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Introduction

Pancreatic cancer is the third most common cause of cancer mortality in the United 
States and is projected to become the second leading cause of cancer-related death 
in the coming years. Over the past decade, therapy for pancreatic cancer has under-
gone various advances with the advent of multiagent chemotherapy. In patients with 
resectable disease, adjuvant chemotherapy with 5-fluorouracil, leucovorin, irinote-
can, and oxaliplatin (FOLFIRINOX) demonstrated median overall survival of 
54 months. Patients who present with borderline resectable and locally advanced 
disease are candidates for chemotherapy, radiation therapy, and/or surgery. However, 
the optimal therapy regimen, length of treatment, and type of radiation (short or 
long course) are still to be determined.

For patients with advanced disease though, combination chemotherapies only 
provide modest improvement in overall survival of a few months. This contrasts 
with many other tumor types, such as breast and lung cancer in which novel thera-
pies have enabled major improvements in survival durations.

Pancreatic cancer is challenging in that it is a complex disease characterized by 
a dense fibrotic stroma and an immunosuppressive tumor microenvironment, along 
with low neoantigen burden, which inhibit infiltration and recognition by effector T 
cells. Development and progression of tumor is further promoted by an abundance 
of tumor-associated macrophages and myeloid-derived suppressor cells. This over-
all regulatory immune population of cells creates a “cold,” non-immunogenic tumor 
that is resistant to immunotherapies including checkpoint inhibitors.

Until recently, there were no predictive biomarkers to personalize selection of 
targeted or biologic therapies as a part of standard of care treatment. However, in the 
last few years, there has been substantial progress in our understanding of the role 
of mutations in the pathogenesis of diseases, leading to an increased adoption of 
germline and next-generation sequencing to identify mutations and fusions to opti-
mize selection of therapies and select patients for clinical trials of targeted agents.

On account of these significant challenges, there lies a need to review existing 
therapeutics and shed light on future directions to improve outcomes in this devas-
tating disease. This book will provide a comprehensive, global overview on current 
therapies for pancreatic cancer and focus on the “Next” in drug development includ-
ing molecularly targeted therapy and efforts at “Drugging the Undruggable”: the 
KRAS mutation. It will also address efforts at targeting the inhospitable stroma to 
improve drug delivery to the tumor cells and challenges and opportunities in 
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incorporating ct DNA (liquid biopsies) in the care of patients and updates on immu-
notherapy in pancreatic cancer. Importantly we will also discuss updates in support-
ive care, management of pain, nutrition, and the importance of physical exercise in 
patients undergoing therapy for this disease.

Shubham Pant
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1Resectable Pancreatic Cancer: 
Neoadjuvant and Adjuvant Therapy

Jacob L. van Dam and Bas Groot Koerkamp

�Introduction

Pancreatic ductal adenocarcinoma (PDAC) is a highly lethal malignancy with rising 
incidence. In Europe and the United States, the 5-year overall survival (OS) after 
diagnosis is 7–10% [1, 2]. PDAC is projected to become the second leading cause 
of cancer death in 2030 [3]. Contrary to other cancer types, survival outcomes for 
PDAC have improved little in the past decades [4].

Non-metastatic, localized PDAC is generally classified according to the extent of 
vascular involvement on cross-sectional imaging. Categories include resectable, 
borderline resectable, and locally advanced disease. In the 10–20% of patients that 
present with resectable disease, upfront surgery is the standard of care [5, 6]. Despite 
optimal surgery, recurrence rates are high. Apparently, most patients with resectable 
PDAC have systemic disease at diagnosis [7].

In an effort to improve outcomes, adjuvant therapy has been developed, and its 
use is supported by level 1 evidence from multiple randomized controlled trials 
(RCTs). The main problem with adjuvant therapy is that up to half of patients are 
unable to receive it as result of complications from surgery with clinical deteriora-
tion and early recurrence. Therefore, there is a high interest in in the use of neoad-
juvant therapy (i.e., before surgery) and perioperative therapy (i.e., both neoadjuvant 
and adjuvant) to improve outcomes.
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�Staging Resectable Pancreatic Cancer

Staging of localized PDAC is historically based on the extent of arterial and venous 
tumor contact as visible on cross-sectional imaging. In most staging systems, resect-
able PDAC is defined as the absence of any arterial contact and no or limited venous 
contact (Table  1.1) [5, 8–10]. The National Comprehensive Cancer Network 
(NCCN) definition is most permissible as it allows up to 180° of venous contact.

In recent years, there is increasing interest in expanding the anatomy-based stag-
ing of localized PDAC with inclusion of biological and conditional factors [11]. For 
example, several studies have demonstrated that patients with elevated carbohydrate 
antigen (CA) 19-9 above 500 or 1000 have decreased survival that is similar to 
patients with borderline resectable disease [12–14]. Similarly, patients with a low 
performance status have worse survival [12, 14].

The NCCN and American Society of Clinical Oncology (ASCO) guidelines both 
advice to include CA 19-9 in the decision making between upfront surgery or neo-
adjuvant therapy in patients with resectable disease [5, 6]. The NCCN guideline 
states to consider neoadjuvant therapy particularly in patients with high-risk fea-
tures, including a “markedly elevated CA 19-9.” The ASCO guideline recommends 
upfront surgery only if patients have a CA 19-9 level “suggestive of potentially 
curable disease.” Both guidelines do not provide a precise cut-off level for CA 19-9 
above which neoadjuvant therapy is recommended.

Table 1.1  Definitions of resectable PDAC at diagnosis

NCCN AHPBA/SSAT/SSO
MD 
Anderson DPCG

Arterial No arterial contact No arterial contact No arterial 
contact

No arterial 
contact

Venous No tumor contact with the 
SMV or PV or ≤180° 
contact without vein 
contour irregularity

No SMV or PV 
abutment, distortion, 
tumor thrombus, or 
venous encasement

Patent 
SMV/PV

No tumor 
contact with the 
SMV or PV or 
≤90° contact

NCCN National Comprehensive Cancer Network, AHPBA/SSAT/SSO Americas Hepato-Pancreato-
Biliary Association/Society of Surgical Oncology/Society for Surgery of the Alimentary Tract, 
DPCG Dutch Pancreatic Cancer Group, SMV superior mesenteric vein, PV portal vein

J. L. van Dam and B. Groot Koerkamp 
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�Adjuvant Therapy for Resected Pancreatic Cancer

Although earlier trials were performed [15–18], the first RCTs that definitively 
demonstrated chemotherapy after resection could improve survival were the 
ESPAC-1 and CONKO-001 trials [19, 20]. Key clinical trials of adjuvant therapy 
are discussed below and summarized in Table 1.2.

�Trials of Adjuvant Chemotherapy

The ESPAC-1 trial was a multicenter trial in 11 European countries that investi-
gated 5-fluorouracil (5-FU) with folinic acid (FA) chemotherapy and chemoradio-
therapy (20 Gray with 5-FU). Between 1994 and 2000, patients were randomized to 
four arms: 69 to observation, 73 patients to chemoradiotherapy alone, 75 to chemo-
therapy alone, and 72 patients to both chemoradiotherapy and chemotherapy [19]. 
After a median follow-up of 47 months, the median OS was 16.9 months with 
observation, 13.9 months with chemoradiotherapy alone, 21.6 months with chemo-
therapy alone, and 19.9 months with chemoradiotherapy and chemotherapy. When 
the 142 patients who received chemotherapy (with or without chemoradiotherapy) 
were compared with the 147 patient who did not (with or without chemoradiother-
apy), adjuvant 5-FU/FA chemotherapy was associated with a superior median OS of 
20.1 versus 15.5 months (hazard ratio [HR] 0.71, 95% CI 0.55–0.92, p = 0.009).

The CONKO-001 trial randomized 368 patients to 6 cycles of adjuvant gem-
citabine or to observation in 88 centers in Germany and Austria [20]. After a median 
follow-up of 53 months, the trial did show an improvement in median disease free 
survival (13.4 vs. 6.9 months, p < 0.001), but did not demonstrate a statistically 
significant OS benefit (22.1 vs. 20.2 months, p < 0.06) [21]. After a longer follow-
up of 136 months, however, adjuvant gemcitabine was associated with superior OS 
(HR 0.76, 95% CI 0.61–0.95, p = 0.01). The 5-year OS was 20.7% in the gem-
citabine group and 10.4% in the observation group.

The Japanese JSAP-02 trial had a similar design as the CONKO-001 as it com-
pared adjuvant gemcitabine with observation, but the adjuvant treatment duration 
was three rather than six cycles. Between 2002 and 2005, 118 patients were ran-
domized in 10 centers. The primary outcome of disease-free survival was signifi-
cantly improved (11.4 vs. 5.0 months, HR 0.60, 95% CI 0.40–0.89, p = 0.01), but a 
difference in OS could not be demonstrated (22.3 vs. 18.4 months, HR 0.77, 95% 
CI 0.51–1.14, p = 0.19). The 5-year OS rate was 23.9% with gemcitabine and 10.6% 
with observation.

1  Resectable Pancreatic Cancer: Neoadjuvant and Adjuvant Therapy
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As both gemcitabine and 5-FU/FA were proven effective as adjuvant therapy, the 
ESPAC-3 trial compared both treatments in 1088 patients from 159 centers in 17 
countries [22]. After a median follow-up of 34.2 months, the median OS was not 
different with 23.6 months in the gemcitabine group and 23.0 in the 5-FU/FA group 
(HR 0.94, 0.81–1.08, p = 0.39). Due to the higher rate of adverse events in the 5-FU/
FA group, gemcitabine became the preferred adjuvant regimen.

The JASPAC-01 trial compared adjuvant S-1 with adjuvant gemcitabine in 385 
patients in 33 centers in Japan. The median OS was 46.5 months with S-1 and 25.5 
months with gemcitabine (HR 0.57, 95% CI 0.44–0.72, p < 0.0001) [23]. The 5-year 
OS rate was 44.1% in the S-1 group and 24.4% in the gemcitabine group. These 
results made S-1 the preferred adjuvant regimen for Japanese patients. A difference 
in pharmacokinetics of S-1 in Asian and Western populations and a lack of registra-
tion limit the use of S-1 in Western countries.

The CONKO-005 and CONKO-006 trials studied whether the addition of erlo-
tinib or sorafinib to adjuvant gemcitabine could improve survival in patients who 
underwent R0 and R1 resection, respectively [24, 25]. Both trials failed to show an 
OS benefit of adding erlotinib or sorafinib to gemcitabine as adjuvant therapy.

The ESPAC-4 trial randomized 730 patients in 92 centers to the combination of 
gemcitabine with capecitabine or gemcitabine monotherapy as adjuvant therapy 
[26]. After a median follow-up of 60 months, the median OS showed a modest 
improvement with 27.7 months in the gemcitabine/capecitabine group as compared 
with 26.0 months in the gemcitabine monotherapy group (HR 0.84, 95% CI 
0.70–0.99, p = 0.049) [27]. The 5-year OS rate was 28% in the gemcitabine/
capecitabine group and 20% in the gemcitabine group.

In 2011, the PRODIGE 4 ACCORD 11 trial showed an improvement in OS with 
FOLFIRINOX compared with gemcitabine in patients with metastatic PDAC [28]. 
On the basis of these results, the French-Canadian PRODIGE-24/CCTG PA.6 trial 
was initiated to compare 12 cycles of adjuvant modified FOLFIRINOX with 6 
cycles of adjuvant gemcitabine in 493 patients in 77 centers [29]. After a median 
follow-up of 33.6 months, median OS was an unprecedented 54.4 months with 
mFOLFIRINOX and 35.0 months with gemcitabine (HR 0.64, 95% CI 0.48–0.86, 
p = 0.003) [29]. In the long-term analysis with a median follow-up of 69.7 months, 
these results were confirmed with a 5-year OS of 43.2% with mFOLFIRINOX and 
31.4% with gemcitabine [30].

In 2013, the MPACT trial demonstrated improved survival with the addition of 
nanoparticle albumin-bound paclitaxel (nab-paclitaxel) to gemcitabine in metastatic 
PDAC [31]. Following these results, the APACT trial investigated the addition of 
nab-paclitaxel to adjuvant gemcitabine [32]. Between 2014 and 2016, 866 patients 
were randomized to 6 cycles of adjuvant gemcitabine with nab-paclitaxel or to 6 
cycles of gemcitabine alone in North America, Europe, Asia, and Australia. The 
trial did not meet its primary endpoint of improving independently assessed disease 
free survival (HR 0.88, 95% CI 0.73–1.06, p = 0.18) [33]. After a median follow-up 
of 63.2 months, however, the median OS was 41.8 months with gemcitabine/nab-
paclitaxel compared with 37.7 months with gemcitabine alone (HR 0.80, 95% CI 
0.68–0.95, p = 0.009) [32]. The 5-year OS was 38% with gemcitabine/nab-paclitaxel 
and 31% with gemcitabine monotherapy.

1  Resectable Pancreatic Cancer: Neoadjuvant and Adjuvant Therapy
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�Trials of Adjuvant Chemoradiotherapy

The GITSG trial compared adjuvant 5-FU chemoradiotherapy (total 40 Gray) fol-
lowed by maintenance 5-FU during a maximum of 2 years with observation in 43 
patients with margin-negative resected PDAC [34]. Median OS was 21 months with 
adjuvant chemoradiation and 10.9 months with observation (p = 0.03). At 5-year 
follow-up, 19% of patients were alive in the chemoradiotherapy group and 5% in 
the observation group [34].

The EORTC 40891 trial compared adjuvant 5-FU chemoradiotherapy with 
observation in 218 patients with pancreatic and periampullary cancer [17]. In the 
long-term analysis, no improvement in OS was observed in the 120 patients with 
PDAC (median OS 17.1 vs. 12.6 months, HR 0.76, 95% CI 0.52–1.12) [35].

The ESPAC-1 trial investigated both chemotherapy and chemoradiotherapy, as 
described in the previous section on chemotherapy. The chemoradiotherapy group 
included 145 patients and the no chemoradiotherapy group 144 patients. 
Chemoradiotherapy was associated with worse survival with a median OS of 15.9 
months in the chemoradiotherapy group as compared with 17.9 months in the no 
chemoradiotherapy group (HR 1.28, 95% CI 0.99–1.66, p = 0.05) [19]. On the basis 
of these results, adjuvant chemoradiotherapy became controversial and its use 
declined.

The RTOG 9704 trial investigated whether the addition of adjuvant gemcitabine 
to adjuvant 5-FU chemoradiation could improve survival. Between 1998 and 2002, 
451 patients were randomized in 164 centers in the United States and Canada [36]. 
In the long-term analysis, the median OS was 20.5 months in the gemcitabine group 
as compared with 17.1 months without gemcitabine (HR 0.82, 95% CI 0.65–1.03, p 
= 0.09) [37].

�Neoadjuvant Therapy for Resectable Pancreatic Cancer

Until recently, the best available evidence for neoadjuvant therapy consisted of 
meta-analyses of mostly non-randomized studies [38, 39]. These meta-analyses 
consistently demonstrated similar or improved OS with neoadjuvant therapy even 
though resection rates were lower. The first phase three trials that completed accrual 
and reported results are the PREOPANC and Prep 02/JSAP-05 trials [40, 41]. More 
recently, results of the SWOG S1505, NEONAX, and PANACH01-PRODIGE48 
trials have been reported [42–44]. Key RCTs of neoadjuvant therapy for resectable 
PDAC are discussed below and presented in Table 1.3.

J. L. van Dam and B. Groot Koerkamp 



7

Ta
bl

e 
1.

3 
K

ey
 s

tu
di

es
 o

f 
ne

oa
dj

uv
an

t t
he

ra
py

 f
or

 r
es

ec
ta

bl
e 

pa
nc

re
at

ic
 c

an
ce

r

T
ri

al
/s

tu
dy

In
cl

us
io

n 
pe

ri
od

N
o.

 o
f 

pa
tie

nt
s

In
te

rv
en

tio
n 

(n
o.

 o
f 

cy
cl

es
)

C
om

pa
ra

to
r 

(n
o.

 
of

 c
yc

le
s)

M
ed

ia
n 

O
S 

(m
on

th
s)

H
R

 (
95

%
 

C
I)

, p
 

va
lu

e

R
es

ec
tio

n 
ra

te
 (

%
)

I
C

I
C

R
C

T
s

Pr
ep

 0
2/

JS
A

P-
05

a

20
13

–
20

16
36

2
N

eo
ad

j. 
G

E
M

/S
-1

 +
 

ad
j. 

S-
1 

(6
 m

o.
)

A
dj

. S
-1

 (
6 

m
o.

)
36

.7
26

.6
0.

72
 

(0
.5

5–
0.

94
),

 p
 =

 
0.

01
5

86
87

PR
E

O
PA

N
C

a
20

13
–

20
17

24
6

N
eo

ad
j. 

G
E

M
-b

as
ed

 
C

R
T

 +
 a

dj
. G

E
M

 (
4)

A
dj

. G
E

M
 (

6)
15

.7
14

.3
0.

73
 

(0
.5

6–
0.

96
),

 p
 =

 
0.

02
5

61
72

SW
O

G
 S

15
05

20
15

–
20

18
10

2
Pe

ri
op

. 
m

FO
L

FI
R

IN
O

X
 

(6
+

6)

Pe
ri

op
. G

E
M

/
na

b-
P 

(3
+

3)
22

.4
23

.6
N

R
73

70

N
E

O
N

A
X

20
15

–
20

19
11

8
Pe

ri
op

. G
E

M
/n

ab
-P

 
(2

+
4)

A
dj

. G
E

M
/n

ab
-P

 
(6

)
25

.2
16

.7
N

R
70

78

PA
N

A
C

H
E

01
-

PR
O

D
IG

E
48

20
17

–
20

20
14

6
N

eo
ad

j. 
m

FO
L

FI
R

IN
O

X
 (

4)
N

eo
ad

j. 
FO

L
FO

X
 (

4)

A
dj

. 
m

FO
L

FI
R

IN
O

X
 

(1
2)

1-
yr

 O
S:

 
m

FO
L

FI
R

IN
O

X
, 

84
.1

FO
L

FO
X

, 7
1.

8

1-
yr

 
O

S:
 

80
.8

%

N
R

m
FO

L
FI

R
IN

O
X

, 7
1

FO
L

FO
X

, 6
8

81

R
et

ro
sp

ec
tiv

e 
co

ho
rt

 s
tu

dy
TA

PS
 c

oh
or

t
20

12
–

20
19

34
6

m
FO

L
FI

R
IN

O
X

–
31

.2
–

–
71

–

A
dj

 a
dj

uv
an

t, 
C

I c
on

fid
en

ce
 in

te
rv

al
, C

R
T

 c
he

m
or

ad
io

th
er

ap
y,

 F
O

L
F

O
X

 5
-fl

uo
ro

ur
ac

il,
 le

uc
ov

or
in

, a
nd

 o
xa

lip
la

tin
, G

E
M

 g
em

ci
ta

bi
ne

, H
R

 h
az

ar
d 

ra
tio

, m
F

O
L

-
F

IR
IN

O
X

 m
od

ifi
ed

 5
-fl

uo
ro

ur
ac

il 
w

ith
 le

uc
ov

or
in

, i
ri

no
te

ca
n,

 a
nd

 o
xa

lip
la

tin
, n

ab
-P

 n
ab

-p
ac

lit
ax

el
, N

R
 n

ot
 r

ep
or

te
d,

 O
S 

ov
er

al
l s

ur
vi

va
l

a  I
nc

lu
de

s 
pa

tie
nt

s 
w

ith
 b

ot
h 

re
se

ct
ab

le
 a

nd
 b

or
de

rl
in

e 
re

se
ct

ab
le

 p
an

cr
ea

tic
 c

an
ce

r

1  Resectable Pancreatic Cancer: Neoadjuvant and Adjuvant Therapy



8

�Trials of Neoadjuvant Chemotherapy

In the Japanese phase 3 Prep 02/JSAP-05 trial, 362 patients with resectable or bor-
derline resectable PDAC were randomized to neoadjuvant chemotherapy or to 
upfront surgery [41]. Patients in the neoadjuvant chemotherapy arm received two 
cycles of neoadjuvant gemcitabine with S-1. In both arms, 6 months of adjuvant S-1 
was administered after resection. In an abstract publication from 2019, the median 
OS was 36.7 months for the neoadjuvant arm compared with 26.6 months with 
upfront surgery (HR 0.72, 95% CI 0.55–0.94, p = 0.015). The resection rates were 
similar (86% vs. 87%).

The first published RCT that compared two neoadjuvant multi-agent regimens in 
resectable PDAC was the phase 2 SWOG S1505 trial. The trial compared neoadju-
vant mFOLFIRINOX with neoadjuvant gemcitabine/nab-paclitaxel in 147 patients. 
After central review, 44 patients were excluded, and 1 patient withdrew informed 
consent leaving 102 patients for analysis. No difference in OS was observed with a 
median OS of 23.2 with mFOLFIRINOX and 23.6 months with gemcitabine/nab-
paclitaxel. The resection rate was 73% in the mFOLFIRINOX group and 70% in the 
gemcitabine/nab-paclitaxel group. Compliance with adjuvant therapy was low as 
56% started adjuvant therapy in the mFOLFIRINOX group and 55% in the gem-
citabine/nab-paclitaxel group.

The first RCT to compare perioperative with adjuvant administration of multi-
agent chemotherapy is the phase 2 NEONAX trial. The trial compared 6 cycles of 
perioperative gemcitabine/nab-paclitaxel (2 neoadjuvant, 4 adjuvant) with 6 cycles 
of adjuvant gemcitabine/nab-paclitaxel in 127 patients with resectable PDAC from 
22 German centers [45]. According to an abstract published in 2022, median OS 
was 25.2 months with perioperative treatment compared with 16.7 with adjuvant 
treatment [43]. The resection rate in the perioperative arm was 70% compared with 
78% in the adjuvant arm. In the perioperative arm, 54 (91.5%) started neoadjuvant 
therapy, while in the adjuvant arm, only 25 patients (42.4%) started adjuvant therapy.

The three-arm phase 2 PANACHE01-PRODIGE48 trial randomized (2:2:1) 
153 patients to 4 cycles of neoadjuvant mFOLFIRINOX, 4 cycles of neoadjuvant 
FOLFOX, or 12 cycles of adjuvant mFOLFIRINOX for resectable PDAC [46]. 
Additional adjuvant chemotherapy (8 cycles) was scheduled in the neoadjuvant 
therapy arms. Following the interim analysis, the FOLFOX arm was closed early for 
lack of efficiency. In an abstract publication in 2022, the 1-year OS rates were 
84.1%, 71.8%, and 80.8%, and the resection rates were 74%, 68%, and 81%, respec-
tively [44].

�Trials of Neoadjuvant Chemoradiotherapy

The Dutch phase 3 PREOPANC trial compared neoadjuvant gemcitabine-based 
chemoradiotherapy with upfront surgery in 246 patients with resectable and bor-
derline resectable PDAC. Neoadjuvant chemoradiotherapy consisted of three 
cycles of neoadjuvant gemcitabine combined with 36  Gy radiotherapy in 15 
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fraction during the second cycle. Following surgery, patients received four cycles 
of adjuvant gemcitabine. In the upfront surgery group, patients received six cycles 
of adjuvant gemcitabine. After a median follow-up of 27 months, median OS was 
16.0 months with neoadjuvant chemoradiotherapy and 14.3 months with adjuvant 
gemcitabine (HR 0.78; 95% CI 0.58–1.05, p = 0.096) [47]. However, after a median 
follow-up of 59 months, 5-year OS was 20.5% with neoadjuvant chemoradiother-
apy compared with 6.5% with adjuvant gemcitabine (HR 0.73; 95% CI 0.56–0.96, 
p = 0.025) [40]. Only 51% started adjuvant therapy in the adjuvant gem-
citabine group.

A recent meta-analysis including 6 RCTs including 938 patients with resectable 
or borderline resectable PDAC found improved OS with neoadjuvant therapy (HR 
0.66, 95% CI 0.52–0.85, p = 0.001) [48]. In the subgroup of patients with resectable 
PDAC, however, no significant treatment effect was found (HR 0.77, 95% CI 
0.53–1.12, p = 0.18). A limitation of the meta-analysis was that none of the trials 
included adjuvant mFOLFIRINOX as the trials were started before the publication 
of the PRODIGE 24/CCTG PA. 6 trial.

Few non-randomized studies reported on neoadjuvant FOLFIRINOX for resect-
able PDAC [14, 49]. The largest study is a retrospective study by the Trans-Atlantic 
Pancreatic Surgery consortium from five centers in the United States and the 
Netherlands [14]. The study included 346 patients with resectable PDAC who 
received neoadjuvant (m)FOLFIRINOX. The median OS was 31 months and the 
resection rate was 71%.

�Comparing Neoadjuvant and Adjuvant Therapy

�Advantages of Neoadjuvant Therapy

The most important advantage of neoadjuvant therapy is that patients are guaran-
teed to receive systemic chemotherapy. Nationwide studies show that a considerable 
proportion of patients who underwent successful resection for PDAC do not receive 
adjuvant therapy. In a National Cancer Data Base study from the United States 
including 7967 patients who underwent resection between 2010 and 2012, 47% did 
not receive adjuvant chemotherapy. In a more recent nationwide analysis from the 
Netherlands, 433 of 1306 (33%) patients who underwent resection between 
2014–2017 did not receive adjuvant therapy. Compliance remains the main concern 
with adjuvant therapy.

Second, the time period of neoadjuvant therapy allows for the tumor biology to 
declare itself. Patients with tumors that progress during neoadjuvant therapy are 
unlikely to have benefitted from a pancreatic resection. Consequently, neoadjuvant 
therapy allows for a better selection of those patients who may benefit from a poten-
tially morbid operation.

Third, neoadjuvant therapy improves the R0 resection rate. In the PREOPANC 
trial, the R0 resection rate was 72% in the neoadjuvant CRT arm vs. 43% in the 
upfront surgery arm (p < 0.001).
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Fourth, neoadjuvant therapy may reduce postoperative complications. An analy-
sis of the PREOPANC trial found 0% postoperative pancreatic fistula after neoadju-
vant chemoradiotherapy and no increase in overall major complications [50]. 
Several other non-randomized studies had similar results [51, 52].

�Disadvantages of Neoadjuvant Therapy

Upfront surgery with adjuvant therapy has some small advantages over neoadjuvant 
therapy.

First, neoadjuvant chemotherapy requires a tissue diagnosis of PDAC, while 
most patients with a hypo-intense pancreatic mass on CT undergo a resection with-
out tissue diagnosis. Diagnostic procedures to obtain tumor tissue are endoscopic 
ultrasound-guided fine needle aspiration (EUS-FNA) or bile duct brushing. These 
procedures are associated with complications including acute pancreatitis, hemor-
rhage, and perforation of the gastrointestinal tract [53].

Second, both cross-sectional imaging and a biopsy cannot distinguish periam-
pullary cancer from PDAC with 100% accuracy. In a nationwide analysis from the 
Netherlands, the misdiagnosis rate was 13% in patients who were preoperatively 
thought to have PDAC. With upfront surgery, the full histopathology specimen is 
available for the correct diagnosis and appropriate adjuvant treatment.

Third, the majority of patients with resectable PDAC present with obstructive 
jaundice. These patients need a stent for biliary decompression to tolerate neoadju-
vant therapy. Placement of a biliary stent with endoscopic retrograde cholangiopan-
creatography is associated with a non-negligible risk of complications and even 
death. Biliary drainage can be omitted in patients treated with upfront surgery. An 
RCT showed an increased rate of complications in patients with tumors in the pan-
creatic head who underwent preoperative biliary drainage as compared with patients 
who proceeded to surgery without drainage [54].

�Comparing Neoadjuvant and Adjuvant Trials

Survival is lower in RCTs investigating neoadjuvant and perioperative treatment as 
compared with RCTs that compare only adjuvant therapy (Tables 1.2 and 1.3). 
Some have misinterpreted this as evidence of inferior survival after neoadjuvant 
therapy [55]. For example, the median survival in the PREOPANC trial (comparing 
a neoadjuvant with adjuvant treatment) of patients in the adjuvant gemcitabine arm 
was 14 months, while the median survival in the PRODIGE 24/CCTG PA.6 trial 
(comparing two adjuvant regimens) of patients in the same adjuvant gemcitabine 
arm was 36 months (Tables 1.1 and 1.2) [29, 40]. This large difference is explained 
by an entirely different selection of patients for an RCT comparing one or more 
neoadjuvant regimens with an RCT with only adjuvant regimens. Adjuvant RCTs 
include only a subgroup of all patients who would have been eligible for a neoadju-
vant trial. In order for a patient presenting with resectable PDAC to become eligible 
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for inclusion in an adjuvant RCT, the patient has to overcome many hurdles: (1) no 
occult metastases at staging laparoscopy (about 5–10% drops out), (2) a resection 
without postoperative mortality (about 2–5% drops out), (3) recover sufficiently 
from surgery to receive adjuvant chemotherapy (about 30% drops out), (4) no early 
recurrence on postoperative CT scan (about 5% drops out), and (5) no elevated 
postoperative CA 19-9 levels (about 5% drops out). In summary, up to 50% of all 
patients randomized in an RCT with one or more neoadjuvant treatment arms would 
have never become eligible for an RCT comparing only adjuvant therapy.

Most trials of neoadjuvant therapy have demonstrated a lower resection rate as 
compared with upfront surgery. This is explained by patients that progress during 
neoadjuvant therapy. Some argue that this is a disadvantage of a neoadjuvant 
approach. However, it is unlikely that patients who progress during neoadjuvant 
therapy would have benefitted from a pancreatic resection. These patients would 
likely have developed disease recurrence within 3–6 months after upfront resection.

�Future Directions

�Ongoing Clinical Trials

Several ongoing studies investigate neoadjuvant and adjuvant therapy for resectable 
PDAC (Table 1.4).

The NorPACT-1 trial investigates perioperative mFOLFIRINOX for resectable 
PDAC. In the intervention arm, patients receive four cycles of neoadjuvant mFOL-
FIRINOX followed by surgery. After surgery, eight cycles of mFOLFIRINOX are 
planned. In the comparator arm, patients receive 12 cycles of adjuvant mFOLFIRI-
NOX. In the original design, the adjuvant therapy was gemcitabine/capecitabine, 
but this was changed after the publication of the PRODIGE-24/CCTG PA.6 trial 
results. Between 2016 and 2020, 140 patients were randomized in Norway, Sweden, 
Finland, and Denmark, and results are expected at the end of 2022.

The Dutch PREOPANC-2 compared neoadjuvant FOLFIRINOX with neoad-
juvant gemcitabine-based chemoradiotherapy. In the intervention arm, patients 
receive neoadjuvant FOLFIRINOX without adjuvant therapy. The comparator 
arm is based on the superior arm of the PREOPANC-1 trial, consisting of 3 cycles 
of neoadjuvant gemcitabine whereby the second cycle is combined with 36 Gray 
radiotherapy in 15 fractions. After surgery, four cycles of adjuvant gemcitabine 
are planned. The trial included patients with both resectable and borderline resect-
able PDAC. Between 2018 and 2021, 368 patients were randomized and results 
are expected in 2023.

The ALLIANCE A021806 trial from the United States compares perioperative 
mFOLFIRINOX with adjuvant mFOLFIRINOX. In the intervention arm, patients 
receive eight cycles of neoadjuvant mFOLFIRINOX, and after surgery, four cycles 
of adjuvant mFOLFIRINOX are planned. In the comparator arm, 12 cycles of adju-
vant mFOLFIRINOX are planned. The trial opened for accrual in July 2020, and as 
of 1 August 2023, 193 patients have been randomized.

1  Resectable Pancreatic Cancer: Neoadjuvant and Adjuvant Therapy



12

Table 1.4  Ongoing or pending randomized controlled trials of (neo)adjuvant therapy for resect-
able pancreatic cancer

Trial name and 
registration

Inclusion 
period

Target 
sample 
size

Primary 
outcome

Intervention (no. of 
cycles)

Comparator (no. of 
cycles)

Adjuvant trials
RTOG 0848
NCT01013649

2009–
2014

545 DFS Adjuvant CRT after 
adjuvant GEM

Adjuvant GEM 
without CRT

ESPAC-6
NCT05314998

Not yet 
recruiting

394 DFS Adj. GEM/CAP (6) or 
adj. mFOLFIRINOX 
(12) based on 
transcriptomic 
signature

Adj. 
mFOLFIRINOX 
(12)

Neoadjuvant trials
NorPACT-1
NCT02919787

2016–
2020

140 OS at 18 
months

Periop. 
mFOLFIRINOX (4+8)

Adj. 
mFOLFIRINOX 
(12)

PREOPANC-2a

EudraCT 
2017-002036-
17

2018–
2021

368 OS Neoadj. FOLFIRINOX 
(8)

Neoadj. GEM-
based CRT + adj. 
GEM (4)

ALLIANCE 
A021806
NCT04340141

2020– 352 OS Periop. 
mFOLFIRINOX (8+4)

Adj. 
mFOLFIRINOX 
(12)

PREOPANC-3
NCT04927780

2021– 378 OS Periop. 
mFOLFIRINOX (8+4)

Adj. 
mFOLFIRINOX 
(12)

Adj adjuvant, CRT chemoradiotherapy, DFS disease free survival, GEM gemcitabine, OS overall 
survival, mFOLFIRINOX neoadj, neoadjuvant, modified 5-fluorouracil with leucovorin, irinote-
can, and oxaliplatin, periop perioperative
a Includes patients with both resectable and borderline resectable pancreatic cancer

The PREOPANC-3 trial from the Netherlands investigates perioperative mFOL-
FIRINOX and has a similar design as the ALLIANCE A021806 trial with 378 
patients needed. The trial opened for accrual in August 2021, and as of 1 August 
2023, 171 patients have been randomized.

The RTOG 0848 trial investigates whether the addition of adjuvant chemoradio-
therapy after adjuvant gemcitabine improves OS in patients with resected PDAC. In 
the two-step design, patients were first randomized to adjuvant gemcitabine or to 
adjuvant gemcitabine with erlotinib. Patients were restaged after five cycles of gem-
citabine and, if without progression, randomized again to one cycle of gemcitabine 
followed by adjuvant capecitabine or 5-FU-based chemoradiotherapy (50.4 Gray) 
or to one cycle of gemcitabine. The results of step 1 were reported in 2020 and did 
not show a benefit of adding erlotinib to gemcitabine [56]. The step 2 result on the 
use of adjuvant chemoradiotherapy is pending.

The ESPAC-6 trial from Germany investigates whether selecting an adjuvant 
regimen based on tumor characteristics can improve survival. In the intervention 
arm, patients will either receive adjuvant mFOLFIRINOX or adjuvant gemcitabine 
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with capecitabine based on the transcriptomic signature of the tumor. In the com-
parator arm, patients receive adjuvant mFOLFIRINOX. The trial plans to accrue 
394 patients.

�Neoadjuvant Therapy Based on Treatment Response

Neoadjuvant therapy allows for evaluating treatment response. This provides the 
opportunity to adapt or “switch” the neoadjuvant regimen in the absence of treat-
ment response. As radiologic indicators of treatment response are generally unreli-
able in localized PDAC [57], serum CA 19-9 is often used to assess response.

Several studies have reported on the effect of a treatment “switch” of the neoad-
juvant regimen. A single-institution study included 25 patients with borderline 
resectable and locally advanced PDAC who were switched from FOLFIRINOX to 
gemcitabine nab-paclitaxel [58]. Of the 25 patients, 21 showed radiographic or CA 
19-9 response after switching and 11 patients underwent resection. Another study 
described the outcomes of 468 patients with borderline resectable and locally 
advanced PDAC of whom 139 (30%) had chemotherapy switch [59]. The majority 
(89%) switched from 5-FU-based therapy (FOLFIRINOX or FOLFOX) to gem-
citabine with nab-paclitaxel. Of the 139 patients with chemotherapy switch, 100 
underwent resection, and their survival was not different from the patients without 
chemotherapy switch (36.4 vs. 41.4 months; p = 0.94).

Several ongoing studies are investigating whether adaptive neoadjuvant therapy 
can improve survival. A study from the University of Wisconsin (NCT03322995) 
investigates whether switching based on treatment response can improve outcomes 
in patients with resectable or borderline resectable PDAC. Treatment response is 
assessed using CT imaging, serum CA 19-9, and performance status. All patients 
start with FOLFIRINOX.  In case of response, patients continue with 
FOLFIRINOX. In case of stable disease, patients switch to gemcitabine-based ther-
apy. In case of local progression, patients receive chemoradiation. The primary out-
come of the study is completion of all neoadjuvant therapy and resection. Another 
study, from the Oregon Health and Science University (NeoOPTIMIZE; 
NCT04539808), follows the same principle. Patients with localized PDAC start 
with four cycles of FOLFIRINOX, and in case of progression at evaluation (by CT 
imaging or increase of CA 19-9 >30%), they switch to gemcitabine with nab-
paclitaxel. The primary endpoint is the proportion of patients that undergo R0 resec-
tion. Finally, a study from the University of Cincinnati (NCT04594772) investigates 
whether a neoadjuvant chemotherapy switch improves the resection rate in 32 
patients with resectable and borderline resectable PDAC.

�Adjuvant Therapy After Neoadjuvant therapy

Current guidelines recommend a total duration of systemic therapy (combining neo-
adjuvant and adjuvant therapy) of 6 months [5, 6]. This recommendation is based on 
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extrapolation of treatment duration in the metastatic and adjuvant setting. No RCTs 
are available that investigate the duration of chemotherapy for PDAC or the use of 
adjuvant therapy after neoadjuvant therapy and resection.

An international, multi-institutional, retrospective analysis investigated adjuvant 
therapy after neoadjuvant FOLFIRINOX and resection in 520 patients of all stages 
of localized PDAC [60]. Adjuvant therapy was gemcitabine-based in 59% and 20% 
received FOLFIRINOX.  Improved survival with adjuvant chemotherapy was 
observed only in patients with node-positive disease (median OS, 26 vs. 13 months, 
p = 0.004). Another study, based on the National Cancer Database, included patients 
who underwent a resection between 2004–2016 and used propensity score matching 
to account for selection bias [61]. A total of 2016 patients who received adjuvant 
therapy after neoadjuvant therapy and resection were successfully matched to 2016 
patients who did not. Median OS was 29.4 months in patients who received adju-
vant therapy compared with 24.9 months in patients who did not (p < 0.001). These 
results were irrespective of nodal or margin status. A total neoadjuvant therapy 
approach is increasingly used, because it avoids the challenge of administering 
adjuvant chemotherapy to all patients.

�Conclusions

Progress has been made over the last decades in the treatment of resectable 
PDAC. Systemic therapy in the form of neoadjuvant or adjuvant therapy is an inte-
gral part of multimodality treatment and improves OS. The main concern with adju-
vant therapy is compliance, and neoadjuvant therapy has the potential to improve 
outcomes in this regard. Two phase 3 RCTs have shown improved survival with 
neoadjuvant therapy, but both trials used single-agent systemic therapy. In patients 
with resectable PDAC, high-quality evidence for a survival benefit of neoadjuvant 
therapy over upfront surgery with multi-agent adjuvant therapy is therefore lacking. 
Current RCTs, including the ALLIANCE A021806 and PREOPANC-3 trials, will 
answer the question whether perioperative mFOLFIRINOX improves OS compared 
with upfront surgery with adjuvant mFOLFIRINOX.
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2Borderline Resectable and Locally 
Advanced Pancreatic Cancer

Ching-Wei D. Tzeng and Laura Prakash

�Introduction

The 5-year overall survival of all patients with pancreatic adenocarcinoma (PDAC) 
remains 12% in 2023 [1]. Those with localized disease have however benefited from 
the combination of more effective chemotherapy regimens and continued advances 
in local therapies including aggressive surgical and radiation techniques with 5-year 
survival rate that can approach 44% in patients with good prognostic characteristics. 
Over 20 years ago, CONKO-001 showed that surgery alone is an inadequate treat-
ment for localized PDAC, and thus chemotherapy is now a required component of 
multimodality therapy for all localized disease, regardless of radiographic “resect-
ability” [2]. With recent advances, in well-selected contemporary patients, reported 
median overall survival (OS) has increased from 18–24 months historically to 
43–54 months in duration [3, 4]. While multimodality therapy is the standard, resec-
tion when possible remains the most critical component of this multidisciplinary 
plan. Even for patients with localized disease, long-term survival without resection 
is nearly impossible. In this chapter, the workup, staging, and treatment options of 
borderline resectable (BR) and locally advanced (LA) disease will be reviewed.

�Borderline Resectable Pancreatic Adenocarcinoma

�Diagnosis and Clinical Staging

The term “borderline resectable” is an everyday part of our vocabulary in describing 
the clinical stage of PDAC patients, but the standardization of this terminology is 
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barely 15 years old. Introduced by Katz et  al. at MD Anderson Cancer Center 
(MDACC), this clinical staging of PDAC combines three aspects of clinical classi-
fication into an “A-B-C” system, which stratifies anatomy, biology, and condition, 
for localized PDAC [5–9]. A patient may have features of one or more of these 
subtypes. While tumor anatomy at presentation is commonly the focus of surgeons, 
we argue that to assess the likelihood of a safe margin negative resection (R0) with 
maximum survival benefit, condition supersedes all and biology trumps anatomy.

As mentioned above, BR type C patients are those with preexisting comorbidi-
ties or depressed performance status who have the opportunity for optimization 
during the neoadjuvant therapy period [10]. BR type B patients present with clinical 
findings suspicious but not diagnostic of metastatic disease. These include enlarged 
regional nodes, indeterminate lesions in the liver or lungs, and/or an elevated carbo-
hydrate antigen (CA)19-9 above 500U/ml in the setting of a normal total bilirubin 
level. Our experience is that less than half of BR type B patients get a resection with 
the majority manifesting disease progression during the neoadjuvant therapy period, 
thus saving them from the adverse effects of a futile pancreatectomy [7].

Finally, BR type A is characterized by involvement of the mesenteric vasculature 
to a limited degree that may require venous or arterial resection at pancreatectomy. 
MDACC definition differs slightly from NCCN (National Comprehensive Cancer 
Network) and AHPBA/SSAT/SSO (American Hepato-Pancreato-Biliary 
Association/Society for Surgery of the Alimentary Tract/Society of Surgical 
Oncology) and includes encasement of a short segment of the hepatic artery, with-
out evidence of tumor extension to the celiac axis and/or tumor abutment of the 
SMA [6]. In isolation, BR type A is perhaps the most straightforward for a surgeon 
requiring a well-planned operation with negative margins, venous reconstruction 
patency, and leak-free pancreatic reconstruction. Patient selection for surgery is thus 
based on comprehensive assessment of radiologic, serological, and patient’s condi-
tion determining improvements or stability in each of these A-B-C categories at 
each restaging visit [5, 10].

In most of the population, CA19-9 is a useful tumor marker; however, 10% are 
non-producers due to a genetic mutation in the Lewis antigen gene and another 10% 
have normal levels regardless of tumor burden. Once the bilirubin is normalized 
(<2.0 g/dL), CA 19-9 levels as baseline are routinely used to assess future response 
to chemotherapy and surveillance for recurrence post-resection. Normalization of 
CA 19-9 during neoadjuvant therapy has been associated with improved outcomes 
[11, 12]. Staging laparoscopy at a time preceding the planned pancreatectomy may 
be utilized to obtain clarity on tumor biology when CA 19-9 is rising, but radiologi-
cal assessment is inconclusive for disease progression. However, in those with nor-
malized CA19-9, the yield of laparoscopy is quite low, and thus laparoscopy 
performed at a separate time may not be cost-effective [13].
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�Locally Advanced (Unresectable) Pancreatic Adenocarcinoma

�Diagnosis and Clinical Staging

Approximately 35% of patients with PDAC present with LA disease which is tradi-
tionally considered unresectable due to local but extensive involvement of adjacent 
vessels or organs [14]. While definitions vary slightly in the extent of tumor contact, 
there is consensus on extended tumor to artery interface and/or unreconstructable 
vein involvement resulting in a high probability of a gross positive margin with 
attempted upfront resection. This stage presents with a unique therapeutic challenge 
as the majority of patients do not undergo an attempted resection. The term unre-
sectable however is less preferable to LA because while some tumors remain 
unamenable to resection even following administration of systemic therapy, 12–35% 
may successfully “downstage” by retraction of the tumor away from the vessels 
making a margin-negative resection possible when performed at specialized centers 
by experienced surgeons [15].

In addition to determining the tumor size, a multiphase contrast-enhanced com-
puted tomography (CT) is the modality of choice for assessment of resectability. 
However, it may be inadequate in differentiating between residual tumor and fibro-
sis after induction chemotherapy [16]. Therefore, serum CA 19-9 levels and staging 
laparoscopy are often used in conjunction with CT scans in making decisions at 
resection attempts. A diagnostic laparoscopy can be useful since up to 20–30% of 
patients with LA PDAC are found to have occult peritoneal metastases at diagnosis 
[17]. LA as a stage includes patients with varying prognoses with survival heavily 
associated with the ability to undergo resection. In patients with tumors that remain 
unresectable, the focus is on management of tumor-related symptoms, quality of 
life, and palliative chemotherapy and/or local therapy to reduce tumor burden and/
or offer a systemic therapy break [18].

�Multimodality Therapy

�Induction Systemic Chemotherapy

Multiagent systemic chemotherapy is considered the standard of care for first-line 
treatment of patients with BR and LA PDAC. The rationale for use of systemic 
chemotherapy includes early treatment of micro-metastatic disease, possible tumor 
shrinkage in size and away from blood vessels, and selection of patients with physi-
ology and tumor biology who would be most likely to benefit from surgery [19]. In 
well-selected patients, no increased surgical morbidity has been associated with an 
induction chemotherapy approach [20].

Following favorable results in randomized phase III trials for metastatic disease 
such as PRODIGE for a combination of 5-fluorouracil, leucovorin calcium (folinic 
acid), irinotecan hydrochloride, and oxaliplatin (FFX) compared to gemcitabine 
monotherapy (11.1 vs 6.8 months; P < 0.001) [21] and MPACT for albumin-bound 
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paclitaxel plus gemcitabine (GA) (8.7 vs 6.6 months; P < 0.0001) [22], these regi-
mens are recommended by NCCN guidelines for patients with advanced localized 
disease by extrapolation [18, 23]. While the translation of these regimens to earlier 
stages was empirical, several case series have shown encouraging results suggesting 
that this more aggressive approach may be useful in patients with BR and LA PDAC 
resulting in longer median survival, higher resection rates, and significantly better 
objective response rates [24–26]. Radiographic response to therapy is evaluated 
using Response Evaluation Criteria in Solid Tumor (RECIST) version 1.1; these 
guidelines define complete response as the disappearance of the visible tumor, par-
tial response as greater than 30% reduction in tumor load, progressive disease as an 
increase of greater than 20%, and any disease that does not meet the abovemen-
tioned criteria are deemed stable disease [27].

FFX appears to provide better objective response when compared to GA and in 
one study probable survival benefit in patients that are ultimately unresectable [28]. 
However, the outcomes are reportedly similar for patients who subsequently 
undergo surgical resection [24, 28]. In current practice at MDACC, the decision to 
initiate treatment with FFX or GA is based on multidisciplinary discussion and 
centered on patients’ overall performance status, underlining comorbidity profile 
and patient preference. If the first-line treatment has been exhausted, not well toler-
ated, or no improvement/progression is seen in radiographic and/or biological dis-
ease, the subsequent treatment recommended is switching between FFX and 
GA. Current NCCN guidelines recommend all patients with PDAC be tested for 
germline mutations, alterations in germline BRCA and PALB2 (partner and local-
izer of BRCA2) are detected in up to 9% of patients with PDAC and platin-based 
therapy has been shown to be efficacious in these cases [29].

�Role of Radiation

The role of radiotherapy (RT) in LA PDAC remains controversial but is recom-
mended in the NCCN guidelines for BR [23]. The rationale for use of RT with 
neoadjuvant intent is potential treatment of occult disease in regional lymph nodes 
and sterilization of periphery tumor to increase the likelihood of an R0 resection 
[30]. In 2018, the results of the first prospective randomized controlled trial compar-
ing upfront surgery and neoadjuvant RT were published and showed a significantly 
better median survival (21 vs 12 months; P = 0.028) in patients treated with chemo-
radiation [31]. While these findings were not replicated in subsequent randomized 
trials such as PREOPANC I [32], improved pathological metrics such as rates of R0 
resection and decreased risk of locoregional recurrence were reported and collabo-
rated by several retrospective studies [33–35].

Since PDAC is a systemic disease, a chemosensitizer is often administered con-
comitantly with RT, SCALOP (Selective Chemoradiation in Advanced Localized 
Pancreatic Cancer) trial showed capecitabine may be preferable to gemcitabine in 
the context of consolidation [36]. At our institution, we routinely administer sequen-
tial treatment with induction chemotherapy prior to radiation either with external 
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Fig. 2.1  Algorithm for multimodality therapy of borderline and locally advanced patients at MD 
Anderson Cancer Center. S staging or re-staging, C chemotherapy, RT radiation therapy, OR opera-
tion room, P pancreatectomy

beam RT (EBRT) and more recently stereotactic body RT (SBRT) (Fig. 2.1). While 
concerns of retroperitoneal fibrosis were induced by RT persist, we have previously 
shown that neoadjuvant RT is not associated with an increase in 90-day morbidity 
of mortality and may even reduce the rate of pancreatic fistula following distal pan-
createctomy [20].

�Pancreatoduodenectomy

While the pancreatoduodenectomy (PD), or “Whipple” procedure, was invented in 
1935, it was Dr. John Cameron from Johns Hopkins University who made it a main-
stream operation in the United States and internationally [37, 38]. The critical com-
plication for PD’s remains the same today—the risk of postoperative pancreatic 
fistula (POPF), which is the primary cause of subsequent cascade of complications 
that leads to significant morbidity and even mortality [39]. In the modern surgical 
setting, patients do not expect to die from elective operations. However, PD mortal-
ity remains 7–10% even in the United States and Europe [40, 41], especially in 
30–90-day outcomes, not just inpatient mortality. The inability to centralize care for 
high-risk procedures is perhaps impossible to fix in the US healthcare system 
[42–44].

Our pancreatic surgery group has advocated a standardized approach to the PD 
with resection occurring in a clockwise fashion and the reconstruction in a counter-
clockwise direction [45]. With the six steps of extirpation and three steps of anasto-
moses, it is easy to reproduce the operation with trainees and OR staff. Reducing 
complications globally including POPF and death would improve OS for all surgi-
cal patients more than any new cytotoxic therapy.
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�Preoperative Management

Presenting symptoms of PDAC depend on the location of the tumor and the disease 
stage. Most of the tumors arise in the head of the pancreas with patients often pre-
senting with jaundice due to obstructive cholestasis, and a biliary stent placement is 
required for palliation. For patients who present with plastic endoscopic biliary 
stents these are routinely exchanged from plastic to metal to prevent cholangitis 
episodes [46].

Pre-habilitation programs have been established for all patients regardless of age 
or performance status [47, 48]. For the elderly, geriatrics evaluations are added as 
needed to test cognitive function and ensure medical optimization for surgery. 
Nutrition counseling is required to monitor nutritional status of patients and aid in 
either building muscle mass in cachectic patients or losing excess fat in obese 
patients [49, 50]. All these services are available after the initial visit with the 
surgeon.

�Operative Steps

�Pancreatoduodenectomy

Step 1 starts with opening the lesser sac to identify the pancreas which can some-
times be buried underneath fat or fibrosis. The middle colic vein can be followed 
until its insertion into either the superior mesenteric vein (SMV) directly or into a 
gastrocolic trunk (combined with the gastroepiploic vein). The “tunnel” under the 
neck of the pancreas is nearby. Many surgeons will ligate the middle colic vein or 
gastrocolic trunk at this step to avoid avulsion later. Some surgeons will expose the 
SMV up to the tunnel or below a known area of SMV encasement to ensure a proper 
landing zone caudally. Step 1 continues with separation of the right colon from the 
duodenum (as if performing a right hemicolectomy). A formal Cattell-Brasch 
maneuver is not necessary, but mobilization of the entire right colon is ideal to show 
the duodenum.

Step 2 is the Kocher maneuver to mobilize the pancreatic head, to expose the 
inferior vena cava (IVC), and to find the superior mesenteric artery (SMA) coming 
off the aorta.

Step 3 is the portal dissection. Removing the station 8a lymph node, known as 
the common hepatic artery (CHA) node, exposes the CHA adventitia to then find 
the proper hepatic artery (PHA). The right gastric artery comes off superficially and 
can be ligated. At the CHA-PHA junction is where the gastroduodenal artery (GDA) 
comes off. Once an adequate length of GDA stump is safely exposed, it can be dou-
bly ligated and/or sutured before dividing. Upon the division of the GDA, the PHA 
can be lifted to allow dissection of nodal issue between the CHA/PHA and portal 
vein (PV) below. On the right side of the hepatoduodenal ligament, the station 12p 
nodes (portocaval nodes) can be lowered toward the specimen. Then the common 
bile duct (CBD) is encircled. One must reconfirm that there is no aberrant right 
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hepatic artery running posterolateral. The CBD can be divided at or near the cystic 
duct junction. The metal or plastic biliary stent can be removed and cultured. Some 
surgeons will do a bile and stent culture to direct antibiotics as needed.

Step 4 is the division of the distal stomach or proximal duodenum. There is no 
oncologic difference in these techniques. There is debate on their respective impact 
on postoperative delayed gastric emptying (DGE) [51]. We tend to create a 2-staple 
line Hofmeister shelf to sew the eventual gastrojejunostomy to the lower shelf at a 
natural angle that facilitates stomach emptying.

Step 5 is the mobilization of the ligament of Treitz and division of the proximal 
jejunum about 10–15 cm from the ligament.

Step 6 is the most important and longest step of the operation. At this time, the 
pancreatic neck tunnel is created carefully using instruments. Sometimes, if there is 
tumor at the portal vein (PV)–superior mesenteric vein (SMV)–splenic vein junc-
tion, the planned transection line will need to be a tunnel over the splenic vein under 
the true pancreatic body for an “extended” PD. Once the pancreas is divided with 
cautery, the pancreatic duct can be identified at this point. If too small to see, often 
looking on the specimen side will offer a clue. The SMV is then skeletonized on its 
anterior surface all the way to the turn of the duodenum. If not already, the gastro-
colic trunk will be ligated and divided. The lower extent of the dissection starts at 
the 1st (posterior most often) jejunal vein. For tumors stuck to the SMV, this 1st 
jejunal vein will need to be ligated. However, for AR tumors, this can be saved, not-
ing that there are usually several tiny veins draining the uncinate which should be 
carefully taken with energy device or ties. Once cleared, this is the most distal point 
of SMA dissection to start. For the SMA, there are two general philosophies of 
exposure. Once can go from the right side “under the SMV” while pulling the SMV 
to the left or from the left side (straight down) while pulling the SMV to the right. 
The latter requires division of all colic drainage into the SMV to allow the SMV to 
be pulled to the right with vessel loops.

A SMA-first technique is useful to learn for BR tumors that are abutting or 
attached to the PV-SMV. The author’s personal preference is to do a right-sided 
approach with dissection of the SMA base off the aorta first to clear its lymphatic 
tissue and to show the “target area” for dissection from the distal SMA. Going back 
to the distal SMA, the peri-adventitial tissue (which wraps the artery like insulation) 
should be dissected until the bare white adventitia is seen. In obese patients or men 
with a lot of visceral fat, this dissection can be several mm. There are studies which 
show tumor cells penetrating past the uncinate to this tissue along the SMA [52]. 
That is why simple palpation and using an energy device or stapler along this peri-
arterial tissue without seeing bare white adventitia is leaving a gross margin behind. 
The surgeon can march “up” cephalad along the bare SMA, clearing at least 180 
degrees but never 360°, looking for at least 1–2 additional pancreatic arteries. This 
completes the SMA-first approach.

The remaining specimen is hanging on the SMV-PV. The lymphatics under the 
PV can be cleared with an energy device or ties. Then, there is the actual pancreas 
head (and tumor) on the SMV-PV. The question is whether the tumor can be dis-
sected off sharply with scissors in a desmoplastic plane (with or without vein 

2  Borderline Resectable and Locally Advanced Pancreatic Cancer



26

clamping) or if a true vein resection is needed. If a true vein resection is needed, will 
it be a side repair, side patch, end-to-end, or interposition graft. If there is going to 
be flow narrowing, we discourage side repairs. Side patches are rarely used as well. 
End-to-end repairs preserve laminar flow the best. Interposition grafts (preferen-
tially using the internal jugular vein) are reserved for long distances of 5  cm or 
more. Table 2.1 outlines pearls and pitfalls of these six steps.

Table 2.1  Key maneuvers of MD Anderson’s six-step pancreatoduodenectomy

Steps Key maneuvers Tips Trouble
1 Lesser sac entry and 

right colon 
mobilization

 �� • � Follow middle colic 
vein to SMV

 �� • � Expose pancreatic head 
and separate duodenum 
from mesocolon

 �� • � Middle colic vein avulsion 
leads to SMV bleed

 �� • � SMV tear from aggressive 
traction before full 
exposure

2 Kocher maneuver  �� • � Show the IVC, left renal 
vein, aortocaval groove

 �� • � Undermine pancreatic 
head until you feel the 
SMA

 �� • � Not dissecting to the 
aorta-SMA takeoff and 
thus not ready for Step 6 
later

3 Portal dissection  �� • � Follow PHA and CHA 
to find GDA

 �� • � Check right 
posterolateral to bile 
duct for aberrant right 
hepatic artery

 �� • � Ligating GDA before 
ensuring proper hepatic 
artery or dipping right 
hepatic artery protected

 �� • � Dividing bile duct before 
ensuring aberrant RHA is 
protected

4 Distal gastrectomy  �� • � Create “shelf” for 
reconstruction angle 
when stapling

 �� • � Bleeding from gastric 
staple line

5 Proximal jejunum 
transection

 �� • � Staple minimal length of 
jejunum

 �� • � Resecting too little or too 
much jejunum

6 Pancreatic division and 
SMA–SMV 
(retroperitoneal) 
dissection

 �� • � Not all SMV-PV tunnels 
are the same. Watch for 
tumor into neck thus 
requiring division at the 
proximal body

 �� • � SMA dissection begins 
distally at the level of 
the posterior jejunal vein

 �� • � Bare white SMA should 
be exposed for 180 
degrees

 �� • � Finger dissection in the 
tunnel can rip the SMV-PV

 �� • � Poor SMA visualization 
leading to pancreatic artery 
tears coming off SMA, 
which then requires sutures 
directly on SMA 
arteriotomies

 �� • � Tumor venous congestion 
if all venous tributaries are 
ligated before SMA 
branches taken

 �� • � Leaving tissue along SMA 
due to fear of SMA injury

 �� • � Stapler or energy device 
along the uncinate while 
leaving visible tissue on 
SMA
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�Considerations for Vein Involvement

For a minimal vein involvement situation such as BR tumors with downsizing to 
abutment without invasion, there is sometimes a need to clamp the SMV–PV–
splenic vein junction with a side-biting clamp for the final detachment of the pan-
creatic head from the SMV-PV. The side-biting clamp preserves partial venous flow 
to the liver for the anesthesiologist. This is not as physiologically stressful as a 
“Pringle” maneuver since the hepatic artery remains open the whole time you are 
working on the SMV–PV–splenic vein. If the clamp can be placed caudal to the 
splenic vein, then the PV gets at least that flow while only the SMV is restricted. We 
typically circulate 50 units of heparin per kg intravenously for 5 min before vein 
clamping and manipulation. Scissors will often be sufficient to take the specimen 
off the SMV-PV for abutment cases, and a bit of true wall can be taken for true inva-
sion cases. This can be repaired while clamped with no blood loss and no time pres-
sures. For end-to-end repairs, one clamp will be needed on each side, ideally at least 
1 cm away from the cut lines since the vein wall retracts to the clamp more than 
expected. The tumor and vein can be cut off quickly. The vein reconstruction can be 
running with an air knot for “growth” or interrupted sutures for guaranteed align-
ment. For interposition grafts, we use the internal jugular vein (usually the left since 
many patients have their ports on the right side), while others have reported using 
the left renal vein or non-native grafts (cadaveric or bovine pericardium). With no 
valves in an IJ graft, there is no concern about the direction. We typically sew the 
trickier end first. After reconstruction, the heparin is not reversed. We use prophy-
lactic low molecular weight heparin as our standard plus an 81 mg aspirin for vein 
resection.

If margins for the pancreatic neck and CBD are positive on frozen section, they 
can be re-cut if safely feasible. There is debate [53] about the oncologic value of 
this, and thus we never convert a positive margin into a total pancreatectomy. 
However, if an additional centimeter-wide piece of pancreas can be safely mobi-
lized off the splenic vein while not hitting the splenic artery, then we will often send 
this extra piece for permanent section.

�Reconstruction

Reconstruction Step 1 is the pancreaticojejunostomy. We typically recommend a 
2-layer modified Blumgart technique in which a 3-0 polypropylene straightened 
needle is used to wrap the bowel around the cut end of the pancreas to sandwich it 
around the inner duct-to-mucosa reconstruction. The inner layer is created using 
interrupted 5-0 polydioxanone suture (or similar) in a symmetric, radial arrange-
ment to allow easy alignment and reproducibility for trainees.

Reconstruction Step 2 is the hepaticojejunostomy. Good blood supply at the tip 
of the cut bile duct is confirmed before a single layer 5-0 polydioxanone suture 
anastomosis is created about 10cm distal to the pancreatic anastomosis. The key is 
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symmetry as in a clock face. We tuck the falciform flap between the pancreatic and 
biliary anastomoses, sometimes tying it down, to protect the GDA stump.

Reconstruction Step 3 is the gastrojejunostomy which is performed either with a 
handsewn technique when open and stapler when minimally invasive. Of note, the 
Pittsburgh group has used video analyses to suggest a large (4.5 cm), handsewn, 
angle anastomosis for ideal DGE mitigation [54]. Otherwise, there is no interna-
tional standard on this final reconstruction [51].

Finally, as a group, we placed a drain over the anastomoses. The drain fluid amy-
lase is measured on postoperative days 1 and 3, and we will remove them as early 
as possible, ideally by day 3 [55]. This follows the international consensus that a 
drain, if placed, should be removed in a timely fashion by day 3 when feasible 
[56, 57].

�Distal Pancreatectomy

The goals of a distal pancreatectomy include a safe resection and recovery, negative 
margins, and nodal clearance. One can choose direction for dissection: either lateral 
to medial or medial to lateral. BR tumor anatomy often dictates vein resection to be 
done as the final step, which is similar to hanging the pancreatic head on the 
SMV-PV during a PD with vein resection.

Gaining access to the lesser sac is similar to Step 1 of a PD. Exposure of the 
pancreas and spleen, including seeing the inferior border of the pancreas and the 
lower pole of the spleen, helps define the boundaries of the resection. This was 
accomplished by taking down the splenic flexure and allowing gravity to relax the 
transverse mesocolon and left colon out of the pancreatic resection bed. The stom-
ach can be retracted after using an energy device to go through the omentum 
between the stomach and spleen. The gastroepiploic arcade should be carefully pre-
served until the short gastrics to save collateral gastric blood flow.

Sometimes due to tumor encasement of the splenic vein, there is sinistral (left-
sided) hypertension. To prevent variceal bleeding during the operation, the splenic 
artery can be tied off early in the operation at any place where it is visible. Often for 
neck and body tumors, access to the proximal splenic artery and celiac is not safely 
seen early in the case. In these situations, a simple tie or figure-8 ligation of the 
distal splenic artery in the pancreatic tail can decompress the spleen and varices.

To find the splenic artery, remove the station 8 (CHA) node, follow the CHA to 
its base, and see the celiac trifurcation and the splenic artery takeoff. Once an ade-
quate splenic artery stump is dissected, double ligation can be accomplished as with 
the GDA in the PD. A stapler can be used if the splenic artery is large enough for 
enough staples to land on the stump.

If AR with no vein resection, the SMV-PV tunnel can be made, and the neck is 
transected using cautery or stapler with the caveat that the stapler should not be used 
in neck tumors with close margins because the stapler (and its reinforcement) uses 
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up several millimeters of margin. Then the splenic vein can be ligated at its insertion 
to the SMV-PV. If there is narrowing right at the confluence, a side-biting clamp can 
be used to cut the splenic vein stump and repair the side wall of the PV. The rest of 
the dissection is medial to lateral, taking the retroperitoneal tissue and the lymphatic 
tissue above the splenic artery as part of the nodal clearance. For BR tumors, it may 
be easier to go lateral to medial and leave the last part attached to the PV-SMV.

For a pancreatic neck which was transected with cautery, we use direct suture 
ligation of a visible duct (6-0 polypropylene) with pledget-reinforced U-stitches to 
tamponade the cut edge of the pancreas. Despite no international consensus [58], 
drain placement is routine with postoperative days 1 and 3 drain amylases checked 
per our published thresholds [55].

�Histopathological Assessment

Margin status is evaluated by frozen section intraoperatively and then by permanent 
section using College of American Pathologist (CAP) and American Joint Committee 
on Cancer (AJCC) guidelines [30]. The SMA margin, or retroperitoneal margin, 
along with pancreatic neck margin and the bile duct transection margin forms the 
three standardized margins that should be checked in a PD [45]. The pancreatic 
neck and bile duct transection margin are considered positive if tumor cells are pres-
ent at the ink. Because of the perceived risk of injuring the SMA, some surgeons use 
only palpation to feel and not see the SMA and then use energy devices to seal the 
peri-adventitial tissue or even staple or cut through uncinate tissue to avoid skele-
tonizing the dissection plane directly on the bare white adventitia. However, dissect-
ing along the plane will ensure the optimal tumor clearance and find all pancreatic 
branches to tears on the SMA. The SMA margin should be standardly sectioned to 
note the actual distance from the cut surface, with tumor cells present <1 mm of 
inked edge considered R1 resections [59].

�Adjuvant Therapy

In patients who receive surgery upfront, adjuvant therapy is the standard of care. 
However, the benefit of additional postoperative therapy remains debated. In one 
large retrospective study, receiving postoperative therapy had a positive effect in 
anatomically and borderline resectable PDAC patients who had been treated with 
chemotherapy [60]. Prospective trials that randomize patients after resection to 
additional postoperative therapy vs. surveillance are required to answer the question 
of additional therapy after neoadjuvant therapy. Until then, this decision will depend 
on patient and provider biases.
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�Postoperative Management

�Enhanced Recovery

At MDACC since July 2011, all patients who undergo a pancreatectomy are pro-
spectively monitored for adverse events for at least 90 days [61]. We initiated our 
Risk Stratified Pancreatectomy Clinical Pathways for pancreas surgery in 2016 
which immediately led to a reduction in our postoperative length of stay (LOS) to 6 
days from 9 days (similar to national databases) [62]. Three separate pathways were 
created to fast-track patients according to their postoperative complications risk 
determined by histology, BMI (Body Mass Index), and pancreatic duct diameter. 
We review our data systemically and have continued iterative changes to reduce 
usage of nasogastric tube, earlier drain removal, and substantially decreasing our 
total and discharge opioid usage [63–65]. Current updates continue to reduce LOS 
and opioid use further and incorporating pathways for minimally invasive surger-
ies [66].

Postoperative pancreatic fistula (POPF) is the most commonly studied complica-
tion due to its high downstream morbidity and mortality despite decades of work to 
mitigate its risk [67]. Despite the creation and validation of risk scores, excellent 
surgical technique remains the ideal mitigation technique. Even a randomized trial 
that showed reduction of POPF from use of pasireotide has not been externally vali-
dated and was limited by its original cohort of high and low risk patients and defini-
tions of POPF which were different than international guidelines [68, 69]. Our 
group stopped using pasireotide following internal analysis showing no changes in 
our outcome, especially in our low risk “Green” pathway patients [70].

Blood transfusions and major postoperative complications may have sequelae 
beyond worse short-term surgical outcomes and impact quality of life and oncologi-
cal outcomes [71, 72]. Retrospective data have shown associations with worse sur-
vival in patients after blood transfusions and major complications, especially 
patients treated with upfront surgery. Whether this is due to delays or omissions of 
adjuvant therapy and/or immunological effects due to untreated micro-metastatic 
disease is unknown [73, 74]. A “successful” operation is not judged solely on the 
pathology report, but rather the conduct of the operation itself and avoiding 
complications.

�Quality Measures

Surgeons play an integral role in ensuring a quality outcome. While current quality 
metrics are pathology based, we are working towards future metrics involving 
patient-centered outcomes such as return to baseline function and intended onco-
logic therapy.

As with other gastrointestinal cancers such as colon and stomach, pancreatec-
tomy has recommended lymph node harvest rates based on PD (≥15) vs. distal 
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pancreatectomy (≥10) [75]. Obviously, nodal harvest rates do not tell the whole 
story regarding surgical quality, but as with other cancers, it is used as a surrogate 
for regional clearance.

�Future Directions

Systematic improvements must be continually made to increase the proportion of 
patients who are optimized before undertaking a pancreatic resection. Centralization 
or regionalization to high-volume centers seems ideal in theory, although this is 
unrealistic in a free choice healthcare system and a wide geographic area as we have 
in the United States [76]. Finally, outcomes need to be iteratively studied at each 
center and within each state and region so that surgeons can have feedback for indi-
vidual improvement through a learning health system model.
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3Radiation Therapy for Pancreatic Cancer: 
Current and Evolving Paradigms

Gohar Shahwar Manzar, Joseph Abi Jaoude, 
Cullen M. Taniguchi, Albert C. Koong, Eugene J. Koay, 
and Ethan B. Ludmir

�Background

Ionizing radiation therapy (RT) uses high-energy rays or subatomic particles to 
impart DNA damage to decrease cell multiplicity and survival. RT is a component 
of treatment for 50% of all patients diagnosed with cancer and, together with sur-
gery and systemic therapy, forms a pillar of cancer treatment [1]. External beam RT 
has been utilized for various indications in the treatment of pancreatic cancer, with 
evolving paradigms that potentiate both curative and palliative intent in both neoad-
juvant and adjuvant settings. Across these disease states, RT may be beneficial as 
curative preoperative therapy, consolidative local therapy for locally advanced pan-
creatic cancer (LAPC), a palliative modality, and potentially even to consolidate 
oligometastatic disease in well-selected patients on clinical trials.
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While only 15% of patients with pancreatic cancer are deemed to have resectable 
disease at upfront staging, up to 50% of patients harbor localized disease that is not 
yet metastatic [2]. Even for the considerable proportion of patients with metastatic 
disease, patients often succumb to or suffer from complications of local progression 
[3]. Local progression from pancreatic tumors may lead to severe morbidity and 
compromises quality of life from pain, biliary obstruction, associated infection, or 
invasion of adjacent luminal tissues. In this regard, especially for non-metastatic 
disease, RT is commonly used to optimize local control and limits the morbidity and 
mortality from local disease recurrence or progression. Neoadjuvant RT offers 
improved clinical outcomes in patients eligible for surgery and is associated with 
higher rates of negative surgical margins. RT is also useful in patients presenting 
with tumors that are difficult to resect surgically, as local treatment with RT often 
downstages tumors enough to allow for surgical resection.

While RT is typically delivered in the neoadjuvant setting in combination with 
chemotherapy, choice of radiation modality, dose, and fractionation across clinical 
contexts remains challenging owing to lack of clear consensus within the pancreatic 
cancer radiation oncology community and diverse choice of doses and fractionation 
schemes in prospective trials. In this chapter, we offer an overview of the literature 
on radiation therapy across stages and states of pancreatic cancer (Fig.  3.1). We 
present technological considerations in RT delivery for pancreatic cancer, along 
with future directions as the role for RT continues to evolve.
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Fig. 3.1  Treatment paradigm incorporating multimodality management of pancreatic cancer 
across different stages of disease

�Primer on Modern Radiotherapy

External beam radiation therapy is generated by a linear accelerator, which delivers 
ionizing beams of RT conformally shaped to target areas of disease and avoid nor-
mal tissues [4]. While some RT effects are due to direct DNA damage, most RT 
manifests DNA damage through indirect generation of free radicals in an oxygen-
dependent process. These ionizing beams may consist of high energy photon rays 
more commonly, or mass-bearing particles. Within the arena of photon therapy, a 
primitive form is known as 3D radiation, which involves straight beams of radiation 
directed in various angles by the gantry, allowing for concentration of dose where 
the beams intersect at the target [5].
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Fig. 3.2  Sample treatment plan comparison of 3D vs. IMRT for pancreatic cancer

Building on this, photon-based therapies that are more advanced include inten-
sity modulated radiation therapy (IMRT) and volumetric modulated arc therapy 
(VMAT). IMRT utilizes photon energy and delivers treatment using multiple radia-
tion beams at varying intensities and discrete angles, with multi-leaf collimation at 
each angle to allow for change of the shape as the gantry turns [6]. This modality is 
particularly valuable when treating targets with complex shapes, rendering it suit-
able to treat pancreatic tumors (Fig. 3.2) [7].

VMAT is a state-of-the-art photon-based radiation modality that also utilizes 
photon energy but allows for continuous modulation of the multi-leaf collimation 
across a high number of radiation beams delivered across an uninterrupted arc in a 
relatively short period [8]. While data regarding VMAT is relatively limited, one 
dosimetric study comparing VMAT, IMRT, and 3D RT showed that VMAT could 
achieve adequate treatment planning, while having better sparing of organs at risk 
(OARs), particularly the duodenum and small bowel [9]. In this study, VMAT was 
also associated with fewer cases of grade 3+ gastrointestinal toxicity [9]. 3D RT, 
IMRT, or VMAT in conventional doses is typically given in 1.8–2 Gy equivalents 
per day, rendering fractionation schedules that can span up to 5.5 weeks of daily 
weekday treatment. On occasion, these fractions can be abbreviated with higher 
doses per fraction, a term called hypofractionation, which has been investigated 
with some promise in pancreatic cancer.

G. S. Manzar et al.
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To this end, more exaggerated hypofractionation has its own classification as a 
unique therapeutic modality known as stereotactic body radiation therapy (SBRT). 
SBRT is an advanced radiation modality that delivers highly conformal radiation 
with significant dose escalation to ≥5 Gy per fraction, compared to conventional 
fractionation with ≤3 Gy per dose [10]. Owing to the higher doses per fraction, 
SBRT allows for treatment delivery in a shorter fractionation schedule, typically 
consisting of 1–5 fractions. However, the high doses per fraction with SBRT limit 
the role of this modality in patients for whom distance between disease and organs 
at risk is adequate to avoid severe radiation-induced toxicity. As such, treatment 
planning with SBRT is similar to that of IMRT, but necessitates smaller margins and 
higher fidelity, complex image-guidance while delivering treatment. As we will dis-
cuss below, studies in BR pancreatic cancer and LAPC show some promising sig-
nals with SBRT, but progress is needed to (1) clarify its impact on patient outcomes, 
(2) optimize patient selection, and (3) refine the indications for treatment with this 
modality.

Finally, a different form of ionizing radiation involves the use of particles, such 
as protons, neutrons, or carbon ions, which have a higher relative biological effec-
tiveness compared to photons [11]. These beams manifest radiation with minimal or 
no exit dose due to targeted fall-off of radiation beams at precise distances, enabling 
dose escalation to the target while minimizing dose to normal tissue beyond the 
target [11]. Proton and carbon beams also create a “Bragg peak” with high dose at 
the distal end of the radiation beam. A disadvantage with these types of RT is uncer-
tainty of the “hot” beam edge, which may be precarious in the setting of pancreatic 
cancer treatment due to the sensitivity of lumen in neighboring bowel.

�Resectable and Borderline Resectable Pancreatic Cancer

One-fourth of all patients with pancreatic cancer present with resectable or border-
line resectable (BR) disease (Fig. 3.3) [12].

Fig. 3.3  Proportion of 
pancreatic cancer in 
staging categories at 
diagnosis
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Fig. 3.4  Degree of vessel 
involvement by pancreatic 
cancer defines resectability

While TNM staging has been devised for pancreatic cancer, patient disposition 
to treatment is primarily guided by CT-guided delineation of resectability [13]. 
While definitions vary across regional sites of the oncology community, resectable 
disease generally denotes disease that does not involve surrounding arteries, with a 
tumor-vessel interface (TVI) that does not exceed 180° (Fig. 3.4). BR pancreatic 
cancer describes a tumor confined to the pancreas, with limited encirclement of 
adjacent vasculature (<180° encirclement of the SMA or celiac trunk), and in situa-
tions where vascular reconstruction is feasible. The concept of BR pancreatic can-
cer has emerged in the past decade to encompass a distinct spectrum of disease for 
which resection is relatively more likely to yield a microscopic positive margin (R1 
resection), ascribed to the relationship between the pancreatic cancer and neighbor-
ing blood vessels [13].

Other key factors that influence the disposition of patients include features that 
signify a higher risk for the presence of occult metastatic disease. This includes 
patients with elevated CA 19-9 (>100 U/mL) levels or symptomatic patients with 
extreme pain or weight loss [14]. Advanced disease may also be noted on imaging 
with a tumor larger than 3 cm or the presence of suspicious lymph nodes. These 
factors may suggest optimal treatment with neoadjuvant systemic therapy prior to 
consideration of surgery to ensure that a surgical outcome is worthwhile.

Surgery is widely considered the sole potentially curative modality for patients 
with pancreatic cancer who can achieve a margin-negative resection [14]. The 
potential of positive surgical margins has consistently portended poorer overall sur-
vival (OS), as well as increased risk of tumor recurrence and progression [15]. In 
ESPAC-1, positive margins conferred a median OS of 11 months vs. 17 months in 
patients with negative margins [16]. Similarly, a single-institution report of 1175 
patients with pancreatic cancer found a median OS of 14 months with margin-pos-
itive resection vs. 20 months with R0 resection [17]. Microscopic tumor at resection 
margins offered a detriment to survival to a similar extent as grossly positive 

G. S. Manzar et al.



43

Fig. 3.5  Proposed and observed benefits with the neoadjuvant chemoradiation approach for the 
treatment of pancreatic cancer

margins [15]. The importance of negative margins in determining post-resection 
survival has spurred investigation of preoperative therapy, including RT, for patients 
with resectable and borderline resectable pancreatic cancer. The aims of this 
approach are to optimize the odds of margin-negative resection, decrease the risk of 
postoperative relapse, and improve the likelihood of longer-term disease control 
(Fig. 3.5).

The safety and feasibility of neoadjuvant RT was assessed in a 1997 prospective 
aggregate analysis comparing clinical outcomes and toxicity between preoperative 
and postoperative chemoradiation in patients with resectable disease. This trial 
demonstrated that preoperative RT was safe and associated with similar outcomes 
to postoperative treatment [18]. Another single center trial included patients with 
resectable pancreatic cancer treated with preoperative chemoradiation with 
5-fluorouracil [19]. Patients who did not progress 1 month after treatment under-
went surgical resection with intraoperative RT [19]. The trial showed that 
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Table 3.1  Summary of outcomes with modern neoadjuvant chemoradiation (CRT) optimizing 
the resectability and survival of patients with pancreatic cancer

PREOPANC Surgery (n = 127) Neoadjuvant CRT (n = 119) p-value
Resection rate 72% 61% 0.065
R0 resection rate 40% 71% <0.001
Serious adverse events 41% 62% 0.28
5-year OS 6.5% (95% CI: 3.1–13.7) 20.5% (95% CI: 14.2–29.8) 0.025
Hazard ratio 0.73 (95% CI: 0.56–0.96)
Jang et al. [21] Surgery (n = 18) Neoadjuvant CRT (n = 17) p-value
Resection rate 78.3% 63% >0.05
R0 resection rate 26.1% 51.8% 0.01
Grade ≥3 adverse events 11.1% 7.7% 0.643
2-year OS 40.7% 26.1% 0.028
ESPAC-5F1 Surgery (n = 32) Neoadjuvant CRT (n = 56) p-value
Resection rate 62% 55% 0.668
R0 resection rate 15% 23% 0.721
Adverse events – 17.6% 0.28
1-year OS 40% (95% CI: 26–62%) 77% (95% CI: 66–89%) <0.001
Hazard atio 0.27 (95% CI: 0.13–0.55)

neoadjuvant RT was safe and associated with minimal toxicity, with only 9% of 
patients experiencing grade 3 toxicity [19].

More recently, the PREOPANC trial was a phase III randomized controlled trial 
that included patients with resectable or BR pancreatic cancer [20], generating sig-
nificant support for the neoadjuvant treatment approach (Table 3.1). In this well-
balanced multicenter intention-to-treat trial, patients were randomized at diagnosis 
to either receive preoperative chemoradiotherapy followed by surgery and adjuvant 
gemcitabine or undergo upfront surgery followed by similar adjuvant therapy [20]. 
RT was delivered with 36 Gy in 15 fractions. Of note, resectability in this trial was 
defined according to the Dutch criteria, which are more stringent and thus may 
exclude patients that may be considered resectable or borderline resectable by con-
ventional understanding in the United States. In the PREOPANC trial, resectable 
disease was defined as ≤90° involvement of the superior mesenteric vein (SMV) or 
portal vein (PV) and no contact of the superior mesenteric artery (SMA). Borderline 
resectable pancreatic cancer was defined as ≤270° involvement of the SMV or PV, 
and ≤90° involvement of the celiac axis, hepatic artery, or SMA. Other exclusion 
criteria included T1 tumors.

With the primary endpoint of OS in the long-term follow-up report, neoadjuvant 
chemoradiation followed by surgery demonstrated improvement compared to 
upfront surgery, with a 5-year OS of 20% vs. 6% (p < 0.001). In the initial report, 
the OS benefit was only seen in the per-protocol analysis as well as in patients with 
BR pancreatic cancer. Significantly, patients who received neoadjuvant chemoradi-
ation had improved rates of R0 resections (71% vs. 40% for patients treated with 
upfront surgery, p < 0.001) [20]. Moreover, the addition of preoperative RT was also 
associated with improved local-regional control and disease-free survival [20].

These results favoring neoadjuvant RT were supported by a multicenter phase II/
III randomized controlled trial published in 2018 by Jang et  al. [21]. This study 
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randomized patients with BR pancreatic cancer to receive either neoadjuvant 
gemcitabine-based chemoradiation followed by surgery or upfront surgery [21]. 
The trial showed that patients receiving neoadjuvant therapy had improved 2-year 
survival rates, with a median survival of 21 months vs. 12 months in the upfront 
surgery arm, and higher 2-year survival at 40.7% vs. 26.1% [21]. Patients in the 
neoadjuvant chemoradiation arm also had double the rate of R0 resection compared 
to patients treated with upfront surgery at 52% vs. 26% [21].

The evidence discussed thus far highlights the compelling role for preoperative 
chemoradiation in treating patients with resectable or BR pancreatic cancer. 
However, the aforementioned trials did not compare neoadjuvant chemoradiation to 
chemotherapy alone. The Alliance A021501 trial included 126 patients with BR 
pancreatic cancer and randomized them to either neoadjuvant mFOLFIRINOX 
alone for 8 cycles, or neoadjuvant mFOLFIRINOX for 7 cycles followed by high-
dose, specialized RT preceding surgery in patients without disease progression, fol-
lowed by adjuvant mFOLFOX6. The RT used in this trial consisted of either SBRT 
to 33–40 Gy in 5 fractions or hypofractionated RT to a dose of 25 Gy in 5 fractions 
in other patients [22]. This supremely conformal, focused, and high-dose radiation 
treatment was used for its potential to achieve sharper dose fall-off gradients to 
normal tissue, deliver higher doses to areas at elevated risk for R1 resection, and 
decrease the time to resection.

This phase II trial paradoxically showed—considering the other work noted 
above—that patients receiving chemoradiation had worse 18-month OS and surgi-
cal outcomes compared to patients treated with chemotherapy alone [23]. The radia-
tion treatment arm of this trial was closed prematurely at the interim futility analysis 
based on stopping rules rooted on a concerningly high margin-positive resection 
rate observed in the preoperative RT arm. As a result, statistical requirements to 
conclude efficacy were unable to be met, and there was inadequate power for com-
parison. Nevertheless, the trial included two patients that showed pathologic com-
plete response, and both of those patients were in the radiation arm. The suggestion 
from the Alliance trial was that not all patients with BR pancreatic cancer would 
benefit from local treatment with neoadjuvant SBRT.

Notably, this Alliance trial randomized patients at the start of all preoperative 
therapy, not after the initial mFOLFIRNOX. Thus, there were imbalances between 
the two arms by the time these patients came to SBRT vs. undergoing one more 
cycle of mFOLFIRNOX. The design of this trial was counterintuitive to the treat-
ment paradigm generally instituted, in which local therapy with curative intent, such 
as surgery, is offered only to thoughtfully selected patients who have no disease 
progression or signs of distant failure. Similar to how surgical resection is not typi-
cally a treatment that these mutable patients are blindly randomized to, highly con-
formal SBRT may not offer a favorable outcome if patients are not carefully chosen 
and thus poised to benefit from such a local treatment modality. In other words, 
“routine” disposition of patients to SBRT is not meant to be done, and patients 
undergoing such therapy must be carefully selected. Additionally, the participating 
trial institutions had varying comfort levels with this highly specialized form of 
RT.  The allowance for an inadequate RT dose of 25  Gy in 5 fractions rendered 
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Table 3.2  Summary of outcomes with adjuvant chemotherapy or radiation in patients with pan-
creatic cancer

Trial n Postoperative regimens

R1 
status 
(%)

LN 
“+” 
(%) Median OS

GITSG 91-73 
[26]

43 Observation vs. 5-FU + RT → 
maintenance 5-FU

0 28 11 vs. 20 mos

EORTC 40891 
[27]

218 Observation vs. bolus 5-FU + 
RT

22 50 12.6 vs. 17.1 mos

ESPAC-1 [16] 541 Observation vs. bolus 5-FU 
vs. 5-FU + RT vs. 5-FU +  
RT + consolidative 5-FU

18 54 16.9 (obs) vs. 21.6 
(chemo only) vs. 19.9 
(CRT) vs. 14.2 mos 
(CRT + chemo)

RTOG 9704 
[28]

442 5-FU → CRT (5-FU) → 5-FU 
vs. gem → CRT (5-FU) → 
gem

34 66 16.7 (5-FU) vs. 18.8 
mos (gem)

ECOG-FFCD 
[25]

74 Gem vs. gem → gem + RT 3 70 9.2 vs. 11.1 mos

potential subtherapeutic variability that may have compromised treatment out-
comes. Ultimately, this trial underscores the crucial need for a close multidisci-
plinary approach between radiologists, radiation, surgical, and medical oncologists 
to select which patients to treat with RT and also highlights the need for prognostic 
biomarkers to aid in optimal patient selection.

Historical efforts to supplement surgery with multimodality treatment involved 
adjuvant combinations of chemotherapy or RT [24], which lacked the benefit of 
prognostication and optimal patient selection that is apparent with a neoadjuvant 
approach described above. Mixed results were seen in the adjuvant setting, with 
several trials showing minimal improvement in OS when comparing chemoradia-
tion with chemotherapy alone (ECOG-FFCD [25]) or observation (GITSG 91-73 
[26], EORTC 40891 [27]), detailed in Table 3.2. The ESPAC-1 trial published in 
2001 remains among the most well-known adjuvant therapy trials but is widely 
criticized for its methodology [16]. It demonstrated a benefit of adjuvant chemo-
therapy alone (median OS 15.5 months with observation vs. 21 months with chemo-
therapy) and suggested a surprising detriment to survival with adjuvant 
chemoradiation (median OS 15.9 months with chemoradiation vs. 17.9 months with 
chemotherapy alone). These findings require contextualization considering several 
trial shortcomings, including lack of loyalty to protocol assignment, with incom-
plete chemotherapy in 50% of the patients, subtherapeutic RT in 33% of the patients, 
and 33% of patients in observation and chemotherapy alone arms who unexpectedly 
underwent RT [16]. There was also selection bias in treatment choice, with physi-
cian input incorporated into randomization and background therapy, inconsistent 
RT dose, and no central quality assurance of RT. Thus, it is challenging to appreci-
ate the true value or lack thereof regarding adjuvant RT based on these trials. The 
ongoing Phase III trial RTOG 0848 may address this open-ended question [28, 29], 
but notably does not utilize modern systemic therapy.
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Overall, in contrast to neoadjuvant chemoradiation, postoperative RT appears to 
be more toxic due to anastomoses and bowel falling into the radiation field [30]. 
Chemotherapy may be given before the RT to avoid the additional toxicity of con-
current treatment. Ultimately, indications for postoperative radiation therapy in pan-
creatic cancer are rare and typically include a positive margin at the time of surgery 
in a patient for whom there is no evidence of relapse or increasing CA-19-9 after the 
completion of the adjuvant chemotherapy. We hold a relatively high threshold to 
offer adjuvant RT and instead attempt to reserve RT as an option in the future in the 
event of localized local or regional relapse.

As a result of the above evidence, ASTRO has issued conditional recommenda-
tions [31] for neoadjuvant treatment of BR pancreatic cancer with 45–50.4 Gy in 
180–200 cGy fractions, or dose escalation with SBRT to 30–33 Gy in 6–6.6 Gy 
fractions with a consideration for a simultaneous integrated boost of up to 40 Gy to 
the tumor vessel interface. However, in light of the Alliance trial results described 
above [23], our practice has not involved dose escalation for neoadjuvant RT in the 
treatment of BR pancreatic cancer.

In practice, RT dosing and fractionation in resectable and BR pancreatic cancer 
is decided on a case-by-case basis with multidisciplinary discussion, prognostica-
tion, and physician preference (Fig. 3.6a).

a

b

Fig. 3.6  Treatment approach for the management of resectable or borderline resectable pancreatic 
cancer. (a) Resectable and BR pancreatic cancer via biopsy. (b) Resectable and BR pancreatic 
cancer clinical trail
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Within this treatment paradigm, we consider radiation regimens based on the 
expected biology and anatomy of disease (Fig. 3.6b). A preoperative radiation regi-
men that may be considered for patients who are deemed almost certain surgical 
candidates involves 3D radiation or intensity modulated radiation therapy (IMRT) 
delivered to a dose of 30 Gy in 10 fractions [32]. A more standard approach is to 
deliver 50 Gy in 25 fractions with IMRT. For high-risk patients, prognostication for 
the risk of micrometastases affords the possibility that surgery may not transpire. 
High-risk disease is defined by the presence of elevated CA 19-9 levels, symptoms, 
or features of advanced disease on imaging. For these patients, treatment is favored 
with long-course concurrent chemoradiation to 50–50.4 Gy in 180–200 cGy frac-
tions, as opposed to highly conformal SBRT that is suboptimal by itself by way of 
its narrow treatment field. SBRT would also be contraindicated in patients with 
tumor invading bowel, or for whom the proximity of tumor to luminal structures 
is ≤1 cm.

�Locally Advanced Pancreatic Cancer

Patients with locally advanced pancreatic cancer (LAPC) present with localized 
disease that has extensive involvement of major neighboring vessels, making surgi-
cal resection infeasible. For LAPC patients, both systemic therapy and RT tend to 
be utilized. Systemic therapy is typically delivered first, allowing for a “test of biol-
ogy” to address both the primary tumor while assessing risk of distant metastatic 
disease progression or development, since this is the primary driving pattern of 
spread for pancreatic ductal adenocarcinoma [30]. Typically, the current treatment 
paradigm is such that LAPC patients are treated with approximately 6 months of 
systemic therapy, generally with multi-agent regimens, such as FOLFIRINOX or 
gemcitabine/abraxane. Those without evidence of distant progression after systemic 
therapy are then often dispositioned to consolidative RT [33]. This strategy helps 
identify patients that have occult distant disease and that would not benefit from 
RT. Krishnan et al. published a retrospective series of over 300 patients with LAPC 
in 2007 that were either treated with chemoradiation or gemcitabine-based induc-
tion chemotherapy followed by RT, with 85% of patients treated to a dose of 30 Gy 
in 10 fractions [33]. Patients treated with induction chemotherapy before RT had 
improved recurrence patterns and overall survival, suggesting that induction chemo-
therapy could help identify patients with rapid distant progression and exclude 
those from receiving additional unnecessary and potentially harmful local treatment 
[33]. The benefit of RT in addition to chemotherapy in patients with LAPC was also 
suggested in another retrospective study by Huguet et al., which examined patients 
enrolled on the GERCOR studies and divided them into two cohorts: patients treated 
with chemotherapy alone or chemoradiation to a dose of 55 Gy in 30 fractions as 
well as a conedown 10 Gy boost over 8 fractions delivered in the last 2 weeks of 
treatment [34]. Results of this study showed that adding RT after disease control 
with initial chemotherapy leads to improved progression-free and overall sur-
vival [34].
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Promising results from those two studies were later tested in the LAP07 phase 
III randomized controlled trial [35]. The trial included patients with LAPC that 
were treated with 4 months of chemotherapy and showed stable disease. After 
successful induction chemotherapy, patients were randomized to continue che-
motherapy alone or receiving chemoradiation to a dose of 54 Gy in 30 fractions. 
While the trial did not show any difference in overall survival between the two 
arms, patients treated with additional RT had lower rates of local progression 
(32% vs. 46% in the chemotherapy-only arm), without having a significant 
increase in grade 3+ toxicity [35]. The decrease in local progression with chemo-
radiation was not correlated to quality of life, which was not examined in this 
cohort, unfortunately. Other notable limitations of the trial included the presence 
of RT deviations in 60% of the chemoradiation arm, 20% of the chemotherapy 
arm undergoing RT, and the use of gemcitabine, which was later found to be 
inferior to FOLFIRINOX.

One of the main challenges in treating LAPC is that pancreatic adenocarcinoma 
is often very radioresistant, and hence higher doses of RT are needed to achieve 
proper local control [36]. However, dose escalation can be very challenging with 
LAPC owing to potential toxicity to nearby organs at risk, particularly the duode-
num. One of the first studies to analyze dose escalation in LAPC was a study by 
Krishnan et al., which included patients treated with induction chemotherapy fol-
lowed by IMRT [36]. The study compared clinical outcomes between patients 
receiving RT with biologically effective dose (BED) higher or lower than 70 Gy, 
demonstrating that a BED >70 Gy was associated with improved overall survival 
and local-regional control. Furthermore, the study showed that treatment with 
BED >70 Gy was safe, as no additional toxicity was noted in this cohort of patients 
[36]. A more recent study by Reyngold et al. assessed the role of ablative RT in 
LAPC. Patients in this study were treated with a BED of 98 Gy and showed prom-
ising overall survival (median OS from diagnosis: 26.8 months, median OS from 
RT: 18.4 months) and local-regional failure rates (12-month: 17.6%, 24-month: 
32.8%), while still showing tolerable treatment toxicity [37]. Results from those 
studies show safe and promising clinical outcomes for dose escalation in LAPC 
[38]. A phase I/II trial is currently assessing the role of radiomodulation with 
GC4419 in LAPC to allow for further dose escalation with SBRT [39]. Patients on 
this trial are treated with 50–55 Gy in 5 fractions in the hope of achieving stronger 
local control and better overall survival rates, while still showing tolerable toxicity. 
Conceptually, results suggest that currently, these dose-escalated regimens poten-
tially confer some advantage over conventional doses. However, this remains 
driven primarily by nonrandomized data, and these observations should be inter-
preted with caution.

For LAPC, we employ a management schema that considers the array of possible 
RT regimens specified by anatomical considerations and coverage goals (Fig. 3.7). 
There are a variety of approaches in terms of dose-fractionation, ranging from con-
ventional fractionation to 50.4 Gy in 28 fractions, or dose escalation with either 
SBRT to a dose of 50–55  Gy in 5 fractions, or hypofractionated ablative RT to 
67.5 Gy in 15 fractions, or ablative RT consisting of 75 Gy in 25 fractions. Ultimately, 
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Fig. 3.7  Treatment approach for the management of locally advanced pancreatic cancer

while further progress is needed to demonstrate overarching benefits of dose-
escalated RT for LAPC compared to no radiation or conventional RT, the strategy 
appears promising.

�Palliative Radiation Therapy

Palliative RT is occasionally offered to patients with pancreatic cancer presenting 
with poor performance status or metastatic pancreatic cancer. Patients may present 
with celiac artery compression syndrome, which may manifest as a constellation of 
symptoms, including epigastric pain shooting to the back, “gnawing” abdominal 
pain, or nausea and emesis [40]. The main aim in such patients would be to alleviate 
abdominal or epigastric pain caused by the tumor compressing upon the celiac 
artery or plexus. Nevertheless, limited data exist on the effectiveness of palliative 
RT in patients with advanced pancreatic cancer.

A small retrospective study in Poland analyzed the role of palliative RT in 31 
patients with unresectable pancreatic cancer, where 26 (84%) had M0, and 5 (16%) 
had M1 disease, and the median ECOG performance status was 2 [41]. Patients in 
this study were treated with 6–30 Gy delivered over 1–10 fractions. Treatment was 
overall well-tolerated, with no finding of treatment interruptions or hospitalization 
due to toxicity. Only mild early toxicity was noted in 30% of patients, and no grade 
3+ early or late toxicity was seen in the study. The study also analyzed pain intensity 
associated with pancreatic cancer prior to RT, and 1 month after treatment. 
Approximately half of the patients (55%) achieved good pain control after palliative 
RT with no pharmacological therapy, and 40% of patients reduced their analgesic 
requirements [41]. In another prospective study, Tian et al. enrolled 31 patients with 
stage III or IV pancreatic cancer and treated them with palliative RT using 40–42 Gy 
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over 7–10 fractions [42]. The trial was designed to assess quality of life using patient 
reported outcomes and showed that a considerable proportion of patients showed 
improvements in pain following therapy [42]. According to the BPI, 57% of patients 
had significant improvement in abdominal symptoms 1 month after therapy, and 
43% of patients reported improvement in daily life parameters such as mood, sleep, 
walking, and work [42].

As noted above, the radioresistance of pancreatic ductal adenocarcinoma may 
mean that even palliative approaches require dose escalation to optimally palliate 
patients. A recent single-arm phase II trial was published in 2022 that assessed the 
use of single-fraction celiac plexus radiosurgery in patients with upper abdominal 
cancers (including pancreatic cancer), who presented with moderate to severe retro-
peritoneal pain [43]. The study evaluated 18 patients that were treated with a single 
fraction of 25 Gy to the entire retroperitoneal celiac plexus. Results from this trial 
show that single-fraction radiosurgery was safe and tolerable with only mild grade 
1–2 toxicity noted. Moreover, 84% of patients reported pain improvement 3 weeks 
after therapy, with median pain level decreased from 6/10 at baseline to 3/10. 
Further improvements were noted 6 weeks post-RT, with median pain level at 2.8/10 
on the pain scale and 4 patients with complete pain eradication [43]. This study 
offers very promising results for the use of single-fraction radiosurgery as an option 
for celiac plexus pain palliation, especially compared to nerve block, which is an 
invasive procedure with a variable success rate and complication risks, including 
hypotension.

�Future Directions and Promising Technologies

Recent interest has emerged in the use of particle therapy to treat pancreatic cancer. 
More specifically, proton and carbon therapy both show promising results in treat-
ing localized pancreatic cancer. Proton therapy enables the delivery of radiation 
with minimal or no exit dose, allowing for target dose escalation, while minimizing 
radiation side effects to normal tissue beyond the target [11]. A phase I/II trial by 
Terashima et al. assessed the role of proton therapy in patients with LAPC using 
either 50 Gy in 25 fractions, 67.5 Gy in 25 fractions, or 70.2 Gy in 26 fractions and 
demonstrated similar clinical outcomes to historical data with minimal grade 3+ 
toxicity [44, 45]. Carbon therapy is a rarer form of particle-based therapy that has 
shown promising results in many disease sites, including pancreatic cancer. The use 
of carbon ions offers some advantages over proton- and photon-based RT [46]. 
Carbon ions have a higher relative biological effectiveness and less lateral scatter-
ing. Moreover, carbon ion therapy has a relatively lower oxygen enhancement ratio, 
signifying that the tumor-killing effect of carbon ions is independent of tumor oxy-
genation [47]. This property of carbon therapy is particularly desirable in pancreatic 
malignancies, owing to the hypoxic and radioresistant tumor environments of pan-
creatic cancer. Despite some data showing the effectiveness of carbon therapy, the 
major limitation of this therapy is its limited availability in cancer centers, with only 
a few centers offering this modality across the world. The CIPHER trial is an 
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ongoing phase III trial comparing the use of IMRT to carbon therapy in patients 
with LAPC, and will help oncologists better understand the role of carbon therapy 
in pancreatic cancer (NCT03536182) [48].

Lastly, FLASH-RT is a modern advanced radiation modality that delivers ultra-
high doses of radiation to the tumor target, while sparing neighboring normal tissue, 
a phenomena being dubbed the FLASH effect [49]. While conventional radiation 
modalities deliver radiation at rates smaller than 0.1 Gy/s, radiation delivery with 
FLASH-RT is typically higher than 40 Gy/s [50, 51]. FLASH therapy has been 
studied in preclinical models with promising results in multiple disease sites, and 
FLASH-RT could potentially be well-suited to treat pancreatic cancer owing to its 
highly radioresistant tumor environment and close proximity of organs at risk [52]. 
Currently, IntraOp Medical has developed an electron-based FLASH LINAC that 
has recently been approved for use in preclinical and human studies and will hope-
fully be tested in future clinical trials, but will likely be focused on treatment of 
dermal malignancies initially due to its shallow penetration [53]. Future studies 
could include intraoperative FLASH but that is speculative at this time. Proton 
FLASH studies are ongoing. Higher energies may allow for treatment of deep-
seated tumors, including possibly pancreatic cancer.

To bolster the therapeutic ratio, combinatorial approaches are being investigated 
that use either radiosensitizers to amplify radiation target effects or radioprotectors 
to fortify adjacent normal tissue, including the stomach or duodenum. As intro-
duced above, a phase I/II trial is determining if radioprotection by GC4419 may 
enable dose escalation with SBRT in LAPC [39]. Furthermore, non-SBRT courses 
of RT are routinely delivered in our practice with concurrent radiosensitization with 
capecitabine. Nanoparticles are also being developed to support these aims, with 
taggable cargo that may influence the therapeutic ratio by synergizing with radiation 
to enhance target sensitivity [54].

Finally, there is dynamic evolution in our traditional understanding of metastatic 
disease as being incurable [55]. A frontier of investigation is devoted to the potential 
conversion of patients with a few sites of metastatic disease into a curable state. The 
EXTEND trial is an ongoing phase II trial at the MD Anderson Cancer Center that 
will assess the role of RT in patients with solid tumors, including pancreatic cancer, 
presenting with oligometastatic disease, and will hopefully shed light on the role of 
consolidative RT in the oligometastatic setting (NCT03599765) [56].

�Summary

RT is a common modality in pancreatic cancer regardless of disease stage. 
Neoadjuvant therapy is commonly employed in patients with resectable or BR pan-
creatic cancer, with the principal goal of sterilizing surgical margins after resection 
and, by doing so, limiting tumor recurrence after surgery. Patients with LAPC also 
benefit from local treatment with RT to delay or abrogate local progression, espe-
cially since surgical resection is often not feasible in those patients. Owing to the 
aggressive nature of LAPC, dose escalation is typically needed to achieve proper 
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local control and improve survival rates. Limited data exist on the effectiveness of 
palliative RT in advanced pancreatic cancer. However, owing to promising results 
from small retrospective and prospective studies, this approach could be considered 
to alleviate pain in patients with LAPC or metastatic pancreatic cancer. Lastly, 
while photon-based therapy has shown positive results in the past, modern therapies 
including particle-based RT and FLASH-RT are being studied. Cutting edge ongo-
ing investigation may help identify the role of these modern therapies in the treat-
ment of pancreatic cancer.
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4Therapy for Metastatic Pancreatic 
Cancer

Benjamin Musher and Huili Zhu

�Introduction

Pancreatic ductal adenocarcinoma (PDAC) is the third leading cause of cancer-
related mortality in the United States [1]. About 50% of patients present with meta-
static disease, which carries a dismal 5-year survival of <5% [2]. Despite better 
understanding of the pathogenesis underlying PDAC and the emergence of more 
effective combination chemotherapy regimens, effective options for systemic ther-
apy remain limited, due to a dearth of known actionable molecular targets and resis-
tance to readily available immunotherapeutic agents.

�First-Line Systemic Therapy

Until the 2000s, the mainstay of systemic treatment for metastatic PDAC (mPDAC) 
was single-agent chemotherapy. In 1997, Burris et al. [3] reported the results of a 
pivotal trial randomizing patients with locally advanced or mPDAC to weekly gem-
citabine or bolus 5-fluorouracil (5-FU). When compared to 5-FU, gemcitabine 
yielded superior “clinical benefit” (a composite measure of pain, performance status 
[PS], and weight), median overall survival (OS) (5.65 vs 4.41 months, P = 0.0025), 
and 12-month survival (18% vs 2%, P value not reported). Despite its modest sur-
vival benefit and an objective response rate of only 5.4%, single-agent gemcitabine 
became the standard regimen for treating advanced PDAC.

Over the next decade, numerous gemcitabine-based combinations showed prom-
ise in single-arm Phase II trials, but subsequent randomized-controlled trials adding 
cytotoxic agents (e.g., capecitabine, S1) to gemcitabine failed to demonstrate 
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improved outcomes over gemcitabine alone. In 2009, Cunningham et al. reported 
that their Phase III trial comparing gemcitabine/capecitabine (GEM-CAP) to gem-
citabine in patients with advanced PDAC narrowly missed its primary endpoint of 
OS (HR 0.86; 95% CI 0.72–1.02; P = 0.08). In the same paper, they combined their 
results with two similar studies, yielding a statistically significant benefit of GEM-
CAP over gemcitabine (HR 0.86; 95% CI 0.75–0.98; P = 0.02).

Following the approval of targeted therapies for other cancers, clinical trials 
investigating biologic agents with various mechanisms of action (e.g., cetuximab 
[4], bevacizumab [5], axitinib [6], and sorafenib [7]) in patients with mPDAC 
yielded negative results until Moore et al. reported the results of NCIC CTG PA.3, 
in which 569 patients with locally advanced unresectable or mPDAC were random-
ized to gemcitabine plus erlotinib or gemcitabine alone [8]. The experimental arm 
yielded a statistically significant improvement in median progression-free survival 
(PFS) (HR 0.77; P = 0.004), median OS (6.24 vs 5.91 months, HR 0.82; P = 0.038), 
and 1-year OS (23% v 17%; P = 0.023), but no improvement in response rate (8.6% 
vs 8.0%) or disease control rate (57.0% vs 49.2%, P = 0.07). Of note, the presence 
of a treatment-related rash was associated with longer median OS and a higher 
1-year survival rate, but no tissue biomarker predictive of response to erlotinib was 
ever identified. The modest clinical benefit (albeit statistically significant) of gem-
citabine/erlotinib, combined with its low response rate and the absence of a predic-
tive biomarker, tempered practitioners’ enthusiasm and therefore compromised its 
widespread use.

In 2011, a major shift in the treatment paradigm for mPDAC occurred when the 
results of the PRODIGE [9] trial were reported. This landmark Phase III random-
ized controlled trial (RCT) compared FOLFIRINOX (biweekly infusional 5-FU, 
irinotecan, and oxaliplatin) to gemcitabine among patients with mPDAC who were 
≤75 years old with an ECOG PS of 0–1. When compared to gemcitabine, 
FOLFIRINOX demonstrated a superior overall response rate (ORR) (31.6% vs 
9.4%, P < 0.001), median PFS (6.4 vs 3.3 months, HR 0.47; P < 0.001), and median 
OS (11.1 vs 6.8 months, HR 0.57; P < 0.001). Common grade 3/4 toxicities associ-
ated with FOLFIRINOX included neutropenia (45.7%; but only 5.4% febrile neu-
tropenia), fatigue (23.6%), vomiting (14.5%), diarrhea (12.7%), and sensory 
neuropathy (9.0%). Despite these toxicities, patients in the FOLFIRINOX arm 
experienced better quality of life (QOL) at 6 months by the Global Health Status 
and Quality of Life scales (HR 0.47; 95% CI 0.30 to 0.70; P < 0.001) and demon-
strated improved QOL and a slower deterioration of QOL.  This pivotal study 
changed the standard of care for managing mPDAC in patients ≤75 years old with 
preserved ECOG PS and became widely adopted in academic centers and the com-
munity alike. To reduce the myelosuppression induced by FOLFIRINOX, modified 
versions of this regimen with the addition of growth factor support were tested in 
single-arm studies and yielded comparable efficacy with less neutropenia and better 
tolerability [10].

Unlike PRODIGE, which was conducted in French academic centers and 
excluded patients older than 75 and with an ECOG PS > 1, the Phase III MPACT 
ABI-007 trial [11] was conducted in 193 sites across three continents, had no 
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specified age limit for inclusion, and required a Karnofsky performance status 
(KPS) ≥70 (thus enrolling some patients with an ECOG PS 2). In this RCT reported 
by Von Hoff et al. in 2013, the combination of nab-paclitaxel and gemcitabine (nPG) 
yielded a superior ORR (23% vs 7%, P < 0.001), PFS (5.5 vs 3.7 months, HR 0.69; 
P < 0.001), OS (8.5 vs 6.7 months, HR 0.72; P < 0.001), and 1-year OS (35% vs 
22%, P < 0.001) over single-agent gemcitabine. The most common grade 3/4 
adverse events in the nPG arm were neutropenia (38%), fatigue (17%), and neu-
ropathy (17%). Of note, grade 3/4 diarrhea occurred in only 6% and grade 3/4 nau-
sea and/or vomiting in <5% of patients received nPG. To date, there has been no 
RCT comparing FOLFIRINOX and nPG in untreated mPDAC. As such, one has not 
been proven to be superior, and both are considered standard options for untreated 
mPDAC.  Keeping in mind the pitfalls of cross-trial comparison, FOLFIRINOX 
yielded numerically superior treatment-related outcomes (ORR, PFS, OS, and 
1-year OS) than nPG. On the other hand, nPG was associated with numerically less 
myelosuppression and GI toxicity and was tested in a more inclusive patient popula-
tion (sites throughout the world, KPS ≥70, no limit on age). Thus, when discussing 
these two regimens with patients, clinicians should consider efficacy, toxicity, age, 
performance status, and logistical factors (a biweekly regimen that includes a 46-h 
5-FU infusion pump versus a weekly that does not contain an infusion pump) when 
helping patients to weigh their options.

Results of NAPOLI-3 [12], a randomized, global, Phase III study comparing 
NALIRIFOX [13] (liposomal irinotecan, 5-FU, and oxaliplatin) to nPG in patients 
with treatment-naïve mPDAC, were presented at the 2023 ASCO Gastrointestinal 
Symposium. At a median follow-up of 16.1 months, the trial met its primary end-
point of median OS (11.1 with NALIRIFOX vs 9.2 month with nPG, HR 0.84; 95% 
CI 0.71 to 0.99, P = 0.04) and its secondary endpoint of PFS (7.4 with NALIRIFOX 
vs 5.6 month with nPGs, HR 0.70; 95% CI 0.59 to 0.84, P = 0.0001). Grade 3/4 
gastrointestinal treatment-related adverse events (diarrhea, nausea, and hypokale-
mia) were more common with NALIRFOX, while grade 3/4 anemia and neutrope-
nia were more common with nPG. Although these results support consideration of 
NALIRIFOX as a new reference regimen for first-line treatment of metastatic 
PDAC, it is unclear whether NALIRIFOX is superior to standard FOLFIRINOX or 
sequential administration of doublet regimens (e.g., nPG followed by 5FU/liposo-
mal irinotecan or nPG followed by FOLFIRINOX).

�Second-Line Systemic Therapy

Unfortunately, many patients who progress on first-line therapy are not eligible for 
additional treatment due to decline in organ function and overall performance sta-
tus. Of those who are medically appropriate for additional therapy, standard options 
are limited. Only a handful of randomized trials have investigated second-line sys-
temic therapy for mPDAC. In 2009, Yoo et al. [14] reported the results of a single-
center, randomized Phase II trial comparing FOLFIRI (biweekly 5-FU, leucovorin, 
and irinotecan) and mFOLFOX (biweekly 5-FU, leucovorin, and oxaliplatin) in 
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patients with gemcitabine-refractory advanced PDAC.  Median OS was 16.6 and 
14.9 weeks in the FOLFIRI and FOLFOX arms, respectively, and both regimens 
were tolerated with expected and manageable side effects.

The combination of 5-FU and oxaliplatin was subsequently reported in two 
larger trials. The German CONKO-study group conducted a Phase III trial [15] that 
randomized patients with advanced PDAC whose disease had progressed on gem-
citabine to the OFF regimen (5-FU, folinic acid, and oxaliplatin) or best supportive 
care (BSC). The trial terminated prematurely due to poor accrual, but even with its 
limited numbers showed improved median PFS and OS with OFF compared to 
BSC.  The follow-up CONKO-003 trial [16] showed that, when compared to FF 
(5-FU and folinic acid), OFF improved median OS (5.9 vs 3.3 months, HR 0.66; 
95% CI 0.48–0.91; P = 0.010) and time to progression (2.9 vs 2.0 months, HR 0.68; 
95% CI 0.50–0.94; P = 0.019). Contrary to these findings, the PANCREOX trial 
[17] demonstrated inferior survival and more toxicity in patients receiving 
mFOLFOX6 compared to 5-FU and folinic acid (median OS 6.1 vs 9.9 months, HR 
1.78; 95% CI 1.08–2.93; P = 0.024). While difficult to explain, the conflicting 
results of these two trials may have been related to differences in chemotherapy dos-
ing and inclusion criteria. Nevertheless, PANCREOX called into question the ben-
efit of 5-FU and oxaliplatin as second-line therapy for mPDAC.

To date, the only well-powered RCT that has shown a clear survival benefit with 
combination chemotherapy in refractory mPDAC is NAPOLI-1 [18], a Phase III 
study that compared infusional 5-FU/leucovorin (LV) plus nanoliposomal irinote-
can (Nal-Iri) to 5-FU/LV in patients whose disease had progressed on gemcitabine-
based therapy. In this landmark study, 5-FU/LV plus Nal-Iri yielded superior median 
OS (6.1 vs 4.2 months, HR 0.67; 95% CI 0.49–0.92; P = 0.012) over 5-FU/LV. As 
expected, the most common grade 3/4 adverse events in the combination arm were 
neutropenia (27%), diarrhea (13%), vomiting (11%), and fatigue (14%). Since, to 
date, no RCT has investigated FOLFIRINOX as a second-line regimen for patients 
whose disease has progressed on gemcitabine, NAPOLI-1 established the combina-
tion of 5-FU/LV and Nal-Iri as the most evidence-based chemotherapy option for 
gemcitabine-refractory PDAC.

�Targeted Therapy

Comprehensive profiling of PDAC has revealed common alterations in KRAS, 
TP53, CDKN2A, and SMAD4, but targeting these genes has not yielded positive 
results in clinical trials [19, 20]. The most common PDAC molecular alterations to 
be successfully targeted are germline mutations in BRCA1 and BRCA2, which are 
present in 4–7% of patients with PDAC [21–23]. In the Phase III POLO trial [24], 
154 patients with mPDAC who harbored a germline BRCA mutation and whose 
disease was stable or responding after at least 16 weeks of platinum-based chemo-
therapy were randomized in a 3:2 ratio to the PARP inhibitor olaparib or placebo. 
Compared to placebo, olaparib maintenance yielded superior median PFS (7.4 vs 
3.8 months; HR 0.53, 95% CI 0.35–0.82; P = 0.004), but no improvement in median 
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OS (18.9 vs 18.0 months; HR 0.91, 95% CI 0.56–1.46, P = 0.68). A final analysis of 
OS reported by Kindler et  al. [25] confirmed that maintenance olaparib did not 
improve median OS (19.0 vs 19.2 months, HR 0.83; 95% CI 0.56–1.22; P = 0.3487). 
However, the Kaplan Meier survival curves separated at 24 months, and 3-year sur-
vival was higher in the maintenance olaparib arm when compared to placebo (33.9% 
vs 17.8% with placebo). Furthermore, maintenance olaparib delayed reintroduction 
of cytotoxic chemotherapy and was well-tolerated, with the most common grade 3/4 
side effects being anemia (11%), fatigue (5%), and decreased appetite (3%). In light 
of these data, olaparib was approved by the FDA for maintenance therapy after 
response to or stability on platinum-based therapy for PDAC associated with germ-
line BRCA mutation.

Multiple Phase I and II trials have demonstrated benefit of NTRK inhibitors 
across various tumor types harboring NTRK gene fusions, resulting in the FDA’s 
approval of larotrectinib (2018) and entrectinib (2019) for NTRK fusion-positive 
tumors, regardless of tissue of origin. NTRK gene fusions can be found in <1% of 
PDACs so data on the efficacy of NTRK inhibitors in PDAC are limited to case 
reports and small case series that have shown responses lasting up to 6 months.

Pancreatic cancer cells harbor relatively few somatic mutations, which limits 
expression of potentially immunogenic epitopes, and these cells live in a microen-
vironment characterized by high concentrations of myeloid-derived suppressor 
cells, T-regulatory cells, and immunosuppressive cytokines. As a result, immuno-
therapy has not proven effective for the vast majority of PDAC. KEYNOTE 158 
[26] showed impressive activity of pembrolizumab in a cohort of patients with mic-
rosatellite unstable (or deficient mismatch repair) non-colorectal cancers. However, 
among the 22 patients with PDAC (9.4% of the study population), the ORR (18%), 
median PFS (2.1 months), median OS (4.0 months), and median duration of 
response (13.4 months) were considerably lower than the corresponding results for 
the entire cohort (34.3%, 4.1 months, 23.5 months, and not reached, respectively), 
indicating that checkpoint immunotherapy may not be particularly effective in the 
vanishingly small proportion (<1%) of PDAC that are microsatellite unstable.

�Future Directions

The 5-year survival rate of PDAC has increased from 5% to 11% in the past three 
decades, largely due to advances in systemic therapy [27]. Nevertheless, mPDAC 
remains universally lethal, and even those patients who are fit enough for multiple 
lines of systemic therapy survive an average of 12–18 months [28]. Newer combina-
tions of cytotoxic chemotherapy as well as novel agents targeting tumor-specific 
molecular alterations, the tumor microenvironment, and the host immune response 
are being investigated in clinical trials of all phases.

Targeting the intracellular GTPase KRAS remains an important research initia-
tive since >95% of PDACs harbor KRAS mutations. Sotorasib, a KRAS inhibitor 
targeting the G12C mutation, was recently approved for KRAS G12C-mutated non-
squamous non-small cell lung cancer based on a Phase II trial published by Skoulidis 
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et al. [29] showing an ORR of 33%, disease control rate of 88%, and median PFS of 
6.8 months in that population. KRAS G12C mutations are found in only 3% of 
PDACs, but agents targeting this particular mutation as well as more common KRAS 
mutations are currently being investigated. For example, adagrasib (MRTX849) 
also targets the KRAS G12C mutation and has demonstrated early efficacy in 
advanced solid tumors [30], including two patients with pancreatic cancer. 
NCT04185883 is an ongoing international, multicentered, multi-armed Phase Ib/II 
clinical trial studying combinations of KRAS inhibitors with trametinib (MEK 
inhibitor), AMG 404 (anti-PD-1 monoclonal antibody in NCT04185883), 
RMC-4630 (SHP2 inactivator), afatinib (EGFR inhibitor), pembrolizumab (anti-
PDL1), and panitumumab (EGFR inhibitor) with or without chemotherapy in 
advanced solid malignancy with KRAS G12C mutation.

PDAC’s complex tumor microenvironment (TME), which consists of 
myofibroblast-like cells that create a mechanical barrier to the delivery of chemo-
therapy [31] and infiltration of cytotoxic immune cells, has become an important 
focus of clinical research. On the heels of promising results reported in mouse mod-
els and early phase human trials, stromal targets have not improved tumor-related 
outcomes when combined with standard therapy in RCTs. A Phase Ib/II trial showed 
that adding the hyaluronidase PEGPH20 to FOLFIRINOX actually reduced OS 
when compared to FOLFIRINOX alone [32]. Although HALO 202 [33], a random-
ized Phase II comparing PEGPH20 plus PG to nPG alone showed that the combina-
tion led to longer PFS and OS in a subset of hyaluronan-high tumors, a follow-up 
study in hyaluronan-high tumors only (HALO 109-301 [34]) showed increased 
ORR in the experimental group without any improvement in PFS or OS. Similarly, 
the hedgehog inhibitor vismodegib yielded encouraging results in early-phase stud-
ies, but did not improve ORR, PFS, nor OS when added to standard gemcitabine in 
a small randomized study [35]. With PEGPH20 and vismodegib having failed to 
improve outcomes in mPDAC, newer agents targeting the PDAC stroma, including 
sibrotuzumab (anti-fibroblast activating protein [FAP]), talabostat (FAP inhibitor), 
marimastat/tanomastat (multi-matrix metalloproteinase inhibitors), and pamrev-
lumab (connective tissue growth factor inhibitor), are being investigated in combi-
nation with chemotherapy and novel immunotherapy. Additionally, targeting cancer 
cell metabolism may have direct apoptotic effects on cancer cells while remodeling 
the TME [33]. For example, SM88 [36], an oral tyrosine derivative that dysregulates 
metabolism via the Warburg Effect and oxidative stress—and CPI 613 [37], a lipoate 
analog that induces apoptosis by hyper-stimulating an endogenous redox mecha-
nism, has advanced to randomized trials after demonstrating activity in early phase 
studies.

Finally, immunotherapy continues to be an active area of PDAC research. As our 
understanding of the various mechanisms that induce resistance to anti-tumor 
immunity has deepened, immunotherapeutic agents have evolved from simple 
protein-based vaccines to more sophisticated immunostimulatory antibodies (e.g., 
CD40 agonists), oncolytic viruses, tumor-specific CAR T-cells, checkpoint inhibi-
tors, and combinations thereof [38]. Researchers hope that, in the upcoming years, 
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immunotherapy will improve outcomes in PDAC as much as it has in other 
malignancies.

Progress will not occur without cutting-edge basic research and forward-thinking, 
innovative clinical trials. For a variety of reasons, only ~5% of patients with PDAC 
enroll in clinical trials despite clear recommendations in all national and society 
guidelines. In order to improve outcomes for patients inflicted with PDAC, every 
effort must be made to translate existing scientific knowledge into clinical applica-
tion and encouraging all patients to consider participating in clinical research. In 
addition to serving as a valuable resource to patients with PDAC seeking clinical 
trial enrollment, the Pancreatic Cancer Action Network (PanCAN) has created the 
Precision Promise adaptive clinical trial program to expedite bench-to-bedside 
translation of promising therapeutic agents in a consortium of academic centers.

�Conclusion

PDAC remains a difficult cancer to treat. Compared to the early days of gemcitabine 
monotherapy, newer systemic therapies are producing more favorable results in 
metastatic PDAC, but overall outcomes remain guarded and grim. A more sophisti-
cated understanding of the molecular underpinnings of PDAC, the complex tumor 
microenvironment, and its mechanisms of immunoresistance have spurred the 
emergence of promising novel agents that will hopefully yield more significant 
progress in the not-too-distant future.
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5Targeted Therapies for Pancreatic 
Cancer

Michael S. Lee and Shubham Pant

�Introduction

Pancreatic cancer is the third highest cause of cancer death in the United States, 
causing an estimated 49,830 deaths in 2022 [1]. Only 13% of patients diagnosed 
with pancreatic cancer have localized disease, while 47% have incurable disease 
with distant metastases [1]. For patients with metastatic pancreatic cancer with ade-
quate performance status, first-line multiagent combinations of conventional che-
motherapy, such as FOLFIRINOX [2] or gemcitabine/nab-paclitaxel [3], are the 
current standard of care; however, median overall survival (OS) with these regimens 
is only 11.1 or 8.5 months, respectively. More recently, treatment with personalized 
targeted therapies selected using predictive biomarkers to identify rational vulner-
abilities in patients’ tumors is an important approach. Guidelines now recommend 
that pancreatic cancers are tested for germline mutations, somatic mutations and 
fusions, and microsatellite instability/mismatch repair deficiency [4] to optimize 
selection of standard or investigational therapies.
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�Germline and Somatic Mutations Impairing DNA Damage 
Repair Pathways

From 4 to 10% of pancreatic cancer, patients harbor a pathogenic germline mutation 
[5–9], and some single-center analyses with higher rates of germline BRCA1/2 
mutations have rates as high as 19.8% [10]. Up to half of pancreatic cancer patients 
with a pathogenic germline mutation did not have a suspicious family history [8, 
10]; consequently, national guidelines recommend that all patients with pancreatic 
adenocarcinoma undergo germline testing [4]. The most commonly found germline 
mutations are BRCA1/2 (3–5%), ATM (1.7–3.3%), PALB2 (0.6%), and CDKN2A, 
TP53, and DNA mismatch repair (MMR) genes (MLH1, MSH2, MSH6, and PMS2).

BRCA1, BRCA2, and PALB2 germline mutations cause homologous recombina-
tion defects (HRD), which lead to increased mutagenesis and carcinogenesis, with 
consequent increased risk of developing several cancer types including pancreatic 
cancer. Carriers with pathogenic BRCA1/2 variants have a relative risk of develop-
ing pancreatic cancer of 2.36–3.34 and have an absolute risk of 2.3–3.0% of devel-
oping pancreatic cancer by age 80 [11]. It is important to recognize patients whose 
cancers have HRD, as these cancers are highly susceptible to cytotoxic therapies 
like platinum agents that cause double-stranded DNA breaks requiring homologous 
recombination for repair. For example, in a prospective phase II trial of gemcitabine 
+ cisplatin backbone chemotherapy in patients with metastatic pancreatic cancer 
with HRD germline mutations, response rate was 70% [12], which is dramatically 
higher than response rate to FOLFIRINOX or gemcitabine/nab-paclitaxel in all-
comers with metastatic pancreatic cancer. Additionally, retrospective data demon-
strates that treatment with first-line platinum-based chemotherapy regimens like 
FOLFIRINOX yields superior progression-free survival compared to non-platinum-
based regimens in patients with HRD pancreatic cancers [13].

Cancers with germline mutations causing HRD, like BRCA1/2 mutations, also 
have synthetic lethality when treated with inhibitors of DNA damage repair (DDR) 
mechanisms, particularly poly (ADP-ribose) polymerase (PARP) inhibitors. These 
cancers are particularly reliant on alternative mechanisms of DNA damage repair to 
prevent mitotic catastrophe and cell death. PARP inhibitors block the repair of 
single-strand DNA breaks and also contribute to additional double-strand DNA 
breaks by trapping their PARP substrate on the DNA strand, causing further cyto-
toxicity [14]. In the phase III POLO trial, the PARP inhibitor olaparib was proven 
to be an effective maintenance therapy in patients with metastatic pancreatic cancer 
with germline BRCA1/2 mutations after receiving 4–6 months of induction plati-
num chemotherapy. Maintenance with olaparib significantly improved median PFS 
compared to placebo, with hazard ratio of 0.53 (95% CI 0.35–0.82), with improve-
ment in median PFS from 3.8 months to 7.4 months [15]. Importantly, there was no 
significant difference in time to deterioration in health-related quality of life or in 
physical functioning scores between patients who received maintenance olaparib 
versus placebo [16], indicating that olaparib was tolerated with manageable side 
effects. Though median OS was not significantly different at 19.0 vs 19.2 months 
(HR 0.83, 95% CI 0.56–1.22), there was a trend toward improved 36-months 
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survival with olaparib (33.9% vs 17.8%) [17]. These data also demonstrate the bet-
ter prognosis of patients with BRCA1/2 germline mutated pancreatic cancer, as 
median OS with standard therapies in unselected metastatic pancreatic cancer 
patients is under 12 months. Given the results of the POLO trial, olaparib mainte-
nance therapy is now FDA approved for patients with metastatic pancreatic adeno-
carcinoma with germline BRCA1/2 mutation after at least 16 weeks of first-line 
platinum-based chemotherapy. PALB2 germline mutations also appear to be predic-
tive for susceptibility to PARP inhibitors, with small numbers of patients with germ-
line PALB2 mutations with breast or prostate cancer benefiting from PARP inhibitors 
[18–20]. A phase II trial of maintenance therapy with the PARP inhibitor rucaparib 
in patients with germline HRD mutations showed that 2/2 patients with PALB2 
mutations had response to rucaparib [21], suggesting that similar susceptibility to 
platinum chemotherapy and PARP inhibitors is likely with PALB2 germline muta-
tions. However, patients with germline PALB2 mutations were not included in the 
POLO trial and are not included in the FDA approval for olaparib maintenance.

There is emerging preclinical and early phase clinical trial data for novel combi-
nations of PARP inhibitors with additional therapies, especially immune checkpoint 
inhibitors. In BRCA1/2-deficient cancer models, PARP inhibition increased expres-
sion of interferon-stimulated genes and the STING pathway, triggering innate and 
adaptive immune responses, with enhancement of immune responses with addition 
of anti-PD-1 therapy [22, 23]. BRCA1/2 mutant pancreatic cancers also had higher 
tumor mutation burden and were more likely to have PD-L1 expression [24]. The 
SWOG S2001 trial is enrolling patients who would be eligible for maintenance 
olaparib to be randomized to either olaparib alone vs olaparib + pembrolizumab 
(NCT04548752). More recent data from a phase II trial of maintenance niraparib 
combined with either the anti-PD1 therapy nivolumab or the anti-CTLA4 therapy 
ipilimumab showed that niraparib + nivolumab (n = 44) showed median PFS of only 
1.9 (95% CI 1.4–2.3) with 6-mo PFS rate of 20.6% (95% CI 8.3–32.9). However, 
niraparib + ipilimumab had a promising median PFS of 8.1 months (95% CI 
5.5–10.6) with 6-months PFS rate of 59.6% (95% CI 44.3–74.9) [25]. These data, 
while not definitive, hint that immune checkpoint inhibitors other than anti-PD1 
therapies may be more effective when combined with PARP inhibitors. Multiple 
additional DNA damage repair inhibitors are in development, and clinical trials of 
combinations of these inhibitors are underway.

Besides germline BRCA1/2 mutations, somatic BRCA1/2 mutations are found in 
approximately 2% of pancreatic cancers [13]. Though the POLO trial only enrolled 
patients with germline BRCA1/2 mutations, patients whose cancers have somatic 
BRCA1/2 mutations may also benefit from PARP inhibitors. For example, in a study 
of rucaparib in patients with either germline or somatic BRCA1/2 mutation, among 
three patients who had somatic BRCA2 mutations, one had a complete response and 
one had a partial response [26]. Meta-analysis pooling results from multiple cancer 
types showed comparable response rates with PARP inhibitor therapy with somatic 
BRCA1/2 mutations (55.8%) and germline mutations (43.9%) [27]. Clinical trials 
for pancreatic cancer patients including those with somatic BRCA1/2 or PALB2 
mutations are ongoing, including niraparib combined with the PD-1 antibody 
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dostarlimab (NCT04493060), or olaparib plus pembrolizumab (NCT04666740). 
Additionally, the randomized APOLLO clinical trial is assessing the efficacy of 
adjuvant olaparib compared to placebo in patients with resected pancreatic cancer 
with germline or somatic BRCA1/2 or PALB2 mutation (NCT04858334).

From 1.7% to 3.3% of pancreatic cancers arise in patients with germline ATM 
mutations [28, 29], and carriers of ATM germline mutations have a relative risk of 
developing pancreatic cancer in their lifetime of 6.5 (95% CI 4.5–9.5) [30]. Somatic 
ATM mutations also arise in pancreatic cancers, and in total, 4–5% of pancreatic 
cancers harbor a somatic or germline ATM mutation [13, 31]. Optimal strategies for 
targeting ATM mutated pancreatic cancers are still being investigated. Preclinical 
studies suggested that PARP inhibitors and topoisomerase-1 inhibitors, like irinote-
can, may be effective in ATM-mutated cancers [29, 32]. However, maintenance 
therapy with PARP inhibitors did not demonstrate activity in case reports in ATM-
mutated pancreatic cancers [33, 34], suggesting that PARP inhibitors alone are not 
sufficient for synergistic lethality. As evidence of this, PARP inhibitor therapy, 
while cytostatic, was not tumoricidal in ATM-deficient pancreatic cancer cell mod-
els [35]. Targeted DDR inhibitors including ATM inhibitors, ATR inhibitors, and 
CHK1 inhibitors [36] or combinations of these therapies [29] have shown more 
preclinical efficacy. Indeed, only patients with cancers with ATM loss or mutation 
had response in a phase I trial of the ATR inhibitor BAY1895344 [37]. There are 
early phase clinical trials of these strategies in ATM-mutated pancreatic cancer 
ongoing [38].

�Immune Checkpoint Inhibitors in Microsatellite 
Unstable Cancers

Microsatellite instability (MSI-High) or deficient mismatch repair is found in 1–2% 
of pancreatic ductal adenocarcinoma [39, 40]. While MSI-High pancreatic cancers 
are significantly enriched for medullary or mucinous/colloid histology, the majority 
of MSI-High pancreatic cancers (68%) still have conventional adenocarcinoma his-
tology [39]. MSI-High pancreatic cancers can arise through germline mutations in 
the MMR genes MLH1, MSH2, MSH6, or PMS2 causing Lynch syndrome; patients 
with Lynch syndrome have an 8.6-fold (95% CI 4.7–15.7) increased risk of devel-
oping pancreatic cancer compared to the general population [41]. In patients with 
MSI-High cancers of multiple different cancer types, the programmed cell death 
protein 1 (PD-1) antibody pembrolizumab has been shown to be effective. In early 
clinical trials, 2/8 (25%) of patients with MSI-High pancreatic cancer had complete 
response with pembrolizumab, and 3/8 (37%) had partial response [42]. With more 
patients treated with pembrolizumab in the KEYNOTE-158 trial, 4/22 patients with 
MSI-High pancreatic cancer had an objective response (18.2%, 95% CI 5.2–40.3), 
with median duration of response of 13.4 months (ranging from 8.1 to 16.0+ 
months) [43]. This response rate was lower than other that seen in other MSI-High 
cancer types within KEYNOTE-158; however, other studies have shown higher 
response rates with immune checkpoint inhibitors. For example, a retrospective 
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case series showed 7/9 (77%) of patients with MSI-H pancreatic cancer treated with 
immune checkpoint inhibitors showed response [44]. Additionally, in the GARNET 
trial, 5/11 patients (45.5%; 95% CI 16.7–76.6) with MSI-High pancreatic cancer 
treated with dostarlimab had response, which was comparable to the 43.1% response 
rate observed in all non-endometrial MSI-High cancers [45]. Ultimately, given the 
potential for durable and/or complete responses, immunotherapy is an important 
strategy for treatment of the rare subgroup of MSI-High or deficient MMR pancre-
atic cancers. Both pembrolizumab and dostarlimab received FDA accelerated 
approval for patients with MSI-High and/or deficient mismatch repair solid cancers 
refractory to prior therapy.

Additionally, the FDA approved pembrolizumab for solid tumors with a tumor 
mutation burden (TMB) of ≥10 mutations per megabase, but it remains debatable 
whether high TMB is a reliable predictive biomarker in microsatellite stable (MSS) 
pancreatic cancer. In KEYNOTE-158, in 9 cancer types with high TMB, there was 
a response rate of 29% (95% CI 21–39), compared to a response rate of 6% (95% 
CI 5–8) in cancers without high TMB [46]; however, pancreatic cancer was not one 
of the nine studied tumor types, and there is a lack of data for high TMB as a predic-
tive biomarker for immune checkpoint inhibitors in pancreatic cancer. Of course, 
high TMB is expected in MSI-High cancers, and a recent meta-analysis showed 
19/32 (59.4%) of TMB-high pancreatic cancers were MSI-High (with TMB defini-
tions varying in each included study [47]. It remains unproven if high TMB in MSS 
pancreatic cancer is predictive of response to immune checkpoint inhibitors. On one 
hand, a recent study showed 12/161 (7.5%) of resected MSS pancreatic adenocarci-
nomas were TMB-high (≥10 mutations/Mb), and these TMB-high cancers had 
highest T-cell density and upregulation of immune pathways [48], suggesting 
immune checkpoint inhibitors could indeed be rational. However, a pan-cancer 
analysis conversely showed that pancreatic cancer, among many other immune-cold 
cancers, does not have a significant correlation between CD8 T-cell infiltration and 
neoantigen load, and in these cancers, TMB-High fails to predict for response to 
immune checkpoint inhibitors [49]. Indeed, in a recent retrospective cohort study, 
only 2/36 (6%) of MSS pancreatic cancers had TMB ≥10 mutations/Mb, and 0/2 of 
these patients had a response to anti PD-1 or PD-L1 therapy [50]. Thus, at this time, 
there is limited to no data for the efficacy of immune checkpoint inhibitors in the 
small subgroup of TMB-High MSS pancreatic cancer.

�KRAS Mutation Inhibitors

Activating KRAS mutations occur in 90–93% of pancreatic cancers [31, 51, 52], and 
KRAS is the most commonly mutated oncogene in pancreatic cancer. KRAS is a 
small GTPase switch, cycling between an inactive GDP-bound state and an active 
GTP-bound state. When receptor tyrosine kinases (RTKs), like the epidermal 
growth factor receptor (EGFR) and the related family members ERBB2 (HER2), 
ERBB3 (HER3), and ERRB4 (HER4), are activated by ligand binding, they trigger 
activation of KRAS by exchanging GDP for GTP, with this exchange is catalyzed 
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by guanine exchange factors (GEFs) like SOS1. GTP-bound KRAS remains active 
until GTP is hydrolyzed to GDP; while KRAS has intrinsic GTP hydrolytic activity, 
GTPase-activating proteins (GAPs) catalyze GTP hydrolysis to promote inactiva-
tion of KRAS signaling. Multiple effector pathways, including importantly the 
RAF-MEK-ERK MAPK signaling cascade, transduce signaling from the activated 
KRAS node downstream to the nucleus to alter gene expression and promote cell 
cycle progression and cell division. Oncogenic KRAS mutations cause significant 
decreases in GTP hydrolysis or accelerate GDP-GTP exchange, causing accumula-
tion of active GTP-bound KRAS and constitutive activation of mitogenic signaling 
[53, 54]. Several activating mutations arise within KRAS; in pancreatic cancer, the 
most common mutant alleles are G12D, G12V, and G12R (Fig. 5.1) [53].

There have historically been multiple challenges in developing direct KRAS 
inhibitors. Because the KRAS GTP binding site has picomolar affinity for GTP, 
competitive inhibitors to the GTP binding pocket have not been possible. Due to the 
KRAS protein surface lacking obvious pockets for drug binding, developing allo-
steric KRAS inhibitors has also been challenging [54]. However, further 
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Fig. 5.1  Frequency of KRAS and other selected mutations and genomic aberrations in pancreatic 
cancer and selected potential targeted therapies with evidence of activity from clinical trials or case 
reports [55]. Therapies that are now FDA approved for pancreatic cancer or tumor-agnostic indica-
tions are in bold
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understanding of the structure of various KRAS mutant proteins and their confor-
mation in binding to GAPs and GEFs have enabled development of new mutant 
allele-specific inhibitors and new drugs targeting GEF binding. Modern strategies to 
target KRAS either focus on mutation-specific strategies selectively targeting spe-
cific mutant proteins or focus on pan-KRAS therapies that have broad activity 
across a range of mutations [56].

�KRAS G12C Inhibitors

KRAS G12C mutation is found in only 1% of pancreatic cancers [31], but direct 
KRAS G12C inhibitors have been developed and are furthest in clinical investiga-
tion at this time. KRAS G12C inhibitors bind to a surface pocket on the mutant 
KRAS protein and covalently bind to the reactive G12C cysteine residue [57, 58]. 
Sotorasib (AMG510) is a G12C inhibitor that has a high response rate of 32% in 
KRAS G12C mutant NSCLC [59], leading to FDA approval as a monotherapy in 
NSCLC. Sotorasib also has shown a promising response rate as a single agent in 
KRAS G12C mutant pancreatic cancer in the CodeBreaK100 phase I/II trial, where 
8/38 patients had confirmed partial response with sotorasib monotherapy (ORR 
21.1%, 95% CI 9.6–37.3), and disease control rate was 32/38 (84.2%, 95% CI 
68.8–94.0) [60]. While these data are promising, the durability of response and 
improvements in survival remain to be determined; median PFS was 4.0 months 
(95% CI 2.8–5.6) with median OS 6.9 months (95% CI 5.0–9.1) and median DOR 
2.8 months (ranging from 1.4 months to 5.8 months) [60]. Adagrasib (MRTX849), 
another KRAS G12C inhibitor, had a high response rate in KRAS G12C mutant 
NSCLC of 45% [61], and early data from 12 pancreatic cancer patients showed 5/10 
(50%) evaluable patients had partial responses, with 10/10 (100%) having disease 
control, and median PFS was 6.6 months (95% CI 1.0–9.7) [62]. While these G12C 
inhibitors have compelling response rate, ultimately resistance does emerge. 
Mechanisms of acquired resistance to KRAS G12C inhibitor monotherapy observed 
in other KRAS G12C mutant cancer types include acquisition of new subclonal 
KRAS mutations or amplification, activating mutations in other MAPK pathway 
genes, or novel oncogenic fusions [63, 64]. Novel combinations of various targeted 
therapies with KRAS G12C inhibitors in colorectal cancer and NSCLC have been 
studied preclinically [65, 66], and multiple combinations are now in clinical trials. 
The CodeBreaK-101 trial has multiple additional arms combining sotorasib with 
new agents including MEK inhibitor, PD1 inhibitor, SHP2 inhibitor, pan-ERBB 
inhibitor, PD-L1 inhibitor, CDK inhibitor, or mTOR inhibitor (NCT04185883), and 
the KRYSTAL-1 trial has added additional arms combining adagrasib with novel 
agents, particularly the anti-EGFR antibody cetuximab (NCT03785249). Multiple 
additional G12C inhibitors are also in clinical development. 
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�Additional Direct Inhibitors of Mutant KRAS

Direct small molecular inhibitors of additional KRAS mutant alleles besides KRAS 
G12C are in development. These are particularly critical for pancreatic cancer, 
where KRAS G12C is uncommon; the most common KRAS mutant alleles found in 
pancreatic cancer are G12D, G12V, and G12R. With further discoveries in the bio-
chemistry and structure of these mutant proteins, novel drugs have been engineered 
to noncovalently bind to mutant KRAS proteins and inhibit signaling. For example, 
MRTX1133 is a potent, noncovalently binding inhibitor of KRAS G12D that suc-
cessfully impaired tumor growth of KRAS G12D models in vitro and in vivo, includ-
ing in 8/11 pancreatic adenocarcinoma mouse models and in orthotopic pancreatic 
cancer models [67, 68]. Further development of KRAS G12D inhibitors is highly 
anticipated. RMC-6236 is a small molecule inhibitor that binds the chaperone pro-
tein cyclophilin A, which forms a binary complex that can then covalently bind to 
active GTP-bound RAS and disrupt effector signaling [69]. RMC-6236 caused 
tumor regression in 12/17 in vivo KRAS codon 12 mutant pancreatic adenocarci-
noma models [70], and phase I clinical trials have now started (NCT05379985). 
Additional more selective drugs with more activity via formation of the inhibitory 
tri-complex with specific KRAS mutant proteins are also in development, including 
drugs targeting KRAS G12C (RMC-6291) [71], G12D (RMC-9805) [72], and 
G13C (RMC-8839), and the G12C inhibitor is now in phase I clinical trials 
(NCT05462717).

�SOS1 Inhibitors

SOS1 is a GEF that promotes KRAS activation by catalyzing GDP exchange for 
GTP loading, and thus drug compounds that block the SOS1-KRAS interaction 
impair KRAS-mediated signaling [73]. These SOS1 inhibitors are predicted to syn-
ergize with MAPK pathway inhibitors. Phosphorylation of SOS1 by the MAPK 
effector pathway causes feedback inhibition of SOS1 activity; MAPK pathway inhi-
bition with MEK or ERK inhibitors de-represses SOS1 activity to enable reactiva-
tion of KRAS activation to promote alternative signaling to drive resistance. 
Preclinical studies showed that addition of SOS1 inhibitors to MEK or ERK inhibi-
tors is synergistic [74]. Several SOS1 inhibitors are in development for RAS-
mutated cancers and show promise for treatment of cancers with KRAS codon 12 
or 13 mutations, primarily in combination with MEK or ERK inhibitors. However, 
different KRAS mutant isoforms have different dependencies on SOS1. For exam-
ple, KRAS G12R does not interact with SOS1 [75], and codon 61 mutant KRAS has 
lower intrinsic GTPase activity [76], and thus these isoforms are not expected to be 
as susceptible to SOS1 inhibition. In preclinical models, treatment with a SOS1 
inhibitor significantly decreased GTP loading of mutant KRAS and thus decreased 
proliferation in most KRAS codon 12 and 13 mutant isoforms, though not in KRAS 
G12R or in codon 61 mutant models [77]. The SOS1 inhibitor BI1701963 is a clini-
cal drug candidate that synergized with MEK inhibitor and had in vivo efficacy [78]. 
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BI1701963 is being studied in clinical trials in KRAS mutant cancers (NCT04111458) 
[79]. Additionally, SOS1 inhibitors also have been shown preclinically to synergize 
with KRAS G12C inhibitors in preclinical models [73, 77, 80]. MRTX0902 is a 
potent SOS1:KRAS inhibitor [80], and clinical trials of MRTX0902 with adagrasib 
are in development (NCT05578092).

�SHP2 Inhibitors in KRAS Codon 12 Mutant Isoforms

SHP2 (PTPN11) is a non-receptor protein tyrosine phosphatase that is recruited by 
myriad activated receptor tyrosine kinases to potentiate SOS1-dependent GEF func-
tion and GTP-loading and activation of KRAS [81]. When KRAS mutant cells are 
treated with MAPK pathway inhibitors, feedback activation of upstream RTKs 
mediates reactivation of signaling dependent on SHP2. Given this, impairing SHP2 
signaling may relieve these resistance-mediating feedback activation mechanisms. 
Indeed, SHP2 activity is indispensable for oncogenic KRAS mutations to drive car-
cinogenesis in mouse models, and SHP2 inhibitors synergize with MEK inhibitors 
in KRAS mutant cancer models in vivo [82]. Multiple SHP2 inhibitors are in devel-
opment for KRAS mutant cancers; however, similar to SOS1 inhibitors, KRAS 
mutant isoform does impact efficacy of SHP2 inhibition. For example, monotherapy 
with the allosteric SHP2 inhibitor RMC-4550 successfully impaired activation of 
multiple codon 12 mutated KRAS proteins, but was ineffective against codon 13 and 
codon 61 KRAS mutations [81]. SHP2 inhibitors will likely be most effective when 
given in combination with direct RAS inhibitors or other downstream effector 
inhibitors. For example, combinations of SHP2 inhibitor and MEK inhibitor more 
effectively blocked feedback reactivation of the MAPK pathway than either single 
agent in KRAS codon 12 mutant models [83–85]. SHP2 inhibitor and KRAS G12C 
inhibitor combinations also were synergistic in preclinical models, including in 
pancreatic cancer models [86]. Clinical trials of SHP2 inhibitors are early in devel-
opment, but early reports from phase I trials of TNO155 showed the drug is reason-
ably tolerated, with modest monotherapy activity, with stable disease noted in 22% 
of patients [87]. Multiple SHP2 inhibitors are currently in clinical trials enrolling 
patients with KRAS mutant pancreatic or other cancers, either with SHP2 inhibitor 
monotherapy or in combination with MEK inhibitors, ERK inhibitors, or KRAS 
G12C inhibitors.

�KRAS Mutation-Targeting Vaccine and Cellular Therapies

KRAS mutations produce cancer-specific neoepitopes that could be targeted through 
an adaptive immune response. Algorithms to predict HLA classes that could poten-
tially present specific epitopes determined that HLA-A*11:01 are capable of pre-
senting mutant KRAS epitopes, and T cells reactive to KRAS G12V and G12D could 
indeed be produced in vivo in mouse models [88]. HLA-A*11:01 restricted periph-
eral T cells against KRAS G12V were indeed detectable in blood samples of cancer 
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patients [89], and human T-cell receptors specific to KRAS G12D peptides pre-
sented via HLA-A*11 have been described and facilitate selective killing of KRAS 
G12D expressing cancer cells [90]. Additionally, tumor-infiltrating lymphocytes 
identifying the KRAS G12D epitope were expanded ex vivo from a patient with 
metastatic colorectal cancer, and infusion of these HLA-C*08:02-restricted CD8+ 
T cells caused significant tumor regression [91]. The specificity of the HLA-
C*08:02 restricted T-cell receptor against KRAS G12D has been described, with 
nanomolar to low micromolar affinity [92]. A clinical trial of chimeric antigen 
receptor-T (CAR-T) cell therapy is underway in patients with HLA-A*11:01 class 
with metastatic KRAS G12V or G12D mutant cancers refractory to standard thera-
pies; peripheral blood lymphocytes will be harvested through leukapheresis, 
expanded ex vivo, transduced with anti-KRAS G12V recombinant murine T-cell 
receptors, and then reinfused after preceding lymphodepletion (NCT03190941, 
NCT03745326). Additionally, a trial of CAR-T cells of HLA-C*08:02 restricted T 
cells engineered to express KRAS G12D targeting T-cell receptors resulted in a case 
of a patient with metastatic KRAS G12D mutant pancreatic cancer who had a partial 
response of metastases persisting for over 6 months [93] (NCT04520711). Given 
these exciting early demonstrations of activity, additional predictive algorithms for 
HLA restricted mutant KRAS epitopes are ongoing, and additional work demon-
strates additional potential targets may include G12V/HLA-A*03:01, G12V/HLA-
A*11:01, and G12R/HLA-B*07:02 [94].

Additional clinical trials have sought to develop cancer vaccines that can facili-
tate a de novo immune response against common mutant KRAS epitopes. 
mRNA-5671/V941 is a tetravalent mRNA vaccine targeting KRAS G12D, G12V, 
G13D, and G12C mutations, and results from a phase I clinical trial as a mono-
therapy or in combination with pembrolizumab are pending (NCT03948763) [95]. 
Additionally, a pooled mutant KRAS-targeted long peptide vaccine is being com-
bined with nivolumab and ipilimumab in patients with colorectal or pancreatic can-
cer harboring KRAS G12C, G12V, G12D, G12A, G13D, or G12R mutation 
(NCT04117087). Additional approaches seek to improve targeting of KRAS anti-
gens and vaccine adjuvants to draining lymph nodes by conjugation to albumin-
binding lipids, facilitating trafficking to lymph nodes to generate stronger immune 
responses [96]. Initial clinical trials of a bivalent product targeting KRAS G12D and 
G12R are ongoing, with plans to expand to a heptavalent vaccine in the AMPLIFY-201 
trial (NCT04853017).

�KRAS Mutation-Specific Oligonucleotide Therapies

Antisense oligonucleotide therapies induce destruction of target mRNA sequences 
and thus may enable specific gene silencing of driver oncogenes if effectively deliv-
ered to target cells. However, there have been several challenges in developing oli-
gonucleotide therapies, such as ensuring delivery to target tissues and oligonucleotide 
specificity to prevent off-target effects, and so potential therapies need to be 
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engineered for optimal drug delivery [97]. siG12D LODER is a therapeutic com-
prised of a small interfering RNA (siRNA) targeting KRAS G12D embedded in a 
biodegradable polymer matrix, which can be directly injected intratumorally into 
locally advanced KRAS G12D mutant pancreatic cancers [98], and was well toler-
ated in phase 1/2a clinical trial [99]; the PROTACT phase 2 clinical trial is ongoing 
(NCT01676259). Additional KRAS mutation-specific oligonucleotide therapies are 
in development [100–102]. Anti-mutant KRAS siRNA can also be packaged within 
exosomes, extracellular vesicles containing protective membrane-anchored proteins 
like CD47, which helps prevent phagocytosis and increases circulating half-life. 
iExosomes are anti-KRAS G12D siRNA encapsulated within exosomes, and pre-
clinical studies showed improvement in overall survival in KRAS G12D mutated 
pancreatic cancer mouse models treated with iExosomes compared to controls 
treated with gemcitabine [100]. A clinical trial of iExosomes in KRAS G12D mutant 
pancreatic cancers is ongoing [103] (NCT03608631).

�Additional Strategies Targeting Effector Pathway Signaling

Generally, therapies targeting mutant KRAS effector pathway signaling have not 
proven effective to date. The primary pathway that has been targeted is the RAF-
MEK-ERK pathway. Multiple clinical trials of MEK inhibitors have shown lack of 
activity in patients with pancreatic cancer [104–106]. KRAS G12R-mutated pancre-
atic cancers were predicted to be more sensitive to MEK or ERK inhibitors due to 
the incapability of KRAS G12R protein to activate the PI3K-AKT pathway with 
consequent greater reliance on MAPK signaling [75], but a clinical trial of selu-
metinib in KRAS G12R mutant pancreatic cancer was halted early for futility after 
none of eight patients had a response, though three patients did have stable disease 
for over 6 months [107]. In another study, among 6 patients with chemorefractory 
KRAS G12R-mutated pancreatic cancer who received cobimetinib and gemcitabine, 
1/6 patients had a partial response and 6/6 patients had disease control, with median 
PFS of 6.0 months (95% CI 3–9.3) [108]. These results demonstrate that for effector 
pathway modulation to be effective, novel combination therapies guided by specific 
mutation-specific biochemistry are needed, along with newer generation MAPK 
inhibiting drugs.

Additional clinical trials of MAPK pathway inhibitor combinations selecting for 
KRAS mutant pancreatic cancer patients are ongoing. Selected trials are described 
in Table  5.1. Of interest, preclinical studies found that MEK or ERK inhibition 
results in an increase in autophagic flux which mitigates cytotoxicity, and inhibition 
of autophagy with therapies like hydroxychloroquine synergizes with MEK or ERK 
inhibitors [109, 110]. Anecdotes have described patients with KRAS mutant cancers 
who had response with MEK inhibitors combined with chloroquine or hydroxy-
chloroquine [110, 111], and prospective clinical trials are ongoing (see Table 5.1).
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Table 5.1  Selected MEK or ERK inhibitor-based combination clinical trials in pancreatic cancer

Therapies Biomarker criterion
Clinicaltrials.
gov

MEK inhibitor + autophagy inhibitor (binimetinib + 
hydroxychloroquine)

Any KRAS mutation on 
tumor or liquid biopsy

NCT04132505

MEK inhibitor + autophagy inhibitor (trametinib + 
hydroxychloroquine)

Unselected NCT03825289

MEK inhibitor + autophagy inhibitor + anti-PD-L1 
(cobimetinib + hydroxychloroquine + 
atezolizumab)

Any KRAS mutation NCT04214418

MEK inhibitor + asparaginase inhibitor 
(Cobimetinib + Calaspargase pegol-mknl)

Unselected NCT05034627

MEK inhibitor + anti-PD-L1 (selumetinib + 
durvalumab) − randomized against FOLFIRI

Any KRAS mutation NCT04348045

MEK inhibitor + JAK1/2 inhibitor (trametinib + 
ruxolitinib)

Any KRAS mutation NCT04303403

MEK inhibitor + JAK/STAT inhibitor + anti-PD1 
(Trametinib + Ruxolitinib + Retifanlimab)

Unselected NCT05440942

MEK inhibitor + CDK4/6 inhibitor neoadjuvantly 
(Binimetinib + Palbociclib)

Any KRAS mutation NCT04870034

MEK inhibitor + CDK4/6 inhibitor (binimetinib + 
palbociclib)

Any KRAS, NRAS, or 
HRAS mutation

NCT05554367

ERK inhibitor + CDK4/6 inhibitor (ulixertinib + 
palbociclib)

Unselected NCT03454035

ERK inhibitor +/− autophagy inhibitor (LY3214996 
+/− hydroxychloroquine)

Unselected NCT04386057

ERK inhibitor + SHP2 inhibitor (LY3214996 + 
RMC-4630)

Any KRAS mutation NCT04916236

�KRAS Wild-Type Tumors Are Enriched for Other 
Targetable Aberrations

KRAS wild-type status is found in 7–10% of pancreatic cancers in Western popula-
tions [31, 51] and tends to occur more commonly in younger patients under age 50 
[55, 112]. KRAS wild-type disease may be more common in other populations, like 
in China, where up to 17% of patients were KRAS wild-type [113]. Patients with 
KRAS wild-type cancers tend to have superior overall survival compared to those 
who are KRAS mutant [114]. Moreover, KRAS wild-type pancreatic adenocarcino-
mas have distinct mutation and gene expression patterns compared to KRAS mutant 
cancers, suggesting these cancers are a distinct molecular entity [115]. For example, 
KRAS wild-type pancreatic cancers were more likely to harbor germline mutations 
(p = 0.027), like in ATM or PRSS1 (which causes familial pancreatitis) [51]. 
Additional somatic gene mutations and fusions more likely found in KRAS wild-
type pancreatic cancers include BRAF activating missense mutations, BRAF activat-
ing in-frame intragenic deletions, BRAF kinase fusions, NRG1 fusions, HER2 
amplification, MET amplification, FGFR2 fusions, RAF1 fusions, and ALK fusions; 
other rare fusions occurring in less than 1% of KRAS wild-type pancreatic cancers 
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involve RET, MET, NTRK1, ERBB4, and FGFR3 [55, 116, 117]. Overall, 38% of 
the KRAS WT tumors had other driver mutations or fusions activating the RAS-
MAPK pathway [55], many of which are potentially actionable (Fig. 5.1). Clinical 
trials have assessed the efficacy of the anti-EGFR antibody nimotuzumab in KRAS 
wild-type pancreatic cancers, and in a randomized phase II trial, treatment with the 
combination of gemcitabine + nimotuzumab resulted in improved 12-months OS 
rate compared to gemcitabine + placebo in the subgroup of patients who were KRAS 
wild-type (53.8% vs 15.8%, HR 0.32 (95% CI 0.13–0.84)) [118]. Subsequently, a 
prospective phase III randomized controlled trial enrolling 92 patients with KRAS 
wild-type pancreatic cancers to receive gemcitabine + nimotuzumab or gemcitabine 
+ placebo was performed in China and showed gemcitabine + nimotuzumab resulted 
in significant improvement in OS (median 10.9 vs 8.5 months, HR 0.50 (95% CI 
0.06–0.94)) and PFS (median 4.2 months vs 3.6 months, HR 0.56 (95% CI 
0.12–0.99)) [119]. Additional studies of EGFR targeted therapies are needed in 
Western populations and using doublet chemotherapy backbones which are consid-
ered standard of care, but this data does provide evidence for activity of anti-EGFR 
therapy in KRAS wild-type pancreatic cancer. 

�NRG1 Fusions

NRG1 encodes neuregulin, a ligand of the EGFR receptor family which promotes 
heterodimerization of ERBB2 and ERBB3 receptors and downstream activation of 
the RAS-RAF-MAPK and other effector pathways. NRG1 fusions are recurrent 
oncogenic events in multiple cancer types and are enriched in KRAS wild-type pan-
creatic cancers. In these fusion proteins, a chimeric protein is generated with a 
transmembrane domain from the fusion partner and preservation of the ERBB2/3 
binding domain of NRG1, causing constitutive oncogenic signaling through 
ERBB2/3 [116, 120]. Given this mechanism of oncogenesis, targeted agents against 
ERBB family members, particularly ERBB2 or ERBB3, appear effective across 
NRG1 fusion cancers of multiple cancer types, including the pan-ERBB inhibitor 
afatinib and the ERBB2xERBB3 bispecific antibody zenocutuzumab [121–123]. In 
NRG1 fusion pancreatic cancers, afatinib treatment caused responses in 2/3 patients 
in a prospective case series [116]. Another study showed 2/3 patients with NRG1 
fusion pancreatic cancers responded to ERBB family-directed treatments (1 of afa-
tinib, 1 of erlotinib + pertuzumab) [112]. Recent prospective clinical trials have 
shown encouraging response rates with zenocutuzumab, with 8/19 (42%; 95% CI 
20–67%) patients with NRG1 fusion pancreatic cancer having an objective response; 
among responders on the study across tumor types, the median duration of response 
was 9.1 months (95% CI 7.4-NR) [124]. Multiple ongoing prospective basket trials 
of targeted ERBB family inhibitors in patients with NRG1 fusion cancers are ongo-
ing, including afatinib on TAPUR (NCT02693535), zenocutuzumab 
(NCT02912949), and the anti-ERBB3 antibody seribantumab (NCT04383210)
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�Activating BRAF Mutations and In-Frame Deletions

Activating BRAF mutations, including both missense mutations and in-frame dele-
tions, are among the most common driver mutations found in KRAS wild-type pan-
creatic cancers [55]. BRAF V600E comprises over half of BRAF point mutations, 
with the remainder of the mutations comprised of atypical BRAF mutations includ-
ing D594G, G469V, and G469S [55]. Case reports or trials with pancreatic cancer 
cohorts describe partial responses with vemurafenib [125, 126] and improvement in 
CA19-9 [127] or near complete response [128] with dabrafenib + trametinib in 
BRAF V600E mutant pancreatic cancer. A retrospective study of patients with 
BRAF V600E mutations showed that 2/3 patients had a response with BRAF + 
MEK inhibitor therapy, particularly dabrafenib + trametinib [129]. Notably, a 
patient treated with dabrafenib and trametinib had ongoing survival exceeding 20 
months and PFS exceeding 6 months [128]. Recently, the US FDA granted acceler-
ated approval for dabrafenib and trametinib in patients with BRAF V600E mutant 
solid cancers refractory to prior therapy.

BRAF non-V600 mutations have more heterogeneous effects on MAPK signal-
ing, which impacts optimal choice of targeted therapy. BRAF mutations comprise 3 
classes [130]: class 1 consists of V600E mutation, causing constitutive signaling; 
class 2 BRAF mutations, like G469V/S, also cause constitutive signaling, which 
may be targeted with downstream effector inhibitors like MEK inhibitors; and class 
3 mutations, like D594G, have deficient kinase activity but active upstream RTKs 
and RAS and thus increase MAPK pathway signaling, which could be optimally 
targeted with MEK inhibitors combined with RTK inhibitors [131, 132]. Trials 
assessing responses to targeted therapies of atypical BRAF mutations must account 
for the class of mutation, and optimal targeting strategies are still being determined. 
For example, in the MATCH clinical trial, in 31 patients with various cancer types 
(though none with pancreatic cancer) with class 2 or 3 non-V600 BRAF mutations 
who were treated with the MEK inhibitor trametinib, there was only a 3% response 
rate and a 34% disease control rate [133]. Thus, single-agent MEK inhibitor is 
likely insufficient for high response rate in patients with these mutations.

Activating in-frame BRAF deletions, most commonly ΔN486_P490 (ΔNVTAP), 
occur in 3.6% of KRAS WT pancreatic cancers [55]. The ΔNVTAP deletion in 
BRAF locks the mutant protein into an active conformation [134, 135], causing 
constitutive activation of BRAF with activation of downstream signaling, indepen-
dent of homodimerization or heterodimerization with CRAF [134]. Notably, this 
conformational change impedes binding of several drugs, particularly vemurafenib, 
to the mutant BRAF protein; indeed, cell line models harboring the ΔNVTAP BRAF 
mutation were resistant to vemurafenib, partially sensitive to GDC-0879 and dab-
rafenib, and sensitive to AZ-628 [134]. A case report of a patient with BRAF 
ΔNVTAP-mutated pancreatic cancer described a partial response and clinical 
improvement with dabrafenib therapy [136]. A series of 5 patients with BRAF 
ΔNVTAP-mutated pancreatic cancer showed that 1 patient treated with trametinib 
had partial response, another had stable disease exceeding 16 weeks treatment dura-
tion, and another two had progression; additionally, a patient treated with a 
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pan-RAF inhibitor had progression [129]. Thus, while some drugs are likely to be 
effective, the likelihood of efficacy depends on whether the specific drug compound 
can successfully bind the mutant BRAF protein. Clinical trials are enrolling patients 
with BRAF non-V600E mutations or other BRAF aberrations (including activating 
deletions), including trials of the ERK inhibitor ulixertinib (NCT04488003, 
NCT02465060).

�BRAF and RAF1 Fusions

Activating BRAF fusions occur in 3.1% of KRAS WT pancreatic adenocarcinomas, 
most commonly fused with SND1, but with many other fusion partners described. 
Interestingly, BRAF or RAF1 fusions are more commonly found in pancreatic aci-
nar cell carcinomas (23% of PACCs have BRAF or RAF1 fusions) [137]. BRAF 
fusions can have heterogeneous effects that depend on the breakpoint and the fusion 
partner. For example, melanoma cell lines with various BRAF fusions had heteroge-
neous responses to BRAF inhibitors in vitro—but all cell lines were resistant to 
vemurafenib and dabrafenib, and some fusion partner genes had dimerization 
domains that actually promoted paradoxical activation of MAPK signaling path-
ways upon treatment with classical RAF inhibitors [138]. The impact of these pre-
clinical observations on clinical efficacy of BRAF inhibitors remains unclear, but 
different inhibitors are likely to have varying effectiveness in different BRAF 
fusions. A patient with CUX1-BRAF fusion pancreatic cancer who received vemu-
rafenib did experience a partial response in the MyPathway basket trial [139]. 
Patients with MBNL2-BRAF fusion had a partial response with trametinib lasting 73 
weeks, while 2 patients with SND1-BRAF fusion had stable disease with trametinib 
[129]. The MATCH trial is currently enrolling patients with BRAF fusions to receive 
ulixertinib (NCT02465060).

RAF1 fusions occur in about 1.6% of KRAS WT pancreatic cancers. Preclinical 
studies suggest that RAF1 fusion cancers may respond to MEK inhibitors like tra-
metinib [140]. Case reports describe exceptional response with improved survival in 
a patient with AKAP9-RAF1 fusion treated with the multikinase inhibitor apatinib 
[141]. Another case of a patient with KANK4-RAF1 fusion described partial 
response lasting over 21 weeks with treatment with trametinib [129].

�NTRK1/2/3 Fusions

NTRK1/2/3 fusions occur in <1% of pancreatic cancers [142, 143], but are impor-
tant to recognize as there are FDA-approved TRK inhibitors, entrectinib, and 
larotrectinib, available. Across all NTRK1/2/3 fusion tumors, entrectinib treatment 
resulted in ORR 61.2% (95% CI 51.9–69.9) including 16% complete responses and 
median DOR of 20.0 months (95% CI 13.0–38.2), and 3/4 pancreatic cancer patients 
had a response with median DOR 12.9 months [144, 145]. Larotrectinib treatment 
yielded ORR 69% (95% CI 63–75) including 26% complete responses and median 
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DOR 32.9 months (95% CI 27.3–41.7) [146–148], including 1/1 pancreatic cancer 
patients having a partial response. Additional published case reports describe a 
patient with CTRC-NTRK1 fusion pancreatic cancer achieving partial response with 
larotrectinib [149] and two patients with TPR-NTRK1 fusion pancreatic cancers 
achieving partial response or clinical benefit with entrectinib [150].

�RET Fusions

RET fusions are also found in KRAS WT pancreatic cancer and are now an action-
able target. Selpercatinib treatment in RET fusion positive non-lung or thyroid can-
cers showed a response rate of 43.9% (95% CI 28.5–60.3), including 6/11 response 
rate in pancreatic cancer (ORR 55%, 95% CI 23–83) [151, 152]. Pralsetinib treat-
ment resulted in 4/4 responses in RET fusion pancreatic cancer, including 1 com-
plete response lasting over 33 months in a patient with RET-TRIM33 and 
RET-JMJD1C fusions [153, 154]. Selpercatinib received FDA accelerated approval 
for refractory metastatic solid tumors with RET fusions in September 2022.

�FGFR1/2/3 Fusions

FGFR1-3 fusions or rearrangements are also occasionally found in pancreatic can-
cers. In the FIGHT-101 phase I/II basket trial, a patient with pancreatic cancer with 
FGFR2-USP33 fusion had a response with pemigatinib lasting 10.7 months [155]. 
Case reports of treatment with erdafitinib showed a partial response in a pancreatic 
cancer harboring an FGFR2 rearrangement in intron 17 [156], a response lasting 
over 12 months in another patient with intron 17 FGFR2 rearrangement cancer 
[157], and a complete response in a patient with FGFR2-TACC2 fusion [158].

�Additional Rare Fusions and Amplifications

ALK rearrangements arise in <0.2% of pancreatic adenocarcinomas [159], and cases 
suggest activity of ALK inhibitors in these patients. Three out of four patients with 
ALK fusion pancreatic cancers had disease control, response, or clinical benefit with 
treatment with ALK inhibitors like crizotinib or ceritinib [159]. Another case report 
of a patient with PPFIBP1-ALK translocation pancreatic cancer described stable 
disease with alectinib treatment, with acquisition of the ALK resistance mutations 
G1202R and V1180L upon progression, followed by disease control with treatment 
with the newer generation ALK inhibitor lorlatinib [160]. Another case report 
describes a patient with EML4-ALK fusion treated with crizotinib with partial 
response lasting for 8 months, who then developed brain metastasis but had further 
response with alectinib [161].

MET and ROS1 fusions are also rarely found in KRAS WT pancreatic cancer. A 
case report found a patient with RDX-MET fusion pancreatic cancer treated with 
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crizotinib had a durable complete response for over 12 months [156]. Another case 
of a SLC4A4-ROS1 fusion pancreatic cancer patient treated with entrectinib showed 
disease control with clinical benefit lasting for 7 months [150].

�HER2 Amplification

HER2 amplification appears to be an actionable driver event in a subset of pancre-
atic cancers, particularly in KRAS wild-type cancers, where it is found in 3.4% of 
cases [55]. In the MyPathway trial, treatment with trastuzumab+pertuzumab 
resulted in a response rate of 1/10 among all pancreatic cancers, but the only 
responder was KRAS wild-type, and among KRAS wild-type pancreatic cancers, the 
response rate was 1/3 [162]. One patient with HER2 amplified pancreatic cancer 
enrolled in the phase I trial of the antibody-drug conjugate trastuzumab deruxtecan 
and had just over 30% reduction in size of target lesions [163].

�Additional Targetable Biomarkers

�TP53 Targeted Therapies

TP53 is a key tumor suppressor gene that functions by detecting cell stressors 
threatening genomic stability and responding either by invoking cell cycle arrest 
and DNA repair or by invoking cell death [164]. TP53 is mutated in 66–72% of 
pancreatic cancers [31, 51] and missense TP53 mutations drive metastasis in vivo 
[165, 166]. Despite the clear driver role of TP53 mutations in oncogenesis, identify-
ing targeted therapies against mutant TP53 has been particularly challenging, due to 
the difficulty restoring lost function of a tumor suppressor and the presence of mul-
tiple heterogeneous TP53 mutations that alter protein function and structure in mul-
tiple ways [164]. Multiple attempts at targeting TP53 have been studied preclinically 
and in clinical trials previously, though none have yet resulted in approved therapies 
in pancreatic cancer [164]; however, research and clinical trials are ongoing. TP53 
Y220C mutation is found in 1.4% of pancreatic cancers, and PC14586 is a novel 
small molecule that binds selectively to mutant p53 Y220C protein to stabilize the 
protein in wild-type conformation and upregulate p53 gene expression targets. A 
phase I trial showed 8/25 (32.0%) evaluable patients with multiple cancer types 
with TP53 Y220C mutation treated at higher dose levels of PC14586 had response, 
and among 6 evaluable pancreatic cancer patients, there was 1 unconfirmed partial 
response [167]. This trial continues to enroll patients (NCT04585750).

Mutant TP53 also generates neoantigens that can elicit adaptive immune 
responses, and HLA-restricted T cells recognizing a range of TP53 mutations have 
been identified from multiple patients with a range of epithelial cancers, with a total 
of 21 reactive unique TILs and a total of 39 TCRs found to date, recognizing mul-
tiple mutant TP53s [168, 169]. Reinfusion of ex  vivo expanded mutant TP53-
targeting autologous TILs resulted in only 2/12 partial responses in TP53 mutant 
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cancers, but the TILs had high degree of exhaustion. Instead, a strategy to engineer 
peripherally harvested T cells with appropriate HLA-restricted TCRs may be more 
effective, and this strategy indeed resulted in a partial response in a patient with 
metastatic TP53 R175H mutant breast cancer [169]. Like the potential for KRAS 
mutation-targeting T-cell therapies, study of CAR-T cell receptor therapy targeting 
mutant TP53 is ongoing.

�MTAP Deletion

Methylthioadenosine phosphorylase (MTAP), an enzyme needed in adenine and 
methionine salvage, is codeleted with the tumor suppressor CDKN2A (p16) in 
20–25% of pancreatic cancers. As a consequence of MTAP loss, its substrate 
methylthioadenosine (MTA) accumulates and inhibits the activity of protein argi-
nine methyltransferase 5 (PRMT5), and MTAP-deficient cells are then susceptible 
to further suppression of PRMT5 activity. MTAP-deficient cells are thus vulnerable 
to PRMT5 inhibitors [170, 171] and methionine adenosyltransferase 2a (MAT2A) 
inhibitors, which further decrease PRMT5 activity and impair PRMT5-mediated 
critical functions such as mRNA splicing [172, 173]. Clinical trials of the PRMT5-
MTA inhibitor MRTX1719 (NCT05245500), MAT2A inhibitor IDE397 
(NCT04794699), and selective PRMT5 inhibitor TNG908 (NCT05275478) are 
ongoing in MTAP homozygously deleted cancers.

�Claudin 18.2 Targeted and Cellular Therapies

Claudin 18.2 is a tight junction protein that is normally specifically expressed on 
differentiated gastric epithelial cells, but is aberrantly expressed in several malig-
nancies, including pancreatic cancer [174]. Immunohistochemical staining for clau-
din 18.2 was 2+ or greater in 54.6% of pancreatic adenocarcinomas and exceeded 
60% in lymph node metastases and liver metastases [175]. Given this limited distri-
bution and high frequency of expression in pancreatic cancer, claudin 18.2 is an 
attractive target for antibody therapy and antibody-drug conjugates and used for 
immune therapies like CAR-T cell therapies and CD3-bispecific antibody therapies. 
Preclinical models showed the anti-claudin 18.2 antibody zolbetuximab induced 
antibody-dependent cellular cytotoxicity and complement-dependent cytotoxicity 
in claudin 18.2-expressing pancreatic cancer cells [176]. There is an ongoing clini-
cal trial of the claudin 18.2 targeting antibody zolbetuximab combined with gem-
citabine and nab-paclitaxel for first-line therapy of claudin 18.2 expressing 
metastatic pancreatic cancer (NCT03816163). TST001 is another humanized anti-
body against claudin 18.2 being studied as monotherapy or in combination with 
nivolumab (NCT04396821). There is also an ongoing phase I trial of BNT141, an 
mRNA encoding an antibody against claudin 18.2 (NCT04683939). SOT102 is an 
antibody-drug conjugate with an anti-claudin 18.2 antibody linked with an anthra-
cycline (NCT05525286). Claudin 18.2-targeting cellular therapies are also being 
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studied in claudin 18.2-expressing gastric and pancreatic cancers. A phase I clinical 
trial of CT041 CAR-CLDN18.2 T cells showed 1/5 pancreatic cancer patients 
enrolled had a partial response [177, 178], and the study is ongoing (NCT04404595). 
ASP2138 is a claudin 18.2 x CD3-bispecific antibody that is now in phase I trials 
(NCT05365581).

�Conclusions

Germline mutation profiling, somatic sequencing, and testing for additional poten-
tially predictive biomarkers for targeted therapies are now standard of care for 
patients with metastatic pancreatic cancer and are critical for identifying potential 
clinical trial options. Immediately, actionable biomarkers that impact standard of 
care options include germline BRCA1/2 testing, microsatellite instability and/or 
mismatch repair testing, and somatic NGS including identifying the rare patients 
whose tumors have BRAF V600E mutations or actionable fusions, particularly 
NTRK1/2/3 or RET fusions, which also have tumor-agnostic FDA approvals for 
targeted agents. The likelihood of finding other actionable aberrations is signifi-
cantly higher among the 7–10% of patients who have KRAS wild-type pancreatic 
cancer. Among the remaining 90–93% of patients whose cancers harbor a KRAS 
mutation, it is critical to identify the 1% with KRAS G12C mutations, as this muta-
tion is now directly targetable with small molecule inhibitors. Ongoing efforts to 
render previously “undruggable” targets like mutant KRAS or TP53 as druggable 
are in progress, though knowledge of the specific mutant allele is required to iden-
tify potential targeted therapy trial options.
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6Immunotherapy in Pancreatic Cancer

Zachary P. Yeung and Madappa N. Kundranda 

�Introduction

Pancreatic ductal adenocarcinoma (PDAC) carries a dismal prognosis and is pre-
dicted to be the number two cause of cancer-related mortality in the United States 
by 2040 [1]. While advances in the management of pancreatic cancer have incre-
mentally improved 5-year OS, the proportion of patients alive at this 5-year land-
mark remains a disappointing 11% in all-stage SEER analysis [2]. Even in the 
curative setting, greater than 75% of the patients develop recurrence or metastatic 
disease within 2  years [3]. Current standard of care approaches with pancreatic 
ductal adenocarcinoma have relied on multidisciplinary combinations of the tradi-
tional pillars of cancer therapy including surgery, radiation, and intensive cytotoxic 
chemotherapies. More recent data have incorporated biomarker-driven approaches 
including targeting BRAFV600E and KRASG12C. Given growing recognition that 
pancreatic cancer is a disease with early metastatic potential that requires systemic 
treatment [4], interest has turned to immunotherapy given its promise in achieving 
durable responses in multiple tumor types in the metastatic setting. However, out-
side of the tumor agnostic indication for microsatellite instability high (MSI-H) and 
deficient mismatch repair (dMMR) tumors, immunotherapy has not emerged as a 
major therapeutic option for pancreatic cancer and has failed to improve overall 
survival. In this chapter, we will review the current understanding of immunobiol-
ogy of pancreatic cancer with a particular focus on the tumor microenvironment 
implicated in the immunosuppressive phenotype of this malignancy. We summarize 
available insights on biomarkers for immunotherapy in selected populations and 
recapitulate prior trial findings while describing the landscape of investigational 
immunotherapies.
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�Pancreatic Tumor Microenvironment (TME)

The “cold” pancreatic TME arises from a histopathologic milieu defined by a lack 
of effector T cells and multiple mechanisms whereby cancer cells avoid host 
immune responses. We briefly review the immune landscape of PDAC tumor stroma 
with a focus on intratumoral heterogeneity and complex interactions of effector 
cells. We contextualize how cancer-associated fibroblasts coordinate via paracrine 
signaling with immunosuppressive actors to promote PDAC evasion of host immu-
nity that leads to tumor growth and invasion.

�Stroma

Both primary pancreatic tumors and metastases are characterized by a desmoplastic 
stroma comprising 80–90% of tumor volume [5, 6]. This dense fibrotic tissue is 
generated by cancer-associated fibroblasts (CAFs), myofibroblasts, pancreatic stel-
late cells (PSC), and cancer cells with overabundance of extracellular matrix (ECM) 
components that act as a barrier to immune surveillance and compress blood vessels 
blocking drug delivery [7]. ECM components such as hyaluronan, collagen, and 
tenascin C have been implicated in inhibitory signaling pathways that suppress 
neoplasia-directed immune responses [8]. Other hallmarks include distortion of 
tumor vasculature, hypoxia, high interstitial pressures, and low pH. In combination, 
these features hinder trafficking and effector function of immune cells to promote 
tumor growth through a balance of immunotolerance and immunosuppression.

�Effector T cells and Tumor Heterogeneity

A preponderance of the literature has correlated effector cell population signatures 
with overall survival—grossly enriched CD3+ and CD8+ subsets are associated 
with prolonged survival and regulatory FoxP3+ infiltration prognostically unfavor-
able for OS [9]. Past understandings of stroma have described its role as physical 
barrier that limits accumulation of effector cells of which T cells are the dominant 
component found in primary tumors [10]. However, more recent spatial analysis of 
multiple cellular types within PDAC tissue has elucidated that the spatial distribu-
tion and proximity of T cells to cancer cells correlates with survival. Carstens et al. 
found that desmoplastic elements such as alpha-SMA+ fibroblasts were not associ-
ated with decreased cytotoxic T-cell infiltration suggesting that desmoplasia may 
not be in itself a physical barrier [11]. These findings of CD8+ infiltration as a sur-
vival correlate were validated in another cohort that further refined this prognostic 
association with specifically higher CD8+ cell density in the tumor center but not in 
the tumor margin [12].

Additional pathologic characterization of the distribution of immune infiltration 
reveals distinct fibroblastic stroma phenotypes or “sub-tumor microenvironments:” 
(1) “deserted” regions with thin fibroblasts, ECM deposition, and CD20+ immune 

Z. P. Yeung and M. N. Kundranda



99

cells associated with chemoresistance, (2) immune hot “reactive” regions rich in 
inflammatory CD8+ T cell infiltrates in direct contact with tumor cells with high 
neoantigen counts and SNVs associated with progression, and (3) regions with 
intermediate levels of these features. Tumor heterogeneity with co-occurrence of 
multiple phenotypes within the same tumor was associated with worse survival [13].

�Cancer-Associated Fibroblasts

Cancer-associated fibroblasts deposit the ECM and produce tumor growth factors. 
They are the predominant non-neoplastic cell type in the TME.  They modulate 
tumor progression via production of TGF-β, VEGF, IL-6, and CXCL12 [14–16]. 
CAFs also immunosuppress by acting on CD8+ T cells, T regs, and macrophages 
via IL-6, CXCL9, and TGFβ [17]. They have been implicated as integral to resis-
tance to immunotherapy [18]. Sequencing has revealed that subpopulations of these 
fibroblasts are responsible for the heterogeneity of tumors [13]. Smooth muscle 
actin has been used to differentiate different fibroblasts populations that appear to 
have opposing functions. SMA-high CAFs are driven by TGFβ of which LRRC15+ 
subsets predominate in PDAC and are associated with poor response to anti-PD-L1 
therapy [19]. Another unique CAF population is the antigen-presenting CAF that 
expresses MHC class II molecules and induces expansion of regulatory T cells [20].

�Inhibitory Paracrine Signaling and Cell Populations

CAF-secreted VEGF mediates angiogenic remodeling of the TME and inhibition of 
cytotoxic T-cell trafficking and function and antigen presentation [21]. VEGF 
expression favors CAF/PSC-directed cytokine-mediated (e.g., TGFβ, IDO, IL6, 8, 
10, CSF) enrichment and recruitment of adenosine-secreting PD-L1+ M2-polarized 
tumor-associated macrophages (TAMs), immunosuppressive myeloid-derived sup-
pressor cells (MDSCs), and FOXP3+ regulatory T cells (Tregs) [22]. In contrast, the 
TME has a relative lack of pro-inflammatory M1 macrophages, dendritic cells, 
natural killer cells, and effector CD4+ and CD8+ T lymphocytes (fivefold fewer 
compared to “hot tumors”) [23].

TME host factors include obesity, a known risk factor for development of PDAC 
[24]. Elevated levels of lipocalin-2 (LCN2), an adipokine elevated in the serum and 
in adipose tissue of obese individuals, have been implicated in adversely modulat-
ing the TME via activation of PSCs, stromal remodeling, and upregulation of tumor-
associated macrophages (TAMs) precipitating ductal metaplasia and predisposing 
to PDAC development [25].
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�TAMs

TAMs serve as major nodes of paracrine activity within the intricate network of 
interactions within the TME receiving signals and releasing growth factors and 
cytokines. They promote tumor cell invasion, induce angiogenesis, and facilitate 
metastasis [26]. Researchers have primarily focused on M2-polarized anti-
inflammatory TAMs that secrete immunosuppressive cytokines including TGFβ and 
IL-10. They interfere with effector T-cell metabolism and recruit T regs. 
Simultaneously, they suppress activation of CD8+ cytotoxic T-cell activation while 
upregulating PSCs further promoting evasion of immune surveillance [27, 28]. 
These M2-polarized TAMs were found to be associated with more advanced nodal 
disease in resected patients and worse overall survival [29]. Long-term survivors 
have lower densities of these M2 macrophages [30]. One proposed therapeutic strat-
egy involves immunotherapy in combination with inhibition of colony-stimulating 
factor-1 receptor (CSF1R), which recruits TAMs to the TME. CSF1R blockade has 
been demonstrated to upregulate PDL1 and CTLA4 to synergize with checkpoint 
immunotherapy [31, 32].

�MDSCs

Enriched by IL-6 [33], MDSCs suppress effector T cells via reactive oxygen species 
and adenosine. Through their production of Interferon-γ and IL-10, MDSCs medi-
ate maturation of de novo Tregs [34, 35]. MDSCs modulate CD8+ T-cell activity, 
promote proliferation of CD4+ Tregs, stimulate angiogenesis via secretion of 
VEGF, and upregulate PD-L1 and LAG3 to further immunosuppression [36–38]. 
Elevated levels of the chemokine CXCL5 linked to MDSC recruitment have been 
correlated with infiltration of granulocytic types of MDSCs associated with inferior 
median overall survival (38.5 months in high vs. 64 months in low) [39]. Transgenic 
mouse models where myeloid cells were depleted demonstrated prevented KRAS-
driven tumorigenesis. In tumors, myeloid depletion arrested tumor growth and led 
to some instances of regression associated with CD8+ T-cell infiltration [40]. 
MDSCs inhibit CD8+ T-cell activity by inducing PD-L1 expression via EGFR/
MAPK pathways.

�Tregs

Regulatory T cells (Tregs) are forkhead box protein 3 (FOXP3) expressing cells that 
represent a major obstacle to tumor immunotherapy by binding to dendritic cells 
and preventing them from activating CD8+ T-cell responses. Patient with tumors 
harboring high prevalence of Tregs often had poorly differentiated tumors with poor 
prognosis [41–43]. Competitive binding of Treg CTLA-4 to B7 downregulates the 
number of B7 receptors on dendritic cells preventing antigen presentation [44]. 
However, their exact role in tumor dynamics requires further study, as experimental 
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depletion of CD4+Foxp3+Tregs yielded rapid growth of tumors in a transgenic 
mouse model via interactions with fibroblasts [45].

�TANs

Tumor-associated neutrophils (TANs) are increasingly recognized to promote tumor 
progression, mediate resistance to therapy, and regulate immunosuppression. 
Systemic elevation of CXCR2+ neutrophils in the peripheral blood and bone mar-
row correlates with overall survival in patients with PDAC [46]. TANs accumulate 
in tumors in a CXCR2-dependent fashion to establish an immunosuppressive niche 
[47]. The complex interactions of TANs are illustrated by the finding that depletion 
of CXCR2+ neutrophils suppress metastasis, but this leads to compensatory upreg-
ulation of CR2+ TAMs [48]. TANs also induce apoptosis of CD8+ cytotoxic lym-
phocytes [49]. They uniquely produce neutrophil extracellular traps (NETs) induced 
by IL-17  in a tumor-cell-dependent fashion that foster resistance to checkpoint 
blockade [50].

�TH17

In the setting of chronic pancreatitis, T-Helper-17 (TH17) cells contribute to tumori-
genesis by secreting IL-17. Binding of this ligand to a KRAS-dependent receptor 
induces downstream expression of genes related to embryonic stemness and secre-
tion of chemokines that attract MDSCs and neutrophils to the TME [51]. Secreted 
granulocyte-macrophage colony-stimulating factor (GM-CSF) recruits suppressive 
myeloid cells that interfere with CD8+ T-cell infiltration and cytotoxicity [52].

�Conventional Immunotherapy Biomarkers in PDAC

Anti-programmed death receptor-1/programmed death receptor-ligand 1 (anti-
PD-1/PD-L1) and anticytotoxic T-lymphocyte-associated protein 4 (anti-CTLA-4) 
checkpoint blockade in unselected patients with PDAC has failed to confer any 
meaningful clinical benefit. Attempts to select patients using available biomarkers 
such as TMB and PD-L1 have failed to predict activity, while dramatic responses 
seen with MSI-H/DMMR tumors are less common in PDAC

�Tumor Mutational Burden and Neoantigens

Despite tumor-agnostic FDA regulatory approval for pembrolizumab based on 29% 
ORR from KEYNOTE-158 suggesting survival benefits with IO in elevated TMB, 
notably, no patients with PDAC were included in this basket trial. Biomarker analy-
sis of Keynote-028 to correlate outcomes to TMB and PD-L1 excluded PDAC cases 
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because there were no responders [53]. Critics have noted that responders in these 
trials often were POLE mutated or were MSI-H [54].

High TMB comprises only 1.1% of PDAC cancers and is usually associated with 
MSI-H/dMMR [55]. The low tumor mutational burden of PDAC (~3.5 mut/Mb in 
the MSK IMPACT cohort; median 1.8 mut/Mb in Foundation) [56] has been one 
explanation for why PDAC is unresponsive to immunotherapy. Analysis at Memorial 
Sloan Kettering Cancer Center demonstrated only two patients with elevated TMB 
of 10; none responded to anti-PD-1 therapy [57]. The authors suggested that cancer-
type-specific TMB cutoffs may be appropriate for determining likely responses to 
immune checkpoint blockade, illustrating the lack of harmonized thresholds 
described in the literature [58]. McGrail and colleagues demonstrated that TMB-H 
classification varies by tumor type and analyzed responses based on CD8+ T-cell 
infiltration and neoantigen load. Pancreatic cancer was classified in a subset where 
TMB did not predict response to ICB. Their survival analysis suggested that TMB-H 
tumors in this category II exhibited worse OS compared to TMB-L tumors. They 
questioned TMB as a tissue agnostic marker [59]. While long term survivors often 
have elevated TMB in some cohorts [60], more recent evidence has shown that qual-
ity of neoepitopes matters, not just quantity. Long-term survivors of pancreatic can-
cers showed no correlation between neoantigen load and survival and developed 
tumors with fewer neoantigens. Neoantigens that resembled bacterial epitopes were 
observed in these long-term survivors [61, 62].

�DMMR/MSI-H

Only 1–2% of pancreatic cancer patients have MSI-H or dMMR tumors, represent-
ing a unique genomic subset. A large proportion of these patients harbor alteration 
of a gene implicated in autosomal dominant Lynch syndrome. MSI-H PDAC is 
strongly associated with medullary and mucinous/colloid histology and genomi-
cally KRAS-TP53 wild type enriched with co-occurring JAK and KMT2 muta-
tions [63].

Trial data from KEYNOTE-158 studying pembrolizumab in patients with non-
colorectal solid tumors that were MSI-high showed a lower response in patients 
with PDAC (18.2%) versus the ORR of 34.3% in the entire cohort of MSI-H solid 
tumors [64]. An analysis of MSI-H/dMMR GI cancers by Chida and colleagues 
found that low TMB and alteration of PTEN predicted negative responses to PD-1 
blockade; both pancreatic cancer patients in this cohort harbored PTEN mutations 
[65]. Given that overlap between MSI-H and TMB high PDACs is not 100% [66], 
work by Salem et al. demonstrated that individual variants in mismatch repair genes 
MLH1, PMS2, MSH2, and MSH6 produce different levels of tumor mutational bur-
den that displayed variability by histology, which may explain why dMMR PDAC 
responds differently to immunotherapy as compared to dMMR colon adenocarci-
noma [67].
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�PD-L1

PD-L1 expression is low in the stroma in PDAC as compared to expression in other 
tumor types.

Upregulation of PD-L1 via glucocorticoid signaling has been associated with 
poor survival and promotes immune tolerance by inhibiting T-cell activity [68–70]. 
As a biomarker, there are no clinically useful cut points to inform clinical utility of 
immune checkpoint inhibition. While not a predictive tool, PD-L1 expression in 
certain cell populations within the TME is prognostic. Analysis of TCGA data has 
demonstrated that PD-L1 expression was associated with poor overall survival. 
Patients with tumors found to be enriched in subsets that were PD-L1negative/CD8+high 
had a positive prognosis [71], suggesting that those patients with T-cell infiltration 
without concomitant adaptive immune evasion are a unique subset with prolonged 
survival. Similar findings of an inverse relationship between PD-L1 expression and 
disease-specific survival have been described in a resected cohort [70].

�Immunotherapeutic Approaches in Unselected PDAC

Earlier attempts at harnessing immunotherapy to treat pancreatic cancer have largely 
been in an all comers unresectable or metastatic population. To date, various studies 
have trialed monotherapy and combinations of checkpoint inhibitors targeting 
PD-1/PD-L1 and/or CTLA4 with or without standard of care chemotherapy back-
bones. The results have been less than impressive. We review past approaches based 
on mechanism of action and review the rationale for therapy before summarizing 
findings. Our review will also describe efforts at formulating viruses, oncolytic 
viruses, adoptive cell therapies, and cancer vaccines.

�Immune Checkpoint Inhibitors: Anti-CTLA-4 Monotherapy

On T cells, the CTLA-4 receptor competes with higher affinity against CD28 for the 
CD80 and CD86 ligands on antigen-presenting cells [72]. Lower CTLA-4 and 
higher CD80 expression in PDAC have been correlated with improved survival 
[73]. Binding of CTLA-4 limits priming of naïve T cells and impedes antitumor 
effector T-cell activity. While favorable responses were observed in melanoma, such 
success have not been observed in pancreatic cancer. Royal et al. carried out a phase 
II trial of single agent Ipilimumab for locally advanced or metastatic PDAC [74]. Of 
27 subjects, there were no responders by RECIST criteria, but a subject experienced 
a delayed response after initial progressive disease. Select clinical trial data is dis-
played in Table 6.1.
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�Immune Checkpoint Inhibitors: Anti-PD-1/
Anti-PD-L1 Monotherapy

PD-1 ligand binding promotes self-tolerance by inhibiting T-cell activation and pro-
liferation. Simultaneously, this signaling axis interferes with downstream signaling 
from the TCR complex and CD28 to promote apoptosis of T-cell effectors [75, 76]. 
As previously stated, PD-L1 is uncommonly overexpressed in PDAC and inversely 
correlates with CD8+ T-cell infiltration and clinical prognosis [77, 78]. The results 
with monotherapy have been disappointing. The original basket trials demonstrated 
lack of response in MSS patients and lower response rate in MSI-H and dMMR 
PDAC patients (18%) compared to other cancer types [79, 80].

�Immune Checkpoint Inhibitors: Combination Anti-PD-1 
and Anti-CTLA4 Blockade

Given the synergy observed in other tumor types, dual anti-PD-1 and anti-CTLA4 
combination was trialed in a multicenter phase 2 randomized control trial [81]. 
Patients received durvalumab plus tremelimumab combination therapy for 4 cycles 
followed by durvalumab therapy (or durvalumab monotherapy for up to 12 months 
or until onset of progression or unacceptable toxicity). Objective response rate for 
combination therapy was a mere 3.1%. No responders were seen in the single agent 
durvalumab arm. Adding anti-CTLA-4 to anti-PD-L1 in pretreated mPDAC patients 
(n  =  65) did not improve survival compared to anti-PD-L1 monotherapy (mOS 
3.1 months vs. 3.6 months; mPFS 1.5 months vs. 1.5 months).

�Immune Checkpoint Inhibitors with Chemotherapy

Given the lack of efficacy in the checkpoint blockade only studies, investigators in 
the field turned to see if addition of these agents to standard cytotoxic chemotherapy 
regimens would enhance efficacy and improve outcomes. This is in context of 
expanding recognition that cytotoxic drugs can synergize with immunotherapy by 
stimulating immunogenic tumor cell death, reduce tumor-induced immune suppres-
sion, and increase effector T-cell function and infiltration.

The first published trial to explore the combination of chemotherapy and check-
point blockade in PDAC explored addition of tremelimumab with gemcitabine [82]. 
Median OS was 7.4 months with two patients achieving partial response, both of 
which were in the 15 mg/kg dose escalation phase, which was comparable to his-
torical outcomes with single-agent gemcitabine of 6.8 months [83, 84]. Addition of 
CTLA-4 blockade to gemcitabine was trialed in a phase Ib study in an advanced 
PDAC patient population. Median OS of 6.9 months and mPFS 2.5 months were 
similar to single-agent gemcitabine historical outcomes [85–87].

More promising results were noted by the PembroPlus phase Ib/II trial that added 
pembrolizumab to gemcitabine/nab-paclitaxel backbone [88, 89]. In this cohort of 
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17 patients, 11 were chemotherapy naïve. This chemotherapy naïve group exhibited 
median PFS of 9.1 months and median OS of 15.1 months, which is over 6 months 
longer than median trial outcomes for gemcitabine/nab-paclitaxel alone. The study 
was also notable for utilization of tumor cell-free DNA copy number instability, 
which correlated with longer PFS and improved OS.

The Canadian phase II PA.7 trial looked at gemcitabine/nab-paclitaxel with or 
without durvalumab and tremelimumab in the first line. The trial was negative and 
showed no significant improvement in OS, PFS, or ORR at a median follow-up of 
28.5 months in this cohort of 180 patients [90].

Taken together, these trials have shown that combining checkpoint inhibition of 
PD-1/PD-L1 and CTLA-4 with chemotherapy has not changed practice away from 
conventional cytotoxic regimens. However, it is unclear what the optimal chemo 
regimen to combine with immunotherapy. The results of two larger trials are eagerly 
awaited (NCT04674956 and NCT03983057; camrelizumab with gemcitabine/nab-
paclitaxel and camrelizumab with FOLFIRINOX).

�Novel Checkpoint Inhibitors

Increasing understanding of T-cell immunity has revealed novel checkpoints that 
involved in T-cell exhaustion. Balli et al. found that cytolytic high tumors had higher 
expression of several immune checkpoints, except for PD-L1 which was uniformly 
low. They also proposed categorizing PDAC based on co-expression of CTLA-4, 
TIGIT, TIM-3, and VISTA for clinical targeting purposes [91].

The TIGIT receptor, expressed on NK cells and activated CD4+ and C8+ T cells, 
has been described in directly inhibiting NK cytotoxicity and T-cell activity [92, 
93]. TIGIT-ligand interactions with CD155 and C112 on tumor and myeloid cells 
promote NK and T-cell tolerance [94, 95]. Expression of CD155 in tumor tissue has 
been found to inversely correlate with TIL frequency and survival [96]. TIGIT com-
petes for ligands against CD226 that promotes NK and T-cell activation. Blockade 
of TIGIT in the preclinical setting selectively affects CD226hiCD8+ T cells, which 
also increase in the setting of FOLRIFIRNOX therapy, suggesting possible synergy 
[97]. Modified FOLFIRINOX treatment in mPDAC patients increased the propor-
tion of CD226hiCD8+ T cells, implying that this chemotherapeutic combination 
may increase tumor sensitivity to anti-TIGIT treatment. A phase 1b/2 randomized 
trial is currently assessing anti-TIGIT combined with gemcitabine/nab-paclitaxel in 
the metastatic setting under the MORPHEUS platform trials (NCT03193190).

TIM-3 is overexpressed on exhausted T cells as well as tumoral DCs [98, 99]. 
Additional staining studies show moderate to high expression in 29% of pancreatic 
patients [100]. TIM-3 putatively leads to invasion, metastatic spread, and recurrence 
[101]. TIM-3 binds Gal-9, phosphatidylserine carcinoembryonic antigen-related 
cell adhesion molecule 1 (CEACAM1) and high mobility group protein B1 
(HMGB1) to downregulate immunity [102–104]. Gal-9 binding with TIM-3 on T 
cells and NK cells leads to diminished activation and inhibition. This is particularly 
salient, since Gal-9 is increased in the tumor tissue and blood of PDAC patients 
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[105]. While anti-TIM-3 therapy is being pursued in other tumor types, no active 
therapeutic trials are enrolling pancreatic cancer patients.

Recent work reported overexpression of VISTA (V-domain Ig suppressor of 
T-cell activation), an inhibitory checkpoint molecule, in PDAC in comparison to 
melanoma, and postulated that VISTA represents a more dominant inhibitory path-
way and may represent a more efficacious target for immunotherapy in PDAC 
[106]. Other validation studies have demonstrated that VISTA is moderately or 
highly expressed on the protein level of 63% pancreatic cancer patient samples 
[100]. Development of a novel antibody HMBD-002 has allowed for preclinical 
work to show that blockade of this axis to reduce myeloid-derived suppression of 
T-cell activity and prevent neutrophil migration in mouse models of multiple cancer 
types [107]. HMBD-002 significantly inhibited tumor growth while decreasing 
infiltration of suppressive myeloid cells and increasing T-cell activity with TH1/
TH17 immune signature. Accordingly, NCT05082610 is recruiting patients for 
evaluation of HMBD-002 with or without pembrolizumab in advanced solid tumors 
including pancreatic cancer.

LAG-3 represents another inhibitory molecule present on PDAC tumor-
infiltrating lymphocytes (TILs) which works by binding MHCII molecules on 
tumor cells. LAG-3 has been found upregulated on infiltrating lymphocytes in 
PDAC [108]. However, recent correlative work has demonstrated moderate or high 
expression of LAG3 in only 6.8% of PDAC tissue samples, which calls into ques-
tion its usefulness as a target. A LAG3 bispecific XmAb22841 is undergoing active 
trials in NCT03849469, but it is not actively recruiting. It is unclear if pancreatic 
cancer has been included.

�Targeting TME + Immunotherapy

Given that the tumor microenvironment strongly attenuates the immune regulation 
of pancreatic environment, rational therapeutic approaches at targeting the TME 
have been the most recent landscape of trials. The CCL2/CCR2 and chemokine 
receptor type 4 (CXCR4) receptor pathways involved in the recruitment of immu-
nosuppressive monocytes to the TME are currently under evaluation as drug targets 
in combination with chemotherapy and immunotherapy [109]. Small molecule inhi-
bition of the CXCR2 receptor expressed on tumor-associated neutrophils and 
MDSCs has been shown to induce antitumor immunity against PDAC in mouse 
models when combined with chemotherapy [110]. Combined CCR2 and CXCR2 
blockade, along with FOLFIIRINOX chemotherapy, increases overall survival in a 
KPC mouse model. Based on this work, an early phase trial was carried out with 
CCR2 inhibition with FOLFIRINOX, which demonstrated response rate of 49% 
with disease control rate of 97% [111]. Unfortunately, the drug maker has decided 
not to pursue further development of PF-04136309. Currently, SX-682, an allosteric 
inhibitor to CXCR1 and CXCR2, is under investigation in combination with 
nivolumab as maintenance therapy in PDAC (NCT04477343). BMS-813160 is a 
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CCR2/CCR5 dual antagonist which is being studied in combination with SBRT, 
nivolumab, and GVAX (NCT03767582).

Although a trial of combining the anti-CXCR4 drug mogamulizumab with dur-
valumab or tremelimumab yielded a paltry ORR of 5.3%, the phase 2a COMBAT 
trial suggested that chemotherapy concurrent with anti-PD-1 and C-X-C motif che-
mokine receptor (CXCR)4 antagonist motixafortide may augment chemotherapeu-
tic effects. Patients in this cohort of 22 patients achieved a mOS of 7.8 months from 
the start of pembrolizumab in the second-line pretreated setting with an ORR of 
32% and 77% DCR [112]. Biomarker analysis following this trial demonstrated that 
high CXCR expression is associated with improved survival and a pro-inflammatory 
phenotype that may identify a subset of tumors with greater responsiveness to 
immunotherapy [113]. An additional phase II trial called Chemo4MetPanc will 
study motixafortide with gemcitabine/nab-paclitaxel and cemiplimab in the 1L 
mPDAC setting (NCT04543071) [114]. A trial combining plerixafor for CXCR4 
blockade with cemiplimab check point inhibition is recruiting (NCT04177810). 
Unfortunately, other trials attempting to deplete immunosuppressive cells, includ-
ing a study combining ibrutinib with PD-L1 inhibition, showed lack of efficacy 
(mOS 4.2 months, mPFS 1.7 months) [115].

Despite initial signals of promise in phase I data [116], an attempt to target M2 
TAM inhibition in a phase II clinical study evaluating the colony-stimulating factor-
1 receptor (CSF1R) inhibitor cabiralizumab with nivolumab and chemotherapy in 
advanced PDAC patients did not improve progression-free survival compared with 
chemotherapy alone (NCT03336216) [117]. A multicenter phase Ib/II trial evalu-
ated a fully human IgG2 monoclonal anti-CSF1R antibody, AMG 820, in combina-
tion with pembrolizumab, and enrolled 116 patients including 31 patients with 
metastatic PDAC (NCT02713529). Despite showing target-specific immune 
changes, this trial did not meet its primary efficacy endpoint. In another phase Ib/II 
trial that included patients with metastatic PDAC, limited activity was observed 
with the anti-CSF1 antibody, lacnotuzumab, given in combination with anti-PD1 
spartalizumab (NCT02807844). In a phase I study, pexidartinib (PLX3397), a 
CSF1R kinase inhibitor, was studied in combination with anti-PD-L1 durvalumab 
in patients with PDAC, resulting in a modest 21% clinical benefit rate (4/19 stable 
disease, including two patients with microsatellite instability-high colorectal can-
cers; NCT02777710) [118].

Another target of interest is activation of CD40 expressed on dendritic cells and 
B cells. Based on translational work in murine models, studies sought to recapitu-
late immune-priming and reversal of T-cell exhaustion through the upregulation of 
cytokines, antigen-presenting molecules, costimulatory molecules, and adhesion 
molecules [119]. Chemotherapy incorporating gemcitabine and nab-paclitaxel with 
concomitant CD40 activation induced T-cell-dependent immunity and memory in 
mouse models that correlated with tumor regression and survival. The phase Ib/II 
PRINCE trial evaluated combining sotigalimab, a CD40 agonist, with gemcitabine 
and nab-paclitaxel with or without nivolumab. Initial phase Ib results showed a 
response in 14 of 24 evaluable patients (58%) [120]. However, phase II results 
showed that while the nivolumab  +  chemo in the first-line treatment of PDAC 
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resulted in a 57.7% 12-month overall survival rate, sotigalimab + chemo resulted in 
58.1% 1-year survival ratel while sotigalimab + nivolumab + chemo yielded a rate 
of 41.3%. Median OS in the nivolumab + chemo arm was 16.7 months. No patient 
subset benefitted from the triplet of sotigalimab, nivolumab, and chemo. While neg-
ative, the PRINCE trial biomarker analyses correlated survival after nivolumab/
chemo with a less suppressive tumor microenvironment and higher numbers of acti-
vated antigen-experienced circulating T cells at baseline suggesting potential 
treatment-specific correlates of efficacy with the potential for biomarker-selected 
patient populations. Another CD40 agonist selicrelumab also demonstrated limited 
efficacy in conjunction with atezolizumab and chemotherapy in an unselected popu-
lation within the MORPHEUS trial [121]. In the neoadjuvant setting, it yielded an 
OS of 23.4 months [122].

CD73, which enzymatically generates extracellular adenosine, is upregulated in 
PDA and exerts an immunosuppressive effect on T cells [123]. MEDI9447 or ole-
clumab is a monoclonal antibody directed to CD73 to prevent adenosine generation. 
It was combined with durvalumab therapy in a phase I trial that produced a partial 
response in 2 of 20 PDAC patients and disease control rate of 25%. Current trials 
are underway with Oleclumab in the neoadjuvant setting with durvalumab and gem-
citabine/nab-paclitaxel in resectable/borderline resectable PDAC (NCT04940286) 
[124]. A small molecule inhibitor of CD73 (AB 680) is also under active investiga-
tion in combination with gemcitabine/nab-paclitaxel chemotherapy and PD-1 inhi-
bition with zimberelimab (AB122; NCT04104672) [125]. Targeting the adenosine 
receptors A2aR and A2bR with AB928 is also being investigated in the MORPHEUS 
phase 1b/2 platform with atezolizumab and gemcitabine/nab-paclitaxel 
(NCT03193190).

Targeting IL-6, which is implicated in the inflammation of the TME, has been 
attempted. Combination of nivolumab, ipilimumab, and tocilizumab in conjunction 
with SBRT did not meet the primary endpoint in the TRIPPLE-R trial 
(NCT04258150). Tocilizumab is being studied in combination with atezolizumab 
and chemo in the MORPHEUS platform trial (NCT03193190).

Given the prominence of the unique stroma in PDAC, a target that gained promi-
nence is high interstitial fluid pressures (IFP) seen in the PDAC microenvironment. 
KPC mice models suggested IPF was associated with hyaluronic acid (HA) deposi-
tion in the pancreatic tumor ECM; administration of pegylated recombinant human 
hyaluronidase (PEGPH20) obliterated patent vascularization in the TME and nor-
malized IFP in these mice. Accordingly, the investigators proceeded to combine 
PEGPH20 with gemcitabine, which prolonged overall survival compared with gem-
citabine alone [126]. Based on these findings, investigators carried out a phase Ib/II 
trial of PEGPH20  in combination with gemcitabine/nab-paclitaxel versus gem-
citabine/nab-paclitaxel alone; PFS was not improved, but subgroup analysis strati-
fied by HA content showed a significant improvement in overall response rate (52% 
vs. 24%, p = 0.038) in patients with tumors of high-HA vs. low-HA [127]. The 
SWOG 1313 phase IB/II randomized trial of FOLFIRINOX plus human hyaluroni-
dase PEGPH20 versus FOLFIRINOX alone was performed in patients with meta-
static PDAC. The trial was closed early because interim analysis found a signal of 
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increased incidence of thrombotic events and GI bleeding in addition to an inferior 
worse OS of 7.7 months vs. the 14.4 months in the chemo-only control arm [128]. 
A phase III trial of combination of PEGPH20 and gemcitabine/nab-paclitaxel ver-
sus gemcitabine/nab-paclitaxel in high HA-expression in metastatic PDAC demon-
strated no OS benefit (11.2 months compared to 11.5 months, HR = 1.00, p = 0.97) 
[129]. No further development of PEGPH20 for metastatic PDAC is planned.

Another putative strategy focusing on the stroma that has been outlined is target-
ing the vitamin D receptor (VDR) theorized to participate in stromal reprogram-
ming and conversion of quiescent to activated pancreatic stellate cells (PSCs). 
Therapy with calcipotriol, which agonistically engages VDR, decreases inflamma-
tion and fibrosis in a pancreatitis murine model while shifting CAFs toward a more 
quiescent phenotype, reduced tumor growth, and improved chemotherapy penetra-
tion [130]. Based on this finding, paricalcitol plus gemcitabine/nab-paclitaxel is 
being studied in NCT 03520790 in the metastatic setting. NCT 04524702 is inves-
tigating hydroxychloroquine and paricalcitol combination with gemcitabine/nab-
paclitaxel in advanced PDAC.  NCT02754726 is investigating 
nivolumab + gemcitabine/nab-paclitaxel/cisplatin.

Hedgehog (Hh) pathway is upregulated in pancreatic cancer stem cells (CSCs), 
which interact with stromal fibroblasts via paracrine signaling resulting in PTEN-
related promotion of a fibrotic and immune suppressive stroma leading to tumori-
genesis [131]. Further preclinical research suggested Shh inhibition resulted in 
major improvement in outcomes by facilitating entry of chemotherapy into pancre-
atic tumors [132]. Unfortunately, a phase II trial that assessed gemcitabine/nab-
paclitaxel plus vismodegib (a hedgehog inhibitor) in patients with metastatic PDAC 
produced no clinical benefit [133].

Focal adhesion kinase 1 (FAK1) is a nonreceptor tyrosine kinase implicated in 
activating pro-inflammatory cytokines and upregulating pathologic fibrosis. FAK1 
is upregulated in PDAC, and tumors with high FAK1 expression had higher levels 
of total stromal collagen and collagen I deposition. The combination of a FAK-
inhibitor, gemcitabine, and anti-PD1 immunotherapy in a KPC mouse model 
reduced tumor burden and improved overall survival with immune correlates show-
ing significantly increased CD8+ tumor-infiltrating lymphocytes compared with 
mice treated with gemcitabine and anti-PD1 immunotherapy alone [134]. 
NCT03727880 is investigating pembrolizumab with or without the FAK inhibitor 
defactinib following chemotherapy as a neoadjuvant/adjuvant treatment for resect-
able PDAC.

Desmoplasia is a product of connective tissue growth factor (CTGF). CTGF 
overexpression is associated with aberrant fibrous tissue in mouse models, which 
was successfully abrogated with the anti-CTGF antibody pamrevlumab. Clinical 
trials initiated in the neoadjuvant setting for LAPC demonstrated that addition of 
pamrevlumab to standard neoadjuvant gemcitabine/nab-paclitaxel increased che-
motherapy completion, increased radiographic response by PET, and increased eli-
gibility for surgery and resection rate. ORR was 30%. Among those eligible for 
surgery, the antibody arm demonstrated improvement in OS (27.73  months vs. 

Z. P. Yeung and M. N. Kundranda



111

18.40 months) [135]. The phase III LAPIs trial will follow up these findings in a 
larger patient population (NCT03941093).

Overcoming the drug delivery issue in the PDAC stroma is being trialed. 
NCT05042128 is examining CEND-1, a novel cyclic tumor-penetrating peptide 
iRGD (internalizing arginylglycylaspartic acid) in combination with gemcitabine/
nab-paclitaxel.

Harnessing mesothelin as a biomarker is currently underway with anetumab 
ravtansine—a fully human IgG1 antibody-drug conjugate targeted to mesothelin to 
deliver DM4 chemotherapy payload—with either nivolumab, nivolumab + ipilim-
umab, or gemcitabine + nivolumab (NCT03816358). Stable disease was observed 
in pancreatic cancer patients in the phase I portion [136].

Claudin 18.2 aberrant expression in PDAC is well described. A 1L Ph II gem/
nab-P ± zolbetuximab (IgG1 mAb targeting Claudin 18.2) in metastatic PDAC is 
active (NCT03816163). Histologically confirmed high CLDN18.2 expression 
(≥75% of tumor cells demonstrate moderate-to-strong IHC staining) is required for 
enrollment [137].

Targeting the communication between PSCs and PDAC tumor cells has impli-
cated leukemia inhibitory factor (LIF) as a key paracrine mediator in stromal cross-
talk. LIF blockade slows tumor progression and augments the effects of chemo in 
prolonging OS in mouse models [138]. NCT04999969 is a phase II trial examining 
an inhibitor of LIF (AZD0171) in combination with gemcitabine/nab-paclitaxel 
chemo and durvalumab checkpoint inhibition.

�Vaccines

One of the most durable efforts at immunotherapy in pancreatic cancer has been the 
development of vaccines. Table 6.2 summarizes select vaccine trials in PDAC.

The first vaccine developed was GVAX (granulocyte-macrophage colony-
stimulating factor gene transfected tumor cells vaccine) containing irradiated allo-
geneic pancreatic cancer cells virally transduced with GM-CSF and administered 
intradermally. GVAX demonstrated the ability to recruit antigen-presenting cells 
(APCs), predominantly dendritic cells (DCs), to the inoculation site resulting in 
CD8+ T cells cross-priming [139].

A second vaccine, CRS-207, consists of deactivated Listeria expressing meso-
thelin, a tumor-associated antigen highly expressed in PDAC [140]. Mesothelin is 
often co-expressed with CA-125 (MUC-16). Binding of CA-125 with secreted 
mesothelin enhances tumor cell motility and invasion [141]. Translational murine 
studies have suggested efficacy of mixing vaccines with checkpoint inhibition 
[142]. A trial with GVAX/cyclophosphamide followed by CRS-207 with or without 
nivolumab was completed, and though the primary endpoint of improving OS was 
not met, an increase of CD8+T cells and decrease in TAMS and MDSCs were 
observed in the TME of biopsied tumors in patient with better OS [143]. GVAX in 
combination with ipilimumab in a cohort of 15 patients was also disappointing with 
a median OS of a mere 5.7 months [144]. Among patients with an OS >4.3 months, 
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a mesothelin-specific T-cell signature was enhanced with significant augmentation 
of the T-cell repertoire, suggesting at least a partial induction of a T-cell-mediated 
immune response. Another RCT examined GVAX + anti-CTLA-4 in a maintenance 
setting following 4–6 cycles of FOLFIRINOX. Unfortunately, this GVAX + anti-
CTLA combination produced significantly inferior survival compared to 
FOLFIRINOX (mOS 9.4 months vs. 14.7 months, ORR 6% vs. 14%, p = 0.019) [145].

Wilm’s tumor gene WT-1 has been implicated in tumor growth, invasion, angio-
genesis, and metastatic processes and is overexpressed in approximately 75% of 
PDAC tumors [146]. WT-1 peptide vaccines and WT-1-peptide-pulsed DCs have 
been utilized in combination with chemo [147–155]. Nishida et al. described the 
largest cohort of 85 patients with recurrent, LAPC, or mPDAC randomized to 
receive an intradermal WT-1 peptide vaccine plus gemcitabine (n = 42) or gem-
citabine monotherapy (n = 43). Treatment in the vaccine plus chemo arm produced 
no significant difference in overall survival compared to the chemo-only arm (mOS 
9.6 months vs. 8.9 months (p = 0.4)). A subset of patient with a delayed-type hyper-
sensitivity (DTH) had a substantially improved PFS (p > 0.001).

MUC-1 is differentially expressed in >60% of PDAC patients and correlates with 
tumor size and dysplasia, suggesting a pivotal role in tumor progression [156]. A 
WT-1/MUC-1 peptide-pulsed DC vaccine combined with gemcitabine as adjuvant 
therapy in resected PDAC patients produced a measurable WT-1-specific CD8+ 
T-cell response in 40% of patients. Survival outcomes of mPFS and mOS of 17.7 
and 46.4 months from the first vaccination were encouraging.

Earlier efforts with a MUC-1-pulsed DC vaccine in seven advanced PDAC 
patients with aberrant MUC-1 expression previously treated with chemotherapy and 
surgery showed no clinical responses [157], which suggests possible benefit with 
targeting multiple antigens.

KIF20A is a motor protein highly expressed in pancreatic cancer implicated in 
tumor growth and is highly expressed in >90% of PDAC patients [158, 159] Asahara 
et  al. assessed an injected KIF20A66 protein vaccine in gemcitabine refractory, 
unresectable, or recurrent metastatic PDAC patients (n = 29), resulting in a peptide-
specific CD8+ effector T-cell response and an mOS of 4.2 months, compared to 
2.2 months with best supportive care (p = 0.047) [160].

A peptide-cocktail vaccine OCV-C01 containing epitope peptides derived from 
KIF20A and VEGF1/2 in combination with gemcitabine was trialed in the adjuvant 
setting after resection. Median DFS was 15.8 months and OS at 18 months was 
69%. DFS was significantly longer in patients demonstrating KIF20A T-cell 
responses with no recurrences in patients with this immune correlate who under-
went R0 resection [161]. VEGFR-directed vaccines from this same group were 
tested in a phase 2/3 RCT that allocated VEGFR2 peptide vaccine combined with 
gemcitabine (n = 100) or a placebo with gemcitabine (n = 53) to a chemoradiation 
naïve LAPC and mPDAC patients. Survival outcomes were similar between the two 
treatment groups (8.4 months and 8.5 months, p = 0.9, respectively) [162].

Survivin is typically only expressed during embryonic and fetal development 
where it participates in cell cycle regulation and apoptosis. In PDAC, it is 

Z. P. Yeung and M. N. Kundranda



115

pathologically expressed in about 80% of patients, with elevated expression associ-
ated with worse prognosis and treatment resistance [163, 164]. Utility of a survivin 
2B-vaccine (SVN2B) was investigated in the phase 2 setting that included 83 pre-
treated advanced PDAC patients. Arms demonstrated no difference in median OS 
despite survivin-specific CD8+ T-cell signature enrichment when allocated to 
receive SVN-2B + IFN-α (n = 30), SVN-2B only (n = 34), or a placebo (n = 19) [165].

Pancreatic cancer cells achieve immortalization via activation of telomerase to 
avoid senescence [166]. Middleton and colleagues tested an intradermal telomerase 
peptide vaccine GV1001 (TeloVac) on LAPC and mPDAC patients [167]. Arms 
compared gemcitabine/capecitabine doublet chemotherapy versus sequential che-
motherapy/vaccine or concurrent chemo with vaccine. The trial was negative, and 
GV1001 did not improve survival. Immune correlates stratified by sequential or 
concurrent chemo + vaccine did not relate to overall survival.

KRAS is classic alteration in 90% of PDAC patients associated with overall 
worse prognosis and treatment insensitivity [168]. Two major varieties of KRAS-
directed vaccines have been tested in clinical trials: (1) Epstein Barr Virus-
transformed lymphoblastoid cell line (CLC) [169] or (2) combined with adjuvant 
GM-CSF in PDAC patients with a confirmed KRAS mutation [170, 171]. 
Combination with gemcitabine as adjuvant therapy after resection has yielded ini-
tial favorable results. Palmer et al. trialed their vaccine on 32 PDAC patients who 
underwent primary resection. These patients received an intradermal injection of a 
seven-peptide vaccine covering most known mutations of KRAS (TG01), co-
administered with recombinant GM-CSF (TG01/GM-CSF), and combined with 
gemcitabine. Median OS (33.1–34.3 months) and mPFS (13.9–19.5 months) were 
favorable when compared to historical outcomes (mOS 17–27  months) [172]. 
Peptide-specific-T-cell activation was detected in >74% of patients.

Preclinical work has more recently investigated a combinatorial strategy of neo-
antigen vaccine and STING adjuvant that produced transient tumor regression in a 
mouse model [173]. Addition of anti-PD-1 and an OX40 agonist augmented 
responses [174]. Building on sparse proof of concept work [175], multiple clinical 
trials are currently testing neoantigen vaccine treatments: NCT03558945, 
NCT03953235 (vaccine + nivolumab/ipilimumab), and NCT03956056.

Tumor-based vaccines and multi-antigen vaccines, with or without DCs as deliv-
ery vector, have been utilized clinically for PDAC more recently. A small trial com-
bined personalized peptide vaccine with gemcitabine in 21 LAPC and mPDAC 
patients, resulting in an mOS of 9 months and mPFS of 7 months, comparable to 
gemcitabine/nabpaclitaxel alone (8.5  months) [176]. Alpha-galactosyl (α-Gal)-
expressing tumor lysate-pulsed DCs were combined with cytokine-induced killer 
cells (CIK) in pretreated LAPC and mPDAC patients (n = 14) that achieved an mOS 
of 24.7  months. Immune correlates of CD8+ T cells, CD45+RO+ T cells, and 
CD56+ NK cell levels were increased. DTH was positive in 86% of patients and 
significantly correlated with prognosis [177]. Another immunotherapy consisting of 
a peptide-pulsed hTERT DC vaccine, carcinoembryonic antigen (CEA), and sur-
vivin with an intramuscular TLR-3 agonist (poly-ICLC) in pretreated LAPC and 

6  Immunotherapy in Pancreatic Cancer



116

mPDAC patients resulted in an mOS and mPFS of 7.7 and 3 months with measur-
able tumor-specific T-cell populations [178]. Overall, studies have indicated that 
vaccines can illicit immune responses, but clinically relevant survival outcomes 
indicate the need for further research.

Recent publication described a phase III trial assessing algenpantucel-L 
[HyperAcute-Pancreas algenpantucel-L (HAPa)] consisting of allogeneic pancre-
atic cancer cells engineered to express the murine α(1,3)GT gene in a vaccine for-
mulation. They compared HAPa in combination with SOC chemo/chemoradiation 
vs. standard of care chemo in locally advanced and borderline resectable disease. 
PFS and OS unfortunately were lower in the treatment group [179].

�Immune Stimulators

Immune stimulation has been another mechanism that has been proposed as an 
adjunct to improve the effectiveness of immunotherapy. The most commonly altered 
signal transduction pathway in pancreatic cancer is the TGF-beta axis [180]. 
Inhibitors of TGF-β signaling have been explored in preclinical models and showed 
enhanced antitumor activity in combination with gemcitabine [181]. In combination 
with gemcitabine, galunisertib demonstrated low toxicity and 1.8 months increase 
in median overall survival compared to single-agent gemcitabine [182]. When com-
bined with durvalumab PD-1 blockade in a phase Ib study, clinical activity was 
limited [183]. Currently, NIS793, a fully human IgG2 mAb blockinf TGFβ, is under 
investigation in two trials: 1L Ph III daNIS-2: Gem/nab-P ± NIS793 TGFβ/placebo 
(NCT04935359) and 1L Ph II daNIS-1 Gem/nab-P ± NIS793 ± Spartalizumab in 
1L Metastatic disease (NCT04390763).

A phase I trial was attempted with eftilagimod alpha (IMP321) in combination 
with gemcitabine chemotherapy based on preclinical data that MHC class II agonist 
triggers maturation of APCs followed by activation of CD8+ T cells. This trial 
recruited treatment-naïve advanced PDAC patients. While safe ad well tolerated, 
doses administered in the trial demonstrated did not elicit correlative immunologi-
cal response [184].

OX40 receptor activation signals downstream enhancement of effector func-
tions, memory formation, and survival of CD4+ and CD8+ T cells [185]. 
Combination of an OX40 agonist with PD-1 blockade induced tumor cell rejection, 
depleted regulatory/exhausted T-cell complement, and stimulated T-cell immune 
memory in a mouse model [186]. While data from human trials is yet available, a 
phase 1b/2 trial combining an OX40 agonist with a toll-like receptor (TLR)-9 ligand 
is currently recruiting cancer patients including those with mPDAC (NCT04387071).

RO6874281 is a novel monomeric bispecific IL-2v immunocytokine that shows 
binding affinity to tumor-associated fibroblasts in the TME via FAP. Binding initi-
ates CD8+ T-cell and NK effectors [187]. The drug will be combined with atezoli-
zumab in the MORPHEUS platform trial (NCT03193190).
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�Adjuvants

In immunotherapy, adjuvants are usually added to vaccines in order to modulate or 
increase an immune response against the antigens contained within them [188]. 
They target the priming phase or the effector phase but can also be utilized as 
immune modulators to condition the microenvironment of both tumors and their 
draining lymph nodes in order to support both phases. Adjuvants bind onto pattern 
recognition receptors (PRRs), including toll-like receptors (TLRs), stimulator of 
IFN genes (STING), and NOD-like receptors (NLRs) to initiate immune responses 
and trigger release of chemokines/cytokines that can attract T cells [189]. Peritumoral 
administration has demonstrated superior antitumor efficacy in terms of DC and 
tumor-specific CD8+ T-cell activation and long-lasting tumor protection in mice 
when compared to systemic administration [190].

Binding of ligand to the toll-like receptors has been studied in the context of 
increasing inflammation via IL-12, INF-alpha, and TNF-alpha. Activation leads to 
dendritic cell maturation and T-cell and NK effector function. Some TLR expres-
sion has been associated with better prognosis in pancreatic cancer patients [191–
193]. However, there is conflicting data that implicates activation of TLRs with 
tumorigenesis and angiogenesis [194, 195]. Preclinical work with orthotopic mod-
els of pancreatic cancer demonstrates activity in combination with other modalities 
such as chemo, radiotherapy, and checkpoint blockade [196–200] phase 2 data in 
human subjects comparing combination of gemcitabine, and IMM-101, a TLR2/1 
agonist, with chemo alone demonstrated a modest overall survival benefit in favor 
of IMM-101 (7 months vs. 4.4 months) [201]. The results of the PANFIRE-III trial 
(NCT04612530) combining irreversible electroporation and nivolumab with admin-
istration of intratumoral TLR ligand are eagerly awaited [202]. Data from 
NCT04050085 that combined nivolumab with radiation and a TLR9 agonist SD-101 
has yet to be presented.

The cyclic GMP-AMP synthase (cGAS)-STING pathway in innate immune cells 
detects cytosolic double-stranded DNA fragments and initiates inflammatory 
responses, resulting in DC maturation and infiltration of NK and T-cell effectors 
into PDAC [203, 204]. Mouse models have shown the efficacy of targeting STING 
in combination with vaccines, checkpoint inhibitors, and radiation to prolong sur-
vival and shrink tumors [173, 174, 205]. While efforts with STING agonists in 
NCT03010176 and NCT03172936 failed to induce tumor regression, NCT04144140 
is ongoing.

�Oncolytic Viruses

Oncolytic viral therapy harnesses the lytic therapy of viruses that can differentially 
target cancer cells that harbor upregulated oncogenic signaling and defective 
interferon-mediated immunity. The newly produced oncolytic viruses, virus-derived 
PAMPs, DAMPs, and tumor antigens are released into the TME, infecting other 
tumor cells; they also serve to activate DCs and prime T cells in the draining lymph 
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nodes. CXCL9 and CXCL10 act as chemoattractants for immune effector traffick-
ing [206]. Genetic modifications of these viruses allow for arming with immune 
modulator transgenes, so that immune-activating products are released by infected 
tumor cells upon lysis, decreasing immune suppression in the TME and/or increas-
ing immune activation [207].

In mouse models of pancreatic cancer, oncolytic viruses caused tumor shrinkage 
and prolonged survival via downregulation of TAMs and increasing infiltration and 
function of Th1 cell responses [208, 209]. Clinical use of these viruses was first 
described in the unresectable setting [210, 211]. Other efforts have sought to aug-
ment therapy in resectable patients [212]. In one RCT, patients received IV pelareo-
rep (an oncolytic reovirus) combined with carboplatin/paclitaxel (n  =  36) or 
carboplatin/paclitaxel alone (n = 37). The primary outcome, mPFS, did not signifi-
cantly differ between the treatment groups (4.9 months vs. 5.2 months, p = 0.6), but 
the oncolytic virus arm produced measurable increases in systemic Th1 CD4+ and 
CD8+ T cells [213]. Addition of that same viral construct to anti-PD-1 and chemo-
therapy yielded novel T-cell clones and transcriptional evidence of systemic immune 
activation associated with clinical benefit [214]. Another trial utilized intratumoral 
HF-10, a natural oncolytic HSV-1 virus, in combination with erlotinib (anti-EGFR) 
and gemcitabine in ten LAPC patients, achieving an mOS of 15.5 months [215]. A 
German trial of an oncolytic parvovirus H-1PB. (ParvOryx) in seven patients refrac-
tory to 1L therapy in the metastatic setting showed responses in two patients with no 
dose-limiting toxicities and survival of 326 and 555 days [216]. All patients showed 
T-cell responses to viral proteins. Patient who exhibited a partial response was 
found to have a distinct immunologic pattern in both tumor tissues and in blood 
suggestive of immune activation after administration of ParvOryx.

NCT03252808 is a Japanese study of the oncolytic herpes simplex virus caner-
paturev (C-REV, formerly HF10) in combination with gemcitabine/nab-paclitaxel. 
Best overall response rate at 16 weeks was 66% with a DCR of 100% in the cohort 
of six patients. Further data from this study has not been released since 2019 [217].

Musher et  al. recently presented promising results from NCT02705196 that 
investigated LOAd703, an oncolytic adenovirus with transgenes encoding TMZ-
CD40L and 4-1BBL, in conjunction with gemcitabine/nab-paclitaxel standard of 
care chemo in patients with unresectable or metastatic PDAC. Of the 21 patients 
treated, 57% had already been exposed to chemo. Objective response was observed 
in 5/11 patients (55%) in the highest dose level. Of all evaluable patients, ORR was 
44% with a DCR of 94%. Median OS in the patients who received at least one injec-
tion was 8.7 months. Post-injection immune correlates showed the proportion of T 
effector memory cells increase while T regs and MDSCs decreased. A follow-up 
trial adding atezolizumab to this promising combination is underway [218].

NCT02045589 is a phase I multicenter, open-label study of IV VCN-01, an 
oncolytic adenovirus that was trialed with or without gemcitabine/nab-paclitaxel. 
ORR in patient with PDAC was 50% [219]. Of 22 patients in the pancreatic cancer 
arms that were evaluable, eight patients experienced disease stabilization lasting 
more than 1 year with median OS 11–13.5 months. Subgroup analysis of patients at 
the RP2D demonstrated impressive outcomes; ORR was 83% with PFS of 
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6.3 months and OS of 20.8 months. Other trials are recruiting: NCT04637698 is 
seeking to evaluate OH2, a type 2 herpes simplex virus expressing GM-CSF.

�Adoptive Cellular Therapy

Adoptive cell therapy involves infusion autologous or allogeneic effector cells (usu-
ally T or NK cells) to eradicate cancer. Cells are harvested, selected, and modified. 
Modifications in the processing may include expression of a chimeric antigen recep-
tor that targets a specific protein moiety or a TCR to specifically recognize a pep-
tide/MHC complex. Successes have been observed in hematologic malignancies, 
but responses in solid tumors have been limited. Selected cellular therapies are 
detailed in Table 6.3.

As described by Watanabe and colleagues, preclinical mouse models showed 
promise with a mesothelin-directed CAR-T construct combined with armed onco-
lytic viruses expressing IL-2 and TNF-alpha. Clinical development still requires 
optimization and remains in early stages.

Trials of a mesothelin CAR-T in humans showed limited activity [220, 221]. In 
NCT01897415, autologous T cells were engineered using mRNA electroporation, 
inducing transient expression of a second-generation anti-MSLN CAR construct 
coupled to 4-1BB and CD3ζ. The best response observed was stabilization of dis-
ease in two individuals for 3.8 and 5.4 months.

In NCT02159716, lentiviral transduced anti-MSLN CAR-T cells were also 
investigated. No patients responded, but 11 of 15 individuals did achieve stable 
disease. Later analysis demonstrated that only 3 of 15 patient samples displayed 
greater than 75% MSLN expression, suggesting that upfront patient selection by 
biomarkers would be a necessary future optimization. This trial (NCT03054298) is 
currently recruiting. NCT03638193 is a Chinese study of autologous T cells lentivi-
rally transduced to express anti-mesothelin scFv fused to TCRζ and 4-1BB costimu-
latory domains in patients with metastatic pancreatic cancer. Patients will undergo 
lymphodepletion with cyclophosphamide. No results have been released.

Efforts to use Vγ9Vδ2 T cells in the adjuvant setting failed to prolong sur-
vival [222].

More promising results have been described by Kumai et  al. [223] αβ T-cell 
therapy ± chemotherapy resulted in mOS of 11.3 months from start of immuno-
therapy and 18.7 months from diagnosis, which is longer than historical references 
for cytotoxic regimens.

NCT02541370 was a phase 1 clinical trial where T cells were engineered using 
lentiviral vectors to target CD133. Of the 23 patients treated, seven had PDAC that 
was advanced. Patient tumor samples demonstrated CD133 expression greater than 
50%. The conditioning regimen involved cyclophosphamide and nab-paclitaxel. 
Three patient achieved stable disease, two achieved partial response, and two 
patients progressed. Repeated cell infusions provided a greater period of disease 
control within the pancreatic cohort. Post-treatment biopsies showed that tumor tis-
sue no longer expressed CD133 [224].
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Another group targeted EGFR given its presence in 90% of PDAC tumors. 
NCT01869166 used EGFR-directed CAR-T cells in 16 patients with >50% EGFR 
expression [225]. Preconditioning was performed with cyclophosphamide and nab-
paclitaxel. Patients were allowed to undergo palliative radiotherapy for tumor-
associated pain. Of the 16 patients, eight achieved stable disease for 2–4 months, 
four were partial responders for 2–4 months, and two had disease progression. Two 
patients were lost to follow up.

One of the earliest attempts to design CAR-Ts involved targeting ERBB2. 
Unfortunately, within 15 min of infusion on NCI-09-C-0041, a patient experience 
severe on-target/off-tumor response resulting in death. Despite this, NCT01935843 
enrolled two PDAC patients with >50% HER-2+ tumor cells. Preconditioning uti-
lized cyclophosphamide and nab-paclitaxel. At final assessment, both individuals 
with pancreatic cancer achieved stable disease for 5.3 and 8.3  months [226]. 
NCT03740256 is investigating combination of a binary oncolytic adenovirus 
(CAdVEC) in combination with a HER2-specific autologous VAR VST in advanced 
HER2 positive solid tumors including PDAC and is actively recruiting.

CAR-T therapy targeting CEA given to a patient via hepatic artery infusion 
(NCT02850536) demonstrated a complete metabolic response in the liver that was 
durable and sustained for 13 months with normalization in tumor markers in one 
instance. Post-treatment tumor specimens demonstrated abundance of CAR+ cells 
[227]. Unfortunately, other attempts at targeting CEA have not made it off the 
launching pad. NCT04037241 was originally designed to study an anti-CEA 
CAR-T + chemotherapy vs. chemotherapy alone in patient with CEA+ pancreatic 
cancer and liver metastases. The trial was withdrawn under sponsor termination. 
NCT03818165 and NCT03682744 targeting the same moiety was terminated for 
limited enrollment. Other targets for CAR include CD70 (NCT02830724), Claudin 
18.2 with CT041 (NCT04404595), PSCA with BPX-601  in NCT02744287, and 
HER2-Targeted Dual Switch CAR-T Cells (BPX-603) in NCT04650451.

Continued development of CAR-T cells will require further investigation in how 
best to increase tumor infiltration, to select proper antigens for targeting, to modu-
late the immunosuppressive TME, and to ensure fitness and survival of the infused 
cells [228–231]. Target engagement between CAR-T and PDAC cells occurs slowly, 
creating an additional challenge, as T cells, once activated and exposed to consistent 
antigen, begin a process of terminal differentiation towards an exhausted and hypo-
functional state [232]. Third-generation CARs engineered to secrete checkpoint 
inhibitors to target PD-1, which enhanced antitumor activity and prolonged func-
tional persistence [233, 234]. Newer fourth-generation CARs (also termed armored 
CARs or TRUCKS) have engineered CAR-T cells to express receptors for chemo-
kines to aid in recruitment of immune cells to tumors [235–237]. Significant interest 
has also combining oncolytic viruses with CAR-T cells [238].

Allogeneic CAR-T cells have been suggested as a more available standardized 
off-the-shelf alternative to manufactured autologous CARs [239]. However, the 
allogeneic nature introduces the risk of graft versus host disease (GvHD) via HLA 
mismatch, which may also threaten the CAR persistence via immune elimination. 
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There is a fine balance: both life-threatening risks and donor availability decrease 
with higher-resolution HLA typing.

NK cells have been identified as an alternative to CAR-T cells. NK cells are 
innate immune effects that target foreign or damaged cells but recognize targets in 
a non-antigen-specific manner without the need for prior sensitization [240]. 
Froelich has described NK cells isolated from umbilical cord blood modified to 
express an anti-PSCA CAR construct with soluble IL-15 [241]. These PSCA-
directed CAR NK cells were tested in a metastatic humanized pancreatic cancer 
mouse model. An increase in cytotoxic function, suppressed tumor growth, and pro-
longed survival were observed. On Day 48, pancreatic biopsies revealed minimal 
tumor cells and a high number of NK cells, indicating persistence of the immune 
cells within the TME. A number of trials are examining allogeneic NK cell infu-
sions in PDAC but have not recently published any updates on results (NCT02839954, 
NCT03941457, NCT03634501; NCT03093688). There is initial data to suggest 
that allogeneic NK cell infusions targeting ROBO1  in PDAC are feasible [242]. 
Other recent proposals have included generating CAR NK cells from induced plu-
ripotent stem cells derived from triple homozygous HLA donors so that immune 
suppression genes can be removed to prolong NK persistence and efficacy while 
minimizing rejection [243].

TILs are mononuclear immune cells that infiltrate tumor tissue during the initial 
immune response [244]. TIL therapy is limited by IL-2 AEs because high-dose IL-2 
is required after infusion [245]. TIL therapy in PDAC is currently being tested in 
phase I and phase II clinical trials (NCT05098197, NCT03935893, NCT03610490, 
NCT04426669). TILs with gene encoding checkpoint inhibition of CISH through 
CIRSPR genetic engineering in NCT04426669 will make the results particularly 
interesting.

CAR macrophages have also been described targeting HER2 [246]. Phase I trial 
with CT-0508 (NCT04660929) is recruiting.

Great attention returned to TCR-based therapy with recent publication of a dra-
matic response.

Following a single infusion of autologous T cells genetically engineered to clon-
ally express two allogeneic HLA-C*08:02-restricted T-cell receptors (TCRs) target-
ing mutant KRAS G12D expressed by the tumors, a patient with progressive 
pancreatic cancer had regression of visceral metastases (overall partial response of 
72% by RECIST 1.1). The response was ongoing at 6 months. The engineered T 
cells constituted more than 2% of all the circulating peripheral-blood T cells 
6 months after the cell transfer demonstrating persistence. This case report demon-
strates proof of concept for TCR gene therapy targeting the KRAS driver mutations 
in mediating the objective regression of metastatic pancreatic cancer [247].

�Multimodality Therapy with Local Ablation and Immunotherapy

Another approach that has gained interest is harnessing radiotherapy and/or radio-
frequency ablation in conjunction with immunotherapy to circumvent the 
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suppressive TME. From the theoretical perspective, investigators have posited that 
radiation can generate neoantigens in an “abscopal effect” that would act as sys-
temic immune stimulant to act on distant metastatic sites.

Phase II data has demonstrated in microsatellite stable PDAC, addition of radia-
tion to nivolumab and ipilimumab yielded a disease control rate of 29% (5/17 
patients) with immune correlates enriched in NK cells in those that responded [248]. 
This proof of principle has been extended to more ablative techniques. Irreversible 
electroporation (IRE) is a nonthermal ablative technique in which high-voltage 
electrical pulses are applied directly to the tumor. It has been shown to transiently 
alleviate immune suppression and create a window for antitumor T-cell activation 
[249, 250]. Combining other therapeutics with IRE has coined terms such as elec-
trochemotherapy and electroimmunotherapy [251]. Based on survival outcomes and 
tumor regression in mouse models [252, 253], O’Neill and colleagues initiated a 
phase 1 trial of concurrent checkpoint inhibition with IRE in LAPC following stable 
disease after chemotherapy [254]. Median OS was 18  months with mPFS of 
6.3 months. This was further explored in the phase 2 PANFIRE trial in the locally 
advanced or recurrent PDAC setting in conjunction with cytotoxic chemotherapy. 
The target median OS was surpassed, and a phase 3 trial in conjunction with immu-
notherapy is ongoing (NCT04612530) [255]. PANFIRE-III will evaluate IRE + sys-
temic anti-PD-1 with or without an intratumoral TLR-9 agonist in mPDAC patient 
with stable or responsive disease following eight cycles of FOLFIRINOX [202].

Percutaneous IRE has also been combined with NK cell therapy [256]. Compared 
to IRE alone, IRE + NK cells resulted in a modest improvement of mOS in patients 
with LAPC (12.2  months vs. 13.6  months, p  =  0.033, n  =  35) and mPDAC 
(9.1 months vs. 10.2 months, p = 0.037, n = 32), as well as improved mPFS in 
LAPC (9.1 months vs. 7.9 months, p = 0.043). Systemic measures of CD8+ T cells, 
NK cells, and pro-inflammatory cytokines increased to suggest positive immune 
correlates of survival.

Another trial compared IRE + allogeneic Vγ9Vδ2 T cells (n = 30) versus IRE 
alone (n = 32) in 62 LAPC patients, of whom 49 had previously received chemo-
therapy. Median OS for IRE + Vγ9Vδ2 T cells was significantly prolonged com-
pared to IRE alone (mOS 14.5 months vs. 11 months, p = 0.01; mPFS 11 months vs. 
8 months, p = 0.03). Patients receiving multiple T-cell infusions survived signifi-
cantly longer compared to patients receiving a single infusion (mOS 17 months vs. 
13.5 months, p > 0.05) [257].

Combination of SABR and immunomodulation with anti-CD40 or IL-12 micro-
spheres have been promising in preclinical models of pancreatic cancer [258, 259]. 
Trials in a cohort of 59 pretreated mPDAC patients showed that in the 39 evaluable 
patients, SABR+ durvalumab produced better survival outcomes compared to 
SABR + durvalumab + tremelimumab dual blockade. Cohorts that received higher 
doses of radiation over five fractions had better survival. Overall response rate was 
a disappointing 5.1% [260].

Another trial interrogated the combination of neoadjuvant oregovomab with che-
moimmunotherapy followed by stereotactic body radiotherapy and nelfinavir for 
radiosensitization in the locally advanced setting. Reported mOS and mPFS were an 
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unimpressive 13  months and 8.6  months, respectively [261]. Multiple trials are 
ongoing that combine SABR with various immunotherapies in PDAC: 
Losartan + Nivolumab in combination with FOLFIRINOX and XBRT in localized 
PDAC (NCT03563248); chemotherapy versus chemotherapy + aldoxorubicin HCl, 
L-15 cytokine fusion protein N-803, and PD-L1 t-high affinity NK cell 
(NCT04390399); Nivolumab + SBRT (NCT04098432). NCT04327986 was termi-
nated because of toxicity with bintrafusp alfa.

�Microbiome

PDAC-associated microbes have been associated with immunosuppression, and 
their ablation is linked to improved responses to therapies. Mouse models have 
demonstrated differential evolution of the gut microbiome throughout the pancre-
atic tumorigenesis process vs. control mice. The microbiome promotes oncogenesis 
by induction of innate and adaptive immune suppression [262, 263]. Bacterial eradi-
cation in PDAC mouse models led to a reduction in immune-suppressive M2 TAMs, 
an increased intratumoral CD8:CD4 T cell ratio, and upregulation in PD-1 expres-
sion. Combination therapy of anti-PD1 antibodies and antibiotics displayed syner-
gistic activity when compared to anti-PD1 alone. These findings were validated in 
another study that antibiotics could slow cancer growth and decrease the number of 
metastases [264].

Decreased diversity of the microbiome in PDAC patients has also piqued interest 
[265]. A unique pancreatic intratumoral microbiome has been implicated in resis-
tance to gemcitabine via enzymatic conversion of the drug to its inactive form by 
gammaproteobacteria [266]. Long-term survivors have been shown to have higher 
tumor microbial diversity correlated with higher cytotoxic T-cell infiltration [267]. 
Mouse models for fecal microbial transplants (FMT) demonstrate that tumor micro-
biome diversity and composition influence pancreatic cancer outcomes in a CD8+ 
T-cell-dependent manner and that tumor progression can be altered by FMT [268]. 
Trials in humans for FMT have demonstrated success in reversing immunotherapy 
resistance in melanoma [269, 270]. Trials are underway in other tumor types includ-
ing pancreatic cancer.

�Immunotherapy in Selected Populations: 
Biomarker-Driven Combinations

�Immunotherapy in Homologous Repair-Deficient PDAC

Given that immunotherapy has ineffective in unselected PDAC patients, much inter-
est has turned to investigating subsets harboring subsets of alterations that could 
indicate benefit. Key findings in these clinical efforts have been summarized in 
Table 6.4.

While multiple gene and scoring systems comprise heterogeneous definitions of 
homologous recombination deficiency (HRD), germline pathogenic alteration of 

Z. P. Yeung and M. N. Kundranda



125

Table 6.4  Select immunotherapy findings targeting DNA repair response

Trial ID Phase Therapy arms Target

# 
patients 
(n=)

Response 
rate (%)

Median overall 
survival 
(months)

Renouf et al. 
CCTG PA.7, 
NCT02879318

II GEM, Nab-P, D, +T (arm 
A) vs. GEM + Nab-P 
(arm B)

Germline 
ATM: 12 in 
arm A and 
4 in arm B.

180 ND ATM mutation 
13.9 vs. WT 4.9

Terrero et al. Retrospective Nivolumab/ipilimumab in 
chemorefractory patients

Germline 
pathogenic 
variants in 
HRD genes

12 (10 
PDAC)

40% in 
PDAC

ND

Riess et al. 
NCT03404960

Ib/II Niraparib + nivolumab or 
Niraparib + ipilimumab in 
platinum-sensitive 
patients

Platinum 
sensitivity

84 N/A Niraparib + Ipi 
59.6% 6-month 
PFS

BRCA1/BRCA2 l has been extensively recognized as a biomarker in 3–10% of 
patients and somatic alterations in 15–17% of tumors. Biallelic alterations of 
BRCA1/BRCA2 are associated with higher median tumor mutational burden and 
overall increased incidence of loss of heterozygosity when compared to wild-type 
tumors [271–273]. BRCA1/2-altered tumors are more susceptible to platinum-
based cytotoxic regimens, and when platinum sensitive, HRD tumors are candidates 
for PARP inhibitors as illustrated by the POLO trial [274]. The benefit of PARP 
inhibitors as maintenance in these patients has been underwhelming with final over-
all survival analysis showing no difference with the addition of Olaparib.

The molecular underpinnings of this susceptibilityare thought to be synthetic 
lethality with production of mutations and neoantigens that signal for catastrophic 
cell death. Based on findings that PD-L1, tumor-infiltrating lymphocytes, and neo-
antigens are enriched in other BRCA1/2 malignancies [275], it has been theorized 
that these patients would be more susceptible to immunotherapy possibly in combi-
nation with other modalities such as poly(ADP-ribose) polymerase (PARP) inhibi-
tors or radiation that generates mutations. Analysis of the CARIS database has 
demonstrated that BRCA-mutated PDAC samples had a mean TMB of 8.7 Mut/Mb 
with higher rate of PD-L1 expression (22%) as compared to WT (6.5% and 11.1%, 
respectively) [276].

Biomarker analysis of the negative CCTG PA.7 trial presented by Renouf and 
colleagues suggested that while plasma TMB did not predict the usefulness of com-
bining PD-L1 and CTLA-4 inhibition with a gemcitabine/nab-paclitaxel backbone 
in all comers, a subset of patients with germline ATM alteration garnered an overall 
survival benefit. In the 12 patients with germline ATM mutation treated in the che-
motherapy/immunotherapy arm, median survival was 13.9 months versus 4.9 months 
in the chemotherapy-only arm (four patients) with hazard ratio of 0.1. This differ-
ence was not observed in ATM wildtype. Germline ATM mutation status was inde-
pendent of plasma TMB levels [277].

Preclinical work by Zhang et al. showed that DNA repair inhibition by pharma-
cologic blockade or siRNA silencing of ataxia telangiectasia mutated (ATM) results 
in induction of type I IFN-mediated innate immune response in PDAC that is 
increased by radiation, which potentiates increased sensitivity to PD-L1 blockade 
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[278]. Building on these findings, a recent single-center retrospective analysis by 
Terrero and colleagues suggests that some germline mutations in DNA repair genes 
may signal a potential therapeutic niche for immunotherapy. They analyzed ten pan-
creatic cancer patients, one cholangiocarcinoma patient, and one ampullary cancer 
patient with pathogenic genetic variants (PGVs) in HRD genes with chemotherapy-
resistant disease that was microsatellite stable treated with ipilimumab 1 mg/kg and 
nivolumab 3 mg/kg every 21 days for 4 doses, followed by nivolumab 480 mg every 
28 days [279]. Of the ten pancreatic cancer patients treated, two complete responses 
(20%) were achieved with one partial response (10%), and stable disease in two 
patients (20%) were observed as best response. Five had progressive disease (50%). 
For pancreatic patients, response rate was 30% with disease control rate of 50%. All 
patients with complete or partial responses had biallelic alteration on somatic test-
ing. PD-L1 CPS score was not available in their published analysis for these 
responders. The two complete responders had germline alterations in BRCA 1 and 
RAD51C with tumor mutational burdens of 4 and 8 mutations per Mb; their dura-
tions of response were 41.6 months and 26.4 months, respectively. Analysis of biop-
sies in responders indicated increased densities of tumor-infiltrating lymphocytes 
and increased of inflammatory cytokines CCL4 and CXCL10.

Another case report noted exceptional response to olaparib and pembrolizumab 
following platinum therapy in a patient harboring a germline BRCA1 pathogenic 
variant with PDAC that demonstrated high mutational burden. Interestingly in this 
case, the exceptionally high tumor burden was not correlated with a detected POLE 
mutation, and addition of olaparib when oligoprogression in the liver was observed 
on scans resulted in radiographic complete response [280].

Several trials are underway to further investigate HRD PDAC and 
immunotherapy.

A randomized phase II study evaluating maintenance pembrolizumab plus olapa-
rib versus olaparib monotherapy in platinum-sensitive, PDAC gBRCA1/2-mutated 
metastatic PDAC is open to accrual (NCT04548752). A phase II study is evaluating 
the role of dostarlimab and niraparib in patients with metastatic PDAC harboring 
either somatic or germline mutation in one of six HR genes (BRCA1/2, PALB2, 
BARD1, RAD51c, RAD51d) following platinum-based chemotherapy 
(NCT04493060). In a similar vein, the phase II POLAR study is evaluating pembro-
lizumab plus olaparib in the postplatinum, maintenance setting in patients with 
PDAC with a HR gene mutation or in participants with an exceptional response to 
platinum-based chemotherapy with no HR gene mutations (NCT04666740).

�Platinum Sensitivity

Besides upfront treatment regimens, there is an unmet need for maintenance strate-
gies in pancreatic cancer given the neuropathy and cytopenias associated with 
extended lifelong therapy traditional cytotoxic agents. Recent work by Riess and 
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colleagues has examined maintenance with PARP inhibition with checkpoint block-
ade in patients sensitive to platinum-containing chemotherapy [281]. Patients were 
randomized to niraparib 200 mg daily plus either nivolumab (n = 44) or ipilimumab 
(n = 40). Of the 84 evaluable patients, 6-month progression-free survival was 20.6% 
in the niraparib plus nivolumab group and 59.6% niraparib plus ipilimumab arm. 
Ten (22%) of 46 patients in the niraparib plus nivolumab group and 23 (50%) of 45 
patients in the niraparib plus ipilimumab group had a grade 3 or worse treatment-
related adverse event. The primary endpoint of 6-month progression-free survival 
was met in the niraparib plus ipilimumab maintenance group, whereas niraparib 
plus nivolumab yielded inferior progression-free survival. Biomarker analysis has 
not been published but is eagerly awaited to further refine which sets of patients 
may benefit from this maintenance strategy.

�SWI/SNF Complex

SWItch/Sucrose Nonfermentable (SWI/SNF) complex is a subfamily of adenosine 
triphosphate-dependent (ATP-dependent) chromatin remodeling proteins that alter 
nucleosome topology and DNA access, ultimately regulating gene transcription. In 
some malignancies, they have been associated with responsiveness to immune 
checkpoint inhibitors via CD8+ T-cell cytotoxicity. Retrospective work by Botta 
et al. demonstrated that of patients with SWI/SNF-alterations treated with immuno-
therapy, 8 of 9, 89% responded. When the three patients with MSI-H/dMMR tumors 
were removed (three patients), five of nine responded (55.5%). The PFS in the 
patients attaining PR ranged from 3 to 33+ months with at least three durable 
responses. The TMB in these patients ranged from 0 to 11 mut/Mb. These patients 
had alterations in ARID1A, PBRM1, ARID1B, and SMARCA4.

�Conclusion

Pancreatic cancer has been resistant to immunotherapy in unselected patients who 
have received checkpoint inhibition owing to significant immunosuppressive tumor 
biology. Rational combinatorial approaches to therapy based on targets within the 
TME have so far shown no survival benefit but remain under investigation. 
Additional refinement of those subsets of patients who have benefited from therapy 
in setting of altered DNA repair mechanisms has indicated that biomarker-driven 
approaches may be more promising; immune signatures of T-cell responses have 
often correlated with better outcomes. Vaccines, oncogenic viruses, and cellular 
therapy continue be areas of active research to generalize the dramatic responses 
that have been recently reported to a larger patient population.
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7Liquid Biopsies for Pancreatic Cancer: 
Is It Ready for Prime Time?

Kathleen Monahan and Ben George

�Introduction

The general concept of circulating tumor cells dates back almost 150 years when 
Australian physician Thomas Ashworth observed cells in the blood that were identi-
cal to the primary tumor of a man with metastatic cancer postmortem. This seminal 
discovery contributed to our understanding of the hematogenous spread of malig-
nancy, and exploitation of this concept would later inspire the development of tech-
niques used to isolate these cells. The term “liquid biopsy” has been used to describe 
various methods aimed at obtaining any tumor material—either whole tumor cells 
or a component of tumor cells—from body fluids such as blood, CSF, or pleural 
fluid. Liquid biopsies are less invasive than tissue biopsies and have demonstrated 
utility with regards to early detection, diagnosis, treatment selection, and monitor-
ing treatment response in some cancers. Additionally, liquid biopsies have the 
potential to account for spatiotemporal heterogeneity and dynamic clonal evolution, 
circumventing the inherent challenges associated with tissue-based genomic 
profiling.

There is growing interest in the use of liquid biopsies for screening, surveillance, 
and therapeutic decision making along the treatment continuum of PDAC [1]. 
PDAC is the third leading cause of cancer related death in the USA with a 5-year 
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survival rate of 11% [2]. Early detection, and elimination of minimal residual dis-
ease (MRD) after curative intent multimodality therapy, as well as dynamic utiliza-
tion of systemic therapies informed by clonal evolution of the somatic genome are 
pivotal to improving the overall outcome of PDAC patients. Thus, there is an urgent, 
unmet need to refine liquid biopsies and explore opportunities for its systematic use 
in the diagnosis and treatment of PDAC.

In this chapter we will review core concepts related to liquid biopsies and their 
use in PDAC with emphasis on utility in screening/early detection, MRD assess-
ment, surveillance, and/or therapeutic decision making.

�Liquid Biopsy Methods

While most often occurring with blood samples, liquid biopsies can be performed 
on any bodily fluid including cerebral spinal fluid, pleural effusion, and ascites [3]. 
In PDAC, liquid biopsy can even be performed on pancreatic juices as they tend to 
be rich in tumor derived products, but this involves invasive procedures [4]. Various 
techniques have been established to detect and isolate both circulating tumor cells 
(CTCs) as well as material from tumor cells in the form of circulating DNA and 
exosomes—an overview is provided below.

�Circulating Tumor Cells (CTCs)

Tumor cells enter the vasculature both passively and actively. Leaky blood vessels 
in combination with pressure from tumor growth or invasive procedures can push 
cells beyond the primary tumor site [5]. Additionally, in some instances, epithelial-
mesenchymal transition (EMT) impacts the metastatic potential of tumor cells, pro-
moting a tumor cell’s ability to detach from surrounding tissue, mobilize, gain 
access to systemic circulation, and subsequently grow in other tissue environments 
[6]. Once tumor cells gain access to the vasculature, only a small proportion remain 
in circulation to avoid the immune system and/or shearing stress destruction [7]. 
Mechanisms to avoid destruction include upregulation of protective cell surface 
markers including CD47 and utilization of platelets to serve as a shield [8]. In PDAC 
specifically, the complex microenvironment of tumor cells, stromal tissue, and 
extracellular matrix promote angiogenesis and immune suppression further instigat-
ing movement of CTCs into circulation [9]. Clusters of heterogenous cell clusters 
called circulating tumor micro-emboli (CTM) commonly occur in pancreatic cancer 
as well and are thought to be primed to colonize metastatic sites [10].

CTCs remain scarce, particularly in early stage disease, accounting for approxi-
mately 1 of every 1 × 10^8 circulating blood cells and so detection is challenging. 
Moreover, in PDAC large CTCs or clusters may become trapped within the portal 
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venous system prior to entering systemic circulation. Currently, there is only one 
US Food and Drug Administration (FDA) approved method to isolate CTCs called 
CellSearch that utilizes antibodies targeting known cell surface markers CD45, 
EpCAM, and cytokeratin. Through the process of EMT and other genotypic/pheno-
typic transformation, some CTCs lose these cell surface markers; therefore, both 
cell surface marker dependent and independent strategies for CTC detection are 
being developed such size-based separation [11–13]. Though difficult to isolate, 
CTCs are being utilized for detection, prognostication , and monitoring treatment 
response.. Additionally, CTCs retain the whole genome of a tumor cell facilitating 
single-cell transcriptomic analysis [14].

�Circulating Free DNA and Circulating Tumor DNA

The term cell-free DNA (cfDNA) refers to extracellular DNA isolated from blood 
or other bodily fluids. cfDNA arising from cancer cells is termed circulating tumor 
DNA (ctDNA) and contains cancer-specific genetic alterations. cfDNA and ctDNA 
are released from normal and malignant cells respectively either through cell death 
processes (apoptosis and necrosis) or through excretion [15]. Both can be isolated 
from plasma or serum, but plasma yields better sample quality due to decreased 
contamination from leukocyte DNA [16]. Compared to cfDNA (average length of 
166 base pairs (bps)) ctDNA is generally more fragmented (average length of about 
140 bps) [17]. The relative amount of cfDNA that is ctDNA is referred to as the 
variant allele frequency (VAF) and is highly variable. In early stage cancer, VAF of 
ctDNA is often less than 1%, compared to the metastatic setting where it is often 
much higher, with reports ranging from 5% to 80% depending on histology, tumor 
burden, and location of disease [18].

Targeted as well as untargeted deep sequencing of ctDNA can provide important 
tumor-related genomic information for individual patients, particularly when tumor 
tissue is unavailable either due to inaccessible location or paucity of tumor cells. 
Furthermore, ctDNA is more representative of the spatial heterogeneity of cancer 
cells [19]. Therefore, deep sequencing of multi-base gene regions utilizing ctDNA 
may better represent intra-tumoral heterogeneity.

Recent advances in ctDNA technology have improved the sensitivity of ctDNA 
based assays. Targeted deep sequencing and droplet digital PCR (ddPCR) have the 
capability to detect high-frequency mutations in PDAC with mutant allele-
frequencies (MAF) ≥0.1%, thereby greatly improving sensitivity [20, 21]. While 
targeted sequencing and ddPCR can rapidly and economically detect known muta-
tions in ctDNA, these techniques are limited by requiring predefined gene mutations 
of interest, which are then amplified using prespecified sets of primers. 
Comprehensive genomic profiling (CGP) platforms also known as next-generation 
sequencing (NGS) platforms have been able to surmount these challenges since 
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they have the capability to screen for unknown mutations, as well as structural and 
copy-number variations, which cannot be detected by PCR-based methods [22]. 
NGS technologies permit high-throughput analysis, whole genome sequencing and 
detection of somatic gene mutations at similar VAFs as those detectable with ddPCR 
[23, 24]. Additionally, CGP/NGS platforms permit characterization of tumor muta-
tional burden (TMB) and microsatellite instability (MSI) using ctDNA, thus serving 
as a predictive tool for immune checkpoint inhibitor therapies [25, 26].

While ddPCR, and CGP/NGS improve upon the limitations of conventional 
PCR, neither of these platforms characterize epigenetic changes. Recent advances 
in high-throughput quantitative methylation assays now offer rapid and accurate 
identification of tumor DNA methylation using peripheral blood samples [27]. DNA 
methylation profiling has also demonstrated reliability in predicting tumor of origin 
in patients with cancer of unknown primary [28]. Recently, epigenome and ATAC-
sequencing have been leveraged to simultaneously profile gene expression and open 
chromatin regions, and genome-scale DNA methylation (using reduced representa-
tion bisulfite sequencing; RBBS) [29, 30]. Additionally, isolation of cell-free 
methylated-DNA using immunoprecipitation coupled with NGS and PCR-based 
sequencing techniques can be used to improve specificity and reduce background 
noise [31]. In PDAC specifically, differential hydroxy methylation of genes related 
to pancreas development or function and cancer pathogenesis have been shown to 
reliably detect PDAC using peripheral blood samples. As with DNA sequencing 
techniques, the sensitivity and specificity of this method improves with more 
advanced cancer which in turn correlates with higher ctDNA fraction [32].

One notable drawback of NGS is that it is more expensive than ddPCR; however, 
the cost is decreasing dramatically and NGS is increasingly being utilized in routine 
clinical practice. NGS-based RNA sequencing of both tumor and peripheral blood 
using whole transcriptome sequencing platforms have also become commercially 
available, allowing for the identification of differentially expressed genes as well as 
identification of fusions, variant transcripts, and point mutations. Several commer-
cial CGP/NGS liquid biopsy platforms are now being used to guide clinical deci-
sions for individuals with PDAC and other solid tumors.

�Exosomes

Exosomes are very small extracellular vesicles derived from various cells, including 
tumor cells, which contain proteins and genetic material that can be isolated and 
analyzed. Exosome release into circulation is not dependent on tumor cell destruc-
tion or CTCs moving into the vasculature [33]. Since the material is contained in 
vesicles, the genetic material also has a longer circulating half-life than ctDNA [34]. 
These factors present interesting potential for screening and early detection, but 
active research in PDAC is ongoing [35].
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�Additional Targets

Other potential liquid biopsy targets being explored in pancreatic cancer include 
RNA, platelets, and immune cells. Both mRNA and non-coding RNA are being 
investigated as targets; they have the advantage that they are released both actively 
and with apoptosis, so cell death is not required for their detection. Both immune 
cells and platelets are utilized by PDAC cells to evade destruction by the host 
immune system; changes in normal characteristics of these host cells can be tar-
geted for cancer detection and monitoring.

�Screening and Diagnosis

�Screening and Early Detection

The US Preventative Task Force currently has no recommendations to routinely 
screening for PADC outside of high-risk populations. Individuals carrying high risk 
for developing pancreatic cancer in their lifetime include those with certain genetic 
predisposition syndromes or those with more than 1 first degree relative with PADC 
[36]. The inherited cancer syndromes with the highest risk of developing PDAC 
include Peutz-jeghers (STK11 gene), Familial Atypical Multiple Mole Melanoma 
syndrome (CDKN2A gene), and Hereditary pancreatitis (PRSS1, SPINK1 genes) 
[36, 37]. Other well-known genetic mutations such as BRCA2, BRCA1, and DNA 
mismatch repair genes are also associated with increased risk [37]. Current screen-
ing modalities include either yearly EUS or MRCP with variable age of onset of 
testing [38].

The use of ctDNA as a form of screening for PDAC in both average and high-risk 
populations is being actively investigated. A meta-analysis of seven protocols utiliz-
ing ctDNA as a screening test demonstrated a pooled sensitivity of on 0.64 [39]. 
Even though ctDNA can be released in the absence of cell destruction, it is thought 
that more advanced disease with tissue necrosis may be needed to reach adequate 
concentrations for detection [39]. Screening sensitivity seems to improve when 
ctDNA detection is combined with detection of other biomarkers such as CEA and 
CA-19-9, with early detection rates being 69% or better in difficult to detect cancers 
such as PDAC [40]. In addition to protein-based biomarkers, exosomes, nucleo-
somes, RNA, epigenetic evaluation, and autoantibodies are being evaluated to 
enhance ctDNA analysis.

A major barrier to utilizing ctDNA as a screening test remains the cost-
prohibitive nature of sequencing all coding regions of DNA (as opposed to utiliz-
ing hotspot/panel based testing) [41]. The GRAIL Galleri test is an example of 
screening test currently being evaluated by a large clinical trial in the UK that does 
not utilize mutation detection but rather patterns of DNA methylation. With the 
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ability to screen for over 50 different malignancies with one testing application, 
this could potentially circumvent major financial barriers overall. Another compli-
cating factor is clonal hematopoiesis of indeterminate potential (CHIP), a process 
that becomes more prevalent with age with an occurrence of over 10% in individu-
als over seventy. Individuals with CHIP have a 0.5–1% probability of developing 
hematologic malignancy and interesting carry high mortality and have high inci-
dence of solid tumor malignancy [42, 43]. These clonal hematopoietic cells create 
interference with ctDNA assays as they can release DNA fragments containing 
mutations associated with other malignancies [44]. There is currently no way to 
appropriately differentiate the source of ctDNA, which may lead to false positive 
results [44].

�Diagnosis and Treatment

Liquid biopsy may be a useful, non-invasive, adjunct to diagnosis of PDAC when a 
solid pancreatic mass is noted on imaging. Current standard for diagnosis of local-
ized PDAC includes cross-sectional imaging in combination with tissue biopsy—
often via endoscopic ultrasound guided fine needle aspiration (EUS-FNA.) In a 
small study directly comparing CA 19-9, CTCs, and ctDNA to EUS-FNA in the 
setting of known pancreatic mass, ctDNA was comparable to standard biomarker 
CA 19-9 but failed to prove superior [45]. The sensitivity and specificity for PADC 
diagnosis were 73% and 88% for EUS-FNA, 67% and 80% for CTC, 65% and 75% 
for ctDNA, and 79% and 93% for CA19.9, respectively [45]. The low sensitivity 
associated with ctDNA is likely due to its lower concentration in patients with local-
ized disease compared to metastatic PDAC.

Liquid biopsies utilizing ctDNA show even greater potential in diagnosis of 
actionable mutations, particularly in the metastatic setting. Tumors often display a 
high degree of spatiotemporal heterogeneity, and a tissue sample only allows for 
analysis of a limited population of cells [46]. Sampling ctDNA provides ability to 
address the spatiotemporal heterogeneity associated with tumors in a non-invasive 
fashion [47–49]. In a small study comparing tissue biopsy versus liquid biopsy for 
the detection of genomic alterations in head and neck squamous cell carcinoma, 
colorectal cancer, and melanoma, 79% of the mutations detected were unique to 
liquid biopsy and not seen in the tissue biopsy [50]. If mutations are missed with 
tissue-based genomic profiling— due to spatial heterogeneity—this could translate 
to missed opportunities for targeted therapies [46]. While there are limited targeted 
therapies approved for the treatment of PDAC, this will change in the coming years 
with improvements in precision medicine assays and therapeutics.

Liquid biopsies present a dynamic, non-invasive opportunity to assess for clonal 
evolution in response to therapeutic selection pressure [51]. There is scarcity of data 
in this sphere for pancreatic cancer; nonetheless, as assays and therapies evolve, 
liquid biopsies will likely capture clonal evolution and treatment resistance ahead of 
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cross-sectional imaging. More importantly, such data may dictate precision thera-
peutics aimed to address evolving cancer clonality. Liquid biopsies offer the addi-
tional advantage that germline alterations can be picked up in addition to alterations 
in the somatic genome. Detection of some pathogenic germline alterations have 
treatment implications in addition to the transmissible heritable risk mandating 
screening of relevant family members.

�Risk Stratification

�Preoperative Setting

Multimodality therapy (chemotherapy, radiotherapy, and surgery) form the corner-
stone of curative intent therapy for patients with localized PDAC. Despite aggressive 
multimodality therapy, systemic recurrence rates after surgery remain high [52, 53]. 
Since systemic failure due to presence of radiographically occult micro-metastatic 
disease at the time of surgery is high, risk stratification and optimal patient selection 
for a curative intent surgery—with potential for morbidity—is crucial.

Currently, CA 19-9—which is elevated in 70–80% of patients with localized 
PDAC—serves as a biomarker to predict resectability with elevated levels at diagno-
sis being associated higher likelihood of recurrence and development of metastatic 
disease [54]. Circulating tumor DNA has also been studied to predict prognosis in 
resectable PDAC prior to surgery. In one study, the detection of ctDNA prior to sur-
gery by targeting mutations in KRAS predicted both decreased median recurrence 
free survival (RFS) (6 vs. 16 months; p < 0.001) and decreased overall survival (OS) 
(14 vs. 28 months; p < 0.0001) [55]. In another study, presence of ctDNA at time of 
diagnosis correlated with a relapse rate of 83% [56]. This rate of relapse appeared to 
be mitigated by the use of neoadjuvant chemotherapy if ctDNA was eliminated prior 
to surgery [56]. Number of ctDNA alterations and variant allelic fraction of ctDNA 
detected at diagnosis also seem to correlate with resectability [47].

Additionally, pathologic complete response (pCR) can sometimes be obtained 
with neoadjuvant chemotherapy or chemoradiation alone; however, a small study 
demonstrated that half of these patients with pCR after neoadjuvant therapy still had 
detectable ctDNA and CTCs [57].

�Postoperative Setting

The ability to detect minimal residual disease (MRD) after curative intent therapy 
can provide useful information regarding the risk of relapse and possibly guide 
additional adjuvant therapy. Studies have looked at use of both CTCs and ctDNA to 
assess for MRD after curative intent multimodality therapy. It is intuitive that CTCs 
would decrease with systemic chemotherapy, but a decrease in CTCs is noted with 
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surgery as well. Persistence of CTCs after curative intent therapy indicates a higher 
risk of relapse [58, 59]. Some CTCs undergo EMT and it has been reported that 
CTCs carrying mesenchymal markers indicate decreased survival [59].

The presence of ctDNA after surgery carries poor prognosis in PDAC and indi-
cates the risk of relapse as high as 100% [56]. Detection of ctDNA or MRD after 
completion of curative intent therapy assumes even greater relevance if additional 
adjuvant therapy can result in cure. Such data are currently not available in PDAC, 
but more established in colorectal cancer (CRC) [60]. As liquid biopsy capabilities 
in PDAC become more refined, prospective trials to establish the role of periopera-
tive systemic therapy guided by MRD status will be pivotal. 

�Surveillance

The use of various liquid biopsy techniques to enhance surveillance after comple-
tion of curative intent therapy is an area of active exploration. Currently, cross-
sectional imaging remains the gold standard for surveillance after curative intent 
treatment, but small studies suggest that ctDNA can be detected in the blood several 
months prior to radiographic evidence of recurrence. In a surveillance study of 
patients with CRC, MRD was noted 16.5 months prior to radiologic evidence [60]. 
There is intuitive appeal to the idea that earlier pursuit of treatment in PDAC- based 
on MRD status when disease burden is arguably microscopic—may result in better 
long-term survival, but definitive data are not available in this realm.

�Future Directions

Comprehensive genomic profiling based on tissue biopsies ushered in a new era of 
targeted therapies in oncology. Our recognition of the concepts of clonal evolution, 
spatiotemporal heterogeneity, and MRD mandate scalable, non-invasive techniques 
that can facilitate longitudinal monitoring of treatment response. Additionally, early 
detection and surveillance is a crucial component of our efforts to reduce cancer 
burden globally. Liquid biopsies—while still imperfect and in need of significant 
refinement—have all the requisite hallmarks to transform early detection, surveil-
lance, and treatment of cancer. The next decade promises transformative changes in 
cancer care, leveraging enhanced liquid biopsy techniques, burgeoning bioinfor-
matic/computational capabilities, and precision cancer therapeutics.
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8Supportive Care Challenges 
and Management in Pancreatic Cancer

Jacqueline Tschanz, Ernai Hernadez Sanchez, 
and Shalini Dalal

Pancreatic cancer frequently presents at later stages, contributing to its poor prog-
nosis. Patients often present with pain and/or jaundice once the tumor has pro-
gressed enough to obstruct or damage surrounding structures. Patients may also 
present with weight loss or gastrointestinal symptoms such as nausea, vomiting, or 
diarrhea. Symptom burden among these patients can lead to poor quality of life or 
functionality. Understanding and treating these symptoms can lead to improved 
quality of life and improved ability to tolerate cancer treatment.

�Pain

Pain is an intricate symptom in pancreatic cancer patients, and its multifactorial 
characteristics make management challenging. In this chapter, we discuss the preva-
lence, pathophysiology, and different approaches to pain management in pancreatic 
cancer patients, including specific pharmacotherapy and non-invasive therapies.

Pain is highly prevalent in cancer patients. In health and symptom surveys from 
the Pancreatic Cancer Action Network, 93% of respondents cited pain as a symp-
tom, and 83% rated the pain as moderate or severe [1]. Approximately 90% of 
patients cited having discussions with their doctors about their pain, yet half ended 
up in the emergency room with uncontrolled pain and about one-third were hospi-
talized for pain management [1]. Poorly managed pain has significant effects on 
other aspects of life. Pain has been associated with poor sleep, decreased caloric 
intake, and social or work-related functionality loss. Better pain control has shown 
to not only improvement these deficits but also shown to improve survivability [2]. 
Poor functionality or heavy symptom burden can preclude someone from various 
chemotherapy options and the potential to decrease the disease burden.
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�Pathophysiology of Pain in Pancreatic Cancer

Pain in pancreatic cancer is multifactorial and complicated. There are two main 
mechanisms of pain in pancreatic cancer: pancreatic neuropathy and pancreatic duct 
obstruction [3]. Both these etiologies lead to further inflammation and worsened 
pain severity.

�Neuropathic Pain

Nerve pain in pancreatic cancer can come from direct invasion from the cancer 
cells, mass effect, or cancer-driven nerve growth. Direct invasion and infiltration of 
the cancer cells can lead to inflammation [4], and 70% of all pancreatic tumors have 
been found to have malignant involvement of the sheaths around the axons [5]. 
Involvement can include intrapancreatic nerves or extrapancreatic nerve plexuses, 
i.e., celiac plexus. Mass effect or this perineural invasion can lead to an increase in 
inflammation and release of neurotransmitters, such as substance P and glutamate, 
which are possible sources of pain in this patient population [6]. Neuropathy in 
pancreatic cancer is associated with hypertrophy of the nerves as well [7]. Higher 
levels of nerve growth factor (NGF), which support the maintenance, growth, and 
proliferation of neurons, have been associated with increased pain intensity in pan-
creatic cancer [8].

�Obstruction

Pancreatic cancer mass obstructs the main pancreatic duct, leading to its blockage 
and pain from upstream intraductal and interstitial pressures [9]. The obstruction 
affects the exocrine pancreas function, decreasing the secretion of the exocrine pan-
creatic enzymes, and thereby, furthering abdominal pain, particularly postprandial 
pain, and malabsorption can occur [10]. Relief of pain has been demonstrated in 
studies with pancreatic ductal stenting which lowers the interstitial pressure [11, 
12]. In addition, the replacement of enzymes in pancreatic insufficiency and malab-
sorption from other conditions have also demonstrated improvements in abdominal 
pain [13–15].

�Pain Management

Pain management in pancreatic cancer can be broadly divided into conventional and 
non-conventional approaches (Table 8.1). Conventional options include pharmaco-
logical therapies such as non-opioid and opioid medications and non-pharmacological 
therapies such as radiation-focused and non-radiation-focused therapies. Non-
conventional approaches refer to integrative therapies.
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�Pharmacological Therapies

�Non-opioids

�Nonsteroidal Anti-Inflammatory Medications and Acetaminophen
The vast majority of patients will attempt to treat pain with over-the-counter medi-
cations such as nonsteroidal anti-inflammatory medications (NSAIDs) or acetamin-
ophen. There are more than 20 different NSAIDs produced worldwide. They work 
by decreasing inflammation by blocking cyclooxygenase and thereby decreasing 
prostaglandins, prostacyclins, and thromboxane [16]. Acetaminophen (also known 
as N-acetyl-p-aminophenol, APAP, or paracetamol) has an unknown mechanism of 
action. It may work within the central nervous system to activate serotonergic inhib-
itory pathways [17]. Both treat mild to moderate pain and have concerning toxicities 
with long-term or high dose use. There is a concern for liver damage in using high 
doses of acetaminophen. Its metabolites deplete glutathione and damage liver mito-
chondria leading to cell death. NSAIDs are associated with damage to the gastric 
mucosa, ulcer formation, and kidney damage.

�Opioids

Opioids remain the mainstay of care for treating pain in pancreatic cancer. This 
class of analgesics works on the mu-receptors in central and peripheral nervous 

Conven�onal 
Approach

Pharmacological 
therapies

Non-opioids

Opioids

Systemic

Intrathecal 

Chemotherapy

Non-pharmacological 
therapies

Radia�on Focused

Non-Radia�on Focused

Pancreas Sten�ng

High Intensity 
Ultrasound

Integra�ve 
Approach

Supplements and 
Herbal Therapies 

Endocannabinoid 
system

Inhaled

Ingested

Acupuncture

Table 8.1  Pain management approaches in pancreatic cancer

8  Supportive Care Challenges and Management in Pancreatic Cancer



162

systems. Most opioids are pure mu-receptor agonists; however, some act on other 
receptors. Methadone and levorphanol also exhibit N-methyl-D-aspartate receptor 
antagonism, and tramadol, tapentadol, methadone, and levorphanol have been 
shown to inhibit monoamine reuptake as well [18]. Buprenorphine is a partial mu-
receptor agonist and needs further research in cancer pain [19].

The goal of opioid therapy is to maximize the functionality of patients while 
minimizing medication side effects. A general approach to initiating treatment is to 
start with an immediate release (IR) opioid on an as needed basis for moderate to 
severe pain. If patients require frequent dosing, they will benefit from the addition 
of extended-release (ER) opioids to provide more consistent plasma levels of the 
drug [20]. Patients are continued on their IR opioid for breakthrough pain at a dose 
of 10–20% of their ER medication [20].

Opioid side effects include constipation, sedation, pruritus, opioid-induced neu-
rotoxicity (OIN), and respiratory depression. Constipation occurs secondary to 
increase gastric tone and decreased peristalsis and secretion. This side effect should 
be managed prophylactically to avoid progressive severity of symptoms such as 
worsening abdominal pain, nausea, and anorexia, which may already be present in 
patients due to their pancreatic cancer. OIN symptoms include delirium, hallucina-
tions, sedation, cognitive impairment, myoclonus, and hyperalgesia. If present, opi-
oids may need to be decreased or rotated to another [21]. In general, use of 
concomitant sedating medications such as benzodiazepines, gabapentin, or anticho-
linergics should be avoided to decrease the potential of OIN with opioids.

Non-medical opioid use (NMOU) is the use of prescribed opioids in ways that 
were not directed, such as using opioids outside of personal prescription or use of 
opioids for indications other than pain. Opioids are potentially abusable drugs. 
Recent literature suggests that approximately 20% of cancer patients exhibit some 
level of NMOU [22]. Universal screening for NMOU risk is recommended for all 
patients initiated on opioids, with periodic monitoring during the course of opioid 
therapy [23]. Patients need to be screened for risk factors, including personal or 
family history of substance abuse or mental health disorders [24, 25]. Continued 
monitoring for aberrant behaviors such as early refill requests, doctor shopping, 
urine drug screening, and inconsistent prescription drug monitoring programs data 
are essential [22, 23]. Patients who are at high risk for NMOU may require more 
frequent monitoring with shorter follow-up intervals, periodic urine drug testing, 
and review of prescription drug monitoring programs, and we recommend referral 
to pain management specialists [23]. Naloxone nasal sprays or injectables should be 
prescribed to patients. Their families and caregivers should be educated on signs of 
overdose such as excessive sedation and decreased respiratory drive and how to 
appropriately deliver the medication.

�Intrathecal Drug Delivery

Intrathecal drug delivery systems (IDDSs) consist of a pump placed under the skin 
with a tunneled catheter directly into the intrathecal space by the spinal cord. The 

J. Tschanz et al.



163

medication used is generally an opioid analgesic, and patients can immediately note 
improvement in the pain. The advantage of this delivery is the reduction in pain 
using opioid doses that are substantially lower than what is needed with peripheral 
or oral administration and thus fewer side effects. Patients can have other medica-
tions added for further benefits, such as muscle relaxants or anesthetics agents. 
Patients can achieve significant and prolonged control of the pain. Complications 
are generally mild with post-procedure headaches, but patients can also get an 
implant infection or dehiscence of procedure wounds [26, 27].

An observational study designed to evaluate the 11-year results (2006–2017) of 
IDDSs for refractory pancreas cancer pain [28] demonstrated 50–75% reductions in 
mean pain levels [26]. In a 2002 randomized controlled trial of IDDS versus com-
prehensive medical management (CMM) in 146 evaluable cancer patients with 
refractory pain at 4 weeks, pain control was shown to be superior in the IDDS arm 
with fewer opioid-induced side effects [29].

�Chemotherapy

Improvement of pain is a frequently studied outcome of systemic chemotherapy, 
and the management of pancreatic cancer can also improve both pain and patients’ 
quality of life. Significant pain improvement has been found in studies of both first-
line and second-line chemotherapy [30–32].

�Non-pharmacological Therapies

�Radiation Focused
Radiation therapy is a non-invasive intervention to treat tumors and has been found 
to reduce pain significantly. This likely improves pain by either alleviating the 
obstruction of the pancreatic ducts, decreasing the perineural invasion, or decreas-
ing the tumor mass. Patients are generally treated with 6–30 Gy in 1–10 fractions. 
Response rates vary by fractions and study but have improved pain in 60–100% of 
patients [33, 34]. A strategy called stereotactic body radiation therapy can be used 
to limit the amount of radiation the surrounding organs receive. Due to the unique 
position of the pancreas in relation to other organs, the beam of radiation will meet 
the body at different angles to continue to treat the tumor with decreased time pen-
etrating elsewhere and thus less damage to the other vital organs [35]. A recent 
systematic review has shown that between 16.5 Gy and 45 Gy in one to six fractions 
resulted in pain response rates of over 80%, with 54% of patients reporting com-
plete pain resolution [36]. The study also showed a significant reduction in nausea, 
fatigue, weight loss, and anorexia.
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�Non-radiation Focused

�Stenting of Pancreas
The obstruction of the ducts can also be mechanically unobstructed. Stenting of the 
ducts has been found to decrease pain since it will decrease both the upstream and 
interstitial pressures [12, 37].

�High-Intensity Ultrasound
Ultrasound can be used as part of another noninvasive way to ablate and disrupt 
targeted tissue [38]. This procedure is being used for various solid tumors, pancre-
atic cancer included [39]. The heat can cause a rapid temperature increase in a small 
volume in tumors to induce necrosis and cavitation of the tumor. This necrosis can 
further damage outward to a larger volume due to mechanical damage from the 
cavitation pressures and gas formation. Aside from treating cancer at the tumor site, 
the procedure has been shown to decrease pain as well [40], likely from a decrease 
in mass tumor effect or possibly acting directly on nerve fibers in the tumor and 
celiac plexus.

�Neurolytic Procedures

Patients can also have improved pain from neurolytic procedures that involve appli-
cation of chemical agents to result in a permanent or temporary degeneration of 
targeted nerve fibers to interrupt neuronal transmission. Celiac plexus neurolysis 
(CPN) and thoracoscopic splanchnicectomy (TS) are invasive neurolytic procedures 
that may improve pain and/or decrease the need for opioids in managing pain related 
to an upper abdominal malignancy, such as pancreatic cancer. Recent studies sup-
port the use and efficacy of neurolytic procedures early in the management of pain, 
such as after one or two trials of opioid therapy have been inadequate for pain con-
trol. The neurolytic injectate is usually 50–100% ethyl alcohol. For CPN, several 
techniques may be used to approach the celiac plexus, such as percutaneous (aided 
by fluoroscopy or computed tomographic imaging), surgical placement, or endo-
scopic ultrasound. Several CPN studies have demonstrated significant improve-
ments in pain at 2, 4, or 8 weeks [41, 42], and in some studies, this was associated 
with lower opioid usage [43]. The 2011 Cochrane review (six RCTs, published 
1993–2008) [44] demonstrated significantly lower pain scores at 4 weeks (−0.43; 
95% confidence interval [CI], −0.73, −0.14; p = 0.004], with a trend toward lower 
pain at 8 weeks (−0.44; 95% CI, −0.89, −0.23; p = 0.06]. In subsequent reviews by 
Nagels et  al. (2013, five RCTs) and Zhong et  al. (2014, eight RCTs), statistical 
improvements in pain scores with CPN were found at 4 but not at 8 weeks [45, 46]. 
Thus, current evidence suggests that percutaneous CPN improves pain scores at 
4 weeks, which may not be sustained over time. However, all three meta-analyses 
demonstrated significant reductions in opioid consumption at 4 and 8 weeks or 
last report.
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�Integrative Therapies
A substantial number of patients with pancreatic cancer do not achieve satisfactory 
relief with first-line pharmacotherapy and noninvasive second-line therapies. This 
common scenario may be addressed in many ways with the following non-
conventional therapies.

�Supplementation and Herbal Therapies
Patients commonly supplement their prescribed medical therapies with over-the-
counter herbal remedies [47]. Many of these herbal medicines or nutraceuticals lack 
evidence-based support for significant improvement of pain or other symptoms. 
Some have been shown to cause organ damage or interact with medications or che-
motherapy by increasing toxicities or decreasing efficacy [48, 49]. The safest rec-
ommendation for patients is thus to discontinue use while receiving treatment.

�Cannabinoids

Cannabinoids act on central and peripheral nervous systems. Receptors have been 
found to act on the gastrointestinal tract, immune system, and more directly nerves 
and the brain [50, 51]. Endocannabinoids, endogenous cannabinoids, affect metabo-
lism through these receptors. The drug has historically been inhaled or orally 
ingested.

Medical marijuana has been becoming increasingly available to patients. As of 
2022, 37 states allow the legal use of medical marijuana. Cannabis has been touted 
as treating diverse problems, including pain, nausea, loss of appetite, inflammation, 
poor mood, and even seizures [52]. There are synthetic forms of THC that have been 
approved to treat nausea and vomiting, but limited data support its use in analgesia.

�Acupuncture

Acupuncture is a nonpharmacologic intervention consisting of small, thin needles 
placed in specific areas known as “meridian points” that are thought to more specifi-
cally affect neurotransmitter release [53]. Data has been mixed; studies that show 
significant pain relief have shown the onset of analgesia after about a day and can 
last for days [54]. Patients interested in this intervention should be referred to the 
appropriate specialist.
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9Physical Activity and Nutrition 
Optimization in Pancreatic Cancer

Maria Q. B. Petzel, Chelsea S. Ebrus, Jessica Tse Cheng, 
Nathan Parker, and An Ngo-Huang

�Chapter Introduction

Physical activity and nutritional optimization have largely become incorporated into 
the clinical management of patients with pancreatic cancer (PC). Patients with PC 
are at risk of malnutrition, weight loss, muscle loss in cachexia or sarcopenia, and 
declines in physical function. Historically, oncology clinicians advised patients 
with cancer to avoid exercise; however, this approach has changed. Exercise is 
deemed safe and well-tolerated during and after cancer treatment. Exercise has been 
found to improve physical fitness, physical functioning, quality of life, and fatigue. 
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Furthermore, individualized nutrition intervention improves multiple domains 
including improved weight, muscle mass, quality of life, and fatigue.

�Physical Activity Trends and Outcomes

Physical activity includes all bodily movement by the musculoskeletal system that 
requires energy expenditure and ranges between leisure activity to moderate to vig-
orous physical activity. A targeted exercise program comprising of aerobic exercise 
and resistance (strengthening) exercise is recommended for cancer patients. By 
2018, randomized controlled exercise trials in cancer survivors burgeoned with mul-
tiple national efforts calling for further incorporation of exercise into clinical cancer 
care [1–3]. The American College of Sports Medicine (ACSM) convened at the 
International Multidisciplinary Roundtable to update the Exercise Guidelines for 
Cancer Survivors [4]. The exercise recommendation is for moderate-intensity aero-
bic exercise for 30 min at least three times per week for 8–12 weeks and resistance 
exercises twice a week using at least two sets of 8–15 repetitions at 60% or more of 
one repetition maximum. Further included were exercise programming consider-
ations for specific cancer survivors such as those with bone loss/bone metastases, 
older adults, ostomy, peripheral neuropathy, and symptom clusters. Additional 
patient benefits identified with exercise included reduced anxiety and fewer depres-
sive symptoms [4]. A systematic review in 2021 evaluating home-based and super-
vised aerobic and resistance exercise trials including early-stage and advanced 
pancreatic cancer showed exercise interventions were associated with improvements 
in cancer-related fatigue, physical function, and psychological distress [5].

Preoperative exercise, a part of prehabilitation, is an increasingly adopted strat-
egy to optimize physical function and treatment tolerance in anticipation of surgery. 
There is increasing interest in the benefits of multimodal prehabilitation programs 
for cancer patients. A recent systematic review and meta-analysis by Daniels et al. 
comprehensively evaluated prehabilitation interventions in elective abdominal can-
cer surgery in older patients including 33 studies with 3962 patients total, a minority 
of which had pancreatic cancer [6]. The interventions included exercise, nutrition, 
psychological input, comprehensive geriatric assessment and optimization, smok-
ing cessation, and multimodal interventions. All multimodal studies included exer-
cise and at least one other intervention. A meta-analysis of 10 studies showed that 
multimodal intervention programs had significant benefit with a risk difference of 
−0.1 (95% CI -0.18 to −0.02; P = 0.01, I2 = 18%) for overall complications. Authors 
found that exercise interventions can improve the cardiopulmonary exercise test and 
6-min walk test (6MWT) preoperatively. Adherence for the majority of the studies 
was high. Overall, evidence shows that multimodal prehabilitation is likely more 
beneficial than a single intervention [6].

Exercise prehabilitation for PC patients, who are often elderly, frail, and sarcope-
nic, can improve physical function. Ngo-Huang et al. conducted a prospective single-
arm trial with 50 participants (mean age 66  years) with resectable pancreatic 
adenocarcinoma (PDAC) receiving preoperative chemotherapy or chemoradiation 
[7]. To establish feasibility of exercise, patients were advised to participate in at least 
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60 min per week of moderate intensity aerobic exercise (e.g., brisk walking, ellipti-
cal, stationary bicycles) and 60 min per week of full body strengthening exercise 
divided into two separate sessions. Study staff demonstrated all strengthening exer-
cise in person and called participants at least once every 2 weeks to encourage adher-
ence and to monitor for adverse events. Participants completed daily exercise logs 
and wore accelerometers to track their physical activity. Moreover, individualized 
dietary counseling emphasizing high protein intake was provided to all participants. 
Patients, on average, met the ACSM guidelines for aerobic exercise with mean accel-
erometer-measured physical activity of 158.7 ± 146.7 min per week of moderate-to-
vigorous physical activity. They had significant improvement in the 6MWT and 5 
times sit-to-stand (5xSTS) during the preoperative period, and this was associated 
with improved quality of life. This result is especially remarkable because the 
improvement in physical function was clinically meaningful during a period where 
decline in physical function is common [8]. The 6MWT has been associated with 
intraoperative and postoperative complications [9–11], length of stay [12], and func-
tional recovery [13]. The 5xSTS has been associated with activities of daily living 
and disability and is a predictor of falls [14]. Concordant with guidelines to avoid 
inactivity, increased light physical activity on accelerometry was associated with 
improved health-related quality of life, while sedentary activity was associated with 
decreased quality of life [7]. Physical activity motivators included interpersonal and 
environmental factors, particularly social support from friends and neighborhood 
aesthetics. Additional motivators included desire to complete and recover from treat-
ment and support and accountability from healthcare providers [15].

Pre-clinical animal studies have demonstrated some of the positive effects of exer-
cise in delaying PC growth; however, the underlying mechanisms of these effects are 
unclear [16]. For instance, there is evidence that exercise for PC patients directly 
impacts tumor biology by modifying tumor vascularity. Schadler et al. used mouse 
models to show that moderate aerobic exercise-induced shear stress led to a tumor 
vessel remodeling, normalizing effect that allowed for improved chemotherapy 
delivery [17]. When exercise was used in addition to chemotherapy, there was a sig-
nificant decrease in tumor growth. The same group of researchers then compared 
tumor biology of historical control patients who did not receive an exercise interven-
tion to a group of patients who participated in the prehabilitation exercise trial [7]. 
The exercise prehabilitation group showed differences in tumor vasculature includ-
ing significantly higher microvessel density and more elongated blood vessels [18].

Exercise rehabilitation postoperatively, during adjuvant therapy, and in survivor-
ship for PC patients can be similarly beneficial. Postoperatively, even progressive 
mobilization on the same day of surgery compared to the day after surgery showed 
benefit in oxygenation [19]. A randomized-controlled study of postoperative home-
based resistance training for 3 months improved sleep and fatigue in patients with 
PC [20]. A systematic review of exercise for patients with PC found that during 
adjuvant treatment, exercise is safe and effective in mitigating impaired physical 
function, quality of life, and fatigue [21]. In survivorship, although 70% of PC sur-
vivors are willing to participate in diet and exercise interventions [22], less than 
25% of patients after resection for PC met exercise guidelines [23], highlighting a 
wide gap in physical activity, with patients potentially missing the beneficial effects.
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�Physical Activity and Body Composition

The negative impacts of cancer and cancer therapies extend to body composition—
patients who receive multimodal cancer treatments tend to lose muscle. Skeletal 
muscle loss, particularly in the context of excess adiposity, is associated with worse 
treatment and survivorship outcomes across the spectrum of cancer diagnoses. 
Patients diagnosed with PC tend to be older, and they frequently present with mus-
cle loss attributable to older age, physical inactivity, or a combination of these fac-
tors, defined as sarcopenia. A recent review found rates of sarcopenia ranging from 
21% to 65% in patients with PC [24]. Additionally, these patients may have cachexia, 
which is defined as loss of muscle concurrently with adipose tissue depletion as part 
of general weight loss and tissue wasting. Cachexia is particularly common among 
individuals diagnosed with PC, with prevalence extending across PC stages and 
treatment regimens. Cachexia occurs from a variety of factors: reduced food intake, 
elevated energy expenditure from tumor metabolism, excess catabolism, and overall 
inflammation [25]. An estimated 80% of patients with PC are cachectic, and 30% of 
PC deaths are due to cachexia alone [26].

To date, several studies have enumerated changes in body composition that occur 
throughout the PC treatment continuum. In a recent study among patients with bor-
derline resectable and locally advanced tumors who underwent neoadjuvant chemo-
therapy and/or chemoradiation therapy prior to surgical exploration, there was 
significant fat loss and a significant minimal increase in skeletal muscle mass in 
ones who were underwent surgical resection versus ones who did not have surgery 
[27]. Even for patients receiving curative treatment, body weight, body fat, and 
skeletal muscle mass are significantly lower 3 months after surgical resection, as 
patients cope with nutritional challenges along with reduction in physical activity 
[28]. Moreover, this muscle loss tends to persist long-term [29]. Patients who pres-
ent with advanced disease (stages III–IV) and who receive palliative chemotherapy 
tend to lose skeletal muscle mass rapidly, and the radiodensity (i.e., quality) of their 
muscle also deteriorates [30]. Muscle loss has been associated with delays, reduc-
tions, or premature cessation of treatment and shorter survival among patients with 
PC [31]. Maintaining or increasing skeletal muscle mass during and following PC 
treatment presents an important target for exercise oncology interventions in order 
to improve treatment outcomes, survivorship, physical functioning, and quality 
of life.

To date, few studies have examined changes in body composition as outcomes of 
exercise interventions. In a comparison of patients with PC enrolled in a preopera-
tive exercise program (prehabilitation) to historical controls who did not receive 
exercise training, investigators found better maintenance of skeletal muscle mass in 
the exercise group [32]. In a randomized trial comparing 3 months of supervised 
resistance training to usual care for cachectic PC patients, exercisers demonstrated 
significant increases in upper and lower limb skeletal muscle mass compared to 
controls [33]. Preliminary evidence is favorable, but there is a clear need for more 
research on the potential benefits of exercise to improve body composition 
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outcomes for patients during and following treatment for PC. Future studies should 
aim to increase the rigor and intensity of exercise programming (particularly resis-
tance training) to determine whether guideline-concordance training can move the 
needle on body composition and associated clinical and quality of life outcomes [34].

�Nutrition in Pancreatic Cancer

Individuals with PC are at high risk for nutrition problems due to tumor anatomical 
location and its potential effects on digestion and absorption. Nutrition status may 
be affected by the cancer itself and/or treatment. It can vary with stage of disease 
[35] and change through the continuum of care [36]. Malnutrition occurs in 50–90% 
of patients with PC [35, 37, 38]. Malnutrition (including comorbid diagnoses of 
cachexia and sarcopenia) is associated with decreased survival, treatment tolerance 
and response, quality of life, and performance status as well as increased postopera-
tive length of stay, hospital admission/readmission, and post-surgical infection [25, 
37–42]. Nutrition status can be improved through medical nutrition therapy, though 
cachexia is unlikely to be reversed by conventional nutrition support measures 
alone. Multimodal interventions including nutrition and exercise components for 
treatment of cachexia show promise.

�Nutrition Screening and Referral to the Registered Dietitian

Routine use of nutrition screening tools can identify patients with malnutrition, 
cachexia, or risk thereof. Assessment by a registered dietitian (RD) can identify 
early stages of cachexia and potentially modifiable factors—food intake, catabolic 
drive, muscle mass, and physical function [38, 42–44]. Nutrition counseling should 
focus on recommendations for increased energy intake including energy-dense 
foods, a protein-rich diet (with specific calorie and protein goals), potentially 
increased meal frequency, and oral supplementation of nutrients [42, 43].

In a study of patients with unresectable PC not receiving anti-cancer therapy, 
nutrition intervention, including a weekly RD visit, demonstrated significantly 
greater median survival (8.6 versus 5.5 months) in weight-stable vs. weight-losing 
subjects. The RD visit comprised of a weekly phone call to discuss pain, nausea, 
pancreatic enzyme replacement optimization, and nutrient dense meals [45].

�Nutrition Intervention

Energy dense, high-fat foods, and oral nutrition supplement (ONS) drinks are often 
recommended to increase intake in patients with cancer. General nutrition recom-
mendations for PC patients are outlined in Table 9.1. Studies have demonstrated 
improved total energy and protein intake in patients adherent to ONS recommenda-
tions resulting in improved weight, muscle mass, quality of life, and fatigue [46]. 
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However, adherence to recommendations varies in these studies from approximately 
50–70% [46, 47]. The European Society for Clinical Nutrition and Metabolism 
practice guidelines, among others, recommend a food-first approach, incorporating 
ONS when diet modification is inadequate to meet goals [43].

In cachectic PC patients, caloric supplementation resulted in decreased loss of 
muscle tissue and increased survival time, regardless of nutritional product used 
[38]. Though preliminary studies of supplementation with L-carnitine, branched 
chain amino acids, and/or lactoferrins have shown promise, practice recommenda-
tions are still limited [38, 43, 48]. Stronger evidence has shown benefit with use of 
omega-3 fatty acids (supplemental or in ONS) [43, 49]; however, results are depen-
dent on adequate intake. A randomized controlled trial in 2019 found patients 
adherent with use of omega-3-enriched ONS had greater skeletal muscle mass ratio 
(post- vs pre-intervention); however, only 45% of patients consumed >50% of the 
study dose of ONS [49]. Clinicians should guide patients in selecting appropriate 
ONS products and encouraging adherence.

�Macronutrient Needs

�Calorie Needs

It is commonly assumed that patients with PC are hypermetabolic; however, studies 
show a range of metabolic needs [50–52]. Therefore, initial prediction of calorie 
needs should align with recommendations for cancer patients in general—25–30 kilo-
calories per kilogram (kcal/kg) body weight per day (if obese, use ideal body 
weight) [43]. Needs should be periodically reassessed and adjusted based on the 
clinical effects on body weight and muscle mass (assessed through physical exam, 
anthropometric measures, or validated body composition measures such as dual-
energy absorptiometry or bioelectrical impedance) [43, 53].

�Protein Needs

Similarly, there is no protein recommendation specific to patients with PC; there-
fore, estimates for cancer patients in general should be used—1–1.5  grams per 

Table 9.1  General nutrition recommendations for pancreatic cancer patients

 �� • � Schedule oral intake, plan meals/snacks the day before
 �� • � Eat small frequent meals (6–8/day)
 �� • � Get plenty of fluids
 �� • � Limit use/portions of fat (as needed)
 �� • � Choose nutrient dense foods
 �� • � Be active
 �� • � Take pancreatic enzyme replacement therapy (if prescribed)
 �� • � Consider regular use of oral nutrition supplement drinks
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kilogram (g/kg) of body weight per day [43]. This is similar to the recommendations 
for older adults (>65 years old)—1–1.2 g/kg per day for maintenance and up to 
1.6 g/kg per day to build lean body mass [48]. Additionally, it is important that indi-
viduals distribute protein through the day (25–30 grams per meal) to optimize mus-
cle protein synthesis and maintenance [48, 54].

�Common Nutrition Symptoms in PC

Nutrition impact symptoms may be present at the time of diagnosis or lead to a 
diagnosis of PC. Moreover, these symptoms may present as side effects of treatment 
or manifest as progression of disease [55, 56]. Table 9.2 outlines many of these 
common symptoms in PC and the medical and nutritional management strategies. 
The more complex symptoms of diarrhea and pancreatic exocrine insufficiency are 
discussed in more detail below.

�Diarrhea

Diarrhea is common in patients with PC and may be a result of multiple sources 
including pancreatic exocrine insufficiency, side effects of chemotherapy or radia-
tion therapy, surgery, or advanced disease. Regardless of etiology, interventions for 
diarrhea include diet modification (Table 9.3), medications (Table 9.4), and absorp-
tive fiber.

�Absorptive Fiber
Patients with diarrhea and/or rapid intestinal transit may benefit from the use of 
absorptive fiber taken following meals (and at bedtime if indicated). A dose of 
absorptive fiber is 3.4  g psyllium powder or 1-teaspoon methylcellulose powder 
blended with 2 ounces water. (may substitute fiber wafers/crisps in place of psyl-
lium powder.) Fiber should be taken after a meal, and individuals should avoid 
drinking fluid for 1  h after. Patients start with once a day dosing and gradually 
increase as needed up to four times per day (three times a day after meals and at 
bedtime) [80–82].
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Table 9.3  Diet and behavior modification for management of diarrhea [77]

Foods to increase
High soluble fiber foods
 �� – � Banana
 �� – � Peeled apple, apple sauce (unsweetened)
 �� – � Oats
 �� – � Barley
Sodium foods
 �� – � Salted pretzels or crackers
 �� – � Broth (room temperature)
Potassium foods
 �� – � Potato (without skin)
 �� – � Banana
 �� – � Coconut water
Foods to minimize
High insoluble fiber foods
 �� – � Beans, peas, legumes
 �� – � Whole grains
 �� – � Fruits and vegetables with thick skins/peels
High sugar foods
Foods that contain sugar alcohol
High-fat and fried foods
Milk products unless low-lactose or lactose-free
Behavior modifications
Maintain adequate hydration
 �� – � Favor electrolyte containing fluids and oral rehydration solutions
 �� – � Minimize fluid intake at meals, push fluids between meals
 �� – � Limit caffeine, alcohol, and carbonated beverages
 �� – � Avoid hot liquids
Eat smaller meals, more frequently

Table 9.4  Medications for diarrhea [78, 79]

Medication Common dosing
Maximum 
dose

Loperamide (Imodium® AD)a 4 mg by mouth once then 2 mg after each 
bowel movement

16 mg per day

2–4 mg four times a day (every 6 h)
Diphenoxylate/atropine 
(Lomotil®)a

1–2 tablets by mouth 3–4 times a day 8 tablets per 
day

Deodorized tincture of opium 0.3–1 mL by mouth 4 times a day 6 mL per day
Codeineb 15–30 mg by mouth three or four times a day

aMay be used together, each taken every 6 h, alternating use resulting in individual taking one or 
the other every 3 h
bUsed less commonly due to sedation and nausea
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�Other Considerations
•	 Metformin, commonly used for diabetes mellitus management, may contribute 

to gastrointestinal (GI) side effects including diarrhea. Gradual dose escalation is 
advised and/or consideration of extended-release preparation if appropriate [83].

•	 Diarrhea may be a transient side effect following a celiac plexus block [78]. Diet 
strategies (Table  9.3) may be helpful during the acute recovery following 
neurolysis.

•	 For those suspected to have bile acid related diarrhea, a bile acid sequestrant 
(cholestyramine, colestipol) may be prescribed [82].

�Pancreatic Exocrine Insufficiency

Pancreatic exocrine insufficiency (PEI) in PC may be due to loss of pancreatic 
parenchyma, obstructed duct, changes in GI tract synchrony, and/or reduced pancre-
atic secretions [84, 85]. Consequences of PEI (untreated) include malnutrition, sar-
copenia, vitamin and mineral deficiencies, reduced quality of life, and reduced 
survival [44, 86, 87]. PEI is reported in 50–100% of PC patients [84, 88, 89]. 
Patients who present without PEI may develop it over time [90]. It may be a conse-
quence of or worsen due to surgery (pancreaticoduodenectomy more often than 
distal pancreatectomy) [35, 36, 87, 91] or radiation therapy [90] .

In clinical practice, diagnosis may be based on presence of symptoms (Table 9.5) 
and/or diagnostic test results (Table 9.6). Use of diagnostic tests in the clinical set-
ting varies due to limited availability, level of invasiveness, varied sensitivity and 
specificity, and/or the cumbersome nature of stool collection [44]. Diagnosis based 
only on clinical symptoms may lead to false negatives as patients may have signifi-
cant reduction in exocrine secretion without manifestation of symptoms [87]. 
Currently, there is no universally accepted guideline for assessment of PEI in PC 
patients [87]. Diagnosis based on clinical symptoms is appropriate, but in the 
absence of symptoms, fecal elastase should be evaluated in unresected patients and 
those without surgical alteration of the stomach or intestine [44]. Fecal fat studies or 
empiric prescription of PERT should be considered in asymptomatic patients with a 

Table 9.5  Clinical symptoms of pancreatic exocrine insufficiency [78, 86, 92–94]

 �� • � Abdominal bloating
 �� • � Cramping or abdominal pain after meals
 �� • � Excessive gas (burping, flatulence)
 �� • � Indigestion
 �� • � Foul-smelling gas or stools
 �� • � Unexplained weight loss
 �� • � Stool changes:
 ��   – � Fatty or oily (frothy, foamy)
 ��   – � Frequent
 ��   – � Floating
 ��   – � Light-colored or yellow
 ��   – � Loose
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history of pancreaticoduodenectomy [44, 85]. Patients presenting without PEI 
should be regularly reassessed throughout the course of treatment and disease [44].

�Management of PEI with Pancreatic Enzyme Replacement Therapy
When PEI is present, pancreatic enzymes (pancrelipase) should be prescribed. 
Pancreatic enzyme replacement therapy (PERT) is demonstrated to have a positive 
effect on body weight, stool frequency, total calorie, and total protein intake even in 
the absence of symptomatic improvement [95]. It is associated with improved nutri-
tion status, quality of life, and survival in patients with unresectable as well as 
resected disease [36, 96–99]. Dominguez-Munoz et  al. found, in a retrospective 
analysis of patients with unresectable PC, a median 3-month survival benefit for 
patients on PERT vs not [96]. Similarly, Roberts et al. found a survival benefit of 
over 4 months in patients on PERT vs not [97].

Despite these benefits, PERT may not be prescribed to the majority of patients 
who need it due to undiagnosed PEI and suboptimal communication between patient 
and clinician [97, 100].

Pancreatic enzymes may be dosed based on an assumed general intake of food at 
meals and snacks (meal-based dosing), the patient’s body weight, or the fat content 
of the diet. The most common practice in PC is meal-based dosing. Recommended 
starting doses range from 20,000 to 80,000 lipase units per meal and approximately 
half the dose per snack [36, 39, 57, 84, 85, 87, 88, 91, 96, 101–103]. This wide range 
of initial dosing reflects the wide range of diet variation—some patients present 
already self-restricting the fat content of the diet or meal sizes (or meal sizes may be 
restricted due to surgery) and thus require lower doses of PERT, while patients who 
consume regular-sized meals or large amounts of fat may need higher doses [104]. 
To best mimic the normal physiologic response to eating, the enzyme dose should 
be divided and administered at the start, throughout the meal, and at the end [57, 
101, 105].

Based on characteristics of stools, clinical symptoms, and nutrition intake, 
enzymes may be titrated up every several days to identify the optimal dose to mini-
mize or avoid PEI symptoms [86, 87, 101, 106]. Supplemental pancreatic enzyme 
dosages should not exceed 10,000 lipase units per kilogram of body weight per day 
or 2500 lipase units per kilogram per meal up to 4 times a day [101]. Figure 9.1 is a 
guide through the process of starting PERT, titrating dose, and troubleshooting con-
cerns. It is important to continue to reassess compliance with PERT when making 
changes. Close monitoring by an RD can help patients achieve optimal management 
of PEI [44, 107].

Table 9.6  Diagnostic tests for pancreatic exocrine insufficiency [86, 92, 94]

 �� • � Coefficient of fat absorption
 �� • � Fecal chymotrypsin level
 �� • � Fecal elastase (fecal elastase 1)
 �� • � Fecal fat excretion
 �� • � 13C-labeled mixed triglyceride breath test
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Fig. 9.1  Pancreatic enzyme replacement therapy initiation and optimization

Of note, the cost of enzymes can preclude use, and patients may seek to use an 
over-the-counter (OTC) preparation or may ration their supply of pancrelipase. 
OTC enzyme preparations may include bromelain, papain, trypsin, and chymotryp-
sin, or may be a combination product [108]. There is a lack of strong data to support 
use of these supplements, and as with all OTC supplements, individuals should be 
counseled regarding concerns with the non-regulated industry and directed toward 
patient financial assistance programs.
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�Special Populations: Perioperative Nutrition, Nutrition at End 
of Life, and Long-Term Survivors

�Perioperative Nutrition

Preoperative nutrition and prehabilitation has prevented declines in nutrition in 
patients who suffered skeletal muscle loss [109]. Preoperative nutrition intervention 
is important to reduce the risk of surgical complications. Oral or enteral use of 
immunonutrition (IM) (formulas containing arginine, omega-3 fatty acids, and 
nucleotides) is recommended for patients undergoing major abdominal surgery 
[43]. Use is associated with reduced infectious complications, surgical complica-
tions, and hospital length of stay in surgical GI cancer patients [110–118]. IM has 
been found beneficial in both well-nourished and malnourished individuals [35, 
110]. The strongest body of evidence supports the use for 5–7 days before surgery 
in patients with PC [118–120], with potential additional benefit after surgery [118]. 
Higher rates of surgical site infection, hospital-acquired infection, or pancreatic fis-
tula have been reported in patients undernourished before pancreatic resection 
[121]. Preoperative nutrition support is indicated for patients with severe nutrition 
risk, to improve postoperative outcomes [35, 121–123].

�Nutrition Support

Nutrition support, in the form of either enteral nutrition (EN) or parenteral nutrition 
(PN), can be essential for patients’ nutrition status. EN is preferred over PN due its 
beneficial effects on the digestive system and reduced risk for infection as compared 
to PN. PN should only be utilized when a patient cannot be fed via their digestive 
tract, such as cases of ileus, GI obstruction, severe shock, intestinal ischemia, and 
high output fistulas [122, 124].

Special consideration should be given to EN formulas for PC patients with 
PEI. For those patients, it is ideal to use a semi-elemental, high medium chain tri-
glyceride formula to limit the need for supplemental PERT during tube feeding 
[125, 126]. For patients with severe PEI or where semi-elemental formula produces 
a financial burden to the patient, administration of PERT with EN may still be 
necessary.

�End of Life

Once a patient enters a refractory cachexia stage, the focus of interventions should 
shift to palliation and symptom control [42, 127]. In this stage, risks and encum-
brance of artificial nutrition support tend to outweigh potential value, as these efforts 
have not been shown to reverse cachexia [42, 127]. PN should not be routinely 
prescribed near the end of life though guidelines recommend consideration of PN if 

9  Physical Activity and Nutrition Optimization in Pancreatic Cancer



182

the GI tract is not functional and only in the absence of heavy metastatic disease 
burden and if vital prognosis is conditioned by nutritional status rather than dis-
ease [35].

�Long-Term Survivors

Because of the limited long-term survival of PC, studies of long-term survivors are 
limited. Nutrition recommendations are based on small populations and case studies 
of patients with nutritional deficiencies. These patients are at increased risk for vita-
min and mineral deficiencies (Table 9.7) as well as bone density loss due to inade-
quate food intake, loss of absorptive site, and alterations in physiology, synchrony, 
and chemistry of the GI tract [87, 104]. Evaluation for micronutrient deficiency is 
recommended about 1 year after surgical resection or sooner if patient has signs or 
symptoms of malabsorption or deficiency. For those with normal serum levels, 
annual reevaluation is recommended. For deficiency, repletion should be attempted 
and serum levels should be rechecked about 3 months later [104].

The existing literature suggests it is important to monitor bone density in long-
term PC survivors. Recommendations for bone health are the same as those for the 
general population (re: calcium intake, vitamin D, and weight-bearing activity) but 
should advise use of calcium citrate supplements for better absorption versus cal-
cium carbonate.

�Summary

Regardless of the stage of PC, nutrition therapy can improve treatment outcomes 
and empower patients and families. For those patients who survive long term, the 
nutrition implications of the disease and treatments are likely to endure for the rest 
of their lives, and continued nutrition intervention may be necessary. It is important 
to help patients cope with nutrition issues throughout the course of treatment and 
disease.

Table 9.7  Potential micronutrient deficiency in long-term pancreatic cancer survivors [93, 104]

Vitamin A
Vitamins B6 and B12
Vitamin D
Vitamin E
Copper
Iron
Selenium
Zinc
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�Conclusions

Given the risk of muscle loss, weakness, deconditioning, nutritional deficits, and 
weight loss due to PC and its treatments, supportive care interventions to optimize 
nutrition and physical activity are essential. These interventions should start early, 
ideally at the time of diagnosis and initiation of treatment. Recommendations for 
physical activity should align with those of American College of Sports Medicine 
guidelines for cancer survivors, including moderate-intensity aerobic exercise for at 
least 30 min at least three times per week and resistance exercises at least twice a 
week [4]. These recommendations should be formulated based on patients’ physical 
status and activity tolerance with opportunity for advancement of physical activity 
recommendations. The nutritional implications from disease and treatments for 
pancreatic cancer require frequent monitoring and adjustment of nutritional sup-
port, PERT, supplements, and strategies to mitigate gastrointestinal and nutritional 
challenges. Thus, support by a clinical dietitian is essential throughout the pancre-
atic cancer continuum of care.
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