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Abstract. This paper describes the formal verification of NP-hardness
reduction functions of two key problems relevant in algebraic lattice the-
ory: the closest vector problem and the shortest vector problem, both
in the infinity norm. The formalization uncovered a number of problems
with the existing proofs in the literature. The paper describes how these
problems were corrected in the formalization. The work was carried out
in the proof assistant Isabelle.
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1 Introduction

In recent years, algebraic lattices have received increasing attention for their
use in post-quantum cryptography. Algebraic lattices are additive, discrete sub-
groups of Rn, i.e. a set of points in R

n with certain structures. One can also define
lattices over finite fields, rings or modules as used in many modern post-quantum
crypto systems such as the CRYSTALS suites, NTRU and Saber.

Two problems form the very basis for computationally hard problems on lat-
tices, namely the closest vector problem (CVP) and the shortest vector problem
(SVP). Given a finite set of basis vectors in R

n, the set of all linear combinations
with integer coefficients forms a lattice. In optimization form, the SVP asks for
the shortest vector in the lattice and the CVP asks for the lattice vector closest
to some given target vector, both with respect to some given norm.

When working over the reals, the p-norm (for p ≥ 1) is defined as p
√∑

i |xi|p.
The most common examples are the Euclidean norm ‖x‖2 and the infinity norm
‖x‖∞ = maxi{|xi|}, which is the limit for p → ∞.

We have formalized, corrected and verified a number of NP-hardness proofs
from the literature, uncovering a number of mistakes along the way. The first
NP-hardness proof of the CVP and SVP in infinity norm is due to van Emde-
Boas [7]. For other norms (especially for the Euclidean norm), there is only a
randomized reduction for the NP-hardness of the SVP so far [2]. For the CVP,
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NP-hardness has been shown in any p-norm for p ≥ 1. One exemplary proof can
be found in the book by Micciancio and Goldwasser [15, Chapter 3, Thm 3.1].

The CVP and SVP were the starting point for lattice-based post-quantum
cryptography [16]. Moreover, the relevance of these problems can also be seen
from the rich literature on approximation results. For example, the LLL-
algorithm by Lenstra, Lenstra and Lovász [12] gives a polynomial-time algorithm
for lattice basis reduction which solves integer linear programs in fixed dimen-
sions. Using this reduced basis, one can find good approximations to the CVP
using Babai’s algorithm [3] for certain approximation factors. Still, for arbitrary
dimensions, the problem remains NP-hard. Further approximation results for
the CVP, SVP and integer programming can be found elsewhere [6,9,10,14,19].
These approximation problems are used in cryptography. However, we will focus
on the exact CVP and SVP in this paper.

A number of more basic NP-hardness proofs have been formalized in several
theorem provers so far. For example, there are formalizations of the Cook-Levin
Theorem in Coq [8] and Isabelle [4]. Formalizing Karp’s 21 NP-hard problems
(including the Subset Sum and Partition Problems assumed to be NP-hard in
this paper) in Isabelle is an ongoing project.

1.1 Contributions

In this paper we present NP-hardness proofs of the CVP and SVP in infinity
norm that have been verified in a proof assistant. We roughly follow the book by
Micciancio and Golwasser [15, Chapter 3, Thm 3.1] and the report by van Emde-
Boas [7]. However, many problems with the original proofs were encountered
during the formalization efforts. We will have a look at different approaches and
their advantages or problems.

We also verified the proof of NP-hardness of the CVP for any finite p ≥ 1
from the book by Micciancio and Goldwasser. This verification did not uncover
any problems with the informal proof. Thus we do not discuss it in detail.

These formalizations were carried out with the help of the proof assistant
Isabelle [17,18] and are available online [11]. They comprise 5200 lines. To the
authors knowledge, they are the first formalizations of hardness proofs for lattice
problems. Because of the importance of the SVP and CVP and the problems
in existing proofs, we consider our proofs a contribution to the foundations of
verified cryptography. However, we do not claim that these hardness results
directly imply quantum-resistance of any lattice-based cryptosystems.

1.2 Overview

The paper is structured as follows. Section 2 introduces the foundations. The
rest of the paper is dedicated to the proofs, which are phrased as the following
two polynomial time reduction chains:

– Subset Sum ≤p CVP
– Partition ≤p Bounded Homogeneous Linear Equations ≤p SVP

https://isabelle.in.tum.de/index.html
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Subset Sum and Partition are famous fundamental problems whose NP-hardness
has been proved many times in the literature and which we take for granted.

Section 3 presents the reduction of Subset Sum to the CVP. Differences
between our formalization and the book by Micciancio and Goldwasser [15] are
presented with examples that demonstrate problems with the original proof.
Moreover, an example is given why the generalization to the SVP given in [15]
does not work.

Therefore we turn to the early proof of NP-hardness of the SVP by van Emde
Boas [7]. This proof uses the Bounded Homogeneous Linear Equations problem
(BHLE) which is introduced in Sect. 4. The formalization of this proof is one
of the major achievements in this paper. It posed a significant challenge since
it often relied on human intuition and had to be restructured appropriately to
allow a formal proof. The main proof steps are explained and difficulties in the
formalization effort are described. This proof only works in infinity norm and we
explain why. In Sect. 5, the reduction from BHLE to the SVP is given. Again,
this proof was quite elaborate to formalize as there were inaccuracies and a
lot of intuition was involved. Differences between the formal proof and [7] are
explained by examples.

In Sect. 6, we have a quick look at the reduction proof for the CVP in p-norm
(for finite p ≥ 1). In the case of the SVP there only exists a randomized hardness
proof in Euclidean norm by Ajtai [1] up to now.

Finally, the time complexity of the reduction functions are considered in
Sect. 7. We conclude the paper with a short summary and outlook.

2 Foundations

This section introduces known foundations mainly to fix the terminology and
notation: problem reductions, lattices, and the combinatorial problems under
consideration (CVP, SVP, Partition and Subset Sum).

2.1 Problem Reductions

Formally, a decision problem is given by the set of YES-instances P and a set
Γ of problem instances, where P ⊆ Γ . We often associate the decision prob-
lem with the set of YES-instances, when the instance set Γ is obvious and not
explicitly defined. In this paper we will often phrase problems informally (e.g.
“decide if p is prime”) rather than give them explicitly as sets. For example, the
decision problem “decide if a natural number p is prime” will be formalized in
the following way: the set of problem instances is Γ = N (in Isabelle these are
all elements of type nat); and the YES-instances are P = {p ∈ N | p is prime}
(in Isabelle this is a set of type nat set).

Definition 1 (Problem reduction). Let A ⊆ Γ and B ⊆ Δ be two problems.
A function f : Γ → Δ is a reduction from A to B if it fulfills the following
properties:
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– ∀a ∈ Γ. a ∈ A ⇔ f(a) ∈ B
– f can be computed in polynomial time

If A is NP-hard, a reduction to B proves NP-hardness of B.
In this paper we present reduction functions informally (e.g. “an a is reduced

to a b that is constructed like this”) and often with copious amounts of “. . . ” to
construct vectors etc. Of course in the formalization these reduction functions
are spelled out in complete detail. Since all operations used in the reduction
functions in this paper are elementary, the polynomial time property has not
been formalized but is briefly discussed in Sect. 7. The focus of our paper are
the proofs a ∈ A ⇔ f(a) ∈ B.

2.2 Lattice-Based Computational Problems

To have a better understanding, we will first introduce lattices as such. Lattices
are a structured set of points. They form an additive, discrete subgroup of Rn.
Formally, we define the following.

Definition 2 (Lattice). Let A = {a1, . . . , an} ⊂ R
n be a set of linearly inde-

pendent vectors. Then the integer span of A forms a lattice L, that is:

L =

{
n∑

i=1

ciai | ci ∈ Z

}

Fig. 1. Two exemplary lattices in R
2

Example 1. In Fig. 1 two examples of lattices in R
2 are depicted. The red point

is the origin. The two blue arrows show the basis vectors a1 and a2 that are
linearly independent and span the lattice. Every integer combination of the two
blue arrows is a black point, an element of the lattice.

We can see that the grid spanned by the basis vectors is discrete and has some
recurring structures. These structures are determined by the basis vectors: the
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angle between them and their length. In Fig. 1a, the angle between the two basis
vectors is 90◦ yielding a rectangular fundamental domain. Whereas in Fig. 1b, we
have an angle of 60◦ between the basis vectors and equal length. This produces
a fundamental domain of an equilateral triangle.

Indeed, the automorphism group of a lattice is a symmetry group, see Con-
way [5, Chapter 3.4]. For example, in Fig. 1a the symmetry group is pmm and
in Fig. 1b is it p3m1 [13].

In the rest of the text and in the formalization we restrict to finite bases over
Z (instead of R), simply for computability reasons. Of course bases over Q can
be transformed into bases over Z by scaling all basis vectors.

The starting point of most known hard problems on lattices are the shortest
vector problem and the closest vector problem. They are defined below (as usual
in decision and not in optimization form). The lattice L ⊆ Z

n is assumed to be
generated by a finite basis in Z

n.

Definition 3 (Closest Vector Problem (CVP)). Given a lattice L, a vector
b ∈ Z

n and an estimate k, decide whether there exists a vector v ∈ L such that

‖v − b‖ ≤ k

Definition 4 (Shortest Vector Problem (SVP)). Given a lattice L and
an estimate k, determine whether there exists a vector v ∈ L such that

‖v‖ ≤ k and v �= 0

2.3 Partition and Subset Sum Problems

Recall that we plan to prove NP-hardness of the CVP and SVP in the case of
the infinity norm by reducing the well-studied NP-complete Subset Sum and
Partition problems to the CVP and SVP. We state the definitions.

Definition 5 (Partition problem). Given a finite list of integers a1, . . . , an,
does there exist a partition of {1 . . . n} into subsets I and {1 . . . n} \ I such that

∑

i∈I

ai =
∑

i∈{1...n}\I
ai

The Partition problem can be seen as a special case of the Subset Sum
problem.

Definition 6 (Subset Sum problem). Given a finite list of integers
a1, . . . , an and an integer s, decide whether there exists a subset S of {1 . . . n}
such that ∑

i∈S

ai = s
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2.4 Notation

Throughout the paper we use traditional mathematical notation, in particular
the graphical “...”. The formal Isabelle notation is by necessity more verbose
(and precise). Our formalization employs both lists and vectors as a type for
finite sequences and converts between them where necessary. For reasons of pre-
sentation we blur this distinction in the paper.

3 CVP

In this section, we formalize the proof of the NP-hardness of the CVP in the
infinity norm along the lines of [15, p 48., Chap. 3.2, Thm 3.1] by reducing Subset
Sum to the CVP.

An instance a1, . . . , an, s of Subset Sum is mapped to the following instance
of the CVP:

L =

⎛

⎜⎜⎜⎜
⎜
⎝

a1 · · · an

a1 · · · an

2 0
. . .

0 2

⎞

⎟⎟⎟⎟
⎟
⎠

· Zn b =

⎛

⎜⎜⎜⎜
⎜
⎝

s − 1
s + 1

1
...
1

⎞

⎟⎟⎟⎟
⎟
⎠

k = 1 (1)

We proved the following theorem:

Theorem 1. The above mapping is a reduction from the Subset Sum problem
to the CVP (in infinity norm).

This implies that the CVP (in infinity norm) is an NP-hard problem.
The reduction function used by Micciancio and Goldwasser [15] actually looks

a bit different. The image of a1, . . . , an, s would be

B =

⎛

⎜⎜⎜
⎝

a1 · · · an

2 0
. . .

0 2

⎞

⎟⎟⎟
⎠

L = B · Zn b =

⎛

⎜⎜⎜
⎝

s
1
...
1

⎞

⎟⎟⎟
⎠

k = 1 (2)

However, the proof in [15, p. 49] with this reduction function works only for
p < ∞. It goes along the lines of the following idea: Take k = p

√
n. In the case

of p = ∞, we get k = limp→∞ p
√

n = 1. Then we can formulate the following
equality (equation (3.5) in [15, p. 49]):

‖Bx − b‖pp =

∣∣
∣∣∣

n∑

i=1

aixi − s

∣∣
∣∣∣

p

+
n∑

i=1

|2xi − 1|p (3)

Given a YES-instance a1, . . . , an, s of Subset Sum, there exists a vector x =
(x1, . . . , xn) ∈ {0, 1}n, such that

∑n
i=1 aixi − s = 0 and |2xi − 1| = 1. Then

‖Bx − b‖pp = n which proves this case.
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Given a YES-instance of the CVP defined by L, t and k that are the image of
a1, . . . , an, s under the reduction function as in (2), we get ‖Bx− b‖pp ≤ n. Since
all values are integers, we have |2xi−1| ≥ 1. It follows that

∑n
i=1 aixi−s = 0 and

|2xi − 1| = 1. Thus, we can deduce that a1, . . . , an, s was indeed a YES-instance
of Subset Sum.

The major problem we encountered was that this proof works fine for p < ∞
but for p = ∞, the sum in (3) becomes a maximum instead. The equation then
reads

‖Bx − b‖∞ = max

(∣∣∣∣∣

n∑

i=1

aixi − s

∣∣∣∣∣
, |2xi − 1| for 1 ≤ i ≤ n

)

This invalidates the arguments in the proof since |∑n
i=1 aixi − s| can now be in

the range {−1, 0, 1}. The constraints are too lax to ensure the equality to zero.
A solution was to alter the matrix and target vector and add another entry.

The matrix and target vector we used are given in Eq. (1). The alternation to
s − 1 and s + 1 forces a linear combination of the ai to be exactly s in the
hardness proof, since |∑i ciai − (s ± 1)| ≤ 1.

After communicating with Daniele Micciancio, one of the authors of [15], he
suggested using a constant c > 1 and the generating instance

L =

⎛

⎜⎜⎜
⎝

c · a1 · · · c · an

2 0
. . .

0 2

⎞

⎟⎟⎟
⎠

· Zn b =

⎛

⎜⎜⎜
⎝

c · s
1
...
1

⎞

⎟⎟⎟
⎠

k = 1

This solves the problem as well and can be implemented using e.g. c = 2. This
technique is described later in the book [15, pp. 49–51] when trying to explain
the NP-hardness proof for the SVP in the infinity norm.

3.1 Towards the SVP

The authors of [15] argue that the reduction argument of the SVP can be deduced
generating an instance of the SVP using the Subset Sum instance a1, . . . , an, s
in the following way. For c > 1, e.g. c = 2, take

B =

⎛

⎜⎜
⎜
⎝

c · a1 · · · c · an c · s
2 0 1

. . . 1
0 2 1

⎞

⎟⎟
⎟
⎠

L = B · Zn+1 k = 1

The authors claim that every shortest vector in the image of the reduction func-
tion has −1 as last coefficient. For example, let a YES-instance of the SVP be
defined by the generating matrix B of the lattice and let x = (x1, . . . , xn,−1)T
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be the coefficients such that Bx is a shortest vector. Then we know that

‖Bx‖∞ =

∣∣∣
∣∣∣∣∣∣

∣∣∣
∣∣∣∣∣∣

⎛

⎜⎜⎜
⎝

c · (x1a1 + · · · + xnan − s)
2x1 − 1

...
2xn − 1

⎞

⎟⎟⎟
⎠

∣∣∣
∣∣∣∣∣∣

∣∣∣
∣∣∣∣∣∣
∞

≤ 1

Since c > 1, it follows, that x1a1 + · · · + xnan − s = 0, which yields a solution
for the given Subset Sum instance a1, . . . , an, s.

However, this reduction does not always work as the following example shows:

Example 2. Given the Subset Sum instance (a1, a2, a3, s) = (1, 1, 1, 1). This is a
YES-instance, since a solution is given by x1 = 1, x2 = 0 and x3 = 0. The basis
matrix of the corresponding SVP would be (with c > 1)

B =

⎛

⎜⎜
⎝

c c c c
2 0 0 1
0 2 0 1
0 0 2 1

⎞

⎟⎟
⎠

Take for example the vector v = B · (−1,−1,−1, 3)T = (0, 1, 1, 1)T . It has
infinity norm 1 and is thus a shortest vector in the lattice generated by B.
However, this vector has the last coefficient 3 and not −1, even though it clearly
is a shortest vector of the lattice given by B. The corresponding scaled “solution”
for Subset Sum would be (1/3, 1/3, 1/3,−1) but since only integer values are
allowed in the solution space, this is not a solution in our sense.

We consider another example. Let the Subset Sum instance be a′
1 = 3, s′ = 1.

We can easily see that this is not a YES-instance, i.e. there exists no solution.
Still, the corresponding SVP instance given via the reduction function is gener-
ated by the matrix

B′ =
(

c · 3 c · 1
2 1

)

In this case the coefficients (−1, 3)T yield a shortest vector in the lattice spanned
by B′, since ∣∣∣

∣

∣∣∣
∣B

′
(−1

3

)∣∣∣
∣

∣∣∣
∣
∞

=
∣∣∣
∣

∣∣∣
∣

(
0
1

)∣∣∣
∣

∣∣∣
∣
∞

≤ 1

Thus, B′ defines a YES-instance of the SVP, but the original Subset Sum
instance is not a YES-instance.

In [15], it is stated for the infinity norm that any shortest vector yields a
solution for the Subset Sum Problem, which is not the case in these examples:
we cannot ensure that a shortest vector always has −1 as a last coordinate.

Although the proof in [15] does not work out as expected, there is still
the reduction proof by van Emde-Boas [7] which reduces a problem called the
Bounded Homogeneous Linear Equation problem to the SVP in infinity norm.
This will be discussed in the next two sections.
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4 Bounded Homogeneous Linear Equations

A technical report by Peter van Emde-Boas [7] gives another reduction proof
for the NP-hardness of the SVP in infinity norm. The author first reduces the
Partition Problem to a problem called Bounded Homogeneous Linear Equation
(BHLE) which is then reduced to the SVP.

Definition 7 (Bounded Homogeneous Linear Equations problem).
Given a finite vector of integers b ∈ Z

n and a positive integer k, decide whether
there exists an x ∈ Z

n \ {0} with ‖x‖∞ ≤ k such that

〈b, x〉 = 0

We have verified a reduction from Partition to BHLE, and thus BHLE is
NP-hard.

Theorem 2. There is a reduction from Partition to BHLE in infinity norm.

The proof is carefully engineered and rather intricate. Differences to the original
proof and problems encountered during the formalization are:

– Our formal proof has a different structure than the proof in the technical
report [7]. Indeed, the technical report first proves the reduction of a weaker
form of Partition to BHLE and then argues that “omitting” an element yields
the desired result as it adds stricter constraints. In the formalization we skip
this intermediate step and directly prove the existence of an appropriate
reduction function.

– Steps that seem trivial in the technical report often require a long formal
proof. What can be reasoned by intuition in a pen-and-paper proof has to
be elaborated in the formal proof. Intuition is also sometimes used for hand-
waving over small gaps or imprecisions.

– Indexing vectors and lists has been a problem in the formalization. In pen-
and-paper proofs, one can argue easily about “omitting” an element of a
list even though this is imprecise and often misuses the notation. In the
formalization one cannot simply skip an index. All indexing functions in the
formalization have to be total. “Omitting” an element can only be solved by
re-indexing and re-structuring the lists in the proof.

– Numbers are interpreted in different number systems during the proof. In
contrast to the original proof, the formalization has to explicitly state the
digits for a change of basis and show equivalence. This leads to verbose and
elaborate proofs. To make proofs easier, we use the concrete basis d = 5
instead of an unspecified basis d > 4 as in [7]. Furthermore, the number M
must use the absolute values of the ai (omission in the definition of M in [7]).
The formal definition is stated below.

– The proof involved many arguments about manipulations of huge sums.
Working with huge sums entails very large proof states where the exist-
ing proof automation mostly failed on. These proof states require detailed
(but still readable) proofs and occasional manual instantiation of theorems.
Another possible solution to get smaller proof states is to introduce local
abbreviations for subterms.



374 K. Kreuzer and T. Nipkow

Let us have a look at the proof and its difficulties in the formalization in
more detail. We start from a Partition instance a = a1, . . . , an. Note that we
ignore the trivial case n = 0 in this presentation (but deal with it in the formal
proofs)—this means n − 1 ≥ 0. We reduce a to a BHLE instance b as follows:

– Define

M = 2 · (
n∑

i=1

|ai|) + 1 (4)

– For 1 ≤ i < n generate a 5-tuple

bi,1 = ai + M · (54i−4 + 54i−3 + 54i−1) (5)

bi,2 = M · (54i−3 + 54i)

bi,3 = M · (54i−4 + 54i−2)

bi,4 = ai + M · (54i−2 + 54i−1 + 54i)

bi,5 = M · (54i−1)
bi = bi,1, bi,2, bi,4, bi,5, bi,3

Note that bi,3 has moved to the last position in bi.
– For i = n generate only a 4-tuple:

bn,1 = an + M · (54n−4 + 54n−3 + 54n−1)

bn,2 = M · (54n−3 + 1)

bn,4 = an + M · (54n−2 + 54n−1 + 1)

bn,5 = M · (54n−1) (6)
bn = bn,1, bn,2, bn,4, bn,5

Note that
• bn,3 is omitted from bn to restrict the constraints necessary for the proof

and
• that in bn,2 and bn,4 the last summand changes to a +1 in comparison to

the other bi,2 and bi,4.

In summary, the entry bi,3 is uniformly in the last position in the bi but omitted
from the final bn.

The Partition instance a of length n is reduced to a vector b of length 5n−1:

b = (b1, . . . , bn−1, bn) (7)

The NP-hardness proof now follows in three steps:

1. We need to show an auxiliary lemma.
2. We show that a YES-instance of Partition is reduced to a YES-instance of

BHLE.
3. We show that the pre-image of a YES-instance of BHLE is indeed a YES-

instance in Partition.
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4.1 Auxiliary Lemma

As a first step, the proof needs a short auxiliary lemma from number theory.

Lemma 1. Let x, y, c ∈ Z
n and M be an integer. Assume that M >

∑n
i=1 |xi|

and that |ci| ≤ 1 for all 1 ≤ i ≤ n. Furthermore, let the following equation hold:

n∑

i=1

ci · (xi + M · yi) = 0 (8)

Then we have
〈c, x〉 = 0 and 〈c, y〉 = 0

In this lemma, we can reinterpret xi + M · yi from (8) as a number in basis M
with lowest digit xi. Even with a coefficient ci, the lowest digit in basis M has
to be zero, as well as the rest. By splitting off the lowest digits consecutively, we
can show, that indeed all digits in basis M have to equal zero.

4.2 a ∈ Partition =⇒ b ∈ BHLE

This direction is quite easy. Let a1, . . . , an be a YES-instance of partition with
partitioning set I. We will show that the following vector x is a solution to the
corresponding BHLE:

x = (x1, . . . , xn−1, xn)

xi =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

1,−1, 0,−1, 0 i ∈ I ∧ n − 1 ∈ I

0, 0,−1, 1, 1 i ∈ I ∧ n − 1 /∈ I

0, 0,−1, 1, 1 i /∈ I ∧ n − 1 ∈ I

1,−1, 0,−1, 0 i /∈ I ∧ n − 1 /∈ I

1 ≤ i < n

xn = 1,−1, 0,−1

We have to show that 〈b, x〉 = 0. This is proven by plugging in the definitions
and rearranging terms in the sum of the scalar product such that they cancel
out. As a last step in the proof, we need to show that ‖x‖∞ ≤ 1. For the infinity
norm this is quite easy. However, it would not be true for other norms. For p ≥ 1
and p < ∞ we have for n ≥ 1:

‖x‖p = p
√

3n > 1

Thus, the chosen constraints x only work in infinity norm.

4.3 a ∈ Partition ⇐= b ∈ BHLE

This direction is harder. Let b be a YES-instance of BHLE. That is, there exists
a nonzero x such that 〈b, x〉 = 0 and ‖x‖∞ ≤ 1. We have to show that there is
a partition I on a1, . . . , an with

∑
i∈I ai =

∑
i∈{1...n}\I ai.
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The proof idea works as follows. First, we apply the auxiliary lemma and
get a constraint on the ai on the one hand, and a condition on the xi with
coefficients that are powers of 5 on the other hand. Using this condition on the
xi, we generate equational constraints on the entries of x by looking at the digits
in basis 5. We argue that a number equals zero if and only if all its digits are
zero.

The generated equations lead to a good characterisation of x, namely the
weight w = x5(n−1)+1. From the assumption that ‖x‖∞ ≤ 1, we deduce |w| ≤ 1.
Again, this step can only be reasoned in the infinity norm. For other p-norms, this
argumentation breaks as we need the property |w| ≤ 1 to complete the proof.
Using the value of w, we can constuct a partitioning set I with the required
property from the equation on the ai.

5 SVP

Knowing that the BHLE is indeed an NP-hard problem, we reduce it to the
SVP. Then we can conclude that the SVP in infinity norm is NP-hard.

Theorem 3. There is a reduction from BHLE to the SVP in infinity norm.

Again some difficulties were met when formalizing the proof for the above
theorem. First of all, note that the terminology in [7] and nowadays is a bit
different. In [7], the shortest vector problem only denotes the shortest vector
problem in the Euclidean norm. What we call the shortest vector problem in
the infinity norm is named closest vector problem in [7]. To make terminology
even more confusing, our understanding of the closest vector problem is called
the nearest vector problem in [7]. To make the notation clear, we provide a table
for reference in Fig. 2.

technical report [7] our notation
closest vector problem SVP in infinity norm
shortest vector problem SVP in Euclidean norm
nearest vector problem CVP

Fig. 2. Notation

A more mathematical problem encountered was that the reduction itself used
in [7] was not entirely correct. In the reduction two factors k′ = k+1 and k′′ were
introduced. These factors should have certain properties to allow the arguments
of the reduction proof to go through. However, this is only true when tweaking
these factors a bit to make the whole proof watertight. We will now have a closer
look.
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Given the BHLE instance b = (b1, . . . , bn) and k, create the following SVP
instance:

L =

⎛

⎜
⎜⎜
⎝

1 0 0
. . .

...
0 1 0
− (k + 1) · b − k′′

⎞

⎟
⎟⎟
⎠

· Zn k = k

where k′′ is the factor in question. In the technical report, we have

k′′ = 2 · (k + 1) · (
∑

i

bi) + 1

The following example however shows that this factor is not enough.

Example 3. Consider the BHLE instance given by b = (1,−1) and k = 1. This
is a YES-instance, since the vector (1, 1) yields the expected properties.

Define the following matrices.

B0 =

⎛

⎝
1 0 0
0 1 0
2 −2 1

⎞

⎠ B1 =

⎛

⎝
1 0 0
0 1 0
2 −2 9

⎞

⎠ B2 =

⎛

⎝
1 0 0
0 1 0
6 −6 25

⎞

⎠

The associated SVP instance is the lattice generated by B0. Then the vector
(0, 0, 1)T with infinity norm 1 is a solution to the SVP instance generated by the
basis matrix B0. However, since the last entry is nonzero, this does not provide
a solution for BHLE. Contrary to this example, the proof in the technical report
shows that for all SVP solutions the last entry must be zero.

The reason, why the argument in the technical report breaks at this point is
because b1 + b2 = 0, thus making k′′ = 1 very small. One step to prevent this is
to use the absolute values of the bi in k′′ instead. The new k′′

1 we consider is

k′′
1 = 2 · (k + 1) · (

∑

i

|bi|) + 1

With this new factor k′′
1 we get the generating matrix B1 and the vector

(0, 0, 1) is no longer a shortest vector.
Still, this is not enough. Consider the same b = (1,−1) as above, but let

k = 5. Then we get B2 as the generating matrix of the SVP lattice. The vector
x = (0, 5, 1)T is a shortest vector whose last entry is nonzero. Again it contradicts
the proof in the technical report. The reason this time is the following: the
argument that (k+1) (

∑n
i=1 xibi) and k′′

1 have different relative sizes fails. Indeed,
we have ∣∣

∣∣∣∣

∣∣
∣∣∣∣

⎛

⎝
1 0 0
0 1 0
6 −6 25

⎞

⎠ ·
⎛

⎝
0
5
1

⎞

⎠

∣∣
∣∣∣∣

∣∣
∣∣∣∣
∞

=

∣∣
∣∣∣∣

∣∣
∣∣∣∣

⎛

⎝
0
5

−5

⎞

⎠

∣∣
∣∣∣∣

∣∣
∣∣∣∣
∞

= 5 ≤ k

We can obtain different relative sizes of (k+1) (
∑n

i=1 xibi) and k′′
1 by defining

k′′
2 = 2 · k · (k + 1) · (

∑

i

|bi|) + 1 (9)
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Now we can make sure that the last entry of a solution to the SVP problem
is indeed zero. For the proof of Theorem 3 we consider the reduction given by

L =

⎛

⎜⎜
⎜
⎝

1 0 0
. . .

...
0 1 0
− (k + 1) · b − k′′

2

⎞

⎟⎟
⎟
⎠

︸ ︷︷ ︸
B

·Zn k = k

where B denotes the basis matrix generating the lattice L as given above.
Consider a solution x = (x1, . . . , xn+1) of the SVP with ‖Bx‖∞ ≤ k. Then

we have

Bx =

⎛

⎜⎜⎜
⎝

1 0 0
. . .

...
0 1 0
− (k + 1) · b − k′′

2

⎞

⎟⎟⎟
⎠

·

⎛

⎜⎜⎜
⎝

x1

...
xn

xn+1

⎞

⎟⎟⎟
⎠

=

⎛

⎜⎜⎜
⎝

x1

...
xn

(k + 1)(
∑n

i=1 xibi) + xn+1 · k′′
2

⎞

⎟⎟⎟
⎠

As this yields a solution to the SVP, we get:

|(k + 1)(
n∑

i=1

xibi) + xn+1 · k′′
2 | ≤ k (10)

Then we calculate:

(k + 1)(
n∑

i=1

xibi) + xn+1 · k′′
2 ≤ (k + 1)(

n∑

i=1

|xi||bi|) + xn+1 · k′′
2 ≤

≤ (k + 1)k(
n∑

i=1

|bi|) + xn+1 · k′′
2

Assuming that xn+1 �= 0, we have

|(k + 1)k(
n∑

i=1

|bi|)| < |2 · k · (k + 1) · (
∑

i

|bi|) + 1| = |k′′
2 | ≤ |xn+1 · k′′

2 |

Thus the two summands indeed have different relative sizes and can never cancel
out the other summand. This leads to a contradiction to (10). Therefore, xn+1 =
0 must be true and (x1, . . . , xn) constitutes a solution to the BHLE when using
k′′
2 as in (9).

6 Other p-Norms

Up to now, we have investigated lattice problems under the infinity norm. Even
though this yields nice hardness results, in practice the Euclidean norm is used
more often. Unfortunately, when considering p-norms things do not play out as
nicely. In this section, we assume 1 ≤ p < ∞ whenever we talk about a specific p.
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For the CVP, there is a generalisation of the proof for every p-norm in [15, p.
48, Chap. 3.2, Thm 3.1] which we also formalized. Let a1, . . . , an, s be an instance
of Subset Sum. The reduction function maps this instance to:

L =

⎛

⎜⎜⎜
⎝

a1 · · · an

2 0
. . .

0 2

⎞

⎟⎟⎟
⎠

· Zn b =

⎛

⎜⎜⎜
⎝

s
1
...
1

⎞

⎟⎟⎟
⎠

k = p
√

n

Then the following theorem holds:

Theorem 4. The above mapping is a reduction from the Subset Sum problem
to the CVP in p-norm.

This implies that the CVP in p-norm is an NP-hard problem. The outline to
the proof is given in Sect. 3 after Theorem 1. The important difference to the
infinity norm is that the bound k scales with the dimension n of the lattice.

For the SVP, there is no known deterministic NP-hardness result in the
Euclidean norm, or even any p-norm. However, Ajtai [1,2] found an interesting
alternative which is quite useful for the application in cryptography, namely
randomized reductions using polynomial-time probabilistic reduction functions.
In cryptography, these results guarantee the hardness of “average” cases. That
is, given an average instance according to a probability distribution, it will most
likely be intractable.

7 Time Complexity

As stated in Sect. 2, time complexity of the above reduction functions has not
been formalized. However, we give a short explanation why all reduction func-
tions are indeed in polynomial time.

Subset Sum to CVP: The reduction function as given in Eq. (1) creates
(n + 2)(n + 1) + 1 values using only memory access or one addition. Therefore,
the time complexity in this case is O(n2).

Partition to BHLE: In this case, the reduction function maps the input a of
length n to b as defined in Eq. (7). The value k = 1 is fixed. Then a is mapped
to a vector of length 5n − 1. When calculating the bi, we need to calculate the
value of M as in (4). As we sum over all input values, this lies in O(n). Each
bi can then be calculated in O(n) since it only contains a constant number of
additions of the input with fixed cofactors (see (5)–(6)). Putting the construction
of the list and the calculation of the bi together, we find that the whole reduction
function is in O(n2).

BHLE to the SVP: Consider the reduction function as given in Eq. (5) using
the value k′′

2 as in (9). Calculating k′′
2 requires n + 2 memory accesses which

are processed in n + 4 arithmetic operations, thus having a time complexity of
O(n). Every other entry in the matrix is calculated on O(1), since they contain
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at most two memory accesses and at most two arithmetic operations. The input
generates (n+1)2 +1 values, of which (n+1)(n+1) are in O(1) (namely all the
zeros and ones, the vector (k + 1) · a and the constraint k) and one is calculated
in O(n) (namely k′′

2 ). Thus, the whole reduction function lies in O(n2).

8 Outlook

With this paper, we now have a formal proof for NP-hardness of the CVP and
SVP in the infinity norm, as well as a formal proof of the CVP in p-norm (for
1 ≤ p < ∞). In the formalization process, many gaps and imprecisions in the
pen-and-paper proofs were fixed. The changes to the original proofs have been
elaborated with explanations and examples. Unfortunately, giving a determin-
istic reduction proof of the SVP in p norm for p < ∞ is still an open prob-
lem. Under probabilistic assumptions, Ajtai showed NP-hardness of the SVP in
Euclidean norm in [2].

An interesting topic for future work is to develop a framework for probabilistic
reductions such as in [2]. This will give the foundation to extend formalization
of hardness proofs to other problems in lattice theory, especially those used in
lattice-based cryptography, such as the Learning with Errors (LWE) Problem,
Ring-LWE and Module-LWE. This will underline the security of many lattice-
based crypto systems. Another topic for future work is to formalize the hardness
proofs for approximate versions of the CVP and SVP.
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