
Behnaz Ranjbar
Alireza Ejlali
Akash Kumar

Quality-of-Service
Aware Design
and Management
of Embedded
Mixed-Criticality
Systems

Quality-of-Service Aware Design and Management
of Embedded Mixed-Criticality Systems

Behnaz Ranjbar • Alireza Ejlali • Akash Kumar

Quality-of-Service Aware
Design and Management of
Embedded Mixed-Criticality
Systems

Behnaz Ranjbar
TU Dresden
Dresden, Germany

Akash Kumar
TU Dresden
Dresden, Germany

Alireza Ejlali
Sharif University of Technology
Tehran, Iran

ISBN 978-3-031-38959-7 ISBN 978-3-031-38960-3 (eBook)
https://doi.org/10.1007/978-3-031-38960-3

© The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerland
AG 2024
This work is subject to copyright. All rights are solely and exclusively licensed by the Publisher, whether
the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse
of illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and
transmission or information storage and retrieval, electronic adaptation, computer software, or by similar
or dissimilar methodology now known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors, and the editors are safe to assume that the advice and information in this book
are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or
the editors give a warranty, expressed or implied, with respect to the material contained herein or for any
errors or omissions that may have been made. The publisher remains neutral with regard to jurisdictional
claims in published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Switzerland AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

Paper in this product is recyclable.

https://doi.org/10.1007/978-3-031-38960-3
https://doi.org/10.1007/978-3-031-38960-3
https://doi.org/10.1007/978-3-031-38960-3
https://doi.org/10.1007/978-3-031-38960-3
https://doi.org/10.1007/978-3-031-38960-3
https://doi.org/10.1007/978-3-031-38960-3
https://doi.org/10.1007/978-3-031-38960-3
https://doi.org/10.1007/978-3-031-38960-3
https://doi.org/10.1007/978-3-031-38960-3
https://doi.org/10.1007/978-3-031-38960-3

Dedicated to our families

Summary

Quality-of-Service Aware Design and Management
of Embedded Mixed-Criticality Systems

Nowadays, implementing a complex system, which executes various applications
with different levels of assurance, is a growing trend in modern embedded real-time
systems to meet cost, space, timing, and power consumption requirements. Medical
devices, automotive, and avionics industries are the most common safety-critical
applications, exploiting these systems known as Mixed-Criticality (MC) systems.
MC applications are real time, and to ensure the correctness of these applications,
it is essential to meet strict timing requirements as well as functional specifications.
The correct design of such MC systems requires a thorough understanding of the
system’s functions and their importance to the system. A failure/deadline miss
in functions with various criticality levels has a different impact on the system,
from no effect to catastrophic consequences. Failure in the execution of tasks with
higher criticality levels (HC tasks) may lead to system failure and cause irreparable
damage to the system, while although Low-Criticality (LC) tasks assist the system
in carrying out its mission successfully, their failure has less impact on the system’s
functionality and does not harm the system itself to fail.

In order to guarantee the MC system safety, tasks are analyzed with different
assumptions to obtain different Worst-Case Execution Times (WCETs) correspond-
ing to the multiple criticality levels and the operation mode of the system (e.g., low
WCET and high WCET). If the execution time of at least one HC task exceeds
its low WCET, the system switches from low-criticality mode (LO mode) to high-
criticality mode (HI mode). Then, all HC tasks continue executing by considering
the high WCET to guarantee the system’s safety. In this HI mode, all or some
LC tasks are dropped/degraded in favor of HC tasks to ensure HC tasks’ correct
execution. Here, if we consider very low values for low WCETs, more LC tasks are
guaranteed to be scheduled in a processor at design-time. However, it may cause
frequent mode switches and drop more LC tasks at run-time due to inefficient low
WCET determination. On the other hand, by using a larger low WCET, fewer LC

vii

viii Summary

tasks are scheduled in the LO mode, which under-utilizes the processor. To this end,
determining an appropriate low WCET for each HC task is crucial in designing
efficient MC systems and ensuring Quality-of-Service (QoS) maximization (i.e.,
execute more LC tasks). However, in the case where the low WCETs are set
correctly, it is not recommended to drop/degrade the LC tasks in the HI mode due to
its negative impact on the other functions or on the entire system in accomplishing
its mission correctly. Therefore, how to model the MC tasks and analyze the task
dropping in the HI mode are significant challenges in designing efficient MC
systems that must be considered to guarantee the successful execution of all HC
tasks to prevent catastrophic damages while improving the QoS.

Due to the continuous rise in computational demand for MC tasks in safety-
critical applications, like controlling autonomous driving, the designers are moti-
vated to deploy MC applications on multi-core platforms. Although the parallel
execution feature of multi-core platforms helps to improve QoS and ensures the
real-timeliness, high power consumption and temperature of cores may make the
system more susceptible to failures and instability, which is not desirable in MC
applications. Therefore, improving the MC system’s QoS while managing the power
consumption and guaranteeing real-time constraints is the critical issue in designing
such MC systems in multi-core platforms.

This book addresses the mentioned challenges associated with efficient MC
system design. We first focus on application analysis by determining the appropriate
WCET by proposing two novel approaches to provide a reasonable trade-off
between the number of scheduled LC tasks at design-time and the probability of
mode switching at run-time to improve the system utilization and QoS. The first
approach presents an analytic-based scheme to obtain low WCETs based on the
Chebyshev theorem at design-time. We also show the relationship between the low
WCETs and mode switching probability, and formulate and solve the problem for
improving resource utilization and reducing the mode switching probability. This
approach sets the optimum static WCETs for HC tasks; however, tasks are rarely
executed up to their WCETs at run-time. Therefore, to adapt dynamism at run-time,
we propose a learning-based approach to consider the run-time behavior of tasks
that dynamically monitors the tasks’ execution times and adjusts the low WCETs to
improve the QoS at the end of system execution. Further, we analyze the LC task
dropping in the HI mode to improve QoS. We first propose a heuristic in which a
new metric is defined that determines the number of allowable drops in the HI mode.
Then, the task schedulability analysis is developed based on the new metric. Since
the occurrence of the worst-case scenario at run-time is a rare event, a learning-based
drop-aware task scheduling mechanism is then proposed, which carefully monitors
the alterations in the behavior of the MC system at run-time to exploit the generated
dynamic slacks for improving the QoS.

Another critical design challenge is how to improve QoS using the parallel fea-
ture of multi-core hardware platforms while managing the high power consumption
and temperature of these platforms. We develop a tree of possible task mapping and
scheduling at design-time (it would be exploited at run-time) to cover all possible
scenarios of task overrunning and reduce the LC task drop rate in the HI mode

Summary ix

while managing the power and temperature in each scenario of task scheduling.
Since the dynamic slack is generated due to the early execution of tasks at run-time,
we propose an online approach to reduce the power consumption and maximum
temperature by using low-power techniques like dynamic voltage and frequency
scaling and task re-mapping, while preserving the QoS. Specifically, our approach
examines multiple tasks ahead (i.e., when a dynamic slack is generated) to determine
the most appropriate task for the slack assignment that has the most significant
effect on power consumption and temperature. However, changing the frequency
and selecting a proper task for slack assignment and a suitable core for task re-
mapping at run-time can be time-consuming and may cause deadline violation
which is not admissible for HC tasks. Therefore, we analyze and then optimize
the run-time scheduler and evaluate it for various platforms.

Acknowledgments

We would like to thank our group members and collaborators, especially Dr. Tuan
Duy Anh Nguyen and Dr. Ali Hoseinghorban, for their support in realizing this
work.

xi

Contents

1 Introduction . 1
1.1 Mixed-Criticality Application Design . 3
1.2 Mixed-Criticality Hardware Design. 6
1.3 Research Challenges and Questions. 7
1.4 Key Contributions . 9

1.4.1 Application Analysis and Modeling . 10
1.4.2 Multi-core Mixed-Criticality System Design 11

1.5 Book Outline . 12
1.6 Conclusions . 12
References . 13

2 Preliminaries and Related Work . 17
2.1 Preliminaries . 18

2.1.1 Mixed-Criticality Systems . 18
2.1.2 Fault-Tolerance, Fault Model, and Safety Requirements 20
2.1.3 Hardware Architectural Modeling . 21
2.1.4 Low-Power Techniques and Power Consumption Model . . . 21

2.2 Related Works . 23
2.2.1 Mixed-Criticality Task Scheduling Mechanisms 23
2.2.2 QoS Improvement Methods in Mixed-Criticality Systems . . 24
2.2.3 QoS-Aware Power and Thermal Management in

Multi-core Mixed-Criticality Systems. 28
2.3 Conclusions . 31
References . 31

3 Bounding Time in Mixed-Criticality Systems . 37
3.1 BOT-MICS: A Design-Time WCET Adjustment Approach 38

3.1.1 Motivational Example . 38
3.1.2 BOT-MICS in Detail . 39
3.1.3 Evaluation . 50

3.2 ADAPTIVE: A Run-Time WCET Adjustment Approach 58
3.2.1 Motivational Example . 59

xiii

xiv Contents

3.2.2 ADAPTIVE in Detail . 60
3.2.3 Evaluation . 67

3.3 Conclusions . 73
References . 74

4 Safety- and Task-Drop-Aware Mixed-Criticality Task Scheduling 77
4.1 Problem Objectives and Motivational Example . 78
4.2 FANTOM in Detail . 81

4.2.1 Safety Quantification . 81
4.2.2 MC Task Utilization Bounds’ Definition . 83
4.2.3 Scheduling Analysis. 84
4.2.4 System Upper Bound Utilization . 91
4.2.5 A General Design Time Scheduling Algorithm. 92

4.3 Evaluation . 93
4.3.1 Evaluation with Real-Life Benchmarks . 94
4.3.2 Evaluation with Synthetic Task Sets. 95

4.4 Conclusions . 100
References . 101

5 Learning-Based Drop-Aware Mixed-Criticality Task Scheduling 103
5.1 Motivational Example and Problem Statement . 104
5.2 Proposed Method in Detail . 107

5.2.1 An Overview of the Design-Time Approach. 107
5.2.2 Run-Time SOLID Approach . 109
5.2.3 Run-Time LIQUID Approach . 112

5.3 Evaluation . 114
5.3.1 Evaluation with Real-Life Benchmarks . 115
5.3.2 Evaluation with Synthetic Task Sets. 116
5.3.3 Investigating the Timing and Memory Overheads

of ML Technique . 121
5.4 Conclusions . 122
References . 124

6 Fault-Tolerance- and Power-Aware Multi-core
Mixed-Criticality System Design . 127
6.1 Problem Objectives and Motivational Example . 128
6.2 Design Methodology . 132
6.3 Tree Generation and Fault-Tolerant Scheduling and Mapping 133

6.3.1 Making Scheduling Tree . 133
6.3.2 Mapping and Scheduling. 136
6.3.3 Time Complexity Analysis. 139
6.3.4 Memory Space Analysis . 141

6.4 Evaluation . 141
6.4.1 Experimental Setup. 141
6.4.2 Tree Construction Time . 143
6.4.3 Run-Time Timing Overheads . 144

Contents xv

6.4.4 Peak Power Management and Thermal Distribution
for Real-Life and Synthetic Applications . 144

6.4.5 Analyzing the QoS of LC Tasks . 147
6.4.6 Peak Power Consumption and Maximum

Temperature Analysis . 149
6.4.7 Effect of Varying Different Parameters on

Acceptance Ratio . 151
6.4.8 Investigating Different Approaches at Run-Time 153

6.5 Conclusions . 155
References . 155

7 QoS- And Power-Aware Run-Time Scheduler for Multi-core
Mixed-Criticality Systems. 157
7.1 Research Questions, Objectives, and Motivational Example 158
7.2 Design-Time Approach . 160
7.3 Run-Time Mixed-Criticality Scheduler . 162

7.3.1 Selecting the Appropriate Task to Assign Slack 162
7.3.2 Re-mapping Technique. 165
7.3.3 Run-Time Management Algorithm . 166
7.3.4 DVFS Governor: Updating V-f Levels in Clustered

Multi-core Platform . 168
7.4 Run-Time Scheduler Algorithm Optimization: Analysis and

Implementation. 169
7.5 Evaluation . 171

7.5.1 Experimental Setup. 171
7.5.2 Analyzing the Relevance Between a Core

Temperature and Energy Consumption. 172
7.5.3 The Effect of Varying Parameters of Cost Functions 173
7.5.4 The Optimum Number of Tasks to Look-Ahead

and the Effect of Task Re-mapping . 174
7.5.5 The Analysis of Scheduler Timings’ Overhead on

Different Real Platforms . 177
7.5.6 The Latency of Changing Frequency in Real Platform 179
7.5.7 The Effect of Latency on System Schedulability 179
7.5.8 The Analysis of the Proposed Method on

Improving Objectives in Simulation . 180
7.5.9 The Analysis of the Proposed Method on

Improving Objectives in a Platform Based on
ODROID Architecture . 182

7.5.10 Evaluation of Running Real MC Task Graph
Model on Real Platform. 183

7.6 Conclusions . 185
References . 185

xvi Contents

8 Conclusions and Future Work . 187
8.1 Conclusions . 187
8.2 Future Work . 190
References . 192

Index . 193

List of Acronyms

ACET Average-Case Execution Time. .37
AET Actual Execution Time . 25
CC Cruise Controller . 142
CDF Cumulative Distribution Function . 38
DAG Directed Acyclic Graph . 18
DVFS Dynamic Voltage and Frequency Scaling . 11
ER-EDF Early Release Earliest Deadline First . 23
EDF Earliest Deadline First . 112
EDF-VD Earliest Deadline First with Virtual Deadline .23
EVT Extreme Value Theory . 25
FMS Flight Management System . 94
FP Fixed Periority . 23
GA Genetic Algorithms . 10
HC High-Criticality . 160
HI mode HIgh-criticality mode . 77
HP Hyper Period . 71
ILP Integer Linear Programming . 160
LC Low-Criticality . 77
LCM Least Common Multiple . 60
LO mode LOw-criticality mode . 3
MC Mixed-Criticality . 77
MILP Mixed Integer Linear Programming . 49
ML Machine Learning. .10
NDM Number of Deadline Misses .115
PDF Probability Density Function . 44
PFH Probability-of-Failure-per-Hour . 18
PoF Probability-of-Failure . 20
QoS Quality of Service . 2
RL Reinforcement Learning . 63
RMSE Root Mean Square Error . 175
RTA Response Time Analysis . 96

xvii

xviii List of Acronyms

SIL Safety Integrity Level .1
TDP Thermal Design Power . 7
UAV Unmanned Air Vehicle . 183
WCET Worst-Case Execution Time . 2

Chapter 1
Introduction

Nowadays, embedded real-time systems have become significant in almost every
aspect of industrial and human life, due to the increasing amount of computation
parts in a small device. As a consequence of the ubiquity of embedded systems,
they are often employed in safety-critical application domains, such as automotive,
avionics, and medical devices. Autonomous driving is a part of the automotive
domain, in which there are four primary functions—perception, planning, and
decision, motion and vehicle control, and system supervision [1]. The perception
stage is responsible for creating a reliable representation of the vehicle, where
localization, mapping, and object detection functions are performed. These func-
tions are real time, which means the correct output result of the functions must be
ready in time (i.e., within specified time constraints defined for each function). For
example, a vehicle control function that is responsible for steering, acceleration, and
brake stroking must operate within its time constraint [2], or the obstacle detection
function must perform complex sensing and estimations in real time to prevent
serious damages like a fatal accident [1].

Several issues emerge in designing these safety-critical applications. Some
critical issues that must be addressed are how to design such systems and guarantee
timing, reliability, and safety requirements. Consider safety and reliability in
autonomous vehicles, where various functions are incorporated along with safety
requirements. An example of reliable behavior of an autonomous car is the
desirable, reliable, and on-time behavior of the car to distinguish the obstacle on
the road, pedestrians crossing the road, overtaking, and giving way. The safety
and reliability of each function must meet the safety and reliability standards
used in industries, like ISO26262 for road vehicles which is an extension of
IEC 61508 [3]. These standards define different levels of safety for functions, called
Safety Integrity Level (SIL) for automotive domains [4, 5], shown in Table 1.1. SIL
is introduced in four levels in which SIL-1 has the lowest level of safety and SIL-4
has the highest level, where the ability to avoid harm or damage is more crucial in
higher SIL. Probability-of-Failure-per-Hour (PFH) is a metric that is used for the

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024
B. Ranjbar et al., Quality-of-Service Aware Design and Management of Embedded
Mixed-Criticality Systems, https://doi.org/10.1007/978-3-031-38960-3_1

1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-38960-3protect T1	extunderscore 1&domain=pdf
https://doi.org/10.1007/978-3-031-38960-3_1
https://doi.org/10.1007/978-3-031-38960-3_1
https://doi.org/10.1007/978-3-031-38960-3_1
https://doi.org/10.1007/978-3-031-38960-3_1
https://doi.org/10.1007/978-3-031-38960-3_1
https://doi.org/10.1007/978-3-031-38960-3_1
https://doi.org/10.1007/978-3-031-38960-3_1
https://doi.org/10.1007/978-3-031-38960-3_1
https://doi.org/10.1007/978-3-031-38960-3_1
https://doi.org/10.1007/978-3-031-38960-3_1
https://doi.org/10.1007/978-3-031-38960-3_1

2 1 Introduction

Table 1.1 IEC 61508 safety standard [9]

x SIL-4 SIL-3 SIL-2 SIL-1

.PFHx .<10−8 .<10−7 .<10−6 . <10−5

Failure condition Catastrophic Hazardous Major Minor

safety measurements of functions [6]. As shown, PFH has stricter constraints for
higher criticality levels. The functions with different safety requirements must be
executed and may communicate with other functions without sacrificing real-time
and safety requirements. In conventional safety-critical real-time systems, tasks with
the same criticality levels are executed on one hardware platform. Therefore, having
multiple hardware platforms associated with multiple criticality levels would lead
to high communication, space, and power consumption. As a result, MC systems
have emerged as an effective solution in various industries, where multiple tasks
with different criticality levels are executed on a common hardware platform in
order to meet requirements such as cost, space, weight, power consumption, and
communication while guaranteeing a safe operation. The criticality of the tasks is
based on their importance and functionality for the application [7, 8].

The main research question in designing these MC systems is how to reconcile
the conflicting requirements of ensuring safety and real-time constraints and sharing
for efficient resource usage on a common platform. A lot of progress has been made
in both academic and industrial aspects since 2007, especially in the last decade, to
design, model, manage, implement, and evaluate these MC systems [10]. In these
MC systems, tasks have to be analyzed at design-time to obtain their parameters,
like WCET [7, 10]. As Burns and Davis mentioned in [10], how the WCETs are
computed is one of the challenges in modeling and designing the MC systems.
Then, by employing these task parameters, proper MC task scheduling strategies
are derived to satisfy the safety and real-time constraints and optimize the processor
capacity usage [11]. In order to guarantee the real-time constraints of tasks with HC
levels, some/all tasks with Low-Criticality (LC) levels might be dropped/degraded
in some situations in favor of HC tasks [10]. Therefore, the QoS (the percentage of
executed LC tasks to all LC tasks) should be improved at design- and run-time from
the MC task modeling and scheduling perspectives.

In addition, MC systems are getting more complicated due to ever-increasing
computational requirements and the growth in the number of tasks; therefore, multi-
core platforms are utilized to execute the tasks in parallel, thereby improving the
system performance [11]. As the degree of freedom (in terms of availability of
the cores) increases, power consumption and high temperature are issues of crucial
importance in MC systems. It is not trivial to guarantee the real-time constraints
and improve the QoS while managing the system power consumption. Systems
with high peak power consumption are more likely to generate unexpected heat
beyond the intended cooling capacity. These systems will be more susceptible to
failures and instability [12]. In other words, the reliability, lifetime, and timeliness
of these systems will be undesirably affected [13]. As a result, minimizing power

1.1 Mixed-Criticality Application Design 3

consumption in multi-core MC systems while ensuring the real-time constraints and
guaranteeing the minimum QoS is a significant issue that should be addressed.

This book addresses the challenges associated with the design and model of
MC applications and the management of MC systems on multi-core platforms. We
present an offline theoretical-based scheme and an online adaptive scheme in this
book to determine theMC application’s parameters and improve the QoS.Moreover,
we propose a parameter for each task in order to improve the QoS and, based on
the introduced parameter, develop a design-time schedulability analysis and a run-
time task scheduler aiming at QoS improvement. Finally, by considering the MC
hardware aspect, it presents novel approaches to managing peak power consumption
and maximum temperature in multi-core MC systems at both design- and run-time
while ensuring the real-timeliness and improving the QoS.

The rest of this chapter is organized as follows. In Sect. 1.1, we provide a
summary of MC system definition and properties. We look in-depth at the MC
system design and modeling from the applications perspective and their issues.
Section 1.2 presents the trends in MC hardware design and management when
exploiting the multi-core platforms. Then, in Sect. 1.3, we introduce the research
questions and summarize the research challenges that need to be solved. Section 1.4
presents the book contributions and in the end, Sects. 1.5 and 1.6 outline the book,
and their organization, respectively.

The content of this book is based on [14].

1.1 Mixed-Criticality Application Design

In most of the safety-critical real-time applications (in medical, flight control, etc.
devices), tasks are classified into multiple criticality levels in order to maintain the
predictability of the applications under different unexpected behaviors. In these
real-time systems, these tasks have to be analyzed at design-time to obtain their
WCET and then are scheduled based on their obtained WCET [7]. Many approaches
like those presented in [15, 16] and tools like OTAWA [17] are used to determine
the high WCET of a task by analyzing the task’s control flow graph. These tools
provide a safe and conservative execution time-bound so that no task’s execution
time exceeds the WCET under any circumstances. However, Fig. 1.1 [15] shows an
execution time distribution of a task and observes that most samples’ execution
time is significantly shorter than such a conservative WCET. As a result, the
resources would be severely underutilized at run-time, which leads to poor processor
utilization and QoS in conventional real-time systems.

To this end, MC systems are designed to tackle this issue, where tasks are ana-
lyzed with different assumptions—for example, optimistic and pessimistic assump-
tions for a system in which two criticality levels of tasks are executed—to obtain
multiple WCETs, corresponding to the multiple criticality levels and the operation
mode of the system [18–20]. This ensures that the processor utilization (and
correspondingly, the QoS) is maximized in the LOw-criticality mode (LO mode),

4 1 Introduction

A

Fig. 1.1 Execution time distribution for a real-time task [15]

Fig. 1.2 An example of real-life application (unmanned air vehicle) task graph

while the guarantees are preserved in the HIgh-criticality mode (HI mode). Fig-
ure 1.2 shows a task set of Unmanned Air Vehicle (UAV), which is a real-life MC
application [21]. This application is composed of eight tasks, in which HC tasks
have two different values of WCETs. Tasks . τ1 to . τ3 are HC tasks that are responsible
for the avoidance, navigation, and stability of the system, respectively. Failure in
the execution of these tasks before their deadline may lead to a system failure and
irreparable damage to the system. The roles of LC tasks (. τ4 to . τ8) are recording
sensor data, GPS coordination, and video transmissions, which help the system to
carry out its mission successfully [21]. From the MC task scheduling perspective,
tasks are first scheduled in the LO mode based on their low WCETs. At run-time, if
the execution time of at least one HC task exceeds its low WCET (a task overruns),
the system switches to the HI mode, i.e., the mode switch occurs due to the HC
tasks’ overrunning. In HI mode, to guarantee the correct execution of HC tasks, the
system switches to the second schedule, where all HC tasks are scheduled based
on their high WCETs and all or some LC tasks are dropped, which leads to QoS
degradation [7, 10, 18, 22–24].

When the gap between the low and high WCETs is large, more tasks, especially
LC tasks, are guaranteed to be scheduled in a processor at design-time. However, it
may cause frequent system mode switches and, consequently, drop more LC tasks
at run-time due to inefficient low WCET determination for HC tasks. When this
gap is small, fewer LC tasks are scheduled in the LO mode which underutilizes
the processor. Indeed, this is overly pessimistic because, as shown in Fig. 1.1,
tasks would be executed with less likelihood up to observed or actual WCET.

1.1 Mixed-Criticality Application Design 5

Therefore, low WCETs play an important role in designing efficient MC systems
and improving the timing behavior of these systems.

Nevertheless, according to the limitation of an MC system formal model, which
is mentioned in [4, 5], dropping LC tasks (except for non-criticality tasks) in favor
of HC tasks is not a suitable protection mechanism in industrial applications.
The frequent deadline misses or service degradation of some LC tasks, such as
mission-critical tasks, may have a negative impact on the other HC tasks and
mission-critical tasks themselves, and consequently on the entire system, and may
prevent the system from accomplishing its mission correctly. For instance, consider
an MC system whose mission is to capture images in specific time intervals. In this
application, the engine operation (i.e., the function that ensures the safe execution
of the operation) and the operation of capturing images are considered as the HC
tasks and LC tasks, respectively [25, 26]. Accordingly, if the system switches to
the HI mode, due to the execution of HC tasks, the existing scheduling methods
may frequently drop LC tanks or suspend them for a long time, which is not
acceptable for a system whose main mission is capturing images. As can be realized,
dropping LC tasks (except for non-criticality tasks) is not permitted in industrial
applications, but depending on the type of the application, some of the LC tasks (i.e.,
mission-critical tasks) could be dropped. Therefore, since the frequent dropping or
postponing of their execution for a long time in the HI mode is not appropriate, how
to model MC tasks, and design an MC system, is crucial in improving the QoS.

As most MC applications are safety-critical, the system must be designed
carefully at design-time to execute all HC tasks correctly before their deadlines,
even in worst-case situations, e.g., tasks are executed up to their WCETs or the
system would be in overload situation most of the time. For example, if the system
switches to the HI mode most of the time due to HC task overrunning, the minimum
QoS must be guaranteed at design-time to ensure that the system can perform its
mission effectively. Most MC systems are designed statically at design-time to
guarantee the worst-case scenario. However, the system does not always exhibit
the worst-case behavior at run-time. For example, much dynamic slack (the time
between a task’s actual completion time and its WCET) would be generated at run-
time due to the early finish of task execution, which can be used to improve the
objectives. Consequently, these systems cannot adapt to task dynamism at run-time,
which results in significant performance losses for LC tasks. In this book, dynamism
occurs when the tasks’ execution times are varied due to changes in tasks’ inputs.
Figure 1.3 depicts measured radiation dose in an airplane with varying altitudes.
As shown, the radiation during a flight increases with the airplane’s altitude (i.e., in
the operating environment), and the maximum radiation is almost 20X as compared
to when the aircraft is on the ground. The system is designed to operate in the
worst-case scenario, i.e., when it is in the air, and the radiation has the maximum
value. Although the airplane is in the air for the bulk of the flight time, which has
the maximum radiation value, the system should support other tasks during landing
(when the radiation has a low value), which is more critical. Besides, the variations
in the operating environment could generate different inputs for tasks and, therefore,
may lead to the computational demand being higher than the processor capacity

6 1 Introduction

Fig. 1.3 The relation between radiation and altitude of an airplane due to varying operating
environment [27]

under the specified timing requirements. Thus, the MC system’s run-time behavior
can be investigated in addition to system design in design-time phase to improve
the objectives like QoS while ensuring the real-timeliness based on the dynamic
changes during run-time.

1.2 Mixed-Criticality Hardware Design

A large number of real-time systems are embedded in small battery-operated
devices. In these systems, efficient power management is vital for achieving
the performance desired in these systems [28, 29]. Besides, in general, in some
embedded real-time systems, applications consist of various control tasks that
execute together to achieve a common goal like controlling autonomous driving.
In other words, tasks are dependent, and there are precedence relations between
tasks in such systems [28]. Therefore, since there are a large number of tasks in
these sophisticated embedded systems to be executed and communicate with each
other on a single platform to meet cost, power, and performance, the platforms are
migrating from single cores to multi-cores/many cores. The multi-core platforms
can be utilized to deal with high-performance requirements and to improve the QoS
by efficiently allocating tasks among cores.

In these multi-core MC systems, platforms require higher power to operate,
compared to single-core platforms, mainly when the system is in the HI mode.
The reason is that, by executing all/most HC tasks in this situation, there may
be an increase in computational demands, and the system may then become
overloaded [30]. Thus, all cores may execute tasks simultaneously to meet the

1.3 Research Challenges and Questions 7

deadlines of tasks, which increases the instantaneous processor power beyond
its Thermal Design Power (TDP) constraint [12, 13, 31]. TDP is the maximum
sustainable power that a chip can dissipate safely. If the task scheduler is not aware
of the power consumption, all cores might be activated simultaneously with the
highest performance. Therefore, the system will draw a significantly larger power
than it is designed for. Systems with high peak power are more likely to generate
unexpected heat beyond the chip’s intended cooling capacity. They will be more
susceptible to failures and instability [12], which is not acceptable for the HC tasks,
and it may cause catastrophic consequences. In addition, as the degree of freedom
(in terms of the availability of the cores) increases, it is not trivial to guarantee
real-time constraints while managing the system’s peak power. In other words, the
reliability, lifetime, and timeliness of these systems will be adversely affected [13].
Therefore, managing the peak power consumption and maximum temperature of the
multi-core system, while guaranteeing the deadlines of tasks at runtime, is crucial
to be studied.

In multi-core platforms, all cores being active simultaneously and executing all
tasks with their pessimistic power consumption value up to their WCET values
might be the worst-case scenario from a power consumption perspective. As
mentioned in the previous section, this worst-case scenario must meet the deadline
constraints and guarantee the minimum QoS. However, all cores in multi-core
MC systems may not always be in the worst case of their mission. A run-
time management policy is needed to adapt the system to dynamic changes, like
employing the dynamic slack on all cores to reduce the power consumption and
maximum temperature and improve the QoS.

To summarize, the following are the trends and requirements we observe in MC
hardware design:

• The need and capability for concurrent task execution in a multi-core platform
are increasing.

• Concerns over power consumption in multi-core platforms are growing more
serious in MC systems.

• The high processor temperature is becoming an increasingly important concern
for the correct and safe execution of MC applications on platforms.

1.3 Research Challenges and Questions

The designers face challenges while designing MC systems at low space, cost,
and power. In order to keep the space low, the system resources need to be
used efficiently. The important design points and trends mentioned in Sects. 1.1
and 1.2, respectively, indicate the increasing complexity of MC system design
and management at both design- and run-time. Burns and Davis [10] provide the
challenges and open issues in the field of MC systems. However, the following are

8 1 Introduction

the major challenges in the design, analysis, and management of embedded MC
systems, which we discussed in the previous sections and deal with in this book.

• Analyzing and adjusting the WCETs for HC tasks to be employed in MC task
scheduling

• Investigating the MC system behavior in the HI mode and determining the
number of allowable drops for LC tasks

• Integrating and adapting the MC systems with the run-time behavior of applica-
tions

• Improving the QoS in multi-core platforms by executing the tasks in parallel
• Managing the power and maximum temperature in multi-core MC systems while

guaranteeing the real-time constraints of applications

According to the discussions in the previous sections and the challenges faced by
this book, the following research objective are addressed in this book:

Modeling, designing, and management of embedded MC system to improve the QoS while
ensuring the real-time and safety constraints of functions

In order to achieve the above objective, the following research questions (RQ)
must be answered while designing the MC systems, analyzing MC applications,
and deploying the MC applications on multi-core platforms:

RQ1: How can we obtain/estimate the safe and tight low WCET for HC tasks in
order to improve QoS (i.e., reducing the number of dropped LC tasks to the
maximum extent possible) and manage the mode switches’ probability?

RQ2: How can the MC systems adapt to dynamism (i.e., run-time task behavior)
at run-time in order to improve QoS and manage the mode switches’
probability?

RQ3: How can we model the MC tasks, and regarding this model, how is the task
schedulability tested in order to reduce the possibility of frequent drops of
LC tasks in the HI mode and improve the QoS?

RQ4: How can the run-time behavior help the task scheduler, with the low over-
head in a way that drops fewer LC tasks in the HI mode, while guaranteeing
the real-time constraints?

RQ5: How can the hardware parallelism feature of multi-core platforms be
employed for MC applications in order to improve the QoS while guaran-
teeing the real-time constraints?

RQ6: How can we overcome the power consumption and thermal issues in multi-
core platforms with low timing and memory overheads while managing the
QoS, real-timeliness, and safety?

RQ7: Which system-level low-power techniques can be employed in embedded
MC systems in order to manage both maximum temperature and power
consumption?

RQ8: How can the generated dynamic slack be efficiently employed for various
system objective improvements like decreasing power consumption, post-
poning the possibility of mode switches, and improving the QoS of LC tasks?

1.4 Key Contributions 9

1.4 Key Contributions

In order to answer the research questions, this book has mainly focused on how
to model and schedule the MC applications and how to exploit the multi-core
platform features to design and manage the MC systems. Figure 1.4 shows the
overall structure of the book to address the mentioned research challenges and
questions. We first focus on application-level analysis which can be applied to any
hardware, single or multi-core platforms. Nevertheless, we consider independent
MC tasks, executing on a single-core platform, to achieve the objective of analyzing,
modeling, and designing the MC systems. We propose two novel contributions
of QoS improvement through WCET analysis and task dropping analysis and
modeling. We investigate and solve the research problem at design- and run-time
for both contributions.

As mentioned in Sect. 1.2, in some embedded real-time systems, MC applications
consist of dependent tasks, in which a large number of functions execute on a
common multi-core platform. To this end, we consider the dependent task model
that the tasks are executed on multi-core platforms. We employ the hardware
parallelism feature of multi-core platforms to design MC systems and improve the
QoS. In such multi-core platforms, we also address the power and thermal issues,
which may lead to an unsafe point in MC system design. In the following, we detail
the contributions mentioned in this figure.

Fig. 1.4 Overall structure of the book

10 1 Introduction

1.4.1 Application Analysis and Modeling

In order to address the challenge of WCET adjustment of HC tasks to be employed
in the LO mode, we first address the RQ1 by analyzing the low WCET parameter
and determining the appropriate values for MC tasks. We present the novel analyti-
cal scheme, called BOT-MICS, to provide a reasonable trade-off between the number
of LC tasks that can be guaranteed to meet the deadlines at design-time (i.e., QoS)
and the probability of mode switching at run-time. In this design-time approach,
the WCETs are obtained based on the Chebyshev theorem, and then we show the
relation between the low WCETs and mode switching probability. The Genetic
Algorithms (GA) is used to formulate and solve the optimization problem for
improving the resource utilization and reducing the mode switching probability.

Then, to address the intended objective and answer RQ2, an online scheme,
called ADAPTIVE, is proposed to be employed at run-time. It studies and ana-
lyzes the run-time behavior of task execution and presents a dynamic QoS-aware
scheduling algorithm. This algorithm adjusts the low WCET of HC tasks based
on the available accumulated dynamic slack at run-time to improve the results’
quality based on the system changes while guaranteeing the minimum service of
LC tasks, even in the HI mode by considering a utilization threshold when adjusting
the low WCETs.

We further address the challenge of drop-aware behavior analysis of MC systems
to answer RQ3. We introduce FANTOM, a heuristic, in which a new task parameter
is defined, and then based on the defined parameter, schedulability analysis of
MC tasks is developed by considering safety requirements. In FANTOM, the
schedulability analysis is conducted in an offline manner in order to guarantee
that all tasks with different criticality levels are executed properly before their
deadlines based on the operational mode of MC systems. Thus, the main objective of
FANTOM is to execute the majority of the LC tasks in the HI mode by considering
a maximum allowable number of drops for every LC task.

The offline techniques, like FANTOM, are mostly pessimistic, as the occurrence
of the worst-case scenario at run-time is rare. Therefore, we propose a novel
optimistic mechanism that reduces the number of drops for the LC tasks by
observing the system’s behavioral changes at run-time. The answer of RQ4 has
been achieved by exploiting the generated dynamic slacks in the decision-making
process for the online task dropping to execute more LC tasks in the HI mode and
enhance their schedulability. Since we are unaware of the amount of generated
dynamic slacks during run-time in advance, Machine Learning (ML) approaches
can be employed as a management technique for the prediction. Therefore, utilizing
ML techniques as part of the proposed approach has enabled it to partially exploit
the dynamic slack to improve the QoS for the LC tasks in the HI mode. In these
schemes, the learner finds the optimum drop rate for the LC tasks at run-time
based on the available dynamic slack, prevents frequent drops in HI mode, and
consequently reduces their deadline miss rate.

1.4 Key Contributions 11

1.4.2 Multi-core Mixed-Criticality System Design

Now, we address the challenge of using the parallel execution of tasks in multi-
core platforms to achieve the research objective and answer RQ5 and RQ6. We
first propose a method that exploits a tree of schedules for dependent MC tasks
running on multi-core platforms. This tree of schedules is generated at design-
time, considering system safety (i.e., all possibilities of fault occurrence scenarios in
different tasks) and task overrun. When an HC task overruns or a fault occurs at run-
time, the scheduler chooses the proper schedule from the tree to tolerate the faults
or manage the system mode switches with low overheads. Our technique aims to
improve the LC tasks’ QoS in the HI mode while all HC tasks meet their deadlines.
Besides, high-power consumption and temperature are crucial issues in MC systems
while using multi-core platforms. As a result, by generating the schedule tree and
exploiting it at run-time, the LC tasks’ QoS is maximized in each schedule of the tree
while managing the system’s peak power consumption and tolerating the occurrence
of possible faults.

We further exploit the run-time execution feature to address the research chal-
lenges in executing MC applications on multi-core platforms. Therefore, the RQ7
is first needed to be answered. Then, based on the study, we propose a heuristic to
manage power consumption in MC systems during run-time. To achieve this, we
exploit dynamic slacks, the slack between tasks’ actual completion time and their
WCET, along with Dynamic Voltage and Frequency Scaling (DVFS), a system-
level low-power technique. Our approach has two phases: (1) at design-time, the
tasks are scheduled on each core, and the resulting schedule is stored to be used as a
static scheduling table. This is performed for both LO mode and HI mode, defined
in Sect. 1.1. In this case, the number of LC tasks that have to be dropped in the
HI mode is minimized to improve the system’s overall QoS. (2) At run-time, in order
to answer RQ8, we examine multiple tasks in the future (look-ahead) to select the
most appropriate task to assign the currently available dynamic slack. The selection
is based on the impact of the tasks on the power consumption and temperature of the
system, which is quantified by a weighted multi-objective cost function. Therefore,
the speed of the core that runs the task can be decreased accordingly. Additionally,
besides exploiting the dynamic slacks, we propose a task re-mapping technique
(as a low-power technique) at run-time to improve the system temperature profile
further. However, the online scheduler’s timing overhead to select an appropriate
task and check the re-mapping technique to choose a proper core are crucial for the
MC systems and may cause deadline violations. Furthermore, the timing overhead
of changing V-f levels in using the DVFS technique is critical in run-time task
scheduling. Therefore, to answer RQ6 in this chapter from the timing overhead
perspective, we analyze and evaluate the effect of these overheads on the schedule
of MC tasks in real multi-core platforms.

12 1 Introduction

1.5 Book Outline

The remainder of this book is organized as follows:
Chapter 2 “Preliminaries and Related Work” presents the concept and

required preliminaries to understand the modeling and task scheduling. Then,
a survey of related works in the domain under consideration, like MC task
scheduling mechanisms, QoS improvement, and QoS-aware power management in
MC systems, is reviewed in this chapter. Then, to highlight the contributions made,
this book is divided into five chapters.

Chapter 3 “Bounding Time in MC Systems” presents the novel schemes to
adjust the low WCET of MC tasks in order to improve QoS and reduce the mode
switching probability. This chapter proposes a design-time analytical approach and
an adaptive run-time approach. This chapter is based on [32, 33] and [34, 35].

Chapter 4 “Safety- and Task-Drop-Aware MC Task Scheduling” proposes
a heuristic by first defining a new parameter for each task to improve the QoS
by introducing a maximum allowable number of drops for every LC task. Then,
based on the defined parameter, an MC task schedulability analysis is developed by
considering safety requirements. This chapter is based on [36].

Chapter 5 “Learning-Based Drop-Aware MC Task Scheduling” provides an
adaptive run-time scheme, where a learning-based drop-aware MC task scheduling
mechanism is proposed to improve the QoS by exploiting the generated dynamic
slacks. This chapter is based on [37].

Chapter 6 “Fault-Tolerance- and Power-Aware Multi-core MC System
Design” proposes a design-time QoS-aware power management in multi-core
MC systems. In this chapter, a design-time approach is presented in order to
improve QoS by generating different scheduling scenarios while reducing power
consumption. This chapter is based on [38].

Chapter 7 “QoS- and Power-Aware Run-Time Scheduler for Multi-core MC
Systems” presents a run-time QoS-aware approach to manage power consumption
and maximum temperature by exploiting the generated dynamic slacks. This chapter
is based on [39] and [40].

Chapter 8 “Conclusions and Future Work” concludes the book and presents
a brief discussion of possible future research works within the domain.

1.6 Conclusions

Nowadays, implementing a complex system, and executing various applications
with different levels of assurance, is a growing trend in modern embedded real-
time systems, which are known as MC systems. In these systems, a deadline miss
in tasks with various criticality levels has a different consequences on the system,
from no impact to catastrophic consequences. Therefore, an efficient MC system
design should be developed to guarantee the safe execution of HC tasks to prevent

References 13

catastrophic damages while improving the QoS. In order to design, analyze, and
manage an efficient MC system, there are several major challenges, which are
discussed in this chapter.

In order to address the challenges, we focused on application- and hardware-level
analysis. In application-level analysis, two novel approaches for QoS improve-
ment through WCET analysis and task dropping analysis are proposed for both
design-time and run-time phases. In addition, in hardware analysis, the hardware
parallelism of multi-core platforms is employed in designing an MC system at
design- and run-time, in order to improve the QoS, while addressing the power and
thermal issues.

References

1. De Jong Yeong et al. “Sensor and Sensor Fusion Technology in Autonomous Vehicles: A
Review”. In: Sensors 21.6 (2021). DOI: 10.3390/s21062140.

2. Shinpei Kato et al. “An Open Approach to Autonomous Vehicles”. In: IEEE Micro 35.6 (2015),
pp. 60–68. DOI: 10.1109/MM.2015.133.

3. ISO 26262. Road vehicles—Functional safety. Standard. International Organization for Stan-
dardization (ISO), Dec. 2018.

4. Alexandre Esper et al. “How realistic is the mixed-criticality real-time system model?” In:
Proc. of Real-Time Networks and Systems (RTNS). ACM. 2015, pp. 139–148.

5. R. Ernst and M. Di Natale. “Mixed Criticality Systems—A History of Misconceptions?” In:
IEEE Design & Test 33.5 (2016), pp. 65–74.

6. P. Huang, H. Yang, and L. Thiele. “On the scheduling of fault-tolerant mixed-criticality
systems”. In: Proc. on Design Automation Conference (DAC). 2014, pp. 1–6.

7. S. Baruah et al. “The preemptive uniprocessor scheduling of mixed-criticality implicit-deadline
sporadic task systems”. In: Proc. of Euromicro Conference on Real-Time Systems (ECRTS).
2012, pp. 145–154.

8. Hang Su and Dakai Zhu. “An elastic mixed-criticality task model and its scheduling algorithm”.
In: Proc. on Design, Automation & Test in Europe Conference & Exhibition (DATE). IEEE.
2013, pp. 147–152.

9. William M Goble. Control systems safety evaluation and reliability. ISA, 2010.
10. Alan Burns and Robert I. Davis. “A Survey of Research into Mixed Criticality Systems”. In:

ACM Computing Surveys (CSUR) 50.6 (2017), pp. 1–37.
11. M. A. Awan, D. Masson, and E. Tovar. “Energy efficient mapping of mixed criticality

applications on unrelated heterogeneous multicore platforms”. In: Proc. on IEEE Symposium
on Industrial Embedded Systems (SIES). 2016, pp. 1–10.

12. Waqaas Munawar et al. “Peak Power Management for scheduling real-time tasks on het-
erogeneous many-core systems”. In: Proc. of the International Conference on Parallel and
Distributed Systems (ICPADS). 2014, pp. 200–209.

13. Jinkyu Lee, Buyoung Yun, and Kang G Shin. “Reducing peak power consumption inmulti-
core systems without violating real-time constraints”. In: IEEE Transactions on Parallel and
Distributed Systems (TPDS) 25.4 (2014), pp. 1024–1033.

14. Behnaz Ranjbar. “Quality-of-Service Aware Design and Management of Embedded Mixed-
Criticality Systems”. PhD thesis. Technische Universität Dresden, 2022.

15. Reinhard Wilhelm et al. “The Worst-Case Execution-Time Problem—Overview of Methods
and Survey of Tools”. In: ACM Trans. Embed. Comput. Syst. (TECS) 7.3 (May 2008).

14 1 Introduction

16. A. Kumar et al. “Iterative Probabilistic Performance Prediction for Multi-Application Multi-
processor Systems”. In: IEEE Transactions on Computer-Aided Design of Integrated Circuits
and Systems (TCAD) 29.4 (2010), pp. 538–551.

17. Clément Ballabriga et al. “OTAWA: an open toolbox for adaptive WCET analysis”. In: IFIP
International Workshop on Software Technolgies for Embedded and Ubiquitous Systems.
Springer. 2010, pp. 35–46.

18. D. Liu et al. “EDF-VD Scheduling of Mixed-Criticality Systems with Degraded Quality
Guarantees”. In: Proc. on IEEE Real-Time Systems Symposium (RTSS). 2016, pp. 35–46.

19. D. Liu et al. “Scheduling Analysis of Imprecise Mixed-Criticality Real-Time Tasks”. In: IEEE
Transactions on Computers (TC) 67.7 (2018), pp. 975–991.

20. G. Chen et al. “Utilization-Based Scheduling of Flexible Mixed-Criticality Real-Time Tasks”.
In: IEEE Transactions on Computers (TC) 67.4 (2018), pp. 543–558.

21. R. Medina, E. Borde, and L. Pautet. “Availability enhancement and analysis for mixed-
criticality systems on multi-core”. In: Proc. on Design, Automation & Test in Europe
Conference & Exhibition (DATE). 2018, pp. 1271–1276.

22. Z. Guo et al. “Uniprocessor Mixed-Criticality Scheduling with Graceful Degradation by
Completion Rate”. In: Proc. on IEEE Real-Time Systems Symposium (RTSS). 2018, pp. 373–
383.

23. Chuancai Gu et al. “Partitioned mixed-criticality scheduling on multi-processor platforms”. In:
Proc. on Design, Automation & Test in Europe Conference & Exhibition (DATE). 2014, p. 292.

24. Siva Satyendra Sahoo, Behnaz Ranjbar, and Akash Kumar. “Reliability-Aware Resource
Management in Multi-/Many-Core Systems: A Perspective Paper”. In: Journal of Low Power
Electronics and Applications 11.1 (2021), p. 7.

25. Sanjoy Baruah, Haohan Li, and Leen Stougie. “Towards the design of certifiable mixed-
criticality systems”. In: Proc. of Real-Time and Embedded Technology and Applications
Symposium (RTAS). IEEE. 2010, pp. 13–22.

26. Sanjoy K Baruah et al. “Mixed-criticality scheduling of sporadic task systems”. In: European
Symposium on Algorithms. 2011, pp. 555–566.

27. TONY PHILLIPS. Flying at Night Doesn’t Protect You from Cosmic Rays. http://
Spaceweather.com. Accessed: June 2022. 2015.

28. Giorgio C Buttazzo. Hard real-time computing systems: predictable scheduling algorithms and
applications. Vol. 24. Springer Science & Business Media, 2011.

29. M. Salehi and A. Ejlali. “A Hardware Platform for Evaluating Low-Energy Multiprocessor
Embedded Systems Based on COTS Devices”. In: IEEE Transactions on Industrial Electronics
(TIE) 62.2 (2015), pp. 1262–1269.

30. James H Anderson, Sanjoy K Baruah, and Björn B Brandenburg. “Multicore operating-system
support for mixed criticality”. In: Proc. of the Workshop on Mixed Criticality: Roadmap to
Evolving UAV Certification. Vol. 4. Citeseer. 2009, p. 7.

31. BongKi Lee et al. “Peak power reduction methodology for multi-core systems”. In: Proc. of
the International SoC Design Conference (ISOCC). 2010, pp. 233–235.

32. B. Ranjbar et al. “Improving the Timing Behaviour of Mixed-Criticality Systems Using
Chebyshev’s Theorem”. In: Proc. on Design, Automation & Test in Europe Conference &
Exhibition (DATE). 2021, pp. 264–269.

33. Behnaz Ranjbar et al. “BOT-MICS: Bounding Time Using Analytics in Mixed-Criticality
Systems”. In: IEEE Transactions on Computer-Aided Design of Integrated Circuits and
Systems (TCAD) 41.10 (2022), pp. 3239–3251. DOI: 10.1109/TCAD.2021.3127867.

34. B. Ranjbar, A. Hoseinghorban, and A. Kumar. “Motivating Agent-Based Learning For
Bounding Time in Mixed-Criticality Systems”. In: Proc. on Design, Automation & Test in
Europe Conference & Exhibition (DATE). 2023.

35. B. Ranjbar, A. Hoseinghorban, and A. Kumar. “ADAPTIVE: Agent-Based Learning for
Bounding Time in Mixed-Criticality Systems”. In: Proc. on Design Automation Conference
(DAC). 2023.

http://Spaceweather.com
http://Spaceweather.com
http://Spaceweather.com

References 15

36. B. Ranjbar et al. “FANTOM: Fault Tolerant Task-Drop Aware Scheduling for
Mixed-Criticality Systems”. In: IEEE Access 8 (2020), pp. 187232–187248. DOI:
10.1109/ACCESS.2020.3031039.

37. Behnaz Ranjbar et al. “Learning-Oriented QoS- and Drop-Aware Task Scheduling for Mixed-
Criticality Systems”. In: Computers 11.7 (2022). DOI: 10.3390/computers11070101.

38. Behnaz Ranjbar et al. “Toward the Design of Fault-Tolerance-Aware and Peak-Power-
Aware Multicore Mixed-Criticality Systems”. In: IEEE Transactions on Computer-Aided
Design of Integrated Circuits and Systems (TCAD) 41.5 (2022), pp. 1509–1522. DOI:
10.1109/TCAD.2021.3082495.

39. B. Ranjbar et al. “Online Peak Power and Maximum Temperature Management in Multi-core
Mixed-Criticality Embedded Systems”. In: Proc. of Euromicro Conference on Digital System
Design (DSD). 2019, pp. 546–553.

40. Behnaz Ranjbar et al. “Power-Aware Runtime Scheduler for Mixed-Criticality Sys-
tems on Multicore Platform”. In: IEEE Transactions on Computer-Aided Design
of Integrated Circuits and Systems (TCAD) 40.10 (2021), pp. 2009–2023. DOI:
10.1109/TCAD.2020.3033374.

Chapter 2
Preliminaries and Related Work

The previous chapter presented an introduction to the trends and issues in QoS-
awareMC system design. In designing such systems, scheduling algorithms are used
and need to satisfy all timing constraints corresponding to each operational mode
when used in MC systems. In order to accomplish this work, first, the application,
hardware, and power need to be appropriately modeled. Then, the scheduling
algorithms need to be precisely selected and employed in these MC systems. The
chapter mainly introduces the relevant preliminaries and common models of MC
systems, which are employed in this book. A brief overview of the related literature
works is also provided.

This chapter is organized as follows. Section 2.1 presets the preliminaries used
in this book, in which first a brief introduction of MC systems, like MC application
model, QoS definition, and system operational model, is presented in Sect. 2.1.1.
Then, we provide a brief overview of the fault model, used fault-tolerance tech-
niques, and safety requirements in Sect. 2.1.2. The hardware architecture model and
power consumption model are presented in Sects. 2.1.3 and 2.1.4, respectively. The
second section of this chapter (Sect. 2.2) provides an overview of the related state-
of-the-art research works, where first a survey of MC task scheduling algorithms
is presented in Sect. 2.2.1 along with the chosen scheduling algorithm in this book.
The relevant related works in improving the field of MC system timing behavior
through WCET adjustment and task dropping analysis are provided in Sect. 2.2.2.
At the end of the section, we overview the related publications in the field of MC
system hardware design and the considered challenges in Sect. 2.2.3. Finally, we
conclude the chapter in Sect. 2.3.

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024
B. Ranjbar et al., Quality-of-Service Aware Design and Management of Embedded
Mixed-Criticality Systems, https://doi.org/10.1007/978-3-031-38960-3_2

17

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-38960-3protect T1	extunderscore 2&domain=pdf
https://doi.org/10.1007/978-3-031-38960-3_2
https://doi.org/10.1007/978-3-031-38960-3_2
https://doi.org/10.1007/978-3-031-38960-3_2
https://doi.org/10.1007/978-3-031-38960-3_2
https://doi.org/10.1007/978-3-031-38960-3_2
https://doi.org/10.1007/978-3-031-38960-3_2
https://doi.org/10.1007/978-3-031-38960-3_2
https://doi.org/10.1007/978-3-031-38960-3_2
https://doi.org/10.1007/978-3-031-38960-3_2
https://doi.org/10.1007/978-3-031-38960-3_2
https://doi.org/10.1007/978-3-031-38960-3_2

18 2 Preliminaries and Related Work

2.1 Preliminaries

2.1.1 Mixed-Criticality Systems

In the following, we present the MC task model and characteristics of a task, QoS
definition, and system operational model.

2.1.1.1 Mixed-Criticality Application Model and Specification

Analogous to most state-of-the-art works, we consider real-time applications con-
sisting of n periodicMC tasks .{τ1, τ2, . . . , τn}, such that each task . τi is characterized
as:

.τi = (ζi,WCET LO
i ,WCET HI

i , di, Ti) (2.1)

where

• . ζi denotes the criticality level of . τi .
• .WCET LO

i (.WCET HI
i) denotes the WCET of task . τi in LO mode (HI mode).

• . Ti denotes the period of task . τi , which is the minimum amount of the time
between two released instances.

• . di denotes the deadline of task . τi .

Some MC systems require a high level of safety due to their timing require-
ments [1]. We have exploited criticality levels similar to what was defined in [2],
in which each criticality level has a requirement based on the deadline and safety
requirements. Table 2.1 represents an industrial standard safety requirements, e.g.,
DO-178B [3], which introduces five levels of safety, i.e., A, B, C, D, and E (A
and E provide the highest and the lowest levels of safety, respectively) [2, 4, 5].
As shown in this table, the occurrence of a failure in tasks with various criticality
levels has a different impact on the system [6, 7]. To guarantee the system’s
safety, the Probability-of-Failure-per-Hour (PFH) (which is adopted by safety
standards) is determined for all the criticality levels [5, 8], which is discussed in
detail later in Sect. 2.1.2. Analogous to [9, 10], we consider dual-criticality system
where each MC task can be either high-critical (. ζi= HC) or low-critical (. ζi= LC).
Besides, due to having two different WCET values, for each Low-Criticality (LC)
task .WCET LO

i = WCET HI
i and also, for each High-Criticality (HC) task

.WCET LO
i ≤ WCET HI

i . In this book, we assume preemptive execution for tasks,
which means the tasks are interrupted during their execution on a core that are
mapped on it.

Depending on whether the MC tasks are dependent or independent, the task
deadlines and periods are valued differently. In the case of independent tasks,
analogous to state-of-the-art works like [11], the deadline of a task (. di) is equal to
its period (. Ti). If the tasks are dependent (the task model is Directed Acyclic Graph

2.1 Preliminaries 19

Table 2.1 DO-178B safety requirement [3]

x A B C D E

.PFHx .< 10−9 .< 10−7 .< 10−5 .> 10−5 -

Failure condition Catastrophic Hazardous Major Minor No effect

(DAG), like what has been considered in the task model of [9, 10, 12]), each task has
an identical period (. Ti), which is equal to the period of the application (.Tapp) [13].
In dependent task models, each task has some successors and predecessors, which
are determined by .Sui and . Pri , respectively. A task is released and ready to be
executed if all its predecessor tasks have finished their execution. The deadline and
period of the task graph are equal for an application (.dapp = Tapp), but, for each
task, a deadline . di (which can be named as a local deadline in a task graph model) is
determined in order that all its successors can be scheduled before their deadlines.
Hence, the deadlines of tasks that have no successors are equal to the task graph’s
deadline. Besides, the communication time between tasks is considered as a part of
the predecessor task’s execution time.

The task graph model is popular for image processing in automotive systems and
pedestrian detection [14]. System designers assign the criticality level of tasks based
on their functionalities. However, similar to previous studies in the literature [9,
10], if a task is a predecessor of an HC task, then it is considered as an HC task.
Figure 1.2 shows a real task graph (Unmanned Air Vehicle (UAV)), which is a real-
life MC application task graph [9].

Since we use the utilization bound to schedule the MC tasks, the utilization of

task . τi at criticality mode l is defined as .ul
i = WCET l

i

Ti
and .l ∈ {LO,HI }.

2.1.1.2 Quality-of-Service (QoS)

Dropping some LC tasks in the HI mode can be used for real-time applications
characterized by hard and firm deadlines. The tasks with a hard deadline can be
HC tasks, and with firm deadlines can be LC tasks. The multimedia tasks are
an example of firm deadlines, where skipping a video frame once in a while is
better than processing it with a long delay or not processing it completely [15]. The
system should execute these tasks to improve its QoS; however, the system can skip
executing them in harsh situations. The QoS is defined as the percentage of executed
LC tasks to all LC tasks [16, 17] (.QoS = nsucc

L /nL, where . nL is the number of all
LC tasks in a task set and .nsucc

L is the number of executed LC tasks.

2.1.1.3 System Operational Model

MC systems first start the operation in the LO mode in which all LC and HC tasks
must be executed correctly before their deadlines. If the execution time of at least
one HC task exceeds its low WCET (.WCETLO

i) due to unexpected conditions, the

20 2 Preliminaries and Related Work

system switches to the HI mode. In this mode, since the HC tasks are supposed to
execute longer, compared to the LO mode, the LC tasks are degraded to guarantee
the correct execution of HC tasks before their deadlines and prevent catastrophic
consequences. It stays in this mode until there is (1) no ready HC task in each core’s
queue and (2) ongoing HC task, executing on the processor [9, 10, 12, 18]. In the
LO mode, the mapping and scheduling algorithms consider the low WCET of tasks,
while in the HI mode, the algorithm schedules tasks by their high WCETs.

2.1.2 Fault-Tolerance, Fault Model, and Safety Requirements

Transient faults are the most common faults in embedded systems [17, 19, 20].
Hence, occurrence of a fault in a system is independent of the criticality levels of
tasks or criticality modes of the system. Indeed, a fault occurs due to the hardware
component defects, electromagnetic interference, etc. [21–23]. To tolerate transient
faults, fault detection and correction mechanisms need to be applied.

For embedded safety-critical real-time systems, low-cost, low-power, and high-
accuracy checker should be employed in each core. To check whether a fault occurs
during the execution of a task, analogous to [13, 17], an error detection mechanism
is conducted to check the correctness of the task’s output at the end of the task’s
execution. ARGUS [24] is one of the significant checker tools to detect errors that
has all the features and has been used in many recent works [25]. It can be applied
to any embedded systems with less than 11% chip area overhead and also check
control flow, data flow, computation, and memory access separately, at run-time. In
this book, the error detection time overhead is considered in the WCET of tasks.

The task re-execution technique is one of the most popular ways to correct
transient faults in embedded systems [17, 22], which we employed in this book.
Some state-of-the-art works have considered that up to k transient faults may occur
in one period of the application [14, 26, 27]. If the system detects a faulty task, it
spends some time (. μ) to discard the results of the faulty task before re-executing
the task. During the design process of multi-core MC systems, we assume in
Chap. 6 to tolerate up to k transient faults within a given application period, like
these state-of-the-art works. However, in order to guarantee the safety requirements
of an application, the required number of re-execution should be determined.
Therefore, a probability factor (. fi) (Probability-of-Failure (PoF)) is considered,
which indicates the probability of an unsuccessful execution of a task due to
transient hardware/software faults [22]. In addition, the PFH has been exploited
to measure the safety of the system. The PFH represents the rate of the average
system failures in an hour [5, 8, 22]. According to safety standards, PFH estimates
the failure probability of safety functions in each of the criticality levels [5, 22]. As
shown in Table 2.1, five criticality levels of the exploited DO-178B safety standard,
i.e., A, B, C, D, and E, have been illustrated, and the PFH values for all of these
levels have been determined. The re-execution of the tasks is used to tolerate faults
and improve the system’s reliability according to Table 2.1. The number of re-

2.1 Preliminaries 21

executions for each criticality level of tasks, HC and LC, in each mode to guarantee
safety requirement, is obtained by using the value of PFHs. We guarantee the safety
requirement when designing the MC applications in Chap. 4, where we discuss later
in that chapter how to calculate the number of re-executions.

2.1.3 Hardware Architectural Modeling

In this book, a multi-core hardware platform comprising of m cores {. C1, C2, . . . ,

. Cm} based on the ODROID XU3 board is considered. The ODROID XU3 board is
DVFS-enabled and the cores can operate at multiple voltage (V) and frequency (f)
levels. This board consists of two clusters with ARM cortex-A15 (big) and ARM
Cortex-A7 (LITTLE) (four big cores and four LITTLE cores); hence, cores within
the same cluster operate at the same V-f level, and also, each cluster can operate at
different frequency and voltage levels. In this board, the allowed frequency is in the
range of [0.2, 1.4] GHz for LITTLE cores and [0.2, 2] GHz for big cores. Besides,
the voltage is in the range of [0.9, 1.3] V for LITTLE cores and [0.9, 1.3625] V for
big cores.

This book focuses on employing a single-core platform based on ARM Cortex-
A7 (LITTLE) cores to evaluate the approaches while designing MC application
systems, as presented in Chaps. 3, 4, and 5. Besides, the multi-core platforms
mentioned above are considered for MC hardware system design, as presented in
Chaps. 6 and 7.

2.1.4 Low-Power Techniques and Power Consumption Model

Power management in electronic systems is primarily targeted toward two purposes:
firstly, to minimize heat dissipation in order to improve the system’s usability
(for handheld devices and wearables), reliability (for safety- and mission-critical
systems), etc., and secondly, the power management methods may target the
minimization of the system’s energy consumption. This is crucial for battery-
powered and energy-harvesting systems as well as for large-scale systems. The
common power management techniques used in this book are DVFS, a firmware-
level technique, task re-mapping, and task scheduling, as software-level techniques.
We explain these techniques and the power consumption model below.

2.1.4.1 Dynamic Voltage and Frequency Scaling (DVFS)

The total power consumption of a core is composed of static (. Ps), dynamic (. Pd), and
independent power consumption (.Pind) [28, 29]. .Pind refers to the power related to
the memory and I/O activities. DVFS technique can dynamically change the voltage

22 2 Preliminaries and Related Work

and/or frequency (V-f) of one/some/all processor cores to reduce the overall system
power consumption (static and dynamic), including computation, communication,
and memory parts. Since the V-f level of some cores (can be named as a cluster) can
be changed, it implies that all cores in a cluster must have the same V-f level. The
total power consumption is given by Eq. (2.2). In this equation, .Isub and . CL are the
subthreshold leakage current and load capacitance, respectively. In this book, we
focus on decreasing . Pd :

.Pow = Ps + Pd + Pind = IsubV + CLV 2f + Pind (2.2)

in which (. ρ1 and . ρ2 are the scaling factors of frequency and voltage, respectively):

. fmin ≤ f = ρ1 × fmax ≤ fmax

Vmin ≤ V = ρ2 × Vmax ≤ Vmax (2.3)

Therefore, by using these scaling factors, Eq. 2.2 can be written based on the
.Vmax and .fmax as:

.Pow = Isub(ρ2Vmax) + CL(ρ2Vmax)
2(ρ1fmax) + Pind (2.4)

As our system is based on the ODROID XU3, some frequency levels work with
the same voltage level on this board. It means, by reducing the frequency level,
the voltage level does not change. Therefore, the scaling factors . ρ1 and . ρ2 do not
have the same value. According to the range of frequency for big and LITTLE cores
presented in Sect. 2.1.3, . ρ1 can be set in the range of [0.143, 1] for the A7 cores and
[0.1, 1] for A15 cores. In addition, . ρ2 is in the range of [0.692, 1] and [0.6606, 1]
for A7 and A15 cores, respectively. Although the ODROID XU3 has power sensors,
they only report values for the entire cluster, not for each core. Hence, DVFS
technique is employed in Chap. 7 to manage the peak power consumption and
maximum temperature.

2.1.4.2 Task Re-mapping

Task re-mapping is the run-time moving of a task/application from a hot processor
core to another processor core, i.e., re-map and reschedule on a colder processor
core to let the hot processor core cool down. This process helps in dynamically
reducing and balancing the temperature or power consumption across all processor
cores in a platform [30, 31]. This technique is employed in Chap. 7 for thermal
management.

2.2 Related Works 23

2.1.4.3 Task Scheduling

Task scheduling is a process of selecting a task from an application/task set and
determining where (i.e., in which core) and when to execute it [30]. Choosing
a processor core from a list of available processor cores helps to reduce power
consumption, especially in heterogeneous multi-core platforms. The static task
scheduling process is employed with the aim of power reduction, in which the task
data is known in advance. Thus, the task scheduling decision (in which processor
core and the appropriate time instants to start each task’s execution on the processor
core) can be made at design-time to reduce power consumption. This low-power
technique is employed in Chap. 6 to reduce the instantaneous power consumption
and maximum temperature.

2.2 Related Works

2.2.1 Mixed-Criticality Task Scheduling Mechanisms

After proposing the MC tasks model by Vestal in 2007 [32], many research works
have focused on the MC task scheduling in different operational modes and the
feasibility of schedules in each mode. The majority of these papers are concerned
with single-core platforms and independent tasks. The most common proposed
scheduling algorithms are Earliest Deadline First with Virtual Deadline (EDF-VD)
used in most papers like [4, 7, 33–37], Early Release Earliest Deadline First
(ER-EDF) [38–40], and Fixed Periority (FP) [41, 42]. These algorithms have been
reviewed in [43] in detail; however, the following is a brief explanation of each
algorithm and the one we chose in this book.

FP scheduling algorithm is the first proposed scheduling algorithm for MC
systems that is presented in [32]. In general, the scheduler gives higher priority to
HC tasks and executes first the ready HC tasks of all those tasks (HC and LC tasks)
at any given time, and if there is no ready HC task, LC tasks are scheduled. The
algorithm can ensure that all tasks can be scheduled in LO mode, and in the case
of mode switches, the scheduler can decide to drop all LC tasks or execute some
of them if there is some slack time. However, some research works such as [36]
studied and discussed that this FP algorithm could not handle the task scheduling
while the mode is switching. As a result, some scheduling algorithms have been
presented based on the Earliest Deadline First (EDF) scheduling algorithm, which
can manage the mode switches, have higher utilization, and schedule more tasks
in a core. ER-EDF is one of the algorithms that the complete analysis of this
scheduling algorithm was presented in [39] for the first time and then extended
and published in [38, 40]. In this scheduling algorithm, a maximum period (larger
than the actual period) and some early release points (between actual and maximum
periods) are defined for each LC task. The minimum service requirement of LC

24 2 Preliminaries and Related Work

tasks is guaranteed by executing them with their maximum period. The scheduler
ensures that the minimum service requirement is met in the worst-case scenario,
i.e., switching the system to the HI mode. In the case of generating dynamic slack
at run-time, the early release points are used for LC tasks to provide opportunities
for them to release more frequently and improve their QoS. As can be realized, in
this algorithm, the quality of output results for LC tasks might be reduced in the
LO mode, which is not acceptable in some applications.

EDF-VD is the most common scheduling algorithm in MC system in the last
decade. The complete analysis of the EDF-VD scheduling algorithm was first
presented in [44]. In this scheduling algorithm, a virtual deadline is defined for each
HC task, which is obtained by multiplying the actual deadline by x .(0 < x < 1).
This policy leads to providing a higher priority for HC tasks in the scheduling
algorithm. When the system is in the LO mode, the virtual deadlines are used for
HC tasks in the EDF scheduler, and also all of the HC and LC tasks are executed
before their deadlines. Nevertheless, when the system switches to the HI mode, the
actual deadlines of HC tasks are used in the EDF scheduler and all/some of the
LC tasks are dropped. An appropriate interval of x and the required conditions for
the EDF-VD algorithm for scheduling a given set of MC tasks in each operational
mode are presented in detail in [4]. In this book, we apply the EDF-VD algorithm
to schedule independent MC tasks in a single processor and present the required
and sufficient conditions in each chapter according to the employed task execution
policy. Since in Chap. 4, a new task parameter is defined to schedule more LC tasks
in the system, the optimum value of x and the required and sufficient conditions are
presented based on the new parameter.

2.2.2 QoS Improvement Methods in Mixed-Criticality Systems

In most safety-critical applications, dropping LC tasks causes serious service
interruptions for those LC tasks. Therefore, some approaches have been presented to
execute more LC tasks and improve the QoS. We can divide these approaches in two
categories: (1) approaches that improve QoS through appropriate WCET adjustment
for HC tasks and (2) approaches that improve QoS through task dropping analysis
in the HI mode. Below is an explanation of each category.

2.2.2.1 QoS Improvement Through WCET Adjustment

A significant number of papers have been published in the last decade regarding the
design of MC systems. Burns and Davis [43] provided a comprehensive study in
this field; however, since our focus is on improving the timing behavior and QoS
improvement of these MC systems and WCET analysis at both design-time and
run-time, we mostly focus on the works presented for designing these systems with
similar scope. Table 2.2 summarizes these works.

2.2 Related Works 25

Table 2.2 A brief overview of the state-of-the-art MC approaches in QoS improvement through
WCET adjustment

.# Related works
Dynamic Low WCET Design-/run- Mode switching prob.

QoS-aware adjustment time determination

1 [4, 35] .× .� . �/.× . ×
2 [41, 50] .× .� . �/.× . ×
3 [51, 52] .× .� . ×/.� . ×
4 [53] .× .� . ×/.� . �
5 [38, 40] .� .× . ×/.� . ×

The MC task model has been presented by Vestal in [32] for the first time and
introduced different WCET levels for tasks. However, the author has not discussed
how these WCETs are obtained and how often the system switches to the HI mode
based on the design. The authors have discussed a bit further in [45] how different
WCETs can be defined and determined. As an example, they can be determined
at different levels of accuracy with different degrees of confidence by limiting the
programming constructs, used in implementing the task. However, this approach
does not involve any analysis. Most of the approaches, such as [4, 7, 35–37, 46–
49], generally count the low WCETs as a percentage of the high WCETs to be
employed in system design, and then these values are not changing during the run-
time (shown some of them in row 1 of Table 2.2). This policy may waste the
system utilization, or cause frequent mode switches at run-time, which disturbs
the LC tasks and reduces their QoS. Although the efficiency of these approaches
has been evaluated for different percentages of high WCET, there is no scalable
approach for determining the WCETs for all criticality levels. In addition, these
estimations are not accurate since WCET and Actual Execution Times (AETs) do
not always have a linear relationship and therefore cannot be employed for dynamic
QoS improvement.

Besides, a few studies such as [41, 50], have focused on probability distributions
in MC systems by exploiting Extreme Value Theory (EVT) [54] for timing analysis,
which are presented in row 2 in Table 2.2. Note that EVT is a branch of statistics
which estimates and models the probability distribution of extreme events. In
the field of real-time systems, EVT is exploited to determine WCETs. Applying
these estimation methods has some open challenges, such as the required number
of execution times for a sample and its incomplete representativity identification
and evaluation that make it uncertain and unreliable [55–57]. Researchers in [57]
have recently exploited this probabilistic information and proposed a technique
to optimize the energy consumption of MC systems by finding the optimum core
speed in the LO mode and based on that, obtaining the low WCET. However, their
system operation model definition for running the LC tasks is different from the
popular MC model. In this system, all LC and HC tasks are executed in both
LO mode and HI mode, and the authors have obtained the low WCET for HC
tasks to investigate the trade-off between the minimum core frequency (that leads
to energy minimization) and probability of mode switching. Switching the system

26 2 Preliminaries and Related Work

to the HI mode causes an increase in processor frequency to guarantee all task
schedulability before their deadlines. In fact, although this method improves energy
consumption, it causes to schedule fewer LC tasks in the system which leads to
underutilization.

A few studies [51, 52] have determined the low WCET of tasks at run-
time (row 3), based on their overall processing requirements and actual execution
times. However, there is no guarantee at design-time on optimal use of the
system utilization and LC tasks’ execution. From the mode switching probability
perspective, some research works such as [53] have addressed mode switching
probability in MC systems and how to have the safe mode switching at run-time.
However, the relation between the HC tasks’ low WCET and mode switching
probability has not been discussed. Besides, the goal of these methods in rows 3
and 4 is to postpone the mode switches for a long time while only guaranteeing a
minimum QoS for LC tasks.

Some research works such as [38, 40], shown in row 5, have considered the
low WCET as a percentage of high WCET and improved the QoS at run-time
by exploiting the accumulated dynamic slack generated by early completion of
HC tasks. Since the dynamic slack is considered as a wrapper task that has a
deadline [40, 58] and cannot be used anytime, these approaches do not use the
system utilization optimally to improve the QoS.

Therefore, an appropriate low WCET analysis of MC tasks at both design- and
run-time is needed to reduce the use of WCET estimation methods and improve the
confidence in the WCET’s values, service adaptation, and processor utilization [43].

2.2.2.2 QoS Improvement Through Task Dropping Analysis

There are some existing studies in the context of MC systems, which have focused
on proposing approaches for managing different aspects of the MC system design
in terms of task schedulability and QoS improvement while guaranteeing the safety
requirements at design-time. A few efforts have also been conducted to manage
these parameters at run-time. Although [43] gives a comprehensive study in the field
of QoS improvement in MC systems in the run- and design-time phases, this sub-
section provides an overview of the existing studies in QoS improvement through
task dropping analysis. Table 2.3 summarizes these works with their respective
properties, like run-/design-time approach, and QoS improvement (offline/online
manner), safety requirement consideration while dropping LC tasks, and the policy
of LC task dropping in the HI mode.

Most of the existing approaches design MC systems by dropping all LC tasks
when the system switches to the HI mode in order to guarantee the correct execution
of HC tasks. Although these approaches may reduce the safety requirement of tasks,
dropping all LC tasks causes serious service interruptions for those LC tasks. Since
most MC systems are safety-related and real time, the task schedulability in terms
of QoS improvement is typically analyzed at design-time to guarantee the correct
execution of tasks before their deadlines to prevent catastrophic damages while the

2.2 Related Works 27

Table 2.3 A brief overview of the state-of-the-art studies in QoS improvement through task
dropping analysis

Related works
Safety requirement Design-/Run- offline/online LC task

guarantee time QoS opt. drop policy

1 [35, 47, 59–62] .× . �/.× . �/.× Drop freq.

2 [36, 42, 63, 64] .× . �/.× . �/.× Degradation

3 [5, 8] .� . �/.× . �/.× Degradation or drop all

4 [46, 65] .� . �/.× . �/.× Drop freq.

5 [66] .× . ×/.� . ×/.× Drop all

6 [37–39, 67, 68] .× . ×/.� . ×/.� Degradation

7 [69–72] .× . ×/.� . ×/.� Drop freq.

system is operating. Row 1 of Table 2.3 shows the research works that have focused
on MC system design to improve the LC tasks’ QoS in the worst-case scenario in the
case of mode switches to the HI mode. In these approaches, executing the minimum
number of instances (i.e., dropping fewer instances of LC tasks) in the HI mode is
ensured. However, they do not guarantee (1) to not drop LC tasks frequently and (2)
safety requirements. Besides, this is despite the fact that the system does not operate
in the worst-case scenario at run-time in most cases.

In addition, recent studies have provided techniques to improve the minimum
service level of LC tasks in the HI mode (instead of dropping all LC tasks) by
reducing the WCET of LC tasks in the HI mode or increasing their period in the
HI mode (presented in row 2 of Table 2.3). Indeed, they degrade the service level of
LC tasks that the minimum service level would be guaranteed by their techniques
while not guaranteeing the service requirements. However, the common part of all
previous methods is their consideration on an MC model in which LC tasks are
dropped or degraded when the system switches to the HI mode. Thus, none of these
algorithms can be applied to MC tasks that LC tasks could not be frequently dropped
or postponed for a long time.

A few papers [46, 65] have improved QoS of LC tasks in the HI mode while
guaranteeing the tasks’ safety requirements (rows 3 and 4). Although these research
works have tried to increase QoS of LC tasks in the HI mode and guarantee the
safety requirements, they may drop/degrade LC tasks in the HI mode frequently,
which is not acceptable, especially for mission-critical tasks. Degrading or dropping
LC tasks in a frequent manner without any restrictions in the HI mode is not
desirable and may negatively affect the safety and even lead to catastrophic
consequences.

From the MC task scheduling perspective at run-time, Sigrist et al. [66] (row
5) have studied the recent task scheduling mechanisms and evaluated the effect of
run-time overheads, such as task execution monitoring, overrunning detection, and
mode switching. However, they have not improved the task scheduling and QoS at
run-time.

To improve the LC tasks’ QoS at run-time, some state-of-the-art works have
presented the run-time adaptability mechanisms by exploiting the accumulated

28 2 Preliminaries and Related Work

dynamic slack to execute more LC tasks in the HI mode through fewer LC task
dropping/degradation (shown in rows 6 and 7). In [69], a run-time schedulability
analysis has been presented, and LC tasks are executed in free slack time if the
conditions are met. Researchers in [71] have also presented an effective solution
for reducing the number of mode switches and consequently LC task dropping
by using the generated dynamic slack for executing HC tasks when they overrun.
Bate et al. [72] have also proposed a protocol that handles mode switches and
ensures that LC tasks are executed more frequently. However, in such three works,
some LC tasks may be dropped frequently and continuously when the system
switches to the HI mode, which is unacceptable in any situation in some MC
systems. In addition, all dynamic slack is not exploited in [70] properly since the
algorithm only uses the dynamic slack generated by HC tasks’ execution.

The downsides of the previous approaches have motivated us to study the MC
systems’ behavior at both design- and run-time and propose methods to improve the
LC tasks’ QoS by task dropping analysis and not let them drop frequently.

2.2.3 QoS-Aware Power and Thermal Management in
Multi-core Mixed-Criticality Systems

In this subsection, since we also focus on QoS-aware multi-core MC system
design while managing power consumption, we overview the literature works in the
following, which have considered some or all of our target optimization objectives
or have used the same task and system model. Many previous works in the context of
MC systems with dependent task model have just focused on proposing techniques
to show how to efficiently map and schedule dependent tasks in both design-
and run-time phases. Since our focus is on QoS-aware MC task scheduling to
manage power and temperature, we only consider the works presented for MC or
non-MC systems with similar scope. Generally, the related works on power and
thermal management for real-time systems can be classified based on the assumed
system model, like MC or non-MC systems and dependent or independent tasks,
and also the target optimization objectives of QoS, peak power, average power,
or maximum temperature. Table 2.4 summarizes the recent works with different
target optimization objectives and assumed task models along with used low-power
techniques and whether each approach has considered the timing overheads of the
scheduler or changing V-f levels.

There are some algorithms presented for independent tasks such as EDF-VD
used in [4], or using different scheduling policies for different criticality levels [6].
Hence, these algorithms are presented for independent periodic tasks and cannot
be applied to tasks with precedence constraints. Besides, as can be seen in row 1 of
Table 2.4, some papers have considered periodic MC tasks with data dependency but
none of them have considered power management. These papers have focused on
the feasibility of schedules and meeting the timing constraints. From the perspective

2.2 Related Works 29

Table 2.4 Summary of state-of-the-art approaches in power-aware MC system hardware design

Related works
MC DAG QoS Peak Avg. Temp. Low-power Timing
tasks model power power technique overhead

1 [9, 12, 29, 62, 76, 77] .� .� .� .× .× .× .× . ×
2 [19, 78–82] .� .× .× .× .� .× DVFS . ×
3 [83] .� .× .× .× .� .� DVFS . ×
4 [84, 85] .× .× .× .� .× .× Task sch. . ×
5 [86] .× .� .× .� .× .× Task sch. . ×
6 [87] .× .� .× .� .� .× DVFS . ×
7 [88–93] .× .� .× .× .� .× DVFS . ×
8 [94] .× .� .× .× .� .× DVFS . �
9 [95–99] .× .� .× .× .� .� DVFS . ×
10 [100] .× .� .× .× .� .� DVFS . �

of guaranteeing LC tasks’ minimum service level, most existing MC scheduling
algorithms like what presented in [10, 73–75] discard or degrade LC tasks when the
system switches to the HI mode. It causes serious service interruption for LC tasks.
Therefore, in addition to power management in MC systems, improving the QoS of
LC tasks would be significant. There are few research works, like those presented
in row 1, that have improved the QoS while scheduling dependent MC tasks. On the
other hand, in [9, 12], the dependent MC tasks are scheduled in multi-core systems
with consideration of fault occurrence possibilities, but with no power or thermal
management.

From the perspective of power management in MC systems, some works such as
what are presented in row 2 have presented methods to minimize the average power
consumption in MC systems theoretically in which systems are single or multi-
core and tasks are independent. In general, they only optimize the average power in
the LO mode in simulation by using DVFS technique. When the system switches
to the HI mode, all HC tasks are executed with the highest frequency; and all LC
tasks are dropped. Indeed, they interrupt the minimum service level of LC tasks in
the HI mode. As a result, in the HI mode, with higher frequency, the peak power
consumption of the system may increase significantly, which is not admissible.

Furthermore, there is a paper [83] that has considered thermal management in
MC systems (third row of Table 2.4). The researchers minimize the temperature of
single-core processors by finding the optimum speed for each task in the design-
time phase. Hence, they discard LC tasks when the system switches to the HI mode,
which is not acceptable in many MC applications. Besides, they do not consider the
latency of changing the V-f level at run-time, which may cause deadline violation
and, consequently, catastrophic consequences.

Some studies concentrate on peak power management in multi-core systems
at design-time (rows 4–6) by using DVFS or task scheduling techniques. These
papers have only considered hard real-time tasks with one criticality level which
is not practical for MC. It should be mentioned that authors in [86] work on the
dependent task model in which the execution of some tasks is postponed to manage

30 2 Preliminaries and Related Work

the simultaneous peak power consumption. It is not suitable for MC tasks, especially
in the HI mode.

The previous works in the context of power or thermal management in non-MC
systems that use DVFS by considering the dependent task model are shown in rows
(7–10) of Table 2.4.

Researchers in [88–93] (shown in row 7) have used slack reclamation to apply
online DVFS to the system while executing dependent tasks. Kang et al. [89]
propose an algorithm that uses dynamic voltage scaling to minimize energy without
considering the tasks’ deadlines, which is not suitable for MC systems. Researchers
in [90–92] suggest a run-time energy management technique that uses reclaimable
slack for the immediately ready task to decrease average power. Their results
show that the power can be reduced; however, the possibilities of looking further
ahead into the future execution of the following tasks to have better results are not
explored. Besides, in [93], the authors have considered two types of tasks, best effort
and real-time, and they have just used the dynamic slack for the next real-time task
to reduce its V-f level, which is inefficient. There is an aggressive slack reclamation
algorithm, presented by [88], in which the generated dynamic slack is checked to
be able to be used for the next task if the remaining tasks could complete their
execution before the deadline. However, in general, the average energy consumption
is reduced, but this algorithm has focused more on meeting the deadlines, while we
target both energy minimization and meeting the deadlines.

In addition, from the DVFS latency perspective, some few works, like what has
been presented in [94], have presented a method to minimize energy in a multi-
core platform by using the DVFS technique. Researchers in [94] have considered a
task graph model running on the cluster-based platform. They have also considered
the latency of changing frequency in their paper. As shown in row 8, they have
not considered peak power or thermal management, and also, their method is not
suitable for MC systems where tasks have different criticality levels.

Row 9 demonstrates the works which focus on average power and maximum
temperature reduction in a system with dependent non-MC tasks with no timing
overhead consideration. As an example, in [97], a look-up table for each task is
generated in the offline phase, which contains the optimum voltage and frequency
settings for each core for every possible run-time condition, task execution time,
and core temperature measurement. The memory overhead incurred in generating
these tables may not be desirable, especially for multi-core systems with many tasks
and cores. Timing overhead of changing V-f levels has been considered in [100]
while reducing the average power consumption and maximum temperature (shown
in row 10).

As a result, more works are needed to be studied to reduce the peak power
consumption and maximum temperature in MC systems while improving the QoS
and considering the timing overheads of changing V-f level and task scheduler in
order to guarantee the correct execution of tasks before their deadlines.

References 31

2.3 Conclusions

In this chapter, we first discussed the model and assumption that are used in this
book. We introduced the general MC task model and system operational model and
defined the QoS metric. Then, we provide a short explanation of the fault model,
hardware architectural model, power model, and low-power techniques that are used
in this book.

Available MC scheduling algorithms were discussed, and the chosen scheduling
algorithm (EDF-VD) to be used in this book was highlighted. We summarized the
related literature works in QoS-aware MC application design and QoS-aware MC
hardware design, where power management is one of the objectives while designing
such systems. We showed the works with different target objectives in tables for
better understanding.

According to our discussion in Sect. 2.2, some objectives are needed to be
considered and improved in MC system design. In the following chapters, we
present the contributions of this book and compare them to some relevant state-
of-the-art works.

References

1. R. Ernst and M. Di Natale. “Mixed Criticality Systems—A History of Misconceptions?” In:
IEEE Design & Test 33.5 (2016), pp. 65–74.

2. Michael Zimmer et al. “FlexPRET: A processor platform for mixed-criticality systems”. In:
Proc. of Real-Time and Embedded Technology and Applications Symposium (RTAS). IEEE.
2014, pp. 101–110.

3. Leslie A Johnson. “DO-178B, Software considerations in airborne systems and equipment
certification”. In: Crosstalk, October 199 (1998), pp. 11–20.

4. S. Baruah et al. “The preemptive uniprocessor scheduling of mixed-criticality implicit-deadline
sporadic task systems”. In: Proc. of Euromicro Conference on Real-Time Systems (ECRTS).
2012, pp. 145–154.

5. P. Huang, H. Yang, and L. Thiele. “On the scheduling of fault-tolerant mixed-criticality
systems”. In: Proc. on Design Automation Conference (DAC). 2014, pp. 1–6.

6. James H Anderson, Sanjoy K Baruah, and Björn B Brandenburg. “Multicore operating-system
support for mixed criticality”. In: Proc. of the Workshop on Mixed Criticality: Roadmap to
Evolving UAV Certification. Vol. 4. Citeseer. 2009, p. 7.

7. Sanjoy Baruah et al. “Preemptive Uniprocessor Scheduling of Mixed-Criticality Sporadic Task
Systems”. In: Journal of the ACM (JACM) 62.2 (2015), 14:1–14:33.

8. Luyuan Zeng, Pengcheng Huang, and Lothar Thiele. “Towards the Design of Fault-tolerant
Mixed-criticality Systems on Multicores”. In: Proc. of Compilers, Architectures and Synthesis
for Embedded Systems (CASES). Pittsburgh, Pennsylvania, 2016, 6:1–6:10. ISBN: 978-1-4503-
4482-1.

9. R. Medina, E. Borde, and L. Pautet. “Availability enhancement and analysis for mixed-
criticality systems on multi-core”. In: Proc. on Design, Automation & Test in Europe
Conference & Exhibition (DATE). 2018, pp. 1271–1276.

10. Sanjoy Baruah. “The federated scheduling of systems of mixed-criticality sporadic DAG
tasks”. In: Proc. of IEEE Real-Time Systems Symposium (RTSS). 2016, pp. 227–236.

32 2 Preliminaries and Related Work

11. Mostafa Jafari-Nodoushan, Bardia Safaei, and Alireza Ejlali. “Leakage-Aware Battery Life-
time Analysis Using the Calculus of Variations”. In: IEEE Transactions on Circuits and
Systems I: Regular Papers (2020).

12. Roberto Medina, Etienne Borde, and Laurent Pautet. “Scheduling Multi-periodic Mixed-
Criticality DAGs on Multi-core Architectures”. In: Proc. of IEEE Real-Time Systems Sym-
posium (RTSS). 2018, pp. 254–264.

13. Mohammad Salehi, Alireza Ejlali, and Bashir M Al-Hashimi. “Two-phase low-energy N-
modular redundancy for hard real-time multi-core systems”. In: IEEE Transactions on Parallel
and Distributed Systems (TPDS) 27.5 (2016), pp. 1497–1510.

14. Viacheslav Izosimov, Petru Eles, and Zebo Peng. “Value-based scheduling of distributed
fault-tolerant real-time systems with soft and hard timing constraints”. In: Proc. of the IEEE
Workshop on Embedded systems for real-time multimedia (ESTIMedia). 2010, pp. 31–40.

15. Giorgio C Buttazzo. Hard real-time computing systems: predictable scheduling algorithms and
applications. Vol. 24. Springer Science & Business Media, 2011.

16. Zheng Li and Shuibing He. “Fixed-Priority Scheduling for Two-Phase Mixed-Criticality
Systems”. In: ACM Transactions on Embedded Computing Systems (TECS) 17.2 (2018), pp.
1–20.

17. B. Ranjbar et al. “FANTOM: Fault Tolerant Task-Drop Aware Scheduling for
Mixed-Criticality Systems”. In: IEEE Access 8 (2020), pp. 187232–187248. DOI:
10.1109/ACCESS.2020.3031039.

18. B. Ranjbar et al. “Online Peak Power and Maximum Temperature Management in Multi-core
Mixed-Criticality Embedded Systems”. In: Proc. of Euromicro Conference on Digital System
Design (DSD). 2019, pp. 546–553.

19. Zheng Li et al. “Empirical study of energy minimization issues for mixed-criticality systems
with reliability constraint”. In: Proc. 1st Workshop on Low-Power Dependable Computing
(LPDC). 2014, pp. 3–5.

20. Siva Satyendra Sahoo, Behnaz Ranjbar, and Akash Kumar. “Reliability-Aware Resource
Management in Multi-/Many-Core Systems: A Perspective Paper”. In: Journal of Low Power
Electronics and Applications 11.1 (2021), p. 7.

21. Jin Jiang and Xiang Yu. “Fault-tolerant control systems: A comparative study between active
and passive approaches”. In: Annual Reviews in control 36.1 (2012), pp. 60–72.

22. Israel Koren and C Mani Krishna. Fault-tolerant systems. Morgan Kauf-mann,2020.
23. Elena Dubrova. “Fundamentals of dependability”. In: Fault-Tolerant Design. Springer, 2013,

pp. 5–20.
24. A. Meixner, M. E. Bauer, and D. Sorin. “Argus: Low-Cost, Comprehensive Error Detection

in Simple Cores”. In: Proc. of IEEE/ACM International Symposium on Microarchitecture
(MICRO). 2007, pp. 210–222. DOI: 10.1109/MICRO.2007.18.

25. Jon Perez Cerrolaza et al. “Multi-Core Devices for Safety-Critical Systems: A Survey”. In:
ACM Computing Surveys (CSUR) 53.4 (2020), pp. 1–38.

26. V. Izosimov et al. “Scheduling of Fault-Tolerant Embedded Systems with Soft and Hard Timing
Constraints”. In: Proc. on Design, Automation & Test in Europe Conference & Exhibition
(DATE). 2008, pp. 915–920.

27. M. Salehi et al. “Two-State Checkpointing for Energy-Efficient Fault Tolerance in Hard Real-
Time Systems”. In: IEEE Transactions on Very Large Scale Integration (VLSI) Systems 24.7
(2016), pp. 2426–2437.

28. Amir Taherin, Mohammad Salehi, and Alireza Ejlali. “Stretch: exploiting service level
degradation for energy management in mixed-criticality systems”. In: Proc. of CSI Symposium
on Real-Time and Embedded Systems and Technologies (RTEST). IEEE. 2015, pp. 1–8.

29. J. Li et al. “Mixed-Criticality Federated Scheduling for Parallel Real-Time Tasks”. In: Proc.
of IEEE Real-Time and Embedded Technology and Applications Symposium (RTAS). 2016, pp.
1–12.

30. Saad Zia Sheikh and Muhammad Adeel Pasha. “Energy-Efficient Multicore Scheduling for
Hard Real-Time Systems: A Survey”. In: ACM Trans. Embed. Comput. Syst. (TECS) 17.6
(2018). DOI: 10.1145/3291387.

References 33

31. Jörg Henkel and Nikil Dutt. Dependable embedded systems. Springer Nature, 2021.
32. Steve Vestal. “Preemptive scheduling of multi-criticality systems with varying degrees of

execution time assurance”. In: Proc. of Real-Time Systems Symposium (RTSS). IEEE. 2007,
pp. 239–243.

33. Sanjoy Baruah et al. “Scheduling real-time mixed-criticality jobs”. In: IEEE Transactions on
Computers (TC) 61.8 (2012), pp. 1140–1152.

34. Sanjoy Baruah, Haohan Li, and Leen Stougie. “Towards the design of certifiable mixed-
criticality systems”. In: Proc. of Real-Time and Embedded Technology and Applications
Symposium (RTAS). IEEE. 2010, pp. 13–22.

35. D. Liu et al. “Scheduling Analysis of Imprecise Mixed-Criticality Real-Time Tasks”. In: IEEE
Transactions on Computers (TC) 67.7 (2018), pp. 975–991.

36. D. Liu et al. “EDF-VD Scheduling of Mixed-Criticality Systems with Degraded Quality
Guarantees”. In: Proc. on IEEE Real-Time Systems Symposium (RTSS). 2016, pp. 35–46.

37. G. Chen et al. “Utilization-Based Scheduling of Flexible Mixed-Criticality Real-Time Tasks”.
In: IEEE Transactions on Computers (TC) 67.4 (2018), pp. 543–558.

38. Hang Su and Dakai Zhu. “An elastic mixed-criticality task model and its scheduling algorithm”.
In: Proc. on Design, Automation & Test in Europe Conference & Exhibition (DATE). IEEE.
2013, pp. 147–152.

39. Hang Su, Dakai Zhu, and Daniel Mossé. “Scheduling algorithms for elastic mixed-criticality
tasks in multicore systems”. In: Proc. on Embedded and Real-Time Computing Systems and
Applications (RTCSA). 2013, pp. 352–357.

40. H. Su, D. Zhu, and S. Brandt. “An Elastic Mixed-Criticality Task Model and Early-Release
EDF Scheduling Algorithms”. In: ACM Trans. Des. Autom. Electron. Syst. (TODAES) 22.2
(2016), pp. 1–25.

41. Dorin Maxim et al. “Probabilistic Analysis for Mixed Criticality Systems Using Fixed Priority
Preemptive Scheduling”. In: Proc. of Euromicro Conference on Real-Time Systems (RTNS).
2017, pp. 237–246.

42. Alan Burns and Sanjoy Baruah. “Towards a more practical model for mixed criticality
systems”. In: Workshop on Mixed-Criticality Systems. 2013.

43. Alan Burns and Robert I. Davis. “A Survey of Research into Mixed Criticality Systems”. In:
ACM Computing Surveys (CSUR) 50.6 (2017), pp. 1–37.

44. Sanjoy K Baruah et al. “Mixed-criticality scheduling of sporadic task systems”. In: European
Symposium on Algorithms. 2011, pp. 555–566.

45. S. Baruah and S. Vestal. “Schedulability Analysis of Sporadic Tasks with Multiple Criticality
Specifications”. In: Proc. of Euromicro Conference on Real-Time Systems (ECRTS). 2008, pp.
147–155. DOI: 10.1109/ECRTS.2008.26.

46. Zaid Al-bayati et al. “A four-mode model for efficient fault-tolerant mixed-criticality systems”.
In: Proc. on Design, Automation & Test in Europe Conference & Exhibition (DATE). 2016, pp.
97–102.

47. Z. Guo et al. “Uniprocessor Mixed-Criticality Scheduling with Graceful Degradation by
Completion Rate”. In: Proc. on IEEE Real-Time Systems Symposium (RTSS). 2018, pp. 373–
383.

48. Chuancai Gu et al. “Partitioned mixed-criticality scheduling on multi-processor platforms”. In:
Proc. on Design, Automation & Test in Europe Conference & Exhibition (DATE). 2014, p. 292.

49. Z. Guo, L. Santinelli, and K. Yang. “EDF Schedulability Analysis on Mixed-Criticality
Systems with Permitted Failure Probability”. In: Proc. of the International Conference on
Embedded and Real-Time Computing Systems and Applications (RTCSA). 2015, pp. 187–196.

50. Luca Santinelli and Laurent George. “Probabilities and mixed-criticalities: the probabilistic
c-space”. In: Proc. on IEEE Real-Time Systems Symposium (RTSS). 2015.

51. X. Gu and A. Easwaran. “Dynamic Budget Management with Service Guarantees for Mixed-
Criticality Systems”. In: Proc. on IEEE Real-Time Systems Symposium (RTSS). 2016, pp. 47–
56.

52. X. Gu and A. Easwaran. “Dynamic budget management and budget reclamation for mixed-
criticality systems”. In: Real-Time Systems 55.3 (2019), pp. 552–597.

34 2 Preliminaries and Related Work

53. B. Hu et al. “FFOB: Efficient online mode-switch procrastination in mixed-criticality systems”.
In: Real-Time Systems 55.3 (2019), pp. 471–513.

54. Laurens De Haan and Ana Ferreira. Extreme value theory: an introduction. Springer Science
& Business Media, 2007.

55. S. Jiménez Gil et al. “Open Challenges for Probabilistic Measurement-Based Worst-Case
Execution Time”. In: IEEE Embedded Systems Letters 9.3 (2017), pp. 69–72.

56. Federico Reghenzani, Luca Santinelli, and William Fornaciari. “Dealing with Uncertainty in
PWCET Estimations”. In: ACM Trans. Embed. Comput. Syst. (TECS) 19.5 (Sept. 2020).

57. Ashikahmed Bhuiyan et al. “Optimizing Energy in Non-PreemptiveMixed-Criticality Schedul-
ing by Exploiting Probabilistic Information”. In: IEEE Transactions on Computer-Aided
Design of Integrated Circuits and Systems (TCAD) 39.11 (2020), pp. 3906–3917. DOI:
10.1109/TCAD.2020.3012231.

58. Dakai Zhu and Hakan Aydin. “Reliability-Aware Energy Management for Periodic Real-
Time Tasks”. In: IEEE Transactions on Computers 58.10 (2009), pp. 1382–1397. DOI:
10.1109/TC.2009.56.

59. Oliver Gettings, Sophie Quinton, and Robert I. Davis. “Mixed Criticality Systems with
Weakly-Hard Constraints”. In: Proc. of International Conference on Real Time and Networks
Systems (RTNS). Lille, France: Association for Computing Machinery, 2015, pp. 237–246.
ISBN: 9781450335911.

60. Saravanan Ramanathan and Arvind Easwaran. “Mixed-criticality scheduling on multipro-
cessors with service guarantees”. In: Proc. of IEEE International Symposium on Real-Time
Distributed Computing (ISORC). 2018, pp. 17–24.

61. Risat Mahmud Pathan. “Improving the quality-of-service for scheduling mixed-criticality
systems on multiprocessors”. In: Proc. of Euromicro Conference on Real-Time Systems
(ECRTS). 2017.

62. Risat Mahmud Pathan. “Improving the Schedulability and Quality of Service for Federated
Scheduling of Parallel Mixed-Criticality Tasks on Multiprocessors”. In: Proc. of Euromicro
Conference on Real-Time Systems (ECRTS). Vol. 106. 2018, 12:1–12:22.

63. K. Yang and Z. Guo. “EDF-Based Mixed-Criticality Scheduling with Graceful Degradation
by Bounded Lateness”. In: Proc. of Embedded and Real-Time Computing Systems and App.
(RTCSA). 2019, pp. 1–6.

64. Lin Huang et al. “Improving QoS for global dual-criticality scheduling on multiprocessors”.
In: Proc. of IEEE International Conference on Embedded and Real-Time Computing Systems
and Applications (RTCSA). IEEE. 2019, pp. 1–11.

65. Jonah Caplan et al. “Mapping and scheduling mixed-criticality systems with on-demand
redundancy”. In: IEEE Transaction on Computers 67.4 (2018), pp. 582–588.

66. L. Sigrist et al. “Mixed-criticality runtime mechanisms and evaluation on multicores”. In: Proc.
IEEE Real-Time and Embedded Technology and Applications Symposium (RTAS). 2015, pp.
194–206.

67. Pengcheng Huang et al. “Run and be safe: Mixed-criticality scheduling with temporary
processor speedup”. In: Proc. on Design, Automation & Test in Europe Conference &
Exhibition (DATE). IEEE. 2015, pp. 1329–1334.

68. J. Boudjadar et al. “Combining Task-level and System-level Scheduling Modes for Mixed
Criticality Systems”. In: Proc. of International Symposium on Distributed Simulation and Real
Time Applications (DS-RT). 2019, pp. 1–10.

69. Jaewoo Lee et al. “MC-ADAPT: Adaptive Task Dropping in Mixed-Criticality Scheduling”.
In: ACM Transactions on Embedded Computing Systems (TECS) 16.5s (2017).

70. Z. Li, S. Ren, and G. Quan. “Dynamic Reservation-Based Mixed-Criticality Task Set Schedul-
ing”. In: Proc. of IEEE Intl. Conf. on High Performance Computing and Communications,
IEEE Intl. Symp. on Cyberspace Safety and Security, IEEE Intl. Conf. on Embedded Software
and Syst (HPCC,CSS, ICESS). 2014, pp. 603–610.

71. Biao Hu et al. “On-the-fly fast overrun budgeting for mixed-criticality systems”. In: Proc.
of International Conference on Embedded Software (EMSOFT). 2016, pp. 1–10. DOI:
10.1145/2968478.2968491.

References 35

72. Iain Bate, Alan Burns, and Robert I. Davis. “A Bailout Protocol for Mixed Criticality Systems”.
In: Proc. of Euromicro Conference on Real-Time Systems (ECRTS). 2015, pp. 259–268. DOI:
10.1109/ECRTS.2015.30.

73. Dario Socci et al. “Multiprocessor scheduling of precedence-constrained mixed-critical jobs”.
In: Proc. of International Symposium on Real-Time Distributed Computing (ISORC). 2015, pp.
198–207.

74. D. Socci et al. “Priority-based scheduling of mixed-critical jobs”. In: Real-Time Systems 55.4
(2019), pp. 709–773.

75. Roberto Medina, Etienne Borde, and Laurent Pautet. “Directed acyclic graph scheduling for
mixed-criticality systems”. In: Ada-Europe International Conference on Reliable Software
Technologies. Springer. 2017, pp. 217–232.

76. C. Bolchini and A. Miele. “Reliability-Driven System-Level Synthesis for Mixed-Critical
Embedded Systems”. In: IEEE Transactions on Computers (TC) 62.12 (2013), pp. 2489–2502.

77. Junchul Choi, Hoeseok Yang, and Soonhoi Ha. “Optimization of Fault-Tolerant Mixed-
Criticality Multi-Core Systems with Enhanced WCRT Analysis”. In: ACM Trans. Des. Autom.
Electron. Syst. (TODAES) 24.1 (2018), pp. 1–26.

78. Pengcheng Huang et al. “Energy efficient dvfs scheduling for mixed-criticality systems”. In:
Proc. on Embedded Software (EMSOFT). 2014, pp. 1–10.

79. Ijaz Ali, Jun-ho Seo, and Kyong Hoon Kim. “A dynamic power-aware scheduling of mixed-
criticality real-time systems”. In: Proc. on Computer and Information Technology; Ubiquitous
Computing and Communications; Dependable, Autonomic and Secure Computing; Pervasive
Intelligence and Computing (CIT/IUCC/DASC/PICOM). 2015, pp. 438–445.

80. Sujay Narayana et al. “Exploring energy saving for mixed-criticality systems on multi-cores”.
In: Proc. on Real-Time and Embedded Technology and Applications Symposium (RTAS). 2016,
pp. 1–12.

81. A. Taherin, M. Salehi, and A. Ejlali. “Reliability-Aware Energy Management in Mixed-
Criticality Systems”. In: IEEE Transactions on Sustainable Computing (TSUSC) 3.3 (2018),
pp. 195–208.

82. M. A. Awan, D. Masson, and E. Tovar. “Energy efficient mapping of mixed criticality
applications on unrelated heterogeneous multicore platforms”. In: Proc. on IEEE Symposium
on Industrial Embedded Systems (SIES). 2016, pp. 1–10.

83. Tiantian Li et al. “TA-MCF: Thermal-Aware Fluid Scheduling for Mixed-Criticality System”.
In: Journal of Circuits, Systems and Computers (JCSC) 28.02 (2019), p. 1950029.

84. Jinkyu Lee, Buyoung Yun, and Kang G Shin. “Reducing peak power consumption inmulti-
core systems without violating real-time constraints”. In: IEEE Transactions on Parallel and
Distributed Systems (TPDS) 25.4 (2014), pp. 1024–1033.

85. Waqaas Munawar et al. “Peak Power Management for scheduling real-time tasks on het-
erogeneous many-core systems”. In: Proc. of the International Conference on Parallel and
Distributed Systems (ICPADS). 2014, pp. 200–209.

86. BongKi Lee et al. “Peak power reduction methodology for multi-core systems”. In: Proc. of
the International SoC Design Conference (ISOCC). 2010, pp. 233–235.

87. M. Ansari et al. “Peak power management to meet thermal design power in fault-tolerant
embedded systems”. In: IEEE Transactions on Parallel and Distributed Systems (TPDS) 30.1
(2019), pp. 161–173.

88. Jian-Jia Chen, Chuan-Yue Yang, and Tei-Wei Kuo. “Slack reclamation for real-time task
scheduling over dynamic voltage scaling multiprocessors”. In: Proc. on Sensor Networks,
Ubiquitous, and Trustworthy Computing (SUTC). Vol. 1. 2006, pp. 1–8.

89. Jaeyeon Kang and Sanjay Ranka. “Dynamic slack allocation algorithms for energy minimiza-
tion on parallel machines”. In: Journal of Parallel and Distributed Computing (JPDC) 70.5
(2010), pp. 417–430.

90. D. Zhu, R. Melhem, and B. R. Childers. “Scheduling with dynamic voltage/speed adjust-
ment using slack reclamation in multiprocessor real-time systems”. In: IEEE Trans-
actions on Parallel and Distributed Systems (TPDS) 14.7 (2003), pp. 686–700. DOI:
10.1109/TPDS.2003.1214320.

36 2 Preliminaries and Related Work

91. Amit Kumar Singh, Anup Das, and Akash Kumar. “Energy Optimization by Exploiting
Execution Slacks in Streaming Applications on Multiprocessor Systems”. In: Proc. on Design
Automation Conference (DAC). 2013.

92. Longxin Zhang et al. “Joint optimization of energy efficiency and system reliability for
precedence constrained tasks in heterogeneous systems”. In: International Journal of Electrical
Power & Energy Systems 78 (2016), pp. 499–512.

93. A. Martins et al. “Runtime energy management under real-time constraints in MPSoCs”. In:
Proc. of IEEE International Symposium on Circuits and Systems (ISCAS). 2017, pp. 1–4.

94. Z. Guo et al. “Energy-Efficient Real-Time Scheduling of DAGs on Clustered Multi-Core
Platforms”. In: Proc. IEEE Real-Time and Embedded Technology and Applications Symposium
(RTAS). Apr. 2019, pp. 156–168. DOI: 10.1109/RTAS.2019.00021.

95. V. Chaturvedi et al. “Thermal-aware task scheduling for peak temperature minimization under
periodic constraint for 3D-MPSoCs”. In: Proc. IEEE International Symposium on Rapid
System Prototyping (RSP). Oct. 2014, pp. 107–113. DOI: 10.1109/RSP.2014.6966900.

96. R. Kabir and B. Izadi. “Temperature and energy aware scheduling of heterogeneous proces-
sors”. In: Proc. International Conference on Contemporary Computing (IC3). Aug. 2016, pp.
1–7. DOI: 10.1109/IC3.2016.7880199.

97. M. Bao et al. “On-line thermal aware dynamic voltage scaling for energy optimization with
frequency/temperature dependency consideration”. In: Proc. ACM/IEEE Design Automation
Conference (DAC). July 2009, pp. 490–495.

98. Hyejeong Hong et al. “Thermal-aware dynamic voltage frequency scaling for many-core
processors under process variations”. In: IEICE Electronics Express 10.14 (2013).

99. Thidapat Chantem, X Sharon Hu, and Robert P Dick. “Temperature-aware scheduling and
assignment for hard real-time applications on MPSoCs”. In: IEEE Transactions on Very Large
Scale Integration (VLSI) Systems 19.10 (2011), pp. 1884–1897.

100. M. Qiu et al. “Peak temperature minimization for embedded systems with DVS transition
overhead consideration”. In: Proc. International Conference on High Performance Computing
and Communication (HPCC) & International Conference on Embedded Software and System
ICESS. June 2012, pp. 477–484.

Chapter 3
Bounding Time in Mixed-Criticality
Systems

As a result of MC application analysis, determining the optimally low WCET for
each HC task is a challenge in MC system design due to its role in improving
the timing behavior of these systems and QoS (scheduling greater number of LC
tasks). Determining the high values for low WCETs (i.e., the gap between the
low and high WCETs is small) can minimize the number of mode switches but
underutilize the processor (i.e., reduce the processor utilization, at run-time) due
to the scheduling of fewer tasks. Indeed, this is overly pessimistic because, as
shown in Fig. 1.1, tasks would be executed with less likelihood up to observed or
actual WCET. On the other hand, the utilization can be maximized, and more tasks,
especially LC tasks, are guaranteed to be scheduled in a processor at design-time
by determining the low values for low WCETs (i.e., the gap is large), but with a
high number of mode switches, and consequently, drop more LC tasks at run-time
due to inefficient, low WCET determination for HC tasks, which is not desirable.
Most state-of-the-art research works such as [1–3] have presented static approaches
to determine low WCETs, which are set as a percentage of the high WCETs.
However, as shown in Fig. 1.1, most tasks’ execution time is close to Average-
Case Execution Time (ACET). Furthermore, most studies have not analyzed the
probability of exceeding the low WCETs in system design. To this end, this chapter
first aims to adjust the low WCET in Sect. 3.1, which can provide a reasonable trade-
off between the number of scheduled LC tasks at design-time and the probability of
mode switching at run-time to improve the system utilization and QoS.

However, setting the constant low WCETs for tasks in LO mode, which remain
unchanged during run-time, can cause significant performance loss for LC tasks or
processor underutilization if the low WCETs are not close to AET. Therefore, we
propose ADAPTIVE in Sect. 3.2 to determine the low WCETs for MC tasks at run-
time based on the behavioral system changes while making a trade-off between the
QoS, utilization, and mode switches.

The remainder of the chapter is organized as follows. At first, we propose BOT-
MICS, in Sect. 3.1, in which a motivational example is presented in Sect. 3.1.1.

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024
B. Ranjbar et al., Quality-of-Service Aware Design and Management of Embedded
Mixed-Criticality Systems, https://doi.org/10.1007/978-3-031-38960-3_3

37

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-38960-3protect T1	extunderscore 3&domain=pdf
https://doi.org/10.1007/978-3-031-38960-3_3
https://doi.org/10.1007/978-3-031-38960-3_3
https://doi.org/10.1007/978-3-031-38960-3_3
https://doi.org/10.1007/978-3-031-38960-3_3
https://doi.org/10.1007/978-3-031-38960-3_3
https://doi.org/10.1007/978-3-031-38960-3_3
https://doi.org/10.1007/978-3-031-38960-3_3
https://doi.org/10.1007/978-3-031-38960-3_3
https://doi.org/10.1007/978-3-031-38960-3_3
https://doi.org/10.1007/978-3-031-38960-3_3
https://doi.org/10.1007/978-3-031-38960-3_3

38 3 Bounding Time in Mixed-Criticality Systems

Then, we present our scheme for determining the low WCETs, estimating ACET
to be used in determining the WCETs, and the scheduling policy and optimization
problem in Sect. 3.1.2. At the end of this section, we analyze the experiments in
Sect. 3.1.3. Then, the run-time approach, ADAPTIVE, is proposed in Sect. 3.2, in
which the motivational example and the detail of the proposed scheme are explained
in Sects. 3.2.1 and 3.2.2, respectively. The experiments with real-life benchmarks
and synthetic task sets are finally evaluated in Sect. 3.2.3.

3.1 BOT-MICS: A Design-Time WCET Adjustment
Approach

This section first proposes a novel scheme based on the Chebyshev theorem [4] for
MC systems to determine the appropriate low WCETs for tasks. The Chebyshev
theorem provides a general bound for all tasks with any distribution, which is
pessimistic. To this end, we then propose a second approach to determine tighter
execution time bounds for HC tasks. In this approach, we analyze the execution
time distribution of each task and fit a known distribution curve to it. Then we use
the Cumulative Distribution Function (CDF) of the known distribution to provide
a tight bound for the probability of task overrunning and, consequently, determine
the low WCET for that task. Then, the schedulability test and optimization problem
based on the newly proposed schemes are discussed.

The main contributions of BOT-MICS can be listed as follows:

• Introducing a novel scheme to obtain the low WCETs by the Chebyshev theorem
in MC systems and showing the relation between the low WCETs and mode
switching probability

• Determining the number of adequate samples, for computing ACET and standard
deviation

• Representing the tighter execution time bound and more realistic overrunning
probability based on the applications’ distribution time feature

• Formulating and solving an optimization problem for improving the resource
utilization and reducing the mode switching probability using GA

• Evaluating our proposed scheme for various state-of-the-art MC systems to
investigate their timing behavior with real benchmarks on a real board, ODROID
XU4

3.1.1 Motivational Example

In order to motivate what we have stated, we present an example, in which we
executed 20,000 instances of five real-world applications, and their ACETs and
WCETs in terms of CPU clock cycle are presented in Table 3.1. .WCET HI of each

3.1 BOT-MICS: A Design-Time WCET Adjustment Approach 39

application is determined by OTAWA [5]. For each application, Table 3.1 also shows
how many instances violate their .WCET LO when it is set to ACET, or fraction
(. 14 ,.

1
8 ,.

1
16 ,.

1
32 ,.

1
64) of the .WCET HI [6–8]. The important point that the table shows is

by increasing the size of inputs to an application, the ACET and .WCET HI growth
are not the same. For instance, the growth of .WCET HI and ACET for ‹qsort›, a
known algorithm for sorting arrays, is O(. k2) and O(.k log k), respectively, where k is
the size of the input array. Therefore, the .WCET HI of ‹qsort› application for three
different array sizes with 10, 100, and 10,000 elements are 8.1, 22.7, and 59.0 times
higher than the ACET of them, respectively. This table shows that .WCET HI is not
an appropriate parameter to set .WCET LO . For example, by setting .WCET LO to

.
WCET HI

16 , the mode switching probability for ‹edge›, and ‹qsort-10› is more than
99%, while for ‹smooth›, ‹epic›, ‹qsort-100›, and ‹qsort-10000›, it is less than 2%.
On the other hand, when the .WCET LO is equal to ACET, the mode switching
probability is between 43 and 55% for all applications. So, based on the results in
Table 3.1, we can conclude that the mode switching probability is more consistent
when the .WCET LO is estimated based on ACET, rather than .WCET HI . However,
simply setting .WCET LO equal to ACET leads to many system mode changes
(almost half of the instances).

To this end, we introduce a scheme that provides a general formula to choose
a suitable .WCET LO based on ACET to improve the utilization of the system.
This approach makes a reasonable trade-off between the mode switching probability
and the time that a core becomes idle because of the gap between its AET and the
.WCET LO .

3.1.2 BOT-MICS in Detail

3.1.2.1 Determining Low WCET and Overrunning Probability

Determining the appropriate .WCET LO for HC tasks is a major design challenge
for MC systems. The proposed scheme designs the MC systems and analyzes the
MC tasks of the application in the offline phase. Based on the analysis results, the
scheme chooses a suitable .WCET LO for each HC task based on their ACET, which
improves the number of scheduled LC tasks due to the big gap between the ACET
and WCET. To determine .WCET LO , we introduce the following theorem based
on the Chebyshev theorem. Note that, the Chebyshev theorem is a technique for
bounding a tail distribution, which is used for estimating the failure probability and
also establishing high probability bounds. In fact, it determines where most of the
data samples fall within a distribution. Note that this theorem disregards how the
data are distributed. By knowing only the mean (ACET in this book) and standard
deviation of data samples, this theorem claims that a certain fraction of these data
is less than a certain distance from the mean [4]. In the following, we discuss how
this claim helps and how this theorem is employed to estimate .WCET LO in MC
systems.

40 3 Bounding Time in Mixed-Criticality Systems

Ta
bl
e
3.
1

C
om

pa
ri
so
n
be
tw

ee
n
A
C
E
T
 a
nd

 W
C
E
T
 o
f
di
ff
er
en
t a
pp

lic
at
io
ns

%
 o
f
sa
m
pl
es
 th

at
 o
ve
rr
un

s
if
 th

e
W

C
E

T
 LO

 i
s
se
t t
o

A
pp

A
C
E
T

(c
yc
le
)

W
C

E
T

 H
I
 (
cy
cl
e)

St
an
da
rd
 d
ev
ia
tio

n
(c
yc
le
)

A
C

E
T

W
C

E
T

 H
I

4
W

C
E

T
 H

I

8
W

C
E

T
 H

I

16

W
C

E
T

 H
I

32

W
C

E
T

 H
I

64

qs
or
t-
10

2.
3

×
10

2
1.
9

×
10

3
3.
9

×
10

1
50
.5
2

0.
00

45
.5
2

99
.9
8

10
0.
00

10
0.
00

qs
or
t-
10
0

1.
8

×
10

4
4.
1

×
10

5
1.
2

×
10

3
50
.2
2

0.
00

0.
02

0.
02

99
.9
8

99
.9
8

qs
or
t-
10
00
0

1.
8

×
10

8
1.
0

×
10

10
1.
1

×
10

6
43
.8
6

0.
00

0.
00

0.
02

0.
02

99
.9
8

C
or
ne
r

5.
6

×
10

5
9.
4

×
10

6
6.
2

×
10

4
53
.2
7

0.
00

0.
00

47
.7
1

10
0.
00

10
0.
00

E
dg
e

9.
8

×
10

5
1.
1

×
10

7
1.
1

×
10

5
54
.8
8

0.
00

0.
00

99
.8
4

10
0.
00

10
0.
00

Sm
oo
th

1.
9

×
10

7
4.
9

×
10

8
5.
1

×
10

6
54
.3
1

0.
00

0.
00

1.
41

78
.8
5

97
.2
5

E
pi
c

1.
1

×
10

7
7.
0

×
10

8
1.
9

×
10

6
52
.8
5

0.
00

0.
00

0.
00

0.
00

52
.2
0

3.1 BOT-MICS: A Design-Time WCET Adjustment Approach 41

Theorem 1 Given a task . τi , for any positive integer n, the rate at which the
execution time exceeds the value (.ACETi +n×σi) for task . τi is bounded with .

1
1+n2

.
Hence, by considering the Chebyshev theorem (presented below in detail), n

can be any positive integer value. However, in our proposed method, it plays an
important role to draw a trade-off between determining the .WCET LO values and
the probability of mode switching. We explain its role after formulating these two
parameters.

Proof We use the Chebyshev theorem to prove Theorem 1:
One-Sided Chebyshev [4] For any nonnegative random variable X, if .E[X] is the
mean and .V ar = σ 2 is its variance, then, for any positive real number .a > 0, we
have the theorem (3.1):

.Pr[X − E[X] ≥ a] ≤ σ 2

σ 2 + a2
(3.1)

In this theorem, if a is equivalent to .n × σ (.a ≡ n × σ):

.Pr[X − E[X] ≥ n × σ] ≤ 1

1 + n2
(3.2)

Now, assuming m samples of task . τi (.ji,1, ji,2, . . . , ji,m) with execution time
.Ci,1, Ci,2, . . . , Ci,m, the expected value .E[X] of task . τi is:

.E[X] = ACETi = 1

m

j=m∑

j=1

Ci,j (3.3)

Here, .ji,k represents job k of task . τi , and each job .Ji,k has the execution time
value of . Ci,k .

By using the expected value .ACETi (we present how to compute ACET for
each task . τi in the next subsection), the standard deviation of execution time, . σi , for
task . τi is calculated as follows:

.σi =

√√√√√ 1

m

j=m∑

j=1

(Ci,j − ACETi)2 (3.4)

If the execution time of a task is considered as a random variable, by using
the Chebyshev theorem, we can show that less than .

1
1+n2

of samples have higher
execution time than n standard deviation (.n × σ) of the mean execution time
(ACET=E[X]):

.Pr[X ≥ ACETi + n × σi] ≤ 1

1 + n2
(3.5)

42 3 Bounding Time in Mixed-Criticality Systems

Therefore, the rate of exceeding the execution time level (.ACETi + n × σi) for
task . τi is bounded with .

1
1+n2

. . �
This theorem provides a general upper bound on the probability of exceeding

any arbitrary execution time level for any task, independent of its distribution.
To determine .WCET LO , the Chebyshev theorem can be applied, which requires
mean (ACET , that we discuss later how to compute it in the next subsection) and
standard deviation of the execution time (. σ) of each task:

.CLO
i = WCET LO

i = ACETi + ni × σi (3.6)

Parameter n should be set very carefully because a large value of n reduces the
number of scheduled tasks in LO mode, and a small n increases the probability of
mode switching .P MS

i = 1
1+n2

. In Sect. 3.1.3, we evaluate the impact of different

values of n in computing the .WCET LO and the probability of system mode
switching (.P MS

sys).
In addition, since the value of .WCET LO is based on the ACET, we need to

calculate the average execution time for each task. In general, it is hard to achieve
the real mean (. μ) with all possible samples of tasks [9], so we discuss a method to
estimate the empirical mean (. μ̂) with the minimum number of samples.

3.1.2.2 ACET Estimation and Its Minimum Required Samples

In order to calculate the .WCET LO
i for each task . τi , we explain how to estimate the

.ACETi . Therefore, we need to determine how many samples (m) are required for
ACET estimation. We present the estimation by the probability .1 − δ and . ε error as
follows.

Theorem 2 For any task . τi , consider m as the number of samples; if . m ≥
ln(2

δ
)
(WCET HI

i)2

2(ε×μ)2
, there is an .(ε, δ)-approximation for computing ACET of task . τi .

Proof Considering m samples of task . τi , where .Ci,1, Ci,2, . . . , Ci,m are their
execution times. Then, the empirical mean .(μ̂) for task . τi is computed as Eq. (3.7) :

.μ̂ = 1

m

j=m∑

j=1

Ci,j (3.7)

To prove Theorem 2, we use the Hoeffding bound theorem [10] to approximate
the real mean . (μ). Note that the Hoeffding bound theorem provides an upper bound
on the probability that the sum of random variables with a bounded range deviates
from its expected value by more than a certain value [10, 11]. The execution time
of a sample is an independent random variable because the execution time of one
sample does not affect other samples’ execution time.

3.1 BOT-MICS: A Design-Time WCET Adjustment Approach 43

Hoeffding Bound Let .Ci,1, Ci,2, . . . , Ci,m be independent random variables which
are bounded by an interval .[a, b], and then:

.Pr[|μ̂ − E[μ̂]| ≥ ε] ≤ 2e

(
− 2mε2

(b−a)2

)

(3.8)

The Hoeffding theorem bounds .Pr[|μ̂ − μ| ≥ ε] by using the fact that . E[μ̂] =∑j=m

j=1 E[Ci,j] = μ. Thus, it can estimate the real mean . μ with . ε error. Based on
the Hoeffding theorem, the execution time of each sample must be bounded by an
interval .[a, b]. The upper bound execution time of the task’s samples is the high
WCET of that task (.WCET HI), so the execution time of each instance is bounded
by .[0,WCET HI

i] interval. Therefore, .b − a ≤ WCET HI
i . If we consider . ε =

ε∗ × μ, Eq. (3.8) is written as:

.Pr[|μ̂ − μ| ≥ ε∗ × μ] ≤ 2e

(
− 2m(ε∗×μ)2

(WCET HI
i

)2

)

(3.9)

In order to estimate the real mean with the minimum number of samples, we use
a definition of .(ε, δ)-Approximation [10].
.(ε, δ)-Approximation An algorithm gives an .(ε, δ)-approximation for the input
value V if the output X of this algorithm satisfies the following inequality. In fact,
output X approximates input V with probability .1 − δ and . ε error:

.Pr[[X − V] ≤ εV] ≥ 1 − δ ⇔ Pr[[X − V] ≥ εV] ≤ δ (3.10)

By using this definition and Eq. (3.9) , we present the following equation to
achieve a .(1 − δ) confidence for the correctness of such an approximation:

.2e

(
− 2m(ε×μ)2

(WCET HI
i

)2

)

≤ δ �⇒ ln

(
2

δ

)
(WCET HI

i)2

2(ε × μ)2
≤ m (3.11)

This equation shows that with .m ≥ ln(2
δ
)
(WCET HI

i)2

2(ε×μ)2
instances, . μ̂ is an .(ε, δ)-

approximation for . μ:

.Pr[|μ̂ − μ| ≥ ε × μ] ≤ δ (3.12)

. �

3.1.2.3 Determining a Tight Execution Time Bound

Equation (3.5) presents a general theorem that is applied to any time distribution
of tasks. Therefore, it might not provide a tight upper bound for the probability
of mode switching. For example, if we consider .n = 0 (.WCET LO

i = ACETi),

44 3 Bounding Time in Mixed-Criticality Systems

Table 3.2 The effect of varying n on the overrunning of different tasks from MiBench suite [12],
under the proposed Chebyshev-based scheme and experiments

Chebyshev Bitcount qsort Matrix-mult Smooth Corner

.n = 0 100.00% 43.31% 33.92% 42.33% 33.47% 7.96%

.n = 1 50.00% 8.87% 6.30% 16.26% 19.95% 4.95%

.n = 2 20.00% 3.68% 4.37% 4.18% 4.92% 3.98%

.n = 3 10.00% 0.92% 2.33% 0.91% 1.43% 3.08%

.n = 4 5.88% 0.71% 1.12% 0.22% 0.39% 2.22%

the rate of exceeding .ACETi for task . τi is bounded with 100% by the Chebyshev
theorem. It means the execution time of all samples of task . τi might be more than
.ACETi , which is not true for most distributions. Although it is not wrong, it does not
provide a piece of useful information. Table 3.2 shows the percentage of overruns
for five different applications, from MiBench suite [12] through experiments and our
analysis, Chebyshev-based scheme. As shown, the proposed scheme can provide
an upper bound which is valid for any execution time distribution. However, this
scheme gives a high and loose upper bound for many applications. As an example,
the percentage of overruns in experiments for ‹corner› application is 7.96% when
.n = 0, while according to our scheme, it is estimated to be 100%.

Since in our case, the tasks’ execution time distribution for some applications
is known, we propose another scheme, an alternative one, to determine the tighter
execution time bounds. As we discuss further, the determined WCETs would be
more realistic, which cause the method to be more scalable. Note that this method
might help for better scale to multiple criticality levels and thus, better management
of mode switches. To preset the tighter execution bounds, we execute several
benchmarks on a real board (we discuss the details in Sect. 3.1.3) and investigate
their time distributions. Figure 3.1a depicts the execution time distribution of four
applications, from MiBench suite [12]. The distribution curve of these applications
is very similar to existing known probability distributions. Therefore, we fitted these
applications with well-known distributions. We used features of those distributions
like Probability Density Function (PDF) and CDF to estimate a tighter upper bound
for mode switching. A distribution’s CDF shows the probability that the execution
time of an instance is less than or equal to a certain value, which we can consider as
the low WCET. Figure 3.1b shows the fitted PDF and Fig. 3.1c shows the empirical
and fitted CDF for four benchmarks. Since the probability of each task overrunning
is important in our proposed method, we use the CDF formula (based on the best-
fitted distribution) as .(1 − P MS

i) in our proposed method to find a tighter bound.
To identify the best-fitted distribution for the applications’ execution time data,

we have considered 16 different data distributions such as Normal, Burr, Gamma, t,
Weibull, Lognormal, etc. We evaluate the distributions’ efficacy using Kolmogorov-
Smirnov’s (K-S) fitness metric [13], which is a commonly used technique.We select
the top three distributions to implement the corresponding fitness functions for each
application. As an example, Fig. 3.2a shows the density of the top three distributions
for the ‹insertion-sort› application, which are Burr, t, and Weibull distributions.

3.1 BOT-MICS: A Design-Time WCET Adjustment Approach 45

0 3 6 9 12 15 18

Time (ms) 10
4

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

D
en

si
ty

10

-4

bitcount
dijkstra
insertsort
matrixmult

3 6 9 12 15 18

Time (ms) 10
4

2

4

6

8

10

12

14

16

D
en

si
ty

10
-5

t-bitcount
Burr-dijkstra
Burr-insertsort
Gamma-matrixmult

2 4 6 8 10 12 14 16 18

Time (ms) 10
4

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

C
D

F

bitcount
 t-bitcount
dijkstra
 Burr-dijkstra
insertsort
 Burr-insertsort
matrixmult
 Gamma-MatrixMult

Fig. 3.1 Empirical execution time distributions and fitted distributions. (a) Empirical time distri-
bution. (b) Fitted distribution. (c) Empirical and fitted CDF

Besides, to see how well a distribution fits data, we show how empirical data is
distributed compared with a fitted distribution. Therefore, by using probability-
probability (p-p) plot [14], we show two CDFs against each other. Figure 3.2b,
c, and d show it for the empirical and fitted data for the top three distributions.
As shown, the Burr distribution (Fig. 3.2b) is more matched between the observed
and theoretical cumulative distributions compared to t distributions (Fig. 3.2c) and
Weibull (Fig. 3.2d) distribution.

In the end, to compute a tighter probability of task overrunning (.ProbM
i)

based on n, ACET , and . σ , instead of using Eq. (3.5), the CDF of the determined
distribution (.Fi(t)) is used as .ProbMS

i = 1 − Fi(ACETi + n × σi).

46 3 Bounding Time in Mixed-Criticality Systems

6 8 10 12 14

Time (ms) 10
4

0

0.5

1

1.5

2

D
en

si
ty

10
-4

empirical data
Burr
t
Weibull

(a)

(b) (c) (d)

Fig. 3.2 PDF and CDF of top three distributions for insertsort benchmark. (a) Top three
distributions’ PDF for insertsort. (b) CDF of Bur distribution. (c) CDF of t distribution. (d) CDF
of Weibull distribution

3.1.2.4 Task Schedulability Analysis

In this subsection, we analyze the task schedulability and present the conditions
based on the new formula of .WCET LO , determined in previous subsections. To
schedule MC tasks in the uni-processor, we apply the existing MC scheduling
technique, EDF-VD algorithm, which has been used in many studies since the last
decade [1, 6, 7]. Here, when the system switches to the HI mode, all LC tasks are
dropped. If . Uk

l denotes total utilization of tasks with the same criticality level l in
the mode k, then:

.ULO
HC =

∑

ζi=HC

ACETi + ni × σi

Ti

and UHI
HC =

∑

ζi=HC

WCET HI
i

Ti

(3.13)

3.1 BOT-MICS: A Design-Time WCET Adjustment Approach 47

A suitable .WCET LO for each HC task . τi can be achieved by choosing the
optimum . ni (used in Eq. (3.6)). The optimum . ni must be determined to minimize
the mode switching probability and maximize resource utilization. To solve this,
we formulate the optimization problem to find the optimum . ni for each task . τi

and determine its .WCET LO
i . Furthermore, Eq. (3.14) must be satisfied to guarantee

schedulability by EDF-VD at run-time [1]. Equation (3.14) presents the necessary
and sufficient conditions to guarantee the task schedulability in both LO mode and
HI mode and meeting deadlines of running tasks even if the system switches to the
HI mode [1]:

. ULO
HC + ULO

LC ≤ 1 and UHI
HC + ULO

HC × ULO
LC

1 − ULO
LC

≤ 1 (3.14)

3.1.2.5 Optimization Problem Formulation

In order to formulate the optimization problem based on the two objectives
(mode switching probability and system utilization), we first identify the variables
and constraints for better understanding. For each task . τi , .ACETi , .WCET HI

i ,
. Ti (period), and . σi (standard variation) are constant. .WCET LO

i is variable, which is
computed based on the variable . ni (introduced in the beginning of the subsection).
These constant parameters and variables are used to compute the objectives, mode
switching probability, and system utilization. In order to optimize these objectives
and find the optimum value for . ni , we first present the constraints and then formulate
the objectives as follows.

Execution Time Constraint .WCET LO
i of each HC task . τi must not be more than

.WCET HI
i :

.ACETi + ni × σi ≤ WCET HI
i (3.15)

There are two main objectives to optimize the system:

Objective 1 (Mode Switching Probability) If the LC tasks are dropped frequently
due to the HC tasks’ overrunning, it may negatively impact the performance or
functionality of MC systems. Therefore, one of the most significant objectives is
the minimization of mode switching probability. Let .P MS

Sys denote the probability of

system mode switching. If .P noMS
Sys is the probability that no HC task overruns and

consequently, no mode switch happens, then .P MS
Sys = 1 − P noMS

Sys . Since tasks are

independent, .P MS
Sys is computed as shown in Eq. (3.16), where .P MS

i is the probability

of task overrunning for task . τi . According to our discussion, .P MS
i = .

1
1+n2i

. The higher

the . ni , the less the mode switching probability:

48 3 Bounding Time in Mixed-Criticality Systems

.P MS
Sys = 1 −

∏

ζi∈HC

(
1 − P MS

i

) = 1 −
∏

ζi∈HC

(
1 − 1

1 + n2i

)
(3.16)

Objective 2 (Resource Utilization) The second objective is to improve the
resource utilization by a significant gain in terms of the utilization that can
be allocated to LC tasks in the LO mode (.ULO

LC). Although maximizing . ULO
LC

is desired, it is upper-bounded by the schedulability constraints, which can be
derived from Eq. (3.14). Equation (3.17) presents the condition to guarantee the
task schedulability in the LO mode under the EDF-VD algorithm. In addition,
as mentioned in the previous subsection, Eq. (3.18) shows the condition for
guaranteeing the task schedulability in the HI mode and mode switching [15, 16].
In this equation, the maximum amount of .ULO

LC depends on the values of . ni for each
HC task. The lower the . ni , the higher the .ULO

LC . Therefore, the second objective can
be bounded as follows:

.ULO
LC ≤ 1 − ULO

HC = 1 −
∑

ζi=HC

ACETi + ni × σi

Ti

(3.17)

.ULO
LC ≤ 1 − UHI

HC

1 − UHI
HC + ULO

HC

= 1 − UHI
HC

1 − UHI
HC + ∑

ζi=HC
ACETi+ni×σi

Ti

(3.18)

Hence, if .P MS
Sys =1, it means the system is always in the HI mode, and all LC tasks

are always dropped. If .P MS
Sys =0, it implies all LC tasks are always executed with no

dropping. Therefore, by having these two objectives, we maximize the following
equation:

.maximize
{(
1 − P MS

Sys

) × ULO
LC

}
(3.19)

Problem Solving: Derivation-Based Optimization In order to optimize the two
objectives of mode switching probability and utilization, the optimum value of . ni

must be obtained for each task . τi . If the uniform n is considered for all tasks to
compute the .WCET LO

i , we can obtain the optimum n by finding the derivation
of both objectives. Using the method of the second derivative helps to find the
largest or smallest value of a function, where the derivative equals zero. Further
details, on how the derivative works to find the optimum value, are provided in
the result section (Sect. 3.1.3.2) by an example. However, obtaining the uniform
optimum n for all tasks is not fair and tasks have different time distributions.
Table 3.3 shows the minimum value of n for some benchmarks of MiBench suite,
where .WCET LO

i = ACETi + n × σ ≥ WCET HI
i . Due to having different time

distributions of tasks, choosing the uniform n causes the system’s objectives to not
optimize well and precisely. As a result, optimization techniques that can handle

3.1 BOT-MICS: A Design-Time WCET Adjustment Approach 49

Table 3.3 The minimum value of n in .WCET LO
i ≥ WCET HI

i for different tasks

FFT qsort dijkstra Corner Edge Smooth Epic Bitcount

n 60 17 12 11 27 8 7 19

nonuniform values of . ni across different tasks and can scale effectively with the
increasing number of tasks in the system are necessary.

Problem Solving: GA-Based Optimization Global optimization methods based on
randomized algorithms have been used extensively in system-level design space
exploration for QoS improvement in embedded systems [17]. In our current work,
we use GA for solving the maximization problem shown in Eq. (3.19) . GA involves
using randomized search methods based on the principles of natural evolution and
genetics.

It is important to mention that Mixed Integer Linear Programming (MILP) can
be used as an alternative to GA for optimization. However, the problem formulation
of MILP is much more complex compared to that of GA, which allows a simpler
implementation of the fitness function. Although GA has a lack of optimality
guarantees, MILP also does not scale very well with the number of integer variables.
So, an increased number of integer (and real) variables resulting from a large
number of tasks—. ni and support variables—in an MILP formulation can increase
the complexity considerably. Most state-of-the-art tools for solving MILP problems
also provide a time-bound best-effort solution for complex problems. Further, for the
distribution-aware optimization for real-world tasks, we use a lookup table to search
for the closest WCET and probability of mode switching values. Implementing
such lookup-based optimizations from real-world observations with standard MILP
formulation can be considerably more complex than using GA. It must be noted that
the focus of the work is on showing the efficacy of the proposed methodology in
providing improved trade-offs between mode switching probability and utilization.
While we would ideally prefer optimization methods with guaranteed optimality,
the choice of GA was based on the ease of implementation and the support
for integrating varying estimation methods–both mathematical and lookup-based.
However, MILP formulation for the current research problem can be a suitable topic
for further exploration. The encoding approach and GA methods used in our current
work include the following:

• Individual: An ordered sequence of integer values forms the individual in the
population. Each integer in the sequence corresponds to the value of . ni for a task
. τi .

• Population: During the optimization, we generate two types of individuals for
initializing the population of the first generation of candidate solutions. Firstly,
we generate individuals comprising of randomly sampled . ni values from the
range .[1, 50] for each task . τi in the benchmark. Secondly, we generate uniform-
valued individuals from the same range to ensure that the optimization included
uniform values of . ni for each task.

50 3 Bounding Time in Mixed-Criticality Systems

• Crossover and Mutation: We used two-point crossover for exchanging . ni values
among two candidate solutions. During crossover, the configurations of the two
randomly selected possible solutions are interchanged. This process forms one
of the algorithms that generates new possible solutions (individuals) for the next
generation of solutions. In our current problem, this entails interchanging the
. ni values of two candidate solutions, selected from the current generation, for a
subset of the tasks. Similarly, we used single-point mutation to set the value of
. ni for a randomly selected task in the candidate solution to a randomly selected
value in the range .[1, 50].

• Selection: We use tournament selection for choosing the candidate solutions for
the population of the next generation. It involves randomly choosing a fixed
number of individuals from the current population and selecting the one with
the maximum value of .(1 − P MS

Sys) × ULO
LC for the next generation.

• Fitness and Feasibility: Eqs. (3.16) –(3.18) were used to evaluate the fitness (. (1−
P MS

Sys) × ULO
LC) of each candidate solution. Similarly, Eqs. (3.14) and (3.15) were

used to determine the feasibility of each candidate solution.

3.1.3 Evaluation

Now, we present the experiments to evaluate the effectiveness of our proposed
scheme in terms of utilization, schedulability, and mode switching probability.

3.1.3.1 Evaluation with Real-Life Benchmarks at Run-Time

Evaluation Setup To evaluate our scheme, we conducted some experiments on the
ODROID XU4 board powered by ARM, which has the big.LITTLE architecture,
with four Cortex A15 (big) and four Cortex A7 (LITTLE) cores. We use the LITTLE
cores with the maximum frequency of 1.4GHz, for doing the experiments.

To evaluate our scheme by real benchmarks, we use various benchmarks from
MiBench benchmark suite [12] such as automotive, network, and telecomm. and
from AXBench [18] such as matrix-multiplier. We execute each benchmark with
different inputs on the ODROID-XU4 board, to achieve their execution times.
Table 3.4 shows the high WCET, ACET, and . σ (standard deviation) of these
benchmarks.

Minimum Required Samples to Estimate ACETs Figure 3.3 shows the mini-
mum required samples of each benchmark based on Theorem 2 to estimate ACET,
by varying the parameters of (ε, δ)-Approximation. In fact, as an example in
Fig. 3.3a, with 90% confidence, the estimation error of ACET for each benchmark is
less than (ε × μ), where μ is the real mean. Besides, by decreasing the confidence,
the minimum required samples for each benchmark is decreased. It means with more

3.1 BOT-MICS: A Design-Time WCET Adjustment Approach 51

Table 3.4 Execution time distribution of various benchmarks

Exe. Insertsort- Matrix- qsort- Corner Edge Smooth Epic Bitcount dijkstra FFT

Par.
(ms)

10000 multiply 10000

WC
ET HI

753.23 387.67 759.32 51.63 131.47 301.09 230.81 1142.17 1039.98 686.52

AC
ET

51.33 13.05 39.65 0.55 0.94 9.317 2.69 64.73 81.95 6.15

σ 6.38 5.6 5.46 0.71 0.87 5.63 1.98 6.94 8.65 2.12

Fig. 3.3 Required number of samples for different benchmarks by varying the error (ε) and
confidence (1 − δ). (a) 1 − δ = 0.9. (b) 1 − δ = 0.8

samples, we can say with more confidence that the difference between the estimated
average and the real average is less than ε × ACET real .

Investigating MC Systems’ Timing Behavior In order to evaluate the proposed
approach, we run these benchmarks on a single core. We consider ‹insert-sort›,
‹matrix-mult›, ‹qsort›, ‹bitcount›, ‹dijkstra›, and ‹FFT› as HC tasks and ‹corner›,

52 3 Bounding Time in Mixed-Criticality Systems

Table 3.5 System performance in both design-time and run-time phases, for different scenarios

Dropped LC jobs (%) max(ULO
LC) P MS

Sys max(ULO
LC) × (1 − P MS

Sys)

[1] λ = 1 2 0 44.7% 0.24% 0.446

[1] λ = 1 4 0 61.78% 1.21% 0.610

[1] λ = 1 8 0.33% 76.37% 10.23% 0.686

[1] λ = 1
16 39.29% 86.61% 92.02% 0.069

Chebyshev 0.06% 77.01% 7.1% 0.715

Dist. analyt. 0 84.31% 2.25% 0.824

‹edge›, ‹smooth›, and ‹epic› as LC tasks. We compute the low WCET for each HC
task based on the three policies—our scheme under the Chebyshev theorem, our
scheme under distribution analysis, and the fraction analysis. In order to specify
what the fraction analysis is, most of the state-of-the-art approaches have defined

a fraction of WCET HI as WCET LO . For example, if we define λ = WCET LO

WCET HI ,

researchers in [2] have considered λ ∈ [1 2.5 ,
1
1.5] in their experiments. In [1], two

different ranges for λ have been considered, λ ∈ [1 4 , 1] and λ ∈ [1 8 , 1]. Researchers
in [6] have considered the amount of λ = { 1

16 ,
1
8 ,

1
4 ,

1
2 , 1}. Since all papers have

the same policy to determine WCET LO , we choose [1] as a representative of these
approaches.

For these real tasks, including both LC and HC tasks, the system with λ = 1
has the utilization of more than one in the worst-case scenario, and then it is not
schedulable. Therefore, we only consider the amount of λ as { 1

16 ,
1
8 ,

1
4 ,

1
2 }. Here,

we investigate the system at run-time for 1000 hyper-period of tasks and see how
often these tasks exceed their WCET LO under various policies and the system has
to switch to the HI mode.

By reducing the λ, the low WCET (WCET LO
i) for HC tasks decreases, and the

system executes more LC tasks. But on the other hand, it causes frequent system
switches and more LC tasks dropping during run-time, leading to lower QoS. As an
example, Table 3.5 shows the maximum total utilization bound that can be assigned
to LC tasks at design-time for each scenario and also the percentage of dropped
LC tasks due to the system mode switching at run-time. We assume that the system
needs to run different instances of each LC tasks (with different input) as much as
possible to improve the QoS. As shown in Table 3.5, the Chebyshev-based scheme
can schedule more LC tasks in the system compared to [1] approach. Although the
maximum assigned utilization to LC tasks is almost equal to the scenario of [1]
with λ = 1 8 , the mode switching probability and the number LC dropped tasks are
lower in the Chebyshev-based scheme. This is because a fraction of high WCET
does not provide any information about how many samples might exceed it. So,
setting the low WCET of each task equal to λ = 1

8 of the high WCET of that
task is too low for some tasks and too high for others. The optimization goal in the

3.1 BOT-MICS: A Design-Time WCET Adjustment Approach 53

last column of the table shows the fact that the Chebyshev-based scheme performs
better than the approach of [1] (i.e., the goal metric has a larger value). Besides, the
distribution analytics-based scheme improves total utilization by 7.3% compared
to the Chebyshev-based scheme. It also reduces the mode switching probability by
4.85%. This is because the Chebyshev is a general formula that is valid for any
distribution, but it is not very optimistic. The value of the optimization goal in
the last column of the table also shows this fact. Let us consider the distribution
analytics-based scheme with the method of [1] with λ = 1

16 which both have
almost the same total utilization. The results show that in the distribution analytics-
based, the probability of mode switching and the percentage of dropped LC tasks
are 89.75% and 39.29% lower, respectively, which is desirable.

3.1.3.2 Evaluation with Synthetic Task Sets

Task Set Generation and Evaluation Setup In order to further evaluate our
scheme, we generated synthetic dual-criticality task sets similar to the state-of-the-
art studies [1, 19–21], for various system utilization bounds (.Ubound) in line with
the previous works [1, 8, 19–21], where (.Ubound = max(ULO

LC + ULO
HC,UHI

HC)).
The algorithm adds tasks to the task set randomly to increase the .Ubound until
it reaches a given threshold. We evaluate different approaches for .Ubound in the
range of [0.05, 1] with steps of 0.05, and for each .Ubound , 1000 task sets are
generated. Here, we consider balanced tasks in terms of criticality levels, i.e., the
probability of a generated task being HC is equal to being LC. Besides, inspired by
real execution times, presented in Table 3.4, we provide the .WCET HI , ACET and
. σ in the range of [52,1142], [0.55,81.95], and [0.71,8.65]ms, respectively, where
.WCET HI > ACET . As a result, the periods of tasks are computed based on the

task utilization and .WCET HI (.uHI
i = WCET HI

i

Pi
).

The recent advanced features in CAD tools, like MATLAB, Excel, and new
libraries in Python, provide several practical ways to find a distribution that fits
the best to the data samples. Besides, the probabilistic analysis for distribution
fitting is implemented in Python using multiple packages, including scikit-learn.
For solving the formulated problem with GA, we set the mutation probability to 0.2
and the crossover probability to 0.8. We also used five individuals in the tournament
selection process. The optimization methods were implemented in Python using the
DEAP [22] package. In the following, we perform extensive simulations to evaluate
the effectiveness of our proposed approach in comparison with the state-of-the-art
methods.

Effect of Varying Uniform non Maximum Assigned Utilization to LC Tasks and
Mode Switching Probability for a Task Set Example In this section, we evaluate
the effects of varying the parameter n, used to determine WCET LO for each HC
task, on system properties. In this experiment, for the sake of presentation, we con-
sidered only one n (uniform) for all HC tasks. However, in further experiments, due

54 3 Bounding Time in Mixed-Criticality Systems

Fig. 3.4 Effect of varying uniform n on maximum assigned utilization to LC tasks and mode
switching probability for an example task set. (a) Second derivation of system properties. (b) P MS

sys
and max(ULO

LC). (c) Objective function

to our explanation in Section “Problem Solving: Derivation-Based Optimization”,
we find an independent n for each task with the help of the GA. As mentioned, we
improve resource utilization by a significant utilization that can be allocated to LC
tasks in the LO mode. Figure 3.4 shows the results for an example task set with
UHI

HC = 0.84. First, we show the results, solved by derivation-based optimization in
Fig. 3.4a, and then by GA-based optimization in Fig. 3.4b and c.

Figure 3.4a shows the second derivative of utilization and mode switching
probability for the task set. The figure shows that the second derivative of utilization
is almost zero all the time, while the second derivative of mode switching probability
becomes almost zero for n ≥ 18. Therefore, we can conclude that the mode
switching probability impacts more on obtaining the optimum value of n. To show
how effective the derivation-based optimization is, we solve the problem with
uniform n by GA-based optimization for this example, shown in Fig. 3.4b and c.

Equation (3.15) shows that by increasing the value of n, the WCET LO of HC
tasks and consequently HC tasks’ utilization in the LO mode are increased, which
reduces the number of scheduled LC tasks at design-time (max(ULO

LC)). On the other
hand, Eq. (3.16) shows that by increasing the value of n, the probability of mode
switching (P MS

sys) is decreased, which means fewer LC tasks are dropped at run-time.

Figure 3.4b depicts that, by increasing the value of n, both P MS
sys and max(ULO

LC) are

3.1 BOT-MICS: A Design-Time WCET Adjustment Approach 55

decreased, while to achieve the best utilization, we need to maximize max(ULO
LC)

and minimize P MS
sys . Therefore, if the n is set to 5, then P MS

sys is equal to 0.54 and

max(ULO
LC) is equal to 0.91. Meanwhile, for n = 10, P MS

sys is equal to 0.18 and

max(ULO
LC) is equal to 0.88. Indeed, P

MS
sys is decreased at a great rate by increasing

n, compared to max(ULO
LC) decrements. Now, consider n = 20 where P MS

sys = 0.05
and max(ULO

LC) = 0.82. It can be seen that the rate of P MS
sys reduction is decreased

by increasing n, while max(ULO
LC) reduction rate is very low. Therefore, max(ULO

LC)
becomes more important than P MS

sys in this case. We used Eq. (3.19) to find a proper

n which makes a trade-off between P MS
sys and max(ULO

LC) and improves the system
utilization. Figure 3.4c shows that the optimum n is 18 for our case study task set
where max(ULO

LC) = 83% and P MS
sys = 0.06.

Effect of Varying Uniform n on Maximum Assigned Utilization to LC Tasks
and Mode Switching Probability for More Task Sets Now, we evaluate the
effects of parameter n and different utilization of HC tasks on system properties in
Fig. 3.5, by running 1000 task sets for each utilization point. According to Fig. 3.5a,
P MS

sys is increased when utilization increases. For example, for a constant n = 10,
for UHI

HC equal to 0.4 and 0.8, P
MS
sys is 15.47% and 28.43%, respectively. The reason

is when utilization of HC tasks is high, more HC tasks are scheduled in the system.
Since each HC task has the probability of overrunning, by increasing the number
of HC tasks, P MS

sys is increased. In addition, we discussed that P MS
sys is decreased

by increasing n. Figure 3.5b also shows that by increasing UHI
HC , there is less

opportunity to schedule LC tasks. As a result, the system schedules fewer LC tasks
which degrades max(ULO

LC). As an example, for a constant n = 10, if UHI
HC = 0.4,

then max(ULO
LC) = 87.59%, and if UHI

HC = 0.8, then max(ULO
LC) = 53.46%.

Besides, as mentioned, increasing n causes a decrease in max(ULO
LC). As a result, by

increasing n, P MS
sys is reduced (which is desirable), and the LC task utilization and

consequently schedulability are also reduced (which is not desirable). Now, if we
optimize both P MS

sys and assigned utilization to LC tasks, we can find the optimum

value of n for HC tasks. Figure 3.5c shows the product of P MS
sys and max(ULO

LC)
(Eq. (3.19)), where the optimum n is decreased in general with an increase in UHI

HC ,
to run more tasks in the system.

Comparison with the Other Policies Since applications have different time
distributions, choosing the uniform n prevents the system from optimizing its
objectives precisely. Therefore, solving the problem with optimization algorithms
like GA is the best method to optimize system properties. As a result, in this
subsection, we compare the mode switching probability and resource utilization
under our proposed scheme with nonuniform n using the GA, and the other policies,
used to determine WCET LO and then ULO

HC .

Since ACET and σ for each task are known, the system mode switching probabil-
ity for other policies can be obtained using Eq. (3.6). Figure 3.6 shows the results of
comparing different policies and our scheme with the optimum ni for each task τi of

56 3 Bounding Time in Mixed-Criticality Systems

Fig. 3.5 Effect of n and HC tasks’ utilization on maximum assigned utilization to LC tasks and
mode switching probability. (a) P MS

sys by varying n and UHI
HC . (b) max(ULO

LC) by varying n and
UHI

HC . (c) Optimization goal

task sets using the GA, for different utilization. In Baruah’s approach [1] (Bar+12a),
considering a large lower-bound value for λ like 1, 1 2 reduces the probability of
mode switching, but it underutilizes the system during run-time. For example if
UHI

HC = 0.75, for λ = 1, P MS
sys = 9.66% and max(ULO

LC) = 23.28%, while for our

proposed scheme, P MS
sys = 16.46% and max(ULO

LC) = 52.39%. On the other hand,

using a smaller lower-bound value for λ like 1 8 increases the maximum utilization
of the LC tasks with high mode switching probability. For instance, if UHI

HC = 0.75,
then P MS

sys = 90.75% and max(ULO
LC) = 70.75%. Note that, to prevent the figures

from being unclear, we only show the result for the λ ∈ [1 8 , 1]. The results for
λ ∈ [1

16 , 1] and λ ∈ [1
32 , 1] have more maximum utilization increment of the LC

tasks with higher mode switching probability in comparison with λ ∈ [1 8 , 1], which
is undesirable. Our approach works well in both system properties by determining
the best WCET LO values for HC tasks base on the ACET and then the optimum
ULO

HC . Figure 3.6c shows this fact by optimizing both system properties, where
the proposed scheme performs better than other policies. As a result, our scheme

3.1 BOT-MICS: A Design-Time WCET Adjustment Approach 57

Fig. 3.6 The effectiveness of our proposed scheme in comparison with other policies, proposed in
other research works. (a) max(ULO

LC) by varying U
HI
HC . (b) P

MS
sys by varying U

HI
HC . (c) Optimization

goal by varying UHI
HC

improves the utilization by up to 72.27% compared to the existing approaches, while
P MS

sys is bounded by 24.28% in the worst-case scenario.

Evaluating Scheduling Approaches Under the Proposed Scheme Now, we
evaluate and compare the results in terms of schedulable task sets (acceptance
ratio) to the state-of-the-art approaches, proposed in [1, 7], with and without our
scheme. In this experiment, we assume that the probability that a task is an HC or
LC is equal. In both [1, 7], the EDF-VD algorithm has been used to schedule the
tasks. In [7], the algorithm executes all LC tasks in the HI mode by reducing their
WCET to 50%, and also in [1], the algorithm drops all LC tasks when the system
switches to the HI mode. It is noteworthy to mention that our scheme for selecting
the suitable WCET LO for HC tasks can be applied to any scheduling algorithm
with any policy of task execution and optimize the resource utilization and mode
switching probability.

Figure 3.7 shows the acceptance ratio for two state-of-the-art scheduling
approaches [1, 7], which are improved with our scheme in all utilization bounds.
As shown in this figure, when Ubound ≤ 0.7, all task sets are schedulable with
Liu’s approach [7] and our scheme. When the system utilization is increased
(0.7 < Ubound ≤ 0.95), our proposed scheme performs better than Liu’s

58 3 Bounding Time in Mixed-Criticality Systems

Fig. 3.7 Different scheduling approaches ([1] (Bar+12a) and [7] (Liu+16)) with our scheme

approach [7] in terms of acceptance ratio. And so that no task set is schedulable
for Ubound ≥ 0.95. Besides, the same trend is found for Baruah’s approach [1].
The reason for having a better acceptance ratio in our scheme is determining the
appropriate WCET LO for HC tasks and executing more tasks in the system.

Although this design-time approach (BOT-MICS) can improve the QoS and
reduce the mode switching probability in comparison with state-of-the-art works,
the constant WCETs are set for tasks to be used in the LO mode, which remain
unchanged during run-time. Such static techniques cannot employ the benefits of
dynamic execution time changes and, therefore, may cause significant performance
loss for LC tasks or processor underutilization at run-time if the low WCETs are not
close to AETs. Therefore, we propose ADAPTIVE in the next section, which is a
run-time approach to adapt to task execution time dynamism at run-time and adjust
low WCETs.

3.2 ADAPTIVE: A Run-Time WCET Adjustment Approach

In this work, we propose a novel learning-based run-time scheme for determining
low WCET (.WCET LO) to (1) effectively reduce the system switches to the
HI mode, (2) have high processor utilization and consequently, a high value of QoS,
(3) guarantee the system to be schedulable in each criticality level, and (4) not
be affected and varied by sudden changes of execution times. To the best of our
knowledge, there is no method so far to determine the low WCETs for MC tasks at
run-time based on the behavioral system changes while making a trade-off between
the QoS, utilization, and mode switches. The main contributions of this work are:

• Presenting a novel adaptive scheme to analyze and obtain the low WCETs of MC
tasks at run-time and manage the mode switching probability and QoS

• Proposing a learning-based mechanism, called ADAPTIVE, to improve the MC
system timing behavior at run-time

• Presenting a dynamic QoS-aware scheduling algorithm to improve the results’
quality at run-time based on the system changes while guaranteeing the minimum
service of LC tasks, even in the HI mode

3.2 ADAPTIVE: A Run-Time WCET Adjustment Approach 59

Fig. 3.8 Execution time values for two different time recording videos as input for object detection
function during run-time and their time distribution. This figure shows that both aspects of run-
time and design-time behavior should be considered in MC system design and task property
determination. (a) Input video with few objects to detect. (b) Input video with few and many
objects to detect

3.2.1 Motivational Example

In general, the actual execution time of tasks depends on their input values. Due
to the spatial or temporal correlation in the input data stream like video, the
execution times of the tasks are often temporally correlated. Figure 3.8 shows the
computational times of the object detection function running on the ODROID XU4
board powered by ARM Cortex A7. Note that the object detection function is one of
the main functions in an autonomous driving application—an MC system. For input,
videos from a road camera in the two different time slots, converted to motion jpegs,
are given to the function of detecting cars on the road. The videos were recorded
for a period of time when it experienced both light and heavy traffic. Figure 3.8
shows how the computation times of detecting objects vary during run-time. The
computation time values in this function depend on the number of objects to be

60 3 Bounding Time in Mixed-Criticality Systems

detected. As we can see, the times of multiple jpeg images are clustered due to the
temporal correlation between the subsequent inputs presented to the application.
For this example, static approaches such as the one presented in our previous
work [23, 24] and [2, 15] set the static .WCET LO , considering the execution time
of the majority of instances. This static WCET works fine for some time, but it may
lead to frequent mode switches when there are many objects to detect (e.g., heavy
traffic) or poor utilization when there are few objects to detect in this function (e.g.,
light traffic). As a result, proposing an adaptive scheme to determine the lowWCETs
dynamically may significantly improve the mode switches, QoS, and utilization.
Therefore, the system’s run-time behavior can be investigated by monitoring the
AETs and adjusting the low WCETs.

3.2.2 ADAPTIVE in Detail

The goal of our proposed scheme (ADAPTIVE) is to improve the LC tasks’ QoS
as the system utilization while reducing the number of mode switches (.MSHC) at
run-time. The values of .WCET LOs for HC tasks have a key role in improving the
system objectives. Therefore, it is a challenge to set .WCET LO for each HC task
to draw a trade-off between the objectives: utilization of the system and the number
of mode switches. To address the challenge, we monitor the run-time execution
times of HC tasks and adapt .WCET LO of HC tasks at run-time to achieve a
higher system’s QoS, while having fewer mode switches, based on the variation
in execution times due to the input and environmental changes. Figure 3.9 shows
an overview of the proposed approach (ADAPTIVE), which consists of design-time
and run-time phases. Here, the task schedulability must be guaranteed at design-
time and run-time, and the low WCET adaptation is done at run-time. We further
explain them in detail in their corresponding sections.

3.2.2.1 Design-Time Exploration

In order to analyze and schedule the HC and LC tasks in the system, first, the
WCETs, required by the tasks, must be obtained. Here, the .WCET HI (which is
used in the HI mode) of HC tasks are computed by using the OTAWA tool [5],
which provides a safe and conservative execution time bound. The WCETs of
LC tasks can also be determined by using the OTAWA. In addition, to obtain the
.WCET LO , we run the benchmarks with various data set inputs on ARM Cortex
A7, in ODROID XU4 board, and set the maximum value of these actual execution
times, as .WCET LO for each HC task. Since a periodic task model is considered
in this work, the periods are the system inputs at design-time. Since multiple tasks
are executed in the system and tasks have distinct periods (not the same period
values), the hyper-period, which is the Least Common Multiple (LCM) of all tasks’
periods, is used while analyzing the system and task schedulability. The hyper-

3.2 ADAPTIVE: A Run-Time WCET Adjustment Approach 61

Fig. 3.9 An overview of design-time and run-time phases in ADAPTIVE

period represents a time that there is no workload in a system after frequent task
releases and scheduling. These inputs and analyzed data have been used to check
the task schedulability by the Utility Checker Unit, which is shown in the design-
time phase of Fig. 3.9.

In this work, the EDF-VD scheduling algorithm [2] is applied to schedule MC
tasks. However, the proposed scheme is applicable to any scheduling algorithm. If

62 3 Bounding Time in Mixed-Criticality Systems

. Uk
l denotes total utilization of tasks with the same criticality level l (.l ∈ {LC,HC})

in the mode k (.k ∈ {LO,HI }), where .Uk
l = ∑

i∈{LC,HC}
WCET k

i

Ti
, Eq. (3.20)

must be satisfied to guarantee schedulability by EDF-VD. This equation presents
the necessary and sufficient conditions to guarantee the task schedulability in both
LO mode and HI mode and meeting the deadlines, even if the system switches to
the HI mode [2, 23]. Although the maximum value of utilization is desired, as can
be seen from Eq. (3.20), it is upper-bounded by the schedulability constraints. The
utilization (UMC) which is the maximum value of two phrases shown in Eq. (3.20)
must be less than one in EDF-VD at all time, which is checked by Utility Checker
Unit:

.ULO
HC + ULO

LC ≤ 1 & UHI
HC + UHI

LC + ULO
HC × (

ULO
LC − UHI

LC

)

1 − ULO
LC

≤ 1 (3.20)

3.2.2.2 Run-Time Adaptation

The crucial research questions that should be addressed in the run-time phase are:

1. How to vary WCET of HC tasks in the LO mode with no adverse effect on
meeting the other tasks’ deadlines

2. How the scheme should be designed for determining the .WCET LO at run-time,
to not be affected and varied by sudden changes in execution times

3. How to design a scheme with low timing overheads during run-time to have no
impact on task scheduling and deadline misses

4. What are the best .WCET LO for the tasks to effectively keep the system away
from switching to the HI mode while having the high processor utilization and
consequently, a high value of QoS

Following the above questions, the ML techniques can effectively help to design
an adaptive MC system to make a reasonable trade-off between the objectives
according to the system environmental changes (i.e., input value variation).

At run-time, the MC tasks start their execution on the platform, controlled by
MC Task Scheduler Unit on the operating system, shown in Fig. 3.9. The system
monitors the tasks from two aspects:

1. Each task execution finishes or not: The actual execution times are stored in
the case of complete execution. In addition, in the case of task overrunning,
the system switches to the HI mode, and the MC Task Scheduler Unit executes
the HC tasks by considering their .WCET HI and LC tasks with their .QoSmin.
The Processor Queue Checker Unit keeps track of the processor queue when the
system can switch back to the LO mode.

2. The system reaches the task set hyper-period or not: At the end of each hyper-
period, the agent starts its operation by employing the data like actual execution
times, the number of mode switches, and the QoS of LC tasks in the last hyper-

3.2 ADAPTIVE: A Run-Time WCET Adjustment Approach 63

period. The agent outputs are the new values of .WCET LO for HC tasks, used
in the next hyper-period, based on these historical data. Since the utilization of
HC tasks in the LO mode would be changed by updating .WCET LOs, the new
virtual deadlines are determined by the Virtual-Deadline Update Unit.

Hence, the learning process is separate from the task scheduling algorithm, and
we do not use learning techniques to schedule the tasks. The EDF-VD schedulability
formulae are checked for each WCET change (at the end of each hyper-period).
Although this time is in the order of microseconds and can be negligible, we
counted this time as part of learning time. The timing overhead of this process is
considered a task with the WCET, equal to the maximum timing overhead to ensure
it does not impact other tasks’ deadlines. This overhead is discussed and reported in
Sect. 3.2.3.3. In the following, we describe how the agent is designed to work and
update the WCETs for the LO mode.

Learning-Based System Properties’ Improvement Reinforcement Learning (RL)
could be applied to systems with a considerable amount of dynamism through
trial and error. By using the historical data, and learning from past events, it is
able to improve the performance, based on the dynamic changes [25]. The Q-
learning/SARSA technique, which is recently used in many emerging applications,
such as robotics, and UAV [26], uses the RL technique to perform the run-time
management/optimization of the system properties. This technique is a value-based
algorithm that iteratively collects the current system state and determines the next
action to change the state. The process repeats until the predefined criterion is met
or the objectives are no longer significantly improved.

RL technique consists of the three main components: (1) a discrete set of States . =
{state1, state2, . . . , statel}, (2) a discrete set of Actions .= {Act1, . . . , Actk}, and
(3) reward function Reward [25]. To reach the favorable reward, the technique
learns a lookup table (i.e., Q-table) with (.statet , Actt) pairs (. Actt ∈ Actions

and .statet ∈ States). The states and actions determine the rows and columns
of the Q-table of the learning-based algorithm, respectively (shown in Fig. 3.9).
As mentioned, a value-based algorithm is utilized which is represented with
.Q(statet , Actt) in the Q-table and determines the quality of the taken action
at the particular state. In every iteration, the Q-values are updated based on
the corresponding computed reward according to Eq. (3.21) , which is based on
the SARSA learning algorithm, one of the RL methods, for system objective
improvement [27, 28]:

. Q(statet , Actt) = Q(statet , Actt) + α(RewardMC + γQ(Statet+1, Actt+1)

− Q(Statet , Actt)) (3.21)

where .statet and .Actt represent the state and action of the system at time t ,
respectively. Furthermore, .statet+1 and .Actt+1 indicate their values at time .t + 1.
The . α determines the learning rate of overriding the old data in the table by the new

64 3 Bounding Time in Mixed-Criticality Systems

acquired data (.0 < α ≤ 1). .RewardMC is the reward function, and . γ is the discount
rate to determine the importance of the future reward (.0 < γ < 1).

System State Determination There are various criteria for determining the system
states. In ADAPTIVE, the system states (i.e., the rows of the Q-table) indicate the
rate of LC tasks’ execution, i.e., the tasks’ periods at run-time, to the minimum
tolerable period in LC tasks. We define ten ranges to determine the rate of LC tasks’
execution. As a result, .States = {0.1, 0.2, . . . , 1}.
Learning Action Determination In this section, the well-known .ε-greedy policy
(a method for determining the optimal action according to the state) has been
exploited. In this policy, a random action is selected from the actions set with
the probability of . ε. In general, a random number is generated. If this number
is less than . ε, a random action is selected from the action set; else, the best
action is selected with the largest Q-value (which can be with the probability of
.1 − ε). We first use a dynamic .ε-greedy policy [29] with the maximum value
of .0.5 to prevent the probability of the learning algorithm from being stuck at
a few Q-values. Afterward, the fixed .ε-greedy policy is used to ensure that the
system reaches the optimum state and chooses the best action based on the Q-
values, which has the maximum value. We have assumed k actions, where the
action space in the Q-table illustrates an increase and/or decrease in the . WCET LO

i

of some/all HC tasks according to a coefficient of WCET’s prediction accuracy.
In order to limit the number of feasible actions and reduce the complexity and
convergence issues, we have considered three scenarios of increase (.WCET inc

NumT),

decrease (.WCET dec
NumT), and increase-decrease (.WCET

inc,dec
NumT) (. opr =

{inc, dec, inc/dec}). .WCET inc
NumT (.WCET dec

NumT) shows an increase (decrease)
in .WCET LO

i of NumT HC tasks, where the value of NumT can be one
of .{1, 2, . . . , nHC} (.nHC is the maximum number of HC tasks in the system).
.WCET

inc/dec
NumT presents that the .WCET LO

i for half of HC tasks is increased and
for others it is decreased. In fact, in this scenario, .max(NumT) = nHC

2 . Therefore,
we have considered .k = 2.5 × nHC actions in the system. Note that the step of
increase/decrease in the .WCET LO

i is determined according to a coefficient of
WCET’s prediction accuracy:

.Actions = {WCET
opr
NumT } opr ∈ {inc, dec, inc/dec} (3.22)

To select the tasks for doing the actions, we first sort the tasks in increasing
order of the value of .WCET LO

i − AETi in the last hyper-period, and then the
increased (decreased) action applies to the NumT tasks with smaller (greater)
.WCET LO

i − AETi , where .AETi represents the actual execution time. Since a task
may release several times in a hyper-period (i.e., release several jobs of a task),
and the actual execution times would be different in each release time, we have to
predict the actual execution time according to the previous run-time task’s execution
times. This prediction is based on the following equation, where . ExeT imei(t + 1)
is the predicted execution time of task . τi for hyper-period .HPt , . rci is the regression

3.2 ADAPTIVE: A Run-Time WCET Adjustment Approach 65

coefficient, and er is the error (presents how different the estimated value is from the
actual one). In the evaluations, x is assumed to be 8. This number is chosen based on
various experiments that we performed to achieve lower ExeT ime prediction error
with no timing overhead that can impact tasks’ timeliness. For example, for one
task, we have (x,er ,time[. μSecond])=(2,0.110,0.86), (4,0.094,1.12), (8,0.077,1.59),
(10,0.071,1.92). Since the error (er) does not change much, from 8 to 10, compared
to 4 to 8, x= 8 is a good value with less timing overhead:

.ExeT imei(t + 1) =
x∑

k=0

ExeT imei(t − k) × rck + er (3.23)

Reward Computation The reward indicates how well the learning procedure has
performed in the previous step. In ADAPTIVE, we calculate the reward at the end
of each hyper-period. Here, the number of mode switches should be reduced while
increasing the number of scheduled LC tasks to improve the QoS. The considered
reward function for the Q-table is based on these two objectives, shown in Eq. (3.24),
where .MSHC represents the mode switches, which is determined by the number of
overrun HC tasks:

.RewardMC = β1 × MSHC + β2 × QoS (3.24)

where . β1 and . β2 are constants in Eq. (3.24) and set to 0.5 (.β1 + β2 = 1) in
this work. To compute the number of mode switches, Eq. (3.25) considers three
scenarios. The reward function is calculated based on the number of task overruns.
If the percentage of overrun HC tasks falls into the unsafe zone that may cause
frequent mode switches, the decision will be penalized. Accordingly, it results in a
negative value for the reward function, which decreases the Q-value in Eq. (3.21).
If the number of task overruns is reduced, the higher and positive value is assigned
to .MSHC . The unsafe zone is the statement that all HC tasks overrun frequently.
Equation (3.26) also shows how to compute the percentage of overrun HC tasks:

.MSHC =

⎧
⎪⎪⎨

⎪⎪⎩

+� PT ovr
HC = 0

1 − 1
10×(1−PT ovr

MC)
0 < PT ovr

HC < 1

−� PT ovr
HC = 1

(3.25)

where .� > 0 and has a constant value and is set to 1 in this work:

.PT ovr
HC =

#HC − T asks|WCET LO
i

−ExeT imei
Ti

<0

nHC

(3.26)

.nHC is the number of HC tasks and .ExeT imei is the estimation of actual execution
time of task . τi during a hyper-period, which is computed by Eq. (3.23).

66 3 Bounding Time in Mixed-Criticality Systems

Algorithm 3.1 Run-time adaptation scheme

Input: Task Set, Single Processor Platform, QoSMin

Output: QoS, WCET LO
HC s, Scheduled Tasks

1: procedure ADAPTIVE FUNCTION()
2: for t = 1 to Time do
3: [Mode Sys

MS ,ReadyT ask] = TaskStatusCheck(Tasks,Mode Sys
MS)

4: [Schtasks] = EDF-VD (ReadyT ask, Platform)
5: F lagoutput=TaskOutputCheck(Tasks)
6: if F lagoutput == 1 then
7: Update QoS & PT ovr

HC ;
8: end if
9: //**Learning Process Function**
10: if mod(t,HP)==0 then
11: State= Deter-State (#Scheduled − LCT asks)
12: k= rand (1); //(0 < k < 1)
13: //ε-Greedy Policy
14: if k < ε then
15: Actt = argrand (Actions)
16: else
17: Actt = argmax (statet ,Actions)
18: end if
19: Set the new tasks’ WCET LOs based on the action
20: RewardMC = CompRward (PT ovr

HC ,QoS) //Eq. (3.24)
21: Q(statet , Actt) = Q(statet , Actt) + α(RewardMC + γ Q(statet+1, Actt+1)−

Q(statet , Actt)) //Eq. (3.21)
22: UMC(t)=CompUtil (T asks)
23: if UMC(t) > 1 then
24: T asks = Deter-ExeJobs (T asks);
25: end if
26: T asks = Deter-VirtualDeadline (T asks);
27: end if
28: end for
29: end procedure

Algorithm The pseudo-code for the run-time adaptation scheme of ADAPTIVE,
which includes the task scheduling and learning procedures, is presented in
Algorithm 3.1. As inputs, the algorithm takes the tasks, and their characteristics
(such as WCETs), platform, and the minimum QoS, requested by the tasks. On the
other hand, improvements of the LC tasks’ QoS, the analyzed .WCET LOs of HC
tasks, and the scheduled tasks are defined as outputs at the end of time (T ime). At
each time, the scheduler checks the status of the tasks, whether they are released or
overrun, which results in mode switching (line 3). All tasks are scheduled based on
the EDF-VD (line 4). In the case of the system switching to the HI mode, the LC
tasks must be executed based on their minimum service requirement to guarantee
the correct execution of HC tasks. There is a function (line 5) that checks whether
the output of each task is ready. In the case of being ready, the task is removed
from the core queue, and the values of .QoS and .PT ovr

HC are updated (lines 6–8).
The learning process is conducted at the end of each hyper period (lines 9–27). The

3.2 ADAPTIVE: A Run-Time WCET Adjustment Approach 67

number of scheduled LC tasks is used to determine the state (line 11) in this process.
As mentioned earlier, since the . ε−greedy policy has been used, if a random number
is less than . ε, a random action is selected (line 15, exploration phase of the learning
process); otherwise, the action that has the maximum value in the Q-table is selected
for that particular state (line 17, exploitation phase of learning process). Based
on the chosen action, new .WCET LO values are determined for some HC tasks
(line 19). Consequently, the reward function is used to update the Q-table based
on Eq. (3.24) (lines 20–21). In lines 22–26, the guaranteed service adaptation and
assigned virtual deadlines to HC tasks are computed based on the updated HC tasks’
utilization values to guarantee the system to be schedulable in each criticality level.
As a result, the maximum service adaptation that can be guaranteed is determined
by finding the maximum value of rate of LC tasks’ execution, i.e., reducing the LC
tasks’ periods to release more often.

3.2.3 Evaluation

In this section, we evaluate the efficacy of ADAPTIVE, on real-life and synthetic
task sets in terms of mode switches, QoS, utilization waste, and learning process
timing and memory overheads.

3.2.3.1 Evaluation with Real-Life Benchmarks

To evaluate our scheme, we conducted experiments by various real benchmarks
from MiBench benchmark suite [12], such as automotive, network, and
telecommunication. In this experiment, ‹insert-sort›, ‹epic›, ‹qsort›, ‹bitcount›,
‹dijkstra›, and ‹FFT› are considered as HC tasks and ‹corner›, ‹edge›, ‹smooth›,
and ‹matrix-mult› are considered as LC tasks. To obtain their execution times, we
run these benchmarks with different inputs on Cortex A7 of the ODROID XU4
board (equipped with Ubuntu 18.04 as OS) with a maximum frequency of 1.4GHz.
More detail on WCET values has been reported in Sect. 3.1.3. We compare the
results with the results of BOT-MICS [24] (the Chebyshev theorem-based one)
and [2]. Since most state-of-the-art works like [2, 3, 15] consider the same policy to
determine the .WCET LO (i.e., defining a fraction of .WCET HI as .WCET LO), we
select [2] ([Liu+18]) as a representative of these schemes and do the experiments

with two fractions of .WCET HI as .WCET LO (.λ = WCET LO

WCET HI = [14 , 1], [18 , 1]). In
addition, we investigate the system for 2000 hyper-periods of tasks.

For the learning process, we set the values of . γ to 0.2 and . α to 0.5. These values
are determined based on a wide range of experiments, which are set to obtain the
best improvement.

Table 3.6 presents the evaluation of different approaches. QoS represents the
percentage of executed LC task instances to total LC task instances during run-

68 3 Bounding Time in Mixed-Criticality Systems

Table 3.6 System performance at run-time for different scenarios

.Avg(QoS)a .Avg(#MSHC)
b

.UtilWst b . max(ULO
LC)

a

[2] .λ = 1
4 50.0% 0 43% 50%

[2] .λ = 1
8 49.3% 5.81 28% 65%

BOT-MICS 58.1% 1.16 33% 63%

ADAPTIVE 68.9% 2.12 16% 58%
a Higher is better
b Lower is better

Table 3.7 Number of deadline misses and gained utilization of different methods at run-time for
object detection function in Fig. 3.11a, where there are many objects to detect

Metrics ADAPTIVE BOT-MICS [2] .λ = 1
2 [2] .λ = 1

4 [2] . λ = 1
8

.#MSHC 17% 11% 0 5% 45%

.UtilWst 28% 46% 76% 52% 47%

time (.QoS = nschd
LC /nmax

LC). .MSHC indicates the number of mode switches per
hyper-period, and .max(ULC

LO) represents the maximum processor utilization that
can be assigned to LC tasks at design-time. Besides, .UtilWst shows the average
percentage of the difference between the WCET and AETs to WCET for all tasks.
As shown in this table, ADAPTIVE scheme can schedule more LC tasks in both
LO mode and HI mode, 10.8% and 19.3% improvement, compared to BOT-MICS,
and [2] approaches, respectively. Although the average number of mode switches is
more than the scenario of BOT-MICS, and [2] with .λ = 1

4 (hence, the LC tasks
execute with their minimum service requirements in the HI mode), ADAPTIVE
could overcome the significant performance loss due to executing more LC task
instances in total. This can be achieved by determining the appropriate .WCET LOs
during run-time, which is close to the actual execution times (17.7% closer on
average, compared to other approaches). This fact can be observed with the value
of .UtilWst , compared to other approaches. In addition, although the scenario of [2]
with .λ = 1

8 assigns more utilization to LC tasks in the design-time phase compared
to other approaches, it has less QoS value due to the more frequent mode switches.
Note that although we assign a primary value of .WCET LO by running each
benchmark on the platform and set the maximum of them as .WCET LO (which
causes lower utilization compared to some other approaches), our run-time learning
approach is independent of how the .WCET LOs are set at design-time, and any of
other design-time approaches, like our previous approach, BOT-MICS, can be used.

Figure 3.10 shows the variation of QoS values in different hyper-periods of the
run-time phase. As shown, the scenario of [2] with .λ = 1

8 has a wide range of QoS
values due to more mode switches. ADAPTIVE also represents a variation in the
QoS values due to its adaptation to the system input changes at run-time.

Now, we demonstrate the progress of the learning process in adjusting the
.WCET LO

i for the two input videos from the object detection function, explained in

3.2 ADAPTIVE: A Run-Time WCET Adjustment Approach 69

Q
oS

BOT-MICS [Liu+18] [Liu+18]ADAPTIVE

Fig. 3.10 QoS values during run-time for different scenarios (ADAPTIVE, BOT-MICS [24], and
[Liu+18] [2])

Fig. 3.11 Learning process in adjusting the .WCET LO for two video inputs of object detection
function, compared to state-of-the-art method ([2] (Liu+18)) in adjusting the .WCET LO value. (a)
Input video with many objects to detect. (b) Input video with few objects to detect

the motivational example of the Introduction Section, during run-time. Figure 3.11
depicts the actual execution time trace and the adjusted .WCET LO for a time
period during run-time for ADAPTIVE and two other methods BOT-MICS [24]
and [2]. In ADAPTIVE, by changing the inputs which have low execution time
values, the .WCET LO would be adjusted to the lower value intentionally. The
.WCET LO is also readjusted when the value of execution times is increased. As
shown in Fig. 3.11a, the other methods presented in BOT-MICS and [2] set the
static .WCET LO (as an example, .WCET LO=1352ms in BOT-MICS approach and
.WCET LO (.WCET LO=1596ms in [2] approach if .λ = 1/4) which may lead
to frequent task overruns (which leads to regular mode switches) in the case that
there are many objects to detect (lead to high computational time values) or poor
utilization when there are few objects to detect in this function (like Fig. 3.11b,
where the maximum computational time is 548ms in a period of time shown in
this example). Although there are few errors while adjusting the .WCET LO , which
leads to task overrunning and QoS degradation, the number of task overruns for the
HC task and the wasted processor utilization (.UtilWst) are less, and consequently,
overall QoS value would be higher at the end of system execution. For example,
in Fig. 3.11a, the black rectangles show the time periods in which some of the

70 3 Bounding Time in Mixed-Criticality Systems

Fig. 3.12 Impacts of varying different parameters of the learning process on QoS, mode switches,
and utilization waste. (a) Varying margin threshold. (b) Varying learning time. (c) Varying WCET
increase/decrease steps

actual execution times are higher than .WCET LO for most methods, even though
the actual execution times of these input videos are less than the adjusted . WCET LO

in [2] by considering .λ = 1
2 . Table 3.7 presents the percentage of deadline misses

(which leads to mode switches) and the average percentage of wasted utilization
for ADAPTIVE and state-of-the-art works. As shown, although the number of
deadline misses is higher than the results of some scenarios, the wasted utilization
is lower compared to other methods, which leads to higher QoS (QoS is like what is
discussed in Fig. 3.10 and Table 3.6 for MiBench benchmarks).

3.2 ADAPTIVE: A Run-Time WCET Adjustment Approach 71

In order to evaluate ADAPTIVE in improving the QoS, we first analyze varying
the margin threshold, which adjusts above the actual execution times to overcome
high WCET reduction. For example, when the threshold is x%, .WCET LO is set
to (1 + x%) of the maximum estimated execution time. Figure 3.12a shows that the
improvement in QoS is less while the threshold is pessimistic, i.e., having a larger
margin. In this case, fewer mode switches exist due to adjusting the WCETs so
cautiously, and consequently, the utilization waste (.UtilWst) has a higher value.
Based on this observation, having the margin threshold equal to 10% improves
the QoS for both LO mode and HI mode, even with the higher number of mode
switches. Now, we vary the time of learning during run-time, e.g., 400 or 1000
Hyper Period (HP) of total time (2000 HP), which is used for training/exploring
and depicted in Fig. 3.12b. Note that the learning process starts to learn for a period
of time, and then the learned data is exploited for the rest of the time. Spending
more time to learn leads to more accurate results. As a result, we would have a
5.9% improvement in QoS by increasing the learning time, with an insignificant
increase in mode switches and utilization waste. In order to be more accurate in
adjusting the WCETs, we define steps for increasing/decreasing the WCETs at run-
time. These steps are coefficients of the difference between the WCETs and actual
execution times. Having a larger coefficient (0.1X to 0.5X) leads to adjusting faster
to the actual execution times (i.e., having better QoS values (7.95% more) and less
utilization waste (18%)), but it may cause more wrong decisions in learning (i.e.,
more mode switches). However, step .= 0.5X improves the QoS more, which is
computed for both LO mode and HI mode.

3.2.3.2 Evaluation with Synthetic Task Sets

We now carry out an extensive evaluation with the synthetic task sets to evaluate the
proposed scheme effectiveness, compared to our previous proposed approach (BOT-
MICS Chebyshev theorem-based one), and the state-of-the-art work [2] in terms of
varying utilization in Fig. 3.13. The synthetic task sets are generated for various
utilization bounds (.Ubound) in line with research works like [3], in the range of
[0.60,1] with steps of 0.05. For each .Ubound , 50 task sets are generated in which
tasks’ periods are selected in the range of [200, 1000]ms. The algorithm adds tasks
to the task set randomly to increase the .Ubound until it reaches a given threshold.
Besides, the balanced tasks are assumed in terms of criticality levels, i.e., the
probability of a task being HC or LC is equal. As one of the algorithm inputs, we
consider the minimum service requirement of LC tasks equal to 0.3 in this section.
According to Fig. 3.13, the ability to improve the QoS is less by increasing the
utilization bound due to having more HC and LC tasks in the system, and then,
the probability of mode switches is increased. In [2], although considering a small
value for . λ like . 18 , increases the assigned utilization to LC tasks, it causes more
mode switches and dropping more LC task instances, which leads to poor QoS.
Besides, considering a large value (.λ = 1

4) decreases the utilization at design-time,
but it increases the QoS due to a fewer number of mode switches. The BOT-MICS

72 3 Bounding Time in Mixed-Criticality Systems

Fig. 3.13 QoS and mode switches in different approaches (ADAPTIVE, BOT-MICS [24], and
[Liu+18] [2]) by varying utilization

approach [24] has better results in total in comparison with [2] due to making
an ideal trade-off between the mode switches and utilization. However, although
BOT-MICS has a slight improvement in mode switches, compared to ADAPTIVE,
our scheme can improve the QoS more, even with more mode switches, due to
considering the aspects of run-time behavior, i.e., input and environmental changes,
which cause different execution times.

3.2.3.3 Investigating the Timing and Memory Overheads of Learning
Technique

Although we have reduced the feasible actions to reduce the complexity and
convergence issues, we investigate the learning’s timing and memory overheads.
We analyze the timing overhead of the learning process in each hyper-period
on ODROID XU4, ARM Cortex A7, with 1.4GHz. Consider a system with n
tasks, in which .nHC of them are HC tasks (.nHC ≤ n). The timing overhead
of the learning algorithm is different for the exploration and exploitation phase
of the learning process. Hence, we use the . ε−greedy policy, which makes a
trade-off between exploration and exploitation of the learning algorithm. We
measured the learning process time at run-time, and the average and maximum
of exploration (exploitation) timing overhead in ARM core are 19 . μs (52 . μs) and
2.11ms (4.15ms), respectively. As a result, since the maximum timing overheads
are almost significant for real-time systems, we can consider the learning process
as a task with the WCET, equal to the maximum learning timing overhead, and
a period equal to hyper-period, while checking the task schedulability, at design-
time. As a result, it can guarantee that the timeliness of HC tasks is maintained at
run-time. Besides, from the memory overhead perspective, we need to clarify the
required memory space for storing the Q-table. We store a two-dimensional array
with size (State) rows and size (Action) columns. Since the value of a table cell is in
the range of [. −2,2], which is a float number, it is required to consider at most 32 bits
for storing each cell. As a result, we need size(State). ×size(Action). × 32 bits to store

3.3 Conclusions 73

the Q-table. For an application with 40 tasks (.n = 40), and 20 HC tasks (.nHC = 20),
the amount of required memory space for saving the Q-table with ten states would
be 10 . × 2.5 . × (20) . × 32 bits . = 16KB.

3.3 Conclusions

In this chapter, we proposed two novel schemes based on the application analysis
to adjust the low WCET of HC tasks in order to improve the QoS of LC tasks. In
the first approach, the scheme, called BOT-MICS, analyzes the application in the
offline phase and determines the low WCETs based on the Chebyshev theorem,
a general theorem that is valid for any task with any execution time distribution.
However, we analyze the applications based on their distribution to have a tighter
bound for system mode switching probability. The proposed scheme based on the
Chebyshev theorem improves the system utilization and schedulability up to 72.27%
and 91.2%, respectively, while bounding the mode switching probability to 24.28%
in the worst-case scenario. We also evaluated the approaches with real benchmarks
on a hardware platform to show their efficacy. The proposed scheme based on the
application time distribution analysis can reduce the mode switching probability by
4.85% more for a real task set compared to the scheme based on the Chebyshev
theorem.

Then, an adaptive scheme, ADAPTIVE, was proposed to analyze the HC
tasks in the LO mode at run-time to determine their WCET based on the task
behavioral changes. The proposed adaptive scheme employed the ML techniques
to improve the QoS, i.e., the timing budget allocated to LC tasks, while the task
schedulability and timeliness can be guaranteed. The proposed scheme improves
the QoS for synthetic and embedded real-time benchmarks by 17.62% and 16.4% on
average, respectively. Further, we presented results of the object detection function,
commonly used in the automotive domain. We evaluated the function with few and
many objects to detect at run-time and saw that the wasted processor utilization is
less in ADAPTIVE compared to state-of-the-art works. Consequently, the overall
QoS value would be higher at the end of system execution.

As proposed in the chapter, two criticality levels of tasks have been considered
while designing an MC system. In order to present how the proposed approaches in
Sect. 3.1 can be extended to support tasks with multiple criticality levels, consider
an MC system which has five sets of tasks in terms of criticality (A, B, C, D, E) in
avionic applications (A and E have highest and lowest criticality levels in the system,
respectively). In general, for a set of tasks with the lowest criticality level (E), we
can choose a small “n” to reduce the “.WCET LO” value (based on our proposed
method) and improve the number of tasks that can be scheduled in the system. Since
these tasks have LC levels, dropping them during run-time does not harshly affect
the system. Besides, for example, tasks with criticality level C have three WCETs.
For the first and second WCETs, we choose a small “n” for computing the first
WCET, a bigger “n” for computing the second WCET, and .WCET HI . When the

74 3 Bounding Time in Mixed-Criticality Systems

tasks with criticality level D overrun, the system drops tasks with criticality level
E and use the second defined WCET for tasks with criticality level of D, C, B, and
A. Note that tasks with criticality levels of C, B, and A have three, four, and five
different WCETs, respectively, and we need to choose different . ni corresponding to
each WCET for tasks. Upon each overrun, the system switches to the next criticality
mode, drops tasks with LC levels, and sets the next WCET for the higher criticality
tasks. It is important to mention that the above discussion is about a general MC
system with multi-criticality levels. Therefore, an efficient decision highly depends
on the applications, scheduling algorithms, and system requirements, and also the
optimization problem would be more complex that must be solved. However, the
basic idea and the proposed approach can still be applied. In addition to this design-
time approach, a run-time approach can be applied to improve different WCETs of
tasks in each mode based on the run-time behavior of tasks in each mode.

Nevertheless, although the QoS is improved by well adjusting the low WCET
of HC tasks, the LC tasks are mostly dropped in the HI mode. In the next chapter,
we will present an approach in order to improve the QoS of LC tasks more by
analyzing the task dropping policy in the HI mode. We propose a heuristic where a
QoS-aware parameter for each task is introduced, and we then provide a task-drop-
aware scheduling analysis based on the new parameter.

References

1. S. Baruah et al. “The preemptive uniprocessor scheduling of mixed-criticality implicit-deadline
sporadic task systems”. In: Proc. of Euromicro Conference on Real-Time Systems (ECRTS).
2012, pp. 145–154.

2. D. Liu et al. “Scheduling Analysis of Imprecise Mixed-Criticality Real-Time Tasks”. In: IEEE
Transactions on Computers (TC) 67.7 (2018), pp. 975–991.

3. H. Su, D. Zhu, and S. Brandt. “An Elastic Mixed-Criticality Task Model and Early-Release
EDF Scheduling Algorithms”. In: ACM Trans. Des. Autom. Electron. Syst. (TODAES) 22.2
(2016), pp. 1–25.

4. Charles Therrien and Murali Tummala. Probability and random processes for electrical and
computer engineers. CRC press, pp. 190, 2018, p. 190.

5. Clément Ballabriga et al. “OTAWA: an open toolbox for adaptive WCET analysis”. In: IFIP
International Workshop on Software Technolgies for Embedded and Ubiquitous Systems.
Springer. 2010, pp. 35–46.

6. Z. Guo et al. “Uniprocessor Mixed-Criticality Scheduling with Graceful Degradation by
Completion Rate”. In: Proc. on IEEE Real-Time Systems Symposium (RTSS). 2018, pp. 373–
383.

7. D. Liu et al. “EDF-VD Scheduling of Mixed-Criticality Systems with De-graded Quality
Guarantees”. In: Proc. on IEEE Real-Time Systems Symposium (RTSS). 2016, pp. 35–46.

8. Chuancai Gu et al. “Partitioned mixed-criticality scheduling on multiprocessor platforms”. In:
Proc. on Design, Automation & Test in Europe Conference & Exhibition (DATE). 2014, p. 292.

9. A. Hoseinghorban et al. “CHANCE: Capacitor Charging Management Scheme in Energy
Harvesting Systems”. In: IEEE Transactions on Computer-Aided Design of Integrated Circuits
and Systems (TCAD) 40.3 (2021), pp. 419–429. DOI:10.1109/TCAD.2020.3003295.

10. Michael Mitzenmacher and Eli Upfal. Probability and computing: Ran- domization and
probabilistic techniques in algorithms and data analysis. Cambridge university press, 2017.

References 75

11. Wassily Hoeffding. “Probability inequalities for sums of bounded random variables”. In: The
collected works of Wassily Hoeffding. Springer, 1994, pp. 409–426.

12. M. R. Guthaus et al. “MiBench: A free, commercially representative embedded benchmark
suite”. In: Proc. IEEE International Workshop on Work-load Characterization. WWC-4. 2001,
pp. 3–14. DOI: 10.1109/WWC.2001.990739.

13. Frank J Massey Jr. “The Kolmogorov-Smirnov test for goodness of fit”. In: Journal of the
American statistical Association 46.253 (1951), pp. 68–78.

14. Eric B Holmgren. “The PP plot as a method for comparing treatment effects”. In: Journal of
the American Statistical Association 90.429 (1995), pp. 360–365.

15. Sanjoy Baruah et‘al. “Scheduling real-time mixed-criticality jobs”. In: IEEE Transactions on
Computers (TC) 61.8 (2012), pp. 1140–1152.

16. Behnaz Ranjbar et al. “Power-Aware Runtime Scheduler for Mixed-Criticality Systems on
Multicore Platform”. In: IEEE Transactions on Computer-Aided Design of Integrated Circuits
and Systems (TCAD) 40.10 (2021), pp. 2009–2023. DOI: 10.1109/TCAD.2020.3033374.

17. Siva Satyendra Sahoo, Bharadwaj Veeravalli, and Akash Kumar. “CL(R)Early: An Early-
stage DSE Methodology for Cross-Layer Reliability-aware Heterogeneous Embedded Sys-
tems”. In: Proc. on ACM/IEEE Design Automation Conference (DAC). 2020, pp. 1–6. DOI:
10.1109/DAC18072.2020.9218747.

18. A. Yazdanbakhsh et al. “AxBench: A Multiplatform Benchmark Suite for Approximate Com-
puting”. In: IEEE Design & Test 34.2 (2017), pp. 60–68. DOI: 10.1109/MDAT.2016.2630270.

19. Zaid Al-bayati et al. “A four-mode model for efficient fault-tolerant mixed-criticality systems”.
In: Proc. on Design, Automation & Test in Europe Conference & Exhibition (DATE). 2016,
pp. 97–102.

20. G. Chen et al. “Utilization-Based Scheduling of Flexible Mixed-Criticality Real-Time Tasks”.
In: IEEE Transactions on Computers (TC) 67.4 (2018), pp. 543–558.

21. Z. Guo, L. Santinelli, and K. Yang. “EDF Schedulability Analysis on Mixed-Criticality
Systems with Permitted Failure Probability”. In: Proc. of the International Conference on
Embedded and Real-Time Computing Systems and Applications (RTCSA). 2015, pp. 187–196.

22. Félix-Antoine Fortin et al. “DEAP: Evolutionary Algorithms Made Easy”. In: J. Mach. Learn.
Res. 13.1 (July 2012), pp. 2171–2175.

23. B. Ranjbar et al. “Improving the Timing Behaviour of Mixed-Criticality Systems Using
Chebyshev’s Theorem”. In: Proc. on Design, Automation & Test in Europe Conference &
Exhibition (DATE). 2021, pp. 264–269.

24. Behnaz Ranjbar et al. “BOT-MICS: Bounding Time Using Analytics in Mixed-Criticality
Systems”. In: IEEE Transactions on Computer-Aided Design of Integrated Circuits and
Systems (TCAD) 41.10 (2022), pp. 3239–3251. DOI: 10.1109/TCAD.2021.3127867.

25. S. Pagani et al. “Machine Learning for Power, Energy, and Thermal Management on Multicore
Processors: A Survey”. In: IEEE Transactions on Computer-Aided Design of Integrated
Circuits and Systems (TCAD) 39.1 (2020), pp. 101–116.

26. Petros S Bithas et al. “A survey on machine-learning techniques for UAV-based communica-
tions”. In: Sensors 19.23 (2019), p. 5170.

27. Gavin A Rummery and Mahesan Niranjan. On-line Q-learning using connectionist systems.
Vol. 37. University of Cambridge, Department of Engineering Cambridge, UK, 1994.

28. Somdip Dey et al. “User interaction aware reinforcement learning for power and thermal
efficiency of CPU-GPU mobile MPSoCs”. In: Proc. on Design, Automation & Test in Europe
Conference & Exhibition (DATE). IEEE. 2020, pp. 1728–1733.

29. D. Biswas et al. “Machine learning for run-time energy optimisation in many-core systems”. In:
Proc. on Design, Automation & Test in Europe Conference Exhibition (DATE). 2017, pp. 1588–
1592.

Chapter 4
Safety- and Task-Drop-Aware
Mixed-Criticality Task Scheduling

In Mixed-Criticality (MC) systems, the frequent deadline misses or service degra-
dation of some Low-Criticality (LC) tasks, such as mission-critical tasks, in the
HIgh-criticality mode (HI mode) may have a negative impact on the other High-
Criticality (HC) tasks and mission-critical tasks themselves, and consequently on
the entire system, and may prevent the system from accomplishing its mission
correctly. Therefore, in this chapter, we propose a novel scheme in order to reduce
the number of deadline misses of LC tasks in the HI mode through task dropping
analysis. Since safety-critical tasks are vital and their failure has a more devastating
effect than mission-critical ones, we consider safety-critical tasks as HC tasks, while
mission-critical and noncritical tasks as LC tasks.

We propose FANTOM (FAult toleraNt Task-drOp aware scheduling For MC
systems), a novel heuristic, which is based on a newly defined QoS-aware parameter
and scheduling analysis of MC tasks with different criticality levels, by considering
safety requirements. In FANTOM, the schedulability analysis is conducted in an
offline manner in order to guarantee that all tasks with different criticality levels
are executed properly before their deadlines in the presence of faults and based on
the operational mode of MC systems. Thus, the main objective of FANTOM is to
execute the majority of the LC tasks in the HI mode by considering a maximum
allowable number of drops for each LC task. In addition, we guarantee the safety
requirement of all MC tasks in both LO mode and HI mode. This is despite the
fact that most of the related works cannot guarantee the safety requirement in the
HI mode. Furthermore, the proposed method can schedule more task sets (i.e., it
has a higher acceptance ratio) compared to similar works [1]. In summary, the main
contributions of this work are:

• Introducing a new task parameter, which is utilized to drop LC tasks consciously
in the HI mode (i.e., by introducing a maximum allowable number of drops for
every LC task)

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024
B. Ranjbar et al., Quality-of-Service Aware Design and Management of Embedded
Mixed-Criticality Systems, https://doi.org/10.1007/978-3-031-38960-3_4

77

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-38960-3protect T1	extunderscore 4&domain=pdf
https://doi.org/10.1007/978-3-031-38960-3_4
https://doi.org/10.1007/978-3-031-38960-3_4
https://doi.org/10.1007/978-3-031-38960-3_4
https://doi.org/10.1007/978-3-031-38960-3_4
https://doi.org/10.1007/978-3-031-38960-3_4
https://doi.org/10.1007/978-3-031-38960-3_4
https://doi.org/10.1007/978-3-031-38960-3_4
https://doi.org/10.1007/978-3-031-38960-3_4
https://doi.org/10.1007/978-3-031-38960-3_4
https://doi.org/10.1007/978-3-031-38960-3_4
https://doi.org/10.1007/978-3-031-38960-3_4

78 4 Safety- and Task-Drop-Aware Mixed-Criticality Task Scheduling

• A novel heuristic (FANTOM) based on the introduced parameter and the schedul-
ing policy in the HI mode, in which an MC task schedulability analysis is
developed by considering safety requirements and fault tolerance

To the best of our knowledge, FANTOM is the first study of its kind, which
considers the scheduling analysis of MC tasks in order to prevent frequent drops
of LC tasks in the HI mode by assigning a predefined threshold to them, while the
safety requirements of tasks are guaranteed.

In the rest of this chapter, the problem statement and motivational example
are presented in Sect. 4.1. In Sect. 4.2, we describe FANTOM in detail, while our
experimental results have been described in Sect. 4.3. Finally, we conclude the
chapter in Sect. 4.4.

4.1 Problem Objectives and Motivational Example

Four objectives have been set to be achieved in this chapter:

1. All of the MC tasks should be executed by their deadlines in the LO mode.
2. In cases that the system switches to the HI mode, all of the HC tasks should be

finished before their specified deadline.
3. It should be guaranteed that the mission-critical tasks should not be frequently

dropped in the HI mode.
4. The non-mission-critical tasks (also known as non-criticality tasks) will be

dropped in the HI mode in order to ensure that the HC tasks and mission-critical
tasks meet their deadlines.

According to these objectives, since frequent dropping or postponing their
execution for a long time in the HI mode is not appropriate, we first introduce a
new parameter, which limits the number of drops per LC task. We assign a new
parameter . δ for each task, which determines the minimum interval between two
consecutive drops, that is set to (.δi × Ti , where . Ti is the period of task . τi). Since
dropping HC tasks is prohibited, we have set .δHC = ∞, which means that no
dropping is allowed for HC tasks. In addition, some LC tasks are noncritical or non-
mission-critical and dropped in the HI mode. Therefore, we define .δ = 1 for these
tasks. Based on the application, the value of . δ for each MC task is determined by
designers. In the following, a motivational example will be discussed in which a task
set containing all types of tasks (based on criticality levels, defined for the avionic
industry in Table 2.1) has been considered.

We are going to give a motivational example based on Fig. 4.1 to clarify the
problem and our solution for limiting the number of frequent drops per LC task. In
this regard, assume that a single core executes five MC tasks (.τ1, τ2, . . . , τ5). The
timing parameters of each task are shown in Table 4.1. As mentioned in Sect. 2.1.1.1,
the deadlines of independent tasks are set to their periods. Each instance (job) of a
task . τi must be executed in the task time period, and as a result, the task generates a

4.1 Problem Objectives and Motivational Example 79

Table 4.1 Example of MC
task set

.ζi .WCET LO
i .WCET HI

i .Ti .d̂i . δi

.τ1 HC 1 5 12 6 . ∞

.τ2 HC 1 2 24 12 . ∞

.τ3 LC 1 1 4 – 3

.τ4 LC 1 1 3 – 4

.τ5 LC 1 1 6 – 1

.∗τ1, τ2 ∈ {A}, .τ3, τ4 ∈ {B,C} and . τ5 ∈ {D,E}

sequence of jobs during its execution. In Fig. 4.1, activated job sequences for each
task are shown by an upward arrow. Furthermore, for showing the kth instance (job)
of a task . τi , we use notation .J (i, k). In this example, the first two tasks (.τ1, τ2)
are HC tasks (from level A in safety-criticality requirements of avionic industry),
while others are LC tasks. LC tasks consist of both mission-critical tasks, which are
from levels .{B,C}, and non-mission-critical tasks from level .{D,E}. In addition, we
assume that mission-critical tasks should not be dropped frequently in the HI mode
due to the occurrence of catastrophic consequences (which we discussed at the
beginning of this section). Hence, in this example, we focus on our scheduling
policy, and we can suppose that the measurement of the execution time will be
accomplished after applying the fault-tolerance technique [1]. In addition, in this
example, all of the tasks should comply with their specified time budget (. WCET LO

i

in the LO mode and .WCET HI
i in the HI mode) to be executed correctly. Our task

set is able to be scheduled under EDF-VD [2]. Also, the virtual deadlines (. d̂i) of the
HC tasks are computed and mentioned in Table 4.1 (virtual deadlines are less than
the actual deadlines and provide a higher priority for HC tasks). For the simplicity
of this example, we round the virtual deadlines into acceptable integers. Suppose
that, when the first job of the . τ1 (which is denoted as J(1,1)) is being executed, due
to the occurrence of a transient fault (which may be caused by high-energy neutron
or alpha particle strikes in integrated circuits and therefore silently corrupt the data
and lead to incorrect computation results), the system switches to the HI mode. As
shown in Fig. 4.1, the system switches at timeslot 3 in this example.

The operation of the EDF-VD scheduling algorithm (by considering task killing)
to the task set under [3] and [1] has been shown in Fig. 4.1a. Whenever the system
switches to the HI mode, the active jobs of LC tasks will be dropped until the
system would safely switch back to the LO mode (at time 9 in Fig. 4.1a when there
is no active HC task). According to Fig. 4.1a, the active jobs of LC tasks, which
are mission-critical tasks (. τ4) (J(4,2) and J(4,3)), are dropped twice, which is not
tolerable for these tasks (according to Table 4.1, this task can be dropped once in
each .δ4 × T4 in the HI mode).

On the other hand, consider a situation that mission-critical tasks (. τ3, . τ4) would
not be dropped in the HI mode. Actually, the execution of these tasks becomes as
important as the execution of HC tasks. Therefore, . τ5 as an LC task is the only
task, which is dropped in the HI mode. Similar to the previous example, EDF-VD
algorithm is applied to the task set. Based on Fig. 4.1b, when the system switches to

80 4 Safety- and Task-Drop-Aware Mixed-Criticality Task Scheduling

J(1,1)

J(2,1)

J(3,1)

J(4,1)

J(5,1)

J(4,3)

J(5,2)
J(3,3)

J(1,2)

J(3,4)

J(4,5)

J(5,3)

J(3,5)
J(4,7)

J(5,4)J(3,2)J(4,2) J(4,4) J(4,6) J(4,8)J(3,6)

J(4,1) J(3,1) J(1,1) J(1,1) J(2,1)

drop dropdrop

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

drop

(a)

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

J(4,3)

J(5,2)
J(3,3)

J(1,2)

J(3,4)

J(4,5)

J(5,3)

J(3,5)
J(4,7)

J(5,4)J(3,2)J(4,2) J(4,4) J(4,6) J(4,8)J(3,6)

J(4,1) J(3,1) J(1,1)J(4,2) J(3,2) J(1,1) J(4,3) J(1,1) J(3,3) J(4,4) J(1,1) J(4,5) J(3,4) J(1,2) J(4,6) J(3,5) J(1,2) J(4,7) J(1,2) J(3,6) J(4,8) J(1,2)

drop
drop dropdrop

miss
J(1,1)

J(2,1)

J(3,1)

J(4,1)

J(5,1)

(b)

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

J(4,1) J(3,1) J(1,1) J(1,1) J(4,3) J(1,1) J(3,3) J(4,4) J(2,1) J(3,4) J(1,2)J(4,5) J(4,7) J(1,2) J(4,8)

J(4,3)

J(5,2)
J(3,3)

J(1,2)

J(3,4)

J(4,5)

J(5,3)

J(3,5)
J(4,7)

J(5,4)J(3,2)J(4,2) J(4,4) J(4,6) J(4,8)J(3,6)

drop dropdrop
drop drop

dropdrop

J(3,6)

J(1,1)

J(2,1)

J(3,1)

J(4,1)

J(5,1)
drop

(c)

Fig. 4.1 Different schedules for the MC task set example within the interval [0, 24]. (a) The
EDF-VD schedules where all LC tasks (mission-critical tasks and non-mission-critical tasks) are
dropped in the HI mode according to [3] and [1]. (b) The EDF-VD schedules where mission-
critical tasks (which are LC tasks) are not dropped in the HI mode. (c) The EDF-VD schedules
under our policy

the HI mode, according to the EDF-VD policy (the ready tasks are sorted based on
their deadline in ascending order to be executed on the core), the first job of HC task
. τ2 (J(2,1)) is not executed due to lack of core space, in its predefined period and
it will miss its deadline at time 24. Such scenarios of task scheduling may cause
catastrophic consequences due to deadline missing of HC tasks.

Now, consider a parameter . δi for LC tasks. When the system switches to the
HI mode due to the execution time of HC tasks, LC tasks will be dropped in every
. δi to create slack time for the HC tasks to be executed before their deadlines.
According to Fig. 4.1c, when the system switches to the HI mode, the first job of the
mission-critical tasks . τ3 and . τ4 is dropped, which is J(3,2), J(4,2). Consequently, all
of the HC tasks will be executed in this HI mode. Hence, since .δ5 = 1, it would
be always dropped in the HI mode. At the same time, by employing this technique,
mission-critical tasks would not be frequently dropped, which is desirable.

4.2 FANTOM in Detail 81

4.2 FANTOM in Detail

In this section, first, we briefly introduce the quantification of MC tasks in
Sect. 4.2.1. Then, in Sect. 4.2.2, we define MC task utilization, and based on them,
we present the scheduling analysis technique and system upper bound utilization for
the proposed heuristic (FANTOM) in Sects. 4.2.3 and 4.2.4, respectively. In the end,
a general design-time scheduling algorithm is presented in Sect. 4.2.5, in which all
essential conditions that must be guaranteed are determined.

4.2.1 Safety Quantification

As discussed in Sect. 2.1.2, in this book, the re-execution of the tasks has been
used in order to tolerate transient faults. Independent from the level of criticality,
any of the jobs in the tasks are executed up to . ni times to guarantee their safety
requirements with regard to PFH, mentioned in Table 2.1. Any of the jobs in both
LC and HC tasks requires maximum . nζ times (.ζ ∈ LC or HC) to be executed with
regard to safety requirements [1]. Here, .nHC and .nLC are the maximum required re-
execution times based on the PFH of both HC and LC tasks. However, in the worst
case, if jobs execute . ni times to satisfy the safety requirements, it may cause the
system to be overloaded (i.e., .Usys > 1) and lead the system to be unschedulable.
To this end, in this chapter, analogous to the proposed mechanism in [4], we use a
different policy based on the safety requirements to determine how the system mode
switches happen and, therefore, how the low WCET of HC tasks are computed.
Here, another time constraint .n′

HC .(n′
HC < nHC) has been defined for HC tasks,

which causes the system to operate without being overloaded. In addition, this time
constraint gives the system the ability to switch to the HI mode when the correct
response is not ready (e.g., due to a fault occurrence) after executing it for . n′

HC

times. In this case, we use our proposed drop-aware policy for LC tasks to guarantee
the safe execution of HC tasks. Hence, .n′

HC is the highest possible value that causes
the system to be schedulable in the LO mode. Now, the WCET in each criticality
level is computed as follows:

• LC tasks: . WCET LO
i = WCET HI

i = nLC × WCETi

• HC tasks: .

{
WCET HI

i = nHC × WCETi

WCET LO
i = n′

HC × WCETi

According to [1], the values of .nHC and .nLC for tasks in the same level of
criticality are computed by solving Eq. (4.1), which has exploited the PFH of
LC tasks and HC tasks based on Table 2.1, presented for the avionic industry.
Hence, for each level, the value of PFH is the same from one hour to the next
hour. Also, in Eq. (4.1), the HP is the hyper period of all tasks. Since the unit of
the .pf h(ζ) is hour, the .HP′ represents the hyper period, in the unit of hour [1].
In this equation, .max(�HP−ni×WCETi

Ti
+ 1�, 0) represents the maximum number

of execution rounds for task . τi in the hyper-period .(0,HP]. Moreover, . fi is a

82 4 Safety- and Task-Drop-Aware Mixed-Criticality Task Scheduling

probability factor, which indicates the probability of an unsuccessful execution for
a task due to transient faults (i.e., PoF). So, .f ni

i represents that a task is executed
. ni times in the worst case to have successful execution but it fails in all executions.
Therefore, the failure probability per hour for each criticality level (.pf h(ζ)) can be
calculated by Eq. (4.1) [1]. As can be realized from this equation, by increasing the
value of . nζ (. ζ= HC or LC), .pf h(ζ) is decreased. Therefore, the minimum value of
. nζ for each criticality level is computed when .pf h(ζ) ≤ PFHζ :

.pfh(ζ) =
(
∑

τi∈τζ
max(�HP−nζ ×WCETi

Ti
+ 1�, 0) × f

ni

i)

HP ′ (4.1)

In the next step, the value of .n′
HC has to be computed in a way that the system

would be schedulable and all the safety requirements are met. As we mentioned
before, all LC tasks should be executed correctly before their deadline in the
LO mode. Hence, by assigning .nLC to LC tasks, the number of re-executions for
HC tasks in the LO mode (.n′

HC) to have the schedulable system will be computed
by solving Eq. (4.2) that .pf h(LO) < PFHLO [1]:

. pfh(LO) = (1 − ∏
τi∈τHC

(1 − f
n′

i

i)
max(� HP−n′

i
×WCETi
Ti

+1�,0)
) × w(∞,HP)

HP ′
(4.2)

In this equation, the maximum number of execution rounds for HC task . τi

in each hyper-period (.[0,HP]), that in each round, it is executed .n′
HC times, is

.max(�HP−n′
HC×WCETi

Ti
+ 1�, 0). Since in the LO mode HC tasks are not executed

more than .n′
HC times to guarantee task schedulability, the probability that no job of

HC tasks executes more than .n′
HC times in each hyper-period is bounded by . P =

∏
τi∈τHC

(1−f
n′

HC

i)
max(� HP−n′

HC
×WCETi

Ti
+1�,0)

) that all HC tasks are executed success-
fully in maximum .n′

HC times and no LC task is dropped. Therefore, the probability
that LC tasks are dropped is .1 − P . Due to the characteristics of our system, the
maximum PFH for LC tasks, .w(∞,HP), is defined and computed differently
from what was defined in [1]. To compute this function, we should obtain the
maximum number of executions for each task that can be done in one hyper-period.

Normally, this number is accommodated by .max{
⌊

HP−nLC×WCETi

Ti
+ 1

⌋
, 0}. Due

to the newly defined parameter .(δi) for the tasks, this round number is obtained and
used in function w(.HP) as:

. w(δ,HP) =
∑

τi∈τLC

max((�HP − nLC × WCETi

Ti

+ 1� − �HP − nLC × WCETi

Ti × δi

+1�), 0) × f
nLC

i

(4.3)

4.2 FANTOM in Detail 83

To find the maximum pf h for LC tasks in Eq. (4.2) that .pf h(LO) < PFHLO ,
parameter . δi for each LC task in Eq. (4.3) should be infinitive. It means no LC task
would be dropped in the LO mode. Therefore, as can be seen in Eq. (4.2), the value
of .n′

HC is independent of the values of . δi of LC tasks that is used in Eq. (4.3). It
should be noted that all HC tasks have the same value of .n′

HC for their execution in
the LO mode.

4.2.2 MC Task Utilization Bounds’ Definition

In this section, we present the different utilization bounds for MC tasks, which are
used in task scheduling. Based on the description of safety requirements presented
in Sect. 4.2.1, the utilization of task j at level k is defined as .uk

j = (WCET k
j)/Tj , in

which if task j is an LC task, .WCET k
j = nLC ×WCETj and if task j is an HC task,

.WCET k
j = nHC × WCETj with k: LO, and .WCET k

j = n′
HC × WCETj with k:

HI. According to this definition, the low and high bound of utilization for different
modes of task . τj will be represented as .uLO

j and .uHI
j , respectively. Thus, the low-

level and high-level utilization of HC tasks and also the low bound utilization of
LC tasks are defined as follows:

.

{
ULO

HC = ∑
ζj =HCs uLO

j

UHI
HC = ∑

ζj =HCs uHI
j

(4.4)

.ULO
LC =

∑

ζj =LC

uLO
j (4.5)

Theorem 4.1 Due to the execution of some LC tasks, in the HI mode, the high
bound utilization is presented as follows:

.UHI
LC =

∑

ζj =LC

uLO
j × (δj − 1)

δj

= uHI
j (4.6)

Proof Since we have to guarantee the correct execution of all HC tasks in the
HI mode, a few LC tasks will be dropped in this mode. Therefore, we need to
consider the jobs of LC tasks that are released in this HI mode. Due to the intended
feature of LC tasks, one job could be dropped in every . δj job instance in the
HI mode. Accordingly, for these tasks, .δj − 1 jobs must be executed among . δj

jobs (i.e., if we have a period of time .δj × Tj , LC tasks are executed for a time

equal to .WCET HI
j × (δj − 1) in this period, .uHI

j = WCET HI
j ×(δj −1)
δj ×Tj

). Also, we

have assumed that for each LC task, the value of .WCETLO
j is equal to .WCETHI

j .

84 4 Safety- and Task-Drop-Aware Mixed-Criticality Task Scheduling

Therefore, the high bound utilization is rewritten as follows, which is lower than

.ULO
LC (for each LC task, .uHI

j = uLO
j × (δj −1)

δj
< uLO

j):

.UHI
LC =

∑

ζj =LC

(
WCET HI

j × (δj − 1)

Tj × δj

= uLO
j × (δj − 1)

δj

= uHI
j) (4.7)

Hence, in equality (4.6), if .δj = 1 for an LC task, then the utilization of this
task j in the HI mode (.uHI

j) would be equal to 0. In other words, these tasks are not
executed in the HI mode and then, FANTOM uses task dropping for these LC tasks
with .δj = 1 (such as noncritical tasks) in the HI mode due to our proposed policy.

4.2.3 Scheduling Analysis

To guarantee the correct execution of MC tasks before their deadlines, several
conditions have to be met at design time. We investigate the MC task schedulability
in different system behavior as:

• Guaranteeing the task schedulability in the LO mode
• Guaranteeing the task schedulability in case of mode switching and then, in the

HI mode
• Guaranteeing the task schedulability while the EDF-VD scheduling algorithm is

used

The conditions for each item are explained in detail in this section. In the end,
the last condition based on the system utilization is presented in Sect. 4.2.4. As
mentioned before, at run-time, the MC system initially operates in the LO mode
under EDF-VD. In FANTOM, when the system switches to the HI mode, with
respect to the execution of HC tasks, the first job of LC tasks will be dropped. These
LC tasks will be dropped periodically in an interval equal to .δj ×Tj until the system
is in the HI mode. In the meantime, all the HC tasks will be executed. Hence, if the
mission of an LC task is more important than other LC tasks, the value of . δ for this
LC task would be higher. The details are as follows.

4.2.3.1 Conditions to Guarantee Task Schedulability in the LO Mode

By using the notations and definitions, we can easily express that MC task sets are
schedulable under EDF if the following condition is guaranteed in a core in the
LO mode:

.ULO
HC + ULO

LC ≤ 1 (4.8)

4.2 FANTOM in Detail 85

As we have mentioned in Sect. 2.2.1, due to using the EDF-VD algorithm, dead-
lines of HC tasks will be downscaled by a multiplication factor x in the LO mode.
Hence, the low bound utilization of HC tasks .(ULO

HC) would be downscaled by
1/x. Based on the EDF-VD algorithm [3], due to the execution of LC tasks in the
HI mode by using the parameter . δ, we provide a problem formulation.

The following condition (which is obtained by the modification of the inequal-
ity (4.8)) is sufficient to schedule all of the tasks by the EDF-VD algorithm in the
LO mode [2]. As mentioned, .ULO

HC = ∑
ζi=HC

nHC×WCETi

Ti
. Since .di = Ti , and the

virtual deadline .d̂i = x × di is used for HC tasks in the LO mode to schedule tasks,

therefore the utilization of HC tasks in the LO mode is .
ULO

HC

x
that is used for task

schedulability test:

.
ULO

HC

x
+ ULO

LC ≤ 1 (4.9)

4.2.3.2 Conditions to Guarantee Task Schedulability in the HI Mode

Since the MC systems must work successfully in the HI mode, we introduce a
theorem and conditions to guarantee the deadline meeting of both HC tasks and
LC tasks in the HI mode. Before introducing a new theorem, we explain how the
new parameter . δ is used. As depicted in Fig. 4.2, when the system switches to the
HI mode, the demand requested for core computation time by the tasks is increased.
In this figure, . rij represents the release time of job j of task . τi . In such critical
situations (HI mode), the first job of the LC tasks is dropped, and consequently, one
job of each . τi is dropped every . δi until the system switches back to the LO mode.
These generated slacks (the difference between two . ris in the HI mode, where
mission-critical tasks are not executed) are used to execute HC tasks in the HI mode.
With this value of . δ for each task, we determine a theorem for ensuring that both
HC tasks and LC tasks (with .δ > 1) are scheduled within their deadlines, in the
HI mode.

Theorem 4.2 The sufficient establishing condition for executing both HC tasks and
LC tasks in the HI mode is presented in inequality (4.10), in which, in the worst case,
the system remains in the HI mode for the whole hyper-period. In this inequality, the
HP is the hyper-period of HC tasks and LC tasks with .δ > 1 in a processing unit:

.

∑
ζj ∈HC�HP

Tj
� × WCET HI

j

HP
+

∑
ζj ∈LC,δj >1(�HP

Tj
� − � HP

Tj ×δj
�) × WCET HI

j

HP
≤ 1

(4.10)

Proof Due to the execution of HC tasks and LC tasks in the HI mode, assume that
the first task, which starts its execution, is an HC task, and this task causes the system
to switch to the HI mode. In the worst case, the system remains in the HI mode

86 4 Safety- and Task-Drop-Aware Mixed-Criticality Task Scheduling

Fig. 4.2 LC task scheduling solution in both modes by dropping one job every . δi in task . τi in the
HI mode

for the whole hyper-period. In this HI mode, the maximum time interval in which
HC tasks are executed in one HP (.T Intervalmax

HC) is as:

.T Intervalmax
HC =

∑

ζj ∈HC

�HP

Tj

� × WCET HI
j (4.11)

In addition, due to the execution of LC tasks in the HI mode and the nature of
these tasks, this maximum time interval that LC tasks can be executed in one HP
(.T Intervalmax

LC) is as:

.T Intervalmax
LC =

∑

ζj ∈LC,δj >1

(�HP

Tj

� − � HP

Tj × δj

�) × WCET HI
j (4.12)

Accordingly, if these two types of tasks need to be schedulable by the EDF
algorithm in the HI mode before their deadlines, the following inequality must be
guaranteed (.T Intervalmax

HC + T Intervalmax
LC ≤ HP):

.
∑

ζj ∈HC

�HP

Tj

�×WCET HI
j +

∑

ζj ∈LC&δj >1

(�HP

Tj

�−� HP

Tj × δj

�) × WCET HI
j ≤ HP

(4.13)

By dividing both sides of this inequality by HP, the inequality (4.10) will be
obtained. Inequality (4.10) is the establishing condition for the schedulability of the
tasks. . �

According to the EDF-VD algorithm, there are some scenarios in which the
inequality (4.9) has been satisfied, while HC tasks in the HI mode have missed
their deadline. Hence, a condition should be considered and satisfied in order to
guarantee the schedulability of all of the HC tasks and LC tasks (based on the

4.2 FANTOM in Detail 87

parameter . δ) in their specified deadlines by the EDF-VD in the HI mode. Besides,
there is a scenario that a task is released before mode switching, while its deadline is
after mode switching and does not finish its execution yet, called carry-over job [5–
7]. To consider the carry-over problem, the following sufficient condition has been
expressed (the proof of this condition is the same lemma and has the same proving
flow presented in [7, 8]):

.UHI
HC + (1 − x) × UHI

LC + x × (ULO
LC) ≤ 1 (4.14)

Proof To prove, suppose that . τ1 is an HC task with release time . a1 and deadline
. d1 and causes the system switches to the HI mode at time . t1. Besides, . τ2 is an HC
task that its deadline is missed at time . t2, while the system is in the HI mode (. 0 <

t1 < t2). In addition, suppose that . ηi is the cumulative execution time of each task
. τi in .[0, t2]. By this definition, we nominate .t1 < (a1 + x(t2 − a1)). To prove this,
consider that the absolute deadline of the HC task . τ1 is . d1 and its virtual deadline is
.(a1 + x(d1 − a1)). As can be seen, . τ1 is overrun at time . t1 and continues to finish its
execution completely before its deadline . d1, which is less than . t2 (.d1 ≤ t2). Thus,
. t1 < (a1 + x(d1 − a1)) < (a1 + x(t2 − a1))

As we proposed, when the system switches to the HI mode, we drop the first
job of each LC task . τi , and then, they would be dropped every . δi times as long as
the system is in the HI mode. If an LC task with release time . ai and deadline . di is
released before time . t1, while its deadline . di is after . t1 (.ai < t1 < di), it is called
carry-over job of LC tasks. For these carry-over jobs, we have .di < (a1+x(t2−a1).
To prove, it is obvious that the maximum cumulative execution time of an LC task
. τi is .(di − ai)u

LO
i , and it happens when the task can finish its execution before . t1.

It means before overrunning of HC task . τ1. Since the EDF-VD algorithm is used
for task scheduling, then .di ≤ x × d1 	⇒ di ≤ a1 + x(d1 − a1). Since we have
.d1 < t2, therefore . di ≤ a1 + x(t2 − a1)

Lemma For any LC task . τi:

.ηi ≤ (a1 + x(t2 − a1)) × uLO
i + (1 − x)(t2 − a1) × uHI

i (4.15)

To prove, let us consider two cases: LC task . τi is released within interval (.t1, t2]
or it is not.

• Case 1 (task . τi is released within the time interval (.t1, t2]):

– With carry-over job (.t1 < di): The maximum cumulative execution time of LC
task . τi within the time interval [.0, t2] is . ηi ≤ (ai − 0) × uLO

i + (di − ai) ×
uLO

i + (t2 − di) × uHI
i 	⇒ ηi ≤ di × uLO

i + (t2 − di) × uHI
i .

Since, we mentioned above, .di < (a1 + x(t2 − a1)), then . ηi ≤ (a1 + x(t2 −
a1)) × uLO

i + (t2 − (a1 + x(t2 − a1))) × uHI
i . 	⇒ .ηi ≤ (a1 + x(t2 − a1)) ×

uLO
i + (1 − x)(t2 − a1) × uHI

i

88 4 Safety- and Task-Drop-Aware Mixed-Criticality Task Scheduling

– No carry-over job (.di < t1): The maximum cumulative execution time of LC
task . τi within the time interval [.0, t2] is .ηi ≤ (t1−0)×uLO

i + (t2− t1)×uHI
i .

We mentioned that .t1 < (a1 + x(t2 − a1)). Therefore, . ηi ≤ (a1 + x(t2 −
a1)) × uLO

i + (t2 − (a1 + x(t2 − a1))) × uHI
i . 	⇒ . ηi ≤ (a1 + x(t2 − a1)) ×

uLO
i + (1 − x)(t2 − a1) × uHI

i

• Case 2 (task . τi is not released within the time interval (.t1, t2]): It means the
maximum cumulative execution of these tasks is .ηi ≤ (di − 0) × uLO

i . Now,
we have two cases: .di ≤ t1 and .di > t1. For the first one, since we mentioned,
.t1 < (a1 + x(t2 − a1)), and as we know that .di ≤ t1, then . ηi < t1 × uLO

i

. 	⇒ .ηi ≤ (a1 + x(t2 − a1)) × uLO
i . 	⇒ . ηi < (a1 + x(t2 − a1)) × uLO

i +
(1 − x)(t2 − a1) × uHI

i . Now, for the case of .di > t1, we proved that . di <

(a1 + x(t2 − a1)). Thus, .ηi < di × uLO
i . 	⇒ . ηi ≤ (a1 + x(t2 − a1)) × uLO

i

. 	⇒ . ηi < (a1 + x(t2 − a1)) × uLO
i + (1 − x)(t2 − a1) × uHI

i

Since we calculate the cumulative execution of tasks in the time interval
[.0, t2], there are some LC tasks with .δ = 1, which are executed in the time
interval of [.0, t1]. Therefore, the maximum cumulative execution of these tasks is
.ηi ≤ (t1−0)×uLO

i . Since .t1 < (a1+x(t2−a1)), then .ηi ≤ (a1+x(t2−a1))×uLO
i .

In addition, the maximum cumulative execution of HC tasks in the time interval
[.0, t2] can be computed as .ηi ≤ a1

x
×uLO

i + (t2−a1)×uHI
i . It should be mentioned

that HC tasks are executed with their virtual deadline in the time interval [.0, a1],
and since the HC task . τ1 overruns and the system switches to the HI mode, all tasks
after . a1 will be executed by their actual deadline.

Now, let H denotes the cumulative execution of all tasks in the time interval
[.0, t2]. Thus,

. H ≤
∑

ζi∈LC & δ=1

(a1 + x(t2 − a1)) × uLO
i +

∑

δi∈HC

a1

x
× uLO

i + (t2 − a1) × uHI
i +

.
∑

ζi∈LC & δ>1

(a1 + x(t2 − a1)) × uLO
i + (1 − x)(t2 − a1) × uHI

i 	⇒

. H ≤ (a1 + x(t2 − a1)) × ULO
LC |δ=1 + (a1 + x(t2 − a1)) × ULO

LC |δ>1+
(1 − x)(t2 − a1) × UHI

LC + a1

x
× ULO

HC + (t2 − a1) × UHI
HC 	⇒

.H ≤ (a1 + x(t2 − a1)) × ULO
LC + (1 − x)(t2 − a1) × UHI

LC + a1

x
× ULO

HC+

(t2 − a1) × UHI
HC 	⇒

4.2 FANTOM in Detail 89

. H ≤ a1 × (ULO
LC + ULO

HC

x
) + x(t2 − a1) × ULO

LC + (1 − x)(t2 − a1) × UHI
LC +

(t2 − a1) × UHI
HC (4.16)

As presented in Eq. 4.9, .(ULO
LC + ULO

HC

x
) ≤ 1, and then:

. H ≤ a1 + x(t2 − a1) × ULO
LC + (1 − x)(t2 − a1) × UHI

LC + (t2 − a1) × UHI
HC

(4.17)

Hence, H is the maximum cumulative execution of all tasks. As we mentioned,
. τ2 is one of these tasks that its deadline is missed. Therefore, H would be greater
than . t2 (the time which . τ2 misses its deadline):

. a1 + x(t2 − a1) × ULO
LC + (1 − x)(t2 − a1) × UHI

LC + (t2 − a1) × UHI
HC > t2 	⇒

. x(t2 − a1) × ULO
LC + (1 − x)(t2 − a1) × UHI

LC + (t2 − a1) × UHI
HC > t2 − a1 	⇒

.x × ULO
LC + (1 − x) × UHI

LC + UHI
HC > 1 (4.18)

Therefore, we must have the following inequality (4.14) to guarantee that no HC
task misses its deadline in the HI mode:

. x × ULO
LC + (1 − x) × UHI

LC + UHI
HCT ≤ 1 �

While the inequalities (4.14) and (4.10) are not necessary (just sufficient), the
necessary condition would be driven when the sum of the utilization of LC tasks
(i.e., mission-critical tasks) and HC tasks in the HI mode is higher than 1 or to
guarantee the correct execution of jobs of each task before their individual deadlines
in this HI mode. Thus, the necessary condition for scheduling both HC and LC tasks
by the EDF algorithm in the HI mode and being executed correctly before their
deadlines is the following condition:

.UHI
HC + UHI

LC ≤ 1 (4.19)

4.2.3.3 Conditions to Guarantee Task Schedulability with EDF-VD
Algorithm

Now, we present the value of x to obtain the virtual deadline by multiplying the
actual deadline by x. Then, we present a new condition based on the previous
conditions and the EDF-VD algorithm. By considering the inequalities (4.9)

90 4 Safety- and Task-Drop-Aware Mixed-Criticality Task Scheduling

and (4.14), it could be concluded that the value of x (.d ′
j = x × dj) is obtained

through the inequality (4.20):

.
ULO

HC

1 − (ULO
LC)

≤ x ≤ 1 − (UHI
HC + UHI

LC)

(ULO
LC)) − UHI

LC

(4.20)

Based on the interval for x in this inequality, and according to expression (4.21),
the EDF-VD algorithm chooses the smallest value for x [2]. In addition, as explained
before, we use the fault-tolerance technique, re-execution, to guarantee the correct
execution of all tasks within their safety requirements based on Table 2.1 in any
circumstance. To show how the parameters, such as safety requirements and virtual
deadlines, affect each other, we can rephrase the value of x as follows. In this
expression, when a task is executed and a fault occurs, it needs to be re-executed
for a maximum of (.nζj

− 1) times to guarantee its safety requirement that . ζj is
LC or HC. Hence, the value of x is independent of . δj . As mentioned in Sect. 4.2.1,
the values of parameter . δj has no effect on computing .n′

HC (based on Eqs. (4.2)
and (4.3)):

.x ← ULO
HC

1 − (ULO
LC)

	⇒ x ←
n′

HC × ∑
j∈HC

WCETj

Tj

1 − (nLC × ∑
j∈LC

WCETj

Tj
)

(4.21)

In addition to the mentioned conditions, another condition is required to guar-
antee that the task set would be schedulable by EDF-VD. In this regard, the upper
bound utilization of the system will be computed by exploiting the condition (4.20)
and represented as:

.
ULO

HC

1 − ULO
LC

≤ 1 − (UHI
HC + UHI

LC)

ULO
LC − UHI

LC

⇐⇒

. ULO
HC × (ULO

LC − UHI
LC) ≤ (1 − UHI

HC − UHI
LC) × (1 − ULO

LC) ⇐⇒

.UHI
HC ≤ 1 − UHI

LC − ULO
HC × (ULO

LC − UHI
LC)

1 − ULO
LC

(4.22)

According to inequality (4.22), the upper bound utilization of HC tasks in the
HI mode .(UHI

HC) is obtained. If this condition is satisfied, the given task set is
schedulable by the EDF-VD algorithm under the conditions in FANTOM.

Generally, inspired by the presented conditions, the conditions that should be
investigated in a core to guarantee that a task set is schedulable under EDF-VD

4.2 FANTOM in Detail 91

algorithm in FANTOM are inequalities (4.10) and (4.23). Condition (4.23) is
obtained by using inequalities (4.8) and (4.22):

.max(ULO
HC + ULO

LC ,UHI
HC + UHI

LC + ULO
HC × (ULO

LC − UHI
LC)

1 − ULO
LC

) ≤ 1 (4.23)

4.2.4 System Upper Bound Utilization

In this section, we present the system upper bound utilization in order to enable
MC tasks to be schedulable by the FANTOM. In the end, we present the last
condition that must be guaranteed. We nominate . Up as an upper bound for the task
set, which should be schedulable in both HI mode and LO mode. This bound is
defined as follows:

.Up =max(ULO
HC + ULO

LC ,UHI
HC + UHI

LC) (4.24)

We have explained that the condition (4.20) is sufficient for the task sets to
be schedulable by the EDF-VD algorithm. Hence, by using conditions (4.20)
and (4.24), the following expression could be derived. Here, our goal is to find the
. Up, which still satisfies the following expression. Thereby, we have:

.
ULO

HC

1 − ULO
LC

≤ 1 − (UHI
HC + UHI

LC)

ULO
LC − UHI

LC

(4.25)

Since we have .ULO
HC+ULO

LC ≤ Up ⇒ (ULO
HC ≤ Up−ULO

LC and also . UHI
HC+UHI

LC ≤
Up ⇒ 1 − (UHI

HC + UHI
LC) ≤ 1 − Up:

.
Up − (ULO

LC)

1 − (ULO
LC)

≤ 1 − Up

(ULO
LC) − UHI

LC

(4.26)

This condition will be satisfied if and only if:

.(ULO
LC)2 − ULO

LC × (1 + UHI
LC) + 1 + Up × (−1 + UHI

LC) ≥ 0 (4.27)

Accordingly, if Eq. (4.28) is met, expression (4.29) will be obtained according to
the expression (4.27) (which is always true for each of the low-criticality utilization
in [0, 1)):

.1 + Up × (−1 + UHI
LC) = (1 + UHI

LC)2

4
(4.28)

92 4 Safety- and Task-Drop-Aware Mixed-Criticality Task Scheduling

.(ULO
LC − 1 + UHI

LC

2
)2 ≥ 0 (4.29)

By simplification of Eq. (4.28), it will turn into:

.Up = 3 + UHI
LC

4
(4.30)

Accordingly, it could be concluded that the upper bound .(Up) depends on the
utilization of the LC tasks in the HI mode. It means .(Up) depends on the parameter

of . δj , which is different for each LC task (.UHI
LC = ∑

j∈LC

(δj −1)×WCETj

(δj ×Tj)
). Since the

. Up is the utilization bound of the system, which is run on a single-core processor,
its maximum value is 1. In the case of .ULO

LC + ULO
HC < UHI

LC + UHI
HC , then . Up =

UHI
LC +UHI

HC . Therefore, according to equality (4.30), in addition to inequality (4.22),
another condition and upper bound for .UHI

HC should be checked to guarantee the
schedulability of a task set in the HI mode, if we have .ULO

LC +ULO
HC < UHI

LC +UHI
HC ,

which is:

.UHI
HC ≤ 3(1 − UHI

LC)

4
(4.31)

4.2.5 A General Design Time Scheduling Algorithm

Now, we review the proposed approach algorithm at design-time and show which
of the presented conditions need to be checked. The pseudo-code of our scheduling
algorithm has been illustrated in Algorithm 4.1, which explains the mechanism of
the schedulability test. In summary, at the beginning and according to Eq. (4.1),
we calculate the re-execution profiles for each task (either high or low). Also, we
calculate the minimum re-execution profiles for HC tasks through Eq. (4.2) (line 1).
Subsequently, the utilizations are calculated (line 2). In addition, we calculate the
maximum re-execution profiles for HC tasks through the schedulability test (line
3). If the maximum re-execution profile is more than the minimum one, we select
this amount as .n′

HC and consequently, the utilization of HC tasks in the LO mode is
calculated. Otherwise, the algorithm will return a false value (lines 4–8). According
to Algorithm 4.1, at the first stage, FANTOM evaluates the utilization bound in
both LO mode and HI mode. If they are less than 1, it means the task set can be
scheduled by the EDF in both modes (lines 10–13). Otherwise, the inequality (4.10)
is evaluated in order to check whether both of the HC tasks and LC tasks with
.δj > 1 (which are mission-critical tasks) are executed in the HI mode or not. In
addition, the two mentioned conditions in inequality (4.23) and also Eq. (4.31) in
case of .ULO

LC + ULO
HC < UHI

LC + UHI
HC will be evaluated to test the schedulability of

the task set (line 15). If all the conditions are met, the virtual deadline coefficient

4.3 Evaluation 93

Algorithm 4.1 Design-Time Scheduling Method Pseudo Code
Schedulability Test(Task Set)
1: (nLC, nHC) are obtained by Eq. (4.1) & (n′

HC) by Eq. (4.2)
2: (UHC,UHI

HC,ULO
LC , U

HI
LC) ← Util_Computation (taskset,nLC, nHC)

3: n′
2 = sup {max(n × UHC + ULO

LC , U
HI
HC + UHI

LC + n×UHI ×(ULO
LC −UHI

LC)
1−ULO

LC
) ≤ 1};

4: if n′
HC < n′

2 then
5: n′

HC = n′
2

6: else
7: return “The task set is not schedulable”
8: end if
9: (ULO

HC) ← Util_Computation (taskset,n′
HC)

10: if UHI
HC + UHI

LC ≤ 1 & ULO
HC + ULO

LC ≤ 1 then
11: T̂i ← Ti for all tasks
12: Schedule Task set with EDF Algorithm
13: return “The task set is schedulable”
14: else
15: if Eq. (4.10) & Eq. (4.23) are satisfied & [(ULO

LC + ULO
HC < UHI

LC + UHI
HC &

Eq. (4.31)) || (ULO
LC + ULO

HC ≥ UHI
LC + UHI

HC)] then
16: x ← is computed by Eq. (4.21)
17: if Eq. (4.14) is satisfied then
18: T̂i ← Ti × x for each HC task
19: Schedule Tasks with modified EDF-VD Algorithm
20: return “The task set is schedulable”
21: else
22: return “The task set is not schedulable”
23: end if
24: else
25: return “The task set is not schedulable”
26: end if
27: end if

will be assigned with the minimum value (line 16). Hence, the virtual deadlines
of HC tasks will be obtained by using the mentioned value in Eq. (4.21). Then, the
sufficient condition of Eq. (4.14) is checked (line 17). If this equation is satisfied and
the algorithm returns the true value, the task set will be scheduled by the EDF-VD
algorithm (in which all LC tasks will be dropped in every . δj in the HI mode (lines
18–20)). On the other hand, if none of the conditions are met, the task set cannot be
scheduled and the algorithm will return a false value (lines 22 and 25).

4.3 Evaluation

In this section, the experimental results of the FANTOM are validated through
extensive simulations on two case studies from the avionics domain presented in [1]
and [9]. Then, we evaluate the impact of MC task’s parameter variations in the
schedulability test of the task sets.

94 4 Safety- and Task-Drop-Aware Mixed-Criticality Task Scheduling

4.3.1 Evaluation with Real-Life Benchmarks

4.3.1.1 First Case Study of Flight Management System (FMS)

Avionic real-life applications have been used in different papers to evaluate their
presented methods [1, 10, 11]. To evaluate our method, we use the Flight Manage-
ment System (FMS) application introduced in [1], which consists of seven tasks
from level B and four tasks from level C of safety requirement table (Table 2.1).
We consider the tasks from level B as HC tasks and the tasks from level C as
mission-critical tasks. Therefore, there are no noncritical tasks in this task set. We
can also define different values for the PoF of each task. To evaluate this part, this
parameter is assumed to be .10−5 [1, 12]. In addition, the value of the skip parameter
for all LC tasks is considered to be .δ = 4. According to Eqs. (4.1) and (4.2), the
number of re-executions for all of the tasks is calculated and set to .nLC=.nHC=3 and
.n′

HC=2, respectively, to guarantee the safety requirements of the tasks without task
killing and service degradation. Figure 4.3 represents the impact of FANTOM on the
system schedulability. As shown in this figure, by increasing .n′

HC , the utilization
of the system will be increased due to the HC tasks’ low utilization increment
in inequality (4.23). In addition, the system will no longer be schedulable when
.n′

HC > 2. On the other hand, by increasing .n′
HC (the redundancy for HC tasks

needs to be increased), the PFH of LC tasks will be decreased and consequently, the
system’s safety could be improved. In essence, the probability of mode switching
would be decreased and as a result, the LC tasks will be dropped less likely. Hence,
by assigning .n′

HC = 2, PFH of LC tasks will be .10−10 and the utilization will be
.0.95, which is less than 1.

4.3.1.2 Second Case Study of Flight Management System (FMS)

Here, we investigate a set of real tasks, in which HC tasks have the safety
requirement of level A. There is a case study for FMS application, introduced in [9],
which consists of four tasks, three tasks from level A (responsible for executing
the necessary control steps and essential for a reliable flight behavior) and one task
from level B (responsible for detecting the objects). For this example, the number

Fig. 4.3 FANTOM
implementation for FMS
application: case study 1

0 1 2 3 4

n HI
'

0.7

0.8

0.9

1

1.1

1.2

U
M

C

-20

-15

-10

-5

0

L
og

 1
0

PF
H

(L
O

) Log 10 PFH (LO)
UMC

4.3 Evaluation 95

Fig. 4.4 FANTOM
implementation for FMS
application: case study 2

n HI
'

0.9

1

1.1

1.2

1.3

U
M

C

-20

-15

-10

-5

0

L
og

 10
 PF

H
(L

O
) Log 10 PFH(LO)

UMC

0 1 2 3 4

of re-executions is set to .nHC = 3, .nLC = 1, and .n′
HC = 2, respectively. By having the

same setting as the previous case study, Fig. 4.4 depicts the impact of FANTOM on
system schedulability and LC task’s PFH. As shown, the system is not schedulable
for .n′

HI > 2. Therefore, by assigning .n′
HI = 2, PFH of LC task is .10−9 (<.10−7)

and .UMC = 0.96.
In general, the safety requirement of HC (LC) tasks affects the number of

re-executions (.nHC(.nLC)), and consequently, the utilization and the number of
re-executions for HC tasks in the LO mode (according to Eq. (4.2)) are changed.
Hence, according to the Eq. (4.1), the number of re-executions for HC tasks and
LC tasks depends on the task properties, such as WCET, PFH, and the number of
tasks in each level. For example, for the same number of tasks and WCET for each
task, if PFH is changed from .10−7 to .10−9 for the tasks’ level, the number of re-
execution may be increased to guarantee the safety requirement.

4.3.2 Evaluation with Synthetic Task Sets

4.3.2.1 Experimental Setup

In the following, the FANTOM has been evaluated by exploiting random MC task
sets. These sets have been generated through the provided technique in [1, 2]. As
an input parameter, the system’s utilization (.Ubound) is obtained as equality (4.24),
which should be less than 1. In the beginning, the .Ubound for the generated tasks
are set to zero (i.e., the task system is initialized to be empty), and afterward, new
tasks will be added to the task set in a random manner to increase the .Ubound until a
certain value (.Ubound is increased with steps of .0.05). The period (. T) and utilization
of the tasks are generated uniformly within the range of [10, 100] and [0.01, 0.1],
respectively. According to conditions, for each data-point (i.e., .Ubound) in the range
of [0.05, 1], 1000 task sets are generated and evaluated from the schedulability and
fault-occurrence perspectives. In the end, the ratio of task sets, which were deemed
as schedulable, will be reported.

In the established simulations, we have considered HC tasks from level A,
LC tasks from level B to E, mission-critical tasks from level B or C, and non-
mission-critical tasks from level D and E. Furthermore, the value of the parameter

96 4 Safety- and Task-Drop-Aware Mixed-Criticality Task Scheduling

(. δ) is randomly generated between one and the maximum amount of this parameter
for LC tasks. As the maximum amount of this parameter is considered to be
determined by the designer, we investigate the results by varying the maximum
amount in the range of [2,16] in the next subsection.

The efficiency of FANTOM has been investigated through extensive simula-
tions and its comparison with the provided algorithms in [1] ([HYT14]) and
[13] ([Al+16]). Researchers in [1] use EDF-VD to schedule the tasks. Also,
researchers in [13] use the FP scheduling algorithm that is based on apply-
ing Response Time Analysis (RTA). In this regard, our observations are categorized
into five subsections. There are some graphs relating to the results in which the .y-
axis represents the fraction of schedulable task sets, which is called the acceptance
ratio, and the .x-axis represents utilization. It should be noted that since the . Ubound

shows the utilization of task sets before applying the fault-tolerance technique and
calculating the utilization in the LO mode and HI mode, the maximum utilization
bound that the task set is schedulable has a small amount in graphs.

4.3.2.2 Effect of Varying LC Task’s Parameter (δ)

In the beginning, we evaluate the effects of varying maximum value of the newly
defined parameter (. δ) for LC tasks. As a result, according to Fig. 4.5, by reducing the
maximum value of parameter . δ, the acceptance ratio will be slightly improved. The
reason is that, in the case of increasing this parameter, the utilization of LC tasks in
the HI mode will be increased due to Eq. (4.6). Therefore, the system schedulability
will be decreased considerably according to inequality (4.23). If .max(δ) = 1, it
means all LC tasks are noncritical and dropped in the HI mode. Indeed, there is no
mission-critical task in the system. In this case, the acceptance ratio of the proposed
approach is the same as the acceptance ratio of the method, proposed in [1], in which
all LC tasks are dropped when the system switches to the HI mode. Indeed, there
is no restriction for the system safety when none of the LC tasks are relevant to
it. Besides, if .max(δ) = 4, it means LC tasks can have .δ = 1, .δ = 2, .δ = 3, or
.δ = 4. Therefore, both noncritical tasks and mission-critical tasks are scheduled in
the system as LC tasks. Hence, the significance of the proposed method is when
there are some mission-critical tasks in the system, and in this case, the proposed
method performs better than [1].

In the rest of this chapter, we consider .max(δ) = 4 to show the efficacy of our
proposed method.

4.3.2.3 Acceptance Ratio of Schedulable Task Sets

We further compare the fraction of task sets, which could be scheduled under
FANTOM, the traditional fault-tolerant EDF-VD algorithm [1], and fault-tolerant
FP algorithm [13]. This fraction is defined as the acceptance ratio. Researchers
in [1] have considered both task killing and service degradation for LC tasks in

4.3 Evaluation 97

Fig. 4.5 Acceptance ratio
with varying the parameter
(. δ) for LC tasks

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.2

0.4

0.6

0.8

1

Ubound

A
cc

ep
ta

nc
e

R
at

io

Max(δ) = 1
Max(δ) = 2
Max(δ) = 4
Max(δ) = 8
Max(δ) = 16

Fig. 4.6 Acceptance ratio of
FANTOM with .max(δ)= 4 in
comparison with methods
of [1] (HYT14) and
[13] (Al+16)

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.2

0.4

0.6

0.8

1

Ubound

A
cc

ep
ta

nc
e

R
at

io
 FANTOM

Method of [8]

Method of [15]

]41TYH[
]61+-lA[

FANTOM

the HI mode. We use task killing of LC tasks by considering the QoS of LC tasks
and execute them as much as possible in the HI mode to have a fair comparison.
In addition, researchers in [13] have striven to increase the QoS of LC tasks in
the HI mode, which we examine here. Accordingly, in this subsection, we have
assumed that 40% of them are HC tasks and 60% are LC tasks that 30% of LC tasks
are considered as mission-critical tasks and the remaining 30% are non-mission-
critical tasks (with .δ = 1). It should be noted that a task set is schedulable if all
tasks can be scheduled in the LO mode, and then after switching to the HI mode,
all HC tasks would be executed and also, LC tasks cannot be frequently dropped.
As shown in Fig. 4.6, when the utilization of the system is smaller than .0.225, the
tasks are always schedulable by both algorithms, which use EDF-VD. By increasing
the utilization bound, the proposed algorithm could always schedule the task sets as
long as the utilization is smaller than .0.275. Furthermore, Fig. 4.6 explains that the
proposed algorithm can improve the acceptance ratio by up to 43.9% and 65.9%
compared to the traditional fault-tolerant EDF-VD algorithm [1] and fault-tolerant
FP algorithm [13], respectively. Since the EDF-VD is used in both our proposed
method and [1], in the rest of this chapter, we show the effectiveness of our proposed
method in comparison with [1].

4.3.2.4 Effects of Using Fault-Tolerance Techniques

Now, we compare our proposed fault-tolerant scheme with the case when there
is no fault-tolerant mechanism in the system. Indeed, we compare to a traditional
non-MC scheduling algorithm in which the regular EDF algorithm is presented and

98 4 Safety- and Task-Drop-Aware Mixed-Criticality Task Scheduling

Fig. 4.7 Safety requirement
guarantee for the system with
and without fault
consideration

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
12

9

6

3

0
2

Ubound

L
og

10
 (P

FH
) PFH (LCT) Proposed Scheme

PFH (LCT) Traditional Scheme
PFH (HCT) Proposed Scheme
PFH (HCT) Traditional Scheme)CH(

)CH(
)CL(

()CL(

applied in many previous studies [14]. Using the fault-tolerance techniques such as
re-execution to guarantee the system’s reliability and safety requirement has timing
overheads, which is a common practice [15]. However, since the MC systems are
safety-critical, its correct operation throughout a complete time interval is crucial
even in the case of fault occurrence to prevent catastrophic consequences [16].
Figure 4.7 depicts that the proposed approach preserves the PFH of mission-
critical tasks, and HC tasks, to less than .10−7 and .10−9 (introduced in Table 2.1),
respectively, in any .Ubound that the system is schedulable. In comparison, the
traditional scheme has severely damaged the system’s safety, which is not desirable.
It should be noted that, as mentioned in the previous subsection, the system is not
schedulable for .Ubound ≥ 0.6. Therefore, the results of the PFH for both mission-
critical tasks and HC tasks are not shown for .Ubound ≥ 0.6.

4.3.2.5 Effects of HC Task Run-Time Behaviors (P(WCET LO))

In this subsection, we evaluate the effect of changing the run-time behaviors
of HC tasks on the acceptance ratio. P(.WCET LO) denotes the probability that
HC tasks execute with their WCET in the LO mode (.WCET LO

i) (as discussed
before, HC tasks may overrun and use their WCET in the HI mode). It can be seen
that if the inequalities (4.10) and (4.23) are satisfied offline, the task set will be
schedulable in both criticality modes. Hence, the schedulability of the task set is not
affected by the variation of P(.WCET LO) in run-time.

4.3.2.6 Effect of Varying PoF for Task Instances

We evaluate the impact of varying PoF (. f) on the system schedulability. Here, we
assumed that 40% of tasks are HC tasks and 70% of the tasks are LC tasks (30%
mission-critical task with .1 < δ ≤ 4, and 30% non-mission-critical tasks with
.δ = 1). As shown in Fig. 4.8, the acceptance ratio increases as (. f) decreases from
.10−5 to .10−7 and also from .10−7 to .10−9 in both our proposed method and the
method proposed in [1]. The reason is that decreasing . f means using a more reliable

4.3 Evaluation 99

Fig. 4.8 Acceptance ratio
with varying the PoF, and
.max(δ)= 4 in FANTOM and
method of [1] (HYT14)

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.2

0.4

0.6

0.8

1

Ubound

A
cc

ep
ta

nc
e

R
at

io
 Log10(f) = 5

Log10(f) = 9

FANTOM Log10(f) = 5

FANTOM Log10(f) = 7

FANTOM Log10(f) = 9

f

f[HYT14]

[HYT14]

Fig. 4.9 Acceptance ratio
with varying P(HC) in
FANTOM and method
of [1] (HYT14)

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.2

0.4

0.6

0.8

1

Ubound

A
cc

ep
ta

nc
e

R
at

io
 FANTOM P(HCT)= 0.4

[8] P(HCT)= 0.4
FANTOM P(HCT)= 0.6
[8] P(HCT)= 0.6
FANTOM P(HCT)= 0.8
[8] P(HCT)= 0.8[HYT14]- P(HC)= 0.8

[HYT14]- P(HC)= 0.6

[HYT14]- P(HC)= 0.4

FANTOM- P(HC)= 0.8

FANTOM- P(HC)= 0.6

FANTOM- P(HC)= 0.4

platform to have a safer system. However, the acceptance ratio of our proposed
method is always better than the result of the proposed method in [1].

4.3.2.7 Effects of Task Mixtures with Varying P(HC) and P(MCT)

Now, we evaluate the effect of HC task distribution variation on the acceptance
ratio. Note that since we are unaware of all real-life applications and the number
of each type of critical level, we studied our proposed method’s behavior with
different parameter values. Here, .P(HC) denotes the ratio of HC tasks to all of the
generated tasks. Here, in each scenario, we assume that the ratio of mission-critical
tasks to all of the generated tasks is constant and the ratio of non-mission-critical
tasks to all will be varied. Figure 4.9 shows that the acceptance ratio improvement
becomes pronounced when there are fewer HC tasks in a task set (i.e., when P(HC)
is decreased). However, when there are fewer HC tasks in a task set, there will be
lesser number of system switches to the HI mode, and even by the occurrence of
a mode switch, the system will switch back in earlier time (i.e., after a relatively
shorter period of time). Consequently, the HI mode and LO mode will overlap less
in time. In addition, LC tasks would fail less. This reasoning can also be obtained
by exploring the condition (4.23). Besides, the same trend is found for [1], except
that the proposed schemes always perform better than [1].

Similar to the above case, in Fig. 4.10, we evaluate how the number of mission-
critical tasks affects the acceptance ratio (shown by .P(MCT)). We assume that
the ratio of HC tasks to LC tasks is constant and the ratio of the mission-critical
tasks to non-mission-critical tasks in the task set is the only varying parameter. In
addition, the distribution of HC tasks in a task set has been considered as a constant
value (. 0.3). According to equality (4.30), since the upper bound utilization may

100 4 Safety- and Task-Drop-Aware Mixed-Criticality Task Scheduling

Fig. 4.10 Acceptance ratio
with varying P(MCT) in
FANTOM and method
of [1] (HYT14)

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.2

0.4

0.6

0.8

1

Ubound

A
cc

ep
ta

nc
e

R
at

io
 FANTOM P(MCT)=0.2

[8] P(MCT)=0.2
FANTOM P(MCT)=0.4
[8] P(MCT)=0.4
FANTOM P(MCT)=0.6
[8] P(MCT)=0.6[HYT14]- P(MCT)= 0.6

[HYT14]- P(MCT)= 0.4

[HYT14]- P(MCT)= 0.2

be influenced by the mission-critical tasks, the acceptance ratio will be changed.
According to Fig. 4.10, it is evident that we would have a noticeable amount of
improvement as the utilization of mission-critical tasks is reduced. Decreasing the
number of mission-critical tasks in a task set can cause a reduction in utilization and
consequently, more tasks can be scheduled.

To this end, based on the results, we can conclude that by minimizing the
ratio of HC tasks and mission-critical tasks in a task set, the upper bound will
be maximized. In addition, the acceptance ratio of schedulable tasks would be
increased by decreasing the task’s PoF (i.e., a more reliable hardware platform is
used).

4.4 Conclusions

This chapter presents a heuristic in which we introduced a new parameter, analyzed
task-drop-aware scheduling for uni-processor MC systems, and guaranteed the
safety requirements of MC tasks in the presence of faults. Existing tasks in these
systems have different criticality levels from real-time and safety perspectives.
In some MC systems, some LC tasks should not be frequently dropped in the
HI mode to prevent catastrophic consequences. Therefore, by defining a new
parameter (which specifies the minimum interval between two consecutive drops)
that designers determine, we propose a task-drop-aware scheduling analysis based
on the EDF-VD to schedule both types of tasks in the HI mode. We analyzed
the results by varying different parameters in the system and obtained that the
proposed method improves the acceptance ratio by up to 43.9% compared to the
state of the art. Besides, in order to extend the proposed approach for five criticality
levels (according to DO-178B standard), first, we have to know the importance
of functions and how they can be dropped in the higher criticality modes to have
no impact on system functionality. Then based on this knowledge, the MC task
schedulability is analyzed and checked.

FANTOM guarantees the real-time constraints in the worst-case scenario. How-
ever, the system does not always exhibit the worst-case behavior at run-time.
Besides, the proposed approach cannot adapt the system to task execution dynamism

References 101

at run-time in order to optimize an objective. Therefore, we will propose a method in
the next chapter to improve the QoS based on the dynamic changes in task execution
times at run-time.

References

1. P. Huang, H. Yang, and L. Thiele. “On the scheduling of fault-tolerant mixed-criticality
systems”. In: Proc. on Design Automation Conference (DAC). 2014, pp. 1–6.

2. S. Baruah et al. “The preemptive uniprocessor scheduling of mixed-criticality implicit-deadline
sporadic task systems”. In: Proc. of Euromicro Conference on Real-Time Systems (ECRTS).
2012, pp. 145–154.

3. Sanjoy K Baruah et al. “Mixed-criticality scheduling of sporadic task systems”. In: European
Symposium on Algorithms. 2011, pp. 555–566.

4. Pengcheng Huang et al. “Energy efficient dvfs scheduling for mixed-criticality systems”. In:
Proc. on Embedded Software (EMSOFT). 2014, pp. 1–10.

5. Sanjoy Baruah et al. “Scheduling real-time mixed-criticality jobs”. In: IEEE Transactions on
Computers (TC) 61.8 (2012), pp. 1140–1152.

6. Z. Guo et al. “Uniprocessor Mixed-Criticality Scheduling with Graceful Degradation by
Completion Rate”. In: Proc. on IEEE Real-Time Systems Symposium (RTSS). 2018, pp. 373–
383.

7. D. Liu et al. “Scheduling Analysis of Imprecise Mixed-Criticality Real-Time Tasks”. In: IEEE
Transactions on Computers (TC) 67.7 (2018), pp. 975–991.

8. D. Liu et al. “EDF-VD Scheduling of Mixed-Criticality Systems with De-graded Quality
Guarantees”. In: Proc. on IEEE Real-Time Systems Symposium (RTSS). 2016, pp. 35–46.

9. P. Ittershagen, K. Gruttner, and W. Nebel. “Mixed-criticality system modelling with dynamic
execution mode switching”. In: Proc. of Forum on Specification and Design Languages (FDL).
2015, pp. 1–6.

10. Michael Zimmer et al. “FlexPRET: A processor platform for mixed-criticality systems”. In:
Proc. of Real-Time and Embedded Technology and Applications Symposium (RTAS). IEEE.
2014, pp. 101–110.

11. Steve Vestal. “Preemptive scheduling of multi-criticality systems with varying degrees of
execution time assurance”. In: Proc. of Real-Time Systems Symposium (RTSS). IEEE. 2007,
pp. 239–243.

12. Luyuan Zeng, Pengcheng Huang, and Lothar Thiele. “Towards the Design of Fault-tolerant
Mixed-criticality Systems on Multicores”. In: Proc. of Compilers, Architectures and Synthesis
for Embedded Systems (CASES). Pittsburgh, Pennsylvania, 2016, 6:1–6:10. ISBN: 978-1-4503-
4482-1.

13. Zaid Al-bayati et al. “A four-mode model for efficient fault-tolerant mixed-criticality systems”.
In: Proc. on Design, Automation & Test in Europe Conference & Exhibition (DATE). 2016,
pp. 97–102.

14. Giorgio C Buttazzo. Hard real-time computing systems: predictable scheduling algorithms and
applications. Vol. 24. Springer Science & Business Media, 2011.

15. Israel Koren and C Mani Krishna. Fault-tolerant systems. Morgan Kaufmann,2020.
16. A. Taherin, M. Salehi, and A. Ejlali. “Reliability-Aware Energy Management in Mixed-

Criticality Systems”. In: IEEE Transactions on Sustainable Computing (TSUSC) 3.3 (2018),
pp. 195–208.

Chapter 5
Learning-Based Drop-Aware
Mixed-Criticality Task Scheduling

As mentioned in the previous chapter, the low WCETs remain unchanged during
run-time in static approaches, like FANTOM, which causes the system to be
underutilized due to the unnecessary dropping of some LC tasks. Therefore, it
is necessary to consider the run-time behavior of MC systems along with the
assumptions that have been made at design-time (i.e., monitoring the state of the
system and controlling the task dropping in the HI mode), to improve the utilization
and QoS of LC tasks. Although there are some run-time approaches that improve
the QoS by proposing a new scheduling policy or exploiting the dynamic slacks,
the decision may be ineffective due to the lack of complete observation of the MC
system’s behavior, and there may be no guarantee of meeting the LC tasks’ service
requirements.

To this end, we propose a novel optimistic mechanism in this chapter that reduces
the number of drops for the LC tasks by observing the system’s behavioral changes
at run-time. This goal has been achieved by exploiting the generated dynamic
slacks in the decision-making process for the online task dropping to execute more
LC tasks in the HI mode and enhance their schedulability. Since we are unaware of
the amount of generated dynamic slacks during run-time in advance, ML approaches
can be employed as a management technique for the prediction. Therefore, utilizing
ML techniques as part of the proposed scheme has enabled it to partially exploit
the dynamic slack to improve the QoS for the LC tasks in the HI mode. In these
schemes, the learner finds the optimum drop rate for the LC tasks, prevents frequent
drops in HI mode, and consequently reduces their deadline miss rate. We also extend
the proposed mechanism, which is lenient in applying the learned drop-rate data to
the scheduler. Accordingly, the main contributions of this chapter are:

• Presenting a novel adaptive technique with high QoS to schedule MC tasks at
run-time

• Proposing a learning-based drop-aware MC task scheduling mechanism, called
SOLID, to improve the QoS by exploiting the generated dynamic slacks rigor-
ously, during run-time with no HC tasks’ deadline misses

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024
B. Ranjbar et al., Quality-of-Service Aware Design and Management of Embedded
Mixed-Criticality Systems, https://doi.org/10.1007/978-3-031-38960-3_5

103

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-38960-3protect T1	extunderscore 5&domain=pdf
https://doi.org/10.1007/978-3-031-38960-3_5
https://doi.org/10.1007/978-3-031-38960-3_5
https://doi.org/10.1007/978-3-031-38960-3_5
https://doi.org/10.1007/978-3-031-38960-3_5
https://doi.org/10.1007/978-3-031-38960-3_5
https://doi.org/10.1007/978-3-031-38960-3_5
https://doi.org/10.1007/978-3-031-38960-3_5
https://doi.org/10.1007/978-3-031-38960-3_5
https://doi.org/10.1007/978-3-031-38960-3_5
https://doi.org/10.1007/978-3-031-38960-3_5
https://doi.org/10.1007/978-3-031-38960-3_5

104 5 Learning-Based Drop-Aware Mixed-Criticality Task Scheduling

• Extending the proposed mechanism (SOLID) to a mechanism that uses accumu-
lated dynamic slack moderately, called LIQUID

The rest of this chapter is organized as follows: In Sect. 5.1, we present a
motivational example along with a problem statement to explain the problem to
the readers better. The proposed approaches are discussed in detail in Sect. 5.2, and
finally, we analyze and conclude the experiments in Sects. 5.3 and 5.4, respectively.

5.1 Motivational Example and Problem Statement

The main motivation for our proposed method comes from the fact that the MC
systems are typically designed in a way that they are obliged to map and schedule
the tasks in the worst-case scenario at design-time, before the system starts its
operation. This is despite the fact that the application’s QoS, system utilization,
and deadline miss rate of LC tasks in case of HI mode switching will be affected
while the application is executing at run-time. Indeed, the properties of MC systems
can be improved according to the status of the tasks’ execution over time. To
support this claim, let us consider a simple drone application composed of five
tasks .(τ1, . . . , τ5). The tasks’ timing parameters have been shown in Table 5.1.
The period of task . τi (. Ti) is equal to the task’s relative deadline. Besides, since
the EDF-VD algorithm is used to schedule the task, a virtual deadline (. d̂i , which is
less than the relative deadline) is needed to be defined for HC tasks (the detail of
how it is computed has been explained in [1]).

In this example, . τ1, . τ2, and . τ5 are HC tasks and . τ3 and . τ4 are LC tasks. Each
task function is determined in Table 5.1. Dropping an LC task, such as . τ3, could be
acceptable in HI mode, but it should not frequently happen due to its responsibility.
For instance, in multimedia tasks, e.g., . τ3, the maximum drop rate (i.e., the rate
of skipping the videos) must be guaranteed when the MC systems are designed
to satisfy the customers. More specifically, the minimum QoS of LC tasks must
be guaranteed in the HI mode. Hence, most of the previously MC scheduling
algorithms have been designed based on the maximum drop rate of LC tasks
before the system starts its operation. Furthermore, these rates are kept constant
during the tasks’ operation at run-time when the system switches to the HI mode.
Figure 5.1 illustrates four task scheduling approaches, including (1) method of [1],
a design-time approach that drops all LC tasks in the HI mode; (2) FANTOM [2],
the design-time approaches, which drop LC tasks based on their drop rates in the
HI mode; (3) FANTOM [2], investigating their approaches at run-time; and finally,
(4) proposed method in this chapter. According to this figure, each task has several
jobs, released at the beginning of its period. Therefore, a released job (j) of task . τi

is shown by .J (i, j) with an upward arrow.
Figure 5.1a depicts the task scheduling procedure under the principles of the

proposed mechanism in [1]. Accordingly, assume that all of the tasks should
comply with their specified time budget (.WCET LO and .WCET HI) to be executed

5.1 Motivational Example and Problem Statement 105

Table 5.1 The mixed-criticality task set

Task function .ζi .WCET LO
i .WCET HI

i .Ti .d̂i . δi

.τ1 Engine control HC 2 7 24 11 . ∞

.τ2 Collision avoidance HC 2 4 48 22 . ∞

.τ3 Video capturing and transferring LC 2 2 8 – 3

.τ4 Sensor data recording LC 2 2 6 – 4

.τ5 Navigation HC 0.8 1 12 6 . ∞

Fig. 5.1 Scheduling of MC tasks under different policies. (a) Task scheduling mechanism in
[1] (worst-case scenario). (b) Task scheduling mechanism in [2] (worst-case scenario). (c) Task
scheduling mechanism in [2] (run-time). (d) The proposed task scheduling mechanism in this
chapter

correctly. This figure shows that the system switches to the HI mode by . τ5
overrunning. In this figure, the jobs of . τ3 (.J (3, 1), J (3, 2)), and . τ4 (.J (4, 2), J (4, 3))
are dropped twice in the HI mode, which is not acceptable in many MC applications.
Figure 5.1b shows a scheduling mechanism that can schedule LC tasks in the

106 5 Learning-Based Drop-Aware Mixed-Criticality Task Scheduling

HI mode [2]. Accordingly, the LC tasks are dropped based on their predefined drop-
rate parameters. Hence, as mentioned in Sect. 4.1, the drop-rate parameter is defined
to limit the number of drops per LC task. In other words, it determines the minimum
interval between two consecutive drops. In this scenario, only .J (3, 1), and . J (4, 2)

will not be executed in the HI mode. As it can be seen, the presented approach
in FANTOM [2] enables the MC system to schedule LC tasks in the HI mode
and improves the LC tasks’ QoS. Nevertheless, their design principles in the MC
systems are all considered in the worst-case scenario of the task execution, which
is not optimal. At run-time, the tasks are typically finished earlier than their WCET
in most cases, and then some dynamic slack would be created. As an example,
Fig. 5.1c shows the run-time behavior of the system, where some dynamic slack has
been generated, and the tasks have finished their execution earlier. Therefore, other
tasks could start their execution earlier, and the core would spend more time in the
idle mode, compared to the scheduling mechanism depicted in Fig. 5.1b.

Based on what we have learned, it is recommended that the system should be able
to manage its behavior during run-time, to minimize the drop rate of some LC tasks
in the HI mode. As a result of this action, the QoS will be enhanced, e.g., less video
will be skipped, which is desirable. Figure 5.1d represents the task scheduling at
run-time, where the dynamic slack has been used to minimize the drop rate when
the system is in the HI mode (such as .J (3, 1) and .J (4, 2) which are not dropped).
Although we are not aware of the amount of dynamic slack in advance, they could
be exploited to improve the QoS.

Motivated by the abovementioned example, prior to explaining the details of our
novel scheduling technique, we define the constraints, and the objective function, as
follows:

Deadline Constraints Each HC task . τi with the WCET (.WCET
LO/HI
i), running

on core .crj must finish its execution (.FT imei is the finish time of task . τi) correctly
before its deadline (. di) in both LO mode and HI mode. In addition, all LC tasks
must finish their execution before their deadlines in LO mode. Besides, in case of
switching to the HI mode, most LC tasks must finish their execution before their
deadlines according to their drop rate . δi :

∀τi, & ζi = HC : FT ime LO/HI
i ≤ di

∀τi, & ζi = LC :
{

Mode = LO : FT imeLO
i ≤ di

Mode = HI : FT imeLO
i ≤ di |δi

(5.1)

Objective Function We optimize the MC system QoS at run-time by maximizing
the LC tasks’ QoS in the system by utilizing the following objective function:
Maximize .QoSsys or Minimize .DMRsys , where DMR is the deadline miss rate and
the QoS is defined as the percentage of executed LC tasks in the HI mode to all
LC tasks [2–4] (.QoS = nsucc

L /nL, where . nL is the number of all LC tasks and . nsucc
L

is the number of executed LC tasks before their deadlines in the HI mode), which
can be optimized by optimizing their drop rates (. δi) (.QoSsys = nsucc

L /nL). The QoS

5.2 Proposed Method in Detail 107

is computed at the end of each hyper-period based on the number of non-executed
LC tasks. Hence, the hyper-period is the LCM of all tasks’ periods.

The problem is how to use the generated dynamic slack at run-time to maximize
the QoS for satisfying the timing constraint. While we are not aware of the amount
of dynamic slack in the future, it is possible to turn it into a partially controllable
entity at run-time to optimize the intended objective. This could be done by using
ML techniques. Therefore, this chapter proposes a novel learning-based and drop-
aware scheduling for MC tasks running on a single-core platform. As discussed
below, we utilize our newly proposed technique to use the generated dynamic slack
at run-time to achieve better performance and QoS.

5.2 Proposed Method in Detail

In this section, we present SOLID, a novel Strict learning-Oriented Quality-of-
Service- and Drop-aware task scheduling mechanism for MC systems, to apply
in the run-time phase. As illustrated in Fig. 5.2, our proposed approach contains
a design-time and a run-time phase. Application characteristics, architecture infor-
mation, and QoS metric are counted as inputs and scheduled tasks, and QoS
improvements are the outputs. Accordingly, we first need to analyze the task
schedulability at design-time based on their characteristics (Sect. 5.2.1) to guarantee
the minimum QoS requirement for the system. Therefore, we use the FANTOM
approach to ensure the task schedulability and the minimum QoS. Finally, we
exploit our newly introduced learning-based optimization mechanism at run-time
(Sect. 5.2.2). In the following, we explain the details of the proposed approach in
each of these phases.

5.2.1 An Overview of the Design-Time Approach

This section focuses on task scheduling at design-time. According to Fig. 5.2,
the timing properties of tasks are obtained by running real-world benchmarks on
a hardware platform (more details about the benchmarks and the platform are
provided in Sect. 5.3). We validate the schedulability test using the tasks’ parameters
in the worst-case scenario. Besides, as part of ML technique employment, since
embedded MC systems are the target systems, some aspects of the learning process,
data, and model training are conducted at design-time, with robust offline learning
techniques in the worst-case scenarios. More detail is discussed in Sect. 5.2.2.2.

In order to schedule the tasks on core, a well-known scheduling algorithm,
EDF-VD, is used. Since this algorithm has been widely studied in previous studies,
we mention this algorithm briefly in this and the next subsections. To test the task
schedulability, the EDF-VD scheduling algorithm conditions are employed [1, 2].

108 5 Learning-Based Drop-Aware Mixed-Criticality Task Scheduling

Fig. 5.2 An overview of design-time and run-time phases

Generally, the tasks are schedulable if all HC tasks can be executed correctly before
their deadlines in any condition, and all of the LC tasks could be schedulable in
the LO mode. In the HI mode, LC tasks can be scheduled based on their defined
drop rates (i.e., the LC tasks’ minimum QoS can be guaranteed in the worst-
case scenario). As a result, a set of tasks is schedulable under the EDF-VD in
both operational modes on each core if the following necessary and sufficient
conditions are met [2]. Equation (5.2) presents the maximum utilization bounds
for MC systems in both LO mode and HI mode that it must be less than one to
let the tasks be schedulable under EDF-VD at run-time and also the system switch
safely between the modes. Since the LC tasks must be dropped in the HI mode based
on their drop-rate values with no effect on HC tasks’ execution, Eq. (5.3) presents
the sufficient condition for executing both HC and LC tasks in this HI mode (the
information and the proofs of these conditions have been explained in detail in the
previous chapter):

. UMC = max(ULO
HC + ULO

LC ,UHI
HC + UHI

LC + ULO
HC × (ULO

LC − UHI
LC)

1 − ULO
LC

) ≤ 1

(5.2)

.

∑
ζj ∈HC�HP

Tj
� × WCET HI

j

HP
+

∑
ζj ∈LC(�HP

Tj
� − � HP

Tj ×δj
�) × WCET HI

j

HP
≤ 1

(5.3)

where .Uk
l denotes the total utilization of the tasks with the same criticality level l,

in the mode k, and HP is the hyper-period of the tasks.

5.2 Proposed Method in Detail 109

5.2.2 Run-Time SOLID Approach

The main goal of SOLID is to enhance the LC tasks’ QoS (i.e., minimizing the
number of dropped LC tasks) under the mode switching situation by exploiting
the dynamic slacks at run-time, with no deadline misses of HC tasks in any
situation. This capability has been brought to SOLID by exploiting learning-based
techniques. Note that the learning algorithm and the scheduling algorithm are
independent, and we do not use learning techniques to schedule the tasks. In fact,
the proposed approach is independent of the task scheduling algorithm, and the
learning process is used to improve the QoS independent of scheduling tasks. Here,
any scheduling algorithm can be applied to the tasks; however, this learning-based
task scheduling mechanism is built upon the EDF-VD algorithm. To guarantee
the schedulability of HC tasks in both LO mode and HI mode, when the system
begins its operation, HC tasks are scheduled based on their virtual deadlines, and
the LC tasks are scheduled based on their actual deadlines. In the HI mode, all
HC tasks are scheduled based on their actual deadlines, while the LC tasks will
be scheduled according to the SOLID scheduling principles. It should be mentioned
that although the learning process can be done independently of the scheduler, its
timing overhead to obtain the new drop rate values of LC tasks may be significant in
real-time systems. Therefore, we can consider its timing overhead while checking
the task schedulability. The details of the timing overhead of the learning process
and how it is considered in schedulability test are presented in Sect. 5.3.3. In this
section, we fully describe SOLID, based on the mentioned reinforcement learning
technique in Chap. 3.

5.2.2.1 Learning-Based System Property Optimization

As mentioned in Chap. 3, the general Q-learning/SARSA technique consists of
the three main components [5, 6], including 1) a discrete set of states . S =
{s1, s2, . . . , sl}, 2) a discrete set of actions .A = {a1, a2, . . . , ak}, and 3) reward
function R. The algorithm collects the current state . st and determines the next
action . at (.at ∈ A). The Q-values are updated according to Eq. (3.21) , based on the
corresponding computed reward in every iteration. The algorithm learns the optimal
action in every state, and this process is repeated until a predefined convergence
criterion is met. Note that SARSA and Q-learning are two RL methods and tend
to optimize the results in the end. However, SARSA is an online policy, while
Q-learning is an offline policy. These two different policies lead to different next
action selection and Q-table updating. Since the proposed approach is composed
of offline and online phases, and it is critically important to have a robust offline
training technique for considering the worst-case scenarios before the system gets
operational at run-time, SARSA would be the best choice for finding the optimum
value (because there is no urgency at design-time to find the optimum value).
Therefore, SARSA can explore most of the states in the data training. In this work,

110 5 Learning-Based Drop-Aware Mixed-Criticality Task Scheduling

we set the values of . γ in Eq. (3.21) to 0.2, and . α to 0.5. These values are determined
based on a wide range of experiments, which are set to obtain the best improvement.

5.2.2.2 SOLID Optimization in Detail

In order to maximize the QoS in MC systems, here we propose our learning-based
approach for the operation of the system in HI mode. It should be mentioned that the
time of the system mode changes and how long the system stays in each mode are
unknown. As a result, the system encounters dynamic slacks with varying lengths,
which would result in different actions in the intended mode. In SOLID, the agent
controller has been designed to maximize the QoS by decreasing the LC tasks’ drop
rates (i.e., drop less often) when the system switches to the HI mode. Note that no
action is required in the learning process if the dynamic slack is too small. In order
to update the Q-table, we check the generated dynamic slack at the end of each
hyper-period. Based on the available slack, we update the Q-table, and decisions are
taken (i.e., the new drop-rate value is determined). It should be mentioned that since
we target real-time embedded MC systems, we conduct some parts of the learning
process, data, and model training for the Q-table at design-time with robust offline
learning techniques in the worst-case scenarios. The reason is that the learned Q-
table can be utilized to quickly determine the optimal actions based on the system
state and also reduce the probability of bad decisions. Then, by using this data
and what the learning algorithm learns from this training phase at design-time and
also the obtained historical data at run-time, the algorithm improves its prediction
process as time passes. In the following, we first explain the system state, action
determination, and reward computation for the learning process to generate the Q-
table values. Then, we present the proposed approach in detail.

System State Determination There are various criteria for determining the system
states. In our proposed scheme, for the Q-table, the states of the system depend
on the available CPU utilization and dropped LC task in a period. To represent
the states in a formal way, for each state . si , .si = ‖UMC

i ‖ + ‖�i‖, where
.UMC

i = {0, 0.1, . . . , 1}. Both utilization and dropped tasks are normalized to
their maximum value (shown by .‖. . .‖). We also define ten ranges to determine
the percentage of missed tasks to all tasks. As an example, consider . si as the . ith

utilization range (.max(i) = 10). Therefore, we have .si + � .(� ∈ [1, 10]), which
indicates the variation in the rate of dropped LC tasks for the fixed utilization range.
In each iteration, according to the unused utilization and the rate of dropped tasks in
the previous hyper-period, the current state is determined for the Q-table. Here, we
select an optimal action for the current system state. Thus, the system can gradually
reach the optimal state.

Learning Action Determination In this method, the well-known .ε-greedy policy
has been exploited, in which the dynamic policy is used for adjusting . ε [7]. We first
use a dynamic .ε-greedy policy with the value of .0.5 at design-time to prevent the

5.2 Proposed Method in Detail 111

probability of the learning algorithm from being stuck at few Q-values. Accordingly,
we can accelerate the learning process. Afterward, the fixed .ε-greedy policy is used
with the value of . 0.2 at run-time to ensure that the system reaches the optimum state
and chooses the best action based on the Q-values, which has the maximum value.
The action space in the Q-table illustrates an increase/decrease in a LC task’s drop
rate (. δi ,.., .δi +k). It should be noted that the minimum values of drop rates are equal
to the initial values that is used for schedulability analysis at design-time.

Reward Computation This approach calculates the reward at the end of each
hyper-period based on the available dynamic slack. Hence, when there is less
accumulated dynamic slack at the end of the hyper-period, it means more core
capacity (.UMC(t)) has been used on that hyper-period. The considered reward
function for the Q-table is shown in Eq. (5.4) , which is based on the generated
dynamic slack at the end of each period:

.R =

⎧
⎪⎪⎨

⎪⎪⎩

−	 UMC(t) > ϕ

1
10×(1−UMC(t))

UMC(t) < ϕ

+	 UMC(t) = ϕ

(5.4)

The reward function considers three scenarios. If the utilization falls into the
unsafe zone that may cause deadline violation, the decision will be penalized. An
unsafe zone means the utilization may increase more than one, where EDF-VD
cannot guarantee the timeliness of all tasks. Accordingly, it results in a negative
value (. −	, where .	 > 0 and has a constant value) for the reward function, which
decreases the Q-value in Eq. (3.21) , i.e., reduces the probability of choosing it in the
future. In Eq. (5.4), we set the value of . 	 equal to 100 to highly impact the value of
the reward function in a negative manner. In addition, since our goal is to use all of
the accumulated dynamic slack to optimize the system property, .UMC

t = 1 would
be the optimum case for the reward function (presented in Eq. (5.2)). However, since
there may be some errors in the first phases of the learning technique, we consider
the upper bound of core utilization (. ϕ) to be less than one (.ϕ < 1). In fact, it can
be equal to .ϕ = 1 − μ, where . μ has an extremely low positive value, such as
.0.05. Hence, we consider a value less than the maximum core utilization as the core
utilization limit to never let it violate the threshold.

Actual Execution Time Predictor Policy Due to releasing several jobs of a task
in each hyper-period, the execution times of jobs may be different in each
hyper-period. We have to predict the execution times to compute the core utiliza-
tion (. UMC(t)) in Eq. (5.2) , according to the previous run-time tasks’ execution
times. This prediction is based on Eq. (3.23), mentioned in Chap. 3.

Figure 5.2 depicts our proposed learning-based drop-aware task scheduling
mechanism. It consists of the environment, i.e., the hardware platform, the agent,
and its interaction with the operating system and the applications. This learning-
based property improvement technique has been designed for a system based on its
states and action determination algorithms discussed earlier. The scheduler sched-

112 5 Learning-Based Drop-Aware Mixed-Criticality Task Scheduling

ules the tasks based on the EDF-VD at run-time. At the end of each hyper-period,
the accumulated dynamic slack and the number of dropped LC tasks in the HI mode
are observed. The proposed learning phase decides how to increase/decrease the
LC tasks’ drop rates based on the Q-table and reward function value. The major goal
of SOLID is to use most of the created slack time and consequently maximize the
core utilization by optimizing the LC tasks’ drop rates. In the learning process, the
agent observes the state at a time period instance . Tt , computes the award, updates
the Q-table, and performs an action. The action (a) is selected from the predefined
action set in the specified Q-table (.a ∈ {a1, a2, . . . , ak}, where k is the maximum
number of actions corresponding to each table). The chosen action is applied for the
next time period (.Tt+1). After decoding the actions for the HI mode by the operating
systems, based on the new LC task drop rates, the policies of the task scheduling
and LC tasks dropping will be updated in the case that the system mode switches to
the HI mode.

To guarantee meeting the deadline of HC tasks, although we try our best effort
and define the hard margin to avoid missing the deadlines, it could happen for
the Earliest Deadline First (EDF) algorithm in the worst-case scenario that the
core is fully utilized and all tasks are executed up to their WCETs at run-time,
while some LC tasks’ drop rates were increased according to learned data. It
may lead to some deadline misses for HC tasks. As a result, SOLID is strict in
applying the learned data into the scheduler to ensure meeting the deadlines in
the worst-case scenario. The scheduler in SOLID approach always considers the
initial drop-rate values (.δold

i) and drops LC tasks based on them in the HI mode.
To apply the learned data, the dynamic slack is detected at run-time. When an
HC task finishes its execution early, a dynamic slack is generated due to the early
completion. Based on the learned drop rate values, the scheduler in SOLID releases
the LC jobs to execute in this generated dynamic slack. Therefore, LC tasks are
executed more times (drop fewer) by exploiting the slack time generated only
from the early completion of HC tasks’ executions and improving the QoS in the
HI mode. Although it introduces an extra workload for the system, it causes to
prevent affecting the early LC tasks’ releases on HC tasks’ timeliness. We require
judicious slack management to determine whether it is feasible to release an LC job
at a time point.

However, in order to be lenient in applying the learned drop-rate data into the
scheduler, we extend SOLID to LIQUID, which uses accumulated dynamic slack
moderately to improve QoS.

5.2.3 Run-Time LIQUID Approach

In LIQUID (Learning-based Quality-of-service- and Drop-aware MC task schedul-
ing mechanism), like what we proposed in SOLID, the proposed learning algorithm
operates independently of the scheduler. However, in contrast to SOLID, LIQ-
UID applies the learned data into the scheduler with no restriction and taking care of

5.2 Proposed Method in Detail 113

generated dynamic slack by HC tasks. The scheduler in LIQUID approach always
considers the learned drop-rate values, and LC tasks are dropped based on them in
the case of mode switches.

To make both approaches explicit, consider a task . τi with .δold
i = 3, which means

one job would be dropped among three jobs in the HI mode. If the learned drop rate
after a hyper-period is equal to .δnew

i = 6, it means one job would be dropped among
six jobs. Therefore, the rate of task dropping would be half in comparison with the
initial value. In fact, one more job among six jobs would be scheduled and executed.
LIQUID always considers .δnew

i for the LC task . τi when the system switches to
the HI mode. However, in SOLID, .δold

i considers for task . τi . If there is sufficient
accumulated dynamic slack at run-time to execute . τi based on the learned . δnew

i , the
task is released. In this work, we exploit and adapt the early release policy, presented
in [8], which is an effective slack management technique in MC systems and based
on a known mechanism, called wrapper-task mechanism [9, 10].

Algorithm Algorithm 5.1 illustrates the pseudo-code of the run-time approach,
including both scheduling and learning procedures at the same time. As inputs,
the algorithm takes the tasks and their characteristics (e.g., WCET, criticality level,
drop rate, and period), the hardware platform, and the minimum QoS requested by
the tasks. In addition, since a part of the learning process is done at design-time,
the Q-table is obtained and taken as input. On the other hand, improvements in the
LC tasks’ QoS and the scheduled tasks are defined as outputs at the end (Time). At
each time, the scheduler checks the status of the tasks, whether they are overrun or
not, which results in mode switching (line 4). This unit also checks the periods of
tasks, whether they would be released or not. All tasks on every core are scheduled
based on the EDF-VD algorithm (line 5). In the case of mode switches to the HI,
the LC tasks are dropped based on their defined drop rate values to guarantee the
correct execution of HC tasks. In lines 7–12, the number of dropped LC tasks is
counted to be used in the learning process. If the system switches back to the
LO mode, a parameter (CountDrop) for each task, which counts the number of
released LC tasks in the HI mode, is set to zero (lines 14–16). Besides, there is a
function (line 18) that checks whether the output of each task is ready. When ready,
the task is removed from the core queue, and the generated dynamic slack is added
to the slack array (lines 19–21). The learning process is conducted at the end of each
hyper-period (lines 22–35). In this process, the number of dropped LC tasks in the
HI mode and the accumulated dynamic slack is used to determine the state (line 23).
As mentioned earlier, since the .ε-greedy policy is used, if a random number is
less than . ε, a random action is selected (line 27, exploration phase of the learning
process); otherwise, an action with the maximum value in the Q-table is chosen for
that particular state (line 29, exploitation phase of learning process). Based on the
chosen action, a new drop rate is determined for the task (line 31). Consequently, the
reward function updates the Q-table (lines 32–33). Note that if an embedded system
is kept running for a long time, although the system is in the exploitation phase over
time, which uses the learned data, as can be illustrated from the policy, there is still
a slight chance to learn if there is any pattern shift.

114 5 Learning-Based Drop-Aware Mixed-Criticality Task Scheduling

Algorithm 5.1 Proposed learning-based scheme at run-time
Input: Task Set, Core, Q-table
Output: QoS, Scheduled Tasks
1: procedure LEARNING-BASED QOS OPTIMIZATION ()
2: SQt = 0;
3: for t = 1 to Time do
4: [SysMS ,ReadyT askQ] = TaskStatusCheck(Tasks)
5: [Schtasks] = EDF-VD (ReadyT askQ, Core)
6: if SysMS == 1 then
7: for each released LC T aski do
8: CountDropT aski += 1;
9: if mod(CountDropT aski

,δT aski
) == 0 then

10: NumDrop += 1;
11: end if
12: end for
13: else
14: for each T aski do
15: CountDropT aski = 0;
16: end for
17: end if
18: F lagoutput =TaskOutputCheck(Tasks)
19: if F lagoutput == 1 then
20: SlackQ= WCETT aski − ActualtimeT aski
21: end if
22: if mod(t,HP)==0 then
23: State= Deter-State (SlackQ,NumDrop)
24: k= rand (1); //(0<k<1)
25: //ε-Greedy Policy
26: if k < ε then
27: at = argrand (Ai)
28: else
29: at = argmax (st , Ai)
30: end if
31: Set the new task’s drop-rate based on the action
32: R = CompReward (UMC (t)) // Eq. (5.4)
33: Q(st , at) = Q(st , at) + α(R + γQ(st+1, at+1) − Q(st , at))//Eq. (3.21)
34: SlackQ= 0; NumDrop = 0;
35: end if
36: end for
37: end procedure

5.3 Evaluation

The experiments are conducted on a Linux-based machine equipped with 1.4 GHz,
a quad-core processor, and 16GB of memory. Since there are no real-life MC
benchmarks to conduct the experiments, the major related studies have evaluated
their proposed techniques by using synthetic task sets [2, 11–13]. However, in
addition to synthetic task sets, we use various real-time tasks included in MiBench
benchmark suite [14] for the evaluations. Besides, we analyze and compare the

5.3 Evaluation 115

efficiency of proposed approaches against various methods [2, 12, 13, 15] in
terms of schedulability, run-time QoS improvement, and available free slack at
the end of a hyper-period. Our previous work (FANTOM [2]) uses the EDF-VD
scheduling algorithm while dropping LC tasks in the HI mode according to the
drop-rate parameter, without using the run-time adaptability. In [13](Liu+18),
the QoS is improved by degrading the WCETs of LC tasks in the HI mode.
In [15] (LRQ. +14) and [12] (Hua. +19), the run-time adaptability is employed
by exploiting the accumulated dynamic slack. A dynamic reservation-based task
scheduling algorithm has been presented in [15] (LRQ+14) to minimize the deadline
miss rate by using the dynamic slack, which is generated by the early completion
of HC tasks. In [12] (Hua+19), a FP-EDF is used, and the QoS is improved by
precising the LC tasks’ WCETs in the HI mode.

5.3.1 Evaluation with Real-Life Benchmarks

As mentioned, MiBench benchmark suite [14] has been used, which is dedicated to
applications such as automotive, network, and telecommunications. More specifi-
cally, we consider the benchmarks of ‹edge›, ‹smooth›, ‹epic›, and ‹corner› as the
LC tasks and ‹qsort›, ‹insertsort›, ‹matrixmult›, ‹dijkstra›, ‹bitcount›, and ‹FFT› as
the HC tasks in our system evaluations. To achieve their execution times, these
benchmarks have been executed on the ODROID XU4 hardware platform. We
consider the utilization of the tasks in the [0.05,0.1] interval (to be able to execute
more tasks in a core), and the period/deadline of the tasks is computed according
to the utilization and WCET values [1, 2]. More detail on WCETs values has been
reported in [16]. In addition, the values of the drop rate (. δ) for the LC tasks are
randomly generated between 1 and its maximum value (which has been set to four
in our experiments), based on the uniform distribution. Table 5.2 represents the
normalized Number of Deadline Misses (NDM), normalized to method of [13]),
and the QoS of different methods. As shown in this table, at run-time, LIQUID has
provided the maximum QoS and the minimum NDM compared to the other
methods. Besides, since FANTOM [2] has also presented a design-time drop-aware
approach to not drop LC tasks frequently when the system switches to the HI mode,
the QoS has a high value (and low NDM value) compared to the other existing
studies. Although the proposed techniques in [12, 15] are run-time approaches,
which improve the QoS, they are not well designed to exploit better from run-time
profit. However, since [15] uses the EDF-VD algorithm, which well utilizes the
system’s capacity compared to the other existing scheduling algorithms, e.g., FP

Table 5.2 NDM and QoS of
different methods at run-time
for a real task set

LIQUID FANTOM [13] [15] [12]

NDM 0.009 0.010 1 0.341 0.999

QoS 99.67% 96.92% 64.33% 87.83 64.36%

116 5 Learning-Based Drop-Aware Mixed-Criticality Task Scheduling

algorithm, and also exploits the generated dynamic slack, it provides better results
in terms of QoS and NDM in comparison with [12].

In addition, as mentioned in the previous chapter, we define a drop-rate value for
each of the LC tasks in the HI mode. At run-time, these values are optimized based
on the generated dynamic slacks. In our experiments, the drop-rate values for four
LC tasks have been updated from .{3, 3, 3, 3} to .{5, 6, 7, 7}, which has led to QoS
improvement at run-time.

5.3.2 Evaluation with Synthetic Task Sets

Now we investigate the efficiency of LIQUID and SOLID under the presence of
synthetic task sets. To generate synthetic task sets, analogous to [1, 13, 17], we
consider dual-criticality task sets that are generated for various system utilization
bounds (.Ubound = max(ULO

LC + ULO
HC,UHI

HC)). We randomly add tasks to the task
set to increase .Ubound , until it reaches a given threshold in the [0.05,1] interval,
with steps of 0.05. Besides, the periods of tasks are selected in the range of [100,
900] ms. For each utilization threshold, 50 task sets are generated. Since the mode
switching probability determines how often the system switches to the HI mode,
and, therefore, impacts the speed of learning in this mode, in the conducted

experiments, we have considered different ratios of .
WCET LO

HC

WCET HI
HC

= RatHC , from

the [0.2,0.8] interval. The timing overhead of task execution interruption in the
EDF task scheduling algorithm is in the order of . μs [18], which has been considered
as part of the tasks’ WCETs in experiments. In addition, the actual execution time
of a task follows the normal distribution of which the mean and standard deviation
are .

2∗WCET HI
HC

3 and .
WCET HI

HC

12 [19].

5.3.2.1 Effects of System Utilization

Considering the requirement of service maximization in MC systems, which is
represented with drop-rate parameters for LC tasks, in this section, we first discuss
the task schedulability under different utilization bounds in Fig. 5.3. Then, we
evaluate the LC tasks’ QoS at run-time under different methods by varying the
system utilization bound. Figure 5.4 illustrates the run-time QoS improvement
under different scheduling algorithms. In this experiment, the number of LC
and HC tasks in each task set is almost the same (.Prob(HC)
 0.5). In
addition, we do not change the run-time behavior of HC tasks while varying the
utilization by considering an almost constant ratio of low-to-high WCET for the
HC tasks (.RatHC ∈ [0.4, 0.6]). In other words, since varying .RatHC impacts
objective values, we chose one subinterval and keep it constant, when the approach
is analyzed by varying other parameters.

5.3 Evaluation 117

Fig. 5.3 Task schedulability
of proposed method,
FANTOM [2], [Liu. +18] [13],
[LRQ. +14] [15],
and [Hua. +19] [12] by
varying utilization bound

0

0.2

0.4

0.6

0.8

1

0.
1

0.
15

0.
2

0.
25

0.
3

0.
35

0.
4

0.
45

0.
5

0.
55

0.
6

0.
65

0.
7

0.
75

0.
8

0.
85

0.
9

Sc
he

du
la

bi
lit

y

U_bound

LIQUID & SOLID [Liu+18]
FANTOM [LRQ14]
[Hua+19]

Fig. 5.4 Normalized QoS at
run-time by varying
utilization bound in proposed
methods, FANTOM [2],
[Liu. +18] [13],
[LRQ. +14] [15],
and [Hua. +19] [12]

0

0.2

0.4

0.6

0.8

1

0.
1

0.
15

0.
2

0.
25

0.
3

0.
35

0.
4

0.
45

0.
5

0.
55

0.
6

0.
65

0.
7

0.
75

0.
8

0.
85

N
or

m
al

iz
ed

 Q
oS

U_bound

LIQUID SOLID FANTOM

[LRQ14] [Liu+18] [Hua+19]

To evaluate the effects of varying utilization bound on the task schedulability
at design-time, 1000 task sets are generated and evaluated. The task schedulability
shows the ratio of task sets which are deemed as schedulable. Hence, a task set is
schedulable if all HC and LC tasks can be executed correctly before their deadlines
in the LO mode, and also all HC tasks and most LC tasks (based on their drop
rate values) can be executed correctly before the deadlines in the HI mode. In fact,
Eq. 5.2 and Eq. 5.3 must be satisfied in order to guarantee task schedulability.
As shown in Fig. 5.3, since we have used the same design-time policy for the
schedulability test as in [2], the results of these methods and our methods are the
same. Besides, when the utilization is less than 0.7, LIQUID, SOLID, and FANTOM
always schedule the tasks. This method could sometimes schedule the tasks as long
as the utilization is smaller than 0.85. Moreover, LIQUID and SOLID provide a
better task schedulability, compared to [12], due to using a different task scheduling
approach than in [12], which is FP-EDF. Furthermore, this figure illustrates that the
schedulability in methods of [13, 15] is worse than LIQUID. The main reason for
this issue is that we prevent the frequent drop of LC tasks in the worst-case scenario
(in the case of mode switches), while the other two methods may frequently drop
LC tasks in the HI mode, and consequently, the task set would not be schedulable.
Accordingly, the frequent LC tasks’ dropping in other approaches may cause the
system not to carry out its mission correctly [2].

Figure 5.4 shows the normalized QoS for different approaches. As shown,
the amount of provided improvement is negligible in the low utilization bound.
In addition, the QoS of the LC tasks is decreased by utilization increment in
all methods. The reason is that utilization increment increases the number of

118 5 Learning-Based Drop-Aware Mixed-Criticality Task Scheduling

both LC and HC tasks. Therefore, the system may switch to the HI mode more
often. Although the LIQUID has more opportunity to learn due to more often
mode switches and improve the learning process, all HC tasks’ deadlines must
be guaranteed in the HI mode, which causes more LC tasks to be dropped and,
consequently, QoS reduction (QoS is the fraction of executed LC tasks before their
deadlines to all LC tasks). However, due to the most favorable use of dynamic slacks
at run-time, LIQUID has improved QoS better than the other methods. Besides,
compared to the state of the art, FANTOM has provided more improvements in each
utilization point due to maximizing the QoS at design-time. Besides, the QoS of the
SOLID is better than FANTON due to using slack time at run-time to execute more
LC tasks. However, in SOLID, since meeting the HC tasks’ deadlines is guaranteed
under any circumstances, and the dynamic slack is reclaimed carefully, it has less
improvement than LIQUID. Since we evaluate the methods at run-time in terms of
QoS, Li et al. [15] have exploited the dynamic slack to improve the QoS, while the
other methods have almost the same behavior at run-time. As a result, the method
of [15] has a better improvement compared to the results of [12, 13]. Note that the
QoS is zero for .Ubound > 0.85 in all methods due to the existing no schedulable task
set under these methods when the utilization is more than .0.85. Since we guarantee
that the LC tasks are not frequently dropped in the HI mode, more conditions must
be checked to execute more tasks in the system, which leads the task sets to be
unschedulable at high utilization.

5.3.2.2 Effects of HC Tasks’ Run-time Behavior

Since we investigate the MC systems’ run-time behavior, and the proposed method
efficacy is influenced by how often the system switches to the HI modee, we
vary the low WCET of HC tasks, determining the mode switching probability.
In this regard, as part of our evaluations, we consider the low-to-high WCET

ratio (.RatHC = WCET LO
i

WCET HI
i

) for the HC tasks in three different ranges of [0.2,0.4],

[0.4,0.6], and [0.6,0.8]. Here, we assumed .Ubound = 0.75, and the number of LC
and HC tasks in each task set is almost the same (.Prob(HC) = 0.5).

Figure 5.5 depicts the LC tasks’ deadline miss rate for different approaches when
varying low-to-high WCET ratio. The deadline miss rate is the ratio of the number
of dropped LC tasks to the total number of tasks released in a time interval. Besides,
the low-to-high WCET ratio increment means that the system switches less often to
the HI mode due to having a high value of WCET for the HC tasks in the LO mode.
The mode switching probability is decreased during run-time. As a result, it causes
the system to be in LO mode most of the time, leading to fewer deadline misses.
However, due to using the generated dynamic slack at run-time, the LIQUID reduces
significantly the number of LC task drops compared to the other studies. Referring
to the aforementioned reasons in the previous section, it has the same explanation
for comparison with the results of the state of the art. Note that LIQUID may cause
the HC tasks’ deadlines to be missed. SOLID copes with this issue and executes the

5.3 Evaluation 119

0.38 0.36
0.29

0.42 0.41
0.34

0.46 0.47

0.38

1 0.96

0.8

0.7 0.71

0.58

1 0.96

0.8

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Rat_HC=[0.2, 0.4] Rat_HC=[0.4, 0.6] Rat_HC=[0.6, 0.8]

D
ea

dl
in

e
M

is
s

R
at

e

LIQUID SOLID FANTOM [Liu+18] [LRQ14] [Hua+19]

Fig. 5.5 Normalized deadline miss rate at run-time when varying low-to-high WCET ratio in
proposed methods, FANTOM [2], [Liu. +18] [13], [LRQ. +14] [15], and [Hua. +19] [12]

0.82
0.8

0.78

0.83
0.81

0.79

0.84
0.83

0.8

1 0.99
0.94

0.99
0.97

0.93
0.95 0.94

0.9

0.75

0.8

0.85

0.9

0.95

1

Rat_HC=[0.2, 0.4] Rat_HC=[0.4, 0.6] Rat_HC=[0.6, 0.8]

N
or

m
. F

re
e

D
yn

. S
la

ck

LIQUID SOLID FANTOM [Liu+18] [LRQ14] [Hua+19]

Fig. 5.6 Normalized unused free dynamic slack at run-time when varying low-to-high WCET
ratio in proposed method, FANTOM [2], [Liu. +18] [13], [LRQ. +14] [15], and [Hua. +19] [12]

LC tasks more, based on their newly learned drop-rate value if there is some slack
generated by HC tasks’ early finishes, to improve the QoS. In the end, the deadline
miss rate is decreased under LIQUID by up to 47.87% and 32.45% on average,
compared to the other works. In addition, SOLID could reduce the deadline miss
rate by up to 43.47% (4.4% worse than LIQUID) and 28.33% (4.12% worse than
LIQUID) on average.

Since we exploit the generated dynamic slack at run-time to prevent some
LC tasks from dropping and consequently decrease the deadline miss rate, we
investigate the amount of unused core utilization during a hyper-period. The amount
of generated dynamic slack would be different in the HI mode while varying the
low-to-high WCET ratio. As shown in Fig. 5.6, LIQUID can use more amount
of dynamic slack, compared to the state of the art. Unlike FANTOM, which is
a design-time approach, in LIQUID, we can use the dynamic slacks at run-time
to improve the LC tasks’ drop rates and then decrease the deadline miss rate.
Furthermore, since the method of [13] is also a design-time approach, it could
not use the free unused core utilization to improve the intended objective. The
reason for having better core utilization usage in FANTOM, compared to [13], is
the policy of executing more LC tasks in the HI mode (i.e., improving the QoS),
and therefore, less unused core utilization is generated. Besides, [12] approach
provides a better result in comparison with the technique of [15] due to its task

120 5 Learning-Based Drop-Aware Mixed-Criticality Task Scheduling

scheduling policy, especially when the system switches to the HI mode. It seems
that in [12], the system switches back sooner. Therefore, HC tasks are not executed
up to their high WCET, which leads the system to spend more time in the idle
mode during a hyper-period. Due to the possibility of HC tasks’ deadline misses,
SOLID handles it, and thus, less generated dynamic slack would be reclaimed.
Based on our observations, exploiting the accumulated dynamic slack (generated at
run-time) enables LIQUID and SOLID to reduce the free dynamic slack by 7.32%
and 6.82%, on average, respectively, compared to the existing methods.

5.3.2.3 Impacts of Task Mixtures

We further evaluate the proposed approaches against the other methods under
different HC task distribution variations. In this regard, Figs. 5.7 and 5.8 represent
the deadline miss rate at run-time and the free dynamic slack in one hyper-period,
respectively, when the HC tasks’ utilization (i.e., more numbers of HC tasks,
compared to LC tasks) to all of the generated tasks’ utilization varies in three
different ratio ranges of [0.2,0.4], [0.4,0.6], and [0.6,0.8]. Besides, in this part of
our simulation, we assume .Ubound = 0.75 and .RatHC = 0.75.

0.15

0.25 0.250.29

0.38 0.350.32

0.46 0.47

0.76

1 1

0.68

0.79

0.68
0.76

1 1

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Prob(HC)=[0.6,0.8] Prob(HC)=[0.4,0.6] Prob(HC)=[0.2,0.4]

D
ea

dl
in

e
M

is
s

R
at

e

LIQUID SOLID FANTOM [Liu+18] [LRQ14] [Hua+19]

Fig. 5.7 Normalized deadline miss rate at run-time when varying task mixtures in proposed
method, FANTOM [2], [Liu. +18] [13], [LRQ. +14] [15], and [Hua. +19] [12]

0.5

0.78 0.78

0.5

0.79 0.78

0.51

0.8 0.79

0.93 0.95 1
0.87

0.9
0.950.92 0.94 0.99

0.4

0.5

0.6

0.7

0.8

0.9

1

Prob(HC)=[0.6,0.8] Prob(HC)=[0.4,0.6] Prob(HC)=[0.2,0.4]

N
or

m
. F

re
e

D
yn

. S
la

ck

LIQUID SOLID FANTOM [Liu+18] [LRQ14] [Hua+19]

Fig. 5.8 Normalized unused free dynamic slack at run-time when varying task mixtures in
proposed method, FANTOM [2], [Liu. +18] [13], [LRQ. +14] [15], and [Hua. +19] [12]

5.3 Evaluation 121

According to Fig. 5.7, when more HC tasks are scheduled in the system, the
mode switching probability is higher. It causes the system to drop LC tasks
due to mode switching to execute all HC tasks correctly before their deadlines.
It helps LIQUID to accelerate the learning process due to the more frequent
mode switches and significantly improve the QoS by dropping fewer LC tasks in
the future. In addition, since there would be fewer LC tasks in the system (by
increasing the number of HC tasks in the system, while the system’s utilization
is constant), fewer LC tasks are dropped at run-time by the proposed schemes,
which improves the QoS. Figure 5.8 shows that there is less free dynamic slack
at the end of the hyper-period while increasing the .Prob(HC) range. In fact,
since fewer LC tasks are scheduled in the system by increasing the .Prob(HC),
the generated dynamic slack in the HI mode has been used for fewer LC tasks
to improve their drop-rate value and, consequently, reduce the deadline miss rate.
According to Fig. 5.7, LIQUID (SOLID) can decrease the deadline miss rate by up
to 54.15% (44.88%) and 40.52% (30.39%) on average, compared to the state of the
art. In addition, LIQUID (SOLID) can exploit the dynamic slack (generated at run-
time) by 12.35% (11.95%) on average, in comparison with the existing methods.

5.3.2.4 Investigating the LC Tasks’ Drop-Rate Parameter

Now, we evaluate the effects of varying the task mixtures on the increment of
LC tasks’ drop-rate parameters. This parameter is increased by exploiting the
dynamic slack through a learning algorithm employed in the proposed scheme at
run-time. Varying .Prob(HC) determines the percent of existing HC/LC tasks in
a task set. Therefore, as mentioned in the previous section, when there are more
HC tasks in the system, the QoS will have a higher value. It means that there is
more increment in the drop-rate parameter value of LC tasks, which causes to drop
fewer LC tasks and consequently decreases the deadline miss rate. This fact can
be observed in Fig. 5.9, in which the average increment in drop-rate parameter for
.Prob(HC) = [0.2, 0.4], .[0.4, 0.6], and .[0.6, 0.8] are 47.05%, 66.32%, and 73.21%,
respectively.

5.3.3 Investigating the Timing and Memory Overheads of ML
Technique

Although the RL technique has been reported to be lightweight and highly
suitable for the systems, compared to other types of learning techniques [20],
the main issues are its convergence and timing overhead. Accordingly, similar to
other studies [5], we have reduced the feasible actions to reduce the complexity
and convergence issues. In the following, we investigate the timing and memory
overheads of the employed learning technique.

122 5 Learning-Based Drop-Aware Mixed-Criticality Task Scheduling

Prob(HC)=[0.2,0.4] Prob(HC)=[0.4,0.6] Prob(HC)=[0.6,0.8]
0

30

60

90

120

150

180
D

ro
p-

R
at

e
In

cr
em

en
t P

er
ce

nt
ag

e
(%

)

Fig. 5.9 Drop-rate increment percentage under the proposed approach by varying task mixtures

Consider a system with a single-core processor running an application with n
tasks. To investigate the timing overhead of the learning process in each hyper-
period, we analyze it on two systems, Intel® Core i7 processor and 2.5 GHz and
ARM Cortex A-15 core and 2 GHz. From the complexity point of view, lines 22–
35 of Algorithm 5.1 represent the learning process, in which for finding the
maximum Q-value based on the obtained state (in a row of the table), a for-loop
is used (line 29). Therefore, we can conclude that the complexity of the learning
process depends on the number of actions in the Q-table (O(A)). According to
our measurement at run-time, the maximum and average timing overhead in Intel
core (ARM core) are 1.2 ms (4.1 ms) and 0.1 ms (0.53 ms), respectively. Since the
maximum timing overheads are significant, to maintain the HC tasks’ timeliness,
we consider the learning process as a task with the WCET, equal to the maximum
timing overhead and a period equal to hyper-period, while checking the task
schedulability at design-time.

Furthermore, we need to clarify the amount of required memory space for storing
the Q-table in terms of memory overhead. Accordingly, we store a two-dimensional
array with .size(S) rows and .size(A) columns, in which the rows and columns show
the states (S) and actions (A), respectively. Since the value of a table cell is in the
range of .[−100, 100], it is required to consider at most 8 bits for storing each cell. As
a result, we need .size(A) × size(S) × 8 bits to store the Q-table. For an application
with 30 tasks, the amount of required memory space for saving the Q-table with 100
states would be .30 × 100 × 8bits . = 3 kB.

5.4 Conclusions

In this chapter, we proposed a novel approach, a learning-based drop-aware task
scheduling mechanism, to reduce the deadline miss rate at run-time, with the aim of
providing higher QoS. To achieve this goal, the dynamic slack is exploited at run-
time, and since the system is unaware of the amount of generated dynamic slack in

5.4 Conclusions 123

advance, the proposed scheme introduces an adaptive LC task dropping technique
that uses an ML technique to exploit the slack and increase the survivability of
LC tasks. Based on an extensive set of experiments, the proposed schemes can
decrease the deadline miss rate by up to 51.78% and 31.32% on average and
also exploit the accumulated dynamic slack generated at run-time by 9.84% more
on average, compared to the current works. The proposed learning approach was
analyzed regarding run-time timing overhead to ensure that there is no effect on
missing the task deadlines. Although the timing overhead has been considered, it
still has a significant value for embedded real-time systems, which is viewed as a
limitation/drawback of the proposed scheme. Another limitation of the proposed
method is the large exploration time of the learning process. Since the parameters
would be updated through the learning process at the end of each hyper-period, the
proposed method does not apply to applications with a large hyper-period. As an
extension of this approach, if an MC system with more than two criticality levels
is considered, there would be a challenge in how accumulated dynamic slack can
be employed for improving the QoS of different criticality-level tasks, for example,
for levels B, C, and D. Defining a threshold level of QoS for each criticality level
might be fruitful in deciding how generated dynamic slack can be employed for
each criticality level and improve their QoS.

Hitherto, we have proposed approaches to designing the MC systems with the
aim of QoS improvement through application analysis. In these approaches, QoS
has been improved through well-adjusted WCETs and task dropping analysis. Since
the proposed approaches in Chaps. 3–5 can be applied to MC systems regardless of
what hardware is used, i.e., single-/multi-core processors, we considered single-core
processors as the hardware input. As mentioned in Chap. 1, in most embedded real-
time applications, there are various tasks with different functionality, like controlling
a device. Generally, these tasks have a common goal, like controlling autonomous
driving, which may make them dependent. In other words, executing a task may
depend on the complete execution of one/some of the other tasks. Therefore, since
there are many tasks in these embedded real-time systems to be executed on a single
platform, we can utilize the multi-core processors to execute the tasks in parallel to
cope with the high-performance demands and improve the QoS. However, in MC
hardware design, high-power consumption due to activating most of the cores may
cause the systems to be more susceptible to failures and instability, which is not
acceptable for MC systems, and it may cause catastrophic consequences. Therefore,
the multi-core system’s power and maximum temperature management must be
considered while designing MC systems.

Although the proposed approaches in the last three chapters can be extended
by considering the feature of multi-core platforms, the ability to execute tasks in
parallel on multi-core platforms has not been considered in these approaches, which
allows the QoS to be improved more efficiently. Besides, high-power consumption
and temperature can be one of the crucial issues in these multi-core platforms that
must be considered while designing such MC systems by the proposed approaches
in order to guarantee the constraints like real-timeliness, safety, or management of
the objectives like QoS.

124 5 Learning-Based Drop-Aware Mixed-Criticality Task Scheduling

To this end, in the following two chapters, we focus on MC hardware design
and propose QoS-aware approaches to map and schedule the dependent MC tasks
on multi-core platforms while reducing the power consumption and maximum
temperature.

References

1. S. Baruah et al. “The preemptive uniprocessor scheduling of mixed-criticality implicit-deadline
sporadic task systems”. In: Proc. of Euromicro Conference on Real-Time Systems (ECRTS).
2012, pp. 145–154.

2. B. Ranjbar et al. “FANTOM: Fault Tolerant Task-Drop Aware Scheduling for Mixed-Criticality
Systems”. In: IEEE Access 8 (2020), pp. 187232–187248. https://doi.org/10.1109/ACCESS.
2020.3031039.

3. Zheng Li and Shuibing He. “Fixed-Priority Scheduling for Two-Phase Mixed- Criticality
Systems”. In: ACM Transactions on Embedded Computing Systems (TECS) 17.2 (2018), pp. 1–
20.

4. B. Ranjbar et al. “Toward the Design of Fault-Tolerance- and Peak-Power-Aware Multi-Core
Mixed-Criticality Systems”. In: arXiv preprint arXiv:2105-.07739 (2021).

5. Sai Manoj Pudukotai Dinakarrao et al. “Application and thermal-reliability-aware rein-
forcement Learning based multi-core power management”. In: ACM Journal on Emerging
Technologies in Computing Systems (JETC) 15.4 (2019), pp. 1–19.

6. H. Huang et al. “Autonomous Power Management With Double-Q Rein-forcement Learning
Method”. In: IEEE Transactions on Industrial Informatics (TII) 16.3 (2020), pp. 1938–1946.

7. D. Biswas et al. “Machine learning for run-time energy optimisation in many-core systems”. In:
Proc. on Design, Automation & Test in Europe Conference Exhibition (DATE). 2017, pp. 1588–
1592.

8. Hang Su, Dakai Zhu, and Daniel Mossé. “Scheduling algorithms for elastic mixed-criticality
tasks in multicore systems”. In: Proc. on Embedded and Real-Time Computing Systems and
Applications (RTCSA). 2013, pp. 352–357.

9. Dakai Zhu and Hakan Aydin. “Reliability-Aware Energy Management for Periodic Real-Time
Tasks”. In: IEEE Transactions on Computers 58.10 (2009), pp. 1382–1397. https://doi.org/10.
1109/TC.2009.56.

10. Hang Su and Dakai Zhu. “An elastic mixed-criticality task model and its scheduling algorithm”.
In: Proc. on Design, Automation & Test in Europe Conference & Exhibition (DATE). IEEE.
2013, pp. 147–152.

11. L. Sigrist et al. “Mixed-criticality runtime mechanisms and evaluation on multicores”. In:
Proc. IEEE Real-Time and Embedded Technology and Applications Symposium (RTAS). 2015,
pp. 194–206.

12. Lin Huang et al. “Improving QoS for global dual-criticality scheduling on multiprocessors”.
In: Proc. of IEEE International Conference on Embedded and Real-Time Computing Systems
and Applications (RTCSA). IEEE. 2019, pp. 1–11.

13. D. Liu et al. “Scheduling Analysis of Imprecise Mixed-Criticality Real-Time Tasks”. In: IEEE
Transactions on Computers (TC) 67.7 (2018), pp. 975–991.

14. M. R. Guthaus et al. “MiBench: A free, commercially representative embedded benchmark
suite”. In: Proc. IEEE International Workshop on Work-load Characterization. WWC-4. 2001,
pp. 3–14. https://doi.org/10.1109/WWC.2001.990739.

15. Z. Li, S. Ren, and G. Quan. “Dynamic Reservation-Based Mixed-Criticality Task Set Schedul-
ing”. In: Proc. of IEEE Intl. Conf. on High Performance Computing and Communications,
IEEE Intl. Symp. on Cyberspace Safety and Security, IEEE Intl. Conf. on Embedded Software
and Syst (HPCC,CSS, ICESS). 2014, pp. 603–610.

https://doi.org/10.1109/ACCESS.2020.3031039
https://doi.org/10.1109/ACCESS.2020.3031039
https://doi.org/10.1109/ACCESS.2020.3031039
https://doi.org/10.1109/ACCESS.2020.3031039
https://doi.org/10.1109/ACCESS.2020.3031039
https://doi.org/10.1109/ACCESS.2020.3031039
https://doi.org/10.1109/ACCESS.2020.3031039
https://doi.org/10.1109/ACCESS.2020.3031039
https://doi.org/10.1109/TC.2009.56
https://doi.org/10.1109/TC.2009.56
https://doi.org/10.1109/TC.2009.56
https://doi.org/10.1109/TC.2009.56
https://doi.org/10.1109/TC.2009.56
https://doi.org/10.1109/TC.2009.56
https://doi.org/10.1109/TC.2009.56
https://doi.org/10.1109/TC.2009.56
https://doi.org/10.1109/WWC.2001.990739
https://doi.org/10.1109/WWC.2001.990739
https://doi.org/10.1109/WWC.2001.990739
https://doi.org/10.1109/WWC.2001.990739
https://doi.org/10.1109/WWC.2001.990739
https://doi.org/10.1109/WWC.2001.990739
https://doi.org/10.1109/WWC.2001.990739
https://doi.org/10.1109/WWC.2001.990739

References 125

16. Behnaz Ranjbar et al. “BOT-MICS: Bounding Time Using Analytics in Mixed-Criticality
Systems”. In: IEEE Transactions on Computer-Aided Design of Integrated Circuits and
Systems (TCAD) 41.10 (2022), pp. 3239–3251. https://doi.org/10.1109/TCAD.2021.3127867.

17. Z. Guo et al. “Uniprocessor Mixed-Criticality Scheduling with Graceful Degradation by
Completion Rate”. In: Proc. on IEEE Real-Time Systems Symposium (RTSS). 2018, pp. 373–
383.

18. Björn B. Brandenburg, John M. Calandrino, and James H. Anderson. “On the Scalability of
Real-Time Scheduling Algorithms on Multicore Platforms: A Case Study”. In: 2008 Real-Time
Systems Symposium. 2008, pp. 157–169. https://doi.org/10.1109/RTSS.2008.23.

19. Behnaz Ranjbar et al. “Power-Aware Runtime Scheduler for Mixed-Criticality Systems on
Multicore Platform”. In: IEEE Transactions on Computer-Aided Design of Integrated Circuits
and Systems (TCAD) 40.10 (2021), pp. 2009–2023. https://doi.org/10.1109/TCAD.2020.
3033374.

20. S. Pagani et al. “Machine Learning for Power, Energy, and Thermal Man- agement on
Multicore Processors: A Survey”. In: IEEE Transactions on Computer-Aided Design of
Integrated Circuits and Systems (TCAD) 39.1 (2020), pp. 101–116.

https://doi.org/10.1109/TCAD.2021.3127867
https://doi.org/10.1109/TCAD.2021.3127867
https://doi.org/10.1109/TCAD.2021.3127867
https://doi.org/10.1109/TCAD.2021.3127867
https://doi.org/10.1109/TCAD.2021.3127867
https://doi.org/10.1109/TCAD.2021.3127867
https://doi.org/10.1109/TCAD.2021.3127867
https://doi.org/10.1109/TCAD.2021.3127867
https://doi.org/10.1109/RTSS.2008.23
https://doi.org/10.1109/RTSS.2008.23
https://doi.org/10.1109/RTSS.2008.23
https://doi.org/10.1109/RTSS.2008.23
https://doi.org/10.1109/RTSS.2008.23
https://doi.org/10.1109/RTSS.2008.23
https://doi.org/10.1109/RTSS.2008.23
https://doi.org/10.1109/RTSS.2008.23
https://doi.org/10.1109/TCAD.2020.3033374
https://doi.org/10.1109/TCAD.2020.3033374
https://doi.org/10.1109/TCAD.2020.3033374
https://doi.org/10.1109/TCAD.2020.3033374
https://doi.org/10.1109/TCAD.2020.3033374
https://doi.org/10.1109/TCAD.2020.3033374
https://doi.org/10.1109/TCAD.2020.3033374
https://doi.org/10.1109/TCAD.2020.3033374

Chapter 6
Fault-Tolerance- and Power-Aware
Multi-core Mixed-Criticality System
Design

In this chapter, we employ the hardware platform features in designing the MC
systems in order to benefit from the parallel execution of tasks in multi-core
platforms in improving the objectives, like QoS, while meeting the real-time
constraints and safety requirements of tasks. To this end, we propose a method
that exploits a tree of schedules for MC tasks (the tasks are dependent on this
chapter). The proposed technique generates a tree of schedules offline (at design-
time) considering all possibilities of fault-occurrence scenarios in different tasks
(including both LC and HC tasks) and HC task overrun. At run-time, when an HC
task overruns or a fault occurs in an LC or HC task, the scheduler chooses the
proper schedule from the tree to tolerate the faults (by using the task re-execution
technique) or manage the system mode switches with low overheads. The main
goal of this proposed method is to improve the LC tasks’ QoS in the HI mode
while all HC tasks meet their deadlines. As a result, by generating the schedule
tree and exploiting it at run-time, the LC tasks’ QoS is maximized, while the
occurrence of possible faults is tolerated. Since tasks can overrun and a fault can
occur at any time but occasionally, using a single task’s mapping and scheduling to
guarantee the correct and on-time execution of all HC tasks without power constraint
violation leads to inefficient utilization of resources. Thus, the proposed method
manages peak power and temperature to prevent hotspots in homogeneous multi-
core platforms.

To the best of our knowledge, this work is the first work to study the QoS-aware
scheduling problem for fault-tolerant MC systems with peak power and thermal
consideration. We summarize the main contributions of this work as follows:

• Proposing a tree generation approach for MC systems, based on all possibility of
fault-occurrence scenarios and criticality mode changes

• Offline QoS-aware task mapping and scheduling to guarantee the correct execu-
tion of most LC tasks in the HI mode

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024
B. Ranjbar et al., Quality-of-Service Aware Design and Management of Embedded
Mixed-Criticality Systems, https://doi.org/10.1007/978-3-031-38960-3_6

127

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-38960-3protect T1	extunderscore 6&domain=pdf
https://doi.org/10.1007/978-3-031-38960-3_6
https://doi.org/10.1007/978-3-031-38960-3_6
https://doi.org/10.1007/978-3-031-38960-3_6
https://doi.org/10.1007/978-3-031-38960-3_6
https://doi.org/10.1007/978-3-031-38960-3_6
https://doi.org/10.1007/978-3-031-38960-3_6
https://doi.org/10.1007/978-3-031-38960-3_6
https://doi.org/10.1007/978-3-031-38960-3_6
https://doi.org/10.1007/978-3-031-38960-3_6
https://doi.org/10.1007/978-3-031-38960-3_6
https://doi.org/10.1007/978-3-031-38960-3_6

128 6 Fault-Tolerance- and Power-Aware Multi-core Mixed-Criticality System Design

• Peak power-aware task mapping and scheduling in multi-core MC systems for
both LO mode and HI mode

• Reducing the run-time timing overheads by generating all schedules at design
time and exploiting them at run-time

In this chapter, at first, a motivational example is presented in Sect. 6.1 for a
better understanding of the problem and the proposed solution. Then, the design
methodology and proposed method are explained in detail in Sects. 6.2 and 6.3,
respectively. Finally, we analyze the experiments and conclude the chapter in
Sects. 6.4 and 6.5, respectively.

6.1 Problem Objectives and Motivational Example

The MC system is responsible for running an application with a set of periodic
dependent tasks on a multi-core chip. In addition, the system might face up to k
transient faults in one application period. Prior to motivating by an example and
explaining the details of our novel scheduling approach, we define the constraints,
and the objective function, as follows:

Deadline Constraint Each HC task . τi must finish its execution (.FT imei) correctly
before its deadline (. di) in both LO mode and HI mode. In addition, all LC tasks
should finish their execution before their deadlines in the LO mode:

. ∀τi, ζi = HC : FT imei ≤ di

∀τi, ζi = LC and CrL = LO : FT imei ≤ di (6.1)

Task Dependability Constraint Due to the precedence correlations between tasks,
the start time of task . τi (. sti) must be greater than the finish time of all its predecessor
tasks (.Pr(τi)):

.∀τi,∀j ∈ Pr(τi) �⇒ sti ≥ FT imej (6.2)

Mapping Constraint A task (. τi) can only be executed on a single core in each time
slot. If . Xij denotes the mapping of task . τi on core j , then:

.∀τi,
∑

j∈Cores

Xij = 1 (6.3)

Power Constraint The chip’s overall power consumption must not violate the chip’s
TDP (.T DPchip) in any time slot:

.∀t ∈ t imeslots :
∑

j∈Cores

P owjt ≤ T DPchip, (6.4)

6.1 Problem Objectives and Motivational Example 129

Fig. 6.1 Task graph of an application with three tasks used in the example

where .Powjt represents the power consumption of core j in time slot t .
When the system switches to the HI mode, the system drops some LC tasks to

meet the timing constraints, which degrades the QoS of the system:

.CrL = HI : QoS = nsucc
L /nL (6.5)

The problem is how to map and schedule dependent MC tasks of application A
on the system’s cores to satisfy the aforementioned constraints (timing and peak
power) and QoS of the system. In this chapter, we propose a heuristic method to
solve this NP-hard problem [1].

To better understand the problem, Fig. 6.1 shows an application with three
dependent tasks, where tasks . τ1 and . τ2 have HC and task . τ3 has LC. Deadline,
low WCET, and high WCET of each task are presented in the figure, and the system
takes 1ms to discard the output of a faulty task (.μ = 1). Hence, the periods of all
tasks are the same and equal to 18ms. For the sake of simplicity, we considered
that the application runs on a single-core processor, and up to one fault may occur
during the execution of the application (.k = 1). So, the system cannot execute
multiple tasks simultaneously on different cores to violate TDP (we will discuss
TDP challenge later). The scheduling algorithm in the LO mode executes tasks . τ1,
. τ2, and . τ3, respectively. The schedulability test [2] shows that in the LO mode, all
three tasks can be executed even in the case of fault occurrence. In other words, the
total CPU utilization for application A is less than one .(UA ≤ 1). If we consider the
HI mode, if an LC task . τ3 is executed in addition to the two HC tasks in the case
of fault occurrence, the system becomes overloaded (.UHI

A >1) and the three tasks
cannot be scheduled. However, if we drop some LC tasks in the HI mode (. τ3 in
this example) to guarantee the correct execution of HC tasks, then the computation
demand requested by tasks is less than one and can be scheduled before their
deadline. As a result, the utilization of this example for both LO mode and HI mode
with the probability of one fault occurrence is computed as follows, in which just
HC tasks are considered to be executed in the HI mode:

130 6 Fault-Tolerance- and Power-Aware Multi-core Mixed-Criticality System Design

. UA = MAX(ULO
A ,UHI

A) ≤ 1

ULO
A =

⎛

⎝
∑

i∈{1−3}

WCET LO
i

TA

⎞

⎠ + k(maxi∈{1−3}(WCET LO
i) + μ)

TA

= 4

18
+ 3

18
+ 2

18
+

(
4 + 1

18

)
= 14

18
< 1

UHI
A =

⎛

⎝
∑

i∈{1,2}

WCET HI
i

TA

⎞

⎠ + k(maxi∈{1,2}(WCET HI
i) + μ)

TA

= 6

18
+ 5

18
+

(
6 + 1

18

)
= 18

18
≤ 1 (6.6)

However, for this example, 14 different scenarios could happen during the
execution of the application because the time of the fault and task overruns are
unknown. Table 6.1 shows all these scenarios and the execution time of the system
whether it drops LC task or not. In ten scenarios (. S5 to . S14), an HC task overruns,
and it shows the system is in the HI mode. However, as shown in Table 6.1,
only in two scenarios the system fails to execute all tasks (HC and LC tasks)
before the deadline (. S7 and . S8). The reason is that the system has switched to the
HI mode in these scenarios and also a fault has occurred. It causes the system to
be overloaded and the computation demand for executing all tasks becomes more
than one (.UA > 1). Therefore, the LC task . τ3 would be dropped. Although there are
some scenarios such as . S12 to . S14, that the system is in the HI mode, we schedule
the LC task in this mode to improve the QoS. As shown in Table 6.1, the start time
of . τ3 in . S12 (. S14) is 16 (13), and since the WCET of the LC task is 2, then it can
be executed before the application deadline (.dA = 18). This example clearly shows
that all situations should be considered in an MC system. Therefore, the system is
analyzed in detail at design-time, and then, the proper schedule is exploited in the
online phase to minimize the drop ratio of LC tasks and enhance the QoS.

Figure 6.2 shows the tree for the application task graph presented in the
motivational example, which is constructed in the offline phase of our proposed
approach. At run-time, the system starts each period with . S1 (the scheduling in the
root of the tree), which corresponds to the scenario where no fault occurs and no HC
tasks overruns. If an HC task overruns (for instance, task . τ1), the system searches
through the children of the current node (. S1), finds the appropriate task mapping and
scheduling, and continues the execution based on the new schedule (. S6 in this case).
After that, if the error detection unit detects a fault at the end of a task execution
(for instance, task . τ2), the system searches through the children of the current node
(. S6), finds the appropriate scenario, and continues the execution based on the new
task mapping and scheduling (. S8 in this case).

6.1 Problem Objectives and Motivational Example 131

Ta
bl
e
6.
1

A
ll
po
ss
ib
le
 s
ce
na
ri
os
 o
f
ex
ec
ut
in
g
th
e
ta
sk
 g
ra
ph
 p
re
se
nt
ed
 in

 F
ig
.6
.1
 o
n
a
si
ng
le
-c
or
e
pr
oc
es
so
r

.S
1

.S
2

.S
3

.S
4

.S
5

.S
6

.S
7

.S
8

.S
9

.S
10

.S
11

.S
12

.S
13

. S
14

O
ve
rr
un

–
–

–
–

.τ
1

.τ
2

. τ
1
*

1©
. τ
1
1©

. τ
1
1©

. τ
2
1©

. τ
2
1©

. τ
1
2©

. τ
2
2©

. τ
2
2©

Fa
ul
t

–
.τ
1

.τ
2

.τ
3

–
–

. τ
1
2©

. τ
2
2©

. τ
3
2©

. τ
2
2©

. τ
3
2©

. τ
1
1©

. τ
1
1©

. τ
2
1©

Fi
ni
sh
 ti
m
e

9
14

13
12

13
11

20
**
*

19
**
*

16
17

12
18

16
15

E
xe
 ti
m
e
(d
ro
p
. τ
3
)

7
12

11
10
**

11
9

18
17

14
**

15
10
**

16
14

13

*
T
he
 c
ir
cl
es
 s
ho
w
s
th
e
or
de
r
of
 th

e
oc
cu
rr
en
ce
 o
f
fa
ul
t a
nd
 ta
sk
 o
ve
rr
un

**
 I
n
th
es
e
ca
se
s,
 th

e
sy
st
em

 e
xe
cu
te
s
. τ
3
an
d
de
te
ct
s
a
fa
ul
t o

cc
ur
s,
 b
ut
 d
oe
s
no
t r
e-
ex
ec
ut
e
th
e
ta
sk
 (
dr
op
s
th
e
ta
sk
)

**
*
In
 th

es
e
ca
se
s,
 th

e
sy
st
em

 m
us
t d

ro
p
ta
sk

. τ
3
to
 e
xe
cu
te
 a
ll
H
C
 ta
sk
s
be
fo
re
 th

ei
r
de
ad
lin

es

132 6 Fault-Tolerance- and Power-Aware Multi-core Mixed-Criticality System Design

Fig. 6.2 The tree constructed by our method for the task graph of Fig. 6.1

It is important to mention that each schedule has a different start time, system
mode, the expected number of faults, and task set. Furthermore, the scheduling of
child nodes must be compatible with the scheduling of their parent, so the system
can change the schedule of tasks without any conflicts. For instance, assume that
in . S1, the task execution order is . τ1, . τ2, and . τ3. When the system employed . S4, it
implies that . τ1 and . τ2 are completed successfully, the system is in the LO mode, and
a fault is detected at the end of the first execution of . τ3. So, the . S4 should schedule
tasks based on this information.

6.2 Design Methodology

The fault-tolerance and peak power-aware task mapping and scheduling method
consists of two phases: design-time and run-time. In this chapter, we propose a
design-time approach to be used at run-time for objective management. For the
sake of completeness, we provide a brief overview of how to use the schedule
tree in the run-time phase, which is generated at design-time. Figure 6.3 shows
an overview of the design methodology. In the design-time phase, there are three
functions that are used to generate the schedule tree, MakeTreeRec, Schedule, and
MapSch. Section 6.3 provides details of generating the tree, these functions, and
how we manage the peak power consumption. All scenarios are stored in memory
to be used in the run-time phase. At run-time, an application follows the presented
task mapping and scheduling at the root of the tree. In the case of fault occurrence or
mode switching, the appropriate task mapping and scheduling for the remaining un-
executed tasks is fetched from memory. After fetching, mapped tasks based on the
previous scenario are remapped based on the new scenario, and the system continues
its operation. In the following subsection, we explain the design-time phase of our
proposed method.

6.3 Tree Generation and Fault-Tolerant Scheduling and Mapping 133

Design-Time Run-Time

Start
Map&Sch.
based on
the root

Continue
Operation

task
 faulty?

HC task
Overrun?

Select the next scenario from
the saved tree data structure

Memory

Decode
saved scenario

Task Re-
mapping

Encode
Scenarios

N

Y

N

Y

Repair
Faulty Task

MakeTreeRec Func.

All Mode Switch. and Fault
Occur. Scenarios

Schedule Func.

MapSch Func.

Fig. 6.3 Design methodology

6.3 Tree Generation and Fault-Tolerant Scheduling and
Mapping

As we discussed, multiple scenarios might happen during the execution of an
instance of the application, where, in most of these scenarios, the system can
execute all or most of LC tasks without violating HC tasks’ deadline. To this end,
the proposed approach of this work considers a different mapping and scheduling
for each scenario to handle HC tasks’ deadlines, faults, and peak power violations
while minimizing the number of dropped LC tasks in the HI mode. In the run-time
phase, in general, the system is unaware of tasks that might overrun or a fault that
occurs, so the system cannot select the proper schedule in advance. Therefore, this
work employs a tree data structure in the offline phase to organize the mapping and
scheduling of tasks for all scenarios, corresponding to each HC task overrunning,
and/or up to k fault occurrence during each period. Now, we explain how the
scheduling tree is generated.

6.3.1 Making Scheduling Tree

The main function of creating the tree (. �) is outlined in Algorithm 6.1. At first, we
define a priority queue called TaskPQ (line 3), which considers tasks’ release time as
the priority. The release time of a task is the time when all its predecessor tasks have
finished their execution (presented in Sect. 2.1.1.1). Then, the algorithm enqueues
all tasks without any predecessor to the TaskPQ with a key equal to 0, because they
are released at the beginning of the period (line 4). Each node of the tree represents
a particular scenario, and it has two attributes called sch and childs. For instance,
in the root scenario, the system is in the LO mode, and no fault occurs in the entire
period. sch is the proper mapping and scheduling of tasks for that scenario, and
childs is a list of children nodes of the current node.

134 6 Fault-Tolerance- and Power-Aware Multi-core Mixed-Criticality System Design

Algorithm 6.1 Creating the tree
Input: Task Graph (GT), List of Cores (c), Number of Faults (k).
Output: Scheduling Tree (�).
1: procedure MAKETREEMAIN ()
2: � ← Empty Tree
3: TaskPQ ← Empty Priority Queue
4: Add all tasks without predecessor node to TaskPQ with key 0
5: �[root].sch ← MapSch(GT , c, 0, ∅, T askPQ)
6: if �[root].sch=un-scheduled then
7: return ∅
8: end if
9: �[root].childs ← MakeT reeRec(GT , c,�[root].sch, 0, k, LO)
10: if �[root].childs=un-scheduled then
11: return un-scheduled
12: end if
13: return �

14: end procedure
15: function MAKETREEREC (Task Graph (GT), List of Cores (c), Parent Schedule(Sch), Time

(T), Number of Faults (k), Mode of the System (Mode))
16: SchList ← Empty list of nodes
17: if Mode = LO then
18: //HChild nodes
19: Tasks ← List of unfinished HC tasks in time T.
20: GH ← GT With High WCET.
21: for each τ in Tasks do
22: Ttmp ← Finish time of τ in sch + Tsw .
23: S ← New node
24: S.sch = Schedules (GH , c, Ttmp , sch, TaskPQ)
25: if S.sch = un-scheduled then
26: return ∅.
27: end if
28: S.childs ← MKT reeRec(GH , c, S, Ttmp, k,HI)
29: if S.childs = ∅ then
30: return ∅.
31: end if
32: Add S to SchList
33: end for
34: end if
35: if k > 0 then
36: Tasks ← List of Unfinished Tasks in T.
37: for each τ in Tasks do
38: Ttmp ← Finish Time of τi in sch.
39: S.sch = Schedules(GT , sch, Time)
40: if S.sch = un-scheduled then
41: return un-scheduled.
42: end if
43: S.childs ← MKT reeRec(GT , c, S, Ttmp, k − 1,Mode)
44: if S.childs = ∅ then
45: return ∅.
46: end if
47: Add S to SchList
48: end for
49: end if
50: return SchList
51: end function

6.3 Tree Generation and Fault-Tolerant Scheduling and Mapping 135

Algorithm 6.2 Schedule procedure
Input: Task Graph (GT), List of Cores (Cores), Time (T), Parent Schedule (Schpar), Ready Task

Priority Queue (T askPQ).
Output: Schedule (Sch)
1: procedure SCHEDULES ()
2: Tr ← List of Tasks from G that all predecessors has started executing before time T.
3: Add Tr Tasks to a Priority Queue (TaskPQ).
4: Sch ← Schpar [0 − T]
5: Sch ← MapSch(G1, Cores, T , Sch, T askPQ)
6: if Sch = un-scheduled then
7: Find a LC Task with Largest execution time which has not started in T and remove

it from G then goto line 2.
8: if Cannot find any LC task then
9: return un-scheduled.
10: end if
11: end if
12: return Sch
13: end procedure

The algorithm calls MapSch function (Algorithm 6.3, which is discussed later
in this section) to schedule task for the root node (line 5). The algorithm returns
un-scheduled if MapSch function cannot find any feasible schedule with no task
dropping and violating the TDP constraint (lines 6–8). Otherwise, the algorithm in
line 9 continues to create the rest of the tree recursively by calling MakeTreeRec
function (which is presented in lines 15–50 of this algorithm). If task scheduling
is feasible in all possible scenarios, MakeTreeRec function returns a list of child
nodes, and the algorithm returns the tree (. �); otherwise, the algorithm returns un-
scheduled, which means it could not find a feasible solution (lines 10–13).

The MakeTreeRec function in Algorithm 6.1 recursively creates the tree. Each
node in the tree might have two types of child nodes. The first type of child
node (HChild) has a scenario similar to their parents, except that one of the HC tasks
overruns. Therefore, if the system is in the LO mode, any unfinished HC task might
overrun and change the system’s mode. To this end, first, MakeTreeRec function
collects all unfinished HC tasks and creates an HC task graph (. GH) by changing the
WCET of all tasks to high WCET (lines 18–19). Then, for each unfinished HC task,
the function considers the scenario that the task overruns and schedules the task by
calling Schedules function, presented in Algorithm 6.2. If the Schedules function
finds feasible scheduling, the algorithm recursively creates a tree for this node,
where the system is in the HI mode, and up k faults may occur on the remaining
tasks by calling MakeTreeRec function (lines 20–32). It is important to mention that
switching to the HI mode has nonzero timing overhead (. Tsw) in realistic systems [3],
but it is insignificant in comparison with tasks’ WCETs (line 21). The second type of
child node (FChild) has a scenario similar to their parents, except for one fault that
occurs during the execution of one of the remaining tasks. The system can tolerate
up to k faults in a period. If less than k faults occur in a node scenario, a faulty
execution of all remaining tasks needs to be considered. Therefore, a child node is

136 6 Fault-Tolerance- and Power-Aware Multi-core Mixed-Criticality System Design

generated for the faulty execution of each remaining task, and also for each child
node, the algorithm recursively constructs a tree by calling MKTreeRec with k-1
faults (line 34–48). Finally, if the algorithm finds a feasible solution for all scenarios,
it returns the list of child nodes (SchList).

The Schedule function schedules tasks for each situation by calling MapSch
function (Algorithm 6.3). If MapSch function fails to find a feasible solution to
meet the deadlines of all tasks with respect to TDP constraint, Schedules function
drops the largest LC task (in terms of WCET) and calls MapSch function again.
The Schedules function repeats this procedure to find a feasible schedule. If
MapSch function fails to find a feasible solution, and there is no more LC task
to drop, Schedules function returns un-scheduled (lines 2–12 Algorithm 6.2). We
will discuss the MapSch function in the next subsection. As we mentioned in this
section, occurring faults and a criticality mode change generate different scheduling
scenarios that correspond to a set of alternative schedules. These scenarios are stored
in the memory of the system as a tree in the offline phase. At run-time, the system
starts with the scheduling in the root node, which is for the scenario where no fault
or overrun happens. After that, if a fault occurs or an HC task overruns, the system
finds the appropriate scenario in the child nodes of the current node and changes the
scheduling of the system to improve the number of executed LC tasks.

6.3.2 Mapping and Scheduling

In this section, we explain the proposed mapping and scheduling algorithm, which
manages the peak power and hotspot distribution. It should be mentioned that low-
power techniques, e.g., DVFS, cannot be easily used in the HI mode, especially
when the system is in the overload situation due to the timing overhead. Therefore,
we manage the peak power by finding the proper mapping and scheduling of tasks
on free time slots of cores. This task mapping and scheduling is feasible if the
system’s power consumption never exceeds the TDP constraint, and all tasks finish
their execution (even in the worst case) before their deadline. So, MapSch algorithm
decides the time and core where each task should be executed.

Algorithm 6.3 outlines the pseudo-code of the MapSch algorithm. Tasks are
mapped and scheduled up to time T based on the current node schedule. In the case
of fault occurrence or mode switches at time T, this algorithm maps and schedules
the rest of the tasks based on the new node schedule from time T to the end of the
application period (PERIOD). The time is divided into a set of equal time slots (TS),
and the scheduler will put tasks into cores only at the beginning of each time slot.
In each time slot, at first, the algorithm sets an empty array for ready tasks, and
then it extracts all elements of TaskPQ, where their key is equal to the current time
slot. This means that all predecessor tasks of these ready tasks have finished their
execution. If TaskPQ and ReadyTasks array are both empty, the algorithm returns
the final scheduling (Sch) because it successfully schedules all tasks. If there is no

6.3 Tree Generation and Fault-Tolerant Scheduling and Mapping 137

Algorithm 6.3 Mapping and scheduling pseudo-code
Input: Task Graph (GT), List of Cores (Cores), Time (T), Scedule up to the Time (Sch), Ready

Task Priority Queue (T askPQ).
Output: Complete Schedule (Sch)
1: procedure MAPSCH ()
2: for TS = T to PERIOD do
3: ReadyT asks ← ∅
4: Extract minimum element from TaskPQ and add it to ReadyTasks while key

of each element is equal to TS and TaskPQ is not empty;
5: if TaskPQ.empty() = true and ReadyTasks = ∅ then
6: return Sch // Scheduling is done;
7: end if
8: if ReadyTasks = ∅ then
9: continue // No new task is ready in this TimeSlot
10: end if
11: SortedTasks ← Sort (ReadyTasks, Desc);
12: SortedCores ← Sort (Cores, Asc);
13: for task in SortedTasks do
14: for core in SortedCores do
15: Timetmp ← taskwcet
16: count ← 0
17: Schtmp ← Sch
18: SysPowtmp ← SysPow
19: while T imetmp > 0 do
20: if Schtmp(T S+count, core) is empty & SysPowtmp(T S+count) +

taskpow <= T DP then
21: Schtmp(T S + count, core) = task
22: SysPowtmp(T S + count) += taskpow
23: T imetmp -= 1
24: end if
25: count += 1;
26: end while
27: if T S+count ≤ taskdeadline then
28: Sch ← Schtmp
29: SysPow ← SysPowtmp
30: SortedCores ← Sort (Cores, Asc);
31: tasksch ← true
32: break
33: end if
34: end for
35: if tasksch == false then
36: return un-scheduled
37: end if
38: end for
39: end for
40: end procedure

ready task to be scheduled in the current time slot (the ReadyTask array is empty,
but the TaskPQ is not empty), the algorithm moves to the next time slot (lines 2–10).

The algorithm sorts the ready tasks in descending order of their energy con-
sumption (line 11). The energy consumption of each task . τi (.Engi) is calculated as
follows:

138 6 Fault-Tolerance- and Power-Aware Multi-core Mixed-Criticality System Design

.Engi = Powi × WCETi (6.7)

where .Powi and .WCETi are the maximum power consumption and the worst-case
execution time of task . τi . The maximum power of each task can be obtained by
running benchmarks on a real platform. As mentioned in Sect. 2.1.4, the processor
power consists of three components; when a task is run on a processor, the dynamic
power is increased significantly compared to static and independent powers. Hence,
in this work, we do not model the power; we measure the processor power when
tasks are run on the real platform. More information about computing these values
is given in Sect. 6.4.1. The system’s power consumption must never exceed the
TDP constraint to overcome the overheating problem [1]. To this end, we consider
a constant power consumption for each task at design-time, which is equal to its
maximum power consumption, to guarantee the meeting of TDP constraint in the
worst-case scenario. In addition, energy increment leads to an increase in chip
temperature [4, 5]. Thus, we map a task with more energy consumption to a core
with less temperature. Then, the algorithm sorts the cores in the ascending order of
their accumulated energy (line 12). A core has a higher priority for task assignment
if it has less accumulated energy (i.e., tends to have a less temperature degree).

After sorting tasks and cores, the algorithm assigns tasks to the cores one by one
(lines 13–38). So, for each task, the algorithm selects a core from the sorted list and
schedules the task on the core’s free slots (lines 19–26). The system’s instantaneous
power consumption must be less than the TDP constraint, so we consider an array
called SysPow, which holds the maximum power consumption of the system
in each time slot. The algorithm checks the SysPow and TDP constraint before
scheduling a task on a core (line 20). If the task is completed before its deadline, the
algorithm updates the schedule (Sch), power array (SysPow), and scheduling status
of the task (.tasksch). It also sorts the cores again since the energy of one core has
changed and starts to schedule the next task (lines 27–33). If the task does not meet
its deadline on the core, the algorithm picks the next core and schedules it on that
core. However, if the deadline of one task is violated in all cores, the algorithm fails
to schedule tasks of the application in this scenario and returns “un-schedulable”
(lines 36–37).

The example in Fig. 6.4 shows an MC application and how our method maps
and schedules the tasks on three cores. Assume the TDP constraint is 1.6watts.
Figure 6.4b shows that the scheduling without our policy violates the TDP
constraint, while the maximum power consumption of the task scheduling by
considering our policy is below the TDP constraint (Fig. 6.4c). When the system
completes task . τ1, three tasks (. τ2, . τ3, and . τ4) become ready to be executed. So,
.Engτ2 > Engτ3 = Engτ4 that shows . τ2 should be mapped to the core with less
accumulated energy (. Ec). In addition, as can be computed, .EC3 = EC2 > EC1.
Therefore, according to the criticality level, we first map . τ2 and . τ3 on . C3 and . C2,
respectively, and schedule them, and thereafter, . τ4 is mapped on . C1. This procedure
will be the same for mapping and scheduling . τ5 and . τ6.

6.3 Tree Generation and Fault-Tolerant Scheduling and Mapping 139

Fig. 6.4 Two different task scheduling scenarios. (a) An example of MC application. (b) Task
scheduling without our policy. (c) Task scheduling with our policy

6.3.3 Time Complexity Analysis

In this section, we consider an m-core processor running an application with n tasks
and k possible fault occurrences during the application’s execution. At first, we
describe the complexity of generating a tree as the main computation part of the
proposed method.

When an HC task overruns, the system switches to the HI mode, and the
scheduler considers the high WCET of remaining tasks until the complete execution
of the application. So, in each execution, only one task may overrun, and the
possible scenarios for overrun situations are equal to the number of HC tasks (. nH).
Furthermore, we assume that up to k faults may occur during the execution of the
application. For clarity, we first compute the number of different fault-occurrence
scenarios for .k = 0, 1, and 2. Then, we present a general formula to obtain the
maximum number of possible scenarios (nodes of the tree).

• .k = 0: In this case, there is one scenario for a situation where none of the tasks
overruns (the root of the tree) and . nH (number of HC tasks in the graph) scenarios
for situations where one of the HC tasks overruns (leaf nodes of the tree). Thus,
the number of all schedules is:

140 6 Fault-Tolerance- and Power-Aware Multi-core Mixed-Criticality System Design

.T (k = 0) = 1 + nH (6.8)

• .k ≤ 1: In this case, the tree has .T (k = 0) nodes to handle .k = 0 scenarios,
in addition to the nodes which contain scheduling for .k = 1 scenarios. There
are three possible situations for the scenarios where one fault occurs to a task
(HC or LC task). There are n scenarios for situations when no HC task overruns,
.n × nH scenarios for situations where the faulty task executes before an HC task
overruns, and .n×nH scenarios for situations where the faulty task executes after
an HC task overruns. Therefore:

. T (k ≤ 1) = T (k = 0) + n + 2 × n × nH = 1 + nH + nH × n + n × (1 + nH)

= 1 + nH + nH × n + n × T (k = 0) (6.9)

• .k ≤ 2: In this case, the tree has .T (k ≤ 1) nodes to handle .k ≤ 1 scenarios,
in addition to the nodes which contain scheduling for .k = 2 scenarios. There
are four possible situations for the scenarios where two faults occur to one or
two task(s). There are . n2 scenarios for situations when no HC task overruns,
.n×n×nH scenarios for situations where the two faulty tasks are executed before
an HC task overruns, .nH ×n×n scenarios for situations where the two faulty tasks
are executed after an HC task overruns, And .n × nH × n scenarios for situations
where an HC task overruns in the middle of two faulty tasks. It is noteworthy to
mention that there are scenarios in which both faults and overrun happen on a
one HC task (similar to S7, S10, S12, and S14 in Table 6.1). Therefore:

. T (k ≤ 2) = T (k ≤ 1) + n2 + 3 × nH × n2

= 1 + nH + nH × n + nH × n2 + n × T (k ≤ 1) (6.10)

Therefore, we can conclude that the maximum number of possible schedules
by considering maximum k fault occurrence is:

.T (k) = 1 + nH

(
k∑

i=0

(ni)

)
+ nT (k − 1), T (0) = 1 + nH (6.11)

By solving Eq. (6.11) , we can conclude that generating the tree is in order of
.O(nk+2):

.T (k) = nH ×
(

k∑

i=0

((i + 1) × ni)

)
+ 1 − nk+1

1 − n
(6.12)

Please note that this value is a general upper bound for the generating tree
algorithm, and for an actual task graph, the total number of scenarios is less than
Eq. (6.11). The reason is that the total number of scenarios is presented with no

6.4 Evaluation 141

awareness of the exact dependency between tasks to count the precise number of
scenarios when a fault occurs and then a task overruns, or vice versa. For example,
there are 14 different scenarios for two HC tasks, one LC task, and .k = 1 for the
task graph presented in Fig. 6.1, while .T (k) is equal to 18 in Eq. (6.11) .

6.3.4 Memory Space Analysis

In this section, we discuss the memory space needed for storing the scheduling tree.
For each scenario, we store two arrays with the size of the number of tasks. The first
array determines the core assigned to each task, and the second array determines the
start time of the tasks. In the first array, we denote that each task is mapped to which
of c cores. So, each task requires .logc

2 bits. Since we have n tasks in the application,
the total memory space required for each scenario is .n × logc

2 bits. Considering the
period of the application and the size of each time slot, the second array size is equal
to .n × logperiod/timeslot

2 . Therefore, the total amount of needed memory (bits) is:

.Mem(n, c, k) = T (k) ×
(

n ×
(
logc

2 + log
period
timeslot

2

))
(6.13)

Assuming c and period/timeslot values are less than . 232, the memory space
needed for saving the scheduling tree for an application with 32 tasks and up to
two possible fault occurrences in the worst-case scenario is less than 13 MB. It
is noteworthy to mention that the scheduling tree can be stored in the FLASH or
read-only memory of the system, and there is no need to load the whole tree to the
RAM at run-time. In the case of fault occurrence or mode switching at run-time, the
system discards the current schedule and loads the proper child node’s schedule into
the RAM. In this example, our approach occupies less than 2 KB of the RAM.

6.4 Evaluation

6.4.1 Experimental Setup

6.4.1.1 Application

For the experiments, we used both real-life and random applications to show our
proposed approach’s efficacy. To generate random task graphs, we used the tool
presented by Medina et al. [6]. We generated applications with 30, 40, 50, and
100 tasks (n), where 20–50% of them are LC tasks. Another important parameter
in a task graph is edge percentage (d) which shows the probability of having
edges from one task to another task. We considered 1–20 % edge percentage
in the experiments. Another important parameter that will be discussed in the

142 6 Fault-Tolerance- and Power-Aware Multi-core Mixed-Criticality System Design

experiments is the normalized system utilization .U/c, where U is the utilization
of the system considering the high WCET of each task and c is the number of
cores. We considered different values of normalized system utilization in the range
of (0,1] with the steps of 0.05. We also evaluate the proposed approach and other
approaches for comparison, with a real-life application task graph, vehicle Cruise
Controller (CC) [7], composed of 32 tasks, where 34% of them are LC tasks. In
addition, the value of edge percentage for this CC application is 7%.

6.4.1.2 Hardware Platform

To evaluate our approach, we conduct the experiments and run the applications on
a platform with 2, 4, 8, and 16 cores, which models ARM Cortex-A7 cores (c). The
maximum number of transient faults that may occur during each application period
(k) and the recovery overhead . μ are considered 3 and 15ms, respectively [8]. It is
important to know that if . λ and t ime is the fault rate and application execution time,
respectively, the minimum number of fault occurrence would be .λ×t ime. Therefore,
k would not be much smaller or larger than .λ × t ime [9]. If .λ = 10−6f ault/μs,
and .t ime = 103 ms, then .λ × t ime = 1. As a result, since this fault rate is much
higher than real fault rates, mentioned .10−12f ault/μs in [10], considering . k ≤ 3
is a reasonable fault-occurrence number during each application period. We use the
HOTSPOT tool [11] to obtain the cores’ temperature trace by exploiting the specific
floorplan according to a real platform, ODROID XU3 board, which has four ARM
Cortex-A7 cores, and the parameters used in [12]. In addition, we use the reported
value in [3], to consider the timing overhead of mode switching for ARM Cortex
processors. We considered the maximum reported overhead, which is .Tsw = 254μs,
in our experiments.

6.4.1.3 Peak Power Consumption

To determine a realistic power consumption for tasks, we ran several embedded
benchmarks from the MiBench suite, such as automotive, network, and Telecomm.,
on the ARM Cortex-A7 core of the ODROID XU3 platform with maximum
frequency at design-time. We monitor the power sensors continuously, and we
set the worst measured power as the power consumption of tasks. In addition,
we examined different scenarios of activating one core to all cores by running
different benchmarks. Each benchmark is run 1000 times on a core, and we
considered each task’s power consumption between the minimum and maximum
power values obtained from the platform. The measurement reports show that the
power consumption of tasks is between 483mW and 939mW. In these experiments,
the TDP value has been considered 85% of the maximum power that a chip can
consume, which is used conventionally in embedded processors [13].

6.4 Evaluation 143

Fig. 6.5 Tree construction time for different application sizes and number of fault occurrence. (a)
Number of tasks. (b) Number of fault occurrence

6.4.1.4 Comparison

We analyzed our proposed method and compared our experimental results to the
results obtained by recent works that use the task graph model [6, 14, 15]. Socci et
al. [14] ([Soc. +15]) have proposed an online scheduling algorithm for an MC system
where only HC tasks are executed in the HI mode. Medina et al. [6] ([MBP18a])
have considered a fault-tolerant MC system that generates two tables at design-
time and uses them at run-time. Based on this work, we in [15] ([Ran. +19]) have
presented an online approach (will be presented in detail in the next chapter) to
reduce the peak power and temperature by using the DVFS technique. Hence, due
to the timing overhead of DVFS and increasing fault rate by changing the V-f
levels [16], we cannot easily use this technique, especially in the HI mode.

6.4.2 Tree Construction Time

At first, we evaluate offline tree construction time by varying the parameters n and
k, in Fig. 6.5. The tree’s construction time is computed on a system with an Intel
Core-i5 processor with 1.3GHz clock frequency. Construction time depends on the
number of faults and tasks. Figure 6.5a shows the effects of the number of tasks and
the portion of HC tasks in each task set with .k = 3. Besides, Fig. 6.5b shows the
effects of the number of fault occurrences with .n = 20. These figures depict that
by increasing the number of faults or number of tasks, the tree generation’s time
is increased exponentially. Also, task sets with higher HC tasks have higher tree
construction time. Although the offline tree construction time is relatively high for
large applications, the online overhead is small and constant for all applications. It is
noticeable that our method can generate each node of a tree in parallel to reduce the
construction time. For example, if we have a systemwith four cores, the construction
time is about four times faster than in a single-core system.

144 6 Fault-Tolerance- and Power-Aware Multi-core Mixed-Criticality System Design

6.4.3 Run-Time Timing Overheads

In case of fault occurrence or mode switching, the system finds the proper schedule
by moving to the child of the current node, which is responsible for the upcoming
scenario. Each node of the tree stores two arrays with the size of . n × (logc

2 +
log

period
timeslot

2) bits, where c and n are the number of cores and tasks, respectively.
Thus, the switching time between the schedules consists of moving one level in
the tree and retrieving the correct scheduling from memory, which is constant and
negligible. We measured the schedule changing time at run-time on the ODROID
XU3 platform; considering .c = 8, and .n = 50, it is almost 0.47. μs.

6.4.4 Peak Power Management and Thermal Distribution for
Real-Life and Synthetic Applications

In this subsection, we analyze the approaches in terms of peak power and maximum
temperature, by running two real-life applications: vehicle CC [7] and object
detection function using LIDAR sensor in Autoware application [17].

Figure 6.6 shows the system’s power traces of vehicle CC application [7] by our
proposed approaches, the approaches proposed by Socci et al. [14], Medina et al. [6],
and Ranjbar et al. [15]. Since [15] is the online approach to minimize the peak power
while exploiting the same task mapping and scheduling of [6] at design-time, their
power traces and thermal distributions are the same in the worst-case scenario of
tasks’ execution time and power consumption. In this part, to focus on the behavior
of systems in the HI mode, we assumed no fault occurred during the application’s
execution. Socci’s approach does not violate TDP constraint because it drops all LC
tasks when the system switches to the HI mode, which means it has zero-percent
QoS of LC tasks in the HI mode. On the other hand, methods of [6] and [15]

Fig. 6.6 Power trace of real-life application graph (CC) in different methods (proposed approach,
[15] (Ran. +19), [6] (MBP18a), and [14] (Soc. +15)) under worst-case scenario

6.4 Evaluation 145

Fig. 6.7 Thermal profiles of real-life application graph (CC) in different methods (proposed
Approach, [15] (Ran. +19), [6] (MBP18a), and [14] (Soc. +15)) under worst-case scenario. (a)
Proposed method. (b) [6, 15]. (c) [14]

guarantee 90.91% of LC tasks’ execution in the HI mode, but it frequently violates
the TDP constraint (Fig. 6.6). For the CC application, our method endeavored to
execute 81.82% of the LC tasks without violating TDP constraint. Figure 6.7 shows
the steady-state temperature distribution of Socci [14], Medina [6], Ranjbar [15],
and our proposed method using the HOTSPOT simulator for the CC application,
corresponding to power profile of Fig. 6.6. Although the maximum temperature
of [14] is lower than ours, it has zero-percent LC tasks’ QoS because it does not
execute any LC task in the HI mode. In addition, we map the tasks on the cores more
uniformly than Medina’s method, which prevents hotspots in our approach. The
proposed approach could reduce 5 . ◦C in maximum temperature compared to [6, 15].
If the system becomes larger in terms of the number of cores and tasks, the efficiency
of our proposed approach in reducing the hotspots would be higher.

As a result, our method reduces the peak power and maximum temperature by
up to 20.06% and 3.71% respectively, compared to the approach of [6, 15], while
the QoS is degraded 9.09%. On the other hand, although our method increases
the maximum temperature by 9.61%, compared to [14], we reduce the peak power
consumption by 6.31% and improve the QoS by 81.82%.

Now, we show the power trace (Fig. 6.8) and heat map of the system (Fig. 6.9),
when the Autoware application is running on the system with three cores. This
application consists of 19 tasks; 10 HC tasks and 9 LC tasks. Similar to what
is considered for the CC application, to focus on the behavior of systems in
the HI mode, we assumed no fault occurred during the application’s execution.
According to the dependencies and timing of the tasks, all LC tasks could be
scheduled before their deadlines in the proposed approach and methods of [6, 15].
As can be seen in these two figures, the proposed approach can manage the peak
power consumption to be less than TDP constraint, compared to [6, 15] approaches.
Note that the system peak power and maximum temperature under [14] approach is
less in comparison to our approach due to executing fewer tasks (i.e., dropping LC
tasks) when the system switches to the HI mode. As a result, the proposed method

146 6 Fault-Tolerance- and Power-Aware Multi-core Mixed-Criticality System Design

Fig. 6.8 Power trace of real-life application graph (Autoware) in different methods (proposed
Approach, [15] (Ran. +19), [6] (MBP18a), and [14] (Soc. +15)) under worst-case scenario

Fig. 6.9 Thermal profiles of real-life application graph (Autoware) in different methods (proposed
Approach, [15] (Ran. +19), [6] (MBP18a), and [14] (Soc. +15)) under worst-case scenario. (a)
Proposed method. (b) [6, 15]. (c) [14]

could reduce the peak power and maximum temperature by up to 9.9% and 3.2%,
respectively, compared to the approach of [6, 15].

Now, we evaluate the power trace and thermal distribution of different methods
of [6, 14, 15] and our proposed method for a random task set example in the worst-
case scenario, in terms of execution times and power consumption. It should be
noted that the scale of temperature for each method is different in Fig. 6.11. Since
we have generated many task graphs with different values of parameters (n, d, c,
and U/c), we choose one of the random task graphs with .d = 10%, .n = 50, .c = 8,
and .U/c = 0.9, which needs a high computational demand to show the results.
Figure 6.10 shows the power traces, and Fig. 6.11 shows the thermal distribution of
the methods. As can be seen in Fig. 6.10, the peak power consumption is violated
sometimes in the method of [6, 15], and since the method of [14] drops all LC
tasks in the HI mode, which is not desirable, the task set finishes its execution
earlier and also has less peak power consumption. Besides, Fig. 6.11 depicts that the
thermal distribution has not been managed in [6, 15], while our approach reduces the

6.4 Evaluation 147

Fig. 6.10 Power trace of a random task graph in different methods (proposed Approach,
[15] (Ran. +19), [6] (MBP18a), and [14] (Soc. +15)) under worst-case scenario

Fig. 6.11 Thermal profiles of a random task graph example in different methods (proposed
approach, [15] (Ran. +19), [6] (MBP18a), and [14] (Soc. +15)) under worst-case scenario. (a)
Proposed method. (b) [6, 15]. (c) [14]

hotspots and lowers the maximum temperature by 22.3 . ◦C in this example. Although
the maximum temperature of [14] is lower than ours, the LC tasks’ QoS is zero since
no LC tasks are executed in the HI mode.

6.4.5 Analyzing the QoS of LC Tasks

Now, we analyze the QoS for the proposed method in comparison with methods
of [6, 14, 15] in Fig. 6.12. In our proposed method, there are many possible scenarios
(each node of the tree is responsible for keeping the scheduling of the system in one
scenario), and for each scenario, the LC tasks’ QoS is different. Thus, we run 100
schedulable task sets on eight cores, and for each task set, ten different random
situations of occurring faults and mode switching are considered. For the case when

148 6 Fault-Tolerance- and Power-Aware Multi-core Mixed-Criticality System Design

Fig. 6.12 Task sets’ QoS under different scenarios

.U/c = [0.5, 0.75) or .U/c = [0, 0.5), there is more free slack before the task
set deadline; therefore, in the case of fault occurrence and mode switching, fewer
LC tasks are dropped. In this experiment, we consider the worst-case scenario of
processor demands, .U/c = [0.75, 1], .n = 50, and .d = 10%, and in the generated
task sets, 20–50% of tasks are LC tasks. In addition, the number of fault occurrences
in each scenario is randomly selected in the range of [0,4]. Figure 6.12 shows the LC
tasks’ QoS for all these 1000 scenarios. The QoS is the successfully executed LC
tasks to all LC tasks. However, we use three different definitions of QoS to evaluate
the methods of [6, 14, 15] more accurately, as follows:

• Scenario 1: The QoS refers to how many LC tasks are successfully executed
before their deadlines with no TDP violation. If TDP is going to be violated,
running LC tasks is only stopped to reduce the peak power consumption.

• Scenario 2: This scenario has the same definition as Scenario 1, with the
difference that since the HC tasks are the most important, therefore without them,
QoS of LC tasks is penalized by completely being zero. Thus, if TDP is violated
and some HC tasks are running on cores, then the QoS . = 0.

• Scenario 3: Since those methods have not been specifically designed for peak
power management while meeting the real-time constraints of all HC tasks, we
give the HC tasks higher weight and then consider the joint QoS, including both
LC and HC tasks. Therefore, the HC tasks have a double weight in this scenario
compared to LC tasks, in the case of dropping tasks due to the TDP violation.

As shown in Fig. 6.12, the QoS for methods of [6, 15] in Scenario 1 is higher than
the QoS for our proposed method in total (according to the CDF line). However, in

6.4 Evaluation 149

this scenario, the TDP constraint is violated several times due to the execution of
HC tasks in parallel on cores, and there is no policy to manage the peak power.
Moreover, for the second scenario in the methods of [6, 15], the figure shows that in
22.5% of task sets, the TDP constraint is violated while executing some HC tasks
on cores. Besides, the QoS in the second scenario for [14] is zero, due to dropping
all LC tasks in the HI mode. Now, if we investigate the methods of [6, 14, 15]
in the third scenario, the QoS of [6, 15] is more than the QoS of [14] due to
executing LC tasks in the HI mode. However, they have less QoS in this scenario
compared to our proposed method. According to this figure, we can conclude that
our proposed method is more efficient in improving QoS than other methods in
different scenarios. In addition, the minimum and maximum QoS in our proposed
method are 68.33% and 100%, while the power constraint is always met.

6.4.6 Peak Power Consumption and Maximum Temperature
Analysis

In this section, we evaluate the system’s peak power consumption and the chip’s
maximum temperature in our approach and methods of [6, 15] by varying different
parameters, such as utilization bound (.U/c), number of tasks (n), edge percentage
(d), and the number of cores (c). Figure 6.13 shows the average normalized peak
power consumption to the TDP constraint and maximum temperature in the worst
case that the system switches to the HI mode after executing the first HC task and
all tasks execute up to their higher WCET. Hence, in the worst-case scenario, [15]
has the same power profile and thermal distribution as [6].

First, we analyze the peak power consumption by varying different parameters.
The figure shows that our proposed approach can manage the peak power consump-
tion to be less than the TDP constraint in all scenarios, while Medina’s method
violates the TDP constraint in almost all scenarios. In general, the impact of our
approach is increased as the probability of using parallelism in the execution of
tasks on cores is increased (a large number of cores (larger c) or less dependency
between tasks (lower d)). Since the number of tasks and utilization is not changed
by increasing c, the maximum power consumption by [6] is also reduced. However,
since our proposed method endeavors to distribute the tasks on all cores to minimize
hotspots and also minimize the instantaneous power consumption, our proposed
approach in decreasing the peak power consumption is more efficient, compared
to [6], while the c is increased. Besides, by reducing the dependency between tasks
(d), although the system peak power consumption is increased and TDP is violated
in [6], our approach always guarantees that the TDP constraint is not violated.
In addition, although increasing the number of tasks or utilization increases the
system’s peak power consumption because the system does more computation, our
approach guarantees that the TDP constraint will never be violated.

150 6 Fault-Tolerance- and Power-Aware Multi-core Mixed-Criticality System Design

Fig. 6.13 Peak power consumption and maximum temperature in different methods (proposed
approach, [15] (Ran. +19), and [6] (MBP18a)). (a) Varying utilization. (b) Varying number of tasks.
(c) Varying edge percentage. (d) Varying number of cores

From the perspective of maximum temperature analysis, increasing the system
utilization, illustrated in Fig. 6.13a, while the number of tasks is fixed (.n = 50)
means that the task’s execution time tends to be longer. Thus, the computation time
of cores is increased, the managing of peak power constraint and busy/idle times of
cores would be difficult, and consequently, the maximum temperature of the chip
is increased in both methods. However, we can decrease the maximum temperature
by up to 22.4 . ◦C in comparison with [6, 15]. Besides, if we vary the number of
tasks in Fig. 6.13b since the computation time of cores does not change, the chip’s
maximum temperature is relatively constant by increasing the number of tasks in
both our proposed method and methods of [6, 15]. Additionally, by varying d, the
maximum temperature reduces by increasing the dependency between tasks because
the cores’ computation time is constant, while the idle time of cores is increased. As
shown in Fig. 6.13c, our proposed method can reduce the maximum temperature by
14.3 . ◦C on average by varying edge percentage, compared to [6, 15].

Now, we investigate the system’s maximum temperature in Fig. 6.13d by increas-
ing the number of cores (c), while other parameters are constant. Hence, the
normalized utilization (U/c is constant in this experiment, which means the utiliza-
tion (U) is increased by increasing c. We have more parallelism to execute tasks by
increasing c and add more free slack to let the cores be idle (having better thermal
distribution). However, since each core’s temperature is a function of its neighbor
cores’ temperature, it increases the chip’s maximum temperature, while the system
utilization is increased. Therefore, the results of our proposed method show that
the maximum temperature is relatively constant by increasing c and can decrease
it, 10.7 . ◦C on average, compared to [6, 15]. Since the methods of [6, 15] do not

6.4 Evaluation 151

Fig. 6.14 Normalized acceptance ratio under different scenarios in different methods (proposed
approach, [15] (Ran. +19), and [6] (MBP18a)). (a) Varying utilization. (b) Varying Number of
tasks. (c) Varying edge percentage. (d) Varying number of cores

consider the thermal distribution, the maximum temperature is generally increased
by increasing c.

6.4.7 Effect of Varying Different Parameters on Acceptance
Ratio

In this section, we illustrate the impact of different parameters, such as utilization
bound (.U/c), number of tasks (n), edge percentage (d), and the number of cores
(c) on the task schedulability (acceptance ratio). Figure 6.14 represents the effect of
each parameter, while the others are fixed, to analyze how the proposed method and
the methods of [6, 15] react to each parameter. We run 1000 benchmarks for each
scenario and report the average result. A task set is schedulable if the real-time and
power constraints are met. In general, having more dependency between tasks, large
system utilization, or more cores causes the system to have less acceptance ratio in
our proposed method. We discuss the observation in detail.

From the perspective of utilization bound, we fix other parameters to see the
effect of varying utilization in Fig. 6.14a. Increasing the utilization while the number
of tasks is fixed (.n = 50) means that the tasks’ execution time tends to be longer.
When the utilization is getting higher, the computation time of cores is increased.
Therefore, fewer task sets can be scheduled before their deadlines even in the case

152 6 Fault-Tolerance- and Power-Aware Multi-core Mixed-Criticality System Design

of fault occurrence, and also, management of power constraint and busy/idle times
of cores would be difficult. We can conclude that fewer task sets can be scheduled
before their deadline, while the power constraint is not violated. This trend is also
the same with [6, 15] with the difference that the TDP constraint is violated several
times, which causes the task sets not to be schedulable.

Besides, Fig. 6.14b shows that the task schedulability is increased by increasing
the number of tasks, with .d = 10%, .U/c= [0.5,0.75), and .c = 8. Since the system
utilization is constant for all number of tasks, the execution time of tasks is reduced
by increasing the number of tasks. Therefore, the tasks tend to finish their execution
early and allow their successors to be released. Furthermore, the overhead of re-
executing a task due to fault occurrence is much lower for small tasks. According to
Fig. 6.14b, we conclude that our method can schedule 70% of task sets, on average,
when only the number of tasks is varied. Besides, by increasing the number of tasks
in the methods of [6, 15], the parallel task execution is increased, which causes
more peak power consumption, and therefore, less task schedulability due to the
TDP violation.

For the case of varying the edge percentage, when the dependency between the
tasks is increased, while n, .U/c, and c are constant (.n = 50, .U/c = [0.5, 0.75),
.c = 8), the release time of tasks is increased, because tasks must wait for more
predecessor tasks to finish their executions. Therefore, the idle time on cores
increases, which causes more delays in the execution of tasks, and reduces the
schedulability. Figure 6.14c shows that the highest schedulability (73%) is achieved
in our method when .d = 1%. Figure 6.14d shows the effect of varying the
number of cores in the system on task schedulability when other parameters are
not changed (.n = 50, .U/c = [0.5, 0.75), .d = 10%). By considering the fixed
.U/c, the utilization is increased by increasing the number of cores. Consequently,
the execution time of tasks is increased because the number of tasks is fixed. As
mentioned earlier, task schedulability is decreased by increasing the tasks’ execution
time. Therefore, as can be seen in Fig. 6.14d, the schedulability of applications with
our proposed method decreases by increasing the number of cores, while the other
parameters are fixed. Besides, in methods of [6, 15], the acceptance ratio increases
by increasing the dependency between tasks and having more cores in the system.
The reason is that based on their mapping and scheduling algorithm, by increasing
the edge percentage and number of cores while fixing other parameters, tasks have
less parallelism, and also fewer cores are selected to be active to execute the tasks,
which causes the system to have less peak power consumption and therefore, a
higher acceptance ratio. As a result, by increasing the edge percentage for more than
20%, our proposed method and method of [6, 15] have almost the same acceptance
ratio. However, the mapping and scheduling algorithm of [6, 15] increases the
overheating problem, which is not acceptable by most safety-critical systems. In
addition, since methods of [6, 15] are not peak power-aware, when the number of
cores is less, the TDP is violated in most of the task sets, and therefore, these task
sets are not schedulable.

In the end, the acceptance ratio of our proposed method is 74.14% on average for
all scenarios, while it is 31.1% in the methods of [6, 15].

6.4 Evaluation 153

Fig. 6.15 System power trace of different methods (proposed approach, [15] (Ran. +19),
[6] (MBP18a), and [14] (Soc. +15)) for a random task graph at run-time

6.4.8 Investigating Different Approaches at Run-Time

Now, we evaluate the system behavior at run-time in terms of peak power consump-
tion for our proposed approach and the method proposed in [6, 14, 15]. We in [15]
have presented a run-time method to reclaim the available slacks and reduce the
V-f levels of cores to decrease the system peak power. Here, analogous to [15], the
actual execution time of tasks follows the normal distribution with the mean and
standard deviation of . 3×WCET

4 and .WCET
12 , respectively. Figure 6.15 depicts the

run-time power trace of methods for a random task graph with .d = 10%, .n = 50,
.c = 8, and .U/c = 0.9. The system switches to the HI mode by forcing a randomly
selected HC task to execute beyond its lowest WCET for both methods. As shown
in this figure, the system peak power in the proposed approach is less than the
TDP constraint at run-time, while the method of [6] has violated the TDP for a
period of time. Although the system peak power of [15] may be less than the TDP
constraint for some applications like the used task graph and their method consumes
less energy in the system, there is no guarantee for the peak power to be less than
the power constraint. Due to the use of DVFS technique in [15] and decreasing the
V-f levels at run-time, the system consumes less energy in comparison with our
proposed method. For the example of Fig. 6.15, the method of [15] saves 0.74102J
in the system compared to our proposed approach. However, the DVFS technique
degrades the reliability and increases the fault rate. The fault rate depends on the
system’s voltage level, and also, the application’s reliability depends on the voltage
level and tasks’ WCET, which is increased by reducing the frequency level [10]. As
an example, for this task graph, by considering the fault rate .f = 10−4 [18], the
reliability of tasks has been decreased .0.17% and .2.08%, on average and worst case
in comparison with our proposed approach. In addition, the number of nines for the
system’s reliability (.−Log1−Rel

10) has been degraded from 8 to 6, which may not be
desirable for most safety-critical applications [19].

From the perspective of the system’s reliability and fault tolerance in our
proposed method, we run the 1000 task graph applications for different normalized

154 6 Fault-Tolerance- and Power-Aware Multi-core Mixed-Criticality System Design

Fig. 6.16 Run-time power trace of real-life task graph in different methods (proposed approach,
[15] (Ran. +19), [6] (MBP18a), and [14] (Soc. +15))

utilization bound (.U/c = [0.5, 0.75), and [0.75,1]) and compare to the system’s
reliability in [15]. In our proposed method, .−Log1−Rel

10 for the normalized utiliza-
tion equal to [0.5,0.75) and [0.75,1] is 8.56 and 7.67 on average, respectively, while
for [15], it is 4.99 and 4.60, respectively. As a result, based on the required reliability
for safety-critical systems, the method of [15], which decreases the V-f levels, has
severely damaged the system’s safety, which is not desirable. The reliability of
the proposed approach is high for different utilization. Therefore, our method can
be applied to any application with varying bounds of utilization while satisfying
peak power management, fault tolerance, and high reliability in different system
operational modes.

Since we have used a real-life task graph (CC) to evaluate our proposed method,
here we show the run-time system behavior for the real task graph in Fig. 6.16. As
shown in this figure, the approach of [6] still violates the power constraint (TDP),
and since the approach of [15] has applied the DVFS technique, the peak power
consumption has been reduced. Hence, the method of [15] uses the same task
mapping and scheduling algorithm of [6] at design-time and reduces the peak
power by reclaiming the dynamic slack times at run-time (the difference between
the WCET and actual execution time) and decreases the operating voltage and
frequency level of cores while executing the tasks. However, the approach of [15]
has degraded reliability due to the use of DVFS technique, which is not desirable
for safety-critical applications. In addition, our proposed method could manage the
peak power consumption in this real task graph, and also, since the method of [14]
has dropped all LC tasks in the HI mode, the peak power consumption is also less
than the TDP constraint.

References 155

6.5 Conclusions

This chapter has proposed an approach to schedule MC tasks in fault-tolerant
systems in different operational modes to manage peak power by considering
a thermal management policy. At run-time, depending on the fault-occurrence
possibilities and criticality mode changes, the system faces different scenarios. We
proposed an approach that develops a tree of schedules at design-time. Each node of
the tree represents a scenario and contains scheduling of tasks in which all HC tasks
and as many as possible LC tasks can be executed without violating the TDP. At run-
time, a low overhead online scheduler selects the proper node to map and schedule
tasks. The results show that the proposed technique can schedule 74.14% of task
sets on average and significantly reduce peak power consumption (by guaranteeing
the TDP constraint) in the worst-case scenario compared to the existing methods.
Besides, this approach can also extend to multiple criticality levels. However, we
first need to know the importance and functions in different criticality levels and
how they can be dropped in the higher criticality modes without impacting system
functionality. Then, based on it, propose an efficient task mapping and scheduling
algorithm in order to manage real-timeliness, power, and maximum temperature
while improving the QoS of tasks with different criticality levels.

Although this approach guarantees the real-time constraints in the worst-case
scenario of task execution time at run-time, most task execution times are signif-
icantly shorter than their WCET. Indeed, this worst-case scenario rarely happens.
Due to the early finish of the task’s execution, the generated dynamic slack could be
used for better power-aware MC system design in multi-core platforms. In the next
chapter, we propose an online method that adapts to task execution time dynamism
and employs the accumulated dynamic slack to reduce the peak power consumption
and maximum temperature.

References

1. Waqaas Munawar et al. “Peak Power Management for scheduling real-time tasks on het-
erogeneous many-core systems”. In: Proc. of the International Conference on Parallel and
Distributed Systems (ICPADS). 2014, pp. 200–209.

2. Sanjoy Baruah. “The federated scheduling of systems of mixed-criticality sporadic DAG
tasks”. In: Proc. of IEEE Real-Time Systems Symposium (RTSS). 2016, pp. 227–236.

3. Micaiah Chisholm et al. “Supporting Mode Changes While Providing Hard-ware Isolation in
Mixed-Criticality Multicore Systems”. In: Proc. of Real-Time Networks and Systems (RTNS).
2017, pp. 58–67.

4. Pengcheng Huang et al. “Energy efficient dvfs scheduling for mixed-criticality systems”. In:
Proc. on Embedded Software (EMSOFT). 2014, pp. 1–10.

5. Behnaz Ranjbar et al. “Power-Aware Runtime Scheduler for Mixed-Criticality Systems on
Multicore Platform”. In: IEEE Transactions on Computer-Aided Design of Integrated Circuits
and Systems (TCAD) 40.10 (2021), pp. 2009–2023. https://doi.org/10.1109/TCAD.2020.
3033374.

https://doi.org/10.1109/TCAD.2020.3033374
https://doi.org/10.1109/TCAD.2020.3033374
https://doi.org/10.1109/TCAD.2020.3033374
https://doi.org/10.1109/TCAD.2020.3033374
https://doi.org/10.1109/TCAD.2020.3033374
https://doi.org/10.1109/TCAD.2020.3033374
https://doi.org/10.1109/TCAD.2020.3033374
https://doi.org/10.1109/TCAD.2020.3033374

156 6 Fault-Tolerance- and Power-Aware Multi-core Mixed-Criticality System Design

6. R. Medina, E. Borde, and L. Pautet. “Availability enhancement and analysis for mixed-
criticality systems on multi-core”. In: Proc. on Design, Automation & Test in Europe
Conference & Exhibition (DATE). 2018, pp. 1271–1276.

7. Viacheslav Izosimov, Petru Eles, and Zebo Peng. “Value-based scheduling of distributed
fault-tolerant real-time systems with soft and hard timing constraints”. In: Proc. of the IEEE
Workshop on Embedded systems for real-time multimedia (ESTIMedia). 2010, pp. 31–40.

8. V. Izosimov et al. “Scheduling of Fault-Tolerant Embedded Systems with Soft and Hard Timing
Constraints”. In: Proc. on Design, Automation & Test in Europe Conference & Exhibition
(DATE). 2008, pp. 915–920.

9. Y. Zhang and K. Chakrabarty. “A unified approach for fault tolerance and dynamic power
management in fixed-priority real-time embedded systems”. In: IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems (TCAD) 25.1 (2006), pp. 111–
125. https://doi.org/10.1109/TCAD.2005.852657.

10. M. Salehi et al. “Two-State Checkpointing for Energy-Efficient Fault Tolerance in Hard Real-
Time Systems”. In: IEEE Transactions on Very Large Scale Integration (VLSI) Systems 24.7
(2016), pp. 2426–2437.

11. Wei Huang et al. “HotSpot: A compact thermal modeling methodology for early-stage VLSI
design”. In: IEEE Transactions on Very Large Scale Integration (VLSI) Systems 14.5 (2006),
pp. 501–513.

12. Y. Gong, J. J. Yoo, and S. W. Chung. “Thermal Modeling and Validation of a Real-World
Mobile AP”. In: IEEE Design & Test 35.1 (2018), pp. 55–62.

13. Yongpan Liu et al. “Thermal vs energy optimization for dvfs-enabled processors in embedded
systems”. In: Proc. of International Symposium on Quality Electronic Design (ISQED). 2007,
pp. 204–209.

14. Dario Socci et al. “Multiprocessor scheduling of precedence-constrained mixed-critical jobs”.
In: Proc. of International Symposium on Real-Time Distributed Computing (ISORC). 2015,
pp. 198–207.

15. B. Ranjbar et al. “Online Peak Power and Maximum Temperature Management in Multi-core
Mixed-Criticality Embedded Systems”. In: Proc. of Euromicro Conference on Digital System
Design (DSD). 2019, pp. 546–553.

16. Israel Koren and C Mani Krishna. Fault-tolerant systems. Morgan Kaufmann,2020.
17. AutowareAuto Project. https://gitlab.com/autowarefoundation/autoware.auto/AutowareAuto.

git. Accessed: May 2021.
18. Mohammad Salehi, Alireza Ejlali, and Bashir M Al-Hashimi. “Two-phase low-energy N-

modular redundancy for hard real-time multi-core systems”. In: IEEE Transactions on Parallel
and Distributed Systems (TPDS) 27.5 (2016), pp. 1497–1510.

19. B. Ranjbar et al. “FANTOM: Fault Tolerant Task-Drop Aware Scheduling for Mixed-Criticality
Systems”. In: IEEE Access 8 (2020), pp. 187232–187248. https://doi.org/10.1109/ACCESS.
2020.3031039.

https://doi.org/10.1109/TCAD.2005.852657
https://doi.org/10.1109/TCAD.2005.852657
https://doi.org/10.1109/TCAD.2005.852657
https://doi.org/10.1109/TCAD.2005.852657
https://doi.org/10.1109/TCAD.2005.852657
https://doi.org/10.1109/TCAD.2005.852657
https://doi.org/10.1109/TCAD.2005.852657
https://doi.org/10.1109/TCAD.2005.852657
https://gitlab.com/autowarefoundation/autoware.auto/AutowareAuto.git
https://gitlab.com/autowarefoundation/autoware.auto/AutowareAuto.git
https://gitlab.com/autowarefoundation/autoware.auto/AutowareAuto.git
https://gitlab.com/autowarefoundation/autoware.auto/AutowareAuto.git
https://gitlab.com/autowarefoundation/autoware.auto/AutowareAuto.git
https://gitlab.com/autowarefoundation/autoware.auto/AutowareAuto.git
https://gitlab.com/autowarefoundation/autoware.auto/AutowareAuto.git
https://gitlab.com/autowarefoundation/autoware.auto/AutowareAuto.git
https://doi.org/10.1109/ACCESS.2020.3031039
https://doi.org/10.1109/ACCESS.2020.3031039
https://doi.org/10.1109/ACCESS.2020.3031039
https://doi.org/10.1109/ACCESS.2020.3031039
https://doi.org/10.1109/ACCESS.2020.3031039
https://doi.org/10.1109/ACCESS.2020.3031039
https://doi.org/10.1109/ACCESS.2020.3031039
https://doi.org/10.1109/ACCESS.2020.3031039

Chapter 7
QoS- And Power-Aware Run-Time
Scheduler for Multi-core
Mixed-Criticality Systems

In this chapter, we target peak power consumption and maximum temperature issues
in MC systems with dependent tasks at run-time and evaluate the algorithm on a real
multi-core platform. Although there are works that manage or minimize the power
consumption of MC systems, they have not considered the instantaneous peak power
consumption in both HI mode and LO mode, and their algorithms have often been
limited to simulation. To solve the problem, we exploit dynamic slacks, the slack
between tasks’ AET and their WCET, along with DVFS at run-time, while the MC
tasks’ deadlines are guaranteed. Our approach has two phases: (1) at design-time,
the tasks are scheduled on each core based on the EDF algorithm, and the resulting
schedule is stored to be used as a static scheduling table. This is performed for
both LO mode and HI mode. In this case, the number of LC tasks that have to be
dropped in the HI mode is minimized to improve the overall QoS of the system.
(2) At run-time, we examine multiple tasks in the future (look-ahead) to select the
most appropriate one to assign the currently available dynamic slack. The selection
is based on the impact of the tasks on the peak power and temperature of the system,
which is quantified by a weighted multi-objective cost function. Therefore, the speed
of the core that runs the task can be decreased accordingly using per-cluster DVFS.
Additionally, besides exploiting the dynamic slacks, we propose a task re-mapping
technique at run-time to improve the system temperature profile further. However,
the online scheduler timing overheads for selecting an appropriate task and checking
the re-mapping technique to choose a proper core are crucial for the MC systems and
may cause deadline violations. Furthermore, the timing overhead of changing V-f
levels in using the DVFS technique is critical in run-time task scheduling. Therefore,
we analyze and evaluate the effect of these overheads on the schedule of MC tasks
in real multi-core platforms. We study that these overheads cannot be neglected due
to their impact on meeting MC tasks’ deadlines. Besides, we optimize the run-time
scheduler to minimize the timing overhead. In summary, the main contributions of
this chapter are the following:

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024
B. Ranjbar et al., Quality-of-Service Aware Design and Management of Embedded
Mixed-Criticality Systems, https://doi.org/10.1007/978-3-031-38960-3_7

157

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-38960-3protect T1	extunderscore 7&domain=pdf
https://doi.org/10.1007/978-3-031-38960-3_7
https://doi.org/10.1007/978-3-031-38960-3_7
https://doi.org/10.1007/978-3-031-38960-3_7
https://doi.org/10.1007/978-3-031-38960-3_7
https://doi.org/10.1007/978-3-031-38960-3_7
https://doi.org/10.1007/978-3-031-38960-3_7
https://doi.org/10.1007/978-3-031-38960-3_7
https://doi.org/10.1007/978-3-031-38960-3_7
https://doi.org/10.1007/978-3-031-38960-3_7
https://doi.org/10.1007/978-3-031-38960-3_7
https://doi.org/10.1007/978-3-031-38960-3_7

158 7 QoS- And Power-Aware Run-Time Scheduler for Multi-core Mixed-Criticality. . .

• An online peak power and maximum temperature management of MC systems
in heterogeneous multi-core platforms while respecting deadline requirements of
tasks in both LO mode and HI mode.

• A multi-task look-ahead approach to make sure that dynamic slacks are assigned
to the tasks that lead to more peak power reduction and maximum temperature
reduction.

• An online task re-mapping technique that exploits dynamic slacks to re-map the
tasks to other cores within a cluster in order to lower the system temperature.

• Studying the online scheduler and DVFS governor in terms of timing overhead
to provide the deadline guarantee of MC tasks during run-time phase.

• By measuring on a real platform we observe that while the latency of the
scheduler is minimal (less than 10 . μs on average), the latency of the DVFS
switching is 5.313 ms on average and, thus, cannot be neglected.

In the following, the research questions, objectives, and motivational example
are presented in Sect. 7.1. Then in Sects. 7.2 and 7.3, we present the design-time
approach and propose our proposed method and algorithm in detail, respectively.
The analysis and optimization of the run-time scheduler are then studied in Sect. 7.4.
Finally, we analyze the experiments and conclude the chapter in Sects. 7.5 and 7.6,
respectively.

7.1 Research Questions, Objectives, and Motivational
Example

The crucial research questions that are addressed in this chapter are as follows:

1. How to select the most appropriate tasks to assign the dynamic slack to, for
managing the peak power consumption?

2. Whether it is possible to re-map the tasks to other cores for better thermal control,
and if yes, where and when should the tasks be re-mapped to?

3. Which timing overheads during run-time have an impact on task scheduling and
deadline misses?

4. How these run-time timing overheads can be managed to not affect tasks’
deadlines?

To clarify the problem and provide some insight into how a run-time scheduler
can manage peak power consumption, a motivational example is given. Figure 7.1a
shows a precedence constraint MC task graph with eight tasks mapped on two cores,
and tasks’ information such as WCETs and peak power consumption. Although
each task in the graph can have a local deadline (the reader can refer to Sect. 2.1.1.1
for more detail about deadline definition in the task graph model), the whole task
graph has the deadline of .D = 200 ms. In addition, in order to simulate the variation
in the actual run-time, the actual execution time values are selected from a uniform
distribution of [. 23 .WCET,WCET], analogous to [1–3], which have used uniform

7.1 Research Questions, Objectives, and Motivational Example 159

Fig. 7.1 A motivational example for a real-life application in different scenarios. (a) A task graph.
(b) System power trace at run-time without using DVFS. (c) System power trace by using DVFS
and considering one task look-ahead. (d) System power trace by using DVFS and considering two
tasks look-ahead

distribution. We obtain the task mapping and scheduling table using the algorithm
presented in [4]. In this example, we suppose that the system is only in the LO mode
for simplicity of presentation. Besides, we assume that the tasks consume their
maximum power continuously during their executions. Figure 7.1b shows the task
schedule and the system power trace at run-time. In the worst-case scenario, the
system’s peak power may be high and may lead to thermal hotspots and instability,
which has not been investigated in recent studies in MC systems that have different
criticality modes. As shown in Fig. 7.1b, since the tasks may finish earlier than their
WCET, for example, . τ1 at 22 ms while its WCET . = 30 ms, the incurred slack can be
exploited and assigned to the following tasks to reduce the peak power consumption.
In Fig. 7.1c, these dynamic slacks are used for the immediately ready tasks (one task
look-ahead) to decrease the speed of its corresponding core. Some power reduction
can be observed. However, in some cases, the immediate task that follows may
consume much less power than the other tasks after that. Therefore, it is better to
reserve that slack for the task after that if it is possible. As shown in Fig. 7.1d, if
we select the task by looking two tasks ahead, more peak power reduction can be
achieved as compared to Fig. 7.1c. Therefore, by comparing the maximum power
consumption of two scenarios by using the DVFS) technique by looking two tasks
ahead (Fig. 7.1d) and without using DVFS (Fig. 7.1b), we have 48.7% reduction

160 7 QoS- And Power-Aware Run-Time Scheduler for Multi-core Mixed-Criticality. . .

in peak power consumption. In addition, we have a 20.12% reduction in energy
consumption.

Equation (7.1) presents the goal of our proposed method, minimizing the peak
power and the maximum temperature of individual cores during run-time:

.Minimize(Powj , (T empmax)j)|(j∈Cores) (7.1)

As shown in the motivational example, DVFS is one of the techniques that we
use to manage the metrics (peak power and maximum temperature). Reducing the
V-f level of a core while executing a task increases the execution time of the task
and may cause deadline violation. In addition, the latency of changing V-f level or
run-time scheduling may cause deadline violation. Equation (7.2) represents that the
sum of the execution time of each task i on the core j at the V-f level l and timing
overheads of the run-time scheduler (.T OSch.) and changing V-f level (. T OVf) must
not exceed the task deadline in each criticality mode:

. T OSch. +T OVf + WCETi

fjl

≤ di →
{

WCETi = WCET LO
i if mode = LO

WCETi = WCET HI
i if mode = HI

(7.2)

The proposed approach consists of design-time and run-time phases. It is worth
noting that the proposed method takes advantage of the run-time phase to manage
the peak power and temperature; hence, it is not possible to use any optimization
method such as Integer Linear Programming (ILP) due to its long execution time.
Thus, we develop a heuristic-based method. Figure 7.2 shows the flow of our
proposed approach, along with the hardware platform. The hardware platform is
used in design-time phase for tasks’ power profiling and in run-time phase for the
execution of tasks on cores. Now, we explain our approach comprising of the design-
time and run-time phases, in detail.

7.2 Design-Time Approach

The input to the algorithm is a precedence-constrained task set and the multi-core
system description, as shown in Fig. 7.2. The power required by the tasks can be
obtained by running the benchmarks on a real platform, which is discussed in detail
in Sect. 7.5. It should be noted that handling an unknown application during run-
time is beyond the scope of this work. Since we target embedded applications,
normally, the designer knows the system’s tasks and their parameters at design-
time. Therefore, by using the parameters of MC tasks such as WCETs, two tables of
static task mapping and scheduling for LO mode and HI mode are created as shown
in the design-time phase of Fig. 7.2. EDF algorithm is used to calculate the schedule
of the tasks in each of the two modes statically based on the WCETs of LC and
High-Criticality (HC) tasks, using the algorithm presented in [4]. In the LO mode,

7.2 Design-Time Approach 161

Fig. 7.2 Overview of our proposed approach

all tasks are scheduled with equal priority; in the HI mode, HC tasks are scheduled
with a higher priority. These static schedules in the respective modes are then used
to execute all tasks at run-time. This enforces a strict ordering in the execution of the
tasks and guarantees that all deadlines are met according to the design-time analysis
in both modes. It should be noted that since the WCETs of HC tasks are higher
in the HI mode, not all LC tasks may be schedulable in the HI mode. In order to
maximize the overall QoS, the algorithm tries to drop as few LC tasks as possible

162 7 QoS- And Power-Aware Run-Time Scheduler for Multi-core Mixed-Criticality. . .

when computing the HI mode table. These tables and the info associated with the
tasks are used during the run-time phase by our algorithm to manage the system.

7.3 Run-Time Mixed-Criticality Scheduler

The run-time phase of our proposed method consists of several function control
units, as shown in Fig. 7.2. The Scheduler Unit is the main unit that is communicat-
ing with the other units. Two main functions are supported in this unit: (1) executing
the tasks according to the tables and (2) changing the scheduling and mapping of the
tasks according to our proposed policy which we discuss in Sects. 7.3.1 and 7.3.2.
When there is any free slack on a core, or a task finishes its execution early, the
Look-Ahead Unit is executed. This unit is used to choose a subset of tasks and select
the most appropriate one among them. If an appropriate task is selected in a core,
according to the core temperature and temperature of other cores, the Re-mapping
Unit is used to reduce the maximum temperature and decide whether to re-map the
task to other cores or not. After that, the obtained V-f level for the core is stored.
This stored frequency is used by the DVFS Governor Unit when the task is ready to
be executed. The details of the DVFS Governor Unit to select the optimum V-f level
for a cluster are discussed in Sect. 7.3.4. Due to MC systems’ behavior, the system
switches to the HI mode if the execution of at least one HC task exceeds its defined
.WCET LO . It should be checked by the Criticality Mode Changing Control Unit
presented in Fig. 7.2. In this case, the system changes its task scheduling according
to the HI scheduling table which is generated at design-time. The details for Look-
Ahead Unit and Re-mapping Unit are described as follows.

7.3.1 Selecting the Appropriate Task to Assign Slack

In Look-Ahead Unit, we consider an approach named look-ahead in which our
algorithm chooses k tasks after generating dynamic slack and also mapped on the
same core in which the dynamic slack (.Sdyn) is generated.1 For each of the k tasks,
a cost function is computed as defined by Eq. (7.3) :

.CFi = α × Ei + β × Powi (7.3)

In this function, .Powi and .Ei are the maximum instantaneous power and
maximum energy, respectively, that a task consumes to execute. In addition, . α and
. β are in the range of [0,1]. Besides, energy reduction leads to a decrease in chip
temperature [5]. Note that, if we consider .〈α, β〉 = 〈0, 1〉, the cost function only

1 Finding the optimum value for k is discussed in Sect. 7.5.

7.3 Run-Time Mixed-Criticality Scheduler 163

Fig. 7.3 An example of look-ahead policy. (a) Before assigning slack. (b) After assigning slack

considers the power of a task, and not its energy. Hence, the task with the largest
peak power consumption is chosen to be executed at reduced core speed, in order
to reduce the peak power consumption. If we have .〈α, β〉 = .〈1, 0〉, only energy is
considered in the cost function. Hence, the task with the largest energy consumption
is chosen to be executed at reduced core speed, thereby reducing the maximum
energy consumption After selecting the task, the maximum power consumption and
its WCET (.WCET LO

i or .WCET HI
i) are changed based on the size of generated

slack time and the V-f level. As a result, the start time and the deadline of tasks that
are executed between the generated dynamic slack and selected task are shifted left
based on the amount of slack to let the chosen task run with less speed, for example,
tasks . τ2 and . τ3 illustrated in Fig. 7.3.

Furthermore, Eq. (7.3) is applied to a set of tasks that can start their executions
earlier. A task (. τi) can start early if it is released before .ai − Sdyn, where . ai is the
start time of . τi . As mentioned, a task can be released when all its predecessors
finish their execution. Therefore, we just check .τri ≤ ai − Sdyn, where .τri is
the release time of . τi . Consider the selected task . τi with the start time . ai and
deadline . di that .ai + WCETi ≤ di . Assuming that we have the amount of slack,
.Sdyn generated by . τj , during run-time. To utilize this slack time for the appropriate
task . τi , in general, the scheduler finds the minimum acceptable frequency based
on .fi = max(fmin,

WCETi

WCETi+Sdyn
.fmax). This ensures that only the start time of the

task is earlier by .Sdyn and the deadline is kept unchanged, for example, . τ4 shown in
Fig. 7.3. Hence, .ai −Sdyn+ WCETi

fi/fmax
≤ ai +WCETi ≤ di . However, as mentioned at

the beginning of this section, selecting the proper task and the core and changing the
V-f level have overheads.2 If we ignore them while selecting the optimum frequency,
it may cause a deadline violation. Therefore, .Sdyn is reduced by .T OSch. and .T OVf .
After selecting the optimum frequency, the start time of the appropriate task . τi (. ai)
is updated for the static schedule.

2 We discuss in Sect. 7.5 how these timing overheads (.T OSch. and .T OVf) are measured.

164 7 QoS- And Power-Aware Run-Time Scheduler for Multi-core Mixed-Criticality. . .

Now, we show the proof of the optimal solution of peak power minimization
in individual cores, when .〈α, β〉 = 〈0, 1〉 in Eq. (7.3) to select the task solely
based on its peak power consumption. Let us assume that the task . τi finishes
its execution at time . fi , ahead of its deadline . di , and a dynamic slack (. Sdyn =
di − fi) is generated. The algorithm looks k tasks after generated slack to select
the appropriate task and use the generated slack to reduce its V-f level and,
consequently, decrease its power consumption. Without loss of generalization,
assume that task .τi+l consumes the highest peak power in the core within the k tasks
looking ahead, presented in Eq. (7.4). This equation can be rewritten as Eq. (7.5) , in
which .Max(τ

pow

i+1 , . . . , τ
pow

i+l−1, τ
pow

i+l+1, . . . , τ
pow
i+k) < τ

pow
i+l :

.Powmax
core|[di ,di+k] = Max(τ

pow
i+j)|j=1:k = τ

pow
i+l , 1 ≤ l ≤ k (7.4)

. Powmax
core|[di ,di+k] = Max(Max(τ

pow

i+1 , . . . , τ
pow

i+l−1, τ
pow

i+l+1, . . . , τ
pow
i+k), τ

pow
i+l)

(7.5)

If .τpow′
i+l is the maximum power consumption of task .τi+l after reclaiming the

slack and reducing the V-f level, then .τ
pow′
i+l < τ

pow
i+l ; therefore, the core’s maximum

power consumption can be written as follows, which is less than .τpow
i+l :

. Powmax
core|[di ,di+k] = Max(Max(τ

pow

i+1 , . . . , τ
pow

i+l−1, τ
pow

i+l+1, . . . , τ
pow
i+k), τ

pow′
i+l)

(7.6)

If we select one of the other tasks between .{τi+1, . . . , τi+l−1, τi+l+1, . . . , τi+k},
and reduce its V-f level and consequently, its power consumption, then the peak
power of the core is still limited by .τpow

i+l according to Eq. (7.5) . Hence, this power
consumption is more than the optimum power consumption obtained by Eq. (7.6) :
.τi+l is, therefore, the optimum task to which the slack should be assigned (given
the constraint that all the slack is assigned to one of the following k tasks). We
conclude that whenever a dynamic slack is generated, the proposed approach for
selecting the appropriate task provides the optimum solution to minimize the peak
power consumption of individual cores in the run-time phase.

Figure 7.4 shows a part of a static schedule of tasks on a core. Based on the
peak power consumption of tasks in Fig. 7.4a, task .τi+4 is the appropriate task
which consumes the highest peak power in the core in the time interval [.di, di+4].
Therefore, assigning the slack to this task will lower the peak power to below 4W
(if we have a dynamic slack (.Sd = di − fi = 5), then .Powermax

core = 3W after slack
assignment, shown in Fig. 7.4b). If we assign the generated slack to one of the other
tasks (e.g., .τi+1) instead, then the peak power of the core is still limited by .τi+4, i.e.,
4W, as can be seen in Fig. 7.4c.

7.3 Run-Time Mixed-Criticality Scheduler 165

Fig. 7.4 Power trace of a core. (a) Power trace of the core. (b) Power trace of the core after
assigning the slack to the task . τi+4. (c) Power trace of the core after assigning the slack to the task
. τi+1

7.3.2 Re-mapping Technique

In order to manage the maximum temperature of the system and have better thermal
control, it is possible to re-map the selected task to the other cores without changing
its deadline. Therefore, to decide about re-mapping the task and selecting the
appropriate core to re-map, we use the cost function in Eq. (7.7) :

.CFc = � ×
tf∑

t=1

Ec(t) (7.7)

In this cost function, instead of using actual core temperature, we predict their
temperature according to the accumulated energy. Based on our observation, a core
tends to have a lower temperature when its accumulated energy is less than the other
cores.3 However, the difference between the accumulated energy of the base core
and the selected core should be large enough. Therefore, we define a coefficient (. �),
which is equal to 0.9 in our experiments. In this equation, . tf is the time when any

3 We show the observation about the relevance between core temperature and its accumulated
energy consumption in Sect. 7.5.

166 7 QoS- And Power-Aware Run-Time Scheduler for Multi-core Mixed-Criticality. . .

particular task is finished. Besides, in order to not affect the tasks’ deadline mapped
on other cores, cores are examined for re-mapping that have free slack at the same
period to execute the appropriate task. Since we consider the clustered multi-core
platform (ODROID XU3) for our experiment, each application’s execution time and
power consumption will be different when running on different clusters. Hence, we
use the re-mapping technique within each cluster. The reason is that although re-
mapping from a little core to a big core reduces a task’s execution time, it causes the
system’s peak power consumption to increase, which is not acceptable based on our
targets. Therefore, to not change the system peak power consumption, we use the re-
mapping technique within each cluster. It should be noted that since the re-mapping
technique is applied to a task that is not started yet, and also, the technique is done
in parallel with changing the frequency, the migration overhead does not affect the
deadline constraints. The reason is that the latency of re-mapping is much less than
the latency of changing the frequency, which we study in detail in Sect. 7.5.

7.3.3 Run-Time Management Algorithm

The pseudo-code of our proposed algorithm is outlined in Algorithm 7.1. At first,
the algorithm gets the set of precedence constraint tasks, the number of tasks looking
ahead (k), the scheduling table for each mode, and available V-f levels for cores as
inputs. Then it gives the start time and the V-f level assignment for each task at run-
time. At the initialization step, the system starts its operation in the LO mode, and
also, the voltage and frequency of each core are set to the maximum value (lines 1–
3). The proposed online peak power reduction algorithm is presented in lines 4–45.
At first, the algorithm checks that whenever the execution time of a task exceeds
its WCET, the system switches to the HI mode (lines 5–9). If any task execution
exceeds its .WCET LO

i and the output of this task is not ready, the system switches
to the HI mode and remains in this mode till the end of the period. In this situation,
in the beginning, the V-f level of each core is set to the maximum value to meet
the deadline of HC tasks (lines 7–8). The rest of the algorithm is executed in both
modes.

If there is a dynamic slack during run-time, the algorithm selects the appropriate
task to assign slack, which has more impact on instantaneous power consumption
(lines 10–39). This dynamic slack is generated if a task finishes its execution before
its defined WCET (.WCET LO

i or .WCET HI
i due to the system mode). In addition,

since we use static scheduling of tasks for both modes and do not change the order of
task execution in each core, there may be some idle time in a core that can be used.
Therefore, if there is dynamic slack, we first compute the amount of available slack
(lines 11–15). Hence, we have to consider the timing overheads of the scheduler
and speed changing. Therefore, we deduct these latencies from slack to guarantee
the deadline (line 17). Now, we select the appropriate task among k tasks that can be
released early due to the slack time after reclaimable slack (lines 18–23) based on
the cost function (Eq. (7.3)). Besides, Fig. 7.2 details this process in the flowchart.

7.3 Run-Time Mixed-Criticality Scheduler 167

Algorithm 7.1 Online peak power reduction algorithm
Input: Task Graph (GT), Cores, Scheduling Tables of each Mode (SchL and SchH), Number of

Tasks Looking Ahead (k).
1: mode ← 0 , MO ← LO; // the system starts from the LO mode and SchL is used to schedule

the tasks
2: for each core j do
3: initialize the V-f level to maximum;
4: end for
5: procedure MCS ONLINE PPREDUCTION ()
6: if each Task executes more than WCET MO then
7: mode ← 1, MO ← HI; // System switches to the HI mode and task scheduling is

done by SchH
8: for each core j do
9: initialize the V-f level to maximum;

10: end for
11: end if
12: if each Task finishes its execution earlier than its deadline or there is an idle time in a

core then
13: if T aski has already finished its execution then
14: Sdyn ← Extract_Dynamic_Slack(); //WCET MO

i - AETi
15: else if there is an idle time in a core
16: Sdyn ← Extract_Dynamic_Slack(); //idle time
17: end if
18: TS , TP ← 0
19: Sdyn -= T Osch+T OVf ;
20: for n = 1 to k do
21: TP ← τnth after generated slack;
22: if CFTS < CFTP and TP can start earlier then
23: TS ← TP , ns ← n;
24: end if
25: end for
26: if ns > 0 then

27: FreqMO
TS

← max (fmin,
WCET MO

TS
WCET MO

TS
+Sdyn

)

28: for n = 1 to ns do
29: Update the StMO

T askLA−n
& dMO

T askLA−n
30: end for
31: /*Re-Mapping Checking*/
32: CoreS ← CoreTS

, F lagremap ← 0
33: for each core j in the cluster do
34: if CFj < �× CFCoreS and free slack exists then
35: CoreS ← Cj , F lagremap ← 1;
36: end if
37: end for
38: if F lagremap == 1 then
39: Re-Map (TS , CoreS);
40: end if
41: end if
42: end if
43: for each task i do
44: if StMO

i == T imesys or a task finishes its execution then
45: DVFS (Ready and Running Tasks, Cores); //Update cluster V-f level (Algo-

rithm 7.2)
46: end if
47: end for
48: end procedure

168 7 QoS- And Power-Aware Run-Time Scheduler for Multi-core Mixed-Criticality. . .

After determining the appropriate task, according to the system mode situation, the
frequency of the core to execute the appropriate task is obtained according to the
amount of slack (line 25). Hence, the selected frequency must be rounded to the
nearest V-f level of the cluster that is greater. If there is at least one task between
the generated slack and the selected task, we change their start time. Therefore, their
deadline would be changed (lines 26–28). Now, the re-mapping technique is applied
if the core in which the task has been allocated has a higher temperature than other
cores (lines 29–37). As a result, it is possible to re-map the selected task to a core
according to the cost function (Eq. (7.7)). As mentioned in Sect. 7.3.2, we just re-
map a task between the cores of each cluster. Further, the algorithm checks regularly
that if a task is ready to start based on the static schedules, the V-f level of the core
that the task has been mapped on it is changed according to the defined frequency
scaling factor (lines 40–44). The detail is discussed in the following subsection.

7.3.4 DVFS Governor: Updating V-f Levels in Clustered
Multi-core Platform

After finishing a task execution, there might be a free slack or a task in the core
queue that is ready to start its execution. Here, Algorithm 7.2 is executed to change
the V-f level if needed. As mentioned, all cores within a cluster operate at the same
V-f level in clustered multi-core platforms. Since the V-f levels of both clusters are
different, it is checked on which cluster the recently completed task was running
(lines 2–4). Then, we check the assigned V-f level of running or ready tasks on
all cores of the cluster. Since all cores run with the same speed, we find the best
frequency to set to the frequency cluster (lines 5–10). The reason for selecting the

Algorithm 7.2 DVFS governor
1: function DVFS(Ready and Running Tasks, Cores)
2: if CoreT aski ≤ 3 then
3: CID = 0; //Cluster with LITTLE cores
4: else
5: CID = 4; //Cluster with big cores
6: end if
7: SetFreq = 0;
8: for c = CID to CID + 3 do
9: if SetFreq < FreqMO

Run/ReadyT askonCoreCID
then

10: SetFreq = FreqMO
Run/ReadyT askonCoreCID

;

11: end if
12: end for
13: if SetFreq ! = FreqCluster then
14: cpufreq-set -c CoreT aski

-f SetFreq
15: end if
16: end function

7.4 Run-Time Scheduler Algorithm Optimization 169

greatest minimum frequency is to ensure that all tasks finish their execution before
their deadline. In the end, if the chosen frequency (SetFreq) is different from cluster
frequency, we change the speed of the cluster by assigning the new speed to one core
of the cluster by using . 〈cpufreq-set. 〉 program (lines 11–13). It should be mentioned
that by changing the frequency of a cluster, its voltage will be changed automatically
based on the table setting of the kernel.

7.4 Run-Time Scheduler Algorithm Optimization: Analysis
and Implementation

The timing overheads of run-time scheduling and changing the frequency can
have a profound impact on power-aware run-time scheduling of tasks and must
be considered in the respective analysis. Neglecting them may lead to missing
deadlines for MC tasks, which may cause catastrophic consequences. Two sources
of generating overheads that deal with the online scheduler are the Look-Ahead
Unit to select the appropriate tasks and the Re-mapping Unit to find the appropriate
core. In the following, we use the online scheduler phrase for both units to make
it easy to follow. The other source of causing overhead is the DVFS Governor
Unit for changing frequency during run-time. Now, we first analyze the scheduler
function from the timing overhead aspect. Then, we focus on optimizing the code
and reducing the overheads.

In order to evaluate the scheduler and analyze the overhead on a real platform,
we first convert MATLAB code to C code. Then, we detect the main parts of the
code, which have more latency, and attempt to optimize it. To analyze the main
functions, we first get a strict upper bound of the latency in different parts of the
online scheduler on a real platform. We use the KCachegrind tool [6] to measure
the worst-case time. KCachegrind is a visualization tool that uses a technique called
profiling, which gives you the time distribution among the scheduler code at run-
time. Now, we focus on the functions code and its timing analysis and endeavor
to reduce the estimation cycles and the delay caused by cache misses in shared
cache levels. Both Look-Ahead and Re-mapping Units in the online scheduler are
called frequently during run-time, and the apparent improvement and optimization
should be performed. The run-time phase of Fig. 7.2 shows the flowchart of these
two units in detail. As shown in this figure, some functions play a critical role in
the timing overhead of the power-aware run-time scheduler, which is indicated by
the white color. As discussed in the previous section, the Look-Ahead Unit chooses
k tasks after generating dynamic slack and finds a task that has the most effect
on peak power and maximum temperature. Checking the k tasks is done in a for-
loop, in which each task is investigated that can release early to use the dynamic
slack. Therefore, all predecessors of it must be checked whether they can finish their
execution soon or not. Investigating the execution status of all predecessors needs
more cycles to be done and then causes latency and more cache misses. Therefore,

170 7 QoS- And Power-Aware Run-Time Scheduler for Multi-core Mixed-Criticality. . .

introducing an entity that shows the estimated finish time of a task would be useful,
and instead of checking the status of all predecessors, just that entity can be checked.
Besides, due to the having different V-f levels, we must ensure that the dynamic
slack is large enough to include the timing overhead of changing the V-f level. This
check prevents the over-calling of the Re-mapping Unit. In addition, there are two
functions for calculating the costs, in which there are some math calculations with
high timing overhead. Hence, optimizing these calculations by predefining them to
avoid dynamic memory allocation during computation would help reduce timing
overhead.

From the perspective of cache hit/miss, one of the ideas is to optimize the code
to reduce the estimation cycles in the online scheduler by focusing on calculations
and memory access latency. There are some tips to optimize C/C.++ code to run
it faster: reducing function calls and the number of function parameters, how to
define variables and objects, how to use operators, using prefixes instead of postfixes
in objects, avoiding unnecessary data initialization, and so many other techniques
that we must use for code optimization. Apart from using these techniques, due
to data access latency, we have effective timing overhead in the online scheduler.
We optimize code by changing the representation of the data structure manipulated
by the algorithms. We have defined two types of task classes: (1) defining a task
class that uses vectors in the class for each task entity and (2) defining a task
class with vectors of task class in the number of tasks. Each has its advantages
and disadvantages under certain circumstances. However, due to the checking of
limited tasks (k) in the run-time scheduler, the use of the second task class has less
timing overhead and cache misses. As a result, Table 7.1 shows the percent of cache
(L1 and LL (last level)) read and write misses for Look-Ahead and Re-mapping
Units after optimization on three different platforms, Cortex A7, Cortex A15, and
Intel Core i5. As mentioned in previous sections, most of the embedded systems
use ARM processors, not Intel. Therefore, we target the ARM processors, such as
the ODROID board. However, this table shows that we have less than 3.584. % and
0.081% cache L1 and LL data misses in ARM processors, respectively, which are
admissible compared to all cache misses and also in comparison with Intel processor
that has fewer cache misses.

Table 7.1 Run-time scheduler cache misses’ report

Look-Ahead Unit Re-mapping Unit

Cortex A7 Cortex A15 Intel Core i5 Cortex A7 Cortex A15 Intel Core i5
L1 Data

Read Miss
3.318% 3.318% 2.946% 0.163% 0.163% 0.303%

L1 Data
Write Miss

3.584% 3.584% 2.168% 0.352% 0.352% 0.764%

LL Data
Read Miss

0.076% 0.081% 0.0% 0.028% 0.034% 0.0%

LL Data
Write Miss

0.063% 0.0% 0.0% 0.036% 0.0% 0.0%

7.5 Evaluation 171

7.5 Evaluation

7.5.1 Experimental Setup

7.5.1.1 Hardware Platform

To evaluate our system, we conducted experiments on the ODROID XU3/XU4
board powered by ARM, which has a big.LITTLE architecture, four big (Cortex
A15), and four LITTLE (Cortex A7) cores. The ODROID XU3 board supports
DVFS and can operate at 13 different V-f levels between .[0.9V, 200 MHz] and
.[1.3V, 1.4 GHz] on LITTLE cores, while the last four frequency levels have the
same voltage levels and 19 different V-f levels between .[0.9V, 200 MHz] and
.[1.3625V, 2 GHz] on big cores. Therefore, the effect of changing V-f levels is done
by scaling the frequency within the range of available levels.

7.5.1.2 Task Set Generation

In the experiments, we use random applications (task graphs) generated by the tool
in [4]. An example of a real-life application is already given in the motivational
example. In these applications, there are four basic parameters, c (number of cores),
U (system utilization), d (outgoing edge percentage), and n (number of tasks), which
are presented in Table 7.2. d represents the probability of having outward edges
from one task to the others. In addition, .U/c is the normalized system utilization
that refers to both LC and HC tasks with their predefined .WCET HI . As the results
are presented in both simulation and real platform (with eight cores), we show the
results with 16 cores in simulation in addition to 2, 4, and 8 cores. We provide
different configurations by changing the value of these parameters for different
scenarios used in the experiments.

7.5.1.3 Tasks’ Power Consumption

In order to have a realistic possible range of power values, we run several embedded
benchmarks from MiBench suite [7], e.g., automotive, network, and Telecomm.
benchmarks on two configurations, ARM Cortex A7 and A15 on the ODROID XU3

Table 7.2 Experiment configurations

Param. Varying c Varying .U/c Varying n Varying d
c (#core) 2, 4, 8, 16 8 8 8

.U/c (utilization) [0.5, 0.75] [0, 1] [0.5, 0.75] [0.5, 0.75]

d (edge percentage) 10% 10% 10% 1%, 10%, 20%

n (#task) 50 50 30, 40, 50, 80 50

172 7 QoS- And Power-Aware Run-Time Scheduler for Multi-core Mixed-Criticality. . .

with maximum frequency and read data from power sensors on the board. Hence,
since the DVFS is applied to the whole processor, the power consumption at other
lower frequencies can be obtained using Eq. (2.4) in Sect. 2.1.4 by considering
frequency scaling [8]. In addition, we examined different scenarios of activating
one core to all cores by running different benchmarks. We run each benchmark
1000 times and report the maximum value of power consumption. We select the
maximum power of tasks in the range of these minimum and maximum values in our
experiments, which is [484, 940]mW in Cortex A7 and [3.891, 7.622]W in Cortex
A15. The power that the tasks may consume is generated randomly following the
normal distribution within this range. Besides, we consider the power consumption
of the system as the sum of the power consumption of all cores [9].

7.5.1.4 Thermal Analysis

As presented in the proposed method section, we assume that our approach does
not have to probe the core temperature to make a decision. Therefore, during the
scheduling of the tasks, the power values of cores depending on the running tasks
are recorded. In addition, for validating on the real platform, since there are just
temperature sensors for big cores on the ODROID XU3, the HOTSPOT tool [10]
is used to obtain the core temperature throughout the execution for the specific
floorplan and configuration platform which we use. For the configuration file, we
use the parameters reported in [11], which is for ARM big.LITTLE processors. The
ARM core (A7) has an area of 0.45 .mm2 in our experiments reported by the ARM
company.

7.5.1.5 Comparison

In this chapter, we analyze the proposed method and compare it against [4, 12].
The work [4] proposes an offline scheduling algorithm for an MC system where
most of the LC tasks are not dropped in the HI mode to improve the QoS of the
system. However, they ignore the peak power and temperature aspect of the system.
Additionally, researchers in [12] suggest an online energy minimization algorithm
for hard real-time systems where they use the dynamic slack just for the immediately
available task to decrease the V-f level. We consider the latency while comparing
with the method of [12] to have a fair comparison.

7.5.2 Analyzing the Relevance Between a Core Temperature
and Energy Consumption

At first, we represent the relevance between core temperature and its accumulated
energy consumption. In Sect. 7.3.2, our algorithm was based on the assumption that

7.5 Evaluation 173

55

60

65

70

75

80

85

0

2

4

6

8

10

12

! " # $ % & ' () !* !! !" !# !$!% !& !' !(!) "* "!

Te
m

pe
ra

tu
re

 (°
C

)

E
ne

rg
y

C
on

su
m

pt
io

n
(J

)

Time (s)

Core0_Energy Core1_Energy Core0_Temp Core1_Temp

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Fig. 7.5 The relevance between a core temperature and accumulated energy consumption

a core tends to have a lower temperature when its accumulated energy is less than the
other cores. Figure 7.5 studies the validity of the assumption. Since we do not have a
power sensor for each big core on the ODROID XU3, we run the same task on all the
big cores to have the same power consumption. This task is executed several times
periodically in cores with different execution times. Therefore, we have different
energy consumption in each period of cores. After finishing the execution of the
task on each core, the core goes to sleep until the end of the task period. Figure 7.5
shows energy consumption and the temperature of two big cores during the time
for a window of energy monitoring equal to two seconds. In this figure, first, the
task runs with a larger execution time on Core1 in comparison to Core0. Thus, the
temperature of Core1 rises more rapidly than Core0. After 10s, the accumulated
energy of Core1 is reduced, and Core0 is increased. As shown, Core0 that has more
energy consumption tends to have a higher temperature.

7.5.3 The Effect of Varying Parameters of Cost Functions

Now, we evaluate the results for different values of . α and . β in Eq. (7.3) . The
experiments are carried out for a system with .c = 8, .U/c ∈ [0.5, 0.75], .d = 1%,
and .n = 30. The average results (Fig. 7.6) are obtained for a set of 100 task graphs
with different .〈α, β〉 = 〈0, 1〉, .〈0.25, 0.75〉, .〈0.5, 0.5〉, .〈0.75, 0.25〉, and . 〈1, 0〉. The
results are normalized to [4]. In this section, to show the effect of varying these two
parameters, tasks are executed with their actual execution time (AET), and task re-
mapping is not exploited. It can be seen that, in every case, utilizing our approach
would lead to a system with lower peak power, energy, and peak temperature.

174 7 QoS- And Power-Aware Run-Time Scheduler for Multi-core Mixed-Criticality. . .

1 2 3 4 5 6
Number of Tasks Look-Ahead

0.855

0.86

0.865

0.87

0.875

N
or

m
al

iz
ed

 P
ea

k
Po

w
er

[,] = [0,1]
[,] = [0.25,0.75]
[,] = [0.5,0.5]
[,] = [0.75,0.25]
[,] = [1,0]

(a)

1 2 3 4 5 6
Number of Tasks Look-Ahead

0.825
0.8275
0.830
0.8325
0.835
0.8375
0.840

N
or

m
al

iz
ed

 E
ne

rg
y [,] = [0,1]

[,] = [0.25,0.75]
[,] = [0.5,0.5]
[,] = [0.75,0.25]
[,] = [1,0]

(b)

1 2 3 4 5 6
Number of Tasks Look-Ahead

0.9675

0.968

0.9685

0.969

0.9695

0.97

N
or

m
al

iz
ed

 M
ax

. T
em

p.

[,] = [0,1]
[,] = [0.25,0.75]
[,] = [0.5,0.5]
[,] = [0.75,0.25]
[,] = [1,0]

(c)

Fig. 7.6 Impact of varying . α and . β on peak power, energy, and maximum temperature. (a)
Normalized peak power. (b) Normalized energy. (c) Normalized peak temperature

Besides, the expected effect of varying .〈α, β〉 is confirmed in the experiments.
For example, the average normalized peak power is progressively reduced when . β
increases from 0 to 1, as presented in Fig. 7.6a. Similarly, in Fig. 7.6b, the higher the
. α, the lower the energy consumption and peak temperature. Finally, as the algorithm
looks further ahead in the future to find the best tasks to assign the dynamic slack, the
results are generally getting better, up to .1.25% and .1.25% more reduction in peak
power and energy. It is worth noting that, in this experiment, we intentionally disable
the task re-mapping technique to ensure that the effect of .〈α, β〉 is not skewed by
another optimization.

For the other experiments in this work, we consider .〈α, β〉 = 〈0.5, 0.5〉 that
balances both peak power and temperature average reduction in comparison with
other values of .〈α, β〉.

7.5.4 The Optimum Number of Tasks to Look-Ahead and the
Effect of Task Re-mapping

In this subsection, we analyze the optimum number of tasks to look-ahead (k)
by evaluating the respective average quality of results without considering the
overheads. The number of look-ahead tasks is varied from 1 to 10. The results
presented in Fig. 7.7 are obtained from some scenarios of changing parameters in
Table 7.2 with running on a homogeneous multi-core system. In scenarios, we have
considered the following changes for evaluation shown in Fig. 7.7: .n = 80 when

7.5 Evaluation 175

1 2 3 4 5 6 7 8 9 10
Number of Tasks Look-Ahead

0.85

0.86

0.87

0.88

0.89

0.9
N

or
m

al
iz

ed
 P

ea
k

Po
w

er

With Remapping
Without Remapping

(a)

1 2 3 4 5 6 7 8 9 10
Number of Tasks Look-Ahead

0.6

0.65

0.7

0.75

0.8

N
or

m
al

iz
ed

 E
ne

rg
y

With Remapping
Without Remapping

(b)

1 2 3 4 5 6 7 8 9 10
Number of Tasks Look-Ahead

0.92

0.93

0.94

0.95

0.96

0.97

N
or

m
al

iz
ed

 M
ax

. T
em

p.

With Remapping
Without Remapping

(c)

Fig. 7.7 Normalized improvement in peak power, energy, and maximum temperature for all
scenarios. (a) Peak power. (b) Energy. (c) Max. temperature

c is varied, .c = 4 when n is varied, and .n = 40 and .c = 4 when d is varied. As
a result, looking four tasks ahead provides a significant reduction in peak power
and also in maximum temperature and energy consumption with and without task
re-mapping. Hence, looking four tasks ahead is the average result of varying all
parameters. Besides, when task re-mapping is used, the temperature, on average, is
reduced by .2.7% (2 . ◦C) compared to the case where task re-mapping is disabled.
In general, by looking ahead four tasks and enabling task re-mapping, the proposed
method reduces the peak power, energy consumption, and maximum temperature
on average by 14.6%, 39%, and 7.1% (6.1 . ◦C), respectively, compared to [4] and
4.2%, 16%, and 3.1% (2.7 . ◦C), respectively, compared to [12]. Hence, looking four
tasks ahead is the average result of varying some parameters. The detail of finding
the optimum k by varying the properties of tasks is discussed as follows.

We show the relation between the number of look-ahead tasks (k) and the task
property, edge percentage (. d%) to model the system capability such as peak power
minimization, energy consumption, and maximum temperature. For this analysis,
the data from the experiments with four cores (c) and the system utilization per core
(.U/c) in the range of [0.5,0.75) is used. The average data of 100 task set runs has
been used.

We use the MATLAB Curve Fitting Tool to derive the polynomial functions
of various system parameters. Figure 7.8 shows the curve of the system peak
power consumption by varying k and d normalized to the result for .k = 1, and
the corresponding equation is shown in Eq. (7.8) . This equation is the polynomial
function with the maximum degree of four with the minimum Root Mean Square
Error (RMSE), equal to 0.0024:

. PowNorm.
peak (k, d) = 1.033 − 0.5082d − 0.03374k + 1.332d2+

0.1799dk + 0.006184k2 − 0.7267d2k − 0.01158dk2−
0.0005375k3 + 0.05294d2k2 − 0.0001314dk3 + 1.912 × 10−5k4 (7.8)

The equation above can also be used to mathematically derive the optimal k for
a particular task property to optimize the various metrics. For example, if d is kept

176 7 QoS- And Power-Aware Run-Time Scheduler for Multi-core Mixed-Criticality. . .

Fig. 7.8 Impact of number of look-ahead tasks and edge percentage on normalized peak power
consumption

Fig. 7.9 Impact of number of
look-ahead tasks on
normalized peak power,
energy, and maximum
temperature while . d = 20%

as 20% in Eq. (7.8), the minimum value of the curve is obtained when .k = 5, which
is shown in Fig. 7.9. In addition, by deriving the corresponding equations for the
normalized maximum temperature (Eq. (7.9)) and energy consumption (Eq. (7.10)),
the optimum value of k for the system’s maximum temperature is .k = 3 and for the
energy consumption is .k = 4, as shown in Fig. 7.9:

. EnergyNorm.
peak (k, d) = 0.9347 + 1.176d − 0.05964k − 3.304d2

−0.01962dk + 0.01355k2 + 0.3278d2k + 0.005128dk2−
0.001431k3 − 0.02466d2k2 − 0.000231dk3 + 5.616 × 10−5k4 (7.9)

. T Norm.
peak (k, d) = 0.9925 + 0.07826d − 0.006975k − 0.08123d2

−0.008346dk + 0.001644k2 + 0.05333d2k + 0.001238dk2

−0.0001762k3 − 0.003814d2k2 − 10−5(4.653dk3 + 0.6901k4) (7.10)

7.5 Evaluation 177

Fig. 7.10 Impact of number
of look-ahead tasks on
normalized peak power,
energy, and maximum
temperature with
consideration of the
overheads

Now, we analyze the optimum number of look-ahead tasks by evaluating the
respective average results, considering the overheads and no task re-mapping. The
results presented in Fig. 7.10 are obtained from the scenarios of varying c, n, and d
parameters in Table 7.2 by all mentioned values. In general, this figure shows that
the objectives (peak power, energy, and maximum temperature) are improved by
increasing the number of look-ahead tasks. However, the efficiency of our methods
is outstanding when there is much slack at run-time; therefore, by increasing the
number of look-ahead tasks, the timing overheads of the Task Selection Unit (for
determining the appropriate task in objective improvement) are more. Therefore,
it causes less dynamic slack for assigning it to the appropriate task, leading to
less improvement in objectives. According to this figure, looking seven tasks ahead
significantly reduces peak power, maximum temperature, and energy consumption.
Thus, since overhead is considered in the evaluation, seven tasks are considered the
optimal number to look ahead in the rest of this chapter.

7.5.5 The Analysis of Scheduler Timings’ Overhead on
Different Real Platforms

To investigate the timing overhead of the proposed run-time scheduler, we analyze it
on three real platforms, Intel Core i5, ARM big core (A15), and ARM LITTLE core
(A7) on ODROID XU3/4 and ARM core (A53) in Xilinx Zynq UltraScale. + MPSoC
board. Figure 7.11 shows the overheads in each platform for different numbers of
tasks looking ahead. Each boxplot shows the average latency for normal values of
parameters in Table 7.2 (.d = 10%, .c = 8, .U/c = [0.5, 0.75], n = 80) with 100
task graphs. The following observation can be seen from the figure. First of all,
the run-time timing overhead in the Intel platform is extremely small as compared
to ARM processors. In the second observation, as the number of task look-ahead
is increased, the latency is increased in all ARM processors. However, this latency
increase is more evident in the A7 processor, while it is almost constant after looking
seven tasks ahead in the A53 processor and four tasks ahead in the A15 processor.
Furthermore, since big (A15) cores have high performance as compared to LITTLE
(A7) cores, this timing overhead would be less. However, since a platform has lower

178 7 QoS- And Power-Aware Run-Time Scheduler for Multi-core Mixed-Criticality. . .

Fig. 7.11 Analyzing the timing overhead of run-time scheduler on four platforms

performance, the range of latency between the minimum and maximum value is
more significant. This fact is due to its lower performance and access to the memory
and cache miss/hit.

To have a real implementation of our proposed method, we obtain the observed
worst-case timing overhead of the run-time scheduler, in which the appropriate
task is selected for slack assignment and also a proper core for the re-mapping.
Since many embedded systems use ARM processors, we evaluate our method on
the ARM processor. We analyze the overhead on a LITTLE core of the ODROID
XU4 platform. We examine both the Look-Ahead Unit and Re-mapping Unit in the
run-time scheduler separately and obtain the maximum observed timing overhead.
To determine this overhead, we ran several applications (200 task graphs) with their
various inputs on ARM LITTLE Core (A7). Based on these overheads, we set the
observed worst-case of the Look-Ahead Unit to the maximum value. In addition, the
scheduler in Re-mapping Unit checks other cores, whether it is possible to re-map
a task for thermal management. In the worst case, all cores are checked. Therefore,
to have a close to accurate observed worst-case timing overhead of the Re-mapping
Unit, we obtain the worst timing overhead for each core and multiply it by the
number of cores. Based on our observation and this measurement, the maximum
timing overhead for Look-Ahead Unit is 56.417. μs, and for Re-mapping Unit per
core is 64.54. μs. In order to ensure that the timing guarantees provided by the static
schedule are not violated, we deduct these overheads from slack before assigning it
to an appropriate task.

7.5 Evaluation 179

7.5.6 The Latency of Changing Frequency in Real Platform

The main unit, the DVFS governor, adjusts the frequency, which has a signif-
icant timing overhead. The ODROID XU3/4 board has a frequency range of
.〈0.2, 1.4〉 GHz for LITTLE cores and .〈0.2, 2〉 GHz for big cores, with the step
of 0.1 GHz. We change the frequency by using the . 〈cpufreq-set. 〉 program in
two scenarios of scaling-down and scaling-up. Hence, the voltage is adjusted
automatically according to the selected frequency. The maximum latency for all
scenarios is at most 12.025 ms. Besides we observe in our experiments that the
latency of the scaling-down transition is 342. μs less than the scaling-up transition,
on average. Regardless of the frequency scaling-down or up, we consider the latency
of changing V-f level to be equal to 12.025 ms. Due to this timing overhead, we
deduct this latency from available dynamic slack before assigning it to a task to
guarantee the correct execution of tasks before their deadlines. Since the re-mapping
latency is 3.75ms [13] in the worst-case scenario and re-mapping is done in parallel
with changing the frequency, it has no impact on the overall deadline.

7.5.7 The Effect of Latency on System Schedulability

As discussed, considering the latencies of the run-time scheduler and changing
frequency are critical in analyzing the system. If these timing overheads are not
studied, it may cause deadline miss of tasks and then catastrophic consequences.
Our proposed method’s effectiveness depends on the available slacks at run-time
and the possibility of assigning them to the tasks. Therefore, if the latencies are
not properly accounted for, some tasks may not be executed successfully before
their deadline. Figure 7.12 shows the percentage of successfully executed task sets

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

n = 30 n = 30n = 40 n = 40n = 50 n = 50n = 80 n = 80

|---------------------c = 8 ----------------------| |--------------------c = 16 ---------------------|

T
as

ks
 S

uc
ce

ss
fu

l E
xe

cu
tio

n
Pe

rc
en

ta
ge

Fig. 7.12 Percent of successful executed tasks before their deadline in task graph according to our
proposed method without considering timing overheads

180 7 QoS- And Power-Aware Run-Time Scheduler for Multi-core Mixed-Criticality. . .

before their deadlines during the run-time phase in different scenarios if we do not
consider the timing overheads. The results are obtained for the normal scenario of
some parameters (.d = 10%, .U/c = [0.5, 0.75], .c = 8, 16, and .n = 30, 40, 50,
and 80) and 1000 task graphs for each scenario. In this figure, we observe that as
the number of tasks in the system with the same number of cores is increased, fewer
task sets can be scheduled and meet their deadline. When there are more tasks in the
system with the same U/c, the dynamic slacks that are incurred when the tasks finish
earlier than their WCETs are smaller. The reason is that as the expected execution
times of the tasks are decreased, the absolute differences between their AET and
WCETs are inherently small. Therefore, the possibility of missing a deadline is
increased, and fewer tasks would be executed successfully before their deadline. In
addition, if the number of cores in the system is increased, more task sets miss their
deadlines. Since the re-mapping technique is used to manage temperature, all cores
are checked in the worst case. Therefore, by increasing the number of cores, the
timing overhead of selecting a proper core for task re-mapping is increased. Since
this latency has not been considered while a dynamic slack is assigned, using the
re-mapping technique at run-time may cause more deadline violations by increasing
the number of cores. In general, as shown in this figure, a high percentage of task
sets miss their deadline, which is not acceptable in MC systems. Therefore, it is
critical to consider the timing overheads of the run-time scheduler and changing
frequency.

7.5.8 The Analysis of the Proposed Method on Improving
Objectives in Simulation

In order to illustrate how effective our proposed method is with different parameters,
we analyze the results under four separate scenarios of Table 7.2, shown in Fig. 7.13,
in which the results are normalized to [4]. These results are obtained for multi-core
systems, in which there are homogeneous cores based on ARM A7. In general,
as the applications get more complicated (e.g., having a large number of tasks
or system utilization), it is harder to achieve significant savings in peak power,
energy, and maximum temperature. Thanks to our task re-mapping technique, where
the tasks are redistributed more evenly to the cores at run-time based on their
accumulated energy, the maximum temperature is properly managed.

For the case of varying the number of cores, since our method only tries to
optimize the peak power for each core individually to reduce the time overhead,
it is more difficult to maintain a similar system peak power reduction when c
is low. Nevertheless, as illustrated in Fig. 7.13a, the difference in peak power is
significant by increasing the number of cores. In addition, as the temperature of
each core is affected by the temperatures of neighboring cores, the reduction in
maximum temperature is less by increasing the number of cores. On average, the

7.5 Evaluation 181

Fig. 7.13 The improvements in peak power, energy, and maximum temperature in different
scenarios normalized to [4]. (a) Varying number of cores. (b) Varying utilization bound. (c) Varying
number of tasks. (d) Varying edge percentage

peak power, maximum temperature, and energy consumption in the system are
reduced by .5.015%, 14.12 . ◦C, and .15.073%, respectively.

The effectiveness of our method depends on the available slacks at run-time and
the possibility of assigning them to the tasks. Therefore, if there is less slack due to
the nature of the application in terms of the number of tasks and system utilization,
the reduction in peak power, energy consumption, and maximum temperature is
less. For instance, in Fig. 7.13b, when the system utilization is getting higher, the
idle time of the core between two consecutive tasks is getting smaller. The tasks
also tend to execute longer. Thus, the amount of slacks that can be exploited at
run-time is limited. But, overall, the peak power is reduced by at least .3.905% and
up to .8.59% in this scenario. Similarly, when there are more tasks in the system
with the same .U/c, the dynamic slacks incurred when the tasks finish earlier than
their WCETs are smaller. The reason is that as the expected execution times of the
tasks are decreased, the absolute differences between their AET and WCETs are
inherently small. However, as seen in Fig. 7.13c, our method manages to reduce the
peak power, energy, and maximum temperature on average by .6.96%, .15.61%, and
10.54 . ◦C, respectively.

182 7 QoS- And Power-Aware Run-Time Scheduler for Multi-core Mixed-Criticality. . .

331.37
329.67
327.98
326.29
324.60
322.91
321.21
320.09

(a) (b) (c)

Fig. 7.14 Temperature profile for different edge percentages. (a) Medina et al. [4] with .d = 20%.
(b) .d = 20% and . k = 1. (c) .d = 20% and . k = 4

Besides, the possibility of releasing the tasks earlier than their presumed start
times also affects the outcomes. When the dependency between the tasks is high,
a significant amount of them cannot be released earlier. This behavior can have
either a positive or negative impact on the system. For the former, the cores might
have more idle time because the tasks have to wait longer for their predecessors
to finish. For the latter, our method has less opportunity to apply DVFS to tasks.
However, at run-time, these idle periods might overlap with the other tasks with
the already reduced V-f level. The peak power of the whole system is consequently
reduced. It can be seen in Fig. 7.13d that when .d = 20%, the best peak power and
maximum temperature reduction are achieved compared to the cases where . d = 1%
and .d = 10%.

Figure 7.14 shows an example steady-state heat map of the systems with different
edge percentage parameters. The result is obtained for a system with .c = 16, . U/c =
0.5, and .n = 80. We show the results of looking one and four tasks (which is the
optimum value when we do not consider timing overhead) ahead as compared to [4].
It can be observed that our approach not only reduces the maximum temperature but
also helps in balancing the difference in temperature between the cores, especially
when .k = 4.

7.5.9 The Analysis of the Proposed Method on Improving
Objectives in a Platform Based on ODROID Architecture

In this section, we analyze the improvement of peak power, energy consumption,
and maximum temperature in a clustered heterogeneous multi-core processor in
which there are four big (A15) and four LITTLE (A7) cores. Here, we have a
common V-f level for all cores within the same cluster (cluster with big cores
or cluster with LITTLE cores), while in the previous results, the frequency of
each core was changed individually. We show the results in Fig. 7.15, in which
the improvements in peak power, energy consumption, and maximum temperature

7.5 Evaluation 183

Fig. 7.15 Normalized metrics running on the clustered heterogeneous multi-core platforms. (a)
Varying utilization bound. (b) Varying number of tasks. (c) Varying edge percentage

in the clustered heterogeneous multi-core system across all experiments are up to
5.25%, 22.44%, and 20.33% (16.8 . ◦C), respectively, in comparison with [4]. The
trends for the clustered heterogeneous multi-core architecture are similar to that
obtained for the homogeneous architecture in the previous subsection. The only
notable difference is in the peak power, which is on average 3.461% worse than the
tasks on a homogeneous multi-core system, due to enforcing of common V-f level
for the entire cluster. Therefore, the power improvement is somewhat lower.

7.5.10 Evaluation of Running Real MC Task Graph Model on
Real Platform

Now, we validate the proposed online technique with a real-life application task
graph, presented in Fig. 7.1a, running on the ODROID XU3. In particular, we
evaluate the impacts of changing frequency on the system power and temperature
in this section. The Unmanned Air Vehicle (UAV) application consists of seven
dependent tasks executed on two cores, which has been presented in Fig. 7.1a. Since
there are no available real benchmarks for the tasks of the graph, we used different
benchmarks of MiBench [7] as tasks of the graph. Then, we obtain the WCETs
and maximum power consumption of each task running on the ODROID XU3.
Since WCET analysis is a complicated task [14], we used an existing WCET
estimation tool called OTAWA [15], to capture the high WCETs (.WCET HI

i). In
addition, we run each benchmark 10,000 times and select the maximum of the

184 7 QoS- And Power-Aware Run-Time Scheduler for Multi-core Mixed-Criticality. . .

Fig. 7.16 Power and temperature sensor data of the ODROID XU3, by running the real MC task
graph (unmanned air vehicle). (a) Temperature trace of A15-core2. (b) Temperature trace of A15-
core3. (c) Power trace of the big cluster

measured execution time as the low WCET (.WCET LO
i). To analyze the system

temperature, we run the application on Core2 and Core3 that in general have a
higher temperature due to their proximity to the memory and other components.
Hence, there is a temperature sensor for each big core and a power sensor for each
cluster of ODROID XU3. Therefore, the power and temperature data of this section
are exploited from the board sensors.

Figure 7.16 shows the power trace of the cluster of big cores and temperature
trace of two cores during run-time in two scenarios of using our DVFS-based
proposed method and presented method of [4] ([MBP18a]). At run-time, to analyze
a task execution time, we select a docker container to run a task and check the
time to be aware of the exact start and finish times of the task. Then, the dynamic
slack is computed, the slack between the task’s actual completion time and its
WCET. Figure 7.16c shows the power traces of the method of [4] and our proposed
method by considering two tasks looking ahead that the DVFS has been used from
almost 90 ms. In addition, as shown in Fig. 7.16a and b, in general, the average
core temperature has been decreased by using the DVFS-based proposed method
and looking two tasks ahead. Based on the scheduling of tasks in Fig. 7.1, one of
the cores is active until near the middle of the period. However, the temperature
of each core is affected by the temperature of neighboring cores. In addition, after
executing two tasks in each core and using the dynamic slack to reduce the speed,
the cores’ temperatures are decreasing. Besides, in a part of the task graph period,

References 185

only Core2 is active but still has high temperatures. Therefore, after applying the
proposed method and reducing the V-f levels, the cores’ temperatures are reduced.
The proposed method will be more effective and have a significant improvement if
there are more tasks that are run on a system with more cores.

7.6 Conclusions

In this chapter, we studied peak power and peak temperature reduction in MC
embedded systems at run-time and analyzed the proposed run-time power-aware
scheduler on clustered multi-core real platforms while guaranteeing the minimum
QoS value. Our presented method uses the re-mapping technique and DVFS at
run-time whenever there is a dynamic slack. We also proposed the associated cost
functions to select the most appropriate task to assign the dynamic slacks to decrease
its V-f level or re-map it to another core. We showed that more peak power and
maximum temperature reduction are achieved by increasing the number of tasks
to look ahead. In addition, the proposed power-aware scheduler was analyzed in
terms of run-time timing overhead in different multi-core platforms. We focused
on reducing the run-time scheduler latency to have more usage of dynamic slack
and, consequently, more peak power and maximum temperature reduction while
guaranteeing the deadlines of LC and HC tasks in their specified system mode.
Besides, although we consider dual-criticality level systems in this work, the
proposed approach can be applied to any MC system, regardless of how many
criticality levels of tasks are executed in the system. The results show up to 5.25%,
20.33% (16.8 . ◦C), and 22.44% reduction in peak power, maximum temperature, and
average energy consumption, respectively, compared to recent studies.

References

1. Mohammad Salehi, Alireza Ejlali, and Bashir M Al-Hashimi. “Two-phase low-energy N-
modular redundancy for hard real-time multi-core systems”. In: IEEE Transactions on Parallel
and Distributed Systems (TPDS) 27.5 (2016), pp. 1497–1510.

2. Alireza Ejlali, Bashir M. Al-Hashimi, and Petru Eles. “Low-Energy Standby-Sparing for Hard
Real-Time Systems”. In: IEEE Transactions on Computer-Aided Design of Integrated Circuits
and Systems (TCAD) 31.3 (2012), pp. 329–342. https://doi.org/10.1109/TCAD.2011.2173488.

3. Yifeng Guo, Dakai Zhu, and Hakan Aydin. “Reliability-aware power management for parallel
real-time applications with precedence constraints”. In: Proc. pn International Green Comput-
ing Conference and Workshops. 2011, pp. 1–8. https://doi.org/10.1109/IGCC.2011.6008562.

4. R. Medina, E. Borde, and L. Pautet. “Availability enhancement and analysis for mixed-
criticality systems on multi-core”. In: Proc. on Design, Automation & Test in Europe
Conference & Exhibition (DATE). 2018, pp. 1271–1276.

5. Pengcheng Huang et al. “Energy efficient dvfs scheduling for mixed-criticality systems”. In:
Proc. on Embedded Software (EMSOFT). 2014, pp. 1–10.

https://doi.org/10.1109/TCAD.2011.2173488
https://doi.org/10.1109/TCAD.2011.2173488
https://doi.org/10.1109/TCAD.2011.2173488
https://doi.org/10.1109/TCAD.2011.2173488
https://doi.org/10.1109/TCAD.2011.2173488
https://doi.org/10.1109/TCAD.2011.2173488
https://doi.org/10.1109/TCAD.2011.2173488
https://doi.org/10.1109/TCAD.2011.2173488
https://doi.org/10.1109/IGCC.2011.6008562
https://doi.org/10.1109/IGCC.2011.6008562
https://doi.org/10.1109/IGCC.2011.6008562
https://doi.org/10.1109/IGCC.2011.6008562
https://doi.org/10.1109/IGCC.2011.6008562
https://doi.org/10.1109/IGCC.2011.6008562
https://doi.org/10.1109/IGCC.2011.6008562
https://doi.org/10.1109/IGCC.2011.6008562

186 7 QoS- And Power-Aware Run-Time Scheduler for Multi-core Mixed-Criticality. . .

6. Josef Weidendorfe. Kcachegrind tool. http://kcachegrind.sourceforge.net/html/Home.html.
Accessed: December 2019.

7. M. R. Guthaus et al. “MiBench: A free, commercially representative embedded benchmark
suite”. In: Proc. IEEE International Workshop on Workload Characterization. WWC-4. 2001,
pp. 3–14. https://doi.org/10.1109/WWC.2001.990739.

8. M. Salehi and A. Ejlali. “A Hardware Platform for Evaluating Low-Energy Multiprocessor
Embedded Systems Based on COTS Devices”. In: IEEE Transactions on Industrial Electronics
(TIE) 62.2 (2015), pp. 1262–1269.

9. Waqaas Munawar et al. “Peak Power Management for scheduling real-time tasks on het-
erogeneous many-core systems”. In: Proc. of the International Conference on Parallel and
Distributed Systems (ICPADS). 2014, pp. 200–209.

10. Wei Huang et al. “HotSpot: A compact thermal modeling methodology for early-stage VLSI
design”. In: IEEE Transactions on Very Large Scale Integration (VLSI) Systems 14.5 (2006),
pp. 501–513.

11. Y. Gong, J. J. Yoo, and S. W. Chung. “Thermal Modeling and Validation of a Real-World
Mobile AP”. In: IEEE Design & Test 35.1 (2018), pp. 55–62.

12. D. Zhu, R. Melhem, and B. R. Childers. “Scheduling with dynamic voltage/speed adjustment
using slack reclamation in multiprocessor real-time systems”. In: IEEE Transactions on
Parallel and Distributed Systems (TPDS) 14.7 (2003), pp. 686–700. https://doi.org/10.1109/
TPDS.2003.1214320.

13. K. R. Basireddy et al. “AdaMD: Adaptive Mapping and DVFS for Energy-efficient Heteroge-
neous Multi-cores”. In: IEEE Transactions on Computer-Aided Design of Integrated Circuits
and Systems (TCAD) (2019). https://doi.org/10.1109/TCAD.2019.2935065.

14. M. Bazzaz, A. Hoseinghorban, and A. Ejlali. “Fast and predictable non-volatile data memory
for real-time embedded systems”. In: IEEE Transactions on Computers (TC) (2020), pp. 1–1.

15. Clément Ballabriga et al. “OTAWA: an open toolbox for adaptive WCET analysis”. In: IFIP
International Workshop on Software Technolgies for Embedded and Ubiquitous Systems.
Springer. 2010, pp. 35–46.

http://kcachegrind.sourceforge.net/html/Home.html
http://kcachegrind.sourceforge.net/html/Home.html
http://kcachegrind.sourceforge.net/html/Home.html
http://kcachegrind.sourceforge.net/html/Home.html
http://kcachegrind.sourceforge.net/html/Home.html
http://kcachegrind.sourceforge.net/html/Home.html
http://kcachegrind.sourceforge.net/html/Home.html
https://doi.org/10.1109/WWC.2001.990739
https://doi.org/10.1109/WWC.2001.990739
https://doi.org/10.1109/WWC.2001.990739
https://doi.org/10.1109/WWC.2001.990739
https://doi.org/10.1109/WWC.2001.990739
https://doi.org/10.1109/WWC.2001.990739
https://doi.org/10.1109/WWC.2001.990739
https://doi.org/10.1109/WWC.2001.990739
https://doi.org/10.1109/TPDS.2003.1214320
https://doi.org/10.1109/TPDS.2003.1214320
https://doi.org/10.1109/TPDS.2003.1214320
https://doi.org/10.1109/TPDS.2003.1214320
https://doi.org/10.1109/TPDS.2003.1214320
https://doi.org/10.1109/TPDS.2003.1214320
https://doi.org/10.1109/TPDS.2003.1214320
https://doi.org/10.1109/TPDS.2003.1214320
https://doi.org/10.1109/TCAD.2019.2935065
https://doi.org/10.1109/TCAD.2019.2935065
https://doi.org/10.1109/TCAD.2019.2935065
https://doi.org/10.1109/TCAD.2019.2935065
https://doi.org/10.1109/TCAD.2019.2935065
https://doi.org/10.1109/TCAD.2019.2935065
https://doi.org/10.1109/TCAD.2019.2935065
https://doi.org/10.1109/TCAD.2019.2935065

Chapter 8
Conclusions and Future Work

In this chapter, first, the conclusion from the book is presented and then some open
issues for future works are discussed.

8.1 Conclusions

MC systems are getting more attention in the last decade due to their significance in
safety-critical applications, such as medical devices like artificial heart, and avionics
like flight control, etc. These MC systems have been devised to address the real-
time and safety requirements of these industrial safety-critical applications, where
applications with different criticality levels are integrated into a common hardware
platform to reduce cost, size, and power consumption. The main research question
is how to reconcile the requirements of reliability and real time while improving
resource utilization. This question raises problems in modeling, designing at
application and software levels, and implementing and controlling the hardware.

The design of such MC system comes with certain challenges, which are mainly
faced in the MC application analysis, how the tasks’ parameters are defined,
scheduling analysis, and MC hardware analysis. In application-level analysis,
due to defining multiple WCETs for each task, corresponding to the multiple
criticality levels and the ongoing mode of operation, the timing behavior of
MC systems (which correlates with the system mode switching probability and
utilization) would not be stable at run-time. Determining the appropriate values
of WCETs for lower criticality modes is nontrivial and needs to be addressed in
MC system design. Besides, from MC task scheduling analysis perspective, the
existing MC task scheduling algorithms, like EDF-VD, drop/degrade the LC tasks
in the higher modes. However, the frequent drop of LC tasks, such as mission-
critical tasks in some safety-critical applications, may have a negative impact on
the execution of other tasks, like HC tasks and mission-critical tasks themselves.

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024
B. Ranjbar et al., Quality-of-Service Aware Design and Management of Embedded
Mixed-Criticality Systems, https://doi.org/10.1007/978-3-031-38960-3_8

187

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-38960-3protect T1	extunderscore 8&domain=pdf
https://doi.org/10.1007/978-3-031-38960-3_8
https://doi.org/10.1007/978-3-031-38960-3_8
https://doi.org/10.1007/978-3-031-38960-3_8
https://doi.org/10.1007/978-3-031-38960-3_8
https://doi.org/10.1007/978-3-031-38960-3_8
https://doi.org/10.1007/978-3-031-38960-3_8
https://doi.org/10.1007/978-3-031-38960-3_8
https://doi.org/10.1007/978-3-031-38960-3_8
https://doi.org/10.1007/978-3-031-38960-3_8
https://doi.org/10.1007/978-3-031-38960-3_8
https://doi.org/10.1007/978-3-031-38960-3_8

188 8 Conclusions and Future Work

Although it does not cause catastrophic consequences, it may prevent the system
from accomplishing its mission correctly. To this end, the number of allowable drops
for each LC task must be restricted in such MC systems and should be studied.
From the perspective of the MC hardware system design, the critical trend of MC
system design is integrating functions with different criticality levels onto a common
hardware platform, where the platforms can be single- or multi-core architecture.
One of the goals in designing the MC systems is resource utilization improvement.
However, the execution of LC and HC tasks require higher computational demands,
which leads to high-power consumption. Systems with high power are more likely
to generate unexpected heat beyond the cooling capacity. They will be more
susceptible to failures and instability, which is unacceptable for MC systems and
may cause catastrophic consequences. This heat generation would be harmful if
the degree of freedom (regarding the availability of the cores) increases due to
heat transmission among cores. Although employing multi-core platforms helps
to improve the QoS by executing the tasks in parallel, guaranteeing the real-time
constraints while managing the system power consumption is a crucial challenge
that must be addressed.

In this book, we addressed the mentioned challenges in MC application and
hardware system designs to improve the QoS while guaranteeing the real-time
constraints of tasks. In Chap. 3, since the MC system parameters like WCET are
the key aspects of system design in application-level analysis, we focused on WCET
estimation of MC tasks in the LO mode. In this chapter, an analytical scheme, called
BOT-MICS, was first proposed to determine the WCET at design-time, to make a
trade-off between the number of scheduled tasks at design-time (i.e., utilization)
and the number of dropped LC tasks at run-time as a result of frequent mode
switches. The analytical scheme is based on theChebyshev theoremwhich shows the
relation between the low WCETs and mode switching probability. We formulated
the problem and solved it using GA to improve the objectives, resource utilization,
and mode switching probability. We evaluated the BOT-MICS for various state-of-
the-art MC systems, and therefore, the experimental results showed that it improves
the utilization of state-of-the-art MC systems by up to 85.29% while maintaining
9.11% mode switching probability in the worst-case scenario. However, although
BOT-MICS can determine the optimum values of low WCETs at design-time, these
values are static and remain unchanged for each task, which cannot adapt to task
dynamism at run-time. It can cause processor underutilization if the low WCETs
are not close to the actual execution times. Therefore, we proposed ADAPTIVE
to determine the low WCET at run-time based on the actual execution times of
tasks. We considered the run-time behavior of tasks and proposed a learning-based
approach that dynamically monitors the tasks’ execution times and adapts the low
WCETs to improve QoS at the end of complete application execution. Based on
our observations on running embedded real-time benchmarks on a real platform,
ADAPTIVE can improve the QoS by 16.4% on average while reducing the utilization
waste by 17.7% on average, compared to state-of-the-art works.

Further, we focused on MC task scheduling analysis and proposed methods in
Chaps. 4 and 5, to schedule more LC tasks in the HI mode and improve the QoS.

8.1 Conclusions 189

To this end, we proposed FANTOM in Chap. 4, in which we first introduced a task
parameter to limit the number of LC task drops. Then, we developed a design-time
task-drop-aware schedulability analysis based on the EDF-VD in accordance with
the defined parameter. By defining the new parameter, we consider a maximum
allowable number of drops for each LC task and prohibit the number of drops
from passing a predefined threshold. According to the obtained results from an
extensive set of simulations, which have been validated through a realistic avionic
application task set, FANTOM improves the acceptance ratio by up to 43.9%
compared to a state-of-the-art work. Since FANTOM is proposed based on the worst-
case scenario of task execution times, we then proposed a learning-based drop-aware
task scheduling mechanism in Chap. 5. Since the tasks are not executed always
up to their WCET, the proposed approach carefully monitors the alterations in the
behavior of the MC system at run-time, to exploit the generated dynamic slack for
reducing the LC tasks’ penalty and preventing frequent drops of LC tasks in the
future. Based on an extensive set of experiments, our observations have shown that
the proposed approach exploits accumulated dynamic slack generated at run-time,
by 9.84% more on average compared to existing works, and can reduce the deadline
miss rate by up to 51.78% and 33.27% on average, compared to state-of-the-art
works.

By increasing the number of tasks in an application, although multi-core
platforms are fruitful due to the ability of parallel execution of tasks on cores, the
power consumption of these systems is a critical issue. Therefore, we studied the
challenges of these MC hardware design in Chaps. 6 and 7. First, we proposed an
approach in fault-tolerant multi-core MC systems to manage peak power consump-
tion and temperature. The approach develops a tree of possible task mapping and
scheduling at design-time to cover all possible scenarios and reduce the LC task drop
rate in the HI mode, i.e., improve the QoS. At run-time, the system exploits the tree
to select a proper schedule according to fault occurrences (to guarantee the real-time
constraints in case of fault occurrence) and criticality mode changes. Experimental
results show that the average task schedulability is 74.14% on average while
improving the peak power consumption and maximum temperature by 16.65% and
14.9 . ◦C on average, respectively, compared to recent work. In addition, for a real-
life application, our method reduces the peak power and maximum temperature
by up to 20.06% and 5 . ◦C, respectively, compared to a state-of-the-art work. In
order to take advantage of task dynamism in run-time system operation, we then
proposed an online peak power and thermal management heuristic in Chap. 7, in
which the re-mapping technique is used in the case of available dynamic slack
to re-map a ready task from the hot core to a core with a lower temperature to
manage the system’s maximum temperature. This heuristic exploits the generated
dynamic slack (due to early completion of a task execution) and assigns them to
an appropriate task among k look-ahead tasks, which has more impact on system
power and maximum temperature and reduces the V-f levels. However, changing
the frequency and selecting a proper task for slack assignment and a proper core
for task re-mapping at run-time can be time-consuming and may cause deadline
violation which is not admissible for HC tasks. Therefore, we analyzed and then

190 8 Conclusions and Future Work

optimized the proposed run-time scheduler and evaluate it for various platforms.
The proposed approach was experimentally validated on the ODROID-XU3 with
various embedded real-time benchmarks. Results show that the heuristic achieves
up to 5.25% reduction in system peak power and 20.33% (16.8 . ◦C) reduction in
maximum temperature compared to an existing method while meeting deadline
constraints in different criticality modes.

8.2 Future Work

In this book, system-level approaches are proposed through MC application analysis
and MC hardware analysis to enhance the QoS of MC systems while ensuring real-
time constraints. There are, however, several open issues that need to be addressed
when designing such MC systems, including the following:

• MC System Analysis with Consideration of Communication and Data
Sharing: Although employing multi-core platforms offers the opportunity for
executing several applications in common hardware, safety and real-timeliness
are critical issues in designing such MC hardware systems. In these multi-core
platforms, more data are needed to be shared between concurrent executions
of tasks with different criticality levels [1]. The strict control of data (critical
and noncritical), communication, sharing, and storage in such systems for safety
assurance, e.g., in medical devices, is crucial. It is essential to ensure that the
behavior of LC tasks does not adversely affect the behavior of HC tasks while
communicating and sharing data or writing in memories, for example, delaying
an HC task by blocking the memory access. Most state-of-the-art works have
concentrated on designing MC systems in multi-core processors regardless of
safe and on-time data sharing among communication and memories. As a result,
an MC system design considering all system resources, like communications,
memory access, and processors, needs to be developed.

• Evaluation on Real Platforms Using Real-Life MC Benchmarks: Most
approaches in the field of MC systems are presented in the academic area, not
evaluated by industries, and may not be usable in reality. For this purpose of
proposing more practical approaches, first, the designers need more realistic MC
task and system models that are derived based on industrial application features
and run-time behavior, which is good to be focused on as future work. Besides,
some open-access real-life MC benchmarks are also fruitful and need to be
studied and presented, e.g., in automotive and avionic industrial applications, for
analyzing and evaluating presented approaches in MC system design domain.
Then, since most proposed methods in the academic area are evaluated through
simulation, an evaluation and implementation of approaches on a real embedded
multi-core platform are needed to demonstrate their effectiveness. It is useful
if the chosen platforms are mostly the same as those used in industries, like
automotive platforms.

8.2 Future Work 191

• Safety and Reliability Management: In MC systems, the correct execution of
functions, especially HC tasks, must be ensured during run-time under various
stresses (e.g., hardware errors, software errors, etc.) to prevent failure and catas-
trophic consequences. Therefore, MC systems must be well designed to ensure
long-term and application-specific reliability. In order to guarantee system safety,
fault-tolerance techniques are employed in the design of such systems. In the
case of fault occurrence, different techniques such as replication or re-execution
are needed to enhance their strengths against potential failures. Furthermore,
due to the various safety demands for tasks, they can have different reliability
requirements. A failure occurring in tasks with different criticality levels has a
disparate impact on the system, from no effect to catastrophic. Although there
are some approaches that have focused on managing the lifetime or timing
reliability in hardware or system software layers, in future work, more works
are first needed to analyze the MC systems’ behavior in all abstraction layers
like hardware, application, and system software, separately, while managing the
reliability. These single-layer reliability-aware design approaches adopt an other-
layer-agnostic approach [2]. However, this isolated layer-wise fault mitigation
has a high cost (in terms of power, area, and timing), making it infeasible for
most embedded systems [3]. Therefore, considering the cross-layer reliability is
also crucial in efficiently designing these MC systems that need to be focused on
and deeply studied in the future.

• Ensuring ML-Based Objective (QoS, Reliability), with Consideration of
ML Complexity Reduction: In general, there are three categories of ML
techniques—supervised learning, unsupervised learning, and reinforcement
learning—where, depending on the problem, parameters, and inputs, at least one
of these techniques is determined and used for system property improvement.
These ML techniques are usually memory-intensive and computationally
expensive, which makes some of them incompatible with embedded MC system
design. Further, a more simplified ML technique may not provide the desired
accuracy when making predictions. Therefore, although we have proposed ML-
based approaches for QoS-aware MC system design, these ML techniques are
needed to be investigated first in terms of overheads, accuracy, and capability, and
then the efficient ones which are suitable for a specified objective to be applied to
embedded MC systems at design-time are also needed to be determined. Besides,
to use the ML techniques at run-time, the selected ML techniques must be light
enough with low overhead to be used at run-time for objective improvement
in MC systems, which are safety-critical, with no effect on MC applications’
timeliness. The ML technique’s function is to choose the best decision under
environmental changes in order to improve objectives, like reliability, and QoS.
Therefore, selecting a suitable ML technique, concentrating on its run-time
timing overheads and accuracy for learning and prediction, plays a crucial role
in controlling and doing a safe mission under environmental changes and needs
to be intensely focused. Besides, although using ML techniques can improve the
objectives, they cannot guarantee the constraints and requirements. For example,
some research works have been proposed to enhance reliability through ML

192 8 Conclusions and Future Work

techniques, but there is no guarantee of meeting the reliability requirements.
Designing and developing ML-based approaches to guarantee the reliability
requirements of MC tasks would be interesting to be noticed.

• Hardware- and Overhead-Aware WCET Estimation: This book focused on
how the low WCET of MC tasks are determined while improving their utiliza-
tion. In the proposed approaches, a single-core platform has been considered in
designing the MC systems with no memory or communication consideration.
This is despite the fact that some other factors impact WCET values and
processor utilization, like hardware behavior, overheads, and task dependencies,
and make the system inaccurately designed. In the following, we discuss briefly
how these factors may have a negative impact on designing MC systems.

– Overheads and task dependencies: In general, the WCET values depend on
the function’s input data. This fact would be more important if the tasks
are dependent. Tasks should be analyzed at the instruction level to see how
the variety of input data can affect their WCETs. Besides, some timing
overheads like saving the output result of task execution in memory/cache
and loading from to be used as a function input can be significant in real-time
systems. It is important to consider how overheads arising from tasks with
one criticality level may affect tasks with a different criticality level. As a
result, it is necessary to find first appropriate models of system overheads and
task dependencies and then integrate them into the MC’s system analysis: the
WCET estimation and utilization improvement.

– Hardware behavior analysis: In order to estimate low WCET of MC tasks,
in this book, we have analyzed the tasks, predicted the low WCETs, and
observed on a concrete processor. However, as mentioned in the first future
work, a hardware platform consists of the computation part, communication,
and memory. These parts affect the execution times of MC tasks and make
them context-dependent. To estimate the appropriate low WCET of tasks to
be used in MC system design, all hardware components’ behavior should
be analyzed for all paths leading to a task’s instructions. Considering the
hardware behavior analysis in application-level analysis leads to better MC
system design, which needs to be focused on.

References

1. Alan Burns and Robert I. Davis. “A Survey of Research into Mixed-Criticality Systems”. In:
ACM Computing Surveys (CSUR), 50.6 (2017), pp. 1–37.

2. Siva Satyendra Sahoo, Bharadwaj Veeravalli, and A. Kumar. “A Hybrid Agent-Based Design
Methodology for Dynamic Cross-Layer Reliability in Heterogeneous Embedded Systems”. In:
Proc. of ACM/IEEE Design Automation Conference (DAC), 2019.

3. Siva Satyendra Sahoo, Bharadwaj Veeravalli, and A. Kumar. “Cross-layer fault-tolerant design
of real-time systems”. In: Proc. of IEEE International Symposium on Defect and Fault Tolerance
in VLSI and Nanotechnology Systems (DFT), 2016, pp. 63–68.

Index

D
Dynamic slack, viii, ix, 5, 7, 8, 10–12, 24, 26,

28, 30, 103, 104, 106, 107, 109–113,
115, 118–123, 154, 155, 157–159,
162–164, 166, 169, 172, 174, 177,
179–181, 184, 185, 189

Dynamic voltage and frequency scaling
(DVFS), ix, 11, 21–22, 29, 30, 136,
143, 153, 154, 157–160, 162, 168–169,
171, 172, 179, 182, 184, 185

E
Embedded systems, 1, 6, 20, 49, 113, 170, 178,

185, 191

F
Fault-tolerance, 17, 20–21, 78, 79, 90, 96–98,

127–155, 191

H
Hardware platform, viii, 2, 73, 100, 107, 111,

113, 115, 127, 142, 160, 171, 187, 188,
192

L
Low-power technique, ix, 11, 21–23, 28, 29,

31

M
Machine learning (ML), 10, 62, 73, 103, 107,

121–123, 191, 192
Mixed-criticality (MC), vii–ix, 3–13, 17–21,

23–31, 37–74, 77–101, 103–124,
127–155, 157–185, 187–192

Mode switching probability, viii, 10, 25, 26,
37–39, 41–44, 47–50, 52–58, 73, 94,
116, 118, 121, 132, 135, 142, 187, 188

Multi-core platform, viii, 3, 7–9, 11, 13, 21,
23, 29, 30, 123, 124, 155, 157, 158,
160, 166, 168–169, 183, 185, 188–190

P
Peak power management, 29, 144–147, 154,

158
Power consumption, vii–ix, 2, 3, 7, 8, 11, 12,

17, 21–23, 28–30, 123, 124, 128, 129,
132, 136, 138, 142, 144–146, 148–152,
154, 155, 157–160, 163, 164, 166,
171–173, 175, 176, 183, 187–189

Q
Quality-of-service (QoS), vii–ix, 2–13, 17–19,

24–31, 37, 49, 52, 58, 60, 62, 65–67,
69–74, 77, 97, 101, 103–110, 112,
113, 115–119, 121–124, 127, 129, 130,
144, 145, 147–149, 155, 157–185,
188–191

© The Editor(s) (if applicable) and The Author(s), under exclusive license to
Springer Nature Switzerland AG 2024
B. Ranjbar et al., Quality-of-Service Aware Design and Management of Embedded
Mixed-Criticality Systems, https://doi.org/10.1007/978-3-031-38960-3

193

https://doi.org/10.1007/978-3-031-38960-3
https://doi.org/10.1007/978-3-031-38960-3
https://doi.org/10.1007/978-3-031-38960-3
https://doi.org/10.1007/978-3-031-38960-3
https://doi.org/10.1007/978-3-031-38960-3
https://doi.org/10.1007/978-3-031-38960-3
https://doi.org/10.1007/978-3-031-38960-3
https://doi.org/10.1007/978-3-031-38960-3
https://doi.org/10.1007/978-3-031-38960-3
https://doi.org/10.1007/978-3-031-38960-3

194 Index

R
Resource utilization, viii, 10, 38, 47, 48, 54,

55, 57, 187, 188
Run-time management, 30, 63, 166–168

S
Safety requirement, 1, 2, 10, 12, 17–21, 26, 27,

77, 78, 81–83, 90, 94, 95, 98, 100, 127,
187

Schedulability, viii, 3, 8, 10, 12, 26, 28, 38,
46–48, 50, 55, 60–63, 72, 73, 77, 78,
82, 84–96, 98, 100, 103, 107, 109, 111,
115–117, 122, 129, 151, 152, 179–180,
189

Service adaptation, 26, 67

T
Task, 2, 17, 37, 77, 103, 127, 157, 187

Task dropping analysis, viii, 9, 13, 17, 24,
26–28, 77, 123

Task mapping, viii, 127, 128, 130, 132, 136,
144, 154, 155, 159, 160, 189

Task scheduling, viii, ix, 2, 4, 8, 11, 12, 17,
21, 23–24, 27–29, 62, 63, 66, 77–101,
103–124, 135, 138, 139, 157, 158, 162,
172, 184, 187–189

Thermal management, 28–30, 155, 178,
189

Timing overhead, 11, 28, 30, 62, 63, 65, 72,
109, 116, 121–123, 128, 135, 136,
142–144, 157, 158, 163, 166, 169, 170,
177–180, 182, 185, 191

W
WCET adjustment, 10, 17, 24–26, 38–74

	Summary
	Quality-of-Service Aware Design and Management of Embedded Mixed-Criticality Systems

	Acknowledgments
	Contents
	List of Acronyms
	1 Introduction
	1.1 Mixed-Criticality Application Design
	1.2 Mixed-Criticality Hardware Design
	1.3 Research Challenges and Questions
	1.4 Key Contributions
	1.4.1 Application Analysis and Modeling
	1.4.2 Multi-core Mixed-Criticality System Design

	1.5 Book Outline
	1.6 Conclusions
	References

	2 Preliminaries and Related Work
	2.1 Preliminaries
	2.1.1 Mixed-Criticality Systems
	2.1.1.1 Mixed-Criticality Application Model and Specification
	2.1.1.2 Quality-of-Service (QoS)
	2.1.1.3 System Operational Model

	2.1.2 Fault-Tolerance, Fault Model, and Safety Requirements
	2.1.3 Hardware Architectural Modeling
	2.1.4 Low-Power Techniques and Power Consumption Model
	2.1.4.1 Dynamic Voltage and Frequency Scaling (DVFS)
	2.1.4.2 Task Re-mapping
	2.1.4.3 Task Scheduling

	2.2 Related Works
	2.2.1 Mixed-Criticality Task Scheduling Mechanisms
	2.2.2 QoS Improvement Methods in Mixed-Criticality Systems
	2.2.2.1 QoS Improvement Through WCET Adjustment
	2.2.2.2 QoS Improvement Through Task Dropping Analysis

	2.2.3 QoS-Aware Power and Thermal Management in Multi-core Mixed-Criticality Systems

	2.3 Conclusions
	References

	3 Bounding Time in Mixed-Criticality Systems
	3.1 BOT-MICS: A Design-Time WCET Adjustment Approach
	3.1.1 Motivational Example
	3.1.2 BOT-MICS in Detail
	3.1.2.1 Determining Low WCET and Overrunning Probability
	3.1.2.2 ACET Estimation and Its Minimum Required Samples
	3.1.2.3 Determining a Tight Execution Time Bound
	3.1.2.4 Task Schedulability Analysis
	3.1.2.5 Optimization Problem Formulation

	3.1.3 Evaluation
	3.1.3.1 Evaluation with Real-Life Benchmarks at Run-Time
	3.1.3.2 Evaluation with Synthetic Task Sets

	3.2 ADAPTIVE: A Run-Time WCET Adjustment Approach
	3.2.1 Motivational Example
	3.2.2 ADAPTIVE in Detail
	3.2.2.1 Design-Time Exploration
	3.2.2.2 Run-Time Adaptation

	3.2.3 Evaluation
	3.2.3.1 Evaluation with Real-Life Benchmarks
	3.2.3.2 Evaluation with Synthetic Task Sets
	3.2.3.3 Investigating the Timing and Memory Overheads of Learning Technique

	3.3 Conclusions
	References

	4 Safety- and Task-Drop-Aware Mixed-Criticality Task Scheduling
	4.1 Problem Objectives and Motivational Example
	4.2 FANTOM in Detail
	4.2.1 Safety Quantification
	4.2.2 MC Task Utilization Bounds' Definition
	4.2.3 Scheduling Analysis
	4.2.3.1 Conditions to Guarantee Task Schedulability in the LO Mode
	4.2.3.2 Conditions to Guarantee Task Schedulability in the HI Mode
	4.2.3.3 Conditions to Guarantee Task Schedulability with EDF-VD Algorithm

	4.2.4 System Upper Bound Utilization
	4.2.5 A General Design Time Scheduling Algorithm

	4.3 Evaluation
	4.3.1 Evaluation with Real-Life Benchmarks
	4.3.1.1 First Case Study of Flight Management System (FMS)
	4.3.1.2 Second Case Study of Flight Management System (FMS)

	4.3.2 Evaluation with Synthetic Task Sets
	4.3.2.1 Experimental Setup
	4.3.2.2 Effect of Varying LC Task's Parameter (δ)
	4.3.2.3 Acceptance Ratio of Schedulable Task Sets
	4.3.2.4 Effects of Using Fault-Tolerance Techniques
	4.3.2.5 Effects of HC Task Run-Time Behaviors (P(WCETLO))
	4.3.2.6 Effect of Varying PoF for Task Instances
	4.3.2.7 Effects of Task Mixtures with Varying P(HC) and P(MCT)

	4.4 Conclusions
	References

	5 Learning-Based Drop-Aware Mixed-Criticality Task Scheduling
	5.1 Motivational Example and Problem Statement
	5.2 Proposed Method in Detail
	5.2.1 An Overview of the Design-Time Approach
	5.2.2 Run-Time SOLID Approach
	5.2.2.1 Learning-Based System Property Optimization
	5.2.2.2 SOLID Optimization in Detail

	5.2.3 Run-Time LIQUID Approach

	5.3 Evaluation
	5.3.1 Evaluation with Real-Life Benchmarks
	5.3.2 Evaluation with Synthetic Task Sets
	5.3.2.1 Effects of System Utilization
	5.3.2.2 Effects of HC Tasks' Run-time Behavior
	5.3.2.3 Impacts of Task Mixtures
	5.3.2.4 Investigating the LC Tasks' Drop-Rate Parameter

	5.3.3 Investigating the Timing and Memory Overheads of ML Technique

	5.4 Conclusions
	References

	6 Fault-Tolerance- and Power-Aware Multi-core Mixed-Criticality System Design
	6.1 Problem Objectives and Motivational Example
	6.2 Design Methodology
	6.3 Tree Generation and Fault-Tolerant Scheduling and Mapping
	6.3.1 Making Scheduling Tree
	6.3.2 Mapping and Scheduling
	6.3.3 Time Complexity Analysis
	6.3.4 Memory Space Analysis

	6.4 Evaluation
	6.4.1 Experimental Setup
	6.4.1.1 Application
	6.4.1.2 Hardware Platform
	6.4.1.3 Peak Power Consumption
	6.4.1.4 Comparison

	6.4.2 Tree Construction Time
	6.4.3 Run-Time Timing Overheads
	6.4.4 Peak Power Management and Thermal Distribution for Real-Life and Synthetic Applications
	6.4.5 Analyzing the QoS of LC Tasks
	6.4.6 Peak Power Consumption and Max. Temperature Analysis
	6.4.7 Effect of Varying Different Parameters on Acceptance Ratio
	6.4.8 Investigating Different Approaches at Run-Time

	6.5 Conclusions
	References

	7 QoS- And Power-Aware Run-Time Scheduler for Multi-core Mixed-Criticality Systems
	7.1 Research Questions, Objectives, and Motivational Example
	7.2 Design-Time Approach
	7.3 Run-Time Mixed-Criticality Scheduler
	7.3.1 Selecting the Appropriate Task to Assign Slack
	7.3.2 Re-mapping Technique
	7.3.3 Run-Time Management Algorithm
	7.3.4 DVFS Governor: Updating V-f Levels in Clustered Multi-core Platform

	7.4 Run-Time Scheduler Algorithm Optimization
	7.5 Evaluation
	7.5.1 Experimental Setup
	7.5.1.1 Hardware Platform
	7.5.1.2 Task Set Generation
	7.5.1.3 Tasks' Power Consumption
	7.5.1.4 Thermal Analysis
	7.5.1.5 Comparison

	7.5.2 Analyzing the Relevance Between a Core Temperature and Energy Consumption
	7.5.3 The Effect of Varying Parameters of Cost Functions
	7.5.4 The Optimum Number of Tasks to Look-Ahead and the Effect of Task Re-mapping
	7.5.5 The Analysis of Scheduler Timings' Overhead on Different Real Platforms
	7.5.6 The Latency of Changing Frequency in Real Platform
	7.5.7 The Effect of Latency on System Schedulability
	7.5.8 The Analysis of the Proposed Method on Improving Objectives in Simulation
	7.5.9 The Analysis of the Proposed Method on Improving Objectives in a Platform Based on ODROID Architecture
	7.5.10 Evaluation of Running Real MC Task Graph Model on Real Platform

	7.6 Conclusions
	References

	8 Conclusions and Future Work
	8.1 Conclusions
	8.2 Future Work
	References

	Index

