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Preface

Creep mechanics deals with theoretical and experimental approaches to the analysis
of time-dependent changes of stress and strain states in engineering components up
to the critical stage of rupture. Since 1960 there is a tradition to organize IUTAM
symposium Creep in Structures every ten years:

1. 1960 - Stanford,
2. 1970 - Gothenburg,
3. 1980 - Leicester,
4. 1990 - Cracow, and
5. 2000 - Nagoya.

The IUTAM symposium Advanced Materials Modelling for Structures, held in Paris
in 2012, was continuation and a new version of Creep in Structures with the focus
on new materials and on generalized and unified models of inelastic deformation.

During the last decade, many advances and new results in the field of Creep
Mechanics were established. Examples include: interlinks of mechanics with mate-
rials science in multi-scale analysis of deformation and damage mechanisms over
a wide range of stresses and temperature; development and analysis of new alloys
for (ultra)high-temperature applications; formulation and calibration of advanced
constitutive models of inelastic behavior under transient loading and temperature
conditions; development of efficient procedures and machine learning techniques
for identification of material parameters in advanced constitutive laws; introduction
of gradient-enhanced and non-local theories to account for damage and fracture
processes; and application of new experimental methods, such as digital image
correlation, for the analysis of inelastic deformation under multi-axial stress state.

To discuss these recent developments the well-established IUTAM series is contin-
ued. This volume of the Advanced Structured Materials Series contains a collection
of contributions on advanced approaches of Creep Mechanics. They are presented
in the IUTAM Symposium Creep in Structures VI in Magdeburg, Germany, 18-22
September 2023.

We would like to acknowledge the series editor Professor Andreas Öchsner for
giving us the opportunity to publish this volume. We would like to acknowledge
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Dr. Christoph Baumann from Springer Publisher for the assistance and support during
the preparing the book.

Magdeburg, Holm Altenbach,
September 2023, Konstantin Naumenko



Contents

1 Phase-Field Damage Modeling in Generalized Mechanics by using a
Mixed Finite Element Method (FEM) . . . . . . . . . . . . . . . . . . . . . . . . . . 1
Bilen Emek Abali
1.1 Introduction to Standard Phase-Field Formulation . . . . . . . . . . . . . . 1
1.2 Extension to Generalized Mechanics . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.3 Strain Gradient Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.4 Numerical Implementation and Results . . . . . . . . . . . . . . . . . . . . . . . 7
1.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2 Creep-Damage Processes in Cyclic Loaded Double Walled Structures 19
Holm Altenbach, Dmytro Breslavsky, and Oksana Tatarinova
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
2.2 Constitutive Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.2.1 Static Loading . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
2.2.2 Cyclic Loading. Stresses Lower the Yield Limit . . . . . . . . 22
2.2.3 Cyclic Load. Overloading with Transition to Plastic

Deformation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
2.3 Problem Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
2.4 Comparison Between Data of Direct Approach and Use of

Averaged Function 𝐾 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
2.5 Numerical Simulation of the Cyclic Creep-damage in DWTC

System Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
2.5.1 Description of the Calculation Model . . . . . . . . . . . . . . . . . 39
2.5.2 Determination of the Temperature and Stress Field in

the Blade . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
2.5.3 Creep Calculations for a Two-dimensional Model of a

Blade Made of Nickel Based Alloy . . . . . . . . . . . . . . . . . . . 41
2.5.4 Creep Calculations for a Two-dimensional Model of a

Blade Made of an Inconel X Alloy . . . . . . . . . . . . . . . . . . . 47
2.6 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

vii



Contents

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

3 Creep Mechanics – Some Historical Remarks and New Trends . . . . . 57
Holm Altenbach, Johanna Eisenträger, Katharina Knape, and Konstantin
Naumenko
3.1 Starting Point - the Early Period of Creep Mechanics . . . . . . . . . . . . 57
3.2 IUTAM Symposia and Other Events Devoted to Problems in

Creep Mechanics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
3.3 Research Directions and Magdeburg’s Contributions . . . . . . . . . . . . 59

3.3.1 Kachanov-Rabotnov Approach and Mechanism-Based
Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

3.3.2 Non-Classical Creep . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
3.3.3 Benchmark Tests for Creep Problems . . . . . . . . . . . . . . . . . 60
3.3.4 Rheological Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
3.3.5 Thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

3.4 Outlook . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

4 Various State-of-the-Art Methods for Creep Evaluation of Power
Plant Components in a Wide Load and Temperature Range . . . . . . . 69
Eike Blum, Yevgen Kostenko, and Konstantin Naumenko
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
4.2 Applied Creep Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

4.2.1 Norton-Bailey Equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
4.2.2 Modified Garofalo Eequation . . . . . . . . . . . . . . . . . . . . . . . . 71
4.2.3 Constitutive Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

4.3 Structural Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
4.3.1 Verification of the Creep Models Based on Creep Tests . . 74
4.3.2 Relaxation Test with Cube-one-Element Model . . . . . . . . . 75
4.3.3 Pipe Benchmark FE Model . . . . . . . . . . . . . . . . . . . . . . . . . 75
4.3.4 Performance Evaluation of User-Creep Routines . . . . . . . . 77
4.3.5 Temperature Interpolation for Norton-Bailey Creep

Equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
4.3.6 Isothermal Steam Turbine Valve FE Model with a

Constant Loading . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
4.4 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

5 Creep and Irradiation Effects in Reactor Vessel Internals . . . . . . . . . 83
Dmytro Breslavsky and Oksana Tatarinova
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
5.2 Problem Statement and Description of Solution Approaches. . . . . . 86
5.3 Constitutive Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

5.3.1 Materials with Isotropy of Properties . . . . . . . . . . . . . . . . . 88
5.3.2 Materials with Transversal Isotropy of Properties . . . . . . . 89

5.4 Deformation, Damage Accumulation and Fracture in RVI . . . . . . . . 91

viii



Contents

5.4.1 Creep of T-joint of Tubes . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
5.4.2 Damage Accumulation and Fracture of Reactor Fuel

Element . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
5.4.3 Transversal-Isotropic Creep-Damage Behaviour of

Aluminium Notched Plate . . . . . . . . . . . . . . . . . . . . . . . . . . 95
5.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

6 Analysis of Damage and Fracture in Anisotropic Sheet Metals Based
on Biaxial Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
Michael Brünig, Sanjeev Koirala, and Steffen Gerke
6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
6.2 Constitutive Framework . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106
6.3 Numerical Simulations and Results . . . . . . . . . . . . . . . . . . . . . . . . . . 109
6.4 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

7 Effect of Physical Aging on the Flexural Creep in 3D Printed
Thermoplastic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115
Marcel Fischbach and Kerstin Weinberg
7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115
7.2 Theoretical Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

7.2.1 Viscoelasticity of Thermoplastics . . . . . . . . . . . . . . . . . . . . 117
7.2.2 Physical Aging . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

7.3 Material and Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121
7.3.1 Test Specimens . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121
7.3.2 Sequential Creep Tests . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122
7.3.3 Long Term Creep Test . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124

7.4 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124
7.4.1 Sequential Creep Tests . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124
7.4.2 Long Term Creep Test . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127

7.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129

8 Development of a Microstructure-Based Finite Element Model of
Thermomechanical Response of a Fully Metallic Composite Phase
Change Material . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131
Elisabetta Gariboldi, Matteo Molteni, Diego André Vargas Vargas, and
Konstantin Naumenko
8.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132
8.2 Microstructure-Based FE model of a Al-Sn C-PCM with Free

Expansion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133
8.3 Results and Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136
8.4 Final Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140

ix



x Contents

9 The Effect of Dynamic Loads on the Creep of Geomaterials . . . . . . . . 143
Andrei M. Golosov, Evgenii P. Riabokon, Mikhail S. Turbakov, Evgenii
V. Kozhevnikov, Vladimir V. Poplygin, Mikhail A. Guzev, and Hongwen
Jing
9.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143
9.2 Materials and Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144

9.2.1 Materials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144
9.2.2 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145

9.3 Results and Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147
9.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149

10 A Novel Simulation Method for Phase Transition of Single Crystal
Ni based Superalloys in Elevated Temperature Creep Regions via
Discrete Cosine Transform and Maximum Entropy Method . . . . . . . 151
Hideo Hiraguchi
10.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151
10.2 Materials and Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152

10.2.1 A Single Crystal Ni Based Superalloy, CMSX-4 . . . . . . . . 152
10.2.2 Creep Tests . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152
10.2.3 Two Dimensional Discrete Cosine Transform . . . . . . . . . . 154
10.2.4 Maximum Entropy Method . . . . . . . . . . . . . . . . . . . . . . . . . 155

10.3 Estimation of Phase Transition and Results . . . . . . . . . . . . . . . . . . . . 156
10.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156
10.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159

11 Anisotropic Creep Analysis of Fiber Reinforced Load Point Support
Structures for Thermoplastic Sandwich Panels . . . . . . . . . . . . . . . . . . 161
Jörg Hohe and Sascha Fliegener
11.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161
11.2 Material Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162

11.2.1 Basic One-Dimensional Formulation . . . . . . . . . . . . . . . . . 163
11.2.2 Generalization to Three Dimensions . . . . . . . . . . . . . . . . . . 164
11.2.3 Unidirectionally Fiber Reinforced Thermoplastics . . . . . . 165
11.2.4 Discontinuously Fiber Reinforced Thermoplastics . . . . . . 165

11.3 Experimental Investigation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166
11.3.1 Coupon Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166
11.3.2 Structural Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167

11.4 Multiscale Simulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168
11.5 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168

11.5.1 Parameter Identification on Coupon Experiments . . . . . . . 168
11.5.2 Validation on Structural Level . . . . . . . . . . . . . . . . . . . . . . . 170

11.6 Summary and Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 172
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173



Contents xi

12 Time-Swelling Superposition Principle for the Linear Viscoelastic
Properties of Polyacrylamide Hydrogels . . . . . . . . . . . . . . . . . . . . . . . . 175
Seishiro Matsubara, Akira Takashima, So Nagashima, Shohei Ida, Hiro
Tanaka, Makoto Uchida, and Dai Okumura
12.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 176
12.2 Experiment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 177

12.2.1 Materials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 177
12.2.2 Mixed Solvents for Transient Equilibrium Swelling . . . . . 178
12.2.3 Measurement of Swelling . . . . . . . . . . . . . . . . . . . . . . . . . . . 179
12.2.4 Measurement of Dynamic Moduli . . . . . . . . . . . . . . . . . . . . 180

12.3 Experimenta Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 180
12.3.1 Transient Equilibrium Swelling . . . . . . . . . . . . . . . . . . . . . . 180
12.3.2 Linear Viscoelastic Behavior . . . . . . . . . . . . . . . . . . . . . . . . 182

12.4 Swelling–Dependent Linear Viscoelasticity . . . . . . . . . . . . . . . . . . . 186
12.4.1 Model Formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 187
12.4.2 Time-Swelling Superpostion Principle . . . . . . . . . . . . . . . . 190

12.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 193
12.5.1 Master Curves of Dynamic Moduli . . . . . . . . . . . . . . . . . . . 193
12.5.2 Swelling Dependence of Linear Viscoelastic Properties . . 194
12.5.3 Frequency Dependence of Complex Shear Moduli . . . . . . 195

12.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 198
Appendix A: Validity for Transient Equilibrium Swelling Using Ethanol . 200
Appendix B: Experimental Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 202
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 202

13 Application of Nonlinear Viscoelastic Material Models for the
Shrinkage and Warpage Analysis of Blow Molded Parts . . . . . . . . . . . 205
Patrick Michels, Christian Dresbach, Esther Ramakers-van Dorp, Holm
Altenbach, and Olaf Bruch
13.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 206
13.2 Material Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 208

13.2.1 Linear Viscoelastic Material Model . . . . . . . . . . . . . . . . . . 208
13.2.2 Abaqus Parallel Rheological Framework Model . . . . . . . . 210

13.3 Shrinkage and Warpage Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . 211
13.4 Calibration Strategy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 215

13.4.1 Experimental Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 216
13.4.2 Implementation of a One-Dimensional Model to Reduce

Computation Time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 217
13.4.3 Reduction of Material Parameters . . . . . . . . . . . . . . . . . . . . 220
13.4.4 Calibration Workflow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 223

13.5 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 224
13.6 Discussion and Outlook . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 227
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 230



xii Contents

14 Modeling Solid Materials in DEM Using the Micropolar Theory . . . . 233
Przemysław Nosal and Artur Ganczarski
14.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 233
14.2 Formulation of the Thermo-Elasto-Viscoplastic Contact Model . . . 234

14.2.1 Short introduction to DEM basics . . . . . . . . . . . . . . . . . . . . 234
14.2.2 DEM Interaction Force Model Based on Micropolar

Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 236
14.2.3 Visco-Plasticity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 240

14.3 Model Verification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 242
14.3.1 Simulation Set-up . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 243
14.3.2 Results and Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 244

14.4 Concluding Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 246
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 247

15 The Development of a Cavitation-Based Model for Creep Lifetime
Prediction Using Cu-40Zn-2Pb Material . . . . . . . . . . . . . . . . . . . . . . . . 249
Mbombo Amejima Okpa, Qiang Xu, and Zhongyu Lu
15.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 250
15.2 Stress Breakdown and Creep Lifetime . . . . . . . . . . . . . . . . . . . . . . . . 250
15.3 Creep Cavitation and Cavitation Data Concerns . . . . . . . . . . . . . . . . 252

15.3.1 How to Use Cavitation Data . . . . . . . . . . . . . . . . . . . . . . . . . 253
15.3.2 Current Approach to Cavitation Modelling and Creep

Life Prediction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 253
15.4 Aims . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 254
15.5 Experimental Data and Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 255

15.5.1 Experimental Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 255
15.5.2 Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 255
15.5.3 Determination of Cavitation Constants . . . . . . . . . . . . . . . . 256
15.5.4 Cavity Size Distribution Modelling . . . . . . . . . . . . . . . . . . . 256

15.6 Conclusions and Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 260
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 261

16 Self-heating Analysis with Respect to Holding Times of an Additive
Manufactured Aluminium Alloy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 265
Lukas Richter, Holger Sparr, Daniela Schob, Philipp Maasch, Robert
Roszak, and Matthias Ziegenhorn
16.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 265
16.2 Thermomechanical Experiment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 267

16.2.1 Experimental Set-Up . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 267
16.2.2 Temperature and Deformationfield Measurement by

Digital Image Correlation . . . . . . . . . . . . . . . . . . . . . . . . . . . 270
16.2.3 Experimental Results with Respect to Holding Time . . . . 271

16.3 Theoretical Framework . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 273
16.3.1 Energy Balance and Heat Conduction . . . . . . . . . . . . . . . . . 273
16.3.2 Material Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 277

16.4 Modelling Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 279



Contents xiii

16.4.1 Parameter Identification . . . . . . . . . . . . . . . . . . . . . . . . . . . . 279
16.4.2 Concept for Thermomechanic FE Analysis . . . . . . . . . . . . 281

16.5 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 281
16.6 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 284
16.7 Conclusion and Outlook . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 284
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 286

17 Creep Under High Temperature Thermal Cycling and Low
Mechanical Loadings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 289
Romana Schwing, Stefan Linn, Christian Kontermann, and Matthias
Oechsner
17.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 289
17.2 Experimental Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 290

17.2.1 Materials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 290
17.2.2 Creep Test Equipment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 291

17.3 Observation of Accelerated Creep Under Anisothermal Testing
Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 293
17.3.1 Anisothermal Creep Tests . . . . . . . . . . . . . . . . . . . . . . . . . . . 295
17.3.2 Influencing Factors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 296
17.3.3 Observations on the Creep Behavior Within a Cycle . . . . . 300

17.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 302
17.4.1 Possible causes of accelerated creep under thermal cycling302
17.4.2 Microstructural Processes Under Anisothermal Creep

Testing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 305
17.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 307
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 307

18 The Development and Application of Optimisation Technique for the
Calibrating of Creep Cavitation Model Based on Cavity Histogram . 309
Qiang Xu, Bilal Rafiq, Xuming Zheng, and Zhongyu Lu
18.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 309
18.2 Background Theories and Knowledge . . . . . . . . . . . . . . . . . . . . . . . . 311

18.2.1 Cavitation Model Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . 311
18.2.2 Current Calibration Methods . . . . . . . . . . . . . . . . . . . . . . . . 311

18.3 Optimisation with Excel Solver . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 313
18.4 Cavitation Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 313
18.5 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 313
18.6 Discussion and Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 317
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 318

19 A Temperature-Dependent Viscoelastic Approach to the Constitutive
Behavior of Semi-Crystalline Thermoplastics at Finite Deformations 321
Le Zhang, Bo Yin, Robert Fleischhauer, and Michael Kaliske
19.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 321
19.2 Preliminaries of the Finite Thermo-Viscoelasticity . . . . . . . . . . . . . . 323
19.3 Constitutive Formulation of Finite Thermo-Viscoelasticity . . . . . . . 325



xiv Contents

19.3.1 Helmholtz Energy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 325
19.3.2 Creep Law . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 327
19.3.3 Governing Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 328

19.4 Numerical Study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 328
19.4.1 Stress-Controlled loading . . . . . . . . . . . . . . . . . . . . . . . . . . . 329
19.4.2 Strain-Controlled loading . . . . . . . . . . . . . . . . . . . . . . . . . . . 332

19.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 333
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 333



List of Contributors

Bilen Emek Abali
Uppsala University, Division of Applied Mechanics, Department of Materials
Science and Engineering, Uppsala, Sweden, e-mail: bilenemek@abali.org

Holm Altenbach
Lehrstuhl für Technische Mechanik, Institut für Mechanik, Otto-von-Guericke-
Universität Magdeburg, D-39106 Magdeburg, Germany,
e-mail: holm.altenbach@ovgu.de

Eike Blum
Siemens Energy Global GmbH & Co. KG, Müheim/Ruhr, Germany,
e-mail: eike-marcel.blum.ext@siemens-energy.com

Dmytro Breslavsky
Department of Computer Modelling of Processes and Systems, National Technical
University “Kharkiv Polytechnic Institute”, UKR-61002, Kharkiv, Ukraine,
e-mail: dmytro.breslavsky@khpi.edu.ua

Olaf Bruch
Dr. Reinold Hagen Stiftung, Kautexstr. 53, 53229 Bonn & Bonn-Rhein-Sieg
University of Applied Sciences, Grantham Allee 20, 53757 Sankt Augustin,
Germany, e-mail: o.bruch@hagen-stiftung.de,olaf.bruch@h-brs.de

Michael Brünig
Institut für Mechanik und Statik, Universität der Bundeswehr München, 85577
Neubiberg, Germany, e-mail: michael.bruenig@unibw.de

Christian Dresbach
Bonn-Rhein-Sieg University of Applied Sciences, Von-Liebig-Str. 20, 53359
Rheinbach, Germany, e-mail: christian.dresbach@h-brs.de

xv

bilenemek@abali.org
holm.altenbach@ovgu.de
eike-marcel.blum.ext@siemens-energy.com
dmytro.breslavsky@khpi.edu.ua
o.bruch@hagen-stiftung.de, olaf.bruch@h-brs.de
michael.bruenig@unibw.de
christian.dresbach@h-brs.de


xvi

Johanna Eisenträger
Lehrstuhl für Technische Mechanik, Institut für Mechanik, Fakultät für Maschinenbau,
Otto-von-Guericke-Universität Magdeburg, Universitätsplatz 2, 39106 Magdeburg,
Germany, e-mail: johanna.eisentraeger@ovgu.de

Marcel Fischbach
Chair of Solid Mechanics, University of Siegen, Paul-Bonatz-Straße 9-11, 57076
Siegen, Germany, e-mail: marcel.fischbach@uni-siegen.de

Robert Fleischhauer
Institute for Structural Analysis, Technische Universität Dresden, 01062 Dresden,
Germany, e-mail: robert.fleischhauer@tu-dresden.de

Sascha Fliegener
Fraunhofer-Institut für Werkstoffmechanik IWM, Wöhlerstr. 11, 79108 Freiburg,
Germany, e-mail: sascha.fliegener@iwm.fraunhofer.de

Artur Ganczarski
Cracow University of Technology, Jana Pawła II Av. 37, 31-864 Cracow, Poland,
e-mail: artur.ganczarski@pk.edu.pl

Elisabetta Gariboldi
Politecnico di Milano, Dipartimento di Meccanica, Via La Masa 1, 20156 Milano,
Italy, e-mail: elisabetta.gariboldi@polimi.it

Steffen Gerke
Institut für Mechanik und Statik, Universität der Bundeswehr München, 85577
Neubiberg, Germany, e-mail: steffen.gerke@unibw.de

Andrei M. Golosov
Perm National Research Polytechnic University, Perm, Russian Federation
e-mail: a-dune@mail.ru

Mikhail A. Guzev
Perm National Research Polytechnic University, Perm & Institute for Applied
Mathematics of the Far Eastern Branch of the Russian Academy of Sciences,
Vladivostok, Russian Federation, e-mail: guzev@iam.dvo.ru

Hideo Hiraguchi
The Institution of Professional Engineers, Japan (IPEJ), 3-5-8, Shibakoen, Minato-ku,
Tokyo, Japan, e-mail: hideoh@abox2.so-net.ne.jp

Jörg Hohe
Fraunhofer-Institut für Werkstoffmechanik IWM, Wöhlerstr. 11, 79108 Freiburg,
Germany, e-mail: joerg.hohe@iwm.fraunhofer.de

Shohei Ida
Faculty of Engineering, The University of Shiga Prefecture, 2500, Hassaka-cho,
Hikone-City, Shiga, 522-8533, Japan, e-mail: ida.s@mat.usp.ac.jp

List of Contributors

johanna.eisentraeger@ovgu.de
marcel.fischbach@uni-siegen.de
robert.fleischhauer@tu-dresden.de
sascha.fliegener@iwm.fraunhofer.de
artur.ganczarski@pk.edu.pl
elisabetta.gariboldi@polimi.it
steffen.gerke@unibw.de
a-dune@mail.ru
guzev@iam.dvo.ru
hideoh@abox2.so-net.ne.jp
joerg.hohe@iwm.fraunhofer.de
ida.s@mat.usp.ac.jp


List of Contributors xvii

Hongwen Jing
State Key Laboratory for Geomechanics and Deep Underground Engineering,
China University of Mining and Technology, Xuzhou, P.R. China
e-mail: hwjing@cumt.edu.cn

Michael Kaliske
Institute for Structural Analysis, Technische Universität Dresden, 01062 Dresden,
Germany, e-mail: michael.kaliske@tu-dresden.de

Katharina Knape
Lehrstuhl für Technische Mechanik, Institut für Mechanik, Fakultät für Maschinenbau,
Otto-von-Guericke-Universität Magdeburg, Universitätsplatz 2, 39106 Magdeburg,
Germany, e-mail: katharina.knape@ovgu.de

Sanjeev Koirala
Institut für Mechanik und Statik, Universität der Bundeswehr München, 85577
Neubiberg, Germany, e-mail: sanjeev.koirala@unibw.de

Christian Kontermann
Institut für Werkstoffkunde TU Darmstadt, Grafenstraße 2, 64283 Darmstadt,
Germany, e-mail: christian.kontermann@tu-darmstadt.de

Yevgen Kostenko
Siemens Energy Global GmbH & Co. KG, Mülheim/Ruhr, Germany,
e-mail: yevgen.kostenko@siemens-energy.com

Evgenii V. Kozhevnikov
Perm National Research Polytechnic University, Perm, Russian Federation,
e-mail: kozhevnikov_evg@mail.ru

Stefan Linn
Institut für Werkstoffkunde TU Darmstadt, Grafenstraße 2, 64283 Darmstadt,
Germany, e-mail: stefan.linn@tu-darmstadt.de

Zhongyu Lu
Department of Technology and Engineering, School of Computing and Engineering,
University of Huddersfield, Huddersfield, HD1 3DH, UK, e-mail: j.lu@hud.ac.uk

Philipp Maasch
Brandenburg University of Technology Cottbus-Senftenberg, Universitätsplatz 1,
01968 Senftenberg, Germany, e-mail: philipp.maasch@b-tu.de

Seishiro Matsubara
Department of Mechanical Systems Engineering, Nagoya University, Furo-cho,
Chikusa-ku, Nagoya 464-8603, Japan,
e-mail: seishiro.matsubara@mae.nagoya-u.ac.jp

Patrick Michels
Bonn-Rhein-Sieg University of Applied Sciences, Grantham Allee 20, 53757 Sankt
Augustin, Germany, e-mail: patrick.michels@h-brs.de

hwjing@cumt.edu.cn
michael.kaliske@tu-dresden.de
katharina.knape@ovgu.de
sanjeev.koirala@unibw.de
christian.kontermann@tu-darmstadt.de
yevgen.kostenko@siemens-energy.com
kozhevnikov_evg@mail.ru
stefan.linn@tu-darmstadt.de
j.lu@hud.ac.uk
philipp.maasch@b-tu.de
seishiro.matsubara@mae.nagoya-u.ac.jp
patrick.michels@h-brs.de


xviii List of Contributors

Matteo Molteni
Politecnico di Milano, Dipartimento di Meccanica, Via La Masa 1, 20156 Milano,
Italy, e-mail: matteo1.molteni@polimi.it

So Nagashima
Department of Mechanical Systems Engineering, Nagoya University, Furo-cho,
Chikusa-ku, Nagoya 464-8603, Japan,
e-mail: so.nagashima@mae.nagoya-u.ac.jp

Konstantin Naumenko
Lehrstuhl für Technische Mechanik, Institut für Mechanik, Fakultät für Maschinenbau,
Otto-von-Guericke-Universität Magdeburg, Universitätsplatz 2, 39106 Magdeburg,
Germany, e-mail: konstantin.naumenko@ovgu.de

Przemysław Nosal
AGH University of Science and Technology, Mickiewicza Av. 30, 30-059 Cracow,
Poland , e-mail: pnosal@agh.edu.pl

Matthias Oechsner
Institut für Werkstoffkunde TU Darmstadt, Grafenstraße 2, 64283 Darmstadt,
Germany, e-mail: matthias.oechsner@tu-darmstadt.de

Mbombo Amejima Okpa
Department of Technology and Engineering, School of Computing and Engineering,
University of Huddersfield, Huddersfield, HD1 3DH, UK,
e-mail: Mbombo.okpa@hud.ac.uk

Dai Okumura
Department of Mechanical Systems Engineering, Nagoya University, Furo-cho,
Chikusa-ku, Nagoya 464-8603, Japan,
e-mail: dai.okumura@mae.nagoya-u.ac.jp

Vladimir V. Poplygin
Perm National Research Polytechnic University, Perm, Russian Federation,
e-mail: poplygin@bk.ru

Bilal Rafiq
Department of Technology and Engineering, School of Computing and Engineering,
University of Huddersfield, Huddersfield, HD1 3DH, UK,
e-mail: U2181632@unimail.hud.ac.uk

Esther Ramakers-van Dorp
Bonn-Rhein-Sieg University of Applied Sciences, Von-Liebig-Str. 20, 53359
Rheinbach, Germany, e-mail: esther.vandorp@h-brs.de

Evgenii P. Riabokon
Perm National Research Polytechnic University, Perm, Russian Federation,
e-mail: riabokon.evgenii@gmail.com

matteo1.molteni@polimi.it
so.nagashima@mae.nagoya-u.ac.jp
konstantin.naumenko@ovgu.de
pnosal@agh.edu.pl
matthias.oechsner@tu-darmstadt.de
Mbombo.okpa@hud.ac.uk
dai.okumura@mae.nagoya-u.ac.jp
poplygin@bk.ru
U2181632@unimail.hud.ac.uk
esther.vandorp@h-brs.de
riabokon.evgenii@gmail.com


List of Contributors xix

Lukas Richter
Brandenburg University of Technology Cottbus-Senftenberg, Universitätsplatz 1,
01968 Senftenberg, Germany, e-mail: lukas.richter@b-tu.de

Robert Roszak
Brandenburg University of Technology Cottbus-Senftenberg, Universitätsplatz 1,
01968 Senftenberg, Germany, e-mail: robert.roszak@b-tu.de

Daniela Schob
Brandenburg University of Technology Cottbus-Senftenberg, Universitätsplatz 1,
01968 Senftenberg, Germany, e-mail: daniela.schob@b-tu.de

Romana Schwing
Institut für Werkstoffkunde TU Darmstadt, Grafenstraße 2, 64283 Darmstadt,
Germany, e-mail: romana.schwing@tu-darmstadt.de

Holger Sparr
Brandenburg University of Technology Cottbus-Senftenberg, Universitätsplatz 1,
01968 Senftenberg, Germany, e-mail: holger.sparr@b-tu.de

Akira Takashima
Department of Mechanical Systems Engineering, Nagoya University, Furo-cho,
Chikusa-ku, Nagoya 464-8603, Japan,
e-mail: takashima.akira@j.mbox.nagoya-u.ac.jp

Hiro Tanaka
Department of Mechanical Engineering, Osaka University, 2-1 Yamadaoka, Suita,
Osaka, 565-0871, Japan, e-mail: htanaka@mech.eng.osaka-u.ac.jp

Oksana Tatarinova
Department of Computer Modelling of Processes and Systems, National Technical
University “Kharkiv Polytechnic Institute”, UKR-61002, Kharkiv, Ukraine,
e-mail: ok.tatarinova@gmail.com

Mikhail S. Turbakov
Perm National Research Polytechnic University, Perm, Russian Federation
e-mail: msturbakov@gmail.com

Makoto Uchida
Department of Mechanical Engineering, Osaka Metropolitan University, 3-3-138,
Sugimoto, Sumiyoshi-ku, Osaka, 558-8585, Japan,
e-mail: uchida@osaka-cu.ac.jp

Diego André Vargas Vargas
Politecnico di Milano, Dipartimento di Meccanica, Via La Masa 1, 20156 Milano,
Italy, e-mail: diegoandre.vargas@mail.polimi.it

Kerstin Weinberg
Chair of Solid Mechanics, University of Siegen, Paul-Bonatz-Straße 9-11, 57076
Siegen, Germany, e-mail: kerstin.weinberg@uni-siegen.de

lukas.richter@b-tu.de
robert.roszak@b-tu.de
daniela.schob@b-tu.de
romana.schwing@tu-darmstadt.de
holger.sparr@b-tu.de
takashima.akira@j.mbox.nagoya-u.ac.jp
htanaka@mech.eng.osaka-u.ac.jp
ok.tatarinova@gmail.com
msturbakov@gmail.com
uchida@osaka-cu.ac.jp
diegoandre.vargas@mail.polimi.it
kerstin.weinberg@uni-siegen.de


xx List of Contributors

Qiang Xu
Department of Technology and Engineering, School of Computing and Engineering,
University of Huddersfield,Huddersfield,HD1 3DH,UK,e-mail: Q.Xu2@hud.ac.uk

Bo Yin
Ansys Germany GmbH, 99423 Weimar, Germany, e-mail: liam.yin@ansys.com

Le Zhang
Institute for Structural Analysis, Technische Universität Dresden, 01062 Dresden,
Germany, e-mail: le.zhang@mailbox.tu-dresden.de

Xuming Zheng
Department of Technology and Engineering, School of Computing and Engineering,
University of Huddersfield, Huddersfield, HD1 3DH, UK,
e-mail: Xuming.Zheng@hud.ac.uk

Matthias Ziegenhorn
Brandenburg University of Technology Cottbus-Senftenberg, Universitätsplatz 1,
01968 Senftenberg, Germany, e-mail: matthias.ziegenhorn@b-tu.de

Q.Xu2@hud.ac.uk
liam.yin@ansys.com
le.zhang@mailbox.tu-dresden.de
Xuming.Zheng@hud.ac.uk
matthias.ziegenhorn@b-tu.de


Chapter 1
Phase-Field Damage Modeling in Generalized
Mechanics by using a Mixed Finite Element
Method (FEM)

Bilen Emek Abali

Abstract Material modeling is applied for bulk materials where the length-scale of
the geometry is adequately larger than any voids within the material. Indeed, material
is composed of a lattice in alloys or chains in polymers, but this structural dependency
is negligible since these are multiple order smaller than the geometric dimensions. By
using an additive manufacturing, we create so-called metamaterials or architectured
materials, where at the same length-scale, a microscale is introduced. The materials
response is then predicted accurately by means of the generalized mechanics that
uses higher gradients in its formulation. In the case of damage mechanics, this
generalization is still lacking. We demonstrate a possible approach for filling this
gap because the generalized damage mechanics achieves additional regularization
by means of adding higher gradients to the model. Phase-field approach is employed
for the damage variable implementation by using a mixed formulation in the Finite
Element Method (FEM) in order to solve strain gradient elasticity model with higher
gradients in damage formulation.

1.1 Introduction to Standard Phase-Field Formulation

Damage mechanics is developedas a continuum approachof a collection of contiguous
particles, where a fracture is a discontinuity between them. The theory is well-known
and visualized as existing microcracks and their agglomeration for forming a fracture.
Therefore, an additional governing equation is needed that is modeling microcrack
evolution at the nanometer length-scale (microscale) in order to estimate a formation
of a fracture at the micrometer or millimeter length-scale (macroscale). Hence, for
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damage evolution, we have a multiscale problem modeled by a scalar field, a so-called
damage variable [1–4].

The damage variable increases monotonously for engineering materials such
as metal alloys or plastics in an irreversible fashion, we may introduce an initial
1 increasing to infinity [5, 6]. For a numerical treatise, from 1 until ∞ may be
challenging such that often its inverse is used from 1 to 0, or equivalently, one minus
this variable is introduced as 𝜔 for modeling 𝜔 = 0 as an initial “virgin” material
without fracture and 𝜔 = 1 denotes fracture. All numbers between 𝜔 ∈ [0,1] is
allowed and this order parameter is the solution of a differential equation. Indeed,
we may understand a particle as a composition of virgin material (one phase) and
fracture (another phase), where 𝜔 is a phase-field function indicating a volumetric
percentage of the fracture phase. In this way, actually, 𝜔 connects two length-scales
without any mathematical difficulties [7]. This phase-field approach is widely applied
as a diffusive fracture modeling in fracture mechanics in staggered [8–11] and in
monolithic approaches [12–15].

Instead of a smeared crack formulation, one may try to introduce a loss of bond
between molecules. This vanishing stiffness between neighboring particles leads to a
jump in the displacement. Balance on singular surfaces is then used to bring the phase-
field modeling in consistence with configurational forces [16, 17]. Both viewpoints
result in the same parameter, either called a damage or phase-field variable, although
historically developed by using different visions [18]. The governing equation for the
phase-field may be suggested by using a thermodynamical formulation [19, 20].

The parameters in the formulation are yet lacking to have clearly defined ex-
periments. Formulations are proposed as benchmarks [21, 22] in order to allow
suggestions to be verified. Some difficulties in the damage mechanics involve rate
dependency [23] and finite speed [24] in crack propagation, as well as the tip zone
and localization of stress [25, 26]. Often, these multiscale analyses are justified as a
size effect [27–29]. One common way of modeling this size effect [30, 31] relies on
strain gradient elasticity or so-called generalized mechanics [32, 33], since additional
forces on the fracture tip play a significant role in the damage evolution [34].

The phase-field is mathematically an order parameter. The mechanism is based on
a potential [35] developed in [36] as a minimization problem. In [37], it is derived by
a Γ-convergence analysis. Technically, it models microcracks as a bump function that
is 1 within a finite domain (compact support) and 0 otherwise. This assumption is
backed by our physical understanding of a fracture and mathematically a differential
equation is formally proposed in form of an evolution equation. For this manner, a
sharp crack is regularized by a crack surface density, 𝛾 = 𝛾(𝜔,𝜔,𝑖), where a comma
notation denotes a (partial) spatial derivative. We obtain in a continuum body, B, an
integral relation with an accumulated (dissipative) energy density, d𝜓, and so-called
critical energy release rate per surface, 𝐺𝑐, as follows:∫

B

d𝜓 d𝑉 =

∫
B
𝐺𝑐𝛾 d𝑉 . (1.1)
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By using a given shape of the smeared crack like an exponential, it is possible [38]
to approximate the type of 𝛾, as follows:

𝛾(𝜔,𝜔,𝑖) =
1
𝑐𝛼ℓ

(
𝛼+ ℓ2𝜔,𝑖𝜔,𝑖

)
, (1.2)

with a normalized constant 𝑐𝛼 = 4
∫ 1
0 𝛼

0.5 d𝜔 depending on the choice of crack
geometry function 𝛼 = 𝛼(𝜔) ∈ [0,1]. Herein we use index notation in Cartesian
coordinates and apply Einstein’s summation convention over repeated indices.
Now by constructing a variational formulation∫

B

d𝜓 d𝑉 =𝑅 ,

δ

∫
B

d𝜓 d𝑉 =

∫
B
𝑅δ𝜔d𝑉 ,

(1.3)

with
𝑅 =

𝜕L
𝜕𝜔

(1.4)

and a Lagrange function

L = −𝔣+ 𝜌𝑔𝑖𝑢𝑖 , 𝔣 = 𝑔 e𝜓 , (1.5)

in statics given by a free energy density, 𝔣, and a potential energy, where
|𝑔𝑖 | = 9.81 N/kg is the specific body force due to the gravitational forces. The
so-called degradation function, 𝑔 = 𝑔(𝜔), and stored energy density, e𝜓, needs to be
chosen according to a model. Let us consider the case of linear elasticity, e𝜓 = e𝜓(𝜺),
where the strain is given by displacement gradient, for example the simplest measure
reads Y𝑖 𝑗 = (𝑢𝑖, 𝑗 +𝑢 𝑗 ,𝑖)/2. Therefore, we obtain the damage evolution by

δ

∫
B

d𝜓 d𝑉 =

∫
B

𝜕L
𝜕𝜔

δ𝜔d𝑉 ,∫
B

(
𝜕 d𝜓

𝜕𝜔
δ𝜔+ 𝜕

d𝜓

𝜕𝜔,𝑖
δ𝜔,𝑖

)
d𝑉 =−

∫
B

𝜕𝑔

𝜕𝜔

e𝜓δ𝜔d𝑉 .
(1.6)

One usual choice for the degradation function is a quadratic one, 𝑔 = (1−𝜔)2, and
𝛼 = 𝜔 as in [39] leading to 𝑐𝛼 = 8/3 such that we obtain

d𝜓 =
3𝐺𝑐
8ℓ

(
𝜔+ ℓ2𝜔,𝑖𝜔,𝑖

)
. (1.7)

Hence the damage is evolving by



4 Bilen Emek Abali∫
B

(
3𝐺𝑐
8ℓ

δ𝜔+ 3𝐺𝑐ℓ
8

2𝜔,𝑖δ𝜔,𝑖
)

d𝑉 =−
∫
B

𝜕𝑔

𝜕𝜔

e𝜓δ𝜔d𝑉 ,∫
B

(
3𝐺𝑐
8ℓ

δ𝜔+ 3𝐺𝑐ℓ
4

𝜔,𝑖δ𝜔,𝑖 +
𝜕𝑔

𝜕𝜔

e𝜓∗δ𝜔

)
d𝑉 =0 ,

(1.8)

where e𝜓∗ = max( e𝜓) is used algorithmically in order to ensure a monotonously
increasing damage variable.

1.2 Extension to Generalized Mechanics

We aim for a formulation of phase-field with higher gradients in displacement by
using a variational approach following [40, 41]. Also for ductile materials [42] and
in general [43–45], higher gradient formulation introduces additional regularization
adequate for numerical procedure. We refer to [46] for parameter sensitivity, to
[47, 48] for including plasticity, to [49, 50] for involving anisotropy, to [51] for
viscoelastoplasticity, to [52] for crack branching, to [53] for thermal damage, and to
[54] for multiphysics applications.

One possible approach is to extend the crack surface density in Eq. (1.2) and add
higher order terms in the damage variable, 𝛾(𝜔,𝜔,𝑖 ,𝜔,𝑖 𝑗 ). This approach is valid
yet unclear how the interaction with displacement needs to follow. Therefore, we
use a variational approach by following [55] and begin with an assertion that the
Lagrangean depends on first and second time and space derivatives of primitive
variables that are displacement and damage variable. By using then an action:

A =

∫
Ω

L d𝑡 d𝑉 +
∫
𝜕Ω

𝑊𝑠 d𝑡 d𝐴+
∫
𝜕𝜕Ω

𝑊𝑒 d𝑡 dℓ , (1.9)

where the energy is prescribed (given) on surface (first-order) and edges (second-
order) of the computational domain Ω. When we model the application with the
following Lagrangean density (per volume):

L =
1
2
𝜌0𝑢

•

𝑖𝑢
•

𝑖 − 𝔣+ 𝜌0𝑔𝑖𝑢𝑖 − 𝑐1𝜔
•𝜉 −𝑚𝜉 − 𝑐2𝜔,𝑖𝜉,𝑖 − 𝑐3𝜔,𝑖 𝑗𝜉,𝑖 𝑗 , (1.10)

with one term for damage, 𝑚, and for displacement, the so-called free energy density,
𝔣, yet to be defined. Kinetic energy density, 𝜌0𝑢

•

𝑖
𝑢•

𝑖
/2, and potential energy density,

𝜌0𝑔𝑖𝑢𝑖 , are known terms for obtaining the balance of momentum. Use of a quadratic
kinetic energy introduces second rate of displacement called inertial terms. We use an
auxiliary variable, 𝜉, in order to obtain first rate of damage variable in the formulation.
For simplicity, we use𝑊𝑠 = 𝑡𝑖𝑢𝑖 and𝑊𝑒 = 0. In this way, we enforce a zero damage
gradient on the boundary such that the fracture propagates orthogonal to the outer
boundary. By using dependencies,

𝑚 = 𝑚(𝜔,𝑢𝑖, 𝑗 , 𝑢𝑖, 𝑗𝑘) , 𝔣 = 𝔣(𝜔,𝑢𝑖, 𝑗 , 𝑢𝑖, 𝑗𝑘) , (1.11)
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after the variational formulation, δA = 0, called the principle of least action, we
obtain for variation of displacement and auxiliary variable two weak forms:

F1 =

∫
B

(
𝜌0𝑔𝑖δ𝑢𝑖 − 𝜌0𝑢

••

𝑖δ𝑢𝑖 −
𝜕𝔣

𝜕𝑢𝑖, 𝑗
δ𝑢𝑖, 𝑗 −

𝜕𝔣

𝜕𝑢𝑖, 𝑗𝑘
δ𝑢𝑖, 𝑗𝑘

)
d𝑉 +

∫
𝜕B
𝑡𝑖δ𝑢𝑖 d𝐴 ,

F2 =

∫
B

(
− 𝑐1𝜔

•δ𝜉 −𝑚δ𝜉 − 𝑐2𝜔,𝑖δ𝜉,𝑖 − 𝑐3𝜔,𝑖 𝑗δ𝜉,𝑖 𝑗

)
d𝑉 .

(1.12)
This formulation is general under the assumption that the Lagrangean density is
correct. The first weak form, F1, is the accustomed formulation for strain gradient
theory in generalized mechanics, if we use an elastic or a stored energy density:

e𝜓 =
1
2
Y𝑖 𝑗𝐶𝑖 𝑗𝑘𝑙Y𝑘𝑙 +

1
2
Y𝑖 𝑗 ,𝑘𝐷𝑖 𝑗𝑘𝑙𝑚𝑛Y𝑙𝑚,𝑛 + Y𝑖 𝑗𝐺𝑖 𝑗𝑘𝑙𝑚Y𝑘𝑙,𝑚 , (1.13)

with the linearized strain, Y𝑖 𝑗 =
(
𝑢𝑖, 𝑗 + 𝑢 𝑗 ,𝑖

)
/2. Rank 4,5,6 tensors, 𝑪, 𝑮, 𝑫, are

material parameters for the bulk material modeled by the strain gradient (linear)
material model. For the coupling to the damage variable, we utilize the degradation
function, 𝑔, and the free energy density is analogous to the standard formulation given
by 𝔣 = 𝑔 e𝜓. For seeing the relation to the standard formulation, consider 𝑐1 = 𝑐3 = 0
and insert

𝑚 =
3𝐺𝑐
8ℓ

+ 𝜕𝑔
𝜕𝜔

e𝜓∗ , 𝑐2 =
3𝐺𝑐ℓ

4
, (1.14)

in the weak form, F2. Now the generalization may be easily established by proposing

𝑐1 =
1
𝑀
, 𝑐3 = ℓ

2𝑐2 , (1.15)

in order to acquire adequate units. Indeed, 𝑀 is called a mobility parameter used in
the literature for controlling the crack propagation speed [56]. In this way, we have a
possible generalized damage mechanics model by solving the following weak forms:

F1 =

∫
B

(
𝜌0𝑔𝑖δ𝑢𝑖 − 𝜌0𝑢

••

𝑖δ𝑢𝑖 −𝑔
(
𝐶𝑖 𝑗𝑘𝑙𝐸𝑘𝑙 +𝐺𝑖 𝑗𝑘𝑙𝑚𝐸𝑘𝑙,𝑚

)
δ𝑢𝑖, 𝑗

−𝑔
(
𝐷𝑖 𝑗𝑘𝑙𝑚𝑛𝐸𝑙𝑚,𝑛 +𝐸𝑙𝑚𝐺𝑙𝑚𝑖 𝑗𝑘

)
δ𝑢𝑖, 𝑗𝑘

)
d𝑉 +

∫
𝜕B
𝑡𝑖δ𝑢𝑖 d𝐴 ,

F2 =

∫
B

(
− 1
𝑀
𝜔•δ𝜉 −

(3𝐺𝑐
8ℓ

+ 𝜕𝑔
𝜕𝜔

e𝜓∗
)
δ𝜉 − 3𝐺𝑐ℓ

4
𝜔,𝑖δ𝜉,𝑖

− 3𝐺𝑐ℓ3

4
𝜔,𝑖 𝑗δ𝜉,𝑖 𝑗

)
d𝑉 .

(1.16)
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1.3 Strain Gradient Parameters

A microstructure delivers higher order parameters by means of a homogenization
method [57]. Ample homogenization techniques are available in the literature, for
the case of strain gradient elasticity, we refer to [58–63]. We follow the asymptotic
analysis [64–67] that is applied in [68–71]. As a homogenization method, this
approach is utilized in one-dimensional problems for composites [72, 73] and in
two-dimensional continuum [74–78] by using numerical solutions. We employ a
Voigt-like notation by introducing 𝐴, 𝐵 denoting {11,22,12} and 𝛼, 𝛽 indicating
{111,221,121,112,222,122} for writing out all material parameters,

𝐶𝐴𝐵 =
©«
𝐶1111 𝐶1122 𝐶1112
𝐶2211 𝐶2222 𝐶2212
𝐶1211 𝐶1222 𝐶1212

ª®¬ ,
𝐺𝐴𝛼 =

©«
𝐺11111 𝐺11221 𝐺11121 𝐺11112 𝐺11222 𝐺11122
𝐺22111 𝐺22221 𝐺22121 𝐺22112 𝐺22222 𝐺22122
𝐺12111 𝐺12221 𝐺12121 𝐺12112 𝐺12222 𝐺12122

ª®¬ ,

𝐷𝛼𝛽 =

©«

𝐷111111 𝐷111221 𝐷111121 𝐷111112 𝐷111222 𝐷111122
𝐷221111 𝐷221221 𝐷221121 𝐷221112 𝐷221222 𝐷221122
𝐷121111 𝐷121221 𝐷121121 𝐷121112 𝐷121222 𝐷121122
𝐷112111 𝐷112221 𝐷112121 𝐷112112 𝐷112222 𝐷112122
𝐷222111 𝐷222221 𝐷222121 𝐷222112 𝐷222222 𝐷222122
𝐷122111 𝐷122221 𝐷122121 𝐷122112 𝐷122222 𝐷122122

ª®®®®®®®¬
.

(1.17)

All parameters are calculated by using an equivalence of elastic energy at the mi-
crostructure length-scale (microscale) modeled with PLA and void compared with
the elastic energy at the homogenized strain gradient continuum (macroscale). Since
the microscale is a quadratic energy—only incorporating strains and positive material
parameters—the energy is positive such that the combination of all parameters must
be positive in determined parameters. The positive-definiteness in strain gradient
parameters is of importance for a unique solution [79–81].

We strictly follow the method in [82–85] and use the parameters obtained in [86]
by using a microstructure of 2.5 mm thick walls grid infill structure used in 3-D
printing. As material we use PLA of Young’s modulus 3500 MPa and Poisson’s
ratio of 0.3 where an RVE is generated by 5.5×5.5 mm rectangle with 3×3 mm void
rectangle generating 70% of infill ratio. Rank 4,5,6 tensors read
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𝐶𝐴𝐵 =
©«
1987 475 0
475 1987 0
0 0 281

ª®¬MPa ,

𝐺𝐴𝛼 =
©«
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

ª®¬N/mm ,

𝐷𝛼𝛽 =

©«

469 634 1 3 1 −75
634 4078 0 1 −2 1473
1 0 1142 1473 −75 0
3 1 1473 4079 636 1
1 −2 −75 636 469 −1

−75 1473 0 0 0 1143

ª®®®®®®®¬
N.

(1.18)

For damage parameters, we use a realistic estimation of material parameters for the
base PLA material as given in Table 1.1.

Table 1.1: Damage properties for the strain gradient model for a 2-D geometry under the
assumption of a thin plate (plane stress).

Parameters Notation Value

Fracture toughness 𝐾 1 MPa
√

m

Modulus 𝐸 10 GPa

Critical energy release rate 𝐺𝑐 𝐾2/𝐸 × 103 MPa mm

length-scale ℓ 4 times the smallest discrete element length

Mobility parameter 𝑀 2000 1/(MPa s)

Mass density 𝜌 5000× 10−12 ton/mm3

1.4 Numerical Implementation and Results

In space and time, we use discrete representations of the functions. For the time
discretization, we employ the finite difference method also called Euler backward
scheme for the damage variable as well as displacement, where the upper index (·)0

denotes the computed value one time step before and (·)00 the value two time steps
before. Hence, we obtain

𝜔• =
𝜔−𝜔0

Δ𝑡
, 𝒖•• =

𝒖−2𝒖0 +𝒖00

Δ𝑡2
, (1.19)

with a time step, Δ𝑡, which we choose constant throughout the simulation for the
sake of a simpler algorithm. For the space discretization, we utilize the finite element
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method where the functions are represented as their nodal values and an interpolation
between these nodal values. Dividing the computational domain into nodes is called
triangulation and meshing that is done in Salome by using Netgen algorithm.

For discrete representation, we follow the Hu–Washizu principle [87] and
use a mixed space formulation such that the unknowns 𝜔,𝒖 are augmented by their
derivatives, ∇𝜔,∇𝒖. In this way, necessary regularity is ensured since the gradient
is modeled as an additional variable. Indeed, an additional constraint is added by a
penalty method. For accuracy of this method in strain gradient problems, we refer to
[88]. We use a discretization using Lagrange elements and generate piecewise
continuous polynomials that are adequate for approximation inH1. This triangulation
is denoted T and consists of non-overlapping triangles, 𝜏. We use linear elements,
P1, with a polynomial degree 1 in the case of the phase-field (damage variable) and
quadratic elements, P2, with a polynomial degree of 2 for the displacement. For
their gradients, we use one degree less. As is common in the Galerkin approach,
we use the same space for trial and test functions. Unknowns are displacement and
damage variable, and their derivatives, constructing a mixed space in 2-D discrete
representation of the continuum

V =

{{
𝑢𝑖

}
∈

[
H1 (Ω)

]2 : {𝑢𝑖}
���
𝜏
∈ P2 (𝜏) ∀𝜏 ∈ T

∧
{
∇𝑢𝑖 𝑗

}
∈

[
H1 (Ω)

]4 : {𝑢𝑖}
���
𝜏
∈ P1 (𝜏) ∀𝜏 ∈ T

∧
{
𝜔
}
∈

[
H1 (Ω)

]1 : {𝜔}
���
𝜏
∈ P1 (𝜏) ∀𝜏 ∈ T

∧
{
∇𝜔𝑖

}
∈

[
H1 (Ω)

]2 : {∇𝜔𝑖}
���
𝜏
∈ P0 (𝜏) ∀𝜏 ∈ T

}
.

(1.20)

By adding constraints

Λ1 =

∫
B
𝜆1
𝑖 𝑗

(
∇𝑢𝑖 𝑗 −𝑢𝑖, 𝑗

)
d𝑉 , Λ2 =

∫
B
𝜆2
𝑖

(
∇𝜔𝑖 −𝜔,𝑖

)
d𝑉 , (1.21)

with constant multipliers, 𝝀1, 𝝀2, we acquire their variations

δΛ1 =

∫
B
𝜆1
𝑖 𝑗

(
δ∇𝑢𝑖 𝑗 −δ𝑢𝑖, 𝑗

)
d𝑉 , δΛ2 =

∫
B
𝜆2
𝑖

(
δ∇𝜔𝑖 −δ𝜔,𝑖

)
d𝑉 . (1.22)

By an analysis at their units, according to the Hu–Washizu principle, we conclude
to use

𝜆1
𝑖 𝑗 =

𝜕𝔣

𝜕𝑢𝑖, 𝑗
, 𝜆2

𝑖 =
𝜕 d𝜓

𝜕𝜔,𝑖
. (1.23)

For the numerical implementation of such a weak form, we use the open-source
package collection SyFi developed under the FEniCS project [89, 90] by following
the computational framework as in [91]. FEniCS offers assembly and solution by
means of the finite element method with the chosen element type. It supports symbolic



1 Phase-Field Damage Modeling in Generalized Mechanics 9

differentiation, which is exploited herein for “simply” implementing the weak form.
All code is developed in Python.

As a material, we use the strain gradient material model with the elastic parameters
as in Eq. (1.18) with the damage related parameters as in Table 1.1. Specifically the
length-scale ℓ is chosen for 4 times the (minimum) element length in order to allow
a smooth transition. Depending on the mesh the phase-field varies. However, the use
of higher gradients ensures for a mesh independent displacement formulation. For
showing this result, we have constructed an asymmetric double notch tensile test
simulation as drawn in Fig. 1.1. The geometry is 20 mm × 5 mm with 2 notches of
0.1 mm thick and 1 mm deep.

We use a staggered scheme as similar to other works [92, 93]. The staggered
method is based on solving two smaller problems, and hence, it is normally faster
than a monolithic method based on solving a bigger problem. The reason is that the
computation time is growing exponentially in greater problems [94, 95]. But the
accuracy in a staggered scheme is less than a monolithic method, therefore, we apply
many iterations in each time step until we obtain an error small enough. This approach
is often used yet a convergence is not guaranteed. Especially in this formulation,
there are numerical benefits because of the additional regularization owing to the
higher gradients. Until the initiation of the fracture in Fig. 1.2, less than 2 iterations
suffice but then we have limited to 10 iterations for the sake of computational time.
A parallel computation (via MPI) has been performed by a computing node using
Intel Xeon E7-4850, in total 64 cores each with the 40 MB cache, equipped with 256

Fig. 1.1: Double asymmetric notched tensile testing simulation, left boundary is clamped and right
boundary is under uniaxial tensile loading by a given displacement, �̂�.

Fig. 1.2: Damage variable, 𝜔, at 𝑡 = 0.64 s, where the damage initializes around the notches.
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GB memory in total, running Linux Kernel 5 Ubuntu 20.04. In this setting, the total
computation takes around 3 hours for 50 time steps of 0.02 s.

For the implementation of the boundaries, for the displacement problem we use
Dirichlet boundary conditions for 𝒖 and zero Neumann boundary condition
for ∇𝒖. For the damage problem, we use zero Neumann boundary condition for
𝜔 and ∇𝜔. In order to counterattack numerical problems for the purely Neumann
boundaries, we use a line search algorithm based semi-smooth solver for variational
inequalities based on Newton’s method [96] from PETSc packages. Linearized
problem is solved by GMRES iterative solver. For the displacement problem, we use a
Newton–Raphson solver from PETSc packages by using a BICGSTAB iterative
solver for the linearized problem. In both cases, we have utilized the same Incomplete
Lower Upper (ILU) decomposition based preconditioner [97]. The problem solution
method is highly scalable and we used all 64 cores during the simulation.

Additionally, we have implemented an updated Lagrangean technique with
a remeshing strategy by using VEDO module [98]. An updated Lagrange is
simply adding the displacement to the nodal positions in order to acquire the current
configuration (one time step before) during the calculation. Especially in large
deformations, this implementation allows to use the linearized strain measure with
an adequate accuracy. Yet the element quality may decrease by displacing the nodes
such that we use a remeshing if the aspect ratio in one of the elements is decreased
less than 0.2. In this manner, the implementation may be used for any deformation
without numerical problems and with high accuracy.

Displacement is controlled on both ends such that the crack propagation is stable.
We demonstrate the final time step where the crack is developed on two notches and
a displacement jump is visible in Fig. 1.3. We emphasize that the displacement field
is a continuous function, yet the phase-field leads to a degradation resulting a sharp
change in displacement. One remarkable result is that the phase-field is considered a
diffusive approach such that the thickness of this distribution is far from a fracture
interpretation. This issue is caused by the choice of ℓ being four times the element
size. As a consequence, the mesh is chosen very fine to obtain a sharp change in
displacement. Herein, we use a higher gradients enriched formulation in displacement
and damage problem. Therefore, even if the mesh is coarse, the sought-after sharp
displacement change is achieved.

1.5 Conclusion

We have developed a phase-field approach by using strain gradient elasticity theory
in a consistent manner. The consistency is because of using the same order of the
terms and therefore an adequate regularization in the numerical approach. Since the
computational cost is high, we aim for a scalable approach that we have acquired
owing to this regularization. In general, higher order models are numerically unstable
and there are different special elements or alternative formulations. We have used
standard elements in the FEM and performed a mixed mode fracture simulation
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(a) Damage variable, 𝜔

(b) Displacement, 𝒖

Fig. 1.3: Damage variable (a) and displacement (b) where the structural integrity is lost at 𝑡 = 1 s,
damage variable is distributed over 4 finite elements leading to a relatively thick phase-field band;
however, displacement demonstrates the sharp contour as expected from a realistic model.

by using a material with a microstructure. The microstructure is chosen and all
parameters are determined by an asymptotic homogenization approach. We interpret
the methodology being successful since the determined parameters circumvents
any numerical difficulty. For a transparent exchange, the numerical implementation
is employed by open-source packages and publicly available. The Python code is
using the FEniCS project available at http://www.fenicsproject.org/download. The
computational implementation is available in [99] to be used under the GNU Public
license [100].
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Chapter 2
Creep-Damage Processes in Cyclic Loaded
Double Walled Structures

Holm Altenbach, Dmytro Breslavsky, and Oksana Tatarinova

Abstract The paper presents an approach to determining the level of creep defor-
mation and long-term strength of structural elements that operate under conditions
of cyclic loading and heating. The method for solving the boundary - initial value
problem is described. It is based on the combination of FEM and difference methods
of integration for initial problems. The basis of the method is the developed and
verified constitutive equations for modeling the cyclic creep-damage processes in the
material. The main feature of the method is the transformation of the initial cyclic
problem to a new at uniform loading and heating, but with constitutive equations of
developed type. The case of the cycle stresses varying in a wide range, including in
the conditions where they exceed the yield stress, as well as the case of creep when
it is not exceeded by stresses, are considered. The numerical model of double-walled
blade is considered and different cyclic creep modes of its operation were analyzed.

2.1 Introduction

Creep processes, which are accompanied by the accumulation of hidden damage,
significantly limit the lifetime of various structural elements operating in high-
temperature fields and high pressures. First of all, this applies to power machines,
such as steam and gas turbines, gas turbine engines (GTE) etc. The modes of operation
of their structural elements, leading to a complex form of boundary conditions, as
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well as the very complex geometric shape of these elements, led to the need to use
numerical methods of calculation, primarily the Finite Element Method (FEM). By
now, approaches and methods of FE analysis of creep under a complex stress state,
implemented in modern versions of engineering calculation systems, can already be
considered satisfactorily developed.

Methods for numerical FE analysis of creep-damage processes, as well as of the
development of macroscopic defects resulting from the long-term action of these
processes, are also being developed quite successfully [1–5], although they have not
yet become standard for engineers. This is largely due to the complexity of constructing
the defining constitutive and evolution equations, and, most importantly, obtaining
the constants that are included in them, followed by verification of the resulting
relationships. The choice of approach - the use of a scalar or tensor expression for the
damage parameter also either limits the possibility of a more adequate description of
the process of defect development in the material, or requires a very large amount of
expensive and lengthy experimental investigations.

Recent years have been characterized by increased interest in the use of cooled
blades operating at elevated temperatures in gas turbine engines (GTE). It is noted that
double wall transpiration cooling (DWTC) systems allow to increase the operating
temperature of gas turbines in comparison with a further increase in engine efficiency
[6]. Creep calculations and analysis of the long-term strength of cooled and double-
walled blades continue to be the focus of researchers [7–13].

Today thermomechanical stresses are one of the most serious problems in the
implementation of these systems, and they must be taken into account, along with
aerothermic characteristics, at the initial stages of design [8]. With the help of the
proposed computational method, which combines both parts of the analysis, the
modelling of the long-term behavior of double walled blades was performed. The
calculated temperature distribution was used in thermomechanical FEA to determine
the stresses in the double wall under thermal loading.

The fracture of aviation turbine blades at high temperatures was studied in [7].
Constitutive creep equations with temperature interpolation are constructed, and heat
transfer is analyzed. The deformed state of the blade before failure is analyzed. The
creep fracture time of the blades is determined to be 91 hours.

According to the data presented in [9], it can be concluded, that temperature
differences have a greater impact on the service life of the blade than pressure
differences. In [13], the effect of holes on the creep of samples with holes simulating
a cooling blade was investigated. It was shown that the creep term was longer in
thin-walled specimens with one central hole and shorter in specimens with multiple
holes due to their interaction.

In [10–12], an analysis of the typical behavior of a cooled turbine blade was
performed. The authors used an original approach in which the complex three-
dimensional design of the turbomachine blade is represented by simplified two -and
one dimensional models. The possibilities of analytical solution for the problem
components, which represent such nonlinear deformation processes, as plasticity,
ratchetting, creep, etc., were used.
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GTE blades used on vehicles operate under conditions of complex temperature-
force cyclic loading. For such conditions of their operation, it is known [14] that
the supposition of varying components on constant load values or temperatures can
significantly increase the creep rate and damage accumulation in the material. In this
regard, the problem of an adequate description of the processes of cyclic deformation
continues to be relevant [15–22].

Cyclic deformation processes are more complex than static ones. In this regard,
experimental studies are carried out to construct constitutive equations for the de-
scription of cyclic deformation and to understand the processes taking place in the
material. The processes of the interaction of creep and low-cycle fatigue are studied
[15, 17] and the dependence of the main values on the strain, the strain rate, static
recovery and the average stress ranges were experimentally verified [15]. The effects
of previous cyclic loading on the creep of steel were studied [22]. For the case of the
interaction of creep and cyclic plasticity, data on the change in the slope of the "creep
strain rate - stress" curve when a certain stress value is reached, were determined [19].
For static load conditions with cyclic fatigue, the process of stress relaxation was
studied [21]. Cyclic strengthening processes were studied, the influence of maximum
plastic deformation due to preloading and ratcheting was analyzed [20].

The experimental results obtained in these and other studies are used to formulate
and verify the constitutive equations to reflect all the main effects that occur during
cyclic deformation - creep, plasticity, strengthening, damage, etc. The approaches of
continuum mechanics and continuum damage mechanics, models of Hayhurst [22],
Chaboche [14–16, 23], physical based and micromechanical models [17, 18, 21] are
used now. The built constitutive equations are used in the simulation of a complex
stress state in FEA.

The presented paper contains a description of the calculation method and consti-
tutive equations for creep-damage processes under cyclic loads and heating, which
is used for the analysis of a simplified DWTC system model. The large number of
cooling channels and the complex geometric shape of the blades lead to the fact
that direct numerical analysis often cannot be satisfactorily applied to elucidate the
qualitative patterns of their deformation and damage accumulation leading to fracture.
In this regard, a simplified two-dimensional model, includes a number of typical
DWTC system operating modes are considered. FEM was used for numerical model-
ing, which allows transferring all the main approaches and algorithms to a general
three-dimensional model.

2.2 Constitutive Equations

To carry out computational studies of creep using FE approaches, it is necessary to
use creep-damage constitutive equations, as well as plasticity at the stages of forcing
engines, which can be implemented to the general method and algorithms that support
it. The incremental theories of creep and plasticity are used.
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2.2.1 Static Loading

To determine plastic strains, we apply the flow rule with isotropic hardening [24] and
use the Huber-von Mises plasticity condition:

𝑓
(
𝜎𝑖 𝑗

)
=

3
2
𝑆𝑖 𝑗𝑆𝑖 𝑗 −

[
Φ

(∫
𝑑𝑝𝑖

)]2
(2.1)

where
𝑆𝑖 𝑗 = 𝜎𝑖 𝑗 − 𝛿𝑖 𝑗𝜎𝑖𝑖

are the components of stress deviator, ∫
𝑑𝑝𝑖

is the Odquist parameter, 𝜎𝑣 is von Mises equivalent stress. In this case, the compo-
nents of plastic strain Y𝑝

𝑖 𝑗
increments are determined as follows:

𝑑Y
𝑝

𝑖 𝑗
=

3
2
𝑑𝑝𝑖

𝜎𝑣
𝑆𝑖 𝑗 . (2.2)

Classical creep-damage laws (strain hardening or Norton creep, Kachanov-Rabotnov
damage equation for scalar parameter, Arrhenius-type temperature function [3, 24])
are used

¤𝑐𝑖 𝑗 =
3
2
𝐵𝑐−𝛼𝑣𝑀

(𝜎𝑣)𝑛−1

(1−𝜔)𝑙
exp

(
−𝑄𝑐
𝑇

)
𝑆𝑖 𝑗 ; 𝑄𝑐 =

𝑈𝑐

𝑅
; (2.3)

¤𝜔 = 𝐷
(𝜎𝑣𝑑)𝑚

(1−𝜔)𝑙
exp

(
−𝑄𝑑
𝑇

)
; 𝑄𝑑 =

𝑈𝑑

𝑅
. (2.4)

Here 𝑐𝑖 𝑗 are the components of creep strain tensor, 𝑐𝑣𝑀 is von Mises equivalent
creep strain,𝑈𝑐,𝑈𝑑 are the values of activation energies for creep and creep damage
accumulation processes, 𝑅 is universal constant. 𝜎𝑣𝑑 is equivalent stress has to be
estimated by use of strength criteria at the step of governing the conditions of hidden
damage accumulation finishing. As is known [3], the values of material constants
𝐵,𝐷,𝑛,𝑚, 𝑙,𝛼 included in (2.3) – (2.4), can be obtained by use of experimental data
processing.

2.2.2 Cyclic Loading. Stresses Lower the Yield Limit

Let us consider the main equations for the case of cyclic varying of temperatures and
stresses. In this case, by cyclicity we understand the alternation of long periods of
gas turbine or turbine operation (hours in the first case and months in the other) with
stop periods. We will demonstrate it by a simplified dependence of temperature and
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stress on time (Fig. 2.1), in which we neglect the regions of increase and decrease.
Here 𝑡1 is the operating time, 𝑡2 is the dwell time. Further, in this approximation,
we consider the periods 𝑇𝑐, defined as 𝑇𝑐 = 𝑡1 + 𝑡2, to be the same for the entire time
of further operation. In fact, the rectangular approximation is often quite sufficient,
since the integration operation (see below) is used to obtain the equations, and the
value of the corresponding area under the curve is decisive.

Let us use the constitutive equations (2.3) – (2.4), and for the sake of simplicity
we use Norton’s law and assume 𝛼 = 0. To perform an analysis of the behavior of
structural elements operating under a complex stress state, it is first necessary to
analyze the one-dimensional behavior of the materials from which they are made.
Behavior patterns obtained at the same time can also be detected when solving two-
and three-dimensional problems, which will facilitate their analysis.

First, we consider the one-dimensional case with the action of tension stress 𝜎𝑢
. For the case of stress cycling, it can be represented by the sum of constant 𝜎 and
time-varying components 𝜎1: 𝜎𝑢 = 𝜎 +𝜎1 . Similarly, the temperature function has
a constant part 𝑇 and periodically varying 𝑇1: 𝑇 = 𝑇 +𝑇1 . The law of cyclic varying
for above stress is represented by a polyharmonic law with a period 𝑇𝑝:

𝜎𝑢 = 𝜎 +𝜎1 = 𝜎

(
1+

∞∑︁
𝑘=1

𝑀𝑘 sin
(
2𝜋𝑘
𝑇𝑝

𝑡 + 𝛽𝜎𝑘
))

(2.5)

where 𝑀𝑘 =
𝜎𝑎𝑘

𝜎
, 𝜎𝑎𝑘 are the coefficients of stress function 𝜎1 expansions into

Fourier series. First, we will assume that the temperature has a constant value 𝑇
and the exponential factor in (2.3) – (2.4) will be equal to 1. We will expand the
creep strain and damage parameter functions into an asymptotic series with a small
parameter

𝜇 =
𝑇𝑝

𝑡∗
,

where 𝑡∗ is the time of finishing the hidden damage accumulation. We limit ourselves
to two terms of the these series, which is the usual procedure of asymptotic methods
[25, 26]:

𝑐 � 𝑐 (0) (𝑡) + 𝜇𝑐 (1) (𝜉); 𝜔 � 𝜔 (0) (𝑡) + 𝜇𝜔 (1) (𝜉) (2.6)

where 𝑐 (0) (𝑡),𝜔0 (𝑡), 𝑐 (1) (𝜉),𝜔 (1) (𝜉) are the functions which reflect creep and dam-
age processes in slow time (0) and fast time (1). Here we consider two time variables:

Fig. 2.1 Representation of
simplified temperature and
stress cycle.
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a slow time 𝑡 that varies from 0 to the time to the fracture time value 𝑡∗ and fast time

𝜏 =
𝑡

𝜇
or 𝜉 =

𝜏

𝑇𝑝
,0 ≤ 𝜉 ≥ 1.

Now let us substitute the asymptotic series (2.6) into equations (2.3) – (2.4) and
average the obtained equations [25, 26] by the period of stress varying. After these
transformations, we get the expressions of the creep strain and the damage parameter
on the time interval:〈

𝑐 (0) (𝜉)
〉
=

∫ 1

0
𝑐0 (𝑡)𝑑𝜉 = 𝑐0 (𝑡);

〈
𝑐 (1) (𝜉)

〉
=

∫ 1

0
𝑐1 (𝜉)𝑑𝜉 � 0; (2.7)

〈
𝜔 (0) (𝜉)

〉
=

∫ 1

0
𝜔0 (𝑡)𝑑𝜉 = 𝜔0 (𝑡);

〈
𝜔 (1) (𝜉)

〉
=

∫ 1

0
𝜔1 (𝜉)𝑑𝜉 � 0. (2.8)

The next step is to substitute (2.7) and (2.8) into the system of equations (2.3)-(2.4).
The results change the basic system to the following

¤𝑐 = 𝐵𝑔𝑛 (𝑀𝑘)
𝜎𝑛

(1−𝜔)𝑙
; ¤𝜔 = 𝐷𝑔𝑚 (𝑀𝑘)

𝜎𝑚

(1−𝜔)𝑙
; 𝜔(0) = 𝜔0, 𝜔(𝑡∗) = 1; (2.9)

𝑔𝑛 (𝑀𝑘) =
1∫

0

(
1+

∞∑︁
𝑘=1

𝑀𝑘 sin (2𝜋𝑘𝜉)
)𝑛
𝑑𝜉;

𝑔𝑚 (𝑀𝑘) =
1∫

0

(
1+

∞∑︁
𝑘=1

𝑀𝑘 sin (2𝜋𝑘𝜉)
)𝑚
𝑑𝜉.

Here, the functions 𝑔𝑛 (𝑀𝑘) and 𝑔𝑚 (𝑀𝑘) reflect the influence of the cyclicity of the
processes of creep and damage accumulation.

After that, let us add to the consideration the cyclic temperature varying:

𝑇 = 𝑇 +𝑇1 = 𝑇

(
1+

∞∑︁
𝑖=1

𝑀𝑇
𝑖 sin

(
2𝜋𝑖
𝑇𝑇

𝑡 + 𝛽𝑇𝑖
))

; 𝑀𝑇
𝑖 =

𝑇𝑎
𝑖

𝑇
(2.10)

where 𝑇𝑎
𝑖

are the coefficients of expansion the temperature function 𝑇1 in Fourier
series. We similarly use two time scales with a small parameter �̂� = 𝑇𝑇/𝑡∗:

𝑇 � 𝑇 (0) (𝑡) + �̂�𝑇 (1) (𝜉). (2.11)

Using transformations similar to those described above for creep strain (see, for
example, [27, 28]), it is possible to obtain expressions for the similar influence
functions 𝑔𝑇 (𝑇) for creep and 𝑔𝜔 (𝑇 )

𝑇
for damage equation:
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𝑔𝑇 (𝑇) = 𝐵
1∫

0

exp©«−𝑄𝑐𝑇
(
1+

∞∑︁
𝑖=1

𝑀𝑇
𝑖 sin (2𝜋𝑖𝜉)

)−1ª®¬ 𝑑𝜉; (2.12)

𝑔𝜔𝑇 (𝑇) = 𝐷
1∫

0

exp©«−𝑄𝑑𝑇
(
1+
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𝑖=1

𝑀𝑇
𝑖 sin (2𝜋𝑖𝜉)

)−1ª®¬𝑑𝜉.
So, now the creep-damage laws, taking into account temperature and stress varying,
can be written in the following form:

¤𝑐 = 𝑔𝑛 (𝑀𝑘)𝑔𝑇 (𝑇)
𝜎𝑛

(1−𝜔)𝑙
, 𝑐(0) = 0; (2.13)

¤𝜔 = 𝑔𝑚 (𝑀𝑘)𝑔𝜔𝑇 (𝑇) 𝜎𝑚

(1−𝜔)𝑙
; 𝜔(0) = 𝜔0, 𝜔(𝑡∗) = 1. (2.14)

System (2.13) – (2.14) can be considered as a new system of governing equations
for the averaged cyclic creep-damage process. Its analysis shows that when using it,
there is no need to integrate over the cycle.

Next, after passing to the general case of a complex stress state with the usual use
of the corresponding invariants of the stress tensor or their combination, we obtain:

¤𝑐𝑖 𝑗 =
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2.2.3 Cyclic Load. Overloading with Transition to Plastic
Deformation

As was noted above, under forced operating modes of a gas turbine engine, in addition
to the already developing creep strains, plastic strains can occur in the material of its
structural elements. First, we also consider uniaxial deformation.

Let us formulate the problem. The uniaxial sample is instantly loaded in the elastic
area, then deformed by creep with stress 𝜎 during time 𝑡1. Then, for time 𝑡2, a load is
added incrementally, which realizes the stress 𝜎1, and its value exceeds the value of
the yield limit 𝜎𝑦 for the given temperature. After that, the sample is also gradually
unloaded to the value 𝜎. Next, the process of loading and unloading is repeated
(Fig. 2.1).

It is known [29] that an adequate description of the step load during creep can be
implemented using the strain hardening theory. Let us consider it. With a stepped load
from 𝜎 to 𝜎1, the strain rate is determined by the angle of inclination of the tangent
to the strain curve with stress 𝜎1 at a point that can be found by parallel transfer to it
along the time axis of the point from the curve constructed at stress 𝜎. After the onset
of stress 𝜎1, the creep strain increases according to the law corresponding to the law
of its varying at the mentioned point. In the case when the stress 𝜎1 exceeds the yield
point, we assume that the total strain also increases by stepped law by addition of
plastic part. Its value can be determined by the deformation curve (𝜎− Y).

Let us consider creep deformation of the rod made from high-chromium corrosion-
resistant foundry heat-resistant nickel based alloy (Ni 57%, Cr 16%, Co 11%, W 5%)
and heated evenly to temperature 950 C [30]. The creep curves of this material for
4 stress values for a deformation time of 1h are presented in Fig. 2.2. Note that the
first two curves correspond to the deformation in which the stress values exceed the
yield strength of this alloy at the given temperature 𝜎𝑦 = 390 MPa, the other two are
obtained during the initial elastic deformation. As can be seen, the curves do not

Fig. 2.2 Creep curves of heat-
resistant nickel based alloy.
Static loading. Stress values:
1 - 450 MPa, 2 - 420 MPa,
3 - 250 MPa, 4 - 145 MPa.
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differ qualitatively. In this regard, they were processed using one dependency (2.3).
It was done by use of strain hardening law. For the case of creep without damage, the
following values of constants were obtained after calculations:

𝐵 = 5.26 ·10−27MPa−𝑛/h, 𝑛 = 5.508, 𝛼 = 4.678.

Let us apply the obtained constants to Eq. (2.3) for the analysis of deformation
processes with a step varying of stresses and a uniaxial stress state. To do this, we
will conduct a numerical simulation of the creep process with cyclic loadings, using
calculations based on strain hardening theory. A number of calculations were carried
out with different input data, and below we present typical results. First, consider
the loading due to Program 1 corresponding to stress varying that do not exceed the
yield limit at this temperature.

2.2.3.1 Program 1

Initial value of stress 𝜎 = 250 MPa, the greater value 𝜎1 = 350 MPa, 𝑡0=0.166 h (10
min), 𝑡1 = 0.083 h (5 min), 𝑡2 = 0.25 h. Loading time is equal to 1 h. The results
are presented in Fig. 2.3, where the dependence of the total strain Y (Y = Y𝑒𝑙𝑎𝑠𝑡 + 𝑐)
on time is given. Here, curve 1 and 3 correspond to the static load at 𝜎 = 350 MPa,
curve 3 – at 𝜎 = 250 MPa. Curve 2 is built for data from cyclic loading according to
program 1. As can be seen from the figure, the curve for cyclic loading is similar to

Fig. 2.3 Creep curves of heat-
resistant nickel based alloy.
Static (curves 1 - 350 MPa and
3 - 250 MPa) and cyclic (curve
2) loading.
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the curves for static loading, therefore, it is possible to use the ratio of type (2.13) to
describe the averaged process.

2.2.3.2 Program 2

Now consider the load according to program 2, in which the load in the plastic zone
is cyclically added to the creep caused by the stress, which exceeds the yield strength.
We analyse the case of deformation with hardening of the material in each cycle of
additional loading, when the yield stress changes due to hardening process, as shown
in Fig. 2.4.

Initial value of stress 𝜎 = 370 MPa, the greater value 𝜎1 = 420 MPa, 𝑡0 = 0.25 h,
𝑡1 = 0.083 h, 𝑡2 = 0.083 h. Loading time is equal to 1 h. The results are shown in
Fig. 2.5. As can be seen from the comparison of the location of curves 2 in Figs.
2.3 and 2.5, they are qualitatively different, which is due to the instantaneous plastic
additional loading in the cycle of program 2. With a rather small difference between
the stress values 𝜎 and 𝜎1 in 50 MPa, we observe jumps in deformation during
additional loading. During unloading, there is an elastic reduction, but the plastic
strain accumulated during the cycle remains and is added to the full value. It is
also possible to see that with each cycle as the yield strength increases, the amount

Fig. 2.4 Dependence of the
yield limit on the number of
the loading cycle.

Fig. 2.5 Creep curves of heat-
resistant nickel based alloy.
Static (curves 1 - 420 MPa,
and 3 - 370 MPa) and cyclic
cyclic step loading according
to program 2 (curve 2).
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of reduction in total strain also decreases. This means that when loading has a lot
of cycles, the shape of the strain curve will approach a smoother one. A similar
conclusion is confirmed by the shape of the strain curve with 10 similar cycles of
program 2, which is presented in Fig. 2.6. A loading time of 2 h was set.

From the analysis of the curve in Fig. 2.6, built according to program 2 of the step
loading, it can be seen that when the current value reaches the yield strength value
of the acted stress 𝜎1 = 420 MPa, the deformation begins to proceed similarly to
the process with initially elastic stresses (as according to program 1). Such loading
processes are similar to ratcheting processes [31], but with continued growth of creep
strains.

The method of obtaining the averaged equations discussed in the previous section
cannot be used directly to obtain the averaged equation in the case when there is
an overloading in the cycle, which leads to the occurrence of plastic strains with
material hardening. This is due to the different nature of curves for the cyclic creep
with plastic strains creep under static loading. In this regard, an approach is proposed
that allows obtaining an approximate form of such an averaged equation, for its use
in numerical modeling of structural elements of turbomachines.

Let us assume that due to experiments or numerical modeling using strain harden-
ing law (it is this that makes it possible to calculate the case of additional loading [29])
a set of uniaxial creep curves under purely static loading and a corresponding set of
curves for the case of cyclic overloads is obtained (Fig. 2.7). The set should consist
of as many calculated curves as possible (three are shown in the figure to better
understand the appropriate arrangement). As can be seen after analyzing the curves
of the Fig. 2.7, the cyclic overload curves in the case under consideration with stress
values from 390 to 420 MPa are of the same type. They are characterized by higher
values of strains in the cycle at higher values of overload stresses. After the overload
is completed, the strains follow the same segments of the curves corresponding to
the main static load. This means that the function of irreversible cyclic deformation
does not depend on the value of the overload stresses, but only on the stress of basic
loading.

Next, for eachcurve of cyclic creep withoverloads,using approximation procedures,
we obtain averaged curves, i.e., curves that correspond exactly to the irreversible

Fig. 2.6 Cyclic creep curve
of heat-resistant nickel based
alloy (program 2).



30 Holm Altenbach, Dmytro Breslavsky, and Oksana Tatarinova

a) b)

c)

Fig. 2.7: Creep curves of heat-resistant nickel based alloy for static stresses (a) 330 MPa, b)
350 MPa, c) 370 MPa) and cyclic overloading up to 420, 440 and 460 MPa.

strain accumulated in the sample. This is shown in Fig. 2.8, where the cyclic creep
curve with the overload amplitude 𝜎1 (curve 1), the averaged curve 2 and the curve
under static loading (3) are presented for one set of applied stress values. Points used
for approximation are marked with circles.

Using classical methods of processing the static creep curves, we find the values of
the constants 𝐵,𝑛,𝛼 , included in the equation for the static creep strain rate function:

¤𝑐 = 𝐵𝑐−𝛼𝜎𝑛 (2.16)

Further, by integrating Eq. (2.16), we obtain an expression for the dependence of
creep strains on time:

𝑐 𝑗 = 𝑏𝜎
𝑟
𝑗 𝑡
𝑎, 𝑗 = 1 . . . 𝑁, (2.17)

Fig. 2.8: Schematic presentation of the cyclic creep curve (1), averaged curve (2) and static creep
curve (3).
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where 𝐵,𝑟, 𝑎 are the constants, 𝑁 is the number of curves obtained. According to
the procedure described above for obtaining averaged curves of irreversible strain
(curve like curve 2 in Fig. 2.8), we obtain approximation dependencies for these
functions 𝑓 𝑗 (𝑡;𝜎𝑗 ), 𝑗 = 1 . . . 𝑁. Than it is possible to determine the influence function
in the form of the additional coefficient 𝑘 𝑗 (𝑡;𝜎𝑗 ), multiplied by which the value of
the function of static creep strains (curve 3 in Fig. 2.8) the demanded value on the
averaged curve 2 will be obtained:

𝑘 𝑗 (𝑡;𝜎𝑗 ) =
𝑓 𝑗 (𝑡;𝜎𝑗 )
𝑏𝜎𝑟

𝑗
𝑡𝑎

, 𝑗 = 1 . . . 𝑁, (2.18)

Next, using the values of the obtained functions 𝑘 𝑗 (𝑡;𝜎𝑗 ) at 𝑁 points on the plane
(𝑡,𝜎) for each of the set of points (𝑡𝑖 ,𝜎𝑗 ) (𝑖 = 1 . . . 𝑀) we obtain the values of the
function 𝐾 (𝑡𝑖 ,𝜎𝑗 ), which reflects the effect of cyclic loading on creep. With the
help of approximation procedures in the two-dimensional domain, we obtain the
expression of the function 𝐾 (𝑡,𝜎) for the all possible values of times and stresses. It
is already possible to include it in calculations for cyclic loading. For the function of
cyclic creep strains, we obtain

𝑐 = 𝐾 (𝜎, 𝑡)𝑏𝜎𝑟 𝑡𝑎, (2.19)

or for the cyclic creep strain rate function

¤𝑐 = ¤𝐾 (𝜎, 𝑡)𝑏𝜎𝑟 𝑡𝑎 + 𝑎𝐾 (𝜎, 𝑡)𝑏𝜎𝑟 𝑡𝑎−1 (2.20)

For the case of a complex stress state, we get:

¤𝑐𝑖 𝑗 =
3
2
𝑏𝜎𝑟−1

𝑣

(
¤𝐾 (𝜎𝑣, 𝑡)𝑡𝑎 + 𝑎𝐾 (𝜎𝑣, 𝑡)𝑡𝑎−1

)
𝑆𝑖 𝑗 (2.21)

The analysis of expression (2.21) shows that it provides the possibility of simulating
creep processes with overload stresses in the cycle exceeding the yield limit, using
only the formulation of the creep problem under static loading, but with an governing
equation of the type (2.21).

To illustrate the method of obtaining an equation of type (2.21), which allows
calculations for a wide range of stresses of the main loading process 𝜎, let us continue
the analysis of the deformation of considered alloy at a temperature of 950◦C. As
an example, consider curves 2 and 3 of Fig. 2.5. The value of the static stress
𝜎 = 370 MPa. We will use curve 2 to obtain a new curve that will correspond to curve
2 in Fig. 2.8, which is an averaged curve that collectively describes the development
of irreversible strains during creep with overloads. Such a curve is constructed - it
is curve 1 in Fig. 2.9. The points show the values taken from curve 2 of Fig. 2.5 at
moments of partial unloading.

Next, it was necessary to construct a function that would approximate above
mentioned curve 1 from Fig. 2.9. After a number of mathematical experiments, it
was found that the hyperbolic function best satisfies the conditions of approaching
the experiment in the first cycles and reaching the asymptote at larger time values. It
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Fig. 2.9 The averaged defor-
mation curve during creep
with overloads (1) and the
approximated curve (2).

was accepted in the following form:

𝑐 =
𝑡

𝑏0 + 𝑏1𝑡
(2.22)

The values of constants are included in (2.22): 𝑏0 = 742.61 min, 𝑏1 = 33.82. The
graph of this function is represented by the curve 2 in Fig. 2.9. As can be seen from
the comparison of the values presented on curves 1 and 2 of this figure, the worst
difference that occurs in the area after the fourth unloading does not exceed 10%. On
other sections, and most importantly, on larger time values, the differences are 2-3%.
This is satisfactory for calculations.

Next, let us consider the deriving of function 𝐾 (𝑡,𝜎). For this, it was necessary to
carry out similar actions with the curves obtained for other stress values like presented
above for the case of 𝜎 = 370 MPa. The stress values were taken in the range of
295-370 MPa with a step of 15 MPa. For each of these creep curves with overloads,
an approximation algorithm was performed and constants to Eq. (2.22) were found.
They were close enough to presented in (2.22). After that, it was possible to determine
the values of the coefficients 𝑘 𝑗 (𝑡;𝜎𝑗 ) for expression (2.18). The calculations were
carried out for the above stress values and time of 100 min with a step of 20 min. Thus,
for each of the 36 points, the coefficients 𝑘 𝑗 (𝑡;𝜎𝑗 ) were found. They are represented
by the surface 𝐾 (𝑡,𝜎) in Fig. 2.10.

Fig. 2.10 Dependence of the
function 𝐾 (𝑡 , 𝜎) , reflects
the influence of the cyclic
overloads on creep rates, from
the stress values of the main
process and time.
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After that, the obtained digital values function 𝐾 (𝑡,𝜎) of two coordinates in
the plane, time and stresses, were used for the numerical determination using the
approximation algorithm of the function of two variables. The analytical expression
of the function 𝐾 (𝑡,𝜎) was obtained as follows:

𝐾 (𝑡,𝜎) =𝑉0𝜎
𝑣1 𝑡𝑣2 (2.23)

where numerical constants included have the following values:

𝑉0 = 0.785MPa−𝑣1h−𝑣2, 𝑣1 = −0.32, 𝑣2 = 0.15.

To use this function when calculating a complex stress state, it is necessary to make a
transition to equivalent stresses and strains due to (2.21) according to relations (2.23)
as well as to obtain the expression of creep strain rate. We obtain:

¤𝑐𝑖 𝑗 =
3
2
𝑏𝑉0 (𝑎 + 𝑣2)𝜎𝑟−1+𝑣1

𝑣 𝑡𝑣2+𝑎−1𝑆𝑖 𝑗 (2.24)

2.3 Problem Statement

Let us consider the general mathematical formulation of the boundary initial value
problem of the creep of deformed solids for the volume𝑉 with isotropic properties in
the Cartesian coordinate system 𝑥𝑖 (𝑖 = 1,2,3). It us supposed, that non-varied in time
displacement values are known in the part of solid’s surface 𝑆1 𝑢𝑖 |𝑆1 = �̄�𝑖 . Another
surface part 𝑆2 is loaded by traction 𝑝 with constant in time 𝑝0

𝑖
(𝑥) and cyclically

varied in time Φ𝑖 (𝑥, 𝑡) components:

𝑝𝑖 (𝑥, 𝑡) = 𝑝0
𝑖 (𝑥) +Φ𝑖 (𝑥, 𝑡) , 𝑥 ∈ 𝑆2 (2.25)

where

Φ𝑖 (𝑥, 𝑡) = 𝑝𝑎𝑖 (𝑥)Φ (𝑡) = 𝑝𝑎𝑖 (𝑥)
∞∑︁
𝑘=1

𝐴𝑘 sin
(
Ω𝑘 𝑡 + 𝛽𝑝𝑘

)
(2.26)

are the periodical expansions with period 𝑇𝑝;

𝑝𝑎𝑖 (𝑥) , 𝐴𝑘 =
√︃
𝑎2
𝑘
+ 𝑏2

𝑘
, Ω𝑘 = 2𝜋𝑘/𝑇𝑝 , 𝛽𝑝𝑘 = arctan (𝑎𝑘/𝑏𝑘)

are known values.
The solid 𝑉 is an inhomogeneous temperature field, which is set on the surface 𝑆

by the sum of the constant 𝑇 and periodically varying 𝑇1 components:

𝑇 (𝑥, 𝑡) = 𝑇 (𝑥) +𝑇1 (𝑥, 𝑡) , 𝑥 ∈ 𝑆 , (2.27)

where
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𝑇1 (𝑥, 𝑡) = 𝑇𝑎 (𝑥)𝜃 (𝑡) = 𝑇𝑎 (𝑥)
∞∑︁
𝑘=1

𝐴𝑇𝑘 sin
(
Ω𝑇𝑘 𝑡 + 𝛽

𝑇
𝑘

)
, (2.28)

are the periodical expansions with period 𝑇𝑇 ;

𝑇𝑎 (𝑥), 𝐴𝑇𝑘 =
√︂(

𝑎𝑇
𝑘

)2
+

(
𝑏𝑇
𝑘

)2
, Ω𝑇𝑘 = 2𝜋𝑘/𝑇𝑇 , 𝛽𝑇𝑘 = arctan

(
𝑎𝑇𝑘 /𝑏

𝑇
𝑘

)
are known values.

Due to Lagrange approach we consider the small strains and displacements that
usually occur in the structural elements of power engineering. The following notations
are used: u for displacement vector with components 𝑢𝑖 (𝑥, 𝑡); 𝜎𝜎𝜎, YYY are the stress
and strain tensors with components 𝜎𝑖 𝑗 = 𝜎𝑗𝑖 (𝑥, 𝑡) and Y𝑖 𝑗 = Y 𝑗𝑖 (𝑥, 𝑡). Both of them
are functions of co-ordinates 𝑥𝑖 (𝑖 = 1, 2, 3) and time 𝑡. Let us assume that at any
time the strain tensor is the sum of elastic and temperature strain tensors, tensors of
irreversible plasticity and creep strains:

Y𝑖 𝑗 = Y
𝑒
𝑖 𝑗 + Y𝑇𝑖 𝑗 + Y

𝑝

𝑖 𝑗
+ 𝑐𝑖 𝑗 , (2.29)

whereY𝑒Y𝑒Y𝑒,Y𝑇Y𝑇Y𝑇 are the elastic and thermal strain tensors with components Y𝑒
𝑖 𝑗
(𝑥), Y𝑇

𝑖 𝑗
(𝑥);

Y𝑝Y𝑝Y𝑝 is plastic strain tensor with components Y𝑝
𝑖 𝑗
= Y

𝑝

𝑖 𝑗
(𝑥); c is creep strain tensor with

components 𝑐𝑖 𝑗 = 𝑐 𝑗𝑖 (𝑥, 𝑡) , 𝑐𝑖 𝑗 (𝑥,0) = 0, (𝑖, 𝑗 = 1,2,3).
For thermal strains, let’s limit ourselves to the generalized law of thermoelasticity

of homogeneous isotropic solids [24], known as the Duhamel-Neumann law, so that
at any time the relationship between stresses, strains and temperature is written as
follows:

𝜎𝑖 𝑗 = 𝜆Y0𝛿𝑖 𝑗 +2𝐺 (Y𝑖 𝑗 − Y𝑝𝑖 𝑗 − 𝑐𝑖 𝑗 ) − (3𝜆+2𝐺)Y𝑇𝑖 𝑗 ; (2.30)

Y0 = Y𝑘𝑚𝛿𝑘𝑚; 𝜆 =
𝜈𝐸

(1+ 𝜈) (1−2𝜈) ; 𝐺 =
𝐸

2 (1+ 𝜈) ; Y𝑇𝑖 𝑗 = 𝛼𝑇𝑒𝑇𝛿𝑖 𝑗

where 𝜆,𝐺 are Lamé parameters; 𝛼𝑇𝑒, 𝛿𝑖 𝑗 are coefficient of thermal expansion and
Kronecker delta.

As in [25–27], we present the basic system of equations for determining the stress-
strain state of the solid during creep under the conditions of a known temperature
field 𝑇 (𝑥, 𝑡)

𝜎𝑖 𝑗 , 𝑗 = 𝜌 ¥𝑢𝑖; 𝑥𝑖 ∈ 𝑉 ; 𝜎𝑖 𝑗𝑛 𝑗 = 𝑝0
𝑖 (𝑥) + Φ𝑖 (𝑥, 𝑡), 𝑥𝑖 ∈ 𝑆2; (2.31)

Y𝑖 𝑗 =
1
2

(
𝑢𝑖, 𝑗 +𝑢 𝑗 ,𝑖

)
, 𝑥𝑖 ∈ 𝑉 ; 𝑢𝑖 |𝑆1 = �̄�𝑖 , 𝑥𝑖 ∈ 𝑆1;

𝜎𝑖 𝑗 = 𝜆Y0𝛿𝑖 𝑗 +2𝐺 (Y𝑖 𝑗 − Y𝑝𝑖 𝑗 − 𝑐𝑖 𝑗 ) − (3𝜆+2𝐺)𝛼𝑇𝑒𝑇𝛿𝑖 𝑗
where, in addition to the previously defined notations, n is a unit vector with compo-
nents 𝑛𝑖 , 𝑖 = 1,2,3 of the external normal to the solid’s surface.

The system of differential equations (2.31), which should be specified by adding
to it the constitutive equations of the material (2.15), will describe the general mathe-
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matical formulation of boundary- initial value creep-damage problem at periodically
varying temperatures and stresses. To apply the constitutive equations, let us trans-
form the system of differential equations (2.30) using the method of two time scales
and averaging over the period of the cyclic varying the components of temperature
and stress.

Let us assume that the time of the creep process until the completion of the
hidden damage is much longer than the periods of the cyclic components of stress
and temperature 𝑡∗ ≫ max(𝑇𝑝 , 𝑇𝑇 ), and limit ourselves to the first approximation of
the asymptotic expansions for the components u, YYY and 𝜎𝜎𝜎 with a small parameter
𝜇 = min[

(
𝑡∗/𝑇𝑝

)−1
, (𝑡∗/𝑇𝑇 )−1], 𝜇≪ 1:

𝑢𝑖 � 𝑢
(0)
𝑖

(𝑥, 𝑡) + 𝜇 𝑢 (1)
𝑖

(𝑥, 𝜉), Y � Y (0) (𝑥, 𝑡) + 𝜇 Y (1) (𝑥, 𝜉);

Y𝑇𝑖 𝑗 � Y
𝑇 (0)
𝑖 𝑗

(𝑥, 𝑡) + 𝜇Y𝑇 (1)
𝑖 𝑗

(𝑥, 𝜉), Y𝑝
𝑖 𝑗
� Y

𝑝 (0)
𝑖 𝑗

(𝑥, 𝑡) + 𝜇Y𝑝 (1)
𝑖 𝑗

(𝑥, 𝜉); (2.32)

𝜎𝑖 𝑗 � 𝜎
(0)
𝑖 𝑗

(𝑥, 𝑡) + 𝜇𝜎 (1)
𝑖 𝑗

(𝑥, 𝜉), 𝑐𝑖 𝑗 � 𝑐 (0)𝑖 𝑗 (𝑥, 𝑡) + 𝜇𝑐 (1)
𝑖 𝑗

(𝑥, 𝜉)

where 𝑥, 𝑡 and 𝜉 are formally independent variables. Then, after performing the
transformations that can be found in [25, 26], we obtain two systems of equations -
the main (2.33) and auxiliary (2.34).

System (2.33) describes the motion of a system of material points during irre-
versible deformation on a slow time scale:

𝜎𝑖 𝑗 , 𝑗 = 0, 𝑥𝑖 ∈ 𝑉 ; 𝜎𝑖 𝑗𝑛 𝑗 = 𝑝0
𝑖 , 𝑥𝑖 ∈ 𝑆2; (2.33)

Y𝑖 𝑗 = (𝑢𝑖, 𝑗 +𝑢 𝑗 ,𝑖)/2, 𝑥𝑖 ∈ 𝑉 ; 𝑢𝑖 |𝑆1 = �̄�𝑖 , 𝑥𝑖 ∈ 𝑆1;

𝜎𝑖 𝑗 = 𝜆Y0𝛿𝑖 𝑗 +2𝐺 (Y𝑖 𝑗 − Y𝑝𝑖 𝑗 − 𝑐𝑖 𝑗 ) − (3𝜆+2𝐺)𝛼𝑇𝑒𝑇𝛿𝑖 𝑗 .

Here, and in following text, the superscript “0”, that describe the creep processes
of heterogeneously heated solids that occur on a slow time scale, is omitted in the
functions.

The system of equations (2.33) should be supplemented with the creep-damage
constitutive equations (2.15). This system describes the general mathematical formu-
lation of the boundary initial value creep-damage problem at periodically varying
temperatures and stresses.

To specify the system of equations (2.33), which must be applied with use of
constitutive equations (2.15), it is necessary to define the stress fields𝜎𝑎𝑘

𝑖 𝑗
, 𝑘 = 1,2, ....

as well as temperature fields 𝑇𝑎
𝑖
, 𝑖 = 1,2, ...., which describe the periodically varying

processes of the stress-strain state and temperature over time 𝜉, 0 ≤ 𝜉 ≤ 1 . Auxiliary
systems of equations are intended for this purpose. A system of equations is obtained
for time scale (0 ≤ 𝜉 ≤ 1) [26, 27]:

𝜎
(1)
𝑖 𝑗 , 𝑗

= 𝜌𝜇−3𝑢
(1)
𝑖, 𝜉 𝜉

; 𝜎 (1)
𝑖 𝑗
𝑛 𝑗 = 𝜇

−1Φ𝑖 , 𝑥𝑖 ∈ 𝑆2; (2.34)

Y
(1)
𝑖 𝑗

= (𝑢 (1)
𝑖, 𝑗

+𝑢 (1)
𝑗 ,𝑖
)/2, 𝑥𝑖 ∈ 𝑉 ; 𝑢

(1)
𝑖

���
𝑆1

= 0, 𝑥𝑖 ∈ 𝑆1;
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𝜎
(1)
𝑖 𝑗

= 𝜆Y
(1)
0 𝛿𝑖 𝑗 +2𝐺Y (1)

𝑖 𝑗
− (3𝜆+2𝐺)𝛼𝑇𝑒𝑇1 −𝜎 (1) 𝑝

𝑖 𝑗
.

The system of equations (2.34) corresponds to the equations of thermoelasticity
(thermoplasticity in the case of the presence of plastic overloads in the cycle) of the
solid at given periodically varying loading with frequencies which is significantly
lower from lower solid’s natural frequency Ω0: (Ω𝑝 = 2𝜋/𝑇𝑝 , Ω𝑇 = 2𝜋/𝑇𝑇 ) ≪ Ω0.
The traction and temperature functions are specified on the corresponding parts of
the solid’s surface:

Φ𝑖 (𝑥, 𝜉) = 𝑝𝑎𝑖 (𝑥)Φ (𝜉) = 𝑝𝑎𝑖 (𝑥)
∞∑︁
𝑘=1

Φ𝑘 (𝜉), Φ𝑘 (𝜉) =𝐴𝑘 sin
(
𝜇Ω𝑘𝜉 + 𝛽𝑝𝑘

)
, (2.35)

𝑇1 (𝑥, 𝜉) = 𝑇𝑎 (𝑥)𝜃 (𝜉) = 𝑇𝑎 (𝑥)
∑︁
𝑘=1

𝜃𝑘 (𝜉), 𝜃𝑘 (𝜉) = 𝐴𝑇𝑘 sin
(
𝜇Ω𝑇𝑘 𝜉 + 𝛽

𝑇
𝑘

)
.

This allows us to consider system (2.34) as corresponding to the non-stationary
deformation of the body under the action of harmonically varying pressure on the
surface 𝑆2 𝑝

(1)
𝑖𝑘

= 𝑝𝑎
𝑖
(𝑥)𝜑𝑘 (𝜉), where 𝜑𝑘 (𝜉) = Φ𝑘 (𝜉) /𝜇, 𝜑k, 𝜉 𝜉 = −𝜇2Ω2

𝑘
𝜑𝑘 (𝜉) (as

a harmonic function). If the periods of traction and temperature are assumed to
coincide, then, as is known, in (2.34) it is possible to separate the variables by
coordinates and time

𝜎
(1)
𝑖 𝑗

=
∑︁
𝑘

𝜎𝑎𝑘𝑖 𝑗 (𝑥) 𝜑𝑘 (𝜉), (2.36)

𝑢
(1)
𝑖

=
∑︁
𝑘=1

𝑢𝑎𝑘𝑖 (𝑥) 𝜑𝑘 (𝜉),

𝑇1 =
∑︁
𝑘=1
𝑇𝑎𝑘 (𝑥) 𝜑𝑘 (𝜉).

Boundary value problems for amplitude values of unknowns periodically varying on
a fast time scale will have the following form (𝑘 = 1,2, . . .):

𝜎𝑎𝑘𝑖 𝑗, 𝑗 = −Ω𝑘2𝜇−1𝜌𝑢𝑎𝑘𝑖 , 𝜎
𝑎𝑘
𝑖 𝑗 𝑛 𝑗 = 𝑝

𝑎
𝑖 (𝑥)𝐴𝑘 , 𝑥 ∈ 𝑆2; (2.37)

Y𝑎𝑘𝑖 𝑗 = 1/2
(
𝑢𝑎𝑘𝑖, 𝑗 +𝑢𝑎𝑘𝑗,𝑖

)
; 𝑥 ∈ 𝑉 ; 𝑢𝑎𝑘𝑖 = 0, 𝑥 ∈ 𝑆1;

𝜎𝑎𝑘𝑖 𝑗 = 𝜆Y𝑎𝑘0 𝛿𝑖 𝑗 +2𝐺Y𝑎𝑘𝑖 𝑗 − (3𝜆+2𝐺)𝛼𝑇𝑒𝑇𝑎 (𝑥)𝐴𝑇𝑘 −𝜎
𝑝𝑎𝑘

𝑖 𝑗
.

Inertial components in the first equations of system (2.37) are formally preserved
when deriving the equations, meanwhile, they can be neglected in calculations,
under the conditions of considering the processes with far from resonant frequencies
Ω𝑝 = Ω𝑇 ≪ Ω0. Under this assumption, systems (2.37) can be considered as a static
problem of thermo-elasticity (thermo-plasticity).

Amplitude values of unknowns periodically varying on a fast time scale are
calculated after solving the problem of non-stationary thermal conductivity for the
heating-cooling cycle and determining the value of the function 𝑇 (1) . This makes it
possible to solve systems of Eqs. (2.37).
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According to the algorithm proposed above, after solving the initial-boundary
value problem (2.33), the stress-strain state of the solid’s creep-damage process with
cyclic varying of temperature and external force fields is determined. Its integration
is carried out until the finish of hidden damage accumulation or until the time for the
analysis of the deformation process, which is specified by the problem conditions.

2.4 Comparison Between Data of Direct Approach and Use of
Averaged Function 𝑲

Next, let us proceed to the analysis of the results of solving the problem of creep
under intermittent overloads, which lead to the occurrence of plastic deformation. In
this case, the traction 𝑝 varyings according to the time law, which is similar to the
presented in Fig. 2.1.

Let us consider the creep of a long plate (beam) subjected to bending in its plane
by a traction part 𝑝𝑏=1 MPa and tensed by an another traction part 𝑝𝑒, which has a
constant value of 25 MPa up to the middle of the plate, and then increases linearly to
75 MPa. Such a load can be considered as simulating the behavior of a turbomachine
blade, which is loaded by surface pressure from the working body (bending) and
tensed by centrifugal forces. The left edge of the plate is rigidly fixed.

Plate dimensions: length 100 mm, width 12 mm, thickness 1 mm. The plate is
periodically loaded with both types of load in such a way that plastic strains occur
in a certain part of it. At the same time, 𝑝𝑏 reaches the value 𝑝𝑏𝑜=1.45 and 𝑝𝑒𝑜
= 1.45𝑝𝑒. It has a constant value of 36.25 MPa up to the middle of the plate, and
then increases linearly to 109 MPa. The material of the plate is the above considered
nickel based alloy at a temperature of 950◦C. The considered conditions correspond
to a two-dimensional plane stress state.

For the direct numerical modeling of considered cyclic creep process, it was
necessary to solve a number of boundary and initial-boundary problems, namely:

1. creep under tensile load 𝑝𝑏 and 𝑝𝑒 during 𝑡0 =0.25 h;
2. instantaneous elastic-plastic loading with load 𝑝𝑏𝑜 + 𝑝𝑒𝑜;
3. creep under load 𝑝𝑏𝑜 + 𝑝𝑒𝑜 during 𝑡1 =0.25 h to 0.5 h;
4. unloading to 𝑝𝑏 + 𝑝𝑒;
5. creep under load 𝑝𝑏 + 𝑝𝑒 during 𝑡2 =0.25 h to 0.75 h;
6. instantaneous elastic-plastic loading to load 𝑝𝑏𝑜 + 𝑝𝑒𝑜;
7. creep under load 𝑝𝑏𝑜 + 𝑝𝑒𝑜 during 𝑡1 =0.25 h to 1 h.

After studies of the convergence of the solutions, a FE mesh with 600 elements and
357 nodes was involved in the calculations. Computer simulation was carried out
and the results of sequential data calculation of these 7 problems were obtained. The
results in the form of the final distribution of von Mises strains in the beam are shown
in (Fig. 2.11a). The areas of the beam where irreversible plastic strains take place are
marked with ovals. As you can see, they occupy a very limited area near the fixed
side.
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a)

b)

Fig. 2.11: Distributions of von Mises equivalent strain in a beam area. a) - direct solution of 7
creep and plastic problems; b) – calculations with use of Eq. (2.24).

Next, the same elastic-plastic-creep behavior of the beam under consideration was
modeled using the obtained Eq. (2.24), which uses the influence function 𝐾 (𝜎𝑣𝑀 , 𝑡)
and reflects the effect of cyclic overloads. The result in the form of a similardistribution
of von Mises strains in the beam is shown in (Fig. 2.11b). Comparing the distributions
obtained by direct integration (Fig. 2.11a) and by using the influence function (Fig.
2.11b), we conclude that calculations based on the equivalent rate of irreversible
strains qualitatively and quantitatively correctly determine the location and level of
maximum strains. In the rest beam area, the deviations between the distributions are
also minimal. Somewhat larger strains occur around the zones near the fixed side,
which are about 0.5%. Such a deviation can be considered as satisfactory, taking
into account the fact that when determining long-term strength based on calculations
of accumulated damage, the area of maximum stresses and strains is decisive. The
obtained conclusion regarding the satisfactory degree of accuracy when solving
problems with overloading in the cycle, which leads to the occurrence of plastic
strains, allows us to use the proposed approach for the modeling the deformation of
more complex structural elements.

2.5 Numerical Simulation of the Cyclic Creep-damage in DWTC
System Model

As noted in the literature review, cooled systems and blades (common name Double-
wall transpiration cooling system - DWTC system) are now widely used in practice -
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both in gas turbines and in turbines [6, 8]. Real blades are three-dimensional objects
with a rather complex geometric shape, with a large number of different cooling
channels. Correct numerical simulation of such objects by FEM using requires the
meshes with a very large number of finite elements (of the order of 106) as well as
large amounts of computer resources. In the presence of such data volumes, their
processing in order to identify qualitative patterns of deformation and damage is not
a simple task, and errors in solving physically nonlinear problems that accumulate
when using models with a large number of elements can lead to incorrect conclusions.

In this regard, the papers have been published, in which the behavior of DWTC
systems is simulated using simpler models (for example, rod models in [12]). Using
analytical and approximate methods for such a model, it was possible to obtain a
number of qualitative regularities of the behavior of the systems under consideration.
But the important factors of non-homogeneous temperature and stress distributions,
stress redistribution during physically nonlinear deformation remained unconsidered.

However, it is proposed to develop this approach in the direction of, on the one
hand, the complication of the model, so that it reflects the main features inherent in a
complex stress state, and on the other hand, so that the correct numerical simulation
can take place in an acceptable time frame (the calculation time of one variant should
not exceed 20-30 min). Also, this model should be built based on those approaches
that are used in the engineering analysis of structural elements, namely the FEM
approaches. Therefore, in this paper, the construction of a simplified two-dimensional
model of a cooled turbine blade is proposed. At the same time, the main components of
the thermal load inherent in the deformation of such blades will be taken into account:
non-uniform temperature distribution due to the effect of the cooling, non-uniform
pressure on the blade and the contribution of centrifugal forces. There remains the
possibility of expanding the field of research, for example, due to the addition of
new cooling channels to the model, the possibility of making a blade from different
materials, etc.

2.5.1 Description of the Calculation Model

A model of a structural element with a plane cross-section, which has two walls and
a bridge between them, simulating the effect of a blade’s shelf (Fig. 2.12), is involved
in the simulation. The following dimensions were set: total height ℎ = 0.3 m, shelf
length 𝐿 = 0.09 m, shelf height ℎ1 = 0.06 m, blade height ℎ2 = 0.235 m, blade wall
thickness ℎ𝑤 = 0.024 m, cooling channel width 𝑎 = 0.018 m. The lower surface is
rigidly fixed. The load consist of pressure from the gas flow, action of centrifugal
loads.
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Fig. 2.12 FE scheme and
main dimensions of the blade
model.

2.5.2 Determination of the Temperature and Stress Field in the
Blade

In this modelling cycle, we will consider the steady-state temperature field that
is created in the blade during its steady-state cooling. For calculations, we use the
developed research program FEM Temperature 2d. Let us use the boundary conditions
of the 1𝑠𝑡 kind and set the temperature distribution along the model’s boundaries.

Let us consider several boundary conditions of the same type, which differ by
the level of blade heating. On the left edge (see Fig. 2.12) the temperature 𝑇𝑙 is set,
inside the model, on the edges of the cooling channel 𝑇𝑖𝑛, on the right side is the
temperature that varies from 𝑇𝑙 on the shelf to 𝑇𝑟𝑚𝑖𝑛 on the blade.

A special preprocessor program for generating FE meshes has been developed for
numerical modelling. An example of its operation for a model with 18 FE in wall
thickness, a total of 1170 elements, is shown in Fig. 2.12. The results of solving the
stationary thermal conductivity problem in the form of temperature distribution in
finite elements are shown in the figures in the corresponding subsections.

Let us discuss the problem of the refinement of stress state. In the case of solving
the problem of thermo-elasticity at the initial stage of integration, the considered
calculation scheme has a defect associated with the presence of large unphysical
values of stresses in the boundary. In the real design, the blade is further continued by
the root, which is in contact with the locking joint. To clarify the stress-strain state in
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the proposed model, a real complex analysis of the stress-strain state of such a blade
was performed. The used calculation scheme is presented in Fig. 2.13.

The results of the thermoelastic analysis of the stress-strain state for the three-
dimensional model of the blade are presented in Fig. 2.14 a) (temperature distribution)
and 2.14 b) (distribution of von Mises equivalent stress). From the analysis of the
stress state calculation, it can be seen that there are increased stress values in the area
of the transition from the blade to the root.

In this regard, for the creep-damage simulation in the blade model using the
calculation scheme presented in Fig. 2.12, stress values in a von Mises stress range
from 360 MPa to 260 MPa are considered in the area of the model’s fixation.

2.5.3 Creep Calculations for a Two-dimensional Model of a Blade
Made of Nickel Based Alloy

Let us consider the results of the cycle of calculations of the stress-strain state
accumulation in the blade model given in Fig. 2.12. Blade material is high-chromium
corrosion-resistant foundry heat-resistant nickel basedalloy (Ni 57%,Cr16%,Co 11%,
W 5%) [30]. Temperature range: 950-850◦C. 𝑇1 = 950◦C,𝑇in = 850◦C,𝑇rmin = 900◦C.
The distribution of the temperature field along the cross section of the model, which
is consistent with that obtained for the 3D model (2.14) a), is given in Fig. 2.15.

Let us consider the case of loading the lateral face of the blade with pressure from
the gas flow, which varies according to the functional dependence on the height of
the blade as a set of linear sections. The graph of this dependence is shown in Fig.
2.16 a).

The action of centrifugal loads with an intensity of 8 MPa is given. Temperature
stresses are taken into account. The results of the calculations in the form of distri-
butions of the von Mises stress fields along the cross section of the model are given
in Fig. 2.16. Figure 2.16 b) contains data obtained for the case of pressure acting

Fig. 2.13 A sketch of a
simplified blade model and its
FE mesh.
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a) b)

Fig. 2.14: Calculation results in a three-dimensional statement: a) – temperature distribution; b) –
distribution of von Mises equivalent stresses. 𝑡 = 0 h.

Fig. 2.15 Temperature distri-
bution along the cross-section
of the FE model, blade made
from nickel based alloy (Ni
57%,Cr 16%,Co 11%,W 5%).

according to the law given in Fig. 2.16 a), as well as Fig. 2.16 b) for the case of
constant pressure with a value of 13 MPa, which corresponds to the average value of
pressure when using the law presented in Fig. 2.16 a). Comparing these distributions,
we come to a conclusion about the practical closeness of the results. In this regard,
further calculations were performed for the case of constant pressure. Note that the
stress values obtained in the thermoelastic calculation do not exceed the yield strength
for the given temperature of 950◦C, 𝜎y = 390 MPa.

First, let us consider the results of numerical modeling of the blade behavior under
the action of only static loads. The constitutive equations (2.3), (2.4) are applied. Let
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a) b)

Fig. 2.16: Distributions of pressure (a) and of von Mises stress (b). Blade made from nickel based
alloy (Ni 57%, Cr 16%, Co 11%, W 5%). Static loading. 𝑡 = 0 h..

us present in addition to described creep constants of considered alloy the values of
constants are included in damage evolution equation (2.4): 𝐷 = 1.1810−17MPa−𝑚/h,
𝑚 = 𝑙 = 5.69. The result of calculations show that the time of hidden damage accu-
mulation is equal to 24.16 h. The obtained distributions of von Mises strains (a) and
damage parameter (b) for this time value are presented in Fig. 2.17.

It can be seen from the obtained data that the largest strains are in the left side of a
blade not so far to the transition zone to the blade root. The maximum value reaches
1.7%. Also, the similar strain values occur in the area of stress concentration near

a) b)

Fig. 2.17: Distribution of the von Mises strain (a) and damage parameter (b), blade made from
nickel based alloy (Ni 57%, Cr 16%, Co 11%, W 5%). Model 1, static loading. 𝑡= 24.16 h.
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the blade shelf. The fracture occurs in this place, but traditional type of the fracture
in the blade fixed area is possible due to fairly high values of damage parameter
(0.2-0.3) here. This area is characterized by joint action of temperature stresses and
gas pressure.

Further let us present the data of calculation with considering cyclic overloading
of blade with plastic deformation through a cycle. The influence function 𝐾 (𝜎𝑣, 𝑡)
(2.24) was used in simulation. Similar distributions of strains and damage parameter
are presented in Fig. 2.18.

An analysis of the resulting strain distribution shows that, due to an increase in
the rate of accumulation of irreversible strain in the case of cyclic overloads, the
level of strain accumulated by the time of failure in the latter case is much higher, by
about 20–30%. The maximum strain increases from 1.7 to 2.2%. From the analysis
of the distributions, it can be seen that the zones with maximum deformation remain
practically the same as in the case of static loading.

The fracture time was changed insignificantly, this was only due to processes of
stress varying due to more intensified creep. However, it is possible to stress the
expansion of the zones of possible fracture: now it is practically equally likely in both
places with maximum damage - both near the fixed side of the blade and in the area
of the shelf.

The obtained results cannot be considered completely satisfactory from the point
of view of design demands for blades with the necessary long-term strength. The
lifetime of 22-24 hours corresponds to approximately the same number of GTE work
cycles, which is insufficient. In this regard, we will demonstrate the possibility of
making corrections to the model by increasing the thickness of the blade walls by
25%, and the height of the shelf by 15%. The developed FE preprocessor allows
you to quickly switch to a new model. Further in the text, we will refer to the model

a) b)

Fig. 2.18: 17 Distribution of the von Mises strain (a) and damage parameter (b), blade made from
nickel based alloy (Ni 57%, Cr 16%, Co 11%, W 5%). Model 1, cyclic loading. 𝑡 = 22.47 h.
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considered above as model number 1, and the new one with increased dimensions as
model number 2.

For model 2, a similar cycle of calculations was carried out, as presented above
for model 1. Additionally, the influence of the pressure level from the gas flow on the
deformation and damage in the blade was studied. The value of constant pressure in
one of the options was reduced by 4 times, to 3.3 MPa. This version of the calculation
model will be given the number 2.2, and the model in which the pressure value of 13
MPa is used will have the number 2.1. Note that due to the increase in the thickness
of the walls and the size of the shelf, the overall level of stresses in the problems
presented by models 2.1 and 2.2 is 10-15% lower.

The results of the calculations are given in Figs. 2.19-2.22, to model 2.1 a) and 2.2
b), respectively. Figures 2.19 and 2.20 show the distributions of von Mises strains,
as well as Figs. 2.21 and 2.22 built for damage parameter distributions. All results
are given for time t = 57.1 h, which precedes the moment of completion of hidden
fracture.

Based on the analysis of the obtained results, it is possible to draw the following
conclusions. The general level of strains remains approximately the same for all three
analyzed variants. The maximum values for static load reach 1.6-1.7%, for cyclic
loading, when rates are higher, 2.2-2.3%. The same strain level in this particular
case is due, most likely, to the compensation of the higher strain rate in model 1
(higher stress level) and twice the time of deformation until the completion of hidden
fracture for models 2.1 and 2.2. A significant strain level in all cases occurs in the
area of the fixed side. In model 2.1, in which a higher level of pressure is set, during
cyclic deformation, a significant strain level, up to 1%, also occurs on the inner side
of the first wall. When the lateral pressure decreases (model 2.2), this distribution
practically disappears. In general, it is possible to note that the impact of load cyclicity
is reflected only on the general increased strain level while preserving the main areas
of more intensive deformation.

a) b)

Fig. 2.19: Distribution of the von Mises strain, blade made from nickel based alloy (Ni 57%, Cr
16%, Co 11%, W 5%). Model 2.1 (a) and Model 2.2 (b), static loading. 𝑡 = 57.1 h.
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a) b)

Fig. 2.20: Distribution of the von Mises strain, blade made from nickel based alloy (Ni 57%, Cr
16%, Co 11%, W 5%). Model 2.1 (a) and Model 2.2 (b), cyclic loading. 𝑡 = 57.1 h.

a) b)

Fig. 2.21: Distribution of the damage parameter, blade made from nickel based alloy (Ni 57%, Cr
16%, Co 11%, W 5%). Model 2.1 (a) and Model 2.2 (b), static loading. 𝑡 = 57.1 h.

When moving from model 1 to model 2, there is a qualitative change in the nature
of the place of completion of hidden fracture. In model 2, the failure occurs in the
area near fixed side, where the maximum stresses occur under elastic loading. Such
a change is due to a decrease in the load on the first wall of the blade, which leads to
a lower rate of accumulation of damage. Reducing the pressure on the blade (model
2.2) leads to the fact that practically all the damage is localized in the area of the
fixed side.

Due to the non-linearity of the processes of stress redistribution during creep,
it is not possible to draw a conclusion about the place of failure in advance, this
is determined by the composition of the stress level. With the help of numerical
simulation of creep and damage, as shown by the given results, it is possible to make
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a) b)

Fig. 2.22: Distribution of the damage parameter, blade made from nickel based alloy (Ni 57%, Cr
16%, Co 11%, W 5%). Model 2.1 (a) and Model 2.2 (b), cyclic loading. 𝑡 = 57.1 h.

such a conclusion. That is, in the case under consideration, even a slight change in
the thickness of the blade walls can lead to qualitative changes in the nature of the
fracture. Note that the nature of the fracture in model 2, i.e. in the places of transition
to the blade root, is more acceptable from the point of view that the real stress level
in the three-dimensional model of the blade, which takes into account the contact
interaction between the blade and the rotor, will be lower.

2.5.4 Creep Calculations for a Two-dimensional Model of a Blade
Made of an Inconel X Alloy

As a second example of the behaviour the considered double-walled blade is creep-
damage analysis in more suitable from the point of view of possibility of deformation
and fracture occurrence range of temperature-loading conditions. The case of stresses
which do not exceed the yield limit is considered. Dimensions are equal to presented
for model 2 in previous section.

Blade material is Inconel X alloy, temperature range - 730-830◦C. 𝑇𝑙 = 830◦C,
𝑇𝑖𝑛 = 730◦C, 𝑇𝑟𝑚𝑖𝑛 = 780◦C. The load is pressure of 0.66 MPa from the gas flow,
assumed to be constant over the height of the blade, the action of centrifugal forces
with an equivalent intensity that varies linearly from 12 MPa on the outer wall to 8
MPa on the inner wall. The same operations for the stress determining near blade
root in 3D statement were done.

For the Inconel X alloy, the creep curves given in [32] were considered at a constant
temperature of 1003K and stresses of 168.8 MPa and 211 MPa to determine the Norton
creep law material parameters 𝐵,𝑛 and the long-term strength curve at stresses of
168.8 MPa, 211 MPa and 235 MPa for finding the material damage parameters 𝐷,𝑚, 𝑙.



48 Holm Altenbach, Dmytro Breslavsky, and Oksana Tatarinova

For a temperature of 1088 K, curves at the same stress values were used to find the
material parameters . After their determining at two different temperatures, them were
found for the total temperature range T = 1003 K-1088 K: 𝐵 = 1.07 · 103MPa−𝑛/h,
𝑛 = 6.33, 𝐷 = 1.1 ·108MPa−𝑚/h,𝑚 = 4.86, 𝑙 = 1.054,𝑄𝑐 =𝑄𝑑 = 5.083 ·104 K.

First, we consider the results obtained for the case of a purely static load and
temperatures that do not varying over time. The distribution of temperatures in the
cross-section of the FE model is presented in Fig. 2.23; von Mises stresses under
thermoelastic initial loading: Fig. 2.24; the values of the von Mises strains in this
time (a) and damage parameter before the end of the process of hidden damage
accumulation (b), 𝑡∗ = 61.1 h: Fig. 2.25.

Next, consider the case of cyclic loading of the blade under consideration, in which
the stresses do not exceed the yield limit. In this case, it is possible to apply the
constitutive equations obtained using the methods of two time scales and averaging
over the period (2.15) when solving the boundary – initial value creep problem (2.33).
Let us take for modeling the case with five overloads in a cycle within one hour
(Fig. 2.25): 𝑡1 = 7 min, 𝑡2 = 𝑡3 = 5 min, 𝑇𝑐 = 1 h. This cycle simulates the operation
of a gas turbine for one hour.

Fig. 2.23 Distribution of
temperatures through the
cross-section of the FE model,
blade made of alloy Inconel X.

Fig. 2.24 Distribution of von
Mises stresses through the
cross-section of the FE model,
blade made of alloy Inconel X,
𝑡 = 0.
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a) b)

Fig. 2.25: Distribution of von Mises strains a) and damage parameter b) through the cross-section
of the FE model, blade made of alloy Inconel X, static loading 𝑡 = 61.1 h.

After performing the transformations and expanding the stress and temperature
functions into Fourier series, the expressions for the influence functions of the type
included in Eq. (2.15) were obtained:
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𝜋𝑘
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.

The representation of the coefficients 𝑎𝑘 does not look very simply, but from a
practical point of view, the implementation of constitutive equations with influence
functions of the type (2.38) is not a problem: this expression is added to just one
small function of the software tool.

Let us consider the results of the calculation analysis of cyclic creep processes,
which is accompanied by damage. We consider the case when the pressure on the
blade and its heating-cooling occur according to the law presented in Fig. 2.25. The
relationship between the components of the stress tensor during additional loading
and temperatures during heating is considered to be as follows

𝜎𝑎𝑖 𝑗 = (1+ 𝐿)𝜎𝑚𝑖 𝑗 , 𝑇𝑎 = (1+𝐻)𝑇𝑚

where 𝐿 < 1, 𝐻 < 1 are coefficients of the overloading and heating.
First, we present the numerical simulation data for different values of 𝐿 and

𝐻 = 0 m. They are presented in Fig. 2.26 and in Table 2.1. Analyzing the table, we
come to the conclusion that the increase in cycle stress values leads to a reduction
in the lifetime values and an increase in strains. Similar results were obtained earlier
with other cycle parameters [25–28] and simple geometry.

Fig. 2.26 Dependence of
stress and temperature from
time through the loading cycle.
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Table 2.1: Dependence of the time to fracture and maximum von Mises strains on the coefficient of
additional loading.

𝐿 0 0.16 0.25 0.33 0.5

Time to fracture, ℎ 0.6 54.95 53.37 51.65 47.88

Maximum von Mises strain,% 1.6 1.2 1.3 1.35 1.4

As an example, Fig. 2.27 shows the distribution of the damage parameter and the
von Mises strains at 𝐿 = 0.5 along the cross-section of the blade. For other values of
𝐿, the distributions are qualitatively similar.

Finally, we present the results of the numerical simulation taking into account the
cyclical varying of both loads and temperatures. As an example, consider the case
𝐿 = 𝐻 = 0.25. The results are shown in Fig. 2.28, where the distributions of the von
Mises strains (a) and the damage parameter (b) along the cross-section of the blade
are presented. The time to complete the hidden fracture was 44.45 hours.

Comparing the results of calculations taking into account the cyclical effect of
temperatures (Fig. 2.28) and without it (Fig. 2.27) for the same value of load increase
in the cycle 𝐿 = 0.25, it is possible to conclude that, despite the fact that the value
of the time to completion hidden fracture did not change significantly, only for three
hours, in the area of the transition to the shelf, a higher value of the damage parameter
was obtained, which may indicate the occurrence of an additional fracture place. The
level of damage in the fixed side area changes slightly.

Analyzing the change in the strain level, we see that the additional cyclical varying
in temperature increases it almost twice, the maximum values from 1.4% increase to
2.7%. Such a difference between varying in strains and the level of damage can be

a) b)

Fig. 2.27: Distribution of von Mises strains a) and damage parameter b) through the cross-section
of the FE model, blade made of alloy Inconel X, cyclic loading 𝑡 = 47.88 h.
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a) b)

Fig. 2.28: Distribution of von Mises strains a) and damage parameter b) through the cross-section
of the FE model, blade made of alloy Inconel X, cyclic loading and heating 𝑡 = 44.45 h.

explained by a greater dependence of the creep rate on stresses for a given material
and temperature range than the dependence of the damage parameter on them. This is
reflected in the difference of approximately 1.5 times between the values of exponents
n and m in the corresponding constitutive equations.

Calculations at other values of 𝐿 and 𝐻 provide the corresponding results of the
intensification of the level of strains and the reduction of the lifetimes when the values
of these coefficients increase.

2.6 Conclusions

An approach to determining the deformation level and long-term strength of structural
elements that are under conditions of cyclic loading and heating and in the material
of which creep develops is presented. The method for solving the boundary - initial
value problems is described. It is based on the traditional combination of FEM and
difference methods of integration for initial problems. The basis of the method is the
developed and verified constitutive equations for describing the creep and damage
of the material. The cases of the cycle stresses varying in a wide range, including
the conditions where they exceed the yield stress, as well as the creep when it is not
exceeded by stresses, are considered.

The basis of the calculation method is the formulation and description of equivalent
creep processes, which allows you to significantly reduce the calculation time due to
the absence of the need for direct integration by cycle, which, if there is a sufficiently
large number of them, makes it impossible to effectively analyze options during
design. Also, cycle integration is a rather complex procedure that cannot ensure
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in all cases the convergence of results with average computing resources. Finally,
the transition to the modeling of averaged processes provides an opportunity to use
modern engineering software complexes, which effectively implement the methods
of creep analysis under static loading.

In the case when the cycle stress values do not exceed the yield stress, due to
the similarity of the strain and damage accumulation curves under static and cyclic
loading, it is possible to apply asymptotic methods together with period averaging
and to formulate the form of a new boundary- initial value problem with new averaged
constitutive equations. However, in the case of cyclic overloads with exceeding the
yield stress, the creep curves under static and cyclic deformation are different. For the
latter case, the paper proposes an approach that allows, based on the approximation
of cyclic creep curves in a wide range of stresses, to obtain an expression for a new
function that reflects the effect of creep acceleration due to load cyclicity.

The proposed approaches and solution methods were used to analyze the creep-
damage processes in a model of a GTE blade with double walls. DWTC systems are
currently being intensively developed, but due to the complexity of the geometry and
significant three-dimensionality of the problem, direct computational analysis of the
regularities of long-term high-temperature processes developing in their material is
difficult and requires a large amount of resources and time. Due to this, the use of
such system‘s models is one of the effective ways to better understand the processes
that take place in them.

This paper proposes an approach to construct a simplified model of a blade with
double walls, which, on the one hand, takes into account all types of temperature-
force influences and stress levels, and on the other hand, thanks to the transition to a
two-dimensional scheme, provides the possibility of both rapid modeling and visual
displaying the results in one plane. It is clear that in the future it is necessary to move
the main conclusions to three-dimensional modeling case.

The main conclusions obtained during numerical modeling can be summarized as
follows. As with the analysis of cyclic creep and damage in simpler implementations of
the geometry of structural elements obtained earlier [25–28], it was demonstrated that
the addition of cyclic loads and temperatures in comparison with the corresponding
static process leads to an increase in the rate of creep and damage accumulation,
which is reflected by a greater level of accumulated strains and a shorter time to
fracture.

The paper demonstrates the possibilities of the proposed approach to the analysis
of the stress-strain state and long-term strength, taking into account the impact of load
cyclicity by reducing of the problem dimension. It is clear that for a comprehensive
analysis of the behavior of such complex systems as the considered double-wall
blade, similar studies should be continued to take into consideration other important
influencing factors, such as corrosion, multi-cycle fatigue, thermal shock, and others.
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Chapter 3
Creep Mechanics – Some Historical Remarks
and New Trends

Holm Altenbach, Johanna Eisenträger, Katharina Knape, and Konstantin Naumenko

Abstract Creep mechanics is a branch of continuum mechanics that began to de-
velop in the late 19th century. In the 1930s the first theories were developed that
allowed the analysis of structures and the description of material behavior. The
theory of viscoelasticity introduced approaches that could be linked to rheological
models. Therefore, rheological models and their perspectives will be discussed in the
concluding part.

3.1 Starting Point - the Early Period of Creep Mechanics

The starting point for the development of creep mechanics were a number of accidents
in the 19th century, some of which had a tragic outcome. The analysis of the accidents
showed that the machines and systems were under relatively low mechanical loads,
i.e. failure occured at stresses that were significantly below the yield stress of the
materials used. At the same time, all accidents and the damage observed as a result had
in common that the temperature level, i.e., the operating temperatures, was elevated.

The main items of the history of creep mechanics are given, for example, in
[1–4]. The first publications on creep problems were published in the second half
of the 19th century. However, the main results were summarized for the first time
in [5, 6]. The first constitutive law for creep problems was the Norton-Bailey law
[7, 8]. This one-dimensional power law (in the sense of mathematics) contains
two material parameters: the magnitude and the creep exponent. Consequently,
the material description in the creep range requires more experimental effort in
comparison to elastic behavior. At the beginning, energy machine design was the main
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application field of creep mechanics. For example in 1933, Stodola reported about gas
turbine applications [9]. However, mechanical loads are multiaxial such that the stress
and the strain in the one-dimensional case should be substituted by their tensorial
counterparts. Odqvist [10, 11] and Bailey [8] introduced a corresponding theory for
isotropic material behavior using invariants of the stress and the strain tensors. A
consistent tensorial description was privided by Prager [12] and Reiner [13], which
includes in additional anisotropy. Mismatches with experimental results resulted
in further modifications of the creep equations, e.g., the strain hardening theory
presented by Nadai [14] and Soderberg [15] and discussed, for example, by Rimrott
[16]. Stability problems considering creep were presented by Hoff [17, 18], and
elements of the geometrically nonlinear theory had to be developed. The increasing
use of polymer materials resulted in the development of new theories, partly based
on analogies between viscoelasticity and creep. However, viscoelastic behavior is
often mathematically described with the help of integral equations, see [19] among
others. The simplest models were suggested using rheological models [20]. Finally,
another application field should be mentioned - the creep in concrete which was
studied, for example, by N.K. Arutunyan [21]. The last one was the starting point for
the development of a new branch of mechanics of deformable bodies - mechanics
of growing solids [22]. It must be pointed out that from the end of 1950ies special
attention was paid to tertiary creep as final stage of creep in materials and structures.
This branch of creep mechanics is also called creep-damage mechanics or only
damage mechanics. The development of this research field started with pioneering
works of Kachanov [23] and Rabotnov [24]. This pure phenomenological approach
was later more and more founded upon knowledge of material scientists and we
have from the beginning of 1980ies, mechanism-based approaches started to develop
[25–28].

Nowadays, an extensive of textbooks and monographs on creep mechanics report-
ing on established research results is available. Most authors prefer the inductive
approach. In many cases, creep equations in the one-dimensional form are intro-
duced based on experimental observations. The generalization is given step by step
applying mathematical approaches of tensor calculus. It seems that there is no book
that represents creep mechanics as strong as books on continuum mechanics. Such
books are only for the elasticity or plasticity, see, for example, [29, 30]. For creep
mechanics, the following books can be recommended: [31–44]. Whereas theories
for static (better quasi-static) applications in the case of monotonous loads and under
isothermal conditions are well established, cyclic loads and their consequences for
the creep behavior are under discussion and require further research.

3.2 IUTAM Symposia and Other Events Devoted to Problems in
Creep Mechanics

Creep mechanics is the object of scrutiny of several scientific organizations world-
wide. Various conferences including presentations about the topics and activities
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devoted to creep problems were organized. The first conference series with attention
on modelling and simulation of creep in materials and applications to structures
was established by the International Union for Theoretical and Applied Mechanics
(IUTAM). The idea to provide IUTAM symposia Creep in Structures was born in
the late fifties of the last century. Since 1960, every 10 years such conferences were
organized:

• 1960 - Stanford (U.S.A.) [45],
• 1970 - Göteborg (Sweden) [46],
• 1980 - Leicester (U.K.) [47],
• 1990 - Kraków (Poland) [48] and
• 2000 - Nagoya (Japan) [49].

The rather long time interval between two symposia can be explained as the main
focus was on creep in metals and structures made of metals and alloys. The duration
of time-dependent processes resulting in significant data and their verification needs
long-term tests in the time range of years.

Due to the arising interest of creep in other materials like polymers and composites,
shorter time ranges for experiments are realistic (this was the result of discussions
during the Nagoya meeting in 2000). However, the next symposium after the meeting
in Nagoya was only held in Paris/France in 2012 [50]. At the same time, the title of
the symposium was changed to Advanced Materials Modelling for Structures. This
year’s symposium comes 11 years after the Paris Symposium. The traditional name
was returned, so that in 2023 Creep in Structures VI is organized.

There are a lot of other conferences devoted to selected creep and creep-damage
problems, for example [51, 52]. The International Association for Applied Mathemat-
ics and Mechanics (GAMM) offered plenary lectures during their annual conferences
and in 1998 and 2001 the topic of plenary lectures were related to creep mechanics
[53, 54]. In 1999, the International Centre for Mechanical Sciences had organized a
special course on creep problems [55].

3.3 Research Directions and Magdeburg’s Contributions

3.3.1 Kachanov-Rabotnov Approach and Mechanism-Based Models

Since 1993, the creep and creep-damage behavior of materials and thin-walled
structures has bin investigated [56–61]. The first papers were based on classical creep
mechanics and the damage approach of Kachanov and Rabotnov. In [62], the damage
activation and deactivation was considered, and in [63] the shear correction factors
in creep-damage analysis of beams, plates, and shells were presented. Edge effects
were investigated in [64] and an interesting application - creep in a multipass weld
- was discussed in [65]. Reference [66] included non-classical effects and in [67],
some mathematical aspects were discussed. Additionally, considering engineering
applications, problems of thin-walled structures were analyzed using both geometrical
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linear and non-linear formulations. Since 1997, instead of a purely phenomenological
approach, mechanism-based models were applied [68]. The classical theory was
extended to creep behavior with respect to a wide ranges of stress levels [69, 70].

3.3.2 Non-Classical Creep

The creep theory for materials exhibiting non-classical creep behavior (for example,
different tension and compression behavior [32, 71], the equivalent behavior under
tension, compression and torsion is different [32, 71], Poynting-Swift effect [72–74]
or second order effects [75]) was in the spotlight of research activities from 1989 until
1996. This non-classical behavior is presented, e.g., in [76, 77]. The development
of this specialization of creep mechanics was connected with the use of some light
alloys, gray cast irons, polymers, ceramics, composites, and other materials whose
creep behavior depends on the type of loading. In addition, the damage behavior of
some materials features non-classical effects [78, 79]. Most of the approaches in this
field are related to the generalization of the Rabotnov concept [32] about creep and a
material damage parameter. In [80], isotropic and anisotropic constitutive equations
reflecting creep behavior depending on the loading type are presented and applied
to shells of revolution. Furthermore, a numerical example for the aluminium alloy
AK4-1T is discussed. In [81], an isotropic creep law for non-classical creep behavior
was suggested and the basic test for the estimation of the constitutive parameters was
described. The model was applied to pure copper M1E (Cu 99%) at a temperature
of 573 K. In [82–84], the energetic variant of creep constitutive equations based on
the dissipation energy was discussed and applied to the titanium alloy OT-4 at 748
K. Finally, in [85], the behavior of polymers with loading type depending behavior
was analyzed. The main results concerning the non-classical models in elasticity,
plasticity, creep, strength criteria and fatigue were summarized in the monograph
[86].

3.3.3 Benchmark Tests for Creep Problems

In [87], the accuracy of creep-damage predictions was investigated. It was shown
that the accuracy of the creep-damage finite element predictions in beams and plates
(bending problems) can be compared with solutions based on the Ritz method. The
mesh sensitivity of the long-term predictions for beams and plates was investigated
while accounting for different element types. The main conclusions were that the
approximations or meshes justified for the elastic solutions using displacement based
variationalmethods cannot be used for the creep damage analysis and the discretization
established based on convergent steady state creep solutions can be used for the
continuum damage mechanics analysis of thin-walled structures in bending. In
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[88], the use of solid and shell elements for creep-damage problems in thin-walled
structures was discussed.

3.3.4 Rheological Models

Rheological modelling is a widely used tool in material modelling and simulation.
The history of rheological modelling is presented in [89, 90]. The “official beginning”
was in the twenties of the last century, but the first rheological models were suggested
by Robert Hooke and other scientists at the same time. With the increasing use
of plastics in the fifties of the last century, the method became very popular. The
focus was on the time-dependent behavior of plastics and their phenomenological
description. However, in the last years, rheological models were used also in other
cases with applications to metals, concrete, geomaterials, etc. Starting with [91] the
creep behavior of a material with a hard and soft phase was investigated using a
rheological model. Further developments of this approach are presented in [92–95]
for alloys and in [96] for a polymer.

3.3.5 Thesis

The following theses were finished in the Magdeburg’s team until summer 2023:

• PhD theses

1. Jewgenĳ Kostenko: Zur Modellierung und Berechnung mehrschichtiger
Flächentragwerke unter Einbeziehung des Werkstoffkriechens (December
1992),

2. Konstantin Naumenko: Modellierung und Berechnung der Langzeitfestigkeit
dünnwandiger Flächentragwerke unter Einbeziehung von Werkstoffkriechen
und Schädigung (February 1996),

3. Yevgen Gorash: Development of a creep-damage model for non-isothermal
long-term strength analysis of high-temperature components operating in a
wide stress range (July 2008),

4. Sergii Kozhar: Festigkeitsverhalten der Al-Si-Gusslegierung AlSi12CuNiMg
bei erhöhten Temperaturen (March 2011),

5. Oksana Ozhoga-Maslovskaja: Microscale modeling grain boundary damage
under creep conditions (January 2014)

6. Mykola Ievdokymov: Identification technique of mechanism-based constitutive
model for cast iron under thermo-mechanical loads (May 2015),

7. Thomas Hanke: Viskoelastische Beschreibung des Langzeit-Kriechverhaltens
von Ethylen-Tetraflurethylen (ETFE) Folien für Membrankissen-
Konstruktionen (March 2016, in cooperation with Fraunhofer-Institut
für Mikrostruktur von Werkstoffen und Systemen Halle),
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8. Johanna Eisenträger: A Framework for Modeling the Mechanical Behavior of
Tempered Martensitic Steels at High Temperatures (May 2018),

9. Vanesssa Hammerschmidt: Entwicklung eines Prüfkonzeptes für thermomech-
anisch hoch beanspruchte Bereiche von Zylinderköpfen und numerische Ab-
bildung der thermischen Belastungszyklen (June 2018, in cooperation with
Volkswagen AG),

10. Steffen Mittag: Mechanismenbasierte probabilistische Bewertung der Ermü-
dungslebensdauer von Metallen unter Berücksichtigung der Streuung der tem-
peraturabhängigen Eigenschaften (June 2019, in cooperation with Hochschule
Offenburg),

11. Andreas Jilg Development and Implementation of a Cyclic Plasticity Model
with Thermal Softening for Hot Work Tool Steel (June 2019, in cooperation
with Hochschule Offenburg),

12. Carl Fischer: Schädigungsentwicklung und mechanismenbasierte Lebensdauer-
modellierung von Aluminiumgusslegierungen unter thermomechanischen Er-
müdungsbelastungen (October 2021, in cooperation with Hochschule Offen-
burg)

• DSc theses

1. Konstantin Naumenko: Modeling of High-Temperature Creep for Structural
Analysis Applications (April 2006, published as [97])

3.4 Outlook

Further impulses for creep research are mainly expected from the following areas:
power plant construction, aircraft construction and microsystem technology. The
first two items are related to traditional application fields. The performance and
efficiency improvement leads partly to an increase of exploitation temperature, creep
and creep-damage became more important. As the component size decreases, the
temperature increases and failure can be avoided only after intensive investigation of
this problem.
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Chapter 4
Various State-of-the-Art Methods for Creep
Evaluation of Power Plant Components in a Wide
Load and Temperature Range

Eike Blum, Yevgen Kostenko, and Konstantin Naumenko

Abstract Many power plant components are exposed to high temperature environ-
ments and complex loading conditions over long period of operation. An important
part in the life-time assessment is the reliable prediction of strain/stress state using
robust creep modeling to avoid possible integrity or functionality issues and failures in
such components. The goal of this work is to apply different state-of-art creep models
including the empirical Norton-Bailey, modified Garofalo equations and the advanced
constitutive visco-plastic model KORA to the analysis of typical high-temperature
power plant components in a wide range of loads and temperatures. Among other
things, an advantage of each model and its robustness is discussed, which should
reflect both inelastic deformation and stress relaxation. The material parameters
were identified from experimental data for 10%CrMoV heat resistant steels in the
creep range. The results of non-linear Finite Element Analysis (FEA) were used for
the subsequent integrity assessment of benchmark examples as well of the practical
example of the steam turbine component. The material laws were implemented in the
commercial software NX CAE. The results for long-term assessment of real steam
turbine component are presented and discussed. In addition, an outlook on further
developments of the material modeling and assessment procedure is also provided.
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4.1 Introduction

Steam turbine components as auxiliary pipes, rotors, turbine and valve casings etc.
are operating under complex multi-axial loading conditions at high temperature for a
long period of time. Structural analysis of such components requires the consideration
of inelastic deformation processes at high temperature. Inelastic structural analysis
can be performed with FEA for the given component geometry, boundary/contact
conditions and kinematic constraints.

The main part of such analysis is a definition of material properties. There are
different ways to describe the material behavior using empirical or constitutive
material models. The parameter calibration for both methods is a very important part
of modeling, and its determining effort depends on the complexity of the model.

A key step is to develop and to calibrate a material model which reflects basic
features of inelastic material response for the specified loading and temperature
profiles. In the last decades many examples of structural analysis of creep are
performed and presented in the open literature, e.g. [1–3]. Two approaches to the
modeling of creep behavior are usually applied.

The first is based on pure empirical equations (e.g., Norton-Bailey, Garofalo etc.)
to describe creep curves under constant stress and temperature levels. One example
is the power law creep equipped with an Arrhenius type function of temperature and
a strain hardening function. This approach is widely used in the practice since the
material parameters in the creep equation can be identified directly from experimental
data and identification procedures are well established. Furthermore, creep equations
are available in commercial finite element codes and can be applied for the structural
analysis.

The second approach introduces internal state variables and corresponding evolu-
tion equations (e.g., Chaboche type) to capture changes in the material microstructure.
Examples include backstress tensors, dislocation densities as well as softening and
damage variables [2, 4]. This approach can be applied to capture the material behav-
ior under complex varying thermo-mechanical loading paths, e.g. [5]. Furthermore,
critical damage zones can be predicted, as shown in [6]. However, general proce-
dures to identify material parameters are not well-established. Furthermore, a user
material subroutine should be developed and implemented inside the commercial
finite element code. The subroutine must include not only a set of constitutive and
evolution equations but also time step and iteration procedures. As a rule, the devel-
oped subroutines are tested and applied to analyze specific components and loading
conditions. In a general-purpose case including contact conditions, singular points,
like edges, etc. the developer does not guarantee the convergence of the solution.
Therefore, this approach has found only restricted application in the industry.

In this paper we address the creep analysis of heat resistant steels for a wide stress
range including low and moderate stress values. Based on the available experimental
data, different creep equations are discussed. The continuous response functions
are introduced to fit creep behavior to a wide range of temperatures as well. All
discussed models are incorporated into the NX CAE finite element code by use of
user defined creep models. To verify the model assumptions a benchmark model
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of cube-one-element, pipe with analytical solution as well as an example for a real
power plant component steam turbine valve casing are presented. The results of
creep analysis under isothermal conditions illustrate the quality and accuracy of
different approaches to reflect basic features of stress redistribution in the structural
component.

The main target of this work is to carry out an inventory of available models
(state-of-the-art) with a focus on assessment regarding robustness and computing
performance required by industrial application. Such assessment shows the needs
of modeling adjustment for commercial use and provides an overview of further
necessary steps in material model adaptations in academic research groups.

4.2 Applied Creep Models

4.2.1 Norton-Bailey Equation

The empirical Norton-Bailey creep equation, e.g. [1] can be used to represent primary
and secondary creep

¤Y𝑐𝑟 = 𝐴𝜎𝑛𝑡𝑚 (4.1)

In Eq. (4.1) ¤Y𝑐𝑟 is the creep strain rate, 𝜎 the effective stress and 𝑡 the time. 𝐴, 𝑛,
𝑚 are material parameters. The Norton exponent 𝑛 is stress dependent and can only
be fitted for a limited stress range at one time. For example, diffusion creep occurs
at low stresses (𝑛 = 1) and dislocation creep (𝑛 ≈ 5) at higher stresses as shown in
Fig. 4.1.

4.2.2 Modified Garofalo Equation

The empirical modified Garofalo equation, see e.g. [7] has separate terms for primary,
secondary and tertiary creep

Fig. 4.1 Stress dependence of
Norton exponent
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Y𝑐𝑟 = Y𝑐𝑟 ,max𝐻 (𝑡) + ¤Y𝑐𝑟 ,min 𝑡 +𝐾3 (𝑇)
(
𝑡

𝑡23

) 𝑓
(4.2)

In Eq. (4.2) Y𝑐𝑟 ,max is the maximum of the primary creep strain. 𝐻 (𝑡) is a time-
dependent hardening function increasing from 0 to 1. Secondary creep is represented
by the minimum creep strain rate ¤Y𝑐𝑟 ,min multiplied by time 𝑡. The tertiary creep
component is determined by the 𝑓 power of time 𝑡 referred to transition time 𝑡23
and the temperature-dependent factor 𝐾3 (𝑇). A description of Eq. (4.2) and the
associated parameters can be found in [8].

Equation (4.2) contains a non-linear dependence between time and creep strain.
In the user creep subroutine, for strain hardening the time is substituted by Newton
iterations.

4.2.3 Constitutive Model

Constitutive models, suitable to calculate stresses, deformations and material damage
in tensor notation are widely discussed in literature, e.g. [2]. The viscoplastic KORA-
model, which was originally proposed by [9], has been continuously improved and
extended mainly to focus on assessing the lifetime of components which undergo a
generalized creep-fatigue loading. The in this work discussed approach, also outlined
e. g. in [10, 11], mainly represents a Chaboche-type model, cp. [4] including some
adaptions to describe a time dependent visco-plastic behavior.

The following paragraph summaries briefly the basics of the approach discussed
in [12], starting with the strain tensor

𝑬=𝑬𝑒𝑙+𝑬 𝑝𝑙 (4.3)

as sum of elastic and plastic parts. The stress tensor

𝑻= (1−𝐷)𝑪 ······𝑬𝑒𝑙 (4.4)

results from the Hooke’s law in tensor notation, where 𝑪 is the fourth-rank elas-
ticity tensor. The scalar 𝐷 represents a calculative material damage, which can be
understood as a measure of material degradation.

The connection between backstress tensor 𝝃 and backstrain tensor 𝒀 is described
as follows

𝝃= (1−𝐷) 𝑐𝒀 , (4.5)

where 𝑐 is a constant. The von Mises equivalent stress is

𝑓 =

√︄
3
2
(𝑻−𝝃)dev
√

1−𝐷
······ (𝑻−𝝃)

dev
√

1−𝐷
, (4.6)

The variable
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𝐹 =
𝑓

√
1−𝐷

− 𝑘0 (4.7)

indicates, whether elastic or plastic deformation becomes active. The latter is the
case when the von Mises stress 𝑓 , augmented by the damage 𝐷, is larger than the
flow limit 𝑘0, a material constant. The accumulation of plastic equivalent strain

¤𝑠 = ⟨𝐹⟩𝑚

𝜂
exp

(
𝑎⟨𝐹⟩𝑑

)
(4.8)

is modeled by a Norton-like power law approach with an additional exponential
function, making it possible to reproduce the stress dependence of the creep rate in a
wide stress range (Fig. 4.1). The brackets ⟨ ⟩ indicate the use of Föppl’s convention:
plastic strain is accumulated for positive stresses but never pushed back for negative
stresses. The evolution of the plastic strain tensor

¤𝑬𝒑=
3
2
(𝑻−𝝃)dev
√

1−𝐷 𝑓
¤𝑠 (4.9)

is linked to the flow rule, using the deviatoric stress tensor.
Following [13], the nonlinear dependence of the backstrain from the accumulated

plastic is modelled by

¤𝒀 = ¤𝑬𝒑𝒍 −𝐵 (𝑠) 𝑏
√

1−𝐷 ¤𝑠𝒀 − 𝑝
𝑐√1−𝐷𝒀

𝑤−1
𝒀 (4.10)

and
𝐵 (𝑠)=𝐵1 + (1−𝐵1) exp(−𝐵2𝑠), (4.11)

where 𝐵1 and 𝐵2 are material parameters. The evolution of damage assumed as the
sum which sums up to fatigue ¤𝐷𝐴 and creep damage ¤𝐷𝑡 terms

¤𝐷 = ¤𝐷𝐴+ ¤𝐷𝑡 (4.12)

The kinetic law for ¤𝐷𝐴 is associated with the accumulated plastic strain ¤𝑠

¤𝐷𝐴 =
¤𝑠
𝐴𝐴
, (4.13)

where 𝐴𝐴 is the material parameter. The kinetic law for the creep part is assumed as
follows

¤𝐷𝑡 =
(
𝜎∗

𝐴𝑡

) 𝑘𝑡
(1−𝐷)−𝑟𝑡 , (4.14)

where 𝐴𝑡 , 𝑘𝑡 and 𝑟𝑡 are material parameters and 𝜎∗ is the damage equivalent stress.
Further details regarding this model and nomenclature are detailed described in [12].
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4.3 Structural Analysis

4.3.1 Verification of the Creep Models Based on Creep Tests

Figure 4.2 illustrates the calculated curves of the different creep models in comparison
to three measurement curves at 550 ◦C for 10%Cr-Steel. The Norton-Bailey and the
modified Garofalo curves are calculated analytically. The constitutive model curves
are computed numerically as a one-cube-element model (3D hexahedron element).
The applied Norton-Bailey model provides an acceptable quality of the measured
data at low stresses, up to the beginning of the tertiary creep. The tertiary creep
cannot be described at all. At high stresses, the Norton-Bailey curve is far below the
measured data. This is due to the stress dependence of the power law exponent 𝑛. At
higher stresses, dislocation creep starts, and the stress dependence of the creep strain
becomes larger. Therefore, it is hardly possible to map a large stress range with one
parameter set. At low stresses with a low 𝑛 ≈ 1 diffusion creep is dominant.

The modified Garofalo creep law is able to present the primary, secondary and
tertiary creep with more accuracy. The material parameters used, represent the
measurement curves at 120, 240 and 400 MPa. At the stress of 400MPa, the curve
is also underestimated. However, the high stress range is matched better with the

Fig. 4.2 Assessment of dif-
ferent creep models based
on experimental data for
10%Cr-Steel at 550 ◦C.
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modified Garofalo than with the Norton-Bailey model. The tertiary creep prediction
at the stress of 400MPa is underestimated as well.

In comparison to previous models the constitutive model reproduces well the
creep curve at 240 MPa. However, at the stress of 400 MPa, the curve is suited also
too low. At the low stress of 120 MPa, there is a slight drop to observe in the curve
at about 50 hts clearly too early at 120 MPa.

4.3.2 Relaxation Test with Cube-one-Element Model

The relaxation test shown in Fig. 4.3 is a uniaxial tensile test with a total constant
strain of 0.2% at 550◦C. The experimental measured stress varies in the range of
150 to 280MPa, where all creep models reproduce good results. The empirical creep
models are calculated in the strain hardening variant. Generally, the results of all
creep models fit the measured data. The best stress relaxations result is obtained with
the modified Garofalo and with the constitutive model.

4.3.3 Pipe Benchmark FE Model

The pipe model, often considered as benchmark, will be used to assess the results and
computation time of the different creep routines. The pipe model is a 90◦ section of a
thick wall hollow cylinder under internal pressure, see Fig. 4.4. The dimensions were
selected with inner radius of 200 mm, outer radius of 500 mm and length of 3000
mm. The creep simulations are performed at a temperature of 550◦C for a duration

Fig. 4.3: Relaxation test at 550◦C and constant total strain of 0.2%.
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Fig. 4.4: 3D meshed view of the pipe FE model.

of to 200,000 h. For the pipe under internal pressure, an analytical solution exists
for the steady-state case according to [14]. The steady-state circumferential stress is
given by

𝜎𝜃 = 𝑝

(
− (1−2/𝑛) 𝑟−2/𝑛 + 𝑏−2/𝑛

𝑎−2/𝑛 − 𝑏−2/𝑛

)
(4.15)

Here 𝑝 is the internal pressure, 𝑟 the radial position, 𝑎 the inner radius, 𝑏 the outer
radius und 𝑛 is the stress exponent of the Norton-Bailey creep model.

In the analytical solution, a plane stress state is assumed. Therefore, in the FE
model, all nodes are fixed in axial direction. The thermal expansion of the material
is not considered. The two cut surfaces are fixed in the normal direction at symmetry
plane.

The following results are generated with 30mm meshed hexahedron elements
with quadratic shape function. The inner pressure is chosen to 100 MPa and the
calculation time is 200,000 h.

The circumferential stress according to equation 15 is highest at the inner radius
before creep. Due to creep, a stress redistribution takes place. The stress maximum
shifts into the direction of the outer radius. Figure 4.5 shows the circumferential
stress as a function of radius after 200000 h. The analytical circumferential stress
will be calculated using the power law exponent 𝑛 of the Norton-Bailey model.
Therefore, the analytical solution and the Norton-Bailey FEA solution fit well together.
According to the modified Garofalo model, the circumferential stress relaxes much
more pronouncedly at the inner radius than in the Norton-Bailey model. This can
be explained by additional modeling of tertiary creep effects, which occur mainly at
the inner radius. For the modified Garofalo solution, further stress redistribution is
expected due to the modeled tertiary creep.

Less stress relaxation is observed with the constitutive model than with the
empirical models. This agrees with the results of the stress relaxation test given in
Fig. 4.3, where the stresses are slightly above the measured curve. This is also due to
the special parameter identification for the constitutive equation, as can be seen in
Fig. 4.2.



4 Various State-of-the-Art Methods for Creep Evaluation 77

Fig. 4.5 Circumferential
stress after 200000 h.

4.3.4 Performance Evaluation of User-Creep Routines

The computational complexity of the modified Garofalo creep routine is higher than
that of the Norton-Bailey routine, because the strain hardening is solved numerically
with Newton iterations. The computation times on the benchmark models of Norton-
Bailey and modified Garofalo creep routine are compared in Fig. 4.6. For this purpose,
the standard non-linear control parameters of the NX Nastran are used. The automatic
time stepping option is therefore activated. The modified Garofalo simulations takes
about two to three times longer. On the one hand, the time difference can be related to
the higher numerical effort for strain hardening with Newton iterations. On the other
hand, the difference in computing times is greater with increasing internal pressure.
As the load increases, the creep strain increases in the modified Garofalo equation
due to tertiary creep. The larger creep strain increments can cause smaller time steps.
For an inner pressure of 100MPa, the solver uses 399 iterations for Norton Bailey
and 472 iterations for modified Garofalo. This means one iteration takes about two
seconds with the Norton Bailey solution. The modified Garofalo solution takes about
four seconds per iteration, which is twice as long.

Fig. 4.6 Comparison of
computation times of Norton-
Bailey and modified Garofalo.
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In the FE solution with the constitutive model, convergence problems exist in
some cases. Convergence can be improved with the solver variable Acceptable Error
for Creep Integration Accuracy (CRLIMR). This leads to significant longer run times.
Particularly with complex 3D models, convergence and computation performance
differences are noticeable in relation to the empirical models. Further investigation
of this area is necessary.

4.3.5 Temperature Interpolation for Norton-Bailey Creep Equation

It is important for computation accuracy to use the correct temperature interpolation.
If the temperature of a creep simulation is located between temperature interpolation
points of the specified material parameters, errors can occur during temperature
interpolation. Using the Norton-Bailey creep routine as an example, different inter-
polation variants are tested on a hexahedron element. The creep strain is evaluated
for a constant stress of 140 MPa and temperature range from 475 to 600◦C in 25 ◦C
steps. The interpolation points are at 450, 500, 550 and 600◦C.

In NX CAE, material parameters are linear interpolated by default. This is fine
for the Norton-Bailey parameters n and m in Eq. (4.1). However, the parameter A
has a logarithmic temperature correlation. If the logarithmic relationship is taken
in consideration during the interpolations, realistic results between the temperature
support points in Fig. 4.7 are obtained. With only linear parameter interpolation,
there are large deviations from the expected creep strain between the interpolation
points. Another interpolation option is creep strain increment interpolation. Here,
the creep strain increment is calculated for the temperature point below and above
and interpolated to the current temperature. With the linear creep strain increment
interpolation there are also deviation leaps in the creep curve. If the creep strain
increment is interpolated double logarithmical

Fig. 4.7 Different temperature
interpolation variants for
Norton-Bailey creep law.
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ΔY𝑐𝑟 (T) = exp
(
ln (ΔY (𝑇0)) + ln (ΔY (𝑇1)) − ln (ΔY (𝑇0))

ln (𝑇1) − ln (𝑇0)
(ln (𝑇) − ln (𝑇0) )

)
(4.16)

the results are also accurate.
In the case of the Norton-Bailey creep equation, partial logarithmic parameter

interpolation or logarithmic creep strain increment interpolation can give good results.
However, the material parameters must be appropriate for parameter interpolation.
A disadvantage of the creep strain increment interpolation is that the derivatives of
the creep strain increment to creep strain and the equivalent stress for the user creep
routine cannot be calculated analytically directly.

4.3.6 Isothermal Steam Turbine Valve FE Model with a Constant
Loading

The following paragraph deals with the analysis of an idealized thick-walled valve
casing of a high-pressure turbine made from 10%CrMoV heat resistant steel. Such
a component has to stop and/or to control the steam flow into a turbine. Due to the
confidentiality of geometry and of material parameters, the data for the dimensions
and the relevant loading as well as the results for the absolute values of stresses and
the time-range were artificially normalized.

Therefore, the results should be considered as just qualitative. It is assumed that
the valve casing is uniformly heated and loaded by internal pressure. The temperature
and the pressure are assumed constant over time. Transient effects during start-ups
and shut-downs are not considered. The main part of the analyzed casing is simplified
as symmetrical.

Figures 4.8 and 4.9 show distribution of the von Mises stress as a result of loading
and heating. We observe that the maximum stress levels appear on the inner side of
the casing. As a result of creep, an essential stress redistribution takes place, leading
to an increase in the stress value on the outer side of the casing. Figures 4.10 and 4.11
show corresponding strain values, which are lower than the allowable characteristic
strain. Nevertheless, damage processes associated with voids and micro-cracks are
expected on both the inner and the outer surfaces of the casing. It is to note that the
Garofalo law results show by factor two higher strains than the Norton-Bailey law.
Field experiences reveal that the reality is to be expected in between both solutions.

4.4 Conclusions

In this paper, the empirical Norton-Bailey and the modified Garofalo creep models
as well as the constitutive KORA model are discussed. All models are implemented
in the FE software NX CAE using user-defined creep subroutines. The results
are compared using different computational models including a real steam turbine
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Fig. 4.8 Stress distribution
normalized by creep rupture
limit (inside). a) Norton-Bailey
law, b) modified Garofalo law.

Fig. 4.9 Stress distribution
normalized by creep rupture
limit (outside). a) Norton-
Bailey law, b) modified Garo-
falo law.

Fig. 4.10 Equivalent creep
strain inside the valve.
a) Norton-Bailey law, b) modi-
fied Garofalo law.

Fig. 4.11 Equivalent creep
strain outside the valve.
a) Norton-Bailey law, b) modi-
fied Garofalo law.

component. Using the discussed models, a detailed FEA is performed to predict
creep in structural components. The example of an idealized high-pressure stop and
control valve casing demonstrates that these methods are capable of reproducing basic
features of creep in engineered structures, including time-dependent deformation,
stress redistributions, and the formation of critical zones of creep damage.

The Norton-Bailey model is already incorporated into most commercial FE pro-
grams. Therefore, the use of user-defined creep subroutine is usually not necessary.
The determination of the material parameters can usually be done by the customer.
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However, the creep strain and stress relaxation can be predicted closer to reality
using the modified Garofalo model, due to the consideration of tertiary creep. The
associated user-defined creep subroutines for empirical models are robust, and the
computational performance is acceptable.

Nevertheless, the empirical models are generally unable to reproduce the complex
non-monotonic loading profiles, LCF influence, and macroscopic material response.
This could be achieved by combining continuum mechanics approaches with a
qualitative analysis of microstructural behavior using constitutive models.

The use of the constitutive model in the listed examples does not show significant
advantages in the benchmark. Its perspective use can be advantageous when non-
monotonic loading or superimposed LCF analysis is required. Computational time
increases enormously with complex 3D models of real components, and issues with
convergence also increase. For example, within the framework, it was not possible to
compute a real component with a constitutive model without simplifying the material
behavior. In addition, the use of user-defined creep subroutines of such a model
does not currently meet industry requirements for robustness. It is the responsibility
of academic research groups to adapt such models for use by customers in future
projects. It is expected that the use of such models will allow the consideration
and combination of different damage mechanisms such as plasticity, creep and LCF.
At present, this only works in isolated cases. In addition, the determination of the
material constants of such models is very time-consuming.

Summarized the main outputs of the work are as following:

1. Empirical models are simple, robust and sufficient for practical use.
2. Constitutive models are not robust and not adopted for needs of industry at present.
3. There is a need to continue and promote the development of constitutive models,

focusing on robustness and usability.
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Chapter 5
Creep and Irradiation Effects in Reactor Vessel
Internals

Dmytro Breslavsky and Oksana Tatarinova

Abstract The paper is devoted to the presentation of the calculation method for
determining the stress-strain state and long-term strength of reactor vessel internals
(RVI) and the description of the results obtained with its help. The method is based on
a complete mathematical formulation of the boundary- initial value problems of creep
accompanied by irradiation effects. Deformation and damage accumulation caused
by irradiation effects in the material when interacting with the effects caused by
thermal creep, can significantly limit the safe operation of RVI. Elastic, thermoelastic,
thermal and irradiation creep, irradiation swelling strains, creep damage and fracture
are considered. The numerical solution of the boundary value problems is performed
by the FEM, and the initial value problems are solved by time integration. To estimate
cyclic deformation and fracture, the procedures of asymptotic methods and averaging
over cycle periods are used. As an examples of the use of this calculation method,
the results of creep modelling of fuel element, T-joint of tubes and notched plates are
given. The issues of interaction of stresses, strains and damages of different nature
under complex stress state are discussed.

5.1 Introduction

Creep accompanied by the accumulation of hidden damage is a complex phenomenon.
In nuclear reactor vessel internals (RVI) it is also accompanied by effects associated
with the action of irradiation. Deformation and damage accumulation caused by
irradiation effects in the material, such as irradiation creep, irradiation swelling,
when interacting with the effects caused by thermal creep, can significantly limit the
safe operation of RVI [1, 2].
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Creep, which occurs as a result of radiation and is accompanied by high plasticity
of fuel and structural materials, is called irradiation creep. It is known that the rate
of irradiation creep can be several times higher than the rate of creep of the same
material at the same stress level [3–5]. In order to distinguish the mechanisms of creep
that occurs during radiation exposure and under the action of only temperature-force
fields, the term ‘thermal’ creep will be used for the latter.

Radiation exposure under conditions of long-term operation leads to another effect
- irradiation swelling, which is volumetric instability caused by the formation of pores
and bubbles in the material and the accumulation of inert gas. At the same time,
the increase in volume is accompanied by a decrease in the density of the material.
Irradiation swelling limits the operational properties of fuel rods and other elements
of the reactor during operation [4].

Like as in traditional creep-damage studies [6], the role of numerical simulation of
the RVI is no less important. Experimental studies are not only very expensive due to
their duration, but also require, firstly, unique laboratory equipment, and, secondly, are
associated with the need to observe strict safety measures due to possible irradiation
damage. If it is still possible to conduct experiments with a uniaxial stress state,
which are absolutely necessary to determine the properties of the material under
radiation exposure, then there are very few data on deformation measurements under
a complex stress state.

As with the numerical simulation of creep and fracture of structural elements,
FEM approaches are used to analyze the stress-strain state of RVI using both standard
engineering software such as ANSYS, ABAQUS [7–9], and specially developed ones
[10–12]. The basis for numerical modeling of the deformation processes in structural
elements subjected to the joint action of thermal-force and radiation fields is the use
of the hypothesis of strains additivity (in most cases, the problems are solved using
the Lagrange approach). Constitutive equations are formulated for each physically
nonlinear component of the total strain tensor (plasticity, thermal and irradiation creep,
irradiation swelling, etc.). It is clear that the adequacy and accuracy of numerical
solutions depends on their adequacy. If classical, proven constitutive equations are
used for plasticity and creep strains description, then the predicting the irradiation
swelling strains, which are often quite significant and dangerous [4, 5], is still far
from classical completion. Irradiation swelling strains have a volumetric nature, and
their description in Solid Mechanics is carried out using the equations corresponding,
for example, to the one used in the calculation of thermal strains. When formulating
the functional dependence used to describe the process of strain accumulation during
irradiation swelling, information is used regarding its dependence on the integral
neutron flux, fluency or accumulated radiation dose, temperature, and time. However,
further such dependencies are built directly using experimental distributions, which
are processed by the method of least squares [13]. Unfortunately, in most publications,
dependencies are formulated precisely for the expressions of swelling strains, while
for the correct formulation of the boundary- initial value problems, a formulation in
rates is required. Reformulation of these state equations obtained for the strain values
to an incremental form can lead to significant inaccuracies in calculations [14].
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The irradiation creep of metals and alloys is often found to be described by linear
dependencies on the applied stresses [4]. Sometimes, when processing the results
of experimental studies, it is possible to formulate the dependence of the irradiation
creep function on swelling [5], but such equations still require further verification.

As shown by experimental and numerical studies [1–5], the addition of radiation
exposure significantly, quantitatively and qualitatively, changes the characteristics of
creep processes in structural elements. As for hidden damage accumulation processes,
experimental data in most cases also indicate their intensification when radiation
exposure is added. Damage calculations of RVI elements using Continuum Damage
Mechanics (CDM) approaches are extremely few. This is primarily due to the difficulty
of obtaining experimental data on long-term behavior during radiation exposure, and
possibly to the lack of appropriate units in many FE software complexes.

Due to the fact that the main structural materials of the active zone of nuclear
reactors were steels and alloys,which in most cases did not show significant anisotropy
of physical and mechanical properties, the calculations were carried out assuming
isotropy of deformation properties and accumulation of damage. By the way, a number
of light alloys are used for the manufacture of RVI elements, which are characterized
by significant anisotropy of both classical physical and mechanical properties [6] and
deformation during radiation exposure [15–17]. Their numerical modeling requires
the verification and formulation of more complex constitutive equations, and the use
of tensor models to predict damage accumulation.

The operation of nuclear reactors is not constant over time, they are periodically
shut down, and many RVI elements are subjected to cyclical varying in temperature
and pressure. This mode of their work is associated with the need to reformulate the
boundary initial value problems with the involvement of new constitutive equations,
which reflect the influence of cyclic loading, heating-cooling, and irradiation on
creep and damage accumulation. Investigations in this direction are just beginning to
be carried out, modeling of non-uniform loading is the subject of few publications
[18, 19]. Yang et al. [19] demonstrate the results of calculations of irradiation
swelling were carried out using ANSYS procedures, in which physical and mechanical
properties were determined as functions of time. Dubyk et al. [18] also used the
developed additional software for the ANSYS to model the reactor baffle taking into
account shutdowns.

This paper is devoted to the presentation of the main approaches, methods and
constitutive equations used for numerical modeling of creep-damage processes in RVI
elements made of materials that exhibit isotropic or anisotropic properties and can
be cyclically loaded. The presented numerical examples demonstrate the capabilities
of the calculation method for the purpose of determining the laws of deformation
and fracture.
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5.2 Problem Statement and Description of Solution Approaches.

Let us consider a solid with a volume 𝑉 fixed on a part of the surface 𝑆1 and loaded
with volume forces 𝑓𝑓𝑓 and traction 𝑃𝑃𝑃 and on a part of the surface 𝑆2 (Fig. 5.1). In the
coordinate system 𝑥𝑥𝑥 = (𝑥1, 𝑥2, 𝑥3) the motion of the continuum of material points will
be described by the displacement vector u, tensors of stresses 𝜎𝜎𝜎 = 𝜎(𝑥𝑖 , 𝑡), 𝜎𝑖 𝑗 = 𝜎𝑗𝑖
and strainsYYY = YYY(𝑥𝑖 , 𝑡), Y𝑖 𝑗 = Y 𝑗𝑖 , (𝑖, 𝑗 = 1,2,3),which are functions of coordinates and
time t. Irreversible creep strains are represented by a tensor 𝑐𝑐𝑐 = 𝑐𝑐𝑐(𝑥𝑖 , 𝑡), 𝑐𝑖 𝑗 = 𝑐 𝑗𝑖 . The
tensor connection for them with the stress tensor components and time is determined
by the accepted constitutive equations.

An inhomogeneous temperature field 𝑇 (𝑥𝑖 , 𝑡) acts on the solid, the effect of which
causes thermal strains YYYT = YYYT (𝑥𝑖 , 𝑡), with components YT

𝑖 𝑗
= YT

𝑗𝑖
. The components

of the total initial strain 𝑒𝑖 𝑗 consist of elastic 𝑒e
𝑖 𝑗

and thermoelastic strains YT
𝑖 𝑗

. The
presence of radiation exposure leads to the development of irradiation creep and
irradiation swelling strains with components 𝑐r

𝑖 𝑗
and Ysw

𝑖 𝑗
, respectively.

Let us specify the nature of the external load field. Acting external forces can be
divided into two components - main and oscillating action. To the first we include
volume forces 𝑓𝑓𝑓 (𝑥𝑥𝑥, 𝑡), 𝑥𝑥𝑥 ∈ 𝑉 , and the part of traction 𝑃𝑃𝑃0 (𝑥𝑥𝑥, 𝑡), 𝑥𝑥𝑥 ∈ 𝑆2, which slowly
varies over time or remain unchanged. The second part include tractions and forces
that change over time according to the harmonic law with amplitude 𝑃a

𝑖
and period 𝑇c

Fig. 5.1 Solid in thermal-force
and radiation fields. 1x

2x
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f
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𝑃𝑖 = 𝑃
0
𝑖 +𝑃a

𝑖 sin
2𝜋
𝑇c

In the assumptions formulated above, the mathematical formulation of the boundary
- initial value problem of the creep of solids under the action of periodically varying
loads can be represented by the following system of equations:

𝜎𝑖 𝑗 , 𝑗 + 𝑓𝑖 = 𝜌 ¥𝑢𝑖 , 𝜎𝑖 𝑗𝑛 𝑗 = 𝑃𝑖 , 𝑥𝑖 ∈ 𝑆2, (5.1)

Y𝑖 𝑗 =
1
2

(
𝑢𝑖, 𝑗 +𝑢 𝑗 ,𝑖 +𝑢𝑘,𝑖𝑢𝑘, 𝑗

)
, 𝑥𝑖 ∈ 𝑉, 𝑢𝑖 |𝑆1 = �̄�𝑖 , 𝑥𝑖 ∈ 𝑆1,

Y𝑖 𝑗 = 𝑒𝑖 𝑗 + 𝑐𝑖 𝑗 + 𝑐r
𝑖 𝑗 + Ysw

𝑖 𝑗 , 𝑒𝑖 𝑗 = 𝑒
e
𝑖 𝑗 + YT

𝑖 𝑗 ,

𝜎𝑖 𝑗 = 𝐷𝑖 𝑗𝑘𝑙
(
𝑒𝑘𝑙 − 𝑐𝑘𝑙 − 𝑐r

𝑘𝑙 − Y
sw
𝑘𝑙

)
,

𝑢𝑖 (𝑥,0) = 𝑐𝑖 𝑗 (𝑥,0) = 𝑐r
𝑖 𝑗 (𝑥,0) = Ysw

𝑖 𝑗 (𝑥,0) = 0.

where 𝜌 is the mass density; n is unit normal to the solid boundary; 𝐷𝑖 𝑗𝑘𝑙 are the
components of the elastic properties tensor, 𝑖 = 1,2,3, �̄�𝑖 are the known displacement
values in the surface part 𝑆1, which do not vary in time.

To determine the limits of the study, we will introduce several assumptions. Due
to the fact that we are considering structural elements in which large displacements
and strains are prohibited by their purpose, we will limit ourselves to the Lagrange
approach. We will consider quasi-static load processes, which is due to the fact that
during design, a search is made for the eigen frequencies of the system and it is
verified that the frequencies of its forced oscillations are far from them. In connection
with this, we will neglect the term corresponding to inertial forces in the equation of
motion, system (5.1). The hypothesis of strains additivity is applied. In the case when
processes characterized by a coupling between irradiation creep and swelling strains
take place, it is possible to postulate the existence of the hypothesis of additivity over
an infinitesimally small interval of time. But such processes will not be considered.

When considering the processes of cyclic varying the stresses due to the fact
that such problems for non-isotropic solids are just beginning to be investigated
and simple qualitative conclusions are needed, we will limit ourselves to the case
of stress varying according to a harmonic law with a low frequency. Such a case
corresponds to a varying of a pressure from a gas flow and is considered in [10]
for the isotropic properties of the material. To solve the problem, we will use the
approaches of the method of many time scales and averaging over the period of
varying stresses. At the same time, two systems of equations are obtained, one of
which describes the deformation of a solid under the influence of a thermal-force
field and radiation exposure and the action of only time-invariant load components,
and the other is analogous to the problem of quasi-static elastic loading in a cycle.
The systems are connected by the constitutive equations, which will be given below,
in the Sect. 5.3. The used approach of reducing the cyclic loading process to the
equivalent quasi-static one is described in [20–22] and also presented by the authors in
another paper of this symposium. The approaches developed by the authors use FEM
for solving boundary-value problems, and finite difference approaches for solving
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initial problems in time. To describe the development of a macrodefect (crack),
which occurs after the completion of hidden damage accumulation, a process based
on a series of reformulated boundary-initial value problems is used. In them, the
initial conditions are determined by the distributions of components of the stress-
strain state and damage parameter in finite elements acquired before the completion
of the next hidden damage accumulation in next finite element, and the boundary
conditions are determined by the current configuration of the considered structural
element, taking into account its destroyed parts. A description of the method and
corresponding algorithms can be found in [23, 24]. In addition to Solid Mechanics
problems, the ability to determine temperature fields in stationary and non-stationary
heat conduction problems is also implemented. A description of the method and
software can be found in [25, 26]. During the last decades, experimental verification
of the method, constitutive equations, and implemented software under uniaxial and
complex stress states was performed, some results and references are presented in
[21, 22, 24, 26].

5.3 Constitutive Equations

To demonstrate the capabilities of the calculation method, we will consider two
versions of the constitutive equations: first fordescribing the behaviorofmaterials with
isotropic properties as well as second one for non-isotropic (in this case, transversal
isotropic) properties of deformation and accumulation of hidden damage.

5.3.1 Materials with Isotropy of Properties

Here we use the equations only for static loading and irradiation effects. Cyclic
behaviour of structures made from materials with isotropic properties is described
by appropriate equations and analyzed in [21, 22, 24, 26].

The description of thermal creep and the damage accumulation associated with it
will be performed using the following equations:

¤𝑐𝑐𝑐 = 3
2
𝑏
𝜎𝑛−1

vM
(1−𝜔)𝑙

[
�̃�
]
𝑠𝑠𝑠 (5.2)

¤𝜔 = 𝑑
𝜎𝑟e

(1−𝜔)𝑙
(5.3)

where 𝑠𝑠𝑠 = 𝑠𝑠𝑠(𝑥𝑖 , 𝑡) is the deviator of stress tensor, 𝜔 is scalar damage parameter
introduced by Kachanov-Rabotnov approach, 𝜎vM, 𝜎e are von Mises equivalent
stress and equivalent stress is obtained by use of fracture criterion which appropriate
for considered material [6]; 𝑏,𝑛, 𝑑,𝑟, 𝑙 are the material constants obtained only
from experiments on creep and long-term strength under static load and constant
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temperature values on standard samples under tension. Here we will limit ourselves to
cases of either constant temperature over the entire volume of the structural element,
or moderate temperature changes, when thermo-physical and long-term physical and
mechanical properties can be considered unchanged.

The irradiation swelling strain Ysw
𝑖 𝑗

is volumetric, so Ysw
𝑖 𝑗

= 0 at 𝑖 ≠ 𝑗 . In general
case it describes by function 𝑆Φ, which depends upon neutron fluency Φ, time 𝑡 and
temperature 𝑇 :

¤Ysw
𝑖 𝑗 =

1
3
¤𝑆Φ

( ¤Φ, 𝑡,𝑇 )
𝛿𝑖 𝑗 (5.4)

As noted, the expression for swelling function 𝑆Φ is often determined numerically
using approximation procedures. For example, for steel type 0.08 % C, 16 % Cr, 11 %
Ni, Mn 3%, 0,2-0.4 % Nb for the neutron fluence range ¤Φ= 4..6 10 ·19 neutron/m2s
and temperature values 458-790 K it was determined as the following dependence
[10]:

¤𝑆Φ = 𝐴1𝛽1
(
𝛼1 ¤Φ

)𝛽1
𝑡𝛽1−1 exp

(
0.0235𝑇 − 83.5

𝑇 −630
− 1782

980−𝑇

)
, (5.5)

where 𝐴1 = 5.33 ·10−9, 𝛽1 = 0.19+1.63 ·10−3𝑇,𝛼1 ¤Φ = 9.37 ·10−3 dpa/h. Irradiation
creep strains will be calculated using the linear dependence of the strain rate on
stresses [4, 5]:

¤𝑐𝑐𝑐 = 3
2
𝑏rc𝜎vM [�̃�]𝑠𝑠𝑠 (5.6)

where 𝑏rc is the material constant for considered temperature range.

5.3.2 Materials with Transversal Isotropy of Properties

As is known [6], at elevated temperatures, even materials that are isotropic during
elastic deformation, can exhibit non-isotropic properties of creep and hidden damage.
Let us consider the constitutive equations proposed by Morachkovsky for materials
with transversely isotropic properties of creep and damage [27] and modified in [28]
for the case of cyclic loading. We consider the case of a quasi-static harmonic load
with frequencies in the range of 1. . . 3 Hz (that is, forced oscillations that occur far
from the eigen frequencies of the structural element during gas flow oscillations. At
the same time, the contribution of inertial forces is neglected). The used equations
are as follows:

¤𝑐𝑐𝑐 = �̃�𝐻 (𝐴)
𝜎𝑚−1

v
(1−𝜂)𝑚 [�̄�]𝜎𝜎𝜎, 𝐴 =

𝜎𝑎v
𝜎v

(5.7)

¤𝜔𝜔𝜔 = 𝑑
𝑝/2
1111𝐾 (𝐴𝐷)

𝜎
𝑝−2
𝐷

(1−𝜂) 𝑝+𝑠−1 [�̄�]𝜎𝜎𝜎, ¤𝜂𝜂𝜂 = 𝑑 𝑝/21111𝐾 (𝐴𝐷)
𝜎
𝑝

𝐷

(1−𝜂) 𝑝+𝑠 , (5.8)

𝜂(0) = 0, 𝜂(𝑡∗) = 1, 𝐴𝑑 =
𝜎𝑎
𝐷

𝜎𝐷
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where 𝜔𝜔𝜔 is the damage tensor. 𝜎v = 𝜎𝜎𝜎𝑇 [�̄�]𝜎𝜎𝜎, 𝜎𝐷 = 𝜎𝜎𝜎𝑇 [�̄�]𝜎𝜎𝜎 are the equivalent
stresses which are the joint invariants of stress tensors and tensors of material
constants; 𝜂 = 𝜂(𝑡)t is scalar damage measure. The index 𝑎 denotes the equivalent
stresses calculated by use the amplitude components of the stress tensor under cyclic
loading. At the time 𝑡∗ of the finishing the hidden damage accumulation process
𝜂(𝑡∗)=1. Matrix [�̄�] contains the components of the material creep properties tensor
𝑏𝑖 𝑗𝑘𝑙:

[�̄�] =


1 𝛽12 0
𝛽12 𝛽2 0
0 0 4𝛽

 , 𝛽12 = −1
2
𝑏1111, 𝛽22 =

𝑏2222

𝑏1111
, 4𝛽 =

𝑏1212

𝑏1111
(5.9)

Matrix [�̄�] contains the components of the material creep damage properties tensor
𝑑𝑖 𝑗𝑘𝑙 :

[�̄�] =


1 𝛿12 0
𝛿12 𝛿2 0
0 0 4𝛿

 , 𝛿12 = −1
2
𝑑1111, 𝛿22 =

𝑑2222

𝑑1111
,4𝛿 =

𝑑1212

𝑑1111
(5.10)

The functions 𝐻 (𝐴) and 𝐾 (𝐴𝐷) are obtained after expanding the functions of the
creep strain and the damage measure into an asymptotic series on a small parameter

𝜇 =
𝑇𝑐

𝑡

in two time scales (slow 𝑡 and fast 𝜉 = 𝜏/𝑇 , 𝜏 = 𝑡/𝜇):

𝑐 � 𝑐0 (𝑡) + 𝜇𝑐1 (𝜉), 𝜂 � 𝜂0 (𝑡) + 𝜇𝜂1 (𝜉), (5.11)

where 𝑇c is the period of cyclic load; 𝑐0 (𝑡), 𝜂0 (𝑡)t), 𝑐1 (𝑡), 𝜂1 (𝑡) are the functions
corresponding to the main creep and damage processes in slow (0) and fast (1) time
scales. The expressions of these functions can be found in [20, 22, 26]. Then, with
the help of the averaging procedure over the period 𝑇c, constitutive equations (5.7)
- (5.8) are obtained. At the same time, the main system of equations (5.1) remains
unchanged, but now it describes the deformation motion of its points already in
the main, slow time. The derivation of the equations is described in more detail in
[20, 22, 26] .

The components of the tensors 𝑏𝑖 𝑗𝑘𝑙 and 𝑑𝑖 𝑗𝑘𝑙 are determined by the results of
experiments on the creep and long term strength of samples cut from the material
in three directions. In the case of sheet materials produced by rolling, these are the
directions along, across the rolling and at an angle of 45◦ to them. �̃�,𝑚, 𝑝, 𝑠 are the
constants determined experimentally.

Next, we will consider the equation for determining the components of the irradi-
ation swelling strain tensor. In the case of anisotropy of the swelling properties, we
write
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¤Ysw
𝑖 𝑗 =

1
3
𝛽𝑖 𝑗 ¤𝑆Φ

( ¤Φ, 𝑡,𝑇 )
𝛿𝑖 𝑗 (5.12)

where 𝛽𝑖 𝑗 are the coefficients reflecting the effect of anisotropy on the swelling
process. Due to the information about the isotropic nature of the irradiation creep
[29], we will describe it by Eq. (5.6).

5.4 Deformation, Damage Accumulation and Fracture in RVI

Let us consider examples of stress-strain state, damage accumulation and fracture
modeling, obtained by use of 2D and 3D models of RVI structural elements.

5.4.1 Creep of T-joint of Tubes

As a first example, let’s consider the results of numerical modeling of the processes of
thermal creep and irradiation swelling of the T-joint of the cooling tubes from system
of the reactor core (Fig. 5.2) [26]. The following dimensions are used: inner radius
50 mm, outer radius 100 mm. For the operational temperature range, the following
data are accepted: Young’s modulus 𝐸 = 1.55 · 105 MPa , Poisson’s ratio 𝜈 = 0.3,
coefficient of thermal expansion 𝛼 = 14.7 · 10−6 (𝐶◦)−1 , yield limit 𝜎y = 650 MPa,
ultimate strength 𝜎u = 980 MPa.

Let us use the isotropic material model (5.2) without taking into account the
damage of the material. The creep constants have the following values:

𝑏 = 3.6 ·10−19.9MPa−𝑛/h, 𝑛 = 4.9.

Fig. 5.2 Model of T-joint.
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The T-joint is loaded with a uniformly distributed internal pressure of 120 MPa,
the temperature field has a steady character and is characterized by a logarithmic
distribution of temperatures in the radial direction, at the outer and inner radii
temperature values of 740 K and 752 K are maintained, respectively. The rate of the
integral flux function is given in the form of the experimentally obtained Eq. (5.5).

The calculations were carried out in the general 3D statement, due to the joint’s
symmetry, one half of it was considered as a FE model (Fig. 5.2). In this figure
surfaces for which different formulations of boundary conditions symmetry were
used are marked with different colors. Calculations were made for a time of 10,000 h.
Figure 5.3 shows the varying of the maximum von Mises stress, which obtained in
the stress concentrator (situated at the transition zone between the tubes). Curve 1 is
built only for the creep problem as well as curve 2 presents the result of combined
problem of creep and irradiation swelling. Figure 5.4 shows the distributions of von
Mises stress in the cross-section of the T-joint also when solving the separate problem
of thermal creep (a) and the combined problem of creep and irradiation swelling (b).

Thermal creep of tubes is well studied, it is characterized by significant redistri-
bution of stresses with their general relaxation [21, 30]. Curve 1 of Fig. 5.3 also
confirms this property of creep under the action of internal pressure. But adding to the
analysis the effect of radiation exposure, which leads to the development of swelling,
qualitatively changes the nature of the change in the stress state. Comparing Fig. 5.4
a) and b) we can see that the stress levels differ from 150 MPa for the maximum and
80 MPa for the minimum values. Due to the effect of swelling strains, the stress level
increases, and due to stress relaxation during creep, it mainly decreases. Obviously,
it is possible to find such a value of internal pressure that will compensate the effect
of swelling. A more detailed description of the results can be found in [26].

5.4.2 Damage Accumulation and Fracture of Reactor Fuel Element

It is known [31] that the facts of the fracture of fuel elements claddings are the most
dangerous factor from the point of view of ensuring their durability. At the same time,
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Fig. 5.3: Evolution of maximum von Mises stress in T-joint.
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Fig. 5.4: Distribution of the von Mises stresses in the T-joint. a) thermal creep, b) thermal creep
and irradiation swelling.

the fracture can go together - not only in the cladding, but also in the nuclear fuel.
The resulting crack causes rapid loss the operability in both elements. As an example,
Fig. 5.5 [31] shows the appearance of a crack developing in the fuel cladding and in
the fuel itself. During the operation of fuel rods, their stress-strain state is determined
by two main factors - the internal pressure of the gas gap and the mechanical load
that occurs as a result of bending in the spaces between the tube boards [4].

Let us analyze the process of fuel rod fracture. It can take place under the condition
that the gas gap is already absent due to the irreversible deformation of the fuel. In
this regard, a calculation scheme without a gap between the fuel and the fuel cladding
is involved in the simulation.

Fig. 5.5 Fracture of nuclear
fuel together with the fuel
cladding [B.R.T. Frost. Nu-
clear Fuel Elements. Oxford:
Pergamon Press, 1982]
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To simulate the bending of the fuel rod in its cross-section, the following calculation
model was built. At the first stage, fuel rod is considered as a hinged beam during
bending. According to the approaches of the theory of beam bending, the stress state
was determined. The mid-length cross-section of the fuel rod is considered. The
determined stresses were applied at the points of the cross-section in 2D model (plane
strain scheme) of the fuel rod with a maximum value of static load on the surfaces of
25 MPa. Due to the symmetry of the stress state, a model for one half of the section
was used.

In the calculations, it is assumed that the cladding is made of IN100 alloy. The
creep-damage constants of this material were obtained:

𝑏 = 3.43 ·10−29 (MPa)−𝑛/h, 𝑛 = 9.7, 𝑑 = 7.5 ·10−15 (MPa)−𝑟/h, 𝑟 = 5.2, 𝑙 = 15.

Material parameters for the fuel material:

𝑏 = 1.25 ·10−7 (MPa)−𝑛/h, 𝑛 = 𝑙 = 𝑟 = 3, 𝑑 = 3.125 · 10−7 (MPa)−𝑟/h

were obtained by use experimental data [26].
We present the results of numerical simulation of creep, damage accumulation

and subsequent fracture development for a cross-section of fuel rod under constant
bending by the load linearly increasing up to 25 MPa on the surface of the cladding.
According to the simulation data, it was established that after 318,443 h of creep,
accompanied by hidden damage accumulation, a macrodefect appears on the outer
surface of the fuel cladding (Fig. 5.6). Its material is destroyed simultaneously in
several finite elements. Further, the development of the macrodefect proceeds quite
quickly, within 0.001 h (3 s) it spreads to the fuel area (Fig. 5.7). After a few more
seconds, the complete fracture of the fuel in the cross-section occurs [26].

Analysis of the obtained numerical results shows that the existence of a macrodefect
in the fuel rod under consideration is limited to a few seconds. This means that for
the considered material composition the assessment of its long-term strength can be
performed only by calculating the processes of damage accumulation, without the
involvement of a specialized software tool for simulation of fracture.

Fig. 5.6 View of the fuel rod
cross-section model at the
end of the hidden damage
accumulation, 𝑡 = 318, 443 h
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Fig. 5.7 View of the fuel rod
cross-section model during
fracture process at the time
𝑡 = 318, 444 h.

5.4.3 Transversal-Isotropic Creep-Damage Behaviour of
Aluminium Notched Plate

The next example is related to the demonstration of the behavior of a representative
of light alloys, which present class of materials exhibiting anisotropy of properties
[15]. Consider the processes of thermal and irradiation creep, accompanied by the
accumulation of hidden damage and the growth of irradiation swelling strains in a
plate with side circular notches. Plate material is aluminum alloy type 2024. This
problem is classic for the creep theory, but it is also of practical importance for some
elements of RVI fasteners.

The plate is loaded by traction of 1 MPa, it is in a non-uniform temperature field
(230−280◦C and under the action of radiation exposure. The material of the plate
is characterized by significant anisotropy of creep properties and accumulation of
hidden damage. The constants for the constitutive equations (5.7), (5.8) for this alloy
are given in [32]. They are equal to:

𝑏1111 = 6.669 ·10−5, 𝑏1122 = −3.334 ·10−5, (MPa) (−2𝑛/(𝑛+1) )/h(2/(𝑛+1) ) ,

𝑏2222 = 7.653 ·10−5, 𝑏1212 = 5.332 ·10−5, (MPa) (−2𝑛/(𝑛+1) )/h(2/(𝑛+1) ) ,

𝑑1111 = 1.159 ·10−5, 𝑑1122 = −5.794 ·10−6, (MPa)−2/h2/𝑝 ,

𝑑2222 = 1.385 ·10−5, 𝑑1212 = 9.437 ·10−6, (MPa)−2/h2/𝑝 ,

𝑚 = 𝑝 = 3.4, 𝑠 = 0.

As noted in the Introduction, the description of irradiation swelling processes
due to the complexity of experimental measurements during radiation exposure is
a difficult task. Complete data for aluminum alloys, from which it is possible to
construct an equation of state, are very scarce. In this regard, we will use the data
given in various publications [15–17, 29] in order to build a qualitatively reliable
model of type (5.4). To construct an equation for describing the strains of irradiation
swelling, which are dependent on the values of temperature 𝑇 and neutron fluency
𝐹, we apply exponential dependencies:
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¤Ysw
𝑖 𝑗 =

1
3
𝛽𝑖 𝑗 exp

(
−𝑄T

𝑇

)
exp

(
− 𝐹F

𝐹1 +10𝐹

)
𝛿𝑖 𝑗 , 𝑄T =

𝑈T

𝑅
, (5.13)

where𝑈T is the value of activation energy for irradiation swelling process,

𝑄T = 6968.8K, 𝐹F = −5.92 ·1026neutron/m2, 𝐹1 = 7 ·1026neutron/m2.

The value of the threshold time for the beginning of the development of the irradiation
swelling process is 15,000 h. Using data from [29, 33] for the temperature range
under consideration, the value of the radiation creep constant was obtained:

𝑏rc = 3 ·10−6MPa−1/h.

Due to the symmetry of the plate with two side notches, calculations were made
for its fourth part. The results of the calculations in the form of distributions of
temperatures (Fig. 5.8 a), damage measure and von Mises strains are presented in
Figs. 5.8 - 5.12.

The cycle of calculation studies included the following variants of modeling: only
thermal creep and damage of the plate without the influence of radiation exposure
(variant 0, Figs. 5.8 b) and 5.9 a); thermal and irradiation creep and damage of the
plate without the influence of irradiation swelling (variant 1, Fig. 5.11 a); thermal and
irradiation creep and damage, taking into account the effect of isotropy of irradiation
swelling (variant 2, 𝛽𝑖 𝑗 = 1, Figs. 5.9 b) and 5.11 b) and in cases of transversal isotropy
(variant 21 (𝛽11 = 2, 𝛽22 = 0.5, Figs. 5.10 a) and 5.12a ) and variant 22 (𝛽11 = 0.5,
𝛽22 = 2, Figs. 5.10 b) and 5.12 b).

We will present the obtained values of the time until the completion of hidden
damage accumulation: variant 0: 𝑡∗ = 50175 h; variant 1: 𝑡∗ = 37869 h; variant 2:
𝑡∗ = 37728 h; variant 21: 𝑡∗ = 50727 h; variant 22: 𝑡∗ = 33864 h. As can be seen, the
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Fig. 5.8: Distribution of temperature a) and von Mises strains, b) in an aluminum plate with a
notch, thermal creep, 𝑡∗=50175 h, static loading.
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Fig. 5.9: Distribution of the damage measure in an aluminum plate with a notch a) thermal creep
𝑡∗ = 50175 h, b) thermal, irradiation creep and irradiation swelling, 𝑡∗ = 37728 h.
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Fig. 5.10: Distribution of the damage measure in an aluminum plate with a notch. Thermal,
irradiation creep and anisotropic irradiation swelling a) variant 21, 𝑡∗ = 50727 h, b), variant 22,
𝑡∗ = 33864 h.

addition of another process of creep (irradiation, variant 1) significantly intensifies
the process of stress redistribution and, thanks to this, an increase in damage rate,
which lead to more fast fracture. Adding isotropic irradiation swelling to the analysis
(variant 2) leads to a further, but insignificant, reduction in the time to completion of
hidden damage accumulation. Finally, the anisotropy of swelling properties can both
significantly, by 4000 h, reduce the time 𝑡∗ obtained in the isotropic analysis (variant
22), and significantly increase it, even in comparison with purely thermal processes
(variant 21).

The analysis of the distribution of hidden damage in the case of not taking into
account the influence of radiation exposure (variant 0, Fig. 5.9 a) shows that it is the
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Fig. 5.11: Distribution of the von Mises strains in an aluminum plate with a notch a) thermal and
irradiation creep 𝑡∗ = 37869 h, b) thermal, irradiation creep and irradiation swelling, 𝑡∗ = 37728 h.
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Fig. 5.12: Distribution of the von Mises strains in an aluminum plate with a notch. Thermal,
irradiation creep and anisotropic irradiation swelling a) variant 21, 𝑡∗ = 50727 h, b), variant 22,
𝑡∗ = 33864 h.

same as in the classical analysis of creep with damage [6]: zones with significant
damage are concentrated near the notch. Adding the influence of radiation taking into
account irradiation creep and isotropy of swelling (variant 2, Fig. 5.9 b) significantly
intensifies damage in the axial direction. If the swelling properties are considered
anisotropic, then due to the higher level of strains and stresses in the axial direction
(variant 22, Fig. 5.10 b), the damaged zone increases significantly. We also note that
the place of completion of hidden damage accumulation may slightly shift along the
edge of the notch.



5 Creep and Irradiation Effects in Reactor Vessel Internals 99

The effect of radiation on the strain distribution is much greater than on the
damage in the plate. This is obviously related to the addition of various mechanisms
of deformation growth to the analysis. If, without taking into account radiation
exposure, the strains do not exceed 0.01% (variant 0, Fig. 5.8 b), then the combined
effect of thermal and irradiation creep (variant 1, Fig. 5.11 a) increases the maximum
strain value to 0.7%. The main contribution to the strain level is made by irradiation
swelling strains, their maximum is 4-5%.

The distribution along the plate of the maximum strain values also changes
qualitatively – from a concentration around the notch in case of thermal creep
(variant 0, Fig. 5.8 b) to a significant zone on the sides of the plate in case of radiation
creep (variant 1, Fig. 5.11 a) and almost complete significant deformation under the
action of irradiation swelling (Fig. 5.11, Fig. 5.12, variants 2, 21, 22). The anisotropy
of irradiation swelling changes the location of the zones of maximum strains – now
they are located on the sides of the plate, but in variant 22, when the deformation is
more intense in the axial direction, their maximum level is greater (5.5%, Fig. 5.12 b).
In variant 21, when the higher rate of swelling strains is in the direction perpendicular
to the plate axis, due to the mutual influence of stresses, the time to failure is even
longer than in case of purely thermal creep. The strain level at the edges of the plate
increases significantly, by a factor of two, compared to the isotropic case (variant 2).

Now, we will present the results of the calculations of the deformed state and
the distribution of the damage measure when adding a cyclic harmonic loading. We
suppose that the stresses in the plate are caused by the cyclic temperature change
according to the asymmetry parameter of the heating-cooling cycle 𝐻 and the motion
of the plate edge which is is run according to the harmonic law of traction with the
cycle asymmetry parameter 𝐿:

𝑃 = 𝑃0

(
1+ 𝐿 2𝜋

𝑇c

)
, 𝑇 = 𝑇0

(
1+𝐻 2𝜋

𝑇c

)
(5.14)

For numerical modeling, we apply the constitutive equations (5.7) and (5.8). Let us
take 𝐿 = 𝐻 = 0.15. The calculation results are given in Fig. 5.13, which shows the
distribution of the damage measure a) and von Mises strains b). The time to the
completion of hidden damage accumulation was shorter than in a case with constant
stresses. It was equivalent to 28,914 h.

Analyzing the calculation results shown in Fig. 5.13, we come to the conclusion
that due to the intensification of the process of damage growth, which ends in the
area of the stress concentrator earlier than it was in the case of an unvarying stress
field, in the vicinity of the plate far from the concentrator, the values of the damage
measure even at 𝜂 =0.05 are absent (Fig. 5.13 a), as was in the results of variant 2
(Fig. 5.9 b). Due to the shorter time to failure, the overall strain level inside the plate
also decreases (Fig. 5.13 b). At the same time, we stress that due to the fact that the
strain rate is greater during cyclic loading, their overall level at the edges of the plate
becomes the same, 2.5%, in a shorter time , as in purely static processes.
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Fig. 5.13: Distribution of the damage measure a) and von Mises strains b) in an aluminum plate
with a notch. Cyclic loading. Thermal, irradiation creep and irradiation swelling, 𝑡∗ = 28914 h.

5.5 Conclusions

The approach and method of solving the problems of Creep theory with the application
of Continuum Damage Mechanics in the case of action of radiation exposure are
considered. The main difference from the classical problems of the Creep theory
is the consideration in the analysis of two additional mechanisms of deformation -
irradiation creep and irradiation swelling. If the consideration of irradiation creep,
which is modeled by a power-law, or quite often even a linear dependence of the
strain rate on stresses, does not present difficulties and is easily implemented into
the general calculation scheme, then the modeling of irradiation swelling, starting
from the construction of the constitutive equation to numerical procedures, is not
a standard task. It is not implemented in most software complexes of engineering
analysis.

The main problem is the construction of an adequate constitutive equation that
reflects the dependence of irradiation swelling deformation on time. It is clear from
the point of view of Continuum Mechanics approaches, that the formulation of the
equation for the strain rate is better. If such an equation is built and verified, then
with the possibility of implementing an additional unit to the FE software tool,
the implementation of the calculation method of analysis taking into account the
development of volume strains of irradiation swelling will not be a difficult task.

Due to the fact that the evaluation of the processes of joint development in time of
thermal and irradiation creep strains,which are also accompanied by the accumulation
of hidden damage, together with irradiation swelling strains, an adequate analytical
modeling is not possible for the case of a complex stress state with a complex shape of a
structural element and boundary conditions. For this, our approach uses a developed
calculation method based on a combination of FEM and difference methods of
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time integration. A demonstration of the method’s capabilities for various cases of
deformation and damage of RVI elements is provided for 3D and 2D problems. The
possibility of modeling materials with isotropy and anisotropy of long-term material
properties, using scalar and tensor parameters of damage, continuing the analysis of
fracture after the completion of the accumulation of hidden damage at some point of
the element is shown.

The above presented results of calculations show that the contribution of strains
caused by radiation exposure of the material in most cases leads to an increase in
the overall level of strains and a reduction in the time until the completion of hidden
damage. But for the case of materials even with transversal isotropy of properties,
due to the contribution of irradiation swelling strains and different nature of stress
redistribution in this case, the time to completion of hidden failure may even increase.
The addition of a cyclic component of the thermal-force loading in most cases leads
to an increase in the overall level of strains and a decrease in the values of time to
completion of hidden damage accumulation.

Even with the isotropy of long-term properties, due to the combination of stress
relaxation processes during creep and their growth during the growth of irradiation
swelling strains with time, it is possible to obtain different dependences of the resulting
stress on time, which will affect the time until the completion of hidden failure.

All presented examples show that an adequate analysis of long-term deformation
and strength of structural elements exposed to thermal - force and radiation fields
is possible only with the use of appropriate calculation tools. Due to the essential
nonlinearity of the problems, even a moderate deviation of the parameters can lead to
qualitatively different distributions of the components of the stress-strain state. There-
fore, the basis of the methods should be adequate and verified constitutive equations,
primarily for describing the irradiation swelling strains in time, understanding their
isotropic or anisotropic nature.
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Chapter 6
Analysis of Damage and Fracture in Anisotropic
Sheet Metals Based on Biaxial Experiments

Michael Brünig, Sanjeev Koirala, and Steffen Gerke

Abstract The paper discusses the effect of stress state and of loading with respect
to the rolling direction on damage and failure of anisotropic ductile sheet metals.
For the investigated aluminum alloy EN AW-2017A experiments with uniaxially
and biaxially loaded flat specimens have been performed to identify elastic-plastic
material parameters. The focus is on numerical analysis on the micro-scale examining
the deformation and damage behavior of differently loaded void-containing unit cells
to detect damage and failure processes. Results of the finite element calculations
show that the stress state and the loading direction with respect to the rolling direction
have an effect on formation of damage mechanisms on the micro-level as well as on
corresponding macroscopic damage strains.

6.1 Introduction

Analysis of inelastic deformations as well as of damage and fracture behavior in
engineering structures must be based on accurate and efficient theoretical models.
For example, on the micro-level damage and fracture processes in ductile metals are
mainly related to nucleation, growth and coalescence of micro-defects which may
lead to formation of macro-cracks resulting in final failure of structures. Besides
experiments numerical analysis on the micro-level of the behavior of individual
micro-defects in elastic-plastic materials will reveal detailed information for the
formulation of appropriate constitutive frameworks [1, 2]. The results of these
numerical investigations can be taken to develop continuum models which can be
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used to predict inelastic deformations as well as damage and fracture behavior of
ductile metals.

Different research groups (see, for example, [1, 3–8]) carried out three-dimensional
finite element calculations to detect damage and fracture processes in ductile metals
and to analyze the deformation behavior of micro-defects under different stress states.
These numerical studies take into account isotropic elastic-plastic material behavior
and clearly demonstrate that the current stress state has a remarkable influence on the
microscopic damage and fracture mechanisms as well as on the macroscopic failure
behavior. Based on the results of the finite element analyses with the void-containing
representative volume elements damage evolution equations in phenomenological
constitutive approaches can be proposed and validated. In addition, the numerical
data can be taken to identify micro-mechanically motivated material parameters
[1, 2].

Internal changes in the crystallographic structure of ductile metals occurring
during manufacturing processes such as deep drawing, extrusion or rolling lead to
anisotropies in material behavior. These deformation-induced anisotropies cannot be
neglected in simulation of the deformation and fracture behavior of thin metal sheets
and, therefore, have to be incorporated in material models. In the literature, various
hydrostatic-stress-independent anisotropic yield conditions have been discussed using
quadratic [9, 10], non-quadratic [11–13] or spline functions [14] of stresses. On the
other hand, in order to take into account the hydrostatic stress dependence the Hoffman
yield criterion [15] has been proposed.

In the present paper a continuum framework incorporating plastic anisotropy
modeled by the Hoffman yield condition is presented. To analyze in detail the
damage and failure mechanisms in the investigated aluminum alloy EN AW-2017A
numerical simulations on the micro-scale are performed considering void-containing
representative volume elements under various load combinations with respect to the
principal axes of anisotropy. Macroscopic damage strains are numerically predicted
which are affected by the stress state, the load ratio and the loading direction.

6.2 Constitutive Framework

The analysis is based on the continuum damage framework proposed by [1, 16,
17] and its generalization for anisotropic plasticity by [18–20]. The basic idea of
the phenomenological model is the introduction of the damage strain tensor, 𝐴𝐴𝐴𝑑𝑎,
describing macroscopic inelastic strains related to damage and failure mechanisms
on the micro-level. Additionally, the kinematic approach considers the additive
decomposition of the strain rate tensor ¤𝐻𝐻𝐻 into elastic, ¤𝐻𝐻𝐻𝑒𝑙 , effective plastic, ¤̄𝐻𝐻𝐻

𝑝𝑙
, and

damage parts, ¤𝐻𝐻𝐻𝑑𝑎 [16].
For the investigated aluminum alloy EN AW-2017A the Hoffman yield condition

[15]

𝑓 𝑝𝑙 =𝐶𝐶𝐶 ·�̄�𝑇𝑇 +
√︂

1
2
�̄�𝑇𝑇 · D �̄�𝑇𝑇 − 𝑐 = 0 (6.1)
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is used to model the anisotropic plastic behavior, where �̄�𝑇𝑇 represents the effective
Kirchhoff stress tensor introduced in the fictitious undamaged configuration and 𝑐
denotes the equivalent stress measure. Constitutive parameters modeling the plastic
anisotropy appear in the tensor of coefficients

𝐶𝐶𝐶 = 𝐶𝑖. 𝑗 𝑔𝑔𝑔𝑖 ⊗𝑔𝑔𝑔 𝑗 = 𝐶(𝑖) 𝑔𝑔𝑔𝑖 ⊗𝑔𝑔𝑔𝑖 (6.2)

with the components (in Voigt notation)[
𝐶𝑖. 𝑗

]
= [𝐶1 𝐶2 𝐶3 0 0 0]𝑇 (6.3)

as well as in the tensor
D = 𝐷𝑖. 𝑘. 𝑗. 𝑙 𝑔𝑔𝑔𝑖 ⊗𝑔𝑔𝑔

𝑗 ⊗𝑔𝑔𝑔𝑘 ⊗𝑔𝑔𝑔𝑙 (6.4)

with the respective coefficients given in matrix representation

[
𝐷𝑖. 𝑘. 𝑗. 𝑙

]
=



𝐶4 +𝐶5 −𝐶4 −𝐶5 0 0 0
−𝐶4 𝐶4 +𝐶6 −𝐶6 0 0 0
−𝐶5 −𝐶6 𝐶5 +𝐶6 0 0 0

0 0 0 𝐶7 0 0
0 0 0 0 𝐶8 0
0 0 0 0 0 𝐶9


. (6.5)

For the investigated aluminum alloy these parameters have been determined by testing
uniaxially loaded dog-bone shaped specimens cut in different directions from thin
sheets with respect to the rolling direction [20]. This procedure leads to the values
given in Table 6.1.

The equivalent yield stress 𝑐 of the undamaged metal is identified by testing un-
notched flat specimens cut in rolling direction. For the investigated ductile anisotropic
aluminum alloy EN AW-2017A the Voce law is used

𝑐 = 𝑐𝑜 +𝑅𝑜𝜖 𝑝𝑙 +𝑅∞
(
1− 𝑒−𝑏 𝜖 𝑝𝑙

)
(6.6)

where 𝑐𝑜 is the initial yield strength, 𝑅𝑜 and 𝑅∞ represent hardening moduli, 𝑏 is
the hardening exponent and 𝜖 𝑝𝑙 denotes the equivalent plastic strain measure. For
the investigated ductile anisotropic aluminum alloy EN AW-2017A the parameters
listed in Table 6.2 have been chosen leading to good agreement of experimental data
and the numerical curve. In the analysis of anisotropic ductile metals generalized
invariants of the effective Kirchhoff stress tensor �̄�𝑇𝑇 are introduced [20]. In particular,

Table 6.1: Anisotropy parameters.

𝐶1 𝐶2 𝐶3 𝐶4 𝐶5 𝐶6 𝐶7 𝐶8 𝐶9

-0.0424 -0.0102 0.0000 0.8123 1.3607 1.3103 3.7580 3.0000 3.0000
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Table 6.2: Plastic material parameters.

𝑐𝑜 [MPa] 𝑅𝑜 [MPa] 𝑅∞ [MPa] 𝑏 [-]

RD 333 488 142 19

the first Hoffman stress invariant is defined by

𝐼𝐻1 =
1
𝑎
𝐶𝐶𝐶 ·�̄�𝑇𝑇 with 𝑎 =

1
3

tr𝐶𝐶𝐶 (6.7)

and the second and third deviatoric Hoffman stress invariants are taken to be

𝐽𝐻2 =
1
2
�̄�𝑇𝑇 · D �̄�𝑇𝑇 (6.8)

and
𝐽𝐻3 = det

(
D �̄�𝑇𝑇

)
. (6.9)

Using these definitions further generalized stress parameters are defined. For example,
the Hoffman stress triaxiality

𝜂𝐻 =
𝐼𝐻1

3
√︃

3𝐽𝐻2
(6.10)

and the generalized Hoffman-Lode parameter

�̄�𝐻 =
−3

√
3 𝐽𝐻3

2 (𝐽𝐻2 ) (3/2)
(6.11)

are used to characterize the influence of the current stress state on the behavior of
anisotropic materials.

In addition, the flow rule
¤̄𝐻𝐻𝐻
𝑝𝑙
= ¤𝛾�̄�𝑁𝑁 (6.12)

models the evolution of the effective plastic strains in the undamaged configuration
where ¤𝛾 represents the equivalent plastic strain rate characterizing the amount of the
plastic strain rate and the normalized deviatoric effective stress tensor

�̄�𝑁𝑁 =
D �̄�𝑇𝑇D �̄�𝑇𝑇 (6.13)

defines its direction.
Furthermore, in the damaged configurations the damage criterion

𝑓 𝑑𝑎 = 𝛼𝐼𝐻1 + 𝛽
√︃
𝐽𝐻2 −𝜎 = 0 (6.14)
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is assumed to model the onset and evolution of damage in plastically anisotropic
ductile materials,where the generalized first and second deviatoric Hoffman invariants
of the Kirchhoff stress tensor formulated with respect to the damaged configurations,
𝐼𝐻1 and 𝐽𝐻2 , characterize the current stress state and 𝜎 denotes the equivalent damage
stress measure. The stress-state- and loading-direction-dependent parameters 𝛼 and
𝛽 have been determined by series of biaxial experiments performed with differently
loaded specimens, see [20] for further details.

In addition, the damage rule

¤𝐻𝐻𝐻𝑑𝑎 = ¤𝜇
(

1
√

3
�̃�111+ 𝛽𝑁𝑁𝑁

)
(6.15)

models formation of macroscopic irreversible strains caused by damage and failure
processes on the micro-scale where the normalized deviatoric part of the Kirchhoff
stress tensor

𝑁𝑁𝑁 =
dev𝑇𝑇𝑇
∥dev𝑇𝑇𝑇 ∥ (6.16)

has been used and the parameters �̃� and 𝛽 represent the stress and loading direction
dependence of the damage strain rate tensor (6.15) which will be identified by further
experiments as well as by numerical calculations on the micro-level discussed in the
following section.

6.3 Numerical Simulations and Results

In the continuum damage model discussed above the macroscopic damage strain
tensor 𝐴𝐴𝐴𝑑𝑎 is used to model the evolution of damage caused by different damage
and failure mechanisms on the micro-scale. The stress state and loading direction
dependence of this tensor is taken into account by the parameters �̃� and 𝛽 in the damage
rule (6.15). To determine these parameters numerical simulations analyzing the
deformation behavior of three-dimensionally loaded void-containing representative
volume elements with initial porosity of 3% shown in Fig. 6.1 have been performed.
Therefore, the finite element program ANSYS has been enhanced by a user-defined
subroutine based on the proposed anisotropic continuum framework. In the numerical

Fig. 6.1 Finite element mesh
of one eighth of the unit cell.
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analysis, eight-node elements of type SOLID185 and symmetry boundary conditions
are used. The finite elements are elastically and plastically deformed leading to
macroscopic elastic and plastic strain rates. The changes in size and shape of the
initially spherical voids correspond to the macroscopic damage strains.

Taking into account the kinematic approach with additive decomposition of the
strain rates into elastic, plastic and damage parts the components of the macroscopic
strain rate tensor in the principal directions (𝑖) can be written in the form

¤𝐻𝑢𝑛𝑖𝑡−𝑐𝑒𝑙𝑙(𝑖) = ¤𝐻𝑒𝑙(𝑖) + ¤𝐻 𝑝𝑙

(𝑖) + ¤𝐻𝑑𝑎(𝑖) . (6.17)

In the finite elements microscopic elastic and plastic strain rates, ¤ℎℎℎ𝑒𝑙 and ¤ℎℎℎ𝑝𝑙 , are
computed during the loading process. They lead to the elastic-plastic macroscopic
strain rates

¤𝐻𝐻𝐻𝑒𝑝 = ¤𝐻𝐻𝐻𝑒𝑙 + ¤𝐻𝐻𝐻 𝑝𝑙
=

1
𝑉

∫
𝑉𝑚𝑎𝑡𝑟𝑖𝑥

(
¤ℎℎℎ𝑒𝑙 + ¤ℎℎℎ𝑝𝑙

)
𝑑𝑣 (6.18)

of the unit-cell where 𝑉 is the current volume of the representative volume element
and𝑉𝑚𝑎𝑡𝑟𝑖𝑥 is the current volume of the matrix material (finite elements). Using Eqs.
(6.17) and (6.18) the macroscopic damage strain rate tensor is given by

¤𝐻𝑑𝑎(𝑖) = ¤𝐻𝑢𝑛𝑖𝑡−𝑐𝑒𝑙𝑙(𝑖) − ¤𝐻𝑒𝑝(𝑖) . (6.19)

This leads to the principal components of the damage strain tensor

𝐴𝑑𝑎(𝑖) =

∫
¤𝐻𝑑𝑎(𝑖) d𝑡 . (6.20)

Furthermore, the evolution of the void volume fraction 𝑓 of the micro-defect
containing representative volume element

¤𝑓 = (1− 𝑓 ) tr ¤𝐻𝐻𝐻𝑑𝑎 (6.21)

can be expressed in terms of the volumetric part of the damage strain rate tensor
leading to

𝑓 =

∫
¤𝑓 d𝑡 , (6.22)

see [16] for further details. To visualize the evolution of macroscopic damage strain
components in an adequate manner the equivalent strain rate

¤𝜖𝑒𝑞 =
√︂

2
3
¤𝐻𝐻𝐻 · ¤𝐻𝐻𝐻 (6.23)

and the equivalent strain

𝜖𝑒𝑞 =

∫
¤𝜖𝑒𝑞d𝑡 (6.24)

are introduced characterizing the amount of strain rates and strains.
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The influence of different load ratios 𝐹𝑥/𝐹𝑦/𝐹𝑧 on the deformation behavior of
the void-containing representative volume element has been studied. In the present
paper two cases are numerically investigated and the results are compared with
experimental observations. For example, in [19] the H-specimen had been biaxially
deformed with the load ratios 𝐹1/𝐹2 = 0/1 and 1/+1 leading to tensile and shear
dominated stress states, respectively.

In the experiment with the H-specimen loaded by 𝐹1/𝐹2 = 0/1 the Hoffman
stress triaxiality 𝜂𝐻 = 0.75 and the Hoffman Lode parameter 𝐿𝐻 = 0.3 had been
determined by corresponding numerical simulations [19]. For comparison, the micro-
defect containing unit cell is deformed by the load ratio 𝐹𝑥/𝐹𝑦/𝐹𝑧 = 1.0/0.63/0.27
leading to the similar stress parameters 𝜂𝐻 = 0.75 and 𝐿𝐻 = 0.23. The increase of the
principal values of the damage strain tensor 𝐴𝑑𝑎(𝑖) (6.20) with increasing equivalent
strain measure (6.24) is shown in Fig. 6.2. The damage strain 𝐴𝑑𝑎𝑥 shows an increase
up to 0.065 where slightly larger increase can be seen for loading in transverse
direction (90◦) and slightly smaller one for loading in diagonal direction (45◦). On
the other hand, the damage strain components 𝐴𝑑𝑎𝑦 and 𝐴𝑑𝑎𝑧 show smaller increases up
to 0.04 and 0.01, respectively, with the same dependence of the loading direction with
respect to the rolling direction. In addition, the evolution of the void volume fraction
𝑓 (6.22) with increasing loading is shown in Fig. 6.3. A remarkable increase with
maximum values of 0.13 has been numerically predicted for loading in the rolling
direction. Again, slightly larger increase of the void volume fraction can be seen for

Fig. 6.2 Formation of princi-
pal components of the damage
strain tensor for 𝜂𝐻 = 0.75
and 𝐿𝐻 = 0.23.
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Fig. 6.3 Formation of the void
volume fraction for 𝜂𝐻 = 0.75
and 𝐿𝐻 = 0.23.
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loading in transverse direction (90◦) and slightly smaller one for loading in diagonal
direction (45◦). This damage behavior was also visible in the pictures of scanning
electron microscopy in [19] where large pores occur for loading in transverse (90◦)
and in rolling (0◦) direction whereas less and smaller voids were visible after loading
in diagonal direction (45◦).

For the biaxial experiments with the load ratio 𝐹1/𝐹2 = 1/+1 the Hoffman stress
triaxiality 𝜂𝐻 = 0.4 and the Hoffman-Lode parameter 𝐿𝐻 = 0.2 had been predicted
in corresponding numerical simulations [19]. Similar stress parameters 𝜂𝐻 = 0.4
and 𝐿𝐻 = 0.25 have also been achieved in the unit cell calculations with the load
ratio 𝐹𝑥/𝐹𝑦/𝐹𝑧 = 1.0/0.37/-0.27. The evolution of the principal values of the damage
strain tensor 𝐴𝑑𝑎(𝑖) (6.20) with increasing equivalent strain measure (6.24) is shown
in Fig. 6.4. In this shear-dominated loading case the damage strain component 𝐴𝑑𝑎𝑥
increases up to 0.022 and 𝐴𝑑𝑎𝑧 shows a decrease up to -0.025 whereas the component
𝐴𝑑𝑎𝑦 only reaches 0.005. This means that during shear loading the initially spherical
void is deformed into an ellipsoid. In Fig. 6.4 nearly no effect of the loading direction
on the macroscopic damage strain behavior can be seen. The void volume fraction
𝑓 shown in Fig. 6.5 only shows a small increase up to 0.033 and a slightly larger
increase in diagonal loading direction (45◦) can be seen. This damage behavior had
also been seen in the pictures of scanning electron microscopy published in [19]. The
photos showed shear mechanisms on the micro-scale with superimposed increase of
voids which were deformed in shear direction.

Fig. 6.4 Formation of princi-
pal components of the damage
strain tensor for 𝜂𝐻 = 0.4 and
𝐿𝐻 = 0.25.
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Fig. 6.5 Formation of the void
volume fraction for 𝜂𝐻 = 0.4
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6.4 Conclusions

In the present paper the influence of the stress state and the loading direction with
respect to the rolling direction on damage and failure behavior of the aluminum
alloy EN AW-2017A has been analyzed. Numerically predicted deformations of
micro-defect containing unit cells for two load cases corresponding to biaxial loading
scenarios of the H-specimen have been presented. For the investigated anisotropic
ductile metal the stress state was characterized by the generalized stress triaxiality and
the generalized Lode parameter based on stress invariants taken from the Hoffman
yield condition. Elastic-plastic material parameters of the analyzed aluminum alloy
were identified by experiments performed with uniaxially loaded flat specimens cut
from sheets in different directions with respect to the rolling direction. These param-
eters were taken into account in the finite element analysis to study the deformation
and damage behavior of micro-defect-containing representative volume elements.
Various three-dimensional load ratios have been considered and numerically obtained
evolutions of the principal components of the damage strain tensor and of the void
volume fraction as well as the corresponding damage and failure processes on the
micro-scale have been discussed. These numerically predicted results have been
compared with photos from scanning electron microscopy of fracture surfaces of the
tested H-specimen published in the literature. The numerical results for the macro-
scopic damage strains can be seen as quasi-experimental results and can be taken
to develop laws for the damage strain rates used in sophisticated continuum damage
models. Based on this theoretical framework numerical simulation of experiments
can be performed to numerically predict the deformation and failure behavior of
structural components built with anisotropic sheet metals.
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Chapter 7
Effect of Physical Aging on the Flexural Creep in
3D Printed Thermoplastic

Marcel Fischbach and Kerstin Weinberg

Abstract Extrusion-based 3D printing has become one of the most common additive
manufacturing methods and is widely used in engineering. This contribution presents
the results of flexural creep experiments on 3D printed PLA specimens, focusing on
changes in creep behavior due to physical aging. It is shown experimentally that the
creep curves obtained on aged specimens are shifted to each other on the logarithmic
time scale in a way that the theory of physical aging can explain. The reason for
the physical aging of 3D printed thermoplastics is assumed to be the special heat
treatment that the polymer undergoes during extrusion. Additionally, results of a long-
term flexural creep experiment are shown, demonstrating that non-negligible creep
over long periods can be observed even at temperatures well below the glass transition
temperature. Such creep effects should be considered for designing components made
of 3D printed thermoplastics.

7.1 Introduction

Over the past decade, 3D printing technologies have become essential to modern
manufacturing processes. Previously used primarily for rapid prototyping,3D printing
technologies are now employed to produce end-use parts in various applications,
particularly for complex geometries [1]. Since it is often necessary to prove that
these printed parts can withstand the prevailing loads, knowledge of their short- and
long-term material properties is required.

One of the most widely used 3D printing processes is fused filament deposition, in
which plastic parts are built up layer by layer from a thermoplastic polymer filament.
To generate the geometry of a single layer, the filament is heated above its melting
temperature in an extruder and deposited through a nozzle on a build plate or a
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previously printed layer, Fig. 7.1. When the term 3D printing is used in the following,
we refer to this extrusion-based process. The most commonly used filament materials
for this type of 3D printing are polylactide and acrylonitrile butadiene styrene [1],
abbreviated hereafter as PLA and ABS, respectively.

Depending on the chosen print settings, e.g. nozzle and platform temperature,
print speed, infill density and infill pattern, to name only a few, printed parts have
specific mechanical properties. Numerous studies have been conducted to quantify
the relationship between chosen print parameters and the properties of 3D printed
parts. For example, Ahn et al. [2] investigated the effect of selected print parameters
on the tensile strength of 3D printed ABS using a two-level experimental design
and analyzed the effect of print raster orientation on the tensile and compressive
strength of printed compared to injection molded test specimens. Wittbrodt and
Pearce [3] investigated the correlations between PLA filament color, nozzle tem-
perature, degree of crystallinity, and yield strength of 3D printed tensile specimens.
Fernandez-Vicente et al. [4] and Rismalia et al. [5] analyzed the influence of common
infill patterns and infill density on the tensile strength and tensile modulus of 3D
printed specimens made of ABS and PLA, respectively. Reppel and Weinberg [6]
investigated the qualitative rupture behavior of printed tensile specimens made of
thermoplastic polyurethane and modeled their deformation behavior using hypere-
lastic material models. Akhoundi et al. [7] studied the effects of nozzle temperature
and heat treatment (annealing) on the crystallinity, the interlayer and intralayer ad-
hesion, cf. [1], and the mechanical properties of 3D printed tensile specimens of
high-temperature PLA (HTPLA). Khosravani et al. [8] analyzed the stress-strain
behavior, the elastic modulus and tensile strength of 3D printed PLA specimens as a
function of print raster orientation and two different print speeds.

In the field of time-dependent, i.e. dynamic,viscoelastic and viscoplastic properties
of printed thermoplastics, numerous contributions can also be found in literature,
e.g. [9–13]. However, to our knowledge, there are none on the influence of process-
induced physical aging on the creep behavior of 3D printed thermoplastics under
usual production conditions.

Physical aging is a specific type ofpolymeraging that occurs in both amorphous and
semi-crystalline thermoplastics, which are rapidly cooled below their glass transition
temperature [14]. In the resulting non-equilibrium state of low but not vanishing

Fig. 7.1 Schematic of
extrusion-based 3D printing.
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molecularmobility, the polymergradually evolves toward thermodynamic equilibrium.
As a result, this slow, time-dependent, and asymptotic process leads to a measurable
stiffening of the polymer, which is particularly noticeable in the creep behavior,
cf. [15–18]. Additionally, the polymer’s density and yield stress increase during
aging while its impact strength decreases [16].

As detailed in [15], rapid cooling of polymers below their glass transition temper-
ature can be artificially induced to study the effects of physical aging in a controlled
manner. However, in addition to this academic approach, Struik [15] argued that
similar cooling conditions could also prevail during the processing of plastics by
extrusion or injection molding. Struik demonstrated from creep experiments on in-
jection molded PVC samples that those can initiate significant physical aging. Thus,
concerning the special heat treatment to which the polymer filament is subjected dur-
ing extrusion in 3D printing, the question arises as to whether and to what extent 3D
printed components exhibit physical aging. Therefore, we address here the question
of physical aging experimentally. Using a three-point bending setup, we investigate
the flexural creep of 3D printed specimens made of PLA, a thermoplastic whose
mechanical properties are affected by physical aging at moderate temperatures [19].

In this contribution, we briefly introduce the phenomena of physical aging and its
relation to the viscoelasticity of thermoplastic polymers in Sect. 7.2. Then, in Sect. 7.3,
the preparation of the specimens and the conducted experiments are explained. After
the presentation of the experimental results in Sect. 7.4, we discuss the measured
results and critically evaluate the experimental procedure in Sect. 7.5.

7.2 Theoretical Background

In this section, the essence of physical aging and its linkage to the creep of thermo-
plastics is presented. In plastics, the term creep refers to a time- and temperature-
dependent increase in deformation under constant loading which is typically described
by the viscoelastic compliance, i.e. the reciprocal of the material’s stiffness.

7.2.1 Viscoelasticity of Thermoplastics

Viscoelasticity describes the time-dependent mechanical properties of polymers at
temperatures below melting temperature. The macroscopic material behavior is
typically symbolized by a general Maxwell model, i.e. a number of 𝑁 spring-damper
elements in parallel to an elastic spring. For linear elastic and viscous relations and
for 𝑁 →∞, the dependence of the material’s compliance 𝐽 from time 𝑡 ∈ [0,∞) is
given by the creep curve

𝐽 (𝑡) = 𝐽0 +
∫ ∞

0
𝑓 (𝜏)

(
1− exp

(
− 𝑡
𝜏

))
d𝜏 . (7.1)
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Here 𝑓 (𝜏) denotes the (measured or modeled) retardation spectrum and 𝐽0 is the
initial compliance.

Experimentally, such creep curves are obtained by measuring the history of strain
Y(𝑡) related to the loading with stress 𝜎(𝑡),

𝐽 (𝑡) = Y(𝑡)
𝜎(𝑡) . (7.2)

Because of the exponential relation (7.1), the creep curve is typically plotted over
a logarithmic time axis, log(𝑡). Since the degree of molecular mobility essentially
determines the viscosity of microscopic polymeric chain networks, the macroscopic
behavior of a polymer is characterized by a strong temperature dependence. For
thermo-rheologically simple materials, however, it is assumed that temperature only
affects the velocity of molecular movements but not their type and number. Therefore,
the shape of experimentally obtained creep curves remains the same at different
temperatures and only their position on the time scale is different.

This implies that from creep curves measured at different temperatures but within
the same time interval a master curve at a reference temperature 𝑇0 can be obtained
by applying a time shift log(𝑎𝑇 ) as illustrated in Fig. 7.2. Depending on the reference
temperature, the shift factor 𝑎𝑇 can be expressed as a function of temperature𝑇 by the
well-known Williams-Landel-Ferry (WLF) equation or an Arrhenius approach [20].
This method, known as time-temperature superposition principle (TTSP) is com-
monly used to determine the rapid and long-term creep behavior of viscoelastic solids.
Instead of conducting isothermal creep tests over inconvenient time periods, short-
term tests are carried out at different temperatures and their results are combined.
We remark that for thermo-rheologically complex materials a TTSP master curve
does not result from horizontal shifting alone. Here, additional vertical shifts may be
required [18].

The common rheological models with spring-damper arrangements can cover
the full range of the material’s viscoelastic behavior according to Eq. (7.1). A
simplification, which corresponds to a linearization over short logarithmic time
spans, gives a model which was proposed as early as 1863 by Kohlrausch [21]

Fig. 7.2 Master curve gen-
eration by means of time-
temperature superposition
(TTSP).



7 Effect of Physical Aging on the Flexural Creep in 3D Printed Thermoplastic 119

𝐽 (𝑡) = 𝐽0 exp
(( 𝑡
𝜏

)𝑚)
. (7.3)

Again, 𝐽0 describes the instantaneous creep response, while 𝜏 is a characteristic
retardation time associated with the active creep mechanism. This decay time in-
creases with isothermal aging, which leads to a stretching of the curve. Exponent 𝑚
is the Kohlrausch coefficient, 0 < 𝑚 ≤ 1, which is associated with the dispersion of
retardation times. It is about 1/3 for polymers [15].

For obvious reasons, Eq. (7.3) cannot represent the long-term creep behavior of
glassy polymers over the entire retardation spectrum. Nonetheless, it is well suited for
the representation of short-time creep and, in particular, for the practical determination
of horizontal and vertical shifts of experimentally obtained creep curves. Therefore,
it has been employed by various experimentalists, cf. [15, 16, 18].

7.2.2 Physical Aging

Physical aging explains, why in the long-term creep of polymers, the observed
creep compliance gradually deviates from the corresponding TTSP master curve. In
his extensive studies on a number of synthetic polymers, Struik [15] showed that
the aging time 𝑡e, which elapses between quenching the polymer below its glass
transition temperature and material testing, has a significant effect on the mechanical
properties. This phenomenon is visible in the creep behavior of amorphous and semi-
crystalline polymers and can be explained by the free volume theory of molecular
motion. The theory roughly says that the molecular mobility of amorphous polymers
at temperatures above glass transition, 𝑇 > 𝑇g, is sufficient to immediately reach
thermodynamic equilibrium, thanks to enough free volume. For𝑇 < 𝑇g, the molecular
mobility becomes so small that there is a difference between the actual and the
equilibrium free volume. This difference is larger the faster the polymer is cooled and
acts as a driving force to reach the equilibrium state with the remaining molecular
mobility. The required molecular rearrangements are slow, self-delaying, lead to
time-dependent changes in mechanical properties, and come to a standstill at very
low temperatures.

Since molecularmobility depends directly on the available free volume, it decreases
with aging time. This in turn increases the relaxation times, which is mapped by
a certain shift factor 𝑎e. As a consequence, isothermal creep curves obtained at
increasing aging times 𝑡e are shifted to the right on the logarithmic time scale,
Fig. 7.3. This inverse proportionality between molecular mobility and aging time
was confirmed by experimental results of isothermal short-term creep tests at small
strains in [15]. On double-logarithmic representations of the shift factors 𝑎e over the
corresponding aging times 𝑡e, a linear relation was found, see inset of Fig. 7.3. The
slope of this relationship is denoted as the aging shift rate

𝜇 = −Δ log(𝑎e)
Δ log(𝑡e)

. (7.4)
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Fig. 7.3: Isothermal creep curves at different
aging times 𝑡e; the inset shows the curve shifts
on the logarithmic time scale with respect to the
reference curve with aging time 𝑡e,ref .

Fig. 7.4: Prediction of long-term creep curve
𝐽 (𝑡 ) obtained by correction of the momentary
master curve 𝐽 (𝑡 ) by means of the effective
time theory.

With the sign convention according to literature,− log(𝑎e) denotes a horizontal curve
shift to the right with respect to the reference curve. The shift rate is constant for a
given temperature and has values of about one for a wide range of polymers.

To incorporate the physical aging phenomena in the macroscopic creep function
(7.1) or its simplified form (7.3), an effective time approach according to Struik [15]
will be utilized. In the effective time theory, the shift factor 𝑎e is used to define a
quasi-time function 𝜆(𝑡) with

d𝜆 = 𝑎e (𝑡, 𝑡e) d𝑡 . (7.5)

To integrate (7.5), the shift factor for a total aging time of 𝑡e + 𝑡 with respect to a
reference elapsed aging time 𝑡e needs to be specified. Here the aging shift rate (7.4)
is used to deduce

𝑎e (𝑡, 𝑡e) =
(
𝑡e

𝑡e + 𝑡

)𝜇
. (7.6)

This model implies that all relaxation processes in the interval d𝑡 are slower by a
factor of 1/𝑎e at time 𝑡 > 0 than at time 𝑡 = 0. Thus, integration of (7.5) gives

𝜆(𝑡) =
∫ 𝑡

0
𝑎e (𝜉, 𝑡e) d𝜉 𝜇≠1

=
𝑡e

1− 𝜇

[(
1+ 𝑡

𝑡e

)1−𝜇
−1

]
. (7.7)

The effective time function 𝜆(𝑡) allows the conversion from the momentary master
curve 𝐽 (𝑡) to the corrected long-term creep compliance 𝐽 (𝑡) by the relation

𝐽 (𝑡) = 𝐽 (𝜆) , (7.8)
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see Fig. 7.4. When no aging takes places, i.e. 𝜇 = 0, Eq. (7.7) corresponds to the
momentary master curve creep time 𝑡.

To conclude this very brief introduction on the basic aspects of physical aging, it
should be noted that these were initially developed for fully amorphus polymers. Here,
the shift rate must be in the range 0.7 < 𝜇 < 1 to obtain reliable creep predictions over
very long times [15]. However, Struik [15, 22] found that semi-crystalline polymers
and filled rubbers are also affected by physical aging mechanisms at temperatures
below the glass transition temperature of their amorphous phase, and the proposed
effective time approach can be used as well.

7.3 Material and Methods

In what follows, an overview of the specimen fabrication and their geometry are given.
Then, the loading regimes of the three-point bending tests conducted are explained
in detail.

7.3.1 Test Specimens

The geometry of the test specimens used in the flexural creep tests follows the ISO 178
standard and is shown in Fig. 7.5. The specimens were printed in a semi-professional
desktop 3D printer using PLA filament with the brand name Ultrafuse PLA from
BASF 3D Printing Solutions and a diameter of 1.75 mm. The used print settings are
summarized in Table 7.1.

To improve adhesion between the printing platform and the printed object, it is
recommended in practice to set the platform temperature in the range of the glass
transition temperature of the material. This increases the temperature in the first few
layers of the object. In the layers atop, the effect of this heat source is not present, so
the filament deposited here cools very quickly to the prevailing ambient temperature.
For example, by means of a simplified heat transfer simulation of the cooling behavior
of a deposited elliptical ABS fiber in a 3D printing process, Rodriguez et al. [23]

l

b

h

L

Fig. 7.5: Specimen dimensions according to ISO 178 with nominal length 𝑙 = 100mm, width
𝑏 = 10 mm, height ℎ = 5mm and support span 𝐿 = 80mm.
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Table 7.1: 3D print settings used for sample fabrication.

print setting value

nozzle size 0.4 mm
extruder temperature 215�
platform temperature 30�
layer height 0.2 mm
print speed 60 mm/s
shell count 1
infill pattern 45°-90° line pattern
infill density 100 %
extrusion multiplier 102 %
cooling fan always on

found that it takes less than one second for its core temperature to fall below the glass
transition temperature of 94�, assuming two-sided contact (e.g. left and bottom)
to already printed material with a temperature of 55� and a nozzle temperature of
270�. Since the test specimens used in our study are low in height and consist of
only 25 layers, their cooling behavior during printing would be significantly affected
by elevated platform temperatures. To minimize this effect and to achieve high and
uniform cooling rates, the temperature of the platform was set to a low value of 30�,
which is well below the glass transition temperature 𝑇g = 61�1 of the PLA material
used. The bond between the platform and the printed sample was improved by using
a water-soluble adhesive.

After a specimen was finished printing, it was left in the printer for about 10
minutes until the printing platform reached the ambient temperature of about 20�.
The printer was located in the same room where the creep tests were performed.

7.3.2 Sequential Creep Tests

To study the creep behavior of the test specimens, three-point flexural creep tests were
conducted in accordance with ISO 899-2 and under the conditions presented in the
following. In our experiments, we use a three-point bending apparatus connected to
a universal testing machine as shown in Fig. 7.6. Prior to testing, the specimens were
measured with a caliper gauge in width and height with an accuracy of 0.05 mm.

In the sequential creep tests, the specimens were subjected to a constant load 𝐹
for several short periods of time at aging times of 1.25,2.5,5,10 and 20 hours, see
Fig. 7.7. This sequential procedure was also used by Struik [15] and others, where
the duration 𝑇𝑖 of the 𝑖-th loading sequence is small compared to the previous aging
time 𝑡e,𝑖 . Thus, almost no additional aging occurs during the loading sequences and

1 Ultrafuse PLA, Technical Data Sheet v4.4, BASF 3D Printing Solutions GmbH
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Fig. 7.6 Three-point bending
apparatus connected to a
universal testing machine. load cell

loading
edge

s(t)

0 2 4 6 8 10 12 14 16 18 20 22

Fig. 7.7: Sequential creep test procedure.

momentary creep curves are obtained. In our study, the durations 𝑇𝑖 were 10 % of the
corresponding aging times 𝑡e,𝑖 .

In order to analyze the individual creep sequences unambiguously in terms of the
elapsed aging time, it must be ensured that the material properties do not change
significantly as a result of the sequential loading. Therefore, the tests were carried
out at small strains, where the assumption of linear viscoelasticity and Boltzmann’s
superposition principle are valid. In our tests, the specimens were loaded with a
nominal force of 10 N to obtain small flexural strains well below 1 %. The force was
measured with a load cell and kept nearly constant in a narrow range around the
nominal value. The tests were performed in absence of any UV radiation at a constant
temperature of about 20� and relative air humidity between 30 and 50 %, which was
confirmed by measurements during the tests.

Using this test setup in our experiments, the flexural creep strain Y(𝑡) of a loaded
specimen was determined by the relation

Y(𝑡) = 6ℎ
𝐿2 (𝑠(𝑡) − 𝑠0) . (7.9)
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Here 𝐿 denotes the span between the specimen supports, which must be a multiple
of ℎ for Euler-Bernoulli beam theory to be applicable; 𝑠(𝑡) is the crosshead travel
distance and 𝑠0 < 𝑠(𝑡 = 0) its absolute value at which the loading edge (see Fig. 7.6)
has initial contact to the specimen. In practice, the value of 𝑠0 was determined at the
time when the measured force signal begins to differ from zero.

As a measure of the creep behavior of the specimens considered, their flexural
creep compliance 𝐽 (𝑡) was calculated as a function of time by Eq. (7.2), where Y(𝑡) is
the strain determined by (7.9) and 𝜎(𝑡) is the nearly constant flexural stress obtained
by

𝜎(𝑡) = 3𝐿
2𝑏ℎ2 𝐹 (𝑡) . (7.10)

Both strain and stress were calculated using the individual measured specimen
dimensions ℎ and 𝑏, which differed slightly from the nominal values in Fig. 7.5. The
time at which a specimen is fully loaded is declared as 𝑡𝑖 = 0 and defines the initial
creep compliance, 𝐽𝑖,0 = 𝐽𝑖 (𝑡𝑖 = 0), of the 𝑖-th creep sequence.

7.3.3 Long Term Creep Test

In addition to the sequential creep tests, a long-term creep experiment was conducted
over a loading period of one week. Here the specimen was subjected to a nominal
force of 10 N and held constant over 170 h. The test was performed to compare its
result in the short-term range with the short-term creep of specimens of the same age
that had already been subjected to several loading sequences. Therefore, the long-term
test was started after an elapsed aging time of five hours, which corresponds to the
specimen age at the beginning of the third sequence in the sequential tests according
to Sect. 7.3.2.

7.4 Experimental Results

In the following, the steps of post-processing of the experimental data obtained with
the methods described in 7.3.2–7.3.3 are detailed. A qualitative discussion of the
final results presented can be found in Sect. 7.5.

7.4.1 Sequential Creep Tests

In total five specimens were printed and tested according to the procedures explained
in Subsects. 7.3.1–7.3.2. Figure 7.8a shows the averaged creep compliance curves
obtained by sequential creep tests for different aging times. The means of the initial
creep compliances, 𝐽𝑖,0, were computed for each set, 𝑖 = 1, . . . ,5 , and all curves were
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Fig. 7.8: a) Calibrated creep curves averaged over five specimens; b) creep curves shifted vertically
to the reference initial compliance 𝐽5,0 and fitted individually to the creep model (7.3).

calibrated accordingly. The error bars in Fig. 7.8a refer to the remaining scatter of
the calibrated curves, given as standard deviation.

Plotted in a semi-logarithmic diagram, the averaged creep curves show a similar
shape and a nearly equidistant distribution with respect to the logarithmic time scale.
The higher the specimen age, the more they are shifted to the right, which can be
explained by an increase in relaxation times. In view of the explanations in Sect. 7.2.2,
it is therefore plausible to assume physical aging as the cause of the observed creep
behavior.

The 20 h aged curve is chosen as reference curve, 𝑡e,ref = 𝑡e,5 = 20 h. To quantify
the curve shifts on the logarithmic time scale as a function of aging time 𝑡e, the
averaged creep curves were first arranged by vertical shifts Δ𝐽𝑖 so that their initial
compliances 𝐽𝑖,0 coincide with the initial compliance 𝐽5,0 of the reference curve.
Next, the experimental data calibrated this way, represented by symbols in Fig. 7.8b,
were individually fitted to the creep model (7.3) using least squares minimization
with fitting parameters 𝜏 and 𝑚. The resulting fit curves are shown as continuous
lines in Fig. 7.8b. The corresponding fits of parameter 𝑚 are listed in Table 7.2.
Since these values differ only slightly from each other, it can be verified that all creep
curves are characterized by the same shape and differ only by retardation time 𝜏𝑖 .
Thus, parameter 𝑚 is assumed to be a material constant and set to the mean value of
𝑚 = 0.35 for subsequent analysis.

Given a constant value for 𝑚, the shift log(𝑎𝑖) of a creep curve 𝐽𝑖 (𝑡) relative to a
reference curve 𝐽ref (𝑡), each represented by (7.3), can be calculated by the relation
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Table 7.2: Shift and fit results from data analysis.

creep sequence 𝑖 1 2 3 4 5 unit

specimen age 𝑡e,𝑖 1.25 2.5 5 10 20 h
vertical shift to 𝐽5,0 Δ𝐽𝑖 -0.69 -0.39 -0.27 -0.04 0 10−5 MPa-1

model parameter (1st fit) 𝑚𝑖 0.35 0.36 0.35 0.35 0.34 -
retardation time (2nd fit) 𝜏𝑖 1.09 1.40 2.38 4.19 7.58 105 s

− log(𝑎𝑖) = log
(
𝜏𝑖

𝜏ref

)
. (7.11)

To calculate the shifts log(𝑎𝑖) of the considered creep curves with respect to the
chosen reference curve 𝐽5 (𝑡), they were again fitted to the creep model (7.3) with
fitting parameters 𝜏𝑖 and the now constant model parameter 𝑚 = 0.35. The fitted
values of 𝜏𝑖 , 𝑖 = 1, ...,5 are listed in Table 7.2; they were used to calculate log(𝑎𝑖),
𝑖 = 1, ...,5 by Eq. (7.11).

The results are shown in Fig. 7.9 over the aging time 𝑡𝑒 in a double-logarithmic
plot. The data points follow, to a good approximation, a linear relationship with
slope 𝜇 = 0.72 representing the shift rate (7.4) calculated by linear regression.
Figure 7.10 shows the experimental creep curves each correspondingly shifted by
log(𝑎𝑖), 𝑖 = 1, ...,5 to the reference aging time 𝑡e,ref = 20 h. The solid line represents
the fit result for the reference creep curve 𝐽5 (𝑡).

Fig. 7.9: Calculated time shifts as a function
of specimen age 𝑡e.

Fig. 7.10: Experimental creep curves shifted to
the reference aging time 𝑡e,ref = 20 h.
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7.4.2 Long Term Creep Test

The creep curve obtained from the long-term experiment is shown as a solid line in
Fig. 7.11. The diamond-shaped data points refer to the averaged short-term creep
curve 𝐽3 (𝑡) calculated as described in Sect. 7.4.1. To compare both curves with
respect to their position on the logarithmic time scale, the short-term curve was
shifted slightly vertically so that their initial compliances coincide. It can be clearly
seen that the curves are not shifted against each other on the logarithmic time scale
and have an identical shape.

The long-term creep curve shows that even after a one-week load, a state of
equilibrium has not yet been reached and the material continues to creep. At the end
of the recorded period, a creep modulus of 1040 MPa is calculated, which corresponds
to only about 56 % of the quasi-static flexural elastic modulus of 1860 MPa given in
the material data sheet.

7.5 Discussion

Sequential creep tests were performed to analyze the short-term flexural creep
behaviorof 3D printed, increasingly aged specimens, the results of which are presented
in Sect. 7.4. Plotted on a logarithmic time scale, the obtained short-term creep curves
show similar shapes but are horizontally shifted as a function of aging time. Their
relative shifts to a reference curve were found to satisfy equation (7.4) with a calculated
shift rate 𝜇 ≈ 0.72 to a good approximation.

By comparing two creep curves obtained on identically aged specimens with
different preloading histories, see Sect. 7.4.2, it was shown that sequential loading of

Fig. 7.11: Comparison of the averaged short-term creep curve 𝐽3 (𝑡 ) with a long-term creep curve
obtained using a single specimen with initial aging time 𝑡e = 5 h.
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specimens with small forces as described in Sect. 7.3.2 does not significantly affect
their creep behavior. Since all creep tests were performed at constant temperatures
and under exclusion of UV radiation, we assume that physical aging is the main
reason for the observed increase in retardation times as a function of specimen age.
Like the influence of internal stresses, cf. [15], the influence of post-crystallization
was excluded from the considerations, since such crystallization is to be expected only
for semi-crystalline polymers exposed to temperatures above their glass transition
temperature for extended periods of time [24].

Struik [15] argued and showed experimentally that physical aging occurs in a
certain temperature range below the glass transition temperature and disappears at
both very low and high temperatures. Here the shift rate tends to zero and reaches
a maximum at a temperature between these boundary states. From the test results
obtained at an ambient temperature of 20� we calculated a shift rate of 𝜇 ≈ 0.72,
which is far from zero, but not very close to one. Since the testing temperature was
about 40� lower than the glass transition temperature of the PLA material used,
we thus assume that the maximum possible shift rate is larger than the value we
calculated and is reached at higher temperatures.

Motivated by Struik’s argument that physical aging is not limited to individual
polymers but is a more general phenomenon, we further assume that other 3D printed
thermoplastics are affected by the same physical aging shown here using PLA as
an example material. The strength of this aging influence depends on the glass
transition temperature of the material printed, the ambient temperature during the
creep test, and the cooling rate achieved during extrusion. It should be noted that
the cooling process in 3D printing differs significantly from that in conventional
extrusion processes, such as injection molding. While inhomogeneous temperature
gradients can lead to locally different cooling conditions in the latter case, these can
be assumed to be approximately the same over the entire component in 3D printing.
The creep and aging properties determined on small 3D printed test specimens can
therefore be directly transferred to large 3D printed components under otherwise
identical conditions.

Since physical aging is temperature-dependent, special temperature treatments in
advanced 3D printing, e.g. the use of heated print chambers or subsequent annealing,
c.f. [7], would have a significant influence on the long-term creep behavior of printed
parts. In our prints, the cooling rate was just large enough to achieve a shift rate
𝜇 > 0.7, which according to [15] allows valid prediction of aging-influenced long-
term creep behavior based on momentary TTSP master creep curves as described in
Subsect. 7.2.2. However, further research is needed to investigate in detail the extent
to which advanced heat treatments affect physical aging and thus the long-term creep
of 3D printed thermoplastics.

To demonstrate that 3D printed thermoplastics creep significantly over long time
periods even at temperatures well below their glass transition temperature, a long-
term creep experiment was conducted over a week at a constant temperature. The
corresponding results are presented in Subsect. 7.4.2 and are essential to consider
when designing load-bearing structures made of 3D printed thermoplastics. We
refer in particular to those applications where precise knowledge of the viscoelastic



7 Effect of Physical Aging on the Flexural Creep in 3D Printed Thermoplastic 129

material properties is important, e.g. in the design of interference fits for shafts or
ball bearings.

Using the test setup described in Subsect. 7.3.2, creep curves were obtained
by calculating the creep compliance as a function of the load the specimens were
subjected to and the time-dependent change in the crosshead travel distance of the
testing machine. Therefore, no additional strain gauges or extensometers were used.
However, the creep curves obtained by this method exhibited considerable scatter
in the calculated initial compliances, even when recorded at identical aging times.
Thus, in order to use them for a quantitative interpretation of the specimens’ creep
behavior, some corrections had to be made as described in Subsect. 7.4.1. The reasons
for the observed scatter in the initial compliances are, in our opinion, related to the
measurement of the reference crosshead travel distance 𝑠0, see Eq. (7.9), which is
affected by changing contact conditions between the loading edge and the specimen
and by possibly inaccurate force measurements in the range of very small loads. For
an accurate determination of the initial compliances of sequentially loaded creep
specimens, our proposed test setup can therefore only be recommended to a limited
extent. To improve the measurement results and to reduce the post-processing effort,
we recommend the use of high-resolution load cells for the accurate measurement of
small forces or direct strain measurements with strain gauges or extensometers, cf.
[16, 18].
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Chapter 8
Development of a Microstructure-Based Finite
Element Model of Thermomechanical Response
of a Fully Metallic Composite Phase Change
Material

Elisabetta Gariboldi, Matteo Molteni, Diego André Vargas Vargas, and Konstantin
Naumenko

Abstract Form-stable composite Phase Change Materials (C-PCMs), among which
Al-Sn alloys, store/release heat during the transformation of one of the phases they
are made of, without significant dimensional and shape changes. A microstructural
based model of the thermomechanical behaviour of these materials can help to check
their form-stability under various potential service conditions. The volume changes
induced by melting/solidification of the low-melting Sn phase and different thermal
expansion of solid Al and Sn can actually induce strains and stress fields during
thermal cycles. A numerical simulation of a modelled Al-Sn C-PCM dilatometric
test, a technique generally addressed toward the estimation of material thermal
expansion, has been run and validated. The model describes the complex evolution of
stress-strain fields and local plastic strains during the thermal cycle. The most critical
conditions arise during cooling, after the completion of Sn solidification, at the highly
stressed interface between Sn and Al phase. While at the end of a thermal cycle
the overall shrinkage is minimal, the microscopic plastic strain remain locally. The
phases properties and the representative microstructure are thus critical features for
the development of a reliable model. The model could be used to consider repeated
cycles and thermomechanical behaviour of C-PCMs.

Elisabetta Gariboldi · Matteo Molteni · Diego André Vargas Vargas
Politecnico di Milano, Dipartimento di Meccanica, Via La Masa 1, 20156 Milano, Italy,
e-mail: elisabetta.gariboldi@polimi.it,matteo1.molteni@polimi.it,
diegoandre.vargas@mail.polimi.it

Konstantin Naumenko
Lehrstuhl für Technische Mechanik, Institut für Mechanik, Fakultät für Maschinenbau, Otto-von-
Guericke-Universität Magdeburg, Universitätsplatz 2, 39106 Magdeburg, Germany,
e-mail: konstantin.naumenko@ovgu.de

131© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
H. Altenbach and K. Naumenko (eds.), Creep in Structures VI,
Advanced Structured Materials 194, https://doi.org/10.1007/978-3-031-39070-8_8

elisabetta.gariboldi@polimi.it, matteo1.molteni@polimi.it,
konstantin.naumenko@ovgu.de
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-39070-8_8&domain=pdf


132 Elisabetta Gariboldi et al.

8.1 Introduction

The development of renewable but intermittent power sources concurrently pushes
the research toward the development of reliable energy storage systems, among which
Phase Change Materials (PCMs) [1]. In particular, their capability of storing/releasing
thermal energy as latent heat of transformation, at constant or modulated temperature,
makes them appealing for Thermal Energy Storage (TES) and Thermal Management
(TEM) purposes [2]. The solid-liquid phase change is the most exploited one, which
allows high energy storability and low volume expansion. In particular, a lack of
control on this latter, associated to the leakage of the liquid phase and, consequently,
a reduction in the storage potential, threaten the performances of the PCM itself.
Different strategies have been attempted in order to tackle the issue of leakage of
PCM in the molten state either adopting containers [3, 4] or capsules from millimetric
[5, 6] to nanometric size [7, 8]. More recently, the need of a confinement material
has been overcome by the design of form-stable PCMs. These latter experience
minimal volume changes induced by phase transition and original form recovery
after a charge/discharge cycle [9]. Both chemical- and physical-based approaches are
explored in the design of form-stable material. Among the former, mainly adopted
for organic PCMs, the formation of covalent [10], hydrogen [11] or van der Waals
bonds [12] between them and thermally stable materials are explored. The physical
approaches mainly exploit capillarity [11, 13] for the achievement of form-stability. In
metallic materials, the interaction of the liquid metal with surrounding environment
is particularly critical and has to be considered together with form-stability. The use
of immiscible alloys, such as Al-Sn, as proposed by [14] manufactured by powder
metallurgy [14, 15] or by casting followed by medium-high cooling rates [16, 17]
demonstrated to be a smart solution. Due their immiscibility mature, below the
temperature of incipient melting, i.e., in the fully solid state, an Al-Sn alloy consists
of two phases whose composition roughly corresponds to the starting pure elements.
When produced by the abovementioned suitable processes, the microstructure of
Al-Sn alloy resembles the one of composite materials, with Al as matrix and the
low-melting Sn as inclusion. The melting starts close to the melting temperature of
pure Sn and leading to a liquid which remains extremely rich of Sn up to about 30◦C
above the onset of melting. The binary Al-Sn system allows to tailor the thermal
storage potential during thermal cycles by adjusting the Sn content. Dealing with
this material as a composite where the only Sn-rich phase melts/solidifies, is thus
reasonable. Under service, as for other composite materials, strains and thus stresses
of thermal origin can arise. For the case of a composite PCM (C-PCM), i.e., Al-Sn
in this study, thermal strains arise due not only to different coefficient of thermal
expansions of the two phases [18, 19], but also to the volume change associated to the
phase transition in the low-melting phase. These effects should be controlled during
service of C-PCM material, characterized by the partial or the complete melting of
C-PCM. Plastic deformation of the high and low melting phases can be triggered,
which in the latter case are cancelled by melting. The result on the form stability
purposes of the C-PCM during one or more repeated cycles is affected by several
factors such as the alloy composition, the phase arrangement and coarseness.
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Dilatometric tests represent a suitable tool to characterize the form-stability
of the C-PCM during one or repeated thermal cycles. However, time-consuming
experimental campaigns are required for a comprehensive characterization of the
material. Nevertheless, the quantification of thermal strains and the triggering of the
plastic deformation of each phase during thermal cycle is not possible. Numerical
simulations based on a physically representative material model can easily foresee
the thermomechanical response of the abovementioned phases, as well as the one of
the whole C-PCM. Hence, the study proposes a first attempt in evaluating the stresses
which develop between the two phases during a simulated thermal cycle. Stresses
influence on the form stability during the phase change is taken into account as well.
The aim of the study is achieved through the setting-up of a microstructure-based
thermo-mechanical model for the description of the dilatometric behaviour of a Al-Sn
composite PCMs, to be validated by means experimental dilatometric curves.

8.2 Microstructure-Based FE model of a Al-Sn C-PCM with Free
Expansion

A reference Al-Sn alloy, characterized by the 40%mass Sn (roughly correspond
to 20% in volume) was selected. The alloy with the same composition has been
previously investigated both obtained by compressing mixed Al and Sn powders
[14, 15] and produced via liquid metallurgy route with moderate-high cooling rate
[16, 17]. Either in their as produced or thermally cycled condition, the microstructure
consists of Sn inclusions surrounded by Al matrix, as shown by the scanning electron
micrographs in Fig. 8.1. In both cases the microstructure consists of an Al matrix
(darker region in the SEM micrographs), with minimal Sn in solid solution, and of
Sn-rich inclusions (brighter areas in Fig. 8.1), with minimal Al content. These latter
can be reasonably approximated to spheres, whose diameters vary in different ranges
according to the material processing conditions.

Control 
volume

a)

Control 
volume

b)

Fig. 8.1: Microstructure of Al-40%mass Sn alloy produced by powder metallurgy (a) and by
casting followed by medium-high cooling rate (b) after thermal cycles.
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In a first attempt to develop a microstructurally based FE model of the material, a
representative control volume (as shown in Fig. 8.2a) modelled on the bases of the
stable Al-Sn microstructure (Fig. 8.1), was selected as the reference geometry for
the numerical simulations. The control volume consists of a single Sn sphere (radius
𝑅 = 42 µm, Fig. 8.2a), surrounded by an Al cubic matrix (cell size 𝐿0 = 116 µm).
The volume of the sphere corresponds to the 20% of the whole geometry. The cell
dimensions were chosen on the bases of the Sn areas,whose extension strictly depends
on the production process selected (Fig. 8.1). No porosity nor interface detachment,
i.e., perfect bonding, were considered (Fig. 8.2a). Considering the possibility of
having asymmetric thermal loadings, the simulations were performed only on 1/4
of the reference model The numerical analyses, which simulate a dilatometric test
on the control volume, were performed with the commercially available software
Comsol Multiphysics, version 6.1. Pure Al and pure Sn have been considered as the
reference materials of the control volume (Fig. 8.2a), taking into account for this
latter solid-liquid phase transition. Heat transfer and solid mechanics physics were
adopted for the simulations.

The Laplace equation was adopted for the description of the thermal problem.
Heat conduction was considered as the only heat transfer mechanism for all the phases.
Indeed, preliminary calculations demonstrate the absence of convection in the molten
Sn sphere of the considered size. Temperature-dependent thermophysical properties
of interest, i.e., thermal conductivity, specific heat at constant pressure, density and
thermal expansion, were directly gathered from literature and assessed for both pure
Al [19–22] and Sn [21, 23–25]. Temperature-dependent properties of Sn, undergoing
phase transition, were estimated in its solid, as well as its liquid state. For all the
listed material properties, solid Al, solid Sn and liquid Sn data were interpolated with
a piecewise cubic function. Sn phase transformation was considered to occur in both
heating and cooling over a temperature interval of 4◦C, i.e., from 228◦C to 232◦C.
The former corresponds to the horizontal eutectic temperature, whereas the latter to

L0/2

L0 R

Al

Sn

Geometrical
features

a)

Thermal Boundary
Conditions

Temperature 
profile

Symmetry

Adiabatic

Adiabatic

b)

Mechanical Boundary
Conditions

Roller
Symmetry – No 
displacement

Symmetry – Free 
displacement

Symmetry – Free 
displacement

c)

Fig. 8.2: a) Al-Sn control volume selected for the numerical simulations, b) Thermal boundary
conditions applied to the control volume for the heat transfer physics, c) Mechanical boundary
conditions for the solid mechanics physics.
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the melting of pure Sn. Within this range, Sn was considered as composite partly
made of liquid and solid, whose fractions vary with temperature. Sn liquid fraction
changes linearly and with it the corresponding properties, apart from 𝐶𝑝 . A peculiar
trend was considered for𝐶𝑝 of Sn, whose temperature profile includes the latent heat
of melting during phase transition (60000 J/kg [26]).

An elastoplastic description of the mechanical behaviour for both Al and Sn
was chosen. The elastic behaviour of the former was modelled on the bases of
temperature-dependent Young’s modulus [27, 28] and Poisson’s ratio [29], whereas
temperature-dependent bulk modulus [30] and shear modulus [31] were selected for
the description of Sn elastic response. Ludwik isotropic hardening model [32] was
chosen instead for simulating the plasticity of both materials (8.1).

𝜎 = 𝜎ys+𝐾Y𝑛, (8.1)

where 𝜎ys refers to the material yield strength and Y represents the plastic strain.
𝐾 and 𝑛 stand for strength coefficient and hardening exponent, respectively. These
latter data were derived from the tensile curves proposed in [33, 34] for Al and Sn,
respectively. As far as Sn mechanical properties are concerned, they decay close to 0
when the metal undergoes solid-liquid transformations. Once again, the Sn domain in
its phase transition can be considered as a combination of solid and liquid Sn, whose
volume fraction vary linearly with temperature. Thus, linear trends were adopted for
the description of the mechanical properties in the phase change between solid and
liquid. As aforementioned, the materials were simply modelled as elastoplastic and
the effect of creep was not taken into account.

In the present preliminary numerical study, the model has been applied to the
prediction of the free expansion of material which can be experimentally evaluated
by means of dilatometric tests, where the length of cylindrical specimen prevails over
its diameter. In this view, the boundary conditions applied to the reference volume
allow the evaluation of its thermal expansion without any external mechanical loading
during the thermal cycle selected. Thus, the following boundary conditions, displayed
in Fig. 8.2, have been selected for the control volume. From the heat transfer physics
point of view, thermal load history was applied at the bottom surface of the reference
model. In particular, a relatively low cycle, leading to homogeneous temperature
profiles, was selected. These conditions well simulate the possible service conditions
of the C-PCM. Symmetry boundary conditions were chosen for surfaces where
Al and Sn coexist. Adiabatic boundary conditions instead, were assigned to the
remaining faces of the reference volume (Fig. 8.2b). As far as the mechanical
boundary conditions are concerned (Fig. 8.2c), roller constraint was applied at the
bottom face of the control volume. Symmetry boundary conditions were selected
for all the remaining faces. No displacement was chosen for the faces where the
Al-Sn interface is exposed, whereas free displacement was selected for the remaining
surfaces.

The control volume was automatically meshed by the software on the bases
of the type of physics selected. The mesh consists of tetrahedral elements with a
maximum element size of approximately 6.4 µm. A triangular type thermal cycle
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from room temperature to 270◦C at 2◦C/min was set at the bottom surface of the
control volume. A multistep transient study was performed for the investigation of
the thermomechanical response of the selected material. A 10 s time step was chosen
for exploring Al-Sn behavior out of the solid-liquid Sn transition, whereas it refines
to 1 s when low-melting metal undergoes phase change.

8.3 Results and Discussion

The change of length (Δ𝐿 = 𝐿 − 𝐿0) in vertical 𝑧 direction, and the corresponding
thermal strain (Δ𝐿/𝐿0) and its temperature derivative

dΔ𝐿/𝐿0

d𝑇

have been computed during the set thermal cycle. The last two are plotted in Figs. 8.3a
and 8.3b, respectively. The same figures show the results of dilatometric tests
performed on an Al-40%mass Sn C-PCM alloy. In general, the simulated strain-
temperature curve shows a satisfactory agreement with the experimental one, being
the thermal strains in the same order of magnitude (Fig. 8.3a). In the temperature
range where both Al and Sn are solid, the slopes of the numerically derived heating and
cooling curves (corresponding to the instant CTE of the C-PCM given in Fig. 8.3b)
are consistent with the experimental one (Fig. 8.3a). In the transition temperature
range instant CTE curves reach peak values. Differently from the experimental results,
Sn melting and solidification coincide, since undercooling was not considered in
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Fig. 8.3: Comparisons between numerical (Comsol) and experimental results of dilatometric
thermal cycle of the investigated C-PCM: thermal strains in vertical direction (a) and their
temperature derivatives (b).
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the cooling stage. In the range of molten Sn, the C-PCM experimental curve (Fig.
8.3a) displays a decreasing slope which could be attributed to creep phenomena, not
taken into account in the present simple version of the model. FE results were then
analyzed in terms of strain and stress fields in the z direction developing at various
stages of the thermal cycle in the Al and Sn phases. Representative images are given
in Figs. 8.4 and 8.5, respectively. It can be clearly seen that the higher tension or
compression strain of thermal origin, and the corresponding stress develop close
to the interface between the two phases. Focusing the attention on these regions, it
can be noticed that during heating, at 227◦C, i.e. just before the onset of Sn melting
(Fig. 8.4a) Sn is compressed while Al is in tension, as a result of its lower CTE with
respect to solid tin. At this temperature Sn phase is plastically deformed, since at
this temperature equivalent stress overcomes yield strength. Accordingly, the overall
strains in 𝑧 direction at 227◦C (Fig. 8.5a) show a higher deformation for Sn. During
heating, at 233◦C (Figs. 8.4b and 8.5b), Sn compression and its relative volumetric

. A

. B

(a) (b) (c)

(d) (e)

Fig. 8.4: Vertical stress distribution in the control volume representative of the Al-Sn C-PCM in
various situations a) heating, 227◦C, b) heating , 233◦C, c) cooling, 233◦C, d) cooling, 227◦C,
e) cooling, 20◦C.
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. A

. B

(a) (b) (c)

(d) (e)

Fig. 8.5: Vertical strain distribution in the control volume representative of the Al-Sn C-PCM in
various situations a) heating, 227◦C, b) heating , 233◦C, c) cooling, 233◦C, d) cooling, 227◦C,
e) cooling, 20◦C.

expansion soarted than in the solid range due to the steep Sn melting expansion,
which corresponds to CTE peak in Fig. 8.3b. During the further heating, both the
strain and stress in Al increase, but the conditions for the onset of plasticity are
not reached. At first significant temperature in cooling, i.e., 233◦C, just before the
solidification onset, different conditions are met with respect to the same temperature
in heating. In cooling, at 227◦C, the completion of Sn solidification step brings about
significant changes in the stress and strain distribution in the phases of C-PCMs.
The high shrinkage of Sn leads to the onset of tension stress in the already solid
(Sn) and compressive stresses arise in Al. Although experiencing more severe strains
than Al, Sn positive strain magnitude sensibly reduces with respect to the previous
stage (Fig.e 8.5d), due to the solidification shrinkage modelled as steep CTE change
shown in Fig. 8.3b. In both cases, conditions for plastic deformation are reached in
both phases. Further cooling to low temperature increases the tensile stress in Sn and
the compressive state in Al. From the completion of its solidification, Sn equivalent
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stress exceeds the temperature dependent yield stress, while in the case of Al, the
conditions of plastic deformation were met only in a temperature range close to the
completion of solidification.

The complex strain fields developed during the thermal cycle in the Al and Sn
phases are presented in Fig. 8.6 by strain in 𝑧 direction for Al (A) and Sn (B) points
laying at the interface along z direction o the symmetry axis. While strains in Sn
are very close in heating and cooling, those developed in Al are lower during the
compression cycle. While this strain appears to be relatively low, it could potentially
affect the thermomechanical behaviour of the C-PCM during following cycles. Even
if after a thermal cycle the overall deformation of the C-PCMs is of the order of
-0.01% at point A/B Al’ with %, at point A Al. Al can display far higher shrink which
can affect the local thermomechanical behavior during further thermal cycles. The
local strain and thus the microscopic.

8.4 Final Remarks

Some considerations can be derived on the basis of the previously discussed results.
A reliable numerical model, describing the thermomechanical responses of a rep-
resentative microstructural-based control volume, was developed. Finite Element
Analysis results are in accordance with experimental dilatometric curves, in terms
of both thermal strains and instant CTE as a function of temperature, especially
below Sn melting temperature in both heating and cooling stage. In this sense, the
addition of creep or undercooling to the model developed, which demonstrated to
influence the thermomechanical C-PCM response, an even more reliably foresee
Al-Sn dilatometric behaviour. Even in the presence of thermal loading only, thermal
strain and stress, which could overcome the plastic deformation threshold, can be

Fig. 8.6 Development of
vertical strain in Al and Sn
at interface point on the mid-
plane of the control volume
during the thermal cycle.
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met. This occurs for both Al and Sn phases after the completion of Sn solidification
in the cooling stage. An overall shrinkage of -0.01% was computed at the end of the
reference geometry at the end of the set thermal cycle. However, locally, in the Al
regions close to Al-Sn interface, higher strains can be experienced. The situations at
which the phases of the C-PCM enter in the plastic field are strongly correlated to their
temperature-dependent mechanical and thermal properties. The phases properties
and the representative microstructure are thus critical features for the development
of a reliable model, which can be used to describe the material behaviour also during
repeated thermal cycles or under more complex situations.
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Chapter 9
The Effect of Dynamic Loads on the Creep of
Geomaterials

Andrei M. Golosov, Evgenii P. Riabokon, Mikhail S. Turbakov, Evgenii V.
Kozhevnikov, Vladimir V. Poplygin, Mikhail A. Guzev, and Hongwen Jing

Abstract The samples of a geomaterial are tested under constantly applied loading.
Under the combined action of a static preload and an additional dynamic load a linear
increase in the axial strain of the sample is observed even at the initial stage of the
experiment. Dynamic loading activates an intense creep of the geomaterial and leads
to a decrease in the Young’s modulus.

9.1 Introduction

Under constant loads geomaterials deform over time, this phenomenon is commonly
called creep. Creep is observed in both soft [1] and hard [2] rocks. With the mani-
festation of creep due to the accumulation of internal structural deformations by the
geomaterial, its mechanical characteristics, and the Young’s modulus in particular,
change. Knowledge of how the change in Young’s modulus manifests itself during
the creep process is especially important for engineers in the design of underground
structures (such as production wells), since the continuity of the technological process
depends on the reliability of the structure. There are experimental works on vari-
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able loading of sandstone [3] and limestone [4] samples, which show the dispersion
(growth) of the Young’s modulus of the geomaterial with increasing frequency and
amplitude of the variable load. The researchers also developed classical [5] and non-
classical [6] mathematical models that describe the change in the Young’s modulus
under the action of a variable load depending on its frequency and amplitude.

Conventional creep tests last from a few hours to months, depending on the
structure and strength of the geomaterial. At the same time, in rock creep tests in the
presence of cyclic (dynamic) loads (cyclic creep tests), the time and deformation of
the sample before failure are reduced in comparison with the conventional creep test
under constant load [7].

As for today, a large number of theoretical and experimental works have been
devoted to the study of the issues of creep of geomaterials under quasi-static loading.
It is generally accepted that the creep deformation of a geomaterial includes three
stages such as primary creep (creep rate decelerating), secondary creep (constant
creep rate) and tertiary creep (creep rate accelerating) [8]. The existing mathematical
models of creep of geomaterials can be found in [9]. At the same time, the study of
the change in mechanical characteristics and in particular the change in the Young’s
modulus in the process of dynamic creep is not widely covered.

In this regard, the purpose of this work is to study the effect of dynamic loading of
a geomaterial under a constant static preload on the Young’s modulus of the samples.
Section 9.2 provides a description of the rocks and the research methodology. Section
9.3 presents the results and their discussion, followed by a conclusion.

9.2 Materials and Methods

9.2.1 Materials

A consolidated sandstone (sedimentary rock) was used in the study having a granular
structure, confined to the lower Bobrikovsky horizon C1bb of the Carboniferous
period and occurring in the area of one of the deposits of liquid minerals in the north
of the Perm region. The source material for the preparation of samples was a core
with a diameter of 100 mm, extracted from a depth of 2228.4-2355.2 m to the surface
while drilling one of the oil wells in the field. During manufacture, the samples were
drilled (Fig. 9.1a), cut (Fig, 9.1b), ground (Fig. 9.1c), hydrocarbon extracted (Fig.
9.1d); as a result, 25 samples were prepared (Fig. 9.1e). The study performed on dry
samples.
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Fig. 9.1: Sample preparation including: (a) drilling the sample; (b) cutting the sample; (c) grinding
the ends of the sample; (d) extracting the hydrocarbon form the samples on a Soxhlet apparatus; (e)
samples prepared for examination.

9.2.2 Methods

The tests were performed on the servo-hydraulic testing system MTS 816 Rock
Mechanics Test Systems (Fig. 9.2) at the Research Center for Geomechanics and
Geodynamics of Highly Compressed Rocks and Masses of the Far Eastern Federal
University (Vladivostok) from June 1 to November 30 in 2022. The tests were carried
out in the zone of linear elasticity of the geomaterial, in which the stress 𝜎 and the
axial strain Y are connected linearly through the Young’s modulus 𝐸 in accordance
with the ratio 𝜎 = 𝐸Y. Prior to the dynamic experiments, to determine the zone of
linear elasticity, the samples were subjected to quasi-static loading during which the
uniaxial compressive strength was determined (Fig. 9.3). One of the limitations in
studying the creep of a geomaterial under dynamic loads is the hydraulic principle of
the test system, which does not allow testing with a high frequency and amplitude of
dynamic load, as well as high preload. To satisfy all the constraints, the stress during
testing was chosen at the beginning of the zone of linear elasticity of the geomaterial
at the level of 80 MPa.

The loading program included two stages. At the first stage (time 𝑡 interval from
1 to 107 s) the test system pump fills the actuator with oil to create a predetermined
dynamic load. After the target load is reached and the specimen is preloaded with
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Fig. 9.2: Sample Creep Test: (a) General view of the MTS-816 testing system with the sample
installed; (b) sample No. 22 between loading plates.

Fig. 9.3: The diagram of quasi-static loading of samples during strength testing under uniaxial
compression and determination of the boundaries of the zone of linear elasticity of the geomaterial.

𝐹 = 45 kN, in the second stage (from 108 s) the actuator servo-valve starts and the
dynamic action is activated with a variable sinusoidal load at the frequency 𝜔 = 2 Hz
(Fig. 9.4).
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Fig. 9.4: The diagram of the load and the axial strain during the test: Stage I corresponds to the set
of the required load on the sample; Stage II corresponds to dynamic loading of a statically
preloaded specimen.

9.3 Results and Discussion

The results of the experiment showed that at a constant average load on the sample
(Fig. 9.5a), equal to the value of the preload 𝐹 = 45 kN together with the dynamic
load with the amplitude equal to 2 kN, the stress in the sample remains constant 𝜎
= 80 MPa (Fig. 9.5b). At the same time, the longitudinal (axial) strain Y increases
from 5.25 × 10−3 to 5.5 × 10−3 (Fig. 9.5c) and the Young’s modulus 𝐸 decreases
from 15 GPa to 14 GPa over the 70 s (Fig. 9.5d). The rate of decrease in the Young’s
modulus was approximately 14.3 MPa/s or 7.15 MPa for one load-unload cycle of
the sample under dynamic load with a frequency of 2 Hz. Experimental data were
recorded at a frequency of 10 Hz, resulting in a large number of peak values on the
diagram. Figure 9.5 shows the experimental data of the stage II recorded from 108 s
of the test.
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Fig. 9.5: The graphs of experimental parameters under loading of geomaterial with a frequency of
2 Hz: (a) load; (b) stress; (c) axial strain; (d) Young’s modulus.

It can be seen from the Fig. 9.5 that the axial strain beyond the long-term strain
increases monotonically at the same load. Creep has a monotonous (steady rate)
character and could be attributed to the second stage (steady creep) [7, 10], however,
practice shows that with a longer test duration, a flattening of the axial strain curve
will be observed, as a result of which the resulting creep follows classify as primary
creep. Note, that the experiment of a longer period of time with will be a part of
future studies.

The decrease in the Young’s modulus is carried out in accordance with the linear
dependence on the dimensionless time (𝑡0 = 1 s), in which the free term corresponds
to the value of the initial Young’s modulus with the dimension of [GPa]:
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𝐸dyn = −0.012
𝑡

𝑡0
+16.7. (9.1)

The decrease in the Young’s modulus is apparently associated with the occurrence of
mesocracks and dislocations in the sample, which accumulate with increasing loading
cycles and lead to a decrease in the resistance of the geomaterial and a deterioration
in mechanical characteristics such as the Young’s modulus.

9.4 Conclusion

The study of the geomaterial creep under the action of joint static and dynamic
loading was carried out. During the study, rock samples were statically preloaded
with a value of 45 kN and additionally subjected to dynamic sinusoidal action of the
dynamic load with an amplitude of 2 kN and a frequency of 2 Hz. As a result of the
study, the following conclusions can be drawn:

(1) dynamic loading activates intense creep of the geomaterial;
(2) with a constant value of the total load on the sample (static plus dynamic), with

increasing time (number of cycles) of loading, the Young’s modulus decreases at
a rate of 14.3 MPa/s due to a constant increase in the axial strain.
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Chapter 10
A Novel Simulation Method for Phase Transition
of Single Crystal Ni based Superalloys in Elevated
Temperature Creep Regions via Discrete Cosine
Transform and Maximum Entropy Method

Hideo Hiraguchi

Abstract Single crystal Ni based superalloys are composed of cubic 𝛾′ phases
and 𝛾 phase channels. It is known that the 𝛾′ phases gradually connect with one
another perpendicular to the tensile direction and change into rafting structures
during the transient creep region and the steady state creep region. Moreover, the
rafting structures grow or connect with one another to the tensile direction during the
accelerated creep regions. There are recent reports by the author that the phenomenon
of connecting and rafting of 𝛾′ phases is able to be simulated via the Discrete Cosine
Transform and the Maximum Entropy Method. Therefore, in this research, it is
demonstrated that the phenomenon of connecting and rafting of 𝛾′ phases can be
simulated by using this novel simulation method.

10.1 Introduction

Single crystal Ni based superalloys for gas turbine blades consist of 𝛾′ phase cubes
(L12 Type FCC) and 𝛾 phase channels (FCC). In the single crystal Ni based superal-
loys, the 𝛾′ phase cubes of the same size are arranged regularly at equal intervals in
the 𝛾 phase solid solution during the transient creep region. However, when it reaches
the steady state creep region, the 𝛾′ phase cubes begin to connect with one another
and become rectangles with low height called rafting structures. Moreover, when it
reaches the accelerated creep region, the narrow rafting structures with low height
begin to connect with one another or grow their height and become rafting structures
with large height. However, the dynamic metallographic changes from 𝛾′ cubes to
the 𝛾′ rafting structures with low height are not well-known in detail. Moreover, the
dynamic metallographic changes from the rafting structures with low height to the
rafting structures with large height are not well-known in detail either. Therefore, it is
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convenient for researchers to be able to estimate the dynamic metallographic changes
between one SEM chart before metallographic changes and another SEM chart after
metallographic changes by selecting two charts before and after the metallographic
changes from the published papers. To resolve the above problem, in this research, it
is demonstrated that the dynamic metallographic changes such as the phenomenon
of connecting and rafting of 𝛾′ phases can be estimated via the combination of the
two dimensional Discrete Cosine Transform (2D-DCT) which is also used for creep
equations [1] and the Maximum Entropy Method by using only two SEM charts
before and after the metallographic changes selected from the published paper. By
using this novel simulation method, the researchers in this field can easily grasp the
approximate trends of dynamic metallographic changes at low cost. The obtained
results are reported in this paper in detail.

10.2 Materials and Experiments

10.2.1 A Single Crystal Ni Based Superalloy, CMSX-4

A single crystal Ni based superalloy, CMSX-4, is selected as a specimen of creep test.
Specifically, the SEM charts of CMSX-4 published in [2] are selected. Moreover, by
using these charts, simple geometrical models of the 𝛾′ phase cubes and 𝛾 phase
channels are made for calculation.

10.2.2 Creep Tests

Creep interruption tests at 1,273 K, 160 MPa are adopted as creep tests. The creep
interruption tests mean that the metallographic structures of specimens are measured
when stopping the creep tests at the target measurement points during the creep tests.
The test pieces are 13 mm single crystal round bars made by the precision casting,
and the longitudinal direction is [001]. In addition, the smooth specimens are cut
from the above round bars. The diameter of the parallel portion of each specimen
is 8 mm and the gauge length is 40 mm. The CMSX-4 SEM charts of three creep
interruption specimens at (a) 1.08×105 s, (b) 1.08×106 s and (c) 2.52×106 s [2] are
used for making the simple geometrical models.

Figure 10.1 shows the relationship between the creep strain rate and the ratio of
the time to the rupture life. (a), (b) and (c) in Fig. 10.1 mean the above (a), (b) and
(c). Reading values of the creep strain rate data in [2] are used in Fig. 10.1. In Fig.
10.1, (a) is a point of the transient creep region, (b) is a point of the steady state creep
region and the minimum creep strain rate point, and (c) is a point of the accelerated
creep region. Moreover, (d) is a point of the rupture time.
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Fig. 10.1 Relationship be-
tween the creep strain rate and
the ratio of the time to the
rupture life [2]

Figure 10.2 (a), (b) and (c) shows the simple geometrical models [3] of CMSX-4 at
(a), (b) and (c) points meshed into 21×21, which are created by measuring the length
of one side of 𝛾′ phase cube and the width of 𝛾 phase channel of the metallographic
SEM charts in Fig. 10.3 (Fig. 8 of [2]). In Fig. 10.2(a), the length of one side of the
cube of 𝛾′ phase is 0.4 µm and the width of 𝛾 phase channel is 0.1 µm. Moreover,
in Fig. 10.2(b), the height of rectangle of 𝛾′ rafting phase is 0.4 µm and the width
of 𝛾 phase channel is 0.1 µm. In addition, in Fig. 10.2(c), the height of rectangle of
𝛾′ rafting phase is 0.7 µm and the width of 𝛾 phase channel is 0.2 µm. The tensile
direction is the 𝑗 axis direction. The lattice constant of 𝛾 phase C𝛾 at 1,273 K is
3.586 Å, and that of 𝛾′ phase C𝛾′ at 1,273 K is 3.580 Å. Therefore, the lattice misfit
is “-0.17%” [4]. The equation of lattice misfit is C𝛾′ −C𝛾/C𝛾×100%. In Fig. 10.2,
for convenience, the lattice misfit is set as “+0.17%” to make 𝛾′ phase popping out.

Fig. 10.2: Simple geometrical model (a), (b) and (c) for single crystal Ni based superalloy CMSX-4.
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Fig. 10.3: SEM charts of the specimens at 160 MPa, 1,273 K for (a) 1.08E5 s, (b)1.08E6 s,
(c)2.52E6 s and (d)creep ruptured (Fig. 8 of [2]). The tensile direction of the test is vertical.

10.2.3 Two Dimensional Discrete Cosine Transform

Two dimensional discrete cosine transform (2D-DCT) [5–8] is expressed as follows:

𝐹 [𝑘, 𝑙] =
𝑁−1∑︁
𝑗=0

𝑁−1∑︁
𝑖=0

𝑓 [𝑖, 𝑗]𝜑𝑘 [𝑖]𝜑𝑙 [ 𝑗] (10.1)

𝑓 [𝑖, 𝑗] =
𝑁−1∑︁
𝑙=1

𝑁−1∑︁
𝑘=0

𝐹 [𝑘, 𝑙]𝜑𝑘 [𝑖]𝜑𝑙 [ 𝑗] (10.2)

𝜑𝑘 [𝑖] = 1
√
𝑁
, 𝑘 = 0

=

√︂
2
𝑁

· cos
(2𝑖 +1)𝑘𝜋

2𝑁
, 𝑘 = 1,2, . . . 𝑁 −1

(10.3)

where 𝑖 and 𝑗 are the coordinate numbers of Fig. 10.2, 𝑘 and 𝑙 are the coordinate
numbers of the coefficient of the 2D-DCT, 𝑓 [𝑖, 𝑗] is a discrete signal (lattice misfit),
which expresses the value entered in the pixel of the coordinate (𝑖, 𝑗) in Fig. 10.2.
𝐹 [𝑘, 𝑙] is the coefficient of the 2D-DCT.

The above 𝐹 [𝑘, 𝑙] of Eq. (10.1) is used for the Maximum Entropy calculation
incorporating the 2D-DCT [3, 9].
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10.2.4 Maximum Entropy Method

Maximum Entropy Method is utilized to obtain the precise electron densities of
crystals in the field of crystallography. The crystal structure factor 𝐹 (ℎ) is expressed
by using the Fourier transform equation as follows:

𝐹 (ℎ) =𝑉
∑︁
𝑟

𝜌(𝑟) exp(−2𝜋𝚤𝑟 · ℎ) (10.4)

where 𝜌 is the electron density, 𝑟 is the position vector, ℎ is the reciprocal space
vector, and 𝑉 is the volume of one voxel of a unit cell.

In the Maximum Entropy method, the constraint function is used to obtain the
precise electron density distribution. The constraint function𝐶 is expressed as follows
[10–12]:

𝐶 =
1
𝑁

∑︁
ℎ

|𝐹cal(ℎ) −𝐹obs(ℎ) |2
𝜎2 (ℎ)

(10.5)

where 𝐹cal(ℎ) is the ℎth structure factor calculated from 𝜌(𝑟), 𝐹obs(ℎ) is the ℎth
structure factor observed in the experiment, and 𝑁 and 𝜎(ℎ) are the total number
and variance of |𝐹obs(ℎ) |, respectively.

When calculating the precise electron densities, the Shannon-Kullback relative
information 𝐼 [13–18] expressed in Eq. (10.6) should be minimized subject to the
constraint 𝐶 expressed in Eq. (10.5)

𝐼 =
∑︁
𝑟

𝑝(𝑟) ln
[
𝑝(𝑟)
𝑚(𝑟)

]
(10.6)

where𝑚(𝑟) = 𝜏(𝑟)/∑𝜏(𝑟) and 𝑝(𝑟) = 𝜌(𝑟)/∑ 𝜌(𝑟) are normalizedprior andposterior
electron densities in pixel 𝑟 . The Shannon-Jaynes entropy 𝑆 [19] is related to 𝐼 through
𝑆 = −𝐼. Maximization of 𝑆 under the constraint 𝐶 leads to an exponential expression
for 𝜌𝑀𝐸 (𝑟) in Eq. (10.7) [20–22]

𝜌𝑀𝐸 (𝑟) = exp
[
ln𝜏(𝑟) + 𝜆𝐹 (0)

𝑁
×

∑︁ 1
𝜎2 (ℎ)

× {𝐹obs(ℎ) −𝐹calc(ℎ)} exp
(
−2𝜋𝚤

ℎ

𝑟

)]
(10.7)

where 𝜆 is Lagrange multiplier. 𝜌𝑀𝐸 (𝑟) in Eq. (10.7) is the electron density obtained
by the Maximum Entropy Method.

In this research, the 2D-DCT coefficient 𝐹 (𝑘, 𝑙) in Eq. (10.1) is utilized instead of
the crystal structure factor 𝐹 (ℎ) in Eq. (10.4) and Eq. (10.7) to estimate the dynamic
metallographic changes of the single crystal CMSX-4 under the creep test. In this
case, the obtained 𝜌𝑀𝐸 (𝑟) is a maximized 𝑓 [𝑖, 𝑗] as a lattice misfit. Because the
DCT is composed of only cosine function that does not contain the imaginary part
unlike the ordinary Fourier transform, the Maximum Entropy method incorporating
the 2D-DCT is comparatively simple. Dynamic metallographic changes between the
two SEM charts can be estimated by extracting information from the two SEM charts
by keeping Shannon-Jaynes Entropy 𝑆 maximum.
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10.3 Estimation of Phase Transition and Results

The phase transition or metallographic changes between the metallographic chart in
Figs. 10.2(a) and 10.2(c) is calculated via the Maximum Entropy Method incorporat-
ing the 2D-DCT. In this calculation, 𝑓 (𝑖, 𝑗) and 𝐹 (𝑘, 𝑙) of Figs. 10.2(a) and 10.2(c)
are used to derive information from the two images. Fig. 10.4 shows the estimated
dynamic metallographic changes between (a) and (c). The iteration of calculations
of the Maximum Entropy method incorporating the 2D-DCT is performed until 𝐶 is
less than or equal to 1.

In Fig. 10.4, first, the 𝛾′ phase cubes begin to connect with one another from
(a) to (a-2) . As shown in Fig. 10.4(a-2), the transition chart is very similar to the
simple geometrical model of Fig. 10.2(b) at (b) point of Fig. 10.1. It means that the
Maximum Entropy method incorporating 2D-DCT can estimate the metallographic
structure of (b) point in Fig. 10.2. By using the only two images of Fig. 10.2(a) and
Fig. 10.2(c), the similar metallographic structure of Fig. 10.2(b) can be obtained as
the structure of Fig. 10.4(a-2) via the combination of the Maximum Entropy method
and the 2D-DCT.

Second, as shown in Fig. 10.4 from (a-2) to (a-7), it shows that the number of
𝛾 phase channels of the (a-2) transition model similar to Fig. 10.2(b) is gradually
changed from three to two. Finally, the estimation converges to the simple geometrical
model of Fig. 10.4(c).

10.4 Discussion

As shown in Fig. 10.4 from (a) to (a-2), the 𝛾′ phase cubes begin to connect
with one another perpendicular to the tensile direction. It is consistent with the
experimental results. Moreover, the (a-2) transition chart is very similar to the simple
geometrical model of Fig. 10.2(b) at (b) point of Fig. 10.1. It can be said that this is
a strong proof of an ability of the estimation and the interpolation of the dynamic
metallographic changes of the combination of the Maximum Entropy method and
2D-DCT. Consideration and resolution about the difference of the values of the lattice
misfits between Fig. 10.4 (a-2) and Fig. 10.2(b) is a next challenge. Moreover, as
shown in Fig. 10.4 from (a-2) to (a-7), the processes of decreasing the number of the
𝛾 phase channels and the growth of the 𝛾′ phase rafting structures can be observed
in detail. The change in the number of channels from three to two is consistent with
the experimental result, too. It is needed to be confirmed how small the difference
between this estimation result and the real experimental data is.

10.5 Conclusion

From the above, the results of this research are as follows:



10 A Novel Simulation Method for Phase Transition of Superalloys 157

Fig. 10.4: Estimated state of dynamic metallographic changes of CMSX-4 between (a) and (c)
Lattice misfit / % = | (𝐶𝛾′ −𝐶𝛾)/𝐶𝛾 × 100% |.
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Fig. 10.4: Estimated state of dynamic metallographic changes of CMSX-4 between (a) and (c)
Lattice misfit / % = | (𝐶𝛾′ −𝐶𝛾)/𝐶𝛾 × 100% | (Cont’d).
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1. The estimated result that the 𝛾′ phase cubes begin to connect with one another
perpendicular to the tensile direction in the beginning is consistent with the
experimental data.

2. The (a-2) transition chart in Fig. 10.4 is very similar to the simple geometrical
model of Fig. 10.2(b) at (b) point of Fig. 10.1.

3. The change in the number of 𝛾 phase channels from three to two shown in Fig.
10.4(a-2) to (a-7) is consistent with the experimental result, too.

4. It can be said that the above result is a strong proof of an ability of the estimation
and the interpolation of the dynamic metallographic changes of the Maximum
Entropy method and 2D-DCT.

5. Consideration and resolution about the difference of the values of the lattice misfits
between Fig. 10.4 (a-2) and Fig. 10.2(b) is a next challenge.
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Chapter 11
Anisotropic Creep Analysis of Fiber Reinforced
Load Point Support Structures for
Thermoplastic Sandwich Panels

Jörg Hohe and Sascha Fliegener

Abstract The present contribution is concerned with a numerical analysis of creep in
load point support structures for sandwich panels made from different fiber reinforced
thermoplastic materials. Whereas the face sheets consist of laminates of unidirectional
carbon fiber reinforced plies, the support structures for the load points consist of
discontinuously long fiber reinforced thermoplastics manufactured in a compression
molding process. The sandwich core is a thermoplastic foam. For the numerical
creep analysis of such structures under long-term loading, an anisotropic viscoelastic
material model is formulated. In different versions, the model is applicable either to
unreinforced thermoplastics, or to thermoplastics with discontinuous or continuous
fiber reinforcement. The material model is implemented into a finite element system.
The model is validated against an experimental data base on both, coupon and
structural level.

11.1 Introduction

Structural sandwich panels are found in a variety of technological fields where extreme
lightweight solutions are required. In addition to the classical fields of aerospace
industry or the wind energy sector, sandwich structures become increasingly popular
in transport applications for both the rail and road sector. In contrast to aerospace
components with limited numbers of components to be manufactured, especially the
automotive sector is characterized by industrial scale mass production with large
numbers of components to be manufactured with an extreme demand for short cycle
times. For this purpose, polymeric composite and sandwich components consisting of
thermoplastic base materials are popular materials for future composite automotive
designs (Bĳsterbosch and Gaymans [1], Henning et al. [2]). On the other hand, one of
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the major shortcomings of thermoplastic materials is their inherent tendency towards
creep deformation even for discontinuously and in some cases also continuously
fiber reinforced microstructures (Chevali et al. [3], Greco et al. [4], Brinson and
Knauss [5]).

Objective of the present contribution is the evaluation of load point support
structures for thermoplastic sandwich panels, involving hybrid designs of discontinu-
ously and continuously fiber reinforced polymer matrix composites. For this purpose,
creep material models for anisotropic fiber reinforced materials are developed and
implemented. Based on a classical three term Kelvin-Voigt approach, a preliminary
isotropic viscoelastic material model is formulated. Using a Schapery [6] type exten-
sion, a stress dependence is implemented. The isotropic base model is extended to
anisotropic fiber reinforced materials in a twofold manner. For discontinuously long
fiber reinforced materials, a simple generalization based on anisotropy factors is em-
ployed. To account for creep effects in continuously unidirectionally fiber reinforced
materials, the isotropic base model is superimposed with an isotropic Hooke’s law. In
this context, the isotropic viscoelastic part represents the matrix response whereas the
rate independent anisotropic Hooke’s law with (almost) vanishing stiffness perpendic-
ular to the fibers represents the response of the unidirectionally oriented continuous
fibers. The different models are implemented as user-defined material models into a
commercial finite element program.

In a first application, the numerical approach is validated against experimental
data obtained in unidirectional coupon experiments considering unreinforced ther-
moplastic materials as well as discontinuously and continuously fiber reinforced
materials, both tested in different spatial directions. In a second step, the model is
applied to load point support structures for sandwich panels made from compression
molded long fiber reinforced thermoplastics designed in a previous contribution
(Fliegener et al. [7]). The sandwich face sheets are made from multidirectional
laminates consisting of unidirectional carbon fiber reinforced thermoplastic plies
bonded to a thermoplastic foam core. The results of the simulations are validated
against experimental data obtained in creep experiments. The numerical predictions
are found in good agreement with the experimental observations.

11.2 Material Model

The analyses in the present study employ the material models presented by the authors
in an earlier contribution (Fliegener and Hohe [8]). Therefore, only a brief outline is
given here.
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11.2.1 Basic One-Dimensional Formulation

The model is based on a three element Kelvin-Voigt model using the rheological model
sketched in Fig. 11.1. For this type of model the one-dimensional time dependent
strains are given by the convolution integral

Y(𝑡) =
𝑡∫

0

©« 1
𝐸 (0) +

3∑︁
𝑞=1

1
𝐸 (𝑞)

(
1− 𝑒−

𝑡−𝑡∗
𝜏 (𝑞)

)ª®¬ 𝜕𝜎𝜕𝑡
����
𝑡=𝑡∗

d𝑡∗ (11.1)

where where the elastic moduli 𝐸 (𝑞) and the relaxation times

𝜏 (𝑞) =
𝜂 (𝑞)

𝐸 (𝑞) (11.2)

together with the viscosities 𝜂 (𝑞) are material parameters.
Transforming Eq.(11.1) into a strain dependent incremental form results in

d𝜎(𝑡) = �̃� (𝑡) ©«dY(𝑡) −
3∑︁
𝑞=1

(
1− 𝑒−

d𝑡
𝜏 (𝑞)

)
Yi(𝑞) (𝑡 −d𝑡)ª®¬ (11.3)

with the time dependent tangential stiffness
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and the inherited strains Yi(𝑞) defined in a recursive manner by
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forming history variables.
Linear viscoelstic models are in many cases inadequate to model the time depen-

dent stress-strain response observed in experiments (e.g. Fliegener et al. [9], Haj-Ali
and Muliana [10], Schapery [6]). For this reason, the parameters 𝐸 (𝑞) in Eqns. (11.4)
and (11.5) are considered as stress dependent functions 𝐸 (𝑞) (𝜎) rather than constant
moduli. Full details on the employed material model and its definition can be found
in the original contribution (Fliegener and Hohe [8]).

Fig. 11.1 Three element
Kelvin-Voigt model. E
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11.2.2 Generalization to Three Dimensions

The one-dimensional viscoelastic material model (11.3) is generalized to the three-
dimensional space in the same manner as Hooke’s law since it must reduce to
Hooke’s law, if all viscous parts are deactivated by an appropriate choice of the
material parameters. Therefore, the material model (11.3) is decomposed into a
volumetric and a deviatoric part, resulting in the three-dimensional form
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with the time-dependent shear and bulk stiffnesses
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respectively. The generalized bulk and shear moduli are defined by
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in the same manner as for Hooke’s law. The Poisson’s ratio 𝜈 is assumed to be a ma-
terial constant, which is not affected by viscoelasticity. The evolution equation (11.5)
is generalized to the three-dimensional case by
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where the history variables Yis(𝑞)
𝑖 𝑗

and Yiv(𝑞) are the deviatoriv andvolumetric inherited
strains, respectively.
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11.2.3 Unidirectionally Fiber Reinforced Thermoplastics

The three-dimensional constitutive equation (11.6) constitutes an isotropic viscoelas-
tic material law. For fiber reinforced materials, this model needs to be generalized to
cover anisotropic material response as well.

For the case of a continuous unidirectional fiber reinforcement, it is assumed that
stresses deriving from the deformation of the isotropic viscoelastic matrix and stresses
deriving form the deformation of the linear elastic anisotropic fiber reinforcement
can be superimposed by

d𝜎𝑖 𝑗 = (1− 𝜌f)d𝜎m
𝑖 𝑗 + 𝜌fd𝜎f

𝑖 𝑗 (11.13)

where d𝜎m
𝑖 𝑗

are the stress increments in the matrix determined by Eq. (11.6) whereas
the fiber stress increments

d𝜎f
𝑖 𝑗 = 𝐶𝑖 𝑗𝑘𝑙Y𝑘𝑙 (11.14)

are obtained by means of the anisotropic Hooke’s law considering the anisotropic
stiffness induced to the composite by the fiber reinforcement. The parameter 𝜌f

denotes the fiber volume fraction.

11.2.4 Discontinuously Fiber Reinforced Thermoplastics

For the case of a discontinuous multidirectional fiber reinforcement, the effect of
the anisotropy of the composite is modelled in a pragmatic manner by introduction
of weight factors into the equations for the normal stresses in the different spatial
directions. For this purpose, Eq. (11.6) is substituted with

d𝜎𝑖 𝑗 (𝑡) = 2�̃� (𝑡) ©«𝑠ddY′𝑖 𝑗 (𝑡) −
3∑︁
𝑞=1

(
1− 𝑒−

d𝑡
𝜏 (𝑞)

)
Y

is(𝑞)
𝑖 𝑗

(𝑡 −d𝑡)ª®¬
+3𝜅(𝑡) ©«𝑠vdYv (𝑡) −

3∑︁
𝑞=1

(
1− 𝑒−

d𝑡
𝜏 (𝑞)

)
Yiv(𝑞) (𝑡 −d𝑡)ª®¬𝛿𝑖 𝑗 (11.15)

where the weight factors

𝑠d =

{
𝑠d if :𝑖 = 𝑗 = 1
1 else (11.16)

𝑠v =

{
𝑠v if :𝑖 = 𝑗 = 1
1 else (11.17)

are factors used to introduce a proces and fiber preference orientation related
anisotropy of the material response. Both factors may be dependent on the flow
characteristics of the material during molding or other process parameters and thus



166 Jörg Hohe and Sascha Fliegener

will – in general – depend on the spatial position in the final component. Full details
and a broader discussion on the formulation of the constitutive model are given in
the original contribution (Fliegener and Hohe [8]).

The proposed material model for all three material types – neat isotropic polymeric
material as well as anisotropic continuously and discontinuously fiber reinforced
materials – are implemented as user defined materials into a commercial finite
element code.

11.3 Experimental Investigation

The theoretical developments of the material model in Sect. 11.2 are complemented by
an experimental investigation to provide a data base for validation and demonstration
of its capabilities. Creep tests are performed on both coupon and structural level.

11.3.1 Coupon Experiments

For determination of the material parameters for the different levels of the creep model
proposed in Sect. 11.2 and for a first validation, creep experiments on coupon level
are performed. Three different grades of material are investigated, each supplied with
a polyamide (PA) 6 matrix. The first grade is the neat matrix material. The second
grade is a long glass fiber reinforced (LFT) material manufactured in a compression
molding process. The material is supplied with fiber weight and volume fractions
of 40wt.% and 22.5vol%, respectively. The third material grade is a unidirectionally
(UD) carbon fiber reinforced material with a fiber volume fraction of 46vol%. The
material was processed by Fraunhofer ICT and BASF and supplied in form of plane
plates.

From the available plates, coupon specimens are manufactured using waterjet
cutting. For the neat matrix material as well as for the LFT material and the UD
material to be testedperpendicular to the fiberdirection,dogbone specimens according
to ISO 3167 [11], type A are used, supplied with an increased shoulder radius of
50mm and – due to limited material availability – for the neat matrix material with
a reduced gauge section length of 36mm. For the UD materal to be tested within
the fiber direction, straight specimens according to ISO 527-5 [12], type A with an
increased width of 20mm are used.

The specimens are tested for their creep response under tensile loads according to
ISO 899-1 [13] using a dead weight creep test rig. All experiments are performed in
a climate chamber at ambient temperature and 62.5% relative humidity over a period
of 160h. The neat matrix material is tested in one direction only whereas the LFT
material is tested within and perpendicular to the flow direction. The UD material
is tested within and perpendicular to its fiber direction as well as under 45◦ to the
fiber direction to gain information about creep effects in shear dominated loading
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situations. For parameter identification and validation purposes, all experiments are
simulated numerically by means of the finite element method using the material
models proposed in Sect. 11.2.

11.3.2 Structural Experiments

For validation on the structural level, the proposed creep model is applied to the
simulation of a load point support structure for thermoplastic sandwich structures
designed in a previous study (Fliegener et al. [7]). The sandwich structure consists
of two CFRP fase sheets with a symmetric [0◦,90◦,±45◦]s stacking sequence. The
CFRP laminates are overmolded with a glass fiber reinfoced LFT ply on each side.
In all instances, the same polyamide 6 based fiber reinforced materials as described
in Subsect. 11.3.1 are employed. The face sheets are separated by a 20mm thick
thermoplastic PUR foam core. The sandwich plate is supplied with a loading point
formed by a brass insert with a screw thread. To distribute the load smoothly from the
brass insert into both face sheets, different types of load point support structues were
investigated by Fliegener et al. [7]. The most promising support structure prooved to
be the structure presented in Fig. 11.2. The support structure consists of the same
LFT material as the LFT plies on top and bottom of the face sheets and is co-molded
with the face sheets in a compression molding process.

For the numerical analysis, the breadboard specimen is meshed with standard
displacement based finite elements considering a circular section of the square plate
(Fliegener et al. [7], [8]). For the load point support structure and other LFT ranges as
well as for the core, 8-node volume elements with tri-linear shape functions are used.
For the CFRP laminate,4-node first order shell elements are employed. The connection
between volume and shell elements is made via appropriate constraint conditions.
For a proper connection between all ranges, some triangular and tetrahedarl elements
need to be used in addition. The finite element model of the breadboard specimen
is modelled as clamped all around its external edges. It is loaded by a constant force

Fig. 11.2 Breadboard sand-
wich specimen with central
load point and LFT load point
support structure for validation
on structural level.
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acting in the downward normal direction. Due to the high stiffness of the panel, the
analysis is performed within the geometrically linear framework.

The analysis is complemented by an experimental investigation, where breadboard
specimens as presented in Fig. 11.2 are tested under different creep loads. The
experiments are performed using a clamping system where the square specimen is
placed into a tightly fitting box with a circular cutout with the same radius as the
outer radius of the finite element model, thus providing similar external boundary
conditions. Subsequently, a constant long term load is applied to the load point using
an electromechanical Hegewald & Peschke inspekt table 250 testing machine. During
the long term experiment, the crosshead displacement is continuously recorded. Since
the load is constant, no strain variations in the loading rig and the machine’s frame
occur during the test so that crosshead displacement variations coincide with the
displacement variations of the specimens load point due to creep.

11.4 Multiscale Simulation

As an additional approach for validation, a multiscale analysis is performed for the
LFT material to predict the material response on the effectve level and to validate it
against the experimental data available on coupon experiments. For this purpose, a
representative volume element for the LFT microstructure is generated, employing
the procedure presented earlier by Fliegener et al. [14]. The representative volume
element is meshed using standard displacement based tetrahedral finite elements
using the isotropic creep material model from Subsect. 11.2.2 for the matrix and
assuming linear isotropic elasticity for the glass fibers with data sheet values for the
Young’s modulus and the Poisson’s ratio. The finite element model is then subjected
to a constant effective stress. The effective creep strain is computed as a function
of time. By this means, numerical experiments for the LFT creep response on the
macroscopic material level can be performed. The results are validated against the
results of the physical laboratory experiments.

11.5 Results

11.5.1 Parameter Identification on Coupon Experiments

In a first validation step, the creep response of the neat matrix material is investigated.
Uniaxial tensile loads of 5, 10, 15 and 20MPa respectively are applied. The resulting
creep curves are presented in Fig. 11.3 together with their counterparts obtained by
a numerical simulaion based on the isotropic version (11.6) of the material model.

For all applied stress levels, the standard characteristics of the creep curves are
observed. In the initial phase, a primary creep range with initially large creep rates
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Fig. 11.3 Neat matrix material
– experimental creep curves
and numerical prediction by
proposed viscoelastic material
law.
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is obtained. Subsequently, the creep rate decreases and the creep curves approach
the secondary creep range featuring a constant creep rate. For all load levels, the
material parameters in Eqs. (11.6) to (11.12) can be chosen such that the numerically
predicted creep curves are in perfect agreement with their experimental counterparts,
giving evidence for the rationale of the mathematical formulation of the constitutive
model.

The isotropic viscoelastic material model with the material parameters determined
before is then employed in a multiscale and homogenization analysis of the LFT
material. The creep curves predicted by the multiscale analysis and the experimental
counterparts for the LFT material are presented in Fig. 11.4, together with numer-
ical predictions of the creep response using the anisotropic version (11.15) for the
discontinuosly fiber reinforced LFT material with a parameter set fitted on this level
of structural hierarchy. Both, the flow direction and the test direction perpendicular
to the flow direction are considered.

Due to the discontinuous reinforcement by the linear elastic, non-viscous glass
fibers, much lower creep strains are observed for the LFT material than for the neat
matrix material, although the basic characteristics of the creep curves are maintained
(see Figs. 11.3 and 11.4). For the tests within the flow direction, a rather good
agreement of both numerical simulations – multiscale analysis and analysis based on
the proposed LFT material model (11.15), respectively – with the experimental results
is observed. Similar findings are obtained for the creep experiments perpendicular to
the flow direction at the lower load levels. For the highest creep load level of 24MPa,
the proposed LFT creep model (11.15) and the experimental creep results are still
found in a good agreement whereas the multiscale simulation slightly overestimates
the creep rate in the initial phase, resulting in an overestimation of the creep strain in
the entire creep period. This effect is probably caused by a suboptimal assumption on
the fiber length and orientation distribution in the underlying representative volume
element.

The results of the parameter identification for the continuously unidirectionally
(UD) fiber reinforced material are presented in Fig. 11.5. The creep response is
investigated within the fiber direction (0◦), perpendicular to the fiber direction (90◦)
as well as under 45◦ to the fiber direction. Since the linear elastic carbon fibers carry
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Fig. 11.4 Long fiber rein-
forced thermoplastics (LFT)–
experimental creep curves,
numerical prediction by pro-
posed viscoelastic material
law and results of multiscale
analysis longitudinal and
perpendicular to the flow di-
rection.
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almost the entire load within the fiber direction, almost no creep deformation develops
in the experiment in the 0◦-direction even under a higher load level. Perpendicular to
the fiber direction and under 45◦ to the fiber direction, non-negligible creep effects
are observed. Even for the UD CFRP material, creep effects are present when loaded
in interfiber normal (90◦) and shear modes (45◦). Again, the experimental findings
are found in a good agreement with the numerical simulation based on the proposed
material model. Thus, also the UD version (11.13) of the creep model proves to
provide a meaningful description of the macroscopic creep response if appropriate
material parameters are selected.

Further experimental and numerical results are provided in the original publication
(Fliegener and Hohe [8]).

11.5.2 Validation on Structural Level

For a validation of the proposed constitutive creep models for both LFT and UD
composites together with the material parameters determined in Subsect. 11.5.1 under
more complex multiaxial stress situations, the proposed material models are applied
to a numerical simulation of the breadboard experiments on the load point support
structure presented in Fig. 11.2.
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Fig. 11.5 Unidirectionally
(UD) fiber reinforced ther-
moplastics – experimental
creep curves and numerical
prediction by proposed vis-
coelastic material law in 0◦-,
90◦- and 45◦-direction to the
fiber orientation.
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The experimental and numerical results are presented in Fig. 11.6. In the first
subfigure, the stress distribution in the LFT ranges of the overmolded LFT layers
on top and bottom of the CFRP laminates forming the face sheets as well as in the
co-molded load point support structure are shown. The second subfigure is concerned
with the creep curves in terms of the crosshead (or load point) displacement as a
function of time. Two different load levels with applied forces of 2.5kN and 5kN are
investigated.

For both load levels, the experimentally observed and the numerically predicted
creep curves are found in a good agreement, especially when considering the com-
plexity of the underlying geometry and the complex creep problem involving both,
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Fig. 11.6 Sandwich load
point support structure – stress
distribution in LFT material
ranges as well as experimental
creep curves and numerical
prediction using proposed
viscoelastic material law for
the different material ranges.
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UD CFRP laminates and glass fiber reinfoced LFT materials. Although the support
structure design considered here proved to be the strongest among all optinons consid-
ered in the design study by Fliegener et al. [7] with a static failure load of 16.9MPa,
a significant amount of overall creep deformation is observed even at load levels
of approximately 30% of the static failure load. Creep strains are found to develop
especially in the co-molded LFT load point support structure and in the adjacent
LFT plies on the inner side of the face sheets. Nevertheless, creep deformation is
also observed in the UD plies of the face sheets, although limited to smaller amounts.
The numerical simulation provides a good approximation of the experimental results,
demonstrating the capabilities of the different versions of the proposed anisotropic
constitutive model.

Further validations of the proposed material model on other types of load point
support structures are presented in an earlier contribution by the present authors
(Fliegener and Hohe [8]).

11.6 Summary and Conclusion

The present study is concerned with creep material models for fiber reinforced
thermoplastics. Both, discontinuously and continuously fiber reinforced materials are
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considered. Based on an isotropic three element Kelvin-Voigt model, two different
anisotropic versions are derived. Whereas the anisotropy for the discontinuously
fiber reinforced material is introduced by introduction of anisotropy factors into the
isotropic base formulation, fiber effects in the continuously finber reinforced material
are introduced by superposition of the isotropic viscoelastic model representing the
matrix with the anisotropic Hooke’s law representing the effect of the fibers.

The model is validated against an experimental data base on coupon specimens
concerning neat PA6, discontinuously long glass fiber reinforced thermoplastics
and unidirectionally carbon fiber reinforced PA6 tape material. The experiments on
laboratory specimens are complemented by experiments on more complex breadboard
type sandwich specimens with central loading points. In all experiments on coupon
and structural level, a good agrement of experimental and numerical data is observed.

The validated anisotropic material model proposed in the present study proves
to provide a reliable tool for the numerical simulation of creep in glass or carbon
fiber reinforced thermoplastics and structures made thereof. Both, continuously and
discontinuously fiber reinforced microstructures as well as hybrid composites can be
addressed. Although the development of substantial creep deformation is more likely
for discontinuously fiber reinforced types, laminates consisiting of unidirectionally
fiber reinforced plies might also experience non-negligible amounts of creep.
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Chapter 12
Time-Swelling Superposition Principle for the
Linear Viscoelastic Properties of Polyacrylamide
Hydrogels

Seishiro Matsubara, Akira Takashima, So Nagashima, Shohei Ida, Hiro Tanaka,
Makoto Uchida, and Dai Okumura

Abstract We study the linear viscoelastic properties of polyacrylamide hydrogels
over a wide range of swelling and deswelling states. The experimental data of
dynamic moduli demonstrate that deswollen hydrogels exhibit the linear viscoelastic
behaviors while swollen hydrogels behave as a purely elastic material. To capture
the linear viscoelastic nature of deswollen hydrogels, we advocate the time-swelling
superposition principle inspired by the swelling-dependent linear viscoelasticity
model. In this principle, the Williams-Landel-Ferry type equation and the scaling
law prescribe the horizontal and vertical shift factors as a function of the volume
swelling ratio, making it possible to organize the dynamic moduli in the deswelling
state. The resulting master curves elucidate that the dynamic moduli have a positive
power-law correlation with the angular frequency. In addition, two shift factors reveal
that deswelling enhances both frequency sensitivity and elastic property in dynamic
moduli. The scaling exponents of the elastic moduli in the deswelling state are, in
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particular, larger than those in the swelling state, regardless of the contents of monomer
and cross-linker. The generalized Maxwell model equipped with identified material
parameters quantifies the linear viscoelastic behaviors that depend on frequency and
water content.

12.1 Introduction

Hydrogels have attracted attention in biomedical and tissue engineering, such as, in
particular, the reproduction of biological organs, thanks to their swellability, flexibil-
ity, and biocompatibility [1, 2]. Their swelling and deswelling-induced instabilities
provide some clues to elucidate the system of morphology formation for living or-
ganisms, which plays a crucial role in reproducing high-quality artificial organs[3].
The rheology of hydrogels is also of interest to researchers who try to mimic organs
[4–6] because the biological tissues constituting living organisms exhibit viscoelas-
tic behavior [7–9]. Therefore, quantifying the relationship between water content
and viscoelastic properties in hydrogels promotes a better understanding as to the
morphogenesis of organs, leading to the creation of realistic biomedical products.

The common perception concerning the mechanics of swollen and deswollen
hydrogels is that they exhibit swelling-dependent elastic behavior [10–12]. This is
often characterized by the scaling theory [13] that relates the volume swelling ratio to
the elastic modulus using the scaling exponent. Indeed, the swelling-dependent elastic
behavior for various hydrogels has been extensively studied by means of evaluating
their scaling exponents [14–17]. In this context, the effects of monomer and cross-
linker on the scaling exponents of swollen hydrogels were comprehensively examined
by Kawai et al. [18], who measured the complex shear moduli of polyacrylamide
(PAAm) hydrogels in the as-prepared (AP) and equilibrium swelling (ES) states. On
the other hand, the elastic modulus in the deswelling state has a higher sensitivity
to the volume swelling ratio than that in the swelling state. Hence, researchers
established another scaling law to determine the elastic modulus in the deswelling
state, accomplishing good predictions for PAAm hydrogel [19] and Tetra-PEG gel
[20, 21].

However, to our best knowledge, less experimental data have been provided enough
to clarify the mechanical behaviors of deswollen hydrogels, so the possibility that
viscoelastic characteristics appear in deswollen hydrogels has to be taken into account.
In this regard, some studies, which focused on the gelation kinetics, discussed the
viscous property of hydrogels in the AP state within linear viscoelasticity [22–27]. In
summary, dynamic moduli have the power-law correlation with the angular frequency,
but the contribution of viscosity diminishes with increasing the contents of monomer
and cross-linker. Du and Hill [27] introduced the horizontal and vertical shift factors
as functions of temperature and cross-linker, constructing the master curves of
dynamic moduli for weakly cross-linked PAAm hydrogels. They also successfully
quantified the linear viscoelastic behavior using the generalized Maxwell model.
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Their contribution suggests that the linear viscoelastic nature of hydrogels emerges
under some environmental conditions.

We study the linear viscoelastic properties of PAAm hydrogels over a wide range
of swelling and deswelling states. The outline of this paper is as follows. Section
12.2 presents a series of experimental procedures, including the preparation of speci-
mens, transient equilibrium swelling using ethanol, and dynamic mechanical analysis
(DMA). Section 12.3 shows the experimental data for complex shear modulus and
loss tangent as a function of the angular frequency after some discussion concerning
transient equilibrium swelling. The experimental observation reveals that deswollen
hydrogels exhibit linear viscoelastic behavior while swollen hydrogels behave as a
purely elastic material. Section 12.4 is devoted to establishing the framework for
analyzing the linear viscoelastic behavior of deswollen hydrogels. We first formu-
late the swelling-dependent linear viscoelasticity model, bringing out the swelling
dependences of elastic modulus and relaxation time. After the advocation of the
time-swelling superposition principle, their swelling dependencies are characterized
using the horizontal and vertical shift factors, whose function forms are prescribed
by the Williams-Landel-Ferry (WLF) type equation and the scaling law, respectively.
Section 12.5 shows that the dynamic moduli of deswollen hydrogels are successfully
organized using the present framework. The master curves illustrate that deswollen
hydrogels exhibit the linear viscoelastic behavior following the power-law correlation
between dynamic moduli and angular frequency. Owing to the power-law correlation,
increasing frequency boosts the contribution of viscosity in the linear viscoelastic
behavior. In contrast, increasing the contents of monomer and cross-linker weakens
the frequency dependence of the dynamic moduli. In addition, the two shift factors
demonstrate that deswelling enhances both frequency sensitivity and elastic property
of the dynamic moduli. The scaling exponents of the elastic moduli in the deswelling
state are, in particular, larger than those in the swelling state, regardless of the contents
of monomer and cross-linker. Further, the quantification of linear viscoelastic nature
is carried out using the generalized Maxwell model, whose material parameters
are determined through the curve-fitting to the master curves. The computed com-
plex shear moduli provide the information concerning the swelling-dependent linear
viscoelasticity of hydrogels. Section 12.6 summarizes our findings and contributions.

12.2 Experiment

12.2.1 Materials

Chemically cross-linked PAAm hydrogels were synthesized through free radical
polymerization using acrylamide (AAm) as monomer, N,N’-methylenebisacrylamide
(BIS) as cross-linker, ammonium persulfate (APS) as polymerization initiator, and
N,N,N’,N’-tetramethylethylenediamine (TMEDA) as polymerization accelerator. Ta-
ble 12.1 shows the constituents of hydrogels. Six types of compounds were prepared
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Table 12.1: Constituents of
PAAm hydrogels. Constituents Molar concentration [mM]

AAm 1000, 3000, 6000

BIS 2, 10

APS 5

TMEDA 10

to examine the effects of monomer and cross-linker on the material properties of
hydrogels. Hereinafter, the molar concentrations of AAm and BIS in hydrogels will
be denoted by 𝑋 (mM) and 𝑌 (mM), respectively.

12.2.2 Mixed Solvents for Transient Equilibrium Swelling

Transient equilibrium swelling is attained using PAAm hydrogels that have different
water contents in the equilibrium state, as shown in Fig. 12.1, and enables us to
examine the swelling dependence of material properties for hydrogels in the final
steady state of solvent diffusion. Consequently,we do not consider any mechanical and
diffusion behaviors in non-equilibrium states. To accomplish transient equilibrium
swelling, mixed solvents comprising water and ethanol were prepared. Since ethanol
is miscible with water but a poor solvent for PAAm, it promotes dehydration and thus
controls the water content of a hydrogel in the equilibrium state [28]. In this study,
ten types of mixed solvents with different ethanol concentrations were prepared, as
shown in Table 12.2.

Hereinafter, the ethanol concentration in a mixed solvent will be denoted by 𝑍 (%).
As an exception, the hydrogel swollen solely by water (𝑍 = 0%) will be denoted by

Fig. 12.1 Schematic dia-
gram of transient equilibrium
swelling. Ethanol in a mixed
solvent controls the water
content of a hydrogel in the
equilibrium state [28]. The
hydrogel swollen solely by
water is denoted by ES.

Ethanol concentration in mixed solvent Z

W
at

er
 c

o
n

te
n

t AP

ES

Equilibrium state

Table 12.2: Ethanol
concentration in mixed
solvents.

Concentration [%] 0, 10, 20, 30, 40, 45, 50, 55, 60, 65
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“ES”. In Appendix A, we verify the validity of the present method to realize transient
equilibrium swelling.

12.2.3 Measurement of Swelling

To prepare the specimens in the AP state (AP specimen), AAm and BIS were
polymerized using APS and TMEDA in deionized water after the bubbling treatment
using nitrogen gas, which eliminates oxygen dissolved in the aqueous solution. The
polymerization liquid was poured into the silicone rubber ring (diameter, 50 mm;
thickness, 1 mm) on an acrylic plate and covered with another acrylic plate along
with weight. The molded precursor was left for half a day until the cure reaction was
completed. Subsequently, the prepared AP specimens were placed in a flat-bottomed
glass container, and the mixed solvent of 100 mL was poured over them to observe their
swelling behavior. The specimens reached the specific equilibrium state depending
on ethanol concentration after storage for at least one week at room temperature
(≈ 25 ◦C). The experimental data were obtained as the average of measured values
for specimens whose number was three for 𝑍 ≥ 40% and five for 𝑍 ≤ 30% for each
compound.

When the incompressibility of a hydrogel is assumed, the volume swelling ratio,
𝐽, should be obtained from the following relationship between ideally non-swollen
and swollen hydrogels

𝐽 =
𝑉

𝑉ID
= 1+

(
𝑤

𝑤ID
−1

)
𝜌AAm

𝜌water
, (12.1)

where 𝑉 and 𝑤 are the volume and mass of a hydrogel, respectively, and subscript
ID stands for the state of ideal non-swelling. The mass densities of AAm and water
are 𝜌AAm = 1.13 g · cm−3 and 𝜌water = 1.00 g · cm−3, respectively. It should be noted
that the infiltration of ethanol into a hydrogel was ignored in Eq. (12.1). To verify
the validity of this assumption, we confirmed that there is only a slight difference
in viscoelastic properties between the AP specimen and the imitated AP specimen,
whose water content was adjusted to that of the AP specimen; see Appendix A for
details. Also, although 𝑤ID cannot be directly measured from the specimen, the mass
ratio of the AP specimen to AAm is a known value as 𝑤AP/𝑤ID. When the ratio is
expressed as

𝑐 =
𝑤AP

𝑤ID
, (12.2)

the substitution of Eq. (12.2) into Eq. (12.1) yields

𝐽 = 1+
(
𝑐
𝑤

𝑤AP
−1

)
𝜌AAm

𝜌water
. (12.3)

Equation (12.3) enables us to evaluate 𝐽 using the weight of a hydrogel in the
equilibrium state.
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12.2.4 Measurement of Dynamic Moduli

DMA was conducted on freely swollen specimens. The storage shear modulus, 𝐺′,
and the loss shear modulus, 𝐺′′, were measured in torsional modal testing using
Discovery HR-1 rotational shear rheometer (TA Instruments, Inc.). To prevent the
slippage of the specimen, the water droplets left on the specimen were wiped out using
the waste, and the compressive load was applied to the upper surface of the specimen.
Also, to avoid the vaporization of water in the specimen, we covered the specimen
with the solvent trap. Further, since the specimens comprising (𝑋,𝑌 ) = (1000,2)mM
and 𝑍 ≤ 30% were too soft in DMA, they were fixed using a jig made of aluminum
(diameter, 40 mm). On the other hand, a jig made of steel (diameter, 20 mm) was
employed for the remaining specimens. Torsional strain oscillations with angular
frequencies ranging from 0.1 to 100 rad/s were applied to the specimens at room
temperature. The strain amplitude was set to 0.5% such that 𝐺′ and 𝐺′′ fall within
the proportional region. This was confirmed beforehand by conducting DMA, in
which the angular frequency of torsional strain oscillation was set to 1.0 Hz after the
fashion of Kawai et al. [18].

12.3 Experimenta Results

12.3.1 Transient Equilibrium Swelling

Transient equilibrium swelling of PAAm hydrogels can be seen in Fig. 12.2, where
the relationships between the volume swelling ratio, 𝐽, and ethanol concentration, 𝑍 ,
are plotted for each compound, (𝑋,𝑌 ). The hydrogel with lower contents of monomer
and cross-linker has a larger 𝐽 in the ES state. As ethanol concentration increases,
𝐽 for all compounds proportionally decrease up to around 𝑍 = 45% and eventually
reach almost the same value; see the approximated lines in Fig. 12.2. Accordingly, the
slope, 𝐽/𝑍 , is gentler with increasing the contents of monomer and cross-linker. The
measured results until 𝑍 = 45% imply that tuning ethanol concentration and contents
of monomer and cross-linker enables us to prepare a hydrogel in the desired swelling
state. In contrast, once ethanol concentration exceeds 45%, 𝐽 for all compounds almost
sustain constant; indeed, 𝐽/𝑍 = −0.07 in 50 ≤ 𝑍 ≤ 65%, whereas 𝐽/𝑍 = −0.18 in
0 ≤ 𝑍 ≤ 45% for (𝑋,𝑌 ) = (6000,10)mM. This is because hydrogels reached a semi-
dry state after sufficient dehydration.

The results for the imitated AP specimens are plotted as filled yellow markers in
Fig. 12.2. Note here that they were regarded as the results for the AP specimens whose
ethanol concentration is unknown. Indeed, the difference in 𝐽 between AP specimen
and imitated AP specimen is trivial for all compounds; see Appendix A. The ethanol
concentration of the imitated AP specimen decreases with increasing the content
of cross-linker or decreasing the content of monomer. Also, the corresponding 𝐽 is
independent of the content of cross-linker but takes a smaller value with increasing
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Fig. 12.2: Relationship between volume swelling ratio, 𝐽 , and ethanol concentration, 𝑍 , for each
compound (𝑋,𝑌 ) . 𝐽 was yielded by substituting the weight swelling ratio, 𝑤/𝑤AP, shown in
Fig. 12.3, into Eq. (12.3). The linear approximation lines are depicted in the range of 0 ≤ 𝑍 ≤ 45%.
The hollow and filled markers indicate the results in the swelling and deswelling states, respectively.
The plots for imitated AP specimens (filled yellow markers) are regarded as those in the AP state.

Fig. 12.3: Weight swelling ratio, 𝑤/𝑤AP, as a function of ethanol concentration, 𝑍 , for each
compound, (𝑋,𝑌 ) . The hollow and filled markers denote the results in the swelling and deswelling
states, respectively. Also, the plots for imitated AP specimens (filled yellow markers) are regarded
as those at the AP state because 𝑍 is unknown for the AP specimen. 𝑤/𝑤AP proportionally
decreases up to 𝑍 = 45%. In contrast, once 𝑍 exceeds 45%, 𝑤/𝑤AP almost saturates with the
specific value depending on 𝑋 but independent of 𝑌 .
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the content of monomer, so that the reduction of 𝐽 by deswelling from the AP state
increases with decreasing the content of monomer; for example, the differences in
𝐽 between the AP state and 𝑍 = 65% are 15.4 for (𝑋,𝑌 ) = (1000,10)mM and 1.61
for (𝑋,𝑌 ) = (6000,10)mM. Hereinafter, the equilibrium states to which a hydrogel
reaches via swelling and deswelling from the AP state will be referred to as swelling
and deswelling states, respectively.

12.3.2 Linear Viscoelastic Behavior

The absolute value of complex shear modulus, �̄�, and the loss tangent, tan𝛿, are
respectively defined as

�̄� =

√︃
(𝐺′)2 + (𝐺′′)2, tan𝛿 =

𝐺′′

𝐺′ (12.4)

using the measured dynamic moduli, 𝐺′ and 𝐺′′, shown in Figs. 12.4 and 12.5, to
examine the linear viscoelastic behavior of a PAAm hydrogel.

The resulting �̄� and tan𝛿 as a function of the angular frequency, 𝜔, for each
compound, (𝑋,𝑌 ), and ethanol concentration, 𝑍 , are plotted in Figs. 12.6 and 12.7,
respectively.

As can be seen from Fig. 12.6, �̄� in the swelling state is almost frequency
independent regardless of compound and increases with increasing the contents of
monomer and cross-linker. Our experimental results are consistent with the results
provided in many previous studies [10–12, 18] that claim PAAm hydrogels exhibit
purely elastic behavior in the swelling state.

Although Fig. 12.7 also illustrates that hydrogels with 𝑌 = 2 mM can be regarded
as purely elastic material in the swelling state due to their negligible tan𝛿, particular
attention has to be paid to hydrogels with𝑌 = 10 mM. In the swelling state, most tan𝛿
for hydrogels with 𝑌 = 10 mM have local maxima at 𝜔 ≈ 2.15 rad/s, independent of
the swelling state and the content of monomer. Calvet et al. [23] also reported such
a behavior for the high cross-linked hydrogel. Except for some results for 𝑋 = 3000
mM, the local maximum increases when the content of monomer decreases, or the
equilibrium state approaches to the ES state. These results might imply the existence of
the relaxation process, where the thermal activities of monomeric units and molecular
chains are diversified. Nonetheless,we presume that hydrogels with𝑌 = 10mM exhibit
purely elastic behavior in the swelling state because the corresponding �̄� remains
almost constant.

On the other hand, �̄� and tan𝛿 shown in Figs. 12.6 and 12.7 imply that deswollen
hydrogels need to be treated as a viscoelastic material. �̄� for all compounds increases
in response to deswelling. The sensitivity is lower with increasing the contents of
monomer and cross-linker but built up with increasing the angular frequency. The
appearance of viscoelastic nature in a hydrogel is more evident in tan𝛿, which takes a
largervalue as either angular frequency ordegree of deswelling increases. For example,
tan𝛿 for the hydrogel with (𝑋,𝑌 ) = (3000,10)mM and 𝑍 = 65% drastically increases
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Fig. 12.4: Storage shear modulus, 𝐺′, as a function of the angular frequency, 𝜔, for each
compound, (𝑋,𝑌 ) , and ethanol concentration, 𝑍 . The solid and dashed lines are the linear
interpolation approximation of the measured results in the swelling and AP states and in the
deswelling state, respectively. 𝐺′ is almost constant in the swelling state, so that PAAm hydrogels
exhibit purely elastic behavior. In contrast, deswelling develops the rate dependency of 𝐺′.
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Fig. 12.5: Loss shear modulus, 𝐺′′, as a function of the angular frequency, 𝜔, for each compound,
(𝑋,𝑌 ) , and ethanol concentration, 𝑍 . The solid and dashed lines are the linear interpolation
approximation of the measured results in the swelling and AP states and in the deswelling state,
respectively. The local maxima value of 𝐺′′ are observed for 𝑌 = 10 mM in the swelling state,
while 𝐺′′ for 𝑌 = 2 mM is almost frequency independent regardless of 𝑋. Similar to 𝐺′ in Fig.
12.4, deswelling also develops the frequency dependence of 𝐺′′.
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Fig. 12.6: Absolute value of complex shear modulus, �̄�, as a function of angular frequency, 𝜔, for
each compound, (𝑋,𝑌 ) , and ethanol concentration, 𝑍 . �̄� is yielded by substituting the dynamic
moduli, 𝐺′ and 𝐺′′, shown in Figs. 12.4, 12.5, into Eq. (12.4)1. The solid and dashed lines
represent the linear interpolation approximation of the measured results.

in the range of 𝜔 > 20 rad/s. Also, tan𝛿 for the hydrogel with (𝑋,𝑌 ) = (1000,2)mM
in the range of 𝑍 ≥ 45% have local maxima of 0.28− 0.3, and the corresponding
angular frequency decreases in response to deswelling, i.e., the local maximum point
shifts to the left.
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Fig. 12.7: Loss tangent, tan𝛿, as a function of angular frequency, 𝜔, for each compound, (𝑋,𝑌 ) ,
and ethanol concentration, 𝑍 . tan𝛿 is yielded by substituting the dynamic moduli, 𝐺′ and 𝐺′′,
shown in Figs. 12.4, 12.5, into Eq. (12.4)2. The solid and dashed lines represent the linear
interpolation approximation of the measured results.

12.4 Swelling–Dependent Linear Viscoelasticity

As mentioned earlier section, PAAm hydrogels exhibit either purely elastic or linear
viscoelastic behavior in response to the equilibrium state. This section is devoted
to the establishment of the framework to analyze the swelling-dependent linear



12 Swelling-Depemcent Linear Viscoelasticity of PAAm Hydrogels 187

viscoelastic behavior of a hydrogel, including model formulation and advocation of
time-swelling superposition principle.

12.4.1 Model Formulation

The swelling-dependent linear viscoelasticity model is formulated after the fashion
of Reese and Govindjee [29]. The generalized Maxwell model, assembling 𝑁 + 1
Maxwell elements in parallel (Fig. 12.8), is introduced to quantify the linear vis-
coelastic characteristics in a wide range of angular frequency.

As the torsional modal testing is conducted on freely swollen hydrogels as de-
scribed in Subsect. 12.2.4, we begin with introducing the volumetric-isochoric
decomposition of the deformation gradient, 𝑭, as follows:

𝑭 = 𝐽
1
3 �̄�, (12.5)

where �̄� is the isochoric part of 𝑭, corresponding to the torsional strain applied to
a freely swollen hydrogel in DMA. On the other hand, for 𝛼-th Maxwell element
(𝛼 = 0, ..., 𝑁), the decomposition of 𝑭 into elastic and viscous parts is defined as

𝑭 = 𝑭e
𝛼𝑭

v
𝛼, (12.6)

where 𝑭e
𝛼 and 𝑭v

𝛼 are the elastic and viscous deformation gradients of 𝛼-th Maxwell
element, respectively. Here, 𝛼 = 0 corresponds to the purely elastic element such
that 𝑭v

0 = 1 and 𝑭e
0 = 𝑭, where 1 is the 2nd-order identity tensor. Also, we assume

𝑭v
𝛼 to be incompressible, namely, det

(
𝑭v
𝛼

)
= 1, because the viscous deformation is

supposed to be considerably small during free swelling. Thus, 𝑭e
𝛼 and 𝑭v

𝛼 can be
obtained as

Fig. 12.8 Generalized
Maxwell model to quan-
tify the swelling-dependent
linear viscoelastic behavior of
a PAAm hydrogel.
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𝑭e
𝛼 = 𝐽

1
3 �̄�

e
𝛼, 𝑭v

𝛼 = �̄�
v
𝛼, (12.7)

where �̄�
e
𝛼 and �̄�

v
𝛼 are the isochoric parts of the elastic and viscous deformation

gradients of 𝛼-th Maxwell element, rerspectively, satisfying

�̄� = �̄�
e
𝛼 �̄�

v
𝛼 .

Under the assumption of viscoelastic isotropy, the strain energy of a hydrogel is
defined as

𝑊 =

𝑁∑︁
𝛼=0

𝑊e
𝛼

(
𝐼e𝛼, 𝐽

)
, (12.8)

where𝑊e
𝛼 and 𝐼e𝛼 are the elastic strain energy of 𝛼-th Maxwell element and the first

invariant of the elastic Finger tensor

𝒃e
𝛼 = 𝑭e

𝛼

(
𝑭e
𝛼

)T
,

respectively. Here, the present study does not discuss the diffusion properties of
hydrogels. From the hyperelastic constitutive law in the current configuration, the
Cauchy stress is obtained as follows:

𝝈 =

𝑁∑︁
𝛼=0

𝜕𝑊e
𝛼

𝜕𝐽
1+ 2

𝐽

𝑁∑︁
𝛼=0

𝜕𝑊e
𝛼

𝜕𝐼e𝛼
𝒃e
𝛼 (12.9)

On the other hand, adhering to the thermodynamic requirement, we define the law
of viscosity associated with 𝛼-th Maxwell element as

−
(
𝒃e
𝛼

)−1 L
(
𝒃e
𝛼

)
=

1
𝜂𝛼

𝒔𝛼, (12.10)

where
L

(
𝒃e
𝛼

)
= 𝑭

¤(
𝑭−1𝒃e

𝛼𝑭
−T)𝑭T, 𝜂𝛼,

and 𝒔𝛼 are the Lie derivative of 𝒃e
𝛼, the viscous coefficient of 𝛼-th Maxwell element,

and the deviatoric Cauchy stress of 𝛼-th Maxwell element, respectively. Here, ¤𝑨
denotes the material time derivative of 𝑨 with respect to time 𝑡 ≥ 𝑡s, where 𝑡s is the
end time of free swelling, i.e., the start time of DMA. Note that, when

𝜂𝛼 = 𝜂𝛼c𝐽
−1

with constant 𝜂𝛼c, Eq. (12.10) corresponds to Newton’s law of viscosity in finite
strain theory. Also, 𝜂0 = +∞ because 𝛼 = 0 corresponds to the purely elastic element.

As the amplitude of the torsional strain in DMA is sufficiently small, �̄� can be
approximately identical to the identity tensor. Thus, Eq. (12.9) can be linearized
around the isochoric elastic Finger tensor

�̄�
e
𝛼 = �̄�

e
𝛼

(
�̄�

e
𝛼

)T
= 1
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as follows:

𝝈 = 𝜎vol1+
𝑁∑︁
𝛼=0

(
2𝐽

1
3

[
𝜕2𝑊e

𝛼

𝜕𝐼e𝛼𝜕𝐼
e
𝛼

]
�̄�

e
𝛼=1

+ 𝐽 2
3

[
𝜕2𝑊e

𝛼

𝜕𝐽𝜕𝐼e𝛼

]
�̄�

e
𝛼=1

) (
tr

(
�̄�

e
𝛼

)
−3

)
1

+
𝑁∑︁
𝛼=0

𝐺𝛼

(
�̄�

e
𝛼 −1

)
(12.11)

in which subscript �̄�e
𝛼 = 1 means that �̄�e

𝛼 involved in each term is the identity tensor.
Here, 𝐺𝛼 and 𝜎vol are the shear elastic modulus of 𝛼-th Maxwell element and the
mean Cauchy stress, respectively, defined as

𝐺𝛼 = 2𝐽−
1
3

[
𝜕𝑊e

𝛼

𝜕𝐼e𝛼

]
�̄�

e
𝛼=1

, (12.12)

𝜎vol =

𝑁∑︁
𝛼=0

(
𝐺𝛼 +

[
𝜕𝑊e

𝛼

𝜕𝐽

]
�̄�

e
𝛼=1

)
. (12.13)

Similarly, Eq. (12.10) is also linearized around �̄�
e
𝛼 = 1, as follows:

¤𝑪v
𝛼 =

1
𝜏𝛼

�̄�−
tr

(
�̄�

e
𝛼

)
3

𝑪v
𝛼

 , (12.14)

where 𝑪v
𝛼 and �̄� are the right Cauchy-Green tensors with respect to 𝑭v

𝛼 and �̄�,
respectively. Also, 𝜏𝛼 is the relaxation time of 𝛼-th Maxwell element defined as

𝜏𝛼 =
𝜂𝛼

𝐺𝛼
. (12.15)

When linearizing �̄�, �̄�
e
𝛼, and 𝑪v

𝛼 in Eqs. (12.11) and (12.14), we can obtain the
following equations:

𝝈 = 𝜎vol1+
𝑁∑︁
𝛼=0

2𝐺𝛼𝒆e
𝛼, ¤𝒆v

𝛼 =
1
𝜏𝛼

𝒆e
𝛼, (12.16)

where 𝒆e
𝛼 and 𝒆v

𝛼 are the elastic and viscous parts of the deviatoric small strain tensor,
𝒆, with respect to the 𝛼-th Maxwell element, respectively, i.e.,

𝒆 = 𝒆e
𝛼 + 𝒆v

𝛼 .

Note that the reference configuration of Eq. (12.16) is the freely swollen state, so that
𝜎vol, 𝐺𝛼, and 𝜏𝛼 depend on 𝐽.

To evaluate the linear viscoelastic properties of a freely swollen hydrogel, we
assume that the deviatoric Cauchy stress,
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𝒔 = 𝒔0 exp (𝑖𝜔𝑡 + 𝛿) ,

with the constant amplitude, 𝒔0, and the angular frequency, 𝜔, emerges against the
deviatoric small strain

𝒆 = 𝒆0 exp (𝑖𝜔𝑡)

with the constant amplitude, 𝒆0. Then, Eq. (12.16) yields the following relationship
between 𝒔 and 𝒆.

𝒔 = 2 (𝐺′ + 𝑖𝐺′′) 𝒆, (12.17)

Here, the storage and loss shear moduli, 𝐺′ and 𝐺′′, are defined as

𝐺′ = 𝐺0 +
𝑁∑︁
𝛼=1

𝐺𝛼𝜔
2𝜏2
𝛼

𝜔2𝜏2
𝛼 +1

, 𝐺′′ =
𝑁∑︁
𝛼=1

𝐺𝛼𝜔𝜏𝛼

𝜔2𝜏2
𝛼 +1

, (12.18)

respectively, where 𝐺0 is the shear elastic modulus of purely elastic element (𝛼 = 0).
Note here that ¤𝐽 = 0 during DMA because hydrogels have already reached the
equilibrium state at 𝑡 = 𝑡s. The substitution of Eq. (12.4) into Eq. (12.17) also yields

𝒔 = 2�̄�𝒆0 exp {𝑖 (𝜔𝑡 + 𝛿)} , (12.19)

where 𝛿 is the phase difference between 𝒔 and 𝒆 related to tan𝛿.

12.4.2 Time-Swelling Superpostion Principle

The relaxation time, 𝜏𝛼, and the elastic modulus,𝐺𝛼, depend on the volume swelling
ratio, 𝐽, characterizing the swelling-dependent linear viscoelastic behavior of a PAAm
hydrogel. Taking advantage of the swelling dependences of 𝜏𝛼 and 𝐺𝛼, we advocate
the time-swelling superposition principle to construct the master curves of the
dynamic moduli, 𝐺∗ = (𝐺′,𝐺′′), the way of which is described in what follows.
Under the assumption of rheological simplicity with respect to 𝐽, we relate the linear
viscoelastic properties in the current swelling state to those in the reference swelling
state, 𝐽R, as follows:

𝜏𝛼 (𝐽) = 𝛼T (𝐽, 𝐽R) 𝜏R
𝛼 , (12.20)

𝐺𝛼 (𝐽) = 𝛽T (𝐽, 𝐽R)𝐺R
𝛼, (12.21)

where 𝜏R
𝛼 and 𝐺R

𝛼 are the reference relaxation time and the reference shear elastic
modulus associated with 𝛼-th Maxwell element, respectively. Also, 𝛼T and 𝛽T are
the horizontal and vertical shift factors, respectively. Then, the substitutions of Eqs.
(12.20) and (12.21) into Eq. (12.18) yield the following relation with respect to 𝐺∗.

𝛽T𝐺
∗ (𝜔, 𝐽R) = 𝐺∗ (𝛼T𝜔, 𝐽) (12.22)
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As shown in Fig. 12.9, 𝛼T and 𝛽T shift 𝐺∗ measured in each equilibrium state to
the horizontal and vertical directions such that experimental data are superposed,
constructing the master curves of 𝐺∗ in the reference swelling state.

The WLF equation relates the thermal expansion relevant to the free volume change
in the molecular network structure to the viscous property and is often introduced
to a rubber material satisfying the thermo-rheological simplicity. Assuming that
swelling and deswelling also induce the free volume change in a hydrogel, we define
the following function form for 𝛼T.

log10𝛼T =
−𝐶1 (𝐽 − 𝐽R)
𝐶2 + (𝐽 − 𝐽R)

, (12.23)

where 𝐶1 and 𝐶2 are the positive parameters to be identified. This equation char-
acterizes the effect of 𝐽 on the rate-dependence for the linear viscoelastic behavior
of a hydrogel. Note that 𝛼T only functions in the deswelling state because a PAAm
hydrogel exhibit purely elastic behavior in the swelling state.

On the other hand, as 𝛽T has to be directly linked to the scaling law of shear elastic
modulus [13], we introduce the following elastic strain energy associated with 𝛼-th
Maxwell element.

𝑊e
𝛼 =

𝐸 𝛼d
6
𝐽𝑚

(
𝐼e𝛼 −3𝐽

2
3

)
, (12.24)

where 𝐸 𝛼d and 𝑚 are the elastic modulus of 𝛼-th Maxwell element in the ideally dry
state and the exponent, respectively. Then, the substitution of Eq. (12.24) into Eq.
(12.12) yields the scaling law associated with 𝐺𝛼.
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Fig. 12.9: Schematic diagram for construction of master curves. The horizontal and vertical shift
factors, 𝛼T and 𝛽T, shift dynamic moduli to the directions of angular frequency (horizontal) and
stiffness (vertical), respectively, so that the master curves of dynamic moduli in the reference
swelling state, 𝐽R, are constructed.
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𝐺𝛼 =
𝐸 𝛼d
3
𝐽𝑚− 1

3 =
𝐸 𝛼d
3
𝐽−𝜈 , (12.25)

where 𝜈 is the scaling exponent that has the same value for every Maxwell element.
Here, Li et al. [19] demonstrated that the swelling sensitivity of the elastic modulus
differs between swelling and deswelling states. Such a difference can be considered
by the following function forms using positive parameters, 𝐸 𝛼dvs, 𝐸

𝛼
dvd, 𝑎vs, 𝑎vd.

𝐸 𝛼d =

{
𝐸 𝛼dvs if 𝐽 ≥ 𝐽AP
𝐸 𝛼dvd if 𝐽 < 𝐽AP

and 𝜈 =
{
𝑎vs if 𝐽 ≥ 𝐽AP
𝑎vd if 𝐽 < 𝐽AP

, (12.26)

where 𝐽AP is the volume swelling ratio in the AP state. Also, our experimental results
imply that the swelling sensitivity of the elastic modulus changes on the way to
deswelling in the case of hydrogels with low contents of monomer and cross-linker.
This can be reflected using the following function forms for 𝐸 𝛼dvd and 𝑎vd.

𝐸 𝛼dvd =

{
𝐸 𝛼dvd1 if 𝐽R ≤ 𝐽 < 𝐽AP
𝐸 𝛼dvd2 if 𝐽 ≤ 𝐽R

and 𝑎vd =

{
𝑏1

vd if 𝐽R ≤ 𝐽 < 𝐽AP
𝑏2

vd if 𝐽 ≤ 𝐽R
, (12.27)

in which 𝐸 𝛼dvd1 = 𝐸
𝛼
dvd2 and 𝑏1

vd = 𝑏
2
vd at 𝐽 = 𝐽R. Further, since the reference swelling

state should be set to the deswelling state where the linear viscoelastic behavior
emerges, the corresponding shear elastic modulus is obtained as

𝐺R
𝛼 =

(
𝐸 𝛼dvd/3

)
𝐽
−𝑎vd
R

from Eq. (12.25). As a consequence, the following function form for 𝛽T is obtained
using Eqs. (12.21) and (12.25).

log10𝛽T = −𝜈log10

(
𝐽

𝐽R

)
+ 𝑐, (12.28)

where the constant

𝑐 = (𝑎vd − 𝜈) log10𝐽R + log10
(
𝐸 𝛼d /𝐸

𝛼
dvd

)
is assumed to be the same for every Maxwell element, being zero in the deswelling
state but a parameter in the swelling state. Thus, the requisite parameters for 𝛽T are
the scaling exponents, 𝑎vs, 𝑏1

vd, 𝑏2
vd, and the constant, 𝑐.
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12.5 Discussion

12.5.1 Master Curves of Dynamic Moduli

For each compound (𝑋,𝑌 ), the dynamic moduli, 𝐺′ and 𝐺′′, in the deswelling
state were organized using two shift factors, 𝛼T and 𝛽T, introduced in the previous
section. The reference volume swelling ratio, 𝐽R, was set to the volume swelling
ratio, 𝐽, at ethanol concentration, 𝑍 = 50%, having almost the same value for any
compound; see Fig. 12.2. Also, the experimental data within the ranges of 𝑍 ≤
30% for (𝑋,𝑌 ) = (1000,10)mM and 𝑍 ≤ 40% for (𝑋,𝑌 ) = (3000,10)mM were
omitted here because the undulation of 𝐺′′ observed in Fig. 12.5 interferes with the
construction of master curves. This is justified on the ground that the corresponding
𝐺′ is almost frequency independent and indicates a purely elastic behavior of a PAAm
hydrogel. The parameters associated with the vertical shift factor, 𝛽T, were identified
in constructing the master curves of𝐺′,𝐺′′ after those associated with the horizontal
shift factor, 𝛼T, were determined in constructing the master curve of tan𝛿 irrelevant
to 𝛽T.

Figure 12.10 shows the master curves of 𝐺′ and 𝐺′′ in the deswelling state as
a function of the angular frequency, 𝜔, for each compound, (𝑋,𝑌 ). Although the
sophisticated identification method of relative parameters needs to be established, two
shift factors, 𝛼T and 𝛽T, successfully organize the dynamic moduli in the deswelling
state, providing several findings concerning the swelling dependence on the linear
viscoelastic properties of PAAm hydrogels. We emphasize that the combination of the
WLF type equation in Eq. (12.23) and the scaling law in Eq. (12.28) is available for
capturing the swelling-dependent linear viscoelastic behavior of a PAAm hydrogel.

We found that 𝐺′ and 𝐺′′ in the deswelling state have the power-law correlation
with 𝜔 regardless of compounds. The power-law correlation is well-known as the
characteristic linear viscoelastic nature near the sol-gel transition [27, 30–32] and
indicates that the physical entanglements distributed in the imperfect network structure
contribute to the mechanical behavior of deswollen hydrogel. The power of 𝐺′

increases with decreasing the contents of monomer and cross-linker. This may be
because the lack of monomer and cross-linker triggers the formation of an imperfect
network structure in a hydrogel. Here, the power of 𝐺′ for any compound is less than
half that reported in previous studies [27, 30]. This can be easily understood in terms
that PAAm hydrogels examined in this study are solid polymers.

The reference shear elastic modulus, 𝐺R
0 , in Fig. 12.10 is brought by shifting the

storage shear modulus, 𝐺′, in the swelling state (i.e., the shear elastic modulus in the
swelling state) such that the master curve of𝐺′ is extended toward the low-frequency
range. As we expected, 𝐺R

0 takes a larger value for the hydrogel with higher contents
of monomer and cross-linker. Focusing on the master curves of 𝐺′ in the vicinity of
the lowest angular frequency, we can see that 𝐺′ saturates to 𝐺R

0 for sufficiently low
angular frequency. Hence, 𝐺′ in the deswelling state consists of the purely elastic
part and the contribution part of the physical entanglements, suggesting that the
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Fig. 12.10: Master curves of the storage shear modulus, 𝐺′, (circle) and the loss shear modulus,
𝐺′′, (triangle) for each compound, (𝑋,𝑌 ) . The reference volume swelling ratio, 𝐽R, is set to the
volume swelling ratio, 𝐽 , at ethanol concentration, 𝑍 = 50%, for all compounds. The reference
shear elastic modulus, 𝐺R

0 , is depicted by the gray dotted line. The linear approximation lines
uncover the power-law correlations between the dynamic moduli and the angular frequency, 𝜔.

generalized Maxwell model introduced in Sect. 12.4 is available for capturing the
linear viscoelastic behavior of a PAAm hydrogel.

12.5.2 Swelling Dependence of Linear Viscoelastic Properties

Figure 12.11 shows the horizontal shift factor, 𝛼T, for each compound, (𝑋,𝑌 ), within
the range of the deswelling state. 𝛼T monotonically increases in response to the
deswelling, indicating that deswelling boosts the contribution of the physical entan-
glements to the dynamic moduli and thus enhances the frequency dependence of the
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Fig. 12.11: Horizontal shift factor, 𝛼T, as a function of the volume swelling ratio, 𝐽 , for each
compound, (𝑋,𝑌 ) . All the lines are drawn using Eq. (12.23).

linear viscoelastic behavior in cooperation with the positive power-law correlation
of dynamic moduli. The sensitivity of 𝛼T with respect to the volume swelling ratio,
𝐽, increases with increasing the contents of monomer and cross-linker except for the
results for (𝑋,𝑌 ) = (3000,10)mM in the sufficiently deswollen state. It should be
noted that since the power of the storage shear modulus, 𝐺′, in Fig. 12.10 decreases
with increasing the contents of monomer and cross-linker, the frequency dependence
for the linear viscoelastic behavior of the hydrogel with high contents of monomer
and cross-linker is not so enhanced by deswelling.

The scaling exponents, 𝑎vs, 𝑏1
vd, and 𝑏2

vd, for each compound, (𝑋,𝑌 ), are shown
in Fig. 12.12. 𝑏1

vd has a larger value than the corresponding 𝑎vs for every compound,
indicating that the shear elastic modulus in the deswelling state has a higher sensitivity
to the volume swelling ratio, 𝐽, than that in the swelling state. Although such a trend
has already been reported in the previous studies [19, 21], we newly revealed that
it is observed for a variety of compounds. Also, 𝑏2

vd has a larger value than 𝑏1
vd

for compounds (𝑋,𝑌 ) = (1000,2) , (1000,10) , (3000,2)mM. This suggests that the
scaling law for the hydrogel with low contents of monomer and cross-linker has some
nonlinearities in the deswelling state.

12.5.3 Frequency Dependence of Complex Shear Moduli

The frequency dependence for the linear viscoelastic behavior of a PAAm hydrogel
in the deswelling state is also discussed using the absolute value of complex shear
modulus, �̄�, which is identified with the shear elastic modulus, 𝐺, in some previous
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Fig. 12.12: Scaling exponents, 𝑎vs, 𝑏1
vd, and 𝑏2

vd, as a function of the content of monomer, 𝑋, for
each content of cross-linker, 𝑌 . The solid lines represent linear interpolation approximations of the
results for 𝑌 = 10 mM, while the dotted lines represent those for 𝑌 = 2 mM.

studies [11, 18]. With a view to calculating �̄� using Eqs. (12.4)1 and (12.18), we
identified the shear elastic modulus and the relaxation time for each Maxwell element
in the reference swelling state, 𝐺R

𝛼 and 𝜏R
𝛼 , by means of the curve-fitting for the

master curves. To precisely capture the linear viscoelastic property, we introduced
the generalized Maxwell model, in which at most 20 Maxwell elements and purely
elastic element with the reference shear elastic modulus, 𝐺R

0 , are arranged in parallel.
The curve-fitted results and identified parameters are shown in Fig. 12.13 and Tables
12.3, 12.4, respectively.

Figure 12.14 shows the normalized absolute value of complex shear modulus, �̄�N =

�̄�/
(
𝛽T𝐺

R
0
)
, for each compound, (𝑋,𝑌 ), in the range of the angular frequency, 10−4 ≤

𝜔 ≤ 102 rad/s. �̄�N has 1.0 for a purely elastic hydrogel but increases with emerging
linear viscoelastic nature. As �̄� is normalized by 𝛽T, the swelling dependence of
the shear elastic modulus is eliminated, so that only frequency dependence of a
PAAm hydrogel in the deswelling state is displayed in Fig. 12.14. Hydrogels with
(𝑋,𝑌 ) = (3000,10) , (6000,10)mM have �̄�N of less than 1.5 over a whole range of
deswelling states and, thus, are regarded as purely elastic material within 𝜔 ≤ 100
rad/s. Although �̄�N for (𝑋,𝑌 ) = (1000,10)mM also takes nearly 1.0 in some extent
of deswelling state (𝐽 > 4.0), the frequency dependence of �̄� begins to be apparent
in the sufficiently deswelling state. Thus, even adequately cross-linked hydrogels
can exhibit frequency dependent mechanical behavior, depending on the degree of
deswelling and the compound formulation. On the other hand, �̄�N for hydrogels
with 𝑌 = 2mM have higher sensitivity to 𝜔 than those with 𝑌 = 10mM although
taking small value in the early stage of deswelling. In particular, �̄�N for the softest
hydrogel with (𝑋,𝑌 ) = (1000,2)mM drastically increases with increasing 𝜔 and the
progression of deswelling, so that �̄� at 𝜔 = 100rad/s ends up having over ten times
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Fig. 12.13: Curve-fitted results for the master curves of the dynamic moduli, 𝐺′ and 𝐺′′, for each
compound, (𝑋,𝑌 ) . To attain high accuracy of the curve-fitted results, we introduce the generalized
Maxwell model, in which at most 20 Maxwell elements and purely elastic element with the
reference shear elastic modulus, 𝐺R

0 , are arranged in parallel. 𝐺′ and 𝐺′′ are calculated using Eq.
(12.18) with the shear elastic modulus,𝐺R

𝛼, and the relaxation time, 𝜏R
𝛼, enumerated in Tables 12.3,

12.4.

larger value than the corresponding 𝐺R
0 . As a result, hydrogels with low content of

cross-linker have to be treated as viscoelastic materials, and the evaluation of elastic
property using �̄� is inappropriate in this case.
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Table 12.3: Identified shear elastic modulus, 𝐺R
𝛼, and relaxation time, 𝜏R

𝛼, for each content of
monomer, 𝑋, at the content of cross-linker, 𝑌 = 2 mM.

𝑋 = 1000 mM 𝑋 = 3000 mM 𝑋 = 6000 mM

𝛼 𝐺R
𝛼 [kPa] 𝜏R

𝛼 [s] 𝐺R
𝛼 [kPa] 𝜏R

𝛼 [s] 𝐺R
𝛼 [kPa] 𝜏R

𝛼 [s]
1 1.825 1.998× 10−5 1.671 1.912× 10−5 22.922 8.286× 10−6

2 6.037 4.020× 10−5 4.701 5.880× 10−5 7.500 8.362× 10−6

3 8.675 4.013× 10−5 6.208 5.876× 10−5 5.225 2.939× 10−5

4 9.924 4.196× 10−5 6.891 5.900× 10−5 5.749 1.588× 10−4

5 6.986 4.125× 10−4 6.947 5.899× 10−5 4.434 1.067× 10−3

6 6.838 1.927× 10−3 5.096 5.916× 10−4 4.420 7.121× 10−3

7 6.162 9.540× 10−3 5.133 3.509× 10−3 4.318 5.803× 10−2

8 4.533 3.907× 10−2 4.157 1.988× 10−2 3.420 4.544× 10−1

9 3.877 1.542× 10−1 3.381 9.177× 10−2 1.182 2.413× 100

10 2.882 6.021× 10−1 2.709 3.977× 10−1 1.166 2.413× 100

11 1.151 2.663× 100 1.324 2.398× 100 1.682 8.590× 100

12 1.117 2.663× 100 1.236 2.398× 100 1.970 3.696× 101

13 1.563 1.118× 101 1.673 1.469× 101 0.698 2.276× 102

14 1.121 4.446× 101 0.967 6.481× 101 1.188 2.276× 102

15 0.323 1.743× 102 0.416 2.398× 102 1.076 1.696× 103

16 0.408 1.743× 102 0.601 2.398× 102 0.465 1.522× 104

17 0.415 1.176× 103 0.732 1.553× 103 0.216 1.573× 105

18 0.328 9.893× 103 0.763 1.189× 104 0.179 2.559× 106

19 0.076 1.284× 105 0.345 1.118× 105

20 0.122 1.323× 105 0.345 7.477× 105

12.6 Conclusion

Linear viscoelastic properties of chemically cross-linked PAAm hydrogels over a wide
range of swelling and deswelling states were studied. Various hydrogels were prepared
to study the effects of monomer and cross-linker on the mechanical properties. To
attain transient equilibrium swelling, the water content of a hydrogel in the equilibrium
state was controlled by ethanol. DMA was conducted on swollen hydrogels to evaluate
the swelling-dependent linear viscoelastic properties. The obtained experiment data
illustrated that PAAm hydrogels exhibit either purely elastic or linear viscoelastic
behavior in the equilibrium state.

To comprehensively understand linear viscoelastic properties of hydrogels during
transient equilibrium swelling, we formulated the swelling-dependent linear vis-
coelasticity model with the generalized Maxwell model. The distinctive feature of
the present model is that the shear elastic modulus and the relaxation time of each
Maxwell element depend on the volume swelling ratio. Taking advantage of this
feature, we advocated the time-swelling superposition principle and originally intro-
duced the horizontal and vertical shift factors depending on the volume swelling ratio.
Two shift factors were exactly prescribed by the WLF type equation and the scaling
law, respectively, and quantified the swelling dependence on the linear viscoelastic
properties of a hydrogel.
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Table 12.4: Identified shear elastic modulus, 𝐺R
𝛼, and relaxation time, 𝜏R

𝛼, for each content of
monomer, 𝑋, at the content of cross-linker 𝑌 = 10 mM.

𝑋 = 1000 mM 𝑋 = 3000 mM 𝑋 = 6000 mM

𝛼 𝐺R
𝛼 [kPa] 𝜏R

𝛼 [s] 𝐺R
𝛼 [kPa] 𝜏R

𝛼 [s] 𝐺R
𝛼 [kPa] 𝜏R

𝛼 [s]
1 1.755 1.941× 10−5 67.954 1.471× 10−6 2.256 1.458× 10−5

2 5.275 4.346× 10−5 3.402 4.194× 10−6 5.841 1.393× 10−5

3 7.359 4.288× 10−5 3.291 9.527× 10−6 7.819 1.400× 10−5

4 9.371 4.307× 10−5 5.844 4.427× 10−5 4.927 2.597× 10−5

5 9.965 4.371× 10−5 2.750 1.936× 10−4 2.987 1.238× 10−4

6 5.640 4.944× 10−4 0.491 7.594× 10−4 3.024 6.801× 10−4

7 3.660 2.492× 10−3 2.323 1.165× 10−3 1.703 3.994× 10−3

8 2.042 9.238× 10−3 1.795 1.182× 10−2 1.150 8.645× 10−3

9 1.669 3.622× 10−2 0.971 1.093× 10−1 1.522 4.667× 10−2

10 1.081 1.645× 10−1 0.629 9.857× 10−1 0.738 1.537× 10−1

11 0.237 6.824× 10−1 0.130 7.221× 100 0.828 6.897× 10−1

12 0.285 6.824× 10−1 0.135 7.221× 100 0.271 6.897× 10−1

13 0.459 2.600× 100 0.243 1.165× 102 0.685 5.393× 100

14 0.315 1.257× 101 0.440 1.165× 102 0.411 3.705× 101

15 0.173 1.648× 102 0.147 2.119× 102

16 0.163 1.648× 102 0.116 2.119× 102

17 0.171 2.216× 103 0.513 4.047× 103

18 0.007 3.364× 104 0.465 1.797× 104

19 0.010 3.130× 105 0.230 1.587× 105

20 0.115 3.599× 106 0.247 3.805× 106

The dynamic moduli of a hydrogel in the deswelling state were successfully
organized as the master curves using two shift factors, providing several important
findings concerning the linear viscoelastic properties of a hydrogel. We found that
the dynamic moduli in the deswelling state have positive power-law correlation with
the angular frequency regardless of compounds. Then, since the horizontal shift
factor increases in response to the deswelling, deswelling and high-speed oscillation
boost the contribution of the physical entanglements to the dynamic moduli and
thus enhance the frequency dependence of the linear viscoelastic behavior. This was
confirmed by the complex modulus calculated from the present model with identified
material parameters. Also, deswelling enhanced the elastic property of a hydrogel.
Indeed, the scaling exponent in the deswelling state has a larger value than that in the
swelling state. In particular, it is supposed that the scaling law for the hydrogel with
low contents of monomer and cross-linker has some nonlinearities in the deswelling
state.

Although this paper only made an effort to evaluate the swelling-dependent
linear viscoelastic properties along with the proposal of the framework, it should be
mentioned here that the present constitutive model with identified linear viscoelastic
properties enables us to conduct the numerical analysis for deswollen hydrogels.
The study for the other representative viscoelastic behaviors such as creep, stress
relaxation, and strain recovery is of significance but left for our future work.
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Fig. 12.14: Normalized absolute value of complex shear modulus, �̄�N = �̄�/
(
𝛽T𝐺

R
0
)
, for each

compound, (𝑋,𝑌 ) , in the range of the angular frequency, 10−4 ≤ 𝜔 ≤ 102 rad/s, and in the
deswelling state. �̄� is calculated using Eqs. (12.18), (12.19) with the identified shear elastic
modulus, 𝐺𝛼, and relaxation time, 𝜏𝛼.

Appendix A: Validity for Transient Equilibrium Swelling Using
Ethanol

The validity for the transient equilibrium swelling using ethanol, as described in
Sect. 12.2, was verified by comparing the volume swelling ratio, 𝐽, the absolute value
of complex shear modulus, �̄�, and the loss tangent, tan (𝛿), between AP and imitated
AP specimens. The imitated AP specimens were prepared using ethanol such that
their weight swelling ratio, 𝑤/𝑤AP, falls inside the range from 0.95 to 1.05. Three
specimens were prepared for each compound. Other preparation methods and settings
of DMA were the same as those described in Sect. 12.2. Table 12.5 shows the volume
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Table 12.5: Volume swelling ratios of the AP specimen, 𝐽AP, and imitated AP specimen, 𝐽IAP, for
each compound, (𝑋,𝑌 ) .

𝑌 = 2mM 𝑌 = 10mM

𝐽AP [−] 𝐽IAP [−] |𝐽AP − 𝐽IAP |/𝐽AP [%] 𝐽AP [−] 𝐽IAP [−] |𝐽AP − 𝐽IAP |/𝐽AP [%]

𝑋 = 1000mM 16.9137 16.6748 1.4124 16.9333 17.4654 3.1423
𝑋 = 3000mM 6.3046 6.0108 4.6601 6.3111 6.2013 1.7393
𝑋 = 6000mM 3.6523 3.5837 1.8768 3.6555 3.6611 0.1514

swelling ratios of the AP specimen, 𝐽AP, and imitated AP specimen, 𝐽IAP, for each
compound, (𝑋,𝑌 ). As the difference in 𝐽 between AP and imitated AP specimens is
less than 5.0%, the imitated AP specimen is in almost the same swelling state as the
corresponding AP specimen regardless of compounds. Also, Figs. 12.15 and 12.16
show �̄� and tan (𝛿) as a function of the angular frequency, 𝜔, for each compound,
respectively. The results of imitated AP specimens were in good agreement with
those of AP specimens.

Therefore, the validity for the transient equilibrium swelling using ethanol was
verified.

Fig. 12.15: Comparison of measured results between AP and imitated AP specimens concerning
absolute values of the complex shear modulus, �̄�, as a function of angular frequency, 𝜔, for each
compound, (𝑋,𝑌 ) . 𝑍 denotes the ethanol concentration in the mixed solvent used to prepare the
imitated AP specimen.
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Fig. 12.16: Comparison of measured results between AP and imitated AP specimens concerning
loss tangent, tan (𝛿 ) , as a function of angular frequency, 𝜔, for each compound, (𝑋,𝑌 ) . 𝑍
denotes the ethanol concentration in the mixed solvent used to prepare the imitated AP specimen.

Appendix B: Experimental Data

The weight swelling ratio, 𝑤/𝑤AP, the storage shear modulus, 𝐺′, and the loss shear
modulus, 𝐺′′, are shown in Figs. 12.3, 12.4 and 12.5 as the raw experimental data,
respectively.
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Chapter 13
Application of Nonlinear Viscoelastic Material
Models for the Shrinkage and Warpage Analysis
of Blow Molded Parts

Patrick Michels, Christian Dresbach, Esther Ramakers-van Dorp, Holm Altenbach,
and Olaf Bruch

Abstract The prediction of shrinkage and warpage of extrusion blow molded plastic
parts is a topic of high industrial demand. Nevertheless, simulation results are still
associated with uncertainties. One of the major difficulties is the description of
the complex time-, temperature- and process-dependent material behavior of semi-
crystalline polymers like high density polyethylene (HDPE). It is state of the art to use
linear viscoelastic material models for the shrinkage and warpage analysis. However,
linear viscoelastic behavior can only be assumed if the stresses are small. To increase
the prediction accuracy of the current simulation models, nonlinear viscoelastic
material models, such as the Abaqus Parallel Rheological Framework (PRF), are
investigated. The calibration of the PRF model can be quite challenging, especially if
a higher number of networks is used. Consequently, we present a calibration strategy
that uses functional relations to describe the parameters along the network elements
in order to reduce the dimensions of the design space for model calibration. To find
the best possible solution, the global optimization algorithm Adaptive Simulated
Annealing (ASA) is used. A simplified one-dimensional representation of the PRF
model is implemented in Matlab to further reduce the computational effort of the
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model calibration. The calibration workflow is successfully tested using a set of
relaxation tests with subsequent unloading at different strain and temperature levels.
A good agreement between the experimental material tests and the simulation results,
using the calibrated PRF model, is observed.

13.1 Introduction

The extrusion blow molding process is one of the most economic methods for the
production of hollow plastic parts like bottles, cans, fuel tanks and large containers.
The process itself can be divided into three main steps. In the first step a hollow tube,
which is called parison, is extruded. Once the parison has reached its final length,
the mold closes and the parison is inflated against the walls of the cooled mold. The
blowing pressure is then maintained until the part solidifies. During the cooling
under mold constraint, thermal stresses build up which lead to shrinkage and warpage
of the final part after demolding. These undesired shape deviations cause major
problems for the blow molding industry. In general, higher demolding temperatures
lead to higher shrinkage and warpage, whereas lower demolding temperatures lead to
a higher amount of residual stresses. In practice, there are several ways to deal with
these difficulties. First, the cooling time can be increased, which leads to a higher
amount of residual stresses and in most cases to an uneconomical production. On the
other hand, the part warpage can be reduced by specific changes to the mold design.
In the latter case, the use of Computer Aided Engineering (CAE) methods at an early
stage of the product development offers great potential. Nevertheless, the prediction
of the process-related shrinkage and warpage is still associated with uncertainties.
One of the major difficulties is the modeling of the complex time-, temperature- and
process-dependent material behavior of semi-crystalline polymers like HDPE. During
processing, the polymer passes various stages in which its mechanical and thermal
behavior drastically changes. The extrusion and inflation takes place at temperatures
above the crystallite melting temperature 𝑇m. In this temperature range, the material
can be assumed as an amorphous melt with low structural stiffness. Below 𝑇m the
material behaves like a thermo-viscoelastic solid.

In literature, only a few research groups have dealt with the shrinkage and warpage
analysis of blow molded parts. A first simulation approach considering the complete
blow molding process including parison formation, clamping, inflation, solidification,
and warpage was introduced by Laroche et al. [1]. They assumed the material
to behave like an isotropic thermorheologically simple solid during the cooling.
A linear viscoelastic material model (fluid-like generalized Maxwell) with three
relaxation times was used in conjunction with the reduced time concept to model
the temperature dependency [1, 2]. The shift function was approximated by the
WLF-equation according to Williams, Landel and Ferry [3]. A good qualitative
agreement between the warpage simulation and experimental measurements of a
plastic fuel tank (PFT) was observed. Debergue et al. [4] investigated the influence of
a small and large displacement approach on the warpage analysis of a blow molded
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automotive part. A fluid-like generalized Maxwell model with 4 relaxation times
was used. The investigation showed that the large displacement approach played a
rather subordinate role in the warpage analysis. In contrast, the authors stated that
part positioning after demolding in conjunction with gravity plays a critical role
for the shrinkage and warpage prediction. A comparison of the simulation results
with experimental warpage measurements under varying process conditions showed
inaccuracies both qualitatively and quantitatively. Further investigations based on
a fluid-like generalized Maxwell model with six relaxation times were carried out
by Benrabah et al. [5]. The main focus of their investigation was the influence of
deflashing on the component warpage. In [6], the implementation of a solid-like
generalized Maxwell model was presented and compared to the fluid-like model. The
warpage deformation of the solid-like model was less than the deformation of the
fluid-like model, which the authors suggested was due to the lower structural stiffness
of the fluid like model below the melting temperature. Finally, in a validation case
study Benrabah et al. [7] observed a good qualitative agreement between the warpage
simulation and experimental measurements of a blow molded PFT. A fluid-like
generalized Maxwell model with five relaxation times was used for the analysis.

In [8], the shrinkage behavior of simple blow molded parts was investigated
under varying process conditions and compared to simulation results. Anisotropic
shrinkage behavior of the investigated parts was observed at which the level of
anisotropy increased with higher degrees of stretching. Experimental measurements
of Ramakers-van Dorp et al. [9] and Grommes et al. [10] on extrusion blow molded
parts showed a rather small anisotropy of the elastic modulus, whereas experiments of
Ramakers-van Dorp [11] showed a pronounced anisotropy of the coefficient of thermal
expansion (CTE). Consequently, an isotropic generalized Maxwell solid model with
19 relaxation times in conjunction with the WLF-equation and orthotropic process-
and temperature-dependent CTE was used in [8]. The simulation results matched the
anisotropic shrinkage values reasonably well.

In summary, the use of linear viscoelastic models can be seen as state of the
art for the shrinkage and warpage simulation of blow molded parts. However, in
case of semi-crystalline polymers like HDPE, linear viscoelastic material behavior
can only be assumed for small stresses and strains. At higher stresses and strains,
HDPE reacts nonlinear viscoelastically. Creep experiments of Lai and Bakker [12] on
HDPE samples indicate a strong nonlinear behavior even at very small stresses. They
suggested that linearity exists only at vanishing small stresses [12]. In literature,several
constitutive equations for the description of nonlinear viscoelastic material behavior
are presented, among others in [13–16]. But only recently, nonlinear viscoelastic
models like the Abaqus (Dassault Systèms) PRF model [16–18] have become available
as standard in commercial finite element software products. However, the use of these
models in the shrinkage and warpage analysis is quite challenging. To cover the
extensive time and temperature range of the shrinkage and warpage analysis, the
model calibration might involve a huge number of material parameters which need
to be identified. Consequently, we present a calibration strategy which reduces the
dimension of the design space by the use of functional relations between the material
parameters. The Abaqus nonlinear viscoelastic PRF model is used, but the general
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procedure can also be applied to similar models like the Parallel Network (PN) model
[19] which is provided by the PolyUMod library (PolymerFEM LLC) [20].

13.2 Material Models

In this study, the Abaqus Parallel Rheological Framework model will be integrated
into the shrinkage and warpage anlysis presented in [8] and compared with the linear
viscoelastic model. In the following, the basic equations and the most important
features of the material models will be discussed. We start with the linear viscoelastic
model implemented in Abaqus which has already been used in [8]. Thereafter, the
nonlinear viscoelastic PRF model will be discussed.

13.2.1 Linear Viscoelastic Material Model

The stress response of a linear viscoelastic material can be described by the following
integral equation:

𝜎(𝑡) =
𝑡∫

0

𝐸R (𝑡 − 𝑠) ¤Y(𝑠) d𝑠, (13.1)

where 𝜎(𝑡) is the stress at time 𝑡, ¤Y is the strain rate and 𝐸R (𝑡) is the time dependent
relaxation modulus. The relaxation modulus is often used in a normalized form so
that we obtain:

𝜎(𝑡) = 𝐸
𝑡∫

0

𝑔R (𝑡 − 𝑠) ¤Y(𝑠) d𝑠, (13.2)

where 𝐸 is the instantaneous modulus and 𝑔R (𝑡) is the dimensionless relaxation
function. In Abaqus, the normalized relaxation function 𝑔R (𝑡) is approximated by a
Prony series [18]

𝑔R (𝑡) =
𝐸R (𝑡)
𝐸

= 1−
𝑁∑︁
𝑖=1
𝑔𝑖 (1− 𝑒−𝑡/𝜏𝑖 ). (13.3)

In Eq. (13.3) 𝑔𝑖 and 𝜏𝑖 are material parameters, the so called Prony values and
relaxation times. Assuming isotropic material behavior, Eq. (13.2) can be generalized
to multiaxial loading by separating the strain tensor YYY into deviatoric and volumetric
parts. For the time dependent Cauchy stress tensor, 𝜎𝜎𝜎 applies [19]:

𝜎𝜎𝜎(𝑡) = 2𝐺
𝑡∫

0

𝑔R (𝑡 − 𝑠) ¤YYYdev (𝑠) d𝑠+𝐾
𝑡∫

0

𝜅R (𝑡 − 𝑠) ¤YYYvol (𝑠) d𝑠, (13.4)
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with the instantaneous shear modulus 𝐺, the normalized shear relaxation function
𝑔R (𝑡), the instantaneous bulk modulus 𝐾 , the normalized bulk relaxation function
𝜅R (𝑡), and the time derivatives of the deviatoric YYYdev and volumetric YYYvol parts of
the strain tensor YYY. Thus, the three-dimensional material behavior can be defined
by two independent relaxation functions, the shear relaxation function, and the bulk
relaxation function.

Temperature effects can be included by the use of the time temperature superposi-
tion (TTS). Therefore, the reduced time 𝜉 (𝑡) is used in Eq. (13.5) [18]

𝜎𝜎𝜎(𝑡) = 2𝐺
𝑡∫

0

𝑔R (𝜉 (𝑡) − 𝜉 (𝑠)) ¤YYYdev (𝑠) ds+𝐾
𝑡∫

0

𝜅R (𝜉 (𝑡) − 𝜉 (𝑠)) ¤YYYvol (𝑠) d𝑠. (13.5)

The reduced time is defined by [18]:

𝜉 (𝑡) =
𝑡∫

0

d𝑠
𝛼(𝜃 (𝑠)) , (13.6)

where 𝛼(𝜃 (𝑡)) is the shift function which can be approximated using the WLF
equation (Eq. (13.7)) or the Arrhenius equation (Eq. (13.8))

log10 (𝛼) = − 𝐶1 (𝜃 − 𝜃Ref)
𝐶2 + (𝜃 − 𝜃Ref)

, (13.7)

ln(𝛼) = 𝐸A

𝑅

(
1
𝑇
− 1
𝑇Ref

)
. (13.8)

The variables 𝐶1 and 𝐶2 are material parameters, 𝐸A is the activation energy, 𝑅
the universal gas constant, 𝜃 the temperature, and 𝜃Ref the reference temperature. For
the Arrhenius equation the temperatures 𝑇 and 𝑇Ref must be specified in Kelvin. In
addition, the instantaneous modulus can also be defined as a function of temperature
[18].

To define thermal expansion behavior of the linear viscoelastic model, Abaqus
allows the use of isotropic and orthotropic thermal expansion coefficients which can
be constant or a function of temperature and field variables [18].

Instead of the previously described integral equation, the linear viscoelastic mate-
rial model can also be derived by differential equations, which in fact is equivalent to
the integral form [19]. The differential form is often used to build rheological models,
which can be constructed using simple rheological spring and dashpot elements.
Therefore, the linear viscoelastic model defined by the Prony series (Eq. (13.3)) is
equivalent to a generalized Maxwell model (Fig. 13.1) [19]. It consists of an arbi-
trary number of Maxwell elements (series of spring and dashpot) in parallel. If an
additional equilibrium network (spring) is used (Fig. 13.1), the material model will
represent a solid behavior [21]. In this case, the stress in a stress relaxation experiment
would relax to a non zero plateau, which is defined by the stress in the equilibrium
network. Without the equilibrium network, the stress would relax to zero, which
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Fig. 13.1 Illustration of the
generalized Maxwell solid
model which consists of a
series of Maxwell elements in
parallel and one equilibrium
network. ...

represents a fluid-like behavior [21]. Rheological models, such as the generalized
Maxwell model are often used as a starting point for the development of nonlinear
viscoelastic models [19]. In Subsect. 13.4.2, the setup of the generalized Maxwell
model is used to develop a simplified one-dimensional model which represents the
nonlinear viscoelastic PRF model.

13.2.2 Abaqus Parallel Rheological Framework Model

Similar to the generalized Maxwell model (Fig. 13.1), the Abaqus PRF model consists
of an arbitrary number of viscoelastic networks in parallel and an optional equilibrium
network [17]. The main difference to the generalized Maxwell model is that nonlinear
hyperelastic models are used for the springs and nonlinear creep laws for the dashpots.
The response of the equilibrium network can be purely elastic or elastoplastic [17]. For
each viscoelastic network 𝑖 = 1,2,3, . . . , 𝑁 , a multiplicative split of the deformation
gradient into an elastic and an inelastic part is assumed [17]

𝐹𝐹𝐹 = 𝐹𝐹𝐹el ·𝐹𝐹𝐹 in. (13.9)

The elastic response of the PRF model can be represented by any hyperelastic
model implemented in Abaqus [18]. Similar to the Prony values 𝑔𝑖 of the linear
viscoelastic model, the stiffness of each network is represented by a stiffness ratio 𝑠𝑖
where the sum of all stiffness ratios must be less or equal to one. In case the stiffness
ratio is equal to one, the model is defined without equilibrium network. The same
hyperelastic model is used for all networks. Using Abaqus, all hyperelastic models
are described by an energy potential𝑈 (Y) as a function of the strain [18].

Considering the shrinkage and warpage analysis, the strains are rather small so
that a linear elastic model would do well. Thus a simple Neo-Hookean hyperelastic
model is used in this study. The strain energy potential is given by [18]:

𝑈 = 𝐶10 (𝐼1 −3) + 1
𝐷1

(𝐽el −1)2. (13.10)
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Thereby 𝐶10 and 𝐷1 are material parameters, 𝐼1 is the first deviatoric strain invariant
and 𝐽el is the elastic volume ratio. The viscous behavior for each network is defined
using the creep potential 𝐺 in [18]. The creep potential is given by the equivalent
deviatoric Cauchy stress 𝑝, so that the flow rule can be described as follows [18]:

𝐷𝐷𝐷in =
3

2𝑞
¤̄Yin �̄�𝜏𝜏, (13.11)

with
𝑞 = 𝐽 𝑝, (13.12)

where 𝐷𝐷𝐷in is the symmetric part of the velocity gradient 𝐿𝐿𝐿in, �̄�𝜏𝜏 is the deviatoric
Kirchhoff stress, 𝐽 is the determinant of the deformation gradient 𝐹𝐹𝐹, the so called
Jacobien, and ¤̄Yin the equivalent creep strain rate. For the evolution of the creep strain
rate, several models are available in Abaqus. These are the power law model, the
strain hardening model, the hyperbolic-sine model, the Bergstrom-Boyce model, and
a user-defined creep model which can be implemented by a user subroutine [18]. In
this study, the strain hardening model (Eq. (13.13)) is used for the evaluation of the
creep strain rate [18]

¤̄Yin =
(
𝐴𝑞𝑛 [(𝑚 +1) Ȳin]𝑚

) 1
𝑚+1

, (13.13)

where Ȳin is the equivalent inelastic strain and 𝐴, 𝑚 and 𝑛 are material parameters. If
parameter 𝑛 is set equal to one and 𝑚 is set equal to zero, the evolution of the creep
strain rate ¤̄Yin is linearized [17].

Similar to the linear viscoelastic model, the reduced time concept can be used to
model temperature effects [18]. In contrast to the linear viscoelastic model where
the same WLF or Arrhenius parameters are used for all networks, the PRF model
allows the specification for each network individually. Alternatively, all parts of the
material model, the instantaneous modulus, the creep model, and the stiffness ratios 𝑠𝑖
can be defined temperature-dependently using tabular values [18]. For temperatures
between the specified temperatures, the material parameters are interpolated. In the
shrinkage and warpage analysis, the temperature changes continuously from a high
temperature to room temperature (RT). Therefore, the reduced time concept is used
in this study to realize a continuous function for the temperature dependence of the
material model.

Currently [18], only isotropic thermal expansion can be used with the Abaqus PRF
model. This excludes the use of orthotropic process-dependent expansion coefficients
as they were used in [8].

13.3 Shrinkage and Warpage Analysis

The simulation workflow for the shrinkage and warpage analysis of extrusion blow
molded parts has been described in detail in [8], so that we will only recall the most
important parts for this study. Considering a complex extrusion blow molded part, at
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least three simulation steps are necessary for the shrinkage and warpage prediction.
The first step is the process simulation of the parison inflation to determine the
process-related wall thickness distribution. After the process simulation, the cooling
of the part inside the closed mold and at ambient air after demolding is analyzed.
The transient temperature field is then used in a subsequent shrinkage and warpage
analysis to determine the part deformation. For the process simulation, currently
B-SIM of Accuform, a finite element based process simulation software for blow
molding applications, is used. The resulting wall thickness distribution as well as
local degrees of stretching and their orientation are mapped to the finite element
mesh of the following analysis steps using the MpCCI Mapper of Fraunhofer SCAI.
Since blow molded parts are thin-walled components, shell elements are used for
the cooling and warpage analysis. The part cooling is analyzed in two steps using
Simulia Abaqus (Dassault Systèms). In the first step, the part cools down under
mold constraint. Due to the contact with the cooled mold, the outer surface cools
down rapidly whereas the inner surface cools down much slower. After demolding,
further cooling takes place at ambient air until RT is reached. Similarly to the cooling
simulation, the shrinkage and warpage analysis is also carried out in two steps using
Abaqus. In the first step, all degrees of freedom of all nodes are fixed so that thermal
stresses will build up during the cooling under mold constraint. In the second step,
the boundary conditions are changed so that the part can shrink and warp freely due
to the accumulated thermal stresses and further temperature changes at ambient air.

In this study, we will focus on a one-element simulation of the shrinkage analysis
which sufficiently represents a local area of a complex blow molded part. The cooling
simulation will be carried out using the simulation model published in [8]. A wall
thickness of 2mm and a cooling time of 60s is used. The required temperature-
dependent material data for density, thermal conductivity, and heat capacity as well as
the heat transfer coefficients are taken from [8, 22, 23]. For the shrinkage and warpage
analysis, the thermal expansion behavior and the mechanical material behavior need to
be defined. Because the thermal expansion behavior of HDPE is highly temperature-
dependent, a temperature-dependent CTE is taken from literature [22, 23] (Fig.
13.2). The CTE was determined from Pressure-Volume-Temperature (P-V-T) data
at a pressure of approximately 0.1 N/mm2 [22, 23]. The peak at 130 ◦C marks the
crystallite melting temperature where the volume of the polymer drastically changes.

For the definition of the mechanical behavior, a master curve was obtained from
dynamic mechanical analysis (DMA) using frequency sweeps in the temperature
range of −20−120 ◦C [8]. The WLF equation was used to shift the isothermals of the
temperature-frequency-sweeps with RT as 𝜃Ref to obtain a continuous master curve
at RT. The storage modulus 𝐸 ′ was then converted from the frequency domain to the
time domain using the following approximation formula [24, 25]:

𝑡 =
1

2𝜋 𝑓
. (13.14)

Considering the part cooling, a large temperature range from about 200 ◦C to RT
needs to be considered. After demolding, a viscoelastic retardation occurs, due to
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Fig. 13.2: Material data for the shrinkage and warpage analysis. a) Experimental master curve
obtained from DMA experiments [8]. The master curve is fitted by a sigmoid function and
extrapolated to cover the whole time range; b) Temperature-dependent CTE [22, 23].

the accumulated thermal stresses [26]. This retardation can take several hours to
days. To cover the extensive time and temperature range in the material modeling,
the experimental master curve is extrapolated. Due to the typical s-formed shape, a
sigmoid function is used to fit and extrapolate the experimental data. The extrapolated
master curve is given by Eq. (13.15) (Fig. 13.2)

𝑓 (𝑡) = −1201.79tanh
(
log10 (𝑡) −0.449

6.37

)
+1201.79. (13.15)

Using one relaxation time per decade, the linear viscoelastic model is calibrated
using Eq. (13.3) with 37 prony terms (Fig. 13.3). The same relaxation function is
used for the normalized shear and bulk relaxation function 𝑔𝑅 (𝑡) and 𝜅𝑅 (𝑡). The
Poissons ratio is set to 0.5, so that incompressibility is assumed. For the temperature
dependence of the material model, the reduced time concept is applied, using the
WLF equation for the approximation of the shift function. The WLF coefficients of
the master curve creation are used in the simulation model.

At the crystallite melting temperature 𝑇m, the material behavior changes from
a thermo-viscoelastic solid to a thermo-viscoelastic fluid with a structural stiffness
of almost zero. It is therefore assumed that the evolution of thermal stresses in the
shrinkage analysis starts at temperatures below 130 ◦C. To ensure that no thermal
stress is stored in the material model at temperatures above 130 ◦C, the CTE is set
to zero (Fig. 13.3). Since the demolding temperatures are usually below 130 ◦C, free
shrinkage at temperatures above 130 ◦C can be ruled out.

If the nonlinear viscoelastic PRF model is used with the reduced time concept to
model temperature effects, the short relaxation times will cause convergence problems
at high temperatures. This is because the already short relaxation times will be further
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Fig. 13.3: Material data for the shrinkage and warpage analysis. a) Experimental master curve
obtained from DMA experiments [8] which is extrapolated using a sigmoid function. A Prony
series is used to fit a linear viscoelastic material model (generalized Maxwell solid model) to the
sigmoid function; b) Temperature-dependent CTE according to [22, 23], and modified CTE which
is set to zero for temperatures which are above the crystallite melting temperature.

shortened by the use of the WLF or Arrhenius equation. However, in a shrinkage and
warpage analysis, high strain rates will only occur at very high temperatures at the
outer surface where the cooling rate is high. Below 130 ◦C, the cooling rate is much
lower. For the use of the PRF model, the short time behavior between 10−18 and 1.0s
is neglected. The prony series is then modeled at RT with an instantaneous modulus
of 1450N/mm2 and the first relaxation time is set to 1.0s. 19 Prony terms are used to
model the material behavior in the range 1.0s until 1018 s. To validate this approach,
a shrinkage analysis using a linearized version of the PRF model with 19 networks is
carried out and compared to a shrinkage analysis using the linear viscoelastic model
with 19 and 37 networks respectively.

For small strains, the response of the Neo-Hookean model will be similar to a linear
elastic model. At these small strains, the nonlinear behavior of the PRF model results
mainly from the viscous flow which is modeled by the strain hardening model (Eq.
(13.13)). To obtain a linear viscoelastic representation of the PRF model, the strain
hardening model needs be converted to linear flow. This can be achieved by setting
the 𝑛-parameter of each viscoelastic network 𝑖 equal to one and the 𝑚-parameter
equal to zero. The parameter 𝐴𝑖 for each network can then be calculated using the
instantaneous elastic modulus 𝐸 , the Prony values 𝑔𝑖 , and relaxation times 𝜏𝑖 of each
network of the linear viscoelastic model as follows:

𝐴𝑖 =
1

𝐸 𝑔𝑖 𝜏𝑖
. (13.16)

For the elastic part of the PRF model, the parameter 𝐷1 of the Neo-Hookean
model (Eq. (13.10)) is set to zero to obtain incompressibility. The parameter 𝐶10 can
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then be determined using the instantaneous elastic modulus and the Poissons ratio of
the linear viscoelastic model (Eq. (13.17)). The stiffness ratios will be equal to the
Prony values of the linear model (𝑠𝑖 = 𝑔𝑖).

𝐶10 =
𝐸

2 [2 (1+ 𝜈)] =
𝐸

6
. (13.17)

The results of the two linear viscoelastic models with 37 and 19 prony terms are
compared to the linearized PRF model in Fig. 13.4. Fig. 13.4a shows the thermal
stress accumulated during the cooling under mold constraint. The stress at the outer
surface is much higher due to the higher cooling rate. Fig. 13.4b shows the viscoelastic
retardation for a period of 24h after demolding. The response of the linear viscoelastic
model is exactly the same if the prony series is reduced from 37 to 19 terms. The
linearized PRF model deviates slightly from the linear viscoelastic representation
(Fig. 13.4). However, since the differences are quite small, numerical reasons are
suspected.
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Fig. 13.4: Comparison of a one-element shrinkage analysis using a linear viscoelastic model with
37 Prony terms, a linear viscoelastic model with 19 Prony terms and a linearized PRF model with
19 networks (NW). a) Build up of thermal stresses of the inner and outer surface during cooling
under mold constraint; b) Shrinkage for a period of 24h after demolding.

13.4 Calibration Strategy

Due to the complexity of the PRF model, an elaborate calibration strategy is needed
to find suitable material parameters to match a set of experimental measurement data.
Using the strain hardening model, each network is described by the four material
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parameters 𝑠𝑖 , 𝐴𝑖 , 𝑛𝑖 and 𝑚𝑖 . In addition, the modulus of the entire network and the
activation energy of the Arrhenius equation also have to be determined. Even if only
three networks are used, the total amount of parameters to be identified is 14. For
six networks 26 parameters and for 12 networks 50 material parameter need to be
identified. It can be expected that for a nonlinear viscoelastic model, less networks are
needed compared to the linear viscoelastic model. However, considering a large time
and temperature range to cover, several networks might be necessary for an accurate
representation of the experimental data. This involves the determination of a large
set of material parameters. The associated objective function of the optimization
problem to solve might have many local minima. To find the best possible solution,
the use of global optimization methods is necessary.

In the following, a calibration strategy is presented, which uses functional relations
to describe the material parameters of the individual networks. Thus, the dimension
of the design space is reduced to a manageable number. However, the use of a global
optimization strategy is still associated with high computational effort if a large
number of optimization loops is involved. In each optimization loop, a numerical
model of the experiment is computed and the results are compared to the measurement
data. The most expensive part is the numerical simulation of the material test. If a
finite element analysis using Abaqus is carried out, even if just one element is used,
several seconds are needed for the verification of license and the interpretation of the
input deck. To save computation time, a simplified numerical model which represents
the PRF model is implemented in Matlab. In the following, the material data for
the model calibration as well as the reduction of the material parameters and the
computation time is explained in detail.

13.4.1 Experimental Data

The shrinkage and warpage analysis can be divided into a loading phase in which
thermal stresses will build up and relax during the cooling under mold constraint,
followed by an unloading (demolding) where the part is free to shrink. For the model
calibration, a set of experiments is used which involves a loading and relaxation
phase followed by an unloading phase. Therefore, relaxation tests with subsequent
unloading at several temperature and strain levels are carried out using a Zwick Kappa
Multistation. Material samples of type 1A (DIN EN ISO 527-2) of the blow mold-
ing HDPE grade Lupolen 5021DX (LyondellBasell) were taken from compression
molded plates (polystat 200 T/2, Servitec, at 210 ◦C and 200bar (2 107 Pa) for 70s)
with 2mm thickness. At RT, three different strain levels (0.5%,1.0% and 2.0%) were
investigated. The highest strain level was also tested at different temperatures (RT,
40 ◦C,60 ◦C, 80◦C and 100 ◦C). For each test point, the average of three measurements
is taken. At the beginning of the loading phase, a constant strain rate of 0.0015s−1

was applied to the sample until the specified strain level was reached. The strain level
was then held constant (strain controlled) for a period of 600s to measure the stress
relaxation response. At the end of the loading phase, the sample was unloaded (force
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controlled) with a force rate of 300N/s. The force was then held constant at zero N
for a period of 1800s to measure the viscoelastic retardation. Fig. 13.5 shows the
measured stresses and strains of the relaxation tests with subsequent unloading.

13.4.2 Implementation of a One-Dimensional Model to Reduce
Computation Time

To develop an efficient numerical model which represents the PRF equations of a
relaxation test with subsequent unloading, four steps are considered. The first step
covers the loading, assuming a constant strain rate. Once the final strain is reached,
it is held constant over a defined period of time. The third step covers the unloading,
assuming a constant stress rate. Once the stress approaches zero, it is held at zero for a
defined period. The Matlab implementation will be a one-dimensional representation
of the material equations of the PRF model. In contrast to the Abaqus model, only
the material equations are solved, so that no spatial discretization is needed. This
reduces the system of partial differential equations (PDE) to a system of ordinary
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Fig. 13.5: Experimental data of a stress relaxation test with subsequent unloading for different
strain and temperature levels. a) Stresses for three different strain levels at RT; b) Strains of the
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differential equations (ODE) which can be efficiently solved using a suitable ODE
solver.

For the model we start with the total stress 𝜎total of the framework, which is the
sum of all network stresses 𝜎𝑖

𝜎total = 𝜎0 +
𝑁∑︁
𝑖=1
𝜎𝑖 . (13.18)

The total strain is equivalent in each network element due to the parallel arrangement
(Fig. 13.1) and is decomposed additively into an elastic part (spring) and an inelastic
part (dashpot)

Ytotal = Y
el
𝑖 + Yin

𝑖 . (13.19)

Since the strains in the performed material tests are small, it can be assumed that
a linear elastic material model is sufficient for the description of the springs. The
stress of each network is then calculated by Hooke’s law:

𝜎𝑖 = Y
el
𝑖 𝐸𝑖 , (13.20)

where 𝐸𝑖 is the elastic modulus of the 𝑖’th network. For the stress of the equilibrium
network applies:

𝜎0 = Ytotal 𝐸0. (13.21)

The strain rate of the dashpots is represented by the strain hardening model.

¤Y𝑖 in =
(
𝐴𝑖𝜎

𝑛𝑖
𝑖
[(𝑚𝑖 +1) Yin

𝑖 ]𝑚𝑖

) 1
𝑚𝑖+1

, (13.22)

where ¤Y𝑖 is the inelastic strain rate of the network, and 𝐴𝑖 , 𝑛𝑖 and 𝑚𝑖 are material
parameters. By taking the time derivative of Eq. (13.19) and (13.20), we obtain:

¤Ytotal = ¤Yel
𝑖 + ¤Yin

𝑖 , (13.23)

and
¤𝜎𝑖 = ¤Yel

𝑖 𝐸𝑖 . (13.24)

Substituting Eq. (13.22) and Eq. (13.24) into Eq. (13.23) and rearranging gives
an ordinary differential equation of the form 𝑓 (𝑡,𝜎𝑖 , ¤𝜎𝑖) = 0 for the 𝑖’th network

¤𝜎𝑖 = ¤Ytotal 𝐸𝑖 −𝐸𝑖
(
𝐴𝑖 𝜎

𝑛𝑖
𝑖
[(𝑚𝑖 +1) Yin

𝑖 ]𝑚𝑖

) 1
𝑚𝑖+1

. (13.25)

Equation (13.25) still contains the unknown inelastic strain Yin
𝑖

. By replacing Yin
𝑖

by the expression Ytotal − 𝜎𝑖

𝐸𝑖
, a differential equation is obtained which contains only

known quantities

¤𝜎𝑖 = ¤Ytotal 𝐸𝑖 −𝐸𝑖
(
𝐴𝑖𝜎

𝑛𝑖
𝑖

[
(𝑚𝑖 +1)

(
Ytotal −

𝜎𝑖

𝐸𝑖

)]𝑚𝑖
) 1

𝑚𝑖+1

. (13.26)
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To model the temperature dependency of the material model, the inelastic strain rate
of each network is divided by the shift factor 𝛼(𝑇)

¤𝜎𝑖 = ¤Ytotal 𝐸𝑖 −
𝐸𝑖

(
𝐴𝑖𝜎

𝑛𝑖
𝑖

[
(𝑚𝑖 +1)

(
Ytotal − 𝜎𝑖

𝐸𝑖

)]𝑚𝑖
) 1

𝑚𝑖+1

𝛼(𝑇) . (13.27)

The shift factor is calculated using the Arrhenius equation (Eq. (13.8)). The stresses
𝜎𝑖 of the 𝑁 individual networks are obtained by solving Eq. (13.27) with an ODE
solver. The Matlab solver ode15s turned out to be very efficient for this kind of
problem.

Depending on the choice of the parameters 𝑚𝑖 and 𝑛𝑖 , numerical difficulties can
occur if the network stress 𝜎𝑖 is negative. This can in some cases lead to complex
numbers. In order to deal with these difficulties, Eq. (13.27) is modified as follows:

¤𝜎𝑖 = ¤Ytotal 𝐸𝑖 −
𝜎𝑖

|𝜎𝑖 |

𝐸𝑖

(
𝐴𝑖 |𝜎𝑖 |𝑛𝑖

[
(𝑚𝑖 +1)

���Ytotal − 𝜎𝑖

𝐸𝑖

���]𝑚𝑖
) 1

𝑚𝑖+1

𝛼(𝑇) . (13.28)

By taking absolute values of 𝜎𝑖 and Ytotal − 𝜎𝑖

𝐸𝑖
, complex numbers are ruled out. The

term 𝜎𝑖

|𝜎𝑖 | is introduced to define the direction of the viscous flow.
For the unloading phase and the subsequent holding phase, the external stress rate

respectively the external stress (which is zero) is specified but the internal network
stresses and stress rates are unknown. Therefore, instead of the equation for the entire
system, the differential equations of the dashpots are considered (Eq. (13.22)). The
unknown network stress 𝜎𝑖 is replaced by the expression 𝐸𝑖 (Ytotal−Yin

𝑖
). One obtains:

¤Y𝑖 in =
(𝐸𝑖 (Ytotal − Yin

𝑖
))

|𝐸𝑖 (Ytotal − Yin
𝑖
) |

(
𝐴𝑖 |𝐸𝑖 (Ytotal − Yin

𝑖
) |𝑛𝑖 [(𝑚𝑖 +1) | Yin

𝑖
| ]𝑚𝑖

) 1
𝑚𝑖+1

𝛼(𝑇) . (13.29)

To solve this ODE, it is necessary to replace the total strain with known quantities.
For the equilibrium network applies:

𝜎0 = 𝜎total −
𝑁∑︁
𝑖=1

(Ytotal 𝐸𝑖 − Yin
𝑖 𝐸𝑖). (13.30)

If we substitute this expression into Eq. (13.21) and rearrange, we get the following
equation:

Ytotal =

𝜎total

𝐸0
+
𝑁∑︁
𝑖=1
Yin
𝑖

𝐸𝑖

𝐸0

1+
𝑁∑︁
𝑖=1

𝐸𝑖

𝐸0

. (13.31)
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By substituting Ytotal in Eq. (13.29) by Eq. (13.31), the inelastic strain of the 𝑖’th
network can be computed using the elastic moduli and inelastic strains of all 𝑁
networks. The system of coupled differential equations is also solved with the Matlab
solver ode15s.

So far, the moduli of the individual networks are specified directly. Alternatively,
stiffness ratios as used by Abaqus can be specified to define the stiffness of each
network. In this case, the total elastic modulus 𝐸total of all networks and a stiffness
ratio 𝑠𝑖 for each network will be specified. The moduli 𝐸𝑖 of each network is then
calculated by the following equations:

𝐸𝑖 = 𝑠𝑖 𝐸total. (13.32)

For the modulus of the equilibrium network applies:

𝐸0 = 𝐸total −
𝑁∑︁
𝑖=1
𝑠𝑖 𝐸total. (13.33)

13.4.3 Reduction of Material Parameters

To reduce the amount of parameters in the model calibration, we start with the prony
fit of the linear viscoelastic model to the extrapolated sigmoid curve. The sigmoid
curve was fitted by the prony series using one relaxation time 𝜏 per decade. If we plot
the Prony values over the network number, they can be approximated by a normalized
Gaussian function (Eq. (13.34), Fig. 13.6)

𝑠𝑖 =
1

12.9
e
(
− 1

2 ( 𝑖−19.8
5.15 )2

)
. (13.34)

Using the Gauss function for the description of the stiffness ratio of each network
”𝑖”, a normalization is needed to ensure that the sum of all stiffness ratios is always
smaller or equal to one. We start with the Gauss function without normalization. The
parameters 𝑝𝑠1 and 𝑝𝑠2 are used to modify the distribution of the stiffness ratios 𝑠𝑖

𝑠𝑖 = e

(
− 1

2

(
𝑖−𝑝𝑠1
𝑝𝑠2

)2
)
. (13.35)

The parameter 𝑝s1 is used to shift the Gauss function on the abscissa. Parameter 𝑝s2
can be used to change the curvature. In the next step, the sum of the stiffness ratios
of all networks is calculated

𝑠sum =

𝑁∑︁
𝑖=1
𝑠𝑖 . (13.36)

The normalized Gauss function is obtained as follows:
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Fig. 13.6: Approximation of the Prony values by a Gauss function. a) Extrapolated master curve
which is approximated using a Prony series with 37 terms; b) Distribution of the Prony values with
respect to the network number. The Prony values are approximated using a Gaussian function.

𝑠𝑖norm =
𝑝s3

𝑠sum
e

(
− 1

2

(
𝑖−𝑝s1
𝑝s2

)2
)
. (13.37)

Using the parameter 𝑝s3, the sum of the stiffness ratios can be modified to obtain
values less than one. Thus, the stiffness ratio of an arbitrary number of networks
is described by just three parameters. Also the sum of the stiffness ratios is always
less or equal to one, so that no restrictions are necessary within the optimization. As
presented in Sect. 13.3, the short-time behavior of the master curve will be neglected
to overcome convergence problems at higher temperatures. The first relaxation time
𝜏𝑖 is set to 1.0s, so that 19 networks are used in total. Therefore, the Gauss function
is shifted using parameter 𝑝s1.

The relaxation times 𝜏𝑖 of the prony series are held constant to ensure that the
distribution of the stiffness ratios follows Eq. (13.37). For the PRF model, we assume
that the 𝐴-values can be calculated by Eq. (13.16) using the stiffness 𝑠𝑖 𝐸 and the
relaxation time 𝜏𝑖 . For the linearized PRF model (𝑛𝑖 = 1 and 𝑚𝑖 = 0), the inelastic
strain rate of the strain hardening model (Eq. (13.22)) is proportional to the stress
𝜎𝑖 . However, for 𝑛 > 1 and 𝑚 < 0 the strain hardening law becomes nonlinear. As
the network stress 𝜎𝑖 is raised to the power of 𝑛𝑖 ,the inelastic strain rate increases
nonlinearly with increasing stress. At stresses below 1N/mm2 the strain rate will be
even slower compared to a linearized model and it drastically increases for higher
𝑛-values if the stress increases. If higher stresses are involved it might be necessary
to adjust the 𝐴-values of the networks. However, the stresses for the investigated
HDPE are rather moderate (less than 15N/mm2, Fig. 13.5). Using 19 networks, the
individual network stress 𝜎𝑖 will be close to one for most networks. In this case, the
inelastic strain rate will be a nonlinear function of the applied stress but it won’t differ
too much from the strain rate of the linearized model. Therefore, it seems reasonable



222 Patrick Michels et al.

to use constant relaxation times 𝜏 of the linear model to calculate the 𝐴-values of the
PRF-model via Eq. (13.16). The 𝐴-values are thus excluded from the design space
of the parameter optimization.

Similarly to the stiffness ratios, 𝑛- and 𝑚-parameters of all networks will also
be described using a suitable functional relation. In order to ensure stability of the
model over the entire time and temperature range, the following boundaries are set:

1.0 ≤ 𝑛𝑖 ≤ 5.0, (13.38)

−0.7 ≤ 𝑚𝑖 ≤ 0.0. (13.39)

In contrast to the stiffness ratios, a suitable distribution of the 𝑛- and𝑚-parameters
with respect to the network number is unknown. However, it is assumed that the
individual 𝑛- and 𝑚-parameters can be represented by a monotonically increasing or
decreasing function. A sigmoid function using four parameters is used for the distri-
bution. Depending on the parameter selection, the sigmoid function can describe an
s-curve, a curve or even a constant (Eq. (13.40), (13.41)). Some possible distributions
for the parameters 𝑠, 𝑛, and 𝑚 are shown in Fig. 13.7.

𝑛𝑖 = 𝑝n1 + ((𝑝n1 −1) 𝑝n2) tanh
(
𝑖− 𝑝n3

𝑝n4

)
, (13.40)

𝑚𝑖 = 𝑝m1 + (𝑝m1 𝑝m2) tanh
(
𝑖− 𝑝m3

𝑝m4

)
. (13.41)

Using the described Gauss and sigmoid functions, the design space for the model
calibration is reduced to 11 parameters independent of the amount of networks.
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Fig. 13.7: Distribution of the material parameters of the individual networks. The curves show
different possible distributions based on the three parameter Gauss function and the four parameter
sigmoid functions. a) Example distributions of stiffness ratios 𝑠𝑖 using a three parameter description
of a Gaussian function; b) Example distributions of the 𝑛-values using a four parameter sigmoid
function; c) Example distributions of the 𝑚-values using a four parameter sigmoid function.
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13.4.4 Calibration Workflow

For the calibration of the PRF model, the process automation and design exploration
software tool Simulia Isight (Dassault Systèmes) is used. The complete optimization
workflow is illustrated in Fig. 13.8.

Fig. 13.8: Optimization workflow using the process automation and design exploration software
Simulia Isight.
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The global optimization algorithm Adaptive Simulated Annealing is used with
a total amount of 10,000 design loops. This algorithm is well suited for the search
of a global optimum especially for highly nonlinear problems with short calculation
times [18]. In each design loop of the optimization, a Matlab component is executed
which runs a numerical model of the experimental test. The Matlab model which
represents the material tests at RT is used to simulate all three strain levels. All testing
temperatures run in parallel, so that all 10,000 runs are calculated in less than three
hours on a personal computer.

The data matching components are used for the calculation of the sum of the
absolute difference between points on the simulated curves and the experimental
curves. The simulation data is therefore interpolated to the measurement data. The
error of the loading and unloading phase is calculated separately. After the error
calculation, a script component is used to normalize the data to obtain an error value
in percent. This is necessary in order to achieve equal weighting to loading and
unloading. Thus the error of each virtual experiment phase is calculated as follows:

Err =

𝑁∑
𝑗=1

|𝑌 𝑗exp −𝑌 𝑗sim |

𝑁∑
𝑗=1
𝑌 𝑗exp

·100%, (13.42)

where Err is the error value in %, 𝑌 𝑗exp is the experimental value at data point 𝑗 , and
𝑌 𝑗sim is the simulated value at data point 𝑗 . To obtain the total error of all experiments,
the average of all error values is calculated.

The calibration workflow using the Gauss and sigmoid functions for the parameter
reduction is tested and compared to an optimization where the parameters are varied
freely between boundaries. Using the free parameter variation, the stiffness of the
networks is specified directly by the elastic modulus of the network to avoid violation
of the condition that the sum of all stiffness ratios must be less or equal to one. The
parameters as well as their boundaries of the free parameter variations are given
by Table 13.1. For all model calibrations, the Arrhenius function using the same
activation energy 𝐸A for all networks is used. For the calibration model which uses
the Gauss and sigmoid functions to describe the parameters 𝑠𝑖 , 𝑛𝑖 , and 𝑚𝑖 , the elastic
modulus of the whole network 𝐸total is also used as a parameter in the calibration
process. The lower boundary is set to 1,000N/mm2 and the upper boundary is set
to 2,000N/mm2. The free optimization is tested with different numbers of networks,
that is to say three, six and 12. Table 13.2 gives an overview over the different models
which are used in the calibration process.

13.5 Results

Using the model variations shown in Table 13.2 the PRF model was calibrated
using the experimental measurement data illustrated in Fig. 13.5. The overall errors
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Table 13.1: Boundaries of the free parameter variations.

Parameter lower bound upper bound

𝐸0 1
N

mm2 700
N

mm2

𝐸𝑖 1
N

mm2 700
N

mm2

𝐴𝑖 10−15
(

N
mm2

)−𝑛
s−𝑚−1 10−3

(
N

mm2

)−𝑛
s−𝑚−1

𝑚𝑖 −0.7 0.0

𝑛𝑖 1.0 5.0

𝐸𝐴 100, 000
J

mol
300, 000

J
mol

Table 13.2: Model variations which are tested in the model calibration.

NW Model Parameter Parameter

Variation Amount

3 PRF free 14

6 PRF free 26

12 PRF free 50

19 PRF function 13

of the model calibrations are shown in Table 13.3. Comparing the results of the
free parameter variation with the use of functional relations between the individual
network parameters, it can be seen that the latter approach achieves the best results
with an error of about 5.9% (Table 13.3). The poorest result is obtained by the PRF
model with just three networks, with an error of 20.3%. Doubling the number of
networks from three to six halves the error. A further duplication from six to 12
networks leads to slightly poorer results.

Figure 13.9 shows the distribution of 𝑠𝑖 , 𝑛𝑖 , and 𝑚𝑖 of the best design point. It is
clearly visible that the stiffness ratios become zero after the ninth network. In this
case the amount of networks can be reduced to nine. The results are identical to
the results using 19 networks. The 𝑛-values show a monotonically increasing trend,
whereas the 𝑚-values lie on a decreasing s-curve.

Figure 13.10 shows a comparison between the results of the Matlab models
and Abaqus finite element simulations for the best design point. The results are in
very good agreement. Only at the highest strain level, a negligible deviation in the
unloading phase can be observed.
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Table 13.3: Representation of the error value of the free model calibration using three, six and 12
networks compared to the error of the model calibration using functional relations between the
network parameters.

NW Model Parameter Parameter Error

Variation Amount

3 PRF free 14 20.3%

6 PRF free 26 10.8%

12 PRF free 50 11.5%

19 PRF function 13 5.9%

0.00

0.05

0.10

0.15

0.20

0.25

0.30

1 4 7 10 13 16 19

P
ro

n
y
-v

a
lu

e
 [

-]

network number [-]

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

1 4 7 10 13 16 19

n
-v

a
lu

e
 [

-]

network number [-]

-0.30

-0.25

-0.20

-0.15

-0.10

-0.05

0.00

1 4 7 10 13 16 19

m
-v

a
lu

e
 [

-]

network number [-]

a) b) c)

Fig. 13.9: Distribution of the material parameters of the individual networks for the best design
point. a) Distributions of the stiffness ratios 𝑠𝑖 using the three parameter description of the
Gaussian function; b) Distributions of the 𝑛-values using the four parameter sigmoid function;
c) Distributions of the 𝑚-values using the four parameter sigmoid function.

Comparing the Abaqus results of the best design point to the experimental data,
a good agreement is observed (Fig. 13.11). The stress relaxation curve at 2% and
100 ◦C with an error of 24%, the stress relaxation curve at 2% strain at RT with
19% error, and the unloading curve at 2% strain and 80 ◦C with an error of about
13% show the largest deviation. All other curves are in good agreement with the
experimental data.

In Fig. 13.12, the PRF model using the parameters of the best design point is
integrated in the shrinkage model and the results are compared to the results of the
linear viscoelastic model which was calibrated using the master curve. The stress
history of the PRF model during the cooling under mold constraint is similar to
the linear viscoelastic model. However, the stresses of the PRF model are a slightly
lower than the stresses of the linear viscoelastic model. Moreover, the difference in
stress between the inner surface and the outer surface is smaller for the PRF model.
Comparing the shrinkage behavior in the first 24h, the PRF model shows a stronger
retardation.
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Fig. 13.10: Comparison of the results of the numerical model implemented in Matlab with an
Abaqus finite element simulation at the best design point. a) Stresses of the loading phase for the
three different strain levels at RT; b) Strains of the unloading phase for the three different strain
levels at RT; c) Stresses of the loading phase at a strain level of 2.0% at different temperatures; d)
Strains of the unloading phase at a strain level of 2.0% at different temperatures.

13.6 Discussion and Outlook

As shown in Table 13.3, the calibration workflow using functional relations between
the parameters of the individual networks achieved the best results so far. This could
be explained by the fact that a sufficient number of networks is used, whereas the
amount of material parameters which need to be identified is still low. The poor
results of the free calibration using only three networks (error of 20.3%) indicate that
three networks in conjunction with the Arrhenius function seem insufficient to cover
the entire time and temperature range of the experiments. Increasing the amount of
networks to six improves the result significantly, but the error is still twice as large as
the best solution of the calibration workflow using functional relations between the
parameters of the individual networks. It can be assumed that at least up to a certain
point, an increasing number of networks improves the prediction accuracy of the
model. However, the use of more networks is always associated with a higher amount
of material parameters which need to be identified. Using a global optimization
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Fig. 13.11: Comparison of the Abaqus finite element simulation at the best design point with the
experimental measurement data. a) Stresses of the loading phase for the three different strain levels
at RT; b) Strains of the unloading phase for the three different strain levels at RT; c) Stresses of the
loading phase at a strain level of 2.0% at different temperatures; d) Strains of the unloading phase
at a strain level of 2.0% at different temperatures.

approach, the global minimum might be found with a certain probability but there is
no guarantee that it is actually found by a finite number of function evaluations [27].
The fact that the use of six networks achieved a slightly better result than the use of 12
networks (Table 13.3) indicates that the number of material parameters might be too
high to find a good solution using 10,000 design evaluations. In this case, a higher
amount of design evaluations could be necessary. The calibration approach, which
uses functional relations to describe the parameters of the networks, requires only
13 parameters regardless of the number of networks. Furthermore, a lot of parameter
permutations are excluded because the parameters of the individual networks are
described by continuous functions which are either increasing or decreasing. Another
interesting fact is that the calibration using functional relations seems to reduce the
amount of networks. In this case, the optimization was started with 19 networks but
it seems that nine networks are sufficient to match the experimental data with high
accuracy.
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Fig. 13.12: Comparison of a one-element shrinkage analysis using a linear viscoelastic model with
37 Prony terms and the calibrated PRF model of the best design point. a) Build up of thermal
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Alternatively to the use of the reduced time concept for the modeling of temper-
ature effects, the instantaneous modulus, the stiffness ratios, and the creep model
can be defined as temperature dependent by tabular values. The amount of networks
necessary to cover the entire time and temperature range might be reduced in this case.
However, the main advantage of the reduced time concept is that the temperature de-
pendency is described by a continuous shift function. Thus, an extrapolation to higher
temperatures seems reasonable, since the shift functions are based on experimental
observations. This is essential, since experimental investigations at temperatures
between 100 ◦C and 130 ◦C are difficult due to low structural stiffness at this tem-
perature range. Nevertheless, the alternative temperature-dependent modeling using
tabular values should be investigated in future work. Therefore, the use of functional
relations between the parameters of the different temperature levels could also be a
promising approach for a successful model calibration, especially if extrapolation to
higher temperatures is necessary. In this case, the more temperature levels are tested,
the better. Even if not all temperature levels are used in the model calibration, the
temperature levels between the calibrated curves can be used for validation purposes.
Furthermore, alternative nonlinear viscoelastic material models like the PN model
provided by the PolyUMod library (PolymerFEM LLC) [20] should be investigated.
One of the main disadvantages of the PRF model is that currently only isotropic
thermal expansion is supported. The PN model also supports the use of constant
orthotropic thermal expansion [28]. Piece-wise linear thermal expansion, which can
be used to model the temperature dependency of the CTE, is currently only supported
for isotropic behavior [28].

The integration of the calibrated PRF model in the shrinkage and warpage analysis
leads to lower stresses during the cooling under mold constraint compared to the
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linear viscoelastic model (Fig. 13.12a). This is reasonable, since the linear viscoelastic
model usually overestimates the stresses at higher strain levels. Moreover, the smaller
stress difference between the inner and outer surface at the time of demolding (60s)
can be explained by the fact that the inelastic strain rate increases at higher stresses, so
that the relaxation will be accelerated. Nevertheless, the experimental data base which
was used for the model calibration in this study is relatively small. For a successful
calibration covering the entire time and temperature range of the shrinkage and
warpage analysis, an extensive experimental database is needed. Additionally, the
various strain levels should be investigated at all temperature levels. For a comparison
of the PRF model and the linear viscoelastic model in terms of prediction accuracy, an
extensive experimental database considering shrinkage and warpage is needed. The
database used in [8] was limited and the part shrinkage was measured six days after
demolding, so that it does not provide information about the viscoelastic retardation in
the first hours after demolding. Experimental data of the dynamic shrinkage behavior
of simple blow molded parts for an extensive set of process conditions, as well as
experimental warpage data of complex blow molded parts could provide valuable
information for the model validation.
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Chapter 14
Modeling Solid Materials in DEM Using the
Micropolar Theory

Przemysław Nosal and Artur Ganczarski

Abstract The discrete element method (DEM) is a widely accepted method used in
simulations of the powder sintering process, where the real object is replaced by a set
of particles representing elastic-plastic material. Recently, this method has also been
used to model solid materials. In this work, we present a local constitutive model for
the determination of the interaction forces, which is based on micropolar theory. The
model shows an elasto-viscoplastic behavior, thus an adaptation of the Johnson–Cook
description of flow stress, which allows the analysis of solid materials subjected to
high strain rates. The results of the DEM simulations received after calibration of
the model parameters agree well with the experimental data from literature.

14.1 Introduction

The concept of the discrete element method was introduced by Cundall [1] in 1971
and was further developed by Cundall and Strack [2]. The increase in computing
power of computers has contributed to the development of DEM in terms of both the
complexity of the contact models used and the number of new phenomena analyzed
using this method. The main area of application of the discrete element method
is broadly understood geomechanics, where it is used to simulate soil behavior or
analyze rock cracking [3–7]. The discrete element method is also a widely accepted
method used in simulations of the powder sintering process [8–11], and currently
more and more attention is being paid to adapting this method to structural analysis,
where the real object is replaced by a set of particles representing elastic plastic
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material [12–15], including phenomena such as fracture [16] and crack propagation
analysis [17].

The main difference between the discrete element method and the finite element
method is the discretization of the object considered. In the case of DEM, a material
is represented by an agglomeration of rigid or deformable particles that interact with
each other by means of contact forces and moments. In turn, in FEM, the object
considered is divided into finite elements that are interconnected at individual nodes.
This is a significant difference because the lack of bonds between molecules in DEM
allows for the analysis of problems related, e.g. with the formation of discontinuities in
the material, or problems in which significant plastic deformations occur. In addition,
the need to store large stiffness matrices, which are the basis for implicit integration,
disappears. In general, discrete elements can have any shape [18], however, due
to the simplicity in formulating the mathematical description and efficiency of the
calculations, spherical particles [19] are most often used.

In this work, we present a local constitutive model for the determination of
interaction forces, which is based on micropolar theory [20, 21]. The model shows an
elasto-viscoplastic behavior, thus an adaptation of the Johnson-Cook description of
flow stress [22], which allows the analysis of solid materials subjected to high strain
rates. The model is validated in the analysis of uniaxial tensile tests of an aluminum
alloy sample. The tests considered two constant values of strain rate and two values
of discrete element radius, additionally the consideration of classical Cauchy theory
is presented by neglecting the coupled stress component. The results of the DEM
simulations received after calibration of the model parameters agree well with the
experimental data provided by [23].

14.2 Formulation of the Thermo-Elasto-Viscoplastic Contact
Model

14.2.1 Short introduction to DEM basics

As mentioned above, the interaction of the particles causes the contact force vector 𝑭
(Fig. 14.1). As a result of the interaction, in addition to the translational movement,
there is also a rotational movement of the bodies, where the point 𝑐 is treated as a
temporary center of rotation. The angle of rotation is determined by the moment
vector 𝑴, which is related to the resulting force 𝑭. The reliability of this method
depends mainly on the proper definition of the contact model, which can be seen
as a micromechanical model of the material. However, it is not trivial to define
material properties on the micro scale, and they are usually not related to macro
properties. Therefore, to identify these parameters, the constitutive model used must
be calibrated.

The discrete element method was developed to analyze the dynamic interaction of
a set of particles in contact with each other. In general, these particles are treated as
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Fig. 14.1: Schematic illustration of the particle-particle interaction with force decomposition on
normal 𝐹𝐹𝐹N and tangential 𝐹𝐹𝐹T direction.

ideally rigid bodies that have six degrees of freedom. The interaction forces between
particles 𝑭 are modeled using a system of fictitious springs with stiffness 𝑘N, 𝑘T, and
for more complex models, additional elements are used in the form of dampers 𝑐N
or friction pairs 𝜇T are used. The resultant interaction force is the sum of the normal
and tangential components

𝑭 = 𝑭N +𝑭T = 𝐹N𝒏+𝑭T (14.1)

where 𝒏 is the unit normal vector of the plane located at the point of contact and
pointing outward from the discrete element

𝒏 =
𝒙 𝑗 − 𝒙𝑖��𝒙 𝑗 − 𝒙𝑖

�� . (14.2)

Then the resultant force is used to calculate the position and orientation of a given
discrete element, using Newton–Euler dynamic equilibrium equations

𝑚𝑖 ¥𝒖𝑖 = 𝑭𝑖 =

𝑁 c
𝑖∑︁

𝑛=1
𝑭𝑛, 𝐼𝑖 ¥𝝓𝑖 = 𝑴𝑖 =

𝑁 c
𝑖∑︁

𝑛=1
𝒓𝑐𝑖 ×𝑭𝑛 (14.3)

where 𝑁c
𝑖

is the number of interactions of 𝑖-th element, and 𝒓𝑐𝑖 is the vector connecting
the center of mass of the particle with the contact point 𝑐 (Fig. 14.1). While integrating
the first equation of motion gives us information about the position of the element,
integrating the second equation allows us to determine the rotation of the local
coordinate system in relation to the reference system.

At the moment of interaction, the initial length 𝑙0 of the fictitious element in the
form of a spring, contained between the particles, is defined as

𝑙0 =
���𝒙0
𝑗 − 𝒙0

𝑖

��� . (14.4)
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This length is treated as a reference value used to calculate other geometric relation-
ships.

14.2.2 DEM Interaction Force Model Based on Micropolar Theory

At the beginning of this section, we recall the basic constitutive relations that describe
Cosserat continua. The modified versions of these relations, where the strain tensor
and the curvature tensor are decomposed into a symmetric () and non-symmetric
<> part [21], are presented

𝜎𝑖 𝑗 = 2𝜇Y (𝑖 𝑗 ) +2𝜐Y<𝑖 𝑗> + (𝜆Y𝑘𝑘 −𝛼′𝜃) 𝛿𝑖 𝑗 ,
𝜇𝑖 𝑗 = 2𝛾𝜅 (𝑖 𝑗 ) +2𝜂𝜅<𝑖 𝑗> +Υ𝜅𝑘𝑘𝛿𝑖 𝑗

(14.5)

where 𝜎𝑖 𝑗 , 𝜇𝑖 𝑗 are the stress and coupled stress tensors respectively, 𝜇,𝜆 are the
Lamé constants, 𝜐, 𝛾,𝜂 are new elastic constants, 𝛼′ and Υ = 0 are thermomechanical
parameters, and 𝛿𝑖 𝑗 is a Kronecker delta. Since in (14.5) the symmetric and non-
symmetric parts of these tensors were used, we recall the description of the strain
tensors

Y (𝑖 𝑗 ) =
1
2
(𝑢 𝑗 ,𝑖 +𝑢𝑖, 𝑗 ), Y<𝑖 𝑗> =

1
2
(𝑢 𝑗 ,𝑖 −𝑢𝑖, 𝑗 )− ∈𝑖 𝑗𝑘 𝜔𝑘 (14.6)

as well as the curvature tensors

𝜅 (𝑖 𝑗 ) =
1
2
(𝜔 𝑗 ,𝑖 +𝜔𝑖, 𝑗 ), 𝜅<𝑖 𝑗> =

1
2
(𝜔 𝑗 ,𝑖 −𝜔𝑖, 𝑗 ). (14.7)

In the present model, the description is limited to a simplified theory of Cosserats’
brothers known as the pseudo-Cosserat continuum. This theory assumed that

Y<𝑖 𝑗> =
1
2
(𝑢 𝑗 ,𝑖 −𝑢𝑖, 𝑗 )− ∈𝑖 𝑗𝑘 𝜔𝑘 = 0,

which leads to the relation
𝜔𝑘 =

1
2
∈𝑘𝑙𝑚 𝑢𝑚,𝑙 (14.8)

associating the rotation with the displacement field. Although the non-symmetric
part of the strain tensor is equal to zero, the corresponding non-symmetric part of
the stress tensor 𝜎<𝑖 𝑗> = 2𝜐Y<𝑖 𝑗> does not vanish and can be determined from the
equilibrium equation of momentum conservation

∈𝑖 𝑗𝑘 𝜎𝑗𝑘 + 𝜇 𝑗𝑖, 𝑗 = 0. (14.9)

Taking into account the particle-particle interaction in the discrete element method,
the forces and the corresponding moment are located in the plane Π determined by
vectors 𝒏 and 𝒆 (Fig. 14.2a) in each time step, where



14 Modeling Solid Materials in DEM Using the Micropolar Theory 237

(a) (b)

Fig. 14.2: Illustration of the displacement plane Π determined by the vectors 𝒏 and 𝒆 a), geometry
of the virtual volume element 𝑉 ′ b).

𝒆 =
𝒖T

|𝒖T |
. (14.10)

We assumed that the virtual volume element (Fig. 14.2b) is subjected to deformation
by prescribed displacements 𝒖N and 𝒖T in this particular plane. We can rewrite those
displacements as 𝒖N = 𝒏𝑢N and 𝒖T = 𝒆𝑢T, and change the indices to 𝑢1 = 𝑢N, 𝑢2 = 𝑢T.
Now we consider the deformation of the virtual element in a plane as a combination
of pure shear deformation and rigid rotation, where

𝜔3 =
1
2
𝑢2,1 =

𝑢2

2𝑙0
. (14.11)

This results in definitions of displacement and rotation vectors as follows

𝒖 =
{
𝑢1, 𝑢2, 0

}T
, 𝝎 =

{
0, 0, 𝜔3

}T
. (14.12)

Based on the description widely used to determine the strains in DEM models, we
can determine the corresponding strain components as

Y11 =
𝑢1

𝑙0
, Y12 = Y21 =

1
2
𝑢2

𝑙0
(14.13)

then the curvature components
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𝜅 (13) =
1
2
(𝜔3,1 + 𝜔1,3︸︷︷︸

=0

) = 1
2
𝜅13 =

1
4
𝑢2,11,

𝜅<13> =
1
2
(𝜔3,1 − 𝜔1,3︸︷︷︸

=0

) = 1
2
𝜅13 =

1
4
𝑢2,11,

𝜅 (23) =
1
2
(𝜔3,2 + 𝜔2,3︸︷︷︸

=0

) = 1
2
𝜅23 =

1
4
𝑢2,12,

𝜅<23> =
1
2
(𝜔3,2 − 𝜔2,3︸︷︷︸

=0

) = 1
2
𝜅23 =

1
4
𝑢2,12.

(14.14)

The use of such a deformation, which is the same as the widely used approach in
the DEM method, makes it impossible to obtain higher-order derivatives required in
the current model. For this reason, a shape function was introduced in the form that
describes the deformation of the virtual element, depending on the relative displace-
ment of the centers of the particles. It was assumed that the surfaces perpendicular
to the direction of the 𝑥′1 axis do not subject to warp (Fig. 14.3). The third-degree
polynomial N(𝑥′1) = 𝑐1 + 𝑐2𝑥

′
1 + 𝑐3𝑥

′
1

2 + 𝑐4𝑥
′
1

3 was used to determine the form of
the function, where 𝑥′1 is the coordinate in the local coordinate system, where, for
simplicity, the origin of the system is located in the center of the particle 𝑖. The
assumed degree of the polynomial guarantees the differentiability of the function
in the required range determined by the constitutive equations of the micropolar
medium. In order to determine the constants occurring in the polynomial, boundary
conditions in the form of

Fig. 14.3: A scheme illustrating the relative displacement of a discrete element with the normal 𝒖N
and tangent 𝒖N components of the displacement vector in a local coordinate system 𝑥′1, 𝑥

′
2.
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N(𝑥′1)
��
𝑥′1=0 = 0, N(𝑥′1)

��
𝑥′1=𝑙0

= 𝑢2 (14.15)

while for the first derivative dN(𝑥′1)/d𝑥
′
1 = 𝑐2 +2𝑐3𝑥

′
1 +3𝑐4𝑥

′
1

2, due to the kinematic
condition (14.8) adopted

dN(𝑥′1)
d𝑥′1

����
𝑥′1=0

=
𝑢2

2𝑙0
,

dN(𝑥′1)
d𝑥′1

����
𝑥′1=𝑙0

=
𝑢2

2𝑙0
. (14.16)

Finally, the interpolation function will take the form of

N(𝑥′1) =
1

2𝑙0
𝑥′1 +

3
2𝑙20

𝑥′1
2 − 1

𝑙30
𝑥′1

3. (14.17)

Figure 14.4 shows a graphical interpretation of the function (14.17) and its deriva-
tives, where the 𝑢2 ∈ {0,1} range was assumed to illustrate the dependence on the
displacement of the discrete element. The reference length was assumed as the unit
𝑙0 = 1. Now, we can compute the curvature components and their derivatives, where
the quantity 𝜅𝑘𝑘 vanishes due to div𝝎 = 0. Since N is a function of only 𝑥′1, the
second rank component of tensor 𝜿 will be zero
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Fig. 14.4: The influence of the "nodal" displacement 𝑢2 of the particle on the distribution of:
displacements a), strains b) and curvature c) along the 𝑥′1 coordinate of the virtual element 𝑉 ′.
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𝜅13 =
1
2
𝑢2,11 = − 3

2𝑙20
𝑢2, 𝜅23 =

1
2
𝑢2,12 = 0. (14.18)

Determining the moment and force of two particles that contact each other requires
an analysis of the state of stress in the plane of interaction Π. Due to the deformation,
a stress state will be created in the virtual element, for which it is assumed that the
surfaces 𝑥′3 = ±𝑟 are stress-free, therefore 𝜎13 = 𝜎23 = 𝜎31 = 𝜎32 = 𝜎33 = 𝜇31 = 𝜇32 =

𝜇33 = 0. It can be seen that in the considered element, the stress state is reduced
to a plane problem, and due to the kinematics of the system, the coupled stress
components 𝜇11, 𝜇12 and the stress 𝜎22 are equal to zero. Since the nonsymmetric
strain components are zero Y<12> = Y<21> = 0, therefore Y12 = Y (12) and Y21 = Y (21)

𝜎11 = 2𝜇Y11 +
𝜈𝐸

1+ 𝜈 Y11 −𝐸𝛼𝜃 = 𝐸
(
𝑢1

𝑙0
−𝛼𝜃

)
,

𝜎12 = 2𝜇Y12 −
1
4
𝜉
(
𝜅13,1 + 𝜅23,2

)
= 𝜇

𝑢2

𝑙0
+ 3

2
𝜉
𝑢2

𝑙30
,

𝜎21 = 2𝜇Y21 +
1
4
𝜉
(
𝜅13,1 + 𝜅23,2

)
= 𝜇

𝑢2

𝑙0
− 3

2
𝜉
𝑢2

𝑙30
,

𝜇13 = 𝜉𝜅13 = −3
2
𝜉
𝑢2

𝑙20
.

(14.19)

The constant 𝜉 is a combination of previous constants 𝛾 +𝜂, and was introduced after
simple manipulations in Eq. (14.5).

14.2.3 Visco-Plasticity

During the material deformation process, which is accompanied by high deformation
rates and high temperature, in addition to the plastic flow of the material, there are
also viscous phenomena, that is, creep or relaxation of the material. The system of
constitutive equations (14.19) can be represented as in [24] by vectors containing
only non-zero components of the corresponding tensors. To maintain the appropriate
dimension of a given quantity, the characteristic length ℓ was introduced. We will
write the stress and the strain column vectors as

�̂� =
{
𝜎11, 𝜎12, 𝜎21, 𝜇13/ℓ

}T
, �̂� =

{
Y11, Y12, Y21, 𝜅13ℓ

}T (14.20)

and the corresponding stiffness matrix in the form

̂𝑪 =



2𝜇+𝜆 0 0 0

0 2𝜇 0 −1
4
𝜉

0 0 2𝜇
1
4
𝜉

0 −1
4
𝜉

1
4
𝜉 𝜉


. (14.21)
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As in the classical formulation of plasticity, the strain tensor and the curvature tensor
can be represented as the sum of the elastic and plastic parts [25, 26], and the strains
resulting from the thermal effect. Whereas the Y11 strain in the discrete element
method is calculated based on the penetration value of the two spheres (and not
incrementally), the incremental Hooke’s law will be expressed by the formula

�̂�𝑟+1 = �̂�trial
𝑟+1 −Δ�̂�p −Δ�̂�𝜃 = ̂𝑪 :

(
�̂�𝑟+1 − �̂�

p
𝑟+1 −𝜺𝜃𝑟+1

)
(14.22)

The algorithm was built based on the forward Euler scheme and the use of the cutting
plane method [27]. The return mapping algorithm assumes an increase in elastic
strain in step 𝑟 +1, which, using the constitutive relation, results in trial stress �̂�trial.
For the stress calculated in this way, the yield condition 𝐹 (�̂�, 𝑅) ≤ 0 is checked, if the
criterion is met, then the stress vector is inside the yield surface and the test stress is
the stress at the end of step 𝑟 +1, that is, �̂�𝑟+1 = �̂�trial

𝑟+1 . Otherwise, when 𝐹 (�̂�, 𝑅) > 0 a
viscoplastic corrector is required to bring the stress vector to the current yield surface.
This procedure involves calculating the increment of the plastic part of the strain
tensor Δ�̂�p.

The yield function, assuming only isotropic hardening, can be represented as

𝐹v
𝑟+1 = 𝑓𝑟+1 −𝜎y,𝑟+1

(
1+𝐶ln

Δ𝜆𝑟+1

¤𝑝0Δ𝑡𝑟+1

) (
1−

[
𝑇𝑟+1 −𝑇ref

𝑇melt −𝑇ref

]𝑚)
(14.23)

where the flow stress is described by the Johnson–Cook model [22]. Expanding the
plasticity function in a Taylor series

𝐹𝑖+1
𝑟+1 = 𝐹

𝑖
𝑟+1 +

𝜕𝐹

𝜕�̂�𝑟+1
𝛿�̂�𝑟+1 +

𝜕𝐹

𝜕𝜎y,𝑟+1
𝛿𝜎y,𝑟+1 +

𝜕𝐹

𝜕𝑣p,𝑟+1
𝛿𝑣p,𝑟+1 = 0 (14.24)

where 𝛿�̂�, 𝛿𝜎y and 𝛿𝑣p are increments of individual variables in the next iteration
step 𝑖. Considering that the internal state variable ¤𝑝 = ¤𝜆 = Δ𝜆

Δ𝑡
controls the effect of

viscoplasticity 𝑣p ( ¤𝑝) will take the form

𝑣p (Δ𝜆𝑟+1) =
(
1+𝐶ln

Δ𝜆𝑟+1

¤𝑝0Δ𝑡𝑟+1

)
(14.25)

while the state variable responsible for thermal effects will be written as a function

Γp (𝑇𝑟 ) =
(
1−

[
𝑇𝑟 −𝑇ref

𝑇melt −𝑇ref

]𝑚)
. (14.26)

Finally, after differentiation, equation (14.24) will take the form

𝐹𝑖+1
𝑟+1 = 𝐹

𝑖
𝑟+1 −

𝜕𝐹

𝜕�̂�𝑟+1
̂𝑪

𝜕𝐹

𝜕�̂�𝑟+1
𝛿𝜆𝑖+1
𝑟+1 − 𝑣p,𝑟+1Γp,𝑟𝐻𝑅,𝑟+1𝛿𝜆

𝑖+1
𝑟+1

−𝜎y,𝑟+1Γp,𝑟
𝜕𝑣p,𝑟+1

𝜕 ¤𝜆𝑟+1
𝛿 ¤𝜆𝑖+1
𝑟+1.

(14.27)
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Using the substitution previously presented for ¤𝜆, the increase in the plasticity
multiplier in the next iteration step will be expressed in the form

𝛿𝜆𝑖+1
𝑟+1 =

𝑓 𝑖
𝑟+1

𝜕𝐹

𝜕�̂�𝑟+1
̂𝑪

𝜕𝐹

𝜕�̂�𝑟+1
+ 𝑣p,𝑟+1Γp,𝑟𝐻𝑅,𝑟+1 +𝜎y,𝑟+1Γp,𝑟

𝜕𝑣p,𝑟+1

𝜕Δ𝜆𝑟+1

(14.28)

where
𝜕𝑣p (Δ𝜆𝑟+1)

𝜕Δ𝜆
=

𝐶

Δ𝜆𝑟+1
,

𝐻𝑅,𝑟+1 =
d𝑅𝑟+1

d𝑝𝑟+1
= 𝐵𝑛𝜆𝑛−1

𝑟+1 , (14.29)
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2ℓ
𝜉𝜇2
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}
.

Within each iterative step, the thermodynamic forces are updated with respect to the
current state of stress along with the calculation of a new value for the yield function

𝐹
v,𝑖+1
𝑟+1 = 𝑓 𝑖+1

𝑟+1 −𝜎
𝑖+1
y,𝑟+1

(
1+𝐶ln

Δ𝜆𝑖+1
𝑟+1

¤𝑝0Δ𝑡𝑟+1

) (
1−

[
𝑇𝑟 −𝑇ref

𝑇melt −𝑇ref

]𝑚)
(14.30)

and checking the convergence of the solution�����𝐹v (
Δ𝜆𝑖+1

𝑟+1
)

𝜎y,𝑟+1𝜐pΓp

����� ≤ TOL (14.31)

for a fixed tolerance value. If this value is within the tolerance range, the iterative
procedure is stopped, and the individual model parameters are updated.

It should be taken into account that not all the energy associated with plastic
deformation is dissipated in the form of thermal energy. A certain part of it is used
for structural changes that take place in the material, and hence

𝔇p = 𝜒𝝈 ¤𝜺p = 𝜒𝜎eq ¤𝑝 (14.32)

where the Taylor-Quinney coefficient 𝜒 is usually 0.9.

14.3 Model Verification

In this section, the verification of the model presented is discussed based on stress-
strain plots. This is done by comparing the plots from the DEM simulations and
the analytical model based on the parameters of the J–C model obtained from the
experiment.
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14.3.1 Simulation Set-up

In the current study, the introduced thermo-elato-viscoplastic model was implemented
in open-source YADE software [28] and validated using an analytical solution based
on the parameters presented in [23]. The numerical dynamic tensile tests were
carried out on an axisymmetric sample (Fig. 14.5a) with dimensions of: 𝑑1 = 20
mm, 𝑑2 = 10 mm, 𝑅 = 10 mm, 𝐿1 = 30 mm, 𝐿2 = 15 mm and 𝐿3 = 80 mm. To
analyze the influence of the discrete element size on the results, two cases of sample
geometry discretization were checked. In the first case, the radius of the spherical
elements was 1 mm (Fig. 14.5b) and in the second case 𝑟 = 0.75 mm (Fig. 14.5c).
The number of particles in the case of 𝑟 = 1 mm was 1842 and for 𝑟 = 0.75 was
4873. Performed DEM simulations do not take into account temperature softening
at this moment. The parameters of the material are presented in Table 14.1. Some of
the material properties were not calibrated, including Young’s modulus 𝐸 = 70 GPa,
Poisson’s ratio 𝜈 = 0.3, material density 𝜌 = 2710 kg/m3 and reference strain rate
¤Yref = 0.0001 1/s. Additional parameters that we introduced in the TEVP1 model and
are related to coupled stresses were the characteristic length ℓ = 0.025 mm and the
elastic constant 𝜉 = 𝐸𝑟2/3. The iterative parameters of the return mapping algorithm
were: TOL = 1 ·10−1 and MXITER = 100.

To illustrate the sensitivity of the model to dynamic behavior, two constant strain
rates were investigated: 1 and 10000 s−1.

(a)

(b) (c)

Fig. 14.5: Sample geometry used in DEM simulations a), discretized by spherical elements with
radius value of 1 mm b) and 0.75 mm c).

1 thermo-elasto-viscoplastic
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Table 14.1: Material properties of the 6082-T6 aluminum alloy used in the simulations..

Parameter Value from literature [23] Calibrated value Unit

𝐴 277.33 178.67 MPa
𝐵 307.93 25.73 MPa
𝑛 0.69 0.43 -
𝐶 0.0032 5 · 10−10 -

14.3.2 Results and Discussion

Figure 14.6a shows the comparison of the analytical solution with the stress-strain
curve from DEM simulation where the initial values of the material parameters were
used. There is no apparent correlation with the experimental model. The discrete
element method shows a yield strength about twice as high as in reality. In addition,
the observable strengthening effect is much greater than in the case of the analytical
model. This is a disadvantage of the DEM formulation, where a calibration of the
model must be performed in the initial step, before the right simulation [29]. In
this work, we use a trial-and-error method for the calibration of the model material
parameters. Due to the specific formulation of this method, the DEM model shows
high sensitivity to material parameters. The initial yield strength that describes the
parameter 𝐴 was calibrated first, but, unlike the analytical model, the DEM model
does not exhibit ideal plastic flow (Fig. 14.6b). This could be explained by the
dynamic behavior of the material. During tension, we can observe the stress wave
propagating along the sample (Fig. 14.7). This effect is different from the analytical
model, which describes the material in terms of a material point. As a result of the
material response, the effect of clear non-linearity in the initial range of plastic flow
is visible. Also visible is the effect of stress gradation, which is not observed in the
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Fig. 14.6: Comparison of a non-calibrated model with an analytic solution a) and calibration of the
parameters of the J-C model used in the DEM model b).
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Fig. 14.7: Stress map of 𝜎22 in the sample analyzed at a particular time during the loading process.
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analytical model. Calibration of the parameters 𝐵 and 𝑛, taking into account the value
of 𝐴, results in an increase in stress in relation to strain.

Appropriate calibration of the DEM model parameters results in a proper response
to the applied load in the form of the strain rate. At speeds of 1 s−1 and 10000 s−1,
the DEM model shows good accuracy compared to the analytical model (Fig. 14.8a).
A difference in the plastic behavior of the material is also observable, which in the
case of the discrete element method shows a certain non-linearity in determining
the yield point. It is also noticeable depending on the value of the strain rate. The
graphic shows the influence of the size of the discrete element on the stress value
during the sample loading process (Fig. 14.8b). Reducing the radius of the particles
results in an increase in yield strength and associated stress. This effect can be related
to the decrease in the stress value with an equivalent strain value due to a decrease
in particle size. Changing the model by excluding coupled stresses, in the case of
an analysis with a 1 mm element size, results in an increase in stresses and yield
strength. This allows us to conclude that the coupled stresses result in an increase in
the effective stress and therefore in a decrease in the yield strength of the material.

14.4 Concluding Remarks

In this work we have presented a new local constitutive model for the DEM obtained
by using micropolar theory. The model takes into account not only the elasticity but
also the viscoplastic behavior of the material, where the Johnson–Cook model was
adopted. The results obtained from the uniaxial tensile tests confirm that the model
correctly reproduces the mechanism of strain rate sensitivity.

These findings confirm the potential use of the TEVP model in analysis of metallic
materials subjected to high strain rates. The applicability of DEM to the linear and
non-linear analysis of ductile material has been proved.
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Fig. 14.8: Response of the material to strain rates of 1 s−1 and 10000 s−1 a), stress-strain relation
depending on the size of the element and the existence of coupled stress b).
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There is still a need to understand the sensitivity of the model to initial material
parameters and the influence of particle size on stress response. The work on those
problems is in progress and the results will be published in a succeeding paper.
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Chapter 15
The Development of a Cavitation-Based Model
for Creep Lifetime Prediction Using
Cu-40Zn-2Pb Material

Mbombo Amejima Okpa, Qiang Xu, and Zhongyu Lu

Abstract The occurrence of creep induced cavitation can considerably shorten the
lifespan of numerous high-temperature applications. A contemporary problem in
structural mechanics and materials science is the inadequate mathematical descrip-
tion of creep deformation and rupture time. This situation stems not only form a
lack of accurate quantification and incorporation of cavitation damage in current
theoretical models, but it is compounded by the strong stress level dependency of the
creep lifetime.

Cavitation is the rate-controlling mechanism during creep. To this end, this study
has developed a cavitation-based method for creep rupture lifetime prediction. For
accuracy and a representative data, cavitation data measured using x-ray synchrotron
tomography, are chosen for the study. Cavitation damage modelling precisely cavity
nucleation, growth and size distribution are presented. Functional relationships be-
tween creep exposure time and cavitation damage are developed to aid creep lifetime
prediction. This approach has the advantage of traceability as it is developed based
on quantifiable physical changes in the material (cavity nucleation and growth).

This study reports the latest progress in the development of a cavitation model
for a specific material under testing condition. It is planned to incorporate it, to
develop a creep lifetime prediction and extrapolation model. This paper offers a
theoretical foundation for a time-based extrapolation method to predict creep lifetime.
Furthermore, the cavitation modelling approach used in this study may be applied in
other failure modes like fatigue.
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15.1 Introduction

Creep damage is a crucial factor in high-temperature applications such as power plant
components (e.g., boilers and steam piping), gas turbine applications, and military
aircraft [1]. These applications demand a thorough understanding of creep and its
governing principles as well as the conditions under which it affects the structural in-
tegrity of the components. The lifetime of components in these applications is limited
by creep-induced cavitation, and premature breakdown of such critical components
can result in severe financial loss and even loss of life. Predicting the creep rupture
strength and lifetime of these components is a significant contemporary concern
in materials science and structural integrity research, as existing predictions have
often proven to be an overestimation. This issue is well-documented in the literature,
as material scientists and researchers are experimenting with various paradigms to
improve the accuracy of their predictions.

Several empirical equations have been developed to forecast creep lifetime by
parameterising the creep curve, using strain as a function of stress and temperature.
It is one of the early creep life assessment models as demonstrated by Norton [2], and
subsequently by Arrhenius [3]. Another popular approach is the continuum damage
mechanics (CDM), which was first proposed by Kachanov [4]. The creep rupture
life prediction is based on the analysis of creep behaviour during the tertiary stage.
Kachanov’s original model has undergone various modifications, with Dyson’s work
[5] being the most significant, where internal variables were introduced to describe
macroscopic behaviour and categorize damage. However, it is widely acknowledged
that the existing creep lifetime prediction models are still inadequate.

15.2 Stress Breakdown and Creep Lifetime

To prevent excessive deformation and a premature rupture of critical components
in high-temperature industries, safe operating limits in terms of acceptable strain,
temperature limits, and expected lifespan must be defined. To achieve this, historical
creep data for these components are necessary. However, obtaining long-term creep
data that exceeded 100,000 hours is time-consuming and expensive, resulting in a
scarcity of such data. In recognising this issue, the current approach for creep rupture
time prediction, involves various techniques in which an accelerated or short-term
creep test (usually with high applied stress) is conducted, and the data are analysed
and extrapolated to predict long term creep behaviour and rupture time. Currently,
creep life prediction via this extrapolation approach is still below expectations and
extrapolation of short-term data has been reported as one of the major challenges in
material science in the UK [6].

The stress breakdown phenomenon refers to the variation in the values of the
stress exponent 𝑛 and activation energy𝑄𝑐, when extrapolating short term creep data
to predict long-term creep behaviour, resulting in an overestimated long term creep
rupture life [7]. The power law equation proposed by Arrhenius is the traditional and
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one of the widely used methods for creep life prediction [3]. The proposed equation
relates time to fracture and stress:

𝑡 𝑓 = 𝑡0𝜎
−𝑛

(
𝑄𝑐

𝑅𝑇

)
(15.1)

where:𝑄𝑐, is the activation energy for creep; 𝑛, is stress exponent; 𝑅 is the gas constant;
𝑡 𝑓 , is the time to fracture, 𝑡0, is a constant; and 𝑇 , is the absolute temperature.

Originally, the values of 𝑄𝑐 and 𝑛, were assumed to be constant. However, alter-
native views came to light which very backed by experimental evidence that 𝑄𝑐 and
𝑛 values are stress level dependent [7, 8]. Ennis et al. [8], adopted Norton’s equation
and observed that for a high Cr martensitic steel, the stress exponent 𝑛 reduces from
16 at stresses above 150 MPa to 6 for stresses lower than 110 MPa. It was implied
that a possible change in deformation mechanism is the reason for the variation in
the value of 𝑛 as stress level changes and should be given great consideration during
long term extrapolation attempts. Subsequently, Lee et al. [7] adopted Arrhenius
equation (15.1) and observe that for an ASTM grade 92 steel,𝑄𝑐 and 𝑛 changes from
667 kJ/mol and 17 respectively for a short-term creep and high stress condition, to
624 kJ/mol and 8.4 in a long-term creep and lower stress condition.

In addition to the empirical models of creep life prediction, the Continuum Damage
Mechanics (CDM) is also a popular method of predicting creep lifetime. Dyson [5]
through experimental observations was able to further group creep damage into broad
categories including strain-induced, environmentally induced, and thermal induced
damage. Thus, the relationship between creep cavity damage and creep strain was
described as follows:
Dyson’s Concept

¤𝐷𝑛 =
𝑘𝑁

Y 𝑓𝑢
¤Y (15.2)

where ¤𝐷𝑛 is the rate of creep cavity damage, 𝑘𝑁 , is the cavitation damage coefficient,
Y 𝑓𝑢 is the strain at failure, and ¤Y is the creep strain rate.

There have been various modifications of Dyson’s framework, including studies
by Yin et al. [9], Basirat et al. [10], and Chen et al. [11] in which damage coefficient
𝐴 was introduced. 𝐴 was originally proposed to be a constant [9]. However, Basirat et
al. [10], observed that 𝐴 was strongly dependent on stress and temperature. Yang et
al. [12] observed that Yin’s concept could not address stress breakdown phenomenon
discussed earlier. With aim to address this issue, Basirat et al. [10] adopted Yin’s
model but relaxed the definition of 𝐴 by making it stress level dependent. However,
Xu et al. [13] using of 9Cr-1Mo steel data, pointed out that there was no clear trend
for 𝐴 when tested over a wide range of stress and temperature.

Hence, it is evident that the approach to correlate creep damage/creep lifetime to
creep strain is not satisfactory. It is our view that it is better and scientifically sounder
to model the cavitation directly, though the creep cavitation and/or creep lifetime is
very strongly co-related to creep strain [13].
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15.3 Creep Cavitation and Cavitation Data Concerns

Creep fracture at low stress and high temperature is commonly said to be intergranular
[14–16]. This is due to the formation, growth, and coalescence of cavities at the grain
boundary during the tertiary stage of a creep process. Eventually, the cavitation
process becomes the primary source of the rapid increase in creep rate at the tertiary
stage of a creep process. Therefore, for a reliable lifetime prediction, this dominate
damage mechanism(cavitation) should be treated with great importance.

Formation of cavities may start early in the creep life, likely around the primary
stage and their effect at this stage is negligible but as these cavities grow in terms
of numbers and size, they progressively weaken the material and eventually lead to
ultimate failure [16]. Cavity nucleation and growth stages have long been identified
as the rate controlling stages and occupies about 80% of the creep process [17].
Therefore, the nucleation and growth stages has been a subject of intense interest.

The idea of quantifying the damage in a material for rupture time prediction has
been conveyed for over six decades now [18]. Quantifiable physical characteristics
of cavitation like Cavity nucleation, growth and size distribution can be analysed
to enable creep lifetime predictions. The approach offers simplicity and a statistical
method for evaluating microstructural evolution and rupture time prediction. One
primary concern with this approach is the lack of relevant cavitation data and the
ambiguity associated with the available ones [19]. This situation primarily results
from a lack of an effective tool to measure and characterise creep cavities. The
popular traditional methods for studying creep cavitation in materials are mostly
destructive in nature; the most widely used techniques in that category are scanning
electron microscopy (SEM) and transmission electron microscopy (TEM). These
methods have been used extensively to study microstructural features in materials
and for quantitative analysis of cavities [20–23]. The newer techniques are said to be
non-destructive in nature and have gained popularity in recent years. Most notable
are; the Replica metallography, commonly used for quantitative analysis of cavities
on the surface of a material [24]; and the Small Angle Neutron Scattering (SANS),
typically used to yield quantitative information on the size distribution of cavities as
well as the morphology of voids and precipitates [24].

It is therefore obvious that cavitation damage characterisation has mostly been done
using destructive two-dimensional methods, surface replica or a scattering method.
Several literatures have shown that these methods are not efficient in characterising
cavities. The SEM and TEM for example, produce 2D images of the microstructures
and are not able to reveal the true size and shape of cavities. The surface replica is
only able to detect the surface cavities shortly before fracture and the information
obtained at the surface differs from those observed in the bulk of the material [25–27].
The SANS is not truly non-destructive as samples must be physically detached from
their components and taken for testing [24].

The past two decades have witnessed a rapid rise in the application of X-ray
synchrotron micro-tomography for studying fracture and fatigue behaviour in en-
gineering materials [28]. It is a non-destructive technique capable of offering a
3-dimensional visualisation of a material’s microstructure [28, 29]. This technique
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has a significant advantage over the traditional one as it can reveal the true size
and shape of cavities [30]. Yadav et al. [31] investigated the difference in damage
quantification between 2D analysis and 3D serial sectioning. It was demonstrated
that the 2D method was not able to quantify complex shaped cavities and hence,
overestimated the number density and volume fraction of creep cavities by almost a
factor of 4. The tomography technique has been recommended in several literatures
are the most efficient technique to measure and characterise cavity profiles [32, 33].
The idea to make use of such cavitation data for the development of a cavitation
model was advocated by Xu [13]. To this end, this study will seek for cavitation
data examined using X-ray synchrotron micro-tomography to aid cavitation damage
modelling.

15.3.1 How to Use Cavitation Data

Nucleation data, precisely the evolution in number of cavities with creep time, offers
information on how fast cavities proliferate in a material. Such data can be calibrated
and a model that describes the nucleation rate can be ascertained. The cavity growth
data on the other hand is more complex to analyse in an isolated manner, due to
the significance of continuous cavity nucleation. Therefore, the cavity growth data
should be analysed alongside the cavity size distribution data. This is to tackle the
complexities associated with continuous cavity nucleation [16]. A meaningful cavity
growth data will be one that reveals the evolution of total overall cavity size with
creep time. It is important to note here that a reliable conclusion cannot be drawn
on cavity growth and growth rates by analysing the evolution of the average size of
cavities with creep time. This is because continuous cavity nucleation significantly
influences the average size of cavities [34]. In addition, the size distribution data
are essential for developing damage criteria such as the cavitated area and volume
fractions. The damage criteria are generally used as indicative parameters for rupture
time prediction.

15.3.2 Current Approach to Cavitation Modelling and Creep Life
Prediction

Several literatures in the later part of 2010’s and early 2020’s highlighted the need
to deviate from the empirical models to a physically based model [13, 33, 35, 36].
Generally, the models are either strain or stress driven.

Sandström and He [37] developed a cavitation model that is strain based. It was
put forward that both cavity nucleation and growth are directly proportional to strain.
They merged the equations for both cavity cavity nucleation and growth to create
a damage criterion using the cavitated area fraction concept. It was observed that
the final fracture occurred when the cavitated area fraction surpassed 0.25. Davanas
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[36] proposed a connection between nucleation rate and minimum strain rate, by
linking the minimum strain rate to the rupture time through the Monkman-Grant
ductility. The proposed model is based on strain, it is assumed that the cavity growth
stage is less significant and, therefore, not considered. Yu et al. [38] studied the
potential of predicting creep rupture using a constrained diffusional cavity growth
model on G115 Martensitic heat-resistant steel. Huang et al. [39] combined Nicking
and Riedel’s continuous nucleation models to forecast the creep rupture time on
Alloy 800. They used Hart’s criterion to determine the start of necking and assumed
that cavity formation is directly related to the creep strain rate.

Xu et al. [13] pointed out several limitations in the current cavitation damage
models and proposed a new damage criterion for a P91 material based on Riedel’s
cavitation theories. Using the cavitated area fraction denoted as 𝑤, a relationship
between cavitation damage and time to fracture 𝑡 𝑓 was established. It was concluded
that rupture occurred when �̄� reached a critical value denoted as 𝑤 𝑓 . Therefore, time
to fracture is described as follows:

𝑤 𝑓 =𝑈
′𝑡 𝑓

2 (15.3)

where: 𝑤 𝑓 is the critical value for the cavitated area fraction;𝑈′ is a stress dependent
variable; and 𝑡 𝑓 is the time to fracture.

Xu’s model demonstrates a good potential for success as the kinetics of cavity
nucleation and growth have been incorporated. In addition, results demonstrated a
clear trend between stress and stress-dependent variables𝑈′ and 𝐴2. This is significant
as the trend can be analysed and extrapolated into lower stress regimes. Zheng et
al. [40] extended the application of this model to other materials (P92 and E911)
and obtained a similar trend between stress and𝑈′ and 𝐴2 for those materials. More
recently, Zheng [41] and Fu and Xu [42] demonstrated that the model could be used
to calibrate cavitation damage at various stages of a creep process, not just at the
time of fracture, using type 316H steel creep data. This demonstrates and proves the
feasibility of extrapolating early-stage creep cavitation data to predict rupture time,
resulting in the formal proposal of early creep lifetime prediction approach [43].

15.4 Aims

Creep lifetime modelling and prediction has been established recently, and its appli-
cations include the extrapolation from higher stress to lower stress and preliminary
early creep lifetime prediction approach. The primary aim of this study is to develop
and apply the latter.
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15.5 Experimental Data and Method

15.5.1 Experimental Data

An in-situ examination of creep cavitation process leading to creep fracture on
Cu-40Zn-2Pb, subjected to 25MPa and at 375◦C using X-ray micro-tomography [44]

1. Creep data one: Evolution of number of cavities (number of cavities vs creep time)
2. Creep data two: Cavity size histogram at different creep time
3. Creep data three: Evolution of the total cavity volume (total cavity volume vs

creep time)

15.5.2 Method

A link between experimental data the theories of cavity nucleation and growth is
the cavity size distribution function proposed by Riedel (1987), and it is denoted by
𝑁 (𝑅, 𝑡):

𝑁 (𝑅, 𝑡) = 𝐴2

𝐴1
𝑅𝛽𝑡𝛼+𝛾

(
1− 1−𝛼

1+ 𝛽
𝑅𝛽+1

𝐴1𝑡1−𝛼

) (𝛼+𝛾)/(1−𝛼)
(15.4)

A general solution to these cavity nucleation and growth theories can be summarised
in a power law form:

¤𝑅 = 𝐴1𝑅
−𝛽𝑡−𝛼 (15.5)

𝐽∗ = 𝐴2𝑡
𝛾 (15.6)

(4.2) where: ¤𝑅 is the non-stationary growth rate of cavity radius; 𝐽∗ is the nucleation
rate of cavity; 𝐴1, 𝐴2, 𝛾,𝛼 and 𝛽 are all unknown material constants that may be
dependent on stress.

To determine the extent of material damage, one can use the absolute cavitated
area 𝑤 as a measure. This quantity is computed by summing up the areas of individual
cavities 𝜋𝑅2 and then multiplying by their number density 𝑁𝑑𝑅. This procedure is
repeated for all cavity sizes

𝑤 =

𝑅max∑︁
𝑅min

𝜋𝑅2𝑁 (𝑅, 𝑡)𝑑𝑅 (15.7)

where: 𝑅max and 𝑅min are maximum and minimum cavity radius, 𝑅 is the cavity
radius, and 𝑁 (𝑅, 𝑡) is the cavity size distribution function.

The primary task in the cavitation modelling is to find a solution for a set of
the five unknown material parameters 𝐴1, 𝐴2, 𝛾,𝛼 and𝛽 over a series of creep times.
Functional relationships between the absolute cavitated area and creep time are then
developed to aid creep lifetime prediction.
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15.5.3 Determination of Cavitation Constants

Experimental data (set 1) can provide insights into the evolution of cavity number
over the creep process. Equation (15.6) can be integrated to obtain the number of
cavities, 𝐽

𝐽 = 𝐴2
𝑡𝛾+1

𝛾 +1
+𝐶2 for 𝛿 ≠ −1. (15.8)

where: 𝐽 is the number of cavities; 𝑡, time in minutes; 𝐴2, material parameter
associated with nucleation rate; and 𝐶2, is an integration constant.

To determine the values of 𝐴2, 𝐶2 and 𝛾, two reference points are selected from
both ends of the experimental data: 𝐽366 and 𝐽52, which correspond to the cavity time
at 𝑡 = 366 and 𝑡 = 52 min, respectively. The values of 𝐴2 and𝐶2 can be obtained from
these reference points, and 𝛾 can be determined through optimization or trial-and-
error methods. It’s important to note that the correct values for these constants should
accurately describe both the cavity size distribution and nucleation data. Therefore,
the process of obtaining 𝛾 involves a relaxation technique and was not restricted to
the cavity nucleation data.

𝐴2 =
(𝐽366− 𝐽52)𝛾 +1
𝑡
𝛾+1
366 − 𝑡𝛾+1

52

, (15.9)

𝐶 = 𝐽366 −
(
𝐴2𝑡

𝛾+1
366

𝛾 +1

)
. (15.10)

By solving Eqs. (15.9) and (15.10), the following material parameters were obtained:
𝐴2 = 6.218 cavities/min1.5, integration constant 𝐶 = 49.62, and material parameter
𝛾 = 0.5. These values provide a good fit when compared with the experimental data,
as shown in Fig. 15.1.

After 400 min of creep time, the effect of cavity coalescence on the modelling
results becomes apparent as the total number of cavities gradually decreases over
time. This observation suggests that some of the cavities may have merged to form
larger cavities, which highlights a concern with using the number of cavities per unit
area as a parameter for assessing the level of creep damage in a material.

15.5.4 Cavity Size Distribution Modelling

This section presents the results of modelling the cavity size distribution and compares
them with corresponding experimental data. Equation (15.5) is relevant to this analysis.
It is necessary to mention that the experimental data are a lot denser, and a few points
have been picked for clarity.

Given the known values of 𝐴2 and 𝛾, time 𝑡 is constant since only one deformation
stage is investigated [45], 𝛼 = 1 can be assumed for continuum cavity nucleation,
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Fig. 15.1: Modelling result compared with experimental data. Evolution of creep cavities with time.
Experimental data retrieved from [44].

as per Riedel’s theory. This assumption is critical since cavity nucleation is said
to be continuous. With this information, the remaining constants 𝐴1 and 𝛽 can be
determined from the cavity size distribution function 𝑁 (𝑅, 𝑡). The results of this
modeling are presented in Table 15.1, where 𝐶1 is an integration constant related to
the cavity growth rate.

The cavitation constants, which consist of the parameter 𝛽, are believed to be
solely influenced by stress, and this stress-related dependency should show a clear
pattern in accordance with the second law of thermodynamics [43]. The findings
indicate that 𝛽 decreases as the creep time increases. The present modelling technique
used is limited by the manual calibration procedures used to determine the cavitation
constants and this could be a possible explanation for the variability of 𝛽. Nevertheless,
the consequence of a variation in 𝛽 is not significant as it only influences the predicted

Table 15.1: Modelling results for the values of 𝐴1, 𝐶1 and 𝛽.

Time (min) 𝐴1 𝐶1 𝛽

52 1.080 1.781 0.50

110 1.103 1.822 0.50

137 0.983 1.527 0.30

196 1.099 1.795 0.30

307 1.007 1.330 0.00

440 1.083 0.548 -0.4
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pattern in which cavities grow to make up the total cavitated area or total cavitated
volume. The volumetric damage will be reported in a future study.

Figures 15.2-15.4 shows the results of modelling the cavity size distribution and
compares them with corresponding experimental data.
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Fig. 15.2: Cavity size distribution data at 𝑡 = 52 min. Modelling result compared with experimental
data from [44].

Based on the obtained values of the cavitation constants, the predicted relationship
between cavity growth and creep time is illustrated Fig. 15.5, using Eq. (15.11).

𝛽 = −0.4, 𝑅
5
3 =

5
3
(𝐴1 ln 𝑡 +𝐶1). (15.11)

The evolution of cavity growth and nucleation rates, 𝐴1 and 𝐴2 respectively, are
extracted from the cavity size distribution modelling results and are presented graph-
ically Figs. 15.6 and 15.7. It is observable that the coefficients remain relatively
stable over varying creep times. The outcomes indicate a distinct pattern for the
cavitation coefficients and establish a reliable foundation for predicting creep life-
time through extrapolation techniques. This provides assurance and groundwork for
potential applications of the model in predicting creep lifetime.
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Fig. 15.3: Cavity size distribution data at 𝑡 = 196 min. Modelling result compared with
experimental data from [32].
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Fig. 15.6: Evolution of growth rate coefficient with time.

15.6 Conclusions and Future Work

Creep Lifetime prediction is a challenging task primarily due to the stress breakdown
phenomena and the lack of accurate quantification and consideration of cavitation
damage. The modern approach on creep damage modelling is either strain or stress
driven cavitation models. Over the past two decades, X-ray synchrotron tomography
technique has emerged as an efficient tool to characterise creep cavities. This study
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Fig. 15.7: Evolution of nucleation rate coefficient with time.

has reported the importance of creep cavitation data and how it can be used to aid
creep lifetime prediction. In addition, this study has demonstrated how to model
cavity nucleation, growth, and size distribution over the different creep time which
will be used further to aid the development of creep cavitation prediction model based
on extrapolation.

The following key points have been highlighted as future work:

• To develop damage criteria based on the cavitated area fraction along a grain
boundary as well as cavitated volume fraction.

• To establish functional relationships between the damage criteria and creep expo-
sure time.

• Using the developed relationship, extrapolate early-stage creep data to predict
final rupture time.

• To develop an optimization software or program capable of solving for the param-
eters in the cavity size distribution function 𝑁 (𝑅, 𝑡).

• To extend the application of this method of creep lifetime prediction to a wider
range of materials and possibly to characterise other failure modes like fatigue.
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Chapter 16
Self-heating Analysis with Respect to Holding
Times of an Additive Manufactured Aluminium
Alloy

Lukas Richter, Holger Sparr, Daniela Schob, Philipp Maasch, Robert Roszak, and
Matthias Ziegenhorn

Abstract Materials exhibiting a rate-dependency in a mechanical loading regime
enclose a variety of deformation mechanisms depending on their microstructure. This
holds true for material classes from plastics to metals and is increasingly important
for high-performance structural components. Material models covering viscoplastic
deformation with hardening effects for metals have been widely studied in the last
decades. The deformation mechanisms contribute to stored energy and dissipation
and are reflected in the balance of energy. The current temperature measurement
techniques give new opportunities to exploit an accurate temperature field to prove
and validate material models. Especially, contact-free thermography with a small
resolution range up to 1mK is becoming more popular in mechanical testing set-ups.
The paper examines a thermomechanical approach and an experimental concept
for a material law verification and validation for self-heating in small temperature
ranges. The focus lies on loading regimes incorporating holding times and the
unloading path. An advanced thermographic measurement method is applied. It is
pointed out that the thermomechanical approach is valuable and informative to assess
the observed deformation processes and to describe the material behaviour with a
thermodynamically valid parameter set.

16.1 Introduction

In the thermomechanical approach the processes of deformation as reason of me-
chanical loading and the temperature evolution as a consequence of heat generation
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and heat fluxes are coupled. In the scope of this article the process is mainly focusing
on self-heating phenomena, which is best illustrated by a balanced state in reference
configuration. Without mechanical loading, a constant temperature distribution of
the observed object(s) and no heat sources, the heat flux in the three-dimensional
domain vanishes completely. Introducing then a mechanical load leads in general to
an inhomogeneous temperature evolution.

The idealized case of thermoelasticity with negligible inelastic deformations is
a reversible thermodynamic process, when adiabatic boundary conditions can be
realized, which was already pointed out in the 19th century [1]. After mechanical
unloading, the stored energy is released and the object returns to the homogeneous
temperature field of the reference state. The adiabatic boundary condition is a sensible
approximation for fast loading regimes and often serves as a limit case in numerical
calculations. For most common thermal boundary conditions, a heat flux to the
surroundings occurs and the thermodynamic irreversibility.

Therefore, any process has to be considered as irreversible,which is mathematically
expressed by the inequality of the second law of thermodynamics often referred to
as the Clausius-Duhem inequality. This fundamental law in the context of
deformable bodies leads to the framework of continuum thermomechanics, which
is still discussed and successfully applied to a large variety of problems [2, 3]. The
reflections on the Clausius-Duhem inequality involved the idea of admissible
processes and resulted in the Coleman-Noll procedure formulating restrictions on
the constitutive equations and a reduced dissipation inequality [4]. In this sense,
any material model must not violate the second law of thermodynamics or, in other
words, needs to be thermodynamical consistent. The modelling approach often
applies the concept of internal variables [5], which are related to specific deformation
mechanisms.

These mechanisms comprise permanent modifications of the material’s microstruc-
ture and generate permanent deformation. Taylor and Quinney [6] introduced a ma-
terial specific ratio that only a fraction of plastic work is transferred into dissipation
and therefore into heat. This observation was characterized by the term stored energy
of cold work and was the central subject in the monograph of Bever et al in 1973 [7],
which recorded a significant variance in the non-standardized testing set-ups.

Current infrared (IR) camera systems increased the accuracy of the measured
temperature field on the surface dramatically, which lead to several substantial contri-
butions w.r.t. the experimental methodology and the analytical material description
[8–10]. The universal digital image correlation (DIC) was applied in several ways,
which introduced very high experimental achievements in some applications [11–16].

The proposed set-up in this article reduces the experimental requirements to a
minimum and is still able to access highly accurate temperature evolutions for complex
loading regimes at room temperature. The influence of the strain rate is of major
interest, which is reflected in the focus on material models for viscoplasticity. In the
sense of continuum thermodynamics, the authors want to refer to the research groups
headed by P. Rosakis [17], W. Egner [18], W. Oliferuk, [19] and M. Ristinmaa [20]
and the references made therein. All these researchers pay special attention to
thermomechanical consistency and the detailed evaluation of thermodynamical state
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variables to draw further conclusions to the material’s microstructure regarding
e.g. the yield initiation or strain hardening effects.

In particular, this paper deals with the numerical description of a selective laser
melting (SLM) manufactured aluminium alloy. The nonlinear thermoviscoplastic
material model described by Bröcker and Matzenmiller [21] is used for the material
modelling. Motivated by the complex but clearly presented considerations, this
model determines the components for the stored energy of cold work. Bröcker and
Matzenmiller performed their investigations for aluminium with good agreement to
the measured material behaviour based on a simple tension load without holding
times. This paper introduces experiments with multiple defined holding times and
two different strain rates. These complex experiments are observed and described by
the thermomechanical approach.

The article summarizes the thermomechanical experiment in Sect. 16.2, which
serves as motivation for the analytical and numerical approach. The numerical
methods are outlined in Sects. 16.3 and 16.4. The results presented in Sect. 16.5 are
discussed in detail in Sect. 16.6 and an outline for future research prospects is given
in Sect. 16.7.

16.2 Thermomechanical Experiment

16.2.1 Experimental Set-Up

The thermomechanical experiments were performed by a servo-hydraulic testing
machine with a maximum load cell of 25 kN from the company Zwick&Roell
(Fig. 16.1 left). The machine has a temperature chamber,which is used as an additional
thermal and convective shield of the system. On the right side of Fig. 16.1, the concept
of the thermomechanical set-up is shown. In order to evaluate the displacement and
temperature field in combination, an IR camera (No. 1), a mechanical testing system
(No. 2) and an external radiator (No. 3) are necessary. The radiator produces a
contrast in the thermogram which is needed for the later DIC for the strain evaluation.
The IR camera ImageIR 8300 hs from InfraTec GmbH was used to record the
temperature field. The specifications of the camera are listed in Table 16.1. Based on
the experimental set-up experiments for a SLM printed sample were realised. These
specimens are made of the aluminium alloy AlSi7Mg0.6 and shown in Fig. 16.2
as detail d1. The illustrated geometry describes a dogbone sample according to
DIN 50125 shape E [22]. The samples were provided by the Faculty of Mechanical
Engineering at Wrocław University of Science and Technology. Detailed studies on
the material structure were conducted and can be found in [23].

The material behaviour is to be characterised first. One approach is the considera-
tion of displacement-controlled tests. The implementation of defined holding times
can determine the rate dependency of the material behaviour. The holding time de-
fines that part of the load path where the position of upper clamp is kept at a constant
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Fig. 16.1: Thermomechanical experimental set-up, on the left side: testing machine an on the right
side: experimental set-up (1 - IR camera, 2 - clamped specimen, 3 - radiation heat source).

Table 16.1: Technical Specifications of the ImageIR 8300 hs.

Property/Parameter Unit Specification

Spectral region µm 1.5 . . .5.5

Detector format (px) × (px) 640× 512

Temperature resolution at 30 ◦C measuring range mK ≤ 20

Measuring range ◦C −40 . . .1500

IR frame rate Hz 125

5

4

3

2

1

Fig. 16.2: Arrangement of the evaluation tool for temperature and displacement measurement.
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level. If the stress decreases in this time, a rate-dependent material behaviour will
be identified. These effect is known as stress relaxation. In case of constant stress
during the holding time, the material behaviour is rate-independent [24].

The paper introduces complex experiments, which are defined by multiple holding
times at defined displacement levels. In addition, these experiments include an
unloading at the end. In the case of rate-dependent behaviour, relaxation effects
become visible. Considering multiple holding times, different relaxation effects can
be identified for one sample. The additional information on material behaviour is used
to determine inelastic effects for material modelling in more detail. The phenomena
of the holding times can provide information on the heat conduction effects of the
system. Including an unloading path creates an additional identification possibility
for the elastic deformation of the material description. If a chosen material model
can describe these complex experiments, the determined parameters will show an
enhanced physicality. According to the requirements mentioned above, an experiment
with slow strain rates is performed. The value of the strain rate is motivated from [25]
for the determination of the yield point. This slow experiment has a strain rate of
¤Y1 = 7.7 ·10−5 s−1 and is furthermore referenced as ¤Y1. The defined load path of ¤Y1
is shown in Fig. 16.3.
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Fig. 16.3: Experiment ¤Y1, a: strain controlled loading path; b: thermomechanical material response.
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The slow strain rate ¤Y1 and the thermal properties of aluminium create heat
conduction effects that will have a significant impact on the thermal characteristics of
the material. In order to determine the thermomechanical material behaviour without
the influence of thermal conduction effects, a nearly adiabatic test is performed. This
fast experiment has a strain rate of ¤Y2 = 7.7 ·10−3s−1 and is furthermore referenced
as ¤Y2.

In summary, experiment ¤Y2 is used for near adiabatic thermomechanical analysis.
Experiment ¤Y1 is performed to describe the thermal effects of the system.

16.2.2 Temperature and Deformationfield Measurement by Digital
Image Correlation

The displacement field and the temperature field can be determined by using the IR
camera.The samples have to be prepared for DIC in order to measure the displacement
field. Based on Fig. 16.2 left detail d1, the requirements for sample preparation can
be described. In order to eliminate the reflection of the surrounding radiation almost
completely the specimen is sprayed with black matt varnish. This procedure enables
the evaluation of the temperature field. To create reference points for the DIC, the
specimen is sprayed with random dot pattern. The spray contains metal particles
which contrast with the black background in the thermal images. The applied radiator
helps to increase the contrast. The yellow boxes in Fig. 16.2 left detail d1 show the
number and the distribution of the tracker points set for the DIC.

In addition to the DIC, the emissivity correction is performed on the saved
IR camera images, because the dot pattern disturbs the temperature measurement. The
analyses are performed by a post-processing tool, whose function can be described as
follows. Using the evaluation tool for the defined sub-surfaces allows the calculation
of the strain tensor. This is achieved by applying an affine transformation algorithm
on the in-plane displacement field [26]. It was followed by the emissivity correction
(or computational pattern removal) and the mapping of the corrected temperature
field evolution on the reference configuration. Finally, the results are evaluated with
the necessary resolution in space and time using averaging strategies on the level of
geometric objects. For more detailed explanations see [27].

Figure 16.2 right illustrates the results of the evaluation tool. No. 1 describes the
original camera data. No. 2 shows the data with motion compensation and No. 3 the
emissivity correction data. No. 3 demonstrates that the inhomogeneous emissivity
distribution caused by the dot pattern is removed from the temperature data. No. 4
presents the strain calculation in the longitudinal direction of the specimen (tensile
direction) and No. 5 the strain calculation in the transverse direction of the specimen.
Using the Fij i software ImageJ, the measured temperature and strain fields were
comfortably evaluated in time and space.
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16.2.3 Experimental Results with Respect to Holding Time

The experimental results show the characteristics in the centre of the sample
16.2 left d1. Using the experimental set-up, Fig. 16.3 shows the defined load path and
the thermomechanical material behaviour of experiment ¤Y1. Figure 16.3 b) describes
the mechanical material behaviour by a red curve and the temperature material be-
haviour by a blue curve. The temperature decreases to the black circle mark and
increases then. The decrease results from the thermoelastic effect while the increase
of the temperature shows the start of inelastic hardening phenomena. With reference
to the red curve, the black circle mark indicates the yield point of the material. The
beginning and the end of the holding times are shown by the green, purple and
yellow marks. Relaxation processes can be seen in these areas. This suggests that the
material behaviour is rate-dependent. For the description of the relaxation, the area
between the green marks in the first holding time is considered in more detail.

At the beginning of the holding time (Fig. 16.4 first green mark), the stress
decreases. In contrast, the temperature increases first and begins to decrease at 148s.
When the holding time ends (Fig. 16.4 second green mark), the stress increases
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Fig. 16.4: Thermomechanical material response in detail for the relaxation effect of the slow load
path.
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immediately, while the temperature decreases at beginning of the load continuation
and increases at 170 s.

It is possible that the phenomenon between the two green marks is based on the
material effect (microstructure effects) or on thermal effects. In order to investigate
this effect more, a near adiabatic experiment was motivated. The case of this adiabatic
experiment shows the influence of the internal material behaviour. Fig. 16.5 represents
the load path and the corresponding thermomechanical material response of the
experiment ¤Y2.

Compared to experiment ¤Y1 (Fig. 16.3 b), the mechanical stresses (Fig. 16.5
b) and the resulting temperature changes are different to ¤Y1. This confirms the
rate dependence of the thermomechanical material behaviour. For the holding time
between the purple marks (Fig. 16.5 a), the detailed view of the thermomechanical
material behaviour demonstrates the following.

Similar to experiment ¤Y1 (Fig. 16.4), the experiment ¤Y2 proves the same effects
during the relaxation process (Fig. 16.6). For this reason, it can be assumed that
the phenomena shown are motivated by the material behaviour. Remarkably, these
effects cause such a strong heating that it dominates the heat conduction and heats
up the system.
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Fig. 16.5: Experiment ¤Y2, a) strain controlled loading path and b) the thermomechanical material
response.



16 Self-heating Analysis of an Aluminium Alloy 273

14 16 18 20 22 24

time / s

0.016

0.018

0.02

0.022
st

ra
in

14 16 18 20 22 24

time / s

0.1

0.32

0.54

0.76

0.98

1.2

te
m

pe
ra

tu
re

 e
vo

lu
tio

n 
/ K

255

265

275

285

295

305

st
re

ss
 / 

M
P

a
Fig. 16.6: Thermomechanical material response in detail for the relaxation effect of the fast load
path.

16.3 Theoretical Framework

16.3.1 Energy Balance and Heat Conduction

For the numerical representation of the thermomechanical phenomena to be seen in
Sect. 16.2, this subsection deals with the general derivation of the heat conduction
equation and the mechanical dissipation. The principles are formulatedby the material-
independent equations of continuum mechanics.

If the fundamental laws of kinematics and energy balance are consistently applied,
it leads to a coupling of the independent mechanical and thermal variables by the
related partial differential equations. To evaluate the self-heating effect of a material,
the energy and the entropy balance are refined by characteristic terms through the
concept of internal variables, which is specifically laid out in Subsect. 16.3.2.

To begin the thermodynamic approach, the description refers to the displacements
of the reference configuration using the displacement gradient tensor. Assuming small
deformations, the norm of the displacement gradient tensor becomes much smaller
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than 1. Consequently, the deformations of the material particle can be described by the
linearised deformation-displacement relation. The linearised approximation allows
to formulate the balance equations of the momentary configuration at the undeformed
body. As a result, the physical entities of the Eulerian and the Lagrangian
description coincide.

The first law of thermodynamics describes the change in internal energy by the
sum of the work done and the heat supplied. The energy balance is written as a local
form by:

¤𝑒 = − 1
𝜌

div (𝒒) + 𝑟 + 1
𝜌
𝑻 · ¤𝑬, (16.1)

where the boldface symbols characterize tensorial entities. 𝑻 defines the Cauchy
stress tensor, 𝑬 the linearised Green-Lagrange strain tensor and the variable
¤𝑬 specifies the strain rate tensor. The operation 𝑻 · ¤𝑬 expresses the inner product of
these two tensors resulting in a scalar value. The variable 𝒒 describes the specific
heat flux, ¤𝑒 is the specific internal energy rate and r defines a radiation heat source.

The second law of thermodynamics describes the entropy development ¤𝑠 in
thermodynamic system as a reversible ( ¤𝑠 = 0) or an irreversible ( ¤𝑠 > 0) process.
In the case of the thermodynamical system, the entropy can be seen as a measure
of spontaneously occurring processes in the system. Specific processes can be the
(pure) heat conduction or dissipation due to changes in the material structure, e. g.
dislocation movement. In summary, entropy can be understood as a measure of the
irreversibility of a system [24]. The local form of the resulting Clausius-Duhem
inequality is given by:

¤𝑠− 𝑟
𝜃
+ 1
𝜌𝜃

div (𝒒) − 1
𝜌𝜃

𝒒 · 𝒈 ≥ 0, (16.2)

where 𝒈 describes the temperature gradient, 𝜃 is the temperature and 𝜌 is the mass
density. Combining Eq. (16.1) and Eq. (16.2) results in one of the basic equations of
thermomechanics, called the dissipation inequality

Δ = 𝜃 ¤𝑠− ¤𝑒 + 1
𝜌
𝑻 · ¤𝑬 − 1

𝜌𝜃
𝒒 · 𝒈 ≥ 0. (16.3)

Equation (16.3) shows that the internal dissipation Δ depends on the internal energy 𝑒.
The thermodynamic potential 𝑒 is a function of the strain tensor 𝑬 and the entropy 𝑠.
For the later practical application with the requirement of a simple experimental
set-up, the entropy 𝑠 represents an indirectly measurable quantity. For this reason, the
thermodynamic laws Eq. (16.1) and (16.2) can be transferred to another thermody-
namic potential with the help of the Legendre transformation [24]. The potential
of the free energy 𝜓 thereby offers a dependence on the strain tensor 𝑬 and the
temperature 𝜃. These two quantities can be directly determined in most experimental
configurations. The dissipation inequality as a function of the free energy 𝜓 reads as:

Δ = −𝑠 ¤𝜃 − ¤𝜓 + 1
𝜌
𝑻 · ¤𝑬 − 1

𝜌𝜃
𝒒 · 𝒈 ≥ 0. (16.4)
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In order to fulfil the dissipation inequality Eq. (16.4), a simplification leads to the
specification. This simplification suggests that the thermal strains 𝑬𝑡ℎ due to small
temperature changes are negligible. The result of the beginning simplification of
the linearised strain tensor is, that the strain tensor 𝑬 can additively be split into an
elastic component 𝑬𝑒 and an inelastic component 𝑬𝑖𝑒. It is common to understand
the inelastic strain 𝑬𝑖𝑒 as an internal variable in the case of inelastic processes [28].
According to this, the thermodynamic state of the system depends on the difference
between the small strain tensor 𝑬 and the inelastic strain tensor 𝑬𝑖𝑒

𝑬 = 𝑬𝑡ℎ +𝑬𝑒 +𝑬𝑖𝑒 and 𝑬𝑒 = 𝑬 −𝑬𝑖𝑒 with 𝑬𝑡ℎ = 0. (16.5)

Considering Eq. (16.5), the free energy 𝜓 results in:

𝜓 = 𝜓(𝑬𝑒, 𝜃, 𝒈, 𝒂1, . . . , 𝒂𝑛) = 𝜓𝑒 (𝑬𝑒, 𝜃, 𝒈) +𝜓𝑖𝑒 (𝜃, 𝒈, 𝒂1, . . . , 𝒂𝑛) , (16.6)

where 𝜓𝑒 describes the elastic part and 𝜓𝑖𝑒 the inelastic part. Eq. (16.6) introduces
the variables 𝒂1, . . . , 𝒂𝑛. These variables are employed by the concept of internal
variables and evolve as a result of inelastic material behaviour. Depending on the
chosen material model, their number can differ. With the implementation of Eq. (16.5)
and Eq. (16.6) in Eq. (16.4), it follows:

Δ =

(
1
𝜌
𝑻 − 𝜕𝜓

𝜕𝑬𝑒

)
¤𝑬𝑒 +

(
−𝑠− 𝜕𝜓

𝜕𝜃

)
¤𝜃 + 1
𝜌
𝑻 · ¤𝑬𝑖𝑒−

𝑛∑︁
𝑗=1

(
𝜕𝜓

𝜕𝒂 𝑗
¤𝒂 𝑗

)
− 𝜕𝜓
𝜕𝒈

¤𝒈− 1
𝜌𝜃

𝒒 · 𝒈 ≥ 0.

(16.7)
In order to satisfy the inequality from Eq. (16.7), each summand of the equation can be
evaluated individually [21]. The dicussion with respect to admissible thermodynamic
processes leads to restrictions on the constitutive equations, which is known as the
Coleman-Noll procedure. The procedure leads to:

𝑻 = 𝜌
𝜕𝜓

𝜕𝑬𝑒
, 𝑠 = −𝜕𝜓

𝜕𝜃
and

𝜕𝜓

𝜕𝒈
= 0 . (16.8)

By substituting Eq. (16.8) into Eq. (16.7), the dissipation inequality is reduced to:

Δ =
1
𝜌
𝑻 · ¤𝑬𝑖𝑒 −

𝑛∑︁
𝑗=1

𝜕𝜓

𝜕𝒂 𝑗
¤𝒂 𝑗 −

1
𝜌𝜃

𝒒 · 𝒈 ≥ 0 , (16.9)

In the case of an loaded thermomechanical system with adiabatic boundary conditions,
heat transfer between the system and its environment is not possible. When the stress
is in the range of elastic deformations 𝑬𝑒, the dissipation inequality becomes zero
and the process is reversible. The process is irreversible, when the thermomechanical
approach is formulated as physically consistent. Then inelastic deformations lead the
internal variables of the system (𝑬𝑖𝑒 and 𝒂 𝑗 ) evolve and the dissipation inequality
becomes greater than zero. The formulation of the corresponding evolutionary
equations for the internal variables need to be thermodynamically consistent.
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Under isothermal boundary conditions, heat transfer between the thermomechani-
cal system and its surroundings is allowed. In this case 𝒒 and 𝒈 get a higher influence
in the dissipation inequality. According to Fourier, the heat flux vector 𝒒 is nega-
tively proportional to the temperature gradient 𝒈. In case of elastic deformations 𝑬𝑒,
the inequality is greater than zero and the process is irreversible. As described for
the adiabatic process, the statement for the inelastic deformations 𝑬𝑖𝑒 holds.

The dissipation inequality (Eq. (16.4)) motivates the analysis of the mechanically
influenced part that applies to:

𝛿𝑚 =
1
𝜌
𝑻 · ¤𝑬𝑖𝑒 −

𝑛∑︁
𝑗=1

𝜕𝜓

𝜕𝒂 𝑗
¤𝒂 𝑗 ≥ 0, (16.10)

with

𝑝𝑖𝑒 =
1
𝜌
𝑻 · ¤𝑬𝑖𝑒 and 𝑝𝑠 =

𝑛∑︁
𝑗=1

𝜕𝜓

𝜕𝒂 𝑗
¤𝒂 𝑗 . (16.11)

Equation (16.11) left defines the inelastic stress power 𝑝𝑖𝑒 which is not completely
converted into heat. The energy fraction 𝑝𝑠 stored in the material structure is described
in Eq. (16.11) right. This stored part can be released under certain circumstances. An
example of this is the change in the microstructure as a result of a dislocation pile-up
at grain boundaries [21]. Using Eq. (16.11), a corresponding material characteristic
can be identified. This is known as the energy transformation ratio (ETR) 𝜑 [29]. The
ETR gives a general overview of the energy storage characteristics on the material
under inelastic deformation and is defined as:

𝜑 =
𝑤𝑠

𝑤𝑝
(16.12)

with

𝑤𝑝 =

𝑡∫
𝑡0

𝑝𝑒 (𝑡) d𝑡; 𝑤𝑠 =

𝑡∫
𝑡0

𝑝𝑠 (𝑡) d𝑡,

where 𝑤𝑝 describes the plastic strain work and 𝑤𝑠 the stored energy of cold work.
To calculate the temperature evolution on the surface of the sample, the heat

conduction equation must be formulated in addition to the mechanical dissipation.
The first law of thermodynamics (Eq. (16.1)) is used as the basis for the evaluation.
Under consideration of the Legendre transformation, Eq. (16.8) and the Gibbs re-
lation [24], the general form of the heat conduction using the potential of the free
energy equation is given by:

−𝜃 𝜕
2𝜓𝑒

𝜕𝜃2
¤𝜃 = −𝜃 𝜕2𝜓𝑒

𝜕𝜃𝜕𝑬𝑒
¤𝑬𝑒 +

1
𝜌
𝑻 ¤𝑬𝑖𝑒 − 𝜃

𝑛∑︁
𝑗=1

(
𝜕2𝜓𝑖𝑒

𝜕𝜃𝜕𝒂 𝑗
¤𝒂 𝑗

)
− 1
𝜌

div (𝒒) + 𝑟 . (16.13)
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16.3.2 Material Model

With the general energetic and thermal description of the thermomechanicalmodelling
in Subsect. 16.3.1, the accurate description of the used material model follows in
this chapter. Motivated by the experiment (Sect. 16.2), the chosen material model
should represent a linear elastic behaviour followed by a non-linear viscoplastic
characteristic. The material model of Bröcker and Matzenmiller [21] was chosen
for this paper. Based on a rheological network, which is created by a clear structure
and demonstrates the interaction of the different mechanical mechanisms. Before
describing the material model in more detail, some simplifications should be made.
The experiments that are shown Sect. 16.2 are uniaxial tensile tests. For this reason,
the system is converted into an isotropic 1D formulation. In addition, the given
displacements are in the technically relevant range of small deformations (Fig. 16.5
a) and Fig. 16.3 a). The total strain Y is split up into a thermal Y𝑡ℎ, an elastic Y𝑒𝑙 and
a visoplastic Y𝑣𝑝 part:

Y = Y𝑡ℎ + Y𝑒𝑙 + Y𝑣𝑝 . (16.14)

Motivated by the experiments (Fig. 16.5 b), small temperature changes are to be
expected. For this reason, the thermal strains Y𝑡ℎ can be neglected. The elastic defor-
mation is adequately covered by Hooke’s law. As a consequence of the rheological
network, the kinematic and isotropic hardening are mathematically controlled by
the viscoplastic strain Y𝑣𝑝. In Fig. 16.7, the elements with dissipative and energy
storage character are clearly separated from each other. All the elements coloured
grey symbolise components with dissipative character and the rest of elements take
into account the stored (free) energy [21]. The Bröcker and Matzenmiller model
deals with a "small number" of parameters to be identified, which simplifies the
solution of the system of ordinary differential equations. In order to create a full
thermomechanically consistent material model, Bröcker and Matzenmiller motivate
the flow function and the flow rule by simple calculations based on the rheological
network.

The yield function 𝑓 is defined by:

𝑓 = |𝜎− 𝜉 | − (𝑘0 + 𝜅) , (16.15)

Fig. 16.7 Rheological model
of the Bröcker Matzenmiller
material model [21].
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with the yield condition:

𝑓 =


𝑓 ≤ 0 elastic domain

𝑓 > 0 viscoplastic domain
(16.16)

were 𝜉 describes the backstress component that represents the kinematic hardening.
The yield point is defined by 𝑘0 and 𝜅 describes the isotropic hardening. The evolution
equation of the true stress 𝜎 with respect to Eq. (16.14) is given by the stress rate ¤𝜎:

¤𝜎 = 𝐸 ¤Y𝑒𝑙 = 𝐸
(
¤Y− ¤Y𝑣𝑝

)
, (16.17)

where E is the Young‘s modulus.
In the case of the evolution in mechanical loads, which raises the yield function

into the viscoplastic domain, irreversible effects are initiated [30]. These effects are
characteristic of the hardening behaviour and will be described by defining internal
variables. In the case of the Bröcker and Matzenmiller model, the evolution equations
of the internal variables are given by:

¤𝜅 = 𝐸𝜅
(
1− 𝜅

𝜅∞

)
¤̄Y𝑣𝑝 , (16.18)

¤𝜉 = 𝐸 𝜉
(
¤Y𝑣𝑝 −

𝜉

𝜉∞
¤̄Y𝑣𝑝

)
(16.19)

and

¤Y𝑣𝑝 =
1
𝜂

〈
𝑓

𝑑0

〉𝑚
sign (𝜎− 𝜉 (16.20)

In Eq. (16.18) 𝐸𝜅 describes the kinematic hardening modulus and 𝜅∞ defines the
saturation value of isotropic hardening stress [21]. The kinematic hardening modulus
𝐸 𝜉 and the saturation value of kinematic hardening stress 𝜉∞ are shown in Eq. (16.19).
Eq. (16.20) introduces 𝜂 for the strain rate scaling factor, 𝑚 for the nonlinear rate
dependency exponent and 𝑑0 for regularising the exponential term as a dimensionless
expression. After solving the shown system of differential equations, the mechanical
stress is calculated by the expression in Eq. (16.17).

By using the example of the Subsect. 16.3.1, the system can be enhanced to the
thermomechanical equations. As a consequence of the Coleman-Noll procedure in
Eq. (16.8), the mechanical dissipation is described by:

𝛿𝑚 =
1
𝜌

[
𝑓 + 𝑘0

(
1− 𝛽1𝑒

−𝛽2 Ȳ𝑣𝑝
)
+ 𝜅2

𝜅∞
+ 𝜉2

𝜉∞

]
¤̄Y𝑣𝑝 ≥ 0, (16.21)

where the parameter condition 0 ≤ 𝛽1 ≤ 1 and 𝛽2 ≥ 0 are defined by Bröcker and
Matzenmiller. These introduced parameter can be used for scaling the stored energy
and the resulting self-heating behaviour. For more details on the derivation of the
mechanical dissipation see the Bröcker and Matzenmiller [21].
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Based on the assumptions that have been made, the heat transfer equation according
to the example in Eq. (16.13) follows to:

𝑐Y ¤𝜃 = − 1
𝜌
𝐸𝛼𝜃 ¤Y𝑒𝑙 + 𝛿𝑚 + 1

𝜌
𝑘div (𝑞) + 𝑟 , (16.22)

where 𝑐Y is the specific heat capacity and 𝛼 is the thermal expansion coefficient [24].
Finally, each term of Eq. (16.22) should be explained. The first term 𝑐Y ¤𝜃 describes

the material-dependent heat change. The second term

1
𝜌
𝐸𝛼𝜃 ¤Y𝑒𝑙

defines the thermoelastic effect. As a result of this effect, the system is cooling in
case of an elastic expansion and heating in case of an elastic compression. The third
term 𝛿𝑚 symbolises the system’s self-heating effect and is defined by Eq. (16.21).
The fourth term

1
𝜌
𝑘div (𝑞)

characterises the heat conduction effect and 𝑟 defines an external heat source.

16.4 Modelling Methods

16.4.1 Parameter Identification

This section deals with the description of the parameter estimation by implementing
the system of differential equations given in Subsect. 16.3.2 in Matlab. For
the parameter identification, the described material model was implemented in the
programmable computing environment Matlab. The calculation of the material
behaviour is performed in the midpoint 𝑚𝑐 of the sample (compare Fig. 16.8) with
ideal adiabatic boundary conditions. Because of the adiabatic boundary conditions,
only the experiment ¤Y2 (Sec. 16.2.1) is qualified for a full thermomechanical parameter
identification. To control the identification, the stress-strain characteristic is used
for experiment ¤Y1. In terms of the parameter estimation, the material model from
Subsect. 16.3.2 can be classified in directly and indirectly determinable parameters.

Direct means that the parameters are directly established by measurements or are
taken from data sheets. The Young’s modulus 𝐸 is determined through the experi-
mental unloading curve (Subsect. 16.2.3). To evaluate mass density 𝜌, the sample
weight is measured and the sample volume is calculated by the given dimensions.
The coefficient of thermal expansion 𝛼, the heat capacity 𝑐Y and the thermal con-
ductivity 𝑘 are specified in corresponding data sheets with respect to the applied
standards. The regularising parameter 𝑑0 is defined as 1MPa.
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Table 16.2: Optimisation results.

Unit Lower Limits Upper Limits Determined Value

Indirect Parameters

𝑘0 MPa 200 220 211

𝑚 − 1 5 4.485

𝜂 s 1 · 106 1 · 109 79.791 · 106

𝐸𝜉 MPa 6500 7500 7000

𝜉∞ MPa 165 185 180

Direct Parameters

𝐸 MPa 45000

𝛽1 − 0.4

𝜌 g cm−3 2.66

𝛼 K−1 2.2 · 10−5

𝑐𝜀 Jkg−1K−1 910

𝑘 Wm−1K−1 170

In addition, it is assumed a pure kinematic hardening to describe the hardening
mechanisms. Therefore 𝐸𝜅 and 𝜅∞ become zero. The energy-motivated parameters
𝛽1 and 𝛽2 can be determined through the temperature characteristic. Assuming
purely kinematic hardening, 𝛽2 will be zero [21]. Table 16.2 shows the values of
these directly determined parameters. All other parameters are subjected on an
optimisation procedure. Before the optimisation starts, an initial sensitivity analysis
for a limited parameter space offers an overview of the influence these parameters
have on the thermoviscoplastic behaviour. The parameter space is limited by lower
limits (LL) and upper limits (UL), which are shown in Table 16.2.

The sensitivity analysis is performed by Monte Carlo analysis. This simulation
generates random parameter sets in the parameter space and evaluates their effect on
the objective function. The advantage of the chosen simulation is that all parameters
are varied and a global assessment related to the limits is achieved [31]. The most
sensitive parameters of the Bröcker and Matzenmiller model are 𝑚 and 𝑘0. The
parameters 𝐸𝜅 and 𝜅∞ have no influence on the system by assuming pure kinematic
hardening.

For the optimisation the genetic algorithm, which is implemented in Matlab,
was used [31]. The optimisation takes place in the selected parameter space from the
sensitivity analysis (Table 16.2). After finding a first parameter set, the parameters are
limited further and optimisation is performed for the temperature and the stress-strain
characteristics as a cost function. The determined values can be found in Table 16.2.
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16.4.2 Concept for Thermomechanic FE Analysis

The implementation of the material model in Matlab (Subsect. 16.4.1) created
a fast possibility of the parameter identification. But this is only limited to the
dissipative effects, which are motivated by the mechanical material behaviour. The
simplified Matlab solution is reduced to the solution of systems in which only
small heat conduction effects take place. In order to describe the thermomechanical
problem, the material model was transferred into a user subroutine for the FE software
package Abaqus (UMAT). In the case of the Bröcker and Matzenmiller model
from Subsect. 16.3.2, the UMAT solves the mechanical evolution equations, defines
the resulting energy and dissipation components and transfers them to the Abaqus
solver. The Abaqus solver calculates the coupled problem with the representation
of realistic boundary conditions. The implementation of the material model enables
the numerical simulation of the slow test from Sect. 16.3.

To understand the simulation results, the model should be described in more detail
in relation to the defined boundary conditions. As the material model Subsect. 16.3.2
is limited to a one-dimensional problem, the FE model is represented by 3-node
quadratic displacement and linear temperature truss elements (T2D3T). In addition
to the measurement length 𝑙𝑚 (Fig. 16.8), the clamping range 𝑙𝑐 was modelled to
account for the heat exchange. Motivated by the experimental set-up (Subsect. 16.2.1),
the radiator is introduced as an additional heat source. This heat source (Dflux)
is assumed to be constant for the measurement length 𝑙𝑚 with 𝑟 = 0.012 Jsm−2.
In addition, a heat transfer coefficient (Film) was defined at the points 𝐴 and 𝐵
(Fig. 16.8) with ℎ = 10 Js−1m−2K−1. The initial temperature for all elements is
constant with 𝑇𝑖𝑛𝑖 = 20◦C. A mechanical load is realised by the displacement 𝑢 of
the node 𝐵.

16.5 Results

The parameters from Table 16.2 are integrated in the numerical model. The generated
numerical results show the FE simulation. Based on the experimental evaluation (Sub-
sect. 16.2.3), the results are shown in the point 𝑚𝑐 (Fig. 16.8). The numerical results
for experiment ¤Y1 can be seen in Fig. 16.9.

lc lclm

mc

u

A B

Fig. 16.8: Schematic of the FE model.
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The simulated thermomechanical material response shown in Fig. 16.9 illustrates
that the parameter set describes the slow experiment with good accuracy. A pro-
nounced difference between experiment and simulation is in the area of the yield
point 𝑘0 and amounts to 14 MPa in the mechanical characteristic (Fig. 16.9 a)
and 0.03 K in the temperature characteristic (Fig. 16.9 b). In addition, a larger differ-
ence can be seen at the end of the last holding time. This amounts to 10 MPa in the
mechanical characteristic (Fig. 16.9 a) and 0.12 K in the temperature characteristic
(Fig. 16.9 b).

The results for experiment ¤Y2 are shown in Fig. 16.10. Similar to experiment ¤Y1, a
larger difference is seen at the end of the last holding time. In this case it amounts to
16 MPa in the mechanical characteristic (Fig. 16.10 a) and 0.04 K in the temperature
characteristic (Fig. 16.10 b). The yield point 𝑘0 is better reproduced for experiment
¤Y2 than for experiment ¤Y1. The simulation of experiment ¤Y2 is more accurate.

To explain the differences in the temperature evolution between the two exper-
iments, the ETR characteristics of the simulations can be considered. As already
discussed in Subsect. 16.3.1, there are no corresponding experiments for these char-
acteristics. Nevertheless, it illustrates the energy storage behaviour of the material.
According to the literature, the plotting of the ETR over the plastic work 𝑤𝑝 (Fig.
16.11) has been established for a better visualisation of energetic characteristic [29].
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Fig. 16.9: Simulation results for the slow strain rate with ¤Y = 7.7 · 10−5 s−1. a) stress evolution over
time, b) temperature evolution over time.
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Fig. 16.10: Simulation results for the fast strain rate with ¤Y = 7.7 · 10−3 s−1. a): stress evolution
over time, b): temperature evolution over time.
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Fig. 16.11: Energy transformation ratio for both strain rates.

In accordance with the ETR definition (Eq. (16.12)), the lower ETR of the faster
simulation results in less energy being stored in the material structure. The larger
value of the plastic work 𝑤𝑝 in the experiment with ¤Y2 together with the always
smaller ETR in comparison to the slower experiment ¤Y1 generates more mechanical
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dissipation 𝛿𝑚 (Eq. (16.21)). The corresponding temperature evolution can only be
discussed according to the actual heat conduction problem.

16.6 Discussion

The aim of this paper is to describe the material behaviour of an SLM manufactured
aluminium alloy for complex load paths with a thermomechanical approach. For
the applied tests several holding times and two different strain rates were defined.
Corresponding to the selected speed differences, the image processing of the IR
camera was able to determine values that could be evaluated accurately. Even effects
such as the relaxation for the classification of the material can be represented as a full
thermomechanical process. The high accuracy of the applied measuring system is
supported by the outlined evaluation strategies. The IR camera is a helpful tool for the
experimental determination of the coupled thermal and mechanical field components.

For the initial conditions, the initial temperature was assumed to be constant.
A symmetric temperature profile is assumed for the boundary conditions. These
hypotheses is in a first approximation confirmed by he IR measurement and can be
refined in the future.

The results of the numerical simulations can reproduce the rate dependent material
behaviour with good quality on different strain rates. The region of the yield strength
shows a higher difference between the simulation and the experiment. This is a
consequence of the strict decomposition of the total strain in the pure elastic and the
elastic-viscoplastic domain by considering the yield function (Eq. (16.15)) and the
yield condition (Eq. (16.16)). These approaches are constitutive for Perzyna [30] and
Chaboche [32].

Another possibility of the thermomechanical representation of the relaxation
processes (Fig. 16.10) is to introduce an additional internal variable. This would
raise the degree of non-linearity in the material model. Such a principle example was
considered and integrated by Kamlah and Haupt [29]. The internal variable could
modify the viscoplastic strain or be added to the holding process as a deformation
condition.

16.7 Conclusion and Outlook

This paper demonstrates that the Bröcker and Matzenmiller thermomechanical ap-
proach can simulate the complex material behaviour including the relaxation pro-
cesses with high accuracy. Differences occur as soon as more complex phenomena
such as relaxations and different velocities are to be represented. As one more op-
tion for a refined modelling, other material models than the chosen viscoplasticity
model can be used for the evaluation. One option is the investigation of a unified
viscoplastic model, e.g. the model proposed by Bodner and Lindenfeld [33]. A dif-
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ferent approach splits the stress into the rate independent equilibrium stress and a
rate dependent drag stress. This model type was suggested by Krempl [34] and was
introduced in a pure mechanical framework by neglecting the temperature evolution.
The thermomechanical approach can be implemented as described in the paper.

The discussed viscoplastic material model gives an idea of the complex processes
of inelastic behaviour and creates an overview of dealing with parameter identification.
The strategy with starting with a sensitivity analysis and then proceeding to an
optimisation task offers a valuable approach. Such an approach can be used if enough
experimental characteristics (like the thermal and the stress-strain characteristic) are
available. In this paper, the thermomechanical analysis has shown that the optimisation
tasks for a complete analysis of the system are limited to approximately adiabatic
states.

Using the IR camera makes it possible to evaluate the temperature profile over
the length of the sample. In the future, this system information can be integrated
for the control of the thermal initial boundary conditions in the FE models. So, the
heat conduction effects and external influences such as the radiator can generally
be integrated at the sample length. In this sense, a precise and effective evaluation
strategy needs to be formulated. This approach could be used to extend the scope
of the diagrams and to define a more general objective function for the optimisation
task on the foundation of a surface characterisation as shown in Fig. 16.12.
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Fig. 16.12: Temperature evolution over time and over measurement length.
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Chapter 17
Creep Under High Temperature Thermal
Cycling and Low Mechanical Loadings

Romana Schwing, Stefan Linn, Christian Kontermann, and Matthias Oechsner

Abstract In this paper the effect of an accelerated creep strain rate under thermal
cycling conditions is introduced. The effect occurs in the industrial furnace sector,
where thin walled structures are exposed to very high temperatures up to 80% of
the melting temperature and low mechanical loadings which represent the dead
weight of the components. The effect mentioned will be discussed extensively and
a systematic examination of the effect itself and some influencing factors will be
identified. Furthermore some explanatory approaches will be presented and discussed.

17.1 Introduction

Operators of industrial furnaces often report premature failure of thin walled com-
ponents accompanied by large creep deformations [1]. The components show a
significantly shorter lifetime than expected by calculations using linear damage ac-
cumulation modelling [2, 3]. In addition to very high temperatures, which are up
to 80% of the melting temperature (K) of the deployed materials and the corrosive
and oxidative ambient atmosphere, the complex loading conditions in such industrial
furnaces often include temperature changes due to burner on-off-cycle, batch-wise
operation or belt infeed.

Experiments under corresponding conditions of very high temperatures and low
mechanical loadings showed that the creep strain of some typical metallic materials
under anisothermal testing turned out to be significantly higher than the creep strain
of an isothermal creep experiment even at maximum cycle temperature (Fig. 17.1).
This effect of an accelerated creep strain rate is unexpected and further investigations
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Fig. 17.1 Expected and mea-
sured creep strain of a tem-
perature cycle creep test
and isothermal creep tests at
900 ◦C and 1100 ◦C.

under anisothermal conditions were performed to generate a principal understanding
of the phenomenon.

In this study the results of a systematically performed experimental campaign are
presented. These results reveal relevant parameters that have a specific influence on the
effect of accelerated creep strain rates under anisothermal temperature. Furthermore
the relevance of microstructural properties and a formed metastable dislocation
structure is discussed. In detail, microstructural processes are suspected to cause
the phenomenon of repriming, which occurs after every temperature change. Finally,
an approach for explaining these underlying creep mechanisms will be introduced
briefly.

17.2 Experimental Methods

In the following the four examined alloys 2.4633, 2.4879, Centralloy 60 HT R and
1.4841 are introduced and the testing methods and temperature cycles are explained.

17.2.1 Materials

Creep tests were carried out on the above mentioned materials. All materials are
common in industrial furnace applications.

The main focus of the investigation lies on alloy 2.4633, also known as Al-
loy 602 CA, NiCr25FeAlY or Nicrofer 6025 HT, which is an nickel-chrome-iron
alloy with rather high chromium amounts of around 25% [4]. In combination with a
comparatively high carbon content of around 0.2wt% this alloy is characterized by
an austenitic matrix and the formation of M23C6 carbides [5, 6]. Those carbides are
stable up to temperatures of around 1250 °C [7]. This is one of the reasons for the
good temperature stability of this alloy [8–10]. The aluminum content in combination
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with the chromium is responsible for the formation of an aluminum oxide layer, which
is also stable at temperatures above 1000 ◦C [11].

Furthermore two cast alloys were investigated, the alloys 2.4879 and Central-
loy 60 HT R. Alloy 2.4879 shows an austenitic matrix with primary precipitated
carbides. Those are formed with either tungsten or chromium [12]. The cast alloy
Centralloy 60 HT R also shows an austenitic Ni-Cr-Fe-matrix with primary precipi-
tated M7C3 or MC-carbides. This alloy is also an aluminum oxide former [13]. The
fourth examined alloy is the steel 1.4841 with an austenitic matrix [14]. Figure 17.2
shows light micrographs of the initial microstructural state of all four alloys.

17.2.2 Creep Test Equipment

Creep tests for the investigation of the behavior under thermal cycling condition were
carried out on single-specimen-testing machines with continuous strain measurement.
For comparison, isothermal creep tests have been performed with comparable thermal
and mechanical loadings as the anisothermal creep tests. The tested specimens were
cylindrical round specimens with a diameter of 8.4 mm and a gauge length of 42 mm.

Two different kinds of thermal cycles are investigated. First low frequency ther-
mal cycles are tested to emulate batch operation or belt infeed. These cycles are
characterized by two holding phases in the range of 1.5 h up to 200 h at minimum
and maximum cycle temperature. The temperature ramps have a moderate rate of
temperature change of around 6.67 K/min in most cases which leads to a duration of
0.5 h for 200 K. The mechanical loading is constant in the range of 1-10 MPa (Fig.
17.3).

These creep tests, which represent low frequency thermal cycling, are carried
out in convection furnaces. The strain is measured with axial extensometers, the
temperature with three thermocouples of type S (Pt/PtRd).

Fig. 17.2 Light micrographs
of the four alloys in their initial
state.
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Fig. 17.3 Low frequency
temperature cycle, schematic.

The second type of thermal cycles are high frequency cycles. These cycles are
characterized by a triangular cycle without holding phases. The cycle duration of these
tests is in the range of minutes. As with the low-frequency cycles, the mechanical
loading is constant over the entire duration of the creep test (Fig. 17.4).

The high frequency thermal cycling is realized by induction heating. For the strain
measurement also axial extensometers are used, but since the measuring linkage
lies within the induction coil, only ceramic material is used. The temperature is
measured and calibrated by a thermal imaging camera. To be able to measure
absolute temperature values, the specimens are coated with a thermal paint with a
defined constant emissivity. For temperature control a thermocouple of type S is
used.

17.2.2.1 Strain Recording

The strain recording is carried out continuously. Just before the creep test starts, after
heating up to the lower cycle temperature and a subsequent warm-up, the measuring
system is reset. This way it is possible to determine the creep elongation after applying
the load.

In case of anisothermal creep tests this procedure is performed after the lower
cycle temperature is reached. In the ramp phases and the upper holding phase thermal
expansion components of the difference between minimum and maximum cycle
temperature of the specimen and measuring rods are included in the measured total
strain. For this reason the lower envelope of the creep curves are shown in the
following creep strain diagrams as for example in Fig. 17.5.

Fig. 17.4 High frequency
temperature cycle, schematic.
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Fig. 17.5 Lower envelope of
an anisothermal creep curve,
example.

At minimum cycle temperature, no thermal strain components are included in
the recorded strain, due to zeroing of the measuring system after the heating phase.
Therefore, the lower envelope of the creep curve can be used for comparison purposes.

17.3 Observation of Accelerated Creep Under Anisothermal
Testing Conditions

The effect of accelerated creep strain under thermal cycling condition has been
reproduced by using different cycle types. Figure 17.6a) and b) each show two low
frequency anisothermal creep curves and the corresponding isothermal creep curve
at maximum cycle temperature. The strain curves of the temperature cycle tests lie
above the isothermal creep curve. For the shorter holding phases of 1.5 h as well
as for the longer holding phases of 3.5 h the repetition test confirms the original

(a) (b)

Fig. 17.6: Reproduction of accelerated creep rate with (a) short holding phases (b) longer holding
phases.
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observations. This effect is not a material specific phenomenon as illustrated in Fig.
17.7.

In this diagram isothermal and anisothermal creep curves from comparable testing
conditions are plotted for different materials. The anisothermal creep tests were all
carried out with a maximum cycle temperature of 1100 ◦C and a temperature range
of 200 K. All thermal cycling tests had symmetrical holding phases at minimum and
maximum temperature of 1.5 h and a ramp duration of 0.5 h. The isothermal creep
tests were carried out at 1100 ◦C. As shown in the diagrams above, the material
2.4633 shows the effect of an accelerated creep rate under thermal cycling condition.
The three other tested materials also show a similar behavior. The creep curve of the
anisothermal condition always lies above the isothermal creep curve. This leads to
the conclusion that the observed effect is not material specific but rather a general
phenomenon, which occurs in face centered cubic materials under thermal cycling
condition.

In Figs. 17.5 and 17.6 it can be seen that the effect of the higher creep rate under
anisothermal conditions appears shortly after the start of the experiment. To provide
evidence of this effect in more detail, Fig. 17.8 shows the first 30 h of a thermal
cycling test in comparison to the isothermal creep test.

Fig. 17.7 Independence of
the effect from the type of
material.

Fig. 17.8 First 30 h of a
thermal cycling creep test in
comparison to an isothermal
creep test.
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In this example it can be observed that the creep curve of the thermal cycling test
lies already after the first cycle of around 8 h above the isothermal creep curve and
with every further cycle the distance between the anisothermal and the isothermal
creep curve increases. This signifies that the temperature changes in every cycle
result in an additional creep increment on the total strain.

In summary, what can be said about the observed effect of accelerated creep strain
under thermal cycling stress is that it is reproducible and occurs after a short time,
and that it occurs in all the materials studied. This suggests that it is not an artifact
of measurement, but a generic material behavior.

17.3.1 Anisothermal Creep Tests

As already mentioned above, the effect of an accelerated creep rate under thermal
cycling condition can be observed in a somewhat unusual parameter range which
finds its application in the industrial furnace industry. It seems to appear at very
high temperatures of up to 80% of the melting temperature in Kelvin and very low
mechanical loadings. For these conditions the Norton-plot shows that there is a linear
relationship between creep rate and stress [15]. The creep rate is very low at these
low mechanical loadings. At this parameter combination the dominant deformation
mechanism is diffusion creep. Generally, diffusion can take place through the grain
boundaries or the grain itself [16]. Material is transported from areas which are under
pressure (transverse contraction at uniaxial loading) to areas which are under tension
(parallel to the loading axis at uniaxial loading). This type of creep is a rather slow
process.

These processes and the classification in the diffusion creep area holds up for
the isothermal creep tests (see blue bubble in Fig. 17.9). The observed effect, that
under these parameter conditions thermal cycling leads to an increased strain rate in
comparison to the strain rate at isothermal maximum cycle temperature, seems not
to be dominated only by diffusion creep, since the measured creep strain rates are
too high (orange bubble in Fig. 17.9).

Fig. 17.9 Norton plot accord-
ing to [15].
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17.3.2 Influencing Factors

In the following some influencing factors on the effect of accelerated strain rate
due to thermal cycling condition will be presented. It can be shown that grain size,
mechanical loading, holding phases and the temperature changing rate have an impact
on the effect.

17.3.2.1 Grain Size

The dependence of the effect on the grain size is shown by comparing different creep
tests with identical cycle and testing parameters on different melts of one material. In
Fig. 17.10, creep curves of three different batches of alloy 2.4633 are shown. Those
differ in their average grain size. The melt with the biggest grains has an average
grain size of 63 µm, the medium grain size is 44 µm and the melt with the smallest
grain size has an average value of 33 µm.

For each melt an anisothermal creep test with low frequency cycle and a maximum
cycle temperature of 1100 ◦C, a temperature range of 200 K and symmetrical holding
times of 1.5 hours were carried out. Furthermore, isothermal creep tests at maximum
cycle temperature were performed on the same three melts.

It is evident that the melts with the smaller grain sizes show higher creep strains.
In all three cases the anisothermal creep tests show higher creep strains than the
corresponding isothermal creep tests.

In Fig. 17.11 it is demonstrated that the relationship between achieved creep strain
of the anisothermal and isothermal creep test is not equal for the three melts. By cal-
culating the quotient between the measurement from the corresponding experiments,
it can be shown that the effect of the accelerated creep strain under anisothermal
conditions is more pronounced in melts with larger grain sizes.

Fig. 17.10 Dependence of the
effect of accelerated creep due
to thermal cycling condition
on the grain size.
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Fig. 17.11 Quotient of
achieved creep strain of the
anisothermal creep test after
1000 hours and achieved creep
strain of the corresponding
isothermal creep test after
1000 h.

17.3.2.2 Stress

As a further influencing factor the applied stress was investigated. For this, isother-
mal and anisothermal creep tests with similar temperature cycle parameters were
carried out with different applied stresses. The result of those creep tests on the alloys
Centralloy 60 HT R and 1.4841 are shown in Fig. 17.12. The cast alloy Central-
loy 60 HT R shows for both stress levels a higher creep strain in the anisothermal
case in comparison to the isothermal creep curve.

The alloy 1.4841 on the other hand shows a change in the arrangement of the
isothermal and anisothermal creep curves with increasing stress. For the creep tests
with the lower stress level (black curves), the anisothermal creep curve lies above
the isothermal creep curve but at a higher stress level the alloy shows the expected
behavior (blue curves). The isothermal creep curve at maximum cycle temperature
lies above the anisothermal creep curve.

(a) (b)

Fig. 17.12: Anisothermal and isothermal creep tests with different stresses on the alloy
(a) Centralloy 60 HT R and (b) 1.4841.



298 Romana Schwing, Stefan Linn, Christian Kontermann, and Matthias Oechsner

To examine this behavior more in depth, creep tests on alloy 2.4633 were carried
out on three different stress levels as well. For the lowest stress level and the medium
stress level the anisothermal creep curve lies above the corresponding isothermal
curve, but as it can be seen in Fig. 17.13a the distance between the anisothermal and
isothermal creep curve decreases with increasing stress. For the highest stress level,
this relationship has changed. The isothermal creep curve shows a much higher creep
rate in comparison to the anisothermal one. This observation is also evident in the
application of the quotient of the creep strain of the anisothermal creep strain after
400 h with the isothermal creep strain after 400 h (Figure 17.13b). Hence it can be
concluded that the effect of the accelerated creep strain under anisothermal testing
condition only appears at low stresses and it is more pronounced the lower the stress
is.

17.3.2.3 Holding Phases

Another influencing factor on the accelerated creep rate under thermal cycling con-
dition might be the duration of the holding phases. To examine this, anisothermal
creep tests with different holding phases and besides this same cycle parameters were
carried out.

Figure 17.14 shows low frequency creep tests with holding phases of 1.5 h and
3.5 h at minimum and maximum cycle temperature. For both materials, 2.4879 and
2.4633, it can be observed that the creep tests with the shorter holding phases show
higher creep strains after a comparable time period. This is interesting, since after a
comparable run time, the tests with longer holding times spend proportionally more
time at the maximum temperature than the tests with shorter holding times (due to
similar ramp durations). On the other hand a specimen in a test with longer holding

(a) (b)

Fig. 17.13: (a) creep tests on 2.4633 on different stress levels (b) quotient of achieved creep strain
of the anisothermal creep test after 400 h and achieved creep strain of the corresponding isothermal
creep test after 400 h.
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(a) (b)

Fig. 17.14: Creep tests with holding phases of 1.5 h and 3.5 h at minimum and maximum cycle
temperature at (a) 2.4879 and (b) 2.4633.

times experiences fewer cycles in a given loading time than the sample in a test with
shorter holding times.

This indicates that the amount of cycles has a stronger impact on the effect of
accelerated creep rate under anisothermal conditions than the amount of time spent
at maximum temperature.

Another example of the influence of holding times in combination with the
influence of grain size can be observed in Fig. 17.15.

In Fig. 17.15a two anisothermal and one isothermal creep test are shown. One
anisothermal creep test was carried out with holding phases of 1.5 h at minimum and
maximum cycle temperature. A second anisothermal creep test has holding phases
of 100 h at minimum cycles temperature and 200 h at maximum cycle temperature.
Both creep curves lie above the isothermal creep curve at 1100 ◦C.

(a) (b)

Fig. 17.15: Creep tests at two different melts of 2.4633 with (a) holding phases of 1.5 h at
minimum and maximum cycle temperature and 100 h at minimum and 200 h at maximum cycle
temperature and (b) of 1.5 h and 11.5 h at minimum and maximum cycle temperature.



300 Romana Schwing, Stefan Linn, Christian Kontermann, and Matthias Oechsner

In Fig. 17.15b two different creep curves on a different melt are shown. The creep
curve with holding phases of 1.5 h lies still above the isothermal creep curve, but the
anisothermal creep curve with holding phases of 11.5 h lies below the isothermal
creep curve and therefore shows the expected behavior.

These results suggest that a grain size-dependent threshold of the holding time
exists, at which the creep strain under anisothermal conditions lies above the strain
of the isothermal creep test at maximum cycle temperature.

17.3.2.4 Temperature Changing Rate

More creep tests were carried out to examine the influence of cycle type or rate of
temperature change as can be seen from Fig. 17.16.

The comparison of low and high frequency anisothermal creep tests shows in
both diagrams, Fig. 17.16a and b, that the creep strain of the high frequency tests
lie above the creep strain of the low frequency tests with comparable parameters. In
Fig. 17.16a the high frequency cycle was carried out with a temperature range of
50 K whereas the temperature range of the high frequency test in Fig. 17.16b was
200 K. By comparison of both diagrams it can be assumed that the higher temperature
changing rate in Fig. 17.16b leads to higher creep strain.

17.3.3 Observations on the Creep Behavior Within a Cycle

The creep curves shown so far are the lower envelope of the recorded total strain
curve. To improve the understanding of the effect of accelerated creep strain rate

(a) (b)

Fig. 17.16: Comparison of a low frequency temperature cycle creep test with a holding phase of
1.5 h with a high frequency temperature cycle creep test; a) with a temperature change rate of 50
K/min, b) with a temperature change rate of 200 K/min.
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under anisothermal conditions, the individual cycle parts should now be examined
more intensively.

For this purpose creep tests were carried out on a servo-hydraulic fatigue testing
machine with a lateral extensometer. With this test setup it is possible to determine
the thermal strain parts in the upper holding phase and the temperature ramps and
subtract them from the total strain. Figure 17.17 schematically shows the temperature
cycle with constant stress of the tested specimen for the investigation of the individual
cycle sections.

The results of this test with the modified setup are shown in the diagrams of figure
17.18. In the diagram on the left hand side the reset creep strain of six different cycles
is shown. The temperature cycle consists of holding phases at 900 ◦C and 1100 ◦C
for each 300 s and temperature ramps in between of 300 s.

The creep strain in the four phases (holding phase at 900 ◦C, temperature ramp
900 ◦C to 1100 ◦C, holding phase at 1100 ◦C and temperature ramp 1100 ◦C to
900 ◦C) applied over the cycle duration shows a characteristic course. In the first
phase, the holding phase at 900 ◦C, a small strain increase is noticeable, which can be
identified as a kind of "primary creep" in figure 17.18b, since the strain rate decreases
in the first phase.

In the second holding phase at 1100 ◦C the creep strain shows the same behavior.
However, the strain increase is 10 times higher than in the 900 ◦C phase. During the
temperature rise a clear increase in strain with a progressive course can be seen. In
the temperature drop phase the strain increase is extremely low.

The diagram of the average creep rate in Fig. 17.18b shows that repriming occurs
in both holding phases independent of the kind of temperature ramp before the hold
time. This means that after every temperature change a new primary creep period
seems to occur, which apparently leads to the accelerated creep strain development.
This repriming could be an explanatory approach for the influence of temperature
cycles on the creep behavior under anisothermal conditions.

Fig. 17.17 Schematic diagram
of stress and temperature
for the investigation of the
individual cycle sections.
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(a) (b)

Fig. 17.18: (a) average zeroed creep strain of six cycles (b) average creep strain rate of the creep
test.

17.4 Discussion

In the examinations of the creep behavior under anisothermal conditions of materials,
which are used in industrial furnace construction it could be shown that the creep
response to tests at very high temperatures of around 80% of the melting tempera-
ture and low mechanical loadings shows an unexpected behavior. Creep curves of
anisothermal tests lie above the isothermal creep curve at maximum cycle temperature
and not as expected between the isothermal creep curves at minimum and maximum
cycle temperature.

It could be shown, that the effect of the accelerated creep rate under anisothermal
conditions is independent of the material, occurs only at low mechanical stresses,
shows a dependence on the grain size and on different temperatures of the cycle and
it is already measurable after short times. These observations lead to the conclusion,
that the observed effect is no material specific effect, but rather a generic material
behavior. Different explanatory approaches for the effect described will be introduced
in the following.

17.4.1 Possible causes of accelerated creep under thermal cycling

In the following, three explanations (thermally induced stresses, oxidation and mi-
crostructural processes) are analyzed.

17.4.1.1 Thermally Induced Stresses

Thermally induced stresses are the consequence of temperature gradients over the
specimen cross section. Cause of thermally induced stresses are a combination of
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the thickness of the specimen or the component, very high temperature changing
rates and the materials limited thermal conductivity. FEM calculations to examine
the expected thermally induced stress were carried out.

During the temperature rise from 900 ◦C to 1100 ◦C in 30 minutes a temperature
difference between specimen surface and bulk of<0.1 ◦C arises (Fig. 17.19a). Around
300 s after the ambient temperature reaches its maximum, the difference between
specimen inside and outside vanishes.

The corresponding thermally induced stress is plotted in Fig. 17.19b. As can be
seen from the plot, a maximum thermally induced stress of 0.15 MPa arises due to
the temperature differences. This stress is considered to be negligible.

Another observation also suggests that thermally induced stresses are not the cause
of the accelerated creep strain development under thermal cycling. An anisothermal
creep test at a specimen with a smaller cross-sectional area showed even higher creep
strains than the thicker sample (Fig. 17.20). In case of thermally induced stresses
as the main cause of the accelerated creep strain development under anisothermal
conditions the sample with the smaller diameter should show a less pronounced effect
than the thicker sample.

17.4.1.2 Oxidation

Another possible cause of the accelerated creep strain under thermal cycling are
oxidative effects at these high temperatures. However, since the phenomenon of
accelerated can already be observed within very initial cycles, and after short times,
where no significant oxide layer is present, oxidation should not be considered to be
a main cause for the presence of the phenomenon.

Furthermore, microscopic examinations revealed no significant differences be-
tween isothermal and anisothermal creep tests with comparably long terms (Fig.
17.21).

(a) (b)

Fig. 17.19: (a) calculated expected temperature difference for the temperature rise of 200 K in
30 min (b) corresponding expected thermally induced stress, elastic calculation.
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Fig. 17.20 Comparison of
two creep curves at compa-
rable cycle temperatures and
loads with different specimen
diameters.

The light micrographs of the material 2.4633 show in both cases, isothermal
and anisothermal creep test, a carbide-depleted area under the specimen surface.
Moreover, areas of inner oxidation can be identified. Beneath the surface carbides
dissolve and pores are left behind. The isothermal sample tends to show a slightly
wider depletion zone than the anisothermally tested sample. Beyond that, no further
significant differences are recognizable. This also applies to the other materials and
samples examined.

(a) (b)

Fig. 17.21: Lightmicroscopy images, 2.4633 unetched, (a) isothermal creep test at 1100 ◦C for
1030 h (b) anisothermal creep test: 𝑇max=1100 ◦C; Δ𝑇 = 200 K, ¤𝑇 = 6.67 K/min, 𝑡hold= 1.5 h,
𝑡 ramp= 0.5 h for 1032 h.
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17.4.2 Microstructural Processes Under Anisothermal Creep
Testing

As already mentioned in Subsect. 17.3.1 the observed strain rates are too high for pure
diffusional creep. This leads to the conclusion that dislocations are the carriers of
deformation and therefore microstructural processes could be the cause of accelerated
creep under thermal cycling.

Due to the observed repriming, firstly the microstructural processes in the primary
creep regime of an isothermally tested specimen are discussed.

With the application of the load, the dislocation density increases and new dislo-
cations are formed. Afterwards these dislocations begin to move and climb and start
to form areas with dense, parallel dislocation walls and areas without structure. With
increasing duration, a uniform dislocation structure and globular subgrains form (Fig.
17.22).

There are different parameters to describe the substructure. In addition to the
dislocation density, which can be divided into dislocation density in areas with and
without subgrain structure (𝜌S and 𝜌R), the subgrain diameter𝜑 and the misorientation
angleΘ can be used to describe the substructure. All of these parameters tend towards
saturation when the minimum creep strain rate is reached (Fig. 17.23).

Fig. 17.22 Formation of a
substructure in the isothermal
case according to [17].
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Fig. 17.23 Development
of the mobile dislocation
densities (𝜌R in areas without
substructure; 𝜌S in areas with
existing substructure), the
subgrain diameter 𝜑 and the
misorientation angle Θ in the
area of primary creep plotted
against strain according to
[18].

To examine the anisothermal case even more in depth, a special creep test was
carried out. First, the temperature was kept isothermal at 1100 ◦C until the test
reached the minimum creep rate, respectively reached the secondary creep zone. By
this stage the ordered substructure should have developed.

In the next step thermal cycles are started. The resulting creep curve is shown in
Fig. 17.24.

From this plot it can be seen that the creep strain rate increases sharply with the
start of the temperature cycles. In a more detailed plot in Fig. 17.25 the transition
region between the isothermal and anisothermal loading shows, that already after the
first temperature cycle, the creep strain rate lies above the previous isothermal creep
strain rate. The creep strain rate in Fig. 17.25b in the first 1100 ◦C holding phase
after the first temperature cycle is higher by a factor of 100 than at the end of the
isothermal phase.

These results suggest that, when the minimum strain rate is reached at correspond-
ingly low stresses, no stable substructure is built or it is disruped by the temperature
change. The formation of a substructure in the primary creep region in the isothermal
case, which is known from literature [17], together with the occurrence of repriming
and the deductions from the experiment just shown, allow the conclusion that thermal

Fig. 17.24 Creep curve of
a test which was started
isothermally and after reaching
the minimum creep strain rate
temperature cycles were
started.
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(a) (b)

Fig. 17.25: (a) creep curve in the region between isothermal and anisothermal loading (b) creep
strain rate at the end of the isothermal range and in the first 1100 ◦C holding phase after the first
temperature change.

cycling does prevent the formation of a stable substructure, or that the formation
process is restarted with each new holding phase.

17.5 Summary

In this paper the effect of an accelerated creep strain development under temperature
cycling condition was discussed. The appearance of the effect was analyzed and
influencing factors could be identified. In this examinations it could be shown that the
effect is stronger with large grain sizes. Another influencing factor is the mechanical
stress. The effect appears only at low mechanical stresses and is more pronounced
the lower the stress. Shorter holding phases in the temperature cycle lead also to a
more pronounced appearance of the effect. Comparisons of low- and high-frequency
anisothermal tests have shown that the high-frequency creep tests with higher rates
of temperature change have higher creep strain rates. In further examinations a so
called repriming in every holding phase was observed.

Thermally induced stresses or oxidative effects could be ruled out as possible
reasons for this effect. The investigations led to the conclusion that this phenomenon
is based on microstructural processes. During the temperature cycles it is not possible
to form a stable substructure, causing a repriming mechanism to occur which leads
to increased creep strain rates during anisothermal loading.
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Chapter 18
The Development and Application of
Optimisation Technique for the Calibrating of
Creep Cavitation Model Based on Cavity
Histogram

Qiang Xu, Bilal Rafiq, Xuming Zheng, and Zhongyu Lu

Abstract It is generally accepted that the creep rupture is primarily determined
by the creep cavitation at grain boundaries, hence it is vital important to develop
an accurate cavitation model. Most of the existing creep cavity models used some
simplifications such as using average diameter of cavities, assumed nucleation, et
al. Recently, the concept of calibrating the creep cavity models using 3D cavity
histogram without any aforementioned simplifications was conceived and practical
trial and error method was devised and used. Whilst the use of such trial and error
method had produced results, arguably very accurate too, but its use heavily relies on
the user’s insight knowledge of the characteristics of the cavity density distribution
function and intervention. Here, we present the development and application of
optimisation techniques for the calibration of creep cavitation model using Excel
Solver, via the minimising the difference of the predicted cavity distribution density
(number of cavities per volume) over cavity size and the experimental measured one.
Its application produces an updated creep cavitation model without any suspicions
doubt of its mathematical accuracy. We anticipate this optimisation implementation
via Excel Solver will be widely used in future.

18.1 Introduction

Creep causes various microstructural changes and property deteriorations over time;
and cavitation at grain boundary is, arguably, the most important one for structural
integrity. However, this has not been adequately appreciated by research communities
and high temperature industries [1–3]. Furthermore, the phenomenological approach
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based continuum creep damage mechanics do suffer a few fundamental criticisms
[1–10] such as:

1. The phenomenological approach does not actually model the creep cavity damage,
only its effect was considered;

2. hence, the coupling of creep cavitation damage and creep deformation is not
mechanism based; and

3. the inability to meet the deformation consistency condition in the multi-axial
version of creep damage constitutive equations generalized by the creep damage
equivalent stress approach. Some pioneer and tentative works were carried out
and can be seen in [9–18], but not limited by these.

The challenges involved with creep damage mechanics and creep damage models
have been analysed in the literature review such as those shown initially in [1] and
formally in [2, 3], and it was summarised in [3] as:

1. Characterizing and quantifying creep cavitation and developing damage criterion
for parent metal and weld, respectively; experimental work (uniaxial and multi-
axial interrupted creep test) to be carried out orgathered under low stress; cavitation
to be quantified, ideally using X-ray micro-tomography. A new damage criterion
shall be developed.

2. Quantifying the microstructural evolutions and their effects on the creep deforma-
tion.

3. Developing and applying the novel creep formulation suitable for a wider range
of stress and incorporating the damage criterion developed in 1.

4. Generalizing uniaxial version into a three-dimensional creep damage model.

Bearing the above thoughts in mind, some preliminary research in order to overcome
the above problems [11–18]. In 2013, on the sight of the published 3D synchrotron
creep cavity data for high Cr steels [19], a research project was set up to model the
cavitation and creep cavitation lifetime [20–22]. In pursuing the above research, we
did utilize and calibrated Riedel’s generic creep cavitation model [23] and developed
creep rupture model based on area fraction along the grain boundary concept. Its
success has encouraged research to investigate other alloys and to use other 3-
dimensional cavitation data such as those produced by small angle neutron deflection
[24, 25] and publications [26–28].

Among these research, one of the core activities is how to calibrate the creep
cavitation model based on histogram. Initially, due to the priority of research, we
decided to be practical to find the numerical answers without having to resort to
optimization techniques though we did have some experience [29, 30]. During
the course of research, we have progressively devised and used the trial and error
based method with and/or without semi-optimisation. Now, we have adopted the
Solver of Microsoft Excel for full optimisation. The original trial and error methods
were reported in [31], and this paper will report the further progress on the semi-
optimisation and full optimisation. The cavity data of E911 [32] was chosen and used
in this paper for illustration. This paper contributes to the method and knowledge of
how to calibrate the creep cavitation model based on histogram.
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18.2 Background Theories and Knowledge

18.2.1 Cavitation Model Theory

The cavity nucleation and cavity growth models are proposed as [23]:

𝐽∗ = 𝐴2𝑡
𝛾 , (18.1)

¤𝑟 = 𝐴1𝑟
−𝛽𝑡−𝛼 (18.2)

where 𝐽∗ is the cavity nucleation rate, 𝑟 and ¤𝑟 is the cavity radius and its growth rate
respectively, and 𝑡 is time, while 𝐴1, 𝐴2, 𝛼, 𝛽, and 𝛾 are material cavitation constants.
It is implicitly assumed that they are not changing during the creep process and they
might be dependent stress. Some preliminary explanation of their physical meaning
and their significance can be found from literature, such as in [23, 32].

Generic cavity size distribution function was derived by Riedel [23] as:

𝑁 (𝑅, 𝑡) = 𝐴2

𝐴1
𝑅𝛽𝑡𝛼+𝛾

(
1− 1−𝛼

1+ 𝛽
𝑅𝛽+1

𝐴1𝑡1−𝛼

) (𝛼+𝛾)/(1−𝛼)
(18.3)

The 𝑅 is cavity radius at the specific time 𝑡. There are five cavitation constants here,
namely, 𝛼, 𝛽, 𝛾, 𝐴1 and 𝐴2, in total. Beware of the definition of 𝑅 in the 𝑁 −𝑅 space,
and it differs from 𝑟 normally.

18.2.2 Current Calibration Methods

Mathematically, Eqs. (18.1) will uniquely decide Eq. (18.3), and vice versa, so they
are equivalent. Hence Xu concluded [3] that:

1. We can determine the values for the cavitation model based on the data in histogram
alone, as long as there are five data points or more, there is no need of any other
experimental data such as the direct measurement of the cavity growth rate and/or
the change of cavity number over time.

2. The standard approach would be resorting to the optimization techniques.
3. Without resorting optimization, a set of values can be obtained by solving 5

independent equations, simultaneously. There are standard procedures for such
task.

4. Even more practical, the trial and errormethod can be used to construct a theoretical
histogram, and through comparison of the predicted histogram and experimental
data, and this can be very easily achieved by programming with Excel.

5. The known typical values for any variable can be used as a good starting point,
which will reduce the order of difficulty and complexity.

6. If the characteristic values for 𝛼 and 𝛽 have been obtained and the value for 𝛾 has
been suggested for a specific test, then the inner code of the calibration is reduced
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to find the solution for 𝐴1 and 𝐴2, given set values of 𝛼, 𝛽 and 𝛾. The predicted
𝑟 − 𝑡 and 𝑁 − 𝑡 at 𝑡 𝑓 was used to construct the 𝑁 (𝑅, 𝑡 𝑓 ).

7. The outside loop can be performed for various values for 𝛼, 𝛽 and 𝛾, the sensitivity
of the values of 𝛼, 𝛽, 𝛾 can be explored afterwards.

The essence of item 6 and 7 is to reduce the number of variables to only 𝐴1 and 𝐴2
and find their values for a set of guessed values of 𝛼, 𝛽 and 𝛾. The typical values were
suggested in literature as 𝛼 = 1, 𝛽 = 2, 𝛾 = 1.

Further mathematical equations if 𝛼 = 1 for calibration are given bellow:

𝑁 (𝑅, 𝑡 𝑓 ) =
𝐴2

𝐴1
𝑅𝛽𝑡

1+𝛾
𝑓

exp
(
−1+𝛾

1+ 𝛽
𝑅𝛽+1

𝐴1

)
(18.4)

1
3
𝑟3 = 𝐴1 ln 𝑡 +𝐶, (18.5)

1
3
𝑟3
𝑖 = 𝐴1 ln 𝑡𝑖 +𝐶, (18.6)

1
3
𝑟3
𝑗 = 𝐴1 ln 𝑡 𝑗 +𝐶, (18.7)

𝐴1 =
𝑅3
𝑗
−𝑅3

𝑖

3(ln 𝑡 𝑗 − ln 𝑡𝑖)
, (18.8)

𝐴1 =
−2𝑅3

1 +2𝑅3
2

3ln(𝑁 (𝑅1, 𝑡 𝑓 )𝑅2
2/𝑁 (𝑅2, 𝑡 𝑓 )𝑅2

1)
(18.9)

Substitute 𝐴1 into Eq. (18.4) and using the point 2 (𝑅2), on the histogram, gives:

𝐴2 =
𝑁 (𝑅2, 𝑡 𝑓 )𝐴1

𝑅2
2𝑡

2
𝑓
exp(−2𝑅3

2/3𝐴1)
(18.10)

Substitute 𝐴1 into Eq. (18.4) and using the point 1 (𝑅1), gives:

𝐴2 =
𝑁 (𝑅2, 𝑡 𝑓 )𝐴1

𝑅2
1𝑡

2
𝑓
exp(−2𝑅3

1/3𝐴1)
(18.11)

With a set of assumed 𝛼, 𝛽 and 𝛾, the forward method starts with a set of guessed
𝐴1 and 𝐶 (18.6) and a data point to calculate 𝐴2 according to (18.10). The predicted
curve can be plotted and the goodness of fitting can be visually checked with a series
of set of 𝐴1 and 𝐶; then iterate over a different set of assumed 𝛼, 𝛽 and 𝛾 to find the
best solution. The check of goodness of the fitting is visually assessed.

The backward method used two data points to directly calculate the 𝐴1 and 𝐴2
directly using (18.9)and (18.10) or (18.11). The predicted curve can be plotted and
its goodness of fitting is visually checked, initially. Later on, the semi-optimisation
method was devised by introducing the root-mean-square error (RMSE) to measure
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the goodness of a specific fitting and the trial and error exercise will stop when it is
deemed that the minimum RSME has been achieved.

18.3 Optimisation with Excel Solver

Solver in Microsoft Excel offers the optimisation function. It shares the same funda-
mentals in optimisation:

1. the objective function,
2. the variables to be optimised,
3. the constraints and limits, and
4. the starting values.

In Excel, there are designated areas for them: the objective cell, decision variables
cells, constraint and limit window, respectively, while the starting values are inserted
into the decision variables cells. A Solver Parameters window and Solver Result
window is shown by Fig. 18.1. The third author found it is very user-friendly as there
is no complicated coding and the need for controlling the accuracy of the optimisation
et al which other optimisation techniques.

18.4 Cavitation Data

The E911 high Cr high temperature steel was chosen for illustration of the optimisation
method. The 3D cavities after creep rupture was measured and histogram was
produced by [24]. The data points of the cavity histogram were digitized by Zheng
[33] and it is shown by Fig. 18.2.

18.5 Results

The result obtained by backward method is included for completeness and shown
in Fig. 18.3. The semi-optimised result is shown in Fig. 18.4. The full optimised
result and the comparison is shown by Fig. 18.5. The different sets of results and the
accuracy are listed in Table 18.1.
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a)

b)  

Fig. 18.1: The illustration of Solver Parameters window and Solver Results: a) Solver Parameter
window, b) Solver Results window.
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Fig. 18.2: Experimental data points of creep cavity histogram for E911, originally from [32],
digitised by [24].

 

Fig. 18.3: Result of backward method from [24].
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Fig. 18.4: Results with semi-optimisation and full-optimisation.
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Table 18.1: The cavitation constants and the fitting accuracy (RMSE).

Material parameter Backward Method Semi-optimised Full-optimised

𝐴1,µ𝑚
3/lnℎ 8.76 13.67 15.05

𝐴2 (No. cavities µ𝑚−3ℎ−1 9.47E-07 1.00E-06 7.277E-03

𝛼 1.0 1.0 1.072

𝛽 2.0 2.472 2.498

𝛾 1.0 1.0 0.09811

Accuracy: RMSE 35.9255 18.0219 16.2952

18.6 Discussion and Conclusion

As far as the authors are aware of the literature, this is the first time that the method
for calibrating a generic cavitation model based on cavity histogram was optimised.
The following conclusions can be drawn:

1. The application of the backward method can produce a reasonable solution, see
Fig. 18.3, and its success depends on the judicious choosing two representative
points and the user-guided iteration in order to achieve the best fit.

2. The semi-optimisation was achieved by introducing the MSRE in the above
iteration, and better results are obtained, see Fig. 18.4. The accuracy has been
improved significantly as the MSRE has reduced from 35.9255 for un-optimised
to 18.0219 for the semi-optimised, see Table 18.1.

3. The full-optimised via Solver in Excel has produced the best results, see Fig. 18.5,
and with the lowest RMSE of 16.2952.

4. The semi-optimised method can produce very low MSRE (18.0219) which is
very close to that of full-optimised (16.2952), the difference between these two
methods shown in histograms is very small.

5. However, there is a noticeable difference in the values of the cavity constants, this
is due to the different sensitivities of histogram on the cavitation parameters.

The recommended future work should investigate the sensitivity of the histogram on
the cavitation parameters.
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Chapter 19
A Temperature-Dependent Viscoelastic
Approach to the Constitutive Behavior of
Semi-Crystalline Thermoplastics at Finite
Deformations

Le Zhang, Bo Yin, Robert Fleischhauer, and Michael Kaliske

Abstract The contribution at hand aims at the formulation of a promising constitutive
model for solids exhibiting thermo-viscoelastic characteristics. Temperature depen-
dency and nonlinear creep properties are included into this material formulation. In
general, a phenomenological constitutive formulation considering isotropic thermo-
viscoelasticity at finite strains is introduced based upon a multiplicative split of the
deformation gradient. The evolution equations for the inelastic deformation gradient
are introduced in a thermo-dynamically consistent manner. In particular, the present
approach focuses on an inelastic incompressibility condition and the principle of
maximum of dissipation. The derivation starts from a well-defined Helmholtz en-
ergy function, which also includes a volumetric thermal deformation. For simplicity,
isotropic thermal conductivity behavior is taken into account. The set of constitutive
equations is consistently linearized and incorporated into a Newton-type solver.
The physical applicability of the present formulation is validated by a promising
numerical study, which has also demonstrated favourable numerical stability and
robustness.

19.1 Introduction

A special class of polymers with entangled but un-crosslinked macromolecules are
thermoplastics. They show significant creep phenomena, when subjected to static
mechanical loads, due to the special characteristics of their micro-structure. The
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contribution at hand aims at a thermo-dynamically consistent constitutive modeling
of the material behavior of semi-crystalline thermoplastics at finite deformations.
The material property, that is especially focused on, is characterized by an elastic and
viscous deformation, in order to model the creep behavior of thermoplastics.

The concept of the split of the deformation gradient into volumetric and isochoric
parts is applied. The isochoric part is further split into elastic and viscous contri-
butions and the volumetric part is considered to account for thermal and elastic
deformations. Based on these multiplicative kinematics, the isochoric elastic right
Cauchy-Green deformation tensor is introduced such that it is not influenced by
change of temperature. The determinant of the volumetric part of the deformation
gradient is used to account for the thermal expansion and stress-inducing volumetric
elastic deformations. This kinematic approach is based on the work of [1].

The specific heat capacity of thermoplastics is incorporated into the Helmholtz
energy and is assumed to be a material constant. The heat flux vector is assumed
to follow Fourier’s law and is a function of the thermal conductivity coefficient
for the appropriate thermoplastics, compare [2]. A suitable specific formulation
of the Helmholtz energy is introduced, based on [3], consisting of volumetric,
isochoric, thermal and latent parts. The energy formulation is used to derive the first
Piola-Kirchhoff stress as well as the external power, which is used to define
the change of entropy inside the thermoplastic material. Furthermore, the energy is
used to specify the dissipative behavior of the material for considering a change of
mechanical into thermal energetic parts, compare [4].

The viscous part of the deformation gradient is driven by its thermodynamic
consistent evolution equation. This evolution equation is based on a constitutive
viscous flow potential with respect to the viscous intermediate configuration and the
respective Mandel stress. The second internal variable, the hardening strain is
driven by the latent part of the Helmholtz energy and its thermodynamic consistent
evolution equation. The presented contributions are based on the developments in
[3].

All constitutive descriptions and developments are incorporated into a two-field
global finite element solver, considering the balance laws of non-linear thermo-
inelasticity at finite deformations [2], with respect to the reference configuration.
The Newton-type solver is based on the consistently linearized field equations for
the displacement and the temperature field, which form the global unknown fields.
The implicit function theorem is applied to consider the change of these global
unknowns, due to a change of the local internal variables, namely the viscous part of
the deformation gradient and the hardening strains. All computational developments
and constitutive descriptions are successfully validated by a representative numerical
study, where the experimental creep data for polyoxymethylene (POM) at 60◦C, taken
from [5], is used to identify the introduced material constants.

The framework of this paper is outlined as follows. In Sect. 19.2, the preliminaries
of the finite thermo-viscoelasticity are introduced, which pay particular attentions to
the basic kinematics and the multiplicative decomposition of the total deformation
gradient. In Sect. 19.3, a brief overview of the constitutive framework is summarized,
including the Helmholtz free energy and the nonlinear creep law. In the sequel, a
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representative numerical example is studied in Sect. 19.4, consisting of both stress-
controlled and strain-controlled loading conditions. Sect. 19.5 closes the paper by
summarizing the present work and proposing future perspectives.

19.2 Preliminaries of the Finite Thermo-Viscoelasticity

This section depicts the fundamental theoretical background of the constitutive
framework of the isotropic thermo-viscoelasticity. To classify the deformation process,
let B0 be the solid body in the reference configuration as a subset of the Euclidean
space B0 ⊂ R3 at 𝑡0 ∈ T | T ⊂ R+. For each material point 𝑃𝑡0 of B0, its position
vector is 𝑋𝑋𝑋 ∈ B0. At time 𝑡 ∈ T , the current configuration is denoted as B𝑡 and
the corresponding material point 𝑃𝑡 has a position vector 𝑥𝑥𝑥 ∈ B𝑡 . The mapping
𝜑𝜑𝜑𝑡 : B0×T → R3 denotes the motion of the solid domain at the time interval T . The
motion 𝜑𝜑𝜑𝑡 is a non-linear and bĳective mapping, reading 𝜑𝜑𝜑𝑡 : 𝑋𝑋𝑋 ↦→ 𝑥𝑥𝑥 = 𝜑𝜑𝜑𝑡 (𝑋𝑋𝑋) . The
deformation gradient 𝐹𝐹𝐹 is now defined as

𝐹𝐹𝐹 (𝑋𝑋𝑋) : = Grad
(
𝜑𝜑𝜑𝑡 (𝑋𝑋𝑋)

)
=
𝜕𝜑𝜑𝜑𝑡 (𝑋)
𝜕𝑋𝑋𝑋

= 𝑔𝑔𝑔𝑖 ⊗𝐺𝐺𝐺𝑖 (19.1)

having a determinant 𝐽 (𝑋𝑋𝑋) := det (𝐹𝐹𝐹) . The basis vectors𝐺𝐺𝐺𝑖 and 𝑔𝑔𝑔𝑖 are defined with
respect to the reference and the current configuration, respectively.

The absolute temperature for a point of B𝑡 is denoted as 𝜃 ≥ 0K. Furthermore, it
is common to denote the reference temperature for a material point of B0 as 𝜃0 and
define the change of temperature 𝜗 as

𝜗 := 𝜃 − 𝜃0 . (19.2)

As a convention, the temperature is transferred into units of Kelvin [K] instead of
Celsius [◦C] or Fahrenheit [◦F], which naturally enables that temperature parts of
the Helmholtz energy can be introduced by a logarithmic form due to the strict
positiveness.

For a finite thermo-viscoelastic formulation, the deformation gradient 𝐹𝐹𝐹 is split
into the thermal and viscoelastic parts

𝐹𝐹𝐹 = 𝐹𝐹𝐹𝜗𝐹𝐹𝐹𝑣𝑒 . (19.3)

The thermal part of the deformation is constitutively assumed to be of purely volu-
metric nature, so that an increase of temperature ensures an increase of the volume of
the solid body and vice versa. Here, the volumetric thermal expansion is modeled by

𝐹𝐹𝐹𝜗 =

(
𝐽𝜗

) 1
3 111, where 𝐽𝜗 = exp(3𝛼𝑡 𝜗) , (19.4)

where 111 is the identity tensor and 𝛼𝑡 denotes the isotropic thermal expansion coeffi-
cient. Based on [4], herein an exponential form of the thermal expansion is introduced.
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The non-thermal part
𝐹𝐹𝐹𝑒𝑣 = (𝐽𝑒𝑣)

1
3 �̄�𝐹𝐹

𝑒𝑣

can also be further split based on a volume preserving formulation, namely

�̄�𝐹𝐹
𝑒𝑣

= �̄�𝐹𝐹
𝑒
�̄�𝐹𝐹
𝑣 (19.5)

for the elastic and viscous parts; see e.g. [1, 6–10]. Therefore, the determinant of
deformation gradient 𝐽 satisfies 𝐽 = 𝐽𝜗𝐽𝑒𝑣.

The viscous part of the deformation �̄�𝐹𝐹𝑣 describes the irreversible and inelastic part
of the total isochoric deformation. This portion can evolve e.g. due to the creep law,
leading to micro-structural rearrangements of the material and, thus, to dissipation
and temperature changes. Once �̄�𝐹𝐹𝑣 evolves, the incompressibility condition

det
(
�̄�𝐹𝐹
𝑣
)
= 𝐽𝑣 = 1 ∀ �̄�𝐹𝐹𝑣 (19.6)

has to be ensured for most of the materials, especially for metals, see [11]. The time
derivative of inelastic deformation gradient is defined by

¤̄𝐹𝐹𝐹𝑣 = �̄�𝐿𝐿𝑣�̄�𝐹𝐹𝑣 , (19.7)

where �̄�𝐿𝐿𝑣 is the rate of deformation. The elastic part is defined by

�̄�𝐹𝐹
𝑒
= �̄�𝐹𝐹

𝑒𝑣
�̄�𝐹𝐹
𝑣−1

. (19.8)

Using Eq. (19.8), the deformation measure

�̄�𝐶𝐶
𝑒
= �̄�𝐹𝐹

𝑒𝑇

𝑔𝑔𝑔�̄�𝐹𝐹
𝑒
= �̄�𝐹𝐹

𝑣−𝑇
�̄�𝐹𝐹
𝑇
𝑔𝑔𝑔�̄�𝐹𝐹�̄�𝐹𝐹

𝑣−1
(19.9)

is introduced as a function of the current metric tensor 𝑔𝑔𝑔, which represents a key
kinematic quantity for defining specific constitutive equations.

Furthermore, the heat flow 𝑞𝑛 out of the surface 𝜕B𝑡 of the current configuration
can be expressed as 𝑞𝑛 =: 𝑞𝑞𝑞·𝑛𝑛𝑛 , where 𝑞𝑞𝑞 denotes the spatial heat flux through a point
𝑥𝑥𝑥 ∈ 𝜕B𝑡 and 𝑛𝑛𝑛 is the current outward normal at the observed point, see Fig. 19.1. The
spatial heat flux vector 𝑞𝑞𝑞 at point 𝑥𝑥𝑥 ∈ B𝑡 , describing the heat conduction inside of the
solid body, is assumed to follow Fourier’s law

𝑞𝑞𝑞 =− 𝑘
𝐽

grad(𝜗) , (19.10)

where 𝑘 is a material constant. Eq. (19.10) sufficiently describes the spatial heat
conduction phenomena by the current state of the temperature gradient grad(𝜗).
Additionally, the conductive dissipation

D𝑐𝑜𝑛 := −1
𝜃
𝑞𝑞𝑞·grad(𝜗)
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Fig. 19.1 Schematic depiction
of the boundary 𝜕B𝑡 of the
current configuration and its
normal 𝑛𝑛𝑛 at point 𝑥𝑥𝑥 as well as
tractions 𝑡𝑡𝑡 and heat flux 𝑞𝑞𝑞

𝑛𝑛𝑛
𝑥𝑥𝑥 ∈ 𝜕B𝑡

d𝑎

B𝑡

𝑡𝑡𝑡 = 𝜎𝜎𝜎𝑛𝑛𝑛
𝑞𝑞𝑞

𝜕B𝑡

is also fulfilled.

19.3 Constitutive Formulation of Finite Thermo-Viscoelasticity

19.3.1 Helmholtz Energy

In order to define the isotropic thermo-viscoelastic material in a systematic manner,
the Helmholtz energy 𝜓 is particularly defined herein, reading

𝜓 = 𝜓𝑒𝑣𝑜𝑙 +𝜓
𝑒
𝑖𝑠𝑜 +𝜓𝜗 , (19.11)

where 𝜓𝑒
𝑣𝑜𝑙

denotes the volumetric part from both the elastic deformation and the
temperature changes. 𝜓𝑒

𝑖𝑠𝑜
represents the isochoric energy density. Additionally, a

pure thermal contribution 𝜓𝜗 captures the change of free energy due to any change
of temperature. The volumetric and isochoric part of Eq. (19.11) take the definition
of [12, 13], reading

𝜌0𝜓
𝑒
𝑣𝑜𝑙 (𝐽, 𝐽

𝜗) = 𝜅

2
· ln(𝐽𝑒𝑣)2, and 𝜌0𝜓

𝑒
𝑖𝑠𝑜 (�̄�𝐶𝐶

𝑒) = 𝜇

2
(𝐼1 −3), (19.12)

respectively, noting, 𝐼1 = tr (�̄�𝐶𝐶𝑒) = 𝛿𝑖 𝑗�̄�𝐶𝐶
𝑒

𝑖 𝑗 . The thermal part 𝜌0𝜓
𝜗 = 𝜌0𝜓

𝜗 (𝜗) is
defined as

𝜌0𝜓
𝜗 (𝜗) = −𝜌0𝑐

(
𝜃 ln

(
𝜃

𝜃0

)
−𝜗

)
+𝐶 (𝜗) . (19.13)

The corrector function 𝐶 (𝜗) is required in order to ensure the assumed constant heat
capacity at constant deformation. The specific heat capacity 𝑐 is defined by

𝜌0𝑐 := −𝜃 𝜕
2𝜌0𝜓

𝜕𝜗𝜕𝜗
= −𝜃

𝜕2𝜌0𝜓
𝑒
𝑣𝑜𝑙

(𝐽, 𝐽𝜗)
𝜕𝜗𝜕𝜗

− 𝜃 𝜕
2𝜌0𝜓

𝜗 (𝜗)
𝜕𝜗𝜕𝜗

(19.14)

and determines the temperature-dependent part of the Helmholtz energy by

𝜕2𝜌0𝜓
𝜗 (𝜗)

𝜕𝜗𝜕𝜗
= −

𝜕2𝜌0𝜓
𝑒
𝑣𝑜𝑙

(𝐽, 𝐽𝜗)
𝜕𝜗𝜕𝜗

− 𝜌0𝑐

𝜃
. (19.15)
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An integration over the temperature domain together with the use of the constraints
𝜕𝜃𝜓𝜗 (𝜗 = 0) := 0 and 𝜕𝜃𝜃2𝜓𝜗 (𝜗 = 0) := 0 as well as considering 𝜃 = 𝜃0 ∀ 𝜗 = 0
would yield the specific formulation of 𝜓𝜗 and 𝐶 (𝜗), respectively.

Following [14], the Cauchy stress tensor 𝜎𝜎𝜎 and the Kirchhoff stress tensor 𝜏𝜏𝜏
are given by

𝜎𝜎𝜎 = 2𝜌
𝜕𝜓

𝜕𝑔𝑔𝑔
=

2
𝐽

𝜕𝜌0𝜓

𝜕𝑔𝑔𝑔
=

1
𝐽
𝜏𝜏𝜏 , (19.16)

where 𝜌 is the current density and𝑔𝑔𝑔 the currentmetric tensor. According to Eq. (19.11),
the Cauchy stresses are additively split into volumetric and isochoric parts, reading

𝜎𝜎𝜎vol =
1
𝐽

[
𝜅 ln(𝐽𝑒𝑣)𝑔𝑔𝑔−1] , and 𝜎𝜎𝜎iso = 2𝜇𝐽

𝜕𝐼1

𝜕𝑔𝑔𝑔
. (19.17)

The external power

𝜌𝑤ext := 𝜌𝜃
(
2
𝜕2𝜓

𝜕𝑔𝑔𝑔𝜕𝜗

)
: 𝑑𝑑𝑑 = 𝜃

𝜕𝜎𝜎𝜎

𝜕𝜗
: 𝑑𝑑𝑑 = 𝜃

𝜕𝜎𝜎𝜎

𝜕𝜗
: sym𝑙𝑙𝑙 , (19.18)

where 𝑙𝑙𝑙 = ¤𝐹𝐹𝐹𝐹𝐹𝐹−1 is the spatial velocity gradient and 𝑑𝑑𝑑 its symmetric part, influences
the change of entropy per time. After the specification of the Helmholtz energy,
𝜌𝑤ext takes the form

𝜌𝑤ext =
𝜅𝜃

𝐽

[
1
𝐽𝑒𝑣

𝜕𝐽𝑒𝑣

𝜕𝜗

]
𝑔𝑔𝑔−1 : sym𝑙𝑙𝑙 (19.19)

and represents the amount of energy that changes the temperature at 𝑥𝑥𝑥, due to an
arbitrarily applied deformation rate. This part of the entropy change is a function of the
volumetric energy, since temperature changes only affect the changes in volumetric
deformation of most materials.

The internal power is expressed as

𝜌𝑤int := 𝜌
(
𝜕𝜓

𝜕�̄�𝐹𝐹
𝑣 − 𝜃

𝜕2𝜓

𝜕�̄�𝐹𝐹
𝑣
𝜕𝜃

)
: ¤̄𝐹𝐹𝐹𝑣 , (19.20)

which models any change of temperature at 𝑥𝑥𝑥 ∈ B𝑡 due to the evolution of internal
variables in an irreversible manner, whenever ¤̄𝐹𝐹𝐹𝑣 ≠ 000. Eq. (19.19) captures the re-
versible change of temperature at any deformation rate, while Eq. (19.20) can be
interpreted as an underlying ground state temperature change response. If ¤̄𝐹𝐹𝐹𝑣 = 000 and
¤𝐹𝐹𝐹 ≠ 000, an entropic cooling at tension and heating at compression is present at 𝑥𝑥𝑥 ∈ B𝑡
and, if ¤̄𝐹𝐹𝐹𝑣 ≠ 000 and ¤𝐹𝐹𝐹 ≠ 000, the temperature is increased as time elapses.
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19.3.2 Creep Law

Having Eq. (19.7) at hand, the viscous evolution operator �̄�𝐿𝐿𝑣 related to the viscous
intermediate configuration, needs to be defined. The standard arguments for defining
work conjugates at the intermediate configuration are the positiveness of the internal
dissipation, see e.g. [15]. If 𝜌0𝜓

𝑒
𝑖𝑠𝑜

(�̄�𝐶𝐶𝑒) represents the change of energy stored due
to viscoelastic loading, the internal dissipation can be defined by

Dint := P − 𝜌0 ¤𝜓𝑒𝑖𝑠𝑜 (�̄�𝐶𝐶
𝑒) ≥ 0 , (19.21)

where no temperature change is assumed while viscous evolution. The stress power
P := Σ̄ΣΣ : �̄�𝐿𝐿, as a function of the Mandel stress

Σ̄ΣΣ = 2�̄�𝐶𝐶𝑒
𝜕𝜌0𝜓

𝑒
𝑖𝑠𝑜

(�̄�𝐶𝐶𝑒)
𝜕�̄�𝐶𝐶

𝑒 (19.22)

with respect to the intermediate configuration, is introduced, see [1]. The total rate of
deformation �̄�𝐿𝐿 = �̄�𝐹𝐹

𝑒
𝑙𝑙𝑙�̄�𝐹𝐹
𝑒−1

related to the intermediate configuration can be split into

�̄�𝐿𝐿 = �̄�𝐿𝐿
𝑒 + �̄�𝐿𝐿𝑣 , (19.23)

where �̄�𝐿𝐿𝑒 = �̄�𝐹𝐹𝑒
−1 ¤̄𝐹𝐹𝐹𝑒, compared to [6]. A further evaluation of Eq. (19.21) yields

𝜌0 ¤𝜓𝑒𝑖𝑠𝑜 (�̄�𝐶𝐶
𝑒) =

𝜕𝜌0𝜓
𝑒
𝑖𝑠𝑜

(�̄�𝐶𝐶𝑒)
𝜕�̄�𝐶𝐶

𝑒 : ¤̄𝐶𝐶𝐶𝑒 =
[
2�̄�𝐶𝐶𝑒

𝜕𝜌0𝜓
𝑒
𝑖𝑠𝑜

(�̄�𝐶𝐶𝑒)
𝜕�̄�𝐶𝐶

𝑒

]
: �̄�𝐿𝐿𝑒 , (19.24)

for the inelastic and isochoric part of the Helmholtz energy. Inserting Eq. (19.23)
and Eq. (19.24) into Eq. (19.21) and applying the standard arguments for the strict
positiveness of the internal dissipation leads to the constitutive description of Σ̄ΣΣ
(compare Eq. (19.22)), reading

Dint :=

[
Σ̄ΣΣ−2�̄�𝐶𝐶𝑒

𝜕𝜌0𝜓
𝑒
𝑖𝑠𝑜

(�̄�𝐶𝐶𝑒)
𝜕�̄�𝐶𝐶

𝑒

]
: �̄�𝐿𝐿 +

[
2�̄�𝐶𝐶𝑒

𝜕𝜌0𝜓
𝑒
𝑖𝑠𝑜

(�̄�𝐶𝐶𝑒)
𝜕�̄�𝐶𝐶

𝑒

]
: �̄�𝐿𝐿𝑣 ≥ 0 . (19.25)

The following constitutive definition for �̄�𝐿𝐿𝑣 is introduced, reading

�̄�𝐿𝐿
𝑣 := ¤𝛾𝑣𝑁𝑁𝑁 = ¤𝛾𝑣 Σ̄ΣΣ

∥Σ̄ΣΣ∥
. (19.26)

Compare [16], the creep flow is defined as

¤𝛾𝑣 = ¤𝛾0

[
exp

((
∥ΣΣΣ∥
𝑠0

)𝑛)
−1

]
, (19.27)
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where ¤𝛾0 denotes the pre-exponential shear strain rate factor. 𝑛 and 𝑠0 are another
two material parameters. Here, both of them are given as constant coefficients. It
ensures the inequality of internal dissipation, see Eq. (19.25). Recalling Eq. (19.7),
the time integration is given by

¤̄𝐹𝐹𝐹𝑣 = [ ¤𝛾𝑣𝑁𝑁𝑁] �̄�𝐹𝐹𝑣 . (19.28)

Within a standard time discretization, the implicit update algorithm

�̄�𝐹𝐹
𝑣

𝑛+1 = exp
[
Δ𝛾𝑣𝑛+1𝑁𝑁𝑁𝑛+1

]
�̄�𝐹𝐹
𝑣

𝑛 , (19.29)

is applied for a time increment {𝑡𝑛, 𝑡𝑛+1} ∈ R as an approximation.

19.3.3 Governing Equations

This section briefly summarizes the spatial formulation of the driving partial dif-
ferential equations (PDE) for evolving the global nodal unknowns, i.e. temperature,
displacements, velocities and accelerations. The local forms, where local means the
validity at any 𝑥𝑥𝑥 ∈ B𝑡 , are given by

𝜌 ¥𝑢𝑢𝑢 = 𝜌𝑏𝑏𝑏 +div(𝜎𝜎𝜎) , (19.30)

𝜌𝑐 ¤𝜃 = −div(𝑞𝑞𝑞) + 𝜌
(
𝜃 ·2 𝜕2𝜓

𝜕𝑔𝑔𝑔𝜕𝜃

)
: 𝒅− 𝜌

(
𝜕𝜓

𝜕�̄�𝐹𝐹
𝑣 − 𝜃

𝜕2𝜓

𝜕�̄�𝐹𝐹
𝑣
𝜕𝜃

)
: ¤̄𝐹𝐹𝐹𝑣 (19.31)

= −div(𝑞𝑞𝑞) + 𝜌𝑤ext − 𝜌𝑤int . (19.32)

The focus of the contribution at hand is a consistent solution of the path dependent
problem by use of a Newton-type solver considering initial condition at 𝑡0 for all
𝑋𝑋𝑋 ∈ B0 and boundary conditions for all 𝑥𝑥𝑥 ∈ B𝑡 and 𝑋𝑋𝑋 ∈ B0. The boundary of 𝐵 is
divided into 𝜕𝐵 = {𝜕𝐵𝑢 , 𝜕𝐵𝜃 } = {𝜕𝐵𝜎 , 𝜕𝐵𝑞}, compare Fig. 19.1, with prescribed
displacements, temperatures or tractions and heat flows for each of the configurations.

19.4 Numerical Study

In this section, a numerical example is conducted in comparison with the related
experimental investigation, in order to intuitively demonstrate the capability of the
present model. Based on [5], a flat specimen of polyoxymethylene (POM) with stress-
controlled load and strain-controlled load is modeled, respectively. The material
constants are shown in Table 19.1 The specimen geometry is depicted in Fig. 19.2 (a)
and the finite element discretization is shown in Fig. 19.2 (b).
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Table 19.1: Material parameters.

𝜅 𝜇 𝛼𝑡 𝑘𝑡 𝜌0𝑐 𝜃0 ¤𝛾0 𝑠0 𝑛

2000 MPa 110 MPa 2𝑒−3 0.3 N/s·K 2 N/(mm2 ·K) 333 K 7.5𝑒−9 12.5 MPa 2.37

(a) (b)

Fig. 19.2: (a) geometry of the flat specimen with all measures in mm; (b) setup for finite element
model.

19.4.1 Stress-Controlled loading

In the stress-controlled loading simulation, a set of nominal stresses
𝜎 = {27.5,30,33,35}MPa is considered, which can be mimicked alterna-
tively by applying a force 𝒇 to yield a same level of stress in the cross-section
of the central region in the specimen, see Fig. 19.2 (b). The longitudinal strain
Y1 = ln(𝑙/𝑙0) and lateral strain Y2 = ln(𝜔/𝜔0) in a logarithmic formulation are
two essential parameters for analyzing the experimental outcomes. Hence, in the
numerical evaluation, a similar behavior is obtained for an effective comparison.

In comparison with experimental outcomes from [5], the simulation results by the
present model based on a stress-controlled loading are validated in Fig. 19.3 with
respect to all the stress states {27.5,30,33,35} MPa. It can be evidently seen that
the numerical prediction shows a good agreement to the experimental investigation
for all setups. Furthermore, the model also captures the characteristic that the strain
growth rate increases obviously with the larger nominal stress application. Therefore,
the given creep law in Eq. (19.27) is demonstrated to have a good performance in
fitting the overall experimental results.

Furthermore, the deformation process with the nominal stress 𝜎 = 33 MPa is
also shown in Fig. 19.4 for a straightforward visualization of the creep behavior.
Considering the original length 80 mm, the creep deformation is obviously observed
as time increases, e.g., it reaches more than 100 mm at 𝑡 = 1.78e4 s. In addition,
the temperature evolution along the time is investigated. Figure 19.5 depicts the
temperature change 𝜗 in the central point of the specimen along the time increase.

Moreover, another interesting comparison about temperature evolution is shown
in Fig. 19.6, which describes the temperature distribution for all nominal stress
applications but at the same specimen elongation state.
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Fig. 19.3: Model results under stress-controlled loading.

Fig. 19.4: Creep deformation of the numerical model at 𝑡 = [10, 4.3e3, 1.12e4, 1.78e4 ] s with
𝜎 = 33 MPa.
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Fig. 19.5: Temperature course in the central point of specimen under stress-controlled loading.
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Fig. 19.6: Temperature distribution of the flat specimen with the stain state Y1 = 0.185 under
stress-controlled loading.
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19.4.2 Strain-Controlled loading

The strain-controlled tension test is experimentally conducted by Schlegel &
Beiner. For the detail of experimental setup, one is referred to [5, 17]. As shown
in Fig. 19.2, the same material constants, the same specimen geometry and finite
element model are used with the only difference being the load application. The
applied strain rate is determined from the free length of the specimen between
the clamps. Herein, a machine speed of 𝑣 = 0.8 mm/min for a global strain rate
¤Y = 0.01 min−1 and 𝑣 = 8 mm/min for ¤Y = 0.1 min−1 approximation are used. With
respect to the experiment, results in the following are presented with the nominal
strain definition Y1 = 𝑙/𝑙0 − 1 for the longitudinal strain and Y2 = 𝜔/𝜔0 − 1 for the
lateral strain. Nominal stress 𝜎 is again given by measured force divided by the initial
size of the middle cross-section of the specimen.

(a) 27.5MPa (b) 30MPa (c) 33MPa (d) 35MPa

Figure 6: Temperature distribution of the flat specimen with the stain state ε1 = 0.185 under creep
loading.

4.2 Strain-controlled loading

The strain-controlled tension test is experimentally conducted by Schlegel & Beiner. For the

detail of experimental setup, one is referred to [5, 17]. As shown in Fig. 2, the same material

constants, the same specimen geometry and finite element model are used with the only difference

being the load application. The applied strain rate is determined from the free length of the

specimen between the clamps. Herein, a machine speed of v = 0.8 mm/min for a global strain rate

ε̇ = 0.01 min−1 and v = 8 mm/min for ε̇ = 0.1 min−1 approximation are used. With respect to the

experiment, results in the following are presented with the nominal strain definition ε1 = l/l0 − 1

for the longitudinal strain and ε2 = ω/ω0 − 1 for the lateral strain. Nominal stress σ is again given

by measured force divided by the initial size of the middle cross-section of the specimen.
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Figure 7: Longitudinal results for tension tests with strain rates: (a) ε̇ = 0.1min−1; (b) ε̇ =
0.01min−1.

10

Fig. 19.7: Longitudinal results for tension tests with strain rates:
(a) ¤Y = 0.1min−1; (b) ¤Y = 0.01min−1.

Results from the tension tests with two different strain rates are illustrated in
Fig. 19.7. Experiments show an initially stiff response until a nominal stress maximum
𝜎crit is reached. In the sequel, significant softening is observed until rupture. The
simulation results match the experimental results during the initially stiff phase.
Nevertheless, the peak stresses are unfortunately not appropriately predicted, which
yields an underestimation of the peak stress values. The possible reasons behind it can
be from the material constants fitting, as well as the measurement deviations. But the
good side is that the softening trends for both cases are also similar to the experimental
results. Therefore, further efforts, from both the experimental measurements and
model fitting aspects, are certainly required to overcome such imperfect predictions.
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19.5 Summary

The developments presented in this contribution successfully introduces a stable and
robust modeling approach to simulate a class of thermo-viscoelastic materials at
finite deformations. This is achieved by a consistent numerical framework, which is
introduced with respect to the linearization of the global and local driving evolution
equations. The constitutive descriptions, such as the presented Helmholtz energy
or the creep law, are examples. Herein, the applicability of the aforementioned
formulations is demonstrated mainly for polymeric materials. Nevertheless, it can be
easily exchanged to other materials, e.g., when thermo-plastic materials are required
to be modeled. Further physical validation with respect to temperature changes and
larger deformations of other classes of inelastic materials or composites is certainly
possible. Additionally,othermulti-physical phenomena can also be properly addressed
by considering further multiplicative splits of the deformation gradient.
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