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Abstract. With the increasing computational power and the evolu-
tion of the distributed computing paradigm and artificial intelligence
techniques and methodologies, computing is becoming increasingly dis-
tributed and intelligent. The multi-agent paradigm is one of the most
powerful paradigms for implementing distributed artificial intelligence.
There are multiple (multi-)agent-oriented programming languages, plat-
forms and methodologies to implement these systems, and the Multi-
Agent Programming Contest aims to provide challenging scenarios in
which researchers can explore their preferred programming languages,
platforms and methodologies to implement multi-agent systems, collect-
ing benchmarks, etc. In this paper, we describe the multi-agent system
implemented by the LI(A)RA team for the Multi-Agent Programming
Contest 2022, including details about the system’s implementation, the
technologies and methodologies used, and also discuss the team’s results.

Keywords: Artificial Intelligence · Multi-Agent Systems ·
Agent-Oriented Programming Languages · Multi-Agent Programming
Contest

1 Introduction

The multi-agent systems paradigm emphasises the thinking of systems as multi-
ple intelligent entities. This paradigm is becoming very popular, not only because
of the rise of the use of artificial intelligence techniques but also because it natu-
rally meets the current demand to design and implement distributed intelligent
systems such as smart homes, smart cities, and personal assistants, for instance,
also facilitating the integration between those systems. Nowadays, we are able
to argue that multi-agent systems are one of the most powerful paradigms for
implementing complex distributed systems powered by artificial intelligence tech-
niques [11], for example, incorporating argumentation-based reasoning and com-
munication [22,24], modelling and reasoning about uncertain information and
theory of mind [27,31], and many other techniques.
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Multi-agent systems are built upon core concepts such as distribution, reac-
tivity, and individual rationality. To support the development of multi-agent
systems, a large number of tools have been developed, such as agent-oriented
programming languages and methodologies [4]. Consequently, practical applica-
tions of multi-agent technologies have become a reality, many of them solving
complex and distributed problems [10,23,32,33]. In addition, it also allows the
execution of various tasks and makes it possible the integration with various
technologies, for example, chatbot technologies [8,9].

The Multi-Agent Programming Contest (MAPC) was created with the aim
of exploring the potential of multi-agent systems, providing challenging scenarios
to explore agent-oriented programming languages, platforms and methodologies
for developing multi-agent systems. Also, MAPC provides reference problems
in which different researchers can compare their results, such as benchmarks.
MAPC 2022 brought the Agents Assemble III scenario, including a normative
system, the idea of agents roles, and complex tasks agents should exhibit atti-
tudes of collaboration and coordination in order to score points. In this paper,
we describe the solution proposed by the LI(A)RA team for the MAPC 2022 sce-
nario. LI(A)RA is a project, created in 2022, for teaching agent technologies for
undergraduate students at the Federal University of Santa Catarina. The project
also aims to research the software engineering process behind participating in
the contest. The proposed solution was implemented using Jason Platform [5],
focusing on (i) a purely declarative implementation, which aligns with the pur-
pose of the original language, and (ii) distributed mechanisms for coordination
and collaboration.

This paper is organised as follows. First, in Sect. 2 we describe the Agents
Assemble III scenario used during the Multi-Agent Programming Contest 2022,
pointing out the differences between this year’s scenario and the previous ones,
also highlighting the main challenges in this new scenario according to our point
of view. In Sect. 3, we describe the implementation of LI(A)RA’s solution for the
MAPC 2022 scenario, including the methodology applied during development
and the agents’ strategies implemented according to different aspects of the
Agents Assemble III scenario, for example, movement strategies, synchronisation
strategies, among others. In Sect. 4, we describe our results in the MAPC 2022
contest. Finally, in Sect. 5, we present our conclusions, pointing out some future
directions our team intend to adopt.

2 The Agents Assemble III Scenario

In 2022, the Multi-Agent Programming Contest brought a revision from the
scenario presented in the previous MAPC 20191 and 2020/20212, named the
Agents Assemble III. The main difference regarding the previous year’s scenario
was: (i) considering roles for agents and establishing different capabilities for
agents according to their roles. Also introducing role zones, which are places
1 https://multiagentcontest.org/2019/.
2 https://multiagentcontest.org/2020/.

https://multiagentcontest.org/2019/
https://multiagentcontest.org/2020/


LI(A)RA Team 167

Fig. 1. Example of the Agent Assemble World. (Color figure online)

in the environment agent could adopt and change roles; and (ii) a normative
system in which agents would be punished according to they violate the norms
established during the simulation.

In the Agents Assemble III scenario, agents are situated in a grid world envi-
ronment with limited local vision, and they are required to organise and coor-
dinate themselves to assemble and deliver complex structures made of blocks,
which are called “tasks”. In Fig. 1, we can observe an example of an instance of
the Agents Assemble III World, in which we are able to observe the following
aspects:

1. blue numbered small squares and green numbered small lozenges represent
agents, in which agents with the same colour and format are from the same
team. All matches are between two teams, which is why there are two teams3

in the grid world in Fig. 1.
2. large blue and red translucent lozenges represent role and goal zones, respec-

tively. Role zones (large blue translucent lozenges) are regions in which an
agent is able to change its role, choosing among the different roles available
during a particular match, which will enable it to execute particular actions
during the simulation. Goal zones (large red translucent lozenges) are regions
in which agents are able to deliver tasks. Agents are required to be at a goal
zone in order to deliver tasks, also respecting the specificity of each task (form
of the structure made of blocks, relative position of the agent delivering the
tasks, etc.).

3 Future versions of the contest may allow matches among more than 2 teams.
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Fig. 2. Examples of Tasks.

3. black blocks are obstacles that agents cannot go through, they can deviate or
clear4 obstacles in order to move through the grid. For example, blue agent
number 15 (at the bottom left in Fig. 1) is clearing an obstacle that was north
of it (clear actions plot red outline lozenge in the environment).

4. blocks with different shades of yellow represent the dispensers. Dispensers can
be used by agents to request blocks. When an agent requests a block from a
dispenser, the dispenser generates a block over the dispenser, and the block
becomes available to agents to attach it. Dispensers only generate blocks of
their type, for example, a dispenser of the type “b1” only generates blocks of
the type “b1”. Figure 1 shows two different dispensers, one of the type “b1”
and one of the type “b0”.

5. finally, we also are able to observe, in Fig. 1, agent 19’s range of vision, high-
lighted by the lighter region around it. Agents have a limited local vision, and
an agent is able to observe only those things within its range of vision. For
example, agent 19 is perceiving the adversary agent 19, the goal zone, and
obstacles within its range of vision.

There are many challenges associated with the MAPC 2022 scenario, some
of them already known from previous contests, and new challenges consequence
of the addition of roles and normative specifications. Below we emphasise the
most challenging aspects of the MAPC 2022 scenario according to our point of
view.

– The absence of absolute position: one of the most challenging aspects of
the MAPC 2022 (also 2019 and 2020/2021) scenario is the absence of abso-

4 Clear actions are only available for some roles agents can adopt during the simulation.
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Fig. 3. Example of a Crowded Goal Zone.

lute position. It means, all agents start in a different position on the com-
putational grid which implements the environment, and all of them under-
stand they are at the coordinates x = 0 and y = 0 at the beginning of the
match. Consequently, when agents reach important regions of the world (for
example, goal zones and dispensers), the perspective of those things’ posi-
tion is different from each other. For example, the dispenser “b1” in Fig. 1
is at position(3,-12) (x = 3 and y = −12) for blue agent 19, and at
position(-7,-1) for the blue agent 4 (considering that Fig. 1 shows the
configuration of the match at the start point, in which agents understand
they are at the coordinates x = 0 and y = 0).

– The uncertainty of success when executing actions: another challeng-
ing aspect of the MAPC 2022 scenario is that agents randomly fail to execute
their actions. It means, an agent only knows if its actions had the expected
result after executing the actions and perceiving its success during the next
step of the environment simulation. For example, when an agent executes the
action to move north, it is expected the agent to leave its current position, let’s
say position(10,10), and ends at the north of it, i.e., at position(10,9).
However, at the current configuration of the scenario, the agent only knows if
it actually moved after, when it perceives the next step of the simulation (it
requires the agent to perceive if it had succeeded in executing that action),
perceiving a change in its position.

– The complex tasks: another challenging aspect of the MAPC 2022 scenario
are the complex tasks, ranging from task formed by 1 to 4 blocks in different
configurations. Figure 2 shows some examples of tasks that appeared during
a match. Not only do agents need to cooperate and coordinate to build and
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deliver the tasks formed by more than one block, but also it requires delivering
the tasks in specific regions of the environment called goal zones. Goal zones
were scarce, they became crowded during most of the matches, and they also
became regions of interest by other teams that applied aggressive strategies in
which they attacked other agents (by executing clear actions at other agents
and their blocks) trying to deliver tasks.

– The crowded goal zones: another challenging aspect of the MAPC 2022
scenario is the scarce goal zones (sometimes very small ones). This aspect
of the simulation was problematic in finding space to build and deliver the
complex tasks, given that agents should find the appropriate space between
other agents to build and deliver the task on those zones. Figure 3 shows an
example of a crowded goal zone, in which the LI(A)RA (green) agents 4 and
2 are delivering a task of two blocks, and agents 3, 9 and 12 are waiting for
other agents to build the complex task and deliver it. Also, Fig. 3 shows 4
agents from another team also approaching the goal zone to deliver tasks.

– The random clear events: another challenging aspect of the MAPC 2022
scenario is the random clear events that occur randomly in the world. They
are challenging aspects because they basically reset agents when they occur
over agents, taking the energy from the agents and (mostly of the time)
destroying the blocks they were carrying.

– Selecting one action by step: an aspect of the MAPC 2022 scenario that
changes how to implement the system is that agents are able to execute only
one action by step of the simulation, then, if the simulation has 600 steps,
agents will execute at most 600 actions during the simulation. While it makes
the matches fair in the sense all agents from all teams will execute at most
the same number of actions, it also changes how we implement agents, being
necessary to think about a strategy in which agents will choose one action
for each step, sending the action at the correct time, i.e., sending their 30th
action between the 30th and 31st step of the simulation.

3 Implementation

3.1 Technology

To implement the LI(A)RA team’s solution for the Multi-Agent Programming
Contest 2022, we have used the Jason platform [5]. Jason extends the AgentS-
peak(L), an abstract logic-based agent-oriented programming language intro-
duced by Rao [30], which is one of the best-known languages inspired by the
BDI (Beliefs-Desires-Intentions) architecture [6], one of the most studied archi-
tectures for cognitive agents. Also, Jason is part of the JaCaMo Framework [3],
which allows us to implement complex multi-agent systems encompassing all
dimensions necessary, named agents, environment, and organisation.

In Jason, besides agents are implemented based on the BDI architecture [6],
they also are defined with a plan library that provides the know-how for agents,
inspired by the procedural reasoning system (PRS) [14], providing an architec-
ture that combines practical reasoning and planning, in which agents are able
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to handle challenging tasks in a dynamic environment. The agents’ knowledge
is defined through beliefs and, as usual, the knowledge available for agents may
not necessarily be complete or accurate, considering the environment may be
large and may change the agent has not perceived.

In Jason, beliefs and goals are represented by predicates and a set of n terms
of first-order logic, as follows:

predicate(term_1,term_2, ..., term_n)

For example, the triggering event role(worker) is composed of the predicate
‘role’ and the term ‘worker’, meaning the agent has perceived it is playing a
role named worker.

Furthermore, predicates can be annotated with meta-information related to
that information, as introduced in [5] also used by others [16,17,21]. The syntax
for annotated predicates is as follows:

predicate(term_1,term_2, ..., term_n)[ann_1,ann_2,...,ann_n]

where each ann_i represents the SPSVERBc5th annotation for that particular
predicate, with the following syntax:

functor(term’_1,term’_2, ..., term’_n)

where an atom (called functor) is followed by a number of terms (called argu-
ments). This extension of the language provides more expressiveness, as pointed
out by [21] in the context of argumentation. A common meta-information origi-
nally used in Jason Platform [5] is the source of information, for example:

likes(john,icecream)[source(mary)]

described that mary has said that john likes ice cream, i.e., mary is the source
of the information likes(john,icecream).

In Jason, agents are able to represent the information they believe to be
true, for example, likes(john,icecream), and information they believe to be
false, for example, ¬likes(john,icecream), and, using negation as failure,
they are able to query information they have no knowledge about, for exam-
ple, not(likes(john,icecream)) and not(¬likes(john,icecream)), repre-
senting that the agent does not know if likes(john,icecream) is true or false.

Plans are composed of a triggering event, a context, and the body of the
plan, which represent a recipe (set of ordered actions and sub-goals) to achieve
that particular goal. The body of a plan may include updates to the belief base,
actions and (sub)goals. Triggering events are used to react to the addition (or
deletion) of beliefs or goals. The context establishes the precondition for the plan,
defining what must be true in order for the plan to be executed. The following
example shows the abstract syntax of Jason plans:

triggering_event : context <- body.
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For example, agents would be able to react to the perception of a role zone,
creating a goal to move to that particular role zone using the following plan:

+roleZone(X,Y)[source(percept)] :
not(movintToRoleZone(_,_)) &
my_expected_role(MyRole) &
not(role(MyRole))

<-
+movingToRoleZone(X,Y);
!moveTo(X,Y,rolezone).

in this particular plan, the context for executing this plan requires that the
agent is not moving to any role zone, i.e., not(movintToRoleZone(_,_)), and
it is playing a role during the simulation that is different from the expected
role it should be playing (given the strategy adopted by our team), i.e.,
my_expected_role(MyRole) & not(role(MyRole)).

In the agent’s plan library, there may be several plans to react to the same
triggering event corresponding to a goal, an external event, etc. and they repre-
sent choices an agent can make to achieve their goals. While sophisticated plan
selection functions can be implemented, originally, in the Jason Platform, plans
are analysed using the order they have been declared in the plan library of an
agent, similar to architecture with vertically layered priorities [18].

For example, the piece of code below contains 4 plans that implement 4
different ways an agent may achieve the goal !moveTo(X,Y), implementing a very
simple movement strategy that could be used in MAPC 2022 scenario. When
an agent creates a goal, for example, !moveTo(10,20), it will verify which plans
could be used to achieve that particular goal, i.e., which plans apply at that
current moment of its execution. Then, the agent will use the first plan which
applies to try to achieve its goal. Considering a particular scenario in which
the agent is at position(5,10), then there are two plans the agent could use to
achieve the goal moveTo(10,20), named plan1 and plan3. However, considering
the original implementation for the plan selection, the agent will prioritise always
horizontal movement over vertical movement, i.e., going east first, executing the
action move(e), until reaching position(10,10), then the first plan will not be
applicable anymore, and the only applicable plan will be the plan3, when the
agent will go south, executing the action move(s), until reaching the position
position(10,20), achieving its goal.

This plan selection mechanism specifies a very important aspect of the tech-
nology, which must be considered in order to adequately implement strategies.
For example, the example below shows a very simple movement strategy, and it
could implement a different movement strategy by just reordering plans 3 and 4
first, prioritising vertical movement over horizontal ones.

+!moveTo(X,Y): position(XMy,YMy) & XMy < X <- move(e). //plan1
+!moveTo(X,Y): position(XMy,YMy) & XMy > X <- move(w). //plan2
+!moveTo(X,Y): position(XMy,YMy) & YMy < Y <- move(s). //plan3
+!moveTo(X,Y): position(XMy,YMy) & YMy > Y <- move(n). //plan4



LI(A)RA Team 173

Another important aspect of a multi-agent system is communication. In Jason
platform, agents are able to communicate using already implemented internal
actions with the following format:

.send(receiver,performative,content)

in which receiver is the agent (or set of agents) that will receive that partic-
ular message, performative indicates the performative used in that particular
message, which will provide the intention behind that communication, providing
meaning for that communication together with the content of that message. For
example, an agent named ag_11 is able to tell other agents about a role zone it
found during its execution using the following message:

.send([ag_1,ag_2,ag_3],tell,roleZone(10,20))

in which the agent sends a message to agents ag_1,ag_2 and ag_3, telling
that it has found a role zone at coordinate (10,20), i.e., roleZone(10,20).
All agents will receive that information and they will believe that
roleZone(10,20)[source(ag_11)]. Although Jason platform provides a set
of predefined performatives with well-defined semantics [35] based on the
KQML [12], other performatives can be easily added, extending those already
available, for example, to allow sophisticated dialogues based on argumenta-
tion [25,26,28,29].

Furthermore, an agent program can be implemented in different modules/files
and integrated into a single agent, each module providing part of its knowledge
and capabilities [15,20], i.e., part of its beliefs and plans, respectively. Although
there are many sophisticated manners to approach modules of agent programs,
as pointed out by [20], we use a very simple approach in which agent knowledge
and plans can be implemented in different files and after that integrated into
an agent program. For example, imagine we implemented strategies for moving,
attacking, and exploring the MAPC scenario in different files named: move.asl,
attack.asl and explore.asl. Then, in order to have an agent that integrates
the strategies for moving5 and exploring, we only need to include both files as
part of the agent program as follows:

{ include("move.asl") }
{ include("explore.asl") }

In case we would have an agent that integrates the strategies for exploring and
attacking, we would include the correspondents files as part of the agent program
as follow:

{ include("explore.asl") }
{ include("attack.asl") }

5 Note that we have multiples implementations for the movement strategies, in which
an agent is able to create a goal to move to a specific location, !moveTo(10, 20), but
also referring what it is expected to find there if necessary, for example, a role zone
!moveTo(10, 20, rolezone).
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Fig. 4. The Incremental Approach.

3.2 Methodology

The multi-agent system was implemented using an incremental approach. Incre-
mental approaches, also called evolutionary approaches, are widely acknowledged
in the literature and they arise from the need for flexibility in the process of devel-
opment. The incremental approach consists of incremental developments, where
parts of the software are postponed in order to produce some useful set of func-
tions earlier in the development project [7]. The basic idea in the incremental
approach is to expand increments of an operational software product [2]. That
means, each stage of development, is not intended to produce a complete system,
but to produce multiple versions of the system, in which each new version adds
new functionalities. Figure 4 shows a generic representation for the incremental
approach, in which new “modules” are added to the system.

There are many specific models that may be accommodated under the incre-
mental approach. One of the most interesting is the Extreme Programming
(XP) [1], which normally is used in projects with uncertainty or changing require-
ments, and it is an example of agile approaches [13], which aim at supporting
changes and rapid feedback during software development.

We found this approach very adequate for our team, given the technology
used, as described in Sect. 3.1, and the methodology used to implement our solu-
tion, in which all members implemented parts of the system, aligning the project
during a weekly meeting. Also, XP requires comprehensive documentation, which
was a goal for our team.

It is important to note that an incremental approach allows us to think about
the system in a more modular way, in which modules of behaviour/capabilities
can be implemented and tested, individually and integrated. In particular, we
have implemented the modules presented in Table 1, implementing different
strategies used during the MAPC 2022, which we will discuss in the next section.

A challenge for an incremental and modular approach to development is
the documentation and standardisation of code. While the documentation was
basically made towards commentating on the code, all developers shared a table
of predicates used during implementation, presented in Tables 4, 5, and 6. One
of the benefits of using a declarative programming language is that the code
provides most of the semantics necessary to understand it, but even though,
the developers have shared those tables containing a short description of all
predicates used in the agents’ code.
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Table 1. Modules Implemented.

Module Name Description

“move.asl” movement strategies

“memory updates.asl” memory update strategies

“strategy.asl” decision-making strategies

“collect blocks.asl” strategies for collecting blocks

“adopt role.asl” strategies for adopting roles

“exploration.asl” exploration strategies

“complete task.asl” strategies for completing tasks

“synchronism.asl” strategies for synchronising agents

“task delivery organization.asl” strategy for task organisation

“connect and deliver.asl” strategies for connecting and delivering tasks

“after event.asl” strategies for dealing with effects caused by events

“change round.asl” strategies for changing the round

This approach of sharing the used predicates also is important when pro-
gramming different modules, even from the perspective of a single developer,
because predicates declared, added, or defined in a particular module may be
necessary for other modules. For example, the module named “strategy” uses
predicates declared all over the other modules, most of them basically keeping
the information of what that particular agent is doing in that particular step
of the simulation, corresponding to the general strategy for our agents we will
describe in the next section.

3.3 Strategies

An important aspect of our implementation, which also defines most of how we
implemented our strategies, is that all agents are instances of the same code. On
the one hand, this aspect of the implementation makes it more difficult to think
of a solution. On the other hand, it explores the implementation of agents that
show characteristics of adaptability, autonomy, and flexibility. Also, it is aligned
with the characteristics of the MAPC 2022 environment, in which agents are
able to execute one action by step of the simulation, deciding which action to
execute based on the information they perceived during the previous steps. That
means agents will execute a new action towards reacting to the perception of a
new step in the simulation, deciding what to do based on their own execution
(considering all information it acquires) during the match.

Considering both aspects of the scenario and implementation, we adopt a
strategy in which agents react to the perception of each step of the simula-
tion than reasoning about what they should do based on the current state of
the environment around each agent and its previous actions and perceptions,
memorising what they are doing at that particular step, and then executing the
selected action in the environment. When they perceive the next step of the
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simulation, they remember what they were doing in the previous step, reasoning
about the next action to execute according to that information.

In our strategy, agents may reach a state in which they remember they are
doing concurrent activities, for example, the activities of exploring and helping,
indicating they remember to be exploring the environment and also helping other
agents to complete a task in the previous steps of the simulation. To deal with
concurrent goals, we implemented a plan library with priorities based on the
memory of agents. That means, for example, agents should always prioritise
finishing a task in which they are helping other agents than exploring. The piece
of code below shows an example of how this strategy is implemented:

+!step(S): helping(A,T,B,X1,Y1,X2,Y2,P) <- .... //priority 1
+!step(S): collectingBlocks(X,Y,P) <- .... //priority 2

.

.
+!step(S): exploring <- .... //priority n

In the example above, we show part of the agents’ plan library with n plans,
in which the agent will prefer to select plan 1 than plan 2 (if plan 1’s context
applies). In this example, agents prioritise helping other agents than collecting
blocks, and exploring has the lower priority in the example above.

In the MAPC 2022 scenario, there is information that is worth agents remem-
bering and information that we believed not to be worth agents remembering,
given the dynamics of the environment. For example, in our implementation,
agents remember the position of important components, such as role zones, goal
zones, and dispensers. Even though the goal zones disappeared eventually, they
were less dynamic than obstacles and blocks. We choose to implement agents
that will not remember the position of those things with a higher probability of
disappearing or changing position. Further, it is the memory (its beliefs) that
make agents, which are all instances of the same code, show different behaviour.
This is because those memories will enable the context of other plans, with higher
priority, in the agent plan library.

For example, all agents start with the goal of finding a role zone to change
their roles according to our strategy, which will enable them to execute a set of
predefined actions in the environment of the contest. When an agent knows the
position of a role zone, it will move towards that zone, otherwise, it will explore
the environment to find a role zone, and then move towards the zone to change
its role. The piece of code below shows an example of this strategy:

//plan1

+!step(S): my_role(R) & not(role(R)) & roleZone(X,Y)[source(memory)]

<- !moveTo(X,Y).

//plan2

+!step(S): my_role(R) & not(role(R)) <- !explore.

In the example above, first, the agent tries to execute the plan1, but if it
does not know the position of a role zone then that plan does not apply, i.e.,
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it does not have any valid unification for roleZone(X,Y)[source(memory)].
In the case plan1 does not apply, the agent tries to execute the plan2 (if that
context applies), in which the agent creates a goal for exploring the environment,
i.e., !explore. When that agent finds a roles zone, exploring the environment,
it will memorise the information of the coordinates of the role zone it found, i.e.,
roleZone(X,Y)[source(memory)], then the context of the plan1 will apply,
and then the agent will select that plan during the next step of the simulation,
starting to move towards that role zone using that plan, i.e., creating the goal
!moveTo(X,Y) in which X and Y are the coordinates to the role zone.

A strategy for implementing the proposed solution, adopted by our team,
was implementing plans from lower priority to higher priority, in which higher
priority plans have a dependence on beliefs (memories of what the agent is
currently doing) achieved by the complete execution of lower priority plans.
That means the context of plans with higher priority depends on the memories
that only will be obtained during the execution of plans with lower priority.
In the example above, the memory roleZone(X,Y)[source(memory)] will be
obtained by executing the plan2, in particular, the plan to achieve the sub-goal
!explore. Then, after knowing that information, the context of plan1 will apply
and that will be the selected plan in the next step of the simulation, given it has
priority over the plan2.

Using this development strategy based on the priority of plans, we imple-
mented specific strategies for different activities agents should execute during
the matches, among them: movement and exploration strategies and a
strategy for dealing with norms, a synchronisation strategy based on
encounters, a strategy for sharing information, a strategy for creating
groups of agents, and a strategy for delivering tasks. We discuss them
below.

Movement and Exploration Strategies. During some test matches, we
observed that obstacles, in general, were very disturbing for agents trying to
move. Also, the proportion of obstacles increased according to the simulation
changed from one round to another. Considering that obstacles should be dis-
turbing for agents from other teams too, we focused on implementing a move-
ment strategy that cleared as less obstacles as possible (different from most of the
other teams, from this and previous years of the contest), keeping the obstacles
on the grid world to disturb other agents trying to move on the environment.

The first aspect of the movement strategy implemented was the exploration,
in which agents should explore the environment until being able to do something
useful for the team, for example, carrying blocks and helping others to build
complex tasks. At the beginning of a match, agents start to explore a particular
direction, for example, north – exploring(n) – and, aiming to avoid clearing
obstacles, they deviate obstacles going to side directions prioritising clockwise,
i.e., in case an agent is exploring to the north and there is an obstacle at the
north of agent, but there is no obstacle at east, then it would go east until be able
to go north again. In case there is an obstacle at the north and east of the agent,
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then it goes west (only if didn’t come from that direction in the previous step of
the simulation). Otherwise, when the agent is blocked by obstacles at the north,
east, and west, then the agent executes the clear action targeting the obstacles
in the north, allowing it to move to the north. This exploration strategy avoids
clearing so many obstacles while also avoids agents to move in circles (or even
being trapped at some small portion of the grid world).

A complexity to movement strategies, in the scenario of MAPC 2022, is
related to agents moving while carrying blocks. As a coherent simulation, the
scenario establishes that obstacles block agents either for obstructing the agent
trying to move directly or for obstructing blocks attached to agents trying to
move. That means, when agents are moving with blocks attached to them, they
have to worry about obstacles obstructing not only their path but also the blocks’
path to which they are attached. For example, if the agent has a block attached
to the east of it, and the agent is trying to move north, then the agent needs a
clear path both north of it and north of the block. However, if the agent has a
block attached south of it, and it is trying to move north, then the agent does
not need to worry about obstacles blocking the block.

Considering the complexity of moving with blocks, our team thought about
two strategies (i) first, we believe to be the more common, is to use the same
strategy for exploration, but also clearing obstacles obstructing blocks attached
to the agent in order to move; and (ii) second, which we end using, is to rotate
the block attached to the agent to the opposite direction the agent is moving,
i.e., if the agent is moving north, it rotates the block to the south. The second
alternative was more attractive to our team because it aligns with our strategy
of clearing fewer obstacles as possible. Also, this strategy of moving with blocks
attached to the agent in the opposite direction it is moving also become a very
elegant movement strategy. Figure 5 shows an example of an agent using this
strategy, in which agent 2 approached the dispenser b1, collected a block and it
is moving away without clearing many obstacles. It makes hard, for other agents,
to approach the dispenser than when the agents clear all obstacles on the way,
because the dispenser will still be surrounded by obstacles.

Strategies for Dealing with Norms. Analysing the phenoms related to
norms, we observed that by limiting agents to carry at most 1 block, we avoid
most of the penalties applied when breaking the norms. Also, this strategy aligns
with the movement strategy that works only for agents carrying a unique block.

Synchronisation Strategy Based on Encounters. An important aspect for
agents to work together in the scenario proposed in the MAPC 2022 was the
need for synchronisation of agents, regarding their coordinates. This issue comes
from the characteristic of the scenario in which there is no absolute position
in the grid world from the perspective of agents. That means, agents start the
simulation at different positions on the grid and each agent believes it started
at position zero – position(0,0). That means, when agents move and find
important elements on the grid, for example, dispensers of blocks, they will have
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Fig. 5. Example of movement clearing few obstacles to collect a block.

a different perspective of the position of those elements. In order to coordinate
tasks, cooperate and share information it was necessary to implement a strategy
for synchronisation.

There would be centralised solutions for synchronisation, but in order to
keep our implementation completely distributed, we implement a synchronisa-
tion strategy focusing on encounters. That means, when agents encounter each
other in the grid world, they are able to communicate and synchronise their rel-
ative positions, creating filters for the position of those teammates they encoun-
tered during a match. We also used this idea of encounter to create groups of
agents, which are dynamic and the process depends on these encounters.

For example, in Fig. 1, agents 3 and 4 are inside each other range of vision,
which means they can perceive each other. This is what we call an encounter –
when both agents are inside each other range of vision.

The synchronisation strategy occurs as follows: when an agent perceives
another agent inside its range of vision, it executes a broadcast message, inform-
ing it can perceive the teammate at the coordinates (XMate,YMate) regarding
its current position (XMy,YMy) during the step S of the simulation, also keeping
a believe found_mate(XMate,YMate,XMy,YMy,S) with that information. At the
next step of the simulation, S+1, the agent verifies if there is any match from the
broadcasts it receives from other agents and those teammates found and stored
by itself, comparing the relative position as follows:

found_mate(XO,YO,XOA,YOA,S)[source(TeamMate)] &
found_mate(XF,YF,XMA,YMA,S)[source(memory)] &
((XF+XO) == 0 & (YF+YO) == 0)

in which XO, YO, XF and YF are the position they found each other, thus if the
difference between those values is equal to zero, that means the agent TeamMate
is the same agent found by it at that step of the simulation. By understanding
whom it has found, the agent is able to create a filter using the following equation:
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Fig. 6. Example of an encounter.

mate_filter(TeamMate,((XF+XMA)-XOA),((YF+YMA)-YOA))[source(memory)].

in which it calculates the relative position of the other agent regarding its posi-
tion.

Note that there are two different pieces of information they are able to infer
from this communication process: (i) when agents enter inside the range of vision
of each other, they only perceive there is another agent from the same team inside
their range of vision. Thus, they communicate the relative position they found
the teammate, using that information to understand which agent they have
found (both agents execute the same process and they are able to understand
they found each other); and (ii) when agents understand they found each other,
they are able to create the filter for the relative position of the teammate, using
that filter always it is necessary, for example, translating the coordinates of
information received from teammates to its relative position using the filter.
Figure 6 shows an example of agents 1 and 19 encountering each other, in which
the green lozenges are their range of vision.

Strategy for Sharing Information. After creating filters for other agents’
coordinates, agents are able to share information regarding the position of impor-
tant elements. We implement a strategy in which agents share information about
the coordinates of dispensers, goal zones, and role zones. Other elements we iden-
tify to be very dynamic, and it would not be worthy to share that information,
for example, obstacles that could easily be cleared by other agents (from the
same team or from the other team).
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The implemented strategy for sharing information is as follows: (i) when
an agent finds an element it is worthy to share its coordinates, for example, a
dispenser, it sends to all agents it knows a filter the position of that element,
already applying the filter, translating the coordinates to the relative position
of the receiver of that message, also sending the list of agents it is sharing
the information; (ii) when an agent receives a message sharing the information
of an element from the grid world, with a list of other receivers, it stores the
information in its belief base, and it verifies which other agents (who are not in
the list) it knows the filter (those it could also share the information and did not
receive yet), then it sends the coordinates of that element applying the filter for
each receiver, but now without a list of receivers; (iii) when an agent receives a
message sharing the information of an element from the grid world, but without
the list of other receivers, it only stores that information in its belief base.

That means agents propagate information on two levels. The first level is
when an agent shares information about a relevant element itself found in the
grid world, and the second level is when agents share information that was shared
by agents who found those relevant elements in the grid world. This strategy was
used considering the strategy for creating groups of agents we will discuss next, in
which agents only share information with groups directly connected by members.

Strategy for Creating Groups of Agents. We create a strategy in which
agents form groups dynamically, depending on the encounters that occurs during
each match. The basic idea is that agents which encounter each other will belong
to an implicit group, and they are able to collaborate. An agent is able to belong
to more than one implicit group of agents, for example, imagine that agent
ag1 encounters agents ag2, ag3, ag4 and ag5, then ag1 is able to collaborate
with each of those agents individually and request collaboration from all of
them. However, ag2 only will be in the same implicit group of agent ag3 if it
encountered ag3 during the match.

We choose to implement this strategy for creating implicit groups of agents
because of other decisions we made regarding other strategies, for example, focus-
ing only on delivering small tasks (with less than 3 blocks). Thus fewer agents
are required to deliver a task, and we realised that the encounters that occurred
during the matches were enough to form groups large enough to deliver those
tasks.

Strategy for Delivering Tasks. We implemented a relatively simple task
delivery strategy. When an agent is able to contribute to completing a new task,
it queries all agents belonging to its implicit group, asking the distance required
to them to help deliver the task in a particular goal zone, according to the
protocol6 shown in Fig. 7. Then, when other agents are able to help (they are
not helping another agent with another task), they answer the query informing
the distance needed to reach the goal zone with the necessary block. Then, the

6 The inspiration for this protocol comes from the Contract Net Protocol [34].
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Fig. 7. Allocation Help Protocol.

agent which requested help chooses the close agent to help it, informing the
winning agent, and they start moving towards the goal zone to deliver the task.

Figure 8 shows an example in which agent 7 will deliver the task2 (from the
task border at left of the figure) which is worth $40. Note that tasks also have the
requirement of a specific position for the agent that will deliver the task, in the
case of task2, it requires the agent to be north of the block b0. Also, we are able
to observe in Fig. 8, agent 16 helping to build that task, positioning the block
b1 according to the task2 requirement. Also, Fig. 3 shows agent 4 delivering the
task3 with help of agent 2.

Fig. 8. Example of a task being delivered.
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3.4 Tests

The test strategy was based on using different combinations for the multiple
modules described in Sect. 3.2, executing the system, and observing the agents’
behaviour and the score agents made during different simulations. During tests,
we fixed some issues related to scenarios/situations we did not predict during the
implementation. One of the issues fixed after executing some tests was related to
strategies for avoiding and deviating from other agents, mainly in the crowded
goal zones. Also, we realised that for some goal zones, agents which were not
synchronised could try to deliver tasks at the same position, thus we implemented
a strategy in which agents wait in a safe zone until their teammate approach to
deliver the task they are helping.

4 Results

In the MAPC 2022, the LI(A)RA team ends in 4th place, tied with the GOAL-
DTU team. During the contest, we won one round against the FIT BUT team, 2
rounds against the GOAL-DTU team (winning that match), and lose all rounds
against GOALdigger and MMD. Our total score was 9 points (regarding the 3
rounds our implementation won). Table 2 shows the final scores for all teams.

Table 2. Final Scores.

Place Team Score

1 MMD 30

2 GOALdigger 22

3 FIT BUT 19

4 GOAL-DTU 9

4 LI(A)RA 9

Analysing the matches, our multi-agent system did not score many points
against teams with more aggressive adversarial attitudes, which means, teams
that implemented strategies for attacking agents from other teams. These atti-
tudes were unexpected, given there is no history of this kind of attitude from
other teams in the past, although the scenario is very favourable for this kind
of attitude, in which agents can clear other agents taking their energy. Thus,
competing with teams exhibiting these attitudes and having not expected such
attitudes, our multi-agent system was vulnerable to other teams’ attacks.

Attacking other agents during the match has shown to be a very interesting
strategy, keeping agents responsible to attack others close to goal zones, in which
they could not only take the energy of other agents but also destroy their blocks,
which required the agents of other teams to search for blocks again. We intend
to explore these attitudes in future participation in the MAPC.

Table 3 shows some estimated metrics about the teams’ implementations col-
lected by the organisers of MAPC 2022 and shared with all teams. In Table 3
is possible to note that: (i) our team had a larger number of developers, which
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we consider a challenge for this kind of development; (ii) our multi-agent sys-
tem was developed in fewer hours than most of the other teams, we are the
second team which expended fewer hours implementing the system, but GOAL-
DTU has already participated in the previous year, then those metrics may be
related only to increments made for this year scenario, while we started our
implementation this year; (iii) our implementation is the shorter on; however,
it is important to mention that it is difficult to count lines of code of different
programming languages fairly; and (iv) we are the only team which use Jason
platform.

Table 3. Estimated metrics.

Team Members Time Lines of code Platform 2020(-)

FIT BUT 3 240 h 12000 JAVA(+JADE) Yes

GOAL-DTU 3 30 h 2000 GOAL Yes

GOALdigger 4 1200 h 10000 GOAL No

LI(A)RA 5 80 h + 40 h 1100 Jason No

MMD 2 896 h 5407 Python No

5 Conclusion

In this paper, we described the LI(A)RA team’s implementation for the MAPC
2022 scenario called Agents Assemble III. Besides summarising the main chal-
lenges related to the MAPC 2022 scenario from our perspective, we focused on:
(i) describing the technology used to implement our multi-agent system; (ii)
detailing the methodology used by our team to implement the multi-agent sys-
tem, which was a modular and incremental approach; and (iii) describing the
strategies we implemented for agents, according to different activities they could
execute in the MAPC 2022 scenario.

There were very interesting behaviours that could be observed in the MAPC
2002 contest from other teams, for example, more competitive attitudes in the
sense of attacking agents from other teams with the clear events, which surprised
our team. We did not implement any strategy for agents to defend themselves
from attacks, and we believe those attitudes were decisive in the final scores.
Also, we realised our implementation may be shorter than all others, also we
dedicate considerably less time to planning and implementing the multi-agent
system than the teams with higher scores. Finally, we also did not finish the
implementation of all modules we intended during the planning phase, which
also may have compromised our scores.

We intend to participate next year, starting the planning phase early, ded-
icating more time to the implementation phase, also exploring approaches for
creating modules of agent-oriented programs already developed over the Jason
Platform, as the approach presented in [19].
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Table 4. Predicates used in the implementation.

Predicate Meaning

my role(Role) a belief describing the role that particular agent
should adopt during the match. The variable
Role will unify with the name of the role that
agent will adopt during the match, for example,
the role worker, i.e., my role(worker)

maxBlocks(X) it stores the information of the max number of
blocks agents will carry during the matches, X
will unify with such max number of blocks.
Different agents may be able to carry different
numbers of blocks according to the strategies
developed

goingDirection(X) it represents a memory of which direction an
agent is going, for example, goingDirection(n)
indicating the agent is going north

role(X) it describes the role of a particular agent during
a match

position(X,Y) it describes the current agent position, it is also
an agent memory that holds updated,
considering there is no absolute position in the
MAPC’s scenarios

attached(X,Y) it describes that there is something attacked to
an agent at coordinates X and Y

lastActionResult(X) it describes the result of the last action executed
by that agent

lastAction(T) it describes the last action executed by that agent

lastActionParams(L) it describes the parameters of the last action
executed by that agent

team(T) it describes the team of the agent

collectingBlocks it represents a memory that the agent is
collecting blocks

carryingMaxBlocks it represents a memory that the agent is carrying
the max of blocks it is capable to carry

roleAbleBlocks it represents that particular agent is able to
carry blocks, i.e., it plays a role able to collect
and carry blocks

carryingBlock it represents a memory that the agent is carrying
blocks

has block(T) it represents a memory that agent has (it is
carrying) a block of the type T

movingToDispenser(X,Y,T) it represents the memory that the agent is
moving to a dispenser at coordinates X and Y,
and this dispenser has blocks of the type T
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Table 5. Predicates used in the implementation.

Predicate Meaning

movingToRoleZone(X,Y) it represents a memory that the agent is
moving to a role zone. X and Y are the
coordinates of a role zone the agent is
currently moving to it, e.g.,
movingToRoleZone(-20,35)

movingToGoalZone(X,Y) it represents a memory that the agent is
moving to a goal zone; (X,Y) is the goal
zone coordinate the agent is currently
moving to it, e.g.,
movingToGoalZone(10,25)

obstacle at(X,Y) an inference that represents obstacles
inside the agent’s field of view

obstacle cannot clear at(X, Y) an inference that represents obstacles
that cannot be cleared inside the agent’s
field of view

collectingBlocks(X,Y,T) it represents a memory that the agent is
collecting blocks from a particular
dispenser at coordinates X and Y of the
type T

roleZone(X,Y) [source(memory)] it represents a memory related to the
coordinates of a role zone that the agent
found during its execution

roleZone(X,Y) [source(percept)] it represents a perception of a role zone
inside the agent’s field of view

goalzone(X,Y) [source(memory)] it represents a memory related to the
coordinates of a goal zone that the agent
found during its execution

thing(X,Y,dispenser,P)

[source(memory)]

it represents a memory related to the
coordinates of a dispenser that the agent
found during its execution

thing(X,Y,T,P)

[source(percept)]

it represents a perception related to
things inside the agent’s field of view.
Things can be dispensers, entities, etc.

closest(goalzone, X, Y) an inference that allows agents to find the
coordinates of the closest goal zone

closest(rolezone, X, Y) an inference that allows agents to find the
coordinates of the closest role zone

closest(dispenser, T, X, Y) an inference that allows agents to find the
coordinates of the closest role zone



LI(A)RA Team 187

T
a
b
le

6
.
P

re
d
ic

a
te

s
u
se

d
in

th
e

im
p
le

m
en

ta
ti

o
n
.

P
re

d
ic

a
te

M
ea

n
in

g

t
a
s
k
(
T
,
T
i
m
e
,
R
,
E
)
[
s
o
u
r
c
e
(
p
e
r
c
e
p
t
)
]

a
p
er

ce
p
ti

o
n

fo
r

a
ta

sk
T
,
in

w
h
ic

h
th

e
a
g
en

t
h
a
s

av
a
il
a
b
le

th
e

d
u
ra

ti
o
n

a
n
d

re
w

a
rd

re
la

te
d

to
th

a
t

ta
sk

n
o
r
m
(
N
,
I
,
F
,
R
,
N
u
m
b
e
r
)

[
s
o
u
r
c
e
(
p
e
r
c
e
p
t
)
]

a
p
er

ce
p
ti

o
n

fo
r

a
n
o
rm

c
o
s
t
(
D
i
s
t
a
n
c
e
,
B
l
o
c
k
T
y
p
e
,
T
N
a
m
e
)

[
s
o
u
r
c
e
(
T
e
a
m
M
a
t
e
)
]

in
fo

rm
s

th
e

d
is

ta
n
ce

a
te

a
m

m
a
te

n
ee

d
s

to
h
el

p
to

b
u
il
d

a
p
a
rt

ic
u
la

r
ta

sk
,
co

n
tr

ib
u
ti

n
g

w
it

h
th

e
b
lo

ck
B
l
o
c
k
T
y
p
e

a
l
l
o
c
a
t
e
h
e
l
p
(
T
,
B
,
X
Z
,
Y
Z
,
X
O
,
Y
O
)

[
s
o
u
r
c
e
(
T
e
a
m
M
a
t
e
)
]

a
b
el

ie
f
th

e
a
g
en

t
is

tr
y
in

g
to

a
ll
o
ca

te
a

p
a
rt

ic
u
la

r
a
g
en

t
to

h
el

p
it

m
a
t
e
f
i
l
t
e
r
(
T
e
a
m
M
a
t
e
,
X
F
i
l
t
e
r
,
Y
F
i
l
t
e
r
)

a
fi
lt

er
th

a
t

a
ll
ow

s
a
g
en

ts
to

tr
a
n
sl

a
te

co
o
rd

in
a
te

s
to

th
e

re
la

ti
v
e

co
o
rd

in
a
te

s
o
f
o
th

er
a
g
en

ts

r
e
q
u
e
s
t
e
d
c
o
l
l
a
b
o
r
a
t
i
o
n
(
T
,
X
Z
,
Y
Z
,
X
O
,
Y
O
,
B
)

a
b
el

ie
f
fo

r
a
ll

re
q
u
es

te
d

co
ll
a
b
o
ra

ti
o
n

re
g
a
rd

in
g

ta
sk

s

c
a
n
n
o
t
d
e
l
i
v
e
r
(
T
N
a
m
e
)

a
b
el

ie
f
th

a
t

th
e

a
g
en

t
ca

n
n
o
t

d
el

iv
er

a
p
a
rt

ic
u
la

r
ta

sk
,

th
a
t

m
ea

n
s,

th
e

a
g
en

ts
a
lr

ea
d
y

re
a
so

n
ed

a
b
o
u
t

th
a
t

ta
sk

a
n
d

co
n
cl

u
d
ed

it
ca

n
n
o
t

d
el

iv
er

it

h
e
l
p
i
n
g
(
A
g
,
T
,
B
,
X
Z
,
Y
Z
,
X
O
,
Y
O
,
N
)

a
m

em
o
ry

th
a
t

th
e

a
g
en

t
is

h
el

p
in

g
a
n
o
th

er
a
g
en

t
to

co
m

p
le

te
a

p
a
rt

ic
u
la

r
ta

sk

f
o
u
n
d
m
a
t
e
(
X
M
a
t
e
,
Y
M
a
t
e
,
X
M
y
,
Y
M
y
,
S
)

[
s
o
u
r
c
e
(
m
e
m
o
r
y
)
]

a
te

m
p
o
ra

ry
b
el

ie
f
u
se

d
to

sy
n
ch

ro
n
is

a
ti

o
n

st
ra

te
g
y,

k
ee

p
in

g
th

e
in

fo
rm

a
ti

o
n

o
f
a

te
a
m

m
a
te

th
e

a
g
en

t
fo

u
n
d

in
th

e
g
ri

d
w

o
rl

d

i
n
f
o
r
m
p
o
s
i
t
i
o
n
(
T
,
X
T
,
Y
T
,
P
a
r
a
m
e
t
e
r
s
)

[
l
i
s
t
(
L
i
s
t
)
,
s
o
u
r
c
e
(
T
e
a
m
M
a
t
e
)
]

u
se

d
fo

r
in

fo
rm

in
g

th
e

p
o
si

ti
o
n

o
f
el

em
en

ts
fo

u
n
d

b
y

a
g
en

ts
in

th
e

g
ri

d
w

o
rl

d

w
a
i
t
i
n
g
a
w
a
y
(
A
g
,
T
N
a
m
e
,
X
M
y
,
Y
M
y
,
S
)

a
b
el

ie
f
th

a
t

th
e

a
g
en

t
is

w
a
it

in
g

aw
ay

fr
o
m

th
e

g
o
a
l
zo

n
e

s
u
b
m
i
t
t
i
n
g
(
,
)

a
m

em
o
ry

in
fo

rm
in

g
th

e
a
g
en

t
is

su
b
m

it
ti

n
g

a
p
a
rt

ic
u
la

r
ta

sk



188 M. Custódio et al.

16th Multi-agent Programming Contest: All Questions
Answered

LI(A)RA Team
Federal University of Santa Catarina

A Team Overview: Short Answers

A.1 Participants and Their Background

Who is part of your team?
We are 3 undergraduate students, named Marcelo, Michele and Ricardo, from
the Computer Engineering program at the Federal University of Santa Cata-
rina (UFSC), under supervision by Professor Alison R. Panisson and PhD
Giovani P. Farias. Alison and Giovani have about 10 years of experience
in multi-agent systems programming, and the students have bout 1 year of
experience. Students are learning about multi-agent systems in undergraduate
courses and at the LI(A)RA project, which focuses on teaching multi-agent
systems technology.

What was your motivation to participate in the contest?
Giovani and Alison have participated in MAPC in the past, and they always
thought about creating a project focusing on teaching multi-agent technolo-
gies to students (undergraduate and graduate students), in which they could
apply the knowledge from this learning to MAPC problems. One of the more
evident motivations is evaluating the multi-agent platforms, languages, and
methodologies to develop complex multi-agent systems.

What is the history of your group? (course project, thesis, . . .)
LI(A)RA project was created in February of 2022 by Professor Alison at
UFSC, in collaboration with the LIA (Academic League of Artificial Intelli-
gence) focused on teaching and exploring multi-agent systems technologies.

What is your field of research? Which work therein is related?
Alison and Giovani are both researchers in the field of multi-agent sys-
tems. Alison’s main research interest is multi-agent (software agents and
humans) communication using argumentation. Giovani’s main research inter-
est is multi-task planning.

A.2 Statistics

Did you start your agent team from scratch, or did you build on
existing agents (from yourself or another previous participant)?
We started from scratch, about 2 months before the contest.

How much time did you invest in the contest (for programming, organ-
ising your group, other)?
Alison has spent about 80 h of programming (during his vacation time), and
the group has spent about 40 h discussing strategies, previous papers from
MAPC, and organising the infrastructure to develop and test the system.
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How was the time (roughly) distributed over the months before the
contest?
During about 5 months the group had meetings to talk about strategies and
the previous papers from MAPC. Alison implemented the system 2 weeks
before the qualification phase.

How many lines of code did you produce for your final agent team?
About 1100 lines of code

A.3 Technology and Techniques

Did you use any of these agent technology/AOSE methods or tools?
What were your experiences?

Agent programming languages and/or frameworks?
We used purely Jason.

Methodologies (e.g. Prometheus)?
Usual software engineering methodologies, with incremental and modular
components (in the case of Jason agents, an incremental and modular plan
library).

Notation (e.g. Agent UML)?
Table of predicates with their meaning and decision-making flowcharts.

Coordination mechanisms (e.g. protocols, games, . . . )?
A complete decentralised mechanism, using communication protocols, for syn-
chronising and organisation (similar to Contract Net Protocol).

Other (methods/concepts/tools)?
Although Jason provides a series of structural programming structures, we
opted to make the code more declarative as possible, respecting the original
declarative programming paradigm of the language.

What hardware did you use during the contest?
To run our agents in the contest, we used an Avell A52 LIV notebook, with

the following specifications:

– Processor: Intel Core i5-10300H (4.5 GHz max clock);
– Graphics Card: NVidia GeForce GTX 1650Ti (with 4GB GDDR6 dedicated

RAM);
– Memory: 16 GB DDR4 [2× 8 GB - Dual Channel] @3200 MHz;
– Hard Drive: SSD M.2 NVME 500 GiB;
– Wireless Card: Intel Dual Band Wireless-9462 + Bluetooth 5.1.

A.4 Agent System Details

Would you say your system is decentralised? Why?
Completely decentralised, no central mechanisms were utilised.

Do your agents use the following features: Planning, Learning, Organ-
isations, Norms? If so, please elaborate briefly.
They use simple strategies organised by priority of plans in their plan library,
in which plans are enabled by a mechanism of memory.
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How do your agents cooperate?
They synchronise when find each other, requesting help to complete tasks
when they are able to participate in those tasks, verifying the best match in
the group of agents that can help.

Can your agents change their general behaviour during run time? If
so, what triggers the changes?
Yes, they use a mechanism of memory to influence their behaviour. All our
agents are instances of the same code.

Did you have to make changes to the team (e.g. fix critical bugs)
during the contest?
We opted to keep our original code during the contest without any change.

How did you go about debugging your system? What kinds of mea-
sures could improve your debugging experience?
Debugging is normally hard. We basically executed the system, analysed the
executions, and did inspections on agents and environment state to find and
fix bugs.

During the contest, you were not allowed to watch the matches. How
did you track what was going on? Was it helpful?
We did not track what was going on (unfortunately we only were able to
organise the system execution during the contest)

Did you invest time in making your agents more robust/fault-
tolerant? How?
Yes, identifying possible problems during tests.

A.5 Scenario and Strategy

How would you describe your intended agent behaviour? Did the
actual behaviour deviate from that?
Agents dynamically adapted their behaviour according to the result of explo-
ration of the environment and the whether or not they were able to meet
other agents at the same time.

Why did your team perform as it did? Why did the other teams per-
form better/worse than you did?
We consider our implementation was about 35–40% complete, which is result-
ing from the fact the team started to implement the system very late. We
consider we had a very good result considering the state of our implementa-
tion and the fact it was the first year the team participated in the contest.
One behaviour we did not predict from other teams and it make a great dif-
ference was agents attacking others to avoid other teams delivering tasks (We
believe it was the first time teams used this kind of aggressive strategies) and
it worked very well for them (against us).

Did you implement any strategy that tries to interfere with your
opponents?
We did not. Others who implemented got an advantage in matches, which
seems an interesting direction to pursue during the next contests.
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How do your agents coordinate assembling and delivering a structure
for a task?
They used a coordination protocol, similar to the contract net protocol, in
which one agent was responsible to coordinate the delivery.

Which aspect(s) of the scenario did you find particularly challenging?
Using no absolute position for agents was the most challenging aspect.

What would you improve (wrt. your agents) if you wanted to partic-
ipate in the same contest a week from now (or next year)?
We would finish our implementation, which was about 35–40% complete.

What can be improved regarding the scenario for next year? What
would you remove? What would you add?
We found the scenario very challenging. We would suggest 3D (three-
dimensional) tasks, and also agents would have the capability to defend them-
selves from clear events (some agents would have this capability according to
their roles).

A.6 And the Moral of it is . . .

What did you learn from participating in the contest?
From the technological point of view, we learned that the platform provides
enough to implement this kind of complex multi-agent system to solve com-
plex problems (dynamic, non-deterministic, etc.).
From the software engineering point of view, we were able to use an incre-
mental approach to develop “modules of behaviour”, all put together when
instantiating agents. All our agents had the same code (same implementation
to all our agents), which also is a very interesting achievement.
We found it very difficult to coordinate the team during implementation, but
it is because we had a very short time to implement our system (about 2
weeks only)

What advice would you give to yourself before the contest/another
team wanting to participate in the next?
Start the implementation as soon as you can, but first study the scenario in
detail to plan how to implement your multi-agent system. Also, studying the
scenario will provide you with a short of strategies (choices) we will eventually
make.

Where did you benefit from your chosen programming language,
methodology, tools, and algorithms?
Mostly because of our experience with the language, but it also is very ele-
gant (declarative language) and we would like to check if we could keep it as
declarative as possible (we succeed in this).

Which problems did you encounter because of your chosen technolo-
gies?
Our system become slow with many agents on regular laptops, and we had
to execute it from a better machine (but nothing very powerful like a server).
I believe other teams had the same problem independent of the technology
they used.



192 M. Custódio et al.

Otherwise, the technology fulfilled our needs.
Which aspect of your team cost you the most time?

Testing. Some situations we would like to test cost many simulations in which
we had to wait for the specific situation to happen to verify if our implemen-
tation was efficient. We did not explore more sophisticated manners to test
our implementation (re-configuring the server, for example).

A.7 Looking into the Future

Did the warm-up match help improve your team of agents? How useful
do you think it is?
We did not change our code after the warm-up, but it was useful to verify
the connection with the server, the performance of our machine executing the
system, etc.

What are your thoughts on changing how the contest is run, so that
the participants’ agents are executed on the same infrastructure by
the organisers? What do you see as positive or negative about this
approach?
I believe it would be very positive, giving us better benchmarks in which the
infrastructure is not a variable anymore.

Do you think a match containing more than two teams should be
mandatory?
I believe it depends on the scenario. 2019–2022 scenarios would have more
than a team and it would have been fun. For other scenarios, we are not sure
if it would make sense.

What else can be improved regarding the MAPC for next year?
We are very excited about next year’s contest and we have no more sugges-
tions. Thank you for organising it and keep it up.
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