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1.1  Introduction

The term “robot” was coined by Capek in 1920 to describe an automated machine 
used to replace human laborers [1]. Since then, there has been rapid progress in 
“robotics,” where automated machines are designed to perform hundreds of func-
tions in different fields, including medicine [2–4]. Present-day robots are designed 
to carry out not only simple tasks but also complex procedures requiring serial steps 
[2] via computer programming. These tasks can be automated, semi-automated, or 
passive, depending on the degree of human input during the robotic action [5–8]. In 
surgery, the use of robots has evolved dramatically from passive machines designed 
just to help surgeons perform certain steps more precisely, to advanced semi- 
automated robots requiring physician input only at certain points [9–11]. The 
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dramatic evolution of robotics in surgery has also enabled surgeons to perform not 
only local but also remote procedures via telerobotics [12–14].

The use of robotic surgery has increased dramatically during the past three 
decades [2]. A common surgical robot called the da Vinci surgical system (Intuitive 
Surgical, Sunnyvale, CA, USA) was designed to perform minimally invasive sur-
geries [15]. Since its Food and Drug Administration (FDA) approval in 2000, the da 
Vinci video endoscopic system has been increasingly adopted, especially in urol-
ogy, gynecology, and otolaryngology [16–19]. This robotic surgical system has con-
ferred several benefits: a wider range of motion within narrow corridors, motion 
scaling, 3D visualization of the surgical field, better comfort for the surgeons, and 
improved postoperative recovery [15, 20–23]. The da Vinci was the only commer-
cially approved surgical system until 2020, when the FDA approved the Medrobotics 
Flex robotic system for use in different surgical fields, especially the head and 
neck [24].

Robotic surgery in neurosurgery dates back to stereotactic biopsy [25]. Thereafter, 
both automated and semi-automated robotic systems were developed and adopted 
for biopsy-taking from deep brain structures, deep electrode placement, placement 
of cochlear implants, and many other procedures requiring millimeter accuracy 
[26–28]. Four different categories of robots are used in neurosurgery: those designed 
for navigation and placement of depth electrodes, those designed for skull drilling, 
NeuroArm, and those (e.g., the da Vinci system) used to perform surgical proce-
dures [25, 29, 30]. This chapter will focus on the last type, as used for skull base 
surgery.

1.2  Robotics in Skull Base Surgery

Although the rate of robotic surgery has increased dramatically in many surgical 
fields, as mentioned, progress in neurosurgery has been slower [31]. For example, 
there are relatively few data in the literature about the use of the da Vinci system in 
neurosurgery [31]. Notably, the da Vinci and the Medrobotics Flex robotic systems 
were not approved for skull base surgery [32]. This was because of their large size, 
long set-up time, and poor ergonomics, so it was not feasible to use them in the very 
tight corridors of the skull base [32]. Moreover, many studies evaluating skull base 
robotic surgeries were conducted on cadavers and/or animal models, and the results 
were discouraging [33].

Despite the slow growth of robotics in skull base surgery, neuroscientists are 
endeavoring to improve their development, enhance their adaptability, and make it 
possible to adopt them. Robotics fits the aim of this type of surgery perfectly, i.e., 
maximizing the exposure of a skull base lesion using the least amount of brain 
retraction [34]. This kind of surgery is challenging owing to the complex anatomy 
of skull base targets, their deep-seated location, and the proximity of critical struc-
tures. Robotics can provide more direct and less invasive access to the skull base 
than the conventional open surgical approach, avoid making cranial or facial inci-
sions, and minimize brain retraction [32].
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To date, the vast majority of skull base surgical procedures using robotics have 
been conducted to remove pituitary tumors [35–37]. Robotic-based surgery in such 
a procedure allows surgeons to remove the target tumors with extreme precision 
without injuring critical adjacent structures [38].

1.3  Robot Structure and Features

The only two FDA-approved and commercially available robotic systems for sur-
gery are da Vinci and Flex [15, 24]. Neither was approved for skull base surgery; 
nevertheless, several studies have reported the successful use of the da Vinci 
machine in certain skull base surgeries [32, 33, 39–42]. To date, there have been no 
data about implementing the Medrobotics Flex robotic system in skull base surgery 
because it was only introduced into commercial use after its approval in 2020 [38].

The da Vinci surgical system comprises three components: a surgeon’s console, 
a patient-side cart, and interactive arms [15]. The surgeon’s console is typically in 
the patient’s room, and the interactive arms are controlled from there [15, 20, 43]. 
The number of interactive arms varies according to the system model [15, 20]. They 
are used to grasp objects, dissect, cut into tissues, take sutures, apply clips, and 
perform different tasks with conventional surgical instruments, e.g., cautery. One 
arm controls a three-dimensional camera [15, 20].

The robots used for surgery (particularly endonasal endoscopic transsphenoidal 
surgery (EETS)) have different features, including their technique, interface, safety 
characteristics, tools for control, set-up time, and operative time [32]. The technique 
can be two- or four-handed depending on the size of the adenoma. The four-handed 
technique is preferred for large ademonas [38]. It entails meticulous collaboration 
between at least two surgeons [32]. One surgeon is responsible for holding the 
endoscope while the second performs the surgical dissections [32]. In long and 
complex procedures, this collaboration is usually challenging, particularly when 
rapid coordination is required to optimize the fixed visualization of the surgical field 
and the maneuverability of several surgical instruments in long narrow corridors 
[32]. Hybrid solutions have been provided to overcome this problem [44]. An endo-
scopic holder was developed, attached to the robotic system and controlled via a 
foot pedal. However, there are few data about their effectiveness because they have 
only been introduced recently [32].

The interface of the robot can be either cooperative or by telemanipulation [41, 
45]. The collaborative approach requires the surgeon to hold and move the endo-
scope, as in conventional non-robotic surgery, but the robot maintains the position 
of the endoscope when the surgeon leaves it [45]. In the telemanipulation mode, the 
surgeon can control the endoscope’s position via a joystick, foot pedal, voice, or 
head movement [41].

Many safety features have been incorporated into the robots to prevent accidental 
injury to vital neurovascular structures during procedures [32]. The most common 
of these features are an integrated 3D navigation system, loss of control mode, 
forced thresholds, vocal commands, and the ability to change the robot’s orientation 
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[32]. The set-up and operative time also differ among robots, ranging from approxi-
mately 2 minutes to up to 30 minutes [45].

Robotics for skull base drilling have been described in the literature [25]. The 
most common are the computer-assisted design/computer-automated manufactur-
ing (CAD/CAM) skull base drill [46], the replica study drill [47], and the drill 
described by Dillon et al. [48] These drills have given promising results, but none of 
them has been FDA approved to date [25].

1.4  Approaches to Robotic Skull Base Surgery

Skull base surgery is mainly carried out to excise neoplastic and non-neoplastic 
tumors or lesions originating at the anterior, middle, or posterior cranial fossae to 
minimize brain manipulation [49]. Each fossa requires specific surgical approaches 
for access, e.g., fronto-orbital and extended orbital approaches for anterior fossa 
lesions (e.g., congenital craniofacial malformations such as craniopharyngioma, 
meningioma, fibrous dysplasia, pituitary adenoma), and sellar, parasellar, petro-
clival, and lateral temporal approaches for middle and posterior cranial fossae 
lesions (such as meningioma and trigeminal ganglion schwannoma) [34].

Incorporating robotics into skull base surgery involves different approaches [42]. 
Not all the approaches used in conventional endoscopic skull base surgery, men-
tioned above, are used. Robotic surgery involves either single orifice approaches 
(transoral or endonasal) or multi-orifice approaches (combined transoral-transnasal, 
combined transantral-transnasal, or combined transcervical).

1.4.1  Endonasal Endoscopic Approach

The endonasal endoscopic approach (EEA) is the preferred choice in most skull 
base surgeries; endonasal endoscopic transsphenoidal surgery (EETS) has become 
the main technique for pituitary and sellar tumors because it is minimally invasive 
[38]. Less common EEAs include suprasellar, petroclival, and infratemporal 
approaches [50].

Several limitations have been reported in the use of robots in the EEA for skull 
base surgery. The commercially available endoscope provides 2D visualization of 
the surgical field; depth perception is critically important during surgery [50]. The 
ergonomics of robot use in the EEA are unfavorable because bimanual surgery 
requires the four-hand technique, the limitations of which have been described [31]. 
A third limitation is that the robots available commercially, e.g., the da Vinci sys-
tem, were not designed to perform skull base operations. Their long and rigid struc-
ture precludes flexibility of motion and dissection into the tissues [51].

Successful experiments on 80 cadavers determined the characteristics of the 
EETS pathway and workspace for robotic design and development [52]. In addition, 
a navigator system with multi-information integrated tactics for surgery (MINITS) 
(Fig. 1.1), providing not only anatomical images but also the trajectories under a QR 
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Fig. 1.1 The illustration shows the application of MINITS

code, is included for tracking the anticipated directions for neurosurgeons [53]. This 
is essential.

On the other hand, the robots allow 7 degrees of freedom and 90 degrees of 
articulation, which is not the case in endoscopic surgery, so the surgeon can reach 
narrow areas without tremor [54]. They are also superior to endoscopic surgeries in 
that they can suture the dura without the risk of cerebrospinal fluid leakage [50].

1.4.2  Transoral Surgery

Transoral surgery (TORS) is one of the most common approaches in robotic sur-
gery, especially in the head and neck, to access the oropharynx, hypopharynx, and 
glottic region [55]. Since 1985 it has been proven capable of accessing structures 
from the fourth cervical vertebra to the sphenoid sinus caudally [56]. However, no 
attempts to use TORS in neurosurgery to reach the sella turcica were made prior to 
2018, when Chauvet and Hans [31], in their three-stage study, used TORS on eight 
cadavers, computed tomography (CT) of 36 skulls, and 7 patients. They attempted 
to place the da Vinci machine behind the hard palate to face superiorly, unlike the 
conventional inferior-facing placement in head and neck surgeries [31]. Their find-
ings showed that their innovative TORS held promise for reaching the sella region 
and pituitary tumors.

Not only was TORS successful in removing cystic pituitary tumors, but it was 
also shown by Malley et al. [40] to be capable of reaching the parapharyngeal space 
and infratemporal fossa and removing cystic neoplasms from those regions.

The TORS approach was reported to have several advantages over the widely 
adopted transsphenoidal approach. The side effects, especially rhinological, were 
minimal [31]. It allowed the surgical field to be visualized in 3D, not just 2D. The 
maneuverability of the surgical instruments was excellent, even in narrow spaces. 
There is growing evidence that TORS could be advantageous in handling pituitary 
tumors with large suprasellar extensions. However, the da Vinci system still has the 
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disadvantage of being limited to cystic tumors [31]. Solid masses cannot be removed 
adequately even if they are well-visualized and reachable [31].

1.4.3  Transoral Robotic Surgery (TORS) Combined 
with Extended Endonasal Approach (EEA-TORS)

TORS combined with the Extended Endonasal Approach (EEA-TORS) was 
described by Carrau et al. [57] in 2013. They performed the technique initially on 
cadavers, then applied it to two patients, one with chondroma of the clivus extend-
ing to the second cervical vertebra, the other with a nasopharyngeal adenoid cystic 
fibroma extending to the infratemporal fossa and the hard palate [57]. The com-
bined approach gave excellent results; successful total resection of both tumors with 
almost no complications and good postoperative recovery [57]. The advantage of 
the combined technique is improved visualization of the nasopharynx, infratempo-
ral fossa, and the posterior skull below the eustachian tube level, which are not 
reachable by EETS. However, its success depends largely on the high level of expe-
rience of the surgeons performing the procedures, given the limitations of the robot-
ics used.

1.4.4  Other Approaches

Other approaches for accessing the skull base via robots have been reported, such as 
the combined transantral-transnasal approach and combined transcervical approach, 
through which the authors successfully accessed the anterior fossa and sellar regions 
in several cadavers. However, this approach has not been attempted on patients to 
date [42].

1.5  Advantages

Compared to conventional endoscopic surgery, robotics has several advantages in 
skull base surgery [38]. It allows more detailed 3D visualization of the surgical field 
with a fixed view throughout the surgery, enhancing the accuracy of the procedure 
[58, 59]. Its considerable versatility enables the surgeon to perform tremor-free sur-
gery, which is of the utmost necessity in narrow spaces with adjacent critical neural 
and vascular structures, as in skull base surgery [38]. Bimanual surgery is feasible 
using robots [58, 59]. Furthermore, the ergonomically designed surgeon’s console 
allows the camera and all the instruments to be controlled fully [42].

Moreover, robot-assisted skull base surgery lowers operation times and therefore 
costs, especially for procedures requiring time-consuming drilling [25]. It reduces 
postsurgical discomfort and postoperative local complications (e.g., the nasal turbi-
nate), shortens the hospital stay, and accelerates postoperative recovery [40, 60]. 
The da Vinci system also allows the dura to be sutured, which is not accessible with 
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conventional endoscopic surgery, reducing the rate of infection and enhancing heal-
ing [25].

1.6  Limitations and Challenges

Despite the appealing advantages of robots in skull base surgery, several limitations 
retard their progress in this field. Along with their high cost, none of the commer-
cially available surgical robots is designed to deal with the critical and delicate 
structures encountered in skull base surgery in such narrow surgical corridors [42]. 
The robots are large and rigid, making them challenging to handle through narrow 
spaces [38, 42]. The navigation systems are not fully developed, making tissue 
manipulation in the visualized surgical field suboptimal. Many other technical limi-
tations still need to be overcome, such as the long set-up time for many machines 
and the lack of haptic feedback for surgeons. The robots lack the high-speed drills 
and suction devices crucial in surgical procedures in this region [58, 59]. The learn-
ing curve is also relatively slow, and the demands of collaboration in specific tech-
niques (e.g., the four-handed technique) add to the challenge [32].

In addition, the literature provides few data about their efficacy and safety. Most 
studies have been performed on cadavers and a small number of patients with vari-
ous conditions and in different centers with different levels of experience in neuro-
surgery [60]. Robots have proved effective only for cystic and soft pathologies; 
many skull base masses arise from rigid bony structures [25].

1.7  Conclusions

The use of robotics in skull base surgery is evolving, and robots have been reported 
to improve many of the limitations of conventional endoscopic surgery. Even though 
many advances are still required in software and structural development before 
robot use can be implemented in regular clinical practice, neurosurgeons should 
consider the advantages and disadvantages of robotic-assisted skull base surgery. 
Their decisions should be based on comparing the pros and cons of this technique 
to the conventional endoscopic approach in relation to each individual patient.
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