
Theorem Proving in Dependently-Typed
Higher-Order Logic

Colin Rothgang1(B) , Florian Rabe2 , and Christoph Benzmüller1,3

1 Mathematics and Computer Science, FU, Berlin, Germany
colin.rothgang@gmx.de

2 Computer Science, University Erlangen-Nürnberg, Erlangen, Germany
3 AI Systems Engineering, University Bamberg, Bamberg, Germany

Abstract. Higher-order logic HOL offers a very simple syntax and semantics
for representing and reasoning about typed data structures. But its type system
lacks advanced features where types may depend on terms. Dependent type the-
ory offers such a rich type system, but has rather substantial conceptual differ-
ences to HOL, as well as comparatively poor proof automation support.

We introduce a dependently-typed extension DHOL of HOL that retains the
style and conceptual framework of HOL. Moreover, we build a translation from
DHOL to HOL and implement it as a preprocessor to a HOL theorem prover,
thereby obtaining a theorem prover for DHOL.

1 Introduction and Related Work

Theorem proving in higher-order logic (HOL) [5,11] has been a long-running research
strand producing multiple mature interactive provers [10,13,17] and automated provers
[2,4,23]. Similarly, many, mostly interactive, theorem provers are available for various
versions of dependent type theory (DTT) [7,9,15,18]. However, it is (maybe surpris-
ingly) difficult to develop theorem provers for dependently-typed higher-order logic
(DHOL).

In this paper, we use HOL to refer to a version of Church’s simply-typed λ -calculus
with a base type bool for Booleans, simple function types →, and equality =A: A →
A→ bool. This already suffices to define the usual logical quantifiers and connectives.1

Intuitively, it is straightforward to develop DHOL accordingly on top of the depen-
dently-typed λ -calculus, which uses a dependent function type Πx :A. B instead of →.
However, several subtleties arise that seem deceptively minor at first but end up present-
ing fundamental theoretical issues. They come up already in the elementary expression
x=A y ⇒ f (x) =B(x) f (y) for some dependent function f : Πx :A. B(x).

Firstly, the equality f (x) =B(x) f (y) is not even well-typed because the terms f (x) :
B(x) and f (y) : B(y) do not have the same type. Intuitively, it is obvious that the type
system can (and maybe should) be adjusted so that the equality x =A y between terms

1 We do not assume a choice operator or the axiom of infinity.

c© The Author(s) 2023
B. Pientka and C. Tinelli (Eds.): CADE 2023, LNAI 14132, pp. 438–455, 2023.
https://doi.org/10.1007/978-3-031-38499-8_25

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-38499-8_25&domain=pdf
http://orcid.org/0000-0001-9751-8989
http://orcid.org/0000-0003-3040-3655
http://orcid.org/0000-0002-3392-3093
https://doi.org/10.1007/978-3-031-38499-8_25

Theorem Proving in Dependently-Typed Higher-Order Logic 439

carries over to an equality B(x) ≡ B(y) between types.2 However, this means that the
undecidability of equality leaks into the equality of types and thus into type-checking.

While some interactive provers successfully use undecidable type systems [6,16], most
formal systems for DTT commit to keeping type-checking decidable. The typical app-
roach goes back to Martin-Löf type theory [14] and the calculus of constructions [8]
and uses two separate equality relations, a decidable meta-level equality for use in the
type-checker and a stronger undecidable one subject to theorem proving. Moreover,
it favors the propositions-as-types representation and deemphasizes or omits a type of
classical Booleans. This approach has been studied extensively [7,9,15] and is not the
subject of this paper.

Instead, our motivation is to retain a single equality relation and classical Booleans.
This is arguably more intuitive to users, especially to those outside the DTT community
such as typical HOL users or mathematicians, and it is certainly much closer to the
logics of the strongest available ATP systems. This means we have to pay the price of
undecidable type-checking. The current paper was prompted by the observation that
this price may be acceptable for two reasons:

1. If our ultimate interest is theorem proving, undecidability comes up anyway.
Indeed, it is plausible that the cost of showing the well-typedness of a conjecture
will be negligible compared to the cost of proving it.

2. As the strength of ATPs for HOL increases, the practical drawbacks of undecidable
type-checking decrease, which indicates revisiting the trade-off from time to time.
Indeed, if we position DHOL close to an existing HOL ATP, it is plausible that the
price will, in practice, be affordable.

Secondly, even if we add a rule like “if � x =A y, then � B(x) ≡ B(y)” to our type
system, the above expression is still not well-typed: Above, the equality x =A y on the
left of ⇒ is needed to show the well-typedness of the equality f (x) =B(x) f (y) on the
right. This intertwines theorem proving and type-checking even further. Concretely,
we need a dependent implication, where the first argument is assumed to hold while
checking the well-typedness of the second one. Formally, this means that to show �
F ⇒ G : bool, we require � F : bool and F � G : bool. Similarly, we need a dependent
conjunction. And if we are classical, we may also opt to add a dependent disjunction
F∨G, where ¬F is assumed in G. Naturally, dependent conjunction and disjunction are
not commutative anymore. This may feel disruptive, but similar behavior of connectives
is well-known from short-circuit evaluation in programming languages.

The meta-logical properties of dependent connectives are straightforward. However,
interestingly, these connectives can no longer be defined from just equality. At least one
of them (we will choose dependent implication) must be taken as an additional primitive
in DHOL along with =A.

Finally, the above generalizations require a notion of DHOL-contexts that is more com-
plex than for HOL. HOL-contexts can be stratified into (a) a set of variable declarations

2 Note that while term equality =A is a bool-valued connective, type equality ≡ is not. Instead,
in HOL, ≡ is a judgment at the same level as the typing judgment t : A.

440 C. Rothgang et al.

xi : Ai, and (b) a set of logical assumptions F possibly using the variables xi. Moreover,
the former are often not explicitly listed at all and instead inferred from the remainder of
the sequent. But in DHOL, the well-formedness of an Ai may now depend on previous
logical assumptions. To linearize this inter-dependency, DHOL contexts must consist
of a single list alternating between variable declarations and assumptions.

Contribution. Our contribution is twofold. Firstly, we introduce a new logic DHOL
designed along the lines described above. Moreover, we further extend DHOL with
predicate subtypes A|p for a predicate p : A → bool on the type A. Besides dependent
types, these constitute a second important source of terms occurring in types. Because
they also make typing undecidable, they are often avoided. The most prominent excep-
tion is PVS [16], whose kernel essentially arises by adding predicate subtypes to HOL.
In current HOL ITPs going back to [10], their use is usually restricted to the subtype
definition principle: here a definition b := A|p may occur on toplevel and is elaborated
into a fresh type b that is axiomatized to mimic the subtype A|p . Because we are com-
mitted to undecidable typing anyway, predicate subtypes fit naturally into our approach.

Secondly, we develop and implement a sound and complete translation of DHOL into
HOL. This setup allows the use of DHOL as the expressive user-facing language and
HOL as the internal theorem-proving language. We position our implementation close
to an existing HOL ATP, namely the LEO-III system. From the LEO-III perspective,
DHOL serves as an additional input language that is translated into HOL by an external
logic embedding tool [21,22] in the LEO-III ecosystem. Because LEO-III already sup-
ports such embeddings and because the TPTP syntax [24] foresees the use of dependent
types in ATPs and provides syntax for them (albeit without a normative semantics), we
were able to implement the translation with no disruptions to existing workflows.

The general idea of our translation of dependent into simple type theory is not new [3].
In that work, Martin-Löf-style dependent type theory is translated into Gordon’s HOL
ITP [10]. This work differs critically from ours because it uses DTT in propositions-
as-types style. Our work builds DHOL with classical Booleans and equality predicate,
which makes the task of proving the translation sound and complete very different.
Moreover, their work targets an interactive prover while ours targets automated ones.

Overview. In Sect. 2 we recap the HOL logic. In Sect. 3 we extend it to DHOL and
define our translation from DHOL to HOL. In Sect. 4 we add subtyping and predicate
subtypes. In Sect. 5 we prove the soundness and completeness of the translation. In
Sect. 6 we describe how to use our translation and a HOL ATP to implement a theorem
prover for DHOL.

2 Preliminaries: Higher-Order Logic

We introduce the syntax and rules of HOL. Our definitions are standard except that we
tweak a few details in order to later present the extension to DHOL more succinctly.
We use the following grammar for HOL:

Theorem Proving in Dependently-Typed Higher-Order Logic 441

T ::= ◦ | T, a : tp | T, c : A | T, c : F theories
Γ ::= . | Γ,x : A | Γ,x : F contexts
A,B ::= a | A → B | bool types
s, t, f ,F,G ::= c | x | λx :A. t | f t | s =A t | F ⇒ G terms

A theory T is a list of base type declarations a : tp, typed constant declarations c : A,
and named axioms c : F asserting the formula F . A context Γ has the same form except
that no type variables are allowed. It is not strictly necessary to use named axioms and
assumptions, but it makes our extensions to DHOL later on simpler. We write ◦ and .
for the empty theory and context, respectively. At this point, it is possible to normalize
contexts into a set of variable declarations followed by a set of assumptions because
the well-formedness of a type A can never depend on a variable or an assumption. But
that property will change when going to DHOL, which is why we allow Γ to alternate
between variables and assumptions.

Types A are either user-declared types a, the built-in base type bool, or function types
A→ B. Terms are constants c, variables x, λ -abstractions λx :A. t, function applications
f t, or obtained from the built-in bool-valued connectives =A or ⇒. As usual [1], this
suffices to define all the usual quantifiers and connectives true, false, ¬, ∧, ∨, ∀ and ∃.
This includes ⇒, but we make it a primitive here because we will change it in DHOL.
As usual, E[x/t] denotes the capture-avoiding substitution of the variable x with the term
t within expression E.

The type and proof system uses the judgments given below. Note that we need a meta-
level judgment for the equality of types because ≡ is not a bool-valued connective. On
the contrary, the equality of terms � s =A t is a special case of the validity judgment
� F . In HOL, ≡ is trivial, and the judgment is redundant. But we include it here already
because it will become non-trivial in DHOL.

Name Judgment Intuition

theories � T Thy T is well-formed theory

contexts �T Γ Ctx Γ is well-formed context

types Γ �T A tp A is well-formed type

typing Γ �T t : A t is a well-formed term of type well-formed type A

validity Γ �T F well-formed Boolean F is provable

equality of types Γ �T A ≡ B well-formed types A and B are equal

The rules are given in Fig. 1. We assume that all names in a theory or a context are
unique without making that explicit in the rules. Following common practice, we further
assume that HOL types are non-empty.

442 C. Rothgang et al.

Fig. 1. HOL Rules

Theorem Proving in Dependently-Typed Higher-Order Logic 443

3 Dependent Function Types

3.1 Language

We have carefully defined HOL in such a way that only a few surgical changes are
needed to define DHOL. A consolidated summary of DHOL is given in Appendix A.2
in the extended preprint [20]. The grammar is as follows with unchanged parts shaded
out:

T ::= ◦ | T, a :(Πx :A.)∗tp | T, c : A | T, c : F theories
Γ ::= . | Γ,x : A | Γ,ass : F contexts
A,B ::= a t1 . . . tn | Πx :A. B | bool types
s, t, f ,F,G ::= c | x | λx :A. t | f t | s =A t | F ⇒ G terms

Concretely, base types a may now take term arguments and simple function types
A → B are replaced with dependent function types Πx :A. B. As usual we will retain
the notation A → B for the latter if x does not occur free in B. DHOL is a conservative
extension of HOL, and we recover HOL as the fragment of DHOL in which all base
types a have arity 0.

Example 1 (Category Theory). As a running example, we formalize the theory of a
category in DHOL. It declares the base type ob j for objects and the dependent base
type mor a b for morphisms. Further it declares the constants id and comp for identity
and composition, and the axioms for neutrality. We omit the associativity axiom for
brevity.

obj :tp

mor :Πx,y :obj. tp

id :Πa :obj. mor a a

comp :Πa,b,c :obj. mor a b → mor b c → mor a c

neutL :∀x,y : obj.∀m : mor x y. m◦idx =mor x y m

neutR :∀x,y : obj. ∀m : mor x y. idy ◦m =mor x y m

Here we use a few intuitive notational simplifications such as writing Πx,y :obj. for
binding two variables of the same type. We also use the notations idx for id x and h◦g
for comp _ _ _ g h where the _ denote inferable arguments of type obj.

The judgments stay the same and we only make minor changes to the rules, which we
explain in the sequel. Firstly we replace all rules for → with the ones for Π:

Γ �T A tp Γ, x : A�T B tp

Γ �TΠx :A. B tp

Γ �T A ≡ A′ Γ,x : A�T B ≡ B′

Γ �TΠx :A. B≡Πx :A′. B′

Γ, x : A �T t : B

Γ �T (λx :A. t) :Πx :A. B

Γ �T f :Πx :A. B Γ �T t : A

Γ �T f t :B[x/t]

Γ �T A ≡ A′ Γ, x : A �T t =B t ′

Γ �T λx :A. t =Πx:A. B λx :A′. t ′
Γ �T t =A t ′ Γ �T f =Πx:A. B f ′

Γ �T f t =B f ′ t ′

444 C. Rothgang et al.

Γ �T t :Πx :A. B

Γ �T t =Πx:A. B λx :A. t x

Then we replace the rules for declaring, using, and equating base types with the ones
where base types are applied to arguments:

�T x1 : A1, . . . ,xn : An Ctx

�T , a :Πx1 :A1. . . .Πxn :An. tp Thy

�T Γ Ctx a :Πx1 :A1. . . .Πxn :An. tp in T
Γ �T t1 : A1 . . . Γ �T tn : An[x1/t1] . . . [xn−1/tn−1]

Γ �T a t1 . . . tn tp

�T Γ Ctx a :Πx1 :A1. . . .Πxn :An. tp in T
Γ �T s1 =A1 t1 . . . Γ �T sn =An[x1/t1]...[xi−1/ti−1] tn

Γ �T a s1 . . . sn≡a t1 . . .tn

The last of these is the critical rule via which term equality leaks into type equality.
Thus, typing of expressions may now depend on equality assumptions and thus typing
becomes undecidable.

Example 2 (Undecidability of Typing). Continuing Example 1, consider terms � f :
mor u v and � g : mor v′ w for terms � u,v,v′,w : obj. Then � g◦ f : mor u w holds iff
� f : mor u v′, which holds iff � v =obj v′. Depending on the axioms present, this may
be arbitrarily difficult to prove.

Finally, we modify the rule for the non-emptiness of types: we allow the existence of
empty dependent types and only require that for each HOL type in the image of the
translation there exists one non-empty DHOL type translated to it (rather than requiring
all dependent types translated to it to be non-empty). And we replace the typing rule for
implication with the dependent one. The proof rules for implications are unchanged.

Γ �T F : bool Γ, x : F�T G : bool

Γ �T F ⇒ G : bool

Example 3 (Dependent Implication). Continuing Example 1, consider the formula

x : obj, y : obj � x =obj y ⇒ idx =mor x x idy : bool

which expresses that equal objects have equal identity morphisms. It is easy to prove.
But it is only well-typed because the typing rule for dependent implication allows using
x =obj y while type-checking idx =mor x x idy : bool, which requires deriving idy :
mor x x and thus mor y y ≡ mor x x.

Theorem Proving in Dependently-Typed Higher-Order Logic 445

All the usual connectives and quantifiers can be defined in any of the usual ways now.
However, the details matter for the dependent versions of the connectives. In particular,
we choose F∧G :=¬(F ⇒ ¬G) and F∨G :=¬F ⇒G in order to obtain the dependent
versions of conjunction and disjunction, in which the well-formedness of G may depend
on the truth or falsity of F , respectively.

3.2 Translation

We define a translation function X → X that maps any DHOL-syntax X to HOL-syntax.
Its intuition is to erase type dependencies by translating all types at1 . . . , tn to a and
replacing every Π with →. To recover the information of the erased dependencies, we
additionally define a partial equivalence relation (PER) A∗ on A for every DHOL-type
A.

In general, a PER r on typeU is a symmetric and transitive relation onU . This is equiv-
alent to r being an equivalence relation on a subtype ofU . The intuitive meaning of our
translation is that the DHOL-type A corresponds in HOL to the quotient of the appro-
priate subtype of A by the equivalence A∗. In particular, the predicate A∗ t t captures
whether t represents a term of type A. More formally, the correspondence is:

DHOL HOL

type A type A and PER A∗ : A → A → bool

term t : A term t : A satisfying A∗ t t

Definition 1 (Translation). We translate DHOL-syntax by induction on the grammar.
Theories and contexts are translated declaration-wise:

◦ := ◦ T, D := T , D . := . T, D := T , D

where D is a list of declarations.

The translation a : Πx1 :A1. . . .Πxn :An. tp of a base type declaration is given by

a : tp, a∗ : A1 → . . . → An → a → a → bool

aPER : ∀x1 :A1. . . .∀xn :An. ∀u,v :a. a∗ x1 . . . xn u v ⇒ u =a v

Thus, a is translated to a base type of the same name without arguments and a trivial
PER for every argument tuple. Intuitively, a∗ t1 . . . tn u u defines the subtype of the
HOL-type a corresponding to the DHOL-type a t1 . . . tn.

Constant and variable declarations are translated by adding the assumptions that they
are in the PER of their type, and axioms and assumptions are translated straightfor-
wardly:

c : A := c : A, c∗ : A∗ c c x : A := x : A, x∗ : A∗ x x

446 C. Rothgang et al.

c : F := c : F x : F := x : F

The cases of A and A∗ for types A are:

a t1 . . . tn := a (a t1 . . . tn)
∗ s t := a∗ t1 . . . tn s t

Πx :A. B := A → B (Πx :A. B)∗ f g := ∀x,y :A. A∗ x y ⇒ B∗ (f x) (g y)

bool := bool bool∗ s t := s =bool t

Finally, the cases for terms are straightforward except for, crucially, translating equality
to the respective PER:

c := c x := x λx :A. t := λx :A. t f t := f t

F ⇒ G := F ⇒ G s =A t := A∗ s t

Example 4 (Translating Derived Connectives). If we define true, false, ¬ as usual in
HOL and use the definition for dependent conjunction from above, it is straightforward
to show that all DHOL-connectives are translated to their HOL-counterparts. For exam-
ple, we have (up to logical equivalence in HOL) that F ∧G= F ∧G.

We also define the quantifiers in the usual way, e.g., using ∀x : A.F(x) := λx :
A. F(x) =A→bool λx :A. true. Then applying our translation yields

∀x : A.F(x) = (A → bool)∗ λx : A.F(x) λx : A.true

= ∀x,y : A.A∗ x y ⇒ bool∗ F(x) true

This looks clunky, but (because A∗ is a PER as shown in Theorem 1) is equivalent to
∀x : A.A∗ x x ⇒ F(x). Thus, DHOL-∀ is translated to HOL-∀ relativized using A∗ x x.
The corresponding rule ∃x : A.F(x) = ∃x : A.A∗ x x∧F(x) can be shown accordingly.

Example 5 (Categories in HOL). We give a fragment of the translation of Example 1:

obj : tp obj∗ : obj → obj → bool
mor : tp mor∗ : obj → obj → mor → mor → bool
id : obj → mor id∗ : ∀x,y : obj.obj∗ x y ⇒ mor∗ x x (id x) (id y)
comp : obj → obj → obj → mor → mor → mor
neutL : ∀x : obj.obj∗ x x ⇒ ∀y : obj.obj∗ y y ⇒

∀m : mor.mor∗ x y m m ⇒ mor∗ x y (comp x x y (id x) m) m

Here, for brevity, we have omitted objPER, morPER, and comp∗ and have already used
the translation rule for ∀ from Example 4. The result is structurally close to what a
native formalization of categories in HOL would look like, but somewhat clunkier.

Theorem Proving in Dependently-Typed Higher-Order Logic 447

Fig. 2. Additional Rules for Predicate Subtypes

4 Predicate Subtypes

To add predicate subtypes, we extend the grammar with the production A ::= A|F .
No new productions for terms are needed because the inhabitants of A|F use the same
syntax as those of A.

Example 6 (Isomorphisms). We continue Example 1 and use predicate subtypes to
write the type isomorphisms u of automorphisms on u as a subtype of mor u u. We
can define isomorphisms u := (mor u u)|p where the predicate p is given by

λm : mor u u.∃i : mor u u. (i◦m =mor u u idu)∧ (m◦ i =mor u u idu)

Adding subtyping requires a few extensions to our type system. First we add a judg-
ment Γ �T A <: B and replace the lookup rules for variables and constants with their
subtyping-aware variants:

c : A′ in T Γ �T A′ <: A

Γ �T c : A

x : A′ in Γ Γ �T A′ <: A

Γ �T x : A

448 C. Rothgang et al.

Then we add the rules given in Fig. 2. These induce an algorithm for deciding sub-
typing relative to an oracle for the undecidable validity judgment. The latter enters the
algorithm when two predicate subtypes are compared. Note that the type-equality rule
for A|p |q uses a dependent conjunction.

The resulting system is a conservative extension of the variants of HOL and DHOL
without subtyping: we recover these systems as the fragments that do not use A|p . In
particular, in that case A <: B is trivial and holds iff A ≡ B holds.

Finally, we extend our translation by adding the cases for predicate subtypes:

Definition 2 (Translation). We extend Definition 1 with

A|p := A (A|p)∗ s t := A∗ s t ∧ p s∧ p t

5 Soundness and Completeness

Now we establish that our translation is faithful, i.e. sound and complete. We will use
the terms sound and complete from the perspective of using a HOL-ATP for theorem
proving in DHOL, e.g., sound means if F is a HOL-theorem, then F is a DHOL-
theorem, and complete is the dual.3

The completeness theorem states that our translation preserves all DHOL-judgments.
Moreover, the theorem statement clarifies the intuition behind the translations invari-
ants:

Theorem 1 (Completeness). We have

if in DHOL then in HOL
� T Thy � T Thy
�T Γ Ctx �T Γ Ctx

Γ �T A tp Γ �T A tp and Γ �T A∗ : A → A → bool and A∗ is PER
Γ �T A ≡ B Γ �T A ≡ B and Γ, x,y : A �T A∗ x y =bool B∗ x y
Γ �T A <: B Γ �T A ≡ B and Γ, x,y : A �T A∗ x y ⇒ B∗ x y
Γ �T t : A Γ �T t : A and Γ �T A∗ t t
Γ �T F Γ �T F

Additionally the substitution lemma holds, i.e.,

Γ, x : A �T t : B and Γ � u : A implies Γ �T t[x/u] =B t[x/u]

Proof. The proof proceeds by induction and can be found in Appendix B of the
extended preprint [20].

3 If, however, we think of our translation as an interpretation function that maps syntax to seman-
tics, we could also justify swapping the names of the theorems.

Theorem Proving in Dependently-Typed Higher-Order Logic 449

The reverse direction is much trickier. To understand why, we look at two canaries in
the coal mine that we have used to reject multiple intuitive but untrue conjectures:

Example 7 (Non-Injectivity of the Translation). Continuing Example 1, assume terms
u,v : obj and consider the identify functions Iu := λ f : mor u u. f and Iv := λ f :
mor v v. f . Both are translated to the same HOL-term Iu = Iv = λ f : mor. f (because
Iu and Iv only differ in the type indices, which are erased by our translation).

Consequently, the ill-typed DHOL-Boolean b := Iu =mor u u→mor u u Iv is translated to
the HOL-Boolean λ f : mor. f =mor→mor λ f : mor. f , which is not only well-typed but
even a theorem.

To better understand the underlying issue we introduce the notion of spurious terms.
The well-typed translation t of a DHOL-term t is called spurious if t is ill-typed (other-
wise it is called proper). Intuitively, we should be able to use the PERs A∗ to deal with
spurious terms: to type-check t : A in DHOL, we want to use A∗ t t in HOL. But even
that is tricky:

Example 8 (Trivial PERs for Built-In Base Types). Consider the property bool∗ x x. Our
translation guarantees bool∗ true true and bool∗ false false. Thus, we can use Boolean
extensionality to prove in HOL that ∀x : bool.bool∗ x x, making the property trivial. In
particular, we can prove bool∗ b b for the spurious Boolean b from Example 7. Even
worse, the property (Πx :A. B)∗ x x is trivial in this way whenever it is for B and thus
for all n-ary bool-valued function types.

More generally, this degeneration effect occurs for every base type that is built into both
DHOL and HOL and that is translated to itself. bool is the simplest example of that kind,
and the only one in the setting described here. But reasonable language extensions like
built-in base types a for numbers, strings, etc. would suffer from the same issue. This
is because all of these types would come with built-in induction principles that derive a
universal property from its ground instances, at which point a∗ x x becomes trivial.

Note, however, that the degeneration effect does not occur for user-declared base types.
For example, consider a theory that declares a base type N for the natural numbers and
an induction axiom for it. N would not be translated to itself but to a fresh HOL-type in
whose induction axiom the quantifier ∀ is relativized by N∗ x x. Consequently, N∗ x x is
not trivial and can be used to reject spurious terms.

These examples show that we cannot expect the reverse directions of the statements
in Theorem 1 to hold in general. However, we can show the following property that is
sufficient to make our translation well-behaved:

Theorem 2 (Soundness). Assume a well-formed DHOL-theory � T Thy.

If Γ �T F : bool and Γ �T F , then Γ �T F

In particular, if Γ �T s : A and Γ �T t : A and Γ �T A∗ s t, then Γ � s =A t.

450 C. Rothgang et al.

Proof. The key idea is to transform a HOL-proof of F into one that is in the image of
the translation, at which point we can read off a DHOL-proof of F . The full proof is
given in Appendix B of the extended preprint [20].

Intuitively, the reverse directions of Theorem 1 holds once we establish that all involved
expressions are well-typed in DHOL. Thus, we can use a HOL-ATP to prove DHOL-
conjectures if we validate independently that the conjecture is well-typed all along. In
the remainder of the section, we develop the necessary type-checking algorithm for
DHOL.

Type-Checking. Inspecting the rules of DHOL, we observe that all DHOL-judgments
would be decidable if we had an oracle for the validity judgment Γ �T F . Indeed, our
DHOL-rules are already written in a way that essentially allows reading off a bidirec-
tional type-checking algorithm. It only remains to split the typing judgment Γ �T t : A
into two algorithms for type-inference (which computes A from t) and type-checking
(which takes t and A and returns yes or no) and to aggregate the rules for subtyping into
an appropriate pattern-match.

The construction is routine, and we have implemented the resulting algorithm in our
MMT/LF logical framework [12,19].4 The oracle for the validity judgment is provided
by our translation and a theorem prover for HOL (see Sect. 6). It remains to show that
whenever the algorithm calls the oracle for Γ �T F , we do in fact have that Γ �T F : bool
so that Theorem 2 is applicable. Formally, we show the following:

Theorem 3. Relative to an oracle for Γ �T F, consider a derivation of some DHOL-
judgment, in which the children of each node are ordered according to the left-to-right
order of the assumptions in the statement of the applied rule.

If the oracle calls are made in depth-first order, then each such call satisfies Γ �T F :
bool.

Proof. We actually prove, by induction on derivations, the more general statement
requires that each rule preserves the following preconditions:

Judgment Precondition

�T Γ Ctx � T Thy

Γ �T A tp �T Γ Ctx

Γ �T t : A Γ �T A tp (post-condition when used as type-inference)

Γ �T F Γ �T F : bool

Γ �T A ≡ B or Γ �T A <: B Γ �T A tp and Γ �T B tp

4 The formalization of DHOL in MMT is available at https://gl.mathhub.info/MMT/LATIN2/-/
blob/devel/source/logic/hol_like/dhol.mmt. The example theories given throughout this paper
and a few example conjectures are available at https://gl.mathhub.info/MMT/LATIN2/-/blob/
devel/source/casestudies/2023-cade.

https://gl.mathhub.info/MMT/LATIN2/-/blob/devel/source/logic/hol_like/dhol.mmt
https://gl.mathhub.info/MMT/LATIN2/-/blob/devel/source/logic/hol_like/dhol.mmt
https://gl.mathhub.info/MMT/LATIN2/-/blob/devel/source/casestudies/2023-cade
https://gl.mathhub.info/MMT/LATIN2/-/blob/devel/source/casestudies/2023-cade

Theorem Proving in Dependently-Typed Higher-Order Logic 451

Note that rules whose conclusion is a validity judgment can be ignored because they
are replaced by the oracle anyway.

The most interesting case is the rule for Γ �T a s1 . . . sn ≡ a t1 . . . tn. Here, the left-to-
right order of assumptions is critical because Γ �T s1 =A1 t1 may be needed to show,
e.g., Γ �T s2 =A2[x1/t1] t2 : bool.

6 Theorem Prover Implementation

We have integrated our translation as a preprocessor to the HOL ATP LEO-III [23].
We chose this ATP because its existing preprocessor infrastructure already includes a
powerful logic embedding tool [21,22].However, with a little more effort, other HOL
ATPs work as well.

Furthermore, we developed a bridge between the MMT logical framework [19] and
LEO-III (both of which are written in the same programming language).This allows us
to use our MMT-based type-checker for DHOL with our Leo-III-based theorem prover
to obtain a full-fledge implementation of DHOL. Moreover, this system can immedi-
ately use MMT’s logic-independent frontend features like IDE and module system.

Alternatively, we can use LEO-III as a general purpose DHOL-ATP that accepts input
in TPTP. Even though TPTP does not officially sanction DHOL as a logic, it antici-
pates dependent function types and already provides syntax for them (although—to our
knowledge—no ATP system has made use of it so far). Concretely, TPTP represents
the type Πx : A. B as !>[X:A]:B and a base type a t1 . . . tn as a @ t1 ... @ tn.
TPTP does not yet provide syntax for predicate subtypes, i.e., this approach is currently
limited to the no-subtyping fragment of DHOL. But extending the TPTP syntax with
predicate subtypes would be straightforward, e.g., by using A ?| p to represent the
type A|p .

The encoding of the conjecture given in Example 3 using the theory from Example 1 is
given at https://gl.mathhub.info/MMT/LATIN2/-/blob/devel/source/casestudies/2023-
cade/CategoryTheory/category-theory-lemmas-dhol.p (which also includes further
example conjectures relative to the same theory). Running the logic embedding tool
translates it into the TPTP TH0 problem given at https://gl.mathhub.info/MMT/
LATIN2/-/blob/devel/source/casestudies/2023-cade/CategoryTheory/category-theory-
lemmas-hol.p. Unsurprisingly, LEO-III can prove this simple theorem easily.

Practical Evaluation. In order to evaluate the practical usefulness of the translation
we studied various example conjectures about function composition in set theory and
category theory. We considered 5 further lemmas based on the theory in Example 1
which are written directly in TPTP and can all be proven by E, Vampire and cvc5. We
also studied various harder lemmas about function composition and category theory.
Those examples are written in MMT and take advantage of advanced MMT features to
improve readability, such as definitions, user-defined notations, and implicit arguments
that are inferred by the prover.

https://gl.mathhub.info/MMT/LATIN2/-/blob/devel/source/casestudies/2023-cade/Category Theory/category-theory-lemmas-dhol.p
https://gl.mathhub.info/MMT/LATIN2/-/blob/devel/source/casestudies/2023-cade/Category Theory/category-theory-lemmas-dhol.p
https://gl.mathhub.info/MMT/LATIN2/-/blob/devel/source/casestudies/2023-cade/Category Theory/category-theory-lemmas-hol.p
https://gl.mathhub.info/MMT/LATIN2/-/blob/devel/source/casestudies/2023-cade/Category Theory/category-theory-lemmas-hol.p
https://gl.mathhub.info/MMT/LATIN2/-/blob/devel/source/casestudies/2023-cade/Category Theory/category-theory-lemmas-hol.p

452 C. Rothgang et al.

The examples can be found at https://gl.mathhub.info/MMT/LATIN2/-/blob/devel/
source/casestudies/2023-cade. The MMT prover successfully type-checks all problems
and translates them into TPTP problems to be solved by HOL ATPs.

Since LEO-III can solve none of the 6 function composition examples, we also tested
other HOL ATPs on the generated TPTP problems. Running all HOL ATP provers
supported at https://www.tptp.org/cgi-bin/SystemOnTPTP on the function composition
problems shows that many provers can solve 3 of the problems, Vampire can solve 4 of
them, and 5 out of the 6 conjectures can be solved by at least one HOL ATP.

We also studied 6 more difficult theorems about limits in category theory including the
uniqueness, commutativity, and associativity of some limits. To better evaluate the use-
fulness of our translation, we also formalized these lemmas in native HOL (in MMT)
and compared the results. Naturally, the DHOL formalization is significantly more
readable and benefits from the more expressive type system that can help spot mis-
takes in the formalization. Running the HOL ATPs from https://www.tptp.org/cgi-bin/
SystemOnTPTP on the generated TPTP problems (with 60 s timeout) yields the results
in the table below (where we omit provers that proved none of the theorems in either
formalization).

HOL ATP lemma 1 proven lemma 2 proven lemma 3 proven

DHOL native HOL DHOL native HOL DHOL native HOL

agsyHOL yes no no no yes no

cocATP yes no no no no no

cvc5 yes yes no no yes no

cvc5-SAT yes no no no no no

E yes yes no no no yes

HOLyHammer yes yes no no yes yes

Lash yes yes no no no no

LEO-II yes no no no no no

Leo-III yes yes no no no no

Leo-III-SAT yes yes no no no no

Satallax yes yes no no yes no

Vampire yes yes no no no yes

Zipperpin yes yes no no yes yes

total 13 9 0 0 5 4

https://gl.mathhub.info/MMT/LATIN2/-/blob/devel/source/casestudies/2023-cade
https://gl.mathhub.info/MMT/LATIN2/-/blob/devel/source/casestudies/2023-cade
https://www.tptp.org/cgi-bin/SystemOnTPTP
https://www.tptp.org/cgi-bin/SystemOnTPTP
https://www.tptp.org/cgi-bin/SystemOnTPTP

Theorem Proving in Dependently-Typed Higher-Order Logic 453

HOL ATP lemma 4 proven lemma 5 proven lemma 6 proven

DHOL native HOL DHOL native HOL DHOL native HOL

agsyHOL no no no no no no

cocATP no no no no no no

cvc5 no yes no no no no

cvc5-SAT no no no no no no

E no yes no yes no yes

HOLyHammer no yes no no no yes

Lash no no no no no no

LEO-II no no no no no no

Leo-III no no no no no no

Leo-III-SAT no no no no no no

Satallax no no yes no no no

Vampire no yes no yes no yes

Zipperpin no yes yes yes no yes

total 0 5 2 3 0 4

Overall more problems generated from the native HOL formalization can be solved by
some HOL ATP (5/6 compared to 3/6 for the DHOL formalization). The HOL ATPs
found 25 successful proofs for the native HOL problems and 20 for the DHOL prob-
lems. This suggests that current HOL ATPs can prove native HOL problems somewhat
better than their translated DHOL counterparts, but not much better. In 8 cases a prover
can prove the DHOL conjecture but not the native HOL analogue, indicating that the
two formalizations have different advantages.

Furthermore, our translation has so far been engineered for generality and soundness/-
completeness and not for ATP efficiency. Indeed, future work has multiple options to
boost the ATP performance on translated DHOL, e.g., by

– developing sufficient criteria for when simpler HOL theories can be produced

– inserting lemmas into the translated theories that guide proof search in ATPs, e.g.,
to speed up equality reasoning

– adding definitions to translated DHOL problems and developing better criteria
when to expand them

Thus, we consider the test results to be very promising. In particular, the translation
could serve as a useful basis for type-checkers and hammer tools for DHOL ITPs.

7 Conclusion and Future Work

We have combined two features of standard languages, higher-order logic HOL and
dependent type theory DTT, thereby obtaining the new dependently-typed higher-order

454 C. Rothgang et al.

logic DHOL. Contrary to HOL, DHOL allows for dependent function types. Contrary
to DTT, DHOL retains the simplicity of classical Booleans and standard equality.

On the downside, we have to accept that DHOL, unlike both HOL and DTT, has an
undecidable type system. Further work will show how big this disadvantage weighs in
practical theorem proving applications. But we anticipate that the drawback is manage-
able, especially if, as in our case, an implementation of DHOL is coupled tightly with
a strong ATP system. We accomplish this with a sound and complete translation from
DHOL into HOL that enables using existing HOL ATPs to discharge the proof obliga-
tions that come up during type-checking. We have implemented our novel translation as
a TPTP-to-TPTP preprocessor for HOL ATP systems and outlined the implementation
of a type-checker and hammer tool for DHOL based on the resulting prover.

Moreover, once this design is in place, it opens up the possibility to add certain type
constructors to DHOL that are often requested by users but difficult to provide for sys-
tem developers because they automatically make typing undecidable. We have shown
an extension of DHOL with predicate subtypes as an example. Quotients, partial func-
tions, or fixed-length lists are other examples that can be supported in future work.

We expect our translation remains sound and complete if DHOL is extended with
other features underlying common HOL systems such as built-in types for numbers,
the axiom of infinity, or the subtype definition principle. How to extend DHOL with
a choice operator remains a question for future work — if solved, this would allow
extending existing HOL ITPs to DHOL.

Acknowledgment. Chad Brown and Alexander Steen provided valuable feedback on earlier ver-
sions of this paper.

References

1. Andrews, P.: An Introduction to Mathematical Logic and Type Theory: To Truth Through
Proof. Academic Press, Cambridge (1986)

2. Andrews, P., Bishop, M., Issar, S., Nesmith, D., Pfenning, F., Xi, H.: TPS: a theorem-proving
system for classical type theory. J. Autom. Reasoning 16(3), 321–353 (1996)

3. Jacobs, B., Melham, T.: Translating dependent type theory into higher order logic. In: Bezem,
M., Groote, J.F. (eds.) TLCA 1993. LNCS, vol. 664, pp. 209–229. Springer, Heidelberg
(1993). https://doi.org/10.1007/BFb0037108

4. Brown, C.E.: Satallax: an automatic higher-order prover. In: Gramlich, B., Miller, D., Sattler,
U. (eds.) IJCAR 2012. Lecture Notes in Computer Science, vol. 7364, pp. 111–117. Springer,
Berlin, Heidelberg (2012). https://doi.org/10.1007/978-3-642-31365-3_11

5. Church, A.: A formulation of the simple theory of types. J. Symbolic Logic 5(1), 56–68
(1940)

6. Constable, R., et al.: Implementing Mathematics with the Nuprl Development System.
Prentice-Hall, Hoboken (1986)

7. Coq Development Team: The Coq Proof Assistant: Reference Manual. Technical report,
INRIA (2015)

8. Coquand, T., Huet, G.: The calculus of constructions. Inf. Comput. 76(2/3), 95–120 (1988)

https://doi.org/10.1007/BFb0037108
https://doi.org/10.1007/978-3-642-31365-3_11

Theorem Proving in Dependently-Typed Higher-Order Logic 455

9. de Moura, L., Kong, S., Avigad, J., van Doorn, F., von Raumer, J.: The lean theorem prover
(system description). In: Felty, A.P., Middeldorp, A. (eds.) CADE 2015. LNCS (LNAI), vol.
9195, pp. 378–388. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-21401-6_26

10. Gordon, M.: HOL: a proof generating system for higher-order logic. In: Birtwistle, G., Sub-
rahmanyam, P. (eds.) VLSI Specification, Verification and Synthesis, pp. 73–128. Kluwer-
Academic Publishers (1988)

11. Gordon, M., Pitts, A.: The HOL logic. In: Gordon, M., Melham, T. (eds.) Introduction to
HOL, Part III, pp. 191–232. Cambridge University Press (1993)

12. Harper, R., Honsell, F., Plotkin, G.: A framework for defining logics. J. Assoc. Comput.
Mach. 40(1), 143–184 (1993)

13. Harrison, J.: HOL light: a tutorial introduction. In: Srivas, M., Camilleri, A. (eds.) FMCAD
1996. LNCS, vol. 1166, pp. 265–269. Springer, Heidelberg (1996). https://doi.org/10.1007/
BFb0031814

14. Martin-Löf, P.: An intuitionistic theory of types: predicative part. In: Proceedings of the 2073
Logic Colloquium, North-Holland, pp. 73–118 (1974)

15. Norell, U.: The Agda WiKi (2005). https://wiki.portal.chalmers.se/agda
16. Owre, S., Rushby, J.M., Shankar, N.: PVS: a prototype verification system. In: Kapur, D.

(ed.) CADE 1992. LNCS, vol. 607, pp. 748–752. Springer, Heidelberg (1992). https://doi.
org/10.1007/3-540-55602-8_217

17. Paulson, L.C.: Isabelle. LNCS, vol. 828. Springer, Heidelberg (1994). https://doi.org/10.
1007/BFb0030541

18. Pfenning, F., Schürmann, C.: System description: twelf — a meta-logical framework for
deductive systems. In: CADE 1999. LNCS (LNAI), vol. 1632, pp. 202–206. Springer, Hei-
delberg (1999). https://doi.org/10.1007/3-540-48660-7_14

19. Rabe, F.: A modular type reconstruction algorithm. ACM Trans. Comput. Logic 19(4), 1–43
(2018)

20. Rothgang, C., Rabe, F., Benzmüller, C.: Theorem proving in dependently-typed higher-order
logic - extended preprint (2023). arXiv:2305.15382

21. Steen, A.: An extensible logic embedding tool for lightweight non-classical reasoning
(2022). arXiv:2203.12352

22. Steen, A.: Logic embedding tool 1.7 (2022). https://doi.org/10.5281/zenodo.6139916
23. Steen, A., Benzmüller, C.: Extensional higher-order paramodulation in Leo-III. J. Autom.

Reasoning 65(6), 775–807 (2021)
24. Sutcliffe, G.: The TPTP problem library and associated infrastructure: the FOF and CNF

parts, v3.5.0. J. Autom. Reasoning 43(4), 337–362 (2009)

Open Access This chapter is licensed under the terms of the Creative Commons Attribution
4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits use,
sharing, adaptation, distribution and reproduction in any medium or format, as long as you
give appropriate credit to the original author(s) and the source, provide a link to the Creative
Commons license and indicate if changes were made.
The images or other third party material in this chapter are included in the chapter’s Creative

Commons license, unless indicated otherwise in a credit line to the material. If material is not
included in the chapter’s Creative Commons license and your intended use is not permitted by
statutory regulation or exceeds the permitted use, you will need to obtain permission directly
from the copyright holder.

https://doi.org/10.1007/978-3-319-21401-6_26
https://doi.org/10.1007/BFb0031814
https://doi.org/10.1007/BFb0031814
https://wiki.portal.chalmers.se/agda
https://doi.org/10.1007/3-540-55602-8_217
https://doi.org/10.1007/3-540-55602-8_217
https://doi.org/10.1007/BFb0030541
https://doi.org/10.1007/BFb0030541
https://doi.org/10.1007/3-540-48660-7_14
http://arxiv.org/abs/2305.15382
http://arxiv.org/abs/2203.12352
https://doi.org/10.5281/zenodo.6139916
http://creativecommons.org/licenses/by/4.0/

	Theorem Proving in Dependently-Typed Higher-Order Logic
	1 Introduction and Related Work
	2 Preliminaries: Higher-Order Logic
	3 Dependent Function Types
	3.1 Language
	3.2 Translation

	4 Predicate Subtypes
	5 Soundness and Completeness
	6 Theorem Prover Implementation
	7 Conclusion and Future Work
	References

