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Summary 

Quality-of-Service Aware Design and Management 
of Embedded Mixed-Criticality Systems 

Nowadays, implementing a complex system, which executes various applications 
with different levels of assurance, is a growing trend in modern embedded real-time 
systems to meet cost, space, timing, and power consumption requirements. Medical 
devices, automotive, and avionics industries are the most common safety-critical 
applications, exploiting these systems known as Mixed-Criticality (MC) systems. 
MC applications are real time, and to ensure the correctness of these applications, 
it is essential to meet strict timing requirements as well as functional specifications. 
The correct design of such MC systems requires a thorough understanding of the 
system’s functions and their importance to the system. A failure/deadline miss 
in functions with various criticality levels has a different impact on the system, 
from no effect to catastrophic consequences. Failure in the execution of tasks with 
higher criticality levels (HC tasks) may lead to system failure and cause irreparable 
damage to the system, while although Low-Criticality (LC) tasks assist the system 
in carrying out its mission successfully, their failure has less impact on the system’s 
functionality and does not harm the system itself to fail. 

In order to guarantee the MC system safety, tasks are analyzed with different 
assumptions to obtain different Worst-Case Execution Times (WCETs) correspond-
ing to the multiple criticality levels and the operation mode of the system (e.g., low 
WCET and high WCET). If the execution time of at least one HC task exceeds 
its low WCET, the system switches from low-criticality mode (LO mode) to high-
criticality mode (HI mode). Then, all HC tasks continue executing by considering 
the high WCET to guarantee the system’s safety. In this HI mode, all or some 
LC tasks are dropped/degraded in favor of HC tasks to ensure HC tasks’ correct 
execution. Here, if we consider very low values for low WCETs, more LC tasks are 
guaranteed to be scheduled in a processor at design-time. However, it may cause 
frequent mode switches and drop more LC tasks at run-time due to inefficient low 
WCET determination. On the other hand, by using a larger low WCET, fewer LC
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tasks are scheduled in the LO mode, which under-utilizes the processor. To this end, 
determining an appropriate low WCET for each HC task is crucial in designing 
efficient MC systems and ensuring Quality-of-Service (QoS) maximization (i.e., 
execute more LC tasks). However, in the case where the low WCETs are set 
correctly, it is not recommended to drop/degrade the LC tasks in the HI mode due to 
its negative impact on the other functions or on the entire system in accomplishing 
its mission correctly. Therefore, how to model the MC tasks and analyze the task 
dropping in the HI mode are significant challenges in designing efficient MC 
systems that must be considered to guarantee the successful execution of all HC 
tasks to prevent catastrophic damages while improving the QoS. 

Due to the continuous rise in computational demand for MC tasks in safety-
critical applications, like controlling autonomous driving, the designers are moti-
vated to deploy MC applications on multi-core platforms. Although the parallel 
execution feature of multi-core platforms helps to improve QoS and ensures the 
real-timeliness, high power consumption and temperature of cores may make the 
system more susceptible to failures and instability, which is not desirable in MC 
applications. Therefore, improving the MC system’s QoS while managing the power 
consumption and guaranteeing real-time constraints is the critical issue in designing 
such MC systems in multi-core platforms. 

This book addresses the mentioned challenges associated with efficient MC 
system design. We first focus on application analysis by determining the appropriate 
WCET by proposing two novel approaches to provide a reasonable trade-off 
between the number of scheduled LC tasks at design-time and the probability of 
mode switching at run-time to improve the system utilization and QoS. The first 
approach presents an analytic-based scheme to obtain low WCETs based on the 
Chebyshev theorem at design-time. We also show the relationship between the low 
WCETs and mode switching probability, and formulate and solve the problem for 
improving resource utilization and reducing the mode switching probability. This 
approach sets the optimum static WCETs for HC tasks; however, tasks are rarely 
executed up to their WCETs at run-time. Therefore, to adapt dynamism at run-time, 
we propose a learning-based approach to consider the run-time behavior of tasks 
that dynamically monitors the tasks’ execution times and adjusts the low WCETs to 
improve the QoS at the end of system execution. Further, we analyze the LC task 
dropping in the HI mode to improve QoS. We first propose a heuristic in which a 
new metric is defined that determines the number of allowable drops in the HI mode. 
Then, the task schedulability analysis is developed based on the new metric. Since 
the occurrence of the worst-case scenario at run-time is a rare event, a learning-based 
drop-aware task scheduling mechanism is then proposed, which carefully monitors 
the alterations in the behavior of the MC system at run-time to exploit the generated 
dynamic slacks for improving the QoS. 

Another critical design challenge is how to improve QoS using the parallel fea-
ture of multi-core hardware platforms while managing the high power consumption 
and temperature of these platforms. We develop a tree of possible task mapping and 
scheduling at design-time (it would be exploited at run-time) to cover all possible 
scenarios of task overrunning and reduce the LC task drop rate in the HI mode
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while managing the power and temperature in each scenario of task scheduling. 
Since the dynamic slack is generated due to the early execution of tasks at run-time, 
we propose an online approach to reduce the power consumption and maximum 
temperature by using low-power techniques like dynamic voltage and frequency 
scaling and task re-mapping, while preserving the QoS. Specifically, our approach 
examines multiple tasks ahead (i.e., when a dynamic slack is generated) to determine 
the most appropriate task for the slack assignment that has the most significant 
effect on power consumption and temperature. However, changing the frequency 
and selecting a proper task for slack assignment and a suitable core for task re-
mapping at run-time can be time-consuming and may cause deadline violation 
which is not admissible for HC tasks. Therefore, we analyze and then optimize 
the run-time scheduler and evaluate it for various platforms.
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Chapter 1 
Introduction 

Nowadays, embedded real-time systems have become significant in almost every 
aspect of industrial and human life, due to the increasing amount of computation 
parts in a small device. As a consequence of the ubiquity of embedded systems, 
they are often employed in safety-critical application domains, such as automotive, 
avionics, and medical devices. Autonomous driving is a part of the automotive 
domain, in which there are four primary functions—perception, planning, and 
decision, motion and vehicle control, and system supervision [1]. The perception 
stage is responsible for creating a reliable representation of the vehicle, where 
localization, mapping, and object detection functions are performed. These func-
tions are real time, which means the correct output result of the functions must be 
ready in time (i.e., within specified time constraints defined for each function). For 
example, a vehicle control function that is responsible for steering, acceleration, and 
brake stroking must operate within its time constraint [2], or the obstacle detection 
function must perform complex sensing and estimations in real time to prevent 
serious damages like a fatal accident [1]. 

Several issues emerge in designing these safety-critical applications. Some 
critical issues that must be addressed are how to design such systems and guarantee 
timing, reliability, and safety requirements. Consider safety and reliability in 
autonomous vehicles, where various functions are incorporated along with safety 
requirements. An example of reliable behavior of an autonomous car is the 
desirable, reliable, and on-time behavior of the car to distinguish the obstacle on 
the road, pedestrians crossing the road, overtaking, and giving way. The safety 
and reliability of each function must meet the safety and reliability standards 
used in industries, like ISO26262 for road vehicles which is an extension of 
IEC 61508 [3]. These standards define different levels of safety for functions, called 
Safety Integrity Level (SIL) for automotive domains [4, 5], shown in Table 1.1. SIL 
is introduced in four levels in which SIL-1 has the lowest level of safety and SIL-4 
has the highest level, where the ability to avoid harm or damage is more crucial in 
higher SIL. Probability-of-Failure-per-Hour (PFH) is a metric that is used for the 
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Table 1.1 IEC 61508 safety standard [9] 

x SIL-4 SIL-3 SIL-2 SIL-1 

.PFHx .<10−8 .<10−7 .<10−6 . <10−5

Failure condition Catastrophic Hazardous Major Minor 

safety measurements of functions [6]. As shown, PFH has stricter constraints for 
higher criticality levels. The functions with different safety requirements must be 
executed and may communicate with other functions without sacrificing real-time 
and safety requirements. In conventional safety-critical real-time systems, tasks with 
the same criticality levels are executed on one hardware platform. Therefore, having 
multiple hardware platforms associated with multiple criticality levels would lead 
to high communication, space, and power consumption. As a result, MC systems 
have emerged as an effective solution in various industries, where multiple tasks 
with different criticality levels are executed on a common hardware platform in 
order to meet requirements such as cost, space, weight, power consumption, and 
communication while guaranteeing a safe operation. The criticality of the tasks is 
based on their importance and functionality for the application [7, 8]. 

The main research question in designing these MC systems is how to reconcile 
the conflicting requirements of ensuring safety and real-time constraints and sharing 
for efficient resource usage on a common platform. A lot of progress has been made 
in both academic and industrial aspects since 2007, especially in the last decade, to 
design, model, manage, implement, and evaluate these MC systems [10]. In these 
MC systems, tasks have to be analyzed at design-time to obtain their parameters, 
like WCET [7, 10]. As Burns and Davis mentioned in [10], how the WCETs are  
computed is one of the challenges in modeling and designing the MC systems. 
Then, by employing these task parameters, proper MC task scheduling strategies 
are derived to satisfy the safety and real-time constraints and optimize the processor 
capacity usage [11]. In order to guarantee the real-time constraints of tasks with HC 
levels, some/all tasks with Low-Criticality (LC) levels might be dropped/degraded 
in some situations in favor of HC tasks [10]. Therefore, the QoS (the percentage of 
executed LC tasks to all LC tasks) should be improved at design- and run-time from 
the MC task modeling and scheduling perspectives. 

In addition, MC systems are getting more complicated due to ever-increasing 
computational requirements and the growth in the number of tasks; therefore, multi-
core platforms are utilized to execute the tasks in parallel, thereby improving the 
system performance [11]. As the degree of freedom (in terms of availability of 
the cores) increases, power consumption and high temperature are issues of crucial 
importance in MC systems. It is not trivial to guarantee the real-time constraints 
and improve the QoS while managing the system power consumption. Systems 
with high peak power consumption are more likely to generate unexpected heat 
beyond the intended cooling capacity. These systems will be more susceptible to 
failures and instability [12]. In other words, the reliability, lifetime, and timeliness 
of these systems will be undesirably affected [13]. As a result, minimizing power
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consumption in multi-core MC systems while ensuring the real-time constraints and 
guaranteeing the minimum QoS is a significant issue that should be addressed. 

This book addresses the challenges associated with the design and model of 
MC applications and the management of MC systems on multi-core platforms. We 
present an offline theoretical-based scheme and an online adaptive scheme in this 
book to determine theMC application’s parameters and improve the QoS.Moreover, 
we propose a parameter for each task in order to improve the QoS and, based on 
the introduced parameter, develop a design-time schedulability analysis and a run-
time task scheduler aiming at QoS improvement. Finally, by considering the MC 
hardware aspect, it presents novel approaches to managing peak power consumption 
and maximum temperature in multi-core MC systems at both design- and run-time 
while ensuring the real-timeliness and improving the QoS. 

The rest of this chapter is organized as follows. In Sect. 1.1, we provide a 
summary of MC system definition and properties. We look in-depth at the MC 
system design and modeling from the applications perspective and their issues. 
Section 1.2 presents the trends in MC hardware design and management when 
exploiting the multi-core platforms. Then, in Sect. 1.3, we introduce the research 
questions and summarize the research challenges that need to be solved. Section 1.4 
presents the book contributions and in the end, Sects. 1.5 and 1.6 outline the book, 
and their organization, respectively. 

The content of this book is based on [14]. 

1.1 Mixed-Criticality Application Design 

In most of the safety-critical real-time applications (in medical, flight control, etc. 
devices), tasks are classified into multiple criticality levels in order to maintain the 
predictability of the applications under different unexpected behaviors. In these 
real-time systems, these tasks have to be analyzed at design-time to obtain their 
WCET and then are scheduled based on their obtained WCET [7]. Many approaches 
like those presented in [15, 16] and tools like OTAWA [17] are used to determine 
the high WCET of a task by analyzing the task’s control flow graph. These tools 
provide a safe and conservative execution time-bound so that no task’s execution 
time exceeds the WCET under any circumstances. However, Fig. 1.1 [15] shows an 
execution time distribution of a task and observes that most samples’ execution 
time is significantly shorter than such a conservative WCET. As a result, the 
resources would be severely underutilized at run-time, which leads to poor processor 
utilization and QoS in conventional real-time systems. 

To this end, MC systems are designed to tackle this issue, where tasks are ana-
lyzed with different assumptions—for example, optimistic and pessimistic assump-
tions for a system in which two criticality levels of tasks are executed—to obtain 
multiple WCETs, corresponding to the multiple criticality levels and the operation 
mode of the system [18–20]. This ensures that the processor utilization (and 
correspondingly, the QoS) is maximized in the LOw-criticality mode (LO mode),
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A 

Fig. 1.1 Execution time distribution for a real-time task [15] 

Fig. 1.2 An example of real-life application (unmanned air vehicle) task graph 

while the guarantees are preserved in the HIgh-criticality mode (HI mode). Fig-
ure 1.2 shows a task set of Unmanned Air Vehicle (UAV), which is a real-life MC 
application [21]. This application is composed of eight tasks, in which HC tasks 
have two different values of WCETs. Tasks . τ1 to . τ3 are HC tasks that are responsible 
for the avoidance, navigation, and stability of the system, respectively. Failure in 
the execution of these tasks before their deadline may lead to a system failure and 
irreparable damage to the system. The roles of LC tasks (. τ4 to . τ8) are recording 
sensor data, GPS coordination, and video transmissions, which help the system to 
carry out its mission successfully [21]. From the MC task scheduling perspective, 
tasks are first scheduled in the LO mode based on their low WCETs. At run-time, if 
the execution time of at least one HC task exceeds its low WCET (a task overruns), 
the system switches to the HI mode, i.e., the mode switch occurs due to the HC 
tasks’ overrunning. In HI mode, to guarantee the correct execution of HC tasks, the 
system switches to the second schedule, where all HC tasks are scheduled based 
on their high WCETs and all or some LC tasks are dropped, which leads to QoS 
degradation [7, 10, 18, 22–24]. 

When the gap between the low and high WCETs is large, more tasks, especially 
LC tasks, are guaranteed to be scheduled in a processor at design-time. However, it 
may cause frequent system mode switches and, consequently, drop more LC tasks 
at run-time due to inefficient low WCET determination for HC tasks. When this 
gap is small, fewer LC tasks are scheduled in the LO mode which underutilizes 
the processor. Indeed, this is overly pessimistic because, as shown in Fig. 1.1, 
tasks would be executed with less likelihood up to observed or actual WCET.
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Therefore, low WCETs play an important role in designing efficient MC systems 
and improving the timing behavior of these systems. 

Nevertheless, according to the limitation of an MC system formal model, which 
is mentioned in [4, 5], dropping LC tasks (except for non-criticality tasks) in favor 
of HC tasks is not a suitable protection mechanism in industrial applications. 
The frequent deadline misses or service degradation of some LC tasks, such as 
mission-critical tasks, may have a negative impact on the other HC tasks and 
mission-critical tasks themselves, and consequently on the entire system, and may 
prevent the system from accomplishing its mission correctly. For instance, consider 
an MC system whose mission is to capture images in specific time intervals. In this 
application, the engine operation (i.e., the function that ensures the safe execution 
of the operation) and the operation of capturing images are considered as the HC 
tasks and LC tasks, respectively [25, 26]. Accordingly, if the system switches to 
the HI mode, due to the execution of HC tasks, the existing scheduling methods 
may frequently drop LC tanks or suspend them for a long time, which is not 
acceptable for a system whose main mission is capturing images. As can be realized, 
dropping LC tasks (except for non-criticality tasks) is not permitted in industrial 
applications, but depending on the type of the application, some of the LC tasks (i.e., 
mission-critical tasks) could be dropped. Therefore, since the frequent dropping or 
postponing of their execution for a long time in the HI mode is not appropriate, how 
to model MC tasks, and design an MC system, is crucial in improving the QoS. 

As most MC applications are safety-critical, the system must be designed 
carefully at design-time to execute all HC tasks correctly before their deadlines, 
even in worst-case situations, e.g., tasks are executed up to their WCETs or the  
system would be in overload situation most of the time. For example, if the system 
switches to the HI mode most of the time due to HC task overrunning, the minimum 
QoS must be guaranteed at design-time to ensure that the system can perform its 
mission effectively. Most MC systems are designed statically at design-time to 
guarantee the worst-case scenario. However, the system does not always exhibit 
the worst-case behavior at run-time. For example, much dynamic slack (the time 
between a task’s actual completion time and its WCET) would be generated at run-
time due to the early finish of task execution, which can be used to improve the 
objectives. Consequently, these systems cannot adapt to task dynamism at run-time, 
which results in significant performance losses for LC tasks. In this book, dynamism 
occurs when the tasks’ execution times are varied due to changes in tasks’ inputs. 
Figure 1.3 depicts measured radiation dose in an airplane with varying altitudes. 
As shown, the radiation during a flight increases with the airplane’s altitude (i.e., in 
the operating environment), and the maximum radiation is almost 20X as compared 
to when the aircraft is on the ground. The system is designed to operate in the 
worst-case scenario, i.e., when it is in the air, and the radiation has the maximum 
value. Although the airplane is in the air for the bulk of the flight time, which has 
the maximum radiation value, the system should support other tasks during landing 
(when the radiation has a low value), which is more critical. Besides, the variations 
in the operating environment could generate different inputs for tasks and, therefore, 
may lead to the computational demand being higher than the processor capacity
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Fig. 1.3 The relation between radiation and altitude of an airplane due to varying operating 
environment [27] 

under the specified timing requirements. Thus, the MC system’s run-time behavior 
can be investigated in addition to system design in design-time phase to improve 
the objectives like QoS while ensuring the real-timeliness based on the dynamic 
changes during run-time. 

1.2 Mixed-Criticality Hardware Design 

A large number of real-time systems are embedded in small battery-operated 
devices. In these systems, efficient power management is vital for achieving 
the performance desired in these systems [28, 29]. Besides, in general, in some 
embedded real-time systems, applications consist of various control tasks that 
execute together to achieve a common goal like controlling autonomous driving. 
In other words, tasks are dependent, and there are precedence relations between 
tasks in such systems [28]. Therefore, since there are a large number of tasks in 
these sophisticated embedded systems to be executed and communicate with each 
other on a single platform to meet cost, power, and performance, the platforms are 
migrating from single cores to multi-cores/many cores. The multi-core platforms 
can be utilized to deal with high-performance requirements and to improve the QoS 
by efficiently allocating tasks among cores. 

In these multi-core MC systems, platforms require higher power to operate, 
compared to single-core platforms, mainly when the system is in the HI mode. 
The reason is that, by executing all/most HC tasks in this situation, there may 
be an increase in computational demands, and the system may then become 
overloaded [30]. Thus, all cores may execute tasks simultaneously to meet the
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deadlines of tasks, which increases the instantaneous processor power beyond 
its Thermal Design Power (TDP) constraint [12, 13, 31]. TDP is the maximum 
sustainable power that a chip can dissipate safely. If the task scheduler is not aware 
of the power consumption, all cores might be activated simultaneously with the 
highest performance. Therefore, the system will draw a significantly larger power 
than it is designed for. Systems with high peak power are more likely to generate 
unexpected heat beyond the chip’s intended cooling capacity. They will be more 
susceptible to failures and instability [12], which is not acceptable for the HC tasks, 
and it may cause catastrophic consequences. In addition, as the degree of freedom 
(in terms of the availability of the cores) increases, it is not trivial to guarantee 
real-time constraints while managing the system’s peak power. In other words, the 
reliability, lifetime, and timeliness of these systems will be adversely affected [13]. 
Therefore, managing the peak power consumption and maximum temperature of the 
multi-core system, while guaranteeing the deadlines of tasks at runtime, is crucial 
to be studied. 

In multi-core platforms, all cores being active simultaneously and executing all 
tasks with their pessimistic power consumption value up to their WCET values 
might be the worst-case scenario from a power consumption perspective. As 
mentioned in the previous section, this worst-case scenario must meet the deadline 
constraints and guarantee the minimum QoS. However, all cores in multi-core 
MC systems may not always be in the worst case of their mission. A run-
time management policy is needed to adapt the system to dynamic changes, like 
employing the dynamic slack on all cores to reduce the power consumption and 
maximum temperature and improve the QoS. 

To summarize, the following are the trends and requirements we observe in MC 
hardware design: 

• The need and capability for concurrent task execution in a multi-core platform 
are increasing. 

• Concerns over power consumption in multi-core platforms are growing more 
serious in MC systems. 

• The high processor temperature is becoming an increasingly important concern 
for the correct and safe execution of MC applications on platforms. 

1.3 Research Challenges and Questions 

The designers face challenges while designing MC systems at low space, cost, 
and power. In order to keep the space low, the system resources need to be 
used efficiently. The important design points and trends mentioned in Sects. 1.1 
and 1.2, respectively, indicate the increasing complexity of MC system design 
and management at both design- and run-time. Burns and Davis [10] provide the 
challenges and open issues in the field of MC systems. However, the following are
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the major challenges in the design, analysis, and management of embedded MC 
systems, which we discussed in the previous sections and deal with in this book. 

• Analyzing and adjusting the WCETs for  HC tasks to be employed in MC task 
scheduling 

• Investigating the MC system behavior in the HI mode and determining the 
number of allowable drops for LC tasks 

• Integrating and adapting the MC systems with the run-time behavior of applica-
tions 

• Improving the QoS in multi-core platforms by executing the tasks in parallel 
• Managing the power and maximum temperature in multi-core MC systems while 

guaranteeing the real-time constraints of applications 

According to the discussions in the previous sections and the challenges faced by 
this book, the following research objective are addressed in this book: 

Modeling, designing, and management of embedded MC system to improve the QoS while 
ensuring the real-time and safety constraints of functions 

In order to achieve the above objective, the following research questions (RQ) 
must be answered while designing the MC systems, analyzing MC applications, 
and deploying the MC applications on multi-core platforms: 

RQ1: How can we obtain/estimate the safe and tight low WCET for HC tasks in 
order to improve QoS (i.e., reducing the number of dropped LC tasks to the 
maximum extent possible) and manage the mode switches’ probability? 

RQ2: How can the MC systems adapt to dynamism (i.e., run-time task behavior) 
at run-time in order to improve QoS and manage the mode switches’ 
probability? 

RQ3: How can we model the MC tasks, and regarding this model, how is the task 
schedulability tested in order to reduce the possibility of frequent drops of 
LC tasks in the HI mode and improve the QoS? 

RQ4: How can the run-time behavior help the task scheduler, with the low over-
head in a way that drops fewer LC tasks in the HI mode, while guaranteeing 
the real-time constraints? 

RQ5: How can the hardware parallelism feature of multi-core platforms be 
employed for MC applications in order to improve the QoS while guaran-
teeing the real-time constraints? 

RQ6: How can we overcome the power consumption and thermal issues in multi-
core platforms with low timing and memory overheads while managing the 
QoS, real-timeliness, and safety? 

RQ7: Which system-level low-power techniques can be employed in embedded 
MC systems in order to manage both maximum temperature and power 
consumption? 

RQ8: How can the generated dynamic slack be efficiently employed for various 
system objective improvements like decreasing power consumption, post-
poning the possibility of mode switches, and improving the QoS of LC tasks?
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1.4 Key Contributions 

In order to answer the research questions, this book has mainly focused on how 
to model and schedule the MC applications and how to exploit the multi-core 
platform features to design and manage the MC systems. Figure 1.4 shows the 
overall structure of the book to address the mentioned research challenges and 
questions. We first focus on application-level analysis which can be applied to any 
hardware, single or multi-core platforms. Nevertheless, we consider independent 
MC tasks, executing on a single-core platform, to achieve the objective of analyzing, 
modeling, and designing the MC systems. We propose two novel contributions 
of QoS improvement through WCET analysis and task dropping analysis and 
modeling. We investigate and solve the research problem at design- and run-time 
for both contributions. 

As mentioned in Sect. 1.2, in some embedded real-time systems, MC applications 
consist of dependent tasks, in which a large number of functions execute on a 
common multi-core platform. To this end, we consider the dependent task model 
that the tasks are executed on multi-core platforms. We employ the hardware 
parallelism feature of multi-core platforms to design MC systems and improve the 
QoS. In such multi-core platforms, we also address the power and thermal issues, 
which may lead to an unsafe point in MC system design. In the following, we detail 
the contributions mentioned in this figure. 

Fig. 1.4 Overall structure of the book
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1.4.1 Application Analysis and Modeling 

In order to address the challenge of WCET adjustment of HC tasks to be employed  
in the LO mode, we first address the RQ1 by analyzing the low WCET parameter 
and determining the appropriate values for MC tasks. We present the novel analyti-
cal scheme, called BOT-MICS, to provide a reasonable trade-off between the number 
of LC tasks that can be guaranteed to meet the deadlines at design-time (i.e., QoS) 
and the probability of mode switching at run-time. In this design-time approach, 
the WCETs are obtained based on the Chebyshev theorem, and then we show the 
relation between the low WCETs and mode switching probability. The Genetic 
Algorithms (GA) is used to formulate and solve the optimization problem for 
improving the resource utilization and reducing the mode switching probability. 

Then, to address the intended objective and answer RQ2, an online scheme, 
called ADAPTIVE, is proposed to be employed at run-time. It studies and ana-
lyzes the run-time behavior of task execution and presents a dynamic QoS-aware 
scheduling algorithm. This algorithm adjusts the low WCET of HC tasks based 
on the available accumulated dynamic slack at run-time to improve the results’ 
quality based on the system changes while guaranteeing the minimum service of 
LC tasks, even in the HI mode by considering a utilization threshold when adjusting 
the low WCETs. 

We further address the challenge of drop-aware behavior analysis of MC systems 
to answer RQ3. We introduce FANTOM, a heuristic, in which a new task parameter 
is defined, and then based on the defined parameter, schedulability analysis of 
MC tasks is developed by considering safety requirements. In FANTOM, the 
schedulability analysis is conducted in an offline manner in order to guarantee 
that all tasks with different criticality levels are executed properly before their 
deadlines based on the operational mode of MC systems. Thus, the main objective of 
FANTOM is to execute the majority of the LC tasks in the HI mode by considering 
a maximum allowable number of drops for every LC task. 

The offline techniques, like FANTOM, are mostly pessimistic, as the occurrence 
of the worst-case scenario at run-time is rare. Therefore, we propose a novel 
optimistic mechanism that reduces the number of drops for the LC tasks by 
observing the system’s behavioral changes at run-time. The answer of RQ4 has 
been achieved by exploiting the generated dynamic slacks in the decision-making 
process for the online task dropping to execute more LC tasks in the HI mode and 
enhance their schedulability. Since we are unaware of the amount of generated 
dynamic slacks during run-time in advance, Machine Learning (ML) approaches 
can be employed as a management technique for the prediction. Therefore, utilizing 
ML techniques as part of the proposed approach has enabled it to partially exploit 
the dynamic slack to improve the QoS for the LC tasks in the HI mode. In these 
schemes, the learner finds the optimum drop rate for the LC tasks at run-time 
based on the available dynamic slack, prevents frequent drops in HI mode, and 
consequently reduces their deadline miss rate.
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1.4.2 Multi-core Mixed-Criticality System Design 

Now, we address the challenge of using the parallel execution of tasks in multi-
core platforms to achieve the research objective and answer RQ5 and RQ6. We  
first propose a method that exploits a tree of schedules for dependent MC tasks 
running on multi-core platforms. This tree of schedules is generated at design-
time, considering system safety (i.e., all possibilities of fault occurrence scenarios in 
different tasks) and task overrun. When an HC task overruns or a fault occurs at run-
time, the scheduler chooses the proper schedule from the tree to tolerate the faults 
or manage the system mode switches with low overheads. Our technique aims to 
improve the LC tasks’ QoS in the HI mode while all HC tasks meet their deadlines. 
Besides, high-power consumption and temperature are crucial issues in MC systems 
while using multi-core platforms. As a result, by generating the schedule tree and 
exploiting it at run-time, the LC tasks’ QoS is maximized in each schedule of the tree 
while managing the system’s peak power consumption and tolerating the occurrence 
of possible faults. 

We further exploit the run-time execution feature to address the research chal-
lenges in executing MC applications on multi-core platforms. Therefore, the RQ7 
is first needed to be answered. Then, based on the study, we propose a heuristic to 
manage power consumption in MC systems during run-time. To achieve this, we 
exploit dynamic slacks, the slack between tasks’ actual completion time and their 
WCET, along with Dynamic Voltage and Frequency Scaling (DVFS), a system-
level low-power technique. Our approach has two phases: (1) at design-time, the 
tasks are scheduled on each core, and the resulting schedule is stored to be used as a 
static scheduling table. This is performed for both LO mode and HI mode, defined 
in Sect. 1.1. In this case, the number of LC tasks that have to be dropped in the 
HI mode is minimized to improve the system’s overall QoS. (2) At run-time, in order 
to answer RQ8, we examine multiple tasks in the future (look-ahead) to select the 
most appropriate task to assign the currently available dynamic slack. The selection 
is based on the impact of the tasks on the power consumption and temperature of the 
system, which is quantified by a weighted multi-objective cost function. Therefore, 
the speed of the core that runs the task can be decreased accordingly. Additionally, 
besides exploiting the dynamic slacks, we propose a task re-mapping technique 
(as a low-power technique) at run-time to improve the system temperature profile 
further. However, the online scheduler’s timing overhead to select an appropriate 
task and check the re-mapping technique to choose a proper core are crucial for the 
MC systems and may cause deadline violations. Furthermore, the timing overhead 
of changing V-f levels in using the DVFS technique is critical in run-time task 
scheduling. Therefore, to answer RQ6 in this chapter from the timing overhead 
perspective, we analyze and evaluate the effect of these overheads on the schedule 
of MC tasks in real multi-core platforms.
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1.5 Book Outline 

The remainder of this book is organized as follows: 
Chapter 2 “Preliminaries and Related Work” presents the concept and 

required preliminaries to understand the modeling and task scheduling. Then, 
a survey of related works in the domain under consideration, like MC task 
scheduling mechanisms, QoS improvement, and QoS-aware power management in 
MC systems, is reviewed in this chapter. Then, to highlight the contributions made, 
this book is divided into five chapters. 

Chapter 3 “Bounding Time in MC Systems” presents the novel schemes to 
adjust the low WCET of MC tasks in order to improve QoS and reduce the mode 
switching probability. This chapter proposes a design-time analytical approach and 
an adaptive run-time approach. This chapter is based on [32, 33] and [34, 35]. 

Chapter 4 “Safety- and Task-Drop-Aware MC Task Scheduling” proposes 
a heuristic by first defining a new parameter for each task to improve the QoS 
by introducing a maximum allowable number of drops for every LC task. Then, 
based on the defined parameter, an MC task schedulability analysis is developed by 
considering safety requirements. This chapter is based on [36]. 

Chapter 5 “Learning-Based Drop-Aware MC Task Scheduling” provides an 
adaptive run-time scheme, where a learning-based drop-aware MC task scheduling 
mechanism is proposed to improve the QoS by exploiting the generated dynamic 
slacks. This chapter is based on [37]. 

Chapter 6 “Fault-Tolerance- and Power-Aware Multi-core MC System 
Design” proposes a design-time QoS-aware power management in multi-core 
MC systems. In this chapter, a design-time approach is presented in order to 
improve QoS by generating different scheduling scenarios while reducing power 
consumption. This chapter is based on [38]. 

Chapter 7 “QoS- and Power-Aware Run-Time Scheduler for Multi-core MC 
Systems” presents a run-time QoS-aware approach to manage power consumption 
and maximum temperature by exploiting the generated dynamic slacks. This chapter 
is based on [39] and [40]. 

Chapter 8 “Conclusions and Future Work” concludes the book and presents 
a brief discussion of possible future research works within the domain. 

1.6 Conclusions 

Nowadays, implementing a complex system, and executing various applications 
with different levels of assurance, is a growing trend in modern embedded real-
time systems, which are known as MC systems. In these systems, a deadline miss 
in tasks with various criticality levels has a different consequences on the system, 
from no impact to catastrophic consequences. Therefore, an efficient MC system 
design should be developed to guarantee the safe execution of HC tasks to prevent
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catastrophic damages while improving the QoS. In order to design, analyze, and 
manage an efficient MC system, there are several major challenges, which are 
discussed in this chapter. 

In order to address the challenges, we focused on application- and hardware-level 
analysis. In application-level analysis, two novel approaches for QoS improve-
ment through WCET analysis and task dropping analysis are proposed for both 
design-time and run-time phases. In addition, in hardware analysis, the hardware 
parallelism of multi-core platforms is employed in designing an MC system at 
design- and run-time, in order to improve the QoS, while addressing the power and 
thermal issues. 
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Chapter 2 
Preliminaries and Related Work 

The previous chapter presented an introduction to the trends and issues in QoS-
awareMC system design. In designing such systems, scheduling algorithms are used 
and need to satisfy all timing constraints corresponding to each operational mode 
when used in MC systems. In order to accomplish this work, first, the application, 
hardware, and power need to be appropriately modeled. Then, the scheduling 
algorithms need to be precisely selected and employed in these MC systems. The 
chapter mainly introduces the relevant preliminaries and common models of MC 
systems, which are employed in this book. A brief overview of the related literature 
works is also provided. 

This chapter is organized as follows. Section 2.1 presets the preliminaries used 
in this book, in which first a brief introduction of MC systems, like MC application 
model, QoS definition, and system operational model, is presented in Sect. 2.1.1. 
Then, we provide a brief overview of the fault model, used fault-tolerance tech-
niques, and safety requirements in Sect. 2.1.2. The hardware architecture model and 
power consumption model are presented in Sects. 2.1.3 and 2.1.4, respectively. The 
second section of this chapter (Sect. 2.2) provides an overview of the related state-
of-the-art research works, where first a survey of MC task scheduling algorithms 
is presented in Sect. 2.2.1 along with the chosen scheduling algorithm in this book. 
The relevant related works in improving the field of MC system timing behavior 
through WCET adjustment and task dropping analysis are provided in Sect. 2.2.2. 
At the end of the section, we overview the related publications in the field of MC 
system hardware design and the considered challenges in Sect. 2.2.3. Finally, we 
conclude the chapter in Sect. 2.3. 
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2.1 Preliminaries 

2.1.1 Mixed-Criticality Systems 

In the following, we present the MC task model and characteristics of a task, QoS 
definition, and system operational model. 

2.1.1.1 Mixed-Criticality Application Model and Specification 

Analogous to most state-of-the-art works, we consider real-time applications con-
sisting of n periodicMC tasks .{τ1, τ2, . . . , τn}, such that each task . τi is characterized 
as: 

.τi = (ζi,WCET LO
i ,WCET HI

i , di, Ti) (2.1) 

where

• . ζi denotes the criticality level of . τi . 
• .WCET LO

i (.WCET HI
i ) denotes the WCET of task . τi in LO mode (HI mode). 

• . Ti denotes the period of task . τi , which is the minimum amount of the time 
between two released instances. 

• . di denotes the deadline of task . τi . 

Some MC systems require a high level of safety due to their timing require-
ments [1]. We have exploited criticality levels similar to what was defined in [2], 
in which each criticality level has a requirement based on the deadline and safety 
requirements. Table 2.1 represents an industrial standard safety requirements, e.g., 
DO-178B [3], which introduces five levels of safety, i.e., A, B, C, D, and E (A 
and E provide the highest and the lowest levels of safety, respectively) [2, 4, 5]. 
As shown in this table, the occurrence of a failure in tasks with various criticality 
levels has a different impact on the system [6, 7]. To guarantee the system’s 
safety, the Probability-of-Failure-per-Hour (PFH) (which is adopted by safety 
standards) is determined for all the criticality levels [5, 8], which is discussed in 
detail later in Sect. 2.1.2. Analogous to [9, 10], we consider dual-criticality system 
where each MC task can be either high-critical (. ζi= HC) or low-critical (. ζi= LC). 
Besides, due to having two different WCET values, for each Low-Criticality (LC) 
task .WCET LO

i = WCET HI
i and also, for each High-Criticality (HC) task  

.WCET LO
i ≤ WCET HI

i . In this book, we assume preemptive execution for tasks, 
which means the tasks are interrupted during their execution on a core that are 
mapped on it. 

Depending on whether the MC tasks are dependent or independent, the task 
deadlines and periods are valued differently. In the case of independent tasks, 
analogous to state-of-the-art works like [11], the deadline of a task (. di) is equal to 
its period (. Ti). If the tasks are dependent (the task model is Directed Acyclic Graph
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Table 2.1 DO-178B safety requirement [3] 

x A B C D E 

.PFHx .< 10−9 .< 10−7 .< 10−5 .> 10−5 -

Failure condition Catastrophic Hazardous Major Minor No effect 

(DAG), like what has been considered in the task model of [9, 10, 12]), each task has 
an identical period (. Ti), which is equal to the period of the application (.Tapp) [13]. 
In dependent task models, each task has some successors and predecessors, which 
are determined by .Sui and . Pri , respectively. A task is released and ready to be 
executed if all its predecessor tasks have finished their execution. The deadline and 
period of the task graph are equal for an application (.dapp = Tapp), but, for each 
task, a deadline . di (which can be named as a local deadline in a task graph model) is 
determined in order that all its successors can be scheduled before their deadlines. 
Hence, the deadlines of tasks that have no successors are equal to the task graph’s 
deadline. Besides, the communication time between tasks is considered as a part of 
the predecessor task’s execution time. 

The task graph model is popular for image processing in automotive systems and 
pedestrian detection [14]. System designers assign the criticality level of tasks based 
on their functionalities. However, similar to previous studies in the literature [9, 
10], if a task is a predecessor of an HC task, then it is considered as an HC task. 
Figure 1.2 shows a real task graph (Unmanned Air Vehicle (UAV)), which is a real-
life MC application task graph [9]. 

Since we use the utilization bound to schedule the MC tasks, the utilization of 

task . τi at criticality mode l is defined as .ul
i = WCET l

i

Ti
and .l ∈ {LO,HI }. 

2.1.1.2 Quality-of-Service (QoS) 

Dropping some LC tasks in the HI mode can be used for real-time applications 
characterized by hard and firm deadlines. The tasks with a hard deadline can be 
HC tasks, and with firm deadlines can be LC tasks. The multimedia tasks are 
an example of firm deadlines, where skipping a video frame once in a while is 
better than processing it with a long delay or not processing it completely [15]. The 
system should execute these tasks to improve its QoS; however, the system can skip 
executing them in harsh situations. The QoS is defined as the percentage of executed 
LC tasks to all LC tasks [16, 17] (.QoS = nsucc

L /nL, where . nL is the number of all 
LC tasks in a task set and .nsucc

L is the number of executed LC tasks. 

2.1.1.3 System Operational Model 

MC systems first start the operation in the LO mode in which all LC and HC tasks 
must be executed correctly before their deadlines. If the execution time of at least 
one HC task exceeds its low WCET (.WCETLO

i ) due to unexpected conditions, the
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system switches to the HI mode. In this mode, since the HC tasks are supposed to 
execute longer, compared to the LO mode, the  LC tasks are degraded to guarantee 
the correct execution of HC tasks before their deadlines and prevent catastrophic 
consequences. It stays in this mode until there is (1) no ready HC task in each core’s 
queue and (2) ongoing HC task, executing on the processor [9, 10, 12, 18]. In the 
LO mode, the mapping and scheduling algorithms consider the low WCET of tasks, 
while in the HI mode, the algorithm schedules tasks by their high WCETs. 

2.1.2 Fault-Tolerance, Fault Model, and Safety Requirements 

Transient faults are the most common faults in embedded systems [17, 19, 20]. 
Hence, occurrence of a fault in a system is independent of the criticality levels of 
tasks or criticality modes of the system. Indeed, a fault occurs due to the hardware 
component defects, electromagnetic interference, etc. [21–23]. To tolerate transient 
faults, fault detection and correction mechanisms need to be applied. 

For embedded safety-critical real-time systems, low-cost, low-power, and high-
accuracy checker should be employed in each core. To check whether a fault occurs 
during the execution of a task, analogous to [13, 17], an error detection mechanism 
is conducted to check the correctness of the task’s output at the end of the task’s 
execution. ARGUS [24] is one of the significant checker tools to detect errors that 
has all the features and has been used in many recent works [25]. It can be applied 
to any embedded systems with less than 11% chip area overhead and also check 
control flow, data flow, computation, and memory access separately, at run-time. In 
this book, the error detection time overhead is considered in the WCET of tasks. 

The task re-execution technique is one of the most popular ways to correct 
transient faults in embedded systems [17, 22], which we employed in this book. 
Some state-of-the-art works have considered that up to k transient faults may occur 
in one period of the application [14, 26, 27]. If the system detects a faulty task, it 
spends some time (. μ) to discard the results of the faulty task before re-executing 
the task. During the design process of multi-core MC systems, we assume in 
Chap. 6 to tolerate up to k transient faults within a given application period, like 
these state-of-the-art works. However, in order to guarantee the safety requirements 
of an application, the required number of re-execution should be determined. 
Therefore, a probability factor (. fi) (Probability-of-Failure (PoF)) is considered, 
which indicates the probability of an unsuccessful execution of a task due to 
transient hardware/software faults [22]. In addition, the PFH has been exploited 
to measure the safety of the system. The PFH represents the rate of the average 
system failures in an hour [5, 8, 22]. According to safety standards, PFH estimates 
the failure probability of safety functions in each of the criticality levels [5, 22]. As 
shown in Table 2.1, five criticality levels of the exploited DO-178B safety standard, 
i.e., A, B, C, D, and E, have been illustrated, and the PFH values for all of these 
levels have been determined. The re-execution of the tasks is used to tolerate faults 
and improve the system’s reliability according to Table 2.1. The number of re-
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executions for each criticality level of tasks, HC and LC, in each mode to guarantee 
safety requirement, is obtained by using the value of PFHs. We guarantee the safety 
requirement when designing the MC applications in Chap. 4, where we discuss later 
in that chapter how to calculate the number of re-executions. 

2.1.3 Hardware Architectural Modeling 

In this book, a multi-core hardware platform comprising of m cores {. C1, C2, . . . ,

. Cm} based on the ODROID XU3 board is considered. The ODROID XU3 board is 
DVFS-enabled and the cores can operate at multiple voltage (V) and frequency (f ) 
levels. This board consists of two clusters with ARM cortex-A15 (big) and ARM 
Cortex-A7 (LITTLE) (four big cores and four LITTLE cores); hence, cores within 
the same cluster operate at the same V-f level, and also, each cluster can operate at 
different frequency and voltage levels. In this board, the allowed frequency is in the 
range of [0.2, 1.4] GHz for LITTLE cores and [0.2, 2] GHz for big cores. Besides, 
the voltage is in the range of [0.9, 1.3] V for LITTLE cores and [0.9, 1.3625] V for 
big cores. 

This book focuses on employing a single-core platform based on ARM Cortex-
A7 (LITTLE) cores to evaluate the approaches while designing MC application 
systems, as presented in Chaps. 3, 4, and 5. Besides, the multi-core platforms 
mentioned above are considered for MC hardware system design, as presented in 
Chaps. 6 and 7. 

2.1.4 Low-Power Techniques and Power Consumption Model 

Power management in electronic systems is primarily targeted toward two purposes: 
firstly, to minimize heat dissipation in order to improve the system’s usability 
(for handheld devices and wearables), reliability (for safety- and mission-critical 
systems), etc., and secondly, the power management methods may target the 
minimization of the system’s energy consumption. This is crucial for battery-
powered and energy-harvesting systems as well as for large-scale systems. The 
common power management techniques used in this book are DVFS, a firmware-
level technique, task re-mapping, and task scheduling, as software-level techniques. 
We explain these techniques and the power consumption model below. 

2.1.4.1 Dynamic Voltage and Frequency Scaling (DVFS) 

The total power consumption of a core is composed of static (. Ps), dynamic (. Pd ), and 
independent power consumption (.Pind ) [28, 29]. .Pind refers to the power related to 
the memory and I/O activities. DVFS technique can dynamically change the voltage
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and/or frequency (V-f ) of one/some/all processor cores to reduce the overall system 
power consumption (static and dynamic), including computation, communication, 
and memory parts. Since the V-f level of some cores (can be named as a cluster) can 
be changed, it implies that all cores in a cluster must have the same V-f level. The 
total power consumption is given by Eq. (2.2). In this equation, .Isub and . CL are the 
subthreshold leakage current and load capacitance, respectively. In this book, we 
focus on decreasing . Pd : 

.Pow = Ps + Pd + Pind = IsubV + CLV 2f + Pind (2.2) 

in which (. ρ1 and . ρ2 are the scaling factors of frequency and voltage, respectively): 

. fmin ≤ f = ρ1 × fmax ≤ fmax

Vmin ≤ V = ρ2 × Vmax ≤ Vmax (2.3) 

Therefore, by using these scaling factors, Eq. 2.2 can be written based on the 
.Vmax and .fmax as: 

.Pow = Isub(ρ2Vmax) + CL(ρ2Vmax)
2(ρ1fmax) + Pind (2.4) 

As our system is based on the ODROID XU3, some frequency levels work with 
the same voltage level on this board. It means, by reducing the frequency level, 
the voltage level does not change. Therefore, the scaling factors . ρ1 and . ρ2 do not 
have the same value. According to the range of frequency for big and LITTLE cores 
presented in Sect. 2.1.3, . ρ1 can be set in the range of [0.143, 1] for the A7 cores and 
[0.1, 1] for A15 cores. In addition, . ρ2 is in the range of [0.692, 1] and [0.6606, 1] 
for A7 and A15 cores, respectively. Although the ODROID XU3 has power sensors, 
they only report values for the entire cluster, not for each core. Hence, DVFS 
technique is employed in Chap. 7 to manage the peak power consumption and 
maximum temperature. 

2.1.4.2 Task Re-mapping 

Task re-mapping is the run-time moving of a task/application from a hot processor 
core to another processor core, i.e., re-map and reschedule on a colder processor 
core to let the hot processor core cool down. This process helps in dynamically 
reducing and balancing the temperature or power consumption across all processor 
cores in a platform [30, 31]. This technique is employed in Chap. 7 for thermal 
management.
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2.1.4.3 Task Scheduling 

Task scheduling is a process of selecting a task from an application/task set and 
determining where (i.e., in which core) and when to execute it [30]. Choosing 
a processor core from a list of available processor cores helps to reduce power 
consumption, especially in heterogeneous multi-core platforms. The static task 
scheduling process is employed with the aim of power reduction, in which the task 
data is known in advance. Thus, the task scheduling decision (in which processor 
core and the appropriate time instants to start each task’s execution on the processor 
core) can be made at design-time to reduce power consumption. This low-power 
technique is employed in Chap. 6 to reduce the instantaneous power consumption 
and maximum temperature. 

2.2 Related Works 

2.2.1 Mixed-Criticality Task Scheduling Mechanisms 

After proposing the MC tasks model by Vestal in 2007 [32], many research works 
have focused on the MC task scheduling in different operational modes and the 
feasibility of schedules in each mode. The majority of these papers are concerned 
with single-core platforms and independent tasks. The most common proposed 
scheduling algorithms are Earliest Deadline First with Virtual Deadline (EDF-VD) 
used in most papers like [4, 7, 33–37], Early Release Earliest Deadline First 
(ER-EDF) [38–40], and Fixed Periority (FP) [41, 42]. These algorithms have been 
reviewed in [43] in detail; however, the following is a brief explanation of each 
algorithm and the one we chose in this book. 

FP scheduling algorithm is the first proposed scheduling algorithm for MC 
systems that is presented in [32]. In general, the scheduler gives higher priority to 
HC tasks and executes first the ready HC tasks of all those tasks (HC and LC tasks) 
at any given time, and if there is no ready HC task, LC tasks are scheduled. The 
algorithm can ensure that all tasks can be scheduled in LO mode, and in the case 
of mode switches, the scheduler can decide to drop all LC tasks or execute some 
of them if there is some slack time. However, some research works such as [36] 
studied and discussed that this FP algorithm could not handle the task scheduling 
while the mode is switching. As a result, some scheduling algorithms have been 
presented based on the Earliest Deadline First (EDF) scheduling algorithm, which 
can manage the mode switches, have higher utilization, and schedule more tasks 
in a core. ER-EDF is one of the algorithms that the complete analysis of this 
scheduling algorithm was presented in [39] for the first time and then extended 
and published in [38, 40]. In this scheduling algorithm, a maximum period (larger 
than the actual period) and some early release points (between actual and maximum 
periods) are defined for each LC task. The minimum service requirement of LC
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tasks is guaranteed by executing them with their maximum period. The scheduler 
ensures that the minimum service requirement is met in the worst-case scenario, 
i.e., switching the system to the HI mode. In the case of generating dynamic slack 
at run-time, the early release points are used for LC tasks to provide opportunities 
for them to release more frequently and improve their QoS. As can be realized, in 
this algorithm, the quality of output results for LC tasks might be reduced in the 
LO mode, which is not acceptable in some applications. 

EDF-VD is the most common scheduling algorithm in MC system in the last 
decade. The complete analysis of the EDF-VD scheduling algorithm was first 
presented in [44]. In this scheduling algorithm, a virtual deadline is defined for each 
HC task, which is obtained by multiplying the actual deadline by x .(0 < x < 1). 
This policy leads to providing a higher priority for HC tasks in the scheduling 
algorithm. When the system is in the LO mode, the virtual deadlines are used for 
HC tasks in the EDF scheduler, and also all of the HC and LC tasks are executed 
before their deadlines. Nevertheless, when the system switches to the HI mode, the  
actual deadlines of HC tasks are used in the EDF scheduler and all/some of the 
LC tasks are dropped. An appropriate interval of x and the required conditions for 
the EDF-VD algorithm for scheduling a given set of MC tasks in each operational 
mode are presented in detail in [4]. In this book, we apply the EDF-VD algorithm 
to schedule independent MC tasks in a single processor and present the required 
and sufficient conditions in each chapter according to the employed task execution 
policy. Since in Chap. 4, a new task parameter is defined to schedule more LC tasks 
in the system, the optimum value of x and the required and sufficient conditions are 
presented based on the new parameter. 

2.2.2 QoS Improvement Methods in Mixed-Criticality Systems 

In most safety-critical applications, dropping LC tasks causes serious service 
interruptions for those LC tasks. Therefore, some approaches have been presented to 
execute more LC tasks and improve the QoS. We can divide these approaches in two 
categories: (1) approaches that improve QoS through appropriate WCET adjustment 
for HC tasks and (2) approaches that improve QoS through task dropping analysis 
in the HI mode. Below is an explanation of each category. 

2.2.2.1 QoS Improvement Through WCET Adjustment 

A significant number of papers have been published in the last decade regarding the 
design of MC systems. Burns and Davis [43] provided a comprehensive study in 
this field; however, since our focus is on improving the timing behavior and QoS 
improvement of these MC systems and WCET analysis at both design-time and 
run-time, we mostly focus on the works presented for designing these systems with 
similar scope. Table 2.2 summarizes these works.
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Table 2.2 A brief overview of the state-of-the-art MC approaches in QoS improvement through 
WCET adjustment 

.# Related works 
Dynamic Low WCET Design-/run- Mode switching prob. 

QoS-aware adjustment time determination 

1 [4, 35] .× .� . �/.× . ×
2 [41, 50] .× .� . �/.× . ×
3 [51, 52] .× .� . ×/.� . ×
4 [53] .× .� . ×/.� . �
5 [38, 40] .� .× . ×/.� . ×

The MC task model has been presented by Vestal in [32] for the first time and 
introduced different WCET levels for tasks. However, the author has not discussed 
how these WCETs are obtained and how often the system switches to the HI mode 
based on the design. The authors have discussed a bit further in [45] how different 
WCETs can be defined and determined. As an example, they can be determined 
at different levels of accuracy with different degrees of confidence by limiting the 
programming constructs, used in implementing the task. However, this approach 
does not involve any analysis. Most of the approaches, such as [4, 7, 35–37, 46– 
49], generally count the low WCETs as a percentage of the high WCETs to be  
employed in system design, and then these values are not changing during the run-
time (shown some of them in row 1 of Table 2.2). This policy may waste the 
system utilization, or cause frequent mode switches at run-time, which disturbs 
the LC tasks and reduces their QoS. Although the efficiency of these approaches 
has been evaluated for different percentages of high WCET, there is no scalable 
approach for determining the WCETs for all criticality levels. In addition, these 
estimations are not accurate since WCET and Actual Execution Times (AETs) do 
not always have a linear relationship and therefore cannot be employed for dynamic 
QoS improvement. 

Besides, a few studies such as [41, 50], have focused on probability distributions 
in MC systems by exploiting Extreme Value Theory (EVT) [54] for timing analysis, 
which are presented in row 2 in Table 2.2. Note that EVT is a branch of statistics 
which estimates and models the probability distribution of extreme events. In 
the field of real-time systems, EVT is exploited to determine WCETs. Applying 
these estimation methods has some open challenges, such as the required number 
of execution times for a sample and its incomplete representativity identification 
and evaluation that make it uncertain and unreliable [55–57]. Researchers in [57] 
have recently exploited this probabilistic information and proposed a technique 
to optimize the energy consumption of MC systems by finding the optimum core 
speed in the LO mode and based on that, obtaining the low WCET. However, their 
system operation model definition for running the LC tasks is different from the 
popular MC model. In this system, all LC and HC tasks are executed in both 
LO mode and HI mode, and the authors have obtained the low WCET for HC 
tasks to investigate the trade-off between the minimum core frequency (that leads 
to energy minimization) and probability of mode switching. Switching the system
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to the HI mode causes an increase in processor frequency to guarantee all task 
schedulability before their deadlines. In fact, although this method improves energy 
consumption, it causes to schedule fewer LC tasks in the system which leads to 
underutilization. 

A few studies [51, 52] have determined the low WCET of tasks at run-
time (row 3), based on their overall processing requirements and actual execution 
times. However, there is no guarantee at design-time on optimal use of the 
system utilization and LC tasks’ execution. From the mode switching probability 
perspective, some research works such as [53] have addressed mode switching 
probability in MC systems and how to have the safe mode switching at run-time. 
However, the relation between the HC tasks’ low WCET and mode switching 
probability has not been discussed. Besides, the goal of these methods in rows 3 
and 4 is to postpone the mode switches for a long time while only guaranteeing a 
minimum QoS for LC tasks. 

Some research works such as [38, 40], shown in row 5, have considered the 
low WCET as a percentage of high WCET and improved the QoS at run-time 
by exploiting the accumulated dynamic slack generated by early completion of 
HC tasks. Since the dynamic slack is considered as a wrapper task that has a 
deadline [40, 58] and cannot be used anytime, these approaches do not use the 
system utilization optimally to improve the QoS. 

Therefore, an appropriate low WCET analysis of MC tasks at both design- and 
run-time is needed to reduce the use of WCET estimation methods and improve the 
confidence in the WCET’s values, service adaptation, and processor utilization [43]. 

2.2.2.2 QoS Improvement Through Task Dropping Analysis 

There are some existing studies in the context of MC systems, which have focused 
on proposing approaches for managing different aspects of the MC system design 
in terms of task schedulability and QoS improvement while guaranteeing the safety 
requirements at design-time. A few efforts have also been conducted to manage 
these parameters at run-time. Although [43] gives a comprehensive study in the field 
of QoS improvement in MC systems in the run- and design-time phases, this sub-
section provides an overview of the existing studies in QoS improvement through 
task dropping analysis. Table 2.3 summarizes these works with their respective 
properties, like run-/design-time approach, and QoS improvement (offline/online 
manner), safety requirement consideration while dropping LC tasks, and the policy 
of LC task dropping in the HI mode. 

Most of the existing approaches design MC systems by dropping all LC tasks 
when the system switches to the HI mode in order to guarantee the correct execution 
of HC tasks. Although these approaches may reduce the safety requirement of tasks, 
dropping all LC tasks causes serious service interruptions for those LC tasks. Since 
most MC systems are safety-related and real time, the task schedulability in terms 
of QoS improvement is typically analyzed at design-time to guarantee the correct 
execution of tasks before their deadlines to prevent catastrophic damages while the
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Table 2.3 A brief overview of the state-of-the-art studies in QoS improvement through task 
dropping analysis 

# Related works 
Safety requirement Design-/Run- offline/online LC task 

guarantee time QoS opt. drop policy 

1 [35, 47, 59–62] .× . �/.× . �/.× Drop freq. 

2 [36, 42, 63, 64] .× . �/.× . �/.× Degradation 

3 [5, 8] .� . �/.× . �/.× Degradation or drop all 

4 [46, 65] .� . �/.× . �/.× Drop freq. 

5 [66] .× . ×/.� . ×/.× Drop all 

6 [37–39, 67, 68] .× . ×/.� . ×/.� Degradation 

7 [69–72] .× . ×/.� . ×/.� Drop freq. 

system is operating. Row 1 of Table 2.3 shows the research works that have focused 
on MC system design to improve the LC tasks’ QoS in the worst-case scenario in the 
case of mode switches to the HI mode. In these approaches, executing the minimum 
number of instances (i.e., dropping fewer instances of LC tasks) in the HI mode is 
ensured. However, they do not guarantee (1) to not drop LC tasks frequently and (2) 
safety requirements. Besides, this is despite the fact that the system does not operate 
in the worst-case scenario at run-time in most cases. 

In addition, recent studies have provided techniques to improve the minimum 
service level of LC tasks in the HI mode (instead of dropping all LC tasks) by 
reducing the WCET of LC tasks in the HI mode or increasing their period in the 
HI mode (presented in row 2 of Table 2.3). Indeed, they degrade the service level of 
LC tasks that the minimum service level would be guaranteed by their techniques 
while not guaranteeing the service requirements. However, the common part of all 
previous methods is their consideration on an MC model in which LC tasks are 
dropped or degraded when the system switches to the HI mode. Thus, none of these 
algorithms can be applied to MC tasks that LC tasks could not be frequently dropped 
or postponed for a long time. 

A few papers [46, 65] have improved QoS of LC tasks in the HI mode while 
guaranteeing the tasks’ safety requirements (rows 3 and 4). Although these research 
works have tried to increase QoS of LC tasks in the HI mode and guarantee the 
safety requirements, they may drop/degrade LC tasks in the HI mode frequently, 
which is not acceptable, especially for mission-critical tasks. Degrading or dropping 
LC tasks in a frequent manner without any restrictions in the HI mode is not 
desirable and may negatively affect the safety and even lead to catastrophic 
consequences. 

From the MC task scheduling perspective at run-time, Sigrist et al. [66] (row  
5) have studied the recent task scheduling mechanisms and evaluated the effect of 
run-time overheads, such as task execution monitoring, overrunning detection, and 
mode switching. However, they have not improved the task scheduling and QoS at 
run-time. 

To improve the LC tasks’ QoS at run-time, some state-of-the-art works have 
presented the run-time adaptability mechanisms by exploiting the accumulated
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dynamic slack to execute more LC tasks in the HI mode through fewer LC task 
dropping/degradation (shown in rows 6 and 7). In [69], a run-time schedulability 
analysis has been presented, and LC tasks are executed in free slack time if the 
conditions are met. Researchers in [71] have also presented an effective solution 
for reducing the number of mode switches and consequently LC task dropping 
by using the generated dynamic slack for executing HC tasks when they overrun. 
Bate et al. [72] have also proposed a protocol that handles mode switches and 
ensures that LC tasks are executed more frequently. However, in such three works, 
some LC tasks may be dropped frequently and continuously when the system 
switches to the HI mode, which is unacceptable in any situation in some MC 
systems. In addition, all dynamic slack is not exploited in [70] properly since the 
algorithm only uses the dynamic slack generated by HC tasks’ execution. 

The downsides of the previous approaches have motivated us to study the MC 
systems’ behavior at both design- and run-time and propose methods to improve the 
LC tasks’ QoS by task dropping analysis and not let them drop frequently. 

2.2.3 QoS-Aware Power and Thermal Management in 
Multi-core Mixed-Criticality Systems 

In this subsection, since we also focus on QoS-aware multi-core MC system 
design while managing power consumption, we overview the literature works in the 
following, which have considered some or all of our target optimization objectives 
or have used the same task and system model. Many previous works in the context of 
MC systems with dependent task model have just focused on proposing techniques 
to show how to efficiently map and schedule dependent tasks in both design-
and run-time phases. Since our focus is on QoS-aware MC task scheduling to 
manage power and temperature, we only consider the works presented for MC or 
non-MC systems with similar scope. Generally, the related works on power and 
thermal management for real-time systems can be classified based on the assumed 
system model, like MC or non-MC systems and dependent or independent tasks, 
and also the target optimization objectives of QoS, peak power, average power, 
or maximum temperature. Table 2.4 summarizes the recent works with different 
target optimization objectives and assumed task models along with used low-power 
techniques and whether each approach has considered the timing overheads of the 
scheduler or changing V-f levels. 

There are some algorithms presented for independent tasks such as EDF-VD 
used in [4], or using different scheduling policies for different criticality levels [6]. 
Hence, these algorithms are presented for independent periodic tasks and cannot 
be applied to tasks with precedence constraints. Besides, as can be seen in row 1 of 
Table 2.4, some papers have considered periodic MC tasks with data dependency but 
none of them have considered power management. These papers have focused on 
the feasibility of schedules and meeting the timing constraints. From the perspective
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Table 2.4 Summary of state-of-the-art approaches in power-aware MC system hardware design 

# Related works 
MC DAG QoS Peak Avg. Temp. Low-power Timing 
tasks model power power technique overhead 

1 [9, 12, 29, 62, 76, 77] .� .� .� .× .× .× .× . ×
2 [19, 78–82] .� .× .× .× .� .× DVFS . ×
3 [83] .� .× .× .× .� .� DVFS . ×
4 [84, 85] .× .× .× .� .× .× Task sch. . ×
5 [86] .× .� .× .� .× .× Task sch. . ×
6 [87] .× .� .× .� .� .× DVFS . ×
7 [88–93] .× .� .× .× .� .× DVFS . ×
8 [94] .× .� .× .× .� .× DVFS . �
9 [95–99] .× .� .× .× .� .� DVFS . ×
10 [100] .× .� .× .× .� .� DVFS . �

of guaranteeing LC tasks’ minimum service level, most existing MC scheduling 
algorithms like what presented in [10, 73–75] discard or degrade LC tasks when the 
system switches to the HI mode. It causes serious service interruption for LC tasks. 
Therefore, in addition to power management in MC systems, improving the QoS of 
LC tasks would be significant. There are few research works, like those presented 
in row 1, that have improved the QoS while scheduling dependent MC tasks. On the 
other hand, in [9, 12], the dependent MC tasks are scheduled in multi-core systems 
with consideration of fault occurrence possibilities, but with no power or thermal 
management. 

From the perspective of power management in MC systems, some works such as 
what are presented in row 2 have presented methods to minimize the average power 
consumption in MC systems theoretically in which systems are single or multi-
core and tasks are independent. In general, they only optimize the average power in 
the LO mode in simulation by using DVFS technique. When the system switches 
to the HI mode, all  HC tasks are executed with the highest frequency; and all LC 
tasks are dropped. Indeed, they interrupt the minimum service level of LC tasks in 
the HI mode. As a result, in the HI mode, with higher frequency, the peak power 
consumption of the system may increase significantly, which is not admissible. 

Furthermore, there is a paper [83] that has considered thermal management in 
MC systems (third row of Table 2.4). The researchers minimize the temperature of 
single-core processors by finding the optimum speed for each task in the design-
time phase. Hence, they discard LC tasks when the system switches to the HI mode, 
which is not acceptable in many MC applications. Besides, they do not consider the 
latency of changing the V-f level at run-time, which may cause deadline violation 
and, consequently, catastrophic consequences. 

Some studies concentrate on peak power management in multi-core systems 
at design-time (rows 4–6) by using DVFS or task scheduling techniques. These 
papers have only considered hard real-time tasks with one criticality level which 
is not practical for MC. It should be mentioned that authors in [86] work on the 
dependent task model in which the execution of some tasks is postponed to manage
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the simultaneous peak power consumption. It is not suitable for MC tasks, especially 
in the HI mode. 

The previous works in the context of power or thermal management in non-MC 
systems that use DVFS by considering the dependent task model are shown in rows 
(7–10) of Table 2.4. 

Researchers in [88–93] (shown in row 7) have used slack reclamation to apply 
online DVFS to the system while executing dependent tasks. Kang et al. [89] 
propose an algorithm that uses dynamic voltage scaling to minimize energy without 
considering the tasks’ deadlines, which is not suitable for MC systems. Researchers 
in [90–92] suggest a run-time energy management technique that uses reclaimable 
slack for the immediately ready task to decrease average power. Their results 
show that the power can be reduced; however, the possibilities of looking further 
ahead into the future execution of the following tasks to have better results are not 
explored. Besides, in [93], the authors have considered two types of tasks, best effort 
and real-time, and they have just used the dynamic slack for the next real-time task 
to reduce its V-f level, which is inefficient. There is an aggressive slack reclamation 
algorithm, presented by [88], in which the generated dynamic slack is checked to 
be able to be used for the next task if the remaining tasks could complete their 
execution before the deadline. However, in general, the average energy consumption 
is reduced, but this algorithm has focused more on meeting the deadlines, while we 
target both energy minimization and meeting the deadlines. 

In addition, from the DVFS latency perspective, some few works, like what has 
been presented in [94], have presented a method to minimize energy in a multi-
core platform by using the DVFS technique. Researchers in [94] have considered a 
task graph model running on the cluster-based platform. They have also considered 
the latency of changing frequency in their paper. As shown in row 8, they have 
not considered peak power or thermal management, and also, their method is not 
suitable for MC systems where tasks have different criticality levels. 

Row 9 demonstrates the works which focus on average power and maximum 
temperature reduction in a system with dependent non-MC tasks with no timing 
overhead consideration. As an example, in [97], a look-up table for each task is 
generated in the offline phase, which contains the optimum voltage and frequency 
settings for each core for every possible run-time condition, task execution time, 
and core temperature measurement. The memory overhead incurred in generating 
these tables may not be desirable, especially for multi-core systems with many tasks 
and cores. Timing overhead of changing V-f levels has been considered in [100] 
while reducing the average power consumption and maximum temperature (shown 
in row 10). 

As a result, more works are needed to be studied to reduce the peak power 
consumption and maximum temperature in MC systems while improving the QoS 
and considering the timing overheads of changing V-f level and task scheduler in 
order to guarantee the correct execution of tasks before their deadlines.
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2.3 Conclusions 

In this chapter, we first discussed the model and assumption that are used in this 
book. We introduced the general MC task model and system operational model and 
defined the QoS metric. Then, we provide a short explanation of the fault model, 
hardware architectural model, power model, and low-power techniques that are used 
in this book. 

Available MC scheduling algorithms were discussed, and the chosen scheduling 
algorithm (EDF-VD) to be used in this book was highlighted. We summarized the 
related literature works in QoS-aware MC application design and QoS-aware MC 
hardware design, where power management is one of the objectives while designing 
such systems. We showed the works with different target objectives in tables for 
better understanding. 

According to our discussion in Sect. 2.2, some objectives are needed to be 
considered and improved in MC system design. In the following chapters, we 
present the contributions of this book and compare them to some relevant state-
of-the-art works. 
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Chapter 3 
Bounding Time in Mixed-Criticality 
Systems 

As a result of MC application analysis, determining the optimally low WCET for 
each HC task is a challenge in MC system design due to its role in improving 
the timing behavior of these systems and QoS (scheduling greater number of LC 
tasks). Determining the high values for low WCETs (i.e., the gap between the 
low and high WCETs is small) can minimize the number of mode switches but 
underutilize the processor (i.e., reduce the processor utilization, at run-time) due 
to the scheduling of fewer tasks. Indeed, this is overly pessimistic because, as 
shown in Fig. 1.1, tasks would be executed with less likelihood up to observed or 
actual WCET. On the other hand, the utilization can be maximized, and more tasks, 
especially LC tasks, are guaranteed to be scheduled in a processor at design-time 
by determining the low values for low WCETs (i.e., the gap is large), but with a 
high number of mode switches, and consequently, drop more LC tasks at run-time 
due to inefficient, low WCET determination for HC tasks, which is not desirable. 
Most state-of-the-art research works such as [1–3] have presented static approaches 
to determine low WCETs, which are set as a percentage of the high WCETs. 
However, as shown in Fig. 1.1, most tasks’ execution time is close to Average-
Case Execution Time (ACET). Furthermore, most studies have not analyzed the 
probability of exceeding the low WCETs in system design. To this end, this chapter 
first aims to adjust the low WCET in Sect. 3.1, which can provide a reasonable trade-
off between the number of scheduled LC tasks at design-time and the probability of 
mode switching at run-time to improve the system utilization and QoS. 

However, setting the constant low WCETs for  tasks in  LO mode, which remain 
unchanged during run-time, can cause significant performance loss for LC tasks or 
processor underutilization if the low WCETs are not close to AET. Therefore, we 
propose ADAPTIVE in Sect. 3.2 to determine the low WCETs for  MC tasks at run-
time based on the behavioral system changes while making a trade-off between the 
QoS, utilization, and mode switches. 

The remainder of the chapter is organized as follows. At first, we propose BOT-
MICS, in Sect. 3.1, in which a motivational example is presented in Sect. 3.1.1. 
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Then, we present our scheme for determining the low WCETs, estimating ACET 
to be used in determining the WCETs, and the scheduling policy and optimization 
problem in Sect. 3.1.2. At the end of this section, we analyze the experiments in 
Sect. 3.1.3. Then, the run-time approach, ADAPTIVE, is proposed in Sect. 3.2, in  
which the motivational example and the detail of the proposed scheme are explained 
in Sects. 3.2.1 and 3.2.2, respectively. The experiments with real-life benchmarks 
and synthetic task sets are finally evaluated in Sect. 3.2.3. 

3.1 BOT-MICS: A Design-Time WCET Adjustment 
Approach 

This section first proposes a novel scheme based on the Chebyshev theorem [4] for  
MC systems to determine the appropriate low WCETs for tasks. The Chebyshev 
theorem provides a general bound for all tasks with any distribution, which is 
pessimistic. To this end, we then propose a second approach to determine tighter 
execution time bounds for HC tasks. In this approach, we analyze the execution 
time distribution of each task and fit a known distribution curve to it. Then we use 
the Cumulative Distribution Function (CDF) of the known distribution to provide 
a tight bound for the probability of task overrunning and, consequently, determine 
the low WCET for that task. Then, the schedulability test and optimization problem 
based on the newly proposed schemes are discussed. 

The main contributions of BOT-MICS can be listed as follows: 

• Introducing a novel scheme to obtain the low WCETs by the  Chebyshev theorem 
in MC systems and showing the relation between the low WCETs and mode 
switching probability 

• Determining the number of adequate samples, for computing ACET and standard 
deviation 

• Representing the tighter execution time bound and more realistic overrunning 
probability based on the applications’ distribution time feature 

• Formulating and solving an optimization problem for improving the resource 
utilization and reducing the mode switching probability using GA 

• Evaluating our proposed scheme for various state-of-the-art MC systems to 
investigate their timing behavior with real benchmarks on a real board, ODROID 
XU4 

3.1.1 Motivational Example 

In order to motivate what we have stated, we present an example, in which we 
executed 20,000 instances of five real-world applications, and their ACETs and 
WCETs in terms of CPU clock cycle are presented in Table 3.1. .WCET HI of each



3.1 BOT-MICS: A Design-Time WCET Adjustment Approach 39

application is determined by OTAWA [5]. For each application, Table 3.1 also shows 
how many instances violate their .WCET LO when it is set to ACET, or fraction 
(. 14 ,. 

1
8 ,. 

1
16 ,. 

1
32 ,. 

1
64 ) of the  .WCET HI [6–8]. The important point that the table shows is 

by increasing the size of inputs to an application, the ACET and .WCET HI growth 
are not the same. For instance, the growth of .WCET HI and ACET for ‹qsort›, a 
known algorithm for sorting arrays, is O(. k2) and O(.k log k), respectively, where k is 
the size of the input array. Therefore, the .WCET HI of ‹qsort› application for three 
different array sizes with 10, 100, and 10,000 elements are 8.1, 22.7, and 59.0 times 
higher than the ACET of them, respectively. This table shows that .WCET HI is not 
an appropriate parameter to set .WCET LO . For example, by setting .WCET LO to 

.
WCET HI

16 , the mode switching probability for ‹edge›, and ‹qsort-10› is more than 
99%, while for ‹smooth›, ‹epic›, ‹qsort-100›, and ‹qsort-10000›, it is less than 2%. 
On the other hand, when the .WCET LO is equal to ACET, the mode switching 
probability is between 43 and 55% for all applications. So, based on the results in 
Table 3.1, we can conclude that the mode switching probability is more consistent 
when the .WCET LO is estimated based on ACET, rather than .WCET HI . However, 
simply setting .WCET LO equal to ACET leads to many system mode changes 
(almost half of the instances). 

To this end, we introduce a scheme that provides a general formula to choose 
a suitable .WCET LO based on ACET to improve the utilization of the system. 
This approach makes a reasonable trade-off between the mode switching probability 
and the time that a core becomes idle because of the gap between its AET and the 
.WCET LO . 

3.1.2 BOT-MICS in Detail 

3.1.2.1 Determining Low WCET and Overrunning Probability 

Determining the appropriate .WCET LO for HC tasks is a major design challenge 
for MC systems. The proposed scheme designs the MC systems and analyzes the 
MC tasks of the application in the offline phase. Based on the analysis results, the 
scheme chooses a suitable .WCET LO for each HC task based on their ACET, which 
improves the number of scheduled LC tasks due to the big gap between the ACET 
and WCET. To determine .WCET LO , we introduce the following theorem based 
on the Chebyshev theorem. Note that, the Chebyshev theorem is a technique for 
bounding a tail distribution, which is used for estimating the failure probability and 
also establishing high probability bounds. In fact, it determines where most of the 
data samples fall within a distribution. Note that this theorem disregards how the 
data are distributed. By knowing only the mean (ACET in this book) and standard 
deviation of data samples, this theorem claims that a certain fraction of these data 
is less than a certain distance from the mean [4]. In the following, we discuss how 
this claim helps and how this theorem is employed to estimate .WCET LO in MC 
systems.
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Theorem 1 Given a task . τi , for any positive integer n, the rate at which the 
execution time exceeds the value (.ACETi +n×σi) for  task . τi is bounded with .

1
1+n2

. 
Hence, by considering the Chebyshev theorem (presented below in detail), n 

can be any positive integer value. However, in our proposed method, it plays an 
important role to draw a trade-off between determining the .WCET LO values and 
the probability of mode switching. We explain its role after formulating these two 
parameters. 

Proof We use the Chebyshev theorem to prove Theorem 1: 
One-Sided Chebyshev [4] For any nonnegative random variable X, if  .E[X] is the 
mean and .V ar = σ 2 is its variance, then, for any positive real number .a > 0, we  
have the theorem (3.1): 

.Pr[X − E[X] ≥ a] ≤ σ 2

σ 2 + a2
(3.1) 

In this theorem, if a is equivalent to .n × σ (.a ≡ n × σ ): 

.Pr[X − E[X] ≥ n × σ ] ≤ 1

1 + n2
(3.2) 

Now, assuming m samples of task . τi (.ji,1, ji,2, . . . , ji,m) with execution time 
.Ci,1, Ci,2, . . . , Ci,m, the expected value .E[X] of task . τi is: 

.E[X] = ACETi = 1

m

j=m∑

j=1

Ci,j (3.3) 

Here, .ji,k represents job k of task . τi , and each job .Ji,k has the execution time 
value of . Ci,k . 

By using the expected value .ACETi (we present how to compute ACET for 
each task . τi in the next subsection), the standard deviation of execution time, . σi , for  
task . τi is calculated as follows: 

.σi =

√√√√√ 1

m

j=m∑

j=1

(Ci,j − ACETi)2 (3.4) 

If the execution time of a task is considered as a random variable, by using
the Chebyshev theorem, we can show that less than .

1
1+n2

of samples have higher 
execution time than n standard deviation (.n × σ ) of the mean execution time 
(ACET=E[X]): 

.Pr[X ≥ ACETi + n × σi] ≤ 1

1 + n2
(3.5)
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Therefore, the rate of exceeding the execution time level (.ACETi + n × σi) for  
task . τi is bounded with .

1
1+n2

. . �
This theorem provides a general upper bound on the probability of exceeding 

any arbitrary execution time level for any task, independent of its distribution. 
To determine .WCET LO , the  Chebyshev theorem can be applied, which requires 
mean (ACET , that we discuss later how to compute it in the next subsection) and 
standard deviation of the execution time (. σ ) of each task: 

.CLO
i = WCET LO

i = ACETi + ni × σi (3.6) 

Parameter n should be set very carefully because a large value of n reduces the
number of scheduled tasks in LO mode, and a small  n increases the probability of 
mode switching .P MS

i = 1
1+n2

. In Sect. 3.1.3, we evaluate the impact of different 

values of n in computing the .WCET LO and the probability of system mode 
switching (.P MS

sys ). 
In addition, since the value of .WCET LO is based on the ACET, we need to 

calculate the average execution time for each task. In general, it is hard to achieve 
the real mean (. μ) with all possible samples of tasks [9], so we discuss a method to 
estimate the empirical mean (. μ̂) with the minimum number of samples. 

3.1.2.2 ACET Estimation and Its Minimum Required Samples 

In order to calculate the .WCET LO
i for each task . τi , we explain how to estimate the 

.ACETi . Therefore, we need to determine how many samples (m) are required for 
ACET estimation. We present the estimation by the probability .1 − δ and . ε error as 
follows. 

Theorem 2 For any task . τi , consider m as the number of samples; if . m ≥
ln( 2

δ
)
(WCET HI

i )2

2(ε×μ)2
, there is an .(ε, δ)-approximation for computing ACET of task . τi . 

Proof Considering m samples of task  . τi , where .Ci,1, Ci,2, . . . , Ci,m are their 
execution times. Then, the empirical mean .(μ̂) for task . τi is computed as Eq. (3.7) :

.μ̂ = 1

m

j=m∑

j=1

Ci,j (3.7) 

To prove Theorem 2, we use  the  Hoeffding bound theorem [10] to approximate 
the real mean . (μ). Note that the Hoeffding bound theorem provides an upper bound 
on the probability that the sum of random variables with a bounded range deviates 
from its expected value by more than a certain value [10, 11]. The execution time 
of a sample is an independent random variable because the execution time of one 
sample does not affect other samples’ execution time.
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Hoeffding Bound Let .Ci,1, Ci,2, . . . , Ci,m be independent random variables which 
are bounded by an interval .[a, b], and then: 

.Pr[|μ̂ − E[μ̂]| ≥ ε] ≤ 2e

(
− 2mε2

(b−a)2

)

(3.8) 

The Hoeffding theorem bounds .Pr[|μ̂ − μ| ≥ ε] by using the fact that . E[μ̂] =∑j=m

j=1 E[Ci,j ] = μ. Thus, it can estimate the real mean . μ with . ε error. Based on 
the Hoeffding theorem, the execution time of each sample must be bounded by an 
interval .[a, b]. The upper bound execution time of the task’s samples is the high 
WCET of that task (.WCET HI ), so the execution time of each instance is bounded 
by .[0,WCET HI

i ] interval. Therefore, .b − a ≤ WCET HI
i . If we consider . ε =

ε∗ × μ, Eq. (3.8) is written as:

.Pr[|μ̂ − μ| ≥ ε∗ × μ] ≤ 2e

(
− 2m(ε∗×μ)2

(WCET HI
i

)2

)

(3.9) 

In order to estimate the real mean with the minimum number of samples, we use
a definition of .(ε, δ)-Approximation [10]. 
.(ε, δ)-Approximation An algorithm gives an .(ε, δ)-approximation for the input 
value V if the output X of this algorithm satisfies the following inequality. In fact, 
output X approximates input V with probability .1 − δ and . ε error: 

.Pr[[X − V ] ≤ εV ] ≥ 1 − δ ⇔ Pr[[X − V ] ≥ εV ] ≤ δ (3.10) 

By using this definition and Eq. (3.9) , we present the following equation to
achieve a .(1 − δ) confidence for the correctness of such an approximation: 

.2e

(
− 2m(ε×μ)2

(WCET HI
i

)2

)

≤ δ �⇒ ln

(
2

δ

)
(WCET HI

i )2

2(ε × μ)2
≤ m (3.11) 

This equation shows that with .m ≥ ln( 2
δ
)
(WCET HI

i )2

2(ε×μ)2
instances, . μ̂ is an .(ε, δ)-

approximation for . μ: 

.Pr[|μ̂ − μ| ≥ ε × μ] ≤ δ (3.12) 

. �

3.1.2.3 Determining a Tight Execution Time Bound 

Equation (3.5) presents a general theorem that is applied to any time distribution
of tasks. Therefore, it might not provide a tight upper bound for the probability
of mode switching. For example, if we consider .n = 0 (.WCET LO

i = ACETi),
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Table 3.2 The effect of varying n on the overrunning of different tasks from MiBench suite [12], 
under the proposed Chebyshev-based scheme and experiments 

Chebyshev Bitcount qsort Matrix-mult Smooth Corner 

.n = 0 100.00% 43.31% 33.92% 42.33% 33.47% 7.96% 

.n = 1 50.00% 8.87% 6.30% 16.26% 19.95% 4.95% 

.n = 2 20.00% 3.68% 4.37% 4.18% 4.92% 3.98% 

.n = 3 10.00% 0.92% 2.33% 0.91% 1.43% 3.08% 

.n = 4 5.88% 0.71% 1.12% 0.22% 0.39% 2.22% 

the rate of exceeding .ACETi for task . τi is bounded with 100% by the Chebyshev 
theorem. It means the execution time of all samples of task . τi might be more than 
.ACETi , which is not true for most distributions. Although it is not wrong, it does not 
provide a piece of useful information. Table 3.2 shows the percentage of overruns 
for five different applications, from MiBench suite [12] through experiments and our 
analysis, Chebyshev-based scheme. As shown, the proposed scheme can provide 
an upper bound which is valid for any execution time distribution. However, this 
scheme gives a high and loose upper bound for many applications. As an example, 
the percentage of overruns in experiments for ‹corner› application is 7.96% when 
.n = 0, while according to our scheme, it is estimated to be 100%. 

Since in our case, the tasks’ execution time distribution for some applications 
is known, we propose another scheme, an alternative one, to determine the tighter 
execution time bounds. As we discuss further, the determined WCETs would be 
more realistic, which cause the method to be more scalable. Note that this method 
might help for better scale to multiple criticality levels and thus, better management 
of mode switches. To preset the tighter execution bounds, we execute several 
benchmarks on a real board (we discuss the details in Sect. 3.1.3) and investigate 
their time distributions. Figure 3.1a depicts the execution time distribution of four 
applications, from MiBench suite [12]. The distribution curve of these applications 
is very similar to existing known probability distributions. Therefore, we fitted these 
applications with well-known distributions. We used features of those distributions 
like Probability Density Function (PDF) and CDF to estimate a tighter upper bound 
for mode switching. A distribution’s CDF shows the probability that the execution 
time of an instance is less than or equal to a certain value, which we can consider as 
the low WCET. Figure 3.1b shows the fitted PDF and Fig. 3.1c shows the empirical 
and fitted CDF for four benchmarks. Since the probability of each task overrunning 
is important in our proposed method, we use the CDF formula (based on the best-
fitted distribution) as .(1 − P MS

i ) in our proposed method to find a tighter bound. 
To identify the best-fitted distribution for the applications’ execution time data, 

we have considered 16 different data distributions such as Normal, Burr, Gamma, t, 
Weibull, Lognormal, etc. We evaluate the distributions’ efficacy using Kolmogorov-
Smirnov’s (K-S) fitness metric [13], which is a commonly used technique.We select 
the top three distributions to implement the corresponding fitness functions for each 
application. As an example, Fig. 3.2a shows the density of the top three distributions 
for the ‹insertion-sort› application, which are Burr, t, and Weibull distributions.
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Fig. 3.1 Empirical execution time distributions and fitted distributions. (a) Empirical time distri-
bution. (b) Fitted distribution. (c) Empirical and fitted CDF 

Besides, to see how well a distribution fits data, we show how empirical data is 
distributed compared with a fitted distribution. Therefore, by using probability-
probability (p-p) plot [14], we show two CDFs against each other. Figure 3.2b, 
c, and d show it for the empirical and fitted data for the top three distributions. 
As shown, the Burr distribution (Fig. 3.2b) is more matched between the observed 
and theoretical cumulative distributions compared to t distributions (Fig. 3.2c) and 
Weibull (Fig. 3.2d) distribution. 

In the end, to compute a tighter probability of task overrunning (.ProbM
i ) 

based on n, ACET , and . σ , instead of using Eq. (3.5), the CDF of the determined 
distribution (.Fi(t)) is used as .ProbMS

i = 1 − Fi(ACETi + n × σi).
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Fig. 3.2 PDF and CDF of top three distributions for insertsort benchmark. (a) Top  three  
distributions’ PDF for insertsort. (b) CDF of Bur distribution. (c) CDF of t distribution. (d) CDF 
of Weibull distribution 

3.1.2.4 Task Schedulability Analysis 

In this subsection, we analyze the task schedulability and present the conditions 
based on the new formula of .WCET LO , determined in previous subsections. To 
schedule MC tasks in the uni-processor, we apply the existing MC scheduling 
technique, EDF-VD algorithm, which has been used in many studies since the last 
decade [1, 6, 7]. Here, when the system switches to the HI mode, all  LC tasks are 
dropped. If . Uk

l denotes total utilization of tasks with the same criticality level l in 
the mode k, then: 

.ULO
HC =

∑

ζi=HC

ACETi + ni × σi

Ti

and UHI
HC =

∑

ζi=HC

WCET HI
i

Ti

(3.13)
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A suitable .WCET LO for each HC task . τi can be achieved by choosing the 
optimum . ni (used in Eq. (3.6)). The optimum . ni must be determined to minimize 
the mode switching probability and maximize resource utilization. To solve this, 
we formulate the optimization problem to find the optimum . ni for each task . τi

and determine its .WCET LO
i . Furthermore, Eq. (3.14) must be satisfied to guarantee

schedulability by EDF-VD at run-time [1]. Equation (3.14) presents the necessary
and sufficient conditions to guarantee the task schedulability in both LO mode and 
HI mode and meeting deadlines of running tasks even if the system switches to the 
HI mode [1]: 

. ULO
HC + ULO

LC ≤ 1 and UHI
HC + ULO

HC × ULO
LC

1 − ULO
LC

≤ 1 (3.14) 

3.1.2.5 Optimization Problem Formulation 

In order to formulate the optimization problem based on the two objectives 
(mode switching probability and system utilization), we first identify the variables 
and constraints for better understanding. For each task . τi , .ACETi , .WCET HI

i , 
. Ti (period), and . σi (standard variation) are constant. .WCET LO

i is variable, which is 
computed based on the variable . ni (introduced in the beginning of the subsection). 
These constant parameters and variables are used to compute the objectives, mode 
switching probability, and system utilization. In order to optimize these objectives 
and find the optimum value for . ni , we first present the constraints and then formulate 
the objectives as follows. 

Execution Time Constraint .WCET LO
i of each HC task . τi must not be more than 

.WCET HI
i : 

.ACETi + ni × σi ≤ WCET HI
i (3.15) 

There are two main objectives to optimize the system: 

Objective 1 (Mode Switching Probability) If the LC tasks are dropped frequently 
due to the HC tasks’ overrunning, it may negatively impact the performance or 
functionality of MC systems. Therefore, one of the most significant objectives is 
the minimization of mode switching probability. Let .P MS

Sys denote the probability of 

system mode switching. If .P noMS
Sys is the probability that no HC task overruns and 

consequently, no mode switch happens, then .P MS
Sys = 1 − P noMS

Sys . Since tasks are 

independent, .P MS
Sys is computed as shown in Eq. (3.16), where .P MS

i is the probability 

of task overrunning for task . τi . According to our discussion, .P MS
i = .

1
1+n2i

. The higher 

the . ni , the less the mode switching probability:
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.P MS
Sys = 1 −

∏

ζi∈HC

(
1 − P MS

i

) = 1 −
∏

ζi∈HC

(
1 − 1

1 + n2i

)
(3.16) 

Objective 2 (Resource Utilization) The second objective is to improve the 
resource utilization by a significant gain in terms of the utilization that can 
be allocated to LC tasks in the LO mode (.ULO

LC ). Although maximizing . ULO
LC

is desired, it is upper-bounded by the schedulability constraints, which can be 
derived from Eq. (3.14). Equation (3.17) presents the condition to guarantee the
task schedulability in the LO mode under the EDF-VD algorithm. In addition, 
as mentioned in the previous subsection, Eq. (3.18) shows the condition for
guaranteeing the task schedulability in the HI mode and mode switching [15, 16]. 
In this equation, the maximum amount of .ULO

LC depends on the values of . ni for each 
HC task. The lower the . ni , the higher the .ULO

LC . Therefore, the second objective can 
be bounded as follows: 

.ULO
LC ≤ 1 − ULO

HC = 1 −
∑

ζi=HC

ACETi + ni × σi

Ti

(3.17) 

.ULO
LC ≤ 1 − UHI

HC

1 − UHI
HC + ULO

HC

= 1 − UHI
HC

1 − UHI
HC + ∑

ζi=HC
ACETi+ni×σi

Ti

(3.18) 

Hence, if .P MS
Sys =1, it means the system is always in the HI mode, and all LC tasks 

are always dropped. If .P MS
Sys =0, it implies all LC tasks are always executed with no 

dropping. Therefore, by having these two objectives, we maximize the following 
equation: 

.maximize
{(
1 − P MS

Sys

) × ULO
LC

}
(3.19) 

Problem Solving: Derivation-Based Optimization In order to optimize the two 
objectives of mode switching probability and utilization, the optimum value of . ni

must be obtained for each task . τi . If the uniform n is considered for all tasks to 
compute the .WCET LO

i , we can obtain the optimum n by finding the derivation 
of both objectives. Using the method of the second derivative helps to find the 
largest or smallest value of a function, where the derivative equals zero. Further 
details, on how the derivative works to find the optimum value, are provided in 
the result section (Sect. 3.1.3.2) by an example. However, obtaining the uniform 
optimum n for all tasks is not fair and tasks have different time distributions. 
Table 3.3 shows the minimum value of n for some benchmarks of MiBench suite, 
where .WCET LO

i = ACETi + n × σ ≥ WCET HI
i . Due to having different time 

distributions of tasks, choosing the uniform n causes the system’s objectives to not 
optimize well and precisely. As a result, optimization techniques that can handle
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Table 3.3 The minimum value of n in .WCET LO
i ≥ WCET HI

i for different tasks 

FFT qsort dijkstra Corner Edge Smooth Epic Bitcount 

n 60 17 12 11 27 8 7 19 

nonuniform values of . ni across different tasks and can scale effectively with the 
increasing number of tasks in the system are necessary. 

Problem Solving: GA-Based Optimization Global optimization methods based on 
randomized algorithms have been used extensively in system-level design space 
exploration for QoS improvement in embedded systems [17]. In our current work, 
we use GA for solving the maximization problem shown in Eq. (3.19) . GA involves 
using randomized search methods based on the principles of natural evolution and 
genetics. 

It is important to mention that Mixed Integer Linear Programming (MILP) can 
be used as an alternative to GA for optimization. However, the problem formulation 
of MILP is much more complex compared to that of GA, which allows a simpler 
implementation of the fitness function. Although GA has a lack of optimality 
guarantees, MILP also does not scale very well with the number of integer variables. 
So, an increased number of integer (and real) variables resulting from a large 
number of tasks—. ni and support variables—in an MILP formulation can increase 
the complexity considerably. Most state-of-the-art tools for solving MILP problems 
also provide a time-bound best-effort solution for complex problems. Further, for the 
distribution-aware optimization for real-world tasks, we use a lookup table to search 
for the closest WCET and probability of mode switching values. Implementing 
such lookup-based optimizations from real-world observations with standard MILP 
formulation can be considerably more complex than using GA. It must be noted that 
the focus of the work is on showing the efficacy of the proposed methodology in 
providing improved trade-offs between mode switching probability and utilization. 
While we would ideally prefer optimization methods with guaranteed optimality, 
the choice of GA was based on the ease of implementation and the support 
for integrating varying estimation methods–both mathematical and lookup-based. 
However, MILP formulation for the current research problem can be a suitable topic 
for further exploration. The encoding approach and GA methods used in our current 
work include the following: 

• Individual: An ordered sequence of integer values forms the individual in the 
population. Each integer in the sequence corresponds to the value of . ni for a task 
. τi . 

• Population: During the optimization, we generate two types of individuals for 
initializing the population of the first generation of candidate solutions. Firstly, 
we generate individuals comprising of randomly sampled . ni values from the 
range .[1, 50] for each task . τi in the benchmark. Secondly, we generate uniform-
valued individuals from the same range to ensure that the optimization included 
uniform values of . ni for each task.
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• Crossover and Mutation: We used two-point crossover for exchanging . ni values 
among two candidate solutions. During crossover, the configurations of the two 
randomly selected possible solutions are interchanged. This process forms one 
of the algorithms that generates new possible solutions (individuals) for the next 
generation of solutions. In our current problem, this entails interchanging the 
. ni values of two candidate solutions, selected from the current generation, for a 
subset of the tasks. Similarly, we used single-point mutation to set the value of 
. ni for a randomly selected task in the candidate solution to a randomly selected 
value in the range .[1, 50]. 

• Selection: We use tournament selection for choosing the candidate solutions for 
the population of the next generation. It involves randomly choosing a fixed 
number of individuals from the current population and selecting the one with 
the maximum value of .(1 − P MS

Sys ) × ULO
LC for the next generation. 

• Fitness and Feasibility: Eqs. (3.16) –(3.18) were used to evaluate the fitness (. (1−
P MS

Sys ) × ULO
LC ) of each candidate solution. Similarly, Eqs. (3.14) and (3.15) were

used to determine the feasibility of each candidate solution.

3.1.3 Evaluation 

Now, we present the experiments to evaluate the effectiveness of our proposed 
scheme in terms of utilization, schedulability, and mode switching probability. 

3.1.3.1 Evaluation with Real-Life Benchmarks at Run-Time 

Evaluation Setup To evaluate our scheme, we conducted some experiments on the 
ODROID XU4 board powered by ARM, which has the big.LITTLE architecture, 
with four Cortex A15 (big) and four Cortex A7 (LITTLE) cores. We use the LITTLE 
cores with the maximum frequency of 1.4GHz, for doing the experiments. 

To evaluate our scheme by real benchmarks, we use various benchmarks from 
MiBench benchmark suite [12] such as automotive, network, and telecomm. and 
from AXBench [18] such as matrix-multiplier. We execute each benchmark with 
different inputs on the ODROID-XU4 board, to achieve their execution times. 
Table 3.4 shows the high WCET, ACET, and . σ (standard deviation) of these 
benchmarks. 

Minimum Required Samples to Estimate ACETs Figure 3.3 shows the mini-
mum required samples of each benchmark based on Theorem 2 to estimate ACET, 
by varying the parameters of (ε, δ)-Approximation. In fact, as an example in 
Fig. 3.3a, with 90% confidence, the estimation error of ACET for each benchmark is 
less than (ε × μ), where μ is the real mean. Besides, by decreasing the confidence, 
the minimum required samples for each benchmark is decreased. It means with more
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Table 3.4 Execution time distribution of various benchmarks 

Exe. Insertsort- Matrix- qsort- Corner Edge Smooth Epic Bitcount dijkstra FFT 

Par. 
(ms) 

10000 multiply 10000 

WC  
ET HI  

753.23 387.67 759.32 51.63 131.47 301.09 230.81 1142.17 1039.98 686.52 

AC 
ET 

51.33 13.05 39.65 0.55 0.94 9.317 2.69 64.73 81.95 6.15 

σ 6.38 5.6 5.46 0.71 0.87 5.63 1.98 6.94 8.65 2.12 

Fig. 3.3 Required number of samples for different benchmarks by varying the error (ε) and  
confidence (1 − δ). (a) 1 − δ = 0.9. (b) 1 − δ = 0.8 

samples, we can say with more confidence that the difference between the estimated 
average and the real average is less than ε × ACET real . 

Investigating MC Systems’ Timing Behavior In order to evaluate the proposed 
approach, we run these benchmarks on a single core. We consider ‹insert-sort›, 
‹matrix-mult›, ‹qsort›, ‹bitcount›, ‹dijkstra›, and ‹FFT› as HC tasks and ‹corner›,
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Table 3.5 System performance in both design-time and run-time phases, for different scenarios 

Dropped LC jobs (%) max(ULO 
LC ) P MS 

Sys max(ULO 
LC ) × (1 − P MS 

Sys ) 

[1] λ = 1 2 0 44.7% 0.24% 0.446 

[1] λ = 1 4 0 61.78% 1.21% 0.610 

[1] λ = 1 8 0.33% 76.37% 10.23% 0.686 

[1] λ = 1 
16 39.29% 86.61% 92.02% 0.069 

Chebyshev 0.06% 77.01% 7.1% 0.715 

Dist. analyt. 0 84.31% 2.25% 0.824 

‹edge›, ‹smooth›, and ‹epic› as LC tasks. We compute the low WCET for each HC 
task based on the three policies—our scheme under the Chebyshev theorem, our 
scheme under distribution analysis, and the fraction analysis. In order to specify 
what the fraction analysis is, most of the state-of-the-art approaches have defined 

a fraction of WCET  HI  as WCET  LO . For example, if we define λ = WCET  LO 

WCET  HI  , 

researchers in [2] have considered λ ∈ [  1 2.5 , 
1 
1.5 ] in their experiments. In [1], two 

different ranges for λ have been considered, λ ∈ [ 1 4 , 1] and λ ∈ [ 1 8 , 1]. Researchers 
in [6] have considered the amount of λ = { 1 

16 , 
1 
8 , 

1 
4 , 

1 
2 , 1}. Since all papers have 

the same policy to determine WCET  LO , we choose [1] as a representative of these 
approaches. 

For these real tasks, including both LC and HC tasks, the system with λ = 1 
has the utilization of more than one in the worst-case scenario, and then it is not 
schedulable. Therefore, we only consider the amount of λ as { 1 

16 , 
1 
8 , 

1 
4 , 

1 
2 }. Here, 

we investigate the system at run-time for 1000 hyper-period of tasks and see how 
often these tasks exceed their WCET  LO under various policies and the system has 
to switch to the HI mode. 

By reducing the λ, the  low  WCET (WCET  LO 
i ) for  HC tasks decreases, and the 

system executes more LC tasks. But on the other hand, it causes frequent system 
switches and more LC tasks dropping during run-time, leading to lower QoS. As an  
example, Table 3.5 shows the maximum total utilization bound that can be assigned 
to LC tasks at design-time for each scenario and also the percentage of dropped 
LC tasks due to the system mode switching at run-time. We assume that the system 
needs to run different instances of each LC tasks (with different input) as much as 
possible to improve the QoS. As shown in Table 3.5, the  Chebyshev-based scheme 
can schedule more LC tasks in the system compared to [1] approach. Although the 
maximum assigned utilization to LC tasks is almost equal to the scenario of [1] 
with λ = 1 8 , the mode switching probability and the number LC dropped tasks are 
lower in the Chebyshev-based scheme. This is because a fraction of high WCET 
does not provide any information about how many samples might exceed it. So, 
setting the low WCET of each task equal to λ = 1 

8 of the high WCET of that 
task is too low for some tasks and too high for others. The optimization goal in the
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last column of the table shows the fact that the Chebyshev-based scheme performs 
better than the approach of [1] (i.e., the goal metric has a larger value). Besides, the 
distribution analytics-based scheme improves total utilization by 7.3% compared 
to the Chebyshev-based scheme. It also reduces the mode switching probability by 
4.85%. This is because the Chebyshev is a general formula that is valid for any 
distribution, but it is not very optimistic. The value of the optimization goal in 
the last column of the table also shows this fact. Let us consider the distribution 
analytics-based scheme with the method of [1] with λ = 1 

16 which both have 
almost the same total utilization. The results show that in the distribution analytics-
based, the probability of mode switching and the percentage of dropped LC tasks 
are 89.75% and 39.29% lower, respectively, which is desirable. 

3.1.3.2 Evaluation with Synthetic Task Sets 

Task Set Generation and Evaluation Setup In order to further evaluate our 
scheme, we generated synthetic dual-criticality task sets similar to the state-of-the-
art studies [1, 19–21], for various system utilization bounds (.Ubound ) in line with 
the previous works [1, 8, 19–21], where (.Ubound = max(ULO

LC + ULO
HC,UHI

HC)). 
The algorithm adds tasks to the task set randomly to increase the .Ubound until 
it reaches a given threshold. We evaluate different approaches for .Ubound in the 
range of [0.05, 1] with steps of 0.05, and for each .Ubound , 1000 task sets are 
generated. Here, we consider balanced tasks in terms of criticality levels, i.e., the 
probability of a generated task being HC is equal to being LC. Besides, inspired by 
real execution times, presented in Table 3.4, we provide the .WCET HI , ACET and 
. σ in the range of [52,1142], [0.55,81.95], and [0.71,8.65]ms, respectively, where 
.WCET HI > ACET . As a result, the periods of tasks are computed based on the 

task utilization and .WCET HI (.uHI
i = WCET HI

i

Pi
). 

The recent advanced features in CAD tools, like MATLAB, Excel, and new 
libraries in Python, provide several practical ways to find a distribution that fits 
the best to the data samples. Besides, the probabilistic analysis for distribution 
fitting is implemented in Python using multiple packages, including scikit-learn. 
For solving the formulated problem with GA, we set the mutation probability to 0.2 
and the crossover probability to 0.8. We also used five individuals in the tournament 
selection process. The optimization methods were implemented in Python using the 
DEAP [22] package. In the following, we perform extensive simulations to evaluate 
the effectiveness of our proposed approach in comparison with the state-of-the-art 
methods. 

Effect of Varying Uniform non Maximum Assigned Utilization to LC Tasks and 
Mode Switching Probability for a Task Set Example In this section, we evaluate 
the effects of varying the parameter n, used to determine WCET  LO for each HC 
task, on system properties. In this experiment, for the sake of presentation, we con-
sidered only one n (uniform) for all HC tasks. However, in further experiments, due
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Fig. 3.4 Effect of varying uniform n on maximum assigned utilization to LC tasks and mode 
switching probability for an example task set. (a) Second derivation of system properties. (b) P MS 

sys 
and max(ULO 

LC ). (c) Objective function 

to our explanation in Section “Problem Solving: Derivation-Based Optimization”, 
we find an independent n for each task with the help of the GA. As mentioned, we 
improve resource utilization by a significant utilization that can be allocated to LC 
tasks in the LO mode. Figure 3.4 shows the results for an example task set with 
UHI  

HC  = 0.84. First, we show the results, solved by derivation-based optimization in 
Fig. 3.4a, and then by GA-based optimization in Fig. 3.4b and c. 

Figure 3.4a shows the second derivative of utilization and mode switching 
probability for the task set. The figure shows that the second derivative of utilization 
is almost zero all the time, while the second derivative of mode switching probability 
becomes almost zero for n ≥ 18. Therefore, we can conclude that the mode 
switching probability impacts more on obtaining the optimum value of n. To show  
how effective the derivation-based optimization is, we solve the problem with 
uniform n by GA-based optimization for this example, shown in Fig. 3.4b and c. 

Equation (3.15) shows that by increasing the value of n, the WCET LO of HC 
tasks and consequently HC tasks’ utilization in the LO mode are increased, which 
reduces the number of scheduled LC tasks at design-time (max(ULO 

LC )). On the other 
hand, Eq. (3.16) shows that by increasing the value of n, the probability of mode
switching (P MS

sys ) is decreased, which means fewer LC tasks are dropped at run-time. 

Figure 3.4b depicts that, by increasing the value of n, both P MS 
sys and max(ULO 

LC ) are
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decreased, while to achieve the best utilization, we need to maximize max(ULO 
LC ) 

and minimize P MS 
sys . Therefore, if the n is set to 5, then P MS 

sys is equal to 0.54 and 

max(ULO 
LC ) is equal to 0.91. Meanwhile, for n = 10, P MS 

sys is equal to 0.18 and 

max(ULO 
LC ) is equal to 0.88. Indeed, P

MS 
sys is decreased at a great rate by increasing 

n, compared to max(ULO 
LC ) decrements. Now, consider n = 20 where P MS 

sys = 0.05 
and max(ULO 

LC ) = 0.82. It can be seen that the rate of P MS 
sys reduction is decreased 

by increasing n, while max(ULO 
LC ) reduction rate is very low. Therefore, max(ULO 

LC ) 
becomes more important than P MS 

sys in this case. We used Eq. (3.19) to find a proper

n which makes a trade-off between P MS
sys and max(ULO

LC ) and improves the system
utilization. Figure 3.4c shows that the optimum n is 18 for our case study task set 
where max(ULO 

LC ) = 83% and P MS 
sys = 0.06. 

Effect of Varying Uniform n on Maximum Assigned Utilization to LC Tasks 
and Mode Switching Probability for More Task Sets Now, we evaluate the 
effects of parameter n and different utilization of HC tasks on system properties in 
Fig. 3.5, by running 1000 task sets for each utilization point. According to Fig. 3.5a, 
P MS 

sys is increased when utilization increases. For example, for a constant n = 10, 
for UHI  

HC  equal to 0.4 and 0.8, P
MS 
sys is 15.47% and 28.43%, respectively. The reason 

is when utilization of HC tasks is high, more HC tasks are scheduled in the system. 
Since each HC task has the probability of overrunning, by increasing the number 
of HC tasks, P MS 

sys is increased. In addition, we discussed that P MS 
sys is decreased 

by increasing n. Figure 3.5b also shows that by increasing UHI  
HC , there is less 

opportunity to schedule LC tasks. As a result, the system schedules fewer LC tasks 
which degrades max(ULO 

LC ). As an example, for a constant n = 10, if UHI  
HC  = 0.4, 

then max(ULO 
LC ) = 87.59%, and if UHI  

HC  = 0.8, then max(ULO 
LC ) = 53.46%. 

Besides, as mentioned, increasing n causes a decrease in max(ULO 
LC ). As a result, by 

increasing n, P MS 
sys is reduced (which is desirable), and the LC task utilization and 

consequently schedulability are also reduced (which is not desirable). Now, if we 
optimize both P MS 

sys and assigned utilization to LC tasks, we can find the optimum 

value of n for HC tasks. Figure 3.5c shows the product of P MS 
sys and max(ULO 

LC ) 
(Eq. (3.19) ), where the optimum n is decreased in general with an increase in UHI

HC ,
to run more tasks in the system.

Comparison with the Other Policies Since applications have different time 
distributions, choosing the uniform n prevents the system from optimizing its 
objectives precisely. Therefore, solving the problem with optimization algorithms 
like GA is the best method to optimize system properties. As a result, in this 
subsection, we compare the mode switching probability and resource utilization 
under our proposed scheme with nonuniform n using the GA, and the other policies, 
used to determine WCET  LO and then ULO 

HC . 

Since ACET and σ for each task are known, the system mode switching probabil-
ity for other policies can be obtained using Eq. (3.6). Figure 3.6 shows the results of 
comparing different policies and our scheme with the optimum ni for each task τi of
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Fig. 3.5 Effect of n and HC tasks’ utilization on maximum assigned utilization to LC tasks and 
mode switching probability. (a) P MS 

sys by varying n and UHI  
HC . (b) max(ULO 

LC ) by varying n and 
UHI  

HC . (c) Optimization goal 

task sets using the GA, for different utilization. In Baruah’s approach [1] (Bar+12a), 
considering a large lower-bound value for λ like 1, 1 2 reduces the probability of 
mode switching, but it underutilizes the system during run-time. For example if 
UHI  

HC  = 0.75, for λ = 1, P MS 
sys = 9.66% and max(ULO 

LC ) = 23.28%, while for our 

proposed scheme, P MS 
sys = 16.46% and max(ULO 

LC ) = 52.39%. On the other hand, 

using a smaller lower-bound value for λ like 1 8 increases the maximum utilization 
of the LC tasks with high mode switching probability. For instance, if UHI  

HC  = 0.75, 
then P MS 

sys = 90.75% and max(ULO 
LC ) = 70.75%. Note that, to prevent the figures 

from being unclear, we only show the result for the λ ∈ [ 1 8 , 1]. The results for 
λ ∈ [ 1 

16 , 1] and λ ∈ [ 1 
32 , 1] have more maximum utilization increment of the LC 

tasks with higher mode switching probability in comparison with λ ∈ [ 1 8 , 1], which 
is undesirable. Our approach works well in both system properties by determining 
the best WCET  LO values for HC tasks base on the ACET and then the optimum 
ULO 

HC . Figure 3.6c shows this fact by optimizing both system properties, where 
the proposed scheme performs better than other policies. As a result, our scheme
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Fig. 3.6 The effectiveness of our proposed scheme in comparison with other policies, proposed in 
other research works. (a) max(ULO 

LC ) by varying U
HI  
HC . (b) P

MS 
sys by varying U

HI  
HC . (c) Optimization 

goal by varying UHI  
HC  

improves the utilization by up to 72.27% compared to the existing approaches, while 
P MS 

sys is bounded by 24.28% in the worst-case scenario. 

Evaluating Scheduling Approaches Under the Proposed Scheme Now, we 
evaluate and compare the results in terms of schedulable task sets (acceptance 
ratio) to the state-of-the-art approaches, proposed in [1, 7], with and without our 
scheme. In this experiment, we assume that the probability that a task is an HC or 
LC is equal. In both [1, 7], the EDF-VD algorithm has been used to schedule the 
tasks. In [7], the algorithm executes all LC tasks in the HI mode by reducing their 
WCET to 50%, and also in [1], the algorithm drops all LC tasks when the system 
switches to the HI mode. It is noteworthy to mention that our scheme for selecting 
the suitable WCET  LO for HC tasks can be applied to any scheduling algorithm 
with any policy of task execution and optimize the resource utilization and mode 
switching probability. 

Figure 3.7 shows the acceptance ratio for two state-of-the-art scheduling 
approaches [1, 7], which are improved with our scheme in all utilization bounds. 
As shown in this figure, when Ubound ≤ 0.7, all task sets are schedulable with 
Liu’s approach [7] and our scheme. When the system utilization is increased 
(0.7 < Ubound ≤ 0.95), our proposed scheme performs better than Liu’s
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Fig. 3.7 Different scheduling approaches ( [1] (Bar+12a) and [7] (Liu+16)) with our scheme 

approach [7] in terms of acceptance ratio. And so that no task set is schedulable 
for Ubound ≥ 0.95. Besides, the same trend is found for Baruah’s approach [1]. 
The reason for having a better acceptance ratio in our scheme is determining the 
appropriate WCET  LO for HC tasks and executing more tasks in the system. 

Although this design-time approach (BOT-MICS) can improve the QoS and 
reduce the mode switching probability in comparison with state-of-the-art works, 
the constant WCETs are set for tasks to be used in the LO mode, which remain 
unchanged during run-time. Such static techniques cannot employ the benefits of 
dynamic execution time changes and, therefore, may cause significant performance 
loss for LC tasks or processor underutilization at run-time if the low WCETs are not 
close to AETs. Therefore, we propose ADAPTIVE in the next section, which is a 
run-time approach to adapt to task execution time dynamism at run-time and adjust 
low WCETs. 

3.2 ADAPTIVE: A Run-Time WCET Adjustment Approach 

In this work, we propose a novel learning-based run-time scheme for determining 
low WCET (.WCET LO ) to (1) effectively reduce the system switches to the 
HI mode, (2) have high processor utilization and consequently, a high value of QoS, 
(3) guarantee the system to be schedulable in each criticality level, and (4) not 
be affected and varied by sudden changes of execution times. To the best of our 
knowledge, there is no method so far to determine the low WCETs for  MC tasks at 
run-time based on the behavioral system changes while making a trade-off between 
the QoS, utilization, and mode switches. The main contributions of this work are: 

• Presenting a novel adaptive scheme to analyze and obtain the low WCETs of  MC 
tasks at run-time and manage the mode switching probability and QoS 

• Proposing a learning-based mechanism, called ADAPTIVE, to improve the MC 
system timing behavior at run-time 

• Presenting a dynamic QoS-aware scheduling algorithm to improve the results’ 
quality at run-time based on the system changes while guaranteeing the minimum 
service of LC tasks, even in the HI mode
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Fig. 3.8 Execution time values for two different time recording videos as input for object detection 
function during run-time and their time distribution. This figure shows that both aspects of run-
time and design-time behavior should be considered in MC system design and task property 
determination. (a) Input video with few objects to detect. (b) Input video with few and many 
objects to detect 

3.2.1 Motivational Example 

In general, the actual execution time of tasks depends on their input values. Due 
to the spatial or temporal correlation in the input data stream like video, the 
execution times of the tasks are often temporally correlated. Figure 3.8 shows the 
computational times of the object detection function running on the ODROID XU4 
board powered by ARM Cortex A7. Note that the object detection function is one of 
the main functions in an autonomous driving application—an MC system. For input, 
videos from a road camera in the two different time slots, converted to motion jpegs, 
are given to the function of detecting cars on the road. The videos were recorded 
for a period of time when it experienced both light and heavy traffic. Figure 3.8 
shows how the computation times of detecting objects vary during run-time. The 
computation time values in this function depend on the number of objects to be
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detected. As we can see, the times of multiple jpeg images are clustered due to the 
temporal correlation between the subsequent inputs presented to the application. 
For this example, static approaches such as the one presented in our previous 
work [23, 24] and [2, 15] set the static .WCET LO , considering the execution time 
of the majority of instances. This static WCET works fine for some time, but it may 
lead to frequent mode switches when there are many objects to detect (e.g., heavy 
traffic) or poor utilization when there are few objects to detect in this function (e.g., 
light traffic). As a result, proposing an adaptive scheme to determine the lowWCETs 
dynamically may significantly improve the mode switches, QoS, and utilization. 
Therefore, the system’s run-time behavior can be investigated by monitoring the 
AETs and adjusting the low WCETs. 

3.2.2 ADAPTIVE in Detail 

The goal of our proposed scheme (ADAPTIVE) is to improve the LC tasks’ QoS 
as the system utilization while reducing the number of mode switches (.MSHC) at  
run-time. The values of .WCET LOs for  HC tasks have a key role in improving the 
system objectives. Therefore, it is a challenge to set .WCET LO for each HC task 
to draw a trade-off between the objectives: utilization of the system and the number 
of mode switches. To address the challenge, we monitor the run-time execution 
times of HC tasks and adapt .WCET LO of HC tasks at run-time to achieve a 
higher system’s QoS, while having fewer mode switches, based on the variation 
in execution times due to the input and environmental changes. Figure 3.9 shows 
an overview of the proposed approach (ADAPTIVE), which consists of design-time 
and run-time phases. Here, the task schedulability must be guaranteed at design-
time and run-time, and the low WCET adaptation is done at run-time. We further 
explain them in detail in their corresponding sections. 

3.2.2.1 Design-Time Exploration 

In order to analyze and schedule the HC and LC tasks in the system, first, the 
WCETs, required by the tasks, must be obtained. Here, the .WCET HI (which is 
used in the HI mode) of  HC tasks are computed by using the OTAWA tool [5], 
which provides a safe and conservative execution time bound. The WCETs of  
LC tasks can also be determined by using the OTAWA. In addition, to obtain the 
.WCET LO , we run the benchmarks with various data set inputs on ARM Cortex 
A7, in ODROID XU4 board, and set the maximum value of these actual execution 
times, as .WCET LO for each HC task. Since a periodic task model is considered 
in this work, the periods are the system inputs at design-time. Since multiple tasks 
are executed in the system and tasks have distinct periods (not the same period 
values), the hyper-period, which is the Least Common Multiple (LCM) of all tasks’ 
periods, is used while analyzing the system and task schedulability. The hyper-
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Fig. 3.9 An overview of design-time and run-time phases in ADAPTIVE 

period represents a time that there is no workload in a system after frequent task 
releases and scheduling. These inputs and analyzed data have been used to check 
the task schedulability by the Utility Checker Unit, which is shown in the design-
time phase of Fig. 3.9. 

In this work, the EDF-VD scheduling algorithm [2] is applied to schedule MC 
tasks. However, the proposed scheme is applicable to any scheduling algorithm. If
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. Uk
l denotes total utilization of tasks with the same criticality level l (.l ∈ {LC,HC}) 

in the mode k (.k ∈ {LO,HI }), where .Uk
l = ∑

i∈{LC,HC}
WCET k

i

Ti
, Eq. (3.20) 

must be satisfied to guarantee schedulability by EDF-VD. This equation presents 
the necessary and sufficient conditions to guarantee the task schedulability in both 
LO mode and HI mode and meeting the deadlines, even if the system switches to 
the HI mode [2, 23]. Although the maximum value of utilization is desired, as can 
be seen from Eq. (3.20), it is upper-bounded by the schedulability constraints. The 
utilization (UMC) which is the maximum value of two phrases shown in Eq. (3.20) 
must be less than one in EDF-VD at all time, which is checked by Utility Checker 
Unit: 

.ULO
HC + ULO

LC ≤ 1 & UHI
HC + UHI

LC + ULO
HC × (

ULO
LC − UHI

LC

)

1 − ULO
LC

≤ 1 (3.20) 

3.2.2.2 Run-Time Adaptation 

The crucial research questions that should be addressed in the run-time phase are: 

1. How to vary WCET of HC tasks in the LO mode with no adverse effect on 
meeting the other tasks’ deadlines 

2. How the scheme should be designed for determining the .WCET LO at run-time, 
to not be affected and varied by sudden changes in execution times 

3. How to design a scheme with low timing overheads during run-time to have no 
impact on task scheduling and deadline misses 

4. What are the best .WCET LO for the tasks to effectively keep the system away 
from switching to the HI mode while having the high processor utilization and 
consequently, a high value of QoS 

Following the above questions, the ML techniques can effectively help to design 
an adaptive MC system to make a reasonable trade-off between the objectives 
according to the system environmental changes (i.e., input value variation). 

At run-time, the MC tasks start their execution on the platform, controlled by 
MC Task Scheduler Unit on the operating system, shown in Fig. 3.9. The system 
monitors the tasks from two aspects: 

1. Each task execution finishes or not: The actual execution times are stored in 
the case of complete execution. In addition, in the case of task overrunning, 
the system switches to the HI mode, and the MC Task Scheduler Unit executes 
the HC tasks by considering their .WCET HI and LC tasks with their .QoSmin. 
The Processor Queue Checker Unit keeps track of the processor queue when the 
system can switch back to the LO mode. 

2. The system reaches the task set hyper-period or not: At the end of each hyper-
period, the agent starts its operation by employing the data like actual execution 
times, the number of mode switches, and the QoS of LC tasks in the last hyper-
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period. The agent outputs are the new values of .WCET LO for HC tasks, used 
in the next hyper-period, based on these historical data. Since the utilization of 
HC tasks in the LO mode would be changed by updating .WCET LOs, the new 
virtual deadlines are determined by the Virtual-Deadline Update Unit. 

Hence, the learning process is separate from the task scheduling algorithm, and 
we do not use learning techniques to schedule the tasks. The EDF-VD schedulability 
formulae are checked for each WCET change (at the end of each hyper-period). 
Although this time is in the order of microseconds and can be negligible, we 
counted this time as part of learning time. The timing overhead of this process is 
considered a task with the WCET, equal to the maximum timing overhead to ensure 
it does not impact other tasks’ deadlines. This overhead is discussed and reported in 
Sect. 3.2.3.3. In the following, we describe how the agent is designed to work and 
update the WCETs for the  LO mode. 

Learning-Based System Properties’ Improvement Reinforcement Learning (RL) 
could be applied to systems with a considerable amount of dynamism through 
trial and error. By using the historical data, and learning from past events, it is 
able to improve the performance, based on the dynamic changes [25]. The Q-
learning/SARSA technique, which is recently used in many emerging applications, 
such as robotics, and UAV [26], uses the RL technique to perform the run-time 
management/optimization of the system properties. This technique is a value-based 
algorithm that iteratively collects the current system state and determines the next 
action to change the state. The process repeats until the predefined criterion is met 
or the objectives are no longer significantly improved. 

RL technique consists of the three main components: (1) a discrete set of States . =
{state1, state2, . . . , statel}, (2) a discrete set of Actions .= {Act1, . . . , Actk}, and 
(3) reward function Reward [25]. To reach the favorable reward, the technique 
learns a lookup table (i.e., Q-table) with (.statet , Actt ) pairs (. Actt ∈ Actions

and .statet ∈ States). The states and actions determine the rows and columns 
of the Q-table of the learning-based algorithm, respectively (shown in Fig. 3.9). 
As mentioned, a value-based algorithm is utilized which is represented with 
.Q(statet , Actt ) in the Q-table and determines the quality of the taken action 
at the particular state. In every iteration, the Q-values are updated based on 
the corresponding computed reward according to Eq. (3.21) , which is based on
the SARSA learning algorithm, one of the RL methods, for system objective 
improvement [27, 28]: 

. Q(statet , Actt ) = Q(statet , Actt ) + α(RewardMC + γQ(Statet+1, Actt+1)

− Q(Statet , Actt )) (3.21) 

where .statet and .Actt represent the state and action of the system at time t , 
respectively. Furthermore, .statet+1 and .Actt+1 indicate their values at time .t + 1. 
The . α determines the learning rate of overriding the old data in the table by the new
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acquired data (.0 < α ≤ 1). .RewardMC is the reward function, and . γ is the discount 
rate to determine the importance of the future reward (.0 < γ < 1). 

System State Determination There are various criteria for determining the system 
states. In ADAPTIVE, the system states (i.e., the rows of the Q-table) indicate the 
rate of LC tasks’ execution, i.e., the tasks’ periods at run-time, to the minimum 
tolerable period in LC tasks. We define ten ranges to determine the rate of LC tasks’ 
execution. As a result, .States = {0.1, 0.2, . . . , 1}. 
Learning Action Determination In this section, the well-known .ε-greedy policy 
(a method for determining the optimal action according to the state) has been 
exploited. In this policy, a random action is selected from the actions set with 
the probability of . ε. In general, a random number is generated. If this number 
is less than . ε, a random action is selected from the action set; else, the best 
action is selected with the largest Q-value (which can be with the probability of 
.1 − ε). We first use a dynamic .ε-greedy policy [29] with the maximum value 
of .0.5 to prevent the probability of the learning algorithm from being stuck at 
a few Q-values. Afterward, the fixed .ε-greedy policy is used to ensure that the 
system reaches the optimum state and chooses the best action based on the Q-
values, which has the maximum value. We have assumed k actions, where the 
action space in the Q-table illustrates an increase and/or decrease in the . WCET LO

i

of some/all HC tasks according to a coefficient of WCET’s prediction accuracy. 
In order to limit the number of feasible actions and reduce the complexity and 
convergence issues, we have considered three scenarios of increase (.WCET inc

NumT ), 

decrease (.WCET dec
NumT ), and increase-decrease (.WCET

inc,dec
NumT ) (. opr =

{inc, dec, inc/dec}). .WCET inc
NumT (.WCET dec

NumT ) shows an increase (decrease) 
in .WCET LO

i of NumT  HC tasks, where the value of NumT  can be one 
of .{1, 2, . . . , nHC} (.nHC is the maximum number of HC tasks in the system). 
.WCET

inc/dec
NumT presents that the .WCET LO

i for half of HC tasks is increased and 
for others it is decreased. In fact, in this scenario, .max(NumT ) = nHC

2 . Therefore, 
we have considered .k = 2.5 × nHC actions in the system. Note that the step of 
increase/decrease in the .WCET LO

i is determined according to a coefficient of 
WCET’s prediction accuracy: 

.Actions = {WCET
opr
NumT } opr ∈ {inc, dec, inc/dec} (3.22) 

To select the tasks for doing the actions, we first sort the tasks in increasing
order of the value of .WCET LO

i − AETi in the last hyper-period, and then the 
increased (decreased) action applies to the NumT  tasks with smaller (greater) 
.WCET LO

i − AETi , where .AETi represents the actual execution time. Since a task 
may release several times in a hyper-period (i.e., release several jobs of a task), 
and the actual execution times would be different in each release time, we have to 
predict the actual execution time according to the previous run-time task’s execution 
times. This prediction is based on the following equation, where . ExeT imei(t + 1)
is the predicted execution time of task . τi for hyper-period .HPt , . rci is the regression
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coefficient, and er is the error (presents how different the estimated value is from the 
actual one). In the evaluations, x is assumed to be 8. This number is chosen based on 
various experiments that we performed to achieve lower ExeT ime prediction error 
with no timing overhead that can impact tasks’ timeliness. For example, for one 
task, we have (x,er ,time[. μSecond])=(2,0.110,0.86), (4,0.094,1.12), (8,0.077,1.59), 
(10,0.071,1.92). Since the error (er) does not change much, from 8 to 10, compared 
to 4 to 8,  x= 8 is a good value with less timing overhead: 

.ExeT imei(t + 1) =
x∑

k=0

ExeT imei(t − k) × rck + er (3.23) 

Reward Computation The reward indicates how well the learning procedure has 
performed in the previous step. In ADAPTIVE, we calculate the reward at the end 
of each hyper-period. Here, the number of mode switches should be reduced while 
increasing the number of scheduled LC tasks to improve the QoS. The considered 
reward function for the Q-table is based on these two objectives, shown in Eq. (3.24), 
where .MSHC represents the mode switches, which is determined by the number of 
overrun HC tasks: 

.RewardMC = β1 × MSHC + β2 × QoS (3.24) 

where . β1 and . β2 are constants in Eq. (3.24) and set to 0.5 (.β1 + β2 = 1) in  
this work. To compute the number of mode switches, Eq. (3.25) considers three 
scenarios. The reward function is calculated based on the number of task overruns. 
If the percentage of overrun HC tasks falls into the unsafe zone that may cause 
frequent mode switches, the decision will be penalized. Accordingly, it results in a 
negative value for the reward function, which decreases the Q-value in Eq. (3.21). 
If the number of task overruns is reduced, the higher and positive value is assigned 
to .MSHC . The unsafe zone is the statement that all HC tasks overrun frequently. 
Equation (3.26) also shows how to compute the percentage of overrun HC tasks: 

.MSHC =

⎧
⎪⎪⎨

⎪⎪⎩

+� PT ovr
HC = 0

1 − 1
10×(1−PT ovr

MC)
0 < PT ovr

HC < 1

−� PT ovr
HC = 1

(3.25) 

where .� > 0 and has a constant value and is set to 1 in this work: 

.PT ovr
HC =

#HC − T asks|WCET LO
i

−ExeT imei
Ti

<0

nHC

(3.26) 

.nHC is the number of HC tasks and .ExeT imei is the estimation of actual execution 
time of task . τi during a hyper-period, which is computed by Eq. (3.23).
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Algorithm 3.1 Run-time adaptation scheme 

Input: Task Set, Single Processor Platform, QoSMin 

Output: QoS, WCET  LO 
HC  s, Scheduled Tasks 

1: procedure ADAPTIVE FUNCTION() 
2: for t = 1  to Time do 
3: [Mode Sys 

MS ,ReadyT ask] =  TaskStatusCheck(Tasks,Mode Sys 
MS ) 

4: [Schtasks ] =  EDF-VD (ReadyT ask, Platform) 
5: F lagoutput=TaskOutputCheck(Tasks) 
6: if F lagoutput == 1 then 
7: Update QoS & PT  ovr 

HC ; 
8: end if 
9: //**Learning Process Function** 
10: if mod(t,HP )==0 then 
11: State= Deter-State (#Scheduled − LCT asks) 
12: k= rand (1); //(0  < k  <  1) 
13: //ε-Greedy Policy 
14: if k < ε then 
15: Actt = argrand (Actions) 
16: else 
17: Actt = argmax (statet ,Actions) 
18: end if 
19: Set the new tasks’ WCET  LOs based on the action 
20: RewardMC = CompRward (PT  ovr 

HC  ,QoS) //Eq. (3.24) 
21: Q(statet , Actt ) = Q(statet , Actt ) + α(RewardMC + γ  Q(statet+1, Actt+1)− 

Q(statet , Actt )) //Eq. (3.21) 
22: UMC(t)=CompUtil (T asks) 
23: if UMC(t)  >  1 then 
24: T asks  = Deter-ExeJobs (T asks); 
25: end if 
26: T asks  = Deter-VirtualDeadline (T asks); 
27: end if 
28: end for 
29: end procedure 

Algorithm The pseudo-code for the run-time adaptation scheme of ADAPTIVE, 
which includes the task scheduling and learning procedures, is presented in 
Algorithm 3.1. As inputs, the algorithm takes the tasks, and their characteristics 
(such as WCETs), platform, and the minimum QoS, requested by the tasks. On the 
other hand, improvements of the LC tasks’ QoS, the analyzed .WCET LOs of  HC 
tasks, and the scheduled tasks are defined as outputs at the end of time (T ime). At 
each time, the scheduler checks the status of the tasks, whether they are released or 
overrun, which results in mode switching (line 3). All tasks are scheduled based on 
the EDF-VD (line 4). In the case of the system switching to the HI mode, the  LC 
tasks must be executed based on their minimum service requirement to guarantee 
the correct execution of HC tasks. There is a function (line 5) that checks whether 
the output of each task is ready. In the case of being ready, the task is removed 
from the core queue, and the values of .QoS and .PT ovr

HC are updated (lines 6–8). 
The learning process is conducted at the end of each hyper period (lines 9–27). The
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number of scheduled LC tasks is used to determine the state (line 11) in this process. 
As mentioned earlier, since the . ε−greedy policy has been used, if a random number 
is less than . ε, a random action is selected (line 15, exploration phase of the learning 
process); otherwise, the action that has the maximum value in the Q-table is selected 
for that particular state (line 17, exploitation phase of learning process). Based 
on the chosen action, new .WCET LO values are determined for some HC tasks 
(line 19). Consequently, the reward function is used to update the Q-table based 
on Eq. (3.24) (lines 20–21). In lines 22–26, the guaranteed service adaptation and 
assigned virtual deadlines to HC tasks are computed based on the updated HC tasks’ 
utilization values to guarantee the system to be schedulable in each criticality level. 
As a result, the maximum service adaptation that can be guaranteed is determined 
by finding the maximum value of rate of LC tasks’ execution, i.e., reducing the LC 
tasks’ periods to release more often. 

3.2.3 Evaluation 

In this section, we evaluate the efficacy of ADAPTIVE, on real-life and synthetic 
task sets in terms of mode switches, QoS, utilization waste, and learning process 
timing and memory overheads. 

3.2.3.1 Evaluation with Real-Life Benchmarks 

To evaluate our scheme, we conducted experiments by various real benchmarks 
from MiBench benchmark suite [12], such as automotive, network, and 
telecommunication. In this experiment, ‹insert-sort›, ‹epic›, ‹qsort›, ‹bitcount›, 
‹dijkstra›, and ‹FFT› are considered as HC tasks and ‹corner›, ‹edge›, ‹smooth›, 
and ‹matrix-mult› are considered as LC tasks. To obtain their execution times, we 
run these benchmarks with different inputs on Cortex A7 of the ODROID XU4 
board (equipped with Ubuntu 18.04 as OS) with a maximum frequency of 1.4GHz. 
More detail on WCET values has been reported in Sect. 3.1.3. We compare the 
results with the results of BOT-MICS [24] (the Chebyshev theorem-based one) 
and [2]. Since most state-of-the-art works like [2, 3, 15] consider the same policy to 
determine the .WCET LO (i.e., defining a fraction of .WCET HI as .WCET LO ), we 
select [2] ([Liu+18]) as a representative of these schemes and do the experiments 

with two fractions of .WCET HI as .WCET LO (.λ = WCET LO

WCET HI = [ 14 , 1], [ 18 , 1]). In 
addition, we investigate the system for 2000 hyper-periods of tasks. 

For the learning process, we set the values of . γ to 0.2 and . α to 0.5. These values 
are determined based on a wide range of experiments, which are set to obtain the 
best improvement. 

Table 3.6 presents the evaluation of different approaches. QoS represents the 
percentage of executed LC task instances to total LC task instances during run-
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Table 3.6 System performance at run-time for different scenarios 

.Avg(QoS)a .Avg(#MSHC)
b

.UtilWst b . max(ULO
LC )

a

[2] .λ = 1
4 50.0% 0 43% 50% 

[2] .λ = 1
8 49.3% 5.81 28% 65% 

BOT-MICS 58.1% 1.16 33% 63% 

ADAPTIVE 68.9% 2.12 16% 58% 
a Higher is better 
b Lower is better 

Table 3.7 Number of deadline misses and gained utilization of different methods at run-time for 
object detection function in Fig. 3.11a, where there are many objects to detect 

Metrics ADAPTIVE BOT-MICS [2] .λ = 1
2 [2] .λ = 1

4 [2] . λ = 1
8

.#MSHC 17% 11% 0 5% 45% 

.UtilWst 28% 46% 76% 52% 47% 

time (.QoS = nschd
LC /nmax

LC ). .MSHC indicates the number of mode switches per 
hyper-period, and .max(ULC

LO) represents the maximum processor utilization that 
can be assigned to LC tasks at design-time. Besides, .UtilWst shows the average 
percentage of the difference between the WCET and AETs to  WCET for all tasks. 
As shown in this table, ADAPTIVE scheme can schedule more LC tasks in both 
LO mode and HI mode, 10.8% and 19.3% improvement, compared to BOT-MICS, 
and [2] approaches, respectively. Although the average number of mode switches is 
more than the scenario of BOT-MICS, and [2] with .λ = 1

4 (hence, the LC tasks 
execute with their minimum service requirements in the HI mode), ADAPTIVE 
could overcome the significant performance loss due to executing more LC task 
instances in total. This can be achieved by determining the appropriate .WCET LOs 
during run-time, which is close to the actual execution times (17.7% closer on 
average, compared to other approaches). This fact can be observed with the value 
of .UtilWst , compared to other approaches. In addition, although the scenario of [2] 
with .λ = 1

8 assigns more utilization to LC tasks in the design-time phase compared 
to other approaches, it has less QoS value due to the more frequent mode switches. 
Note that although we assign a primary value of .WCET LO by running each 
benchmark on the platform and set the maximum of them as .WCET LO (which 
causes lower utilization compared to some other approaches), our run-time learning 
approach is independent of how the .WCET LOs are set at design-time, and any of 
other design-time approaches, like our previous approach, BOT-MICS, can be used. 

Figure 3.10 shows the variation of QoS values in different hyper-periods of the 
run-time phase. As shown, the scenario of [2] with .λ = 1

8 has a wide range of QoS 
values due to more mode switches. ADAPTIVE also represents a variation in the 
QoS values due to its adaptation to the system input changes at run-time. 

Now, we demonstrate the progress of the learning process in adjusting the 
.WCET LO

i for the two input videos from the object detection function, explained in
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Q
oS

 

BOT-MICS  [Liu+18] [Liu+18]ADAPTIVE 

Fig. 3.10 QoS values during run-time for different scenarios (ADAPTIVE, BOT-MICS [24], and 
[Liu+18] [2]) 

Fig. 3.11 Learning process in adjusting the .WCET LO for two video inputs of object detection 
function, compared to state-of-the-art method ([2] (Liu+18)) in adjusting the .WCET LO value. (a) 
Input video with many objects to detect. (b) Input video with few objects to detect 

the motivational example of the Introduction Section, during run-time. Figure 3.11 
depicts the actual execution time trace and the adjusted .WCET LO for a time 
period during run-time for ADAPTIVE and two other methods BOT-MICS [24] 
and [2]. In ADAPTIVE, by changing the inputs which have low execution time 
values, the .WCET LO would be adjusted to the lower value intentionally. The 
.WCET LO is also readjusted when the value of execution times is increased. As 
shown in Fig. 3.11a, the other methods presented in BOT-MICS and [2] set  the  
static .WCET LO (as an example, .WCET LO=1352ms in BOT-MICS approach and 
.WCET LO (.WCET LO=1596ms in [2] approach if .λ = 1/4) which may lead 
to frequent task overruns (which leads to regular mode switches) in the case that 
there are many objects to detect (lead to high computational time values) or poor 
utilization when there are few objects to detect in this function (like Fig. 3.11b, 
where the maximum computational time is 548ms in a period of time shown in 
this example). Although there are few errors while adjusting the .WCET LO , which 
leads to task overrunning and QoS degradation, the number of task overruns for the 
HC task and the wasted processor utilization (.UtilWst ) are less, and consequently, 
overall QoS value would be higher at the end of system execution. For example, 
in Fig. 3.11a, the black rectangles show the time periods in which some of the
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Fig. 3.12 Impacts of varying different parameters of the learning process on QoS, mode switches, 
and utilization waste. (a) Varying margin threshold. (b) Varying learning time. (c) Varying WCET 
increase/decrease steps 

actual execution times are higher than .WCET LO for most methods, even though 
the actual execution times of these input videos are less than the adjusted . WCET LO

in [2] by considering .λ = 1
2 . Table 3.7 presents the percentage of deadline misses 

(which leads to mode switches) and the average percentage of wasted utilization 
for ADAPTIVE and state-of-the-art works. As shown, although the number of 
deadline misses is higher than the results of some scenarios, the wasted utilization 
is lower compared to other methods, which leads to higher QoS (QoS is like what is 
discussed in Fig. 3.10 and Table 3.6 for MiBench benchmarks).
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In order to evaluate ADAPTIVE in improving the QoS, we first analyze varying 
the margin threshold, which adjusts above the actual execution times to overcome 
high WCET reduction. For example, when the threshold is x%, .WCET LO is set 
to (1 + x%) of the maximum estimated execution time. Figure 3.12a shows that the 
improvement in QoS is less while the threshold is pessimistic, i.e., having a larger 
margin. In this case, fewer mode switches exist due to adjusting the WCETs so  
cautiously, and consequently, the utilization waste (.UtilWst ) has a higher value. 
Based on this observation, having the margin threshold equal to 10% improves 
the QoS for both LO mode and HI mode, even with the higher number of mode 
switches. Now, we vary the time of learning during run-time, e.g., 400 or 1000 
Hyper Period (HP) of total time (2000 HP), which is used for training/exploring 
and depicted in Fig. 3.12b. Note that the learning process starts to learn for a period 
of time, and then the learned data is exploited for the rest of the time. Spending 
more time to learn leads to more accurate results. As a result, we would have a 
5.9% improvement in QoS by increasing the learning time, with an insignificant 
increase in mode switches and utilization waste. In order to be more accurate in 
adjusting the WCETs, we define steps for increasing/decreasing the WCETs at run-
time. These steps are coefficients of the difference between the WCETs and actual 
execution times. Having a larger coefficient (0.1X to 0.5X) leads to adjusting faster 
to the actual execution times (i.e., having better QoS values (7.95% more) and less 
utilization waste (18%)), but it may cause more wrong decisions in learning (i.e., 
more mode switches). However, step .= 0.5X improves the QoS more, which is 
computed for both LO mode and HI mode. 

3.2.3.2 Evaluation with Synthetic Task Sets 

We now carry out an extensive evaluation with the synthetic task sets to evaluate the 
proposed scheme effectiveness, compared to our previous proposed approach (BOT-
MICS Chebyshev theorem-based one), and the state-of-the-art work [2] in terms of 
varying utilization in Fig. 3.13. The synthetic task sets are generated for various 
utilization bounds (.Ubound ) in line with research works like [3], in the range of 
[0.60,1] with steps of 0.05. For each .Ubound , 50 task sets are generated in which 
tasks’ periods are selected in the range of [200, 1000]ms. The algorithm adds tasks 
to the task set randomly to increase the .Ubound until it reaches a given threshold. 
Besides, the balanced tasks are assumed in terms of criticality levels, i.e., the 
probability of a task being HC or LC is equal. As one of the algorithm inputs, we 
consider the minimum service requirement of LC tasks equal to 0.3 in this section. 
According to Fig. 3.13, the ability to improve the QoS is less by increasing the 
utilization bound due to having more HC and LC tasks in the system, and then, 
the probability of mode switches is increased. In [2], although considering a small 
value for . λ like . 18 , increases the assigned utilization to LC tasks, it causes more 
mode switches and dropping more LC task instances, which leads to poor QoS. 
Besides, considering a large value (.λ = 1

4 ) decreases the utilization at design-time, 
but it increases the QoS due to a fewer number of mode switches. The BOT-MICS
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Fig. 3.13 QoS and mode switches in different approaches (ADAPTIVE, BOT-MICS [24], and 
[Liu+18] [2]) by varying utilization 

approach [24] has better results in total in comparison with [2] due to making 
an ideal trade-off between the mode switches and utilization. However, although 
BOT-MICS has a slight improvement in mode switches, compared to ADAPTIVE, 
our scheme can improve the QoS more, even with more mode switches, due to 
considering the aspects of run-time behavior, i.e., input and environmental changes, 
which cause different execution times. 

3.2.3.3 Investigating the Timing and Memory Overheads of Learning 
Technique 

Although we have reduced the feasible actions to reduce the complexity and 
convergence issues, we investigate the learning’s timing and memory overheads. 
We analyze the timing overhead of the learning process in each hyper-period 
on ODROID XU4, ARM Cortex A7, with 1.4GHz. Consider a system with n 
tasks, in which .nHC of them are HC tasks (.nHC ≤ n). The timing overhead 
of the learning algorithm is different for the exploration and exploitation phase 
of the learning process. Hence, we use the . ε−greedy policy, which makes a 
trade-off between exploration and exploitation of the learning algorithm. We 
measured the learning process time at run-time, and the average and maximum 
of exploration (exploitation) timing overhead in ARM core are 19 . μs (52 . μs) and 
2.11ms (4.15ms), respectively. As a result, since the maximum timing overheads 
are almost significant for real-time systems, we can consider the learning process 
as a task with the WCET, equal to the maximum learning timing overhead, and 
a period equal to hyper-period, while checking the task schedulability, at design-
time. As a result, it can guarantee that the timeliness of HC tasks is maintained at 
run-time. Besides, from the memory overhead perspective, we need to clarify the 
required memory space for storing the Q-table. We store a two-dimensional array 
with size (State) rows and size (Action) columns. Since the value of a table cell is in 
the range of [. −2,2], which is a float number, it is required to consider at most 32 bits 
for storing each cell. As a result, we need size(State). ×size(Action). × 32 bits to store
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the Q-table. For an application with 40 tasks (.n = 40), and 20 HC tasks (.nHC = 20), 
the amount of required memory space for saving the Q-table with ten states would 
be 10 . × 2.5 . × (20) . × 32 bits . = 16KB. 

3.3 Conclusions 

In this chapter, we proposed two novel schemes based on the application analysis 
to adjust the low WCET of HC tasks in order to improve the QoS of LC tasks. In 
the first approach, the scheme, called BOT-MICS, analyzes the application in the 
offline phase and determines the low WCETs based on the Chebyshev theorem, 
a general theorem that is valid for any task with any execution time distribution. 
However, we analyze the applications based on their distribution to have a tighter 
bound for system mode switching probability. The proposed scheme based on the 
Chebyshev theorem improves the system utilization and schedulability up to 72.27% 
and 91.2%, respectively, while bounding the mode switching probability to 24.28% 
in the worst-case scenario. We also evaluated the approaches with real benchmarks 
on a hardware platform to show their efficacy. The proposed scheme based on the 
application time distribution analysis can reduce the mode switching probability by 
4.85% more for a real task set compared to the scheme based on the Chebyshev 
theorem. 

Then, an adaptive scheme, ADAPTIVE, was proposed to analyze the HC 
tasks in the LO mode at run-time to determine their WCET based on the task 
behavioral changes. The proposed adaptive scheme employed the ML techniques 
to improve the QoS, i.e., the timing budget allocated to LC tasks, while the task 
schedulability and timeliness can be guaranteed. The proposed scheme improves 
the QoS for synthetic and embedded real-time benchmarks by 17.62% and 16.4% on 
average, respectively. Further, we presented results of the object detection function, 
commonly used in the automotive domain. We evaluated the function with few and 
many objects to detect at run-time and saw that the wasted processor utilization is 
less in ADAPTIVE compared to state-of-the-art works. Consequently, the overall 
QoS value would be higher at the end of system execution. 

As proposed in the chapter, two criticality levels of tasks have been considered 
while designing an MC system. In order to present how the proposed approaches in 
Sect. 3.1 can be extended to support tasks with multiple criticality levels, consider 
an MC system which has five sets of tasks in terms of criticality (A, B, C, D, E) in 
avionic applications (A and E have highest and lowest criticality levels in the system, 
respectively). In general, for a set of tasks with the lowest criticality level (E), we 
can choose a small “n” to reduce the “.WCET LO” value (based on our proposed 
method) and improve the number of tasks that can be scheduled in the system. Since 
these tasks have LC levels, dropping them during run-time does not harshly affect 
the system. Besides, for example, tasks with criticality level C have three WCETs. 
For the first and second WCETs, we choose a small “n” for computing the first 
WCET, a bigger “n” for computing the second WCET, and .WCET HI . When the
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tasks with criticality level D overrun, the system drops tasks with criticality level 
E and use the second defined WCET for tasks with criticality level of D, C, B, and 
A. Note that tasks with criticality levels of C, B, and A have three, four, and five 
different WCETs, respectively, and we need to choose different . ni corresponding to 
each WCET for tasks. Upon each overrun, the system switches to the next criticality 
mode, drops tasks with LC levels, and sets the next WCET for the higher criticality 
tasks. It is important to mention that the above discussion is about a general MC 
system with multi-criticality levels. Therefore, an efficient decision highly depends 
on the applications, scheduling algorithms, and system requirements, and also the 
optimization problem would be more complex that must be solved. However, the 
basic idea and the proposed approach can still be applied. In addition to this design-
time approach, a run-time approach can be applied to improve different WCETs of  
tasks in each mode based on the run-time behavior of tasks in each mode. 

Nevertheless, although the QoS is improved by well adjusting the low WCET 
of HC tasks, the LC tasks are mostly dropped in the HI mode. In the next chapter, 
we will present an approach in order to improve the QoS of LC tasks more by 
analyzing the task dropping policy in the HI mode. We propose a heuristic where a 
QoS-aware parameter for each task is introduced, and we then provide a task-drop-
aware scheduling analysis based on the new parameter. 
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Chapter 4 
Safety- and Task-Drop-Aware 
Mixed-Criticality Task Scheduling 

In Mixed-Criticality (MC) systems, the frequent deadline misses or service degra-
dation of some Low-Criticality (LC) tasks, such as mission-critical tasks, in the 
HIgh-criticality mode (HI mode) may have a negative impact on the other High-
Criticality (HC) tasks and mission-critical tasks themselves, and consequently on 
the entire system, and may prevent the system from accomplishing its mission 
correctly. Therefore, in this chapter, we propose a novel scheme in order to reduce 
the number of deadline misses of LC tasks in the HI mode through task dropping 
analysis. Since safety-critical tasks are vital and their failure has a more devastating 
effect than mission-critical ones, we consider safety-critical tasks as HC tasks, while 
mission-critical and noncritical tasks as LC tasks. 

We propose FANTOM (FAult toleraNt Task-drOp aware scheduling For MC 
systems), a novel heuristic, which is based on a newly defined QoS-aware parameter 
and scheduling analysis of MC tasks with different criticality levels, by considering 
safety requirements. In FANTOM, the schedulability analysis is conducted in an 
offline manner in order to guarantee that all tasks with different criticality levels 
are executed properly before their deadlines in the presence of faults and based on 
the operational mode of MC systems. Thus, the main objective of FANTOM is to 
execute the majority of the LC tasks in the HI mode by considering a maximum 
allowable number of drops for each LC task. In addition, we guarantee the safety 
requirement of all MC tasks in both LO mode and HI mode. This is despite the 
fact that most of the related works cannot guarantee the safety requirement in the 
HI mode. Furthermore, the proposed method can schedule more task sets (i.e., it 
has a higher acceptance ratio) compared to similar works [1]. In summary, the main 
contributions of this work are: 

• Introducing a new task parameter, which is utilized to drop LC tasks consciously 
in the HI mode (i.e., by introducing a maximum allowable number of drops for 
every LC task) 
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• A novel heuristic (FANTOM) based on the introduced parameter and the schedul-
ing policy in the HI mode, in which an MC task schedulability analysis is 
developed by considering safety requirements and fault tolerance 

To the best of our knowledge, FANTOM is the first study of its kind, which 
considers the scheduling analysis of MC tasks in order to prevent frequent drops 
of LC tasks in the HI mode by assigning a predefined threshold to them, while the 
safety requirements of tasks are guaranteed. 

In the rest of this chapter, the problem statement and motivational example 
are presented in Sect. 4.1. In Sect. 4.2, we describe FANTOM in detail, while our 
experimental results have been described in Sect. 4.3. Finally, we conclude the 
chapter in Sect. 4.4. 

4.1 Problem Objectives and Motivational Example 

Four objectives have been set to be achieved in this chapter: 

1. All of the MC tasks should be executed by their deadlines in the LO mode. 
2. In cases that the system switches to the HI mode, all of the HC tasks should be 

finished before their specified deadline. 
3. It should be guaranteed that the mission-critical tasks should not be frequently 

dropped in the HI mode. 
4. The non-mission-critical tasks (also known as non-criticality tasks) will be 

dropped in the HI mode in order to ensure that the HC tasks and mission-critical 
tasks meet their deadlines. 

According to these objectives, since frequent dropping or postponing their 
execution for a long time in the HI mode is not appropriate, we first introduce a 
new parameter, which limits the number of drops per LC task. We assign a new 
parameter . δ for each task, which determines the minimum interval between two 
consecutive drops, that is set to (.δi × Ti , where . Ti is the period of task . τi). Since 
dropping HC tasks is prohibited, we have set .δHC = ∞, which means that no 
dropping is allowed for HC tasks. In addition, some LC tasks are noncritical or non-
mission-critical and dropped in the HI mode. Therefore, we define .δ = 1 for these 
tasks. Based on the application, the value of . δ for each MC task is determined by 
designers. In the following, a motivational example will be discussed in which a task 
set containing all types of tasks (based on criticality levels, defined for the avionic 
industry in Table 2.1) has been considered. 

We are going to give a motivational example based on Fig. 4.1 to clarify the 
problem and our solution for limiting the number of frequent drops per LC task. In 
this regard, assume that a single core executes five MC tasks (.τ1, τ2, . . . , τ5). The 
timing parameters of each task are shown in Table 4.1. As mentioned in Sect. 2.1.1.1, 
the deadlines of independent tasks are set to their periods. Each instance (job) of a 
task . τi must be executed in the task time period, and as a result, the task generates a
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Table 4.1 Example of MC 
task set 

.ζi .WCET LO
i .WCET HI

i .Ti .d̂i . δi

.τ1 HC 1 5 12 6 . ∞

.τ2 HC 1 2 24 12 . ∞

.τ3 LC 1 1 4 – 3 

.τ4 LC 1 1 3 – 4 

.τ5 LC 1 1 6 – 1 

.∗τ1, τ2 ∈ {A}, .τ3, τ4 ∈ {B,C} and . τ5 ∈ {D,E}

sequence of jobs during its execution. In Fig. 4.1, activated job sequences for each 
task are shown by an upward arrow. Furthermore, for showing the kth instance (job) 
of a task . τi , we use notation .J (i, k). In this example, the first two tasks (.τ1, τ2) 
are HC tasks (from level A in safety-criticality requirements of avionic industry), 
while others are LC tasks. LC tasks consist of both mission-critical tasks, which are 
from levels .{B,C}, and non-mission-critical tasks from level .{D,E}. In addition, we 
assume that mission-critical tasks should not be dropped frequently in the HI mode 
due to the occurrence of catastrophic consequences (which we discussed at the 
beginning of this section). Hence, in this example, we focus on our scheduling 
policy, and we can suppose that the measurement of the execution time will be 
accomplished after applying the fault-tolerance technique [1]. In addition, in this 
example, all of the tasks should comply with their specified time budget (. WCET LO

i

in the LO mode and .WCET HI
i in the HI mode) to be executed correctly. Our task 

set is able to be scheduled under EDF-VD [2]. Also, the virtual deadlines (. d̂i) of the  
HC tasks are computed and mentioned in Table 4.1 (virtual deadlines are less than 
the actual deadlines and provide a higher priority for HC tasks). For the simplicity 
of this example, we round the virtual deadlines into acceptable integers. Suppose 
that, when the first job of the . τ1 (which is denoted as J(1,1)) is being executed, due 
to the occurrence of a transient fault (which may be caused by high-energy neutron 
or alpha particle strikes in integrated circuits and therefore silently corrupt the data 
and lead to incorrect computation results), the system switches to the HI mode. As  
shown in Fig. 4.1, the system switches at timeslot 3 in this example. 

The operation of the EDF-VD scheduling algorithm (by considering task killing) 
to the task set under [3] and [1] has been shown in Fig. 4.1a. Whenever the system 
switches to the HI mode, the active jobs of LC tasks will be dropped until the 
system would safely switch back to the LO mode (at time 9 in Fig. 4.1a when there 
is no active HC task). According to Fig. 4.1a, the active jobs of LC tasks, which 
are mission-critical tasks (. τ4) (J(4,2) and J(4,3)), are dropped twice, which is not 
tolerable for these tasks (according to Table 4.1, this task can be dropped once in 
each .δ4 × T4 in the HI mode). 

On the other hand, consider a situation that mission-critical tasks (. τ3, . τ4) would 
not be dropped in the HI mode. Actually, the execution of these tasks becomes as 
important as the execution of HC tasks. Therefore, . τ5 as an LC task is the only 
task, which is dropped in the HI mode. Similar to the previous example, EDF-VD 
algorithm is applied to the task set. Based on Fig. 4.1b, when the system switches to
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Fig. 4.1 Different schedules for the MC task set example within the interval [0, 24]. (a) The  
EDF-VD schedules where all LC tasks (mission-critical tasks and non-mission-critical tasks) are 
dropped in the HI mode according to [3] and  [1]. (b) The EDF-VD schedules where mission-
critical tasks (which are LC tasks) are not dropped in the HI mode. (c) The EDF-VD schedules 
under our policy 

the HI mode, according to the EDF-VD policy (the ready tasks are sorted based on 
their deadline in ascending order to be executed on the core), the first job of HC task 
. τ2 (J(2,1)) is not executed due to lack of core space, in its predefined period and 
it will miss its deadline at time 24. Such scenarios of task scheduling may cause 
catastrophic consequences due to deadline missing of HC tasks. 

Now, consider a parameter . δi for LC tasks. When the system switches to the 
HI mode due to the execution time of HC tasks, LC tasks will be dropped in every 
. δi to create slack time for the HC tasks to be executed before their deadlines. 
According to Fig. 4.1c, when the system switches to the HI mode, the first job of the 
mission-critical tasks . τ3 and . τ4 is dropped, which is J(3,2), J(4,2). Consequently, all 
of the HC tasks will be executed in this HI mode. Hence, since .δ5 = 1, it would 
be always dropped in the HI mode. At the same time, by employing this technique, 
mission-critical tasks would not be frequently dropped, which is desirable.
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4.2 FANTOM in Detail 

In this section, first, we briefly introduce the quantification of MC tasks in 
Sect. 4.2.1. Then, in Sect. 4.2.2, we define MC task utilization, and based on them, 
we present the scheduling analysis technique and system upper bound utilization for 
the proposed heuristic (FANTOM) in Sects. 4.2.3 and 4.2.4, respectively. In the end, 
a general design-time scheduling algorithm is presented in Sect. 4.2.5, in which all 
essential conditions that must be guaranteed are determined. 

4.2.1 Safety Quantification 

As discussed in Sect. 2.1.2, in this book, the re-execution of the tasks has been 
used in order to tolerate transient faults. Independent from the level of criticality, 
any of the jobs in the tasks are executed up to . ni times to guarantee their safety 
requirements with regard to PFH, mentioned in Table 2.1. Any of the jobs in both 
LC and HC tasks requires maximum . nζ times (.ζ ∈ LC or HC) to be executed with 
regard to safety requirements [1]. Here, .nHC and .nLC are the maximum required re-
execution times based on the PFH of both HC and LC tasks. However, in the worst 
case, if jobs execute . ni times to satisfy the safety requirements, it may cause the 
system to be overloaded (i.e., .Usys > 1) and lead the system to be unschedulable. 
To this end, in this chapter, analogous to the proposed mechanism in [4], we use a 
different policy based on the safety requirements to determine how the system mode 
switches happen and, therefore, how the low WCET of HC tasks are computed. 
Here, another time constraint .n′

HC .(n′
HC < nHC) has been defined for HC tasks, 

which causes the system to operate without being overloaded. In addition, this time 
constraint gives the system the ability to switch to the HI mode when the correct 
response is not ready (e.g., due to a fault occurrence) after executing it for . n′

HC

times. In this case, we use our proposed drop-aware policy for LC tasks to guarantee 
the safe execution of HC tasks. Hence, .n′

HC is the highest possible value that causes 
the system to be schedulable in the LO mode. Now, the  WCET in each criticality 
level is computed as follows: 

• LC tasks: . WCET LO
i = WCET HI

i = nLC × WCETi

• HC tasks: . 

{
WCET HI

i = nHC × WCETi

WCET LO
i = n′

HC × WCETi

According to [1], the values of .nHC and .nLC for tasks in the same level of 
criticality are computed by solving Eq. (4.1), which has exploited the PFH of 
LC tasks and HC tasks based on Table 2.1, presented for the avionic industry. 
Hence, for each level, the value of PFH is the same from one hour to the next 
hour. Also, in Eq. (4.1), the HP is the hyper period of all tasks. Since the unit of 
the .pf h(ζ ) is hour, the .HP′ represents the hyper period, in the unit of hour [1]. 
In this equation, .max(�HP−ni×WCETi

Ti
+ 1�, 0) represents the maximum number 

of execution rounds for task . τi in the hyper-period .(0,HP ]. Moreover, . fi is a
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probability factor, which indicates the probability of an unsuccessful execution for 
a task due to transient faults (i.e., PoF). So, .f ni

i represents that a task is executed 
. ni times in the worst case to have successful execution but it fails in all executions. 
Therefore, the failure probability per hour for each criticality level (.pf h(ζ )) can be 
calculated by Eq. (4.1) [1]. As can be realized from this equation, by increasing the 
value of . nζ (. ζ= HC or LC), .pf h(ζ ) is decreased. Therefore, the minimum value of 
. nζ for each criticality level is computed when .pf h(ζ ) ≤ PFHζ : 

.pfh(ζ ) =
(
∑

τi∈τζ
max(�HP−nζ ×WCETi

Ti
+ 1�, 0) × f

ni

i )

HP ′ (4.1) 

In the next step, the value of .n′
HC has to be computed in a way that the system 

would be schedulable and all the safety requirements are met. As we mentioned 
before, all LC tasks should be executed correctly before their deadline in the 
LO mode. Hence, by assigning .nLC to LC tasks, the number of re-executions for 
HC tasks in the LO mode (.n′

HC) to have the schedulable system will be computed 
by solving Eq. (4.2) that .pf h(LO) < PFHLO [1]: 

. pfh(LO) = (1 − ∏
τi∈τHC

(1 − f
n′

i

i )
max(� HP−n′

i
×WCETi
Ti

+1�,0)
) × w(∞,HP )

HP ′
(4.2) 

In this equation, the maximum number of execution rounds for HC task . τi

in each hyper-period (.[0,HP ]), that in each round, it is executed .n′
HC times, is 

.max(�HP−n′
HC×WCETi

Ti
+ 1�, 0). Since in the LO mode HC tasks are not executed 

more than .n′
HC times to guarantee task schedulability, the probability that no job of 

HC tasks executes more than .n′
HC times in each hyper-period is bounded by . P =

∏
τi∈τHC

(1−f
n′

HC

i )
max(� HP−n′

HC
×WCETi

Ti
+1�,0)

) that all HC tasks are executed success-
fully in maximum .n′

HC times and no LC task is dropped. Therefore, the probability 
that LC tasks are dropped is .1 − P . Due to the characteristics of our system, the 
maximum PFH for LC tasks, .w(∞,HP ), is defined and computed differently 
from what was defined in [1]. To compute this function, we should obtain the 
maximum number of executions for each task that can be done in one hyper-period. 

Normally, this number is accommodated by .max{
⌊

HP−nLC×WCETi

Ti
+ 1

⌋
, 0}. Due  

to the newly defined parameter .(δi) for the tasks, this round number is obtained and 
used in function w(.HP ) as: 

. w(δ,HP ) =
∑

τi∈τLC

max((�HP − nLC × WCETi

Ti

+ 1� − �HP − nLC × WCETi

Ti × δi

+1�), 0) × f
nLC

i

(4.3)
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To find the maximum pf h for LC tasks in Eq. (4.2) that .pf h(LO) < PFHLO , 
parameter . δi for each LC task in Eq. (4.3) should be infinitive. It means no LC task 
would be dropped in the LO mode. Therefore, as can be seen in Eq. (4.2), the value 
of .n′

HC is independent of the values of . δi of LC tasks that is used in Eq. (4.3). It 
should be noted that all HC tasks have the same value of .n′

HC for their execution in 
the LO mode. 

4.2.2 MC Task Utilization Bounds’ Definition 

In this section, we present the different utilization bounds for MC tasks, which are 
used in task scheduling. Based on the description of safety requirements presented 
in Sect. 4.2.1, the utilization of task j at level k is defined as .uk

j = (WCET k
j )/Tj , in  

which if task j is an LC task, .WCET k
j = nLC ×WCETj and if task j is an HC task, 

.WCET k
j = nHC × WCETj with k: LO, and .WCET k

j = n′
HC × WCETj with k: 

HI. According to this definition, the low and high bound of utilization for different 
modes of task . τj will be represented as .uLO

j and .uHI
j , respectively. Thus, the low-

level and high-level utilization of HC tasks and also the low bound utilization of 
LC tasks are defined as follows: 

.

{
ULO

HC = ∑
ζj =HCs uLO

j

UHI
HC = ∑

ζj =HCs uHI
j

(4.4) 

.ULO
LC =

∑

ζj =LC

uLO
j (4.5) 

Theorem 4.1 Due to the execution of some LC tasks, in the HI mode, the high 
bound utilization is presented as follows: 

.UHI
LC =

∑

ζj =LC

uLO
j × (δj − 1)

δj

= uHI
j (4.6) 

Proof Since we have to guarantee the correct execution of all HC tasks in the 
HI mode, a few  LC tasks will be dropped in this mode. Therefore, we need to 
consider the jobs of LC tasks that are released in this HI mode. Due to the intended 
feature of LC tasks, one job could be dropped in every . δj job instance in the 
HI mode. Accordingly, for these tasks, .δj − 1 jobs must be executed among . δj

jobs (i.e., if we have a period of time .δj × Tj , LC tasks are executed for a time 

equal to .WCET HI
j × (δj − 1) in this period, .uHI

j = WCET HI
j ×(δj −1)
δj ×Tj

). Also, we 

have assumed that for each LC task, the value of .WCETLO
j is equal to .WCETHI

j .
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Therefore, the high bound utilization is rewritten as follows, which is lower than 

.ULO
LC (for each LC task, .uHI

j = uLO
j × (δj −1)

δj
< uLO

j ): 

.UHI
LC =

∑

ζj =LC

(
WCET HI

j × (δj − 1)

Tj × δj

= uLO
j × (δj − 1)

δj

= uHI
j ) (4.7) 

Hence, in equality (4.6), if .δj = 1 for an LC task, then the utilization of this 
task j in the HI mode (.uHI

j ) would be equal to 0. In other words, these tasks are not 
executed in the HI mode and then, FANTOM uses task dropping for these LC tasks 
with .δj = 1 (such as noncritical tasks) in the HI mode due to our proposed policy. 

4.2.3 Scheduling Analysis 

To guarantee the correct execution of MC tasks before their deadlines, several 
conditions have to be met at design time. We investigate the MC task schedulability 
in different system behavior as: 

• Guaranteeing the task schedulability in the LO mode 
• Guaranteeing the task schedulability in case of mode switching and then, in the 

HI mode 
• Guaranteeing the task schedulability while the EDF-VD scheduling algorithm is 

used 

The conditions for each item are explained in detail in this section. In the end, 
the last condition based on the system utilization is presented in Sect. 4.2.4. As  
mentioned before, at run-time, the MC system initially operates in the LO mode 
under EDF-VD. In  FANTOM, when the system switches to the HI mode, with 
respect to the execution of HC tasks, the first job of LC tasks will be dropped. These 
LC tasks will be dropped periodically in an interval equal to .δj ×Tj until the system 
is in the HI mode. In the meantime, all the HC tasks will be executed. Hence, if the 
mission of an LC task is more important than other LC tasks, the value of . δ for this 
LC task would be higher. The details are as follows. 

4.2.3.1 Conditions to Guarantee Task Schedulability in the LO Mode 

By using the notations and definitions, we can easily express that MC task sets are 
schedulable under EDF if the following condition is guaranteed in a core in the 
LO mode: 

.ULO
HC + ULO

LC ≤ 1 (4.8)
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As we have mentioned in Sect. 2.2.1, due to using the EDF-VD algorithm, dead-
lines of HC tasks will be downscaled by a multiplication factor x in the LO mode. 
Hence, the low bound utilization of HC tasks .(ULO

HC) would be downscaled by 
1/x. Based on the EDF-VD algorithm [3], due to the execution of LC tasks in the 
HI mode by using the parameter . δ, we provide a problem formulation. 

The following condition (which is obtained by the modification of the inequal-
ity (4.8)) is sufficient to schedule all of the tasks by the EDF-VD algorithm in the 
LO mode [2]. As mentioned, .ULO

HC = ∑
ζi=HC

nHC×WCETi

Ti
. Since .di = Ti , and the 

virtual deadline .d̂i = x × di is used for HC tasks in the LO mode to schedule tasks, 

therefore the utilization of HC tasks in the LO mode is .
ULO

HC

x
that is used for task 

schedulability test: 

.
ULO

HC

x
+ ULO

LC ≤ 1 (4.9) 

4.2.3.2 Conditions to Guarantee Task Schedulability in the HI Mode 

Since the MC systems must work successfully in the HI mode, we introduce a 
theorem and conditions to guarantee the deadline meeting of both HC tasks and 
LC tasks in the HI mode. Before introducing a new theorem, we explain how the 
new parameter . δ is used. As depicted in Fig. 4.2, when the system switches to the 
HI mode, the demand requested for core computation time by the tasks is increased. 
In this figure, . rij represents the release time of job j of task . τi . In such critical 
situations (HI mode), the first job of the LC tasks is dropped, and consequently, one 
job of each . τi is dropped every . δi until the system switches back to the LO mode. 
These generated slacks (the difference between two . ris in the HI mode, where 
mission-critical tasks are not executed) are used to execute HC tasks in the HI mode. 
With this value of . δ for each task, we determine a theorem for ensuring that both 
HC tasks and LC tasks (with .δ > 1) are scheduled within their deadlines, in the 
HI mode. 

Theorem 4.2 The sufficient establishing condition for executing both HC tasks and 
LC tasks in the HI mode is presented in inequality (4.10), in which, in the worst case, 
the system remains in the HI mode for the whole hyper-period. In this inequality, the 
HP is the hyper-period of HC tasks and LC tasks with .δ > 1 in a processing unit: 

. 

∑
ζj ∈HC�HP

Tj
� × WCET HI

j

HP
+

∑
ζj ∈LC,δj >1(�HP

Tj
� − � HP

Tj ×δj
�) × WCET HI

j

HP
≤ 1

(4.10) 

Proof Due to the execution of HC tasks and LC tasks in the HI mode, assume that 
the first task, which starts its execution, is an HC task, and this task causes the system 
to switch to the HI mode. In the worst case, the system remains in the HI mode
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Fig. 4.2 LC task scheduling solution in both modes by dropping one job every . δi in task . τi in the 
HI mode 

for the whole hyper-period. In this HI mode, the maximum time interval in which 
HC tasks are executed in one HP (.T Intervalmax

HC ) is as:  

.T Intervalmax
HC =

∑

ζj ∈HC

�HP

Tj

� × WCET HI
j (4.11) 

In addition, due to the execution of LC tasks in the HI mode and the nature of 
these tasks, this maximum time interval that LC tasks can be executed in one HP 
(.T Intervalmax

LC ) is as:  

.T Intervalmax
LC =

∑

ζj ∈LC,δj >1

(�HP

Tj

� − � HP

Tj × δj

�) × WCET HI
j (4.12) 

Accordingly, if these two types of tasks need to be schedulable by the EDF 
algorithm in the HI mode before their deadlines, the following inequality must be 
guaranteed (.T Intervalmax

HC + T Intervalmax
LC ≤ HP ): 

. 
∑

ζj ∈HC

�HP

Tj

�×WCET HI
j +

∑

ζj ∈LC&δj >1

(�HP

Tj

�−� HP

Tj × δj

�) × WCET HI
j ≤ HP

(4.13) 

By dividing both sides of this inequality by HP, the inequality (4.10) will be 
obtained. Inequality (4.10) is the establishing condition for the schedulability of the 
tasks. . �

According to the EDF-VD algorithm, there are some scenarios in which the 
inequality (4.9) has been satisfied, while HC tasks in the HI mode have missed 
their deadline. Hence, a condition should be considered and satisfied in order to 
guarantee the schedulability of all of the HC tasks and LC tasks (based on the
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parameter . δ) in their specified deadlines by the EDF-VD in the HI mode. Besides, 
there is a scenario that a task is released before mode switching, while its deadline is 
after mode switching and does not finish its execution yet, called carry-over job [5– 
7]. To consider the carry-over problem, the following sufficient condition has been 
expressed (the proof of this condition is the same lemma and has the same proving 
flow presented in [7, 8]): 

.UHI
HC + (1 − x) × UHI

LC + x × (ULO
LC ) ≤ 1 (4.14) 

Proof To prove, suppose that . τ1 is an HC task with release time . a1 and deadline 
. d1 and causes the system switches to the HI mode at time . t1. Besides, . τ2 is an HC 
task that its deadline is missed at time . t2, while the system is in the HI mode (. 0 <

t1 < t2). In addition, suppose that . ηi is the cumulative execution time of each task 
. τi in .[0, t2]. By this definition, we nominate .t1 < (a1 + x(t2 − a1)). To prove this, 
consider that the absolute deadline of the HC task . τ1 is . d1 and its virtual deadline is 
.(a1 + x(d1 − a1)). As can be seen, . τ1 is overrun at time . t1 and continues to finish its 
execution completely before its deadline . d1, which is less than . t2 (.d1 ≤ t2). Thus, 
. t1 < (a1 + x(d1 − a1)) < (a1 + x(t2 − a1))

As we proposed, when the system switches to the HI mode, we drop the first 
job of each LC task . τi , and then, they would be dropped every . δi times as long as 
the system is in the HI mode. If an  LC task with release time . ai and deadline . di is 
released before time . t1, while its deadline . di is after . t1 (.ai < t1 < di), it is called 
carry-over job of LC tasks. For these carry-over jobs, we have .di < (a1+x(t2−a1). 
To prove, it is obvious that the maximum cumulative execution time of an LC task 
. τi is .(di − ai)u

LO
i , and it happens when the task can finish its execution before . t1. 

It means before overrunning of HC task . τ1. Since the EDF-VD algorithm is used 
for task scheduling, then .di ≤ x × d1 	⇒ di ≤ a1 + x(d1 − a1). Since we have 
.d1 < t2, therefore . di ≤ a1 + x(t2 − a1)

Lemma For any LC task . τi: 

.ηi ≤ (a1 + x(t2 − a1)) × uLO
i + (1 − x)(t2 − a1) × uHI

i (4.15) 

To prove, let us consider two cases: LC task . τi is released within interval (.t1, t2] 
or it is not. 

• Case 1 (task . τi is released within the time interval (.t1, t2]): 

– With carry-over job (.t1 < di): The maximum cumulative execution time of LC 
task . τi within the time interval [.0, t2] is  . ηi ≤ (ai − 0) × uLO

i + (di − ai) ×
uLO

i + (t2 − di) × uHI
i 	⇒ ηi ≤ di × uLO

i + (t2 − di) × uHI
i . 

Since, we mentioned above, .di < (a1 + x(t2 − a1)), then . ηi ≤ (a1 + x(t2 −
a1)) × uLO

i + (t2 − (a1 + x(t2 − a1))) × uHI
i . 	⇒ .ηi ≤ (a1 + x(t2 − a1)) ×

uLO
i + (1 − x)(t2 − a1) × uHI

i
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– No carry-over job (.di < t1): The maximum cumulative execution time of LC 
task . τi within the time interval [.0, t2] is .ηi ≤ (t1−0)×uLO

i + (t2− t1)×uHI
i . 

We mentioned that .t1 < (a1 + x(t2 − a1)). Therefore, . ηi ≤ (a1 + x(t2 −
a1)) × uLO

i + (t2 − (a1 + x(t2 − a1))) × uHI
i . 	⇒ . ηi ≤ (a1 + x(t2 − a1)) ×

uLO
i + (1 − x)(t2 − a1) × uHI

i

• Case 2 (task  . τi is not released within the time interval (.t1, t2]): It means the 
maximum cumulative execution of these tasks is .ηi ≤ (di − 0) × uLO

i . Now,  
we have two cases: .di ≤ t1 and .di > t1. For the first one, since we mentioned, 
.t1 < (a1 + x(t2 − a1)), and as we know that .di ≤ t1, then . ηi < t1 × uLO

i

. 	⇒ .ηi ≤ (a1 + x(t2 − a1)) × uLO
i . 	⇒ . ηi < (a1 + x(t2 − a1)) × uLO

i +
(1 − x)(t2 − a1) × uHI

i . Now, for the case of .di > t1, we proved that . di <

(a1 + x(t2 − a1)). Thus, .ηi < di × uLO
i . 	⇒ . ηi ≤ (a1 + x(t2 − a1)) × uLO

i

. 	⇒ . ηi < (a1 + x(t2 − a1)) × uLO
i + (1 − x)(t2 − a1) × uHI

i

Since we calculate the cumulative execution of tasks in the time interval 
[.0, t2], there are some LC tasks with .δ = 1, which are executed in the time 
interval of [.0, t1]. Therefore, the maximum cumulative execution of these tasks is 
.ηi ≤ (t1−0)×uLO

i . Since .t1 < (a1+x(t2−a1)), then .ηi ≤ (a1+x(t2−a1))×uLO
i . 

In addition, the maximum cumulative execution of HC tasks in the time interval 
[.0, t2] can be computed as .ηi ≤ a1

x
×uLO

i + (t2−a1)×uHI
i . It should be mentioned 

that HC tasks are executed with their virtual deadline in the time interval [.0, a1], 
and since the HC task . τ1 overruns and the system switches to the HI mode, all tasks 
after . a1 will be executed by their actual deadline. 

Now, let H denotes the cumulative execution of all tasks in the time interval 
[.0, t2]. Thus, 

. H ≤
∑

ζi∈LC & δ=1

(a1 + x(t2 − a1)) × uLO
i +

∑

δi∈HC

a1

x
× uLO

i + (t2 − a1) × uHI
i +

. 
∑

ζi∈LC & δ>1

(a1 + x(t2 − a1)) × uLO
i + (1 − x)(t2 − a1) × uHI

i 	⇒

. H ≤ (a1 + x(t2 − a1)) × ULO
LC |δ=1 + (a1 + x(t2 − a1)) × ULO

LC |δ>1+
(1 − x)(t2 − a1) × UHI

LC + a1

x
× ULO

HC + (t2 − a1) × UHI
HC 	⇒

.H ≤ (a1 + x(t2 − a1)) × ULO
LC + (1 − x)(t2 − a1) × UHI

LC + a1

x
× ULO

HC+

(t2 − a1) × UHI
HC 	⇒
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. H ≤ a1 × (ULO
LC + ULO

HC

x
) + x(t2 − a1) × ULO

LC + (1 − x)(t2 − a1) × UHI
LC +

(t2 − a1) × UHI
HC (4.16) 

As presented in Eq. 4.9, .(ULO
LC + ULO

HC

x
) ≤ 1, and then: 

. H ≤ a1 + x(t2 − a1) × ULO
LC + (1 − x)(t2 − a1) × UHI

LC + (t2 − a1) × UHI
HC

(4.17) 

Hence, H is the maximum cumulative execution of all tasks. As we mentioned,
. τ2 is one of these tasks that its deadline is missed. Therefore, H would be greater 
than . t2 (the time which . τ2 misses its deadline): 

. a1 + x(t2 − a1) × ULO
LC + (1 − x)(t2 − a1) × UHI

LC + (t2 − a1) × UHI
HC > t2 	⇒

. x(t2 − a1) × ULO
LC + (1 − x)(t2 − a1) × UHI

LC + (t2 − a1) × UHI
HC > t2 − a1 	⇒

.x × ULO
LC + (1 − x) × UHI

LC + UHI
HC > 1 (4.18) 

Therefore, we must have the following inequality (4.14) to guarantee that no HC 
task misses its deadline in the HI mode: 

. x × ULO
LC + (1 − x) × UHI

LC + UHI
HCT ≤ 1 �

While the inequalities (4.14) and (4.10) are not necessary (just sufficient), the 
necessary condition would be driven when the sum of the utilization of LC tasks 
(i.e., mission-critical tasks) and HC tasks in the HI mode is higher than 1 or to 
guarantee the correct execution of jobs of each task before their individual deadlines 
in this HI mode. Thus, the necessary condition for scheduling both HC and LC tasks 
by the EDF algorithm in the HI mode and being executed correctly before their 
deadlines is the following condition: 

.UHI
HC + UHI

LC ≤ 1 (4.19) 

4.2.3.3 Conditions to Guarantee Task Schedulability with EDF-VD 
Algorithm 

Now, we present the value of x to obtain the virtual deadline by multiplying the 
actual deadline by x. Then, we present a new condition based on the previous 
conditions and the EDF-VD algorithm. By considering the inequalities (4.9)



90 4 Safety- and Task-Drop-Aware Mixed-Criticality Task Scheduling

and (4.14), it could be concluded that the value of x (.d ′
j = x × dj ) is obtained 

through the inequality (4.20): 

.
ULO

HC

1 − (ULO
LC )

≤ x ≤ 1 − (UHI
HC + UHI

LC )

(ULO
LC)) − UHI

LC

(4.20) 

Based on the interval for x in this inequality, and according to expression (4.21), 
the EDF-VD algorithm chooses the smallest value for x [2]. In addition, as explained 
before, we use the fault-tolerance technique, re-execution, to guarantee the correct 
execution of all tasks within their safety requirements based on Table 2.1 in any 
circumstance. To show how the parameters, such as safety requirements and virtual 
deadlines, affect each other, we can rephrase the value of x as follows. In this 
expression, when a task is executed and a fault occurs, it needs to be re-executed 
for a maximum of (.nζj

− 1) times to guarantee its safety requirement that . ζj is 
LC or HC. Hence, the value of x is independent of . δj . As mentioned in Sect. 4.2.1, 
the values of parameter . δj has no effect on computing .n′

HC (based on Eqs. (4.2) 
and (4.3)): 

.x ← ULO
HC

1 − (ULO
LC )

	⇒ x ←
n′

HC × ∑
j∈HC

WCETj

Tj

1 − (nLC × ∑
j∈LC

WCETj

Tj
)

(4.21) 

In addition to the mentioned conditions, another condition is required to guar-
antee that the task set would be schedulable by EDF-VD. In this regard, the upper 
bound utilization of the system will be computed by exploiting the condition (4.20) 
and represented as: 

. 
ULO

HC

1 − ULO
LC

≤ 1 − (UHI
HC + UHI

LC )

ULO
LC − UHI

LC

⇐⇒

. ULO
HC × (ULO

LC − UHI
LC ) ≤ (1 − UHI

HC − UHI
LC ) × (1 − ULO

LC ) ⇐⇒

.UHI
HC ≤ 1 − UHI

LC − ULO
HC × (ULO

LC − UHI
LC )

1 − ULO
LC

(4.22) 

According to inequality (4.22), the upper bound utilization of HC tasks in the 
HI mode .(UHI

HC) is obtained. If this condition is satisfied, the given task set is 
schedulable by the EDF-VD algorithm under the conditions in FANTOM. 

Generally, inspired by the presented conditions, the conditions that should be 
investigated in a core to guarantee that a task set is schedulable under EDF-VD
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algorithm in FANTOM are inequalities (4.10) and (4.23). Condition (4.23) is  
obtained by using inequalities (4.8) and (4.22): 

.max(ULO
HC + ULO

LC ,UHI
HC + UHI

LC + ULO
HC × (ULO

LC − UHI
LC )

1 − ULO
LC

) ≤ 1 (4.23) 

4.2.4 System Upper Bound Utilization 

In this section, we present the system upper bound utilization in order to enable 
MC tasks to be schedulable by the FANTOM. In the end, we present the last 
condition that must be guaranteed. We nominate . Up as an upper bound for the task 
set, which should be schedulable in both HI mode and LO mode. This bound is 
defined as follows: 

.Up =max(ULO
HC + ULO

LC ,UHI
HC + UHI

LC ) (4.24) 

We have explained that the condition (4.20) is sufficient for the task sets to 
be schedulable by the EDF-VD algorithm. Hence, by using conditions (4.20) 
and (4.24), the following expression could be derived. Here, our goal is to find the 
. Up, which still satisfies the following expression. Thereby, we have: 

.
ULO

HC

1 − ULO
LC

≤ 1 − (UHI
HC + UHI

LC )

ULO
LC − UHI

LC

(4.25) 

Since we have .ULO
HC+ULO

LC ≤ Up ⇒ (ULO
HC ≤ Up−ULO

LC and also . UHI
HC+UHI

LC ≤
Up ⇒ 1 − (UHI

HC + UHI
LC ) ≤ 1 − Up: 

.
Up − (ULO

LC )

1 − (ULO
LC )

≤ 1 − Up

(ULO
LC ) − UHI

LC

(4.26) 

This condition will be satisfied if and only if: 

.(ULO
LC )2 − ULO

LC × (1 + UHI
LC ) + 1 + Up × (−1 + UHI

LC ) ≥ 0 (4.27) 

Accordingly, if Eq. (4.28) is met, expression (4.29) will be obtained according to 
the expression (4.27) (which is always true for each of the low-criticality utilization 
in [0, 1)): 

.1 + Up × (−1 + UHI
LC ) = (1 + UHI

LC )2

4
(4.28)
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.(ULO
LC − 1 + UHI

LC

2
)2 ≥ 0 (4.29) 

By simplification of Eq. (4.28), it will turn into: 

.Up = 3 + UHI
LC

4
(4.30) 

Accordingly, it could be concluded that the upper bound .(Up) depends on the 
utilization of the LC tasks in the HI mode. It means .(Up) depends on the parameter 

of . δj , which is different for each LC task (.UHI
LC = ∑

j∈LC

(δj −1)×WCETj

(δj ×Tj )
). Since the 

. Up is the utilization bound of the system, which is run on a single-core processor, 
its maximum value is 1. In the case of .ULO

LC + ULO
HC < UHI

LC + UHI
HC , then . Up =

UHI
LC +UHI

HC . Therefore, according to equality (4.30), in addition to inequality (4.22), 
another condition and upper bound for .UHI

HC should be checked to guarantee the 
schedulability of a task set in the HI mode, if we have .ULO

LC +ULO
HC < UHI

LC +UHI
HC , 

which is: 

.UHI
HC ≤ 3(1 − UHI

LC )

4
(4.31) 

4.2.5 A General Design Time Scheduling Algorithm 

Now, we review the proposed approach algorithm at design-time and show which 
of the presented conditions need to be checked. The pseudo-code of our scheduling 
algorithm has been illustrated in Algorithm 4.1, which explains the mechanism of 
the schedulability test. In summary, at the beginning and according to Eq. (4.1), 
we calculate the re-execution profiles for each task (either high or low). Also, we 
calculate the minimum re-execution profiles for HC tasks through Eq. (4.2) (line 1). 
Subsequently, the utilizations are calculated (line 2). In addition, we calculate the 
maximum re-execution profiles for HC tasks through the schedulability test (line 
3). If the maximum re-execution profile is more than the minimum one, we select 
this amount as .n′

HC and consequently, the utilization of HC tasks in the LO mode is 
calculated. Otherwise, the algorithm will return a false value (lines 4–8). According 
to Algorithm 4.1, at the first stage, FANTOM evaluates the utilization bound in 
both LO mode and HI mode. If they are less than 1, it means the task set can be 
scheduled by the EDF in both modes (lines 10–13). Otherwise, the inequality (4.10) 
is evaluated in order to check whether both of the HC tasks and LC tasks with 
.δj > 1 (which are mission-critical tasks) are executed in the HI mode or not. In 
addition, the two mentioned conditions in inequality (4.23) and also Eq. (4.31) in  
case of .ULO

LC + ULO
HC < UHI

LC + UHI
HC will be evaluated to test the schedulability of 

the task set (line 15). If all the conditions are met, the virtual deadline coefficient



4.3 Evaluation 93

Algorithm 4.1 Design-Time Scheduling Method Pseudo Code 
Schedulability Test(Task Set) 
1: (nLC, nHC) are obtained by Eq. (4.1) &  (n′

HC) by Eq. (4.2) 
2: (UHC,UHI  

HC,ULO 
LC , U

HI  
LC ) ← Util_Computation (taskset,nLC, nHC ) 

3: n′
2 = sup {max(n × UHC  + ULO 

LC , U
HI  
HC  + UHI  

LC + n×UHI ×(ULO 
LC −UHI  

LC ) 
1−ULO 

LC 
) ≤ 1}; 

4: if n′
HC  < n′

2 then 
5: n′

HC  = n′
2 

6: else 
7: return “The task set is not schedulable” 
8: end if 
9: (ULO 

HC ) ← Util_Computation (taskset,n′
HC  ) 

10: if UHI  
HC  + UHI  

LC ≤ 1 &  ULO 
HC  + ULO 

LC ≤ 1 then 
11: T̂i ← Ti for all tasks 
12: Schedule Task set with EDF Algorithm 
13: return “The task set is schedulable” 
14: else 
15: if Eq. (4.10) & Eq. (4.23) are satisfied & [(ULO 

LC + ULO 
HC  < UHI  

LC + UHI  
HC  & 

Eq. (4.31)) || (ULO 
LC + ULO 

HC  ≥ UHI  
LC + UHI  

HC )] then 
16: x ← is computed by Eq. (4.21) 
17: if Eq. (4.14) is satisfied  then 
18: T̂i ← Ti × x for each HC task 
19: Schedule Tasks with modified EDF-VD Algorithm 
20: return “The task set is schedulable” 
21: else 
22: return “The task set is not schedulable” 
23: end if 
24: else 
25: return “The task set is not schedulable” 
26: end if 
27: end if 

will be assigned with the minimum value (line 16). Hence, the virtual deadlines 
of HC tasks will be obtained by using the mentioned value in Eq. (4.21). Then, the 
sufficient condition of Eq. (4.14) is checked (line 17). If this equation is satisfied and 
the algorithm returns the true value, the task set will be scheduled by the EDF-VD 
algorithm (in which all LC tasks will be dropped in every . δj in the HI mode (lines 
18–20)). On the other hand, if none of the conditions are met, the task set cannot be 
scheduled and the algorithm will return a false value (lines 22 and 25). 

4.3 Evaluation 

In this section, the experimental results of the FANTOM are validated through 
extensive simulations on two case studies from the avionics domain presented in [1] 
and [9]. Then, we evaluate the impact of MC task’s parameter variations in the 
schedulability test of the task sets.
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4.3.1 Evaluation with Real-Life Benchmarks 

4.3.1.1 First Case Study of Flight Management System (FMS) 

Avionic real-life applications have been used in different papers to evaluate their 
presented methods [1, 10, 11]. To evaluate our method, we use the Flight Manage-
ment System (FMS) application introduced in [1], which consists of seven tasks 
from level B and four tasks from level C of safety requirement table (Table 2.1). 
We consider the tasks from level B as HC tasks and the tasks from level C as 
mission-critical tasks. Therefore, there are no noncritical tasks in this task set. We 
can also define different values for the PoF of each task. To evaluate this part, this 
parameter is assumed to be .10−5 [1, 12]. In addition, the value of the skip parameter 
for all LC tasks is considered to be .δ = 4. According to Eqs. (4.1) and (4.2), the 
number of re-executions for all of the tasks is calculated and set to .nLC=.nHC=3 and 
.n′

HC=2, respectively, to guarantee the safety requirements of the tasks without task 
killing and service degradation. Figure 4.3 represents the impact of FANTOM on the 
system schedulability. As shown in this figure, by increasing .n′

HC , the utilization 
of the system will be increased due to the HC tasks’ low utilization increment 
in inequality (4.23). In addition, the system will no longer be schedulable when 
.n′

HC > 2. On the other hand, by increasing .n′
HC (the redundancy for HC tasks 

needs to be increased), the PFH of LC tasks will be decreased and consequently, the 
system’s safety could be improved. In essence, the probability of mode switching 
would be decreased and as a result, the LC tasks will be dropped less likely. Hence, 
by assigning .n′

HC = 2, PFH of LC tasks will be .10−10 and the utilization will be 
.0.95, which is less than 1. 

4.3.1.2 Second Case Study of Flight Management System (FMS) 

Here, we investigate a set of real tasks, in which HC tasks have the safety 
requirement of level A. There is a case study for FMS application, introduced in [9], 
which consists of four tasks, three tasks from level A (responsible for executing 
the necessary control steps and essential for a reliable flight behavior) and one task 
from level B (responsible for detecting the objects). For this example, the number 
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implementation for FMS 
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Fig. 4.4 FANTOM 
implementation for FMS 
application: case study 2 
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of re-executions is set to .nHC = 3, .nLC = 1, and .n′
HC = 2, respectively. By having the 

same setting as the previous case study, Fig. 4.4 depicts the impact of FANTOM on 
system schedulability and LC task’s PFH. As shown, the system is not schedulable 
for .n′

HI > 2. Therefore, by assigning .n′
HI = 2, PFH of LC task is .10−9 (<.10−7) 

and .UMC = 0.96. 
In general, the safety requirement of HC (LC) tasks affects the number of 

re-executions (.nHC(.nLC)), and consequently, the utilization and the number of 
re-executions for HC tasks in the LO mode (according to Eq. (4.2)) are changed. 
Hence, according to the Eq. (4.1), the number of re-executions for HC tasks and 
LC tasks depends on the task properties, such as WCET, PFH, and the number of 
tasks in each level. For example, for the same number of tasks and WCET for each 
task, if PFH is changed from .10−7 to .10−9 for the tasks’ level, the number of re-
execution may be increased to guarantee the safety requirement. 

4.3.2 Evaluation with Synthetic Task Sets 

4.3.2.1 Experimental Setup 

In the following, the FANTOM has been evaluated by exploiting random MC task 
sets. These sets have been generated through the provided technique in [1, 2]. As 
an input parameter, the system’s utilization (.Ubound ) is obtained as equality (4.24), 
which should be less than 1. In the beginning, the .Ubound for the generated tasks 
are set to zero (i.e., the task system is initialized to be empty), and afterward, new 
tasks will be added to the task set in a random manner to increase the .Ubound until a 
certain value (.Ubound is increased with steps of .0.05). The period (. T ) and utilization 
of the tasks are generated uniformly within the range of [10, 100] and [0.01, 0.1], 
respectively. According to conditions, for each data-point (i.e., .Ubound ) in the range 
of [0.05, 1], 1000 task sets are generated and evaluated from the schedulability and 
fault-occurrence perspectives. In the end, the ratio of task sets, which were deemed 
as schedulable, will be reported. 

In the established simulations, we have considered HC tasks from level A, 
LC tasks from level B to E, mission-critical tasks from level B or C, and non-
mission-critical tasks from level D and E. Furthermore, the value of the parameter
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(. δ) is randomly generated between one and the maximum amount of this parameter 
for LC tasks. As the maximum amount of this parameter is considered to be 
determined by the designer, we investigate the results by varying the maximum 
amount in the range of [2,16] in the next subsection. 

The efficiency of FANTOM has been investigated through extensive simula-
tions and its comparison with the provided algorithms in [1] ([HYT14]) and 
[13] ([Al+16]). Researchers in [1] use  EDF-VD to schedule the tasks. Also, 
researchers in [13] use  the  FP scheduling algorithm that is based on apply-
ing Response Time Analysis (RTA). In this regard, our observations are categorized 
into five subsections. There are some graphs relating to the results in which the .y-
axis represents the fraction of schedulable task sets, which is called the acceptance 
ratio, and the .x-axis represents utilization. It should be noted that since the . Ubound

shows the utilization of task sets before applying the fault-tolerance technique and 
calculating the utilization in the LO mode and HI mode, the maximum utilization 
bound that the task set is schedulable has a small amount in graphs. 

4.3.2.2 Effect of Varying LC Task’s Parameter (δ) 

In the beginning, we evaluate the effects of varying maximum value of the newly 
defined parameter (. δ) for  LC tasks. As a result, according to Fig. 4.5, by reducing the 
maximum value of parameter . δ, the acceptance ratio will be slightly improved. The 
reason is that, in the case of increasing this parameter, the utilization of LC tasks in 
the HI mode will be increased due to Eq. (4.6). Therefore, the system schedulability 
will be decreased considerably according to inequality (4.23). If .max(δ) = 1, it  
means all LC tasks are noncritical and dropped in the HI mode. Indeed, there is no 
mission-critical task in the system. In this case, the acceptance ratio of the proposed 
approach is the same as the acceptance ratio of the method, proposed in [1], in which 
all LC tasks are dropped when the system switches to the HI mode. Indeed, there 
is no restriction for the system safety when none of the LC tasks are relevant to 
it. Besides, if .max(δ) = 4, it means LC tasks can have .δ = 1, .δ = 2, .δ = 3, or  
.δ = 4. Therefore, both noncritical tasks and mission-critical tasks are scheduled in 
the system as LC tasks. Hence, the significance of the proposed method is when 
there are some mission-critical tasks in the system, and in this case, the proposed 
method performs better than [1]. 

In the rest of this chapter, we consider .max(δ) = 4 to show the efficacy of our 
proposed method. 

4.3.2.3 Acceptance Ratio of Schedulable Task Sets 

We further compare the fraction of task sets, which could be scheduled under 
FANTOM, the traditional fault-tolerant EDF-VD algorithm [1], and fault-tolerant 
FP algorithm [13]. This fraction is defined as the acceptance ratio. Researchers 
in [1] have considered both task killing and service degradation for LC tasks in
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Fig. 4.5 Acceptance ratio 
with varying the parameter 
(. δ) for LC tasks 
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Fig. 4.6 Acceptance ratio of 
FANTOM with .max(δ)= 4 in  
comparison with methods 
of [1] (HYT14) and 
[13] (Al+16) 
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the HI mode. We use task killing of LC tasks by considering the QoS of LC tasks 
and execute them as much as possible in the HI mode to have a fair comparison. 
In addition, researchers in [13] have striven to increase the QoS of LC tasks in 
the HI mode, which we examine here. Accordingly, in this subsection, we have 
assumed that 40% of them are HC tasks and 60% are LC tasks that 30% of LC tasks 
are considered as mission-critical tasks and the remaining 30% are non-mission-
critical tasks (with .δ = 1). It should be noted that a task set is schedulable if all 
tasks can be scheduled in the LO mode, and then after switching to the HI mode, 
all HC tasks would be executed and also, LC tasks cannot be frequently dropped. 
As shown in Fig. 4.6, when the utilization of the system is smaller than .0.225, the  
tasks are always schedulable by both algorithms, which use EDF-VD. By increasing 
the utilization bound, the proposed algorithm could always schedule the task sets as 
long as the utilization is smaller than .0.275. Furthermore, Fig. 4.6 explains that the 
proposed algorithm can improve the acceptance ratio by up to 43.9% and 65.9% 
compared to the traditional fault-tolerant EDF-VD algorithm [1] and fault-tolerant 
FP algorithm [13], respectively. Since the EDF-VD is used in both our proposed 
method and [1], in the rest of this chapter, we show the effectiveness of our proposed 
method in comparison with [1]. 

4.3.2.4 Effects of Using Fault-Tolerance Techniques 

Now, we compare our proposed fault-tolerant scheme with the case when there 
is no fault-tolerant mechanism in the system. Indeed, we compare to a traditional 
non-MC scheduling algorithm in which the regular EDF algorithm is presented and
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Fig. 4.7 Safety requirement 
guarantee for the system with 
and without fault 
consideration 
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applied in many previous studies [14]. Using the fault-tolerance techniques such as 
re-execution to guarantee the system’s reliability and safety requirement has timing 
overheads, which is a common practice [15]. However, since the MC systems are 
safety-critical, its correct operation throughout a complete time interval is crucial 
even in the case of fault occurrence to prevent catastrophic consequences [16]. 
Figure 4.7 depicts that the proposed approach preserves the PFH of mission-
critical tasks, and HC tasks, to less than .10−7 and .10−9 (introduced in Table 2.1), 
respectively, in any .Ubound that the system is schedulable. In comparison, the 
traditional scheme has severely damaged the system’s safety, which is not desirable. 
It should be noted that, as mentioned in the previous subsection, the system is not 
schedulable for .Ubound ≥ 0.6. Therefore, the results of the PFH for both mission-
critical tasks and HC tasks are not shown for .Ubound ≥ 0.6. 

4.3.2.5 Effects of HC Task Run-Time Behaviors (P(WCET  LO )) 

In this subsection, we evaluate the effect of changing the run-time behaviors 
of HC tasks on the acceptance ratio. P(.WCET LO ) denotes the probability that 
HC tasks execute with their WCET in the LO mode (.WCET LO

i ) (as discussed 
before, HC tasks may overrun and use their WCET in the HI mode). It can be seen 
that if the inequalities (4.10) and (4.23) are satisfied offline, the task set will be 
schedulable in both criticality modes. Hence, the schedulability of the task set is not 
affected by the variation of P(.WCET LO ) in run-time. 

4.3.2.6 Effect of Varying PoF for Task Instances 

We evaluate the impact of varying PoF (. f ) on the system schedulability. Here, we 
assumed that 40% of tasks are HC tasks and 70% of the tasks are LC tasks (30% 
mission-critical task with .1 < δ ≤ 4, and 30% non-mission-critical tasks with 
.δ = 1). As shown in Fig. 4.8, the acceptance ratio increases as (. f ) decreases from 
.10−5 to .10−7 and also from .10−7 to .10−9 in both our proposed method and the 
method proposed in [1]. The reason is that decreasing . f means using a more reliable



4.3 Evaluation 99

Fig. 4.8 Acceptance ratio 
with varying the PoF, and 
.max(δ)= 4 in FANTOM and 
method of [1] (HYT14) 
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Fig. 4.9 Acceptance ratio 
with varying P(HC) in 
FANTOM and method 
of [1] (HYT14) 
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platform to have a safer system. However, the acceptance ratio of our proposed 
method is always better than the result of the proposed method in [1]. 

4.3.2.7 Effects of Task Mixtures with Varying P(HC) and P(MCT) 

Now, we evaluate the effect of HC task distribution variation on the acceptance 
ratio. Note that since we are unaware of all real-life applications and the number 
of each type of critical level, we studied our proposed method’s behavior with 
different parameter values. Here, .P(HC) denotes the ratio of HC tasks to all of the 
generated tasks. Here, in each scenario, we assume that the ratio of mission-critical 
tasks to all of the generated tasks is constant and the ratio of non-mission-critical 
tasks to all will be varied. Figure 4.9 shows that the acceptance ratio improvement 
becomes pronounced when there are fewer HC tasks in a task set (i.e., when P(HC) 
is decreased). However, when there are fewer HC tasks in a task set, there will be 
lesser number of system switches to the HI mode, and even by the occurrence of 
a mode switch, the system will switch back in earlier time (i.e., after a relatively 
shorter period of time). Consequently, the HI mode and LO mode will overlap less 
in time. In addition, LC tasks would fail less. This reasoning can also be obtained 
by exploring the condition (4.23). Besides, the same trend is found for [1], except 
that the proposed schemes always perform better than [1]. 

Similar to the above case, in Fig. 4.10, we evaluate how the number of mission-
critical tasks affects the acceptance ratio (shown by .P(MCT )). We assume that 
the ratio of HC tasks to LC tasks is constant and the ratio of the mission-critical 
tasks to non-mission-critical tasks in the task set is the only varying parameter. In 
addition, the distribution of HC tasks in a task set has been considered as a constant 
value (. 0.3). According to equality (4.30), since the upper bound utilization may
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Fig. 4.10 Acceptance ratio 
with varying P(MCT) in 
FANTOM and method 
of [1] (HYT14) 
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be influenced by the mission-critical tasks, the acceptance ratio will be changed. 
According to Fig. 4.10, it is evident that we would have a noticeable amount of 
improvement as the utilization of mission-critical tasks is reduced. Decreasing the 
number of mission-critical tasks in a task set can cause a reduction in utilization and 
consequently, more tasks can be scheduled. 

To this end, based on the results, we can conclude that by minimizing the 
ratio of HC tasks and mission-critical tasks in a task set, the upper bound will 
be maximized. In addition, the acceptance ratio of schedulable tasks would be 
increased by decreasing the task’s PoF (i.e., a more reliable hardware platform is 
used). 

4.4 Conclusions 

This chapter presents a heuristic in which we introduced a new parameter, analyzed 
task-drop-aware scheduling for uni-processor MC systems, and guaranteed the 
safety requirements of MC tasks in the presence of faults. Existing tasks in these 
systems have different criticality levels from real-time and safety perspectives. 
In some MC systems, some LC tasks should not be frequently dropped in the 
HI mode to prevent catastrophic consequences. Therefore, by defining a new 
parameter (which specifies the minimum interval between two consecutive drops) 
that designers determine, we propose a task-drop-aware scheduling analysis based 
on the EDF-VD to schedule both types of tasks in the HI mode. We analyzed 
the results by varying different parameters in the system and obtained that the 
proposed method improves the acceptance ratio by up to 43.9% compared to the 
state of the art. Besides, in order to extend the proposed approach for five criticality 
levels (according to DO-178B standard), first, we have to know the importance 
of functions and how they can be dropped in the higher criticality modes to have 
no impact on system functionality. Then based on this knowledge, the MC task 
schedulability is analyzed and checked. 

FANTOM guarantees the real-time constraints in the worst-case scenario. How-
ever, the system does not always exhibit the worst-case behavior at run-time. 
Besides, the proposed approach cannot adapt the system to task execution dynamism
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at run-time in order to optimize an objective. Therefore, we will propose a method in 
the next chapter to improve the QoS based on the dynamic changes in task execution 
times at run-time. 
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Chapter 5 
Learning-Based Drop-Aware 
Mixed-Criticality Task Scheduling 

As mentioned in the previous chapter, the low WCETs remain unchanged during 
run-time in static approaches, like FANTOM, which causes the system to be 
underutilized due to the unnecessary dropping of some LC tasks. Therefore, it 
is necessary to consider the run-time behavior of MC systems along with the 
assumptions that have been made at design-time (i.e., monitoring the state of the 
system and controlling the task dropping in the HI mode), to improve the utilization 
and QoS of LC tasks. Although there are some run-time approaches that improve 
the QoS by proposing a new scheduling policy or exploiting the dynamic slacks, 
the decision may be ineffective due to the lack of complete observation of the MC 
system’s behavior, and there may be no guarantee of meeting the LC tasks’ service 
requirements. 

To this end, we propose a novel optimistic mechanism in this chapter that reduces 
the number of drops for the LC tasks by observing the system’s behavioral changes 
at run-time. This goal has been achieved by exploiting the generated dynamic 
slacks in the decision-making process for the online task dropping to execute more 
LC tasks in the HI mode and enhance their schedulability. Since we are unaware of 
the amount of generated dynamic slacks during run-time in advance, ML approaches 
can be employed as a management technique for the prediction. Therefore, utilizing 
ML techniques as part of the proposed scheme has enabled it to partially exploit 
the dynamic slack to improve the QoS for the LC tasks in the HI mode. In these 
schemes, the learner finds the optimum drop rate for the LC tasks, prevents frequent 
drops in HI mode, and consequently reduces their deadline miss rate. We also extend 
the proposed mechanism, which is lenient in applying the learned drop-rate data to 
the scheduler. Accordingly, the main contributions of this chapter are:

• Presenting a novel adaptive technique with high QoS to schedule MC tasks at 
run-time

• Proposing a learning-based drop-aware MC task scheduling mechanism, called 
SOLID, to improve the QoS by exploiting the generated dynamic slacks rigor-
ously, during run-time with no HC tasks’ deadline misses
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• Extending the proposed mechanism (SOLID) to a mechanism that uses accumu-
lated dynamic slack moderately, called LIQUID

The rest of this chapter is organized as follows: In Sect. 5.1, we present a 
motivational example along with a problem statement to explain the problem to 
the readers better. The proposed approaches are discussed in detail in Sect. 5.2, and 
finally, we analyze and conclude the experiments in Sects. 5.3 and 5.4, respectively. 

5.1 Motivational Example and Problem Statement 

The main motivation for our proposed method comes from the fact that the MC 
systems are typically designed in a way that they are obliged to map and schedule 
the tasks in the worst-case scenario at design-time, before the system starts its 
operation. This is despite the fact that the application’s QoS, system utilization, 
and deadline miss rate of LC tasks in case of HI mode switching will be affected 
while the application is executing at run-time. Indeed, the properties of MC systems 
can be improved according to the status of the tasks’ execution over time. To 
support this claim, let us consider a simple drone application composed of five 
tasks .(τ1, . . . , τ5). The tasks’ timing parameters have been shown in Table 5.1. 
The period of task . τi (. Ti) is equal to the task’s relative deadline. Besides, since 
the EDF-VD algorithm is used to schedule the task, a virtual deadline (. d̂i , which is 
less than the relative deadline) is needed to be defined for HC tasks (the detail of 
how it is computed has been explained in [1]). 

In this example, . τ1, . τ2, and . τ5 are HC tasks and . τ3 and . τ4 are LC tasks. Each 
task function is determined in Table 5.1. Dropping an LC task, such as . τ3, could be 
acceptable in HI mode, but it should not frequently happen due to its responsibility. 
For instance, in multimedia tasks, e.g., . τ3, the maximum drop rate (i.e., the rate 
of skipping the videos) must be guaranteed when the MC systems are designed 
to satisfy the customers. More specifically, the minimum QoS of LC tasks must 
be guaranteed in the HI mode. Hence, most of the previously MC scheduling 
algorithms have been designed based on the maximum drop rate of LC tasks 
before the system starts its operation. Furthermore, these rates are kept constant 
during the tasks’ operation at run-time when the system switches to the HI mode. 
Figure 5.1 illustrates four task scheduling approaches, including (1) method of [1], 
a design-time approach that drops all LC tasks in the HI mode; (2)  FANTOM [2], 
the design-time approaches, which drop LC tasks based on their drop rates in the 
HI mode; (3)  FANTOM [2], investigating their approaches at run-time; and finally, 
(4) proposed method in this chapter. According to this figure, each task has several 
jobs, released at the beginning of its period. Therefore, a released job (j ) of task . τi

is shown by .J (i, j) with an upward arrow. 
Figure 5.1a depicts the task scheduling procedure under the principles of the 

proposed mechanism in [1]. Accordingly, assume that all of the tasks should 
comply with their specified time budget (.WCET LO and .WCET HI ) to be executed
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Table 5.1 The mixed-criticality task set 

Task function .ζi .WCET LO
i .WCET HI

i .Ti .d̂i . δi

.τ1 Engine control HC 2 7 24 11 . ∞

.τ2 Collision avoidance HC 2 4 48 22 . ∞

.τ3 Video capturing and transferring LC 2 2 8 – 3 

.τ4 Sensor data recording LC 2 2 6 – 4 

.τ5 Navigation HC 0.8 1 12 6 . ∞

Fig. 5.1 Scheduling of MC tasks under different policies. (a) Task scheduling mechanism in 
[1] (worst-case scenario). (b) Task scheduling mechanism in [2] (worst-case scenario). (c) Task  
scheduling mechanism in [2] (run-time). (d) The proposed task scheduling mechanism in this 
chapter 

correctly. This figure shows that the system switches to the HI mode by . τ5
overrunning. In this figure, the jobs of . τ3 (.J (3, 1), J (3, 2)), and . τ4 (.J (4, 2), J (4, 3)) 
are dropped twice in the HI mode, which is not acceptable in many MC applications. 
Figure 5.1b shows a scheduling mechanism that can schedule LC tasks in the
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HI mode [2]. Accordingly, the LC tasks are dropped based on their predefined drop-
rate parameters. Hence, as mentioned in Sect. 4.1, the drop-rate parameter is defined 
to limit the number of drops per LC task. In other words, it determines the minimum 
interval between two consecutive drops. In this scenario, only .J (3, 1), and . J (4, 2)

will not be executed in the HI mode. As it can be seen, the presented approach 
in FANTOM [2] enables the MC system to schedule LC tasks in the HI mode 
and improves the LC tasks’ QoS. Nevertheless, their design principles in the MC 
systems are all considered in the worst-case scenario of the task execution, which 
is not optimal. At run-time, the tasks are typically finished earlier than their WCET 
in most cases, and then some dynamic slack would be created. As an example, 
Fig. 5.1c shows the run-time behavior of the system, where some dynamic slack has 
been generated, and the tasks have finished their execution earlier. Therefore, other 
tasks could start their execution earlier, and the core would spend more time in the 
idle mode, compared to the scheduling mechanism depicted in Fig. 5.1b. 

Based on what we have learned, it is recommended that the system should be able 
to manage its behavior during run-time, to minimize the drop rate of some LC tasks 
in the HI mode. As a result of this action, the QoS will be enhanced, e.g., less video 
will be skipped, which is desirable. Figure 5.1d represents the task scheduling at 
run-time, where the dynamic slack has been used to minimize the drop rate when 
the system is in the HI mode (such as .J (3, 1) and .J (4, 2) which are not dropped). 
Although we are not aware of the amount of dynamic slack in advance, they could 
be exploited to improve the QoS. 

Motivated by the abovementioned example, prior to explaining the details of our 
novel scheduling technique, we define the constraints, and the objective function, as 
follows: 

Deadline Constraints Each HC task . τi with the WCET (.WCET
LO/HI
i ), running 

on core .crj must finish its execution (.FT imei is the finish time of task . τi) correctly 
before its deadline (. di) in both LO mode and HI mode. In addition, all LC tasks 
must finish their execution before their deadlines in LO mode. Besides, in case of 
switching to the HI mode, most  LC tasks must finish their execution before their 
deadlines according to their drop rate . δi : 

∀τi, & ζi = HC : FT  ime  LO/HI 
i ≤ di 

∀τi, & ζi = LC :
{

Mode = LO : FT  imeLO 
i ≤ di 

Mode = HI  : FT  imeLO 
i ≤ di |δi 

(5.1) 

Objective Function We optimize the MC system QoS at run-time by maximizing 
the LC tasks’ QoS in the system by utilizing the following objective function: 
Maximize .QoSsys or Minimize .DMRsys , where DMR is the deadline miss rate and 
the QoS is defined as the percentage of executed LC tasks in the HI mode to all 
LC tasks [2–4] (.QoS = nsucc

L /nL, where . nL is the number of all LC tasks and . nsucc
L

is the number of executed LC tasks before their deadlines in the HI mode), which 
can be optimized by optimizing their drop rates (. δi) (.QoSsys = nsucc

L /nL). The QoS
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is computed at the end of each hyper-period based on the number of non-executed 
LC tasks. Hence, the hyper-period is the LCM of all tasks’ periods. 

The problem is how to use the generated dynamic slack at run-time to maximize 
the QoS for satisfying the timing constraint. While we are not aware of the amount 
of dynamic slack in the future, it is possible to turn it into a partially controllable 
entity at run-time to optimize the intended objective. This could be done by using 
ML techniques. Therefore, this chapter proposes a novel learning-based and drop-
aware scheduling for MC tasks running on a single-core platform. As discussed 
below, we utilize our newly proposed technique to use the generated dynamic slack 
at run-time to achieve better performance and QoS. 

5.2 Proposed Method in Detail 

In this section, we present SOLID, a novel Strict learning-Oriented Quality-of-
Service- and Drop-aware task scheduling mechanism for MC systems, to apply 
in the run-time phase. As illustrated in Fig. 5.2, our proposed approach contains 
a design-time and a run-time phase. Application characteristics, architecture infor-
mation, and QoS metric are counted as inputs and scheduled tasks, and QoS 
improvements are the outputs. Accordingly, we first need to analyze the task 
schedulability at design-time based on their characteristics (Sect. 5.2.1) to guarantee 
the minimum QoS requirement for the system. Therefore, we use the FANTOM 
approach to ensure the task schedulability and the minimum QoS. Finally, we 
exploit our newly introduced learning-based optimization mechanism at run-time 
(Sect. 5.2.2). In the following, we explain the details of the proposed approach in 
each of these phases. 

5.2.1 An Overview of the Design-Time Approach 

This section focuses on task scheduling at design-time. According to Fig. 5.2, 
the timing properties of tasks are obtained by running real-world benchmarks on 
a hardware platform (more details about the benchmarks and the platform are 
provided in Sect. 5.3). We validate the schedulability test using the tasks’ parameters 
in the worst-case scenario. Besides, as part of ML technique employment, since 
embedded MC systems are the target systems, some aspects of the learning process, 
data, and model training are conducted at design-time, with robust offline learning 
techniques in the worst-case scenarios. More detail is discussed in Sect. 5.2.2.2. 

In order to schedule the tasks on core, a well-known scheduling algorithm, 
EDF-VD, is used. Since this algorithm has been widely studied in previous studies, 
we mention this algorithm briefly in this and the next subsections. To test the task 
schedulability, the EDF-VD scheduling algorithm conditions are employed [1, 2].
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Fig. 5.2 An overview of design-time and run-time phases 

Generally, the tasks are schedulable if all HC tasks can be executed correctly before 
their deadlines in any condition, and all of the LC tasks could be schedulable in 
the LO mode. In the  HI mode, LC tasks can be scheduled based on their defined 
drop rates (i.e., the LC tasks’ minimum QoS can be guaranteed in the worst-
case scenario). As a result, a set of tasks is schedulable under the EDF-VD in 
both operational modes on each core if the following necessary and sufficient 
conditions are met [2]. Equation (5.2) presents the maximum utilization bounds
for MC systems in both LO mode and HI mode that it must be less than one to 
let the tasks be schedulable under EDF-VD at run-time and also the system switch 
safely between the modes. Since the LC tasks must be dropped in the HI mode based 
on their drop-rate values with no effect on HC tasks’ execution, Eq. (5.3) presents
the sufficient condition for executing both HC and LC tasks in this HI mode (the 
information and the proofs of these conditions have been explained in detail in the 
previous chapter): 

. UMC = max(ULO
HC + ULO

LC ,UHI
HC + UHI

LC + ULO
HC × (ULO

LC − UHI
LC )

1 − ULO
LC

) ≤ 1

(5.2) 

. 

∑
ζj ∈HC�HP

Tj
� × WCET HI

j

HP
+

∑
ζj ∈LC(�HP

Tj
� − � HP

Tj ×δj
�) × WCET HI

j

HP
≤ 1

(5.3) 

where .Uk
l denotes the total utilization of the tasks with the same criticality level l, 

in the mode k, and HP  is the hyper-period of the tasks.
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5.2.2 Run-Time SOLID Approach 

The main goal of SOLID is to enhance the LC tasks’ QoS (i.e., minimizing the 
number of dropped LC tasks) under the mode switching situation by exploiting 
the dynamic slacks at run-time, with no deadline misses of HC tasks in any 
situation. This capability has been brought to SOLID by exploiting learning-based 
techniques. Note that the learning algorithm and the scheduling algorithm are 
independent, and we do not use learning techniques to schedule the tasks. In fact, 
the proposed approach is independent of the task scheduling algorithm, and the 
learning process is used to improve the QoS independent of scheduling tasks. Here, 
any scheduling algorithm can be applied to the tasks; however, this learning-based 
task scheduling mechanism is built upon the EDF-VD algorithm. To guarantee 
the schedulability of HC tasks in both LO mode and HI mode, when the system 
begins its operation, HC tasks are scheduled based on their virtual deadlines, and 
the LC tasks are scheduled based on their actual deadlines. In the HI mode, all  
HC tasks are scheduled based on their actual deadlines, while the LC tasks will 
be scheduled according to the SOLID scheduling principles. It should be mentioned 
that although the learning process can be done independently of the scheduler, its 
timing overhead to obtain the new drop rate values of LC tasks may be significant in 
real-time systems. Therefore, we can consider its timing overhead while checking 
the task schedulability. The details of the timing overhead of the learning process 
and how it is considered in schedulability test are presented in Sect. 5.3.3. In this  
section, we fully describe SOLID, based on the mentioned reinforcement learning 
technique in Chap. 3. 

5.2.2.1 Learning-Based System Property Optimization 

As mentioned in Chap. 3, the general Q-learning/SARSA technique consists of 
the three main components [5, 6], including 1) a discrete set of states . S =
{s1, s2, . . . , sl}, 2) a discrete set of actions .A = {a1, a2, . . . , ak}, and 3) reward 
function R. The algorithm collects the current state . st and determines the next 
action . at (.at ∈ A). The Q-values are updated according to Eq. (3.21) , based on the
corresponding computed reward in every iteration. The algorithm learns the optimal
action in every state, and this process is repeated until a predefined convergence
criterion is met. Note that SARSA and Q-learning are two RL methods and tend 
to optimize the results in the end. However, SARSA is an online policy, while 
Q-learning is an offline policy. These two different policies lead to different next 
action selection and Q-table updating. Since the proposed approach is composed 
of offline and online phases, and it is critically important to have a robust offline 
training technique for considering the worst-case scenarios before the system gets 
operational at run-time, SARSA would be the best choice for finding the optimum 
value (because there is no urgency at design-time to find the optimum value). 
Therefore, SARSA can explore most of the states in the data training. In this work,
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we set the values of . γ in Eq. (3.21) to 0.2, and . α to 0.5. These values are determined 
based on a wide range of experiments, which are set to obtain the best improvement. 

5.2.2.2 SOLID Optimization in Detail 

In order to maximize the QoS in MC systems, here we propose our learning-based 
approach for the operation of the system in HI mode. It should be mentioned that the 
time of the system mode changes and how long the system stays in each mode are 
unknown. As a result, the system encounters dynamic slacks with varying lengths, 
which would result in different actions in the intended mode. In SOLID, the agent 
controller has been designed to maximize the QoS by decreasing the LC tasks’ drop 
rates (i.e., drop less often) when the system switches to the HI mode. Note that no 
action is required in the learning process if the dynamic slack is too small. In order 
to update the Q-table, we check the generated dynamic slack at the end of each 
hyper-period. Based on the available slack, we update the Q-table, and decisions are 
taken (i.e., the new drop-rate value is determined). It should be mentioned that since 
we target real-time embedded MC systems, we conduct some parts of the learning 
process, data, and model training for the Q-table at design-time with robust offline 
learning techniques in the worst-case scenarios. The reason is that the learned Q-
table can be utilized to quickly determine the optimal actions based on the system 
state and also reduce the probability of bad decisions. Then, by using this data 
and what the learning algorithm learns from this training phase at design-time and 
also the obtained historical data at run-time, the algorithm improves its prediction 
process as time passes. In the following, we first explain the system state, action 
determination, and reward computation for the learning process to generate the Q-
table values. Then, we present the proposed approach in detail. 

System State Determination There are various criteria for determining the system 
states. In our proposed scheme, for the Q-table, the states of the system depend 
on the available CPU utilization and dropped LC task in a period. To represent 
the states in a formal way, for each state . si , .si = ‖UMC

i ‖ + ‖�i‖, where 
.UMC

i = {0, 0.1, . . . , 1}. Both utilization and dropped tasks are normalized to 
their maximum value (shown by .‖. . .‖). We also define ten ranges to determine 
the percentage of missed tasks to all tasks. As an example, consider . si as the . ith

utilization range (.max(i) = 10). Therefore, we have .si + � .(� ∈ [1, 10]), which 
indicates the variation in the rate of dropped LC tasks for the fixed utilization range. 
In each iteration, according to the unused utilization and the rate of dropped tasks in 
the previous hyper-period, the current state is determined for the Q-table. Here, we 
select an optimal action for the current system state. Thus, the system can gradually 
reach the optimal state. 

Learning Action Determination In this method, the well-known .ε-greedy policy 
has been exploited, in which the dynamic policy is used for adjusting . ε [7]. We first 
use a dynamic .ε-greedy policy with the value of .0.5 at design-time to prevent the
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probability of the learning algorithm from being stuck at few Q-values. Accordingly, 
we can accelerate the learning process. Afterward, the fixed .ε-greedy policy is used 
with the value of . 0.2 at run-time to ensure that the system reaches the optimum state 
and chooses the best action based on the Q-values, which has the maximum value. 
The action space in the Q-table illustrates an increase/decrease in a LC task’s drop 
rate (. δi ,.., .δi +k). It should be noted that the minimum values of drop rates are equal 
to the initial values that is used for schedulability analysis at design-time. 

Reward Computation This approach calculates the reward at the end of each 
hyper-period based on the available dynamic slack. Hence, when there is less 
accumulated dynamic slack at the end of the hyper-period, it means more core 
capacity (.UMC(t)) has been used on that hyper-period. The considered reward 
function for the Q-table is shown in Eq. (5.4) , which is based on the generated
dynamic slack at the end of each period:

.R =

⎧
⎪⎪⎨

⎪⎪⎩

−	 UMC(t) > ϕ

1
10×(1−UMC(t))

UMC(t) < ϕ

+	 UMC(t) = ϕ

(5.4) 

The reward function considers three scenarios. If the utilization falls into the 
unsafe zone that may cause deadline violation, the decision will be penalized. An 
unsafe zone means the utilization may increase more than one, where EDF-VD 
cannot guarantee the timeliness of all tasks. Accordingly, it results in a negative 
value (. −	, where .	 > 0 and has a constant value) for the reward function, which 
decreases the Q-value in Eq. (3.21) , i.e., reduces the probability of choosing it in the
future. In Eq. (5.4), we set the value of . 	 equal to 100 to highly impact the value of 
the reward function in a negative manner. In addition, since our goal is to use all of 
the accumulated dynamic slack to optimize the system property, .UMC

t = 1 would 
be the optimum case for the reward function (presented in Eq. (5.2) ). However, since
there may be some errors in the first phases of the learning technique, we consider
the upper bound of core utilization (. ϕ) to be less than one (.ϕ < 1). In fact, it can 
be equal to .ϕ = 1 − μ, where . μ has an extremely low positive value, such as 
.0.05. Hence, we consider a value less than the maximum core utilization as the core 
utilization limit to never let it violate the threshold. 

Actual Execution Time Predictor Policy Due to releasing several jobs of a task 
in each hyper-period, the execution times of jobs may be different in each 
hyper-period. We have to predict the execution times to compute the core utiliza-
tion (. UMC(t)) in Eq. (5.2) , according to the previous run-time tasks’ execution
times. This prediction is based on Eq. (3.23), mentioned in Chap. 3. 

Figure 5.2 depicts our proposed learning-based drop-aware task scheduling 
mechanism. It consists of the environment, i.e., the hardware platform, the agent, 
and its interaction with the operating system and the applications. This learning-
based property improvement technique has been designed for a system based on its 
states and action determination algorithms discussed earlier. The scheduler sched-
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ules the tasks based on the EDF-VD at run-time. At the end of each hyper-period, 
the accumulated dynamic slack and the number of dropped LC tasks in the HI mode 
are observed. The proposed learning phase decides how to increase/decrease the 
LC tasks’ drop rates based on the Q-table and reward function value. The major goal 
of SOLID is to use most of the created slack time and consequently maximize the 
core utilization by optimizing the LC tasks’ drop rates. In the learning process, the 
agent observes the state at a time period instance . Tt , computes the award, updates 
the Q-table, and performs an action. The action (a) is selected from the predefined 
action set in the specified Q-table (.a ∈ {a1, a2, . . . , ak}, where k is the maximum 
number of actions corresponding to each table). The chosen action is applied for the 
next time period (.Tt+1). After decoding the actions for the HI mode by the operating 
systems, based on the new LC task drop rates, the policies of the task scheduling 
and LC tasks dropping will be updated in the case that the system mode switches to 
the HI mode. 

To guarantee meeting the deadline of HC tasks, although we try our best effort 
and define the hard margin to avoid missing the deadlines, it could happen for 
the Earliest Deadline First (EDF) algorithm in the worst-case scenario that the 
core is fully utilized and all tasks are executed up to their WCETs at run-time, 
while some LC tasks’ drop rates were increased according to learned data. It 
may lead to some deadline misses for HC tasks. As a result, SOLID is strict in 
applying the learned data into the scheduler to ensure meeting the deadlines in 
the worst-case scenario. The scheduler in SOLID approach always considers the 
initial drop-rate values (.δold

i ) and drops LC tasks based on them in the HI mode. 
To apply the learned data, the dynamic slack is detected at run-time. When an 
HC task finishes its execution early, a dynamic slack is generated due to the early 
completion. Based on the learned drop rate values, the scheduler in SOLID releases 
the LC jobs to execute in this generated dynamic slack. Therefore, LC tasks are 
executed more times (drop fewer) by exploiting the slack time generated only 
from the early completion of HC tasks’ executions and improving the QoS in the 
HI mode. Although it introduces an extra workload for the system, it causes to 
prevent affecting the early LC tasks’ releases on HC tasks’ timeliness. We require 
judicious slack management to determine whether it is feasible to release an LC job 
at a time point. 

However, in order to be lenient in applying the learned drop-rate data into the 
scheduler, we extend SOLID to LIQUID, which uses accumulated dynamic slack 
moderately to improve QoS. 

5.2.3 Run-Time LIQUID Approach 

In LIQUID (Learning-based Quality-of-service- and Drop-aware MC task schedul-
ing mechanism), like what we proposed in SOLID, the proposed learning algorithm 
operates independently of the scheduler. However, in contrast to SOLID, LIQ-
UID applies the learned data into the scheduler with no restriction and taking care of
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generated dynamic slack by HC tasks. The scheduler in LIQUID approach always 
considers the learned drop-rate values, and LC tasks are dropped based on them in 
the case of mode switches. 

To make both approaches explicit, consider a task . τi with .δold
i = 3, which means 

one job would be dropped among three jobs in the HI mode. If the learned drop rate 
after a hyper-period is equal to .δnew

i = 6, it means one job would be dropped among 
six jobs. Therefore, the rate of task dropping would be half in comparison with the 
initial value. In fact, one more job among six jobs would be scheduled and executed. 
LIQUID always considers .δnew

i for the LC task . τi when the system switches to 
the HI mode. However, in SOLID, .δold

i considers for task . τi . If there is sufficient 
accumulated dynamic slack at run-time to execute . τi based on the learned . δnew

i , the  
task is released. In this work, we exploit and adapt the early release policy, presented 
in [8], which is an effective slack management technique in MC systems and based 
on a known mechanism, called wrapper-task mechanism [9, 10]. 

Algorithm Algorithm 5.1 illustrates the pseudo-code of the run-time approach, 
including both scheduling and learning procedures at the same time. As inputs, 
the algorithm takes the tasks and their characteristics (e.g., WCET, criticality level, 
drop rate, and period), the hardware platform, and the minimum QoS requested by 
the tasks. In addition, since a part of the learning process is done at design-time, 
the Q-table is obtained and taken as input. On the other hand, improvements in the 
LC tasks’ QoS and the scheduled tasks are defined as outputs at the end (Time). At 
each time, the scheduler checks the status of the tasks, whether they are overrun or 
not, which results in mode switching (line 4). This unit also checks the periods of 
tasks, whether they would be released or not. All tasks on every core are scheduled 
based on the EDF-VD algorithm (line 5). In the case of mode switches to the HI, 
the LC tasks are dropped based on their defined drop rate values to guarantee the 
correct execution of HC tasks. In lines 7–12, the number of dropped LC tasks is 
counted to be used in the learning process. If the system switches back to the 
LO mode, a parameter (CountDrop) for each task, which counts the number of 
released LC tasks in the HI mode, is set to zero (lines 14–16). Besides, there is a 
function (line 18) that checks whether the output of each task is ready. When ready, 
the task is removed from the core queue, and the generated dynamic slack is added 
to the slack array (lines 19–21). The learning process is conducted at the end of each 
hyper-period (lines 22–35). In this process, the number of dropped LC tasks in the 
HI mode and the accumulated dynamic slack is used to determine the state (line 23). 
As mentioned earlier, since the .ε-greedy policy is used, if a random number is 
less than . ε, a random action is selected (line 27, exploration phase of the learning 
process); otherwise, an action with the maximum value in the Q-table is chosen for 
that particular state (line 29, exploitation phase of learning process). Based on the 
chosen action, a new drop rate is determined for the task (line 31). Consequently, the 
reward function updates the Q-table (lines 32–33). Note that if an embedded system 
is kept running for a long time, although the system is in the exploitation phase over 
time, which uses the learned data, as can be illustrated from the policy, there is still 
a slight chance to learn if there is any pattern shift.
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Algorithm 5.1 Proposed learning-based scheme at run-time 
Input: Task Set, Core, Q-table 
Output: QoS, Scheduled Tasks 
1: procedure LEARNING-BASED QOS OPTIMIZATION () 
2: SQt = 0; 
3: for t = 1  to Time do 
4: [SysMS ,ReadyT askQ] =  TaskStatusCheck(Tasks) 
5: [Schtasks ] =  EDF-VD (ReadyT askQ, Core) 
6: if SysMS == 1 then 
7: for each released LC T aski do 
8: CountDropT aski += 1; 
9: if mod(CountDropT aski

,δT aski
) == 0  then 

10: NumDrop  += 1; 
11: end if 
12: end for 
13: else 
14: for each T aski do 
15: CountDropT aski = 0;  
16: end for 
17: end if 
18: F lagoutput =TaskOutputCheck(Tasks) 
19: if F lagoutput == 1 then 
20: SlackQ= WCETT aski − ActualtimeT aski 
21: end if 
22: if mod(t,HP )==0 then 
23: State= Deter-State (SlackQ,NumDrop) 
24: k= rand (1); //(0<k<1) 
25: //ε-Greedy Policy 
26: if k < ε then 
27: at = argrand (Ai) 
28: else 
29: at = argmax (st , Ai) 
30: end if 
31: Set the new task’s drop-rate based on the action  
32: R = CompReward (UMC (t)) // Eq. (5.4) 
33: Q(st , at ) = Q(st , at ) + α(R + γQ(st+1, at+1) − Q(st , at ))//Eq. (3.21) 
34: SlackQ= 0; NumDrop = 0;
35: end if
36: end for
37: end procedure

5.3 Evaluation 

The experiments are conducted on a Linux-based machine equipped with 1.4 GHz, 
a quad-core processor, and 16GB of memory. Since there are no real-life MC 
benchmarks to conduct the experiments, the major related studies have evaluated 
their proposed techniques by using synthetic task sets [2, 11–13]. However, in 
addition to synthetic task sets, we use various real-time tasks included in MiBench 
benchmark suite [14] for the evaluations. Besides, we analyze and compare the
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efficiency of proposed approaches against various methods [2, 12, 13, 15] in  
terms of schedulability, run-time QoS improvement, and available free slack at 
the end of a hyper-period. Our previous work (FANTOM [2]) uses the EDF-VD 
scheduling algorithm while dropping LC tasks in the HI mode according to the 
drop-rate parameter, without using the run-time adaptability. In [13](Liu+18), 
the QoS is improved by degrading the WCETs of  LC tasks in the HI mode. 
In [15] (LRQ. +14) and [12] (Hua. +19), the run-time adaptability is employed 
by exploiting the accumulated dynamic slack. A dynamic reservation-based task 
scheduling algorithm has been presented in [15] (LRQ+14) to minimize the deadline 
miss rate by using the dynamic slack, which is generated by the early completion 
of HC tasks. In [12] (Hua+19), a FP-EDF is used, and the QoS is improved by 
precising the LC tasks’ WCETs in the  HI mode. 

5.3.1 Evaluation with Real-Life Benchmarks 

As mentioned, MiBench benchmark suite [14] has been used, which is dedicated to 
applications such as automotive, network, and telecommunications. More specifi-
cally, we consider the benchmarks of ‹edge›, ‹smooth›, ‹epic›, and ‹corner› as the 
LC tasks and ‹qsort›, ‹insertsort›, ‹matrixmult›, ‹dijkstra›, ‹bitcount›, and ‹FFT› as 
the HC tasks in our system evaluations. To achieve their execution times, these 
benchmarks have been executed on the ODROID XU4 hardware platform. We 
consider the utilization of the tasks in the [0.05,0.1] interval (to be able to execute 
more tasks in a core), and the period/deadline of the tasks is computed according 
to the utilization and WCET values [1, 2]. More detail on WCETs values has been 
reported in [16]. In addition, the values of the drop rate (. δ) for the  LC tasks are 
randomly generated between 1 and its maximum value (which has been set to four 
in our experiments), based on the uniform distribution. Table 5.2 represents the 
normalized Number of Deadline Misses (NDM), normalized to method of [13]), 
and the QoS of different methods. As shown in this table, at run-time, LIQUID has 
provided the maximum QoS and the minimum NDM compared to the other 
methods. Besides, since FANTOM [2] has also presented a design-time drop-aware 
approach to not drop LC tasks frequently when the system switches to the HI mode, 
the QoS has a high value (and low NDM value) compared to the other existing 
studies. Although the proposed techniques in [12, 15] are run-time approaches, 
which improve the QoS, they are not well designed to exploit better from run-time 
profit. However, since [15] uses the  EDF-VD algorithm, which well utilizes the 
system’s capacity compared to the other existing scheduling algorithms, e.g., FP 

Table 5.2 NDM and QoS of 
different methods at run-time 
for a real task set 

LIQUID FANTOM [13] [15] [12] 

NDM 0.009 0.010 1 0.341 0.999 

QoS 99.67% 96.92% 64.33% 87.83 64.36%
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algorithm, and also exploits the generated dynamic slack, it provides better results 
in terms of QoS and NDM in comparison with [12]. 

In addition, as mentioned in the previous chapter, we define a drop-rate value for 
each of the LC tasks in the HI mode. At run-time, these values are optimized based 
on the generated dynamic slacks. In our experiments, the drop-rate values for four 
LC tasks have been updated from .{3, 3, 3, 3} to .{5, 6, 7, 7}, which has led to QoS 
improvement at run-time. 

5.3.2 Evaluation with Synthetic Task Sets 

Now we investigate the efficiency of LIQUID and SOLID under the presence of 
synthetic task sets. To generate synthetic task sets, analogous to [1, 13, 17], we 
consider dual-criticality task sets that are generated for various system utilization 
bounds (.Ubound = max(ULO

LC + ULO
HC,UHI

HC)). We randomly add tasks to the task 
set to increase .Ubound , until it reaches a given threshold in the [0.05,1] interval, 
with steps of 0.05. Besides, the periods of tasks are selected in the range of [100, 
900] ms. For each utilization threshold, 50 task sets are generated. Since the mode 
switching probability determines how often the system switches to the HI mode, 
and, therefore, impacts the speed of learning in this mode, in the conducted 

experiments, we have considered different ratios of .
WCET LO

HC

WCET HI
HC

= RatHC , from 

the [0.2,0.8] interval. The timing overhead of task execution interruption in the 
EDF task scheduling algorithm is in the order of . μs [18], which has been considered 
as part of the tasks’ WCETs in experiments. In addition, the actual execution time 
of a task follows the normal distribution of which the mean and standard deviation 
are .

2∗WCET HI
HC

3 and .
WCET HI

HC

12 [19]. 

5.3.2.1 Effects of System Utilization 

Considering the requirement of service maximization in MC systems, which is 
represented with drop-rate parameters for LC tasks, in this section, we first discuss 
the task schedulability under different utilization bounds in Fig. 5.3. Then, we 
evaluate the LC tasks’ QoS at run-time under different methods by varying the 
system utilization bound. Figure 5.4 illustrates the run-time QoS improvement 
under different scheduling algorithms. In this experiment, the number of LC 
and HC tasks in each task set is almost the same (.Prob(HC) 
 0.5). In 
addition, we do not change the run-time behavior of HC tasks while varying the 
utilization by considering an almost constant ratio of low-to-high WCET for the 
HC tasks (.RatHC ∈ [0.4, 0.6]). In other words, since varying .RatHC impacts 
objective values, we chose one subinterval and keep it constant, when the approach 
is analyzed by varying other parameters.
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Fig. 5.3 Task schedulability 
of proposed method, 
FANTOM [2], [Liu. +18] [13], 
[LRQ. +14] [15], 
and [Hua. +19] [12] by  
varying utilization bound 
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Fig. 5.4 Normalized QoS at 
run-time by varying 
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To evaluate the effects of varying utilization bound on the task schedulability 
at design-time, 1000 task sets are generated and evaluated. The task schedulability 
shows the ratio of task sets which are deemed as schedulable. Hence, a task set is 
schedulable if all HC and LC tasks can be executed correctly before their deadlines 
in the LO mode, and also all HC tasks and most LC tasks (based on their drop 
rate values) can be executed correctly before the deadlines in the HI mode. In fact, 
Eq. 5.2 and Eq. 5.3 must be satisfied in order to guarantee task schedulability. 
As shown in Fig. 5.3, since we have used the same design-time policy for the 
schedulability test as in [2], the results of these methods and our methods are the 
same. Besides, when the utilization is less than 0.7, LIQUID, SOLID, and FANTOM 
always schedule the tasks. This method could sometimes schedule the tasks as long 
as the utilization is smaller than 0.85. Moreover, LIQUID and SOLID provide a 
better task schedulability, compared to [12], due to using a different task scheduling 
approach than in [12], which is FP-EDF. Furthermore, this figure illustrates that the 
schedulability in methods of [13, 15] is worse than LIQUID. The main reason for 
this issue is that we prevent the frequent drop of LC tasks in the worst-case scenario 
(in the case of mode switches), while the other two methods may frequently drop 
LC tasks in the HI mode, and consequently, the task set would not be schedulable. 
Accordingly, the frequent LC tasks’ dropping in other approaches may cause the 
system not to carry out its mission correctly [2]. 

Figure 5.4 shows the normalized QoS for different approaches. As shown, 
the amount of provided improvement is negligible in the low utilization bound. 
In addition, the QoS of the LC tasks is decreased by utilization increment in 
all methods. The reason is that utilization increment increases the number of
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both LC and HC tasks. Therefore, the system may switch to the HI mode more 
often. Although the LIQUID has more opportunity to learn due to more often 
mode switches and improve the learning process, all HC tasks’ deadlines must 
be guaranteed in the HI mode, which causes more LC tasks to be dropped and, 
consequently, QoS reduction (QoS is the fraction of executed LC tasks before their 
deadlines to all LC tasks). However, due to the most favorable use of dynamic slacks 
at run-time, LIQUID has improved QoS better than the other methods. Besides, 
compared to the state of the art, FANTOM has provided more improvements in each 
utilization point due to maximizing the QoS at design-time. Besides, the QoS of the 
SOLID is better than FANTON due to using slack time at run-time to execute more 
LC tasks. However, in SOLID, since meeting the HC tasks’ deadlines is guaranteed 
under any circumstances, and the dynamic slack is reclaimed carefully, it has less 
improvement than LIQUID. Since we evaluate the methods at run-time in terms of 
QoS, Li et al. [15] have exploited the dynamic slack to improve the QoS, while the 
other methods have almost the same behavior at run-time. As a result, the method 
of [15] has a better improvement compared to the results of [12, 13]. Note that the 
QoS is zero for .Ubound > 0.85 in all methods due to the existing no schedulable task 
set under these methods when the utilization is more than .0.85. Since we guarantee 
that the LC tasks are not frequently dropped in the HI mode, more conditions must 
be checked to execute more tasks in the system, which leads the task sets to be 
unschedulable at high utilization. 

5.3.2.2 Effects of HC Tasks’ Run-time Behavior 

Since we investigate the MC systems’ run-time behavior, and the proposed method 
efficacy is influenced by how often the system switches to the HI modee, we 
vary the low WCET of HC tasks, determining the mode switching probability. 
In this regard, as part of our evaluations, we consider the low-to-high WCET 

ratio (.RatHC = WCET LO
i

WCET HI
i

) for the HC tasks in three different ranges of [0.2,0.4], 

[0.4,0.6], and [0.6,0.8]. Here, we assumed .Ubound = 0.75, and the number of LC 
and HC tasks in each task set is almost the same (.Prob(HC) = 0.5). 

Figure 5.5 depicts the LC tasks’ deadline miss rate for different approaches when 
varying low-to-high WCET ratio. The deadline miss rate is the ratio of the number 
of dropped LC tasks to the total number of tasks released in a time interval. Besides, 
the low-to-high WCET ratio increment means that the system switches less often to 
the HI mode due to having a high value of WCET for the HC tasks in the LO mode. 
The mode switching probability is decreased during run-time. As a result, it causes 
the system to be in LO mode most of the time, leading to fewer deadline misses. 
However, due to using the generated dynamic slack at run-time, the LIQUID reduces 
significantly the number of LC task drops compared to the other studies. Referring 
to the aforementioned reasons in the previous section, it has the same explanation 
for comparison with the results of the state of the art. Note that LIQUID may cause 
the HC tasks’ deadlines to be missed. SOLID copes with this issue and executes the
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Fig. 5.5 Normalized deadline miss rate at run-time when varying low-to-high WCET ratio in 
proposed methods, FANTOM [2], [Liu. +18] [13], [LRQ. +14] [15], and [Hua. +19] [12] 
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Fig. 5.6 Normalized unused free dynamic slack at run-time when varying low-to-high WCET 
ratio in proposed method, FANTOM [2], [Liu. +18] [13], [LRQ. +14] [15], and [Hua. +19] [12] 

LC tasks more, based on their newly learned drop-rate value if there is some slack 
generated by HC tasks’ early finishes, to improve the QoS. In the end, the deadline 
miss rate is decreased under LIQUID by up to 47.87% and 32.45% on average, 
compared to the other works. In addition, SOLID could reduce the deadline miss 
rate by up to 43.47% (4.4% worse than LIQUID) and 28.33% (4.12% worse than 
LIQUID) on average. 

Since we exploit the generated dynamic slack at run-time to prevent some 
LC tasks from dropping and consequently decrease the deadline miss rate, we 
investigate the amount of unused core utilization during a hyper-period. The amount 
of generated dynamic slack would be different in the HI mode while varying the 
low-to-high WCET ratio. As shown in Fig. 5.6, LIQUID can use more amount 
of dynamic slack, compared to the state of the art. Unlike FANTOM, which is 
a design-time approach, in LIQUID, we can use the dynamic slacks at run-time 
to improve the LC tasks’ drop rates and then decrease the deadline miss rate. 
Furthermore, since the method of [13] is also a design-time approach, it could 
not use the free unused core utilization to improve the intended objective. The 
reason for having better core utilization usage in FANTOM, compared to [13], is 
the policy of executing more LC tasks in the HI mode (i.e., improving the QoS), 
and therefore, less unused core utilization is generated. Besides, [12] approach 
provides a better result in comparison with the technique of [15] due to its task
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scheduling policy, especially when the system switches to the HI mode. It seems 
that in [12], the system switches back sooner. Therefore, HC tasks are not executed 
up to their high WCET, which leads the system to spend more time in the idle 
mode during a hyper-period. Due to the possibility of HC tasks’ deadline misses, 
SOLID handles it, and thus, less generated dynamic slack would be reclaimed. 
Based on our observations, exploiting the accumulated dynamic slack (generated at 
run-time) enables LIQUID and SOLID to reduce the free dynamic slack by 7.32% 
and 6.82%, on average, respectively, compared to the existing methods. 

5.3.2.3 Impacts of Task Mixtures 

We further evaluate the proposed approaches against the other methods under 
different HC task distribution variations. In this regard, Figs. 5.7 and 5.8 represent 
the deadline miss rate at run-time and the free dynamic slack in one hyper-period, 
respectively, when the HC tasks’ utilization (i.e., more numbers of HC tasks, 
compared to LC tasks) to all of the generated tasks’ utilization varies in three 
different ratio ranges of [0.2,0.4], [0.4,0.6], and [0.6,0.8]. Besides, in this part of 
our simulation, we assume .Ubound = 0.75 and .RatHC = 0.75. 

0.15 

0.25 0.250.29 

0.38 0.350.32 

0.46 0.47 

0.76 

1 1 

0.68 

0.79 

0.68 
0.76 

1 1 

0.1 

0.2 

0.3 

0.4 

0.5 

0.6 

0.7 

0.8 

0.9 

1 

Prob(HC)=[0.6,0.8] Prob(HC)=[0.4,0.6] Prob(HC)=[0.2,0.4] 

D
ea

dl
in

e 
M

is
s 

R
at

e 

LIQUID SOLID FANTOM [Liu+18] [LRQ14] [Hua+19] 

Fig. 5.7 Normalized deadline miss rate at run-time when varying task mixtures in proposed 
method, FANTOM [2], [Liu. +18] [13], [LRQ. +14] [15], and [Hua. +19] [12] 
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Fig. 5.8 Normalized unused free dynamic slack at run-time when varying task mixtures in 
proposed method, FANTOM [2], [Liu. +18] [13], [LRQ. +14] [15], and [Hua. +19] [12]
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According to Fig. 5.7, when more HC tasks are scheduled in the system, the 
mode switching probability is higher. It causes the system to drop LC tasks 
due to mode switching to execute all HC tasks correctly before their deadlines. 
It helps LIQUID to accelerate the learning process due to the more frequent 
mode switches and significantly improve the QoS by dropping fewer LC tasks in 
the future. In addition, since there would be fewer LC tasks in the system (by 
increasing the number of HC tasks in the system, while the system’s utilization 
is constant), fewer LC tasks are dropped at run-time by the proposed schemes, 
which improves the QoS. Figure 5.8 shows that there is less free dynamic slack 
at the end of the hyper-period while increasing the .Prob(HC) range. In fact, 
since fewer LC tasks are scheduled in the system by increasing the .Prob(HC), 
the generated dynamic slack in the HI mode has been used for fewer LC tasks 
to improve their drop-rate value and, consequently, reduce the deadline miss rate. 
According to Fig. 5.7, LIQUID (SOLID) can decrease the deadline miss rate by up 
to 54.15% (44.88%) and 40.52% (30.39%) on average, compared to the state of the 
art. In addition, LIQUID (SOLID) can exploit the dynamic slack (generated at run-
time) by 12.35% (11.95%) on average, in comparison with the existing methods. 

5.3.2.4 Investigating the LC Tasks’ Drop-Rate Parameter 

Now, we evaluate the effects of varying the task mixtures on the increment of 
LC tasks’ drop-rate parameters. This parameter is increased by exploiting the 
dynamic slack through a learning algorithm employed in the proposed scheme at 
run-time. Varying .Prob(HC) determines the percent of existing HC/LC tasks in 
a task set. Therefore, as mentioned in the previous section, when there are more 
HC tasks in the system, the QoS will have a higher value. It means that there is 
more increment in the drop-rate parameter value of LC tasks, which causes to drop 
fewer LC tasks and consequently decreases the deadline miss rate. This fact can 
be observed in Fig. 5.9, in which the average increment in drop-rate parameter for 
.Prob(HC) = [0.2, 0.4], .[0.4, 0.6], and .[0.6, 0.8] are 47.05%, 66.32%, and 73.21%, 
respectively. 

5.3.3 Investigating the Timing and Memory Overheads of ML 
Technique 

Although the RL technique has been reported to be lightweight and highly 
suitable for the systems, compared to other types of learning techniques [20], 
the main issues are its convergence and timing overhead. Accordingly, similar to 
other studies [5], we have reduced the feasible actions to reduce the complexity 
and convergence issues. In the following, we investigate the timing and memory 
overheads of the employed learning technique.
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Fig. 5.9 Drop-rate increment percentage under the proposed approach by varying task mixtures 

Consider a system with a single-core processor running an application with n 
tasks. To investigate the timing overhead of the learning process in each hyper-
period, we analyze it on two systems, Intel® Core i7 processor and 2.5 GHz and 
ARM Cortex A-15 core and 2 GHz. From the complexity point of view, lines 22– 
35 of Algorithm 5.1 represent the learning process, in which for finding the 
maximum Q-value based on the obtained state (in a row of the table), a for-loop 
is used (line 29). Therefore, we can conclude that the complexity of the learning 
process depends on the number of actions in the Q-table (O(A)). According to 
our measurement at run-time, the maximum and average timing overhead in Intel 
core (ARM core) are 1.2 ms (4.1 ms) and 0.1 ms (0.53 ms), respectively. Since the 
maximum timing overheads are significant, to maintain the HC tasks’ timeliness, 
we consider the learning process as a task with the WCET, equal to the maximum 
timing overhead and a period equal to hyper-period, while checking the task 
schedulability at design-time. 

Furthermore, we need to clarify the amount of required memory space for storing 
the Q-table in terms of memory overhead. Accordingly, we store a two-dimensional 
array with .size(S) rows and .size(A) columns, in which the rows and columns show 
the states (S) and actions (A), respectively. Since the value of a table cell is in the 
range of .[−100, 100], it is required to consider at most 8 bits for storing each cell. As 
a result, we need .size(A) × size(S) × 8 bits to store the Q-table. For an application 
with 30 tasks, the amount of required memory space for saving the Q-table with 100 
states would be .30 × 100 × 8bits . = 3 kB.  

5.4 Conclusions 

In this chapter, we proposed a novel approach, a learning-based drop-aware task 
scheduling mechanism, to reduce the deadline miss rate at run-time, with the aim of 
providing higher QoS. To achieve this goal, the dynamic slack is exploited at run-
time, and since the system is unaware of the amount of generated dynamic slack in
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advance, the proposed scheme introduces an adaptive LC task dropping technique 
that uses an ML technique to exploit the slack and increase the survivability of 
LC tasks. Based on an extensive set of experiments, the proposed schemes can 
decrease the deadline miss rate by up to 51.78% and 31.32% on average and 
also exploit the accumulated dynamic slack generated at run-time by 9.84% more 
on average, compared to the current works. The proposed learning approach was 
analyzed regarding run-time timing overhead to ensure that there is no effect on 
missing the task deadlines. Although the timing overhead has been considered, it 
still has a significant value for embedded real-time systems, which is viewed as a 
limitation/drawback of the proposed scheme. Another limitation of the proposed 
method is the large exploration time of the learning process. Since the parameters 
would be updated through the learning process at the end of each hyper-period, the 
proposed method does not apply to applications with a large hyper-period. As an 
extension of this approach, if an MC system with more than two criticality levels 
is considered, there would be a challenge in how accumulated dynamic slack can 
be employed for improving the QoS of different criticality-level tasks, for example, 
for levels B, C, and D. Defining a threshold level of QoS for each criticality level 
might be fruitful in deciding how generated dynamic slack can be employed for 
each criticality level and improve their QoS. 

Hitherto, we have proposed approaches to designing the MC systems with the 
aim of QoS improvement through application analysis. In these approaches, QoS 
has been improved through well-adjusted WCETs and task dropping analysis. Since 
the proposed approaches in Chaps. 3–5 can be applied to MC systems regardless of 
what hardware is used, i.e., single-/multi-core processors, we considered single-core 
processors as the hardware input. As mentioned in Chap. 1, in most embedded real-
time applications, there are various tasks with different functionality, like controlling 
a device. Generally, these tasks have a common goal, like controlling autonomous 
driving, which may make them dependent. In other words, executing a task may 
depend on the complete execution of one/some of the other tasks. Therefore, since 
there are many tasks in these embedded real-time systems to be executed on a single 
platform, we can utilize the multi-core processors to execute the tasks in parallel to 
cope with the high-performance demands and improve the QoS. However, in MC 
hardware design, high-power consumption due to activating most of the cores may 
cause the systems to be more susceptible to failures and instability, which is not 
acceptable for MC systems, and it may cause catastrophic consequences. Therefore, 
the multi-core system’s power and maximum temperature management must be 
considered while designing MC systems. 

Although the proposed approaches in the last three chapters can be extended 
by considering the feature of multi-core platforms, the ability to execute tasks in 
parallel on multi-core platforms has not been considered in these approaches, which 
allows the QoS to be improved more efficiently. Besides, high-power consumption 
and temperature can be one of the crucial issues in these multi-core platforms that 
must be considered while designing such MC systems by the proposed approaches 
in order to guarantee the constraints like real-timeliness, safety, or management of 
the objectives like QoS.
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To this end, in the following two chapters, we focus on MC hardware design 
and propose QoS-aware approaches to map and schedule the dependent MC tasks 
on multi-core platforms while reducing the power consumption and maximum 
temperature. 
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Chapter 6 
Fault-Tolerance- and Power-Aware 
Multi-core Mixed-Criticality System 
Design 

In this chapter, we employ the hardware platform features in designing the MC 
systems in order to benefit from the parallel execution of tasks in multi-core 
platforms in improving the objectives, like QoS, while meeting the real-time 
constraints and safety requirements of tasks. To this end, we propose a method 
that exploits a tree of schedules for MC tasks (the tasks are dependent on this 
chapter). The proposed technique generates a tree of schedules offline (at design-
time) considering all possibilities of fault-occurrence scenarios in different tasks 
(including both LC and HC tasks) and HC task overrun. At run-time, when an HC 
task overruns or a fault occurs in an LC or HC task, the scheduler chooses the 
proper schedule from the tree to tolerate the faults (by using the task re-execution 
technique) or manage the system mode switches with low overheads. The main 
goal of this proposed method is to improve the LC tasks’ QoS in the HI mode 
while all HC tasks meet their deadlines. As a result, by generating the schedule 
tree and exploiting it at run-time, the LC tasks’ QoS is maximized, while the 
occurrence of possible faults is tolerated. Since tasks can overrun and a fault can 
occur at any time but occasionally, using a single task’s mapping and scheduling to 
guarantee the correct and on-time execution of all HC tasks without power constraint 
violation leads to inefficient utilization of resources. Thus, the proposed method 
manages peak power and temperature to prevent hotspots in homogeneous multi-
core platforms. 

To the best of our knowledge, this work is the first work to study the QoS-aware 
scheduling problem for fault-tolerant MC systems with peak power and thermal 
consideration. We summarize the main contributions of this work as follows: 

• Proposing a tree generation approach for MC systems, based on all possibility of 
fault-occurrence scenarios and criticality mode changes 

• Offline QoS-aware task mapping and scheduling to guarantee the correct execu-
tion of most LC tasks in the HI mode 
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• Peak power-aware task mapping and scheduling in multi-core MC systems for 
both LO mode and HI mode 

• Reducing the run-time timing overheads by generating all schedules at design 
time and exploiting them at run-time 

In this chapter, at first, a motivational example is presented in Sect. 6.1 for a 
better understanding of the problem and the proposed solution. Then, the design 
methodology and proposed method are explained in detail in Sects. 6.2 and 6.3, 
respectively. Finally, we analyze the experiments and conclude the chapter in 
Sects. 6.4 and 6.5, respectively. 

6.1 Problem Objectives and Motivational Example 

The MC system is responsible for running an application with a set of periodic 
dependent tasks on a multi-core chip. In addition, the system might face up to k 
transient faults in one application period. Prior to motivating by an example and 
explaining the details of our novel scheduling approach, we define the constraints, 
and the objective function, as follows: 

Deadline Constraint Each HC task . τi must finish its execution (.FT imei) correctly 
before its deadline (. di) in both LO mode and HI mode. In addition, all LC tasks 
should finish their execution before their deadlines in the LO mode: 

. ∀τi, ζi = HC : FT imei ≤ di

∀τi, ζi = LC and CrL = LO : FT imei ≤ di (6.1) 

Task Dependability Constraint Due to the precedence correlations between tasks, 
the start time of task . τi (. sti) must be greater than the finish time of all its predecessor 
tasks (.Pr(τi)): 

.∀τi,∀j ∈ Pr(τi) �⇒ sti ≥ FT imej (6.2) 

Mapping Constraint A task (. τi) can only be executed on a single core in each time 
slot. If . Xij denotes the mapping of task . τi on core j , then: 

.∀τi,
∑

j∈Cores

Xij = 1 (6.3) 

Power Constraint The chip’s overall power consumption must not violate the chip’s 
TDP (.T DPchip) in any time slot: 

.∀t ∈ t imeslots :
∑

j∈Cores

P owjt ≤ T DPchip, (6.4)
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Fig. 6.1 Task graph of an application with three tasks used in the example 

where .Powjt represents the power consumption of core j in time slot t . 
When the system switches to the HI mode, the system drops some LC tasks to 

meet the timing constraints, which degrades the QoS of the system: 

.CrL = HI : QoS = nsucc
L /nL (6.5) 

The problem is how to map and schedule dependent MC tasks of application A 
on the system’s cores to satisfy the aforementioned constraints (timing and peak 
power) and QoS of the system. In this chapter, we propose a heuristic method to 
solve this NP-hard problem [1]. 

To better understand the problem, Fig. 6.1 shows an application with three 
dependent tasks, where tasks . τ1 and . τ2 have HC and task . τ3 has LC. Deadline, 
low WCET, and high WCET of each task are presented in the figure, and the system 
takes 1ms to discard the output of a faulty task (.μ = 1). Hence, the periods of all 
tasks are the same and equal to 18ms. For the sake of simplicity, we considered 
that the application runs on a single-core processor, and up to one fault may occur 
during the execution of the application (.k = 1). So, the system cannot execute 
multiple tasks simultaneously on different cores to violate TDP (we will discuss 
TDP challenge later). The scheduling algorithm in the LO mode executes tasks . τ1, 
. τ2, and . τ3, respectively. The schedulability test [2] shows that in the LO mode, all  
three tasks can be executed even in the case of fault occurrence. In other words, the 
total CPU utilization for application A is less than one .(UA ≤ 1). If we consider the 
HI mode, if an  LC task . τ3 is executed in addition to the two HC tasks in the case 
of fault occurrence, the system becomes overloaded (.UHI

A >1) and the three tasks 
cannot be scheduled. However, if we drop some LC tasks in the HI mode (. τ3 in 
this example) to guarantee the correct execution of HC tasks, then the computation 
demand requested by tasks is less than one and can be scheduled before their 
deadline. As a result, the utilization of this example for both LO mode and HI mode 
with the probability of one fault occurrence is computed as follows, in which just 
HC tasks are considered to be executed in the HI mode:
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. UA = MAX(ULO
A ,UHI

A ) ≤ 1

ULO
A =

⎛

⎝
∑

i∈{1−3}

WCET LO
i

TA

⎞

⎠ + k(maxi∈{1−3}(WCET LO
i ) + μ)

TA

= 4

18
+ 3

18
+ 2

18
+

(
4 + 1

18

)
= 14

18
< 1

UHI
A =

⎛

⎝
∑

i∈{1,2}

WCET HI
i

TA

⎞

⎠ + k(maxi∈{1,2}(WCET HI
i ) + μ)

TA

= 6

18
+ 5

18
+

(
6 + 1

18

)
= 18

18
≤ 1 (6.6) 

However, for this example, 14 different scenarios could happen during the 
execution of the application because the time of the fault and task overruns are 
unknown. Table 6.1 shows all these scenarios and the execution time of the system 
whether it drops LC task or not. In ten scenarios (. S5 to . S14), an HC task overruns, 
and it shows the system is in the HI mode. However, as shown in Table 6.1, 
only in two scenarios the system fails to execute all tasks (HC and LC tasks) 
before the deadline (. S7 and . S8). The reason is that the system has switched to the 
HI mode in these scenarios and also a fault has occurred. It causes the system to 
be overloaded and the computation demand for executing all tasks becomes more 
than one (.UA > 1). Therefore, the LC task . τ3 would be dropped. Although there are 
some scenarios such as . S12 to . S14, that the system is in the HI mode, we schedule 
the LC task in this mode to improve the QoS. As shown in Table 6.1, the start time 
of . τ3 in . S12 (. S14) is 16 (13), and since the WCET of the LC task is 2, then it can 
be executed before the application deadline (.dA = 18). This example clearly shows 
that all situations should be considered in an MC system. Therefore, the system is 
analyzed in detail at design-time, and then, the proper schedule is exploited in the 
online phase to minimize the drop ratio of LC tasks and enhance the QoS. 

Figure 6.2 shows the tree for the application task graph presented in the 
motivational example, which is constructed in the offline phase of our proposed 
approach. At run-time, the system starts each period with . S1 (the scheduling in the 
root of the tree), which corresponds to the scenario where no fault occurs and no HC 
tasks overruns. If an HC task overruns (for instance, task . τ1), the system searches 
through the children of the current node (. S1), finds the appropriate task mapping and 
scheduling, and continues the execution based on the new schedule (. S6 in this case). 
After that, if the error detection unit detects a fault at the end of a task execution 
(for instance, task . τ2), the system searches through the children of the current node 
(. S6), finds the appropriate scenario, and continues the execution based on the new 
task mapping and scheduling (. S8 in this case).
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Fig. 6.2 The tree constructed by our method for the task graph of Fig. 6.1 

It is important to mention that each schedule has a different start time, system 
mode, the expected number of faults, and task set. Furthermore, the scheduling of 
child nodes must be compatible with the scheduling of their parent, so the system 
can change the schedule of tasks without any conflicts. For instance, assume that 
in . S1, the task execution order is . τ1, . τ2, and . τ3. When the system employed . S4, it  
implies that . τ1 and . τ2 are completed successfully, the system is in the LO mode, and 
a fault is detected at the end of the first execution of . τ3. So, the . S4 should schedule 
tasks based on this information. 

6.2 Design Methodology 

The fault-tolerance and peak power-aware task mapping and scheduling method 
consists of two phases: design-time and run-time. In this chapter, we propose a 
design-time approach to be used at run-time for objective management. For the 
sake of completeness, we provide a brief overview of how to use the schedule 
tree in the run-time phase, which is generated at design-time. Figure 6.3 shows 
an overview of the design methodology. In the design-time phase, there are three 
functions that are used to generate the schedule tree, MakeTreeRec, Schedule, and 
MapSch. Section 6.3 provides details of generating the tree, these functions, and 
how we manage the peak power consumption. All scenarios are stored in memory 
to be used in the run-time phase. At run-time, an application follows the presented 
task mapping and scheduling at the root of the tree. In the case of fault occurrence or 
mode switching, the appropriate task mapping and scheduling for the remaining un-
executed tasks is fetched from memory. After fetching, mapped tasks based on the 
previous scenario are remapped based on the new scenario, and the system continues 
its operation. In the following subsection, we explain the design-time phase of our 
proposed method.
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Fig. 6.3 Design methodology 

6.3 Tree Generation and Fault-Tolerant Scheduling and 
Mapping 

As we discussed, multiple scenarios might happen during the execution of an 
instance of the application, where, in most of these scenarios, the system can 
execute all or most of LC tasks without violating HC tasks’ deadline. To this end, 
the proposed approach of this work considers a different mapping and scheduling 
for each scenario to handle HC tasks’ deadlines, faults, and peak power violations 
while minimizing the number of dropped LC tasks in the HI mode. In the run-time 
phase, in general, the system is unaware of tasks that might overrun or a fault that 
occurs, so the system cannot select the proper schedule in advance. Therefore, this 
work employs a tree data structure in the offline phase to organize the mapping and 
scheduling of tasks for all scenarios, corresponding to each HC task overrunning, 
and/or up to k fault occurrence during each period. Now, we explain how the 
scheduling tree is generated. 

6.3.1 Making Scheduling Tree 

The main function of creating the tree (. �) is outlined in Algorithm 6.1. At first,  we  
define a priority queue called TaskPQ (line 3), which considers tasks’ release time as 
the priority. The release time of a task is the time when all its predecessor tasks have 
finished their execution (presented in Sect. 2.1.1.1). Then, the algorithm enqueues 
all tasks without any predecessor to the TaskPQ with a key equal to 0, because they 
are released at the beginning of the period (line 4). Each node of the tree represents 
a particular scenario, and it has two attributes called sch and childs. For instance, 
in the root scenario, the system is in the LO mode, and no fault occurs in the entire 
period. sch is the proper mapping and scheduling of tasks for that scenario, and 
childs is a list of children nodes of the current node.
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Algorithm 6.1 Creating the tree 
Input: Task Graph (GT ), List of Cores (c), Number of Faults (k). 
Output: Scheduling Tree (�). 
1: procedure MAKETREEMAIN () 
2: � ← Empty Tree 
3: TaskPQ ← Empty Priority Queue 
4: Add all tasks without predecessor node to TaskPQ with key 0 
5: �[root].sch ← MapSch(GT , c, 0, ∅, T  askPQ)  
6: if �[root].sch=un-scheduled then 
7: return ∅ 
8: end if 
9: �[root].childs ← MakeT reeRec(GT , c,�[root].sch, 0, k, LO)  
10: if �[root].childs=un-scheduled then 
11: return un-scheduled 
12: end if 
13: return �

14: end procedure 
15: function MAKETREEREC (Task Graph (GT ), List of Cores (c), Parent Schedule(Sch), Time 

(T ), Number of Faults (k), Mode of the System (Mode)) 
16: SchList ← Empty list of nodes 
17: if Mode = LO then 
18: //HChild nodes 
19: Tasks ← List of unfinished HC tasks in time T. 
20: GH ← GT With High WCET. 
21: for each τ in Tasks do 
22: Ttmp  ← Finish time of τ in sch + Tsw . 
23: S ← New node 
24: S.sch = Schedules (GH , c,  Ttmp , sch, TaskPQ) 
25: if S.sch = un-scheduled then 
26: return ∅. 
27: end if 
28: S.childs ← MKT reeRec(GH , c, S, Ttmp, k,HI)  
29: if S.childs = ∅ then 
30: return ∅. 
31: end if 
32: Add S to SchList 
33: end for 
34: end if 
35: if k > 0 then 
36: Tasks ← List of Unfinished Tasks in T. 
37: for each τ in Tasks do 
38: Ttmp  ← Finish Time of τi in sch. 
39: S.sch = Schedules(GT , sch, Time) 
40: if S.sch = un-scheduled then 
41: return un-scheduled. 
42: end if 
43: S.childs ← MKT reeRec(GT , c, S, Ttmp, k  − 1,Mode)  
44: if S.childs = ∅ then 
45: return ∅. 
46: end if 
47: Add S to SchList 
48: end for 
49: end if 
50: return SchList 
51: end function
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Algorithm 6.2 Schedule procedure 
Input: Task Graph (GT ), List of Cores (Cores), Time (T ), Parent Schedule (Schpar ), Ready Task 

Priority Queue (T askPQ). 
Output: Schedule (Sch) 
1: procedure SCHEDULES () 
2: Tr ← List of Tasks from G that all predecessors has started executing before time T. 
3: Add Tr Tasks to a Priority Queue (TaskPQ). 
4: Sch ← Schpar [0 − T ] 
5: Sch ← MapSch(G1, Cores, T , Sch, T  askPQ)  
6: if Sch = un-scheduled then 
7: Find a LC Task with Largest execution time which has not started in T and remove 

it from G then goto line 2. 
8: if Cannot find any LC task then 
9: return un-scheduled. 
10: end if 
11: end if 
12: return Sch 
13: end procedure 

The algorithm calls MapSch function (Algorithm 6.3, which is discussed later 
in this section) to schedule task for the root node (line 5). The algorithm returns 
un-scheduled if MapSch function cannot find any feasible schedule with no task 
dropping and violating the TDP constraint (lines 6–8). Otherwise, the algorithm in 
line 9 continues to create the rest of the tree recursively by calling MakeTreeRec 
function (which is presented in lines 15–50 of this algorithm). If task scheduling 
is feasible in all possible scenarios, MakeTreeRec function returns a list of child 
nodes, and the algorithm returns the tree (. �); otherwise, the algorithm returns un-
scheduled, which means it could not find a feasible solution (lines 10–13). 

The MakeTreeRec function in Algorithm 6.1 recursively creates the tree. Each 
node in the tree might have two types of child nodes. The first type of child 
node (HChild) has a scenario similar to their parents, except that one of the HC tasks 
overruns. Therefore, if the system is in the LO mode, any unfinished HC task might 
overrun and change the system’s mode. To this end, first, MakeTreeRec function 
collects all unfinished HC tasks and creates an HC task graph (. GH ) by changing the 
WCET of all tasks to high WCET (lines 18–19). Then, for each unfinished HC task, 
the function considers the scenario that the task overruns and schedules the task by 
calling Schedules function, presented in Algorithm 6.2. If the  Schedules function 
finds feasible scheduling, the algorithm recursively creates a tree for this node, 
where the system is in the HI mode, and up k faults may occur on the remaining 
tasks by calling MakeTreeRec function (lines 20–32). It is important to mention that 
switching to the HI mode has nonzero timing overhead (. Tsw) in realistic systems [3], 
but it is insignificant in comparison with tasks’ WCETs (line 21). The second type of 
child node (FChild) has a scenario similar to their parents, except for one fault that 
occurs during the execution of one of the remaining tasks. The system can tolerate 
up to k faults in a period. If less than k faults occur in a node scenario, a faulty 
execution of all remaining tasks needs to be considered. Therefore, a child node is
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generated for the faulty execution of each remaining task, and also for each child 
node, the algorithm recursively constructs a tree by calling MKTreeRec with k-1 
faults (line 34–48). Finally, if the algorithm finds a feasible solution for all scenarios, 
it returns the list of child nodes (SchList). 

The Schedule function schedules tasks for each situation by calling MapSch 
function (Algorithm 6.3). If MapSch function fails to find a feasible solution to 
meet the deadlines of all tasks with respect to TDP constraint, Schedules function 
drops the largest LC task (in terms of WCET) and calls MapSch function again. 
The Schedules function repeats this procedure to find a feasible schedule. If 
MapSch function fails to find a feasible solution, and there is no more LC task 
to drop, Schedules function returns un-scheduled (lines 2–12 Algorithm 6.2). We 
will discuss the MapSch function in the next subsection. As we mentioned in this 
section, occurring faults and a criticality mode change generate different scheduling 
scenarios that correspond to a set of alternative schedules. These scenarios are stored 
in the memory of the system as a tree in the offline phase. At run-time, the system 
starts with the scheduling in the root node, which is for the scenario where no fault 
or overrun happens. After that, if a fault occurs or an HC task overruns, the system 
finds the appropriate scenario in the child nodes of the current node and changes the 
scheduling of the system to improve the number of executed LC tasks. 

6.3.2 Mapping and Scheduling 

In this section, we explain the proposed mapping and scheduling algorithm, which 
manages the peak power and hotspot distribution. It should be mentioned that low-
power techniques, e.g., DVFS, cannot be easily used in the HI mode, especially 
when the system is in the overload situation due to the timing overhead. Therefore, 
we manage the peak power by finding the proper mapping and scheduling of tasks 
on free time slots of cores. This task mapping and scheduling is feasible if the 
system’s power consumption never exceeds the TDP constraint, and all tasks finish 
their execution (even in the worst case) before their deadline. So, MapSch algorithm 
decides the time and core where each task should be executed. 

Algorithm 6.3 outlines the pseudo-code of the MapSch algorithm. Tasks are 
mapped and scheduled up to time T based on the current node schedule. In the case 
of fault occurrence or mode switches at time T, this algorithm maps and schedules 
the rest of the tasks based on the new node schedule from time T to the end of the 
application period (PERIOD). The time is divided into a set of equal time slots (TS), 
and the scheduler will put tasks into cores only at the beginning of each time slot. 
In each time slot, at first, the algorithm sets an empty array for ready tasks, and 
then it extracts all elements of TaskPQ, where their key is equal to the current time 
slot. This means that all predecessor tasks of these ready tasks have finished their 
execution. If TaskPQ and ReadyTasks array are both empty, the algorithm returns 
the final scheduling (Sch) because it successfully schedules all tasks. If there is no
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Algorithm 6.3 Mapping and scheduling pseudo-code 
Input: Task Graph (GT ), List of Cores (Cores), Time (T ), Scedule up to the Time (Sch), Ready 

Task Priority Queue (T askPQ). 
Output: Complete Schedule (Sch) 
1: procedure MAPSCH () 
2: for TS = T to PERIOD do 
3: ReadyT asks ← ∅ 
4: Extract minimum element from TaskPQ and add it to ReadyTasks while key 

of each element is equal to TS and TaskPQ is not empty; 
5: if TaskPQ.empty() = true and ReadyTasks = ∅ then 
6: return Sch // Scheduling is done; 
7: end if 
8: if ReadyTasks = ∅ then 
9: continue // No new task is ready in this TimeSlot 
10: end if 
11: SortedTasks ← Sort (ReadyTasks, Desc); 
12: SortedCores ← Sort (Cores, Asc); 
13: for task in SortedTasks do 
14: for core in SortedCores do 
15: Timetmp ← taskwcet 
16: count ← 0 
17: Schtmp  ← Sch 
18: SysPowtmp  ← SysPow 
19: while T imetmp  > 0  do 
20: if Schtmp(T S+count, core) is empty & SysPowtmp(T S+count) + 

taskpow <= T DP  then 
21: Schtmp(T S + count, core) = task  
22: SysPowtmp(T S + count) += taskpow 
23: T imetmp -= 1 
24: end if 
25: count += 1; 
26: end while 
27: if T S+count ≤ taskdeadline then 
28: Sch ← Schtmp  
29: SysPow ← SysPowtmp  
30: SortedCores ← Sort (Cores, Asc); 
31: tasksch ← true 
32: break 
33: end if 
34: end for 
35: if tasksch == false then 
36: return un-scheduled 
37: end if 
38: end for 
39: end for 
40: end procedure 

ready task to be scheduled in the current time slot (the ReadyTask array is empty, 
but the TaskPQ is not empty), the algorithm moves to the next time slot (lines 2–10). 

The algorithm sorts the ready tasks in descending order of their energy con-
sumption (line 11). The energy consumption of each task . τi (.Engi) is calculated as 
follows:
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.Engi = Powi × WCETi (6.7) 

where .Powi and .WCETi are the maximum power consumption and the worst-case 
execution time of task . τi . The maximum power of each task can be obtained by 
running benchmarks on a real platform. As mentioned in Sect. 2.1.4, the processor 
power consists of three components; when a task is run on a processor, the dynamic 
power is increased significantly compared to static and independent powers. Hence, 
in this work, we do not model the power; we measure the processor power when 
tasks are run on the real platform. More information about computing these values 
is given in Sect. 6.4.1. The system’s power consumption must never exceed the 
TDP constraint to overcome the overheating problem [1]. To this end, we consider 
a constant power consumption for each task at design-time, which is equal to its 
maximum power consumption, to guarantee the meeting of TDP constraint in the 
worst-case scenario. In addition, energy increment leads to an increase in chip 
temperature [4, 5]. Thus, we map a task with more energy consumption to a core 
with less temperature. Then, the algorithm sorts the cores in the ascending order of 
their accumulated energy (line 12). A core has a higher priority for task assignment 
if it has less accumulated energy (i.e., tends to have a less temperature degree). 

After sorting tasks and cores, the algorithm assigns tasks to the cores one by one 
(lines 13–38). So, for each task, the algorithm selects a core from the sorted list and 
schedules the task on the core’s free slots (lines 19–26). The system’s instantaneous 
power consumption must be less than the TDP constraint, so we consider an array 
called SysPow, which holds the maximum power consumption of the system 
in each time slot. The algorithm checks the SysPow and TDP constraint before 
scheduling a task on a core (line 20). If the task is completed before its deadline, the 
algorithm updates the schedule (Sch), power array (SysPow), and scheduling status 
of the task (.tasksch). It also sorts the cores again since the energy of one core has 
changed and starts to schedule the next task (lines 27–33). If the task does not meet 
its deadline on the core, the algorithm picks the next core and schedules it on that 
core. However, if the deadline of one task is violated in all cores, the algorithm fails 
to schedule tasks of the application in this scenario and returns “un-schedulable” 
(lines 36–37). 

The example in Fig. 6.4 shows an MC application and how our method maps 
and schedules the tasks on three cores. Assume the TDP constraint is 1.6watts. 
Figure 6.4b shows that the scheduling without our policy violates the TDP 
constraint, while the maximum power consumption of the task scheduling by 
considering our policy is below the TDP constraint (Fig. 6.4c). When the system 
completes task . τ1, three tasks (. τ2, . τ3, and . τ4) become ready to be executed. So, 
.Engτ2 > Engτ3 = Engτ4 that shows . τ2 should be mapped to the core with less 
accumulated energy (. Ec). In addition, as can be computed, .EC3 = EC2 > EC1. 
Therefore, according to the criticality level, we first map . τ2 and . τ3 on . C3 and . C2, 
respectively, and schedule them, and thereafter, . τ4 is mapped on . C1. This procedure 
will be the same for mapping and scheduling . τ5 and . τ6.
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Fig. 6.4 Two different task scheduling scenarios. (a) An example of MC application. (b) Task  
scheduling without our policy. (c) Task scheduling with our policy 

6.3.3 Time Complexity Analysis 

In this section, we consider an m-core processor running an application with n tasks 
and k possible fault occurrences during the application’s execution. At first, we 
describe the complexity of generating a tree as the main computation part of the 
proposed method. 

When an HC task overruns, the system switches to the HI mode, and the 
scheduler considers the high WCET of remaining tasks until the complete execution 
of the application. So, in each execution, only one task may overrun, and the 
possible scenarios for overrun situations are equal to the number of HC tasks (. nH ). 
Furthermore, we assume that up to k faults may occur during the execution of the 
application. For clarity, we first compute the number of different fault-occurrence 
scenarios for .k = 0, 1, and 2. Then, we present a general formula to obtain the 
maximum number of possible scenarios (nodes of the tree). 

• .k = 0: In this case, there is one scenario for a situation where none of the tasks 
overruns (the root of the tree) and . nH (number of HC tasks in the graph) scenarios 
for situations where one of the HC tasks overruns (leaf nodes of the tree). Thus, 
the number of all schedules is:
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.T (k = 0) = 1 + nH (6.8) 

• .k ≤ 1: In this case, the tree has .T (k = 0) nodes to handle .k = 0 scenarios, 
in addition to the nodes which contain scheduling for .k = 1 scenarios. There 
are three possible situations for the scenarios where one fault occurs to a task 
(HC or LC task). There are n scenarios for situations when no HC task overruns, 
.n × nH scenarios for situations where the faulty task executes before an HC task 
overruns, and .n×nH scenarios for situations where the faulty task executes after 
an HC task overruns. Therefore: 

. T (k ≤ 1) = T (k = 0) + n + 2 × n × nH = 1 + nH + nH × n + n × (1 + nH )

= 1 + nH + nH × n + n × T (k = 0) (6.9) 

• .k ≤ 2: In this case, the tree has .T (k ≤ 1) nodes to handle .k ≤ 1 scenarios, 
in addition to the nodes which contain scheduling for .k = 2 scenarios. There 
are four possible situations for the scenarios where two faults occur to one or 
two task(s). There are . n2 scenarios for situations when no HC task overruns, 
.n×n×nH scenarios for situations where the two faulty tasks are executed before 
an HC task overruns, .nH ×n×n scenarios for situations where the two faulty tasks 
are executed after an HC task overruns, And .n × nH × n scenarios for situations 
where an HC task overruns in the middle of two faulty tasks. It is noteworthy to 
mention that there are scenarios in which both faults and overrun happen on a 
one HC task (similar to S7, S10, S12, and S14 in Table 6.1). Therefore: 

. T (k ≤ 2) = T (k ≤ 1) + n2 + 3 × nH × n2

= 1 + nH + nH × n + nH × n2 + n × T (k ≤ 1) (6.10) 

Therefore, we can conclude that the maximum number of possible schedules
by considering maximum k fault occurrence is:

.T (k) = 1 + nH

(
k∑

i=0

(ni)

)
+ nT (k − 1), T (0) = 1 + nH (6.11) 

By solving Eq. (6.11) , we can conclude that generating the tree is in order of
.O(nk+2): 

.T (k) = nH ×
(

k∑

i=0

((i + 1) × ni)

)
+ 1 − nk+1

1 − n
(6.12) 

Please note that this value is a general upper bound for the generating tree
algorithm, and for an actual task graph, the total number of scenarios is less than
Eq. (6.11). The reason is that the total number of scenarios is presented with no
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awareness of the exact dependency between tasks to count the precise number of 
scenarios when a fault occurs and then a task overruns, or vice versa. For example, 
there are 14 different scenarios for two HC tasks, one LC task, and .k = 1 for the 
task graph presented in Fig. 6.1, while .T (k) is equal to 18 in Eq. (6.11) .

6.3.4 Memory Space Analysis 

In this section, we discuss the memory space needed for storing the scheduling tree. 
For each scenario, we store two arrays with the size of the number of tasks. The first 
array determines the core assigned to each task, and the second array determines the 
start time of the tasks. In the first array, we denote that each task is mapped to which 
of c cores. So, each task requires .logc

2 bits. Since we have n tasks in the application, 
the total memory space required for each scenario is .n × logc

2 bits. Considering the 
period of the application and the size of each time slot, the second array size is equal 
to .n × logperiod/timeslot

2 . Therefore, the total amount of needed memory (bits) is: 

.Mem(n, c, k) = T (k) ×
(

n ×
(
logc

2 + log
period
timeslot

2

))
(6.13) 

Assuming c and period/timeslot values are less than . 232, the memory space 
needed for saving the scheduling tree for an application with 32 tasks and up to 
two possible fault occurrences in the worst-case scenario is less than 13 MB. It 
is noteworthy to mention that the scheduling tree can be stored in the FLASH or 
read-only memory of the system, and there is no need to load the whole tree to the 
RAM at run-time. In the case of fault occurrence or mode switching at run-time, the 
system discards the current schedule and loads the proper child node’s schedule into 
the RAM. In this example, our approach occupies less than 2 KB of the RAM. 

6.4 Evaluation 

6.4.1 Experimental Setup 

6.4.1.1 Application 

For the experiments, we used both real-life and random applications to show our 
proposed approach’s efficacy. To generate random task graphs, we used the tool 
presented by Medina et al. [6]. We generated applications with 30, 40, 50, and 
100 tasks (n), where 20–50% of them are LC tasks. Another important parameter 
in a task graph is edge percentage (d) which shows the probability of having 
edges from one task to another task. We considered 1–20 % edge percentage 
in the experiments. Another important parameter that will be discussed in the
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experiments is the normalized system utilization .U/c, where U is the utilization 
of the system considering the high WCET of each task and c is the number of 
cores. We considered different values of normalized system utilization in the range 
of (0,1] with the steps of 0.05. We also evaluate the proposed approach and other 
approaches for comparison, with a real-life application task graph, vehicle Cruise 
Controller (CC) [7], composed of 32 tasks, where 34% of them are LC tasks. In 
addition, the value of edge percentage for this CC application is 7%. 

6.4.1.2 Hardware Platform 

To evaluate our approach, we conduct the experiments and run the applications on 
a platform with 2, 4, 8, and 16 cores, which models ARM Cortex-A7 cores (c). The 
maximum number of transient faults that may occur during each application period 
(k) and the recovery overhead . μ are considered 3 and 15ms, respectively [8]. It is 
important to know that if . λ and t ime  is the fault rate and application execution time, 
respectively, the minimum number of fault occurrence would be .λ×t ime. Therefore, 
k would not be much smaller or larger than .λ × t ime [9]. If .λ = 10−6f ault/μs, 
and .t ime = 103 ms, then .λ × t ime = 1. As a result, since this fault rate is much 
higher than real fault rates, mentioned .10−12f ault/μs in [10], considering . k ≤ 3
is a reasonable fault-occurrence number during each application period. We use the 
HOTSPOT tool [11] to obtain the cores’ temperature trace by exploiting the specific 
floorplan according to a real platform, ODROID XU3 board, which has four ARM 
Cortex-A7 cores, and the parameters used in [12]. In addition, we use the reported 
value in [3], to consider the timing overhead of mode switching for ARM Cortex 
processors. We considered the maximum reported overhead, which is .Tsw = 254μs, 
in our experiments. 

6.4.1.3 Peak Power Consumption 

To determine a realistic power consumption for tasks, we ran several embedded 
benchmarks from the MiBench suite, such as automotive, network, and Telecomm., 
on the ARM Cortex-A7 core of the ODROID XU3 platform with maximum 
frequency at design-time. We monitor the power sensors continuously, and we 
set the worst measured power as the power consumption of tasks. In addition, 
we examined different scenarios of activating one core to all cores by running 
different benchmarks. Each benchmark is run 1000 times on a core, and we 
considered each task’s power consumption between the minimum and maximum 
power values obtained from the platform. The measurement reports show that the 
power consumption of tasks is between 483mW and 939mW. In these experiments, 
the TDP value has been considered 85% of the maximum power that a chip can 
consume, which is used conventionally in embedded processors [13].
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Fig. 6.5 Tree construction time for different application sizes and number of fault occurrence. (a) 
Number of tasks. (b) Number of fault occurrence 

6.4.1.4 Comparison 

We analyzed our proposed method and compared our experimental results to the 
results obtained by recent works that use the task graph model [6, 14, 15]. Socci et 
al. [14] ([Soc. +15]) have proposed an online scheduling algorithm for an MC system 
where only HC tasks are executed in the HI mode. Medina et al. [6] ([MBP18a]) 
have considered a fault-tolerant MC system that generates two tables at design-
time and uses them at run-time. Based on this work, we in [15] ([Ran. +19]) have 
presented an online approach (will be presented in detail in the next chapter) to 
reduce the peak power and temperature by using the DVFS technique. Hence, due 
to the timing overhead of DVFS and increasing fault rate by changing the V-f 
levels [16], we cannot easily use this technique, especially in the HI mode. 

6.4.2 Tree Construction Time 

At first, we evaluate offline tree construction time by varying the parameters n and 
k, in Fig. 6.5. The tree’s construction time is computed on a system with an Intel 
Core-i5 processor with 1.3GHz clock frequency. Construction time depends on the 
number of faults and tasks. Figure 6.5a shows the effects of the number of tasks and 
the portion of HC tasks in each task set with .k = 3. Besides, Fig. 6.5b shows  the  
effects of the number of fault occurrences with .n = 20. These figures depict that 
by increasing the number of faults or number of tasks, the tree generation’s time 
is increased exponentially. Also, task sets with higher HC tasks have higher tree 
construction time. Although the offline tree construction time is relatively high for 
large applications, the online overhead is small and constant for all applications. It is 
noticeable that our method can generate each node of a tree in parallel to reduce the 
construction time. For example, if we have a systemwith four cores, the construction 
time is about four times faster than in a single-core system.
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6.4.3 Run-Time Timing Overheads 

In case of fault occurrence or mode switching, the system finds the proper schedule 
by moving to the child of the current node, which is responsible for the upcoming 
scenario. Each node of the tree stores two arrays with the size of . n × (logc

2 +
log

period
timeslot

2 ) bits, where c and n are the number of cores and tasks, respectively. 
Thus, the switching time between the schedules consists of moving one level in 
the tree and retrieving the correct scheduling from memory, which is constant and 
negligible. We measured the schedule changing time at run-time on the ODROID 
XU3 platform; considering .c = 8, and .n = 50, it is almost 0.47. μs. 

6.4.4 Peak Power Management and Thermal Distribution for 
Real-Life and Synthetic Applications 

In this subsection, we analyze the approaches in terms of peak power and maximum 
temperature, by running two real-life applications: vehicle CC [7] and object 
detection function using LIDAR sensor in Autoware application [17]. 

Figure 6.6 shows the system’s power traces of vehicle CC application [7] by our 
proposed approaches, the approaches proposed by Socci et al. [14], Medina et al. [6], 
and Ranjbar et al. [15]. Since [15] is the online approach to minimize the peak power 
while exploiting the same task mapping and scheduling of [6] at design-time, their 
power traces and thermal distributions are the same in the worst-case scenario of 
tasks’ execution time and power consumption. In this part, to focus on the behavior 
of systems in the HI mode, we assumed no fault occurred during the application’s 
execution. Socci’s approach does not violate TDP constraint because it drops all LC 
tasks when the system switches to the HI mode, which means it has zero-percent 
QoS of LC tasks in the HI mode. On the other hand, methods of [6] and [15] 

Fig. 6.6 Power trace of real-life application graph (CC) in different methods (proposed approach, 
[15] (Ran. +19), [6] (MBP18a), and [14] (Soc. +15)) under worst-case scenario
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Fig. 6.7 Thermal profiles of real-life application graph (CC) in different methods (proposed 
Approach, [15] (Ran. +19), [6] (MBP18a), and [14] (Soc. +15)) under worst-case scenario. (a) 
Proposed method. (b) [6, 15]. (c) [14] 

guarantee 90.91% of LC tasks’ execution in the HI mode, but it frequently violates 
the TDP constraint (Fig. 6.6). For the CC application, our method endeavored to 
execute 81.82% of the LC tasks without violating TDP constraint. Figure 6.7 shows 
the steady-state temperature distribution of Socci [14], Medina [6], Ranjbar [15], 
and our proposed method using the HOTSPOT simulator for the CC application, 
corresponding to power profile of Fig. 6.6. Although the maximum temperature 
of [14] is lower than ours, it has zero-percent LC tasks’ QoS because it does not 
execute any LC task in the HI mode. In addition, we map the tasks on the cores more 
uniformly than Medina’s method, which prevents hotspots in our approach. The 
proposed approach could reduce 5 . ◦C in maximum temperature compared to [6, 15]. 
If the system becomes larger in terms of the number of cores and tasks, the efficiency 
of our proposed approach in reducing the hotspots would be higher. 

As a result, our method reduces the peak power and maximum temperature by 
up to 20.06% and 3.71% respectively, compared to the approach of [6, 15], while 
the QoS is degraded 9.09%. On the other hand, although our method increases 
the maximum temperature by 9.61%, compared to [14], we reduce the peak power 
consumption by 6.31% and improve the QoS by 81.82%. 

Now, we show the power trace (Fig. 6.8) and heat map of the system (Fig. 6.9), 
when the Autoware application is running on the system with three cores. This 
application consists of 19 tasks; 10 HC tasks and 9 LC tasks. Similar to what 
is considered for the CC application, to focus on the behavior of systems in 
the HI mode, we assumed no fault occurred during the application’s execution. 
According to the dependencies and timing of the tasks, all LC tasks could be 
scheduled before their deadlines in the proposed approach and methods of [6, 15]. 
As can be seen in these two figures, the proposed approach can manage the peak 
power consumption to be less than TDP constraint, compared to [6, 15] approaches. 
Note that the system peak power and maximum temperature under [14] approach is 
less in comparison to our approach due to executing fewer tasks (i.e., dropping LC 
tasks) when the system switches to the HI mode. As a result, the proposed method
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Fig. 6.8 Power trace of real-life application graph (Autoware) in different methods (proposed 
Approach, [15] (Ran. +19), [6] (MBP18a), and [14] (Soc. +15)) under worst-case scenario 

Fig. 6.9 Thermal profiles of real-life application graph (Autoware) in different methods (proposed 
Approach, [15] (Ran. +19), [6] (MBP18a), and [14] (Soc. +15)) under worst-case scenario. (a) 
Proposed method. (b) [6, 15]. (c) [14] 

could reduce the peak power and maximum temperature by up to 9.9% and 3.2%, 
respectively, compared to the approach of [6, 15]. 

Now, we evaluate the power trace and thermal distribution of different methods 
of [6, 14, 15] and our proposed method for a random task set example in the worst-
case scenario, in terms of execution times and power consumption. It should be 
noted that the scale of temperature for each method is different in Fig. 6.11. Since 
we have generated many task graphs with different values of parameters (n, d, c, 
and U/c), we choose one of the random task graphs with .d = 10%, .n = 50, .c = 8, 
and .U/c = 0.9, which needs a high computational demand to show the results. 
Figure 6.10 shows the power traces, and Fig. 6.11 shows the thermal distribution of 
the methods. As can be seen in Fig. 6.10, the peak power consumption is violated 
sometimes in the method of [6, 15], and since the method of [14] drops all LC 
tasks in the HI mode, which is not desirable, the task set finishes its execution 
earlier and also has less peak power consumption. Besides, Fig. 6.11 depicts that the 
thermal distribution has not been managed in [6, 15], while our approach reduces the
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Fig. 6.10 Power trace of a random task graph in different methods (proposed Approach, 
[15] (Ran. +19), [6] (MBP18a), and [14] (Soc. +15)) under worst-case scenario 

Fig. 6.11 Thermal profiles of a random task graph example in different methods (proposed 
approach, [15] (Ran. +19), [6] (MBP18a), and [14] (Soc. +15)) under worst-case scenario. (a) 
Proposed method. (b) [6, 15]. (c) [14] 

hotspots and lowers the maximum temperature by 22.3 . ◦C in this example. Although 
the maximum temperature of [14] is lower than ours, the LC tasks’ QoS is zero since 
no LC tasks are executed in the HI mode. 

6.4.5 Analyzing the QoS of LC Tasks 

Now, we analyze the QoS for the proposed method in comparison with methods 
of [6, 14, 15] in Fig. 6.12. In our proposed method, there are many possible scenarios 
(each node of the tree is responsible for keeping the scheduling of the system in one 
scenario), and for each scenario, the LC tasks’ QoS is different. Thus, we run 100 
schedulable task sets on eight cores, and for each task set, ten different random 
situations of occurring faults and mode switching are considered. For the case when
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Fig. 6.12 Task sets’ QoS under different scenarios 

.U/c = [0.5, 0.75) or .U/c = [0, 0.5), there is more free slack before the task 
set deadline; therefore, in the case of fault occurrence and mode switching, fewer 
LC tasks are dropped. In this experiment, we consider the worst-case scenario of 
processor demands, .U/c = [0.75, 1], .n = 50, and .d = 10%, and in the generated 
task sets, 20–50% of tasks are LC tasks. In addition, the number of fault occurrences 
in each scenario is randomly selected in the range of [0,4]. Figure 6.12 shows the LC 
tasks’ QoS for all these 1000 scenarios. The QoS is the successfully executed LC 
tasks to all LC tasks. However, we use three different definitions of QoS to evaluate 
the methods of [6, 14, 15] more accurately, as follows: 

• Scenario 1: The QoS refers to how many LC tasks are successfully executed 
before their deadlines with no TDP violation. If TDP is going to be violated, 
running LC tasks is only stopped to reduce the peak power consumption. 

• Scenario 2: This scenario has the same definition as Scenario 1, with the 
difference that since the HC tasks are the most important, therefore without them, 
QoS of LC tasks is penalized by completely being zero. Thus, if TDP is violated 
and some HC tasks are running on cores, then the QoS . = 0. 

• Scenario 3: Since those methods have not been specifically designed for peak 
power management while meeting the real-time constraints of all HC tasks, we 
give the HC tasks higher weight and then consider the joint QoS, including both 
LC and HC tasks. Therefore, the HC tasks have a double weight in this scenario 
compared to LC tasks, in the case of dropping tasks due to the TDP violation. 

As shown in Fig. 6.12, the  QoS for methods of [6, 15] in Scenario 1 is higher than 
the QoS for our proposed method in total (according to the CDF line). However, in
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this scenario, the TDP constraint is violated several times due to the execution of 
HC tasks in parallel on cores, and there is no policy to manage the peak power. 
Moreover, for the second scenario in the methods of [6, 15], the figure shows that in 
22.5% of task sets, the TDP constraint is violated while executing some HC tasks 
on cores. Besides, the QoS in the second scenario for [14] is zero, due to dropping 
all LC tasks in the HI mode. Now, if we investigate the methods of [6, 14, 15] 
in the third scenario, the QoS of [6, 15] is more than the QoS of [14] due to 
executing LC tasks in the HI mode. However, they have less QoS in this scenario 
compared to our proposed method. According to this figure, we can conclude that 
our proposed method is more efficient in improving QoS than other methods in 
different scenarios. In addition, the minimum and maximum QoS in our proposed 
method are 68.33% and 100%, while the power constraint is always met. 

6.4.6 Peak Power Consumption and Maximum Temperature 
Analysis 

In this section, we evaluate the system’s peak power consumption and the chip’s 
maximum temperature in our approach and methods of [6, 15] by varying different 
parameters, such as utilization bound (.U/c), number of tasks (n), edge percentage 
(d), and the number of cores (c). Figure 6.13 shows the average normalized peak 
power consumption to the TDP constraint and maximum temperature in the worst 
case that the system switches to the HI mode after executing the first HC task and 
all tasks execute up to their higher WCET. Hence, in the worst-case scenario, [15] 
has the same power profile and thermal distribution as [6]. 

First, we analyze the peak power consumption by varying different parameters. 
The figure shows that our proposed approach can manage the peak power consump-
tion to be less than the  TDP constraint in all scenarios, while Medina’s method 
violates the TDP constraint in almost all scenarios. In general, the impact of our 
approach is increased as the probability of using parallelism in the execution of 
tasks on cores is increased (a large number of cores (larger c) or less dependency 
between tasks (lower d)). Since the number of tasks and utilization is not changed 
by increasing c, the maximum power consumption by [6] is also reduced. However, 
since our proposed method endeavors to distribute the tasks on all cores to minimize 
hotspots and also minimize the instantaneous power consumption, our proposed 
approach in decreasing the peak power consumption is more efficient, compared 
to [6], while the c is increased. Besides, by reducing the dependency between tasks 
(d), although the system peak power consumption is increased and TDP is violated 
in [6], our approach always guarantees that the TDP constraint is not violated. 
In addition, although increasing the number of tasks or utilization increases the 
system’s peak power consumption because the system does more computation, our 
approach guarantees that the TDP constraint will never be violated.
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Fig. 6.13 Peak power consumption and maximum temperature in different methods (proposed 
approach, [15] (Ran. +19), and [6] (MBP18a)). (a) Varying utilization. (b) Varying number of tasks. 
(c) Varying edge percentage. (d) Varying number of cores 

From the perspective of maximum temperature analysis, increasing the system 
utilization, illustrated in Fig. 6.13a, while the number of tasks is fixed (.n = 50) 
means that the task’s execution time tends to be longer. Thus, the computation time 
of cores is increased, the managing of peak power constraint and busy/idle times of 
cores would be difficult, and consequently, the maximum temperature of the chip 
is increased in both methods. However, we can decrease the maximum temperature 
by up to 22.4 . ◦C in comparison with [6, 15]. Besides, if we vary the number of 
tasks in Fig. 6.13b since the computation time of cores does not change, the chip’s 
maximum temperature is relatively constant by increasing the number of tasks in 
both our proposed method and methods of [6, 15]. Additionally, by varying d, the  
maximum temperature reduces by increasing the dependency between tasks because 
the cores’ computation time is constant, while the idle time of cores is increased. As 
shown in Fig. 6.13c, our proposed method can reduce the maximum temperature by 
14.3 . ◦C on average by varying edge percentage, compared to [6, 15]. 

Now, we investigate the system’s maximum temperature in Fig. 6.13d by increas-
ing the number of cores (c), while other parameters are constant. Hence, the 
normalized utilization (U/c is constant in this experiment, which means the utiliza-
tion (U) is increased by increasing c. We have more parallelism to execute tasks by 
increasing c and add more free slack to let the cores be idle (having better thermal 
distribution). However, since each core’s temperature is a function of its neighbor 
cores’ temperature, it increases the chip’s maximum temperature, while the system 
utilization is increased. Therefore, the results of our proposed method show that 
the maximum temperature is relatively constant by increasing c and can decrease 
it, 10.7 . ◦C on average, compared to [6, 15]. Since the methods of [6, 15] do not
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Fig. 6.14 Normalized acceptance ratio under different scenarios in different methods (proposed 
approach, [15] (Ran. +19), and [6] (MBP18a)). (a) Varying utilization. (b) Varying Number of 
tasks. (c) Varying edge percentage. (d) Varying number of cores 

consider the thermal distribution, the maximum temperature is generally increased 
by increasing c. 

6.4.7 Effect of Varying Different Parameters on Acceptance 
Ratio 

In this section, we illustrate the impact of different parameters, such as utilization 
bound (.U/c), number of tasks (n), edge percentage (d), and the number of cores 
(c) on the task schedulability (acceptance ratio). Figure 6.14 represents the effect of 
each parameter, while the others are fixed, to analyze how the proposed method and 
the methods of [6, 15] react to each parameter. We run 1000 benchmarks for each 
scenario and report the average result. A task set is schedulable if the real-time and 
power constraints are met. In general, having more dependency between tasks, large 
system utilization, or more cores causes the system to have less acceptance ratio in 
our proposed method. We discuss the observation in detail. 

From the perspective of utilization bound, we fix other parameters to see the 
effect of varying utilization in Fig. 6.14a. Increasing the utilization while the number 
of tasks is fixed (.n = 50) means that the tasks’ execution time tends to be longer. 
When the utilization is getting higher, the computation time of cores is increased. 
Therefore, fewer task sets can be scheduled before their deadlines even in the case
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of fault occurrence, and also, management of power constraint and busy/idle times 
of cores would be difficult. We can conclude that fewer task sets can be scheduled 
before their deadline, while the power constraint is not violated. This trend is also 
the same with [6, 15] with the difference that the TDP constraint is violated several 
times, which causes the task sets not to be schedulable. 

Besides, Fig. 6.14b shows that the task schedulability is increased by increasing 
the number of tasks, with .d = 10%, .U/c= [0.5,0.75), and .c = 8. Since the system 
utilization is constant for all number of tasks, the execution time of tasks is reduced 
by increasing the number of tasks. Therefore, the tasks tend to finish their execution 
early and allow their successors to be released. Furthermore, the overhead of re-
executing a task due to fault occurrence is much lower for small tasks. According to 
Fig. 6.14b, we conclude that our method can schedule 70% of task sets, on average, 
when only the number of tasks is varied. Besides, by increasing the number of tasks 
in the methods of [6, 15], the parallel task execution is increased, which causes 
more peak power consumption, and therefore, less task schedulability due to the 
TDP violation. 

For the case of varying the edge percentage, when the dependency between the 
tasks is increased, while n, .U/c, and c are constant (.n = 50, .U/c = [0.5, 0.75), 
.c = 8), the release time of tasks is increased, because tasks must wait for more 
predecessor tasks to finish their executions. Therefore, the idle time on cores 
increases, which causes more delays in the execution of tasks, and reduces the 
schedulability. Figure 6.14c shows that the highest schedulability (73%) is achieved 
in our method when .d = 1%. Figure 6.14d shows the effect of varying the 
number of cores in the system on task schedulability when other parameters are 
not changed (.n = 50, .U/c = [0.5, 0.75), .d = 10%). By considering the fixed 
.U/c, the utilization is increased by increasing the number of cores. Consequently, 
the execution time of tasks is increased because the number of tasks is fixed. As 
mentioned earlier, task schedulability is decreased by increasing the tasks’ execution 
time. Therefore, as can be seen in Fig. 6.14d, the schedulability of applications with 
our proposed method decreases by increasing the number of cores, while the other 
parameters are fixed. Besides, in methods of [6, 15], the acceptance ratio increases 
by increasing the dependency between tasks and having more cores in the system. 
The reason is that based on their mapping and scheduling algorithm, by increasing 
the edge percentage and number of cores while fixing other parameters, tasks have 
less parallelism, and also fewer cores are selected to be active to execute the tasks, 
which causes the system to have less peak power consumption and therefore, a 
higher acceptance ratio. As a result, by increasing the edge percentage for more than 
20%, our proposed method and method of [6, 15] have almost the same acceptance 
ratio. However, the mapping and scheduling algorithm of [6, 15] increases the 
overheating problem, which is not acceptable by most safety-critical systems. In 
addition, since methods of [6, 15] are not peak power-aware, when the number of 
cores is less, the TDP is violated in most of the task sets, and therefore, these task 
sets are not schedulable. 

In the end, the acceptance ratio of our proposed method is 74.14% on average for 
all scenarios, while it is 31.1% in the methods of [6, 15].
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Fig. 6.15 System power trace of different methods (proposed approach, [15] (Ran. +19), 
[6] (MBP18a), and [14] (Soc. +15)) for a random task graph at run-time 

6.4.8 Investigating Different Approaches at Run-Time 

Now, we evaluate the system behavior at run-time in terms of peak power consump-
tion for our proposed approach and the method proposed in [6, 14, 15]. We in [15] 
have presented a run-time method to reclaim the available slacks and reduce the 
V-f levels of cores to decrease the system peak power. Here, analogous to [15], the 
actual execution time of tasks follows the normal distribution with the mean and 
standard deviation of . 3×WCET

4 and .WCET
12 , respectively. Figure 6.15 depicts the 

run-time power trace of methods for a random task graph with .d = 10%, .n = 50, 
.c = 8, and .U/c = 0.9. The system switches to the HI mode by forcing a randomly 
selected HC task to execute beyond its lowest WCET for both methods. As shown 
in this figure, the system peak power in the proposed approach is less than the 
TDP constraint at run-time, while the method of [6] has violated the TDP for a 
period of time. Although the system peak power of [15] may be less than the TDP 
constraint for some applications like the used task graph and their method consumes 
less energy in the system, there is no guarantee for the peak power to be less than 
the power constraint. Due to the use of DVFS technique in [15] and decreasing the 
V-f levels at run-time, the system consumes less energy in comparison with our 
proposed method. For the example of Fig. 6.15, the method of [15] saves 0.74102J 
in the system compared to our proposed approach. However, the DVFS technique 
degrades the reliability and increases the fault rate. The fault rate depends on the 
system’s voltage level, and also, the application’s reliability depends on the voltage 
level and tasks’ WCET, which is increased by reducing the frequency level [10]. As 
an example, for this task graph, by considering the fault rate .f = 10−4 [18], the 
reliability of tasks has been decreased .0.17% and .2.08%, on average and worst case 
in comparison with our proposed approach. In addition, the number of nines for the 
system’s reliability (.−Log1−Rel

10 ) has been degraded from 8 to 6, which may not be 
desirable for most safety-critical applications [19]. 

From the perspective of the system’s reliability and fault tolerance in our 
proposed method, we run the 1000 task graph applications for different normalized



154 6 Fault-Tolerance- and Power-Aware Multi-core Mixed-Criticality System Design

Fig. 6.16 Run-time power trace of real-life task graph in different methods (proposed approach, 
[15] (Ran. +19), [6] (MBP18a), and [14] (Soc. +15)) 

utilization bound (.U/c = [0.5, 0.75), and [0.75,1]) and compare to the system’s 
reliability in [15]. In our proposed method, .−Log1−Rel

10 for the normalized utiliza-
tion equal to [0.5,0.75) and [0.75,1] is 8.56 and 7.67 on average, respectively, while 
for [15], it is 4.99 and 4.60, respectively. As a result, based on the required reliability 
for safety-critical systems, the method of [15], which decreases the V-f levels, has 
severely damaged the system’s safety, which is not desirable. The reliability of 
the proposed approach is high for different utilization. Therefore, our method can 
be applied to any application with varying bounds of utilization while satisfying 
peak power management, fault tolerance, and high reliability in different system 
operational modes. 

Since we have used a real-life task graph (CC) to evaluate our proposed method, 
here we show the run-time system behavior for the real task graph in Fig. 6.16. As  
shown in this figure, the approach of [6] still violates the power constraint (TDP), 
and since the approach of [15] has applied the DVFS technique, the peak power 
consumption has been reduced. Hence, the method of [15] uses the same task 
mapping and scheduling algorithm of [6] at design-time and reduces the peak 
power by reclaiming the dynamic slack times at run-time (the difference between 
the WCET and actual execution time) and decreases the operating voltage and 
frequency level of cores while executing the tasks. However, the approach of [15] 
has degraded reliability due to the use of DVFS technique, which is not desirable 
for safety-critical applications. In addition, our proposed method could manage the 
peak power consumption in this real task graph, and also, since the method of [14] 
has dropped all LC tasks in the HI mode, the peak power consumption is also less 
than the TDP constraint.
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6.5 Conclusions 

This chapter has proposed an approach to schedule MC tasks in fault-tolerant 
systems in different operational modes to manage peak power by considering 
a thermal management policy. At run-time, depending on the fault-occurrence 
possibilities and criticality mode changes, the system faces different scenarios. We 
proposed an approach that develops a tree of schedules at design-time. Each node of 
the tree represents a scenario and contains scheduling of tasks in which all HC tasks 
and as many as possible LC tasks can be executed without violating the TDP. At run-
time, a low overhead online scheduler selects the proper node to map and schedule 
tasks. The results show that the proposed technique can schedule 74.14% of task 
sets on average and significantly reduce peak power consumption (by guaranteeing 
the TDP constraint) in the worst-case scenario compared to the existing methods. 
Besides, this approach can also extend to multiple criticality levels. However, we 
first need to know the importance and functions in different criticality levels and 
how they can be dropped in the higher criticality modes without impacting system 
functionality. Then, based on it, propose an efficient task mapping and scheduling 
algorithm in order to manage real-timeliness, power, and maximum temperature 
while improving the QoS of tasks with different criticality levels. 

Although this approach guarantees the real-time constraints in the worst-case 
scenario of task execution time at run-time, most task execution times are signif-
icantly shorter than their WCET. Indeed, this worst-case scenario rarely happens. 
Due to the early finish of the task’s execution, the generated dynamic slack could be 
used for better power-aware MC system design in multi-core platforms. In the next 
chapter, we propose an online method that adapts to task execution time dynamism 
and employs the accumulated dynamic slack to reduce the peak power consumption 
and maximum temperature. 
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Chapter 7 
QoS- And Power-Aware Run-Time 
Scheduler for Multi-core 
Mixed-Criticality Systems 

In this chapter, we target peak power consumption and maximum temperature issues 
in MC systems with dependent tasks at run-time and evaluate the algorithm on a real 
multi-core platform. Although there are works that manage or minimize the power 
consumption of MC systems, they have not considered the instantaneous peak power 
consumption in both HI mode and LO mode, and their algorithms have often been 
limited to simulation. To solve the problem, we exploit dynamic slacks, the slack 
between tasks’ AET and their WCET, along with DVFS at run-time, while the MC 
tasks’ deadlines are guaranteed. Our approach has two phases: (1) at design-time, 
the tasks are scheduled on each core based on the EDF algorithm, and the resulting 
schedule is stored to be used as a static scheduling table. This is performed for 
both LO mode and HI mode. In this case, the number of LC tasks that have to be 
dropped in the HI mode is minimized to improve the overall QoS of the system. 
(2) At run-time, we examine multiple tasks in the future (look-ahead) to select the 
most appropriate one to assign the currently available dynamic slack. The selection 
is based on the impact of the tasks on the peak power and temperature of the system, 
which is quantified by a weighted multi-objective cost function. Therefore, the speed 
of the core that runs the task can be decreased accordingly using per-cluster DVFS. 
Additionally, besides exploiting the dynamic slacks, we propose a task re-mapping 
technique at run-time to improve the system temperature profile further. However, 
the online scheduler timing overheads for selecting an appropriate task and checking 
the re-mapping technique to choose a proper core are crucial for the MC systems and 
may cause deadline violations. Furthermore, the timing overhead of changing V-f 
levels in using the DVFS technique is critical in run-time task scheduling. Therefore, 
we analyze and evaluate the effect of these overheads on the schedule of MC tasks 
in real multi-core platforms. We study that these overheads cannot be neglected due 
to their impact on meeting MC tasks’ deadlines. Besides, we optimize the run-time 
scheduler to minimize the timing overhead. In summary, the main contributions of 
this chapter are the following: 
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• An online peak power and maximum temperature management of MC systems 
in heterogeneous multi-core platforms while respecting deadline requirements of 
tasks in both LO mode and HI mode.

• A multi-task look-ahead approach to make sure that dynamic slacks are assigned 
to the tasks that lead to more peak power reduction and maximum temperature 
reduction.

• An online task re-mapping technique that exploits dynamic slacks to re-map the 
tasks to other cores within a cluster in order to lower the system temperature.

• Studying the online scheduler and DVFS governor in terms of timing overhead 
to provide the deadline guarantee of MC tasks during run-time phase.

• By measuring on a real platform we observe that while the latency of the 
scheduler is minimal (less than 10 . μs on average), the latency of the DVFS 
switching is 5.313 ms on average and, thus, cannot be neglected. 

In the following, the research questions, objectives, and motivational example 
are presented in Sect. 7.1. Then in Sects. 7.2 and 7.3, we present the design-time 
approach and propose our proposed method and algorithm in detail, respectively. 
The analysis and optimization of the run-time scheduler are then studied in Sect. 7.4. 
Finally, we analyze the experiments and conclude the chapter in Sects. 7.5 and 7.6, 
respectively. 

7.1 Research Questions, Objectives, and Motivational 
Example 

The crucial research questions that are addressed in this chapter are as follows: 

1. How to select the most appropriate tasks to assign the dynamic slack to, for 
managing the peak power consumption? 

2. Whether it is possible to re-map the tasks to other cores for better thermal control, 
and if yes, where and when should the tasks be re-mapped to? 

3. Which timing overheads during run-time have an impact on task scheduling and 
deadline misses? 

4. How these run-time timing overheads can be managed to not affect tasks’ 
deadlines? 

To clarify the problem and provide some insight into how a run-time scheduler 
can manage peak power consumption, a motivational example is given. Figure 7.1a 
shows a precedence constraint MC task graph with eight tasks mapped on two cores, 
and tasks’ information such as WCETs and peak power consumption. Although 
each task in the graph can have a local deadline (the reader can refer to Sect. 2.1.1.1 
for more detail about deadline definition in the task graph model), the whole task 
graph has the deadline of .D = 200 ms. In addition, in order to simulate the variation 
in the actual run-time, the actual execution time values are selected from a uniform 
distribution of [. 23 .WCET,WCET ], analogous to [1–3], which have used uniform
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Fig. 7.1 A motivational example for a real-life application in different scenarios. (a) A task graph. 
(b) System power trace at run-time without using DVFS. (c) System power trace by using DVFS 
and considering one task look-ahead. (d) System power trace by using DVFS and considering two 
tasks look-ahead 

distribution. We obtain the task mapping and scheduling table using the algorithm 
presented in [4]. In this example, we suppose that the system is only in the LO mode 
for simplicity of presentation. Besides, we assume that the tasks consume their 
maximum power continuously during their executions. Figure 7.1b shows the task 
schedule and the system power trace at run-time. In the worst-case scenario, the 
system’s peak power may be high and may lead to thermal hotspots and instability, 
which has not been investigated in recent studies in MC systems that have different 
criticality modes. As shown in Fig. 7.1b, since the tasks may finish earlier than their 
WCET, for example, . τ1 at 22 ms while its WCET . = 30 ms, the incurred slack can be 
exploited and assigned to the following tasks to reduce the peak power consumption. 
In Fig. 7.1c, these dynamic slacks are used for the immediately ready tasks (one task 
look-ahead) to decrease the speed of its corresponding core. Some power reduction 
can be observed. However, in some cases, the immediate task that follows may 
consume much less power than the other tasks after that. Therefore, it is better to 
reserve that slack for the task after that if it is possible. As shown in Fig. 7.1d, if 
we select the task by looking two tasks ahead, more peak power reduction can be 
achieved as compared to Fig. 7.1c. Therefore, by comparing the maximum power 
consumption of two scenarios by using the DVFS) technique by looking two tasks 
ahead (Fig. 7.1d) and without using DVFS (Fig. 7.1b), we have 48.7% reduction
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in peak power consumption. In addition, we have a 20.12% reduction in energy 
consumption. 

Equation (7.1) presents the goal of our proposed method, minimizing the peak
power and the maximum temperature of individual cores during run-time:

.Minimize(Powj , (T empmax)j )|(j∈Cores) (7.1) 

As shown in the motivational example, DVFS is one of the techniques that we 
use to manage the metrics (peak power and maximum temperature). Reducing the 
V-f level of a core while executing a task increases the execution time of the task 
and may cause deadline violation. In addition, the latency of changing V-f level or 
run-time scheduling may cause deadline violation. Equation (7.2) represents that the
sum of the execution time of each task i on the core j at the V-f level l and timing
overheads of the run-time scheduler (.T OSch.) and changing V-f level (. T OVf ) must  
not exceed the task deadline in each criticality mode: 

. T OSch. +T OVf + WCETi

fjl

≤ di →
{

WCETi = WCET LO
i if mode = LO

WCETi = WCET HI
i if mode = HI

(7.2) 

The proposed approach consists of design-time and run-time phases. It is worth
noting that the proposed method takes advantage of the run-time phase to manage
the peak power and temperature; hence, it is not possible to use any optimization
method such as Integer Linear Programming (ILP) due to its long execution time. 
Thus, we develop a heuristic-based method. Figure 7.2 shows the flow of our 
proposed approach, along with the hardware platform. The hardware platform is 
used in design-time phase for tasks’ power profiling and in run-time phase for the 
execution of tasks on cores. Now, we explain our approach comprising of the design-
time and run-time phases, in detail. 

7.2 Design-Time Approach 

The input to the algorithm is a precedence-constrained task set and the multi-core 
system description, as shown in Fig. 7.2. The power required by the tasks can be 
obtained by running the benchmarks on a real platform, which is discussed in detail 
in Sect. 7.5. It should be noted that handling an unknown application during run-
time is beyond the scope of this work. Since we target embedded applications, 
normally, the designer knows the system’s tasks and their parameters at design-
time. Therefore, by using the parameters of MC tasks such as WCETs, two tables of 
static task mapping and scheduling for LO mode and HI mode are created as shown 
in the design-time phase of Fig. 7.2. EDF algorithm is used to calculate the schedule 
of the tasks in each of the two modes statically based on the WCETs of  LC and 
High-Criticality (HC) tasks, using the algorithm presented in [4]. In the LO mode,
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Fig. 7.2 Overview of our proposed approach 

all tasks are scheduled with equal priority; in the HI mode, HC tasks are scheduled 
with a higher priority. These static schedules in the respective modes are then used 
to execute all tasks at run-time. This enforces a strict ordering in the execution of the 
tasks and guarantees that all deadlines are met according to the design-time analysis 
in both modes. It should be noted that since the WCETs of  HC tasks are higher 
in the HI mode, not all LC tasks may be schedulable in the HI mode. In order to 
maximize the overall QoS, the algorithm tries to drop as few LC tasks as possible
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when computing the HI mode table. These tables and the info associated with the 
tasks are used during the run-time phase by our algorithm to manage the system. 

7.3 Run-Time Mixed-Criticality Scheduler 

The run-time phase of our proposed method consists of several function control 
units, as shown in Fig. 7.2. The Scheduler Unit is the main unit that is communicat-
ing with the other units. Two main functions are supported in this unit: (1) executing 
the tasks according to the tables and (2) changing the scheduling and mapping of the 
tasks according to our proposed policy which we discuss in Sects. 7.3.1 and 7.3.2. 
When there is any free slack on a core, or a task finishes its execution early, the 
Look-Ahead Unit is executed. This unit is used to choose a subset of tasks and select 
the most appropriate one among them. If an appropriate task is selected in a core, 
according to the core temperature and temperature of other cores, the Re-mapping 
Unit is used to reduce the maximum temperature and decide whether to re-map the 
task to other cores or not. After that, the obtained V-f level for the core is stored. 
This stored frequency is used by the DVFS Governor Unit when the task is ready to 
be executed. The details of the DVFS Governor Unit to select the optimum V-f level 
for a cluster are discussed in Sect. 7.3.4. Due to  MC systems’ behavior, the system 
switches to the HI mode if the execution of at least one HC task exceeds its defined 
.WCET LO . It should be checked by the Criticality Mode Changing Control Unit 
presented in Fig. 7.2. In this case, the system changes its task scheduling according 
to the HI scheduling table which is generated at design-time. The details for Look-
Ahead Unit and Re-mapping Unit are described as follows. 

7.3.1 Selecting the Appropriate Task to Assign Slack 

In Look-Ahead Unit, we consider an approach named look-ahead in which our 
algorithm chooses k tasks after generating dynamic slack and also mapped on the 
same core in which the dynamic slack (.Sdyn) is generated.1 For each of the k tasks, 
a cost function is computed as defined by Eq. (7.3) :

.CFi = α × Ei + β × Powi (7.3) 

In this function, .Powi and .Ei are the maximum instantaneous power and 
maximum energy, respectively, that a task consumes to execute. In addition, . α and 
. β are in the range of [0,1]. Besides, energy reduction leads to a decrease in chip 
temperature [5]. Note that, if we consider .〈α, β〉 = 〈0, 1〉, the cost function only

1 Finding the optimum value for k is discussed in Sect. 7.5. 
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Fig. 7.3 An example of look-ahead policy. (a) Before assigning slack. (b) After assigning slack 

considers the power of a task, and not its energy. Hence, the task with the largest 
peak power consumption is chosen to be executed at reduced core speed, in order 
to reduce the peak power consumption. If we have .〈α, β〉 = .〈1, 0〉, only energy is 
considered in the cost function. Hence, the task with the largest energy consumption 
is chosen to be executed at reduced core speed, thereby reducing the maximum 
energy consumption After selecting the task, the maximum power consumption and 
its WCET (.WCET LO

i or .WCET HI
i ) are changed based on the size of generated 

slack time and the V-f level. As a result, the start time and the deadline of tasks that 
are executed between the generated dynamic slack and selected task are shifted left 
based on the amount of slack to let the chosen task run with less speed, for example, 
tasks . τ2 and . τ3 illustrated in Fig. 7.3. 

Furthermore, Eq. (7.3) is applied to a set of tasks that can start their executions
earlier. A task (. τi) can start early if it is released before .ai − Sdyn, where . ai is the 
start time of . τi . As mentioned, a task can be released when all its predecessors 
finish their execution. Therefore, we just check .τri ≤ ai − Sdyn, where .τri is 
the release time of . τi . Consider the selected task . τi with the start time . ai and 
deadline . di that .ai + WCETi ≤ di . Assuming that we have the amount of slack, 
.Sdyn generated by . τj , during run-time. To utilize this slack time for the appropriate 
task . τi , in general, the scheduler finds the minimum acceptable frequency based 
on .fi = max(fmin,

WCETi

WCETi+Sdyn
.fmax). This ensures that only the start time of the 

task is earlier by .Sdyn and the deadline is kept unchanged, for example, . τ4 shown in 
Fig. 7.3. Hence, .ai −Sdyn+ WCETi

fi/fmax
≤ ai +WCETi ≤ di . However, as mentioned at 

the beginning of this section, selecting the proper task and the core and changing the 
V-f level have overheads.2 If we ignore them while selecting the optimum frequency, 
it may cause a deadline violation. Therefore, .Sdyn is reduced by .T OSch. and .T OVf . 
After selecting the optimum frequency, the start time of the appropriate task . τi (. ai) 
is updated for the static schedule.

2 We discuss in Sect. 7.5 how these timing overheads (.T OSch. and .T OVf ) are measured. 
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Now, we show the proof of the optimal solution of peak power minimization 
in individual cores, when .〈α, β〉 = 〈0, 1〉 in Eq. (7.3) to select the task solely
based on its peak power consumption. Let us assume that the task . τi finishes 
its execution at time . fi , ahead of its deadline . di , and a dynamic slack (. Sdyn =
di − fi) is generated. The algorithm looks k tasks after generated slack to select 
the appropriate task and use the generated slack to reduce its V-f level and, 
consequently, decrease its power consumption. Without loss of generalization, 
assume that task .τi+l consumes the highest peak power in the core within the k tasks 
looking ahead, presented in Eq. (7.4). This equation can be rewritten as Eq. (7.5) , in
which .Max(τ

pow

i+1 , . . . , τ
pow

i+l−1, τ
pow

i+l+1, . . . , τ
pow
i+k ) < τ

pow
i+l : 

.Powmax
core|[di ,di+k] = Max(τ

pow
i+j )|j=1:k = τ

pow
i+l , 1 ≤ l ≤ k (7.4) 

. Powmax
core|[di ,di+k] = Max(Max(τ

pow

i+1 , . . . , τ
pow

i+l−1, τ
pow

i+l+1, . . . , τ
pow
i+k ), τ

pow
i+l )

(7.5) 

If .τpow′
i+l is the maximum power consumption of task .τi+l after reclaiming the 

slack and reducing the V-f level, then .τ
pow′
i+l < τ

pow
i+l ; therefore, the core’s maximum 

power consumption can be written as follows, which is less than .τpow
i+l : 

. Powmax
core|[di ,di+k] = Max(Max(τ

pow

i+1 , . . . , τ
pow

i+l−1, τ
pow

i+l+1, . . . , τ
pow
i+k ), τ

pow′
i+l )

(7.6) 

If we select one of the other tasks between .{τi+1, . . . , τi+l−1, τi+l+1, . . . , τi+k}, 
and reduce its V-f level and consequently, its power consumption, then the peak 
power of the core is still limited by .τpow

i+l according to Eq. (7.5) . Hence, this power
consumption is more than the optimum power consumption obtained by Eq. (7.6) :
.τi+l is, therefore, the optimum task to which the slack should be assigned (given 
the constraint that all the slack is assigned to one of the following k tasks). We 
conclude that whenever a dynamic slack is generated, the proposed approach for 
selecting the appropriate task provides the optimum solution to minimize the peak 
power consumption of individual cores in the run-time phase. 

Figure 7.4 shows a part of a static schedule of tasks on a core. Based on the 
peak power consumption of tasks in Fig. 7.4a, task .τi+4 is the appropriate task 
which consumes the highest peak power in the core in the time interval [.di, di+4]. 
Therefore, assigning the slack to this task will lower the peak power to below 4W 
(if we have a dynamic slack (.Sd = di − fi = 5), then .Powermax

core = 3W after slack 
assignment, shown in Fig. 7.4b). If we assign the generated slack to one of the other 
tasks (e.g., .τi+1) instead, then the peak power of the core is still limited by .τi+4, i.e., 
4W, as can be seen in Fig. 7.4c.
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Fig. 7.4 Power trace of a core. (a) Power trace of the core. (b) Power trace of the core after 
assigning the slack to the task . τi+4. (c) Power trace of the core after assigning the slack to the task 
. τi+1

7.3.2 Re-mapping Technique 

In order to manage the maximum temperature of the system and have better thermal 
control, it is possible to re-map the selected task to the other cores without changing 
its deadline. Therefore, to decide about re-mapping the task and selecting the 
appropriate core to re-map, we use the cost function in Eq. (7.7) :

.CFc = � ×
tf∑

t=1

Ec(t) (7.7) 

In this cost function, instead of using actual core temperature, we predict their 
temperature according to the accumulated energy. Based on our observation, a core 
tends to have a lower temperature when its accumulated energy is less than the other 
cores.3 However, the difference between the accumulated energy of the base core 
and the selected core should be large enough. Therefore, we define a coefficient (. �), 
which is equal to 0.9 in our experiments. In this equation, . tf is the time when any

3 We show the observation about the relevance between core temperature and its accumulated 
energy consumption in Sect. 7.5. 
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particular task is finished. Besides, in order to not affect the tasks’ deadline mapped 
on other cores, cores are examined for re-mapping that have free slack at the same 
period to execute the appropriate task. Since we consider the clustered multi-core 
platform (ODROID XU3) for our experiment, each application’s execution time and 
power consumption will be different when running on different clusters. Hence, we 
use the re-mapping technique within each cluster. The reason is that although re-
mapping from a little core to a big core reduces a task’s execution time, it causes the 
system’s peak power consumption to increase, which is not acceptable based on our 
targets. Therefore, to not change the system peak power consumption, we use the re-
mapping technique within each cluster. It should be noted that since the re-mapping 
technique is applied to a task that is not started yet, and also, the technique is done 
in parallel with changing the frequency, the migration overhead does not affect the 
deadline constraints. The reason is that the latency of re-mapping is much less than 
the latency of changing the frequency, which we study in detail in Sect. 7.5. 

7.3.3 Run-Time Management Algorithm 

The pseudo-code of our proposed algorithm is outlined in Algorithm 7.1. At first,  
the algorithm gets the set of precedence constraint tasks, the number of tasks looking 
ahead (k), the scheduling table for each mode, and available V-f levels for cores as 
inputs. Then it gives the start time and the V-f level assignment for each task at run-
time. At the initialization step, the system starts its operation in the LO mode, and 
also, the voltage and frequency of each core are set to the maximum value (lines 1– 
3). The proposed online peak power reduction algorithm is presented in lines 4–45. 
At first, the algorithm checks that whenever the execution time of a task exceeds 
its WCET, the system switches to the HI mode (lines 5–9). If any task execution 
exceeds its .WCET LO

i and the output of this task is not ready, the system switches 
to the HI mode and remains in this mode till the end of the period. In this situation, 
in the beginning, the V-f level of each core is set to the maximum value to meet 
the deadline of HC tasks (lines 7–8). The rest of the algorithm is executed in both 
modes. 

If there is a dynamic slack during run-time, the algorithm selects the appropriate 
task to assign slack, which has more impact on instantaneous power consumption 
(lines 10–39). This dynamic slack is generated if a task finishes its execution before 
its defined WCET (.WCET LO

i or .WCET HI
i due to the system mode). In addition, 

since we use static scheduling of tasks for both modes and do not change the order of 
task execution in each core, there may be some idle time in a core that can be used. 
Therefore, if there is dynamic slack, we first compute the amount of available slack 
(lines 11–15). Hence, we have to consider the timing overheads of the scheduler 
and speed changing. Therefore, we deduct these latencies from slack to guarantee 
the deadline (line 17). Now, we select the appropriate task among k tasks that can be 
released early due to the slack time after reclaimable slack (lines 18–23) based on 
the cost function (Eq. (7.3)). Besides, Fig. 7.2 details this process in the flowchart.
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Algorithm 7.1 Online peak power reduction algorithm 
Input: Task Graph (GT ), Cores, Scheduling Tables of each Mode (SchL and SchH ), Number of 

Tasks Looking Ahead (k). 
1: mode ← 0 , MO ← LO; // the system starts from the LO mode and SchL is used to schedule 

the tasks 
2: for each core j do 
3: initialize the V-f level to maximum; 
4: end for 
5: procedure MCS ONLINE PPREDUCTION () 
6: if each Task executes more than WCET  MO then 
7: mode ← 1, MO ← HI; // System switches to the HI mode and task scheduling is 

done by SchH 
8: for each core j do 
9: initialize the V-f level to maximum; 

10: end for 
11: end if 
12: if each Task finishes its execution earlier than its deadline or there is an idle time in a  

core then 
13: if T aski has already finished its execution then 
14: Sdyn ← Extract_Dynamic_Slack(); //WCET  MO 

i - AETi 
15: else if there is an idle time in a core 
16: Sdyn ← Extract_Dynamic_Slack(); //idle time 
17: end if 
18: TS , TP ← 0 
19: Sdyn -= T Osch+T OVf ; 
20: for n = 1  to k do 
21: TP ← τnth  after generated slack; 
22: if CFTS < CFTP and TP can start earlier then 
23: TS ← TP , ns ← n; 
24: end if 
25: end for 
26: if ns > 0 then 

27: FreqMO 
TS 

← max (fmin, 
WCET  MO 

TS 
WCET  MO 

TS 
+Sdyn 

) 

28: for n = 1 to ns do 
29: Update the StMO 

T askLA−n 
& dMO 

T askLA−n 
30: end for 
31: /*Re-Mapping Checking*/ 
32: CoreS ← CoreTS

, F lagremap ← 0 
33: for each core j in the cluster do 
34: if CFj < �× CFCoreS and free slack exists then 
35: CoreS ← Cj , F lagremap ← 1; 
36: end if 
37: end for 
38: if F lagremap == 1 then 
39: Re-Map (TS , CoreS ); 
40: end if 
41: end if 
42: end if 
43: for each task i do 
44: if StMO 

i == T imesys or a task finishes its execution then 
45: DVFS (Ready and Running Tasks, Cores); //Update cluster V-f level (Algo-

rithm 7.2) 
46: end if 
47: end for 
48: end procedure 
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After determining the appropriate task, according to the system mode situation, the 
frequency of the core to execute the appropriate task is obtained according to the 
amount of slack (line 25). Hence, the selected frequency must be rounded to the 
nearest V-f level of the cluster that is greater. If there is at least one task between 
the generated slack and the selected task, we change their start time. Therefore, their 
deadline would be changed (lines 26–28). Now, the re-mapping technique is applied 
if the core in which the task has been allocated has a higher temperature than other 
cores (lines 29–37). As a result, it is possible to re-map the selected task to a core 
according to the cost function (Eq. (7.7)). As mentioned in Sect. 7.3.2, we just re-
map a task between the cores of each cluster. Further, the algorithm checks regularly 
that if a task is ready to start based on the static schedules, the V-f level of the core 
that the task has been mapped on it is changed according to the defined frequency 
scaling factor (lines 40–44). The detail is discussed in the following subsection. 

7.3.4 DVFS Governor: Updating V-f Levels in Clustered 
Multi-core Platform 

After finishing a task execution, there might be a free slack or a task in the core 
queue that is ready to start its execution. Here, Algorithm 7.2 is executed to change 
the V-f level if needed. As mentioned, all cores within a cluster operate at the same 
V-f level in clustered multi-core platforms. Since the V-f levels of both clusters are 
different, it is checked on which cluster the recently completed task was running 
(lines 2–4). Then, we check the assigned V-f level of running or ready tasks on 
all cores of the cluster. Since all cores run with the same speed, we find the best 
frequency to set to the frequency cluster (lines 5–10). The reason for selecting the 

Algorithm 7.2 DVFS governor 
1: function DVFS(Ready and Running Tasks, Cores) 
2: if CoreT aski ≤ 3 then 
3: CID  = 0; //Cluster with LITTLE cores 
4: else 
5: CID  = 4; //Cluster with big cores 
6: end if 
7: SetFreq = 0; 
8: for c = CID  to CID  + 3 do 
9: if SetFreq < FreqMO 

Run/ReadyT askonCoreCID  
then 

10: SetFreq = FreqMO 
Run/ReadyT askonCoreCID  

; 

11: end if 
12: end for 
13: if SetFreq ! = FreqCluster then 
14: cpufreq-set -c CoreT aski

-f SetFreq 
15: end if 
16: end function 
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greatest minimum frequency is to ensure that all tasks finish their execution before 
their deadline. In the end, if the chosen frequency (SetFreq) is different from cluster 
frequency, we change the speed of the cluster by assigning the new speed to one core 
of the cluster by using . 〈cpufreq-set. 〉 program (lines 11–13). It should be mentioned 
that by changing the frequency of a cluster, its voltage will be changed automatically 
based on the table setting of the kernel. 

7.4 Run-Time Scheduler Algorithm Optimization: Analysis 
and Implementation 

The timing overheads of run-time scheduling and changing the frequency can 
have a profound impact on power-aware run-time scheduling of tasks and must 
be considered in the respective analysis. Neglecting them may lead to missing 
deadlines for MC tasks, which may cause catastrophic consequences. Two sources 
of generating overheads that deal with the online scheduler are the Look-Ahead 
Unit to select the appropriate tasks and the Re-mapping Unit to find the appropriate 
core. In the following, we use the online scheduler phrase for both units to make 
it easy to follow. The other source of causing overhead is the DVFS Governor 
Unit for changing frequency during run-time. Now, we first analyze the scheduler 
function from the timing overhead aspect. Then, we focus on optimizing the code 
and reducing the overheads. 

In order to evaluate the scheduler and analyze the overhead on a real platform, 
we first convert MATLAB code to C code. Then, we detect the main parts of the 
code, which have more latency, and attempt to optimize it. To analyze the main 
functions, we first get a strict upper bound of the latency in different parts of the 
online scheduler on a real platform. We use the KCachegrind tool [6] to measure 
the worst-case time. KCachegrind is a visualization tool that uses a technique called 
profiling, which gives you the time distribution among the scheduler code at run-
time. Now, we focus on the functions code and its timing analysis and endeavor 
to reduce the estimation cycles and the delay caused by cache misses in shared 
cache levels. Both Look-Ahead and Re-mapping Units in the online scheduler are 
called frequently during run-time, and the apparent improvement and optimization 
should be performed. The run-time phase of Fig. 7.2 shows the flowchart of these 
two units in detail. As shown in this figure, some functions play a critical role in 
the timing overhead of the power-aware run-time scheduler, which is indicated by 
the white color. As discussed in the previous section, the Look-Ahead Unit chooses 
k tasks after generating dynamic slack and finds a task that has the most effect 
on peak power and maximum temperature. Checking the k tasks is done in a for-
loop, in which each task is investigated that can release early to use the dynamic 
slack. Therefore, all predecessors of it must be checked whether they can finish their 
execution soon or not. Investigating the execution status of all predecessors needs 
more cycles to be done and then causes latency and more cache misses. Therefore,
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introducing an entity that shows the estimated finish time of a task would be useful, 
and instead of checking the status of all predecessors, just that entity can be checked. 
Besides, due to the having different V-f levels, we must ensure that the dynamic 
slack is large enough to include the timing overhead of changing the V-f level. This 
check prevents the over-calling of the Re-mapping Unit. In addition, there are two 
functions for calculating the costs, in which there are some math calculations with 
high timing overhead. Hence, optimizing these calculations by predefining them to 
avoid dynamic memory allocation during computation would help reduce timing 
overhead. 

From the perspective of cache hit/miss, one of the ideas is to optimize the code 
to reduce the estimation cycles in the online scheduler by focusing on calculations 
and memory access latency. There are some tips to optimize C/C.++ code to run 
it faster: reducing function calls and the number of function parameters, how to 
define variables and objects, how to use operators, using prefixes instead of postfixes 
in objects, avoiding unnecessary data initialization, and so many other techniques 
that we must use for code optimization. Apart from using these techniques, due 
to data access latency, we have effective timing overhead in the online scheduler. 
We optimize code by changing the representation of the data structure manipulated 
by the algorithms. We have defined two types of task classes: (1) defining a task 
class that uses vectors in the class for each task entity and (2) defining a task 
class with vectors of task class in the number of tasks. Each has its advantages 
and disadvantages under certain circumstances. However, due to the checking of 
limited tasks (k) in the run-time scheduler, the use of the second task class has less 
timing overhead and cache misses. As a result, Table 7.1 shows the percent of cache 
(L1 and LL (last level)) read and write misses for Look-Ahead and Re-mapping 
Units after optimization on three different platforms, Cortex A7, Cortex A15, and 
Intel Core i5. As mentioned in previous sections, most of the embedded systems 
use ARM processors, not Intel. Therefore, we target the ARM processors, such as 
the ODROID board. However, this table shows that we have less than 3.584. % and 
0.081% cache L1 and LL data misses in ARM processors, respectively, which are 
admissible compared to all cache misses and also in comparison with Intel processor 
that has fewer cache misses. 

Table 7.1 Run-time scheduler cache misses’ report 

Look-Ahead Unit Re-mapping Unit 

Cortex A7 Cortex A15 Intel Core i5 Cortex A7 Cortex A15 Intel Core i5 
L1 Data 

Read Miss 
3.318% 3.318% 2.946% 0.163% 0.163% 0.303% 

L1 Data 
Write Miss 

3.584% 3.584% 2.168% 0.352% 0.352% 0.764% 

LL Data 
Read Miss 

0.076% 0.081% 0.0% 0.028% 0.034% 0.0% 

LL Data 
Write Miss 

0.063% 0.0% 0.0% 0.036% 0.0% 0.0% 
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7.5 Evaluation 

7.5.1 Experimental Setup 

7.5.1.1 Hardware Platform 

To evaluate our system, we conducted experiments on the ODROID XU3/XU4 
board powered by ARM, which has a big.LITTLE architecture, four big (Cortex 
A15), and four LITTLE (Cortex A7) cores. The ODROID XU3 board supports 
DVFS and can operate at 13 different V-f levels between .[0.9V, 200 MHz] and 
.[1.3V, 1.4 GHz] on LITTLE cores, while the last four frequency levels have the 
same voltage levels and 19 different V-f levels between .[0.9V, 200 MHz] and 
.[1.3625V, 2 GHz] on big cores. Therefore, the effect of changing V-f levels is done 
by scaling the frequency within the range of available levels. 

7.5.1.2 Task Set Generation 

In the experiments, we use random applications (task graphs) generated by the tool 
in [4]. An example of a real-life application is already given in the motivational 
example. In these applications, there are four basic parameters, c (number of cores), 
U (system utilization), d (outgoing edge percentage), and n (number of tasks), which 
are presented in Table 7.2. d represents the probability of having outward edges 
from one task to the others. In addition, .U/c is the normalized system utilization 
that refers to both LC and HC tasks with their predefined .WCET HI . As the results 
are presented in both simulation and real platform (with eight cores), we show the 
results with 16 cores in simulation in addition to 2, 4, and 8 cores. We provide 
different configurations by changing the value of these parameters for different 
scenarios used in the experiments. 

7.5.1.3 Tasks’ Power Consumption 

In order to have a realistic possible range of power values, we run several embedded 
benchmarks from MiBench suite [7], e.g., automotive, network, and Telecomm. 
benchmarks on two configurations, ARM Cortex A7 and A15 on the ODROID XU3 

Table 7.2 Experiment configurations 

Param. Varying c Varying .U/c Varying n Varying d 
c (#core) 2, 4, 8, 16 8 8 8 

.U/c (utilization) [0.5, 0.75] [0, 1] [0.5, 0.75] [0.5, 0.75] 

d (edge percentage) 10% 10% 10% 1%, 10%, 20% 

n (#task) 50 50 30, 40, 50, 80 50
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with maximum frequency and read data from power sensors on the board. Hence, 
since the DVFS is applied to the whole processor, the power consumption at other 
lower frequencies can be obtained using Eq. (2.4) in Sect. 2.1.4 by considering 
frequency scaling [8]. In addition, we examined different scenarios of activating 
one core to all cores by running different benchmarks. We run each benchmark 
1000 times and report the maximum value of power consumption. We select the 
maximum power of tasks in the range of these minimum and maximum values in our 
experiments, which is [484, 940]mW in Cortex A7 and [3.891, 7.622]W in Cortex 
A15. The power that the tasks may consume is generated randomly following the 
normal distribution within this range. Besides, we consider the power consumption 
of the system as the sum of the power consumption of all cores [9]. 

7.5.1.4 Thermal Analysis 

As presented in the proposed method section, we assume that our approach does 
not have to probe the core temperature to make a decision. Therefore, during the 
scheduling of the tasks, the power values of cores depending on the running tasks 
are recorded. In addition, for validating on the real platform, since there are just 
temperature sensors for big cores on the ODROID XU3, the HOTSPOT tool [10] 
is used to obtain the core temperature throughout the execution for the specific 
floorplan and configuration platform which we use. For the configuration file, we 
use the parameters reported in [11], which is for ARM big.LITTLE processors. The 
ARM core (A7) has an area of 0.45 .mm2 in our experiments reported by the ARM 
company. 

7.5.1.5 Comparison 

In this chapter, we analyze the proposed method and compare it against [4, 12]. 
The work [4] proposes an offline scheduling algorithm for an MC system where 
most of the LC tasks are not dropped in the HI mode to improve the QoS of the 
system. However, they ignore the peak power and temperature aspect of the system. 
Additionally, researchers in [12] suggest an online energy minimization algorithm 
for hard real-time systems where they use the dynamic slack just for the immediately 
available task to decrease the V-f level. We consider the latency while comparing 
with the method of [12] to have a fair comparison. 

7.5.2 Analyzing the Relevance Between a Core Temperature 
and Energy Consumption 

At first, we represent the relevance between core temperature and its accumulated 
energy consumption. In Sect. 7.3.2, our algorithm was based on the assumption that
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Fig. 7.5 The relevance between a core temperature and accumulated energy consumption 

a core tends to have a lower temperature when its accumulated energy is less than the 
other cores. Figure 7.5 studies the validity of the assumption. Since we do not have a 
power sensor for each big core on the ODROID XU3, we run the same task on all the 
big cores to have the same power consumption. This task is executed several times 
periodically in cores with different execution times. Therefore, we have different 
energy consumption in each period of cores. After finishing the execution of the 
task on each core, the core goes to sleep until the end of the task period. Figure 7.5 
shows energy consumption and the temperature of two big cores during the time 
for a window of energy monitoring equal to two seconds. In this figure, first, the 
task runs with a larger execution time on Core1 in comparison to Core0. Thus, the 
temperature of Core1 rises more rapidly than Core0. After 10s, the accumulated 
energy of Core1 is reduced, and Core0 is increased. As shown, Core0 that has more 
energy consumption tends to have a higher temperature. 

7.5.3 The Effect of Varying Parameters of Cost Functions 

Now, we evaluate the results for different values of . α and . β in Eq. (7.3) . The
experiments are carried out for a system with .c = 8, .U/c ∈ [0.5, 0.75], .d = 1%, 
and .n = 30. The average results (Fig. 7.6) are obtained for a set of 100 task graphs 
with different .〈α, β〉 = 〈0, 1〉, .〈0.25, 0.75〉, .〈0.5, 0.5〉, .〈0.75, 0.25〉, and . 〈1, 0〉. The  
results are normalized to [4]. In this section, to show the effect of varying these two 
parameters, tasks are executed with their actual execution time (AET), and task re-
mapping is not exploited. It can be seen that, in every case, utilizing our approach 
would lead to a system with lower peak power, energy, and peak temperature.
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Fig. 7.6 Impact of varying . α and . β on peak power, energy, and maximum temperature. (a) 
Normalized peak power. (b) Normalized energy. (c) Normalized peak temperature 

Besides, the expected effect of varying .〈α, β〉 is confirmed in the experiments. 
For example, the average normalized peak power is progressively reduced when . β
increases from 0 to 1, as presented in Fig. 7.6a. Similarly, in Fig. 7.6b, the higher the 
. α, the lower the energy consumption and peak temperature. Finally, as the algorithm 
looks further ahead in the future to find the best tasks to assign the dynamic slack, the 
results are generally getting better, up to .1.25% and .1.25% more reduction in peak 
power and energy. It is worth noting that, in this experiment, we intentionally disable 
the task re-mapping technique to ensure that the effect of .〈α, β〉 is not skewed by 
another optimization. 

For the other experiments in this work, we consider .〈α, β〉 = 〈0.5, 0.5〉 that 
balances both peak power and temperature average reduction in comparison with 
other values of .〈α, β〉. 

7.5.4 The Optimum Number of Tasks to Look-Ahead and the 
Effect of Task Re-mapping 

In this subsection, we analyze the optimum number of tasks to look-ahead (k) 
by evaluating the respective average quality of results without considering the 
overheads. The number of look-ahead tasks is varied from 1 to 10. The results 
presented in Fig. 7.7 are obtained from some scenarios of changing parameters in 
Table 7.2 with running on a homogeneous multi-core system. In scenarios, we have 
considered the following changes for evaluation shown in Fig. 7.7: .n = 80 when
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Fig. 7.7 Normalized improvement in peak power, energy, and maximum temperature for all 
scenarios. (a) Peak power. (b) Energy. (c) Max. temperature 

c is varied, .c = 4 when n is varied, and .n = 40 and .c = 4 when d is varied. As 
a result, looking four tasks ahead provides a significant reduction in peak power 
and also in maximum temperature and energy consumption with and without task 
re-mapping. Hence, looking four tasks ahead is the average result of varying all 
parameters. Besides, when task re-mapping is used, the temperature, on average, is 
reduced by .2.7% (2 . ◦C) compared to the case where task re-mapping is disabled. 
In general, by looking ahead four tasks and enabling task re-mapping, the proposed 
method reduces the peak power, energy consumption, and maximum temperature 
on average by 14.6%, 39%, and 7.1% (6.1 . ◦C), respectively, compared to [4] and 
4.2%, 16%, and 3.1% (2.7 . ◦C), respectively, compared to [12]. Hence, looking four 
tasks ahead is the average result of varying some parameters. The detail of finding 
the optimum k by varying the properties of tasks is discussed as follows. 

We show the relation between the number of look-ahead tasks (k) and the task 
property, edge percentage (. d%) to model the system capability such as peak power 
minimization, energy consumption, and maximum temperature. For this analysis, 
the data from the experiments with four cores (c) and the system utilization per core 
(.U/c) in the range of [0.5,0.75) is used. The average data of 100 task set runs has 
been used. 

We use the MATLAB Curve Fitting Tool to derive the polynomial functions 
of various system parameters. Figure 7.8 shows the curve of the system peak 
power consumption by varying k and d normalized to the result for .k = 1, and 
the corresponding equation is shown in Eq. (7.8) . This equation is the polynomial
function with the maximum degree of four with the minimum Root Mean Square
Error (RMSE), equal to 0.0024: 

. PowNorm.
peak (k, d) = 1.033 − 0.5082d − 0.03374k + 1.332d2+

0.1799dk + 0.006184k2 − 0.7267d2k − 0.01158dk2−
0.0005375k3 + 0.05294d2k2 − 0.0001314dk3 + 1.912 × 10−5k4 (7.8) 

The equation above can also be used to mathematically derive the optimal k for 
a particular task property to optimize the various metrics. For example, if d is kept
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Fig. 7.8 Impact of number of look-ahead tasks and edge percentage on normalized peak power 
consumption 

Fig. 7.9 Impact of number of 
look-ahead tasks on 
normalized peak power, 
energy, and maximum 
temperature while . d = 20%

as 20% in Eq. (7.8), the minimum value of the curve is obtained when .k = 5, which 
is shown in Fig. 7.9. In addition, by deriving the corresponding equations for the 
normalized maximum temperature (Eq. (7.9)) and energy consumption (Eq. (7.10) ),
the optimum value of k for the system’s maximum temperature is .k = 3 and for the 
energy consumption is .k = 4, as shown in Fig. 7.9: 

. EnergyNorm.
peak (k, d) = 0.9347 + 1.176d − 0.05964k − 3.304d2

−0.01962dk + 0.01355k2 + 0.3278d2k + 0.005128dk2−
0.001431k3 − 0.02466d2k2 − 0.000231dk3 + 5.616 × 10−5k4 (7.9) 

. T Norm.
peak (k, d) = 0.9925 + 0.07826d − 0.006975k − 0.08123d2

−0.008346dk + 0.001644k2 + 0.05333d2k + 0.001238dk2

−0.0001762k3 − 0.003814d2k2 − 10−5(4.653dk3 + 0.6901k4) (7.10)
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Fig. 7.10 Impact of number 
of look-ahead tasks on 
normalized peak power, 
energy, and maximum 
temperature with 
consideration of the 
overheads 

Now, we analyze the optimum number of look-ahead tasks by evaluating the 
respective average results, considering the overheads and no task re-mapping. The 
results presented in Fig. 7.10 are obtained from the scenarios of varying c, n, and d 
parameters in Table 7.2 by all mentioned values. In general, this figure shows that 
the objectives (peak power, energy, and maximum temperature) are improved by 
increasing the number of look-ahead tasks. However, the efficiency of our methods 
is outstanding when there is much slack at run-time; therefore, by increasing the 
number of look-ahead tasks, the timing overheads of the Task Selection Unit (for 
determining the appropriate task in objective improvement) are more. Therefore, 
it causes less dynamic slack for assigning it to the appropriate task, leading to 
less improvement in objectives. According to this figure, looking seven tasks ahead 
significantly reduces peak power, maximum temperature, and energy consumption. 
Thus, since overhead is considered in the evaluation, seven tasks are considered the 
optimal number to look ahead in the rest of this chapter. 

7.5.5 The Analysis of Scheduler Timings’ Overhead on 
Different Real Platforms 

To investigate the timing overhead of the proposed run-time scheduler, we analyze it 
on three real platforms, Intel Core i5, ARM big core (A15), and ARM LITTLE core 
(A7) on ODROID XU3/4 and ARM core (A53) in Xilinx Zynq UltraScale. + MPSoC 
board. Figure 7.11 shows the overheads in each platform for different numbers of 
tasks looking ahead. Each boxplot shows the average latency for normal values of 
parameters in Table 7.2 (.d = 10%, .c = 8, .U/c = [0.5, 0.75], n = 80) with 100 
task graphs. The following observation can be seen from the figure. First of all, 
the run-time timing overhead in the Intel platform is extremely small as compared 
to ARM processors. In the second observation, as the number of task look-ahead 
is increased, the latency is increased in all ARM processors. However, this latency 
increase is more evident in the A7 processor, while it is almost constant after looking 
seven tasks ahead in the A53 processor and four tasks ahead in the A15 processor. 
Furthermore, since big (A15) cores have high performance as compared to LITTLE 
(A7) cores, this timing overhead would be less. However, since a platform has lower
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Fig. 7.11 Analyzing the timing overhead of run-time scheduler on four platforms 

performance, the range of latency between the minimum and maximum value is 
more significant. This fact is due to its lower performance and access to the memory 
and cache miss/hit. 

To have a real implementation of our proposed method, we obtain the observed 
worst-case timing overhead of the run-time scheduler, in which the appropriate 
task is selected for slack assignment and also a proper core for the re-mapping. 
Since many embedded systems use ARM processors, we evaluate our method on 
the ARM processor. We analyze the overhead on a LITTLE core of the ODROID 
XU4 platform. We examine both the Look-Ahead Unit and Re-mapping Unit in the 
run-time scheduler separately and obtain the maximum observed timing overhead. 
To determine this overhead, we ran several applications (200 task graphs) with their 
various inputs on ARM LITTLE Core (A7). Based on these overheads, we set the 
observed worst-case of the Look-Ahead Unit to the maximum value. In addition, the 
scheduler in Re-mapping Unit checks other cores, whether it is possible to re-map 
a task for thermal management. In the worst case, all cores are checked. Therefore, 
to have a close to accurate observed worst-case timing overhead of the Re-mapping 
Unit, we obtain the worst timing overhead for each core and multiply it by the 
number of cores. Based on our observation and this measurement, the maximum 
timing overhead for Look-Ahead Unit is 56.417. μs, and for Re-mapping Unit per 
core is 64.54. μs. In order to ensure that the timing guarantees provided by the static 
schedule are not violated, we deduct these overheads from slack before assigning it 
to an appropriate task.
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7.5.6 The Latency of Changing Frequency in Real Platform 

The main unit, the DVFS governor, adjusts the frequency, which has a signif-
icant timing overhead. The ODROID XU3/4 board has a frequency range of 
.〈0.2, 1.4〉 GHz for LITTLE cores and .〈0.2, 2〉 GHz for big cores, with the step 
of 0.1 GHz. We change the frequency by using the . 〈cpufreq-set. 〉 program in 
two scenarios of scaling-down and scaling-up. Hence, the voltage is adjusted 
automatically according to the selected frequency. The maximum latency for all 
scenarios is at most 12.025 ms. Besides we observe in our experiments that the 
latency of the scaling-down transition is 342. μs less than the scaling-up transition, 
on average. Regardless of the frequency scaling-down or up, we consider the latency 
of changing V-f level to be equal to 12.025 ms. Due to this timing overhead, we 
deduct this latency from available dynamic slack before assigning it to a task to 
guarantee the correct execution of tasks before their deadlines. Since the re-mapping 
latency is 3.75ms [13] in the worst-case scenario and re-mapping is done in parallel 
with changing the frequency, it has no impact on the overall deadline. 

7.5.7 The Effect of Latency on System Schedulability 

As discussed, considering the latencies of the run-time scheduler and changing 
frequency are critical in analyzing the system. If these timing overheads are not 
studied, it may cause deadline miss of tasks and then catastrophic consequences. 
Our proposed method’s effectiveness depends on the available slacks at run-time 
and the possibility of assigning them to the tasks. Therefore, if the latencies are 
not properly accounted for, some tasks may not be executed successfully before 
their deadline. Figure 7.12 shows the percentage of successfully executed task sets 
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Fig. 7.12 Percent of successful executed tasks before their deadline in task graph according to our 
proposed method without considering timing overheads
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before their deadlines during the run-time phase in different scenarios if we do not 
consider the timing overheads. The results are obtained for the normal scenario of 
some parameters (.d = 10%, .U/c = [0.5, 0.75], .c = 8, 16, and .n = 30, 40, 50, 
and 80) and 1000 task graphs for each scenario. In this figure, we observe that as 
the number of tasks in the system with the same number of cores is increased, fewer 
task sets can be scheduled and meet their deadline. When there are more tasks in the 
system with the same U/c, the dynamic slacks that are incurred when the tasks finish 
earlier than their WCETs are smaller. The reason is that as the expected execution 
times of the tasks are decreased, the absolute differences between their AET and 
WCETs are inherently small. Therefore, the possibility of missing a deadline is 
increased, and fewer tasks would be executed successfully before their deadline. In 
addition, if the number of cores in the system is increased, more task sets miss their 
deadlines. Since the re-mapping technique is used to manage temperature, all cores 
are checked in the worst case. Therefore, by increasing the number of cores, the 
timing overhead of selecting a proper core for task re-mapping is increased. Since 
this latency has not been considered while a dynamic slack is assigned, using the 
re-mapping technique at run-time may cause more deadline violations by increasing 
the number of cores. In general, as shown in this figure, a high percentage of task 
sets miss their deadline, which is not acceptable in MC systems. Therefore, it is 
critical to consider the timing overheads of the run-time scheduler and changing 
frequency. 

7.5.8 The Analysis of the Proposed Method on Improving 
Objectives in Simulation 

In order to illustrate how effective our proposed method is with different parameters, 
we analyze the results under four separate scenarios of Table 7.2, shown in Fig. 7.13, 
in which the results are normalized to [4]. These results are obtained for multi-core 
systems, in which there are homogeneous cores based on ARM A7. In general, 
as the applications get more complicated (e.g., having a large number of tasks 
or system utilization), it is harder to achieve significant savings in peak power, 
energy, and maximum temperature. Thanks to our task re-mapping technique, where 
the tasks are redistributed more evenly to the cores at run-time based on their 
accumulated energy, the maximum temperature is properly managed. 

For the case of varying the number of cores, since our method only tries to 
optimize the peak power for each core individually to reduce the time overhead, 
it is more difficult to maintain a similar system peak power reduction when c 
is low. Nevertheless, as illustrated in Fig. 7.13a, the difference in peak power is 
significant by increasing the number of cores. In addition, as the temperature of 
each core is affected by the temperatures of neighboring cores, the reduction in 
maximum temperature is less by increasing the number of cores. On average, the
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Fig. 7.13 The improvements in peak power, energy, and maximum temperature in different 
scenarios normalized to [4]. (a) Varying number of cores. (b) Varying utilization bound. (c) Varying 
number of tasks. (d) Varying edge percentage 

peak power, maximum temperature, and energy consumption in the system are 
reduced by .5.015%, 14.12 . ◦C, and .15.073%, respectively. 

The effectiveness of our method depends on the available slacks at run-time and 
the possibility of assigning them to the tasks. Therefore, if there is less slack due to 
the nature of the application in terms of the number of tasks and system utilization, 
the reduction in peak power, energy consumption, and maximum temperature is 
less. For instance, in Fig. 7.13b, when the system utilization is getting higher, the 
idle time of the core between two consecutive tasks is getting smaller. The tasks 
also tend to execute longer. Thus, the amount of slacks that can be exploited at 
run-time is limited. But, overall, the peak power is reduced by at least .3.905% and 
up to .8.59% in this scenario. Similarly, when there are more tasks in the system 
with the same .U/c, the dynamic slacks incurred when the tasks finish earlier than 
their WCETs are smaller. The reason is that as the expected execution times of the 
tasks are decreased, the absolute differences between their AET and WCETs are  
inherently small. However, as seen in Fig. 7.13c, our method manages to reduce the 
peak power, energy, and maximum temperature on average by .6.96%, .15.61%, and 
10.54 . ◦C, respectively.
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Fig. 7.14 Temperature profile for different edge percentages. (a) Medina et al. [4] with .d = 20%. 
(b) .d = 20% and . k = 1. (c) .d = 20% and . k = 4

Besides, the possibility of releasing the tasks earlier than their presumed start 
times also affects the outcomes. When the dependency between the tasks is high, 
a significant amount of them cannot be released earlier. This behavior can have 
either a positive or negative impact on the system. For the former, the cores might 
have more idle time because the tasks have to wait longer for their predecessors 
to finish. For the latter, our method has less opportunity to apply DVFS to tasks. 
However, at run-time, these idle periods might overlap with the other tasks with 
the already reduced V-f level. The peak power of the whole system is consequently 
reduced. It can be seen in Fig. 7.13d that when .d = 20%, the best peak power and 
maximum temperature reduction are achieved compared to the cases where . d = 1%
and .d = 10%. 

Figure 7.14 shows an example steady-state heat map of the systems with different 
edge percentage parameters. The result is obtained for a system with .c = 16, . U/c =
0.5, and .n = 80. We show the results of looking one and four tasks (which is the 
optimum value when we do not consider timing overhead) ahead as compared to [4]. 
It can be observed that our approach not only reduces the maximum temperature but 
also helps in balancing the difference in temperature between the cores, especially 
when .k = 4. 

7.5.9 The Analysis of the Proposed Method on Improving 
Objectives in a Platform Based on ODROID Architecture 

In this section, we analyze the improvement of peak power, energy consumption, 
and maximum temperature in a clustered heterogeneous multi-core processor in 
which there are four big (A15) and four LITTLE (A7) cores. Here, we have a 
common V-f level for all cores within the same cluster (cluster with big cores 
or cluster with LITTLE cores), while in the previous results, the frequency of 
each core was changed individually. We show the results in Fig. 7.15, in which 
the improvements in peak power, energy consumption, and maximum temperature
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Fig. 7.15 Normalized metrics running on the clustered heterogeneous multi-core platforms. (a) 
Varying utilization bound. (b) Varying number of tasks. (c) Varying edge percentage 

in the clustered heterogeneous multi-core system across all experiments are up to 
5.25%, 22.44%, and 20.33% (16.8 . ◦C), respectively, in comparison with [4]. The 
trends for the clustered heterogeneous multi-core architecture are similar to that 
obtained for the homogeneous architecture in the previous subsection. The only 
notable difference is in the peak power, which is on average 3.461% worse than the 
tasks on a homogeneous multi-core system, due to enforcing of common V-f level 
for the entire cluster. Therefore, the power improvement is somewhat lower. 

7.5.10 Evaluation of Running Real MC Task Graph Model on 
Real Platform 

Now, we validate the proposed online technique with a real-life application task 
graph, presented in Fig. 7.1a, running on the ODROID XU3. In particular, we 
evaluate the impacts of changing frequency on the system power and temperature 
in this section. The Unmanned Air Vehicle (UAV) application consists of seven 
dependent tasks executed on two cores, which has been presented in Fig. 7.1a. Since 
there are no available real benchmarks for the tasks of the graph, we used different 
benchmarks of MiBench [7] as tasks of the graph. Then, we obtain the WCETs 
and maximum power consumption of each task running on the ODROID XU3. 
Since WCET analysis is a complicated task [14], we used an existing WCET 
estimation tool called OTAWA [15], to capture the high WCETs (.WCET HI

i ). In 
addition, we run each benchmark 10,000 times and select the maximum of the
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Fig. 7.16 Power and temperature sensor data of the ODROID XU3, by running the real MC task 
graph (unmanned air vehicle). (a) Temperature trace of A15-core2. (b) Temperature trace of A15-
core3. (c) Power trace of the big cluster 

measured execution time as the low WCET (.WCET LO
i ). To analyze the system 

temperature, we run the application on Core2 and Core3 that in general have a 
higher temperature due to their proximity to the memory and other components. 
Hence, there is a temperature sensor for each big core and a power sensor for each 
cluster of ODROID XU3. Therefore, the power and temperature data of this section 
are exploited from the board sensors. 

Figure 7.16 shows the power trace of the cluster of big cores and temperature 
trace of two cores during run-time in two scenarios of using our DVFS-based 
proposed method and presented method of [4] ([MBP18a]). At run-time, to analyze 
a task execution time, we select a docker container to run a task and check the 
time to be aware of the exact start and finish times of the task. Then, the dynamic 
slack is computed, the slack between the task’s actual completion time and its 
WCET. Figure 7.16c shows the power traces of the method of [4] and our proposed 
method by considering two tasks looking ahead that the DVFS has been used from 
almost 90 ms. In addition, as shown in Fig. 7.16a and b, in general, the average 
core temperature has been decreased by using the DVFS-based proposed method 
and looking two tasks ahead. Based on the scheduling of tasks in Fig. 7.1, one of 
the cores is active until near the middle of the period. However, the temperature 
of each core is affected by the temperature of neighboring cores. In addition, after 
executing two tasks in each core and using the dynamic slack to reduce the speed, 
the cores’ temperatures are decreasing. Besides, in a part of the task graph period,
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only Core2 is active but still has high temperatures. Therefore, after applying the 
proposed method and reducing the V-f levels, the cores’ temperatures are reduced. 
The proposed method will be more effective and have a significant improvement if 
there are more tasks that are run on a system with more cores. 

7.6 Conclusions 

In this chapter, we studied peak power and peak temperature reduction in MC 
embedded systems at run-time and analyzed the proposed run-time power-aware 
scheduler on clustered multi-core real platforms while guaranteeing the minimum 
QoS value. Our presented method uses the re-mapping technique and DVFS at 
run-time whenever there is a dynamic slack. We also proposed the associated cost 
functions to select the most appropriate task to assign the dynamic slacks to decrease 
its V-f level or re-map it to another core. We showed that more peak power and 
maximum temperature reduction are achieved by increasing the number of tasks 
to look ahead. In addition, the proposed power-aware scheduler was analyzed in 
terms of run-time timing overhead in different multi-core platforms. We focused 
on reducing the run-time scheduler latency to have more usage of dynamic slack 
and, consequently, more peak power and maximum temperature reduction while 
guaranteeing the deadlines of LC and HC tasks in their specified system mode. 
Besides, although we consider dual-criticality level systems in this work, the 
proposed approach can be applied to any MC system, regardless of how many 
criticality levels of tasks are executed in the system. The results show up to 5.25%, 
20.33% (16.8 . ◦C), and 22.44% reduction in peak power, maximum temperature, and 
average energy consumption, respectively, compared to recent studies. 
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Chapter 8 
Conclusions and Future Work 

In this chapter, first, the conclusion from the book is presented and then some open 
issues for future works are discussed. 

8.1 Conclusions 

MC systems are getting more attention in the last decade due to their significance in 
safety-critical applications, such as medical devices like artificial heart, and avionics 
like flight control, etc. These MC systems have been devised to address the real-
time and safety requirements of these industrial safety-critical applications, where 
applications with different criticality levels are integrated into a common hardware 
platform to reduce cost, size, and power consumption. The main research question 
is how to reconcile the requirements of reliability and real time while improving 
resource utilization. This question raises problems in modeling, designing at 
application and software levels, and implementing and controlling the hardware. 

The design of such MC system comes with certain challenges, which are mainly 
faced in the MC application analysis, how the tasks’ parameters are defined, 
scheduling analysis, and MC hardware analysis. In application-level analysis, 
due to defining multiple WCETs for each task, corresponding to the multiple 
criticality levels and the ongoing mode of operation, the timing behavior of 
MC systems (which correlates with the system mode switching probability and 
utilization) would not be stable at run-time. Determining the appropriate values 
of WCETs for lower criticality modes is nontrivial and needs to be addressed in 
MC system design. Besides, from MC task scheduling analysis perspective, the 
existing MC task scheduling algorithms, like EDF-VD, drop/degrade the LC tasks 
in the higher modes. However, the frequent drop of LC tasks, such as mission-
critical tasks in some safety-critical applications, may have a negative impact on 
the execution of other tasks, like HC tasks and mission-critical tasks themselves. 
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Although it does not cause catastrophic consequences, it may prevent the system 
from accomplishing its mission correctly. To this end, the number of allowable drops 
for each LC task must be restricted in such MC systems and should be studied. 
From the perspective of the MC hardware system design, the critical trend of MC 
system design is integrating functions with different criticality levels onto a common 
hardware platform, where the platforms can be single- or multi-core architecture. 
One of the goals in designing the MC systems is resource utilization improvement. 
However, the execution of LC and HC tasks require higher computational demands, 
which leads to high-power consumption. Systems with high power are more likely 
to generate unexpected heat beyond the cooling capacity. They will be more 
susceptible to failures and instability, which is unacceptable for MC systems and 
may cause catastrophic consequences. This heat generation would be harmful if 
the degree of freedom (regarding the availability of the cores) increases due to 
heat transmission among cores. Although employing multi-core platforms helps 
to improve the QoS by executing the tasks in parallel, guaranteeing the real-time 
constraints while managing the system power consumption is a crucial challenge 
that must be addressed. 

In this book, we addressed the mentioned challenges in MC application and 
hardware system designs to improve the QoS while guaranteeing the real-time 
constraints of tasks. In Chap. 3, since the MC system parameters like WCET are 
the key aspects of system design in application-level analysis, we focused on WCET 
estimation of MC tasks in the LO mode. In this chapter, an analytical scheme, called 
BOT-MICS, was first proposed to determine the WCET at design-time, to make a 
trade-off between the number of scheduled tasks at design-time (i.e., utilization) 
and the number of dropped LC tasks at run-time as a result of frequent mode 
switches. The analytical scheme is based on theChebyshev theoremwhich shows the 
relation between the low WCETs and mode switching probability. We formulated 
the problem and solved it using GA to improve the objectives, resource utilization, 
and mode switching probability. We evaluated the BOT-MICS for various state-of-
the-art MC systems, and therefore, the experimental results showed that it improves 
the utilization of state-of-the-art MC systems by up to 85.29% while maintaining 
9.11% mode switching probability in the worst-case scenario. However, although 
BOT-MICS can determine the optimum values of low WCETs at design-time, these 
values are static and remain unchanged for each task, which cannot adapt to task 
dynamism at run-time. It can cause processor underutilization if the low WCETs 
are not close to the actual execution times. Therefore, we proposed ADAPTIVE 
to determine the low WCET at run-time based on the actual execution times of 
tasks. We considered the run-time behavior of tasks and proposed a learning-based 
approach that dynamically monitors the tasks’ execution times and adapts the low 
WCETs to improve QoS at the end of complete application execution. Based on 
our observations on running embedded real-time benchmarks on a real platform, 
ADAPTIVE can improve the QoS by 16.4% on average while reducing the utilization 
waste by 17.7% on average, compared to state-of-the-art works. 

Further, we focused on MC task scheduling analysis and proposed methods in 
Chaps. 4 and 5, to schedule more LC tasks in the HI mode and improve the QoS.
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To this end, we proposed FANTOM in Chap. 4, in which we first introduced a task 
parameter to limit the number of LC task drops. Then, we developed a design-time 
task-drop-aware schedulability analysis based on the EDF-VD in accordance with 
the defined parameter. By defining the new parameter, we consider a maximum 
allowable number of drops for each LC task and prohibit the number of drops 
from passing a predefined threshold. According to the obtained results from an 
extensive set of simulations, which have been validated through a realistic avionic 
application task set, FANTOM improves the acceptance ratio by up to 43.9% 
compared to a state-of-the-art work. Since FANTOM is proposed based on the worst-
case scenario of task execution times, we then proposed a learning-based drop-aware 
task scheduling mechanism in Chap. 5. Since the tasks are not executed always 
up to their WCET, the proposed approach carefully monitors the alterations in the 
behavior of the MC system at run-time, to exploit the generated dynamic slack for 
reducing the LC tasks’ penalty and preventing frequent drops of LC tasks in the 
future. Based on an extensive set of experiments, our observations have shown that 
the proposed approach exploits accumulated dynamic slack generated at run-time, 
by 9.84% more on average compared to existing works, and can reduce the deadline 
miss rate by up to 51.78% and 33.27% on average, compared to state-of-the-art 
works. 

By increasing the number of tasks in an application, although multi-core 
platforms are fruitful due to the ability of parallel execution of tasks on cores, the 
power consumption of these systems is a critical issue. Therefore, we studied the 
challenges of these MC hardware design in Chaps. 6 and 7. First, we proposed an 
approach in fault-tolerant multi-core MC systems to manage peak power consump-
tion and temperature. The approach develops a tree of possible task mapping and 
scheduling at design-time to cover all possible scenarios and reduce the LC task drop 
rate in the HI mode, i.e., improve the QoS. At run-time, the system exploits the tree 
to select a proper schedule according to fault occurrences (to guarantee the real-time 
constraints in case of fault occurrence) and criticality mode changes. Experimental 
results show that the average task schedulability is 74.14% on average while 
improving the peak power consumption and maximum temperature by 16.65% and 
14.9 . ◦C on average, respectively, compared to recent work. In addition, for a real-
life application, our method reduces the peak power and maximum temperature 
by up to 20.06% and 5 . ◦C, respectively, compared to a state-of-the-art work. In 
order to take advantage of task dynamism in run-time system operation, we then 
proposed an online peak power and thermal management heuristic in Chap. 7, in  
which the re-mapping technique is used in the case of available dynamic slack 
to re-map a ready task from the hot core to a core with a lower temperature to 
manage the system’s maximum temperature. This heuristic exploits the generated 
dynamic slack (due to early completion of a task execution) and assigns them to 
an appropriate task among k look-ahead tasks, which has more impact on system 
power and maximum temperature and reduces the V-f levels. However, changing 
the frequency and selecting a proper task for slack assignment and a proper core 
for task re-mapping at run-time can be time-consuming and may cause deadline 
violation which is not admissible for HC tasks. Therefore, we analyzed and then



190 8 Conclusions and Future Work

optimized the proposed run-time scheduler and evaluate it for various platforms. 
The proposed approach was experimentally validated on the ODROID-XU3 with 
various embedded real-time benchmarks. Results show that the heuristic achieves 
up to 5.25% reduction in system peak power and 20.33% (16.8 . ◦C) reduction in 
maximum temperature compared to an existing method while meeting deadline 
constraints in different criticality modes. 

8.2 Future Work 

In this book, system-level approaches are proposed through MC application analysis 
and MC hardware analysis to enhance the QoS of MC systems while ensuring real-
time constraints. There are, however, several open issues that need to be addressed 
when designing such MC systems, including the following: 

• MC System Analysis with Consideration of Communication and Data 
Sharing: Although employing multi-core platforms offers the opportunity for 
executing several applications in common hardware, safety and real-timeliness 
are critical issues in designing such MC hardware systems. In these multi-core 
platforms, more data are needed to be shared between concurrent executions 
of tasks with different criticality levels [1]. The strict control of data (critical 
and noncritical), communication, sharing, and storage in such systems for safety 
assurance, e.g., in medical devices, is crucial. It is essential to ensure that the 
behavior of LC tasks does not adversely affect the behavior of HC tasks while 
communicating and sharing data or writing in memories, for example, delaying 
an HC task by blocking the memory access. Most state-of-the-art works have 
concentrated on designing MC systems in multi-core processors regardless of 
safe and on-time data sharing among communication and memories. As a result, 
an MC system design considering all system resources, like communications, 
memory access, and processors, needs to be developed. 

• Evaluation on Real Platforms Using Real-Life MC Benchmarks: Most  
approaches in the field of MC systems are presented in the academic area, not 
evaluated by industries, and may not be usable in reality. For this purpose of 
proposing more practical approaches, first, the designers need more realistic MC 
task and system models that are derived based on industrial application features 
and run-time behavior, which is good to be focused on as future work. Besides, 
some open-access real-life MC benchmarks are also fruitful and need to be 
studied and presented, e.g., in automotive and avionic industrial applications, for 
analyzing and evaluating presented approaches in MC system design domain. 
Then, since most proposed methods in the academic area are evaluated through 
simulation, an evaluation and implementation of approaches on a real embedded 
multi-core platform are needed to demonstrate their effectiveness. It is useful 
if the chosen platforms are mostly the same as those used in industries, like 
automotive platforms.
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• Safety and Reliability Management: In  MC systems, the correct execution of 
functions, especially HC tasks, must be ensured during run-time under various 
stresses (e.g., hardware errors, software errors, etc.) to prevent failure and catas-
trophic consequences. Therefore, MC systems must be well designed to ensure 
long-term and application-specific reliability. In order to guarantee system safety, 
fault-tolerance techniques are employed in the design of such systems. In the 
case of fault occurrence, different techniques such as replication or re-execution 
are needed to enhance their strengths against potential failures. Furthermore, 
due to the various safety demands for tasks, they can have different reliability 
requirements. A failure occurring in tasks with different criticality levels has a 
disparate impact on the system, from no effect to catastrophic. Although there 
are some approaches that have focused on managing the lifetime or timing 
reliability in hardware or system software layers, in future work, more works 
are first needed to analyze the MC systems’ behavior in all abstraction layers 
like hardware, application, and system software, separately, while managing the 
reliability. These single-layer reliability-aware design approaches adopt an other-
layer-agnostic approach [2]. However, this isolated layer-wise fault mitigation 
has a high cost (in terms of power, area, and timing), making it infeasible for 
most embedded systems [3]. Therefore, considering the cross-layer reliability is 
also crucial in efficiently designing these MC systems that need to be focused on 
and deeply studied in the future. 

• Ensuring ML-Based Objective (QoS, Reliability), with Consideration of 
ML Complexity Reduction: In general, there are three categories of ML 
techniques—supervised learning, unsupervised learning, and reinforcement 
learning—where, depending on the problem, parameters, and inputs, at least one 
of these techniques is determined and used for system property improvement. 
These ML techniques are usually memory-intensive and computationally 
expensive, which makes some of them incompatible with embedded MC system 
design. Further, a more simplified ML technique may not provide the desired 
accuracy when making predictions. Therefore, although we have proposed ML-
based approaches for QoS-aware MC system design, these ML techniques are 
needed to be investigated first in terms of overheads, accuracy, and capability, and 
then the efficient ones which are suitable for a specified objective to be applied to 
embedded MC systems at design-time are also needed to be determined. Besides, 
to use the ML techniques at run-time, the selected ML techniques must be light 
enough with low overhead to be used at run-time for objective improvement 
in MC systems, which are safety-critical, with no effect on MC applications’ 
timeliness. The ML technique’s function is to choose the best decision under 
environmental changes in order to improve objectives, like reliability, and QoS. 
Therefore, selecting a suitable ML technique, concentrating on its run-time 
timing overheads and accuracy for learning and prediction, plays a crucial role 
in controlling and doing a safe mission under environmental changes and needs 
to be intensely focused. Besides, although using ML techniques can improve the 
objectives, they cannot guarantee the constraints and requirements. For example, 
some research works have been proposed to enhance reliability through ML
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techniques, but there is no guarantee of meeting the reliability requirements. 
Designing and developing ML-based approaches to guarantee the reliability 
requirements of MC tasks would be interesting to be noticed. 

• Hardware- and Overhead-Aware WCET Estimation: This book focused on 
how the low WCET of MC tasks are determined while improving their utiliza-
tion. In the proposed approaches, a single-core platform has been considered in 
designing the MC systems with no memory or communication consideration. 
This is despite the fact that some other factors impact WCET values and 
processor utilization, like hardware behavior, overheads, and task dependencies, 
and make the system inaccurately designed. In the following, we discuss briefly 
how these factors may have a negative impact on designing MC systems. 

– Overheads and task dependencies: In general, the WCET values depend on 
the function’s input data. This fact would be more important if the tasks 
are dependent. Tasks should be analyzed at the instruction level to see how 
the variety of input data can affect their WCETs. Besides, some timing 
overheads like saving the output result of task execution in memory/cache 
and loading from to be used as a function input can be significant in real-time 
systems. It is important to consider how overheads arising from tasks with 
one criticality level may affect tasks with a different criticality level. As a 
result, it is necessary to find first appropriate models of system overheads and 
task dependencies and then integrate them into the MC’s system analysis: the 
WCET estimation and utilization improvement. 

– Hardware behavior analysis: In order to estimate low WCET of MC tasks, 
in this book, we have analyzed the tasks, predicted the low WCETs, and 
observed on a concrete processor. However, as mentioned in the first future 
work, a hardware platform consists of the computation part, communication, 
and memory. These parts affect the execution times of MC tasks and make 
them context-dependent. To estimate the appropriate low WCET of tasks to 
be used in MC system design, all hardware components’ behavior should 
be analyzed for all paths leading to a task’s instructions. Considering the 
hardware behavior analysis in application-level analysis leads to better MC 
system design, which needs to be focused on. 
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