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Abstract. Compliant mechanisms perform precision movements generated by
the elastic deformation of their flexible elements. For most applications, reso-
nance frequencies must be bounded by a defined range of values. Therefore, a
modal analysis of the mechanisms is required at the initial stage of design. In this
work, a novel flexible platform with 2 degrees of rotational freedom restricted
by beam-type flexure elements is analyzed. The Screw Theory description of the
movement of the mechanism is used for the rigid and the flexible elements. Using
this formalism, the stiffness and mass matrices for a two-node beam element are
derived and can be assembled using a standard finite-element-like procedure to
perform the modal analysis of the mechanism. Starting from the desired move-
ments, the mechanism is synthesized using screws and a hybrid (series/parallel)
solution is proposed. The analytical results for the modal analysis obtained by
Screw Theory are compared with the results of finite element analysis. Due to the
computational efficiency, the analytical equations are chosen to be applied in the
optimization of the designs.

Keywords: 3D compliant mechanisms · 2R flexible platform · Beam Theory ·
Screw Theory · modal analysis

1 Introduction

Compliant mechanisms have wide applications in the field of precision engineering,
medical devices, and optical instrumentation, among others [1, 2]. In the initial stage of
design and optimization, a modal analysis of the mechanisms must be carried out [2–4]
to satisfy requirements on the resonant frequencies.

For parallel and series flexible mechanisms constrained by plate and beam-type
elements there are well-established methods for their linear static analysis applying
Screw Theory [5]. Using screws, the kinematics of rigid bodies linked by clamped-
clamped flexible elements is determined by a 6 × 6 flexibility matrix (and its inverse,
the 6 × 6 stiffness matrix) [4, 6, 7]. Hopkins et al. [6] derive the stiffness matrix of
hybrid topologies considering relative screw displacements starting from the ground of
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the structure. Wu et al. [7] firstly determines the potential energy of the structure using
the 6 × 6 flexibility matrices for each flexure element; subsequently, they determine the
minimum state of the energy and obtains the stiffnessmatrix of the completemechanism.

In this work, the ScrewTheory formalism byDing and Selig [8, 9] is applied to obtain
the stiffness and mass matrices of a two-node beam element that is assembled applying
the standard techniques of the finite element method [10] to build the stiffness and mass
matrices of the complete flexible mechanism required to perform its modal analysis.
This enables analysts to consider more than one beam element per flexure element,
increasing the accuracy in the modal analysis. As an application example, a flexible
platform with a hybrid structure and 2 rotational degrees of freedom (RR) restricted
with beam-type flexure elements is analyzed. This kind of platform is mainly used in
optical applications for guiding light or laser beams through mirrors of several scales
[2]. The analytical results obtained through the Screw Theory are compared with the
results of finite element analysis.

2 Beam Element Derivation Using Screw Theory

The beam element that will be developed in this work is a slender beam with a straight
centroidal axis, with a constant cross section, and subjected to external loads applied
only at its end nodes, see Fig. 1(a).

Fig. 1. Notation for a two-node beam element

A differential segment of the beam element is selected, see Fig. 1(a). This segment
will be analyzed as a beam of length dμ with a reference system located in the center
of the segment. When a moment is applied at one of the ends of the beam of length dμ,
on the other end there must be a moment with equal direction and magnitude, but in
the opposite sense to enforce static equilibrium, see Fig. 1(b). Equations (1)–(3) are the
constitutive relationships for the moments of a Euler-Bernoulli beam [10]

Mz = GIp
dθz

dμ
→ dθz(μ) = dμ

GIp
Mz (1)

My = EIy
dθy

dμ
→ dθy(μ) = dμ

EIy
My (2)

Mx = EIx
dθx

dμ
→ dθx(μ) = dμ

EIx
Mx (3)

where E is the longitudinal elasticity modulus, G is the transversal elasticity modulus,
Ix (Iy) is the moment of inertia of the section with respect to the x(y) axis, and Ip is
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the polar moment of inertia of the section. Throughout the differential segment the
internal moment forces are constant. Therefore, the variation of rotations between the
extreme sections can be obtained from the constitutive relations given by Eqns. (1)–
(3). The same differential beam segment is analyzed for the applied forces at its ends,
see Fig. 1(c). The forces transversal to the beam axis generate distortions and bending
moments. If dμ → 0, then the moments produced by these forces will tend to zero. In
addition, in the Euler-Bernoulli beam hypotheses, the deformations due to distortions
are negligible. Therefore, Fz is the only force that generates an appreciable deformation
and its constitutive relationship is expressed as

Fz = EA
dδz

dμ
→ dδz(μ) = dμ

EA
Fz (4)

Equations (1)–(4) can be expressed in compact form

d t = c.Q.w⎡
⎢⎢⎢⎢⎢⎢⎢⎣

dθx

dθy

dθz

dδx

dδy

dδz

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

dμ/EIx 0 0
dμ/EIy 0 03×3

dμ/GIp
0 0 0

sym. 0 0
dμ/EA

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
Q

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

Fx

Fy

Fz

Mx

My

Mz

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

(5)

where dt is the differential deflection screw, c is called the flexibility density matrix, Q
is an exchange matrix, and w is the wrench [8, 9].

A possible boundary condition of the beam element shown in Fig. 1(a) is clamped at
node 1 and free at node 2, where a wrench is applied. The displacement twist at the free
end can be obtained by integrating Eq. (5). To integrate the differential deflection screw
dt of each cross section, they must be expressed in a common reference frame [8], for
example, in a frame located at node 2 as

∫0−L d t2 =
(
∫0−LH2μcQH

−1
2μ

)
w2 → t2 = C22w2

w2 = k22t2
(6)

where L is the beam length, dt2 is the differential deflection screw of the differential
element dμ expressed in the reference system of node 2, w2 is the wrench applied on
node 2, and H2μ is the matrix that changes the coordinates (a passive translation in μ)
from the system located at coordinate μ to a system located at the node 2.

The reactions at the clamped end of the beam must ensure equilibrium

(w1)2 = −w2 (7)

where (w1)2 is the wrench applied on node 1 expressed in the reference system of node
2. Taking the expression of w2 from Eq. (6), then using Eq. (7) and applying to (w1)2
a change of coordinates H21 from a node 2 to a node 1 frame, the stiffness matrix that
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relates the twist of node 2 with the wrench applied on node 1 can be computed as

(w1)2 = −k22t2

w1 =
(
−H−1

21 k22
)

· t2
w1 = k12 · t2

(8)

where w1 is the wrench at node 1 expressed in the reference frame of node 1.
By clamping the node 2 and applying a wrench on node 1, the same procedure as

above is used to get the stiffness matrices k11 and k21. Finally, the wrench – deflection
screw relationship for the beam element can be put in compact form as

[
w1

w2

]
=

[
k11 k12
k21 k22

][
t1
t2

]
= Ke

[
t1
t2

]
(9)

The stiffness matrix Ke obtained in Eq. (9) is equal to that obtained by classical methods
for structural analysis, like the Direct Stiffness Method and the Finite Element Method,
where bending, torsion, and tension are analyzed in a decoupled way [10]. To compute
the total stiffness matrix of a flexible mechanism, the stiffness matrix of each flexible
element must be assembled in the same way as is done in the finite element method.
Thus, before performing the assembly, each local stiffness matrix Ke must be expressed
in a single global reference system, usually located in the moving platform.

In this work, a concentrated mass matrix [10] is adopted, where it is not necessary
to assume and/or to know the internal displacements of the beam. By assuming the node
1 of the element as clamped and applying forces at node 2, the Second Newton’s Law is
expressed as w2 = m Q ẗ2 where the mass matrix is defined as

m6×6 = ρ · A · L · diag
(
1

2
,
1

2
,
1

2
, αL2, αL2,

IP
2A

)
(10)

ρ is the density of the beam material, and α is a non-negative parameter between 0
and 1/50; here α = 1/100 is adopted. The same procedure as above is developed for a
clamped node 2 and a wrench applied on node 1. Then, by combining this result with
that of node 2, the local mass matrix of the beam element is obtained

[
w1

w2

]
=

[
m · Q 03×3

03×3 m · Q
][

ẗ1
ẗ2

]
= Me

[
ẗ1
ẗ2

]
(11)

3 Modal Analysis

The dynamic equation of undamped flexible mechanisms without external excitation is
M·T̈+K·T = 0,whereT is a columnvector containing thedeflection screwsof eachnode
of the structure,M and K, are respectively, the global mass and stiffness matrices of the
entire mechanism. For small oscillations, harmonic motions are assumed [4, 9, 10] and
this equation is transformed into a generalized eigenvalue problem

(−ω2M + K
)·T = 0,

where the solutions for ω are the natural frequencies.
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The 2R flexible mechanism shown in Fig. 2(a) has two rotational degrees of freedom
around two concurrent axes of rotation, x and y. It was designed as two parallel sub-
mechanisms in series: An intermediate platform is linked to the moving one by the
flexure elements shown in Fig. 2 (b) that allow rotation around the x axis. Then, flexure
elements that link the foundation and the intermediate platform are added, allowing the
rotation around the y axis; see Fig. 2 (c). Thematerial of themechanism is aluminumwith
a density of ρ = 7700 kg/m3, a longitudinal elasticity modulus E = 2.1 · 1011 N/m2

and transversal modulus G = 8 · 1010 N/m2. The flexible elements are 30 mm long and
have a cross section with 0.2 mm thick and 5 mm wide.

Fig. 2. Dimensions (in mm) of the 2R mechanism (a, b, c) and FEM simulation (d, e, f).

All flexure elements are modeled with the proposed beam for three cases of modal
analysis: Considering 1 beam element for each flexure element, (i) including the mass
of the beam (ii) and ignoring the mass of the beam, respectively, and (iii) by considering
2 beam elements for each flexure element where the mass of the beam is taken into
account, otherwise the mass matrix would be singular.

The values obtained for the first 6 vibration modes are very similar to each other
and are shown in Table 1. The results obtained with the proposed method are compared
with results that were obtained by the finite element method shown in the 2nd column of
Table 1. In Fig. 2(d) the mesh of high-order quadratic tetrahedral elements consisting of
100630 nodes is shown. Figures 2(e) and 2(f) show the results for the first two natural
frequencies corresponding to the two desired rotational degrees of freedom. It should
be noted that using 2 beam elements per flexure element has less error in the 6th mode
compared to using 1 element per flexure element. The execution times to calculate the
natural frequencies with the proposed analytical method are 100 orders less if they are
compared to results obtained through the finite element method.
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Table 1. Natural frequencies (in Hz) of the 2R flexible mechanism

Mode FEM (i) With beam mass
1 Element

(ii) W/O beam mass
1 Element

(iii) With beam mass
2 Elements

1st 141.21 140.33 141.82 140.33

2nd 169.52 165.28 165.42 165.28

3rd 2041.2 2101.61 2109.19 2101.61

4th 2422.2 2528.11 2532.47 2528.11

5th 4741.1 5255.80 5279.7 5244.43

6th 7432.3 9742.33 9771.67 7325.57

4 Conclusions

In this work, the modal analysis of flexible platforms with application to precision
devices with small displacements and deformations was presented. A stiffness matrix
for a Euler-Bernoulli beam was derived by applying the Screw Theory formalism. This
matrix allows to be assembled in a simple and direct way to carry out static analysis of
flexible mechanisms and, together with a mass matrix of concentrated parameters, it also
allows to carry out the modal analysis of flexible mechanisms. Using the proposed beam,
the flexure elements of a flexiblemechanismwith two rotational degrees of freedomwere
modeled to analyze their vibration modes. The results of the modal analysis obtained
with the proposed analytical method were validated with the finite element method and
its accuracy was acceptable and had faster execution than the FEM, highlighting that the
number of beam elements per flexure element is important to capture the correct physics
of the modal analysis.
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