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Abstract. This paper presents and proves totally correct a new algo-
rithm, called QSMA, for the satisfiability of a quantified formula modulo
a complete theory and an initial assignment. The optimized variant of
QSMA implemented in YicesQS is described and shown to preserve total
correctness. A report on the performance of YicesQS at the 2022 SMT
competition is included. YicesQS ran in the LIA, NIA, LRA, NRA, and BV
categories and ranked second for the “largest contribution” award (single
queries). It was the only solver to solve all LRA instances, where it was
about two orders of magnitude faster than the second best solver (Z3).

1 Introduction

Applications of automated reasoning generate formulas involving both quanti-
fiers and symbols defined in background theories. For example, software verifica-
tion needs reasoners that decide the satisfiability of quantified formulas modulo
theories such as data structures and arithmetic (e.g., [20]). Therefore, endowing
SMT solvers with quantifier reasoning (e.g., [3,9,11–14,22]), enriching first-order
theorem provers with built-in theories (e.g., [1,2,19]), and integrating provers
and solvers [7], are major research objectives.

If there is a single background theory T , the T -satisfiability of quantified
formulas can be reduced to that of quantifier-free formulas if T admits quantifier
elimination (QE): for every formula ϕ there exists a quantifier-free formula F
that is T -equivalent to ϕ. Since computing F can be prohibitively expensive
(e.g., exponential in linear rational arithmetic (LRA) and doubly exponential in
linear integer arithmetic (LIA) [8]), QE is not a practical solution.

In this paper we propose a practical solution in the form of a new algo-
rithm called QSMA. In QSMA the computation of quantifier-free model-based
under-approximations (MBU) and model-based over-approximations (MBO) of
quantified formulas embodies a lazy approach to QE, which is tailored for
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T -satisfiability. MBU generates a quantifier-free implicant of the given formula
that is true in the given model. Model(-guided) generalization for linear [12] and
nonlinear real arithmetic (NRA) [17] is an instance of MBU. MBO generates a
quantifier-free implied formula that is false in the given model. Model interpola-
tion for NRA [17] is an instance of MBO.

The QSMA algorithm assumes that the theory T is complete. By its recur-
sive nature, QSMA solves a generalized form of the satisfiability problem, called
quantified SMA (satisfiability modulo theory and assignment): given a formula ϕ
with arbitrary quantification, and an initial assignment to Boolean or first-order
subterms of ϕ, find a theory model of ϕ that extends the initial assignment, or
report that none exists. In addition to QSMA and its total correctness, we present
an optimized variant named OptiQSMA, which preserves total correctness and
is implemented in the YicesQS solver built on top of Yices 2. A report on exper-
imental results from the 2022 SMT competition and a discussion complete the
paper. We begin with a high-level view of QSMA.

1.1 High-Level View of the QSMA Algorithm

The QSMA algorithm works by progressively instantiating quantified variables.
Consider a formula ϕ of the form ∃x̄1.∀x̄2.∃x̄3 . . . F [x̄1, x̄2, x̄3, . . .] where F is
quantifier-free. For example, suppose the theory is LRA, ϕ = ∃x.∀y.∃z.F and
F = z ≥ 0 ∧ x ≥ 0 ∧ y + z ≥ 0. Say that QSMA assigns x←0. Whatever
value is chosen for y, the algorithm can show that ϕ is true in LRA by assigning
z←max(0,−y). If F = z ≥ 0∧x ≥ 0∧y+z ≤ 0, no matter which (non-negative)
value QSMA chooses for x, it can show that ϕ is false in LRA by picking y←1,
because there is no value for z that satisfies z ≥ 0 ∧ z ≤ −1.

For an example that is not in prenex normal form, consider a formula ϕ of
the form ∃x.((∀y1.F1[x, y1]) ⇒ (∀y2.F2[x, y2])), where F1 and F2 are quantifier-
free. QSMA sees the formula as ∃x.((∃y1.¬F1[x, y1]) ∨ (¬∃y2.¬F2[x, y2])), and
then as ∃x.(p1 ∨ ¬p2), where p1 and p2 are proxy Boolean variables for the
quantified subformulas. QSMA assigns values to x, p1, and p2. If p1 is assigned
true, the algorithm tries to extend the assignment with a value for y1 that satisfies
¬F1[x, y1]. If p2 is assigned false, the algorithm tries to show that there is no
value for y2 that satisfies ¬F2[x, y2].

Without loss of generality (¬¬ converts ∀ into ¬∃¬), we consider formulas

ϕ = ∃x̄.F [z̄, x̄, p̄]{pi←∃ȳi.Gi[z̄, x̄, ȳi]}ki=1.

F [z̄, x̄, p̄] denotes a quantifier-free formula where the variables z̄, x̄, and p̄ occur.
Tuples z̄ and x̄ contain the first-order variables occurring free in F . Formula
F is quantifier-free because the quantified subformulas ϕi = ∃ȳi.Gi[z̄, x̄, ȳi] are
replaced by proxy Boolean variables p̄ = p1, . . . pk. Given an initial assignment
to the free variables z̄, we construct a QSMA-tree for ϕ. QSMA starts trying to
satisfy F [z̄, x̄, p̄]. If it fails, it means that ϕ is false under the initial assignment.
If it succeeds, there are two cases. If k = 0, formula ϕ is true under the initial
assignment. If k > 0, the algorithm descends recursively to consider the QSMA-
subtrees for the ϕi subformulas (1 ≤ i ≤ k). If QSMA assigned true to pi, it
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tries to show that ϕi is true. If QSMA assigned false to pi, it tries to show that
ϕi is false. If it succeeds for all QSMA-subtrees, formula ϕ is true under the
initial assignment. For this, the model built by QSMA should satisfy F [z̄, x̄, p̄]∧∧n

i=1(pi ⇔ ϕi). Otherwise, formula ϕ is false under the initial assignment.

2 Preliminaries

A signature Σ is given by a set S of sorts and a set of sorted symbols. Given
a class V = (Vs)s∈S of disjoint sets of sorted variables, Σ[V ]-formulas, Σ-
sentences, and Σ[V ]-interpretations are defined as usual. A Σ-structure is a
Σ[∅]-interpretation. We use x, y, z for first-order variables, p for Boolean ones,
and x̄, ȳ, z̄, and p̄ for tuples of such variables. We also use ϕ and ψ for formulas, F
and G for quantifier-free formulas, M for interpretations, |= for satisfaction and
entailment, = for identity, � for disjoint union, and \ for set difference. FV (ϕ) is
the set of the variables occurring free in ϕ. Slightly abusing the notation, FV (ϕ)
is also treated as a tuple. Implication is written ⇒ and logical equivalence is
written ⇔. If V1 ⊆ V2 (i.e., Vs

1 ⊆ Vs
2 for all s ∈ S), a Σ[V2]-interpretation M2 is

an extension of a Σ[V1]-interpretation M1 to V2, if M2 interprets the variables
in Vs

2 \ Vs
1 for all s ∈ S and is otherwise identical to M1.

A theory T is defined by a signature Σ and a set of Σ-sentences called T -
axioms. A model of T , or T -model, is a Σ-structure that satisfies the T -axioms. A
T [V ]-model is a Σ[V ]-interpretation that is a T -model when the interpretation
of variables is ignored. A theory T is complete, if it is consistent, and for all
Σ-sentences F , either F or ¬F is provable from the T -axioms. In this paper
we deal with a single theory T that has a unique T -model M0, so that the
interpretation of everything except variables is fixed. Therefore T is complete,
for Σ-sentences T -validity, T -satisfiability, and truth in M0 coincide, all T [V ]-
models are extensions of M0, and a T -satisfiability procedure is concerned only
with assignments to variables. Since there are one theory and one signature,
we write formula for Σ[V ]-formula and model for T -model or T [V ]-model. A
conservative theory extension T + of T adds to Σ special constants, called values,
to name elements in the domain of M0 as needed. Conservative means that a
T -satisfiable formula is also T +-satisfiable.

The quantified SMA problem for theory T asks whether M0 |= ϕ for an
arbitrary formula ϕ and an initial assignment of values to the variables in FV (ϕ).
Formulas have the form ϕ = ∃x̄.F [z̄, x̄, p̄]{pi←∃ȳi.Gi[z̄, x̄, ȳi]}ki=1 described in
the introduction, where FV (ϕ) = z̄ and quantified variables are standardized
apart. If FV (ϕ) = ∅, we still have SMA problems when considering subformulas
under an assignment to existentially quantified variables.

3 The QSMA Framework

The QSMA algorithm works with a tree representation of a formula ϕ. A node n
in the tree is labeled with a pair (x̄, F ), where x̄ is a tuple of first-order variables,
called the local variables of n, and F is a quantifier-free formula. The local
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variables are implicitly existentially quantified: they are existentially quantified
variables whose quantifers have been stripped, so that they are locally free, so
to speak, and can be assigned by the algorithm. An arc from a node n to a child
node b is labeled with a Boolean variable p. This Boolean variable stands as a
proxy for the quantified subformula represented by the subtree rooted at node
b. Therefore, the Boolean variable p is also considered a proxy of b itself.

A formula ϕ may have free variables FV (ϕ) = z̄, whose assignment is given
initially as part of the SMA problem instance. These variables are called rigid,
because their assignments do not change during the tree traversal. As the algo-
rithm traverses the tree, the local variables of a node n are rigid from the point
of view of a child node b: their assignments do not change during the traversal
of the subtree rooted at b. Therefore, we represent a formula ϕ as a pair formed
by a tuple of rigid variables and a labeled tree. Slightly abusing the terminology,
we call this pair a QSMA-tree. The root of a tree T is denoted root(T ).

Definition 1 (QSMA-tree). Given ϕ = ∃x̄.F [z̄, x̄, p̄]{pi←∃ȳi.Gi[z̄, x̄, ȳi]}ki=1,
where FV (ϕ) = z̄ and ϕi = ∃ȳi.Gi[z̄, x̄, ȳi], 1 ≤ i ≤ k, the QSMA-tree for ϕ is
the pair G = (z̄, T ), where z̄ is called the tuple of the rigid variables of G, and T
is a labeled tree defined inductively as follows:

– If k = 0, T consists of a single node r labeled (x̄, F [z̄, x̄]);
– If k > 0, for all i, 1 ≤ i ≤ k, let Gi = ((z̄, x̄), Ti) be the QSMA-tree for ϕi,

where root(Ti) is a node bi labeled (ȳi, Gi[z̄, x̄, ȳi]). Then T is the tree with a
new node r labeled (x̄, F [z̄, x̄, p̄]) as root, k outgoing arcs labeled p1, . . . , pk,
and b1, . . . , bk as children.

If subformula ϕi occurs more than once in ϕ, the same proxy variable pi
is used for all occurrences. The ancestors of a node n in T are the nodes on
the unique path from root(T ) to n excluding n itself. If node n in T is labeled
(x̄, F ), its k outgoing arcs are labeled p1, . . . , pk, and x̄1, . . . , x̄m are the local
variables of the ancestors of n, then FV (F ) ⊆ {z̄, x̄1, . . . , x̄m, x̄, p1, . . . , pk}. The
set of the assignable variables at node n is Var(n) = x̄ � {p1, . . . , pk}. The
set of the rigid variables at node n is Rigid(n) = z̄ � x̄1 � . . . � x̄m. Thus,
FV (F ) ⊆ Rigid(n)∪Var(n), Rigid(root(T )) = z̄, and the QSMA-subtree rooted
at node n is Gn = (Rigid(n), Tn). For a node n with label (x̄, F ), the components
of the label are denoted n.x̄ and n.F . The label of the arc from n to a child b is
denoted b.p.

Example 1. Given ∃x.((∀y1.F1[x, y1]) ⇒ (∀y2.F2[x, y2])) from Sect. 1.1, let ϕ =
∃x.((∃y1.¬F1[x, y1])∨(¬∃y2.¬F2[x, y2])) = ∃x.(p1∨¬p2){pi ← ∃yi.¬Fi[x, yi]}2i=1.
The QSMA-tree for ϕ has root r labeled (x, p1 ∨ ¬p2) with left child b1 labeled
(y1,¬F1[x, y1]), right child b2 labeled (y2,¬F2[x, y2]), and arcs from r to b1 and
from r to b2 labeled p1 and p2, respectively. Note how FV (r.F ) ⊆ {x, p1, p2},
Var(r) = {x, p1, p2}, and Rigid(r) = ∅. Also, FV (b1.F ) ⊆ {x, y1}, FV (b2.F ) ⊆
{x, y2}, Var(b1) = {y1}, Var(b2) = {y2}, and Rigid(b1) = Rigid(b2) = {x}.

Example 2. Consider ∀x.((∃y1.(x � 2·y1)) ⇒ (∃y2.(3·x � 2·y2))). A double
negation eliminates the ∀, yielding ¬(∃x.((∃y1.(x � 2·y1))∧ (∀y2.(3·x �� 2·y2)))).
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Again, a double negation eliminates the ∀, producing ¬(∃x.((∃y1.(x � 2·y1)) ∧
(¬(∃y2.(3·x � 2·y2))))). Let ϕ = ∃x.((∃y1.(x � 2·y1))∧ (¬(∃y2.(3·x � 2·y2)))) =
∃x.(p1∧¬p2){p1 ← ∃y1.(x � 2·y1), p2 ← ∃y2.(3·x � 2·y2)}. The original formula
is true in LRA iff ϕ is false in LRA. The QSMA-tree for ϕ has root r labeled
(x, p1 ∧ ¬p2) with left child b1 labeled (y1, x � 2·y1), right child b2 labeled
(y2, 3·x � 2·y2), and arcs from r to b1 and from r to b2 labeled p1 and p2,
respectively. The variable sets of this tree are as in Example 1.

Conversely, given a QSMA-tree G = (z̄, T ), we can associate a formula n.ψ
to any node n in T and hence to the QSMA-subtree Gn = (Rigid(n), Tn).

Definition 2 (Formula at a node). Given a QSMA-tree G = (z̄, T ), for all
nodes n of T , the formula n.ψ at node n is defined inductively as follows:

– If n is a leaf labeled (x̄, F [z̄, x̄]), then n.ψ = ∃x̄.F [z̄, x̄];
– If n has label (x̄, F [z̄, x̄, p̄]) and outgoing arcs labeled p1, . . . , pk, k > 0, con-

necting n to children b1, . . . , bk, let b1.ψ, . . . , bk.ψ be the formulas at b1, . . . , bk.
Then n.ψ = ∃x̄.F [z̄, x̄, p̄]{pi ← bi.ψ}ki=1.

If G = (z̄, T ) is the QSMA-tree for ϕ and r = root(T ), then r.ψ = ϕ.

Example 3. For the QSMA-tree in Example 2, b1.ψ = ∃y1.(x � 2·y1), b2.ψ =
∃y2.(3·x � 2·y2), and r.ψ = ∃x.(p1∧¬p2){p1 ← ∃y1.(x � 2·y1), p2 ← ∃y2.(3·x �
2·y2)} = ∃x.((∃y1.(x � 2·y1)) ∧ ¬(∃y2.(3·x � 2·y2))) = ϕ.

Since the input formula ϕ is represented as a QSMA-tree G = (z̄, T ), the
problem of satisfying ϕ becomes the problem of satisfying G. Therefore, we define
satisfaction of a QSMA-tree next. Slightly abusing the notation, we use |= also
for satisfaction of QSMA-trees.

Definition 3 (Satisfaction of a QSMA-tree). Given a QSMA-tree G = (z̄, T )
with r = root(T ), and an extension M of M0 to Rigid(r) = z̄, M |= G if there
exists an extension M′ of M to Var(r) such that (i) M′ |= r.F , and (ii) for all
children b of r, M′(b.p) = true iff M′ |= Gb.

The QSMA algorithm works by traversing the QSMA-tree G = (z̄, T ), and at
each node n in T it assigns the assignable variables in Var(n) = x̄�{p1, . . . , pk}.
This assignment corresponds to the extension M′ in Definition 3. Let b be a
child of n: the Boolean variable b.p labeling the arc from n to b is a proxy for
the quantified subformula b.ψ of the formula n.ψ. If M′(b.p) = true, the aim of
the algorithm is to show that b.ψ is true, and if M′(b.p) = false, the aim is to
show that b.ψ is false. Therefore Condition (ii) in Definition 3 says M′ |= Gb if
M′(b.p) = true and M′ �|= Gb if M′(b.p) = false. The next theorem shows that
satisfying a formula ϕ and satisfying the QSMA-tree for ϕ correspond.

Theorem 1. For all formulas ϕ with FV (ϕ) = z̄, for all models M extending
M0 to z̄, if G is the QSMA-tree for ϕ then M |= G iff M |= ϕ.

Checking whether M |= G by testing all possible extensions M′ would not do,
because for most theories (e.g., LRA) there is an infinite number of extensions.
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We need a way to weed out large parts of the space of candidate models. Let
�ϕ� denote the set of ϕ’s models. We introduce under-approximations and over-
approximations of ϕ in order to under-approximate and over-approximate �ϕ�.

Definition 4 (Under- and over-approximation). Let ϕ be a formula with
FV (ϕ) = z̄. Quantifier-free formulas U and O with FV (U) = FV (O) = z̄ are,
respectively, an under-approximation and an over-approximation of ϕ, if for all
extensions M of M0 to z̄, M |= U implies M |= ϕ and M |= ϕ implies M |= O.

It follows that �U� ⊆ �ϕ� ⊆ �O�. Let G = (z̄, T ) be the QSMA-tree for ϕ,
and U and O under- and over-approximations of ϕ, respectively. Then, M |= U
implies M |= ϕ which implies M |= G by Theorem 1. Thus, satisfying an
under-approximation is a sufficient condition to have a solution. On the other
hand, M |= ¬O implies M �|= ϕ which implies M �|= G by Theorem 1. By the
contrapositive, if M |= G then M �|= ¬O, that is, M |= O. Thus, satisfying
an over-approximation is a necessary condition to have a solution. In order to
construct such approximations, we assume to have a solver for theory T (and
model M0) offering:

– Model extension: A function SMA such that for all formulas ∃x̄.F [z̄, x̄], where
F [z̄, x̄] is quantifier-free, and all extensions M of M0 to z̄, SMA(F [z̄, x̄],M)
returns either an extension M′ of M to x̄ such that M′ |= F [z̄, x̄], or nil if
there is no such extension.

– Model-based under-approximation: A function MBU such that for all formulas
∃x̄.F [z̄, x̄], where F [z̄, x̄] is quantifier-free, and all extensions M of M0 to
z̄ such that M |= ∃x̄.F [z̄, x̄], MBU(F [z̄, x̄], x̄,M) returns a quantifier-free
formula U [z̄] such that M |= U [z̄] and T |= U [z̄] ⇒ (∃x̄.F [z̄, x̄]).

– Model-based over-approximation: A function MBO such that for all formulas
∃x̄.F [z̄, x̄], where F [z̄, x̄] is quantifier-free, and all extensions M of M0 to
z̄ such that M �|= ∃x̄.F [z̄, x̄], MBO(F [z̄, x̄], x̄,M) returns a quantifier-free
formula O[z̄] such that M �|= O[z̄] and T |= (∃x̄.F [z̄, x̄]) ⇒ O[z̄].

MBU and MBO produce, respectively, an under-approximation and an over-
approximation. Formula U [z̄] is true in model M and implies ∃x̄.F [z̄, x̄], and
hence can be seen as an interpolant between model and formula. It was called
model generalization [12,17], because U [z̄] may have other models in addition to
M. Formula O[z̄] follows from ∃x̄.F [z̄, x̄] and is false in M, and hence can be seen
as a reverse interpolant between formula and model, called model interpolant [17].

4 The QSMA Algorithm and Its Total Correctness

Let G = (z̄, T ) be the QSMA-tree for input formula ϕ with FV (ϕ) = z̄. Given a
model M extending M0 to z̄, the QSMA algorithm determines whether M |= G.
Suppose that U and O are under- and over-approximations of ϕ, respectively.
Picture �U�, �ϕ�, and �O� as bubbles. The �U� bubble is inside the �ϕ� bubble,
which is inside the �O� bubble. The idea of the algorithm is to zoom in on a
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model of ϕ, by progressively weakening U , so that the �U� bubble inflates, and
progressively strengthening O, so that the �O� bubble deflates. The algorithm
operates in this manner for all subformulas of ϕ: for all nodes n of T it maintains
under and over-approximations n.U and n.O of n.ψ, progressively weakening
n.U and strengthening n.O. The weakening of n.U is done by introducing a
disjunction with an MBU. The strengthening of n.O is done by introducing a
conjunction with an MBO. The goal is that M satisfies n.U ∨ ¬n.O. As soon as
M satisfies n.U , we know that M |= Gn. As soon as M satisfies ¬n.O, we know
that M �|= Gn.

Fig. 1. Pseudocode of the main function of the QSMA algorithm

The main function QSMA (Fig. 1) initializes n.U to ⊥ (under-approximation
of all formulas and identity for disjunction) and n.O to � (over-approximation
of all formulas and identity for conjunction) for all nodes n of T . Then QSMA
calls the function subtreeIsSolved (Fig. 2) with arguments root(T ) and M.

Function subtreeIsSolved takes a node n and a model M extending M0 to
Rigid(n) and determines whether M |= Gn. If M |= n.U it returns true; if M |=
¬n.O it returns false (lines 3–5 in Fig. 2). Otherwise (i.e., M |= ¬n.U ∧ n.O), it
enters a loop whose body contains the following steps:

1. Build a formula L as the conjunction of n.F and a formula for every child b
of n, denoted n → b (line 7 in Fig. 2). The shape of the formula for b is better
explained by considering a model of L and hence in the next step.

2. Invoke the SMA function to search for an extension M′ of M to Var(n) such
that M′ |= L (line 8). For all children b of n, b.p ∈ Var(n) and M′ assigns a
Boolean value to b.p. If M′(b.p) = true, the subformula for b in L reduces to
b.O, so that M′ |= L implies M′ |= b.O. Since QSMA seeks to satisfy b.ψ and
�b.ψ� ⊆ �b.O�, it starts at least from a model of b.O. If M′(b.p) = false, the
subformula for b in L reduces to ¬b.U , so that M′ |= L implies M′ |= ¬b.U .
Since QSMA seeks to falsify b.ψ and �b.U� ⊆ �b.ψ�, it starts at least from a
model of ¬b.U . The proof of partial correctness1 of subtreeIsSolved shows
that the existence of an M′ such that M′ |= L is necessary for M |= Gn.

1 See https://mariapaola.github.io/CDSATandQSMA.html for a copy of this paper
with the proofs inserted.

https://mariapaola.github.io/CDSATandQSMA.html
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Fig. 2. Pseudocode of the auxiliary functions of the QSMA algorithm

3. If SMA returns nil, then M �|= Gn; subtreeIsSolved updates n.O to its
conjunction with MBO(L,FV (L) \ Rigid(n),M) (line 10). Since M �|= L, by
MBO’s specification we know that M �|= MBO(L,FV (L)\Rigid(n),M). This
update ensures that M �|= n.O, so that M |= ¬n.O. Then subtreeIsSolved
returns false (line 11).

4. Otherwise, we have an extension M′ that satisfies L and hence n.F , so that
there is potential for M |= Gn. Function solutionForallChildren is invoked
to determine whether this is the case.

5. The function solutionForallChildren calls subtreeIsSolved for every
child b of n. As soon as it finds a child b such that M(b.p) = true and
the call subtreeIsSolved(b,M) returns false, or M(b.p) = false and the
call subtreeIsSolved(b,M) returns true, it returns false, because it found
a QSMA-subtree where candidate model M fails. If this does not happen,
solutionForallChildren returns true.

6. If solutionForallChildren returns true, subtreeIsSolved builds a formula
L′ as the conjunction of n.F and a formula for every child b of n (line 14). If
M′(b.p) = true, the subformula for b in L′ reduces to b.U . If M′(b.p) = false,
the subformula for b in L′ reduces to ¬b.O. The proof of partial correctness
of subtreeIsSolved shows that M′ |= L′ and that M′ |= L′ is a suffi-
cient condition for M |= Gn. Then subtreeIsSolved updates n.U to its
disjunction with MBU(L′,FV (L′) \ Rigid(n),M) (line 15). Since M′ |= L′,
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by MBU’s specification we know that M′ |= MBU(L′,FV (L′)\Rigid(n),M).
This update ensures that M′ |= n.U . Then subtreeIsSolved returns true
(line 16).

7. If solutionForallChildren returns false, the control returns to line 7. Sup-
pose that solutionForallChildren returned false, because it found a child
b of n such that M(b.p) = true and subtreeIsSolved(b,M) returned false.
Then the call subtreeIsSolved(b,M) updated the formula b.O (line 10). Sup-
pose that solutionForallChildren returned false, because it found a child
b of n such that M(b.p) = false and subtreeIsSolved(b,M) returned true.
Then the call subtreeIsSolved(b,M) updated the formula b.U (line 15).
Either way the state has changed, variable L gets a new formula on line 7,
and the subsequent call to SMA will not produce the same model.

Example 4. Apply subtreeIsSolved to the root of the QSMA-tree in Example 1.
Formula L gets p1 ∨ ¬p2. SMA produces an M′ that assigns values to x, p1, and
p2. Suppose that M′ satisfies p1 ∨ ¬p2 by assigning true to p1. In the recursive
call on b1, formula L gets ¬F1[x, y1]. If SMA produces an M′′ that extends M′

with an assignment to y1 such that M′′ |= ¬F1[x, y1], we have a model. Suppose
that M′ satisfies p1 ∨ ¬p2 by assigning false to p2. In the recursive call on b2,
formula L gets ¬F2[x, y2]. If SMA fails to produces an M′′ that extends M′ with
an assignment to y2 such that M′′ |= ¬F2[x, y2], we have a model.

Theorem 2. The function subtreeIsSolved is partially correct: if the precon-
ditions hold and the function halts, then the postconditions hold.

For termination, we begin with the MBU and MBO functions. Let T be LRA
with a theory extension LRA+ that adds constant symbols q̃ for all rational num-
bers q. Consider an MBU function such that MBU(F [z̄, x], x,M) = F [z̄, x]{x←q̃}
and M |= F [z̄, q̃]. This kind of MBU is called generalization-by-substitution [12].
While F [z̄, q̃] is an under-approximation of ∃x.F [z̄, x], this MBU is not a good
choice for termination. By applying MBU repeatedly with an infinite enumeration
of rational constants, the QSMA algorithm could build an infinite sequence of
under-approximations (

∨n
i=1 F [z̄, x]{x←q̃i})n∈N none of which is LRA-equivalent

to ∃x.F [z̄, x]. The next definition excludes such MBU functions, by requiring that
for a given formula and variable tuple (that depends on the formula), MBU can
generate only finitely many formulas.

Definition 5 (Finite basis). An MBU function has finite basis if the set
{MBU(F [z̄, x̄], x̄,M) | M : extension of M0 to z̄ such that M |= ∃x̄.F [z̄, x̄]}
is finite for all quantifier-free formulas F [z̄, x̄] and tuples x̄.

The notion of an MBO function having a finite basis is defined in the same
way with �|= in place of |=.
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Lemma 1. If MBU and MBO have finite basis, for all (possibly infinite) series
of calls {subtreeIsSolved(n,Mi)}i, all satisfying the preconditions and all ter-
minating, formulas n.U and n.O are updated only a finite number of times.

Once nontermination due to MBU or MBO is excluded even for an infinite
series of halting calls, termination is proved by induction on the QSMA-tree.

Theorem 3. If the MBU and MBO functions have finite basis, whenever the
preconditions are satisfied the function subtreeIsSolved halts.

Example 5. Apply subtreeIsSolved to the root of the QSMA-tree in Example 2.
Formula L gets p1 ∧ ¬p2. SMA produces an M′ that assigns values to x, p1, and
p2. Suppose that M′ assigns 1 to x, while it must assign true to p1 and false to
p2. In the recursive call on b1, formula L gets x � 2·y1. If SMA produces an M′′

that extends M′ with y1← 1
2 , we have a model of Gb1 . In the recursive call on

b2, formula L gets 3·x � 2·y2. If SMA produces an M′′ that extends M′ with
y2← 3

2 , we have a model of Gb2 , but because M′(p2) = false, there is no model
of G. Indeed, formula ϕ of Example 2 is false as the original formula is true.

5 The OptiQSMA Algorithm and Its Total Correctness

YicesQS implements an optimized variant of QSMA, called OptiQSMA, that
reduces the number of recursive calls to subtreeIsSolved by entrusting more
work to each call to SMA. Reconsider the behavior of QSMA in Example 4.
We can avoid a recursive call to subtreeIsSolved by asking SMA to satisfy
(p1 ∨ ¬p2) ∧ (p1 ⇒ ¬F1[x, y1]) in lieu of p1 ∨ ¬p2. This way, if the candidate
model returned by SMA assigns true to p1, it also assigns to x and y1 values
that satisfy ¬F1[x, y1]. This means that ∃y1.¬F1[x, y1] is found true without
recursion. On the other hand, if p2 is assigned false, the algorithm still has to
make the recursive call to see if it can satisfy ∃y2.¬F2[x, y2].

The idea of OptiQSMA is to do a look-ahead on a path in the QSMA-tree,
doing the work in one shot rather then through recursive calls on all the nodes
in the path. The look-ahead applies to a path such that the Boolean labels of
all the arcs in the path are assigned true by the candidate model. The following
definition builds a formula to allow the look-ahead.

Definition 6 (Look-ahead formula). Given a QSMA-tree G = (z̄, T ), for all
nodes n of T the look-ahead formula of n is LF (n) = n.F ∧

∧
n→b(b.p ⇒ LF (b)).

The next definition distinguishes the nodes that are handled together in one
shot without recursion and those where recursion is still needed. Nodes of the
first kind are called no alternation nodes, because such nodes are on a path as
described above, where all Boolean labels are assigned true and hence there is
no alternation between true and false. Nodes of the second kind are called first
alternation nodes, because they are the nodes reached by the first arc whose
Boolean label is assigned false.
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Fig. 3. Pseudocode of the main function of the OptiQSMA algorithm

Definition 7 (No alternation nodes and first alternation nodes). Given
a QSMA-tree G = (z̄, T ) for all nodes n of T and extensions M of M0 to
FV (LF (n)), the set NAN(n,M) of the no-alternation nodes from n according
to M (resp. the set FAN(n,M) of the first-alternation nodes from n according to
M) contains all and only the nodes b such that: (i) b is a descendant of n through
a path n → n1 → . . . → nq → b (q ≥ 0), (ii) ∀i, 1 ≤ i ≤ q, M(ni.p) = true, and
(iii) M(b.p) = true (resp. M(b.p) = false).

A node b ∈ FAN(n,M) such that q = 0 in Condition (i) of Definition 7
is a child of n: for a child there is no optimization. The OptiQSMA algorithm
seeks a candidate model M that satisfies LF (n) and recurses only on the nodes
in FAN(n,M). Therefore, the definition of satisfaction with look-ahead, denoted
|=la, follows the pattern of Definition 3, replacing r.F with LF (r) and Condi-
tion (ii) of Definition 3 with a condition for the nodes in the FAN set.

Definition 8 (Satisfaction with look-ahead). Given a QSMA-tree G =
(z̄, T ) with r = root(T ) and an extension M of M0 to Rigid(r) = z̄, M |=la G
if there exists an extension M′ of M to FV (LF (r)) such that (i) M′ |= LF (r)
and (ii) for all nodes b ∈ FAN(r,M′), M′ �|=la Gb.

Since for the nodes b ∈ FAN(r,M′) it is M′(b.p) = false, the |=la relation is
negated in Condition (ii). The next theorem shows that the optimization does
not change the problem.

Theorem 4. Given a QSMA-tree G = (z̄, T ) and an extension M of M0 to z̄,
M |= G if and only if M |=la G.

The OptiQSMA algorithm maintains under-approximations n.U of n.ψ for all
nodes n, but not over-approximations. Accordingly, the main function OptiQSMA
(Fig. 3) initializes only n.U for all nodes n, and then calls optiSubtreeIsSolved
(Fig. 4). This function returns SAT(U) if M |=la G and UNSAT(O) if M �|=la

G. The formula U is an under-approximation of r.ψ (r = root(T )) such that
M |= U . The formula O is an over-approximation of r.ψ such that M �|= O. The
main function OptiQSMA has no usage for U and O and merely returns true
or false accordingly. Function optisubtreeIsSolved builds and returns under-
approximations and over-approximations recursively. The reason for saving only
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Fig. 4. Pseudocode of the auxiliary functions of the optiQSMA algorithm

under-approximations is practical, and will become clear after the illustration of
optisubtreeIsSolved. This function takes a node n and a model M extending
M0 to Rigid(n) and determines whether M |=la Gn, by executing a loop whose
body contains the following steps:

1. Build a formula L (line 3 in Fig. 4) as the conjunction of the look-ahead
formula LF (n) (in lieu of n.F in line 7 of Fig. 2) and a formula for every
descendant b of n, denoted n →+ b (in lieu of child as in Fig. 2).

2. Invoke the SMA function to search for an extension M′ of M to Var(n)
such that M′ |= L. For those descendants b for which M′(b.p) = false, the
subformula for b in L reduces to ¬b.U as in Step 2 of the description of
subtreeIsSolved. For those descendants b for which M′(b.p) = true, the
subformula for b in L reduces to true, in agreement with the fact that over-
approximations are not kept.

3. If SMA returns nil, optiSubtreeIsSolved returns UNSAT(O), where O is
simply the outcome of applying MBO to L and M, as over-approximations
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are not kept. Otherwise, there is potential for satisfaction with look-ahead.
Function optiSubtreeIsSolved initializes the formula reasons to � and
invokes solutionForallDescendants passing reasons by reference.

4. Function solutionForallDescendants considers first all descendants b in
FAN(n,M), and calls optiSubtreeIsSolved(b,M) for each of them. If this
call returns SAT(U), it means that M |=la Gb; solutionForallDescendants
weakens b.U by disjunction with U and returns false.
If optiSubtreeIsSolved(b,M) returns UNSAT(O), it means that M �|=la Gb,
and we move on to the next descendant in FAN(n,M). Prior to that, reasons
is strengthened by conjunction with ¬b.p ⇒ ¬O. For all descendants b in
NAN(n,M), solutionForallDescendants strengthens reasons by conjunc-
tion with b.p.

5. If solutionForallDescendants returns true, optiSubtreeIsSolved builds
formula L′ as LF (n)∧reasons, and returns SAT(U), where U is the outcome
of the application of MBU to L′ and M. Otherwise, the control returns to
line 3. Since solutionForallDescendants returned false, it means that it
found a node b in FAN(n,M) for which optiSubtreeIsSolved(b,M) returned
SAT(U) and the formula b.U was updated (line 17). Therefore the state has
changed, variable L gets a new formula on line 3, and the subsequent call to
SMA will not produce the same model.

In the experiments it turned out that storing over-approximations for all
nodes is less efficient than using them to compute L′ and then forget them.
Thus, the over-approximation O encapsulated in the UNSAT(O) value returned
by a recursive call to optiSubtreeIsSolved is used to build the temporary
formula reasons, but it is not saved, and reasons is used to compute L′.

Theorem 5. The function optiSubtreeIsSolved is partially correct: if the pre-
conditions hold and the function halts, then the postconditions hold.

The proof of partial correctness of optiSubtreeIsSolved shows that every
model that satisfies L′ = (LF (n) ∧ reasons) fulfills Definition 8. In this sense,
reasons is an explanation of why a model is found with look-ahead.

Theorem 6. If the MBU and MBO functions have finite basis, whenever the
preconditions are satisfied the function optiSubtreeIsSolved halts.

6 The YicesQS Solver and Experimental Results

The OptiQSMA algorithm is implemented in YicesQS to equip Yices 2 with sup-
port for quantifiers for complete theories (unrelated to Yices 2 support for quan-
tifiers in UF).2 MBO is available as model interpolation from Yices’s MCSAT [10]
solver for quantifier-free formulas, including theory-specific techniques for bitvec-
tors (BV) [15] and arithmetic. The latter are based on NLSAT [16] and ulti-
mately on Cylindrical Algebraic Decomposition (CAD). Basic MBU is done

2 See https://github.com/disteph/yicesQS and https://yices.csl.sri.com/.

https://github.com/disteph/yicesQS
https://yices.csl.sri.com/
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Fig. 5. Plot for BV.

as generalization-by-substitution [12] and improved with model-based projection
(e.g., [18]) for arithmetic, and invertibility conditions [21], including ε-terms, for
BV. In YicesQS model-based projection also is based on CAD.

In the 2022 SMT competition, YicesQS entered the single-query, non-incre-
mental tracks of BV, LRA, LIA, NRA, and NIA (nonlinear integer arithmetic). The
experiments were run on the Starexec cluster with a 20min timeout per bench-
mark and 60GB of memory. The benchmarks were a subset of the SMT-LIB
collection. The results presented below were computed by running the compe-
tition script join.sh on the raw data from StarExec,3 sorting the data, and
producing the plots that are available online.4 A description of the participating
solvers can be found on the competition website.5

Figure 5 shows the results for BV, where YicesQS solved quickly a high num-
ber of benchmarks (compared for example with CVC5), but was not outstanding,
possibly because YicesQS 2022 makes a limited use of invertibility conditions
for model interpolation. Figure 6 shows the results for the four arithmetics. The
columns on the left list number of solved instances and time to solve them for
each logic and solver. In the plot on the right, each color corresponds to a solver
and point (x, y) of that color means that the xth fastest-solved benchmark was
solved by that solver in time y (log scale). 2021 Z3 is included because in some of
these logics it performed slightly better than 2022 Z3. The logic where YicesQS
performed best is LRA: it was the only solver to solve all 1,003 benchmarks. Z3
2021 was second best, solving 948 benchmarks with a total runtime about 100
times higher. YicesQS has neither a special treatment (e.g., simplex-based) of lin-
ear problems, nor integer-specific techniques: it relies on CAD-based techniques
for MBU and MBO also for integer problems. Thus, it is somewhat average
on LIA and NIA. These two theories are undecidable (NRA due to division by
0) and hence they lie outside of the theoretical framework of QSMA. YicesQS

3 https://github.com/SMT-COMP/smt-comp/tree/master/2022/results.
4 http://www.csl.sri.com/users/sgl/Work/Cade2023-data/index.html.
5 https://smt-comp.github.io/2022/participants.html.

https://github.com/SMT-COMP/smt-comp/tree/master/2022/results
http://www.csl.sri.com/users/sgl/Work/Cade2023-data/index.html
https://smt-comp.github.io/2022/participants.html
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Fig. 6. Plots for the four arithmetics.

answers should still be correct, but termination can be lost. With Z3 being a
non-competing participant in the SMT 2022 competition, YicesQS came second
for Largest Contribution (single queries), because of its overall performance in
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the four arithmetics, where it also came first for satisfiable instances and in the
24 sec timeout setup (instead of 20min).

7 Discussion: Related Work and Future Work

Quantified SMT was approached by a procedure with an ∃-solver and a ∀-solver
for prenex normal form formulas with ∃∀ prefix [12]. A formulation as a game
between an ∃-player and a ∀-player appeared with the QSAT algorithm [3] for
prenex normal form formulas with (∃∀)+ prefix. QSMA accepts arbitrary formu-
las with quantifiers in arbitrary positions.

Both QSAT and QSMA work for a generic theory T over basic T -specific com-
ponents. QSAT uses model-based projection [3,18] and a solver for quantifier-free
satisfiability that supports UNSAT cores. Model-based projection is an instance
of MBU. An UNSAT core (as a conjunction) is an MBO in the special case
where the input assignment is Boolean. While MBO can produce UNSAT cores,
MBO generalizes the concept of UNSAT core with theory-specific reasoning when
there are non-Boolean input assignments, as it is the case in QSMA. It is unclear
whether the combination of UNSAT cores and theory-specific MBU can emulate
MBO or provide the same benefits. QSAT is implemented in Z3 and it is the
default solver for LIA, LRA, and NRA.

YicesQS is a recent implementation that only participated in the SMT com-
petition in 2021 and 2022. Directions for further development include augmenting
integer reasoning, and improving model interpolation in BV by a better usage of
invertibility conditions. Another lead for future work is to compose QSMA within
the CDSAT framework for conflict-driven reasoning in unions of theories [4–6].
For this, one may need to drop the assumption that there is a unique model
M0 and only its extensions need to be considered, which will be a generalization
also in the single theory case. As most known MBU and MBO functions are for
single theories, one may have to study how to get MBU and MBO functions
for a union of theories from such functions for the component theories. Another
issue is the interplay between QSMA’s recursive descent over the QSMA-tree for
the formula and CDSAT’s conflict-driven search.
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