
MMD: The Block Building Agent Team
with Explainable Intentions

Miklós Miskolczi and László Z. Varga(B)

Faculty of Informatics, ELTE Eötvös Loránd University, Budapest 1117, Hungary
{psbdho,lzvarga}@inf.elte.hu

Abstract. The Multi-Agent Programming Contest (MAPC) is an excel-
lent test ground to stimulate research on the development and program-
ming of multi-agent systems. The current Agents Assemble III scenario
is a nice example for cooperative distributed problem solving in a highly
dynamic environment, and it requires that the agents are normative
agents. For MAPC 2022, we have implemented the MMD multi-agent
system from scratch in the Python programming language to find out if
a multi-agent system can be developed efficiently in a general program-
ming language using multi-agent concepts. We describe the implementa-
tion details, including the coordination and the optimisation algorithms
of the MMD multi-agent system to solve the complex and dynamic tasks,
and also including the testing aspects that use explainable intentions as
well. The performance indicators of the implementation are the devel-
opment time, the development efforts, and the quality of the job done
by the implemented multi-agent system. The development time of the
MMD system is not more than any other system at MAPC 2022, includ-
ing those that were implemented with agent-oriented programming. The
comparison of the development efforts of the contest participants is dif-
ficult because the performance of the systems are also different, but the
development effort is more likely to be independent from the implemen-
tation language used. The first position of the MMD system at MAPC
2022 seems to indicate that the implemented MMD multi-agent system
is competitive with the systems developed with agent-oriented software
engineering methods.

Keywords: Practical reasoning architecture · Blackboard
architecture · Explainable intention

The work of L.Z. Varga was supported by the “Application Domain Specific Highly
Reliable IT Solutions” project which has been implemented with the support provided
from the National Research, Development and Innovation Fund of Hungary, financed
under the Thematic Excellence Programme TKP2020-NKA-06 (National Challenges
Subprogramme) funding scheme.
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
T. Ahlbrecht et al. (Eds.): MAPC 2022, LNAI 13997, pp. 54–97, 2023.
https://doi.org/10.1007/978-3-031-38712-8_3

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-38712-8_3&domain=pdf
http://orcid.org/0000-0002-9497-5348
http://orcid.org/0000-0001-8088-4528
https://doi.org/10.1007/978-3-031-38712-8_3

MMD: The Block Building Agent Team with Explainable Intentions 55

1 Introduction

The Multi-Agent Programming Contest1 (MAPC) is an excellent test ground to
stimulate research on the development and programming of multi-agent systems.
In the current Agents Assemble III scenario the agents explore a grid world and
execute dynamically announced tasks. The goal of a task is to create a structure
of blocks in goal areas, which requires that the blocks are collected, delivered
and assembled by a group of agents. This is a nice example for cooperative
distributed problem solving [5]. The Agents Assemble III scenario requires that
the agents are normative agents [16]. The capabilities of the agents depend on
their current role. Roles can be adopted at specific role areas. The agents have
to adopt roles that are better suited for their specific goals, but they also have
to take into account the norms that regulate the adoptable roles. The norms are
dynamically created.

According to the previous experiences of MAPC, the systems that were devel-
oped with multi-agent programming languages usually performed better than
those that were developed in a general programming language [2]. On the other
hand, the history of multi-agent system research seems to show that the theoreti-
cally crafted platforms seldom lead to practical applications. The prime examples
of agent systems are like Siri, Alexa, Cortana, high frequency algorithmic traders
[17], massive fleet of warehouse robots [18], and the IT giants have their own
implementations of multi-agent technologies like negotiation mechanisms [6].

When preparing for MAPC 2022, we thought that the agent-oriented software
engineering methods and the related planning systems would involve restrictions
for us. In addition, an experimental Python communication client for the 2020/21
edition of the Multi-Agent Programming Contest, used in the WESAAC 2021
short course [1], became available2. Therefore we decided to implement the MMD
multi-agent system from scratch in the Python programming language to find
out if a multi-agent system can be developed efficiently in a general programming
language using multi-agent concepts.

We present our work in the following order. Section 2 describes the logical
agent team architecture and how it is mapped to the software architecture of
the implementation. Section 3 describes how the agents represent their beliefs of
their environment, and how they find their way. Section 4 describes how the team
is coordinated. Section 5 describes the building blocks of the individual agent
behaviours. Section 6 describes the debugging of the system and how the agents
helped this by explaining their intentions. In Sect. 7 we analyse the matches at
the contest. Finally, in Sect. 8 we conclude our work.

1 https://multiagentcontest.org/2022/.
2 https://github.com/agentcontest/python-mapc2020.

https://multiagentcontest.org/2022/
https://github.com/agentcontest/python-mapc2020

56 M. Miskolczi and L. Z. Varga

2 Architecture

2.1 Agent Team Architecture

The architecture of the MMD multi-agent system is based on two architectural
concepts: the blackboard architecture [7] and the practical reasoning agent archi-
tecture [3] as shown in Fig. 1. This is a reasonable architecture, because the
MAPC requires cooperative distributed problem solving [5]. The team level prob-
lem solving is done on the blackboard, while the individual problem solving is
done in the agents.

Fig. 1. The architecture of the MMD multi-agent system.

The agents have their own perceptions, desires and intentions. The perception
is immediately submitted to the blackboard, where the perceptions from all the
agents are processed, and the agents use this processed perceptions in their
reasoning. The blackboard is not just a passive data store, because it has active
reasoning capabilities as well, like reasoning on the team level strategy, and
making decisions on the individual and the joint intentions [10] for the agents.
This way, the blackboard is a coordinator similar to the general deSouches of the
FIT BUT solution in 2019 [15]. The individual intentions on the team level are
called main agent intentions in the MMD system. The main agent intentions are
assigned to the agents, and the agents execute their own plan to achieve the goal
of their main agent intention. The plans may involve other intentions which are
managed on the agent level. When the agent executes its plan for the intention,
it submits the agent actions of the plan to the MAPC simulation server.

Due to the highly dynamic nature of the MAPC environment, the main
operation cycle of each MMD agent is the following:

MMD: The Block Building Agent Team with Explainable Intentions 57

– Check if there is a team mate in the perception area. If yes, then try to identify
the agent. If the identification is successful, then handle map merging and map
size determination.

– Generate desires.
– Filter the desires and commit to the best desire which becomes the current

main intention.
– If execution of the main agent intention requires, then commit to another

agent level intention as part of the main agent intention. Compute the next
action of the current intention.

– Execute the action and process the dynamic perception from the action.

The agents basically communicate via the blackboard. If there are agents
involved in the same joint intention, then they communicate via their intentions,
which are directly connected to each other. The direct connection between the
intentions is because of implementation considerations.

The blackboard contains all the information shared among the agents. In
the beginning, the agents do not know each other, and each agent stores its
perceptions in its own dynamic map on the blackboard. When the agents perceive
other team members, then they try to identify each other, using an identification
algorithm similar to the one in the LFC solution in 2019 [4]. If the identification
is successful, then the blackboard merges the dynamic maps of the involved
agents into a single dynamic map, which becomes the own dynamic map for each
involved agent. In the beginning, the dynamic maps are infinite. If the map size
determination algorithm described in Sect. 3.5 is able to determine the height
or width of the map, then the dynamic map becomes finite in the respective
direction. If both the height and the width of the dynamic map are determined,
then the dynamic map becomes finite. The looping of the coordinates on the
map is handled by the dynamic map.

The blackboard reasons on the team level strategy by considering the
dynamic maps on the blackboard. If there is not enough information on a
dynamic map, then the blackboard assigns exploration intentions to the agents
of the dynamic map.

If the blackboard finds that enough information is gathered on a dynamic
map for a task of the MAPC competition, then it may ask further information
from the agents, for example the current desires of the agents or the bidding
of the agents for given tasks. Based on the information on the blackboard and
the information gathered from the agents, the blackboard decides the team level
strategy. It selects the tasks of the MAPC competition to be achieved for each
shared dynamic map, and selects one or more agents for each task. If the task
requires only one block, then the best single agent is selected, and the agent
receives the corresponding main agent intention. If the task requires several
blocks, then the best group of agents is selected, and the agents receive the
main agent intentions of the joint intention of the group. The joint intention
is initiated by the blackboard. The execution and the termination of the joint
intention is managed by the coordinator of the joint intention.

58 M. Miskolczi and L. Z. Varga

In order to keep to the rules of the MAPC competition rules, the agents have
to manage their roles both individually and on the team level. The current roles
of the agents are also shared on the blackboard. When a main agent intention is
assigned to an agent, then the blackboard checks if the agent has the suitable role
for the given intention. If not, then the blackboard posts a “role reservation” for
the given agent on the blackboard. The “role reservation” is needed to facilitate
the team level management of the role of the agents. When the agent creates its
plan and finds that it needs another role, then the agent takes the role reservation
from the blackboard and modifies its plan to adopt the role. The blackboard
keeps track of the current norms of the MAPC competition, and reasons on the
norms. If the norm is not considered to be “harmful”, then it is just ignored.
If the norm is considered to be “serious”, then the blackboard changes the role
reservations on the blackboard, or if it is necessary, then directly modifies the
intentions of the agents to switch role or drop blocks.

This agent team architecture allowed a flexible intention management of the
agents both on individual and on team level to achieve good results at the com-
petition. In the beginning of a match, the agents know only their local perception
area, so they start to explore the environment and their team mates. They do
this, because their exploring desire does not have any pre-requisite, so they can
commit to it by default. Once enough agents meet each other, and they share
their map to be able to work on a task of the competition, they generate task
execution desires, and then they commit to a joint intention to work on a task
which is the most promising for the team. At any time, if an explosion event
threatens an agent, then the agent generates a desire to escape from the threat.
The escape is an important thing, therefore the agent drops its current intention
and commits to the escape. If the agent with the escape desire is involved in a
joint intention, then it first releases the other agents from the joint intention.
The agents have open-minded intention management strategy, so they keep their
desires during the escape, and when they get to a safe area, they continue with
their normal operation. The normal operation means that they commit to task
execution as soon as possible.

2.2 Software Architecture

Architecture. The system uses a unique combination of the repository and the
layered architecture, which is shown in Fig. 2.

In the architecture, one client and two server layers can be found. One of
the latter is the MAPC server, which is an independent service. The other is the
MMD server, which can be divided into two parts: the blackboard and the sched-
uler. The client layer communicates with both of the servers in a bidirectional
way.

The system’s logical architecture is decentralized, each agent can be inter-
preted as an independent process, although it is implemented in a centralized
way. The reason behind it is the simplicity: this way it was easy to design the
communication and the synchronization, although parallelization could not be
exploited.

MMD: The Block Building Agent Team with Explainable Intentions 59

Fig. 2. System architecture.

Due to the centralized implementation, there is an individual component, the
scheduler, which controls the system’s operations.

Another effect of this decision is that there is no need for a separate commu-
nication layer between the MMD servers and the client. We needed a communi-
cation layer only between the MAPC server and the client due to abstraction.

Scheduler. The scheduler is a component, which controls the operation of the
data servers and the agents. It does not persist any data and provides no func-
tionality. Its only responsibility is to initialize the system and to initiate com-
munication between the other components in every step.

Data Servers. The blackboard consists of data servers. The data servers are
repositories and services, which gather information about a specific data category
and provide business logic services on it.

Each data server collects its relevant type of input from the agents. The
accumulated data are transformed, stored and can be accessed by any system
component without any restrictions.

60 M. Miskolczi and L. Z. Varga

Some of them not only share the gathered data, but also build complex
functions on them. Usually these functions are the ones that require data from
multiple sources, such as global reasoning and coordination of several agents.

The following data servers exist in the blackboard.

– Simulation data server: basic repository, which stores raw data and parame-
ters. It’s functionality is similar to a data lake and it is accessible for everyone.

– Map server: map building manager, described in Sect. 3.2.
– Intention data server: stores agents’ intention related information, such as

their job type and data related to their current job.
– Role and Norm server: manager of the agent roles and simulation norms,

described in Sect. 4.2.
– Task coordination server: service which organizes simulation task related jobs.

Its functionalities are explained in Sect. 4.1.

Agents. In architectural perspective, agents are individual clients, that work
together using the servers as communication channels.

They can directly communicate with the blackboard repositories, but a proxy
is required to accomplish the communication with the MAPC server. Their busi-
ness logic is mainly located at the agent intention components. Only the state
of their intentions is stored by them, the rest of the incoming data is persisted
at the data servers.

From a functional point of view, agents are standalone entities, that work
together to accomplish shared goals, but individual ones, too.

Agents have intentions, which represent a complete job. The desires are
optional intentions which may be selected for execution. At any given moment,
an individual agent can have multiple desires. The selection of the best desire is
based on the priority value of the desire. The priority value expresses the urgency
of the desire. At every step, the desire with the highest priority is selected for
the agent’s current intention, and the agent commits to the intention.

The desires are either generated by the agent itself or by a data server. When
an intention is finished, then it’s removed from the agent’s current desires.

Some jobs, like task achieving, require the involvement of multiple other
agents. Agents can not directly communicate with each other, but it can be
done through the specific data server.

Agent Intentions. This is the business logic layer of the agent component.
This layer contains only those functionalities, whose results directly affect only
the agent itself.

Each intention is a representation of a specific job related behaviour. Every
one of them has its own purpose and an algorithm that leads closer to its goal.

Agent intentions define an interface, shown in Fig. 3, which must be imple-
mented.

– Determine the next agent action, which leads closer to its purpose. The cal-
culation is performed by the job related algorithm.

MMD: The Block Building Agent Team with Explainable Intentions 61

Fig. 3. Agent intention interface.

– Investigate if its purpose is reached, in that case the intention is finished.
– Update inner coordinate in case of coordinate system change (Sect. 3.4 and

Sect. 3.5).
– Write explanation, which purpose is described in Sect. 6.

By implementing this interface, complex behaviours can be built easily by
integrating separate intentions. The benefit of this property is that intentions
can be structured hierarchically and they can be reused in other intentions.

Main agent intentions are a special type of intention. From an abstract point
of view, they can be interpreted as the standalone, complete agent jobs. They
can be prioritized, which defines an order if multiple top main agent intentions
are active at the same time.3 The execution of main agent intentions may invoke
one or more agent intentions.

Agent Actions. The agent actions are simple data transfer objects used
between the agent component and the middleware layer. The transfer is uni-
directional from the agent component. The middleware layer transforms the
object, so it can be sent to the MAPC server.

3 The implementation used constant priorities for the main agent intentions, however,
they could have depended on the current environment for better performance.

62 M. Miskolczi and L. Z. Varga

Actions are the representations of agent operations. Usually, they are initial-
ized as the result of the planning of the next action of an intention, and they are
sent to the simulation server indirectly at the end of each step.

Every agent action represents an allowed operation and its parameters. Their
only prerequisite is to be deserializable, so the communication module can handle
them.

Server Communication. The communication with the server is arranged by
a bidirectional transport protocol. The request/response communication mode
is used, using the JSON data format. Each agent uses its own channel to com-
municate with the server.

There are two types of requests that the agents use: the connection related
ones and the agent actions. The former are the usual ones: connect and dis-
connect. The latter are the agent action requests. The client sends the given
action and its response is a perception. The perception contains the result and
the impacts of the action and much more. The content of the perception and its
processing is explained in Sect. 3.1.

Due to the multiple different team sized simulations, the transition between
the simulations must be handled in some way. The team sizes are only known at
the start of each simulation, so always only one agent is connected to the server
in the first simulation step. The single connected agent sends the information
contained in the initial static percept to the scheduler. The rest of the team is
created and connected to the server in the second simulation step.

3 Orientation

3.1 Perceptions and Observations

Perceptions. Information about the simulation and the environment is gath-
ered through static and dynamic perceptions. Both of them are raw, unprocessed
data sent by the MAPC server.

Static perception is invariable information, that is valid for the entire simu-
lations. It is agent and state independent data and accessible by everything. It
is uploaded to the simulation data server, by the first connected agent, without
any transformation.

On the other hand, dynamic perceptions are based on the simulation’s actual
state. Some of them are agent independent, their content is equal to all agents.
The rest of them are heavily agent dependent. These are narrow environment
data from the receiver agent’s point of view and only the receiver has access to
it. The dynamic perception includes information about the agent itself and the
things which are visible by the agent. The positions of the latter are relative to
the agent, which means agents are not aware of their position of the actual map.

Dynamic perceptions are uploaded in raw format to a dynamic map, which is
defined in Sect. 3.2, using the map server. In the beginning of every step, these
are gathered from all agents.

MMD: The Block Building Agent Team with Explainable Intentions 63

Observation. The data which is required for the intentions to determine the
next agent action, is all wrapped up in observations. These contain processed
data, generated by data servers and the agents from the perceptions. Also access
to several data server is granted by them, so not every data server related infor-
mation must be stored in these objects.

Observations are generated from the data gathered from different sources at
every simulation step by the agents. The agents use the observations to determine
their next action. The observations provide an accurate view of the simulation,
so that the intention calculations are as effective as possible.

For example, the perceptions only contain that a thing is attached to anything
or not, but it does not tell where the thing is attached. Agents must be aware of
their attached things, especially the blocks they are carrying. Therefore attached
things must be tracked, which is done with the observations. Observations track
every gain and loss of attached things. In agent oriented terms, we can say that
the observations are the beliefs of the agents.

Observations are introduced into the software design, because of the architec-
tural design. Intentions are the agent’s business logic layer, therefore the inten-
tions are not aware of the agent itself. Basically, observations are a combination
of data transfer objects and proxies.

These objects are suitable for every type of intention, although not every
intention requires all its data.

3.2 Map Building and the Dynamic Map

Dynamic maps are collections of data structures, which store things and their
coordinates. At the same time, they provide different services, which are built
on the stored data. Dynamic maps serve as repositories and services, too.

In the beginning, each agent orientates with its own map. The agents are
not aware of their global location, so each of them builds its own map, using its
own coordinate system: the agent starting position is the origo. The map is built
using the data received from the perceptions, which is adjusted to the origo and
to the agent position, too.

The following data is stored in the dynamic maps:

– Dynamic things, like agents, obstacles and blocks
– Dispensers
– Role and goal zones
– Marker zones

Dispensers and role zones are static, none of them are changed during the
simulation. They are simply stored and managed separately due to their latter
property.

On the other hand, dynamic things, goal and marker zones are stored and
managed in a different way. A time stamp is associated to these data, so later
it can be decided which information is more up to date compared to another
one coming from a different source. The time stamp is needed when two agents

64 M. Miskolczi and L. Z. Varga

merge their maps and they have to decide which one of them has the most recent
information.

When the map is built, whether a coordinate from a perception is undiscov-
ered or not, the coordinate and the thing associated to it are added to the map,
because the current perception is the most up to date data source.

The dynamic maps are managed by a data server, called the map server.
The map server’s only purpose is to associate maps to agents, ensuring that the
agents coordinate their activities via the map which is associated to them.

3.3 Agent Identifications

Agents of the same team are not aware of the positions of other team members
by default. To work together efficiently, they must know the location of each
other.

When more than one agent observe in their perception an other agent from
the same team, then the identification process is initiated. An algorithm sim-
ilar to the LFC solution in [4] is performed for the identification. The idea is
that, if an agent notices another one, then asks the others if there is an agent
in their perception in a reversed point of view. If this condition is met, then
the common viewable things are checked if they match, filtering out non pos-
sible candidates. At the end, if there are more than one candidates, then the
identification is unambiguous and fails. The identification is only accepted if the
number of candidates equals to one.

After a successful identification, the result is used for map merging (Sect. 3.4)
and map size detection (Sect. 3.5). Both have a positive impact on efficiency, so
agent identifications are always performed at the start of every step.

3.4 Map Merging

Only those agents can work together, that share a common map. The goal is to
use as few maps as possible, so more agents can cooperate and the map’s shared
resources, like dispensers and goal zones, can be managed more efficiently.

In the beginning, none of the maps are shared. When an agent identification
is performed successfully and the participating agents belong to different maps,
then the map merge process begins.

Map merge is done by integrating a map into another. Only two maps are
merged at the same time, but more can be done at the same time step. The
maps use different coordinate systems, so one of them is kept, while the other is
shifted to the other one. The shift value is calculated by the participating agents.

The shift value can be calculated by the difference of the coordinates of the
agents, which merge their maps. The calculation is performed by Eq. 1.

shiftV alue = ac1 − ac2

ac1 = agent coordinate in own map

ac2 = other agent coordinate in own map

(1)

MMD: The Block Building Agent Team with Explainable Intentions 65

Those map elements that only exists in one map, are instantly added to the
merged map. The elements that exists in both maps, are chosen by their time
stamp: the more up to date value is stored, the other is discarded. The result is
an union of the maps, which is shown in Fig. 4.

Fig. 4. Map merge result.

The map server guarantees, that all affected coordinates are shifted. It is done
by the map merge and also by alerting the agents whose map has been integrated.
The shift value is sent to all affected agents and it is their responsibility to update
their coordinates inside the intentions.

After a map merge is completed, the involved agents belong to the same
map, which ensured by the map server. From now on, these agents build the
same map. They are able to manage the shared resources of the map to reduce
possible conflicts and to work together to accomplish a given job.

In the beginning, the agents try to explore the world to build and merge
maps. Task achievement is always preferred to map building. Often, there is no
need to explore the whole map to complete tasks effectively.

3.5 Looping Grid and Map Size Detection

The end of the map cannot be detected directly, because the map repeats itself.
For efficiency benefits, it is important that the dimensions of the map are known,
if it is possible to calculate them. If it is not determined, then it can lead to
performance decreases and to inefficient path findings. Because of the previous
consequences, this must be dealt with.

The result of the agent identification process (Sect. 3.3) is used in map size
detection as well. When an agent identification is performed successfully, and it
turns out that the newly identified agent already belongs to the same map, but
its map coordinate differs from the newly identified coordinate, then it means
that the agent looped at least once on the map. Note that it is required, that the

66 M. Miskolczi and L. Z. Varga

agent coordinates are always maintained correctly. In this case, the dimensions
are determined by Eq. 2 using the agents map and relative locations.

(width, height) = | ac1 − ac2 + rc |
ac1 = first agent coordinate

ac2 = second agent coordinate

rc = relative coordinate between ac1 and ac2

(2)

Those dimensions can be determined for which the map has been travelled
through. The map size calculation is always performed after agent identification.
The size, calculated by Eq. 2, may be one or more times the real size of the map,
because the other agent may have looped on the map more than once. If a size
has already been determined at least once, and in a new agent identification a
new size is calculated, then the size is updated only if the new size is less than
the previous one.

After a valid new map size determination, all the coordinates in the system
are normalized to the new dimensions. The coordinate update is organized just
like at map merging. It results in a much smaller map, which is visualized in
Fig. 5.

Fig. 5. Map size detection result.

Map size detection has a lower priority than merging all the maps and explor-
ing every part of it. This does not necessarily mean that the latter precedes the
former. According to our experiences, the dimension detection usually occurs
earlier than the full map discovery, but not earlier than the merge of all maps.4

Map size detection has many advantages, but our agents may start task
achievements even before the map sizes are determined, because it has proven
to be more effective. Maybe it would be different at longer simulations.
4 Despite of not prioritizing complete map exploration, our experience shows that

usually all maps are merged into a single one by the half of the simulation, while the
dimension detection occurs some time later. The full map discovery happens late in
the simulation, although, it is exceptional.

MMD: The Block Building Agent Team with Explainable Intentions 67

3.6 Pathfinder

Modified A* Algorithm. The main idea of our pathfinding is based on the
A* algorithm [9] and the anytime search algorithm [8]. Agents have limited time
to find an optimal path, therefore a constant node visit iteration threshold has
been introduced to meet the anytime requirement. If the threshold is reached,
then the closest estimated coordinate to the end is treated as the end coordinate.
The heuristic estimation for the distance to the end node in the A* algorithm is
the euclidean distance to the end node. The found path may be not be optimal,
because the pathfinding may be terminated before the full path is discovered.
However, the non optimality of the found path is not critical, because the MAPC
environment is highly dynamic, and the agents create a new plan for their inten-
tions in every simulation step. Therefore only the first elements of the found
path matter, and the starting direction will be approximately right in every
simulation step.5

The first elements of the found path is an agent action, which can be either
a move or a clear action. Agents can travel multiple coordinates, depending
on their role and carried entities. Always the maximum possible movement is
applied, until a clear or rotate action is needed, or maximum movement limit is
reached.

However, we limited the maximum number of move actions per simulation
step to two. When more than two move actions are performed in a single step,
and they are only partially successful, then the agents may lose tracking of their
absolute position, because the count of the successful movements are not known.
The loss of the absolute position completely confuses our maps and consequently
all our algorithms. This is why we had to introduce this limit.

Pathfinding with Attached Blocks. In order to support pathfinding while
carrying attached entities, the algorithm had to be further improved. The basic
principle is that agents pull the blocks behind them, so upcoming obstacles can
be cleared under any circumstances. Complexity and various edge-case scenarios
are introduced by this idea, so a simplification had to be applied. The simpli-
fication prescribes that only one block may be carried, per agent, at all times.
This principle ensures that agents find a route under any circumstances, without
clearing large sections. This is achieved because, regardless of the role, the agent
can always clear the obstacles in front of it.

In order to ensure that blocks are pulled, agents have to rotate in certain
situations. The basic idea is that if an agent moves to a direction, which causes
the attached block not to be behind the agent, then a rotation is needed before
that. However, this causes lot of unnecessary rotations, which slows down the
agent’s travel time. To avoid unnecessary rotations, an optimization has been

5 Restarting the A* algorithm in every simulation step may not be efficient in terms
of computation time. The D* Lite algorithm [11] would have been more efficient.
On the other hand, the D* Lite algorithm uses more memory, especially if there are
many agents.

68 M. Miskolczi and L. Z. Varga

introduced, that weakens the previous principle. Rotation is only required, if it
is not possible to proceed without it: the attached block can not be moved due
to blocking obstacles.

4 Team Coordination

4.1 Task Achievement

Task Completion Prerequisites. Task achievement has several essential pre-
requisites, which is visualized in Fig. 6. In order to begin a task, a group of agents
must share a map, and a given set of conditions must be met on their shared
dynamic map. This is because there is no sharing of resources between maps.

Fig. 6. Task prerequisites.

Regardless of the task itself, the location of at least one role and one goal
zone must be known. The agents need to adopt the right role for the task, and
they need a location where the submission can be done. If either of the previous
conditions are not fulfilled, then the task cannot be started.

The same rule applies to dispensers, but it is task dependent. There must be
at least one dispenser for each block type required for the task.

In order to begin a task, a goal zone location must be provided to the agents,
where the blocks can be assembled and submitted. Therefore, the coordinates,
where the assembly and submission are performed, should be reserved to avoid

MMD: The Block Building Agent Team with Explainable Intentions 69

possible conflicts. The neighbouring coordinates are also included in this area,
so agents have enough space to hand over blocks. The reservation makes sure,
that other agents from the same team on the same map do not assemble blocks
at the same location.

A reservation is made, when a task is started, and its lifecycle needs to be
managed. The reservation needs to be ended when the task is finished. The
task may be finished either because it is submitted or because it is dropped
due to some critical reason. Another possible event is when multiple maps are
merged, and the reservations are conflicting with each other. In this case, only
the reservation that belongs to the team closest to the reserved target zones is
kept. The rest of them are cancelled, therefore the tasks associated with them
are dropped.

Dropping a task is not a serious problem, because the agents involved in the
task will be freed, and they will bid for task execution in the next simulation
step. If the same task is the best candidate next time, and these agents are in
the best position for the same task, then these agents will continue with the task
execution, but with a different goal zone which is not occupied by other team
members. If the same task is not the best candidate next time, or these agents
are not in the best position for the task, then the team will select a better task
and/or group of agents for task achievement.

The size of the group of agents needed for each task is equal to the number
of block requirement of the task plus one. The extra agent is the coordinator
which organizes the rest of team which are the block providers. The coordination
process is similar to the Contract Net Protocol [12,13]. The coordinator divides
the task into sub-tasks, and the generated sub-tasks are allocated among the
group. It is the block provider agents’ responsibility to supply the correct amount
and type of blocks. Meanwhile, the coordinator clears the assembly area, then
acquires the blocks from the block providers, and submits the task at the end.
The contract ends, when a task is finished either because it is submitted or
dropped.

If the task requires a single block, then only one agent is needed, which
performs the block provision and the coordination too.

Task Options. Task options are generated in each simulation step for each
dynamic map. This is an agent and resource reservation independent pre-
filtration. For each map, the available tasks are stored as possible options. The
availability of a task is defined by a subset of the task prerequisites listed above
(Fig. 6) with some additions.

– If there are no known role or goal zones for the given map, then no task can
be started.

– A task cannot be started on the map, if no dispensers are known on the map
for the type of blocks required by the task.

– If the block count of a task violates a norm, then it is ignored and skipped.
– A task should not be started, if surely there is not enough time to complete

it. A simple lower estimation was used to calculate the minimum completion

70 M. Miskolczi and L. Z. Varga

time, which assumed that every agent required at least four simulation step
to finish their part.6

Task Selection and Bidding. The generated task options are filtered by the
available resources for each map. From here on, the beginning of a task depends
on resource management: agent, role and goal zone availabilities.

For resource management a simple, local optimization algorithm was used.
The algorithm always selects and starts only one task, and it is repeated until
none of the tasks can be started. One task can be selected multiple times, there
is no upper limit for that. Although, there should be some kind of limitation,
because once a task is submitted a certain number of times, then it can not be
submitted again. Therefore, the teams, which are still working on that task, have
to change to another.

In each task selection iteration, the following conditions must be valid.

– There is at least one goal zone area free for reservation. The size of the area
depends on the required block formation.

– There must be at least the given number of free7 or explorer agents described
in the prerequisites sub-section above.

– The required roles for the task can be reserved, i.e. they comply with the
norm management of the team, which is described in Sect. 4.2.

After the filtering, the remaining tasks are sorted based on a value function.
The value function defines a ranking, that determines which tasks worth the
most in terms of rewards and efforts. The value of a task is calculated by Eq. 3.

value =
reward
agents · remainingT ime

1 + crowdednes
(3)

where the variables are the following.

– reward : The reward points for the task.
– agents: The number of agents needed for the task completion.
– remaining Time: A quotient of the remaining time until the task deadline

and a constant.
– crowdedness: Agent density estimation at goal zones. It is a rough constant

multiplier based on how much space is needed for the block assembly, how
many agents are performing task related jobs and how many goal zone coor-
dinates are known on the actual dynamic map. The multiplier is calculated
by Eq. 4. The crowdedness value is positive, if the number of agents already
working on task achievement (busyAgents) plus a space proportional to the
block requirements of the given task (blocks) increases three quarter of the
goal zones. In this case, if there are more busy agents and there are more
requirements of the task, then the crowdedness is higher.

crowdedness = max(busyAgents + 2 ∗ blocks − goalZones ∗ 0.75, 0) (4)
6 It was a very simple estimation, which have not been improved due to lack of time.
7 An agent is free if it is not involved in task achievement.

MMD: The Block Building Agent Team with Explainable Intentions 71

The value of a task (Eq. 3) is higher if the team can produce more rewards
per agent. The value is also higher, if it is more likely that the task can actually
be submitted, because there is more time until the deadline. If the available free
goal zones drop below one quarter of the known goal zones, then the value of the
tasks with less block requirements will be higher, because these tasks need less
space for submission. The one quarter limit for the goal zones is just a ballpark
value that takes into account that the other team also occupies a part of the
goal zones.8

The task with the highest value is started. The required amount of agents
are assigned to the task to form a task achievement group. The members of
the group are selected on the basis of the bids of the agents, which is described
in the next subsection. For the selected agents, the right roles are reserved, if
needed, and their intentions are inserted into their desires. The required goal
zone coordinates are reserved for the team, which is selected by the coordinator.
This is the end of the algorithm, and the agents start their task in the simulation
next step.

Agent Task Bidding. When agents are considered to be part of a group for
a given task, they are ranked by their bids. The bid of an agent estimates how
much step is required for the agent to accomplish a given job. Agents that require
the least amount of time are selected for the given sub-task.

A job can be a coordination, block provision or single block provision. There-
fore, for each job, the agents bid differently.

Bid calculations consist of several different parts, where one depends on the
other. For example, when the agent bids for a coordination, and does not have
the right role for that, then the bid contains the cost of travelling to the nearest
role zone, plus going from the role zone to the goal zone that is closest to the
role zone.

Each bid calculation has a common part, the role adopt time. In the begin-
ning, if the agent’s actual role is not suitable for the given job, then the time to
adopt the right role is included. It may occur, that a job requires more than one
role. In this case, the calculation takes into account that more than one role is
needed.

The jobs require that the following calculations must be made.

– Coordination: the time to get to the goal zone which is closest to the agent.
The chosen agent’s closest goal zone is reserved for the team.

– Block provision: the sum of time required to get to a right type of dispenser
and then to the reserved goal zone.

– Single block provision: the sum of coordination and block providing costs.

8 Although we had this complex task evaluation function, we are not sure that it really
played an important role in the MAPC 2022 contest, because there were always only
2 active tasks at the contest, and there were not many options to choose from.

72 M. Miskolczi and L. Z. Varga

4.2 Role and Norm Management

The MAPC competition rules define the roles and the norms. The norms regulate
the type of the roles and the number of the agents with given roles during the
competition. Role and norm management is needed to keep to the rules of the
competition, which may require team level coordination.

Role Categorization. The possible roles of the simulation are not known in
advance, their available actions and other parameters are only known at runtime.
Proper management of agent roles is key to effective operation. Choosing the
wrong role for a given job can disable the agent from doing it or significantly
reduce its performance.

At the beginning of the simulation, the agent roles provided by the MAPC
simulation are categorized according to the job they are suitable for. This is
needed, because for example, if an MMD agent wants to do the coordination
job, then it needs to adopt a MAPC role which has the capabilities to attach
a block, to connect two blocks and to submit a task. The role categories are
determined by the possible agent jobs that are used in the MMD system:

– Coordination
– Block provision
– Single block provision
– Explorer or inter task role

In the future, the role categories might be extended with saboteur and sur-
veyor categories.

The current design assumes that, that these roles exist as single roles, not
as combination of more. Only the single block provision is excluded from that
assumption.

Each role category has mandatory conditions, without them, the role is not
suitable for the given job. Examples of such conditions are the permitted actions
and the ability to move with attached things. There are optional conditions. The
optional conditions can be used to rank the roles which one can perform better
in the given job, usually determined by skill parameters.

Coordination roles require submit, attach and connect action options. The
coordinator must be able to get blocks from others, using the attach and connect
action. For task submission the submit action is mandatory. The coordinator
should able to protect itself from saboteur agents, so a role, which has more
promising clearing parameters, should be preferred.

The essential capabilities of the block provision are the request, attach and
connect actions. The reasons for the attach and connect actions are the same as
in the previous case. The request is used for block acquisition.

Single block providers require request, attach and submit actions for rea-
sons similar to the previous ones. Should there be no single role for single block
provision in the simulation, then the coordinator and block providing roles sub-
stitute the single block provider role. Only one role is allowed at the same time,
therefore in this case at some point, the role must be changed.

MMD: The Block Building Agent Team with Explainable Intentions 73

There is no separate explorer category, but there is a so called inter task
role category instead. Agents are optimized to complete tasks as soon as they
appear. During exploration, a role from one of the previous three categories is
chosen, so agents are always ready for a task job.

Usually the roles with higher speed are preferred, but because of role distri-
bution balance, it was not included in the selection. The vision of a role could
have been used at exploring, however, it has been treated just like the agent
speed. The reasons behind the role distribution balance are described in the
next subsection.

The importance of the role’s attributes is visualized in Fig. 7.

Fig. 7. Role property prioritization.

Role Assignment and Reservation. The management of role assignments
and reservations are controlled by the role server. Agents use the role server to
obtain a role of a specified category, usually for a specific job. However, agents
do not choose the specific role within the category themselves, they choose from
the options offered, because norms must be handled on team level. Team level
coordination of roles is facilitated by first reserving the role for future use by the
team, and then assigning the role to a given agent when needed.

When the roles of a given category are requested, the role server filters them
by their availability. The availability of a role depends on the norms, which limits
the role usage at team level. If the sum of the count of assigned and reserved roles
reaches a limit defined by a norm, then the role is not offered in any category,
making the role unobtainable for the agents. The count of both assigned and

74 M. Miskolczi and L. Z. Varga

reserved roles matters, because even if not at the given moment, but in the
worst case, in the near future, the limit of the norm might be exceeded.

The role server service requires the tracking of the assigned and the reserved
roles. When an agent requests a role of a given category, then the role server
offers the agent the available options. The agent selects one of them, then reserves
it. This indicates that the agent will take on the chosen role in the near future
and it must be guaranteed to it. The role is removed from the reservations after
either adoption or resignation. In the former case, the role is assigned to the
agent.

When multiple roles are offered in a given category, then the agent chooses
randomly. In this way, it is less likely that every agent adopts the same role, thus
the team of agents is in a better position for upcoming role limits.

Norm Filter and Consideration. Norms are limitations, which can regu-
late agents at individual or team level. Violating them causes the agents to
lose energy, which is a critical threat to them. Some norms are even extremely
harmful, so they must be dealt with.

Norms are handled serially: only the upcoming ones consecutively. This is by
no means the most optimal approach, but based on our experience, it solved the
problem relatively efficiently and correctly.

Norms can be classified as ignorable and considerable ones.
The ignorable norms are those that do not require direct major intervention.

An example is the limitation of the default role, because it is usually not needed.
This experience is based on the test simulations prior to the contest. Another
example is that a two-block limit norm does not really matter for two-block
tasks, because in the case of two-block tasks, the time when the agent has two
blocks is negligible.

The norms must be considered by their energy loss effect. A norm must be
complied with, if the average agent energy drops below a certain level due to the
energy loss caused by it and other norms that are not complied with during its
duration. The constant energy recovery is included in this calculation, which is
not known in advance, it is discovered by the agents, using simple energy com-
parison between steps. Once the energy recovery is discovered, then it is stored
in the simulation data server. The energy threshold is a constant percentage of
maximum energy. The calculation is an estimation and the threshold tries to
mitigate its inaccuracy. While block norm violation only punishes an individual
agent, it is treated as a team-level energy loss, as not even a single agent is
allowed to drop out.

Norms are complied with by their category, which can be either block or role
regulation.

If a block norm has to be complied with, than any task is stopped where the
block count of the task exceeds the limit. In this case, only the coordinator is
affected, however it stops the whole group of agents involved in the task.

Role norms are managed using the role server. First, the role server provides
the count of the task performing agents of the affected role, which indicates

MMD: The Block Building Agent Team with Explainable Intentions 75

how many roles have to be dropped. Then, the task performing agent group,
which has the most given role reservations discards the task and the role reser-
vations. This continues until the given role reservations drop below the limit of
the norm or until the norm goes out of effect. If the norm is still in effect and
all role reservations are discarded, then the algorithm is continued, but with the
adopted roles. The algorithm starts with the reservations, because the reserva-
tions indicate that those agents are far from finishing the task, while the agents
that have their proper roles are already working on tasks. The agents that do
not participate in task jobs automatically change to available roles.

If more than one norm of a given type is active at the same time, the strictest
one will always be taken into account.

5 Intentions

Intentions represent agent jobs, which can be either standalone or part of another
intention. Every intention has a unique purpose, and when it is reached, then
it is considered finished. Because the MAPC 2022 scenario is highly dynamic,
the intentions determine the next action leading closer to its purpose in each
simulation step using their observations.

Intentions are structured hierarchically. There are simpler and more complex
ones, usually the latter include the former. Main agent intentions are at the top
of this hierarchy, they can be interpreted as standalone jobs. Each main agent
intention is associated with a priority, so it can be decided which of them is more
important at the actual step.

In the following sections, intentions are categorized by their usage and
explained in detail.

5.1 Common Intentions

The intentions listed here can be categorized as supporter intentions, they are
usually included as building blocks in other intentions.

Idle. This is a placeholder intention, which never finishes and does nothing.
Its only purpose is to make the agent’s intention queue (described in Sect. 5.4)
non-empty.

Skip. This simple intention is used for skipping the current simulation step.
Has no purpose, never finishes.

It has an optional flag, which triggers that, if one of the agent’s attached
things blocks a dispenser, then it rotates to avoid to free the dispenser. This
behaviour ensures that it does not hinder other agent’s work. The flag is enabled
only, if the attached blocks do not have to maintain a specified format for task
achievement.

When an agent skips, it uses this intention to perform the skip action.

76 M. Miskolczi and L. Z. Varga

Travel. This intention wraps the pathfinder component. Its goal is to travel to
a given destination with the invocation of the pathfinder.

If the given destination is reachable, i.e. the destination is not blocked by
another agent, then it returns an action to get closer to it. The action can be
either move, rotate or clear action. If the destination is not reachable, then it
skips, because there is another intention to handle this case.

Wait. This is an extension of the travel intention. When the given destination
is reached, then the skip intention is initiated. The wait condition is determined
by another intention.

It has a simple defensive behaviour: after its destination is reached, it
attempts to shoot at agents from the other team in the perception range to
protect itself and to keep them away. This defensive behaviour is always active
at the destination, but it can have a real effect only if the role of the agent allows
that the clear action damages the other agent.

Agitated Travel. This is an improved version of the travel intention to handle
the case when the target destination is unreachable. It applies the basic travel
and wait intentions to achieve that.

It has two improvements. Firstly, it allows multiple destinations next to the
target destination. When one of them is reached, then its purpose is considered
reached. Second, if all of the destinations are unreachable, then it searches and
travels to the closest reachable location between its current location and the
destinations. By this behaviour, it is ensured that the agent is getting closer to
the goal area at every step.

Agitated Wait. This is a combination of the agitated travel and the wait
intentions.

After one of the goal locations are reached, it behaves just like the end of the
wait intention. It waits unconditionally and attempts to shoot at hostile agents.

Distant Agitated Travel. This is a distance keeper version of the agitated
travel intention.

It has only one destination, however, its purpose is not to reach it, rather
to be in a given distance to it. It ensures, that the agent is near to a given
destination, but not close enough, so the area around the destination is not
crowded.

Detach Blocks. This intention detaches all the things which are attached to
the agent. Terminates when nothing is attached to the agent.

MMD: The Block Building Agent Team with Explainable Intentions 77

Reset. This is a main intention, which is only initiated after the agent team
got reconnected to the MAPC server.

Its only purpose is to drop every attached thing, by applying the detach block
intention. This is because the individual agents can not remember their previous
intentions and their task group. Therefore, the groups have to be recreated, but
until then, the attached blocks unnecessarily hinder the agents.

Escape. When the agents notice that they are in a clear event area, then they
start to flee. The flee process is handled by the escape main intention.

It uses the path finding component’s calculations to find the shortest route
to a destination, that is not affected by the clear event. Then the travel intention
takes care of moving there. Before it tries to escape, it applies the detach block
intention, which helps the agent to get to the destination as soon as possible.
This may require some extra time, but the agent can reach its goal more flexibly
and faster, and also, the pathfinder does not work correctly if more than one
block is attached to the agent.

Clear Target. This is a simple intention to clear the given coordinate, if a
block or obstacle is located at it. First of all, it moves to a coordinate adjacent
to the target coordinate by the travel intention, and then clears the given target.
If the target is unreachable then it skips, and this case will be handled in the
intention from where the clear target intention is invoked.

Clear Zone. This is an extended version of the clear target intention, which
allows the clearing of multiple targets, while preserving a minimal amount of
energy. It chooses its current target as the closest one, making the clear process
optimal.

If the agent’s current energy is low, then it just skips to gain energy. The
energy limit is defined by a constant parameter. By this, it is ensured, that not
all of its energy is consumed and even preserves some, if suddenly an escape is
needed.

At random occasions it rather shoots at hostile agents to keep them away
from the given area the same way as in the wait intention.

Adopt Role. The purpose of this intention is to adopt the given role. It uses
the agitated travel intention to get to the closest role zone area. After that, the
intention adopts the given role.

5.2 Explorer Intentions

Explorer intentions ensure that the map is discovered and kept up to date as
much as possible.

78 M. Miskolczi and L. Z. Varga

Explore. In the beginning, most of the map is completely unknown. The task
of the explore intention is to discover as much parts of the map as possible, in
the least time possible.

It begins to explore the agent’s environment in a spiral like shape. It moves
with the basic travel intention towards an unknown location, which is closest
to the starting point of the agent and also to its current position. If there are
more than one locations like this, then a random one is chosen, which may cause
the agent to start exploring in another direction. The selected destination is a
little bit further than the selected unknown location, in order to move the whole
perception range of the agent out from the already explored area. Because of this
exploration algorithm, the shape of the exploration is like a spiral. The shape is
visualized in Fig. 8.

Fig. 8. Direction of the exploration.

This movement assists the agents to find each other as soon as possible,
and also explore unknown areas with minimal effort. The explore algorithm is
compatible with the map merges. The behaviour does not change, although the
exploration does not keep the spiral like shape, but it still wanders around the
edge of the already explored area.

The intention is finished, when the map dimension is calculated and all the
points are known. These conditions are rarely fulfilled.

If there is a reserved role for the agent, then the adopt role intention is
performed to adopt it during the exploration. Usually this scenario happens
only, when the agent has to change a role due to a norm violation.

This main intention has lower priority than the task related ones, therefore
the map is rarely explored completely.

MMD: The Block Building Agent Team with Explainable Intentions 79

Map Update. The map update main intention takes the explore intention’s
place, after the map is fully discovered.

It explores coordinates, which were discovered the earliest. The closer ones
to the agents are always preferred. The exploration is performed by the basic
travel intention.

This intention has the same role handling behaviour like the explore intention.
Their priorities are also equal.

This main intention is never finished, because there is always a point to
explore again, but a task related intention may make this intention inactive for
a while.

5.3 Task Achieving Intentions

In this category, all the intentions are part of the task achieving process. Only
the coordinators and block providers use the intentions listed here.

Block Collection. The responsibility of the block collection intention is to
acquire a given type of block, that can be consumed in a task submission. It is
used by single or regular block provider agents.

The intention searches for dispensers, from where the given type of block can
be gathered. It uses the agitated travel intention to travel next to the dispenser.
While going to the dispenser, if the agent perceives an abandoned block of the
correct type, and the abandoned block is closer than the dispenser, then it targets
the abandoned block.

However, not all the dispensers and abandoned blocks are measured the same
way. The dispensers, that are not completely occupied by other agents, have
always greater priority. There is a high chance at dispensers surrounded by
agents, that there will be a conflict for the requested block. The conflict can be
either waiting for other agents or suffering damage from hostile agents.

The abandoned blocks are not prioritized, rather they are filtered by their
surroundings. If there is any agent or block besides them, then they are ignored,
because the abandoned block may be attached to the agent or the block. We
allow to hold more than one thing only for coordinator agents, because it would
hurt the “maximum one attached thing per agent while moving” principle. The
coordinator agents do not move if they have at least one attached block.

The “maximum one attached thing per agent while moving” principle can
also be hurt when attaching a block from a dispenser. This may happen if more
than one agent attach the block at the same time from the same team. When the
agents belong to the same map, then an attach order is defined by themselves.
However, if they do not belong to the same map, the previous scenario might
happen. When this scenario is recognised by the agents, then the agent either
detaches the attached block with 50% chance or skips with the same chance.
Basically, the conflict resolution is random based, because after a while at least
one agent detaches the block. If both agents detach the block, then they attach

80 M. Miskolczi and L. Z. Varga

it again in the next step. Sooner or later, only one of the agents holds the block
and it is free to go with it.

The intention is finished, when the agent has acquired the block and there is
no other thing attached to it.

Connect. This intention hands over an attached block to another agent, usually
to a coordinator. It is usually performed by a block provider agent to connect a
block to a coordinator agent during the block delivery. The intention is initiated
when the involved agents are close to each other.

The intention receives the exact location, where the block must be delivered.
By the basic travel intention, the agent moves to one of the given destination’s
adjacent coordinates. After the travelling is finished, it rotates the attached block
to the given location.

When the block is in the right location, then the agent either detaches the
block or connects the block to one of the coordinator’s attached blocks. The
required action is determined by the block position. If the position is directly
besides the coordinator, then a detach action is sufficient. If not, then a connec-
tion must be made, which must be closed immediately.

The intention is finished, when the block provision intention signals that the
transmission was successful and the agent holds no longer the block.

Block Delivery. The block delivery intention ensures that an attached block
is transported to a coordinator agent. It is only used by block provider agents.

The intention uses the agitated travel intention to go close to the coordinator
agent and then to follow it.

When the block provider agent is close enough to the coordinator, then sooner
or later, it receives a signal to exchange the requested block. The exchange
process is managed by the connect intention.

The process ends, if the connection intention is finished and the coordinator
agent approves the exchange, indicating it by a signal.

Block Providing. This main intention handles the block providing job by
scheduling and managing the block collection and the block delivery intentions.

First of all, if the agent has the wrong role for the block providing, then it
adopts the right one, using the adopt role intention.

If the agent has either no blocks or the wrong ones, then all the attached
blocks are detached using the detach block intention. Then the block collection
intention is initialized to acquire the right block.9 If the agent has the right block,
either because already having it or from the block collection intention, then the
block delivery intention is initialized to deliver the block to the coordinator
agent.

9 There could have been an optimization, if the right block is included in the attach-
ments, then only keep that one. It was not implemented due to lack of time.

MMD: The Block Building Agent Team with Explainable Intentions 81

The intention recognises if it loses its attached block, for example by a clear
event. In this case, the process starts over by acquiring the right block.

The intention can be finished in several ways. The positive outcome is when
the block is successfully delivered. The negative one is determined by the coor-
dinator agent, usually when the task can not be completed in any way.

Assemble. This intention is used by a coordinator agent to acquire an attached
block from another agent, usually from a block provider agent. The intention is
started for each required block, when the corresponding block provider is close to
the coordinator. The coordinator agent assigns a connect intention to its block
provider agent to connect the delivered block at a given location. The intention
is finished when the block is acquired, and if connection was required, then the
connection is closed.

Coordination. This is the main intention of the coordination process. Its pur-
pose is to accomplish a task submission flow, by its own logic, and to control the
block provider agents of the task group.

It consists of the following steps:

1. If just initialized, the attached blocks are checked, and the wrong ones are
detached.

2. Before determining the next step, the intention checks if the task can still be
completed. If not, then the intention ends.

3. The current agent role is checked, if it has the wrong one, then the intention
adopts the right one.

4. It travels to the chosen goal zone destination.
5. While none of the right block providers are ready for the block exchange,

it clears the area from obstacles and abandoned blocks using the clear zone
intention.

6. One by one, the blocks are exchanged from the providers when they are ready.
7. Once, it is in the possession of all required blocks, then it submits the task.

If the intention just got initialized, then it needs to make sure, that the
agent has only the right type of blocks in the right positions. All the attached
blocks that do not satisfy the condition must be detached, using the detach block
intention.10

Before continuing, in each step, it must be determined, that the task can
be still completed. The influencing factors, which can interrupt the flow, can
be divided into two parts. The first part is the critical, which make the task
completion impossible, like task expiration or a norm violation. The other part
is the optional, which just set back the task completion. These hindering factors
could be handled by the intention, however for simplicity purposes, they are
handled like the critical ones: the intention is terminated, and if it is still relevant,

10 Due to lack of time, wrong block selection algorithm was not implemented, therefore
if there is at least one wrong block, then all the attached blocks are detached.

82 M. Miskolczi and L. Z. Varga

then it will be restarted in the next simulation steps anyway. The optional factors
are the following: either when the goal zone disappears or when a clear event
appears on the agent itself or one of its attached blocks.

If the intention has to be interrupted, then it releases the block provider
agents from the task group. Then the detach block intention is initiated to drop
all the attached blocks.

If the agent has the wrong role for the coordination, then the adopt role
intention adopts the right one.

The goal zone area, where the blocks can be assembled are determined by
the dynamic map associated to the agent. Until one of the coordinates of the
goal zone area is not reached, the intention always chooses the closest one and
travels there, using the basic travel intention.

After the arrival to a goal zone, if none of the right block provider agents
are ready for block exchanging, then it starts to clear the area. Its purpose is
to clear the area from obstacles and abandoned blocks, to make exchange easier
for the block provider agents. It is performed by the clear zone intention.

The order of the block exchange is determined on the basis of the task block
requirements and the block provider agents’ readiness. Only one exchange at
a time can be completed for simplicity purposes. From experience, there were
usually no complex tasks where parallelization could be used. The task block
requirements itself defines a non linear order of the possible options, which is
filtered further, by the available blocks from the block provider agents, at the
given moment. If there is any hand over opportunity, then one of them is cho-
sen randomly. The exchange is performed by the assemble intention. The block
exchange loops until all the required blocks are attached.

When all of the required blocks of the task attached to the right positions,
and none of the block provider agents are connected to the coordinator, then
the task is submitted, and the intention is finished.

Although we have a goal zone reservation scheme to prevent that two groups
of our team block each other by trying to submit a task at the same place,
the block reservation scheme cannot take into account the other team of the
match. If the coordinator finds that an agent from the other team stays for a
longer time at the reserved goal zone, then the coordinator drops the task and
releases its block providers. If the same task and the same group of agents are
still preferable, then the group will be recreated with a different goal zone in the
next simulation step. If not, then a new group will be formed.

Single Block Submission. The purpose of this intention is to deliver a single
block to a goal zone, and then to submit the task. A prerequisite of this intention
is that the task requires only one block. Only the single block provider agents
have this intention.

The intention determines the closest goal zone in each simulation step the
same way as in the coordination intention. The goal zone determination in each
simulation step is useful, because when a goal zone disappears, then the intention
can go to another goal zone with the same block. If the goal zone is reached,

MMD: The Block Building Agent Team with Explainable Intentions 83

then the intention rotates the block into the direction required by the task,
and submits the task. If the location at the rotation target is blocked, then the
intention either clears the location, if possible, or selects another location within
the goal zone.

The intention ends, if the task is submitted successfully.

Single Block Providing. This main intention is a unique mix of the block
collection and coordination intention. Just like the single block submission inten-
tion, only the single block providers can have it.

Its purpose is to accomplish a task submission flow, which requires only one
block. It’s the intention’s responsibility, to collect the given type of block and to
submit it in a goal zone, without the assistance of other agents.

First of all, if the agent has the wrong role for the block collection, then the
adopt role intention adopts the right one.

Just like at the coordinator intention, if the agent has wrong blocks, then the
detach block intention is performed. After that, the block collection intention is
initiated to acquire the right block.

At this point, if the agent’s role is not suitable for the task submission, then
the adopt role intention is performed again, to change role.

Then the single block submission intention is executed to deliver the block
and submit the task. If the agent loses the block, the algorithm starts over.

Just like at the coordination intention, the task completion can be interrupted
by several factors. It is handled the same way, excluding the release of the block
providers.

The intention is finished, when either the single block submission intention
ends or if it had to be ended for some reason.

5.4 Agent Intention Management

Agents usually have more than one main agent intention at the same time, but
only one is active at any given moment. Often these intentions are not performed
sequentially. At every step, the most important one gets activated, which might
be different than the one in the previous step.

The active intention is changed often, so all the agent intentions must be
persisted with their actual state. Main agent intentions are stored in a priority
queue. This priority queue is called agent intention handler, which stores and
manages the main agent intentions. Each agent has its own intention handler.

In every step, the main agent intention with the highest priority gets acti-
vated. The priority is defined by the main agent intention itself.

The intention handler manages the insertion of the new intentions, and also
the removals of the finished ones. Intention insertion is usually initiated from the
outside, but the intention handler can also generate intentions from the inside.
The inside generated intentions are usually the agent’s individual intentions, like
the escape and explore intention.

84 M. Miskolczi and L. Z. Varga

The transition from one intention to another one usually does not have to be
handled specially, because they do not depend on other agents. The coordination
intention is the exception, because if it must be cancelled immediately, then all
the block providers must be released. This special transition is handled by the
agent intention handler.

6 Debugging and Explanations

6.1 Challenges of the Debugging

Despite following the principle of simplicity, the multi-agent system had a lot
of error sources. Fail-safe was a prerequisite for many algorithms, therefore the
cause of all errors had to be spotted.

One of the most challenging factors in debugging was the randomness of the
MAPC 2022 scenario. The agents have to operate in a random based dynamic
environment. In this dynamic environment, the elements of the map, the norms,
the opposing team and the success of the agent actions themselves vary. Even
some intention algorithms contain randomness. The factors listed above all make
the reproduction of the bug difficult.

Most of the times the reproduction of rare faults were the most challenging.
It is almost impossible to start the MAPC server and our agent team from a
given situation, because for example it is difficult to recreate dynamic maps and
agent states. The server and the agents can only be started from the beginning
of a match, and then the same situation may not occur due to randomness.
Sometimes repeated execution was the only solution to find out more about the
cause, due to the complexity of the error.

The occurring faults were also challenging to solve. Due to the system archi-
tecture, intention related fatal errors were difficult to associate with actual
agents. Most of the times, the fault itself could not be perceived, only its con-
sequences could be seen. For example, if two agents stick together, then their
map becomes confused. Later when they are detached and everything seems fine,
then they may identify the wrong size for the map, which may invalidate all the
dynamic maps for the whole team. Therefore the pathfinding of the agents does
not work correctly, and we see that the agents issue inexplicable actions.

6.2 Explanations

In order to help the debugging process, we created an option to make the
agents explain their intentions. Explanations are brief strings that summarize
the agent’s current intentions. Due to their low level of detail, they are only
usable with some kind of other debugging tool, such as visualization. Their level
of simplicity is shown in Fig. 9.

In each step, all agents have an explanation, which is only shown for the given
step. Explanations are not persisted, because their purpose is to provide brief
information, so they can be read between the simulation steps, so the MAPC

MMD: The Block Building Agent Team with Explainable Intentions 85

Fig. 9. Explanation strings.

simulation server has to be paused. Unfortunately, the MAPC simulation server
cannot be operated step-by-step, so the “continue” and the “pause” commands
have to be typed in quickly on the console to see the progress of the explanations.

An agent’s explanation is equal to the agent’s active intention’s explanation
string at the given time step. The explanation of an intention describes the
actual state of the intention, such as its actual sub goal. These descriptions
can be easily constructed, due to the hierarchic structure of the intentions. The
explanation string is built by concatenating the embedded intention’s description
with explanation string of the given intention.

Although the explanation strings of Fig. 9 look like simple print-outs on a
console, they are a little bit more than that. The print-outs on a console runs
away, and they are hard to follow, while the explanation window stays and dis-
plays the current behaviour of the agents. They are really explanations, because
they describe why the agent is doing what it is actually doing. If we just see that
the agent is going to somewhere, then we do not know why. If the explanation
says that the agent is going to fetch a block from a dispenser to deliver it to a
given agent, then it explains us why it going on its way. The explanation string
may contain more complex explanations as well. For example we can put into
the explanation string, that the agent became block provider of block x, because
its bid for block provision had a given value. Such explanations were not needed
for debugging. However, this type of explanation needs the modification of the
source code. A more flexible solution would be to make the explanation feature
interactive.

The main benefit of this low level of information providing is that the pres-
ence of bugs can be easily found out. Also, simple bugs can be eliminated without
effort. However, in case of complex errors, these are only beneficial to approxi-
mate the error. For the identification of complex errors, the explanation strings
would have to be made more complex, but the available space is not enough for
that.

86 M. Miskolczi and L. Z. Varga

6.3 Logging

Log entries are detailed information about anything which might be involved in
possible bugs. The most common entries are about intentions and blackboard
data, such as intention actual state and decision or the modification of common
data.

Generated log entries are detailed and therefore persisted. Due to their high
level of detail, they can not be read properly between the simulation steps. This
information are independently useable, although, more details are provided when
used with server logs.

There is no exact schema for the content of log entries. The only exceptions
are time step and the agents involved, which are almost always relevant. The rest
of the content usually depends on the actual fault, which can be very diverse.

Contrary to the explanations, the implementation of the logging infrastruc-
ture is quite a challenge. A proper logging infrastructure has never been imple-
mented. There were several reasons behind this decision. The main challenge
was the implementation of a logging, which level can be regulated by various
parameters. Due to the diversity of the faults, a lot of parameters would have
been required, which could not be known in advance. By logging everything in
high detail would have made the debugging nearly impossible without the right
infrastructure.

Instead, a simple ad-hoc logging was implemented. This logging infrastruc-
ture was implemented every time after a fault occurred, and it was highly spe-
cialized to the fault. In the long term, this solution was not effective, because it
had to be developed almost every time after a new fault occurred.

The main benefit of the logging is that complex faults can be tracked down
more easily. Blackboard data change and the behaviour of the agent intentions
are more traceable with this method.

7 Match Analysis

In order to evaluate the quality of the jobs done by the implemented MMD
system, we summarize the performance of all the teams at MAPC 2022 in Table 1.
The table includes the warmup matches against master student Paula Böhm
from TU Clausthal, outside of the competition. The columns of the table show
the points collected by the teams against each team and each simulation run (or
match with another word). The total amount of collected points by the team
is at the bottom of the table, together with the scores and placements of the
teams. The points are the rewards for the tasks completed in the matches. The
winner of a match is the team that collects more points. The scores are given
for the matches: 3 for a win, 1 for a draw and 0 for a loss. The placement at the
contest is determined by the total scores.

There is randomness in the matches, therefore the points collected by a team
may vary with each match even if all the conditions are the same. When the
MMD system was tested against the MMD system before the contest, sometimes

MMD: The Block Building Agent Team with Explainable Intentions 87

Table 1. Summary of the points at the contest. The columns contain the points of the
teams against the teams in the rows.

LI(A)RA GOALdigger MMD FIT BUT GOAL-DTU Paula

LI(A)RA Sim1 350 760 60 120 600

Sim2 410 750 540 160 120

Sim3 310 1600 780 0 1000

GOALdigger Sim1 130 500 220 0 160

Sim2 0 200 320 0 220

Sim3 80 840 490 520 1270

MMD Sim1 120 370 80 480 770

Sim2 10 300 760 150 500

Sim3 150 720 170 0 450

FIT BUT Sim1 220 120 770 230 480

Sim2 60 320 680 630 360

Sim3 120 520 1140 0 250

GOAL-DTU Sim1 310 180 910 0 710

Sim2 80 370 780 670 610

Sim3 270 410 1520 1640 570

Paula Sim1 110 330 580 0 320

Sim2 60 700 790 330 280

Sim3 90 320 1690 60 0

Total points: 1810 5730 13510 6120 2610 8070

Total score 9 22 30 19 9 N/A
Placement 4 2 1 3 4 N/A

there were big differences in the points collected by the two MMD systems,
although the two systems had the same capabilities. Nevertheless, we can see
in the table, that the total points mainly correlate with the scores and the
placements.

Each team played 15 matches in Table 1, which is not a big number statisti-
cally, but the points collected by the MMD team in the matches at the contest
and against Paula are similar to the points collected during our test matches
when the MMD system played against the MMD system. The points collected
by the MMD system in every match are mainly in the range 600–1600. There is
one exception, the MMD system collected observably less points in the matches
against the GOALdigger system. This is because the GOALdigger team had
“saboteur” agents to block the agents of the competitor.

The design of the MMD system focused on the task completions in order to
complete as much tasks as possible, and to collect as much points as possible.
Table 1 confirms that the design goal was mainly achieved in comparison with
other teams.

88 M. Miskolczi and L. Z. Varga

GOALdigger-AIG-Hagen vs. MMD. At the match against the GOALdig-
ger system we noticed that many of the agents of the MMD system lost their
energy and got deactivated for a while. After the contest, we have learned that
the deactivation was caused by the attack from the “saboteur” agents of the
GOALdigger system. Figure 10 shows such a situation. The MMD agent is sur-
rounded by three GOALdigger agents, all of them issuing a clear action against
the MMD agent. Because the agents are next to each other, the MMD agent
loses its energy quickly, and gets deactivated.

Fig. 10. Three blue GOALdigger agents attacking one green MMD agent. (Color figure
online)

The MMD system delivers multiple-block tasks with agents that stay around
a goal zone for a longer time, either because they coordinate task delivery and
are waiting for block delivery, or because they are delivering blocks and wait for
their turn to hand over the block. This kind of task delivery strategy makes the
MMD agents vulnerable to “saboteur” agent attacks which obviously reduced
the task completion capability of the MMD system when played against the
GOALdigger system.

Other teams may have had different kind of task delivery strategy, or they did
not spend too much time to deliver multiple-block tasks at the goal zone, because
they did not have salient performance degradation against the GOALdigger sys-
tem, as it can be seen in Table 1.

The “saboteur” agent concept seems to be efficient in reducing the task deliv-
ery capability of a competitor like the MMD. However, if a team has several
dedicated “saboteur” agents, then the team has less number of agents to deliver
tasks, therefore the “saboteur” agents reduce the task delivery capability of their
own team as well. The “saboteur” agents not only block the agents of the other
team, but they block the goal zones as well if the attacked agent is on the goal
zone, thus they reduce the task delivery capability of both teams. Our experience
was that one of the bottlenecks of task delivery at the contest was the lack of
enough free goal zone. Because of the lack of goal zones, we introduced the goal

MMD: The Block Building Agent Team with Explainable Intentions 89

zone reservation scheme, and we also took into account the availability of goal
zones at the task selection.

The MMD agents also have the capability to attack other agents, but only
while they are involved in task delivery, and they happen to have nothing impor-
tant thing to do. Actually, in the configuration files of the contest, the roles that
were able to deliver task had only maximum clear distance 1, which did not allow
attacking other agents. On the other hand, the roles that were able to attack
other agents did not have task delivery capabilities, so only dedicated “saboteur”
agents could operate. Thus the MMD agents never attacked any other agent at
the contest.

8 Conclusion

We have presented how we have implemented the MMD block building agents for
the 2022 Multi-Agent Programming Contest (MAPC 2022). The system is imple-
mented in a general programming language in order to compare the resulting
system with other systems implemented in multi-agent programming languages.
The key performance indicators of the implementation are the development time,
the development efforts, and the quality of the job done by the implemented
multi-agent system. The development time and the development efforts of the
contest participants can be found in the introductory chapter of this book and
in the answers to the questionnaire of each team. The quality of the job done by
the MMD multi-agent system can be found in Sect. 7.

The development time of the MMD system is not more than any other sys-
tem at MAPC 2022, because all the contest participants had the same deadline.
In addition, the MMD team was formed only for the 2022 competition, while
there were two other contestants who already had participated in the previous
MAPC contest(s) with similar rules, so they could build on their previous imple-
mentation and experiences. Our experience showed that the implementation of
our own version of the practical reasoning agent architecture for the individual
agents and our own version of the blackboard architecture for the coordination of
the agents could be done in time, and the use of a general programming language
did not hinder us to meet the deadline.

The comparison of the development efforts of the teams is a bit difficult,
because two teams already participated in the previous contests, and they only
had to modify their systems. In addition, the declared development efforts are
mainly rough estimates. Nevertheless, we can see that the modification of the
already existing system required the least development efforts. The teams putting
more effort into the development have achieved better placement. The teams
using agent oriented programming languages had spent less effort for the devel-
opment, but the less effort was reflected in their placement as well. We cannot
conclude that the usage of a general programming language would require more
development effort, because the more development effort resulted in better per-
formance of the system. According to our experience, the biggest development
challenge was the debugging of the system. The chosen debugging infrastructure

90 M. Miskolczi and L. Z. Varga

made the debugging easier, but even so, it was still the most time-consuming
part of the development.

The contest results seem to indicate that the implemented MMD multi-agent
system is competitive with the systems developed with agent-oriented software
engineering methods. There is randomness in the contest and we cannot say
that a better team always wins against the other team. In spite of this, the first
position of the MMD team is reaffirmed by the total points of the contestants
in Table 1. This indicates that the quality of the job done by an implemented
multi-agent system mostly depends on the knowledge implemented in the system
rather than the programming language used.

We could have implemented further improvements into the MMD system if
we had more time. The different estimation and cost calculations in the system
are only approximate, and more precise calculations would probably give better
results. More efficient resource management of roles, agents and tasks would
be another improvement. We did not exploit the “saboteur” capability of the
agents, and although we thought of “saboteur” agents in other teams, we have not
prepared any defensive behaviour. A surveyor agent could make the exploration
of the world faster in the beginning of the match. The pathfinder algorithm could
be improved by multi-agent pathfinding algorithms [14]. These are future works
for the contests of the next years.

We think that we have implemented a basic agent architecture and a basic
blackboard architecture for the collaboration of the agents, and these architec-
tures can be used in other MAPC scenarios as well. Of course, modifications are
necessary if the scenario changes, but this holds for multi-agent programming
language implementations as well. If the environment changes, then the inter-
action with the environment, as well as the internal model of the environment
have to be changed in both approaches. If the logic of the scenario changes, then
the logic implemented in the agent team has to be changed in both approaches.
Because the implementation effort of the MMD system is comparable to the
implementation efforts of the other teams, we think that the modification effort
would be comparable as well.

16th Multi-agent Programming Contest: All Questions
Answered

A Team Overview: Short Answers

A.1 Participants and Their Background

Who is part of your team?
Miklós Miskolczi, László Z. Varga

What was your motivation to participate in the contest?
We wanted to do an experience with multi-agent systems, and of course we
wanted to be the winner.

What is the history of your group? (course project, thesis, . . .)
The MSc diploma work of Miklós Miskolczi.

MMD: The Block Building Agent Team with Explainable Intentions 91

What is your field of research? Which work therein is related?
Multi-agent systems, online routing game model, multi-agent path finding.

A.2 Statistics

Did you start your agent team from scratch, or did you build on
existing agents (from yourself or another previous participant)?
The agent team was started from scratch, but we used a modified version
of the experimental Python client for 2020/21 edition of the Multi-Agent
Programming Contest to communicate with the contest server.

How much time did you invest in the contest (for programming, organ-
ising your group, other)?
We started in February 2022 and worked on the program 28 h per week, a
total of 896 h.

How was the time (roughly) distributed over the months before the
contest?
Continuous development. The last two weeks mainly testing.

How many lines of code did you produce for your final agent team?
github.com/AlDanial/cloc v 1.94 T=0.13 s (649.6 files/s, 72314.5 lines/s)

Language files blank comment code

Python 83 1882 2050 4842
Text 1 121 0 553
Markdown 1 3 0 12
SUM: 85 2006 2050 5407

The above data include the modified experimental Python client, which is:
github.com/AlDanial/cloc v 1.94 T=0.05 s (20.9 files/s, 15498.5 lines/s)

Language files blank comment code

Python 1 115 102 526

A.3 Technology and Techniques

Did you use any of these agent technology/AOSE methods or tools?
What were your experiences?

Agent programming languages and/or frameworks?
No.

Methodologies (e.g. Prometheus)?
No.

https://github.com/agentcontest/python-mapc2020
https://github.com/agentcontest/python-mapc2020

92 M. Miskolczi and L. Z. Varga

Notation (e.g. Agent UML)?
No.

Coordination mechanisms (e.g. protocols, games, . . .)?
We used a simple (one level) Contract Net protocol, which includes a simpli-
fied auction mechanism.

Other (methods/concepts/tools)?
We used our own version of the practical reasoning agent architecture. We
used our own version of the blackboard architecture for the coordination of
the agents.

What hardware did you use during the contest?

Hardware Specification

Processor AMD Ryzen 5 3600 6-Core Processor
RAM 16 GB
OS Windows 11 Pro

Only about 20% of the processing power of the computer was used by the
agent team.

A.4 Agent System Details

Would you say your system is decentralised? Why?
Although the coordination of the agents is done by a central blackboard, and
the implementation of the whole agent team is a single Python program, the
system can be seen as a decentralised one in the sense that the planning and
the activities of the agents are done individually. The agents were meant to
be separate threads, but threading in Python is not fast enough, and we had
to refactor the code to speed up the system. Python multiprocessing might
be the solution for the next competition.

Do your agents use the following features: Planning, Learning, Organ-
isations, Norms? If so, please elaborate briefly.
The actions needed to achieve a goal is basically hardcoded in the imple-
mentation. Simple learning is used to discover e.g. the cost of a clear action.
In order to solve a multiple-block task, the agents are organised into a sub-
team. The sub-team is connected through the intentions of the members. The
intentions are assigned by the blackboard.

How do your agents cooperate?
Cooperation is done through the intentions of the agents (which is a simplified
and direct communication between the agents) and the shared blackboard
which includes the shared maps as well. The planning for the cooperation is
hardcoded in the intentions.

Can your agents change their general behaviour during run time? If
so, what triggers the changes?
Intentions are reconsidered in each simulation step. If there are changes in

MMD: The Block Building Agent Team with Explainable Intentions 93

the environment, then the agents may change their intention. The behaviour
of the intentions may be different depending on the match configuration. The
capabilities of the agents depend on the match configuration as well. The
behaviour of the blackboard depends on the current state of the environment
and the agents.

Did you have to make changes to the team (e.g. fix critical bugs)
during the contest?
The code and the settings were not changed, but there was a problem with
the connection to the server at the second and third simulation of each match,
and the agent team had to be restarted manually after the first simulation
steps. Interestingly, this problem did not occur during the warm-up match
before the competition with the real competition server. Also, this problem
did not occur with the localhost.

How did you go about debugging your system? What kinds of mea-
sures could improve your debugging experience?
The basic “debugging tool” was the printout on the console, but we also imple-
mented an “explanation function”. If the system is run with the explanation
function, then the agents give information on what they are doing. The given
information might be their believes, or their current intention and its details.
The server logs and replays were also used to trace back various complex
cases.

During the contest, you were not allowed to watch the matches. How
did you track what was going on? Was it helpful?
The agents printed on the console the same information as those during the
testing period before the contest. It was helpful in the sense that we could
see that everything goes well.

Did you invest time in making your agents more robust/fault-tolerant?
How?
Robustness and fault-tolerance was part of the development process.

A.5 Scenario and Strategy

How would you describe your intended agent behaviour? Did the
actual behaviour deviate from that?
The agents mainly do what they are intended to do. Sometimes they produce
strange behaviour, but we know that this may be due to the incompleteness
of the solution. For example, individual route planning may produce deadlock
like situation.

Why did your team perform as it did? Why did the other teams per-
form better/worse than you did?
The results at the competition were similar to those at the testing period,
excluding the cases when the other teams were heavily agressive against oppo-
nent agents.
We do not know much about the other teams.

Did you implement any strategy that tries to interfere with your oppo-
nents?

94 M. Miskolczi and L. Z. Varga

Yes.
The tolerant way: If our agents notice that the other team stay in a goal zone
for a long time at the place needed for our team, then our team go to another
place.
The agressive way: When our agent is at the goal zone, then it tries to keep
the agents of the other team away from the goal zone by shooting at other
agents approaching the goal zone, assuming that the role capabilities of our
agent allows this. This goal zone defendence behaviour was not possible with
the match configuration of the competition, so our agents did not shoot at
the other team during the competition.

How do your agents coordinate assembling and delivering a structure
for a task?
Multi-block tasks are delivered by a single coordinator agent and block
provider agents for each block. The coordinator goes to the selected goal
zone. The coordinator clears the surrounding of the goal zone until the first
block provider arrives. Block providers fetch the block from a dispenser and
take it to the surrounding of the coordinator. The block provider waits until
the call from the coordinator. When the call arrives, then the block provider
takes the block to the place requested by the coordinator, and then the two
agents connect the blocks.

Which aspect(s) of the scenario did you find particularly challenging?
Map building, map merging, map update, map size determination, path find-
ing on the looping map. Shortly: dynamic map management.
Limited (and in our opinion, not realistic) perception of the agents, which
means, among others, the following: When the agent moves and there is a
failure, then the agent does not know which step failed. The agent does not
know which blocks are attached to which agent.

What would you improve (wrt. your agents) if you wanted to partici-
pate in the same contest a week from now (or next year)?
We have ideas, but we keep them for the next competition. Surely we have to
prepare to defend our agents from the potential saboteur agents of the other
team.

What can be improved regarding the scenario for next year? What
would you remove? What would you add?
Perception capabilities of the agents (see above).
There were only two active tasks in the current scenario, and often there
was no big difference between the two tasks. Therefore a good task selection
strategy was not so critical in the current scenario. Bigger choice of tasks
would be more challenging.

A.6 And the Moral of it is . . .

What did you learn from participating in the contest?
Good programming and debugging exercise in a non-deterministic and hardly
reproducible environment.

MMD: The Block Building Agent Team with Explainable Intentions 95

Building an agent architecture from scratch in a general programming lan-
guage.

What advice would you give to yourself before the contest/another
team wanting to participate in the next?
Now we have more knowledge to build a cleaner agent architecture.

Where did you benefit from your chosen programming language,
methodology, tools, and algorithms?
The main benefits were the development speed and the simplicity. We followed
the “keep it simple principle” to ensure fault-tolerance and make components
open for extensions and optimizations.

Which problems did you encounter because of your chosen technolo-
gies?
Performance issues. Full parallel operation would need another implementa-
tion approach.
Programming errors are signalled in Python only when the actual line of code
is executed. This way, it is easy to make errors.

Which aspect of your team cost you the most time?
Architecture building, safe map management, path finding and ensuring fault-
tolerance.

A.7 Looking into the Future

Did the warm-up match help improve your team of agents? How useful
do you think it is?
We did not change anything after the warm-up match, but it was good to
know that the connection to the server works.

What are your thoughts on changing how the contest is run, so that
the participants’ agents are executed on the same infrastructure by
the organisers? What do you see as positive or negative about this
approach?
The positive aspect would be that all teams have the same conditions (for
example network speed).
The negative aspect would be that we cannot correct any problem during the
competition. For example we had to restart the team manually, because the
connection to the server did not work the same way as at the warm-up match.

Do you think a match containing more than two teams should be
mandatory?
This might be a possibility, but probably with not too big team sizes.

What else can be improved regarding the MAPC for next year?
Nothing more than those already mentioned above.

96 M. Miskolczi and L. Z. Varga

References

1. Ahlbrecht, T., Dix, J.: Multi-agent programming contest - Lecture 2 at 15th
Workshop-School on Agents, Environments, and Applications. https://www.
youtube.com/watch?v=HgNlfKm7YdQ&t=1417s. Accessed Nov 2022

2. Ahlbrecht, T., Dix, J., Fiekas, N., Krausburg, T.: The multi-agent programming
contest: a Résumé. In: Ahlbrecht, T., Dix, J., Fiekas, N., Krausburg, T. (eds.)
MAPC 2019. LNCS (LNAI), vol. 12381, pp. 3–27. Springer, Cham (2020). https://
doi.org/10.1007/978-3-030-59299-8_1

3. Bratman, M.: Intention, Plans, and Practical Reason. Harvard University Press,
Cambridge (1987)

4. Cardoso, R.C., Ferrando, A., Papacchini, F.: LFC: combining autonomous agents
and automated planning in the multi-agent programming contest. In: Ahlbrecht,
T., Dix, J., Fiekas, N., Krausburg, T. (eds.) MAPC 2019. LNCS (LNAI), vol. 12381,
pp. 31–58. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-59299-8_2

5. Durfee, E.H.: Cooperative distributed problem solving between (and within) intel-
ligent agents. In: Rudomin, P., Arbib, M.A., Cervantes-Pérez, F., Romo, R. (eds.)
Neuroscience: From Neural Networks to Artificial Intelligence. NEURALCOM-
PUTING, vol. 4, pp. 84–98. Springer, Heidelberg (1993). https://doi.org/10.1007/
978-3-642-78102-5_5

6. Edelman, B., Ostrovsky, M., Schwarz, M.: Internet advertising and the generalized
second-price auction: selling billions of dollars worth of keywords. Am. Econ. Rev.
97(1), 242–259 (2007). https://doi.org/10.1257/aer.97.1.242

7. Englemore, R., Morgan, A.: Blackboard Systems; Edited by Robert Engelmore,
Tony Morgan (the Insight Series in Artificial Intell, 1st edn. Addison-Wesley Long-
man Publishing Co., Inc., Boston (1988)

8. Hansen, E.A., Zhou, R.: Anytime heuristic search. J. Artif. Intell. Res. 28, 267–297
(2007). https://doi.org/10.1613/jair.2096

9. Hart, P., Nilsson, N., Raphael, B.: A formal basis for the heuristic determination of
minimum cost paths. IEEE Trans. Syst. Sci. Cybern. 4(2), 100–107 (1968). https://
doi.org/10.1109/tssc.1968.300136

10. Jennings, N.R.: Coordination through joint intentions in industrial multiagent
systems. AI Mag. 14(4), 79 (1993). https://doi.org/10.1609/aimag.v14i4.1071.
https://ojs.aaai.org/index.php/aimagazine/article/view/1071

11. Koenig, S., Likhachev, M.: D*lite. In: Proceedings of the Eighteenth National Con-
ference on Artificial Intelligence and Fourteenth Conference on Innovative Appli-
cations of Artificial Intelligence, Edmonton, Alberta, Canada, 28 July–1 August
2002, pp. 476–483 (2002). http://www.aaai.org/Library/AAAI/2002/aaai02-072.
php

12. Sandholm, T., Lesser, V.R.: Issues in automated negotiation and electronic com-
merce: extending the contract net framework. In: Proceedings of the First Interna-
tional Conference on Multiagent Systems, San Francisco, California, USA, 12–14
June 1995, pp. 328–335 (1995)

13. Smith: The contract net protocol: high-level communication and control in a
distributed problem solver. IEEE Trans. Comput. C-29(12), 1104–1113 (1980).
https://doi.org/10.1109/tc.1980.1675516

14. Stern, R., et al.: Multi-agent pathfinding: definitions, variants, and benchmarks.
In: Proceedings of the Twelfth International Symposium on Combinatorial Search,
SOCS 2019, Napa, California, 16–17 July 2019, pp. 151–159. AAAI Press (2019)

https://www.youtube.com/watch?v=HgNlfKm7YdQ&t=1417s
https://www.youtube.com/watch?v=HgNlfKm7YdQ&t=1417s
https://doi.org/10.1007/978-3-030-59299-8_1
https://doi.org/10.1007/978-3-030-59299-8_1
https://doi.org/10.1007/978-3-030-59299-8_2
https://doi.org/10.1007/978-3-642-78102-5_5
https://doi.org/10.1007/978-3-642-78102-5_5
https://doi.org/10.1257/aer.97.1.242
https://doi.org/10.1613/jair.2096
https://doi.org/10.1109/tssc.1968.300136
https://doi.org/10.1109/tssc.1968.300136
https://doi.org/10.1609/aimag.v14i4.1071
https://ojs.aaai.org/index.php/aimagazine/article/view/1071
http://www.aaai.org/Library/AAAI/2002/aaai02-072.php
http://www.aaai.org/Library/AAAI/2002/aaai02-072.php
https://doi.org/10.1109/tc.1980.1675516

MMD: The Block Building Agent Team with Explainable Intentions 97

15. Uhlir, V., Zboril, F., Vidensky, F.: Multi-agent programming contest 2019 FIT
BUT team solution. In: Ahlbrecht, T., Dix, J., Fiekas, N., Krausburg, T. (eds.)
MAPC 2019. LNCS (LNAI), vol. 12381, pp. 59–78. Springer, Cham (2020). https://
doi.org/10.1007/978-3-030-59299-8_3

16. Vázquez-Salceda, J.: The Role of Norms and Electronic Institutions in Multi-agent
Systems. Birkhäuser Basel (2004). https://doi.org/10.1007/978-3-0348-7955-2

17. Wooldridge, M.: Understanding equilibria in multi-agent systems. In: Keynote pre-
sentation at FTC 2021 - Future Technologies Conference 2021 (2021). https://
youtu.be/Iqm8UTXUG24?t=411. Accessed Nov 2022

18. Wurman, P.R., D’Andrea, R., Mountz, M.: Coordinating hundreds of cooperative,
autonomous vehicles in warehouses. AI Mag. 29(1), 9 (2008)

https://doi.org/10.1007/978-3-030-59299-8_3
https://doi.org/10.1007/978-3-030-59299-8_3
https://doi.org/10.1007/978-3-0348-7955-2
https://youtu.be/Iqm8UTXUG24?t=411
https://youtu.be/Iqm8UTXUG24?t=411

	MMD: The Block Building Agent Team with Explainable Intentions
	1 Introduction
	2 Architecture
	2.1 Agent Team Architecture
	2.2 Software Architecture

	3 Orientation
	3.1 Perceptions and Observations
	3.2 Map Building and the Dynamic Map
	3.3 Agent Identifications
	3.4 Map Merging
	3.5 Looping Grid and Map Size Detection
	3.6 Pathfinder

	4 Team Coordination
	4.1 Task Achievement
	4.2 Role and Norm Management

	5 Intentions
	5.1 Common Intentions
	5.2 Explorer Intentions
	5.3 Task Achieving Intentions
	5.4 Agent Intention Management

	6 Debugging and Explanations
	6.1 Challenges of the Debugging
	6.2 Explanations
	6.3 Logging

	7 Match Analysis
	8 Conclusion
	A Team Overview: Short Answers
	A.1 Participants and Their Background
	A.2 Statistics
	A.3 Technology and Techniques
	A.4 Agent System Details
	A.5 Scenario and Strategy
	A.6 And the Moral of it is …
	A.7 Looking into the Future

	References

