
COOL 2 – A Generic Reasoner for Modal
Fixpoint Logics (System Description)

Oliver Görlitz1, Daniel Hausmann2 , Merlin Humml1(B) , Dirk Pattinson3 ,
Simon Prucker1 , and Lutz Schröder1

1 Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
merlin.humml@fau.de

2 Gothenburg University, Gothenburg, Sweden
3 Australian National University, Canberra, Australia

Abstract. There is a wide range of modal logics whose semantics goes
beyond relational structures, and instead involves, e.g., probabilities,
multi-player games, weights, or neighbourhood structures. Coalgebraic
logic serves as a unifying semantic and algorithmic framework for such
logics. It provides uniform reasoning algorithms that are easily instan-
tiated to particular, concretely given logics. The COOL 2 reasoner pro-
vides an implementation of such generic algorithms for coalgebraic modal
fixpoint logics. As concrete instances, we obtain in particular reason-
ers for the aconjunctive and alternation-free fragments of the graded
μ-calculus and the alternating-time μ-calculus. We evaluate the tool
on standard benchmark sets for fixpoint-free graded modal logic and
alternating-time temporal logic (ATL), as well as on a dedicated set of
benchmarks for the graded μ-calculus.

1 Introduction

Modal and temporal logics are established tools in the specification and verifica-
tion of systems. While many such logics are interpreted over relational transition
systems, the semantics of quite a number of important logics goes beyond the
relational setup, involving, for instance, probabilities [20,30], concurrent games
as in alternating-time logics [1,36], monotone neighbourhoods structures as in
game logic [34] and concurrent dynamic logic [37], or integer transition weights as
in the multigraph semantics [5] of the graded μ-calculus [25]. Coalgebraic logic [4]
provides a uniform semantic and algorithmic framework for these logics, based
on the paradigm of universal coalgebra [38]. It provides reasoning algorithms
of optimal complexity at various levels of expressiveness, up to the coalgebraic

D. Hausmann—Supported by the ERC Consolidator grant D-SynMA (No. 772459)
M. Humml—Supported by Deutsche Forschungsgemeinschaft (DFG) as part of the
Research Training Group 2475 (grant number 393541319/GRK2475/1-2019) and the
project ‘RAND’ (grant number 377333057).
L. Schröder—Supported by Deutsche Forschungsgemeinschaft (DFG) under project no.
419850228.

c© The Author(s) 2023
B. Pientka and C. Tinelli (Eds.): CADE 2023, LNAI 14132, pp. 234–247, 2023.
https://doi.org/10.1007/978-3-031-38499-8_14

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-38499-8_14&domain=pdf
http://orcid.org/0000-0002-0935-8602
http://orcid.org/0000-0002-2251-8519
http://orcid.org/0000-0002-5832-6666
http://orcid.org/0009-0000-2317-5565
http://orcid.org/0000-0002-3146-5906
https://doi.org/10.1007/978-3-031-38499-8_14

COOL 2 System Description 235

μ-calculus [3,21–23]. These algorithms are parametric in the transition type of
systems (weighted, probabilistic, game-based etc.) as well as in suitable choices
of modalities specific to the given system type. Their instantiation to specific
logics requires providing either a set of next-step modal tableau rules satisfying
a suitable completeness criterion [41] or, more generally, a plug-in algorithm that
determines satisfiability for an extremely simple one-step logic that describes the
interaction between modalities, and consists of (conjunctions of) modal opera-
tors applied to variables only [29].

The COalgebraic Ontology Logic solver (COOL) provides reasoning support
for coalgebraic logics based on these generic algorithms. The first version of the
tool [15] provided reasoning support for fixpoint-free coalgebraic hybrid logic
with global assumptions, using a global caching principle [13]. In the present
paper, we present COOL 2, which provides reasoning support for coalgebraic fix-
point logics, specifically for both the aconjunctive fragment and the alternation-
free fragment of the coalgebraic μ-calculus. By instantiation, we obtain in par-
ticular the first implemented reasoners for the graded μ-calculus [26] (for which
a set of coalgebraic modal tableau rules has been described in the literature [41];
however, this rule set has later turned out to be incomplete, cf. Remark 2.3)
and the alternating-time μ-calculus [1]. We describe the structure of the tool
including implementational details, and present evaluation results, focusing on
the graded μ-calculus and alternating-time temporal logic (ATL). Additional
details on the evaluation can be found in the full version [17].

Related Work: We have already mentioned work in coalgebraic logic on which
COOL is based [3,13,21–23,41]. COOL is conceptually a successor of the Coal-
gebraic Logic Satisfiability Solver (CoLoSS) [2] but does not share any of its
code. CoLoSS implements fixpoint-free logics, and is entirely unoptimised. The
first version of COOL [15] has been evaluated on fixpoint-free next-step logics.

COOL does cover also various relational modal logics, for which there are
numerous specialised reasoners, including highly optimised description logic rea-
soners such as FaCT++ [44], Pellet [42], RACER [18], and HermiT [12]. As these
systems do not support fixpoint logics, a comparison would be of limited value.
In previous work, COOL has been evaluated on various relational fixpoint log-
ics, and has been shown to perform favourably on Computation Tree Logic [23]
(in comparison to reasoners featured in a previous systematic evaluation [14]),
as well as on the aconjunctive fragment of the modal μ-calculus [22] (in com-
parison to MLSolver [11]). A reasoner for (next-step) graded modal logic has
been evaluated against various description logic reasoners [43], using however
the above-mentioned incomplete set of modal tableau rules.

For the same reasons, we refrain from evaluating COOL 2 against reason-
ers for coalition logic, i.e. the fixpoint-free fragment of the alternating-time μ-
calculus, such as CLProver [32]. The only implemented reasoner for any fragment
of the alternating-time μ-calculus that does include fixpoints still appears to be
the tableau reasoner TATL for alternating-time temporal logic [6,7]. TATL has
been compared to COOL on random formulas in previous work [23].

236 O. Görlitz et al.

2 Satisfiability in the Coalgebraic µ-Calculus

COOL 2 is a satisfiability checker for the coalgebraic μ-calculus [3], that is, for
the extension of coalgebraic modal logic with extremal fixpoint operators. For-
mulas of this logic are interpreted over coalgebras, where the semantics of modal
operators is defined by means of so-called predicate liftings [41]; we recapitulate
examples of system types and modalities subsumed by this paradigm in Example
2.1.

Syntax: Formulas are built relative to a set Var of fixpoint variables and a modal
similarity type Λ, that is, a set of modal operators with assigned finite arities
that is closed under duals, with ♥ ∈ Λ denoting the dual of ♥ ∈ Λ. Formulas
ψ, φ, . . . of the coalgebraic μ-calculus over Λ are given by the grammar

ψ, φ := ⊥ | � | ψ ∧ φ | ψ ∨ φ | ♥(ψ1, . . . , ψn) | X | μX.ψ | νX.ψ,

where ♥ ∈ Λ has arity n and X ∈ Var. A formula χ is aconjunctive if for every
conjunction ψ∧φ that is a subformula of χ, at most one of the formulas ψ and φ
contains a free fixpoint variable X that is bound by a least fixpoint operator μX.
While the logic does not contain negation as an explicit operator, full negation
can be defined as usual; e.g. we have ¬♥ψ = ♥¬ψ and ¬μX.ψ = νX.¬ψ[¬X/X],
using ¬¬X = X.

Both the theoretical satisfiability checking algorithm and its implementa-
tion in COOL 2 operate on the Fischer-Ladner closure [21,24,27] of the target
formula. The alternation depth (e.g. [21,29,33]) of a formula is the maximum
depth of dependent alternating nestings of least and greatest fixpoints within
the formula. Formulas with alternation depth 1 are alternation-free.

Semantics: Formulas are interpreted over F -coalgebras, that is, structures

(C, ξ : C → FC),

where F : Set → Set is a functor determining the branching type of the systems at
hand; thus ξ(x) ∈ FC encodes the transitions from x ∈ C, structured according
to F . Modalities ♥ ∈ Λ of arity n are interpreted as predicate liftings, that is,
families of maps �♥�U : (2U)n → 2FU (for U ∈ Set) that assign predicates on FU
to n-tuples of predicates on U , subject to a naturality condition [35,40]. On a
coalgebra (C, ξ), the semantics of formulas is defined inductively in the usual
way for the propositional operators and fixpoints, and by �♥(ψ1, . . . , ψn)� =
ξ−1[�♥�C(�ψ1�, . . . , �ψn�)] for modalities.

A closed formula ψ is satisfiable if there is a coalgebra (C, ξ) and a state
x ∈ C such that x ∈ �ψ�. A formula ψ is valid if ¬ψ is not satisfiable.

Example 2.1.(1) The standard modal μ-calculus [24] is obtained using the
functor F = P(A) × P, where A is a fixed set of atoms, the similarity type
Λ = {♦,�, a,¬a | a ∈ A}, and predicate liftings

�♦�C(B) = {(A, Z) ∈ 2A × 2C | Z ∩ B �= ∅} �a�C = {(A, Z) ∈ 2A × 2C | a ∈ A}
���C(B) = {(A, Z) ∈ 2A × 2C | Z ⊆ B} �¬a�C = {(A, Z) ∈ 2A × 2C | a /∈ A}

COOL 2 System Description 237

The expressive power of the modal μ-calculus is demonstrated by the for-
mulas

μX. νY. (p ∧ ♦Y) ∨ ♦X νX.μY. (p ∧ ♦X) ∨ ♦Y.

The former is a co-Büchi formula expressing the existence of a path on
which p holds forever, from some point on; the latter formula expresses the
Büchi property that there is a path on which the atom p is satisfied infinitely
often.

(2) The graded μ-calculus [26] allows expressing quantitative properties with
the help of modal operators 〈n〉 and [n], n ∈ N; formulas 〈n〉ψ and [n]ψ then
have the intuitive meaning that ‘there are more than n successor states that
satisfy ψ’, and ‘all but at most n successor states satisfy ψ’, respectively.
Its coalgebraic interpretation is based on multigraphs, which are coalgebras
for the multiset functor [5]. A graded variant of the above Büchi property
is specified, e.g., by the formula νX. μY. (p ∧ 〈n〉X) ∨ 〈n〉Y , which expresses
the existence of an infinite n + 1-ary tree such that the atom p is satisfied
infinitely often on every path in the tree.

(3) The alternating-time μ-calculus (AMC) [39] extends coalition logic [36] with
fixpoints and (modulo syntax) supports modalities 〈D〉 and [D], where D ⊆
N is a coalition formed by agents from the set N = {1, . . . , n} for some fixed
n ∈ N; formulas 〈D〉ψ and [D]ψ then state that ‘coalition D has a joint
strategy to enforce ψ’ and that ‘coalition D cannot prevent ψ’, respectively.
For instance, the formula νX. μY. νZ. (p∧〈D〉X)∨ (q ∧〈D〉Y)∨ (¬q ∧〈D〉Z)
expresses that coalition D has a joint multi-step strategy that guarantees
that p is visited infinitely often whenever q is visited infinitely often.

Satisfiability Checking: We proceed to recall the satisfiability checking algorithm
for the coalgebraic μ-calculus that forms the basis of the implementation within
COOL 2. This algorithm adapts the automata-based approach to satisfiability
checking for the standard μ-calculus, and generalises the treatment of modal
steps by parametrizing over a solver for the one-step satisfiability problem of the
logic, which concerns satisfiability of formulae with exactly one layer of next-step
modalities [21]. It thus avoids the necessity of tractable sets of tableaux rules
for modal operators. Under mild assumptions on the complexity of the one-step
satisfiability problem of the base logic at hand (‘tractability ’), the algorithm
witnesses a, typically optimal, upper bound ExpTime for the complexity of
the satisfiability problem; unlike a previous algorithm [4], the algorithm thus
has optimal runtime also in cases where no tractable sets of modal tableaux
rules are known, such as the graded (or, more generally, Presburger) μ-calculus
(further cases of this kind include the probabilistic μ-calculus with polynomial
inequalities [21] and the unrestricted form of the alternating-time μ-calculus with
disjunctive explicit strategies [16]).

The algorithm constructs and solves a parity game that characterises satis-
fiability of the input formula χ. In this game one player attempts to construct
a tableau structure for χ while the opposing player attempts to refute the exis-
tence of such a structure. Modal steps in this tableau construction are treated

238 O. Görlitz et al.

by using instances of the one-step satisfiability problem for the logic at hand,
thereby generalising traditional modal tableau rules. The winning condition of
the game is encoded by a non-deterministic parity automaton Aχ, reading infi-
nite words that encode sequences of step-wise formula evaluations (so-called for-
mula traces) within a coalgebra; such words encode branches in the constructed
tableau structure. Conjunctions give rise to nondeterminism in this automaton,
and the parity condition of the automaton is used to accept exactly those words
that encode sequences of formula evaluations in which some least fixpoint is
unfolded infinitely often. To use the language accepted by Aχ as the winning
condition in a parity game, we transform Aχ to an equivalent deterministic par-
ity automaton Bχ. This automaton then is paired with the tableau construction
to yield a parity game in which the existential player aims to show the existence
of a tableau structure in which all branches are rejected by Bχ, and that is built
in such a way that modalities always are jointly one-step satisfiable. To ensure
the latter property, the modal moves in the game invoke instances of the one-step
satisfiability problem of the base logic. For more details on one-step satisfiability
and the overall algorithm, see [17,21].

Corollary 2.2 ([21]). Suppose that the one-step satisfiability problem is
tractable. Then the satisfiability problem of the corresponding instance of the
coalgebraic μ-calculus is in ExpTime.

Remark 2.3. As mentioned above, previous algorithms for the coalgebraic
μ-calculus (also implemented in COOL 2) rely on complete sets of modal
tableau rules, specifically on one-step cutfree complete sets of so-called one-
step rules [41]; such rules (in their incarnation as tableau rules) have a premiss
with exactly one layer of modal operators and a purely propositional conclu-
sion. A typical example is the usual tableau rule for the modal logic K: ‘To
satisfy �a1 ∧ · · · ∧ �an ∧ ¬�a0, satisfy a1 ∧ · · · ∧ an ∧ ¬a0’. It has been shown
that the existence of a tractable one-step cutfree complete set of one-step rules
implies tractability of one-step satisfiability [29], i.e. the approach via one-step
satisfiability is more general.

As indicated in the introduction, a tractable one-step cutfree complete set of
one-step rules for graded modal logic has been claimed in the literature [41,43]
but has since turned out to be incomplete; we give a counterexample in the full
version [17]. (A similar rule for Presburger modal logic [28] has also been shown
to be in fact incomplete [29].)

3 Implementation

The previous version COOL [15] only implements fixpoint-free (coalgebraic) log-
ics, such as standard modal logic, probabilistic modal logic, or coalition logic.
The main novelty of the new version COOL 2, described here, is

– the addition of fixpoint constructs to the previously implemented logics, sup-
porting alternation-free and aconjunctive fragments of the resulting μ-calculi,
and implementing on-the-fly solving to allow early termination

COOL 2 System Description 239

– support for treating modal steps both by tableaux rules (when a suitable rule
set exists), and by one-step satisfiability checking (in the remaining cases)

In more detail, COOL 2 is written in OCaml and implements the satisfiabil-
ity checking algorithm described in Sect. 2, treating modal steps by solving
instances of the one-step satisfiability problem1. For logics where a suitable set of
modal tableau rules is implemented, those are used for the treatment of modal
steps, rather than relying on one-step satisfiability (unless the user explicitly
chooses otherwise); in these cases, COOL 2 essentially implements the algo-
rithm described in [29]. The current implementation supports the alternation-
free and the aconjunctive fragments of the standard μ-calculus (both serial and
non-serial), the monotone μ-calculus [19], the alternating-time μ-calculus (i.e.
coalition logic with fixpoint operators), and the graded μ-calculus. Tractable
tableaux rules are available for all cases except for the graded μ-calculus, for
which COOL 2 uses the one-step satisfiability algorithm to decide satisfiability.
In particular, COOL 2 is the only existing reasoner for the graded μ-calculus (as
well as the only reasoner covering the alternating-time μ-calculus beyond ATL).

The concrete logic used can be selected via a command-line parameter set-
ting up the data structures in COOL 2 accordingly before parsing and check-
ing the syntax of the given formula χ. COOL 2 then builds the determinised
automaton Bχ, yielding the parity game described above in a step-wise man-
ner, repeatedly adding nodes in expansion steps that explore the game. In the
case of simpler alternation-free formulas, the Miyano-Hayashi method [31] is
used to construct Bχ, resulting in asymptotically smaller games with a Büchi
winning condition; for the more involved aconjunctive formulas, the implemen-
tation uses the permutation method for determinisation of limit-deterministic
parity automata [9,22]. Nodes in the constructed game are marked as either
unexpanded, undecided, unsatisfiable, or satisfiable.

Optional solving steps may take place at any point during the construction of
Bχ, depending on runtime parameters of COOL 2; these steps compute the win-
ning regions of the partial game that has been constructed so far and accordingly
mark nodes as satisfiable or unsatisfiable, if possible. The reasoner terminates
as soon as the initial node is marked satisfiable or unsatisfiable. If this does
not allow for early termination, the game eventually becomes fully explored, at
which point a final (obligatory) solving step for the complete game is guaranteed
to mark the initial node, thereby ensuring termination.

We detail the implementation of the two main procedures within COOL 2.

Implementation of Expansion Steps. The propositional expansion steps in the
game construction for nodes v are performed using the propositional satisfiabil-
ity solver MiniSat [8] to compute a word that encodes consistent propositional
formula manipulations for v. Afterwards, the successor of v in Bχ under this
word is computed and added to the game.

When the one-step satisfiability based algorithm of COOL 2 is used, modal
expansion steps for nodes v create new game nodes for each subset κ of the
1 Sources are available at https://git8.cs.fau.de/software/cool.

https://git8.cs.fau.de/software/cool

240 O. Görlitz et al.

modalities that are to be jointly satisfied at v; this is done by computing the
successor of v in Bχ that is reached by manipulating each formula from κ.

When the tableau-based algorithm of COOL 2 is used, the modal expansion
step for a node v instead computes all applications of a modal rule matching v
and inserts, for each such rule application, and each conjunctive clause κ in the
conclusion of the rule application, the new game node that is reached from v
in Bχ by manipulating the modalities that constitute κ. Intuitively, using tableau
rules reduces the search space by only adding nodes found in the conclusion of
some matching rule application.

Any node that is added by some expansion step is initially marked as unde-
cided. Crucially, all expansion steps perform on-the-fly determinisation, that is,
given a game node v and a word that encodes a sequence of formula manipula-
tions, the newly added game node is computed using only the information stored
in v.

Implementation of Solving Steps. A single solving step computes the winning
regions in the parity game that has been constructed up to this point, and marks
nodes accordingly. The game solving is done using either the parity game solver
PGSolver [10] or a native implementation provided by COOL 2 that solves the
game by fixpoint iteration.

If the one-step satisfiability-based algorithm is used, an assigned modal node
v is satisfiable if its modalities are jointly one-step satisfiable in those successors
of v that are satisfiable themselves. An enumerative representation of the game
thus contains existential moves to all subsets Π of subsets of modalities of v that
are sufficiently large for one-step satisfaction of the modalities of v, followed
by universal moves to nodes induced by any κ ∈ Π; the full game thus is of
doubly-exponential size. This can be avoided by inlining the modal steps, thereby
evading the intermediate nodes Π. The winning region can then be computed
in single-exponential time by using COOL 2’s native fixpoint iteration over a
function that computes the two-tiered modal steps in one go.

Decision procedures for the one-step satisfiability problems in the relational
and the graded case are implemented in COOL 2 along the lines of the algorithms
described in [21, Example 6] (in the graded case, nondeterministic guessing is
replaced with a recursive search procedure).

If the algorithm based on modal tableau rules is used, the treatment of modal
steps follows the tableaux-based algorithm that is given in [3]. States v are sat-
isfiable if for all rule applications that match v, the conclusion of the application
contains a conjunctive clause κ such that the node induced by κ is satisfiable.

COOL 2 also allows the user to specify the desired frequency of optional
game solving steps, including the options once and adaptive. With the option
once, no intermediate solving takes place so that the game is fully constructed
and solved just once, at the very end of the execution. With the option adaptive,
intermediate solving takes places, but the frequency of solving reduces as the size
of the constructed graph increases; this option implements on-the-fly solving and
allows for finishing early in cases where a small model or refutation exists.

COOL 2 System Description 241

4 Evaluation

We conduct experiments in order to evaluate the performance of the various
algorithms implemented in COOL in comparison with each other, as well as
in comparison with other tools (where applicable).2 Complete definitions of all
formula series used in the evaluation as well as additional experimental results
can be found in the full version [17].

Experiments: In a first experiment, we compare COOL 2 with the established
reasoner FaCT++, which supports the description logic SROIQ(D) (subsuming
fixpoint-free graded modal logic), using the following series of formulas from
Snell et al. [43].

Cardinality(n) := 〈n − 1〉¬p ∧ 〈n − 1〉p ∧ [n]¬q ∧ [n]q (Sat)
CardinalityU(n) := 〈n − 1〉¬p ∧ 〈n − 1〉p ∧ [n]¬q ∧ [n − 1]q (UnSat)

Intuitively, the satisfiable Cardinality(n) formulas express that there are at least
2n successors and that both q and ¬q are satisfied in at most n successors,
each; similarly the unsatisfiable CardinalityU(n) formulas state that there are at
least 2n successors, and that q and ¬q hold in at most n and n − 1 successors,
respectively; the latter statements imply that there are at most 2n−1 successors,
yielding a contradiction.

Going beyond next-step formulas, we continue by devising various complex
series of graded μ-calculus formulas that involve (nested) fixpoints and express
non-trivial properties of graded trees, automata and games.

– We obtain a series of unsatisfiable formulas by requiring the existence of an
n + 1-branching tree in which p holds everywhere while at the same time
requiring that this tree contains some state with n+ 2 successors that satisfy
p:

TreeU(n) = (νX. 〈n〉(p ∧ X) ∧ [n + 1]¬p) ∧ (μY. 〈n + 1〉p ∨ 〈n〉(p ∧ Y)) (UnSat)

– Next we turn our attention to graded formulas involving parity conditions.
We devise a series of valid formulas expressing that graded parity automata
can be transformed to graded Büchi automata accepting a superlanguage of
the original automaton:

ParityToBuechi(n, k) := Parity(n, k) → Buechi(n, k) (Valid)

Here, Parity(n, k) encodes parity acceptance with k priorities and grade n
while Buechi(n, k) expresses Büchi acceptance by a nondeterministic automa-
ton that eventually guesses the maximal priority that occurs infinitely often;
the negated formula ¬ParityToBuechi(n, k) is unsatisfiable.

2 Scripts and executables that allow for reproducing our experiments can be found at
DOI 10.5281/zenodo.8042581.

https://doi.org/10.5281/zenodo.8042581

242 O. Görlitz et al.

– Rabin conditions are given by families of pairs 〈ij , fj〉j≤k of sets ij , fj of states,
and express the constraint that there is some j ≤ k such that states from ij
(infinite) are visited infinitely often and states from fj (finite) are visited
only finitely often. We can express Rabin conditions with k pairs (and one-
step property ψ), Büchi properties and satisfaction of single Rabin-pairs by
formulas Rabin(k, ψ), Buechi(f, ψ) and RabinPair(i, f, ψ), respectively. Then
we obtain valid formulas stating that the existence of an n+1-branching tree
that satisfies the Rabin condition on each path implies that there is a path
satisfying a simpler Büchi condition or a single Rabin-pair, respectively:

RabinToBuechi(k, n) := Rabin(k, 〈n〉) → Buechi(i1 ∨ . . . ∨ ik, 〈0〉) (Valid)
RabinToRPair(k, n) := Rabin(k, 〈n〉) → ∨

1≤j≤k RabinPair(ij , fj , 〈0〉) (Valid)

– Coming to games, we specify the winning regions in graded Büchi and
Rabin games by formulas BuechiG(f, n) and RabinG(k, n), respectively; in
such graded games, players are required to have at least n winning moves at
their nodes in order to win. The following valid formulas then express that
winning strategies in graded Rabin games with k pairs guarantee that some
node from i1 ∪ . . . ∪ ik is visited infinitely often:

RabinGame(k, n) := RabinG(k, n) → BuechiG(i1 ∨ . . . ∨ ik, n) (Valid)

In a final experiment on alternating-time formulas, we compare COOL 2
with TATL [6] on the ATL example formulas given in [6] as well as on additional
formula series. For instance, we turn the formula 〈〈1〉〉Gp∧¬〈〈2〉〉F 〈〈1〉〉Gp (written
here using ATL syntax) from [6] into a series Nest(n) with increasing number of
nested operators; formulas then alternatingly are satisfiable and unsatisfiable:

χ(0) = p χ(i + 1) = ¬〈〈2〉〉F 〈〈1〉〉Gχ(i) Nest(n) = 〈〈1〉〉Gp ∧ χ(n),

Results: We conducted all experiments on a virtual machine with four 2, 3GHz
vCPUs processors and 8GB of RAM. We compare with a 64-bit binary of
FaCT++ v1.6.5 and with TATL. We compute all results with a timeout of 60
seconds and average the results over multiple executions. For the execution and
measurement we use hyperfine3. Below, ‘COOL’ and ‘COOL on-the-fly’ refer to
invoking COOL 2 with solving rate once and adaptive, respectively.

Results for the Cardinality and CardinalityU series are shown in Fig. 1 and
Fig. 2, respectively. From n = 10 and n = 8 onwards, COOL 2 outperforms
FaCT++ considerably. An explanation for this could be that FaCT++ appears
to treat multiplicities in a näıve way while COOL 2 employs the more efficient
one-step satisfiability algorithm.

Results for the unsatisfiable tree property are shown in Fig. 3. As these for-
mulas contain fixpoint operators, a comparison with FaCT++ is not possible.
While COOL 2 is generally capable of handling quite large branching factors,
this experiment showcases the drawbacks of on-the-fly solving in the case that a
formula cannot be decided early so that repeated attempts of solving the game
early lead to overhead computations.
3 https://github.com/sharkdp/hyperfine.

https://github.com/sharkdp/hyperfine

COOL 2 System Description 243

Fig. 1. Runtimes for Cardinality(n) Fig. 2. Runtimes for CardinalityU(n)

Fig. 3. Runtimes for TreeU(n) Fig. 4. Runtimes for ¬ParityToBuechi(n, k)

Runtimes for COOL 2 (using on-the-fly solving) on the unsatisfiable series of
parity formulas ¬ParityToBuechi(n, k) are shown in Fig. 4. The results indicate
that increasing the number of priorities k has a much stronger effect on the
runtime than increasing multiplicities n in the modalities. This is in accordance
with expectations as increasing k leads to much larger determinized automata
and resulting satisfiabilty games, while increasing n only complicates the modal
steps in the game while leaving the global game structure unchanged.

Results for the Rabin families of formulas are given in the table below, with †
indicating a timeout of 60 s. COOL 2 is able to handle reasonably large formulas
describing Rabin properties of automata and games, with the series for n = 1
expressing properties of standard automata (solved using tableau rules), and the
series with n = 2 properties of graded automata with multiplicity 2 (solved using
one-step satisfiability).

In accordance with previous experiments on random ATL formulas of larger
sizes in [23], COOL 2 generally outperforms TATL by a large margin, starting
from formulas containing at least five modalities or involving nesting of temporal
operators; this trend is confirmed by Fig. 5 which shows the stepped execution
times for the series Nest that alternates between being satisfiable and unsatisfi-
able

244 O. Görlitz et al.

k/series 1 2 3

RabinToBuechi(k, 1) 0.03 0.51 45.25
RabinToBuechi(k, 2) 0.08 10.56 †
RabinToRPair(k, 1) 0.03 8.38 †
RabinToRPair(k, 2) 0.07

43.94

†
RabinGame(k, 1) 0.05 1.04 †
RabinGame(k, 2) 0.31

Fig. 5. Runtimes for the ATL series Nest(n)

In summary, COOL 2 shows promising performance in comparison to TATL
and FaCT++, as well as for practical applicability. On graded formulas without
fixpoints, COOL 2 scales much better than FaCT++ with regard to increasing
multiplicities. In the presence of fixpoints, COOL 2 still scales well and can han-
dle multiplicities that should be sufficient for practical use. The formula series
¬ParityToBuechi appears to show the limits of COOL 2 with the current imple-
mentation of graded one-step satisfiability checking. Nonetheless, our results
indicate that COOL 2 is capable of automatically proving or refuting involved
properties of (graded) ω-automata and games in reasonable time.

5 Conclusion

We have described and evaluated the current version COOL 2 of the COalgebraic
Ontology Logic reasoner (COOL). Future development will include the imple-
mentation of additional instance logics, such as the probabilistic and graded
μ-calculus with linear inequalities, as well as support for the full coalgebraic
μ-calculus via on-the-fly determinisation of unrestricted Büchi automata, using
the Safra-Piterman construction.

References

1. Alur, R., Henzinger, T., Kupferman, O.: Alternating-time temporal logic. J. ACM
49, 672–713 (2002). https://doi.org/10.1145/585265.585270

2. Calin, G., Myers, R., Pattinson, D., Schröder, L.: CoLoSS: the coalgebraic logic
satisfiability solver. In: Methods for Modalities, M4M–5. ENTCS, vol. 231, pp.
41–54. Elsevier (2009). https://doi.org/10.1016/j.entcs.2009.02.028

3. Ĉırstea, C., Kupke, C., Pattinson, D.: EXPTIME tableaux for the coalgebraic μ-
calculus. Log. Meth. Comput. Sci. 7 (2011). https://doi.org/10.2168/LMCS-7(3:
3)2011

4. Ĉırstea, C., Kurz, A., Pattinson, D., Schröder, L., Venema, Y.: Modal logics are
coalgebraic. Comput. J. 54, 31–41 (2011). https://doi.org/10.1093/comjnl/bxp004

5. D’Agostino, G., Visser, A.: Finality regained: a coalgebraic study of Scott-sets
and multisets. Arch. Math. Logic 41, 267–298 (2002). https://doi.org/10.1007/
s001530100110

https://doi.org/10.1145/585265.585270
https://doi.org/10.1016/j.entcs.2009.02.028
https://doi.org/10.2168/LMCS-7(3:3)2011
https://doi.org/10.2168/LMCS-7(3:3)2011
https://doi.org/10.1093/comjnl/bxp004
https://doi.org/10.1007/s001530100110
https://doi.org/10.1007/s001530100110

COOL 2 System Description 245

6. David, A.: TATL: implementation of ATL tableau-based decision procedure. In:
Galmiche, D., Larchey-Wendling, D. (eds.) TABLEAUX 2013. LNCS (LNAI), vol.
8123, pp. 97–103. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-
40537-2 10

7. David, A.: Deciding ATL∗ satisfiability by tableaux. In: Felty, A.P., Middeldorp, A.
(eds.) CADE 2015. LNCS (LNAI), vol. 9195, pp. 214–228. Springer, Cham (2015).
https://doi.org/10.1007/978-3-319-21401-6 14

8. Eén, N., Sörensson, N.: An extensible SAT-solver. In: Giunchiglia, E., Tacchella,
A. (eds.) SAT 2003. LNCS, vol. 2919, pp. 502–518. Springer, Heidelberg (2004).
https://doi.org/10.1007/978-3-540-24605-3 37

9. Esparza, J., Kret́ınský, J., Raskin, J., Sickert, S.: From linear temporal logic and
limit-deterministic Büchi automata to deterministic parity automata. Int. J. Softw.
Tools Technol. Transf. 24(4), 635–659 (2022). https://doi.org/10.1007/s10009-022-
00663-1

10. Friedmann, O., Lange, M.: The PGSolver collection of parity game solvers. Tech-
nical report, LMU Munich (2009)

11. Friedmann, O., Lange, M.: A solver for modal fixpoint logics. In: Methods for
Modalities, M4M–6 2009. ENTCS, vol. 262, pp. 99–111 (2010). https://doi.org/
10.1016/j.entcs.2010.04.008

12. Glimm, B., Horrocks, I., Motik, B., Stoilos, G., Wang, Z.: HermiT: an OWL 2 rea-
soner. J. Autom. Reason. 53(3), 245–269 (2014). https://doi.org/10.1007/s10817-
014-9305-1

13. Goré, R., Kupke, C., Pattinson, D., Schröder, L.: Global caching for coalgebraic
description logics. In: Giesl, J., Hähnle, R. (eds.) IJCAR 2010. LNCS (LNAI), vol.
6173, pp. 46–60. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-
14203-1 5

14. Goré, R., Thomson, J., Widmann, F.: An experimental comparison of theorem
provers for CTL. In: Temporal Representation and Reasoning, TIME 2011, pp.
49–56. IEEE (2011). https://doi.org/10.1109/TIME.2011.16

15. Goŕın, D., Pattinson, D., Schröder, L., Widmann, F., Wißmann, T.: Cool – a
generic reasoner for coalgebraic hybrid logics (system description). In: Demri, S.,
Kapur, D., Weidenbach, C. (eds.) IJCAR 2014. LNCS (LNAI), vol. 8562, pp. 396–
402. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-08587-6 31

16. Göttlinger, M., Schröder, L., Pattinson, D.: The alternating-time μ-calculus with
disjunctive explicit strategies. In: Baier, C., Goubault-Larrecq, J. (eds.) Computer
Science Logic, CSL 2021. LIPIcs, vol. 183, pp. 26:1–26:22. Schloss Dagstuhl -
Leibniz-Zentrum für Informatik (2021). https://doi.org/10.4230/LIPIcs.CSL.2021.
26

17. Görlitz, O., Hausmann, D., Humml, M., Pattinson, D., Prucker, S., Schröder, L.:
Cool 2 - a generic reasoner for modal fixpoint logics (2023). https://arxiv.org/abs/
2305.11015

18. Haarslev, V., Möller, R.: RACER system description. In: Goré, R., Leitsch, A.,
Nipkow, T. (eds.) IJCAR 2001. LNCS, vol. 2083, pp. 701–705. Springer, Heidelberg
(2001). https://doi.org/10.1007/3-540-45744-5 59

19. Hansen, H.H., Kupke, C., Marti, J., Venema, Y.: Parity games and automata for
game logic. In: Madeira, A., Benevides, M. (eds.) DALI 2017. LNCS, vol. 10669,
pp. 115–132. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-73579-5 8

20. Hansson, H., Jonsson, B.: A logic for reasoning about time and reliability. Formal
Asp. Comput. 6, 512–535 (1994). https://doi.org/10.1007/BF01211866

https://doi.org/10.1007/978-3-642-40537-2_10
https://doi.org/10.1007/978-3-642-40537-2_10
https://doi.org/10.1007/978-3-319-21401-6_14
https://doi.org/10.1007/978-3-540-24605-3_37
https://doi.org/10.1007/s10009-022-00663-1
https://doi.org/10.1007/s10009-022-00663-1
https://doi.org/10.1016/j.entcs.2010.04.008
https://doi.org/10.1016/j.entcs.2010.04.008
https://doi.org/10.1007/s10817-014-9305-1
https://doi.org/10.1007/s10817-014-9305-1
https://doi.org/10.1007/978-3-642-14203-1_5
https://doi.org/10.1007/978-3-642-14203-1_5
https://doi.org/10.1109/TIME.2011.16
https://doi.org/10.1007/978-3-319-08587-6_31
https://doi.org/10.4230/LIPIcs.CSL.2021.26
https://doi.org/10.4230/LIPIcs.CSL.2021.26
https://arxiv.org/abs/2305.11015
https://arxiv.org/abs/2305.11015
https://doi.org/10.1007/3-540-45744-5_59
https://doi.org/10.1007/978-3-319-73579-5_8
https://doi.org/10.1007/BF01211866

246 O. Görlitz et al.

21. Hausmann, D., Schröder, L.: Optimal satisfiability checking for arithmetic μ-
calculi. In: Bojańczyk, M., Simpson, A. (eds.) FoSSaCS 2019. LNCS, vol. 11425, pp.
277–294. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-17127-8 16

22. Hausmann, D., Schröder, L., Deifel, H.-P.: Permutation games for the weakly acon-
junctive μ-calculus. In: Beyer, D., Huisman, M. (eds.) TACAS 2018. LNCS, vol.
10806, pp. 361–378. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-
89963-3 21

23. Hausmann, D., Schröder, L., Egger, C.: Global caching for the alternation-free
coalgebraic μ-calculus. In: Concurrency Theory, CONCUR 2016. LIPIcs, vol. 59,
pp. 34:1–34:15. Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2016). https://
doi.org/10.4230/LIPIcs.CONCUR.2016.34

24. Kozen, D.: Results on the propositional μ-calculus. Theor. Comput. Sci. 27, 333–
354 (1983). https://doi.org/10.1016/0304-3975(82)90125-6

25. Kupferman, O., Piterman, N., Vardi, M.Y.: Fair equivalence relations. In: Der-
showitz, N. (ed.) Verification: Theory and Practice. LNCS, vol. 2772, pp. 702–732.
Springer, Heidelberg (2003). https://doi.org/10.1007/978-3-540-39910-0 30

26. Kupferman, O., Sattler, U., Vardi, M.Y.: The complexity of the graded μ-calculus.
In: Voronkov, A. (ed.) CADE 2002. LNCS (LNAI), vol. 2392, pp. 423–437. Springer,
Heidelberg (2002). https://doi.org/10.1007/3-540-45620-1 34

27. Kupke, C., Marti, J., Venema, Y.: Size measures and alphabetic equivalence in the
μ-calculus. In: Baier, C., Fisman, D. (eds.) Logic in Computer Science, LICS 2022,
pp. 18:1–18:13. ACM (2022). https://doi.org/10.1145/3531130.3533339

28. Kupke, C., Pattinson, D.: On modal logics of linear inequalities. In: Advances in
Modal Logic, AiML 2010, pp. 235–255. College Publications (2010)

29. Kupke, C., Pattinson, D., Schröder, L.: Coalgebraic reasoning with global assump-
tions in arithmetic modal logics. ACM Trans. Comput. Log. 23(2), 11:1–11:34
(2022). https://doi.org/10.1145/3501300

30. Larsen, K., Skou, A.: Bisimulation through probabilistic testing. Inform. Comput.
94, 1–28 (1991). https://doi.org/10.1016/0890-5401(91)90030-6

31. Miyano, S., Hayashi, T.: Alternating finite automata on ω-words. Theor. Comput.
Sci. 32, 321–330 (1984). https://doi.org/10.1016/0304-3975(84)90049-5

32. Nalon, C., Zhang, L., Dixon, C., Hustadt, U.: A resolution prover for coalition
logic. In: Mogavero, F., Murano, A., Vardi, M.Y. (eds.) Strategic Reasoning, SR
2014. EPTCS, vol. 146, pp. 65–73 (2014). https://doi.org/10.4204/EPTCS.146.9

33. Niwiński, D.: On fixed-point clones. In: Kott, L. (ed.) ICALP 1986. LNCS, vol. 226,
pp. 464–473. Springer, Heidelberg (1986). https://doi.org/10.1007/3-540-16761-
7 96

34. Parikh, R.: Propositional game logic. In: Foundations of Computer Science, FOCS
1983. IEEE Computer Society (1983). https://doi.org/10.1109/SFCS.1983.47

35. Pattinson, D.: Expressive logics for coalgebras via terminal sequence induction.
Notre Dame J. Formal Logic 45, 19–33 (2004). https://doi.org/10.1305/ndjfl/
1094155277

36. Pauly, M.: A modal logic for coalitional power in games. J. Logic Comput. 12,
149–166 (2002). https://doi.org/10.1093/logcom/12.1.149

37. Peleg, D.: Concurrent dynamic logic. J. ACM 34, 450–479 (1987). https://doi.org/
10.1145/23005.23008

38. Rutten, J.: Universal coalgebra: a theory of systems. Theor. Comput. Sci. 249,
3–80 (2000). https://doi.org/10.1016/S0304-3975(00)00056-6

39. Schewe, S.: Synthesis of distributed systems. Ph.D. thesis, Universität des Saar-
lands (2008)

https://doi.org/10.1007/978-3-030-17127-8_16
https://doi.org/10.1007/978-3-319-89963-3_21
https://doi.org/10.1007/978-3-319-89963-3_21
https://doi.org/10.4230/LIPIcs.CONCUR.2016.34
https://doi.org/10.4230/LIPIcs.CONCUR.2016.34
https://doi.org/10.1016/0304-3975(82)90125-6
https://doi.org/10.1007/978-3-540-39910-0_30
https://doi.org/10.1007/3-540-45620-1_34
https://doi.org/10.1145/3531130.3533339
https://doi.org/10.1145/3501300
https://doi.org/10.1016/0890-5401(91)90030-6
https://doi.org/10.1016/0304-3975(84)90049-5
https://doi.org/10.4204/EPTCS.146.9
https://doi.org/10.1007/3-540-16761-7_96
https://doi.org/10.1007/3-540-16761-7_96
https://doi.org/10.1109/SFCS.1983.47
https://doi.org/10.1305/ndjfl/1094155277
https://doi.org/10.1305/ndjfl/1094155277
https://doi.org/10.1093/logcom/12.1.149
https://doi.org/10.1145/23005.23008
https://doi.org/10.1145/23005.23008
https://doi.org/10.1016/S0304-3975(00)00056-6

COOL 2 System Description 247

40. Schröder, L.: Expressivity of coalgebraic modal logic: the limits and beyond. Theor.
Comput. Sci. 390(2–3), 230–247 (2008). https://doi.org/10.1016/j.tcs.2007.09.023

41. Schröder, L., Pattinson, D.: PSPACE bounds for rank-1 modal logics. ACM Trans.
Comput. Log. 10(2), 13:1–13:33 (2009). https://doi.org/10.1145/1462179.1462185

42. Sirin, E., Parsia, B., Grau, B.C., Kalyanpur, A., Katz, Y.: Pellet: a practical
OWL-DL reasoner. J. Web Semant. 5(2), 51–53 (2007). https://doi.org/10.1016/
j.websem.2007.03.004

43. Snell, W., Pattinson, D., Widmann, F.: Solving graded/probabilistic modal logic
via linear inequalities (system description). In: Bjørner, N., Voronkov, A. (eds.)
LPAR 2012. LNCS, vol. 7180, pp. 383–390. Springer, Heidelberg (2012). https://
doi.org/10.1007/978-3-642-28717-6 30

44. Tsarkov, D., Horrocks, I.: FaCT++ description logic reasoner: system description.
In: Furbach, U., Shankar, N. (eds.) IJCAR 2006. LNCS (LNAI), vol. 4130, pp.
292–297. Springer, Heidelberg (2006). https://doi.org/10.1007/11814771 26

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the
chapter’s Creative Commons license, unless indicated otherwise in a credit line to the
material. If material is not included in the chapter’s Creative Commons license and
your intended use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright holder.

https://doi.org/10.1016/j.tcs.2007.09.023
https://doi.org/10.1145/1462179.1462185
https://doi.org/10.1016/j.websem.2007.03.004
https://doi.org/10.1016/j.websem.2007.03.004
https://doi.org/10.1007/978-3-642-28717-6_30
https://doi.org/10.1007/978-3-642-28717-6_30
https://doi.org/10.1007/11814771_26
http://creativecommons.org/licenses/by/4.0/

	COOL 2 – A Generic Reasoner for Modal Fixpoint Logics (System Description)
	1 Introduction
	2 Satisfiability in the Coalgebraic -Calculus
	3 Implementation
	4 Evaluation
	5 Conclusion
	References

