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1 Introduction 

Global Positioning System (GPS) is a commonly used instrument for estimation of 
localization of an object. GPS usage has expanded with the increase of autonomous 
systems (Wertz, 1992). Various studies have been created for GPS-based localiza-
tion (Erkec & Hajiyev, 2019; Soken and Hajiyev 2010, 2012). 

Global Positioning System satellites provide three-dimensional position, velocity, 
and time services, and many users benefit from these services using GPS-based 
positioning systems via devices such as phones, computers, and navigation 
(Maldonado et al., 1984). 
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Nonlinear problems become more accurate with the implementation of the 
Kalman filters, and GPS-based positioning is a nonlinear problem. The signals 
received by GPS transmitters are noisy data. The purpose of the study is to decrease 
the errors and obtain more accurate results (Kumar and Rao 2019). GPS data can be 
processed by various Kalman filter methods and in this study were processed with 
traditional extended Kalman filter (EKF), linear Kalman filter (LKF), and LKF 
pre-processed with the Newton-Raphson method. Required data are taken from 
GPS receivers and processed with the algorithm. 

Four GPS satellites were chosen for estimation and coordinates of Şükrü 
Saraçoğlu stadium assumed as a point. The location of the stadium was determined 
in Earth-centered inertial (ECI) reference frame. With using determined location, 
pseudo-ranging models were created due to each GPS satellite. Actual distances 
were summed with clock bias and random noise, where random is the Gaussian 
random noise with zero mean and unit variance. With this operation, GPS measure-
ments were simulated. EKF, LKF, and LKF pre-processed with the Newton-
Raphson method results have better solutions than measurement estimation and 
results converged to actual state vectors. 

2 Problem Statement 

In this study, Şükrü Saraçoğlu stadium GPS location were chosen for estimation. 
Pseudo-ranging method was used. Four GPS satellites were chosen. Distance 
between GPS satellites and location were calculated for each iteration. After mea-
surement model were created, traditional EKF, LKF, and NRM pre-processed LKF 
are applied for correction of estimations: 

Da ið Þ  = xi - xð Þ2 þ yi - yð Þ2 þ zi - zð Þ2 ð1Þ 

Dm ið Þ  = xi - xð Þ2 þ yi - yð Þ2 þ zi - zð Þ2 þ bi þ vi ð2Þ 

Li = x2 i þ y2 i þ z2 i i= 1, 2, 3, 4 ð3Þ 

where xi, yi, zi represents the Descartes coordinates of the i’th GPS satellite; x, y, and 
z represent the coordinates of the location; vi is white Gaussian noise with zero mean; 
and b is the clock bias. L1, L2, L3, and L4 are distances between origin and GPS 
satellite. Da is the actual distance and Dm is measured distance by GPS receiver. 
After calculating actual distance with Eq. (1), random zero mean Gaussian errors and 
clock bias were added to actual distances for simulating GPS.



ð Þ ð Þ ð Þ ð Þ ð Þ½ ] ð Þ

Comparison of GPS-Based Position Estimation Methods 497

The continuous-time state equation in the considered case is given by 

_x= 0, _y= 0, _z= 0, _b= us ð4Þ 

Here us is the white noise with zero mean. 
The state Eq. (4) can be written in the discrete-time form as 

x kð Þ= x k- 1ð Þ  
y kð Þ= y k- 1ð Þ  
z kð Þ= z k- 1ð Þ  
b kð Þ= b k- 1ð Þ þ  T sus 

ð5Þ 

Here Ts is the sampling time. 
We can rewrite the preceding statements for scalar equations in the state space 

form, yielding 

x kð Þ  
y kð Þ  
z kð Þ  
b kð Þ  

= 

1 0 0 0  

0 1 0 0  

0 0 1 0  

0 0 0 1  

x k- 1ð Þ  
y k- 1ð Þ  
z k- 1ð Þ  
b k- 1ð Þ  

þ 

0 

0 

0 

T sus 

ð6Þ 

This means that the systems dynamics matrix is unit: 

ϕ k, k- 1ð Þ= I4× 4 ð7Þ 

The system noise vector is 

W kð Þ= 0 0 0  T sus½ ]T ð8Þ 

The state space model can be written in matrix form as 

X kð Þ=ϕ k, k- 1ð ÞX k- 1ð Þ þ  W kð Þ ð9Þ 
X k  = x  k  y k  z k  b k  T 10 

Equation (10) represents the state vector of the model.
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3 Linear Kalman Filter-Based GPS Localization 

The linear Kalman filter (LKF) is a filter that estimates X parameters for the vector of 
linear regression model. LKF estimation for stationary user previously studied by 
Hajiyev [5]. State vectors were given in Eq. (10), and due to these state vectors, 
linear Kalman filter equations can be shown as following equations. 

Estimation equation: 

X kð Þ=X k=k- 1ð Þ þ  K kð ÞZ kð Þ ð11Þ 

Extrapolation equation: 

X k=k- 1ð Þ=X k- 1=k- 1ð Þ 12Þ 

Innovation sequence: 

Z k=k- 1ð Þ= Y kð Þ-H kð ÞX k=k- 1ð Þ 13Þ 

Here the measurement Y(k), 

Y kð Þ= 

1 
2 

L2 1 - L2 2 þ D2 
2 -D2 

1 

1 
2 

L2 1 - L2 3 þ D2 
3 -D2 

1 

1 
2 

L2 1 - L2 4 þ D2 
4 -D2 

1 

ð14Þ 

Kalman gain coefficient matrix: 

K kð Þ=P k=k- 1ð ÞH kð ÞT H kð ÞP k=k- 1ð ÞH kð ÞT þ R kð Þ
- 1 

ð15Þ 

Predicted correlation matrix of estimation error: 

P k=k- 1ð Þ=P k- 1=k- 1ð Þ 16Þ 

Correlation matrix of estimation error: 

P k=kð  Þ= I-K kð ÞH kð Þ½ ]P k- 1=k- 1ð Þ 17Þ 

Measurement matrix (H ):
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H kð Þ= 

x1 - x2 y1 - y2 z1 - z2 D2 -D1 

x1 - x3 y1 - y3 z1 - z3 D3 -D1 

x1 - x4 y1 - y4 z1 - z4 D4 -D1 

ð18Þ 

Measurement error covariance matrix (R): 

R= 

D1-bð Þ2 σ2þ D2-bð Þ2 σ2þσ4 D1-bð Þ2 σ2þ1 
2 
σ4 D1-bð Þ2 σ2þ1 

2 
σ4 

D1-bð Þ2 σ2þ1 
2 
σ4 D1-bð Þ2 σ2þ D3-bð Þ2 σ2þσ4 D1-bð Þ2 σ2þ1 

2 
σ4 

D1-bð Þ2 σ2þ1 
2 
σ4 D1-bð Þ2 σ2þ1 

2 
σ4 D1-bð Þ2 σ2þ D4-bð Þ2 σ2þσ4 

ð19Þ 

Here σ is the standard deviation of the distance measurement, and b is the clock 
bias of the GPS receiver. 

4 Extended Kalman Filter-Based GPS Localization 

Extended Kalman filter (EKF) is an approach for nonlinear systems. EKF linearizes 
the system and estimates the state vectors. State vectors of the model were given in 
Eq. (10). 

Estimation equation: 

X kð  Þ=X k- 1ð Þ þ  K kð ÞZ k=k- 1ð Þ 20Þ 

Extrapolation equation: 

X k=k- 1ð Þ=X k- 1=k- 1ð Þ 21Þ 

Innovation sequence: 

Z k=k- 1ð Þ=D kð Þ-D kð Þ ð22Þ 
D kð  Þ= D1 kð Þ  D2 kð Þ  D3 kð Þ  D4 kð Þ½ T , 

D k  = D1 k D2 k D3 k D4 k
ð23Þ 

Di = 
xi kð Þ- x k- 1ð Þð Þ2 þ yi kð Þ- y k- 1ð Þð Þ2 

zi k - z k- 1 2 þ b k- 1ð Þ 24Þ 

Di = xi - xÞð Þ2 þ yi - yð  Þ2 þ zi - zð  Þ2 þ bþ wi i= 1, 4
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Here xi, yi, ve, and zi represent the position states of the ith navigation satellite, 
and x, y, ve, and z represent the position states of the user; b is the clock bias of the 
GPS receiver and wi random measurement noise. 

Kalman gain coefficient matrix: 

K kð Þ=P k=k- 1ð ÞH kð ÞT H kð ÞP k=k- 1ð Þ H kð ÞT þ R kð Þ
- 1 

ð25Þ 

Predicted correlation matrix of estimation error: 

P k=k- 1ð Þ=ϕ k, k- 1ð ÞP k=k- 1ð Þϕ k, k- 1ð ÞT þ Q k- 1ð Þ 26Þ 

Predicted correlation matrix of estimation error: 

P k=kð Þ=P k- 1=k- 1ð Þ-K kð ÞH kð Þ  P k- 1=k- 1ð Þ 27Þ 

Measurement matrix: 

H kð Þ= 

∂D1 

∂x 

∂D1 

∂y 

∂D1 

∂z 

∂D1 

∂b 

∂D2 

∂x 

∂D2 

∂y 

∂D2 

∂z 

∂D2 

∂b 

∂D3 

∂x 

∂D3 

∂y 

∂D3 

∂z 

∂D3 

∂b 

∂D4 

∂x 

∂D4 

∂y 

∂D4 

∂z 

∂D4 

∂b 

ð28Þ 

Measurement error covariance matrix (R): 

R kð Þ= σ2 I4× 4, σ = 10 m ð29Þ 

5 Pre-processed LKF with Newton-Raphson Method 

Newton-Raphson method is the nonlinear system approach. For each iteration, 
multiple matrix operations are performed for estimation. The Newton–Raphson 
method requires a new set of matrix calculations and constructs a different estima-
tion in each iterative step (Cheung & Lee, 2017).



Þ

Þ

Þ

Þ

Comparison of GPS-Based Position Estimation Methods 501

F pkð Þ= 

f 1 x, y, z, bð Þ  
f 2 x, y, z, bð Þ  
f 3 x, y, z, bð Þ  
f 4 x, y, z, bð Þ  

ð30Þ 

where x, y, and z are position vectors and b is the clock bias. Each distance is proper 
for different sphere equation and sphere equations given in Eq. (30). 

f 1 x, y, z, bð Þ= x1 - xð Þ2 þ y1 - yð Þ2 þ z1 - zð Þ2 - D1 - bð Þ2 
f 2 x, y, z, bð Þ= x2 - xð Þ2 þ y2 - yð Þ2 þ z2 - zð Þ2 - D2 - bð Þ2 
f 3 x, y, z, bð Þ= x3 - xð Þ2 þ y3 - yð Þ2 þ z3 - zð Þ2 - D3 - bð Þ2 
f 4 x, y, z, bð Þ= x4 - xð Þ2 þ y4 - yð Þ2 þ z4 - zð Þ2 - D4 - bð Þ2 

ð31Þ 

The Jacobian matrix is 

J pkð Þ= 

∂ 
∂x 

f 1 x, y, z, bð Þ  ∂ 
∂y 

f 1 x, y, z, bð Þ  ∂ 
∂z 

f 1 x, y, z, bð Þ  ∂ 
∂b 

f 1 x, y, z, bð  
∂ 
∂x 

f 2 x, y, z, bð Þ  ∂ 
∂y 

f 2 x, y, z, bð Þ  ∂ 
∂z 

f 2 x, y, z, bð Þ  ∂ 
∂b 

f 2 x, y, z, bð  
∂ 
∂x 

f 3 x, y, z, bð Þ  ∂ 
∂y 

f 3 x, y, z, bð Þ  ∂ 
∂z 

f 3 x, y, z, bð Þ  ∂ 
∂b 

f 3 x, y, z, bð  
∂ 
∂x 

f 4 x, y, z, bð Þ  ∂ 
∂y 

f 4 x, y, z, bð Þ  ∂ 
∂z 

f 4 x, y, z, bð Þ  ∂ 
∂b 

f 4 x, y, z, bð  
ð32Þ 

After mathematical transformations, J obtained for this problem as 

J = 

2 x1 - xð Þ  2 y1 - yð Þ  2 z1 - zð Þ  2 b-D1ð Þ  
2 x2 - xð Þ  2 y2 - yð Þ  2 z2 - zð Þ  2 b-D2ð Þ  
2 x3 - xð Þ  2 y3 - yð Þ  2 z3 - zð Þ  2 b-D3ð Þ  
2 x4 - xð Þ  2 y4 - yð Þ  2 z4 - zð Þ  2 b-D4ð Þ  

ð33Þ 

where xi, yi ve, and zi i= 1, 4) represent the position of navigation satellites; x, y, 
and z represent the positions of the stationary user; b is the clock bias of the GPS 
receiver; and Di i= 1, 4 ) is the distance between navigation satellite and 
stationary user. 

ΔP and new state vectors estimated by Newton-Raphson method are given in 
Eq. (34). NRM estimation for each iteration continues while the absolute value ΔP is 
greater than error tolerance of the system. When the error tolerance becomes greater 
than ΔP, NRM estimation of ith iteration ends and starts estimating i + 1th iteration 
state vectors.
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ΔP= -F:J - 1 

Pkþ1 =Pk ΔP 34 

Equation (33) represents the estimation of NRM state vectors. After estimation of 
NRM, LKF estimation starts. 

Estimation equation: 

X kð Þ=X k=k- 1ð Þ þ  K kð ÞZ kð Þ ð35Þ 

Extrapolation equation: 

X k=k- 1ð Þ=X k- 1=k- 1ð Þ 36Þ 

Innovation sequence: 

Z k=k- 1ð Þ= Y kð Þ-X k=k- 1ð Þ 37Þ 

where Y(k) 

Y kð  Þ= xNRM yNRM zNRM bNRM½ T ð38Þ 

Kalman gain coefficient matrix: 

K kð Þ=P k=k- 1ð Þ  H kð ÞT H kð ÞP k=k- 1ð Þ  H kð ÞT þ R kð Þ
- 1 

ð39Þ 

Predicted correlation matrix of estimation error: 

P k=k- 1ð Þ=ϕ k, k- 1ð ÞP k=k- 1ð Þϕ k, k- 1ð ÞT þ Q k- 1ð Þ 40Þ 

Estimated correlation matrix of estimation error: 

ðk=kÞ= ½- ðkÞHðkÞ]Pðk=k- 1Þ 41Þ 

Measurement matrix (H ): 

H kð  Þ= I4× 4 ð42Þ 

Measurement error covariance matrix (R):
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R kð Þ= 

βx 0 0 0  

0 βy 0 0  

0 0  βz 0 

0 0  0  βb 

ð43Þ 

where βx, βy, βz, and βb are variance of the NRM estimation errors. 

6 Simulation Results and Discussion 

In this study stationary user localization is estimated by using GPS simulation, LKF, 
traditional EKF, and pre-processed LKF with the Newton-Raphson method. GPS 
measurement results converged to actual state vectors with the implementation of 
filter estimations. Estimated results compared to other estimations. 

The results of stationary user localization using the Kalman filter for three 
different approaches are shown in Figs. 1, 2, and 3. The first part of figures gives
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Fig. 1 LKF X axis estimation
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Fig. 2 EKF X axis estimation 

Fig. 3 NRM pre-processed LKF X axis estimation



position estimation results and the actual values in a comparing way. The second part 
of the figures shows the error of estimation process. The last part indicates the 
variance of the estimation error. Linear Kalman filter estimation for X axis is 
presented in Fig. 2.
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Table 1 Root mean square 
errors for 500 seconds 

X (m) Y (m) Z (m) Bias (m) 

EKF 1.1659 1.0109 1.2467 0.7086 

LKF 0.9745 1.0489 0.9617 0.9941 

NRM + LKF 1.1023 1.0902 1.2570 0.8322 

Extended Kalman filter estimation for X axis is presented in Fig. 2. 
Pre-processed linear Kalman filter with Newton-Raphson method estimation for 

X axis presented in Fig. 3. 
As can be seen from the graphs shown in Figs. 1, 2, and 3, all three investigated 

approaches give rather good results for estimating the position of a stationary user. 
According to Table 1, the best estimation results were obtained LKF. Traditional 

EKF is the second best estimation when compared to other methods. 

7 Conclusion 

Three different Kalman filter approaches are used in this study for stationary user 
localization: traditional extended Kalman filter, linear Kalman filter, and NRM 
pre-processed linear Kalman filter. The Şükrü Saraçoğlu stadium’s location (Istan-
bul, Turkey) was estimated and compared via various types of Kalman filters. The 
obtained results show that LKF is the best estimation for 500 s stationary user 
localization. Through this research, users can determine the best position estimation 
approach for their own problem. 
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