresses will build up during the cooling under mold constraint. In the second step,
the boundary conditions are changed so that the part can shrink and warp freely due
to the accumulated thermal stresses and further temperature changes at ambient air.

In this study, we will focus on a one-element simulation of the shrinkage analysis
which sufficiently represents a local area of a complex blow molded part. The cooling
simulation will be carried out using the simulation model published in [8]. A wall
thickness of 2mm and a cooling time of 60s is used. The required temperature-
dependent material data for density, thermal conductivity, and heat capacity as well as
the heat transfer coefficients are taken from [8, 22, 23]. For the shrinkage and warpage
analysis, the thermal expansion behavior and the mechanical material behavior need to
be defined. Because the thermal expansion behavior of HDPE is highly temperature-
dependent, a temperature-dependent CTE is taken from literature [22, 23] (Fig.
13.2). The CTE was determined from Pressure-Volume-Temperature (P-V-T) data
at a pressure of approximately 0.1 N/mm2 [22, 23]. The peak at 130 ◦C marks the
crystallite melting temperature where the volume of the polymer drastically changes.

For the definition of the mechanical behavior, a master curve was obtained from
dynamic mechanical analysis (DMA) using frequency sweeps in the temperature
range of −20−120 ◦C [8]. The WLF equation was used to shift the isothermals of the
temperature-frequency-sweeps with RT as 𝜃Ref to obtain a continuous master curve
at RT. The storage modulus 𝐸 ′ was then converted from the frequency domain to the
time domain using the following approximation formula [24, 25]:

𝑡 =
1

2𝜋 𝑓
. (13.14)

Considering the part cooling, a large temperature range from about 200 ◦C to RT
needs to be considered. After demolding, a viscoelastic retardation occurs, due to
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Fig. 13.2: Material data for the shrinkage and warpage analysis. a) Experimental master curve
obtained from DMA experiments [8]. The master curve is fitted by a sigmoid function and
extrapolated to cover the whole time range; b) Temperature-dependent CTE [22, 23].

the accumulated thermal stresses [26]. This retardation can take several hours to
days. To cover the extensive time and temperature range in the material modeling,
the experimental master curve is extrapolated. Due to the typical s-formed shape, a
sigmoid function is used to fit and extrapolate the experimental data. The extrapolated
master curve is given by Eq. (13.15) (Fig. 13.2)

𝑓 (𝑡) = −1201.79tanh
(
log10 (𝑡) −0.449

6.37

)
+1201.79. (13.15)

Using one relaxation time per decade, the linear viscoelastic model is calibrated
using Eq. (13.3) with 37 prony terms (Fig. 13.3). The same relaxation function is
used for the normalized shear and bulk relaxation function 𝑔𝑅 (𝑡) and 𝜅𝑅 (𝑡). The
Poissons ratio is set to 0.5, so that incompressibility is assumed. For the temperature
dependence of the material model, the reduced time concept is applied, using the
WLF equation for the approximation of the shift function. The WLF coefficients of
the master curve creation are used in the simulation model.

At the crystallite melting temperature 𝑇m, the material behavior changes from
a thermo-viscoelastic solid to a thermo-viscoelastic fluid with a structural stiffness
of almost zero. It is therefore assumed that the evolution of thermal stresses in the
shrinkage analysis starts at temperatures below 130 ◦C. To ensure that no thermal
stress is stored in the material model at temperatures above 130 ◦C, the CTE is set
to zero (Fig. 13.3). Since the demolding temperatures are usually below 130 ◦C, free
shrinkage at temperatures above 130 ◦C can be ruled out.

If the nonlinear viscoelastic PRF model is used with the reduced time concept to
model temperature effects, the short relaxation times will cause convergence problems
at high temperatures. This is because the already short relaxation times will be further
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Fig. 13.3: Material data for the shrinkage and warpage analysis. a) Experimental master curve
obtained from DMA experiments [8] which is extrapolated using a sigmoid function. A Prony
series is used to fit a linear viscoelastic material model (generalized Maxwell solid model) to the
sigmoid function; b) Temperature-dependent CTE according to [22, 23], and modified CTE which
is set to zero for temperatures which are above the crystallite melting temperature.

shortened by the use of the WLF or Arrhenius equation. However, in a shrinkage and
warpage analysis, high strain rates will only occur at very high temperatures at the
outer surface where the cooling rate is high. Below 130 ◦C, the cooling rate is much
lower. For the use of the PRF model, the short time behavior between 10−18 and 1.0s
is neglected. The prony series is then modeled at RT with an instantaneous modulus
of 1450N/mm2 and the first relaxation time is set to 1.0s. 19 Prony terms are used to
model the material behavior in the range 1.0s until 1018 s. To validate this approach,
a shrinkage analysis using a linearized version of the PRF model with 19 networks is
carried out and compared to a shrinkage analysis using the linear viscoelastic model
with 19 and 37 networks respectively.

For small strains, the response of the Neo-Hookean model will be similar to a linear
elastic model. At these small strains, the nonlinear behavior of the PRF model results
mainly from the viscous flow which is modeled by the strain hardening model (Eq.
(13.13)). To obtain a linear viscoelastic representation of the PRF model, the strain
hardening model needs be converted to linear flow. This can be achieved by setting
the 𝑛-parameter of each viscoelastic network 𝑖 equal to one and the 𝑚-parameter
equal to zero. The parameter 𝐴𝑖 for each network can then be calculated using the
instantaneous elastic modulus 𝐸 , the Prony values 𝑔𝑖 , and relaxation times 𝜏𝑖 of each
network of the linear viscoelastic model as follows:

𝐴𝑖 =
1

𝐸 𝑔𝑖 𝜏𝑖
. (13.16)

For the elastic part of the PRF model, the parameter 𝐷1 of the Neo-Hookean
model (Eq. (13.10)) is set to zero to obtain incompressibility. The parameter 𝐶10 can
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then be determined using the instantaneous elastic modulus and the Poissons ratio of
the linear viscoelastic model (Eq. (13.17)). The stiffness ratios will be equal to the
Prony values of the linear model (𝑠𝑖 = 𝑔𝑖).

𝐶10 =
𝐸

2 [2 (1+ 𝜈)] =
𝐸

6
. (13.17)

The results of the two linear viscoelastic models with 37 and 19 prony terms are
compared to the linearized PRF model in Fig. 13.4. Fig. 13.4a shows the thermal
stress accumulated during the cooling under mold constraint. The stress at the outer
surface is much higher due to the higher cooling rate. Fig. 13.4b shows the viscoelastic
retardation for a period of 24h after demolding. The response of the linear viscoelastic
model is exactly the same if the prony series is reduced from 37 to 19 terms. The
linearized PRF model deviates slightly from the linear viscoelastic representation
(Fig. 13.4). However, since the differences are quite small, numerical reasons are
suspected.
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Fig. 13.4: Comparison of a one-element shrinkage analysis using a linear viscoelastic model with
37 Prony terms, a linear viscoelastic model with 19 Prony terms and a linearized PRF model with
19 networks (NW). a) Build up of thermal stresses of the inner and outer surface during cooling
under mold constraint; b) Shrinkage for a period of 24h after demolding.

13.4 Calibration Strategy

Due to the complexity of the PRF model, an elaborate calibration strategy is needed
to find suitable material parameters to match a set of experimental measurement data.
Using the strain hardening model, each network is described by the four material
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parameters 𝑠𝑖 , 𝐴𝑖 , 𝑛𝑖 and 𝑚𝑖 . In addition, the modulus of the entire network and the
activation energy of the Arrhenius equation also have to be determined. Even if only
three networks are used, the total amount of parameters to be identified is 14. For
six networks 26 parameters and for 12 networks 50 material parameter need to be
identified. It can be expected that for a nonlinear viscoelastic model, less networks are
needed compared to the linear viscoelastic model. However, considering a large time
and temperature range to cover, several networks might be necessary for an accurate
representation of the experimental data. This involves the determination of a large
set of material parameters. The associated objective function of the optimization
problem to solve might have many local minima. To find the best possible solution,
the use of global optimization methods is necessary.

In the following, a calibration strategy is presented, which uses functional relations
to describe the material parameters of the individual networks. Thus, the dimension
of the design space is reduced to a manageable number. However, the use of a global
optimization strategy is still associated with high computational effort if a large
number of optimization loops is involved. In each optimization loop, a numerical
model of the experiment is computed and the results are compared to the measurement
data. The most expensive part is the numerical simulation of the material test. If a
finite element analysis using Abaqus is carried out, even if just one element is used,
several seconds are needed for the verification of license and the interpretation of the
input deck. To save computation time, a simplified numerical model which represents
the PRF model is implemented in Matlab. In the following, the material data for
the model calibration as well as the reduction of the material parameters and the
computation time is explained in detail.

13.4.1 Experimental Data

The shrinkage and warpage analysis can be divided into a loading phase in which
thermal stresses will build up and relax during the cooling under mold constraint,
followed by an unloading (demolding) where the part is free to shrink. For the model
calibration, a set of experiments is used which involves a loading and relaxation
phase followed by an unloading phase. Therefore, relaxation tests with subsequent
unloading at several temperature and strain levels are carried out using a Zwick Kappa
Multistation. Material samples of type 1A (DIN EN ISO 527-2) of the blow mold-
ing HDPE grade Lupolen 5021DX (LyondellBasell) were taken from compression
molded plates (polystat 200 T/2, Servitec, at 210 ◦C and 200bar (2 107 Pa) for 70s)
with 2mm thickness. At RT, three different strain levels (0.5%,1.0% and 2.0%) were
investigated. The highest strain level was also tested at different temperatures (RT,
40 ◦C,60 ◦C, 80◦C and 100 ◦C). For each test point, the average of three measurements
is taken. At the beginning of the loading phase, a constant strain rate of 0.0015s−1

was applied to the sample until the specified strain level was reached. The strain level
was then held constant (strain controlled) for a period of 600s to measure the stress
relaxation response. At the end of the loading phase, the sample was unloaded (force
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controlled) with a force rate of 300N/s. The force was then held constant at zero N
for a period of 1800s to measure the viscoelastic retardation. Fig. 13.5 shows the
measured stresses and strains of the relaxation tests with subsequent unloading.

13.4.2 Implementation of a One-Dimensional Model to Reduce
Computation Time

To develop an efficient numerical model which represents the PRF equations of a
relaxation test with subsequent unloading, four steps are considered. The first step
covers the loading, assuming a constant strain rate. Once the final strain is reached,
it is held constant over a defined period of time. The third step covers the unloading,
assuming a constant stress rate. Once the stress approaches zero, it is held at zero for a
defined period. The Matlab implementation will be a one-dimensional representation
of the material equations of the PRF model. In contrast to the Abaqus model, only
the material equations are solved, so that no spatial discretization is needed. This
reduces the system of partial differential equations (PDE) to a system of ordinary
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differential equations (ODE) which can be efficiently solved using a suitable ODE
solver.

For the model we start with the total stress 𝜎total of the framework, which is the
sum of all network stresses 𝜎𝑖

𝜎total = 𝜎0 +
𝑁∑︁
𝑖=1
𝜎𝑖 . (13.18)

The total strain is equivalent in each network element due to the parallel arrangement
(Fig. 13.1) and is decomposed additively into an elastic part (spring) and an inelastic
part (dashpot)

𝜀total = 𝜀
el
𝑖 + 𝜀in

𝑖 . (13.19)

Since the strains in the performed material tests are small, it can be assumed that
a linear elastic material model is sufficient for the description of the springs. The
stress of each network is then calculated by Hooke’s law:

𝜎𝑖 = 𝜀
el
𝑖 𝐸𝑖 , (13.20)

where 𝐸𝑖 is the elastic modulus of the 𝑖’th network. For the stress of the equilibrium
network applies:

𝜎0 = 𝜀total 𝐸0. (13.21)

The strain rate of the dashpots is represented by the strain hardening model.

¤𝜀𝑖 in =
(
𝐴𝑖𝜎

𝑛𝑖
𝑖
[(𝑚𝑖 +1) 𝜀in

𝑖 ]𝑚𝑖

) 1
𝑚𝑖+1

, (13.22)

where ¤𝜀𝑖 is the inelastic strain rate of the network, and 𝐴𝑖 , 𝑛𝑖 and 𝑚𝑖 are material
parameters. By taking the time derivative of Eq. (13.19) and (13.20), we obtain:

¤𝜀total = ¤𝜀el
𝑖 + ¤𝜀in

𝑖 , (13.23)

and
¤𝜎𝑖 = ¤𝜀el

𝑖 𝐸𝑖 . (13.24)

Substituting Eq. (13.22) and Eq. (13.24) into Eq. (13.23) and rearranging gives
an ordinary differential equation of the form 𝑓 (𝑡,𝜎𝑖 , ¤𝜎𝑖) = 0 for the 𝑖’th network

¤𝜎𝑖 = ¤𝜀total 𝐸𝑖 −𝐸𝑖

(
𝐴𝑖 𝜎

𝑛𝑖
𝑖
[(𝑚𝑖 +1) 𝜀in

𝑖 ]𝑚𝑖

) 1
𝑚𝑖+1

. (13.25)

Equation (13.25) still contains the unknown inelastic strain 𝜀in
𝑖

. By replacing 𝜀in
𝑖

by the expression 𝜀total − 𝜎𝑖

𝐸𝑖
, a differential equation is obtained which contains only

known quantities

¤𝜎𝑖 = ¤𝜀total 𝐸𝑖 −𝐸𝑖

(
𝐴𝑖𝜎

𝑛𝑖
𝑖

[
(𝑚𝑖 +1)

(
𝜀total −

𝜎𝑖

𝐸𝑖

)]𝑚𝑖
) 1

𝑚𝑖+1

. (13.26)
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To model the temperature dependency of the material model, the inelastic strain rate
of each network is divided by the shift factor 𝛼(𝑇)

¤𝜎𝑖 = ¤𝜀total 𝐸𝑖 −
𝐸𝑖

(
𝐴𝑖𝜎

𝑛𝑖
𝑖

[
(𝑚𝑖 +1)

(
𝜀total − 𝜎𝑖

𝐸𝑖

)]𝑚𝑖
) 1

𝑚𝑖+1

𝛼(𝑇) . (13.27)

The shift factor is calculated using the Arrhenius equation (Eq. (13.8)). The stresses
𝜎𝑖 of the 𝑁 individual networks are obtained by solving Eq. (13.27) with an ODE
solver. The Matlab solver ode15s turned out to be very efficient for this kind of
problem.

Depending on the choice of the parameters 𝑚𝑖 and 𝑛𝑖 , numerical difficulties can
occur if the network stress 𝜎𝑖 is negative. This can in some cases lead to complex
numbers. In order to deal with these difficulties, Eq. (13.27) is modified as follows:

¤𝜎𝑖 = ¤𝜀total 𝐸𝑖 −
𝜎𝑖

|𝜎𝑖 |

𝐸𝑖

(
𝐴𝑖 |𝜎𝑖 |𝑛𝑖

[
(𝑚𝑖 +1)

���𝜀total − 𝜎𝑖

𝐸𝑖

���]𝑚𝑖
) 1

𝑚𝑖+1

𝛼(𝑇) . (13.28)

By taking absolute values of 𝜎𝑖 and 𝜀total − 𝜎𝑖

𝐸𝑖
, complex numbers are ruled out. The

term 𝜎𝑖

|𝜎𝑖 | is introduced to define the direction of the viscous flow.
For the unloading phase and the subsequent holding phase, the external stress rate

respectively the external stress (which is zero) is specified but the internal network
stresses and stress rates are unknown. Therefore, instead of the equation for the entire
system, the differential equations of the dashpots are considered (Eq. (13.22)). The
unknown network stress 𝜎𝑖 is replaced by the expression 𝐸𝑖 (𝜀total−𝜀in

𝑖
). One obtains:

¤𝜀𝑖 in =
(𝐸𝑖 (𝜀total − 𝜀in

𝑖
))

|𝐸𝑖 (𝜀total − 𝜀in
𝑖
) |

(
𝐴𝑖 |𝐸𝑖 (𝜀total − 𝜀in

𝑖
) |𝑛𝑖 [(𝑚𝑖 +1) | 𝜀in

𝑖
| ]𝑚𝑖

) 1
𝑚𝑖+1

𝛼(𝑇) . (13.29)

To solve this ODE, it is necessary to replace the total strain with known quantities.
For the equilibrium network applies:

𝜎0 = 𝜎total −
𝑁∑︁
𝑖=1

(𝜀total 𝐸𝑖 − 𝜀in
𝑖 𝐸𝑖). (13.30)

If we substitute this expression into Eq. (13.21) and rearrange, we get the following
equation:

𝜀total =

𝜎total

𝐸0
+

𝑁∑︁
𝑖=1
𝜀in
𝑖

𝐸𝑖

𝐸0

1+
𝑁∑︁
𝑖=1

𝐸𝑖

𝐸0

. (13.31)
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By substituting 𝜀total in Eq. (13.29) by Eq. (13.31), the inelastic strain of the 𝑖’th
network can be computed using the elastic moduli and inelastic strains of all 𝑁
networks. The system of coupled differential equations is also solved with the Matlab
solver ode15s.

So far, the moduli of the individual networks are specified directly. Alternatively,
stiffness ratios as used by Abaqus can be specified to define the stiffness of each
network. In this case, the total elastic modulus 𝐸total of all networks and a stiffness
ratio 𝑠𝑖 for each network will be specified. The moduli 𝐸𝑖 of each network is then
calculated by the following equations:

𝐸𝑖 = 𝑠𝑖 𝐸total. (13.32)

For the modulus of the equilibrium network applies:

𝐸0 = 𝐸total −
𝑁∑︁
𝑖=1
𝑠𝑖 𝐸total. (13.33)

13.4.3 Reduction of Material Parameters

To reduce the amount of parameters in the model calibration, we start with the prony
fit of the linear viscoelastic model to the extrapolated sigmoid curve. The sigmoid
curve was fitted by the prony series using one relaxation time 𝜏 per decade. If we plot
the Prony values over the network number, they can be approximated by a normalized
Gaussian function (Eq. (13.34), Fig. 13.6)

𝑠𝑖 =
1

12.9
e
(
− 1

2 ( 𝑖−19.8
5.15 )2

)
. (13.34)

Using the Gauss function for the description of the stiffness ratio of each network
”𝑖”, a normalization is needed to ensure that the sum of all stiffness ratios is always
smaller or equal to one. We start with the Gauss function without normalization. The
parameters 𝑝𝑠1 and 𝑝𝑠2 are used to modify the distribution of the stiffness ratios 𝑠𝑖

𝑠𝑖 = e

(
− 1

2

(
𝑖−𝑝𝑠1
𝑝𝑠2

)2
)
. (13.35)

The parameter 𝑝s1 is used to shift the Gauss function on the abscissa. Parameter 𝑝s2
can be used to change the curvature. In the next step, the sum of the stiffness ratios
of all networks is calculated

𝑠sum =

𝑁∑︁
𝑖=1
𝑠𝑖 . (13.36)

The normalized Gauss function is obtained as follows:
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𝑠𝑖norm =
𝑝s3

𝑠sum
e

(
− 1

2

(
𝑖−𝑝s1
𝑝s2

)2
)
. (13.37)

Using the parameter 𝑝s3, the sum of the stiffness ratios can be modified to obtain
values less than one. Thus, the stiffness ratio of an arbitrary number of networks
is described by just three parameters. Also the sum of the stiffness ratios is always
less or equal to one, so that no restrictions are necessary within the optimization. As
presented in Sect. 13.3, the short-time behavior of the master curve will be neglected
to overcome convergence problems at higher temperatures. The first relaxation time
𝜏𝑖 is set to 1.0s, so that 19 networks are used in total. Therefore, the Gauss function
is shifted using parameter 𝑝s1.

The relaxation times 𝜏𝑖 of the prony series are held constant to ensure that the
distribution of the stiffness ratios follows Eq. (13.37). For the PRF model, we assume
that the 𝐴-values can be calculated by Eq. (13.16) using the stiffness 𝑠𝑖 𝐸 and the
relaxation time 𝜏𝑖 . For the linearized PRF model (𝑛𝑖 = 1 and 𝑚𝑖 = 0), the inelastic
strain rate of the strain hardening model (Eq. (13.22)) is proportional to the stress
𝜎𝑖 . However, for 𝑛 > 1 and 𝑚 < 0 the strain hardening law becomes nonlinear. As
the network stress 𝜎𝑖 is raised to the power of 𝑛𝑖 ,the inelastic strain rate increases
nonlinearly with increasing stress. At stresses below 1N/mm2 the strain rate will be
even slower compared to a linearized model and it drastically increases for higher
𝑛-values if the stress increases. If higher stresses are involved it might be necessary
to adjust the 𝐴-values of the networks. However, the stresses for the investigated
HDPE are rather moderate (less than 15N/mm2, Fig. 13.5). Using 19 networks, the
individual network stress 𝜎𝑖 will be close to one for most networks. In this case, the
inelastic strain rate will be a nonlinear function of the applied stress but it won’t differ
too much from the strain rate of the linearized model. Therefore, it seems reasonable
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to use constant relaxation times 𝜏 of the linear model to calculate the 𝐴-values of the
PRF-model via Eq. (13.16). The 𝐴-values are thus excluded from the design space
of the parameter optimization.

Similarly to the stiffness ratios, 𝑛- and 𝑚-parameters of all networks will also
be described using a suitable functional relation. In order to ensure stability of the
model over the entire time and temperature range, the following boundaries are set:

1.0 ≤ 𝑛𝑖 ≤ 5.0, (13.38)

−0.7 ≤ 𝑚𝑖 ≤ 0.0. (13.39)

In contrast to the stiffness ratios, a suitable distribution of the 𝑛- and𝑚-parameters
with respect to the network number is unknown. However, it is assumed that the
individual 𝑛- and 𝑚-parameters can be represented by a monotonically increasing or
decreasing function. A sigmoid function using four parameters is used for the distri-
bution. Depending on the parameter selection, the sigmoid function can describe an
s-curve, a curve or even a constant (Eq. (13.40), (13.41)). Some possible distributions
for the parameters 𝑠, 𝑛, and 𝑚 are shown in Fig. 13.7.

𝑛𝑖 = 𝑝n1 + ((𝑝n1 −1) 𝑝n2) tanh
(
𝑖− 𝑝n3

𝑝n4

)
, (13.40)

𝑚𝑖 = 𝑝m1 + (𝑝m1 𝑝m2) tanh
(
𝑖− 𝑝m3

𝑝m4

)
. (13.41)

Using the described Gauss and sigmoid functions, the design space for the model
calibration is reduced to 11 parameters independent of the amount of networks.
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13.4.4 Calibration Workflow

For the calibration of the PRF model, the process automation and design exploration
software tool Simulia Isight (Dassault Systèmes) is used. The complete optimization
workflow is illustrated in Fig. 13.8.

Fig. 13.8: Optimization workflow using the process automation and design exploration software
Simulia Isight.
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The global optimization algorithm Adaptive Simulated Annealing is used with
a total amount of 10,000 design loops. This algorithm is well suited for the search
of a global optimum especially for highly nonlinear problems with short calculation
times [18]. In each design loop of the optimization, a Matlab component is executed
which runs a numerical model of the experimental test. The Matlab model which
represents the material tests at RT is used to simulate all three strain levels. All testing
temperatures run in parallel, so that all 10,000 runs are calculated in less than three
hours on a personal computer.

The data matching components are used for the calculation of the sum of the
absolute difference between points on the simulated curves and the experimental
curves. The simulation data is therefore interpolated to the measurement data. The
error of the loading and unloading phase is calculated separately. After the error
calculation, a script component is used to normalize the data to obtain an error value
in percent. This is necessary in order to achieve equal weighting to loading and
unloading. Thus the error of each virtual experiment phase is calculated as follows:

Err =

𝑁∑
𝑗=1

|𝑌 𝑗exp −𝑌 𝑗sim |

𝑁∑
𝑗=1
𝑌 𝑗exp

·100%, (13.42)

where Err is the error value in %, 𝑌 𝑗exp is the experimental value at data point 𝑗 , and
𝑌 𝑗sim is the simulated value at data point 𝑗 . To obtain the total error of all experiments,
the average of all error values is calculated.

The calibration workflow using the Gauss and sigmoid functions for the parameter
reduction is tested and compared to an optimization where the parameters are varied
freely between boundaries. Using the free parameter variation, the stiffness of the
networks is specified directly by the elastic modulus of the network to avoid violation
of the condition that the sum of all stiffness ratios must be less or equal to one. The
parameters as well as their boundaries of the free parameter variations are given
by Table 13.1. For all model calibrations, the Arrhenius function using the same
activation energy 𝐸A for all networks is used. For the calibration model which uses
the Gauss and sigmoid functions to describe the parameters 𝑠𝑖 , 𝑛𝑖 , and 𝑚𝑖 , the elastic
modulus of the whole network 𝐸total is also used as a parameter in the calibration
process. The lower boundary is set to 1,000N/mm2 and the upper boundary is set
to 2,000N/mm2. The free optimization is tested with different numbers of networks,
that is to say three, six and 12. Table 13.2 gives an overview over the different models
which are used in the calibration process.

13.5 Results

Using the model variations shown in Table 13.2 the PRF model was calibrated
using the experimental measurement data illustrated in Fig. 13.5. The overall errors
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Table 13.1: Boundaries of the free parameter variations.

Parameter lower bound upper bound

𝐸0 1
N

mm2 700
N

mm2

𝐸𝑖 1
N

mm2 700
N

mm2

𝐴𝑖 10−15
(

N
mm2

)−𝑛
s−𝑚−1 10−3

(
N

mm2

)−𝑛
s−𝑚−1

𝑚𝑖 −0.7 0.0

𝑛𝑖 1.0 5.0

𝐸𝐴 100, 000
J

mol
300, 000

J
mol

Table 13.2: Model variations which are tested in the model calibration.

NW Model Parameter Parameter

Variation Amount

3 PRF free 14

6 PRF free 26

12 PRF free 50

19 PRF function 13

of the model calibrations are shown in Table 13.3. Comparing the results of the
free parameter variation with the use of functional relations between the individual
network parameters, it can be seen that the latter approach achieves the best results
with an error of about 5.9% (Table 13.3). The poorest result is obtained by the PRF
model with just three networks, with an error of 20.3%. Doubling the number of
networks from three to six halves the error. A further duplication from six to 12
networks leads to slightly poorer results.

Figure 13.9 shows the distribution of 𝑠𝑖 , 𝑛𝑖 , and 𝑚𝑖 of the best design point. It is
clearly visible that the stiffness ratios become zero after the ninth network. In this
case the amount of networks can be reduced to nine. The results are identical to
the results using 19 networks. The 𝑛-values show a monotonically increasing trend,
whereas the 𝑚-values lie on a decreasing s-curve.

Figure 13.10 shows a comparison between the results of the Matlab models
and Abaqus finite element simulations for the best design point. The results are in
very good agreement. Only at the highest strain level, a negligible deviation in the
unloading phase can be observed.
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Table 13.3: Representation of the error value of the free model calibration using three, six and 12
networks compared to the error of the model calibration using functional relations between the
network parameters.

NW Model Parameter Parameter Error

Variation Amount

3 PRF free 14 20.3%

6 PRF free 26 10.8%

12 PRF free 50 11.5%

19 PRF function 13 5.9%
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Fig. 13.9: Distribution of the material parameters of the individual networks for the best design
point. a) Distributions of the stiffness ratios 𝑠𝑖 using the three parameter description of the
Gaussian function; b) Distributions of the 𝑛-values using the four parameter sigmoid function;
c) Distributions of the 𝑚-values using the four parameter sigmoid function.

Comparing the Abaqus results of the best design point to the experimental data,
a good agreement is observed (Fig. 13.11). The stress relaxation curve at 2% and
100 ◦C with an error of 24%, the stress relaxation curve at 2% strain at RT with
19% error, and the unloading curve at 2% strain and 80 ◦C with an error of about
13% show the largest deviation. All other curves are in good agreement with the
experimental data.

In Fig. 13.12, the PRF model using the parameters of the best design point is
integrated in the shrinkage model and the results are compared to the results of the
linear viscoelastic model which was calibrated using the master curve. The stress
history of the PRF model during the cooling under mold constraint is similar to
the linear viscoelastic model. However, the stresses of the PRF model are a slightly
lower than the stresses of the linear viscoelastic model. Moreover, the difference in
stress between the inner surface and the outer surface is smaller for the PRF model.
Comparing the shrinkage behavior in the first 24h, the PRF model shows a stronger
retardation.
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Fig. 13.10: Comparison of the results of the numerical model implemented in Matlab with an
Abaqus finite element simulation at the best design point. a) Stresses of the loading phase for the
three different strain levels at RT; b) Strains of the unloading phase for the three different strain
levels at RT; c) Stresses of the loading phase at a strain level of 2.0% at different temperatures; d)
Strains of the unloading phase at a strain level of 2.0% at different temperatures.

13.6 Discussion and Outlook

As shown in Table 13.3, the calibration workflow using functional relations between
the parameters of the individual networks achieved the best results so far. This could
be explained by the fact that a sufficient number of networks is used, whereas the
amount of material parameters which need to be identified is still low. The poor
results of the free calibration using only three networks (error of 20.3%) indicate that
three networks in conjunction with the Arrhenius function seem insufficient to cover
the entire time and temperature range of the experiments. Increasing the amount of
networks to six improves the result significantly, but the error is still twice as large as
the best solution of the calibration workflow using functional relations between the
parameters of the individual networks. It can be assumed that at least up to a certain
point, an increasing number of networks improves the prediction accuracy of the
model. However, the use of more networks is always associated with a higher amount
of material parameters which need to be identified. Using a global optimization
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Fig. 13.11: Comparison of the Abaqus finite element simulation at the best design point with the
experimental measurement data. a) Stresses of the loading phase for the three different strain levels
at RT; b) Strains of the unloading phase for the three different strain levels at RT; c) Stresses of the
loading phase at a strain level of 2.0% at different temperatures; d) Strains of the unloading phase
at a strain level of 2.0% at different temperatures.

approach, the global minimum might be found with a certain probability but there is
no guarantee that it is actually found by a finite number of function evaluations [27].
The fact that the use of six networks achieved a slightly better result than the use of 12
networks (Table 13.3) indicates that the number of material parameters might be too
high to find a good solution using 10,000 design evaluations. In this case, a higher
amount of design evaluations could be necessary. The calibration approach, which
uses functional relations to describe the parameters of the networks, requires only
13 parameters regardless of the number of networks. Furthermore, a lot of parameter
permutations are excluded because the parameters of the individual networks are
described by continuous functions which are either increasing or decreasing. Another
interesting fact is that the calibration using functional relations seems to reduce the
amount of networks. In this case, the optimization was started with 19 networks but
it seems that nine networks are sufficient to match the experimental data with high
accuracy.
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Fig. 13.12: Comparison of a one-element shrinkage analysis using a linear viscoelastic model with
37 Prony terms and the calibrated PRF model of the best design point. a) Build up of thermal
stresses of the inner and outer surface during cooling under mold constraint; b) Shrinkage for a
period of 24h after demolding.

Alternatively to the use of the reduced time concept for the modeling of temper-
ature effects, the instantaneous modulus, the stiffness ratios, and the creep model
can be defined as temperature dependent by tabular values. The amount of networks
necessary to cover the entire time and temperature range might be reduced in this case.
However, the main advantage of the reduced time concept is that the temperature de-
pendency is described by a continuous shift function. Thus, an extrapolation to higher
temperatures seems reasonable, since the shift functions are based on experimental
observations. This is essential, since experimental investigations at temperatures
between 100 ◦C and 130 ◦C are difficult due to low structural stiffness at this tem-
perature range. Nevertheless, the alternative temperature-dependent modeling using
tabular values should be investigated in future work. Therefore, the use of functional
relations between the parameters of the different temperature levels could also be a
promising approach for a successful model calibration, especially if extrapolation to
higher temperatures is necessary. In this case, the more temperature levels are tested,
the better. Even if not all temperature levels are used in the model calibration, the
temperature levels between the calibrated curves can be used for validation purposes.
Furthermore, alternative nonlinear viscoelastic material models like the PN model
provided by the PolyUMod library (PolymerFEM LLC) [20] should be investigated.
One of the main disadvantages of the PRF model is that currently only isotropic
thermal expansion is supported. The PN model also supports the use of constant
orthotropic thermal expansion [28]. Piece-wise linear thermal expansion, which can
be used to model the temperature dependency of the CTE, is currently only supported
for isotropic behavior [28].

The integration of the calibrated PRF model in the shrinkage and warpage analysis
leads to lower stresses during the cooling under mold constraint compared to the
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linear viscoelastic model (Fig. 13.12a). This is reasonable, since the linear viscoelastic
model usually overestimates the stresses at higher strain levels. Moreover, the smaller
stress difference between the inner and outer surface at the time of demolding (60s)
can be explained by the fact that the inelastic strain rate increases at higher stresses, so
that the relaxation will be accelerated. Nevertheless, the experimental data base which
was used for the model calibration in this study is relatively small. For a successful
calibration covering the entire time and temperature range of the shrinkage and
warpage analysis, an extensive experimental database is needed. Additionally, the
various strain levels should be investigated at all temperature levels. For a comparison
of the PRF model and the linear viscoelastic model in terms of prediction accuracy, an
extensive experimental database considering shrinkage and warpage is needed. The
database used in [8] was limited and the part shrinkage was measured six days after
demolding, so that it does not provide information about the viscoelastic retardation in
the first hours after demolding. Experimental data of the dynamic shrinkage behavior
of simple blow molded parts for an extensive set of process conditions, as well as
experimental warpage data of complex blow molded parts could provide valuable
information for the model validation.
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