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Preface 

First of all, we would like to thank the ten coauthors for donating their time and 
knowledge to this book. We hope that it will advance sustainable aquaculture, 
enhance public perception of tilapia culture, and contribute to the preservation of 
the ecosystem, upon which we all rely. 

Sustainable agriculture has been broadly defined in the 1990 US Farm Bill as “a 
system that meets basic human food and fiber needs, is economically viable, 
improves environmental quality and the resource base on which agriculture depends 
over the long term, makes the most efficient use of nonrenewable resources and 
on-farm resources, and integrates biological cycles and controls where appropriate.” 
In the EU's current Blue Economy for a Sustainable Future, Green Deal, and F2F 
policies, aquaculture and sustainable aquaculture have emerged as crucial compo-
nents. This method of food production has a lot of potential because it offers easily 
absorbed protein, has a small carbon footprint, and, with the appropriate strategy, 
favors short supply chains. The conviction behind this book, which was substanti-
ated by study and practice, is that health management, feed additives, gut microbiota, 
probiotics, prebiotics, synbiotics, medicinal plants, alternative protein sources, and 
culture systems contribute to sustainable aquaculture. These novel approaches have 
played an important role in sustainable aquaculture development in the past few 
decades. 

Our book was divided into nine chapters with approaches that contribute to 
sustainable Nile tilapia production. Chapter 1 covers the current status of world 
tilapia farming and highlights the advantages and challenges of commercial tilapia 
production including the economic aspects and the improvement of effluent quality 
to minimize the impact on the environment, which were covered in a different 
section. Chapter 2 discusses the health management of tilapia with a particular 
focus on various diseases and treatments. Chapter 3 emphasizes the effects of 
different feed additives on tilapia reproduction. A detailed reproductive physiology 
and breeding behavior of tilapia is discussed in this chapter with a special emphasis 
on the use of feed additives to control tilapia reproduction, sexual maturation, and 
sex determination. Chapter 4 covers the recent findings on the gut microbiota of
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tilapia with a particular focus on structure and modulation using environment-
friendly approaches such as pro-, pre-, and synbiotics. Chapter 5 provides updated 
information regarding definitions, sources of bacterial probiotics, probiotic use in 
fish diets against pathogenic bacteria, mechanisms of action, beneficial aspects, and 
potential applications of probiotics in fish. It is anticipated that these will be of 
significant value for nutritionists, agricultural engineers, researchers, pharmacists, 
scientists, pharmaceutical industries, and veterinarians. Chapter 6 addresses the use 
of prebiotics and synbiotics as growth promotors and as alternatives to antibiotics in 
tilapia aquaculture, along with their possible mechanism of action. Moreover, the 
positive effects of pre- and synbiotics on tilapia health are also highlighted with 
emphases on growth, immune modulation, and alteration in gut microflora. 
Chapter 7 focuses on the use of different medicinal plants in tilapia aquaculture, 
their routes of administration, and their effects on fish physiology. Moreover, 
various modes of action of these medicinal plants are also discussed. Chapter 8 
reviews the advances, novel ingredients, and new techniques that serve the mission 
for the future of aquafeed research on alternatives for fishmeal to achieve global 
aquaculture sustainability, with a focus on partial or full replacement of fishmeal 
especially in the feed of tilapia. Chapter 9 provides insights into the application of 
modern technology for sustainable tilapia production, which focuses on their effects 
on growth performance, immune response, and disease resistance. 

viii Preface

Gorgan, Iran Seyed Hossein Hoseinifar 
Chian Mai, Thailand Hien Van Doan
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Chapter 1 
Tilapia Fish for Future Sustainable 
Aquaculture 

Ghasem Ashouri, Seyed Hossein Hoseinifar, Ehab El-Haroun, 
Roberta Imperatore, and Marina Paolucci 

Abstract Lately, aquaculture has been recognized as the fast-growing industry in 
the food production sector, and it requires maintainable development to cover the 
world population’s demand for aquatic and seafood products. Among the 400 farmed 
fish species, warm-water fish species such as tilapia need a little quantity of fishmeal 
in their diets compared to other species. Tilapia is classified as the second most 
widespread species whose production is increasing every year; Nile tilapia 
(Oreochromis niloticus) is easily adaptable to a large variety of environments, is 
capable of reproducing in cavities, has an excellent market position in Asia and 
Africa, is highly resistant to diseases, has good fillet quality, shows moderate feed 
conversion ratio and excellent growth rate on many natural and artificial diets. Nile 
tilapia (O. niloticus) is known in the market as “aquatic chicken” due to its high 
tolerance to adverse physical and environmental conditions and overcrowding, its 
capability to survive at low oxygen levels, and a wide range of salinity concentra-
tions. Tilapia adapts easily to natural and artificial feeds, has good feed conversion 
value, grows moderately fast, has a final high yield potential, and is accepted by 
customers worldwide. In addition, tilapia can grow in different aquaculture systems, 
ranging from extensive, semi-intensive, and intensive; also it can be grown in 
monoculture or polyculture techniques. Since tilapia grows well in adverse environ-
mental conditions, tolerates stress factors as handling, and is resilient to disease 
agents of pathogen infections and infectious diseases, it has become the most
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common species among farmers. Nile tilapia (O. niloticus) could be cultured in both 
fresh and saltwater; and in tropical, subtropical, and temperate climates. The authors 
in this chapter will cover the environmental and nutritional requirements of tilapia, 
defined as key factors in profit production. As mentioned above, tilapia has a wide 
tolerance for high stocking densities and environmental conditions. In addition to 
these advantages, tilapia grows very well in integrated culture systems with aquatic 
species such as carp and shrimps, as well as with crops like tomato and lettuce. 
However, the global extension of tilapia farming growing at a remarkably high rate 
is likely to pose environmental and socioeconomic threats. This chapter highlights 
the advantages and challenges of commercial tilapia production including the 
economic aspects, living behind the improvement of effluent quality to minimize 
the impact on the environment, which will be covered in a different section.
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1.1 Introduction 

In the last few decades, aquaculture has become the fastest-growing sector in animal 
livestock production, securing a global food supply that reached 2018 ~115 million 
tons representing 263,400 million dollars (USD$) (FAO 2020). Feed formulation of 
warm-water fish species requires less fishmeal compared to other species. Tilapia 
production represents 40% of cultured fish (Prabu et al. 2019). Annual worldwide 
production of cultured tilapia was 3.4 million tons in 2011 and reached 6.2 million 
tons in 2019 (FAO 2020) (Fig. 1.1). Tilapia and catfish are considered to be native to 
the Middle East and Africa. Tilapia culture, though ancient (probably firstborn in 
Egypt simultaneously with Chinese polyculture), has experienced a recent commer-
cial development. Today, tilapia has become one of the most attractive fish species in 
aquaculture due to several advantages such as i) massive adaptability to numerous 
environmental conditions, ii) easy reproduction in captivity, iii) resistance to envi-
ronmental stress, diseases, and microbe pathogen infections, iv) good quality of 
flesh, v) feed on a low trophic level and excellent growth rate on a variety of diets 
(Welker and Lim 2011; Prabu et al. 2019). In 1980 tilapia was considered an ideal 
candidate for aquaculture in different regions of the world. Consequently, tilapia 
culture is currently growing commercially in at least 120 countries (Yue et al. 2016) 
all around the globe. Asian countries (e.g. China, Egypt, Indonesia, Philippines, and 
Thailand) are the major producers as well as consumers of tilapia (Chen et al. 2018). 
The most common cultured genus of tilapia is Oreochromis, and around 89% of 
these farmed fish are Nile tilapia (Oreochromis niloticus), due to their good growth 
performance in ponds (Ng and Hanim 2007). 

Egypt and China are considered the main producers of Nile tilapia (O. niloticus) 
and represent one-third of the total global production (FAO 2020). The reasons for 
such a rapid expansion of the Nile tilapia (O. niloticus) culture could be attributed to



technological advances associated with the intensification of cultural practices 
(Bhujel 2014b; Watanabe et al. 2002) including, i) development of novel strains 
and hybrids, ii) possibility to set up monosex male culture, iii) formulated diets, iv) 
use of a variety of production techniques such as semi-intensive and intensive 
systems (Ng and Romano 2013), and vi) marketing programmes aiming at enhanc-
ing the demand for tilapia on national and international markets (Wang and Lu 
2016). Based on the increasing commercialization and continuing growth of the 
tilapia industry, the product is not only the second most important farmed fish 
globally (Fitzsimmons 2000), next to carp, but it is also described as the most 
important of all cultured fishes in the twenty-first century (Celik 2012). 
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Fig. 1.1 Contribution of aquaculture to world tilapia production, 2000–2018. Data source: FAO 
(2020). FAO Global Fishery and Aquaculture Production Statistics (FishStat J; March 2020; www. 
fao.org/fishery/statistics/software/fishstatj/en) 

The importance of tilapia among aqua farmers can be summarized as follows: 
(i) tilapia have fast growth and survival rate, (ii) reproduce easily in captivity, (iii) 
tolerate low water quality conditions and environmental variables such as tempera-
ture, salinity, low dissolved oxygen, etc., (iv) is easily adaptable to mono and 
polyculture techniques in intensive fish farming, (v) feed on low-quality diets and 
easily adapt to artificial diets, vi) show high profitability and low production costs, 
(vii) is highly resistant to stress and disease (lower risks for aqua farmers), and (viii) 
is highly accepted by consumers, with a good market request (Prabu et al. 2019; 
El-Sayed 2006b). 

Although tilapia’s culture is promising for aquaculture, in light of the many 
advantages above-mentioned, enhancing the production efficiency of tilapia has 
some challenges and research issues that are of the biggest concern to tilapia 
culturists (Yuan et al. 2017). For instance, these involve growth performance, 
unwanted reproduction (Gupta and Acosta 2004; Ng and Romano 2013; Chen

http://www.fao.org/fishery/statistics/software/fishstatj/en
http://www.fao.org/fishery/statistics/software/fishstatj/en


et al. 2018), environmental tolerance (e.g. low temperatures and high salinity), 
disease resistance (Wang and Lu 2016; Li et al. 2016), quality of fillet yield (Yue 
et al. 2016), and increased production costs. Other issues of tilapia aquaculture are 
related to its negative effects on the environment and global biodiversity. Different 
protocols have been adopted to control and limit unwanted reproduction (Fig. 1.2). A 
brief overview of these methods is provided in one subsection of this chapter. 
However, none of these methods is considered 100% effective, and thus a combi-
nation of methods is suggested (Fuentes-Silva et al. 2013). 
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Production of monosex 

(all male) tilapia 

Polyculture with 

predatory fish 
Sterilization 

Manual separation 

Hybridization 

Genetic manipulation 

Sex reversal through sex 

hormone augmentation 

Fig. 1.2 Methods used for inhibiting reproduction or controlling the overpopulation of tilapias 

The poor aptitude of tilapia to tolerate low temperatures (<15o C) affects the 
geographical expansion of tilapia culture (El-Sayed 2006b; Lim and Webster 2006). 
The most cold-resistant species is blue tilapia, Oreochromis aureus, which is 
suitable for culture in regions with seasonal temperature changes and is usually 
used in the hybridization for the production of monosex. Moreover, most tilapia 
species are not tolerant to high salinity, although some (e.g., Mozambique tilapia, 
Oreochromis mossambicus; Oreochromis spilurus, redbelly tilapia, Tilapia zillii, 
and red tilapia hybrids) can grow in seawater. In comparison with other cultured fish 
(e.g. salmon), tilapia shows off-flavours and also minor levels of HUFAS, especially 
beneficial omega-3 fatty acids such as 20:5 n3 (EPA) and 22:6 n3 (DHA) which 
cause low market acceptance (Weaver et al. 2008). Finally, today, the disease 
resistance of tilapia has not received enough attention because rearing programmes 
have been focused only on growth efficiency and skin colour selection. 

In brief, tilapia yield can be affected by several causes, so this chapter provides an 
overview of some aspects of tilapia culture. In particular, it focuses on some crucial 
factors for a successful production, such as management and nutritional require-
ments, evaluation of technological advances and different tilapia farming practices, 
environmental effects, and some constraints resulting from intensification practices.
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1.2 Nutritional and Environmental Requirements 

Tilapias possess highly desirable characteristics that make them good candidates for 
fish production under different production approaches as extensive, semi-intensive, 
and intensive, such as their ability to tolerate a wide range of environmental 
conditions (Chervinski 1982), high survival rate, and feed on a low trophic level 
which makes them attractive species to aquaculture investors. However, dietary 
requirements under different production techniques and the association with culture 
conditions are still not yet clear. 

1.2.1 Nutritional Requirements 

Fish feed generally accounts for as much as 60% or more of production costs in both 
semi-intensive and intensive aquaculture production systems (Montoya-Camacho 
et al. 2019). The nutritional requirements of tilapia have been comprehensively 
reviewed by Ng and Romano (2013), and Chavan et al. (2015). An obstacle to 
tilapia intensive culture is the rising cost and unpredictable reliability of fishmeal and 
fish oil global supplies (Ng and Romano 2013). Consequently, several alternative 
ingredients, in particular of plant origin, have been investigated, and some of them 
are currently used in tilapia feeds to reduce the fishmeal amount (Montoya-Camacho 
et al. 2019). Fish meal (FM) and fish oil (FO) are the main sources of, respectively, 
amino acids and fatty acids for many different species. The investigation of alterna-
tive ingredients of FM and FO requires a thorough understanding of the quantity and 
quality requirements of different nutrients of tilapia, besides the comprehension of 
the factors that may influence the nutrient utilization efficiency and consequently 
affect the production (Ng and Romano 2013). 

1.2.1.1 Protein and Amino Acid Requirements of Tilapia 

Proteins represent the most expensive components in aquafeeds (El-Sayed 1999). 
Several factors affect protein requirements such as protein source and amino acid 
(AA) profile, fish species, age, size, and life stage. Tilapia larvae, fry and fingerling 
require a high level of protein (30–40%) compared to tilapia broodstock (20–25%). 
Male tilapia requires a higher level of protein than females to reach optimal growth 
performance (Ng and Romano 2013; Abdel-Tawwab et al. 2010; Sweilum et al. 
2005). In terms of protein, it is not just the quantity, but the quality and the essential 
amino acid (EAA) profile that will tremendously impact the total protein require-
ment. The ideal proteins to be introduced to the diet are represented by those whose 
amino acid composition is similar to the ratio required by the animal (Nguyen and 
Davis 2009). Furthermore, this will also decrease nitrogenous waste related to amino 
acids being underutilized or deaminated as an energy source (Abdel-Tawwab et al.



2010). Prediction of EAA requirement of different fish species could be measured by 
either dose-response protocol or by measuring the amino acid profile of the whole 
body of fish. As known, warm-water species including the Nile tilapia (O. niloticus) 
require 10 essential amino acids (Table 1.1). EAA requirements could be covered 
using a mixture of plant and animal proteins (Montoya-Camacho et al. 2019), or by 
the inclusion of free amino acids (Nguyen and Davis 2009). 
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Table 1.1 The quantitative essential amino acid requirements of warm-water fish.a Table modified 
from Jauncey (2000) 

Common carpb Channel cattfishc Nile tilapiad Mozambique tilapiae 

Arginine 3.3 4.3 4.2 2.8 

Histidine 2.1 1.5 1.7 1.1 

Isoleucine 2.5 2.6 3.1 2.0 

Leucine 3.3 3.5 3.4 3.4 

Lysine 5.7 5.1 5.1 3.8 

Methionine 2.1 2.3 2.7 1.0 

Phenylalanine 3.4 5.0 3.8 2.5 

Threonine 3.9 2.0 3.8 2.9 

Tryptophan 0.8 0.5 1.0 0.4 

Valine 3.6 3.0 2.5 2.2 
a All values as % of dietary protein 
b Experimentally determined data for common carp (Cyprinus carpio) from the review of Tacon 
(1987). Requirement estimated by the dose-response method 
c Experimentally determined data for channel catfish (Ictalurus punctatus) from the review of 
Wilson (1991). Requirement estimated by the dose-response method 
d Experimentally determined data for Nile tilapia (Oreochronis niloticus) from Santiago and Lovell 
(1988). Requirement estimated by the dose-response method 
e Experimentally determined data for Mozambique tilapia (O. Mossambicus) from Jauncey (1983). 
Requirement estimated by the whole body and muscle amino acid composition method 

1.2.1.2 Lipid and Fatty Acid Requirements of Tilapia 

Lipids and oils are considered to be the main source of digestible energy and 
essential fatty acids (EFAs) for the normal growth and development of fish. In 
addition, phospholipids play main functions in cell membrane structure and integ-
rity, facilitate and control the absorption of fat-soluble vitamins, act as forerunners 
for sex hormones, and improve the texture and flavour of the diet. 

Tilapia requirements of lipids rely on several factors including fish species, age, 
size, source of lipids, protein, and energy content (El-Sayed 2006b). For example, it 
was noticed that the level of protein decreased in the Nile tilapia (O. niloticus) diets 
from 33.1% to 25.6% by elevating lipid content from 5.2% to 9.1% and carbohy-
drates (CHO) from 31.7% to 36.7% (Li et al. 1991). The role of increasing lipid 
content could be described as a sparing protein effect, confirmed by Jauncey (2000) 
in hybrid tilapia (O. niloticus × O. aureus). Though increasing lipid levels up to 12% 
harm the growth of juvenile O. aureus × O. niloticus hybrids and augments the



accumulation of lipid in the carcass of the fish (Jauncey 2000), also it has a negative 
impact on the pelleting processing of the diets. However, an extruded feed where fat 
is added after the pelleting process solved the problem. In general, tilapia require 
about 10–15% dietary lipids (El-Sayed 2006b); however, the oil inclusion of com-
mercial tilapia feed is typically about 4–5% (Orachunwong et al. 2001). The required 
EFAs cannot be synthesized by fish and must be provided by the diet (Jauncey 
2000). Research on fatty acid requirements revealed that cold-water fish and marine 
fish require w-3 polyunsaturated fatty acids (n-3 PUFA), while freshwater and warm 
warm-water species require n-6 PUFA. Thus, warm-water species, including tilapia, 
utilize plant oil as a source of n-6 fatty acids more efficiently than FO and lipids as a 
source of n-3 fatty acids (El-Sayed 2006b). Several studies have indicated that tilapia 
requires n-6 EFA rather than n-3 EFA (Table 1.2). 
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Table 1.2 The essential fatty acid requirements of tilapiaa 

Species Requirement Reference 

Tilapia zillii 1% 18:2n-6 or 1% 20:4n-6 Kanazawa et al. (1980) 

Oreochromis niloticus 0.5–1% 18:2n-6 or 1% 20:4n-6 Teshima et al. (1982) 

O. niloticus 0.5% 18:2n-6 Takeuchi et al. (1983) 

O. aureus 18:2n-6 or 18:3n-3 ≤1% Stickney and McGeachin (1983) 
a Table adapted from Jauncey (2000) 

The findings of previous research summarized that EFAs are considered a source 
of the fatty acid content in tilapia fillets and support the growth of fish. It has been 
suggested that diets for farmed tilapia should contain 0.5–1.0% of both n-3 and n-6 
PUFA (Lim et al. 2011a; Ng  2005). Tilapia-fed diets containing high levels of n-3 
PUFA have positive effects on the health of consumers, such as its positive impacts 
on the cardiovascular system (Lecerf 2009; Russo 2009), immune system (Ruxton 
et al. 2004) and inflammatory disorders (Calder 2006). In the last few decades, 
research conducted to find novel ingredients to substitute FO with vegetable oil in 
tilapia feed has been successfully carried out; however, high interest remains in 
using palm oil because of the low price compared to other vegetable oils and its easy 
availability on the market (Ng et al. 2001; Ng et al. 2006; Ng and Gibon 2010; 
Bahurmiz and Ng 2007). Fortunately, the use of palm oil in the diet does not reduce 
(P ≤ 0.05) the performance of the Nile tilapia (Ng et al. 2001). However, the high 
inclusion of plant oil raises an important question to be addressed by scientists, that 
is, the plant oil's role in the fish diets and the impact on the fatty acid composition of 
the final product and, thus, the impact on human health (Huang et al. 1998; Young 
2009; Bahurmiz and Ng 2007). 

Recently, there has been an interest in conducting research using finishing diets 
rich in n-3 PUFA to investigate their effect on adjusting the final fatty acid profile of 
tilapia fillets to enhance their nutritional value before harvest (Ng and Chong 2004; 
Visentainer et al. 2005; Tonial et al. 2009; Trushenski et al. 2009; Dos Santos et al. 
2011; Luo et al. 2012). In this context, Tonial et al. (2009) found that Nile tilapia 
(O. niloticus) fed diets containing soybean oil showed a decrease in the n-6/n-3 ratio 
in the fillet from 7.4 to 1.0 when reverted to a flaxseed-based diet which is rich in n-3



PUFA. In addition, Teoh et al. (2011) examined the FAs metabolism of both 
Genetically Improved Farmed Tilapia (GIFT) strain and red hybrid tilapia-fed 
purified diets with vegetable oil blends, and they found that FAs digestibility was 
not different among the tilapia strains. 

8 G. Ashouri et al.

1.2.1.3 Carbohydrates 

Previous research carried out on tilapia requirement of carbohydrates (CHO) 
declared that tilapia does not have CHO specific requirements. Though, Wilson 
(1994) reported that warm-water fish species such as tilapia utilize CHO more 
efficiently than cold-water species. The main purpose of CHO inclusion in the diet 
is to act as an effective source of energy that can spare the protein as a source of 
energy to support fish growth. In addition, CHO act as a binder, facilitating the 
pelleting process, also CHO acts as a precursor of different metabolic components 
(NRC 1993). Fish species can utilize up to 35 to 40% digestible CHO (Anderson 
et al. 1984; El-Sayed and Garling Jr 1988). Several factors affect CHO digestion and 
assimilation, including the source of CHO since fish utilize complex carbohydrates 
(polysaccharides) more efficiently than mono and disaccharides (Shiau and Chuang 
1995). It has been shown that increasing the dietary CHO/lipid ratio leads to 
increased glycolysis and lipogenesis but reduces gluconeogenesis and amino acid 
degradation in the liver of the Nile tilapia, O. niloticus (Shimeno et al. 1993). 
Moreover, it has been reported that CHO metabolism is influenced by their fibre 
content (Shiau and Yu 1999) and is affected by the dietary protein source (Shiau and 
Suen (1992). In this context, El-Sayed (1991) found that sugarcane bagasse could be 
included in T. zillii diets without a negative impact on both growth and feed 
digestibility, while the inclusion of sugarcane in Nile tilapia (O. niloticus) diets 
resulted in poor performance. Also, larger fish of the hybrid of O. niloticus × 
O. aureus utilized CHO better than smaller ones (Tung and Shiau 1993). Finally, 
previous research concluded that increasing feed frequency from 2 to 6 times/day 
enhanced growth, CHO utilization, and protein sparing effect (Tung and Shiau 
(1991); Shiau and Lei (1999); (Jauncey 2000). 

1.2.1.4 Vitamin and Mineral Requirements of Tilapia 

Micronutrients such as vitamins and minerals are essential cofactors in several 
metabolic mechanisms involved in different physiological processes in fish health 
and welfare. Different factors affect vitamin and mineral requirements, such as 
culture conditions and chemical dietary composition (Celik 2012). For example, in 
both extensive and semi-intensive fish production system, the inclusion of vitamins 
and minerals are not necessary since the fish consume natural food such as phyto-
plankton and zooplankton that contain enough amounts of vitamins and minerals 
that fulfil the fish requirements (El-Sayed 2006b) On the contrary, in intensive 
systems the presence and availability of natural food are limited or absent. Thus



vitamins and minerals must be incorporated into the diets to support growth, health, 
and survival rate (Ng and Romano 2013). Fish feed manufacturers usually over-
supplement feed with vitamins and minerals to counteract losses due to processing, 
storage, and leaching. It is well known that the nutritional requirements of vitamins 
and minerals depend on the life stage of tilapia. Tables 1.3 and 1.4 refer to the water-
soluble and lipid-soluble vitamin requirements of tilapia fry and fingerlings stages, 
respectively. Shiau and Lung (1993) indicated that vitamin B12 is not required for 
tilapia hybrid (O. niloticus × O. aureus), likely due to the ability of gut bacteria to 
synthesize it (Shiau and Lung 1993; Shiau and Huang 2001; Barros et al. 2009). In 
terms of vitamin A requirement, Guo et al. (2010) reported that Nile tilapia 
(O. niloticus) does not require supplementation of vitamin A since cod liver oil, 
with its high content of vitamin A, is used as a source of lipids in the diet. In addition, 
Hu et al. (2006) reported that tilapia hybrids (O. niloticus × O. aureus) can synthe-
size vitamin A from β-carotene. 
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Mineral requirements of tilapia have been comprehensively reviewed by Ng and 
Romano (2013), and also Makwinja and Geremew (2020). Vital minerals are 
involved in many physiological processes, such as 

– build skeletal structures 
– osmoregulation (e.g., Na+ /K+-ATPase) 
– nerve and muscle contraction 
– regulation of the pH of the blood and other body liquids 
– metabolism-related enzyme activity (lipase, alkaline phosphatase) as cofactors 
– key components of many enzymes, vitamins, hormones, and respiratory pigments 

Nile tilapia (O. niloticus) usually require minerals from two major sources: water 
and feed. Brackish/marine environments are considered as main sources of minerals. 
However, since tilapias are mostly farmed in freshwater/low salinity waters, 
supplementing the diets with minerals is important to fulfil their needs to achieve 
optimal health and productivity. Previous research conducted to measure the mineral 
requirements of hybrid tilapia stated that the requirement of dietary NaCl or KCl 
ranged between 1.5 and 2–3 g kg-1 of diet, respectively (Shiau and Lu 2004); (Shiau 
and Hsieh 2001). Correct mineral requirement fulfilment is considered essential 
since the deficiency or excess of minerals leads to depressed growth performance. 

Previous research confirmed the function of minerals as essential to support 
growth performance and the health status of different fish species. Robinson et al. 
(1987) reported that the inclusion of a 7 g Ca kg-1 purified diet was important to 
maintain the optimum growth of blue tilapia. Also, Shiau and Tseng (2007) found 
that hybrid tilapia-formulated diets should be supplemented with 2.7–3.3 g L-1 Ca 
and purified diets supplemented with 3.5–4.3 g Ca kg-1 to achieve optimum growth 
and feed efficiency. Research carried out on magnesium showed that 0.59 to 0.77 g 
and 0.50 to 0.65 g kg-1 diet were required for optimum performance of the Nile 
tilapia, O. niloticus, and blue tilapia, O. aureus (Dabrowska et al. 1989: Reigh et al. 
1991), respectively. Moreover, trials conducted on phosphorus showed that a 
5  g  P  kg-1 diet of phosphorus is required for the best growth and bone mineralization 
of O. aureus (Robinson et al. 1987).
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Chromium (Cr), zinc (Zn), copper (Cu), selenium (Se), and Iron (Fe) are consid-
ered trace elements, and research on these elements showed their importance in 
improving the growth and health status of tilapia. Shiau and Shy (1998) found that 
the inclusion of 140 mg Cr kg-1 improved the growth of hybrid tilapia due to its role 
as a cofactor in the activity of insulin and enhancing carbohydrate utilization. 
Furthermore, (Eid and Ghonim 1994) and do Carmo Sá et al. (2004) stated that 
the inclusion of 0.03 g Zn kg-1 for fry and 0.08 Zn kg-1 for fingerling diet is 
required for optimum growth. More research conducted by Watanabe et al. (1988) 
found that Nile tilapia (O. niloticus) required 2 to 3 mg Cu kg-1 . Shiau and Su 
(2003) found that hybrid tilapia (O. niloticus × O. aureus) required 150 to 
160 mg kg-1 Fe. 

1.2.1.5 Nutrition and Immunity 

The production of the Nile tilapia (O. niloticus) under a semi-intensive and intensive 
production system exposes the fish to pathogen infections and disease outbreaks. 
The main strategy to maintain fish health in aquaculture is the provision of a 
balanced diet supplemented with immune stimulants that help boost the immune 
system and keep it under control of disease outbreaks. Functional feed additives such 
as prebiotics, bioactive compounds derived from medicinal plants, and probiotics 
could avoid the use of antibiotics and chemotherapy and aid in limiting disease 
outbreaks by controlling fish mortality in intensive aquatic farms (Merrifield et al. 
2010; Hoseinifar et al. 2016: Dawood and Koshio 2016). Functional feed additives 
modify the gut microbiome, increase the activity of beneficial bacteria, increase the 
secretion of digestive enzymes, and decrease harmful bacteria. In addition, these 
feed additives upregulate gene expression related to immunity and inflammatory 
cytokines such as IL-1, IL-8, and Lyz, oxidative enzymes such as catalyse, superox-
ide dismutase, and glutathione, and growth genes such as GH and IGF-1. Such 
compounds act as health factors capable of modulating the immune responses in 
tilapia (Table 1.5 included as supplementary data), and other cultivated fish species. 

Furthermore, functional feed additives have a positive impact on the immune 
system defence system by (i) stimulating the production of plasma proteins (globulin 
and albumin), which play a vital role in the synthesis of antibodies (immunoglob-
ulins), (ii) enhancing the activity of lysozyme, (iii) increasing the production of 
defence cells such as leukocytes and lymphocytes that produce antibodies), 
(iv) stimulating the production of macrophages, which are responsible for the 
phagocytosis, and (v) modulating the composition of the gut flora and improving 
gut health via the increase in villi length, width goblet cells, improving mucus 
secretion, and reducing gut inflammation. 

Probiotics, generally defined as live microorganisms, are provided via the diet or 
rearing water (when supplied in an adequate amount). They possess different 
beneficial characteristics leading to the exclusion of pathogenic bacteria and the 
modulation of the immune system of the host, by improving the microbial balance of 
the host (Merrifield et al. 2010). The most common probiotics used in aqua feeds are



"
–

"

–

"

"

"
–

"

"

"
–

"
"

"
–

"
–

–

"
–

–
–

"
–

"
"

–
–

"
"

–
"

"

14 G. Ashouri et al.

T
ab

le
 1
.5
 
T
ila
pi
a 
st
ud

ie
s 
to
 e
va
lu
at
e 
th
e 
ef
fe
ct
s 
of
 f
un

ct
io
na
l 
fe
ed
 a
dd

iti
ve
s 
on

 im
m
un

ity
* 

F
ee
d 
ad
di
tiv

es
T
ila
pi
a 
sp
ec
ie
s 

Im
m
un

e 
re
sp
on

se
s 

Im
m
un

e-
re
la
te
d 

ge
ne
s 

S
tr
es
s-

re
gu
la
tin

g 
ge
ne
s 

A
nt
i-

ox
id
at
iv
e 

ca
pa
ci
ty
 

H
ae
m
at
ol
og

ic
al
 

an
d 
bi
oc
he
m
ic
al
 

pa
ra
m
et
er
s 

D
is
ea
se
 

ch
al
le
ng

e 

D
is
ea
se
 

re
si
st
an
ce
 

an
d 

su
rv
iv
al
 

ra
te

R
ef
er
en
ce
 

P
ro
bi
ot
ic
s 

L
. r
ha

m
no
su
s

N
ile
 ti
la
pi
a 

(O
. n

ilo
tic
us
) 

L
Z
M
",

P
A
", 

A
C
H
50
 

–
–

–
E
. t
ar
da

P
ir
ar
at
 e
t 
al
. 

(2
00

6)
 

C
om

m
er
ci
al
 

pr
ob

io
tic
sa
 

L
Z
M
",

B
A
", 

N
B
T
→

 
–

–
N
eu
tr
op

hi
l",

 
H
b"
, P

la
sm

a 
pr
ot
ei
n 

E
. t
ar
da

T
ao
ka
 e
t 
al
. 

(2
00

6)
 

S.
 c
er
ev
is
ia
e

B
A

–
–

N
eu
tr
op

hi
l",

 
R
B
C
s"
,H

b"
, 

H
t",

 A
lb
um

in
", 

G
lo
bu

lin
 

A
. h

yd
ro
ph

ila
A
bd

el
-

T
aw

w
ab
 e
t a
l. 

(2
00

8)
 

B
. s
ub
til
is
 +
 

L
. a

ci
do

ph
ilu

s 
N
B
T
", 

L
Z
M
", 

B
A
 

–
–

H
t

M
ix
ed
 s
pe
ci
es
 

pa
th
og

en
b
 

A
ly
 e
t a
l. 

(2
00

8)
 

E
. f
ae
ci
um

L
Z
M
",

C
3"
, 

R
B
A
 

–
M
PO

S
er
um

 p
ro
-

te
in
→
, A

lb
u-

m
in
→
, 

G
lo
bu

lin
→

 

W
an
g 
et
 a
l. 

(2
00

8)
 

P
. a

ci
di
la
ct
ic
i

L
Z
M
 ,
 R
B
A
→

–
–

W
B
C
s"
, 

R
B
C
s→

, S
er
um

 
pr
ot
ei
n→

, 
A
lb
um

in
→
, 

G
lo
bu

lin
→

 

F
er
gu

so
n 
et
 a
l. 

(2
01

0)
 

B
. c
oa

gu
la
ns

L
Z
M
→
, R

B
A

–
S
O
D
", 

C
A
T
", 

M
PO

 

S
er
um

 p
ro
te
in
", 

A
lb
um

in
→
, 

G
lo
bu

lin
 

Z
h o
u 
et
 a
l. 

(2
01

0a
) 

L
ac
to
co
cc
us
 

la
ct
is
 

L
Z
M
 ,
 R
B
A

–
S
O
D
", 

M
PO

 
–

A
. h

yd
ro
ph

ila
Z
ho
u 
et
 a
l. 

(2
01

0 b
)



#

–
–

–
–

–

"
"

–

"

–
–

"
–

"

"
"

–
"

"

"
–

"

"
"

–

"

"

"
"

"
"

–
–

–

–
"

"
–

–

–
–

"

"

(c
on

tin
ue
d)

L
. r
ha

m
no
su
s

L
Z
M
→
,P

A
", 

A
C
H
50
", 

R
B
A
→
,B

A
 

T
N
F
-α
", 

IL
-1
" 

P
ir
ar
at
 e
t 
al
. 

(2
01

1)
 

P
. a

ci
di
la
ct
ic
i

L
Z
M
→
, I
E
L
", 

G
C
 

T
N
F
α

–
W
B
C
s"
, 

N
eu
tr
op

hi
ls
", 

M
on
oc
yt
es
 ,
 

S
ta
nd

en
 e
t 
al
. 

(2
01

3)
 

L
. a

ci
do

ph
ilu

s
B
A

IL
-1
β

–
–

A
. h

yd
ro
ph

ila
V
ill
am

il 
et
 a
l. 

(2
01

4)
 

B
. l
ic
he
ni
fo
rm

is
L
Z
M
 ,

C
3

–
S
O
D

–
S.
 i
ni
ae

H
an
 e
t 
al
. 

(2
01

5)
 

B
. s
ub
til
is
 +
 

S.
 c
er
ev
is
ia
e 

R
B
A

–
–

W
B
C
s"
, 

L
ym

ph
oc
yt
e"
, 

M
on
oc
yt
e"
, 

R
B
C
s"
,H

t",
 

H
b→

, 

A
. h

yd
ro
ph

ila
 

S.
 i
ni
ae
 

Iw
as
hi
ta
 e
t a
l. 

(2
01

5)
 

L
. p

la
nt
ar
um

T
ot
al
 I
g"
,P

A
", 

L
Z
M
 

IL
-4
", 

IL
-1
2"
, 

IF
N
-γ
 
, 

–
W
B
C
s"
, 

R
B
C
s"
,H

b"
, 

S
er
um

 p
ro
te
in
", 

A
lb
um

in
", 

G
lo
bu

lin
 

A
. h

yd
ro
ph

ila
H
am

da
n 
et
 a
l. 

(2
01

6)
 

A
qu

aS
ta
r®

 
G
ro
w
ou
tc
 

IE
L
 ,

G
C

T
L
R
2"
, 

T
N
F
-α
", 

IL
-1
β"

, 
IL
-1
0"
, 

T
G
F
-β
 

C
as
pa

se
-

3"
, 

P
C
N
A
", 

H
SP

70
 

–
S
ta
nd

en
 e
t 
al
. 

(2
01

6)
 

A
qu

aS
ta
r®

 
G
ro
w
ou
tc
 

N
ile
 ti
la
pi
a 

(O
. n

ilo
tic
us
) 

A
C
H
50
", 

R
B
A
→
, 

L
Z
M
→

 

–
C
A
T
", 
G
P
x"
, 

G
R
 ,

G
S
H

 
W
B
C
s→

, 
R
B
C
s→

,H
T
→

 
R
am

os
 e
t a
l. 

(2
01

7)
 

L
. p

la
nt
ar
um

/ 
B
. v
el
ez
en
si
s 

S
er
um

 
A
C
H
50
", 

R
B
A
",

P A
"; 

S
er
um

 a
nd

 
m
uc
us
 L
Z
M
", 

S
er
um

 a
nd

 
m
uc
us
 P
er
ox
-

id
as
e 

ac
tiv

ity
 

–
S.
 a
ga

la
ct
ia
e

V
an
 D
oa
n 

et
 a
l. 
(2
01

8c
)

1 Tilapia Fish for Future Sustainable Aquaculture 15



T
ab

le
1.
5

(c
on

tin
ue
d)

"

–
"

"
–

"

–
–

"
"

"
"

"

"
–

"
"

"
"

"
–

"

"

–
–

"

#
–

–
–

"
–

"

F
ee
d 
ad
di
tiv

es
T
ila
pi
a 
sp
ec
ie
s 

Im
m
un

e 
re
sp
on

se
s 

Pe
ro
xi
da
se
 

ac
tiv

ity
", 

Im
m
un
e-

re
la
te
d 

ge
ne
s 

S
tr
es
s-

re
gu
la
tin

g 
ge
ne
s 

A
nt
i-

ox
id
at
iv
e 

ca
pa
ci
ty
 

H
ae
m
at
ol
og

ic
al
 

an
d 
bi
oc
he
m
ic
al
 

pa
ra
m
et
er
s 

D
is
ea
se
 

ch
al
le
ng

e 

D
is
ea
se
 

re
si
st
an
ce
 

an
d 

su
rv
iv
al
 

ra
te

R
ef
er
en
ce
 

L
. r
ha

m
no
su
s 
/ 

L
ac
to
co
cc
us
 

la
ct
is
 

–
T
N
F
-α
", 

IF
N
-γ
", 

L
yz
c"
, 

IL
-1
β 

H
SP

70
"

–
S.
 a
ga

la
ct
ia
e

X
ia
et
al
. 

(2
01

8)
 

B
. s
ub
til
is
/ 

S.
 c
er
ev
is
ia
e 

L
Z
M

–
–

W
B
C
s"
, 

R
B
C
s"
,H

b"
, 

S
er
um

 p
ro
te
in
", 

A
lb
um

in
", 

G
lo
bu

lin
 

O
pi
yo

 e
t 
al
. 

(2
01

9)
 

R
. s
ta
be
ki
si
i

R
B
A
",

PA
"; 

se
ru
m
 L
Z
M
 ,
 

T
N
F
-α
", 

IL
-1
β"

, 
T
G
F
-β
 

H
SP

70
S
O
D

–
A
. h

yd
ro
ph

ila
T
an
 e
t a
l. 

(2
01

9)
 

B
ac
ill
us
 s
p.

L
Z
M
", 

Ig
M
", 

G
C
 

–
S
O
D
 ,
 C
A
T

A
L
P

A
. h

yd
ro
ph

ila
K
ue
bu

to
rn
ye
 

et
 a
l. 
(2
02

0)
 

B
. s
ub
til
is
 /
 

B
. c
er
eu
s 

–
L
yz
c

–
–

S.
 a
ga

la
ct
ia
e

X
ia
et
al
. 

(2
02

0)
 

S.
 c
er
ev
is
ia
e

H
yb
ri
d 
til
ap
ia
 

(O
. n

ilo
tic
us
 ♀

 ×
 

O
. a

ur
eu
s 
♂
) 

L
Z
M
",

P
A
", 

R
B
A
",

C
3"
, 

C
4 

–
–

–
–

H
e 
et
 a
l. 

(2
00

9)
 

B
. s
ub
til
is

–
T
N
F
-α
", 

IL
-1
β"

, 
T
G
F
-β
 

H
SP

70
–

H
e 
et
 a
l. 

(2
01

3)
 

L
. b

re
vi
s/
 

L
. a

ci
do

ph
ilu

s 
–

H
SP

70
–

A
. h

yd
ro
ph

ila
L
iu
 e
t a
l. 

(2
01

3)

16 G. Ashouri et al.



" "
"

"

"
–

–

"

–
"

"
–

"

–
–

–

"
"

–
–

"
"

"
"

–
#

#
"

–

"

–

"
"

–
"

–
–

(c
on

tin
ue
d)

L
. p

la
nt
ar
um

T
N
F
-α
", 

IL
-1
β 

T
N
F
-α
", 

IL
-1
β"

, 
T
G
F
-β
 

H
SP

70
A
. h

yd
ro
ph

ila
R
en
 e
t a
l. 

(2
01

3)
 

L
yc
og
en
™

d
 

R
ed
 ti
la
pi
a 

(O
. m

os
sa
m
bi
cu
s 

×
 O
. n

ilo
tic
us
) 

L
Z
M
", 

A
C
H
50
 

–
–

–
–

C
hi
u 
an
d 
L
iu
 

(2
01

4)
 

B
ac
ill
us
 s
pp

.
–

IF
N
-γ
", 

IL
-8
", 

IR
F
-3
", 

M
X
", 

R
SA

D
-

2 

–
–

T
iL
V
e 

W
ai
ya
m
itr
a 

et
 a
l. 
(2
02

0)
 

P
re
bi
ot
ic
 

β-
gl
uc
an

N
ile
 ti
la
pi
a 

(O
. n

ilo
tic
us
) 

L
Z
M

–
–

–
S.
 i
ni
ae

W
hi
tti
ng
to
n 

et
 a
l. 
(2
00

5)
 

S
an
gr
ov

it®
f 

L
Z
M
→

–
–

W
B
C
s"
, 

R
B
C
s→

,H
b→

, 
A
L
T
→

 

R
aw

lin
g 
et
 a
l. 

(2
00

9)
 

In
ul
in

L
Z
M
 ,
 N
B
T

–
H
t

A
. h

yd
ro
ph

ila
Ib
ra
he
m
 e
t 
al
. 

(2
01

0)
 

G
ro
B
io
tic
®
-A

g
 

N
ile
 ti
la
pi
a 

(O
. n

ilo
tic
us
) 

L
Z
M
 ,
 N
B
T

–
S
O
D
 ,
 C
A
T

–
A
. h

yd
ro
ph

ila
Z
he
ng

 e
t 
al
. 

(2
01

1)
 

G
ro
B
io
tic
®
-A

g
 

L
Z
M
→
, 

A
C
H
50
→
, t
ot
al
 

Ig
→

 

–
–

S
er
um

 to
ta
l 

P
ro
te
in
→

 
S.
 i
ni
ae

→
V
ec
hk

la
ng

 
et
 a
l. 
(2
01

2)
 

β-
gl
uc
an

S
er
um

 L
Z
M
→

, 
A
C
H
50
→
, 

R
B
A
 ,

B
A
→

 

–
–

W
B
C
s→

, 
R
B
C
s→

,H
b→

, 
H
t→

 

S.
 i
ni
ae

→
W
el
ke
r 
et
 a
l. 

(2
01

2)
 

In
ul
in
 o
r 
JA

h
 

L
Z
M
", 

A
C
H
50
", 

to
ta
l 

Ig
 ,

G
C
 

–
–

A
lb
um

in
", 

T
ot
al
 P
ro
te
in
 

T
ie
ng

ta
m
 e
t a
l. 

(2
01

5)

1 Tilapia Fish for Future Sustainable Aquaculture 17



T
ab

le
1.
5

(c
on

tin
ue
d)

–
–

–
–

–

"
"

–

"

–
–

–

"
"

–
"

"
"

–

"

"

"
#

–
"

–
–

–
–

"
"

–
–

–
–

"
"

–
–

"

F
ee
d 
ad
di
tiv

es
 

M
O
S
 

T
ila
pi
a 
sp
ec
ie
s 

Im
m
un

e 
re
sp
on

se
s 

L
Z
M
→
, 

R
B
A
→

 

Im
m
un
e-

re
la
te
d 

ge
ne
s 

S
tr
es
s-

re
gu
la
tin

g 
ge
ne
s 

A
nt
i-

ox
id
at
iv
e 

ca
pa
ci
ty
 

H
ae
m
at
ol
og

ic
al
 

an
d 
bi
oc
he
m
ic
al
 

pa
ra
m
et
er
s 

S
er
um

 to
ta
l 

P
ro
te
in
→

 

D
is
ea
se
 

ch
al
le
ng

e 

D
is
ea
se
 

re
si
st
an
ce
 

an
d 

su
rv
iv
al
 

ra
te

R
ef
er
en
ce
 

Y
uj
i-
S
ad
o 

et
 a
l. 
(2
01

5)
 

F
O
S

L
Z
M
", 

se
ru
m
 

Ig
M
 ,

N
O
 

–
S
O
D
"C

A
T
", 

G
P
x"
, 

M
D
A
 

A
bd
 

E
l-
G
aw

ad
 

et
 a
l. 
(2
01

6)
 

L
M
W
S
A

L
Z
M
", 

S
er
um

 
A
C
H
50
", 

R
B
A
 ,

PA
 

–
–

–
S.
 a
ga

la
ct
ia
e

V
an
 D
oa
n 

et
 a
l. 
(2
01

6b
) 

X
O
S

S
er
um

 a
nd

 
m
uc
us
 L
Z
M
", 

S
er
um

 
A
C
H
50
", 

R
B
A
 ,

PA
 

–
S
er
um

 a
nd

 
m
uc
us
 P
er
ox
-

id
as
e 

ac
tiv

ity
 

–
S.
 a
ga

la
ct
ia
e

V
an
 D
oa
n 

et
 a
l. 
(2
01

8b
) 

C
O
S

H
yb
ri
d 
til
ap
ia
 

(O
. n

ilo
tic
us
 ♀

 ×
 

O
. a

ur
eu
s 
♂
) 

–
T
N
F
-α
#, 

T
G
F
-β
 

H
SP

70
–

A
. h

yd
ro
ph

ila
Q
in
 e
t a
l. 

(2
01

4)
 

G
O
S

R
ed
 h
yb

ri
d 
til
ap
ia
 

re
d 
til
ap
ia
 

(O
. n

ilo
tic
us
 ×
 

O
. m

os
sa
m
bi
cu
s)
 

W
B
C
s"
, 

R
B
C
s 
,H

t→
 

S.
 i
ni
ae

P
lo
ng
bu

nj
on

g 
et
 a
l. 
(2
01

1)
 

Sy
nb

io
ti
c 

S.
 c
er
ev
is
ia
e 
+
 

β-
gl
uc
an
 

N
ile
 ti
la
pi
a 

(O
. n

ilo
tic
us
) 

L
Z
M
→
, t
ot
al
 

Ig
→
, A

C
H
50
→

 
–

S
er
um

 to
ta
l 

pr
ot
ei
n→

 
S
he
lb
y 
et
 a
l. 

(2
00

9)
 

L
. p

la
nt
ar
um

 +
 

L
M
W
S
A
 

S
er
um

 L
Z
M
", 

A
C
H
50
", 

R
B
A
 ,

PA
 

–
–

S.
 a
ga

la
ct
ia
e

V
an
 D
oa
n 

et
 a
l. 
(2
01

6a
)

18 G. Ashouri et al.



–
–

–
–

#
#

–
"

"
"

–

"

–
–

–

"
"

–
"

"
"

–

#
"

–
–

"
"

–
–

"

"

–
–

–
–

–
"

–
–

–
–

#

"

"
"

–
–

–

(c
on

tin
ue
d)

B
. s
ub
til
is
 +
 

M
al
ic
 a
ci
d 

W
B
C
s"
, 

R
B
C
s"
,H

t",
 

H
b"
, t
ot
al
 

P
ro
te
in
", 

A
lb
um

in
", 

gl
ob

ul
in
", 

A
L
T
 ,
 A
S
T
 

H
as
sa
an
 e
t a
l. 

(2
01

8)
 

L
. p

la
nt
ar
um

 +
 

C
C
M

i 
N
ile
 ti
la
pi
a 

(O
. n

ilo
tic
us
) 

M
uc
us
 L
Z
M
", 

S
er
um

 L
Z
M
", 

A
C
H
50
", 

R
B
A
 ,

PA
 

–
S
er
um

 a
nd

 
m
uc
us
 P
er
ox
-

id
as
e 

ac
tiv

ity
 

V
an
 D
oa
n 

et
 a
l. 
(2
01

7a
) 

K
efi
rj 
+
 

L
M
W
S
A
 

S
er
um

 L
Z
M
", 

A
C
H
50
", 

R
B
A
 ,

PA
 

–
–

–
S.
 a
ga

la
ct
ia
e

V
an
 D
oa
n 

et
 a
l. 
( 2
01

7b
) 

A
SP

k
 +
 

β-
gl
uc
an
 

N
B
T
", 

L
Z
M
", 

Ig
M
, B

A
 ,

P
A
 

–
S
O
D
", 

C
A
T
", 
G
P
x"
, 

M
D
A
 

W
B
C
s"
, 

R
B
C
s"
,H

t",
 

H
b"
, t
ot
al
 

P
ro
te
in
 

D
aw

oo
d 
et
 a
l. 

(2
02

0)
 

L
. p

la
nt
ar
um

 +
 

X
O
S
 

M
uc
us
 L
Z
M
", 

S
er
um

 L
Z
M
", 

A
C
H
50
", 

R
B
A
 ,

PA
 

S
er
um

 a
nd

 
m
uc
us
 P
er
ox
-

id
as
e 

ac
tiv

ity
 

–
S.
 a
ga

la
ct
ia
e

V
an
 D
oa
n 

et
 a
l. 
(2
02

0b
) 

L
ac
to
ba
ci
llu

s 
sp
p.
 +
 F
O
S
 

H
yb
ri
d 
til
ap
ia
 

(O
. n

ilo
tic
us
 ♀

 ×
 

O
. a

ur
eu
s 
♂
) 

A
. h

yd
ro
ph

ila
L
iu
 e
t a
l. 

( 2
01

7)
 

P
la
nt
 

co
m
po

un
ds
 

G
ar
lic
 (
A
lli
um

 
sa
tiv
um

) 
N
ile
 ti
la
pi
a 

(O
. n

ilo
tic
us
) 

W
B
C
s"
, 

R
B
C
s"
,H

t",
 

H
b"
, A

L
T
#, 

A
S
T
 

A
. h

yd
ro
ph

ila
S
ha
la
by

 e
t 
al
. 

(2
00

6)
 

S
er
um

 L
Z
M
", 

R
B
A
 ,

PA
 

–
–

–
Y
in
 e
t a
l. 

(2
00

6)

1 Tilapia Fish for Future Sustainable Aquaculture 19



T
ab

le
1.
5

(c
on

tin
ue
d)

"
–

"

–
–

–
–

"

–
–

–
–

–
–

–
"

–
–

–

#
#

–
–

–
–

–
–

"

"

–
–

–
–

–
"

"
"

–
"

–

"

"

F
ee
d 
ad
di
tiv

es
T
ila
pi
a 
sp
ec
ie
s 

C
hi
ne
se
 h
er
bs
 

(A
st
ra
ga
lu
s 

ra
di
x)
 

Im
m
un

e 
re
sp
on

se
s 

Im
m
un

e-
re
la
te
d 

ge
ne
s 

S
tr
es
s-

re
gu
la
tin

g 
ge
ne
s 

A
nt
i-

ox
id
at
iv
e 

ca
pa
ci
ty
 

H
ae
m
at
ol
og

ic
al
 

an
d 
bi
oc
he
m
ic
al
 

pa
ra
m
et
er
s 

D
is
ea
se
 

ch
al
le
ng

e 

D
is
ea
se
 

re
si
st
an
ce
 

an
d 

su
rv
iv
al
 

ra
te

R
ef
er
en
ce
 

G
ar
lic
 (
A
lli
um

 
sa
tiv
um

) 
N
B
T

–
–

–
P
. fl

uo
re
sc
en
s

D
ia
b 
et
 a
l. 

(2
00

8)
 

G
in
se
ng

 H
er
b 

(G
in
sa
na

®
 

G
11

5)
 

W
B
C
s"
, 

R
B
C
s"
,H

t",
 

H
b 

G
od

a 
(2
00

8)
 

P
si
di
um

 
gu

aj
av
a 

A
. h

yd
ro
ph

ila
P
ac
ha
na
w
an
 

et
 a
l. 
(2
00

8)
 

G
ar
lic
 (
A
lli
um

 
sa
tiv
um

) 
S
O
D
", 

C
A
T
", 
G
P
x"
, 

M
D
A
 

S
er
um

 to
ta
l 

P
ro
te
in
", 

A
L
T
#, 

A
S
T
 

M
et
w
al
ly
 

(2
00

9)
 

E
ch
ni
ca
ce
a 
an
d 

G
ar
lic

l 
W
B
C
s"
,H

t",
 

N
eu
tr
op

hi
l",

 
L
ym

ph
oc
yt
e 

A
. h

yd
ro
ph

ila
A
ly
 a
nd

 
M
oh
am

ed
 

(2
01

0)
 

R
os
m
ar
in
us
 

of
fi
ci
na

lis
 

N
ile
 ti
la
pi
a 

(O
. n

ilo
tic
us
) 

S.
 i
ni
ae

Z
ilb

er
g 
et
 a
l. 

(2
01

0)
 

G
in
ge
r 

(Z
in
gi
be
r 

of
fi
ci
na

le
) 

L
Z
M
 ,
 I
gM

–
–

–
A
. h

yd
ro
ph

ila
E
l-
S
ay
ed
 e
t 
al
. 

(2
01

4)
 

A
lo
e 
ve
ra

L
Z
M
→

–
–

W
B
C
s"
, 

R
B
C
s"
,H

t",
 

H
b"
, 

N
eu
tr
op

hi
l",

 
m
on

oc
yt
es
 

S.
 i
ni
ae

G
ab
ri
el
 e
t a
l. 

(2
01

5)

20 G. Ashouri et al.



–
–

–
–

"

–
–

–

#

"

"

–

"

"

"
–

–

"

"

"
–

"
#

–
–

"
"

–
–

"

"

"
"

–
–

"

"

–
–

–
–

–
–

–

–
–

–
–

–
–

(c
on

tin
ue
d)

M
or
in
ga

 
ol
ei
fe
ra
 

A
L
T
#, 

A
S
T
#

G
ba
da
m
os
i 

et
 a
l. 
(2
01

6)
 

A
. h

yd
ro
ph

ila
 

G
in
ge
r 

(Z
. o

ffi
ci
na

le
) 

S
O
D
", 

C
A
T
", 

M
D
A
 

W
B
C
s"
, 

R
B
C
s"
,H

t",
 

H
b"
, 

N
eu
tr
op

hi
l",

 
m
on

oc
yt
es
 

A
. h

yd
ro
ph

ila
Şa
ha
n 
et
 a
l. 

(2
01

6)
 

O
ra
ng

e 
pe
ct
in

M
uc
us
 L
Z
M
", 

S
er
um

 L
Z
M
", 

A
C
H
50
, P

A
""
, 

R
B
A
→

 

–
S
er
um

 a
nd

 
m
uc
us
 P
er
ox
-

id
as
e 

ac
tiv

ity
 

–
S.
 a
ga

la
ct
ia
e

V
an
 D
oa
n 

et
 a
l. 
(2
01

8a
) 

W
ith

an
ia
 

so
m
in
ef
er
a 

N
B
T

L
iv
er
 S
O
D
", 

C
A
T
", 

G
S
T
", 

G
S
H
", 
G
P
x"
, 

M
D
A
#, 

se
ru
m
 T
A
C
 

–
A
. h

yd
ro
ph

ila
Z
ah
ra
n 
et
 a
l. 

(2
01

8)
 

O
ci
m
um

 
ba

si
lic
um

 
S
er
um

 L
Z
M

–
–

H
t→

,H
b"
, 

P
la
sm

a 
to
ta
l 

P
ro
te
in
 ,
 A
L
T
 ,
 

de
 S
ou

za
 e
t 
al
. 

(2
01

9)
 

T
ha
i g

in
se
ng

 
(B
oe
se
nb

er
gi
a 

ro
tu
nd

a)
 

M
uc
us
 L
Z
M
", 

S
er
um

 L
Z
M
", 

A
C
H
50
", 

R
B
A
 ,

PA
 

S
er
um

 a
nd

 
m
uc
us
 P
er
ox
-

id
as
e 

ac
tiv

ity
 

–
S.
 a
ga

la
ct
ia
e

V
an
 D
oa
n 

et
 a
l. 
( 2
01

9)
 

B
er
be
ri
ne
 

po
w
de
r 

M
uc
us
 L
Z
M
", 

S
er
um

 L
Z
M
", 

A
C
H
50
", 

R
B
A
 ,

P
A

 

S
er
um

 a
nd

 
m
uc
us
 P
er
ox
-

id
as
e 

ac
tiv

ity
 

–
S.
 a
ga

la
ct
ia
e

V
an
 D
oa
n 

et
 a
l. 
(2
02

0a
) 

O
rg
an

ic
 a
ci
ds
 

A
lg
in
ic
 a
ci
d

N
ile
 ti
la
pi
a 

(O
. n

ilo
tic
us
) 

M
er
ri
fi
el
d 

et
 a
l. 
(2
01

1)
 

ca
lc
iu
m
 la
ct
at
e

1 Tilapia Fish for Future Sustainable Aquaculture 21



T
ab

le
1.
5

(c
on

tin
ue
d)

F
ee
d
ad
di
tiv

es
T
ila
pi
a
sp
ec
ie
s

Im
m
un

e
re
sp
on

se
s

Im
m
un

e-
re
la
te
d

ge
ne
s

S
tr
es
s-

re
gu
la
tin

g
ge
ne
s

A
nt
i-

ox
id
at
iv
e

ca
pa
ci
ty

H
ae
m
at
ol
og

ic
al

an
d
bi
oc
he
m
ic
al

pa
ra
m
et
er
s

D
is
ea
se

ch
al
le
ng

e

D
is
ea
se

re
si
st
an
ce

an
d

su
rv
iv
al

ra
te

R
ef
er
en
ce

#
"

–
"

–
–

–

–
–

–
–

–
"

H
t",

H
b"
, 

P
la
sm

a 
to
ta
l 

P
ro
te
in
", 

A
L
T
#, 

A
S
T
 

H
as
sa
an
 e
t a
l. 

(2
01

4)
 

L
-m

al
ic
 a
ci
d

L
Z
M

–
S
O
D
", 

M
D
A
 

C
he
n 
et
 a
l. 

(2
01

6)
 

O
A
B
m
 

R
ed
 h
yb

ri
d 
til
ap
ia
 

re
d 
til
ap
ia
 

(O
. n

ilo
tic
us
 ×
 

O
. m

os
sa
m
bi
cu
s)
 

S.
 a
ga

la
ct
ia
e

N
g 
et
 a
l. 

(2
00

9)
 

A
rr
ow

s 
in
di
ca
te
 a
n 
in
cr
ea
se
 (
"),

 d
ec
re
as
e 
(#)

, o
r 
no

 c
ha
ng

e 
(→

) 
in
 t
he
 r
es
po

ns
e 

P
ro
bi
ot
ic
 g
en
er
a 
ab
br
ev
ia
tio

ns
: B

.: 
B
ac
ill
us
, E

.: 
E
nt
er
co
cc
us
, L

.:
 L
ac
to
ba
ci
llu

s,
 P
.: 
P
ed
io
co
cc
us
, R

.: 
R
um

m
el
iib

ac
ill
us
 

P
at
ho
ge
ns
 g
en
er
a 
ab
br
ev
ia
tio

ns
: A

.: 
A
er
om

on
as
, E

.: 
E
dw

ar
ds
ie
lla

, P
.:
 P
se
ud
om

on
as
, S

.: 
St
re
pt
oc
oc
cu
s 

P
re
bi
ot
ic
 
ab
br
ev
ia
tio

ns
: 

C
O
S:
 
C
hi
to
-o
lig

os
ac
ch
ar
id
es
, 

F
O
S:
 
F
ru
ct
oo
lig

os
ac
ch
ar
id
e,
 
G
O
S:
 
G
al
ac
to
ol
ig
os
ac
ch
ar
id
e,
 
M
O
S:
 
M
an
na
n 

ol
ig
os
ac
ch
ar
id
e,
 
X
O
S:
 

X
yl
oo

lig
os
ac
ch
ar
id
es
, L

M
W
SA

: 
L
ow

 m
ol
ec
ul
ar
 w
ei
gh
t 
so
di
um

 a
lg
in
at
e 

*P
ar
am

et
er
s 
in
ve
st
ig
at
ed
 a
bb

re
vi
at
io
ns
: A

C
H
50
: 
al
te
rn
at
iv
e 
co
m
pl
em

en
t h

ae
m
ol
yt
ic
 5
0 
ac
tiv

ity
, B

A
: 
B
ac
te
ri
ci
da
l a
ct
iv
ity

, C
3 
&
 C
4:
 C
om

pl
em

en
t c
om

po
ne
nt
 3
 &

 4
, I
g:
 

Im
m
un
og
lo
bu
lin

s,
 L
Z
M
: 
L
ys
oz
ym

e 
ac
tiv

ity
, P

A
: 
P
ha
go

cy
tic
 a
ct
iv
ity

, R
B
A
: 
R
es
pi
ra
to
ry
 b
ur
st
 a
ct
iv
ity

, N
B
T
: 
N
itr
ob
lu
e 
te
tr
az
ol
iu
m
, N

O
: 
N
itr
ic
 o
xi
de
 a
ct
iv
ity

, R
B
C
s:
 R
ed
 

bl
oo

d 
ce
lls
, 
W
B
C
s:
 L
eu
co
cy
te
s,
 H

t:
 H

ae
m
at
oc
ri
t, 
H
b:
 H

ae
m
og

lo
bi
n,
 A
L
P
: 
A
lk
al
in
e 
ph

os
ph

at
as
e,
 A
L
T
: 
A
la
ni
ne
 a
m
in
ot
ra
ns
fe
ra
se
 a
ct
iv
ity

, 
A
ST

: 
A
sp
ar
ta
te
 a
m
in
ot
ra
ns
-

fe
ra
se
 a
ct
iv
ity

, S
O
D
: 
S
up

er
ox

id
e 
di
sm

ut
as
e,
 C
A
T
: 
C
at
al
as
e,
 G
P
x:
 G
lu
ta
th
io
ne
 p
er
ox
id
as
e,
 G
R
: 
G
lu
ta
th
io
ne
 r
ed
uc
ta
se
, G

SH
: 
G
lu
ta
th
io
ne
, G

ST
: 
G
lu
ta
th
io
ne
 S
-t
ra
ns
fr
as
e,
 

T
SA

: 
T
ot
al
 a
nt
io
xi
da
nt
 c
ap
ac
ity

, 
M
P
O
: 
M
ye
lo
pe
ro
xi
da
se
, 
M
D
A
: 
M
al
on
di
al
de
hy
de
 a
ct
iv
ity

, 
IE
L
: 
In
tr
ae
pi
th
el
ia
l 
le
uc
oc
yt
e 
le
ve
ls
 i
n 
th
e 
in
te
st
in
e,
 G

C
: 
G
ab
le
t 
ce
lls
, 
IL
: 

In
te
rl
eu
ki
n,
 T
N
F
α
: 
T
um

ou
r 
ne
cr
os
is
 f
ac
to
r-
α,
 T
L
R
: 
T
ol
l-
lik

e 
re
ce
pt
or
s,
 I
F
N
-γ
: 
In
te
rf
er
on

 g
am

a,
 T
G
F
-β
: 
T
ra
ns
fo
rm

in
g 
gr
ow

th
 f
ac
to
r 
be
ta
, I
R
F
-3
: 
In
te
rf
er
on

 r
eg
ul
at
or
y 

fa
ct
or
, M

x:
 T
ra
ns
cr
ip
tio

n 
of
 m
x,
 R
SA

D
-2
: 
R
ad
ic
al
 S
-A

de
no

sy
l M

et
hi
on

in
e 
D
om

ai
n 
C
on
ta
in
in
g 
2 
ge
ne
 (
V
IP
E
R
IN
 g
en
),
 P
C
N
A
: 
P
ro
lif
er
at
in
g 
ce
ll 
nu
cl
ea
r 
an
tig

en
, H

SP
70

: 
H
ea
t s
ho

ck
 7
0 
kD

a 
pr
ot
ei
ns
, L

yz
c:
 C
-t
yp

e 
ly
so
zy
m
e 

a T
he
 c
om

m
er
ci
al
 p
ro
bi
ot
ic
s 
co
nt
ai
ne
d 
B
ac
ill
us
 s
ub
til
is
, L

ac
to
ba

ci
llu

s 
ac
id
op

hi
lu
s,
 C
lo
st
ri
di
um

 b
ut
yr
ic
um

, a
nd

 S
ac
ch
ar
om

yc
es
 c
er
ev
is
ia
e.
 

b
 T
he
 m

ix
ed
 p
at
ho

ge
ns
 i
nc
lu
de
 A
. h

yd
ro
ph
ila

, P
. fl

uo
re
sc
en
s,
 a
nd

 S
. i
ni
ae
 

c A
 c
om

m
er
ci
al
 p
ro
bi
ot
ic
 p
ro
du
ct
 c
on
ta
in
s 
B
ac
ill
us
 s
pp

., 
P
ed
io
co
cc
us
 s
pp

., 
E
nt
er
oc
oc
cu
s 
sp
p.
, a
nd

 L
ac
to
ba
ci
llu

s 
sp
p.

22 G. Ashouri et al.



d
 A
 c
om

m
er
ci
al
 c
ar
ot
en
oi
d 
pr
od

uc
t 
fr
om

 t
he
 e
xt
ra
ct
 o
f 
pr
ob

io
tic
 R

ho
do

ba
ct
er
 s
ph

ae
ro
id
es
 m

ut
an
t 
st
ra
in
 W

L
A
PD

91
1 
(L
yc
og

en
™
) 
co
nt
ai
ns
 n
eu
ro
sp
or
en
e,
 β
-c
ar
ot
en
e,
 

sp
he
ro
id
en
on
e 
an
d 
m
et
ho
xy
ne
ur
os
po
re
ne
 r
at
he
r 
th
an
 ly

co
pe
ne
. 

e T
ila
pi
a 
la
ke
 v
ir
us
 (
T
ila

pi
a 
til
ap
in
ev
ir
us
).
 

f A
 c
om

m
er
ci
al
 p
ro
du
ct
 c
on
ta
in
in
g 
th
e 
is
oq
ui
no
lin

e 
al
ka
lo
id
 s
an
gu
in
ar
in
e.
 

g
 G
ro
B
io
tic
®
-A

 i
s 
a 
m
ix
tu
re
 o
f 
pa
rt
ia
lly

 a
ut
ol
yz
ed
 b
re
w
er
’s
 y
ea
st
 S
ac
ch
ar
om

yc
es
 c
er
ev
is
ia
e,
 d
ai
ry
 c
om

po
ne
nt
s,
 a
nd
 f
er
m
en
ta
tio

n 
pr
od
uc
ts
 s
uc
h 
as
 β
-g
lu
ca
n 
an
d 

ol
ig
os
ac
ch
ar
id
es
. 

h
 Je
ru
sa
le
m
 a
rt
ic
ho
ke
 (
H
el
ia
nt
hu

s 
tu
be
ro
su
s)
. 

i M
us
hr
oo

m
 (
C
or
dy
ce
ps
 m
ili
ta
ri
s)
 s
ub

st
ra
te
 

j K
efi
r 
is
 a
 c
om

pl
ex
 c
om

m
un
ity

 o
f 
ye
as
ts
 (
K
lu
yv
er
om

yc
es
, S

ac
ch
ar
om

yc
es
, a
nd

 T
or
ul
a)
, l
ac
to
ba
ci
lli
 (
L
ac
to
ba
ci
llu

s,
 L
ac
to
co
cc
us
, L

eu
co
no

st
oc
, a
nd

 S
tr
ep
to
co
cc
us
 s
pp

.)
, 

an
d 
ac
et
ic
 a
ci
d 
ba
ct
er
ia
 (
A
ce
to
ba

ct
er
).
 

k
 A
sp
er
gi
llu

s 
or
yz
ae
. 

l E
ch
in
ac
ea
 p
ur
pu
re
a 
an
d 
A
lli
um

 s
at
iv
um

. 
m
 O
A
B
, o

rg
an
ic
 a
ci
ds
 b
le
nd
 (
S
un
ze
n 
C
or
po
ra
tio

n,
 M

al
ay
si
a)
; P

D
F
, p

ot
as
si
um

 d
if
or
m
at
e 
(F
O
R
M
Is
, A

D
D
C
O
N
, N

or
w
ay
).

1 Tilapia Fish for Future Sustainable Aquaculture 23



Bacillus spp., lactic acid bacteria (LAB), certain Gram-negative spp., and yeast. 
They are incorporated into fish diets and lead to high levels of colonization and 
moderate gut microbial ecology populations (Merrifield et al. 2010).
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A prebiotic is defined as a feed additive derived from vegetables and fruit that 
enhances the fish’s performance and/or modifies the community of gastrointestinal 
beneficial bacteria, which consequent improvement of the host’s well-being and 
health (Gibson and Roberfroid 1995). The criteria used to identify and recognize 
compounds as prebiotics are: (i) compounds that are neither hydrolysed nor assim-
ilated by the gut; (ii) these compounds should be fermented by the gastrointestinal 
microbe community, (iii) they should be beneficial for bacteria to the colon through 
the enhancement of their growth and/or metabolism activation; finally, (iv) they 
should be able to transfer the colonic flora into healthier compounds to the host 
(Gibson and Roberfroid 1995; Lauzon et al. 2014). 

Ringø et al. (2014) reported that the most common prebiotics used in aquafeeds 
are fructooligosaccharides (FOS), mannanoligosaccharides (MOS), 
galactooligosaccharides (GOS), and many commercial products that could be 
fermented by the gut flora and recognized as non-digestible compounds. Bioactive 
compounds and oils derived from medicinal plants have a positive impact on the 
host, including enhancement of performance, immune system response, modifica-
tion of the gut flora, reduction of free radicals from the metabolic process, and 
enhancement of the host health and welfare against pathogen microbes (Alemayehu 
et al. 2018; Jeney et al. 2015). 

Organic acids are also employed as a functional feed additive to enhance gut 
health and performance in fish (Lim et al. 2015). Organic acids have three different 
mechanisms of action in the gastrointestinal tract of fish: (i) the pH-reducing action 
of organic acids in the gastrointestinal tract leads to enhanced activity of the 
digestive enzymes, (ii) the reduction of pH inhibits the growth of pathogens bacteria 
in the gastrointestinal tract, and (iii) the organic acids integrated into aquafeeds 
decrease the potential risk of microbial contamination including pathogenic bacteria 
and moulds or fungi during feed storage (Lim et al. 2015). 

1.2.2 Environmental Requirements 

The tilapia genus is recognized as the most widely cultured group of species since 
they are raised in different regions of the world and are highly adaptable to a wide 
range of environmental conditions (Table 1.6). 

Tilapia is tolerant to a wide range of rearing conditions such as salinity, ammonia, 
pH, dissolved oxygen (DO), and temperature. Among tilapia species, the least 
adaptable species is Nile tilapia (O. niloticus), while the most tolerant species to 
saltwater are Mozambique tilapia (T. mossambicus), blue tilapia (O. aureus), and red 
belly tilapia (T. zilli) (El-Sayed 2006b, c). 

El-Sayed (2006c) reported that the best salinity level to attain optimum growth in 
different tilapia species is up to 19 ‰. The optimal growing temperatures range
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between 22 and 29 °C, while the best temperature for spawning is higher than 22 °C. 
(El-Sayed 2006c) stated that tilapia can survive below 10° C and Nile tilapia 
(O. niloticus) is the least tolerant to cold water while O. aureus is the most tolerant 
to cold water. (Ross 2000) found that tilapia can tolerate a wide range of dissolved 
oxygen (DO); however, the optimum level of DO to achieve better growth perfor-
mance is higher than 3 mg L-1, and the best DO for optimum feed utilization 
efficiency is 7 mg L-1 (Bergheim 2007). (Shelton and Popma 2006) found that 
Tilapia requires a pH of ~7 or slightly higher than 7 to achieve the best growth. In 
general, tilapia tolerate a wide range of pH between 3.7 and 11, but the optimum 
growth rate is achieved between pH 7.5 to 9.5 (Ross 2000). 
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Table 1.6 Limits and optima of water quality parameters for tilapia 

Parameter Range Optimum for growth Reference 

Salinity (‰ <19 El-Sayed (2006c) 

DO (mg L-1 ) Down to 0.1 >3 Ross (2000) 

Temperature (°C) 8–42 22–29 Mjoun et al. (2010) 

pH 3.7–11 7–9 Ross (2000) 

Ammonia (mg L-1 ) Up to 7.1 <0.05 El-Sherif and El-Feky (2008) 

In terms of ammonia, a concentration higher than 2 mg L-1 is considered toxic 
(Shelton and Popma 2006). While ammonia at a concentration of 1.2 mg L-1 causes 
low appetite and reduces growth (Celik 2012; El-Sherif and El-Feky 2008). 
(El-Sherif and El-Feky 2008) reported that the optimum ammonia concentration 
for Nile tilapia (O. niloticus) is estimated to be below 0.05 mg L-1 . 

1.3 Comparative Assessment of Tilapia Culture Systems 

The selection of the culture technique is principally affected by the purpose of the 
aquaculturists or determined by the geographical conditions which involve site 
selection, substructure, environmental and physical conditions (especially climate), 
socioeconomic aspects, technical knowledge, and marketing potential. Different 
types of tilapia production are well known all over the world as monoculture or 
polyculture in different rearing units such as cages, ponds, and tanks. Also new 
production systems are practised in different regions of the world as aquaponics, 
hydroponics, and biofloc. Tilapia production is divided into three categories: 
(i) extensive: where the stocking density is low and organic and inorganic fertilizers 
used to promote the natural food, (ii) Semi-intensive: where the source of food 
combined between fertilization to promote natural food includes phytoplankton and 
zooplankton plus supplemented diets; (iii) intensive: based on high stocking density, 
high water exchange rate, and balanced complete feeds are provided. The approx-
imate annual yields of polyculture systems including tilapia with carps reach or 
exceed 5 tonnes/ha (Prabu et al. 2019).
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The major challenges of tilapia production are deprived growth, pathogen infec-
tions, and disease outbreaks. However, there have been several solutions that could 
help to expand tilapia production outside their tropical and sub-tropical regions. 
Some of these include compiled intensive-extensive systems, closed-cycle that aids 
in controlling the environmental variables, and intensive system indoor using RAS 
system with advanced water treatment methods such as biofloc. The common 
production approach of Nile tilapia (O. niloticus) in Asia and Latin America in 
lakes and reservoirs in different countries is represented by the intensive system in 
floating cages. The success of intensive technique using cage/tank systems relies on 
several factors such as (i) cage/tank size and shape, (ii) stocking density and iii) 
water exchange/water flow rate. Cage culture offers several advantages as follows: 
(i) minimizes fertilization, (ii) allows the recovery of eggs by spawning fish, (iii) 
allows the fish to grow in a real environment. The pros of using cage production 
techniques could be summarized in the following points as stated by (Bhujel 2014a): 

– Use of water bodies that cannot be drained or seined and would otherwise not be 
suitable for aquaculture. 

– Flexible and convenient for management. 
– No accumulation of ammonia, nitrite, nitrate, and other waste products that are 

quickly flushed out with water flow from the cage. 
– High feeding rates are feasible, and a higher fish growth rate could be achieved. 
– Predators (e.g., birds, otters, etc.) can be easily controlled. 
– Ease and low cost of harvesting. 
– Easy monitoring of fish feeding and health status. 
– Low capital investment compared to other production techniques. 

Nevertheless, some cons of cage culture involve: (i) poaching risk, (ii) failure of 
ability to prevent poor water quality conditions because of pollution by industries or 
factories, iii) difficulties in treating disease and parasites, (iv) need to frequently 
scrub the cages, (v) risk of fish escape from the cage, (vi) inability to provide natural 
foods and dependence on manufactured fish diets (complete in nutritional composi-
tion), and finally (vii) there may be criticism raised by environmentalists (Bhujel 
2014a). 

Thereafter, tanks and raceways can be another option to replace pond or cage 
culture if the conditions are not suitable for the cage technique. (Liao and Chen 
2001) stated that in Asia, the intensive tilapia production system in tanks is com-
monly practised in Taiwan, Malaysia, and Philippines. Taiwan is considered a 
pioneer for tilapia-intensive culture in concrete tanks (small to medium-level oper-
ation), with a production of over 55,000 tons/year. In comparison to the pond 
production system, tanks and raceways are easy to monitor and handle the stocks 
and possess a high degree of control of the environmental conditions, specifically 
water quality parameters. On the contrary, the disadvantages of using tank and 
raceway culture are given by the high cost of construction, operation, and production 
and the requirement of proficient attention due to the higher risk of major fish 
mortality caused by disease outbreaks.
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1.3.1 Biofloc Technology 

Wastewater with high ammonia, nitrite, and nitrate concentrations damages the fish 
culture system and pollutes other natural water bodies, so there is a need to look for 
alternative culture techniques to decrease the environmental damages caused by 
aquaculture (Gutierrez-Wing and Malone 2006). “Biofloc” Technology (BFT) is 
considered a promising alternative technique to avoid the harmful environmental 
impact caused by aquaculture. Biofloc technology through aeration and the addition 
of extra carbon to the aquaculture system increases the nitrifying bacterial colonies 
that maintain water quality and, together with phytoplankton and zooplankton are 
considered additional foods in the aquaculture farming system (Gutierrez-Wing and 
Malone 2006). The basic concept and function of biofloc are to stimulate the growth 
of heterotrophic microbial bacteria that convert a toxic source of nitrogen “NH3” to a 
safe source of nitrogen, in addition to converting nitrogenous waste to a microbial 
protein that could be used as another source of protein to the fish (De Schryver et al. 
2008). To date, BFT technology has achieved worthwhile attention due to its higher 
production efficiency, protein recycling from food leftover through nitrifying bac-
teria, water quality improvement, and a novel approach to infectious disease pre-
vention (Ekasari et al. 2015a). In addition, Ekasari et al. (2015a, b) reported that BFT 
technique employment could boost the reproductive performance of Nile tilapia 
(O. niloticus) broodstock by enhancing fecundity and larval survival rate and also 
improving the immune system against infectious diseases. Therefore, all the above 
advantages of biofloc technology attract the attention of scientists to conduct their 
research in BFT systems to guarantee and secure the factors within the recommended 
levels to achieve aquaculture sustainability and food security. 

1.4 Genetic Improvement 

Research for genetic improvement, particularly quantitative genetic approaches, can 
have a tremendous impact on aquaculture and can be responsible for increased 
production efficiency and improved productivity in aquatic animals. Over the past 
decades, the importance of tilapia in global aquaculture has increased, as well as the 
intensity and diversity of research for genetic improvement (Gupta and Acosta 
2004). In addition, aquatic animals give the opportunity to scientists to implement 
different approaches for improving fish genetics, including hybridization, selective 
breeding, sex control, and crossbreeding. Recently research in fish genetics proved 
that using and implementing new approaches help discover new strains with high 
growth rate, feed efficiency, survival rate, tolerance to a wide range of environmental 
conditions, and disease resistance. Moreover, the adoption and implementation of 
new genetic approaches could help discover new strains of fish and shrimp that could 
grow in either freshwater or/and brackish water systems (Nguyen et al. 2010; Ninh 
et al. 2014). Nowadays, most tilapia genetic research has focused on hybridization



and monosex male fry production. The most relevant findings of this research 
indicate that tilapia males grow faster than females, and tilapia shows early matura-
tion, which leads to consecutive spawning during the growing period and thus 
inhibits and limits growth. Thereafter, female tilapia shows difficulty growing 
uniformly, so male fry is preferred (Chen et al. 2018; Martínez et al. 2014). This 
shows the importance of searching for novel techniques and modification and 
improvement of the existing ones such as manual sexing, interspecific hybridization, 
androgenesis, triploid, transgenesis, hormonal sex reversal, and YY male technology 
to produce monosex tilapia for successful and intensive tilapia production 
(Beardmore et al. 2001; Ponzoni et al. 2011). The current approaches to producing 
‘all male’ tilapia have limitations that make them expensive, unmaintainable, or not 
acceptable. For example, manual sexing is labour-consuming, and attention to 
maintaining broodstock for interspecific hybridization is needed. Although the 
most widespread approach to producing monosex offspring is tilapia masculiniza-
tion with hormone therapies or adrenal malfunction, hormone therapies have posed 
concerns because they may influence consumer acceptance and marketability of the 
fish, and hormone residues may have irreversible effects on biodiversity and water 
quality. In the case of the YY approach, the production of YY males requires at least 
three generations of breeding. Moreover, the employment of YY technology 
depends on the contribution of an outstanding laboratory with advanced facilities 
for the creation of YY males (Baroiller et al. 1995; Abucay et al. 1999; Baroiller and 
D'Cotta 2001; Tessema et al. 2006). Therefore, there is a need to look for alternative 
techniques to create ‘all male’ tilapia. Some research indicates an effect of temper-
ature on genotype interaction, such as increasing the male: female ratio in response 
to thermal treatment. For example, thermal treatment of about 38 °C for 10 days after 
post-hatching succeeded in producing above 80% of males (Ponzoni et al. 2011). It 
should be mentioned that of all the genetic techniques, just selective breeding 
presents the chance of permanent genetic achievements because the achievements 
can be transferred from generation to generation. Finally, a combination of classic 
selective breeding using marker-assisted selection (MAS) and polygenic selection 
could considerably promote the male-to-female ratio as a response to thermo-
sensitivity. 
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1.5 Environmental Impacts 

Currently, tilapias have been introduced as exotic species in most countries world-
wide, with successful growth and reproduction in new habitats. The traditional 
tilapia culture in semi-intensive, small-scale systems with minimum negative effects 
on the environment is now being replaced with intensive, large-scale farming 
systems. Since the use of manufactured inputs such as artificial feed, chemothera-
peutic agents, and hormones will become inevitable in intensive culture systems. 
The worldwide expansion of tilapia rearing at an extremely high rate is very 
presumably to cause environmental and socioeconomic risks. In the last few



decades, Nile tilapia (O. niloticus) production expanded to increase the seafood 
supply and fulfil the global demand for animal protein and food security. Neverthe-
less, although tilapia produces substantial economic growth, its fast expansion has 
caused numerous environmental threats like the destruction of wild habitats, the 
interaction between alien and endemic species, disturbance of wildlife, use of 
artificial culture inputs (e.g. chemotherapeutic agents, antibiotics, hormones, and 
fuels), and eutrophication because of the aquaculture wastewater (El-Sayed 2006a). 
Thus, the use of advanced and efficient management approaches is necessary. In this 
regard, some innovative methods have been recommended to boost responsible 
aquaculture activities including the amalgamation of aquaculture practices with 
livestock farming and agriculture (e.g. aquaponic, hydroponic, etc.), and also 
using the BFT and RAS systems that could help to control or manage infectious 
diseases outbreak and discharges of aquaculture farms (Wang and Lu 2016; Forio 
and Goethals 2020). These approaches can be the basis for effective long-term 
solutions for eco-friendly and green aquaculture in the future. Therefore, novel 
approaches are required if sustainable and green aquaculture is to be meaningfully 
understood and implemented (Montoya-Camacho et al. 2019). Since eutrophication, 
a process that is caused by the excessive input of nutrients (e.g., phosphorous and 
nitrogen), is largely recognized as a serious threat to the environment (Nakano et al. 
2016), in the past few decades, researchers have been investigating techniques to 
reduce aquaculture waste outputs, mainly phosphorus and nitrogen, from aquacul-
ture operations to obtain satisfaction of environmentalists (Azim and Little 2008; 
Pinho et al. 2017; Boyd 2019). The well-known techniques to achieve eco-friendly 
aquaculture are the BFT technique and the integrated multi-trophic approach. The 
biofloc approach has been accomplishing acceptance as an efficient alternative water 
quality management system (Emerenciano et al. 2013; Dauda 2020). This technique 
presents the elimination of nutrients from water with the production of microbial 
communities, which can be consumed by the culture species in situ as natural foods 
(De Schryver et al. 2008). The other approach is the integrated multi-trophic 
aquaculture which is defined as a unique self-cleaning approach for aquaculture 
ponds since the waste from one species (including uneaten feed, faeces, and meta-
bolic excretion) is the source of feed to support the growth of other species 
(Sampantamit et al. 2020). 
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Another factor that could affect the tilapia aquaculture community environment is 
the introduction of alien species destroying the ecosystem compositions and posing 
risks the global biodiversity (Brown et al. 2018; Anton et al. 2019). Although 
transgenic tilapia provide several advantages for tilapia farming, the rate of genetic 
alteration in transgenic tilapia is such that their phenotypic and behavioural attributes 
cannot be easily predicted (Mair 2002). Furthermore, transgenic tilapias are a new 
tool that introduces new strains into the community of wild tilapia and may have 
negative effects on the environment and other native species. The negative impact of 
transgenic is the replacement of native populations with novel strains that could 
become a part of the gene pool and also change the hierarchy of the natural 
populations (Dunham 1999).
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Unfortunately, despite the negative effects that the extension of tilapia rearing 
may have on the environment, most introductions have not been preceded by any 
environmental impact evaluation. Instead, in most cases, the evaluation was 
performed after the introductions took place. In such a case, modulating and 
managing the impacts of introduced tilapia in their new environments will be very 
challenging, or even unfeasible. Therefore, cautious and thorough assessment, as 
also proper management plans and programmes must be adopted to be carried out 
before any introductions or transfer of tilapia. 

1.6 Some Constraints and Suggestions for Solutions 
to Tilapia Farming 

Although tilapia farming holds great promise, there are some constraints to its 
development. Some constraints and their possible solutions are reported as follows: 

1. Training resource allocation related to tilapia farming. In general, aquaculture 
needs education about new technologies and farm management, because edu-
cation can play a substantial role in enhancing the skills and experiences of 
farmers and also resolving the restrictions and challenges facing aquaculture 
(Olaoye et al. 2013). Previous research expressed the importance of the aqua-
culturists’ education level to select reasonable technologies and manage the 
facilities efficiently (Ogunmefun and Achike (2017); Uddin et al. (2021). 
Therefore, resource allocation for training courses and workshops for tilapia 
farmers has to be considered. 

2. Insufficient supply of tilapia fry. The lack of larvae production to respond to the 
growing world demand is one of the major bottleneck restrictions to the devel-
opment of the tilapia-intensive culture (El-Sayed 2002). One of the most 
important obstacles to high-quality tilapia fry production is the poor reproduc-
tive performance of bloodstock due to asynchronous spawning cycles and low 
fecundity rate. 

Bhujel (2000) stated that the monitoring and management of the environ-
mental and nutritional status of brood stocks can improve their efficiency. 
Moreover, the selective breeding of superior brood stocks and strains with 
preferable size and age for breeding objectives could remarkably improve larvae 
production. Among the environmental factors, high salinity and low temperature 
might be helpful for the control and synchronization of broodstock reproduction 
when fry demand is low (Bhujel 2000). 

3. Environmental tolerance. Environmental tolerance is the major factor in con-
trolling the success of tilapia production. Although some tilapia like Mozam-
bique tilapia can grow in seawater, most tilapia species are categorized as 
freshwater fish and not tolerant to high salinity (El-Sayed 2006b; Shelton and 
Popma 2006). One of the promising techniques to improve salinity tolerance is 
the crossbreeding between Nile tilapia (O. niloticus) and Mozambique tilapia
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(O. mossambicus). Furthermore, the limited ability of tilapias to tolerate low 
temperatures (<15 °C) (El-Sayed 2006b; Shelton and Popma 2006) restricts the 
expansion of tilapia culture in a different geographic zone. Using warm water 
such as cooling water of some industries, thermal effluents, and/or warm springs 
and also maintaining tilapia in a greenhouse or indoor ponds because of their 
non-resistance to cold water can help them to overwinter in subtropical scopes of 
tilapia culture. 

4. Early maturation. Tilapia’s first maturity occurs at an early age (2–3 months old) 
and a short length (10–12 cm length). The most preferable and cost-effective 
technique is to create ‘all male’ tilapia because males grow faster than females 
and also have a more standard size (see Sect. 1.4). 

5. Genetic deterioration. In some conditions, there is evidence of genetic deterio-
ration. Genetic deterioration of introduced stocks is widely attributed to poor 
broodstock management resulting in inbreeding and introgression of less 
favourable genes. With the rapid advance of next-generation sequencing tech-
niques (Metzker 2010), marker-assisted selection and genomic selection will 
significantly accelerate the genetic improvement of tilapias (Sonesson 2011; 
Yue 2014). In general, the desirable characteristics of improved tilapia have 
been focused on higher production efficiency, better appearance, tolerance to 
certain environmental conditions, and, especially, control of unwanted breeding. 

Remarkable interests in improved growth rate and performance of tilapia 
under farm conditions have been shown from breeding programmes for selec-
tion and sex control. The achievements of the implementation of such breeding 
strategies have been introduced to aquaculture through technically and econom-
ically sustainable programmes (Mair 2002). For example, farming the Geneti-
cally Improved Farmed Tilapia (GIFT) strain rather than the not-improved local 
strain of the Nile tilapia (O. niloticus) can enhance the growth rate and produc-
tion efficiency of tilapia. Since feed accounts for over 50% of the cost of 
production, the higher feed conversion ratio of the GIFT strain would decrease 
production costs. The GIFT strain has a remarkably higher growth performance, 
better feed conversion ratio, and higher production efficiency than the local 
strain (Ridha and Cruz 2002). 

The other important aspect is the genetically improved strains dissemination 
to achieve the targeted beneficiaries effectively, including monitoring of the 
impact and adoption of improved breeds. On the other hand, genetic improve-
ment programmes will require the development of production stocks that are 
acceptable to each environment. Therefore, success in genetic improvement 
programmes will require long-term support and collaboration between partners 
from the government, university, and industry. 

6. Disease resistance. Since tilapia, cultural practices have been intensified, and the 
densities of tilapia have increased in different systems and culture has expanded 
into the colder climatic zones, where suitable environmental factors are more 
difficult to maintain, infectious diseases have emerged (Watanabe et al. 2002). 
Developing approaches for fish health stability through genetic improvement,
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water quality management, stress reduction, and the use of preventive 
immunostimulants are required to control infectious diseases. 

7. Lack of access to freshwater. Tilapias are freshwater fish; however, access to 
freshwater resources is one of the most critical environmental issues in devel-
oped and industrialized countries (Hankins 2002). Therefore, it is suggested to 
use water supplies that are not suitable for human consumption or agriculture 
such as brackish water or seawater. Moreover, the use of recirculating systems is 
another fit approach for water quality and quantity management. 

8. Negative impacts on the environment and global biodiversity. It is clear from the 
previous section (see Sect. 1.5) that mismanaged transfers and/or introductions 
of tilapia can lead to destructive environmental impacts. If tilapias are 
established in their new environment, it would be approximately infeasible to 
control and reduce their catastrophic impacts. It is hence necessary that strict 
regulations be established to control the introduction of tilapias in a new habitat 
and also precise monitoring programmes and certification of tilapia farms are 
mandatory to protect the environment and aquatic biodiversity (Bush et al. 
2013). 

Yue et al. (2016) expressed that the recirculating aquaculture systems and 
cage culture can mitigate the adverse effects of tilapia culture on the environ-
ment and aquatic biodiversity. Therefore, they would probably be developed in 
the production and technological advances of tilapia culture. These systems 
facilitate aquaculture and hence will be the key parts of next-generation 
aquaculture. 

9. Flesh quality problems of tilapias. Tilapia, flesh quality issues, are as follows: 
(i) odour and flavour, which are attributed to culture conditions, (ii) high 
percentage of bone if the harvest has occurred in small-size fish, and (iii) farmed 
tilapia species contain low levels of omega-3 fatty acids compared with other 
fish, especially salmon (Weaver et al. 2008). Likely, selective breeding 
(Gjedrem and Baranski 2010) and supplementing tilapia feeds with marine 
microalgae containing a high level of omega-3 (Tadesse et al. 2003) can increase 
the essential fatty acid content of tilapias. Moreover, finishing diets and also the 
GIFT breeds (reviewed by Eknath and Hulata 2009) and transgenic tilapia can 
moderate this problem. Although, before the commercialization of transgenic 
fish, food safety issues should be addressed. 

10. Failed marketing of products. The lack of attention given to marketing and 
business has also been recognized as one of the restrictions to the achievement 
of commercial tilapia production. The assessment of the tilapia market is rarely 
undertaken by aquaculturists due to time and expense and difficulties in 
attracting the cooperation of wholesalers and retailers, which should be consid-
ered (Watanabe et al. 1997).
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1.7 Conclusions and Recommendations 

This chapter may be considered as a short preface to tilapia rearing needs. Tilapia 
culture has gained significance increasingly in the world. Tilapia has a lot of positive 
characteristics that make it proper for culture. Amongst these are its general resil-
ience, high tolerance to unfavourable environmental conditions and adaptability to 
high stocking densities, its potential ability to tolerate low levels of dissolved oxygen 
and a wide range of salinity concentrations, and its infectious diseases resistance. 
Tilapia can utilize and grow in a wide variety of natural and artificial feeds, has a 
high survival rate, acceptable feed conversion ratio, fast growth rate, and high yield 
potential, and is accepted by a wide range of farmers and consumers. Moreover, 
tilapia can grow well in different aquaculture systems, ranging from extensive 
systems with simple substructures to more intensive systems with complex infra-
structure. With the increasing demand for tilapia products, tilapia farming will 
continue to be a source of different business benefits, since it is a cheap and easy 
source of affordable and inexpensive animal protein and provides several job 
opportunities to the community in developing countries. Finally, suitably designed 
fish farms, precisely selective breeding of tilapia strains, selection of a proper tilapia 
production system by the aquaculturists, government support on supply seed, feed, 
and instruments, training, extension services, and advice to the aquaculturists 
regarding tilapia culture, and the development of an organized marketing agenda 
would increase the commercial profitability and sustainability of tilapia production 
in many countries around the world. 

Therefore, it can be unavoidable to conduct research studies on resolving the 
issues met in tilapia culture because tilapia culture will guarantee the socioeconomic 
advantages and food security of developing countries. For example, although tilapia 
feed on a wide range of natural and artificial feeds, specific dietary requirements are 
yet lacking, and the interactions among nutrients and with cultured conditions and 
tilapia health and welfare are not completely known. Nowadays, research and 
interest in dietary feed additives such as immunostimulants and growth stimulants, 
especially phytobioactive compounds to improve fish health and growth perfor-
mance are likely to continue, which will fill existing research gaps. Moreover, 
more research work and resource and management development are required to 
improve breeds that are more cold-tolerant, salt-tolerant, and disease resistant. 
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Chapter 2 
Health Management for Sustainable Tilapia 
Farming 

Farid Firouzbakhsh, Seyed Hossein Hoseinifar, and Mehwish Faheem 

Abstract Aquatic animals, especially fish, tend to react more quickly to changes in 
the environment than terrestrial farm species. In an aquatic environment, there is a 
profound and inverse relationship between environmental quality and the disease 
status of fish. Health maintenance is a concept in which animals are reared under 
conditions that optimize the growth rate, feed conversion efficiency, reproduction, 
and survival while minimizing problems related to infectious, nutritional, and 
environmental diseases, all within an economic situation. Health management is, 
therefore, controlling the environmental fluctuations to reduce the magnitude of 
change and produce a more economical, healthier, and better-quality product. 

Keywords Viral Diseases · Farming · Health · Parasites · Treatments 

2.1 Principles of Health Maintenance 

Health maintenance involves a series of principles that apply to most farm-raised 
animals. However, fish tend to react more quickly to environmental change than 
terrestrial farm animals. Because of their homeothermic nature, most terrestrial farm 
animals respond comparatively slowly to poor environmental conditions. In contrast, 
fish—being poikilothermic—respond quickly and often fatally to handling, temper-
ature change, excessive or inadequate dissolved gases in the water, metabolites, or 
chemical additives, and so forth, to which they are unable to adapt. These elements
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also increase fish susceptibility to infectious agents and compromise their immune 
response (Plumb and Hanson 2011).
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The objective of health maintenance is to help control environmental fluctuations 
through management practices, thus reducing the magnitude of change and produc-
ing a more economical, healthier, and better-quality product. The final goals of 
health management are disease prevention, reduction of infectious disease incidence, 
and reduction of disease severity when it occurs. Successful health maintenance and 
disease prevention or control do not depend on any single procedure but are the 
culmination of the application of integrated concepts and exercising management 
options (Plumb and Hanson 2011). 

Health maintenance is a concept in which animals are reared under conditions that 
optimize the growth rate, feed conversion efficiency, reproduction, and survival 
while minimizing problems related to infectious, nutritional, and environmental 
diseases, all within an economic situation. As culture becomes more intensive, 
need for intervention increases accordingly, and principles of health maintenance 
become of greater importance. 

In an aquatic environment, there is a profound and inverse relationship between 
environmental quality and the disease status of fish. As environmental conditions 
deteriorate, the severity of infectious diseases increases; therefore, sound health 
maintenance practices can play a major role in maintaining a suitable environment 
where healthy fish can be grown. 

Health maintenance does not simply target infectious diseases but emphasizes 
proper utilization of physical facilities; use of genetically improved fish and certified 
“specific pathogen-free” (SPF) stocks whenever available and/or feasible; environ-
mental control; prophylactic therapy; feed quality and quantity, pond, cage, raceway, 
tank, or recirculating system management; control of vegetation; aeration and use of 
other water quality maintenance practices; and a management commitment to 
provide an optimum habitat in terms of water quality for fish being cultured. 

Stress generally is the reaction of an animal to a physical, physiological, or 
chemical insult. Experience has shown that a wide variety of viral, bacterial, 
parasitic, and other fish diseases will cause mortality if cultured fish are held in 
unfavourable environmental conditions (Wedemeyer 1996). 

Multiple stressful parameters have a compounding synergistic effect on the fish, 
and even though the fish may be able to handle the stressors individually, the 
combined effect can be lethal (Boyd 1990). 

A theory of host/pathogen/environment relationship was applied to fish with 
regard to the development of infectious diseases by Snieszko (1973). This theory 
is based on the premise that to have an infectious disease, a host and pathogen are 
required but an unfavourable environmental condition often acts as a trigger for the 
disease to improve. The interaction of these factors is expressed in the equation: H 
(A + S2 ) = D, 

where: 

H = Species or strain of host (natural resistance). 
A = Etiological agent.



S = Environmental stressors. 
D = Disease. 
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Environmental stressors are squared because as fish approach adaptation limits, 
stressors increase accumulatively rather than additively. Also, when more than one 
stressor is involved (oxygen, ammonia, CO2, temperature, etc.), detrimental factors 
act synergistically (Plumb and Hanson 2011). Intensive fish culture causes unique 
but manageable environmental problems for the aquaculturist (Boyd 1990; 
Wedemeyer 1996). All fish require adequate water maintained at a suitable temper-
ature and oxygen concentration level for proper growth and reproduction. 

2.2 Diseases of Tilapia 

Tilapias are the most extensively cultured fish in the world, especially in China, 
Indonesia, and Egypt (FAO 2017) and they are recognized as one of the most 
important species in tropical freshwater aquaculture. Tilapia are hardy fish with 
good resistance to pathogens as long as they are kept under good water quality 
conditions, in the proper temperature range, and using proper husbandry practices. 
As culture systems intensify (cages, raceways, or recirculating systems), stress due 
to improper handling, exposure to poor water quality, high fish density requiring 
high feeding rates, or low water temperatures can exacerbate the impact of some 
pathogens on tilapia (Plumb and Hanson 2011). 

2.2.1 Bacterial Diseases 

The outbreak of bacterial diseases is the main limiting factor that threatens tilapia 
production, specifically when cultured under intensive conditions (Abdel-Latif et al. 
2020). Fish diseases often occur following an initial stressor. By some accounts, 
bacterial diseases may be the number one threat to the future of the tilapia aquacul-
ture industry. The most serious bacterial diseases in cultured tilapia are arranged in 
Table 2.1. 

2.2.1.1 Streptococcosis 

The first reports of Streptococcus spp. infections in fish date back to the mid-1950s 
(Hoshina et al. 1958), but the first case involving tilapia was a decade later 
(Wu 1970). Streptococcosis may be sub-acute but is often chronic in tilapia. 
Although multiple species of Streptococcus have at various times been reported 
from fish, S. iniae and S. agalactiae are the two that most frequently cause serious 
disease in tilapia. Streptococcus spp. infections have been reported in tilapia from



North, South, and Central America, Australia, Asia, South Africa, and other African 
countries, Great Britain, Norway, and Middle Eastern countries. Tilapia-associated 
streptococci are essentially worldwide in distribution (Klesius et al. 2008). 

52 F. Firouzbakhsh et al.

Table 2.1 The most bacterial diseases of tilapia 

Disease Agent Clinical sings 

Streptococcosis Streptococcus iniae, 
Enterococcus sp. 

Exophthalmia, haemorrhages in eyes, 
pale liver, spiral swimming 

Francisellosis Francisella spp. Ulcer, ascites, exophthalmia, loss of 
appetite 

Motile Aeromonas 
septicaemia (MAS) 

Aeromonas hydrophila 
and related species 

Swim lethargically, gasping 

Edwardsiellosis Edwardsiella tarda Ascites, pale liver, swollen spleen and 
kidney, swollen abdomen 

Columnaris Flavobacterium 
columnare 

Frayed fin, grey patches on the skin, pale 
gills, and necrotic 

Phothbacterium 
infection 

Photobacterium damselae Dark skin, swollen kidney and spleen, 
ascites 

Vibriosis Vibrio spp. Similar to MAS 

Pseudomonas infections Pseudomonas spp. Similar to MAS 

Clinical signs of streptococcosis in tilapia are not always specific, but in most 
species of fish, eye disease and meningoencephalitis are common. Affected fish 
generally are lethargic, and exhibit spiral swimming, abdominal distention, and 
exophthalmia with haemorrhage and diffuse haemorrhage in the skin and base of 
fins. Internal findings in affected fish include exudate in the abdominal cavity, pale 
livers, and a greatly enlarged, black spleen. 

Streptococcus spp. infections occur in both fresh- and saltwater-grown tilapia. 
S. iniae is more common in freshwater systems, and S. agalactiae is more common 
in brackish water. Tilapia in water with 15–30 ppt salinity at 25 and 30 °C are more 
susceptible to Streptococcus isolated from fish in saltwater than when in freshwater 
at the same temperature (Chang and Plumb 1996). Mortality of tilapia infected with 
Streptococcus varies from low to high, depending on other circumstances. Under 
culture conditions, mortality is as high as 75% in naturally infected tilapia. In 
experimental infections with S. agalactiae in tilapia, mortality can reach as high as 
90%, but mortality in natural infections is generally lower (Evans et al. 2002). 
Tilapia susceptibility to Streptococcus is usually associated with environmental 
stress, skin injury, scale loss, and other factors associated with intensive aquaculture 
(Chang and Plumb 1996). 

2.2.1.2 Francisellosis 

The bacterium belonged to the genus Francisella (Hsieh et al. 2006) and is an 
intracellular bacterium from tilapia and a limited number of other warm-water fish 
species were initially referred to as a piscirickettsia like organism (PLO) or



Francisella-like organism (FLO) and was believed to be non-culturable on cell-free 
media. The organism from hybrid striped bass and tilapia was identified by isolation 
of bacterial DNA from the tissue of diseased fish and amplification of the 16S rRNA 
gene and comparing the sequences to a comparative database (Mauel et al. 2007). 
The bacterium was later cultured on agar media and subjected to additional molec-
ular studies where it was determined that warm-water strains of Francisella from 
tilapia were distinct from cold-water isolates from cod (Soto et al. 2009). Members 
of the genus Francisella affect a wide range of animals including humans 
(F. tularenses) and francisellosis has become a serious health problem for cultured 
tilapia in many geographical regions. The species of Francisella associated with 
disease in warm-water fish, F. asiatica, has been found in Taiwan, the United States, 
and Latin America (Mauel et al. 2007; Soto et al. 2009), where it affects both 
freshwater and saltwater fish species. The pathogen has been implicated in the 
disease of several species of tilapia (O. mossambicus, O. niloticus, and Sarotherodon 
melanotheron) (Mauel et al. 2003). F. noatunensis affects cold-water fish species 
such as the Atlantic cod. These reports indicate a wide geographical range and fish 
species susceptibility to Francisella spp. 
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Francisellosis may be either an acute, sub-acute or chronic disease, depending on 
culture conditions and water temperatures. Affected fish are dark, swim lethargi-
cally, and have a loss of appetite; they display skin haemorrhages and ulcers; 
exophthalmia, and ascites; the spleen and kidneys are enlarged and contain distinct 
white nodules of varying sizes (Mauel et al. 2007; Soto et al. 2009). The gills exhibit 
primary and secondary lamellar fusion because of epithelial hyperplasia. Also, 
multiple white granulomas occur in the gills, spleen, kidney, and testes but seldom 
in the liver; occasionally black granulomas are seen internally. Special stains such as 
Giemsa revealed small, pleomorphic coccobacilli inside and outside the cells. It 
should be pointed out that some fish may show no clinical signs (Mauel et al. 2003). 

Francisellosis affects all ages and sizes of tilapia, from small fingerlings to adults. 
Mortality of tilapia infected with Francisella spp. ranged from 5% to 80%, with an 
average of 50% in Nile tilapia in Latin America (Mauel et al. 2007). The disease has 
the propensity to occur during cooler months of the year, and infections are stimu-
lated by cold stress on farms in which it is endemic (Mauel et al. 2003). In 
temperature studies, tilapia maintained between 21.5 and 26.5 °C, initial mortalities 
occurred on day 15, and mortality doubled almost daily thereafter (Mauel et al. 
2003). Tilapia maintained between 26.5 and 29.5 °C and showed no sign of disease 
or mortality. 

2.2.1.3 Motile Aeromonas Septicaemia 

In tilapia, motile Aeromonas septicaemia (MAS) is associated with several different 
species of bacteria, the most common of which is Aeromonas hydrophila. Although 
MAS is not uncommon in cultured tilapia, there are few published “case reports” of 
its occurrence, but when it occurs, it is often a secondary problem. Tilapia with MAS



lose their equilibrium, swim lethargically, gasp at the surface, and generally display 
the same clinical signs as other fish species. 
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2.2.1.4 Pseudomonas 

Pseudomonas fluorescens occasionally produces clinical signs and pathology similar 
to A. hydrophila and can cause significant mortality in tilapia. The infection occurred 
during winter and spring when water temperatures were 15–20 °C resulting in 
mortalities of 0.2–0.3% per day. 

2.2.1.5 Vibriosis 

Vibriosis in tilapia is often mild to chronic, and clinical signs do not differ signif-
icantly from those for MAS. Mortality of infected tilapia is usually chronic, with 
relatively low daily losses, but cumulative mortality can be significant. Epizootiol-
ogy of vibriosis in tilapia is similar to that of MAS in the respect that both diseases 
are usually secondary infections (Sakata 1988). In saltwater, V. anguillarum or 
V. vulnificus are involved, while in freshwater, V. mimicusor V. cholerae is found, 
and V. parahaemolyticus can occur in either environment. Sakata (1988) reported 
that Nile tilapia suffered 10–20% mortality due to a vibriosis infection following 
transfer from freshwater to saltwater pens at 18–20 °C. Decreasing water tempera-
tures, coupled with high salinity, are considered compounding stressors on tilapia 
populations. 

2.2.1.6 Columnaris 

When columnaris occur in tilapia, pale areas form on the body and frayed fins are the 
most frequently observed clinical sign of disease, and infected fish will swim 
lethargically or float at the surface. Nile tilapia are more susceptible to columnaris 
infections and have higher mortality when the pH is either very acidic or alkaline 
(Marzouk and Bakeer 1991). So physical injury and/or environmental stress can 
precipitate these infections. 

2.2.1.7 Edwardsiellosis 

Edwardsiella tarda affects tilapia cultured under high density and other stressful 
conditions in either freshwater or marine environments. The sign of Tilapia infected 
with E. tarda is swim lethargy, enlarged abdominal area, and swollen, opaque, and 
haemorrhaged eyes. Internally, focal areas of necrosis are seen; the liver is often pale 
and mottled, the spleen is dark red and swollen, the kidney is swollen and soft, and 
the intestine is inflamed and usually void of food.
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2.2.1.8 Photobacterium 

Photobacterium damselae subsp. Damselae was shown to cause disease in freshwa-
ter wild and cultured Nile tilapia in Egypt (Khalil and Aly 2008). Infected tilapia 
swam lethargically and had dark skin. Internally they had swollen kidney, spleen, 
and liver with bloody fluid in the abdominal cavity. Also, pinhead nodules were 
present on the liver, spleen, and kidney. The mortality of experimentally infected fish 
was 20–40%. 

2.2.2 Viral Diseases 

Compared with the research history of bacterial and parasitic diseases of aquatic 
animals, the study of fish viral diseases is relatively new. Infectious pancreatic 
necrosis virus (IPNV) of salmonids was the first proven viral fish disease. The 
infectious pancreatic necrosis virus was described by Wood et al. (1955). Several 
viruses have been isolated and identified in association with mortality cases of tilapia 
species (Machimbirike et al. 2019). The most important viral diseases in cultured 
tilapia are arranged in Table 2.2. 

Tilapia lake virus (TiLV) is one of the most devastating viral infections nega-
tively affecting tilapia culture worldwide. It has been associated with mass kills of

Table 2.2 Summary of tilapia viral diseases (Machimbirike et al. 2019) 

Agent Family/ genus Host Clinical signs Distribution 

Tilapia lake 
virus (TiLV) 

Tilapinevirus 
(Orthomyxovirus-
like) 

Oreochromis 
niloticus, hybrid 
tilapia, red tilapia, 
red hybrid tilapia, 
wild black tilapia, 
Oreochromis aureus 

Lethargy, skin 
erosions, darken-
ing of the skin, 
loss of appetite, 
exophthalmia 

In 13 coun-
tries in Asia, 
Africa, and 
South 
America 

Viral nervous 
necrosis 
(VNN) 

Nodaviridae/ 
Betanodavirus 

Oreochromis 
niloticus 

Erratic swimming, 
loss of balance 

Indonesia, 
France, and 
Thailand 

Infectious 
spleen and 
kidney necro-
sis virus 
(ISKNV) 

Iridoviridae/ 
unknown 

Oreochromis 
niloticus 

Lethargy, ascites, 
pale gills 

Canada 

Infectious 
pancreatic 
necrosis virus 
(IPNV) 

Birnaviridae/ 
aquabirnavirus 

Tilapia mossambica, 
Oreochromis 
niloticus 

Darkening of skin, 
ascites, pale gills, 
abnormal 
swimming 

Taiwan, 
Kenya 

Lymphocystis 
disease virus 
(LCDV) 

Iridoviridae/ 
lymphocystivirus 

Tilapia amphimelas, 
T. esculenta, 
T. variabilis, 
Haplochromis sp. 

Wart-like growths 
on the tails of fish 

North 
Tanzania



tilapia species in Ecuador, Colombia, Egypt, and Malaysia (Abdel-Latif et al. 2020). 
Tilapia lake virus can cause disease in various species by natural or experimental 
infection (Surachetpong et al. 2020). Similar to natural infection, tilapia lake virus 
disease could be reproduced in different species of tilapia and giant gourami under 
laboratory-challenged conditions (Behera et al. 2018). However, most warm-water 
fish are resistant to the virus as determined by experimental studies (Jaemwimol et al. 
2018); the labeorohita also appear to be resistant to TiLV since experimentally 
challenged fish displayed no clinical signs or mortality, and no viral RNA was 
detected (Pradhan et al. 2020). The reason behind the insusceptibility of these fish 
species to TiLV could be due to the absence of viral receptors of mechanisms that 
allow the virus to replicate in these non-natural species. Therefore these fish are 
unlikely to be the carrier of TiLV.
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Furthermore, Iridovirus is another important virus that has been reported to 
induce heavy mortalities in Nile and Mozambique (O. mossambicus) tilapias 
(Ariel and Owens 1997). In addition, infectious spleen and kidney necrosis virus 
(ISKNV), first reported in Africa, has been linked with mass mortalities in farmed 
tilapia (Ramírez-Paredes et al. 2019). 

2.2.3 Parasitic Diseases 

Parasites are important components of host biology and can be found in any fish 
species. Numerous parasites, especially monogenetic and digenetic trematodes, and 
ciliated protozoans have been identified in tilapia. Moreover, ectoparasite infestation 
with ciliated protozoans, such as Trichodina sp. and Ichthyophthirius multifiliis, has 
been investigated and described in tilapia (Pantoja et al. 2012). The monogenetic 
trematode Cichlidogyrus species have been described from tilapia such as 
C. sclerosus and C. tilapiae (Le Roux and Avenant-Oldewage 2010). In addition, 
gyrodactylid parasites such as Gyrodactylus cichlidarum are one of the main Mono-
genean species infecting juvenile Nile tilapia and could lead to severe mortalities of 
intensively farmed fish worldwide (García-Vásquez et al. 2010). 

Among the digenetic trematodes that infect tilapia is Clinostomum and 
Euclinostomum. Clinostomum tilapiae and C. complanatum have been identified 
in the intestine of Nile tilapia and Sarotherodon galilaeus (Ukoli 1966). These 
digenetic metacercariae are encysted in tilapia tissues such as the sub-mucosa of 
the mouth cavity, the gill chamber, the operculum, the muscles, the abdominal 
cavity, mesentery, and viscera (Chung et al. 1995). The encysted metacercariae of 
Euclinostomum heterostomum were also recorded in tilapia in Egypt (Eissa et al. 
2011). 

A particularly common instance of concurrent infections may be attributed to 
colonization by ectoparasites, which act as a portal of entry for the second 
co-infecting pathogen. Suppression of the host immune response resulting in an 
enhanced effect of the secondary invaders can also occur, and both co-infecting



pathogens act synergistically to induce disease with greater economic losses for the 
affected tilapia (Abdel-Latif et al. 2020). 
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2.3 Control and Treatment Approach of Diseases 

As tilapia culture has become more intensive, the need for environmental control, 
water quality stability through management, stress reduction, and other sound health 
maintenance procedures are more essential. 

2.3.1 Management 

Most management procedures should be applied to regularly eliminate the accumu-
lation of detritus, waste, and dead fish. Water quality should be maintained at the 
highest possible level, and the reduction of environmentally induced stress is a top 
urgency. Prudent stocking densities, adequate water exchange in intensive culture 
units, removal of metabolites and faecal waste from recirculating water, supplemen-
tal aeration, and feeding high-quality diets are a means to that end. Water treatment 
with ultraviolet (UV) light and ozone will help reduce bacterial populations in 
recirculating water or open water supplies. Disinfection is accomplished by dipping 
utensils and boots into 200 mg/L of chlorine, 100 mg/L of a quaternary ammonium 
compound (Roccal), or Iodine at 1000 mg/L. 

2.3.2 Chemotherapy 

Although not FDA-approved, some drugs and chemicals have been successfully 
used prophylactically or in chemotherapy for bacterial infections of tilapia. Prophy-
laxis includes salt baths (NaCl or CaCl2 at 0.5–3%) for a dip or prolonged treatments 
and/or potassium permanganate (5–10 mg/L) for 1 h or 2–5 mg/L indefinitely. 
Erythromycin is effective against Gram-positive bacteria, and its use is currently 
under FDA consideration for use in Streptococcus spp.-infected tilapia. If approved, 
the medication level would probably be 50 or 100 mg/kg of fish per day for 10 days. 

2.3.3 Vaccination 

Few immunological or vaccination experiments involved tilapia until the last 
decade, when significant strides were made in vaccinating them against S. iniae 
and S. agalactiae (Klesius et al. 2008). The first vaccines used experimentally to



prevent Streptococcus infections in tilapia were in Japan (Sakata 1988), but since 
then, numerous vaccination studies have been carried out. A formalin-killed vaccine 
of two S. iniae isolates (ARS-10 and ARS-60), injected IM and IP individually and 
in combination, protected against the respective antigens (Klesius et al. 2008). These 
data as a whole indicate that vaccines against S. iniae, S. agalactiae, or  E. tarda 
provide a feasible and effective proactive approach to prevent serious infections in 
tilapia by these pathogenic bacteria. 
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Chapter 3 
Effects of Feed Additives on Tilapia 
Reproduction 

Giorgia Gioacchini, Ike Olivotto, Ghasem Ashouri, and Oliana Carnevali 

Abstract Reproduction in fish is an energy-demanding process. The successful 
development of gonads requires adequate resources to sustain the high-energy 
demand. Nutrition can affect gametogenesis, fecundity, and consequently, gamete 
and offspring quality in gravid females. Therefore, an artificial diet for brood stock is 
formulated to improve nutritional status during this important stage of their life 
cycle. A detailed reproductive physiology and breeding behaviour of tilapia is 
discussed in this chapter, with special emphasis on the use of feed additives to 
control tilapia reproduction, sexual maturation, and sexual determination. 

Keywords Reproduction · Physiology · Gametogenesis · Feed additives 

3.1 Introduction 

Nutrition is known to have a considerable effect on the reproductive performance 
and gonadal development of fish (Izquierdo et al. 2001; Volkoff and London 2018; 
Saborido-Rey and Kjesbu 2005). Successful reproduction requires adequate 
resources to sustain the high-energy demand for gametes production and reproduc-
tive behaviours, and, in most cases, negative energy balance and low-food con-
sumption adversely affect reproductive success. In particular, in reproductive 
females, nutrition can affect gametogenesis, fecundity, and, consequently, gamete 
and offspring quality (Izquierdo et al. 2001; Lubzens et al. 2017; Bombardelli et al. 
2017). Consequently, over the last decades, for most cultured fish species, several 
commercial broodfish diets have been formulated to improve their nutritional status 
during this important stage of their life cycle. 
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Nile tilapia, Oreochromis niloticus, is one of the most cultured fish species 
worldwide. Thanks to its rapid growth rate and great adaptation to intensive culture 
conditions, its farming has been intensified; however, there is a strong need for 
improving the rearing techniques which are essential to guarantee a more effective 
and sustainable production. Despite the great potential of tilapia culture, there are 
still problems related to their reproduction, causing an imbalance between seed 
production and increased global demand representing the main limitation to its 
further intensive culture expansion (Bhujel 2000). These limitations are related to 
the low number of eggs released per spawn, the asynchronous spawning behaviour 
of tilapia, the early sexual maturation in farming conditions which cause 
overcrowding and fish stunting, and finally, the lower growth rate of females with 
respect to males, which induce to move toward a mono-sex (only males) culture 
(Tsadik Getinet 2008; El-Sayed 2019). Therefore, the ability to control sexual 
determination, sexual maturation, reproduction, and spawning to produce high-
quality fry is essential for successful tilapia production (El-Sayed and Kawanna 
2008a, b; Migaud et al. 2013). In this light, the optimisation of tilapia reproductive 
performances using feed additives has been exploited to maximise hatchery produc-
tion efficiency, sustainability of seed production, mono-sex culture and in turn, 
profitability. 

In this chapter, a general overview of fish reproduction and a focus on the 
reproductive behaviour and physiology of tilapia, besides a description of the most 
common systems for seed production, will be done. Particular emphasis will be done 
on the use of feed additives to control tilapia reproduction, sexual maturation, and 
sexual determination. 

3.2 Fish Reproduction 

3.2.1 Reproductive Strategies 

The great diversification in reproductive strategies of fish is a key issue supporting 
their success during evolution (reviewed by Murua and Saborido-Rey (2003), 
Lowerre-Barbieri et al. (2011), Serrat et al. (2019)). Reproductive strategies could 
differ in several characteristics. For example, gonochorism, in which sexes are 
separated, is the most common condition in fish, although hermaphroditism, which 
could be either simultaneous or sequential, is also observed. Another diversifying 
factor consists in the choice of breeding dynamics: the most common situation is 
represented by iteroparity, i.e. fish have multiple reproductive cycles during their 
lifetime. However, some cases of semelparity, in which the spawning is followed by 
death, are observed. Reproductive strategy diversification can also depend on 
fertilisation type and embryo development. External fertilisation is the widespread 
strategy in fish, in which haploid gametes are released in the aquatic environment 
where fertilisation occurs. Anyway, several species of fish show internal fertilisation. 
Regarding embryo development, in oviparous species, it occurs within the eggshell



outdoor the mother’s body. On the contrary, in the case of viviparity, embryo 
development occurs within the uterus or the ovary. Finally, parental care can be 
considered a diversifying factor for reproductive strategies. Many fish species take 
care of their offspring by applying a high diversity of strategies, ranging from hiding 
to guarding eggs. They may include nest construction (e.g. tilapia zillii), 
mouthbrooding (e.g. Oreochromis spp.), or carrying embryos in specialised body 
structures (Murua and Saborido-Rey 2003; Lowerre-Barbieri et al. 2011; Serrat et al. 
2019). 
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3.2.2 Endocrine Control of Reproduction 

In sexually mature fish, reproduction is controlled by the brain–pituitary–gonad 
(BPG) axis, which regulates sexual maturity, gametogenesis, reproductive behav-
iour, integrating external stimuli, both environmental (e.g., photoperiod and water 
temperature), and social (e.g. courtship), and internal ones (e.g. nutritional status) 
(Muñoz-Cueto et al. 2020). Despite the wide spectrum of reproductive strategies, the 
endocrine system which controls reproduction is similar among teleost fish (Zohar 
2021). 

The BPG axis involves the hypothalamic gonadotropin-releasing hormone 
(GnRH), the pituitary hormones, the follicle-stimulating hormone (FSH) and the 
luteinizing hormone (LH), and the gonadal sexual steroid hormones (progestin, 
oestrogen, and androgen hormones) which are altogether key factors in the endo-
crine control of reproduction. GnRH stimulates the pituitary gland to produce and 
release FSH and LH into the bloodstream, which in turn induces gonadal steroido-
genesis hormones (oestrogens, androgens, and progestogens) for the control of 
gonadal development and gametogenesis (Muñoz-Cueto et al. 2020; Zohar 2021). 

3.2.3 Gametogenesis 

Gametogenesis is the process that includes the formation, growth, and maturation of 
gametes in females and males, named oogenesis and spermatogenesis, respectively 
(Lubzens et al. 2010; Kagawa et al. 2013). 

3.2.3.1 Oogenesis 

Oogenesis is a dynamic process that occurs continuously in the ovary and consists of 
the development of female gametes from oogonia to eggs (reviewed by Le Menn 
et al. (2007), Babin et al. (2007), Lubzens et al. (2010), Kagawa et al. (2013), 
Carnevali et al. (2020)). Oogenesis is commonly divided into primary and secondary 
growth phases which are gonadotropin independent and dependent, respectively.



The first is characterised by oogonia proliferation and transformation into a primary 
oocyte (PO). Oogonia are diploid cells that enter meiosis but arrest it in the diplotene 
stage of the first meiotic division. Once enter meiosis and reach the PO stage, they 
could last at this stage for several years, at least the entire juvenile period, although in 
some species (e.g. iteroparous species), they are still present in mature fish. The 
secondary growth gonadotropin-dependent overlaps with three different phases. 
During the first one PO develop into the cortical alveoli stage (CA), characterised 
by the accumulation of alveolar vesicles in the cortical zone of the cytoplasm; during 
this phase, an accumulation in the form of oil droplets of neutral fatty acids 
synthesised by the liver may occur however not all species develop this phase. 
The second phase is represented by vitellogenesis, the main feature of which is yolk/ 
lipid accumulation. Components derived from vitellogenins (Vgs) represent a huge 
portion of the yolk mass. The Vgs are phospholipoglycoproteins commonly found 
during vitellogenesis in the blood of oviparous vertebrate females. Teleost Vgs 
circulate as a large phosphoglycolipoprotein dimer, which is taken up by growing 
oocytes via receptor-mediated endocytosis. They are synthesised mainly in the liver, 
under the regulation of estradiol. During this phase, indeed, the oocyte increases in 
size as it sequesters vitellogenin from blood and increasingly fills the cytoplasm with 
yolk granules or globules; vitellogenesis is the more protracted oogenesis stage, 
ranging from days to several months. The final phase consists of the final oocyte 
maturation characterised by the resumption of meiosis, formation of large oil 
droplets or lipid coalescence (only in some species), yolk coalescence, and hydra-
tion. The maturation phase is fast (less than 1 day) and ends with eggs spawning. 
Once the oocyte reaches maturation, the energetic investing becomes irreversible. 
Indeed, vitellogenic oocytes can be reabsorbed before reaching maturation via a 
degenerative process named follicular atresia, although it has been observed in some 
oocytes before vitellogenesis. High rate of atresia is usually associated with inade-
quate fish conditions such as nutritional deficiency. Starting from proliferation, the 
oocyte is surrounded by a monolayer of somatic granulosa cells which in turn are 
surrounded by a somatic theca cells layer. These two somatic components represent 
the follicular layer of oocytes and are responsible for steroidogenesis. After 
spawning, the empty follicle cell layer degenerates into a post-ovulatory follicle 
(POF) (reviewed by Le Menn et al. (2007), Babin et al. (2007), Lubzens et al. (2010), 
Kagawa et al. (2013), Carnevali et al. (2020)). 
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3.2.3.2 Spermatogenesis 

Spermatogenesis is a dynamic process that leads to the formation of mature sperm 
from spermatogonia and occurs in the testis (reviewed by Schulz et al. 2010; Schulz 
and Miura 2002; Miura and Miura (2003); Uribe et al. (2014)). In males, spermato-
genesis can be categorised into three phases: (1) the spermatogonial phase (SG), 
during which spermatogonia undergoes several mitotic divisions, followed by 
Volkoff and London (2018) (2) the meiotic phase, including primary and secondary 
spermatocytes and finally Saborido-Rey and Kjesbu (2005) the spermiogenic phase



consisting in the production of mature spermatozoa. Spermatogenesis takes place in 
the testis, in which a germinal epithelium, corresponding mainly to somatic Sertoli 
cells, surrounds germ cells giving rise to spermatogenic cysts formation. Sertoli 
cells, continuously interacting with germ cells, are essential for the support of 
spermatogenic cell growth, development and survival. Inside cysts, germ cells 
develop synchronously among them and with respect to Sertoli cells, until mature 
spermatozoa are released into the lumen of the testicular lobule. Somatic Leydig 
cells, responsible for androgen synthesis, are present among cysts in interstitial 
compartments containing also blood and lymphatics vessels) (reviewed by (Schulz 
and Miura 2002; Miura and Miura 2003; Schulz et al. 2010; Uribe et al. 2014)). 
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Mature gametes are the successful completion of gametogenesis, and their quality 
consists in the ability of spermatozoa to fertilise an egg, or an egg to be fertilised, 
resulting in the formation of a viable embryo (Bobe and Labbé 2010). 

3.2.4 Spawning Dynamics 

The spawning dynamics are crucial in reproductive success, as they must give 
suitable conditions for offspring survival (Saborido-Rey 2019). The size of the fish 
and hence energy availability is a key factor affecting spawning frequency, as well as 
the total number of batches produced during the spawning season. Although several 
species reproduce once per year, some species exhibit shorter cycles, more than one 
reproductive cycle per year or other species even spawn nearly continuously, 
i.e. tropical and subtropical species (e.g. Oreochromis niloticus). However, repro-
ductive cycles can be interrupted prior to the spawning entering into a regressing 
phase until the onset of the next breeding season. This event, termed skipped 
spawning, can be caused by inadequate diet and nutritional condition, and it is 
characterised by a high rate of atresia, clearly indicating that female spawning 
success is strictly related to energy availability (Carnevali et al. 2017; Saborido-
Rey 2019; Yoshida 2020; Alix et al. 2020). 

3.2.5 Puberty 

Puberty is considered the developmental period covering the transition from a 
juvenile (immature) to an adult (mature) fish (Taranger et al. 2010; Okuzawa 
2002). The main feature of puberty is the associated initiation of the two main 
gonadal functions: the synthesis of reproductive hormones (oestrogens, androgens, 
and progestogens) and the production of mature gametes (Taranger et al. 2010). Sex 
hormones are required during gametogenesis in both males (androgens for sper-
matogenesis) and females (oestrogens for vitellogenesis). According to Okuzawa 
(2002), the successful production of the first batch of fertile gametes determines 
puberty’s end.
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The timing of puberty onset in fish is mostly determined by several internal (such 
as genetic) and external factors (including food availability and somatic growth), all 
of which could be manipulated under farming conditions. Sexual maturation 
includes physiological, behavioural, and energetical changes and represents a critical 
shift in the life of an individual (Taranger et al. 2010). Before sexual maturation, 
assimilated energy is fully expended for growth and survival. When immature fish 
reaches a determined threshold of the energetic state, sexual maturation can occur. 
Therefore, puberty involves several endocrine and metabolic changes which lead to 
the mobilisation and reallocation of energy and depends on the achievement of a 
critical size/age (size/age of first reproduction) corresponding to a determined 
physiological state which could support reproductive processes (Taranger et al. 
2010). 

3.3 Tilapia Reproductive Behaviour and Physiology 

3.3.1 Tilapia Reproductive Strategies 

Tilapia species are gonochoristic and oviparous with external fertilisation, but the 
trademark of their reproduction is parental care, which is not typical of most teleost 
fish (Rana 1988; Bhujel 2000; Coward and Bromage 2000; Dieudonne et al. 2017). 

Tilapia are classified into two main generic groups based on their mode of 
parental care: 

1. ‘Substrate spawners’ (guarders), which contain the fish belonging to the genus 
Tilapia (e.g. T. zillii, T. rendalli). In this case, both males and females contribute 
to the defence of the nest containing fertilised eggs until hatched larvae become 
independent of their parents (Coward and Bromage 2000). 

2. ‘Mouthbrooders’, which include the genus Sarotherodon and Oreochromis in 
which fertilised eggs are incubated in the parents’ buccal cavities. In particular, 
‘mouthbrooders’ could be: biparental (both males and females brood and defend 
the fertilised eggs and hatched fry) such as S. galilaeus, or mono-parental which 
in turn could be paternal mouthbrooders (only males brood the eggs) such as 
S. melanotheron Coward and Bromage (2000); Rana (1988); Turner and Robin-
son (2000), or maternal mouthbrooders (only females brood the eggs) such as the 
most cultured tilapia O. niloticus, O. aureus, and O. mossambicus. 

Oreochromis males build and defend the spawning territory; courtship between a 
visiting female and a resident male takes only a few hours and ends with egg release 
and fertilisation. The Nile tilapia female releases a string of about 20–50 eggs which 
will be immediately fertilised by the male. After fertilisation, the female takes the 
fertilised eggs into her mouth and moves to a safe place to incubate. The male no 
longer participates in incubation and breeding while lures further females to the nest. 
During egg incubation, the female, holding the eggs in her mouth and continuing to 
turn them continuously, is unable to eat. After about 5–10 days, egg hatching occurs,



but the newly hatched fry continues to develop in the mouth. After yolk-sac 
absorption, the fry leaves the mouth of the mother and returns to it in the presence 
of danger. (Rana 1988; Coward and Bromage 2000). 
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Tilapia are multiple spawners, releasing eggs several times per year, if environ-
mental and/or farming conditions are favourable. At the end of the spawning, the 
tilapia ovary regenerates very rapidly, and previtellogenic oocytes start vitellogen-
esis within a week (Coward and Bromage 2000; Elizabeth Cruz Suárez et al. 2006). 
Parental care characterising tilapia reproduction has led to an increase in egg size and 
a corresponding reduction of fecundity, which in turn, are directly related to fish size, 
length, or age. Larger females usually produce a higher number of eggs per clutch 
with respect to smaller ones. Conversely, “mouthbrooding tilapia” produce a lower 
number of bigger eggs with respect to “substrate spawners” (Rana 1988; Coward and 
Bromage 2000). It was also demonstrated that bigger eggs contained more yolk and 
led to larger fry, more resistance to unfavourable environmental conditions and 
adverse starvation (Rana 1988). 

3.3.2 Tilapia Seed Production Systems 

In tilapia farming, three seed production systems are commonly used. The first and 
most widely used is seed production in earth ponds. In these ponds, a limited number 
of tilapia grow and reproduces naturally. The seed remains with the parent fish until 
the time of the seasonal or annual harvesting of the entire pond. During harvesting, 
new broodfish are selected and restocked into new ponds for the next production 
cycle. Alternatively, the seed may be harvested separately and restocked in fattening 
or on-growing ponds. 

The second system of seed production is based on managed spawning ponds. In 
this system, seed production is improved by enhancing the quality and quantity of 
the broodfish diet. Feed quality improvement could consist of organic and/or 
inorganic fertilisers or supplementary feeding with leaves, rice bran, oil seed cake, 
or commercial diets containing about 20% protein. Fertilisers and feed availability 
and costs determine the combined rate of the two methods. 

Finally, the third system for seed production is represented by ponds of special 
design. In this system, there is an upper egg-laying area from which the eggs drain by 
gravity into an underlying nursery area through a series of graduated screens. In this 
way, the broodfish remain confined to the spawning area while the fry enters the 
nursery. The spawning pond is soon available for the next spawning cycle. 

In some tilapia farming situations, land for ponds may not be available due to 
environmental restrictions or competition with other farming sectors. In these cases, 
seed production occurs in net enclosures suspended in nutritionally rich shallow 
water areas of lakes and lagoons, traditionally known as hapas. In recent years, the 
usage of ad-hoc manual or semi-automated seed production tanks has been 
developed.
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3.4 Feed Additives Administration to Control Tilapia 
Reproduction 

3.4.1 Reproduction Improvement by Using Feed Additives 

The fast breeding of tilapias in various tropical and sub-tropical environments makes 
them ideal farming species; however, their extensive cultivation is still challenged by 
their low reproductive efficiency together with advanced sexual maturation (as early 
as 3 months) (Coward and Bromage 2000). As stated above, the complex reproduc-
tive strategy, together with the asynchronous spawning and low fecundity, require 
rigorous management of large numbers of broodfish fish. Feeding management of 
broodfish tilapia can significantly improve reproductive performance enhancing 
eggs quality and, in turn, hatchery efficiency and profitability (Bhujel 2000; 
Izquierdo et al. 2001; Migaud et al. 2013; Bombardelli et al. 2017). Female nutrition 
is extremely important because dietary constituents are employed for vitellogenesis 
Izquierdo et al. (2001) and affect gonadal maturation and the quality of yolk (Bobe 
and Labbé 2010). This determines the quality and survival of the offspring 
Bombardelli et al. (2017); El-Sayed and Kawanna (2008a, b) because the embryos 
and larvae, in the initial developmental stages, solely depend on the yolk for 
sustenance (Fernández-Palacios et al. 2011). Limiting the feed during this period 
reduces the percentage of eggs that finally mature and ovulate, resulting in a 
reduction in fry production. Furthermore, nutrition controls the health and survival 
of females and establishes their capability to allow metabolic stress imposed by the 
intense reproduction process and rearing characteristics of tilapia (Lupatsch et al. 
2010). 

The quality and quantity of broodfish diet depend on the type of seed production 
system. Fertilisation of ponds led to reducing costs and providing a well-balanced 
diet. Instead, clear water systems require a completely well-balanced diet. As for fry 
management, diets containing 35–45% protein allow for excellent growth rates. It is 
also known that the quality of the protein is important. Fishmeal is the best source of 
high-quality protein, but it is expensive and often unavailable. Therefore, optimising 
proper feeding management for tilapia broodfish becomes necessary for maximising 
seed production sustainability and culture productivity (Bhujel 2000). 

Up today there are several live and non-living feed additives available to improve 
tilapia reproduction which include probiotics, phytobiotic, vitamins, and other 
organic compounds. 

3.4.1.1 Probiotics 

Probiotics are live microorganisms which confer a health benefit on the host when 
administered in adequate amounts. Nowadays, since the growing demand for 
environment-friendly aquaculture probiotics is considered an integral part of the



aquaculture systems to increase production also in tilapia (Nayak 2010; Hai 2015; 
Standen et al. 2015). 
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During the last decade, several studies evaluated the efficacy of probiotics on the 
reproductive performance of different teleost (Carnevali et al. 2017; Aydın and Çek-
Yalnız 2019). Regarding tilapia farming, several papers showed the positive effects 
of probiotics on O. niloticus fry and fingerlings (Gioacchini et al. 2018; Lara-Flores 
et al. 2003; Standen et al. 2013). Recently, Mehrim and collaborators (Mehrim et al. 
2015) evaluated the effects of graded levels (0, 5, 10, and 15 g/kg diet) of a 
commercial probiotic, Hydroyeast Aquaculture®, on different reproductive param-
eters of both male and female Nile tilapia O. niloticus adults. In particular, the 
authors reached the best results using a 15 g/kg diet and a 10 g/kg diet of Hydroyeast 
Aquaculture® probiotic. At these concentrations, in males, the probiotic treatment 
enhanced reproductive efficiency in terms of an increase of gonadosomatic index 
(GSI) and sperm quality parameters (such as total count, motility, abnormalities, and 
dead); in females, probiotic-enhanced GSI, egg weight numbers and diameters, and 
fecundity (Mehrim et al. 2015). 

3.4.1.2 Phytobiotics 

Phytobiotics have recently attracted significant attention in aquaculture as they 
showed very potent immunostimulant, antioxidant and antimicrobial functions 
(Jana et al. 2018). Among them, Wahbi and Sangak Wahbi and Sangak (2017) 
demonstrated the beneficial effect of dietary inclusion of graded levels of Spirulina 
platensis (0.5, 7.5, 10, and 20 g kg-1 diet) in Nile Tilapia Oreochromis niloticus 
reproductive performances. In particular, they found that Spirulina supplementation 
increased total fish weight, GSI, spawning activity and spawned egg number, 
hatching rate, fry length, and weight (Wahbi and Sangak 2017). 

3.4.1.3 Vitamin C 

Many authors highlighted the influence of vitamin C in fish reproduction(reviewed 
by (Dabrowski and Ciereszko 2001). In those studies, it was evidenced that a diet 
free from or deficient in ascorbic acid reduces in females the availability of vitamin C 
in the ovary, impairing reproduction, decreasing fecundity and egg quality, and 
increasing larval deformities and mortality (Dabrowski and Ciereszko 2001). 

Martins and collaborators showed (Martins et al. 2016) that supplementation of 
150 and 300 mg kg-1 vitamin C to the diet given to Nile tilapia positively increased 
GSI. Similar results have been obtained by Sarmento and collaborators (Sarmento 
et al. 2018) after vitamin C dietary supplementation (0, 261, 599, and 942 mg/kg of 
Nile tilapia (Oreochromis niloticus) broodfish. In this study, the best results in terms 
of GSI, egg weight, and larval measurements have been obtained by using 599 and 
942 mg vitamin C/kg diet supplementations. A higher total and relative fecundity 
were found for females receiving a 599 mg vitamin C/kg diet. An increase in



hatching rate and egg and larvae production per female was found for females 
receiving all doses of vitamin C. Interestingly, the authors also performed two stress 
tests on fertilised eggs from treated females, and they demonstrated that when eggs 
were incubated at a different rate of salinity, the worst survival rate was achieved 
with the 0 mg vitamin C/kg diet at the end of 120 h of incubation. While the tests of 
exposure to air for 40 and 50 min, showed that females receiving the 942 mg vitamin 
C/kg diet produced newly hatched larvae showing the highest resistance to the stress, 
while females receiving 0 and 261 mg vitamin C/kg diets produced newly hatched 
larvae showing the lowest stress tolerance (Sarmento et al. 2018). 
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3.4.1.4 Other Chemical Compounds 

Taurine (2-aminoethanesulfonic acid) is an end product of the metabolism of 
sulphur-containing amino acids, and its feed supplementation significantly affects 
growth rates and physiological functions of marine and freshwater fishes (reviewed 
by El-Sayed El-Sayed (2014)). Previous studies revealed that taurine plays a positive 
role in Nile tilapia (Oreochromis niloticus) performance (Al-Feky et al. 2016a, b). 
Al-feki and collaborators (Al-Feky et al. (2016a, b)) demonstrated that dietary 
taurine (8 g kg-1 ) improved the reproductive performance of Nile tilapia 
(Oreochromis niloticus) broodfish. In particular, taurine supplementation reduced 
the size at first maturation and the time to first spawning. At the same time, dietary 
taurine significantly increased spawning performances, including spawning frequen-
cies, the total number of spawning per tank, the number of spawning per female, and 
absolute fecundity. Finally, eggs produced from broodfish fed on taurine exhibited 
significantly higher hatchability, reduced time for hatching and yolk-sac absorption. 

Ahamed and co-workers (Ahamed et al. 2020) demonstrated the effects of a diet 
supplemented with Azomite, a natural mineral of volcanic ash, on gonadal steroid 
hormone levels and milt quality in Oreochromis mossambicus. The Azomite admin-
istration enhanced the quantity of milt, the percentage of sperm count, the duration of 
sperm motility, as well as gonadal sex-specific steroid hormones, such as testoster-
one (T), 11-ketotestosterone (11-KT), and 17β-estradiol (E2) (Ahamed et al. 2020). 

De Lima and collaborators (de Lima et al. 2020) assessed the effects of diet 
supplementation with purified nucleotides (NT) on the health, growth, and repro-
ductive performance of Nile tilapia females. In particular, they found that NT 
supplementation induced an increase in the percentage of secondary growth oocytes 
and egg number production, together with a decrease in lipid peroxidation in the 
ovaries (de Lima et al. 2020). 

Finally, Abdelhamid and collaborator (Abdelhamid et al. 2010) investigated the 
effects of three commercial feed additives (Therigon® , Nuvisol Hatch P® , and 
Gibberellic acid) on females and one (L-carnitine) on males tilapia broodfish per-
formances. Results indicated that all treatments positively affected reproduction 
inducing, in females, an increase in ovaries weight and egg number per fish, while 
in males, an increase of quality sperm parameters such as motility, forward, sluggish 
and dead percentages.
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3.4.2 Mitigation of Tilapia Reproduction by Using Feed 
Additives 

Even in farming conditions, tilapias reach sexual maturity and easily spawn, and the 
simplicity by which they breed is one of the reasons why tilapia farming has spread 
throughout the world. However, their plasticity and readiness for sexual maturation 
acquiring can trigger difficulties associated with overpopulation and reduced growth 
(El-Sayed 2019). The age and size at which tilapias mature and breed vary with 
environmental conditions. Farmed Tilapia females mature at an earlier age and 
smaller size compared to those raised in natural conditions. Generally, natural or 
wild populations breed at an age of between 2 and 3 years. Farmed stock in ponds 
and similar shallow water bodies reach sexual maturation at an age of only 2–-
3 months, and sexually mature fish breed at 5–6 months. Among different factors, it 
was evidenced that feed quantity and quality could affect size at first maturity. Many 
authors found that the use of feed additives could control tilapia reproduction by 
impairing fertility through gonads (testes and ovaries) damaging. Among them, 
Aspilia mossambicensis and Azadirachta indica have recently been used to mitigate 
the prolific breeding of O. niloticus (Kapinga et al. 2019). A. mossambicensis and 
A. indica can mitigate the prolific breeding of O. niloticus thanks to the presence of 
phytocompounds which can affect steroidogenesis reproductive organs structures. 
Recently Kapinga and collaborators demonstrated that A. mossambicensis and 
A. indica leaf powder administration impair reproduction by decreasing hatchlings 
production in O. niloticus (Kapinga et al. 2019). The same authors also studied the 
effect of A. mossambicensis or A. indica leaf powders supplemented with four doses 
(1.0, 2.0, 4.0, and 8.0 g/kg diet) on a juvenile at 3% of their body weight daily for 
90 days. All doses of A. indica and A. mossambicensis used significantly lowered 
absolute fecundity and GSI values, in a dose-dependent manner, starting from doses 
of 2.0 g/kg in males and 4.0 g/kg in females. In males fed at a lower dose (2.0 and 
4.0 g/kg for both A. mossambicensis and A. indica) were observed histological 
alterations such as the degeneration of seminiferous tubules presenting a dilatated 
lumen and containing very few spermatozoa, and the presence of inflammatory cells 
scattered in the testicular parenchyma. The dose of 8.0 g/kg for both 
A. mossambicensis and A. indica, induced the loss of testicular architecture, a 
dramatic decrease in spermatozoa production, and the increased presence of squa-
mous cells and inflammatory cells within the tubules. In females fed at higher doses 
(4.0 and 8.0 g/kg for both A. mossambicensis and A. indica), was evidenced the 
presence of numerous vacuoles in the ooplasm and alteration of granulosa cells 
nuclei and thecal layer thickness (Kapinga et al. 2019). A study by Jegede and 
Fagbenro (2008a, b) reported that incorporation of Azadirachta indica in Tilapia 
zillii basal diet at 2.0 g kg-1 induced swollen spermatids nuclei, increased interstitial 
cells and focal necrosis in testes and hydropic degeneration, ruptured follicles, 
granulomatous inflammation in the interstitium and necrosis ovaries. Similar find-
ings were reported in O. niloticus fed Carica papaya Okomoda (2017); Jegede and 
Fagbenro (2008a, b), Hibiscus rosa-sinensis Jegede (2010), and Aloe vera



Kushwaha (2013) as well as in O. mossambicus fed dietary Carica papaya and 
Moringa oleifera, respectively (Ampofo-yeboah 2013). 
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3.4.3 Hormonal Sex Reversal by Feed Additives 

Although the mixed-sex culture of tilapia represented a widespread practice in many 
countries for decades, nowadays, broad attention has been given to mono-sex 
culture. The production of mono-sex (all-male) tilapia represented a great improve-
ment in productivity due to their fast growth rates, tolerance to different culture 
conditions, stress, and diseases, greater energy conservation, decreased aggressive-
ness, and better uniformity of size at harvest (Elizabeth Cruz Suárez et al. 2006). 
Today, mono-sex tilapia populations are obtained by applying several methods 
including manual separation of sex, sex reversal hormone, genetic manipulation, 
and hybridisation (Elizabeth Cruz Suárez et al. 2006). Among them, hormonal 
treatment is the most successful and widely used method responsible for the pro-
duction of all male culture (Megbowon and Mojekwu 2014). Tilapia larvae are 
sexually undifferentiated up until 2 weeks after hatching, and at this time, there are 
no differences between sex hormone levels (Besseau et al. 2013). Therefore, the 
administration of exogenous steroid hormones such as androgen (male) or oestrogen 
(female) during gonadal development or before sexual differentiation would influ-
ence the larvae to become either male or female based on the hormone administered 
(Megbowon and Mojekwu 2014). Unfortunately, synthetic hormones lower fish 
immunity and survival and require human and environmental health concerns 
(Megbowon and Mojekwu 2014). 

Consequently, alternative methods to obtain mono-sex tilapia culture that is safe 
and environmentally friendly have been evaluated. Among them, the use of medic-
inal plants in aquaculture to control reproduction represents a valid technology 
(Francis et al. 2002; Gabriel et al. 2017). 

Recently, it was evidenced that several medicinal herbs containing phytochem-
icals (structurally similar to steroid hormones such as phytoestrogens or 
phytoandrogens) can induce tilapia masculinisation, feminisation, or impair fertility 
(Gabriel 2019). Saponin extracts from Quillaja saponins (QS) Francis et al. (2002, 
fenugreek) (Trigonella foenum-graecum) and soapbark tree (Quillaja saponaria) 
Stadtlander et al. (2013), and Tribulus terrestris B.O. Omitoyin et al. (2013), 
induced masculinisation in a dose-dependent manner in Nile tilapia when were 
incorporated in their diet, Similarly, masculinisation induction was also described 
in Nile tilapia fed dietary Aloe vera, Mucuna pruriens Mukherjee et al. (2015), Butea 
superb (Kiriyakit 2014). The same results have been achieved in other tilapia 
species, such O. mossambicus fed dietary moringa and paw crude extracts 
(Ampofo-yeboah 2013). Finally, El-Sayed and co-workers revealed that soybean 
meal significantly induced femininisation in Nile tilapia culture and further warned 
tilapia farmers to avoid using soybean as a source of protein during sex reversal 
(El-Sayed et al. 2012).
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3.5 Conclusion 

Constraints associated with the wide adoption of tilapia intensive aquaculture 
farming systems such as the increased request for proper seed quality and a mono-
sex culture, among others, cannot be overemphasised. Moreover, the consequent use 
of drugs (i.e. sex reversal hormones) to improve production represents a prominent 
risk not only for animals but also for the environment and humans. The overview of 
the results achieved in recent years on the application of feed additives (often of 
natural origin and not of synthetic origin) for the control of Tilapia reproduction is 
presented in this chapter, showing that the use of feed additives could represent a 
valid alternative to drugs. However, the rate of implementation of this innovation is 
still too slow, despite the numerous advantages associated with it, and there is still 
the need to deepen knowledge to further validate the daily use of feed additives in 
tilapia farming. 
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Chapter 4 
Intestinal Microbiota of Tilapia: 
Characterization and Modulation 

Zhen Zhang, Tsegay Teame, Anran Wang, Qianwen Ding, Chao Ran, 
Yalin Yang, and Zhigang Zhou 

Abstract Tilapia (Oreochromis sp.) are cultured in many countries of the world. Its 
production is increasing from time to time to fulfill the demand for fish for the fast-
growing population of the world. The significant importance of intestinal microbiota 
in several fish conditions including growth, digestion, energy homeostasis, immu-
nity, and gut-brain axis were reported in a plethora of studies. Characterization of the 
intestinal microbiota is important to deal with the detailed function of these 
microbes. The majority of the bacteria species found in the intestine of fish are not 
culturable and to date, due to the advancement of molecular techniques including 
denaturing gradient gel electrophoresis (DGGE), temperature gradient gel electro-
phoresis (TGGE), and next-generation sequencing (NGS) has been employed to 
investigate and characterize intestinal microbiota. Researchers have been working to 
increase the production and productivity of tilapia in aquaculture by altering the 
different microorganisms found in the intestinal of the fish. Studies showed types of 
diets and their ingredient compositions have a significant role in improving and 
modulation of the intestinal microbiota of tilapia. Furthermore, the role of several 
“-biotics” including prebiotics, probiotics, paraprobiotics, and postbiotics in the 
improvement of the intestinal microbiota was described in many studies. The 
significance of dealing with intestinal microbiota is to provide a scientific basis for
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the establishment of useful approaches for the effective manipulation of these 
microorganisms to improve fish health and increase production. The intimate 
knowledge of the usefulness of intestinal microbiota on the overall fitness of tilapia 
is necessary. Therefore, the objective of this review was to entirely understand the 
importance and function of these microorganisms invading the intestine of tilapia on 
the growth, development, metabolism, immunity, and overall fitness of tilapia. 
Moreover, we highlight the existing information on the strategies for changing the 
structure of the microbiota community of tilapia via diets or/and “-biotics” and 
recommendations for future research with the final objective of the applications of 
these approaches in the tilapia aquaculture industry.
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4.1 Introduction 

Next to carp, tilapia, which consists of several species in the family of Cichlidae, is  
the most common cultured fish in many countries of the world (Watanabe 2002). 
Tilapia are hardy, prolific, and fast-growing tropical fishes. Tilapia is the most 
popular culture fish in the world and is the second most important finfish species 
group cultured worldwide in terms of production. Its production has been increasing 
fourfold in the past decade due to its appropriateness for aquaculture in different 
environments, preferable for consumers, and stable market prices (Wang and Lu 
2016). Studies demonstrated that many species of tilapia have been produced in 
more than 140 countries, and this data showed that this fish species is one of the most 
useful aquatic animals in the fish farming sector throughout the world (Fitzsimmons 
2016; Junning et al. 2018). Even though tilapia are produced in several developed 
and developing countries of the world, most producers of the fish are from devel-
oping countries such as China, Indonesia, the Philippines, Thailand, Ecuador, and 
Egypt are the major producers (Yue et al. 2016). FAO’s (2020) fish production data 
showed that the production of tilapia in 2018 accounted for more than 10% of overall 
cultured fish species in the world. The increasing trends in the production of tilapia 
were because of the improvement of the production performances of several breeds 
and strains of the fish via the development of new breeding strategies (Ponzoni et al. 
2011; Nguyen 2015; Fitzsimmons 2016). 

Several studies demonstrated that tilapia farming is common practice in these 
countries with low income and has a great contribution to the improvement of the 
nutritional security status and increase the economic status of the people. Because of 
this, researchers have been recommended to promote the production of tilapia. 
Furthermore, they have been working to improve the production of tilapia via several 
strategies, and one of the strategies was through modulation of the intestinal 
microbiota using different types of modulators. Identification and characterization



of these microorganisms found in the intestinal of tilapia were done through culture-
dependent methods or using modern technologies including high throughput. 
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To date, researchers performed culture-dependent methods of exploration of the 
intestinal microbiota of tilapia, and they identified fewer microbiota species, but later 
due to molecular improvement in high-throughput sequencing technology and 
advancement of bioinformatics have allowed more accurate data on identification 
and in-depth analysis of intestinal bacterial communities of fish (Opiyo et al. 2019). 
Especially, the discovery of new and sophisticated molecular technologies and 
techniques to identify and characterize these via sequencing genes of these micro-
organisms has widened our understanding of intestinal microbial community struc-
ture and their specific function in fish (Zarkasi et al. 2014; Falcinelli et al. 2015). 
Using high-throughput sequencing identified that the dominant phyla found in the 
intestinal microbiota of tilapia include Proteobacteria, Cyanobacteria, 
Fusobacteria, Actinobacteria, and Bacteroidetes (Standen et al. 2015). The advance-
ment of molecular techniques for the isolation and identification of microorganisms 
was not only important for investigation but also for appreciating the significant role 
of the microbiota that occupy the tilapia intestine. Accordingly, a plethora of studies 
revealed that the intestinal microorganisms of fish have a significant role in the 
physiology, growth, and immunity of the fish (Burns et al. 2016; Yan et al. 2016; Nie 
et al. 2017; Smith et al. 2017). Consequently, these and other studies showed these 
microorganisms found in the intestine of tilapia play a vital role in overall fish 
fitness. Currently, the advancement of bacteria identification and characterization 
methods including next-generation sequencing plays a significant role in the detailed 
characterization of these microorganisms isolated from the intestine of tilapia. 
Though, the information on the composition, community structure, and role of the 
intestinal microbiota of tilapia is not fully understood. Therefore, here below, we 
provide detailed information on the microorganisms found in the intestinal of tilapia 
to permit their importance on the overall fitness of tilapia to increase the production 
and productivity of the fish. 

4.1.1 Characterization of the Intestinal Microbiota of Tilapia 

To date, our knowledge of the characterization of the microorganisms originating 
from the intestinal of fish results from the collection of information in several 
studies; the majority of them were focused on cultured fish species, and these tilapia 
species have gained much consideration and attention. Characterization of the 
intestinal microbiota of fish has a significant role in understanding the function of 
this microbiota of the fish. Studies indicated that the intestine of fish was a harbor 
with approximately 108 bacterial cells belonging to more than 500 beneficial and 
harmful bacteria species (Rawls et al. 2004; Romero and Navarrete 2006). Coloni-
zation of the intestinal of fish starts at the early larval stage and it continued with the 
fish growth and reaches its complex assemblage of microbes (Nayak 2010). Yet, the 
compositions of intestinal microbiota were changed rapidly at the fish developmental



stages (Del'duca et al. 2013). The intestinal microbiota has multiple functions in the 
fish host physiology, metabolism, and immunology. Previous studies provide a 
number of evidence on the significant role of intestinal microbiota using germ-free 
fish and gnotobiotic models. Oyarbide et al. (2015) demonstrated that gnotobiotic 
zebrafish (Danio rerio) (Zebrafish developed in germ-free conditions and inoculated 
with few known microorganisms) is more affected by pathogenic bacteria compared 
with the conventional zebrafish. The specific taxa of bacteria found in the intestine as 
well as the diversity of these microorganisms have been applied as an indicator 
(biomarker) of the metabolism and health status of the fish (Clarke et al. 2014). 
Studies revealed that most of the time low diversity of these microorganisms isolated 
from the intestine of fish was associated with abnormal health of the fish (He et al. 
2017; Nie et al. 2017). Several external factors’ results reduced the diversity of 
intestinal microbiota these studies indicated that the application of antibiotics 
resulted in a reduction in the diversity of intestinal microbiota and affected fish 
health via facilitating colonization by pathogenic microbes (He et al. 2017). 
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Most of the time, more diversified intestinal microbiota was an indicator of good 
fish health because they provide greater protective effects against pathogenic bacte-
ria (De Schryver and Vadstein 2014; Zhu et al. 2016). Therefore, maximizing the 
diversity of intestinal microbiota is useful since tight mutual interaction between the 
fish and intestinal microbiota is vital to reduce the effect of harmful microbiota on 
the host, and increase the production of fish in aquaculture (McFall-Ngai et al. 2013). 
Analysis of OUT is a good indicator of the diversity formed within the sample (alpha 
diversity) and the other diversity observed among different samples (beta diversity) 
while interpreting the composition of the intestinal microorganisms. Recently de 
Bruijn et al. (2017) demonstrated the relationship between intestinal microbiota 
diversity, function, and fish health status. Another study also revealed the interaction 
between intestinal microorganisms and fish innate immunity (Nie et al. 2017). 

Studies revealed that the intestinal microorganisms of fish were not easily iden-
tified using culture-based techniques, and less the 1% of the total intestinal 
microbiota of fish was culturable, and this does not show an accurate image (Ray 
et al. 2012; Banerjee and Ray 2017). Culture-based techniques of identification and 
isolation of intestinal microbiota were used in many specific media, including 
nutrient agar, tryptone soya agar, peptone gelatin agar, cellulose agar, and starch 
agar (Ray et al. 2012). Nowadays, many researchers tried to identify and character-
ized the intestinal microbiota of tilapia using advanced technologies such as DGGE, 
TGGE, and NGS (Banerjee and Ray 2017). The function and factors that affect the 
intestinal microbiota of tilapia were summarized (Fig. 4.1). 

4.1.1.1 Common Intestinal Microbiota in Tilapia 

Understanding the usefulness of microorganisms found intestines of fish in improv-
ing the development and well-being of tilapia was explained by many researchers. A 
plethora of studies identify and characterize the microorganisms isolated from the 
intestine of tilapia via culture-dependent and independent methods. The culture-

https://www.collinsdictionary.com/dictionary/english/germ-free
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dependent technique of identification of bacteria from the tilapia intestine was 
accomplished by Cahill (1990). Before three decades, the identification and charac-
terization of the intestinal microbiota of fish were restricted to the most common and 
easily culturable bacteria such as Pseudomonas sp., Vibrio sp., Aeromonas sp., and 
other unidentified species (Cahill 1990). Molinari et al. (2003) identified several 
bacteria including Aeromonas hydrophila, A. veronii, Citrobacter freundii, 
Escherichia coli, and Plesiomonas shigelloides from the intestine of tilapia. The 
advancement of molecular technologies in the identification of microbiota has 
increased our understanding of fish microbiota (Nayak 2010). The intestinal 
microbiota of tilapia was largely affected by several external and internal factors 
and has dynamic composition and community structure (Wang et al. 2016). 
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Functions of gut microbiota of Nile tilapia 
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Fig. 4.1 Environmental, diet-associated, or host—associated factors affect the structure and 
function of the intestinal microbiota of tilapia. These factors can result in either a healthy state 
(normobiosis) or altered microbiota (dysbiosis) of Tilapia
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Studies demonstrated that the intestinal of tilapia harbor a complex microbiota, 
and the main phyla are Proteobacteria, Fusobacteria, Firmicutes, and Bacteroidetes 
(Fan et al. 2017; de Souza et al. 2020; Souza et al. 2020). Foysal et al. (2019) 
identified that the most common intestinal bacteria of tilapia fed on the control diet 
were Proteobacteria, Bacteroidetes, Planctomycetes, Fusobacteria, 
Verrucomicrobia, and Acidobacteria. Fusobacteria, Firmicutes, Proteobacteria, 
Actinobacteria, Bacteroidetes, and Planctomycetes were identified from the intesti-
nal of farmed Nile tilapia (Melo-Boliver et al. 2019). Furthermore, Bereded et al. 
(2020) identified the core intestinal microbiota of Nile tilapia were Proteobacteria, 
Firmicutes, Cyanobacteria, Fusobacteria, and Actinobacteria. In addition to this, 
Baldo et al. (2015) assessed the composition of intestinal microbiota from different 
species of tilapia using 16S rRNA pyrosequencing DNA sequencing and identified 
seven bacteria phyla such as Proteobacteria, Actinobacteria, Bacteroidetes, 
Firmicutes, Fusobacteria, Planctomycetes, and Verrucomicrobia. Besides, several 
major typical taxa of bacteria such as Cetobacterium somerae, Clostridium 
perfringens, Plesiomonas spp., Clostridium XI sp., Aeromonas sp., Neisseriacea, 
Clostridiaceae, Acromobacter sp., Bacillus sp., Citrobacter koseri, Edwardsiella 
spp., Enterobacter cloacae, Pasteurella pneumotropica, Photobacterium damselae, 
Shewanella putrefaciens, Staphyloccocus sp., Vibrio spp., and unidentified species 
were identified for the intestine of tilapia (Baldo et al. 2015; Pakingking et al. 2015). 

All these and other studies demonstrated that the intestinal of tilapia harbor a 
complex microbiota, and the main phyla are Proteobacteria, Fusobacteria, 
Firmicutes, and Bacteroidetes. Figure 4.2 indicated that summarization of the most 
common intestinal bacteria phyla of tilapia was reported in several studies. 

There are a number of factors that can influence the composition and diversity of 
the intestinal microbiota of tilapia. Administration of antibiotics such as oxytetracy-
cline for the long-term has been negatively affecting the intestinal microbiota, 
especially Bacteroidetes and Firmicutes phyla of tilapia, and this, in turn, affects 
the growth and immunity (Limbu et al. 2018). Numerous studies reported that the 
characterization and modulation of microorganisms found in the intestinal of tilapia

Fig. 4.2 Bacteria phyla 
observed in the intestinal of 
tilapia 
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have a great role and are used as a model for other commercially important fish 
species.
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4.1.2 Function 

Studies demonstrated that the intestinal microbiota of fish has several functions 
including digestion, absorption, development of the mucosal system, and disease 
(Rawls et al. 2004). In the intestinal of fish diverse microbiota including archaea, 
protoctista, fungi, yeast, viruses, and bacteria were identified. The intestinal 
microbiota of fish was dominated by Proteobacteria and Fusobacteria bacteria 
phyla. The different sections of the intestine of fish consist of various species of 
microbiota, and these bacteria were different in density, composition, and function. 
The bacteria communities were grouped into allochthonous (free-living, transient 
microbiota associated with the digesta) and autochthonous (colonize the mucosal 
surface of the digestive tract), and these autochthonous bacteria are considered the 
core bacteria species of the fish intestine (Banerjee and Ray 2017). 

The intestinal microbiota of fish has several functions and regulates many genes. 
Rawls et al. (2004), confirmed that fish intestinal microbiota regulates the expression 
of 212 genes, and these genes were related to nutrient metabolism, innate immunity, 
and stimulation of epithelial proliferation and growth. Studies demonstrated that the 
specificity of the host response depended on the bacterial species that colonize the 
digestive tract (Rawls et al. 2004). The flagella of Pseudomonas were able to interact 
with the host cells, and the motility of Pseudomonas spp. was also important to 
stimulate inflammatory signals in zebrafish (Rawls et al. 2004). Furthermore, they 
demonstrated that the interaction between Pseudomonas and the host epithelium was 
improved by the flagella-dependent swimming motility of the bacteria. 

Moreover, Bates et al. (2006) demonstrated the significant role of intestinal 
microbiota on fish digestive tract differentiation and development, and function. 
They also revealed that in the absence of intestinal microbiota, the intestine was 
developed without brush-border intestinal alkaline phosphate activity, immature 
patterns of glycan expression, and a reduction of goblet cells and enteroendocrine 
cells. Finally, these effects lead to the abnormal function of the intestine, which 
proves how much intestinal microbiota is vital for the development and normal 
function of the intestine of fish. Remarkably, yet, the normal function and structure 
of the intestine were reversed by the reintroduction of the common intestinal 
microorganisms of the fish. The intestinal microbiota of fish including 
Proteobacteria, Bacteroidetes, Firmicutes, and Fusobacteria phyla also involved 
in fish nutritional metabolism. 

Some species of bacteria which colonize the intestine of fish can produce short-
chain fatty acids and vitamins), which may have a beneficial effect on fish growth 
and health. A large quantity of vitamin B12 (cobalamin) was produced by 
Cetobacterium somerae (C. somerae), which colonized the intestine of several fish 
species including tilapia (Sugita et al. 1991; Tsuchiya et al. 2008). Some fish species



such as carp and tilapia, due to the presence of C. somerae in their intestine, have no 
requirement for dietary vitamin B12. 
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Furthermore, studies demonstrated that fish intestinal microbiota other than 
C. somerae bacterium contribute a significant role in host metabolism via synthe-
sizing several enzymes and co-enzymes nutrition by providing enzymatic activities 
corresponding to the fish host (Ray et al. 2012). As well, some bacteria species, 
Microbacterium, Micrococcus, unidentified anaerobes, and yeast have also affected 
the digestion of the host positively, since these and other microbiota were isolated, 
and identified from the intestine of fish and can produce a wide range of digestive 
enzymes including amylase, protease, lipase, chitinase, cellulose, and phytase (Ray 
et al. 2012). Although estimation of the contribution of the specific microorganism 
that colonizes the intestine of the fish is difficult, it is rational to think on the overall 
microenvironment would be strongly influenced by the predominant populations of 
microorganisms. To date, our knowledge of the function of a specific microorganism 
that colonizes the intestine of fish and its effect on the host was increasing due to the 
modernization and advancement of molecular approaches and new sequencing 
technologies. 

4.1.2.1 The Contribution of the Intestinal Microbiota of Tilapia 
on Growth, Development Metabolism, and Immunity 

The significant role of intestinal microbiota to host digestion, metabolism, and 
immunity was principally explained in humans (Fouhy et al. 2012) and then in 
economically valuable animal species including cattle (Li et al. 2019), pig (Jha and 
Berrocoso, 2015) and chicken (Brisbin et al. 2008). In the previous two decades with 
the advancement of molecular technologies, the function of intestinal microbiota fish 
in digestion and metabolism was studied. The intestinal microbiota of fish can break 
down nondigestible fibers and provides nutrients to the host, and metabolites of the 
microbes such as enzymes, vitamins, and short-chain fatty acids were absorbed and 
utilized by the host for growth and development. 

In addition to growth and metabolism, the intestinal microbiota of fish can also 
control the gut-brain axis, innate immunity, and overall fitness of the fish. Intestinal 
microbiota contributes a significant role in the host health using mechanisms includ-
ing the development and maintenance of the epithelial cell of the intestine, reducing 
the growth of pathogenic microbes, supporting the process of angiogenesis, and 
stimulating the expression of genes related to intestinal development and innate 
immune system. Besides, these intestinal beneficial bacteria compete for available 
nutrients with pathogenic bacteria and modify the ecological niche of the bacteria 
community to prevent the colonization and proliferation of arriving harmful 
microbes in the fish intestine (Kamada et al. 2013). Fukuda et al. (2012) demon-
strated that the beneficial bacteria Bifidobacterium can inhibit the growth and 
invasion of pathogenic Escherichia coli using acidification of the fish’s intestinal 
environs. Some other probiotic bacteria species can also synthesize bacteriocins 
(ribosomal synthesized antimicrobial peptides) and proteinaceous toxins that hinder



the growth of members of the same or similar bacterial species. Hence, these and 
other studies provided evidence that the effect of pathogenic bacteria depended on 
the stability of the intestinal microbiota of the fish (Galindo-Villegas et al. 2012; He  
et al. 2017). However, the strong interaction of intestinal microbiota and host health 
can be affected via several factors, and disease was the main reason (Li et al. 2019; 
Nie et al. 2017) and mostly resulted in dysbiosis (imbalance of microbiota) of the 
microbes found in the intestine of the fish (He et al. 2017). 
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Currently, due to the advancement of molecular technologies, more investigation 
will require to understand the environmental interactions between members of the 
microorganisms found in the intestine and host intestinal microbiota interaction in 
terms of the function and importance of the intestinal microbiota on tilapia health. 
Development and improvements of techniques applied in genetics and molecular 
data analyses can provide detailed information on the ecological interaction of 
microbiota found in the intestinal of tilapia. Roh et al. (2010) used DNA microarrays 
to determine the regulation of the expression of microbial genes in different parts of 
the fish intestine. Furthermore, studies revealed that DGGE, TGGE, RNA-seq, and 
NGS have been used to quickly detection of much autochthonous intestinal 
microbiota of fish. Moreover, the development of digital transcriptomics techniques 
was applied to govern the expression level of several microbial genes (Ekblom and 
Galindo 2011). 

4.1.3 Techniques of Modulation of the Intestinal Microbiota 
of Tilapia 

It is clear that aquaculture contributes much to the world’s food supply via aquatic 
products has been increasing these dates, and the main aim of aquaculture is to 
provide a high-quality product for human consumption. However, several factors 
negatively affect the production of tilapia in aquaculture, and the primary factor is 
diseases. Currently, several pathogenic bacteria such as Streptococcus sp. and 
Francisella noatunensis subsp. orientalis, was affecting the intestine microbiota 
and health of tilapia (Amal and Zamri-Saad 2011; Soto et al. 2013). These patho-
genic bacteria symbolize a wide range of virulence and have different modes of 
infection. At present, for many bacteria diseases of tilapia, there is no effective 
treatment, and this results in huge economic loss in tilapia production. Researchers 
recommend using prevention methods and substitutions to antibiotics including 
probiotics, prebiotics, paraprobiotics, postbiotics, and feed additives. Understanding 
the functional significance of intestinal microbiota in many aspects of host physiol-
ogy and modulation of this intestinal microorganism of fish is a reasonable approach 
to reducing the number of emerging infectious diseases in aquaculture. To attain this 
goal, a fundamental understanding of the interaction among fish health, beneficial 
intestinal microbiota, and pathogens microbes is a prerequisite. These clarifications



focus on existing knowledge concerning the links between fish diseases, dysbiosis, 
and immune responses. 
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To accomplish the positive alteration of the intestinal microbiota of tilapia, 
researches used different types of modulators including prebiotics, probiotics, 
paraprobiotics, postbiotics, and optional feed ingredients in fish diets (Aguilar-
Toalá et al. 2018; Wu et al. 2020). Due to the increasing number of fish pathogens, 
the application of “-biotics” an alternative means to antibiotics, has shown benefits in 
aquaculture. Improvement of the immunity of farmed fish species via the establish-
ment of normal intestinal microbiota is important, as it affects various biological 
processes such development and assembly of gut-linked lymphoid tissue and the 
capability to compete for infectious disease caused by several microorganisms 
(Merrifield et al. 2011; Ringø et al. 2016). 

Several studies indicated administration of probiotics plays a significant role in 
improving the intestinal microbiota balance and modulate the nonspecific immune 
system (Gibson & Roberfroid, 1995; Nayak 2010). Banerjee and Ray (2017) also 
demonstrated the importance of probiotics in the improvement of the immune 
response and resistance against infection. Furthermore, the probiotics administrated 
to the fish remain viable in the intestinal of the fish throughout the growth period, 
and this indicates that probiotics are important to the host via balancing the 
microbiota communities in the fish intestine (Li et al. 2019; Sayes et al. 2018). 
Other than probiotics, there are several “-biotics” which have a great contribution to 
the modulation of the gut microbiota and the improvement of the health of tilapia. 
Consequently, it is compulsory to start the incorporation of prebiotics, probiotics, or 
alternative feed ingredients to effectively modify the composition and diversity of 
the intestinal microbiota of tilapia. 

4.1.3.1 Modulation by Watery Environments 

The surrounding water contains several species of microbiota, and most of the time; 
the intestine of tilapia is colonized with these microbiota species at an early stage of 
growth. Studies revealed that biotic factors, abiotic factors including salinity, the 
trophic level of the host, and host phylogeny affect the composition and diversity of 
the intestinal microbiota of different fish species (Sullam et al. 2012). Connected 
with this, Del'duca et al. (2013) explained the type of different bacteria species 
isolated from the intestine of tilapia and demonstrated the similarity of the intestinal 
bacteria and the bacteria collected from the water and its sediments. These are 
valuable concerns in the experimental design during the exploration of tilapia 
intestine microorganisms. The type of aquaculture system and the water system 
are some of the factors that affect the intestinal microbiota of tilapia. Besides, rearing 
conditions also have a significant role in the intestine microbiota. Studies 
recommended that rearing conditions should be more similar to the stocking density 
and system design of the aquaculture since the environment has a great influence on 
the intestinal microbiota of the host.
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Even though the composition of the intestinal microbiota of fish changes quickly 
at the time of transition from fry to fingerlings stages, many factors contribute to the 
change. The fish ingested the microbiota found in the water, contributes a lot to the 
modulation of the intestinal microbiota of the host (Giatsis et al. 2015; Del'duca et al. 
2013). The different types of aquaculture systems affect the diversity and establish-
ment of the intestinal microbiota of tilapia, which is explained how a type of 
aquaculture system (recirculating versus active suspension) influences the majority 
of the differences of microorganisms to colonize the intestine of the fish larvae 
(Giatsis et al. 2015). All these studies give evidence that the quality of the water used 
in the aquaculture system is the most important for the colonization of the gut 
microbiota of tilapia and is the primary indicator of host-microbial composition. 

4.1.3.2 Modulation by Diet 

Diet has a great potential to alter the fish intestinal microbiota (Ingerslev et al. 2014). 
A plethora of studies reported a strong link between the intestinal microbiota of fish 
with diet, yielding an understanding of the mutual interaction between some 
microbes and the host fish. These intestinal microbiota communities are also vital 
for several biological functions of the host including nutrition and metabolism by 
promoting nutrient uptake and utilization, increasing the production of enzymes, 
amino acids, short-chain fatty acids, and vitamins, and enhancing the digestion 
system of the fish (Merrifeld et al. 2010). Digestion enzymes such as carbohydrases, 
cellulase, phosphatases, esterases, lipases, and proteases were produced by the 
intestinal microbiota of fish which are responsible for the digestion of different 
types of diets (Ray et al. 2012; Wu et al. 2015). SCFAs are produced by gut 
microbiota from indigestible food components such as fiber, oligosaccharides, and 
polysaccharides via different metabolism channels (Layden et al. 2012; Tan et al. 
2014). The SCFAs have a wide range of positive effects on the host, such as 
providing energy sources for colonic epithelium cells (Pascale et al. 2018), 
maintaining metabolic homeostasis (Canfora et al. 2015), regulating T regulatory 
cells (Smith et al. 2013; Furusawa et al. 2013), and anti-inflammatory effects 
(D’Souza et al. 2017; Ferrer-picón et al. 2019; Sun et al. 2018). Generally, they 
are indispensable for the growth and well-being of the host when present in sufficient 
amounts (Leblanc et al. 2017). Intimate relationships also exist between gut bacteria 
and teleost, and these gut bacteria have a role in supplying the host with volatile fatty 
acids (Ramirez and Dixon 2003) that provide energy for intestinal epithelial cells 
(Clements 1997). Furthermore, the gut microbiota of aquatic vertebrates can also 
produce vitamins and amino acids (Balcázar et al. 2006; Nayak 2010). Sugita et al. 
(1991) demonstrated that the amount of vitamin B12 was positively correlated with 
the abundance of Bacteroides and Clostridium in Oreochromis niloticus. Nile tilapia 
fed with a diet deficient in B12, was able to produce 11.2 ng vitamin B12/gram of 
body weight per day (Lovell and Limsuwan 1982). Tsuchiya et al. (2008) also 
demonstrated that strains of Bacteroides identified from the intestine of tilapia 
synthesized vitamin B12 at a rate of approximately 8 ng/mL culture in 48 hr.



Here, we discuss the modulation of the gut microbiota of tilapia using diet. Some 
studies revealed that the diet altered the intestinal microbiota of tilapia (Table 4.1). 
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4.1.3.3 Modulation by Prebiotics, Probiotics, Paraprobiotics, 
and Postbiotics 

Currently, due to the increase in the number of reports on the negative effect of 
antibiotics, scientists have been working to develop alternative methods to antibi-
otics and examining the importance of the application of prophylactic measures such 
as probiotics, paraprobiotics, postbiotics, and prebiotics (Table 4.2). The word 
probiotics were defined by the Food and Agriculture Organization of the United 
Nations/World Health Organization (FAO/WHO) “as living microorganisms, 
which, once administered in appropriate amounts, confer a health profit on the 
host.” With the advancement of molecular technologies and increasing our knowl-
edge of the health benefits and their interaction with the host cells, the concept of 
paraprobiotics was proposed to indicate the use of inactivated microbial cells or cell 
fractions that confer a health benefit to the host (Taverniti and Guglielmetti 2011; 
Posadas et al. 2012). Moreover, postbiotics which are the soluble products or 
metabolites secreted by probiotics that have physiological benefits to the host as 
defined by (Aguilar-Toalá et al. 2018). The effect of the different types of “-biotics” 
on the modulation of the intestine microbiota has been reported (Nayak 2010; Wu  
et al. 2020). In this section, our focus is to review the ability of these compounds to 
modulate the function of the gut microbiota of tilapia and their role in host physi-
ology and function through shifts in the gut microbiome. The role of different types 
of prebiotics and probiotics on growth, metabolism, composition, and diversity of 
gut microbiota communities, and the innate immune system of tilapia have been 
comprehensively studied and reviewed detailed these days (Goutam and Arun 
Kumar 2017). A plethora of studies confirmed that some probiotics such as Bacillus 
sp. and Lactobacillus sp. have a positive effect on the modulation of the gut 
microbiota of tilapia and their consequences on the host innate immune system 
and are recommended to provide an alternative strategy to governing many infec-
tious diseases in aquaculture. The impact of live and dead probiotic cells on the 
nonspecific immune system of O. niloticus was investigated, and probiotics treat-
ment increased the nonspecific immune parameters like lysozyme activity, migration 
of neutrophils, and plasma bacteriocidal activity, leading to improvement of resis-
tance to Edwardsiella tarda infection (Taoka et al. 2006). 

Manipulation of useful gut bacteria via improving the intestine of tilapia is one of 
the strategies applied in aquaculture. Studies reported these modulated intestinal 
microbes could exert positive effects on fish growth by altering the gut morphology, 
improving digestion and metabolism, and regulating the expression of microbial 
genes related to growth and appetite control (Rawls et al. 2004; Bates et al. 2006; 
Round and Mazmanian 2009). The role of intestinal microbes on the gut-brain axis 
was studied. Probiotic Lactobacillus bacteria within the intestinal microbiota of fish 
were associated with improved learning/memory capacity (Borrelli et al. 2016).



Administration of a combination of probiotic bacteria, Bacillus subtilis, Saccharo-
myces cerevisiae, and Aspergillus to tilapia showed a strong association among these 
microbes in the host intestine (Iwashita et al. 2015). Besides, this study demonstrated 
that the intestinal microbiota-host association permitted the upregulation of immune 
response and reduced the mortality rate of tilapia against A. hyrdophila and S. iniae 
challenge. Another study performed using a commercial probiotic Aquastart® 
Growout (a combination of B. subtilis, E. faecium, Lactobacillus reuteri, and 
Pediococcus acidilactici) were applied to tilapia and resulted improved growth
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Table 4.1 Studies assessing the influence of diet on the microbiota and health of tilapia 

Type of diet Effect on gut microbiota Effect on the host References 

Resveratrol Increased the ratio of beneficial 
microbial taxa (Acetobacteraceae 
and Methylobacteriaceae), while 
the proportion of harmful micro-
bial taxa decreased, e.g., 
Streptococcaceae deceased 

Improve the growth and 
immunity of fish 

Zheng 
et al. 
(2018) 

Potassium 
diformate 

Improved the relative richness of 
some intestinal allochthonous 
bacteria 

Improved growth performance 
and feed conversion ratio 

Zhou et al. 
(2009) 

Garlic Increased bacterial diversity, 
increase the abundance of 
Proteobacteria and Tenericutes, 
the phyla associated with healthy 
intestinal flora 

Increase resistance against 
streptococcus iniae 

Foysal 
et al. 
(2019) 

Nucleotides Moderate the intestinal microbiota Improve the growth, feed uti-
lization, intestinal growth, 
antioxidant status, and 
nonspecific immune response 

Xu et al. 
(2015) 

Betaine and 
the antibi-
otic 
florfenicol 

Betaine can promote intestinal 
autochthonous bacteria 

Improve immunity He et al. 
(2012) 

DL-
methionyl-
DL-
methionine 

Improve the diversity of gut 
microbiota 

Increase growth performance 
and antioxidant ability 

Guo et al. 
(2019) 

Turmeric 
(Curcuma 
longa) 

Total bacterial count and total lac-
tobacillus count of intestinal 
content 

Improve growth performance Yusuf 
et al. 
(2017) 

Low protein 
diet 

Significantly decreased intestinal 
microbial diversity, Bacteroidetes 
were more abundant, and 
Proteobacteria and Firmicutes 
were less abundant 

Restrict growth and weaken 
disease resistance 

Zhu et al. 
(2020) 

Sodium 
chloride 

Increase in microbial diversity Increased protein digestibility, 
dietary ions, and nutrient 
transporters 

Hallali 
et al. 
(2018)



Effect on gut microbiota Effect on the host

(continued)
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Table 4.2 Studies evaluating the influence of probiotic microbes on the function and composition 
of intestinal microbiota and the health of tilapia 

Type of prebiotics or 
probiotics 

Rummeliibacillus 
stabekisii 

Increased the abundance of 
bacillus and lactobacillus 
spp. and reduced abun-
dances of pathogenic bac-
teria (streptococcus and 
staphylococcus spp.) in 
intestines 

Improved weight gain, 
feed conversion ratio, and 
feed efficiency, increased 
intestinal digestive 
enzymes; improved 
immunity 

Tan et al. 
(2019) 

Lactobacillus 
rhamnosus JCM1136 
and Lactococcus lactis 
subsp. lactis JCM5805 

Decease the abundance of 
Plesiomonas and increased 
rhizobium and 
Achromobacter 

Improved immunity of the 
host 

Xia et al. 
(2018a, b) 

Saccharomyces 
cerevisiae or Bacillus 
subtilis 

Significant higher number 
of yeast and bacillus spp. 
cells counts in the intesti-
nal of fish fed on a diet 
supplemented with 
probiotics 

Improved immunity of the 
host 

Opiyo 
et al. 
(2019) 

Pediococcus 
acidilactici 

Increase the abundance of 
lactic acid bacteria 

Enhanced some aspects of 
the nonspecific immune 
response 

Ferguson 
et al. 
(2010) 

Lactobacillus reuteri, 
B. subtilis, enterococ-
cus faecium, and 
Pediococcus 
acidilactici 

Improve the growth of 
beneficial bacteria 

Enhanced intestinal mor-
phology by elevating the 
absorptive surface area 

Standen 
et al. 
(2015) 

Lactobacillus 
plantarum CCFM8610 

Modulate gut microbiota Promote growth perfor-
mance and prevent the 
death of fish exposed to cd 

Zhai et al. 
(2017) 

Lactobacillus 
plantarum 

Improve the growth of 
beneficial gut bacteria 

Improve immunity Foysal 
et al. 
(2019) 

Lactobacillus 
plantarum 

Lactic acid bacteria were 
increased 

Improved growth and feed 
efficiency 

Jatoba 
et al. 
(2011) 

B. subtilis Modulate the gut 
microbiota 

Improve growth 
performance 

Giatsis 
et al. 
(2015) 

Lactococcus lactis 
subsp. lactis JCM5805 

Modulate gut microbiota Upregulated the expres-
sion of IFNα via the TLR7/ 
TLR9-Myd88 pathway and 
enhanced disease resis-
tance of larvae 

Xia et al. 
(2018a, b) 

Bacillus cereus Affected the autochtho-
nous gut bacteria commu-
nity of tilapia and 

Enhance the immune status Wang 
et al. 
(2016)

https://www.sciencedirect.com/topics/immunology-and-microbiology/lactococcus-lactis
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stimulated various poten-
tially beneficial bacteria

(continued)
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Table 4.2 (continued)

Type of prebiotics or 
probiotics 

Lacillus subtilis 
C-3102 

The increased amount of 
gut bacteria altered the 
autochthonous gut bacte-
rial communities 

Improve fish immunity He et al. 
(2013) 

Schizochytrium species Enhanced the richness 
(represented by the Chao 
index) of bacteria and 
increase the abundance of 
the bacterial phylum 
Firmicutes 

Improve structure and 
integrity of the intestinal 
villi 
Modulatory effects on 
blood cells 

de Souza 
et al. 
(2020) 

Lactococcus lactis 
JCM5805 

Altered the composition of 
host gut microbiota 

Improve metabolic path-
ways including carbohy-
drate metabolism, nucleic 
acid metabolism, energy 
metabolism, and 
translation 

Xia et al. 
(2020) 

Saccharomyces 
cerevisiae or B. subtilis 

Improved the growth of 
beneficial intestinal 
bacteria 

Improves immunity and 
enhances fish flesh quality 

Opiyo 
et al. 
(2019) 

Lactobacillus brevis 
JCM 1170 and Lacto-
bacillus acidophilus 
JCM 1132 

Altered gut microbiota Improve the immunity of 
the fish 

Liu et al. 
(2013) 

Clostridium butyricum Improved the increased 
diversity of the intestinal 
microbiota and the relative 
abundance of beneficial 
bacteria (bacillus). 
Reduced the relative abun-
dance of opportunistic 
pathogenic bacteria 
(Aeromonas) 

Improved the specific 
growth rate and feed intake 
and increased resistance 
against S. agalactiae 

Li et al. 
(2019) 

Clostridium butyricum Improve the growth of 
beneficial bacteria 

Promoting growth, feed 
utilization, gut health 

Poolsawat 
et al. 
(2019) 

Mannan-
oligosaccharide 

Modulate the intestinal 
microbiota by increasing 
the number of beneficial 
bacteria species 

Improve immunity Levy-
Pereira 
et al. 
(2018) 

Oligochitosan Improve the growth of 
beneficial gut bacteria 

Improve the growth, and 
immunity and enhance 
resistance against 
A. hydrophila infection 

Shi et al. 
(2020)



Effect on gut microbiota Effect on the host

and enhanced intestinal immunological status (Standen et al. 2016). Administration 
of a mixed probiotic Bacillus licheniformis and a prebiotic, yeast extract can improve 
the growth and feed utilization of Nile tilapia (O. niloticus) (Hassaan et al. 2014). 
Likewise, the administration of a mixture of exogenous enzymes phytase, protease, 
and xylanase with a probiotic containing B. subtilis, B. licheniformis, and Bacillus 
pumilus results in enhanced growth and fiber breakdown (Melo-Boliver et al. 2019). 
Correspondingly, this combination of probiotics and prebiotics increased the diges-
tion of indigestible nonstarch polysaccharides and trypsin inhibitors, which may 
produce necrotic enteritis in Nile tilapia (Adeoye et al. 2016). Some microbes such 
as Enterococcus, Myroides, and Exiguobacterium isolated from the intestine of Nile 
tilapia were improved the survival rate of the fish after challenged with Edwardsiella 
tarda via enhancing the innate immunity (Villamil Diaz and Esguerra Rodriguez 
2017).
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Table 4.2 (continued)

Type of prebiotics or 
probiotics 

Lactogen 13 Modulate gut microbiota 
communities by increasing 
the proportion of lactoba-
cillus. 
Decreasing the proportion 
of potential pathogens 

Improved the expression of 
genes responsible for 
growth and appetite con-
trol and activating the 
endocrine system 

Giorgia 
et al. 
(2018) 

β-Glucan Increased the Chao rich-
ness and changed the 
composition of gut 
microbiota 

Modulating plasma glu-
cose concentrations, 
decreasing mortality, 
improving immunity 

de Souza 
et al. 
(2020) 

Chito-oligosaccharides Changed autochthonous 
gut bacteria, 

Improve intestinal health, 
and improve resistance to 
infection by A. hydrophila 

Qin et al. 
(2014) 

Inulin Improve the composition 
of α-diversity, and 
β-diversity of gut 
microbiota 

Improve growth and alle-
viate oxidative stress o 

Zhou et al. 
(2020) 

Probiotics L. rhamnosus GG can improve the host’s intestinal microflora balance 
and enhance the immune system and disease resistance of tilapia after being chal-
lenged by Edwardsiella tarda and Streptococcus agalactiae (Pirarat et al. 2006; 
Lahti et al. 2013; Pirarat et al. 2015). In addition to several species of bacteria, some 
yeast species including Saccharomyces cerevisiae, Kloeckera apiculata, Candida 
sp., Metcschnikowia sp., and Rhodotorula sp., have been used as a probiotic for 
tilapia (Ayyat et al. 2014). Besides these and other species of yeast have 
immunostimulants and play a significant role in the growth of fish (Gatesoupe 2007).
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4.1.4 Conclusions and Future Perspective 

Tilapia is one of the most cultivable fish species in the world. In the previous three 
decades, studies on the intestinal microbiota of tilapia increased with the aim of 
optimum manipulation of these microorganisms. The intestine of tilapia was har-
bored by different species of microbiota, and the dominant bacteria phyla were 
Proteobacteria, Firmicutes, Fusobacteria, and Bacteroidetes. The intestinal 
microbiota has been affecting the host in more than one way. Considering the 
importance of these bacteria phyla and other microbiota species in the overall fitness 
of tilapia in aquaculture, scientists have been characterizing and developing many 
techniques to manipulate the intestinal microbiota to increase the production and 
productivity of the fish. Conversely, the detailed mechanisms of these intestinal 
microbiota modulators are required to be fully explored. Presently, several infectious 
diseases of tilapia have been treated using antibiotics. However, a plethora of studies 
revealed that antibiotics affect the dynamics of fish intestinal microbiota and mostly 
cause dysbiosis. Furthermore, increasing the application of antibiotics has fortified 
antibiotic resistance microbiota, and these results in a condition difficult to fight 
against pathogens (Kalia et al. 2014). To date, the advancement of “forward 
microbiomics” was played a great role in manipulating the intestinal microbiota to 
improve the growth and health of tilapia. Modulation of the intestinal microbiota of 
tilapia using different diets and “-biotics” have been applied. Most of the time, 
probiotic bacteria including Lactobacilli species, have been used in a number of fish 
species including tilapia (He et al. 2017). But to date, the function of each intestinal 
microbiota taxa and modulation of these beneficial microorganisms is not fully 
understood. The research highlighted above is an important starting point for 
optimally manipulating the beneficial microbiota of tilapia. 

Like other fish species, the intestinal microbiota of tilapia was influenced by 
many factors; however, the effect of each of these factors on the growth, metabolism, 
immunity, and physiology of fish remains poorly understood. For drawing mean-
ingful conclusions, this review summarized the importance of intestinal microbiota 
and the modulation methods of microbiome structure and function. Furthermore, to 
create a comparative picture of the intestinal microbiota of tilapia needs a careful 
review of the studies employed using the different advanced molecular technologies 
such as DNA microarray, next-generation, and third-generation is required to 
increase our understanding of the role of intestinal microbiota to increase the 
production and productivity of tilapia. To date, scientists have been working to 
manipulate the intestinal microbiota to use as biomarkers for the health status of the 
fish and to assess the detail to uncover functional variation with diet or host factors. 
Conversely, the detailed mechanisms of these intestinal microbiota modulators are 
required to be fully explored. This review highlighted collecting information on the 
characterization and function of intestinal microbiota on tilapia growth, develop-
ment, and immunity and its modulation methods. Gathering information from 
different studies would help to identify and characterize the intestinal microbiota 
of tilapia to use as biomarkers for the status of the fish in aquaculture. As a result,



more study is required on the characterization and identification of specific taxa of 
intestinal microbiota, and detailed work is necessary to investigate the fundamental 
association between tilapia fitness and the function of each intestinal microbiota, 
which may allow us to enhance our knowledge on the importance of intestinal 
microbiota on improving tilapia aquaculture. 
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Chapter 5 
Probiotics and their Application in Tilapia 
Culture 

Hien Van Doan 

Abstract Probiotics are live beneficial bacteria introduced into the gastrointestinal 
tract through food or water, promoting good health by enhancing the internal 
microbial balance. Probiotic microbes produce bacteriocins, siderophores, lyso-
zymes, proteases, and hydrogen peroxides, inhibiting the growth of harmful patho-
gens. Such beneficial bacteria also produce many enzymes such as amylase enzyme 
by Aeromonas spp., Bacillus subtilis, Bacteridaceae, Clostridium spp., Lactobacillus 
plantarum, and Staphylococcus sp., and protease and cellulase enzymes by 
B. subtilis, L. plantarum, and Staphylococcus sp. In aquaculture, probiotics confer 
several benefits and play important roles in improving growth performances, disease 
resistance, immunity, health status, intestinal epithelial barrier integrity, gut 
microbiome, and water quality. In addition, the practical application of probiotics 
in aquaculture diets could minimize antibiotic side effects. Promoting these feed 
additives for fish would help to improve their product performance and feed utili-
zation and, therefore, boost fish production and safeguard human health. This review 
provides updated information regarding definitions, sources of bacterial probiotics, 
probiotic use in fish diets against pathogenic bacteria, mechanisms of action, bene-
ficial aspects, and potential applications of probiotics in fish. It is anticipated that 
these will be of significant value for nutritionists, agricultural engineers, researchers, 
pharmacists, scientists, pharmaceutical industries, and veterinarians. 

5.1 Introduction 

Aquaculture is one of the most important occupations, particularly in underdevel-
oped nations, as it not only helps to increase food security but also helps fish farmers 
to generate and enhance revenue (Dorji et al. 2022; El-Saadony et al. 2021). 
Moreover, the development of aquaculture has been necessitated by the exponential
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growth of the human population, the high demand for low-cost sources of proteins, 
and the decrease in fish capture from natural inland water bodies (Gebremedhin et al. 
2021). As aquaculture is potentially the most promising activity for meeting the 
increasing global food demands, governments as well as development agencies have 
started to pay more attention to fish farming and aquaculture. The growth rate of 
aquaculture has been the fastest as compared to all other food production sectors, and 
thus it can play a vital role in combating malnutrition and increasing food security by 
supplying food to the ever-increasing population (FAO 2018, 2020).

104 H. Van Doan

The use of good husbandry techniques in aquaculture can decrease the stress 
faced by fish due to different reasons. However, this stress can never be eliminated 
and can eventually lead to an increased susceptibility of fish that are being produced 
to diseases and infections (Abdel-Latif et al. 2020; Eissa et al. 2018; Stevens et al. 
2017). Vaccinations, biocontrol agents, chemicals as well as antibiotics are most 
commonly used to prevent or treat diseases in aquaculture (Assefa and Abunna 
2018; Shao et al. 2021). However, in some countries, these treatments have either 
been restricted or prohibited, but many other countries are still widely using them 
(Shao et al. 2021; Guardone et al. 2022). As chemicals and antibiotics tend to 
bioaccumulate in the tissues of the fish, their use can pose a risk to the environment 
as well as consumers (Okocha et al. 2018). The potential development of antibiotic-
resistant bacteria is another key concern related to the use of antibiotics in aquacul-
ture (Pepi and Focardi 2021; Henriksson et al. 2018). Exposure to antibiotics at 
subtherapeutic doses for a long period can lead to the development of antimicrobial 
resistance in bacteria by allowing the plasmids or genes having antibiotic resistance 
to evolve (Zalewska et al. 2021; Amin et al. 2020). Moreover, these plasmids and 
genes can be horizontally passed on to other bacteria (Kent et al. 2020; Lerminiaux 
and Cameron 2019). 

The transfer of antibiotic resistance genes and bacterial species from aquatic 
animals and environment to terrestrial animals and environment and consequently 
to humans and their environment, and vice versa, is very well known and has 
negative effects on the health of animals and humans as well as aquatic ecosystems 
(Santos and Ramos 2018; Koch et al. 2021). As aquaculture is at the crossroads of 
antimicrobial resistance, recent research has highlighted the importance of corrective 
and mitigative measures to protect the health of fish as well as humans (Reverter 
et al. 2020; Vaiyapuri et al. 2021). A large number of research studies have proved 
that there are many safe, economical, and ecologically appropriate supplements such 
as probiotics, prebiotics, and medicinal plants (Ghosh et al. 2021; Hernández-
Contreras and Hernández 2020) as well as essential oils (Dawood et al. 2021) that 
can be added to feed and have significant benefits for the health of farmed fish (Butt 
et al. 2021; Rohani et al. 2021). 

In this chapter, probiotics, their advantages for health, their sources, modes of 
action, safety concerns, categorization, applications, and side effects in the nutrition, 
production as well as the health of Nile tilapia are discussed.
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5.2 Modes of Action 

The most commonly known mechanisms of action of probiotics include 
(i) competitive exclusion by the production of inhibitory compounds, 
(ii) competition for energy, nutrients, or chemicals, (iii) competition for adhesion 
site, (iv) contribution to digestion, (v) contribution to macro- and micronutrients, 
(vi) augmentation of the immune response, and (vii) reduction of virulence by 
manipulation of quorum sensing (QS) (Balcázar et al. 2006; De Bidhan et al. 
2014; Zorriehzahra et al. 2016; Noor et al. 2020; Dawood et al. 2020). 

Probiotics being engaged in the competitive exclusion of pathogenic pathogens 
was one of the earliest theories to be put out (El-Saadony et al. 2021). It was thought 
that when beneficial microorganisms entered the host’s digestive tract, they would 
either create inhibitory compounds or engage in competition with pathogens for 
adhesion sites, nutrients, chemicals, or energy sources, thus interfering with the 
growth or other activities of the pathogens (Verschuere et al. 2000; Decamp et al. 
2008; Kuebutornye et al. 2020a, b, c). Incidentally, advantageous isolates from the 
intestines of both freshwater and marine species have shown antagonistic action 
against several fish and shellfish diseases. For instance, extracellular products of five 
potential probiotics isolated from common clownfish’s (Amphiprion percula) stom-
ach and intestine displayed possible inhibitory effects against Carnobacterium 
piscicola, A. salmonicid, V. harveyi, A. hydrophila, V. anguillarum, V. damsela 
and V. alginolyticus (Vine et al. 2004). Saprolegnia sp. was strongly inhibited by 
Aeromonas media obtained from rearing water used for eel culture (Lategan et al. 
2004). Diffusible inhibitors against E. tarda, V. parahaemolyticus, V. harveyi, and 
A. hydrophila were discovered to be produced by B. amyloliquefaciens (Das et al. 
2013). 

Contrarily, substances that are known to have bactericidal or bacteriostatic effects 
such as hydrogen peroxide, lysozymes, bacteriocins, proteases, carbon dioxide, and 
siderophores, etc. Furthermore, the pH of the gut might change as a result of the 
generation of organic acids and volatile fatty acids (such as lactic, propionic, butyric, 
and acetic acids) (Tinh et al. 2008; Vine et al. 2006). By doing so, probiotics may 
prevent the growth of opportunistic pathogenic bacteria in vivo. 

By competing for sites of attachment, some probiotic microbes can reduce the 
growth of pathogens on the surface of the gut (Dawood 2021). According to research 
by Chabrillón et al. (2005) lactic acid bacteria such as L. lactis, L. plantarum, and 
L. fermentum, respectively, reduced the adhesion of the fish pathogens 
A. hydrophila, A. salmonicida, V. anguillarum, and Y. ruckeri to the intestinal 
mucus of rainbow trout in vitro. The production of antimicrobial agents like antibi-
otics or siderophores may account for this anti-adhesion activity (Chabrillón et al. 
2005). 

Indeed, Pseudomonas fluorescens, a probiotic that produces siderophores, 
prevented the growth of V. anguillarum by competing for freely available iron 
(Gram et al. 1999; 2001). One of the most significant defenses against pathogen



invasion by probiotics is their capacity to colonize the GIT by adhering to and 
proliferating in the mucus and epithelial cells (Amoah et al. 2019; Azad et al. 2019). 
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5.3 Probiotics in Tilapia 

Probiotics work in a variety of ways to assist increases in aquaculture production, by 
encouraging improved growth (Silva et al. 2012), increasing feed consumption and 
nutrition (Zhou et al. 2010), lowering disease rates (Irianto and Austin 2002), and 
developing immunological responses (Nayak et al. 2007). Probiotics not only 
enhance the well-being of domesticated animals but also contribute to consumer 
safety (Rohani et al. 2021). The most commonly used probiotic bacterial strains 
include Arthrobacter sp., Enterococcus sp., Bifidobacterium sp., Bacillus sp., Lac-
tobacillus sp., Pseudomonas sp., Streptomyces sp., Phaeobacter sp., Streptococcus 
sp., Microbacterium sp., Lactococcus sp., Micrococcus sp., etc., yeast probiotics 
include cell wall of yeast, Debrayomyces hansenii, Saccharomyces cerevisiae, etc., 
micro-algal probiotics include Spirulina platensis, etc., and Tetrasehnis suecica, 
Bacteriophages probiotics include Bacteriophages sp. Table 5.1 lists the potential 
impacts of adding probiotics to aquafeeds on fish development, immunity, feed 
consumption, and disease resistance. 

5.3.1 Bacillus Spp. 

Gram-positive, anaerobic Bacillus species are known to exhibit a variety of physi-
ological traits (Jahangiri and Esteban 2018; England 2014). Bacillus species is one 
of the most commonly used probiotic organisms in aquaculture. They have also been 
discovered to be natural members of the intestinal microbiota of some fish species 
(Kuebutornye et al. 2020a, b, c). The addition of Bacillus species to the fish diet has 
increased growth performance, disease resistance, as well as resistance to infections 
from pathogenic bacteria in tilapia. According to Liu et al. (2017), Nile tilapia fed 
108 cfu/g B. subtilis HAINUP40 which was isolated from aquatic ecosystems could 
improve disease resistance, growth performance, and immunological response. 
B. subtilis HAINUP40’s capacity to release exoenzymes like protease and amylase 
may be responsible for the evaluation of these parameters. Additionally, B. subtilis 
HAINUP40 inclusion dramatically increased the activity of serum SOD and TAC, 
which may be related to its stronger microbial killing capacity of macrophages (Giri 
et al. 2013) and higher levels of antioxidant enzymes as well as antioxidants secreted 
in response to Bacillus antigens (Zhang et al. 2013). The addition of B. subtilis 
LT3–1 to the diet also dramatically improved weight gain and serum biochemical 
parameters. In addition, the hematocrit, total red and white blood cell counts, serum 
catalase, and lysozyme activity, were observed to be increased. While, the levels of 
serum complement 3, serum malondialdehyde, as well as immunoglobulin M, were
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all observed to be decreased. Fish-fed diets enriched with B. subtilis appeared to 
have healthier intestines than fish fed the control diet, according to parameters for 
intestinal morphology. In tilapia-fed B. subtilis, the survival rate following Strepto-
coccus agalactiae exposure increased (Zhu et al. 2019). In tilapia production, 
Bacillus licheniformis has been used as a functional feed supplement. According 
to Gobi et al. (2018), feeding tilapia (O. mossambicus) with B. licheniformis Dahb1 
significantly improved growth rate, immunological parameters, feed conversion 
ratio, as well as antioxidant parameters in serum and mucus. B. licheniformis 
HGA8B can considerably improve growth parameters including feed conversion 
ratio, weight gain, specific growth rate, and hepato-somatic index when added to the 
diet, according to Midhun et al. (2019). The probiotic preparation adjusted the 
activity of the digestive and antioxidant enzymes. In the liver tissue, there was a 
significant modulation of growth-related genes such as the growth hormone receptor 
genes (GHR-1 and GHR-2) and the insulin-like growth factor genes (IGF-1 and 
IGF-2). IGF-1 gene expression was markedly elevated in the muscular tissue. 
Significant immune-related gene upregulation, as evidenced by an increase in 
TLR-2 and anti-inflammatory cytokines such as IL-10, was seen. B. licheniformis 
secreted digestive enzymes, which were found to be the cause of fish growth and 
health promotion. Furthermore, the presence of B. licheniformis can influence the 
expression of regional growth factors (IGF-1 and IGF-2) and the receptors (GHR-1 
and GHR-2) that bind growth factors and hormones (growth hormone and steroid 
hormones) to promote greater growth. A new potential probiotic for Nile tilapia is 
Bacillus pumilus AQAHBS01. Srisapoome and Areechon (2017) have suggested 
that in both laboratory and field culture conditions, the addition of B. pumilus at 
1 × 108 and 109 CFU/kg to diet could boost immune response as well as resistance 
against streptococcosis. An important topic that needs to be discussed is the mech-
anism that Bacillus pumilus uses to improve fish health and disease resistance. The 
possible mechanisms by which B. pumilus may shield fish from harmful bacterial 
infection include boosting superoxide anion generation, phagocytic activity, and the 
number of essential leukocytes. Theoretically, B. pumilus may possess 
pro-inflammatory tumor necrosis factor, bacteriocin-like activity, powerful anti-
spore IgG titers, and complement activity against other Bacillus species (Duc et al. 
2004; Sun et al. 2010), all of which may significantly increase the survival rate of 
experimental fish fed with B. pumilus (Aly et al. 2008a, b). Unknown are other 
B. pumilus mechanisms of activity, such as the colony and adhesive capacity inside 
and outside the fish body. B. pumilus has not been used much lately in Nile tilapia. 
Compared to various earlier findings using this probiotic species, there have been 
only minor improvements in growth properties. A study by Aly et al. (2008a, b)  is  
the only one to demonstrate the potential value of B. pumilus as a probiotic for 
enhancing Nile tilapia growth. In a different study using Bacillus cereus isolated 
from tilapia’s stomach, Wang et al. (2017) found that B. cereus, when added to water 
or feed, might improve tilapia’s immunological status and have an impact on their 
gut microbiota. When used as a feed supplement as opposed to a water additive, 
Bacillus cereus was more successful at boosting tilapia’s immune system. Similarly, 
Makled et al. (2019) observed that Nile tilapia were given B. paralicheniformis SO-1
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isolated from marine habitats greatly increased growth rates, digestive enzyme 
activities, and immunological parameters with increasing supplementary SO-1 up 
to 10 g/kg. However, when the bacterial load was increased further to 20 g/kg, fish 
performance and immune response were significantly reduced. When Nile tilapia 
were fed SO-1-treated diets, the expression of the IL-1, IL-4, and IL-12 genes was 
considerably increased. Based on the results of this investigation, 
B. paralicheniformis SO-1 can be recommended as an effective probiotic growth 
promoter and immune system stimulator for farmed Nile tilapia. According to Zhang 
et al. (2019a, b), growth performances were observed to be significantly improved in 
tilapia-fed diets supplemented with LF01 (1.0 × 109 CFU/g) as compared to the 
control group. Lysozyme (LZY) as well as superoxide dismutase (SOD) activity was 
also considerably elevated in tilapia-fed diets supplemented with LF01. The gills, 
gut, and head kidney of tilapia from the continuous feeding group had higher 
expression levels of three immune-related genes (C3, lyzc, and MHC-II) as com-
pared to the control group. After being infected with S. agalactiae, the survival rates 
of tilapia-fed diets supplemented with LF01 were noticeably higher, and an exam-
ination of the gut pathogens showed that the number of Edwardsiella as well as 
Plesiomonas had decreased considerably as compared to the control group. The 
effect of Bacillus altitudinis B61-34b (BAA) isolated from the intestine of Nile 
tilapia, on immunological response, growth, as well as disease resistance against 
Streptococcus agalactiae has recently been studied (Van Doan et al. 2021a, b, c). 
The results proved that BAA treatment increased skin mucus as well as peroxidase 
activity in comparison to the control, with maximal values found in BAA4 and 
BAA5. In comparison to the control, BAA1, BAA2, and BAA3 dietary groups, 
higher serum immunities, including serum lysozyme, serum peroxidase, comple-
ment, phagocytosis, and respiratory burst activities, were seen in the BAA4 and 
BAA5 dietary groups. The BAA4 and BAA5 groups also showed considerably 
greater relative percentages of survival, growth performance, and food conversion 
ratio (FCR). The authors hypothesized that nutritional supplementation with 
B. altitudinis at 108 CFU ml-1 can enhance Nile tilapia’s disease resistance, growth 
performance, skin mucus as well as serum immunity. Numerous mechanisms have 
been suggested to achieve these improvements. Increased growth performance is a 
direct outcome of increased intake of feed and utilization of nutrients that have been 
digested (Dawood 2021). By improving feed digestion through the production of 
digestive enzymes, probiotics boost feed intake as well as utilization and make the 
nutrients that have been digested available for metabolic processes for the body 
(Wang et al. 2020). Beneficial bacterial cells increase the intestinal villi’s surface 
area for absorption of digested nutrients, protect the villus from harmful microor-
ganisms, and boost transcription of IGFI and inhibition of myostatin (Zaineldin et al. 
2021). The starch-degrading enzymes known as α-Amylases, which are released by 
the bacteria Bacillus altitudinis play a critical role in digestion by catalyzing the 
hydrolysis of internal -1,4-o-glycosidic linkages in polysaccharides (Kumar et al. 
2014). Furthermore, B. altitudinis can produce pectinase and xylanase enzymes 
simultaneously (Thite et al. 2020). Although the exact mechanism by which 
probiotics increase mucosal immunity is unknown, the improvement in mucosal
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immunity of fish that result is likely because of the impact of derivatives of beneficial 
bacteria on local intestine immunity (Guardiola et al. 2017). According to Caipang 
and Lazado (2015), probiotic cell derivatives are likely to penetrate via the local 
epithelial immune cells and into the stream of systemic lymphoid tissues, where they 
work to increase innate immunity. Probiotics’ metabolic impact on the feed compo-
sition, which results in functional nutrients being available, is likely responsible for 
the increased systemic immunity that is responsible for the increased serum immu-
nity (Terpou et al. 2019). Indirectly competing with pathogenic invaders, probiotics 
prevent their ability to decrease the immunity of intestine (Dawood and Koshio 
2020). In this way, compounds which are derivatives of probiotics migrate via 
intestinal enterocytes, enter the blood circulation, and ultimately end up in the 
immunological organs (Kelly and Salinas 2017; Zhang et al. 2019a, b).
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5.3.2 Lactobacillus Spp. 

According to Zhai et al. (2017a, b), adding Lactobacillus plantarum CCFM8661 to 
feed improved the growth performance and kept fish exposed to Pb from dying. 
When Pb and CCFM8661 were combined in the treatment, Pb buildup in the kidney, 
liver, muscles, brain, gonads, and gills was found to be significantly reduced. 
Additionally, administering this probiotic reduced oxidative stress induced by Pb, 
recovered the activities of blood δ-aminolevulinic acid dehydratase as well as 
digestive enzymes, reversed changes to innate immune status, and reduced the 
occurrence of nuclear abnormalities in fish peripheral blood erythrocytes. These 
findings suggested that, at least in tilapia, CCFM8661 might be a potential dietary 
supplement against toxicity caused by Pb. The L. plantarum CCFM8661 probiotic 
used in this study has been shown to efficiently bind Pb in vitro, and its theoretical 
monolayer biosorption capacity (Qmax) has been calculated to be 86.96 mg g-1 dry 
biomass, outperforming some commercial lactobacilli like L. casei Shirota 
(70.40 mg g-1 ) as well as L. rhamnosus GG (46.80 mg g-1 ) (Yin et al. 2016). 
Because of this, the intestinal CCFM8661 may bind such released Pb before it gets 
reabsorbed from the intestines, increasing the excretion of Pb through fish feces and 
decreasing its intestinal absorption (Ringø et al. 2020). The significant reduction in 
the level of Pb in tissues of the Pb-plus-CCFM8661 group could be explained by 
these findings. A higher number of this probiotic colonizing in the gut of fish after a 
longer feeding duration, providing further beneficial effects against Pb toxicity, may 
also be the cause of the significant protection on improving growth performance, 
reducing tissue oxidative stress, and regulating innate immune responses in fish after 
supplementation for 2 months. Similar to this, Zhai et al. (2017a, b) found that 
adding L. plantarum CCFM8610 to the diet reversed the alterations in the compo-
sition of gut microbiota in the fish exposed to Cd and also decreased the abundance 
of Flavobacterium as well as Pseudomonas. The probiotic treatment greatly 
improved growth performance and stopped the death of the fish exposed to Cd as 
compared to the Cd-only group. Supplementing with L. plantarum CCFM8610 also



reduced Cd accumulation, reduced oxidative stress in tissues, and reversed changes 
in hemato-biochemical parameters in fish blood. Suprayudi et al. (2017) used 
Lactobacillus lactis D1813 at three different levels, that is, 0.25, 0.5, 1.0, and 
2.0 g kg-1 in feed as compared to a control group having 0 g kg-1 , in both laboratory 
and field conditions. They found that treatments with dietary probiotic supplements 
of 0.25 and 0.5 g kg-1 significantly enhanced the final body weight of fish, increased 
growth, and lowered food conversion ratio (FCR) compared to controls (0 g kg-1 ) in  
laboratory conditions. In field conditions, higher growth, retention of proteins and 
lipids, lowered FCR, and reduction in death rate by Aeromonas hydrophila challenge 
was observed by dietary inclusion of 0.5 g kg-1 . The beneficial effects of L. lactis 
D1813 on Nile tilapia’s growth, as well as feed conversion ratio, may be explained 
by the probiotics’ well-established benefits for the targeted species, including 
improvements in feed digestibility (Dawood et al. 2015) and uptake of nutrients 
and their utilization through (1) the involvement of digestive enzymes (Yanbo and 
Zirong 2006; Suzer et al. 2008), (2) changes in gut microbiota (Yang et al. 2014), 
(3) contribution on the development of morphology of the digestive tract 
(an increase in microvilli) that works to increase the surface area of the intestine 
allowing for the uptake of nutrients (Frouël et al. 2008), and (4) increase in the 
activity of enzymes that are related to the utilization of nutrients in intestines, such as 
alkaline phosphatase and leucine aminopeptidase which are the enzymes involved in 
the absorption of nutrients in the intestinal brush border (Sáenz de Rodrigáñez et al. 
2009; Panigrahi et al. 2010). Probiotics have been shown to promote antibacterial 
activity (Aly et al. 2008a, b), enhance phagocytic and respiratory burst activity 
(Pirarat et al. 2006), and stimulate complement activity (Wang et al. 2008) as part 
of their ability to stimulate innate as well as adaptive immune system responses. 
Different fish can produce more lymphocytes, erythrocytes, macrophages, and 
granulocytes as a result of some probiotics, and the levels of B-lymphocyte prolif-
eration as well as immunoglobulin levels can also be actively stimulated (Nayak 
2010). To improve immunological responses, probiotics interact with immune cells 
like natural killer (NK) cells, mononuclear phagocytic cells (monocytes, macro-
phages), and polymorphonuclear leucocytes (neutrophils) (Nayak 2010; Selim and 
Reda 2015). Similarly, supplementing the diet of Cyprinus carpio with a commercial 
probiotic (L. delbrueckii) considerably improved the growth performance, disease 
resistance against A. hydrophila, and immunity of the fish (Zhang et al. 2017). 
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According to recent research by Van Doan et al. (2021a, b, c) Nile tilapia given 
Lactobacillus paracasei l61-27b dramatically increased rate of growth, serum 
immunities, feed conversion ratio, disease resistance, and skin mucus. The 
immunostimulant factor associated with probiotics can be due to the influence of 
derivatives of beneficial bacteria which can reach mucosal tissues like the skin and 
systemic immune organs like the spleen and trigger their response (Lazado and 
Caipang 2014). Additionally, probiotics improve the digestion of functional nutri-
ents like vitamins, which strengthen the local gut immunity and in turn strengthen 
the systemic immune system (Pérez-Sánchez et al. 2014). Another theory that 
probiotics have an immunostimulant effect on the body is that they reduce the



impact of pathogenic microorganisms in fish intestines, which causes a pronounced 
effect of good probiotics on intestinal immune cells (Akhter et al. 2015). 
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5.3.3 Lactococcus Sp. 

According to Xia et al. (2019), the probiotic strain JCM5805 from Lactococcus 
lactis subsp. lactis increased the expression of IFNα through the TLR7/TLR9-
Myd88 pathway and improved larval disease resistance. Since JCM5805 was only 
transiently identified, it was excluded from the stable microbiota of the larva. Tilapia 
larvae’s early exposure to microbes has an impact on the gut microbiome later in life. 
Further research is necessary to determine whether the upregulation of associated 
genes is connected to the presence of JCM5805 strain in the intestine. Abdelfatah 
and Mahboub (2018) reported that fish fed with a feed having dietary inclusion of 
L. garvieae isolated from raw cow milk exhibited no signs of sickness and showed a 
greater survival rate as compared to others. According to Xia et al. (2018), the 
dietary addition of Lactobacillus rhamnosus (LR) JCM1136 and Lactococcus lactis 
subsp. lactis (LL) JCM5805, as a feed additive at 108 CFU/g feed, may enhance the 
immune status and disease resistance, affect tilapia’s gut microbiota, and improve its 
intestinal morphology. These additives may therefore be used as probiotics for 
juvenile Nile tilapia. When it came to improving growth, immunological function, 
and increasing disease resistance, JCM5805 was found to be more beneficial than 
JCM1136 or the two combined. The different effects of probiotics on the growth 
performance of tilapia can be attributed to variations in the antibiosis activities of 
particular strains of probiotics as well as the interactions between probiotics, diet, the 
host, conditions of research, as well as handling practices, among other factors. 
These different factors may have influenced the results, which in turn affected the 
success or failure of probiotics and their combinations to improve growth in each 
study. The growth performance and feed utilization of tilapia in this study were not 
impacted by feeding diets made by the combination of JCM1136 and JCM5805 or 
JCM1136 singly containing diets, in contrast to the effect of feeding JCM5805 
singly. 

5.3.4 Rummeliibacillus Stabekisii 

Rummeliibacillus stabekisii was suggested as the type species for the genus 
Rummeliibacillus, and its entire genome sequence was revealed (Vaishampayan 
et al. 2009; Da Mota et al. 2016). The categorization of three Rummeliibacillus 
species, including R. stabekisii, R. suwonensis, and R. pycnus, has only been 
discussed in two publications, and no application studies have been published. In 
the current study, Rummeliibacillus stabekisii was isolated from the stomach of Nile 
tilapia, and its effects on the fish’s growth, resistance to disease, immunity, and gut



microbiota were examined. According to the findings, Nile tilapia’s growth, immu-
nity, disease resistance, and gut microflora were all enhanced by dietary supplemen-
tation with R. stabekisii. According to this study, R. stabekisii can be added to feed to 
help Nile tilapia grow and maintain good health. This is the first study to propose that 
the genus Rummeliibacillus may be a promising probiotic in animals (Tan et al. 
2019). The improvement of the analyzed parameters in this study has been attributed 
to several different mechanisms. The mechanism of R. stabekisii growth improve-
ment in fish may have been due to enhanced nutrient utilization through the secretion 
of protease- and xylanase enzymes and stimulation of intestinal digestive enzyme 
synthesis after R. stabekisii treatment. The mechanism by which R. stabekisii 
enhanced fish immunity may have been due to an increase in lysozyme, phagocytic, 
and respiratory burst activity as well as the release of cytokines (IL-1, TNF-α, and 
transforming growth factor (TGF)). Additionally, R. stabekisii can influence the 
intestinal microbiota of Nile tilapia, which helps with disease resistance, 
immunomodulation, and growth promotion. 
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5.3.5 Paenibacillus Ehimensis 

Due to their shared morphological and physiological traits with the type species 
Bacillus subtilis, Paenibacillus species were first included under the Bacillus genus. 
Paenibacillus was given a new genus in 1993 based on phylogenetic research using 
16S rRNA gene sequences. There are numerous habitats important to humans, 
animals, as well as plants where the genus Paenibacillus has been identified. 
Numerous Paenbacillus species produce bacteriocins, which are proteins or antimi-
crobial peptides that are used as pesticides in biocontrol or medicine (Abdel-Latif 
et al. 2020). In the current investigation, the impact of P. ehimensis NPUST1 
supplementation on Nile tilapia (Oreochromis niloticus) growth and immunity 
against pathogenic infection was assessed (Chen et al. 2019). 

5.3.6 Clostridium Butyricum 

Clostridium butyricum is an endospore-forming, gram-positive, and obligate anaer-
obic bacterium (Liu et al. 2018; 2019). It can create short-chain fatty acids (SCFAs) 
like butyric acid to offer nutrients for the growth of microbes and sustain epithelial 
cells in the gut (Junghare et al. 2012). Additionally, C. butyricum can resist some 
antibiotics, thrive in low-acidity and high-temperature environments, and protect 
fish from infections (Gao et al. 2013; Zhang et al. 2014). In aquaculture, 
C. butyricum has been shown to improve immune responses in Miichthys miiuy 
(Pan et al. 2008), promote growth performance in silver pomfret (Gao et al. 2016), 
improve nutrient digestibility in hybrid grouper (He et al. 2017), and increase the 
activity of antioxidants in the intestine as well as the content of short-chain fatty acid



in kuruma shrimp (Duan et al. 2017; 2018). In tilapia, Poolsawat et al. (2020) 
demonstrated that the C-2, C-3, and C-4 groups saw considerably higher weight 
gain and lower feed conversion ratios. Except for the C-1 group, probiotic supple-
mentation groups showed a considerable increase in the retention of proteins, lipids, 
and apparent digestibility coefficient of dry matter (ADC); improvement was also 
observed in the ADC of proteins in the C-4 group. Probiotic supplementation greatly 
enhanced anterior intestine villus height and decreased intestinal Escherichia coli 
counts. High-throughput sequencing revealed that the top three phyla had higher 
levels than the NC group, including Planctomycetes in all groups containing 
probiotics, Proteobacteria in the C-1 and C-2 groups, and Chloroflexi in the C-3 
group. After the challenge with Aeromonas hydrophila, dietary probiotics helped to 
lower the overall mortality. To conclude, C. butyricum can be added to feed at a rate 
of 1–2 g/kg to support tilapia’s growth, intestinal health, feed utilization, and gut 
microbiota. 
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The beneficial effects of dietary C. butyricum on feed consumption and growth 
performance may be related to the production of short-chain fatty acids (SCFAs) in 
the gut, such as butyric acid, acetic acid, and propionic acid. The production of these 
acids, especially butyric acid, is stimulated by the presence of this bacteria in the gut, 
which is an essential source of energy for the proliferation of epithelial cells 
(Junghare et al. 2012; Van Doan et al. 2018). To lower the intracellular pH, butyric 
acid can release protons into the neutral cytoplasm. The gut microbiota may then use 
the leftover protons to retain cells that have a lower mortality rate during metabolism 
(Duan et al. 2017). Butyric acid may also improve feed utilization by achieving 
balance in the micro-ecological environment of the stomach (Liang et al. 2021). The 
immunological indices, as well as disease resistance, were improved because 
probiotics can boost antibiotic substances as SCFAs in the stomach to support the 
antioxidative enzyme activities and reduce reactive oxygen metabolites, which 
improves feed utilization, growth, and overall health of the host (Liao et al. 
2015a, b). Probiotics can also boost mucus production, which inhibits the adherence 
of pathogens and increases the competitive exclusion of pathogens from the spaces 
as well as food present in the gut (Monteagudo-Mera et al. 2019). The increased 
intestinal morphology caused by probiotic dietary supplementation may be related to 
the germination as well as the growth of probiotic cells in the gut that can produce 
gastrointestinal peptides and raise intestinal epithelial barriers and villus height 
(Gāliņa et al. 2020). Increased intestinal absorption surface area can help the 
host’s nutrient digestion and absorption, producing favorable impacts on growth 
performance and feed utilization (Reda and Selim 2015). 

5.3.7 Combination of Probiotics 

It has been shown that combining different Bacillus species improves tilapia’s 
growth and health. According to Addo et al. (2017), Nile tilapia fed four different 
strains of Bacillus subtilis (SB3086, SB3295, SB3615, and AP193) and a mixture of



SB3086 and SB3615 did not show any differences in growth performance. How-
ever, results from serum bactericidal and lysozyme activities demonstrated a sub-
stantial difference between treatments and the control, except for the diet modified 
by SB3295. The challenge’s results also revealed a sizable distinction between 
treatments and controls. Fish fed with strain SB3615 had the lowest death rate 
(44.0 7.2%), while fish fed the control diet had the highest. Since the fish were 
grown under ideal conditions in the experiment, there may not have been any 
discernible growth improvement in this study. Due to the essential and unique 
metabolic and trophic roles played by the intestinal microbiota, the results may 
have been affected by the colony of the gastrointestinal (GI) tract that was present 
(Denev et al. 2009). According to Gutowska et al. (2004), the bacterial flora in 
fishes’ gastrointestinal tracts generally has a very significant and varied enzyme 
potential with the ability to produce lipolytic, amylolytic, proteolytic, cellulolytic, 
and chitinolytic enzymes. These enzymes are crucial for the digestion of lipids, 
proteins, cellulose, carbohydrates, and chitin to promote growth. Several mecha-
nisms have been put forth to explain the impact of probiotics on disease resistance in 
fish. Competition for nutrition and energy sources, generation of secondary metab-
olites with bactericidal effects on other microbial populations, competition for 
adhesion sites on the epithelium of the intestine or other tissue surfaces, and 
improvement of the host immune response are a few of these. The ability to cling 
to intestinal wall surfaces and enteric mucus is necessary for probiotic bacteria to 
establish themselves in fish intestines (Lesel 1990; Westerdahl et al. 1991) because 
bacterial attachment to tissue surface is crucial during the early phases of pathogenic 
infection (La Ragione and Woodward 2003; La Ragione et al. 2004). 
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Montes (1993) postulated that competition with pathogens for adhesion receptors 
would be a fundamental probiotic trait. When given in sufficient doses, probiotics 
improve the host’s health, according to FAO/WHO (2001). The probiotic diets used 
in this study likely provided some health benefits to the fish because the survival rate 
of Nile tilapia when challenged with S. iniae infection was found to be much higher 
than the control diet (Addo et al. 2017). Elsabagh et al. (2018) discovered that 
feeding farmed Nile tilapia a diet containing certain Bacillus strains (Bacillus 
pumilus 3.25 × 109 CFU/g; Bacillus licheniformis 3.50 × 109 CFU/g; Bacillus 
subtilis 3.25 × 109 CFU/g, and Sanolife PRO-F, INVE Aquaculture, Belgium, 
with a total number 1.0 × 1010 CFU/g) improved the stress responses, gut health 
and function, growth, immunity, and water quality of farmed Nile tilapia. Bacilli can 
invade the guts of fish, enhancing the generation of organic acids, activating 
digestive enzymes, and detoxifying hazardous feed ingredients. This all helps to 
maintain a healthy gut, which then improves nutritional digestibility and absorption 
(Adeoye et al. 2016; Silva et al. 2015). Additionally, it has been shown that Bacillus 
can remove harmful bacteria from the stomach, increasing disease resistance and 
enhancing fish performance (Addo et al. 2017; Hostins et al. 2017; Srisapoome and 
Areechon 2017) Sutthi et al. (2018) also reported that fish reared in water treated 
with probiotic Bacillus spp. and yeast (S. cerevisiae) showed a synergistic effect that 
significantly improved growth performances such as average daily growth gain 
(ADG), final body weight (FBW) and weight gain (WG) as compared to the control



group having lower alanine aminotransferase (ALT) and aspartate aminotransferase 
(AST) levels. Malondialdehyde (MDA) levels did not alter significantly between any 
of the treatments. The findings indicated that adding S. cerevisiae or Bacillus spp. to 
water as a probiotic improved Nile tilapia growth performance. This strategy can be 
used to boost production of tilapia in the Thai aquaculture sector. A recent study by 
Kuebutornye et al. (2020a, b, c) suggested that adding host-associated probiotics to 
Nile tilapia’s diet, such as B. velezensis TPS3N, B. subtilis TPS4, and 
B. amyloliquefaciens TPS17, either separately or in combination, could improve 
the fish’s mucosal immunity, gut health and resistance against infection by 
A. hydrophila. According to the authors, the greater mucosal immune parameters 
seen in the CB group may be the result of the three Bacillus species’ synergistic 
effects (Kuebutornye et al. 2020a, b, c). Additionally, Bacillus species added to the 
diet of Nile tilapia may improve the health of the fish by positively influencing its gut 
microbiota. Similarly, Sookchaiyaporn et al. (2020) found that the dietary inclusion 
of two potential probiotics, Bacillus sp. KUAQ1 and Bacillus sp. KUAQ2, isolated 
from the intestine of Nile tilapia Oreochromis niloticus, could be beneficial in terms 
of disease control as well as the stimulation of the immune response of cultured 
tilapia. In their study, Ramos et al. (2017) sought to determine the effects of a blend 
of probiotics (Lactobacillus sp., Pediococcus sp., Bacillus sp., Enterococcus sp.) 
given to juvenile Nile tilapia (Oreochromis niloticus) on growth performance, innate 
immunity, feed utilization, and oxidative stress. The findings showed that after a 
long time of supplementation, no benefit of probiotic feeding was seen. A beneficial 
nutritional strategy for sustainable tilapia aquaculture may be the dietary supple-
mentation of mixed species probiotics. In a competitive and expanding industry like 
aquaculture, outcomes like improved immune responses and intestinal morphology 
are crucial for boosting growth performance, nutritional absorption, and disease 
resistance in fish. Similar to this, Nile tilapia have been shown to have improved 
growth performance, immunological responses, digestive enzymes, and disease 
resistance when given the dietary strains Bacillus MCCB 101 and Micrococcus 
MCCB 104 or Bacillus velezensis H3.1 and Lactobacillus plantarum N11 (Sankar 
et al. 2017; Van Doan et al. 2018). An eight-week feeding trial was carried out to 
assess the effects of a basal control diet (CON), Lactococcus lactis at 107 CFU/g 
(LL7) and at 108 CFU/g diet (LL8), Bacillus subtilis at 107 (BS7) and at 108 CFU/g 
diet (BS8), and oxytetracycline (OTC) at 4 g/kg diet on Nile tilapia, by Won et al. 
(2020). The findings demonstrated that fish given the BS8, LL8, and LL7 diets 
experienced considerably greater feed efficiency, weight increase, lysozyme activity, 
specific growth rate, and protein efficiency ratio, than fish fed the CON diet. Fish fed 
the BS8, LL8, BS7, LL7, and OTC diets had considerably higher superoxide 
dismutase and myeloperoxidase activities than fish fed the CON diet. Fish fed the 
BS8, LL8, and LL7 diets had much longer intestinal villi and thicker muscle layers 
than fish fed the CON and OTC diets. Additionally, fish fed the BS8 and LL8 diets 
had considerably higher levels of interferon-gamma (IFN-γ), heat shock protein 
70 (HSP70), interleukin (IL-1 β), and tumor necrosis factor (TNF-α) gene expression 
than fish fed the CON diet. Following a 13-day challenge test, fish fed the BS8 and 
LL8 diets had a cumulative survival rate that was considerably greater than fish fed
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the CON, BS7, and OTC diets. These findings suggest that B. subtilis and L. lactis at 
108 (CFU/g) could substitute antibiotics and have positive effects on Nile tilapia 
growth, histology, immunology, gene expression, and disease resistance. The 
increased intestinal histology and enzyme activity of Nile tilapia fed probiotic 
diets may be the cause of their superior growth performance and feed utilization. 
By enhancing intestinal villi length, trypsin activity, and muscle layer thickness, 
probiotics may have promoted efficient food absorption. The improvement of 
phagocytic activity and reactive oxygen metabolites by macrophages is one of the 
causes of increased immunity. Recent research by Van Doan et al. (2021a, b, c) 
demonstrated that a mixture of Bacillus species (B. licheniformis DF001, Bacillus 
subtilis TISTR001, and B. megaterium TISTR067) increased Nile tilapia growth, 
immunological response, and disease resistance. 
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Chapter 6 
Prebiotics and Synbiotics in Nile Tilapia 
Culture 

Hien Van Doan 

Abstract With the increase in the human population, the need for protein-rich food 
is increasing. To cope with the increased demand for fish and fish-related products, 
aquaculture is shifted towards semi-intensive and intensive culture practices. These 
cultivation practices exacerbate disease outbreaks. Farmers use extensive antibiotics 
to manage disease outbreaks and lessen the economic impact due to fish mortality. 
Inappropriate and extensive use of antibiotics results in the development of resistant 
strains and the presence of antibiotic residues in fish muscles pose a serious threat to 
food safety for human consumption. Water and dietary supplements that can be 
effectively used as alternatives to antibiotics are an active area of research. Prebiotics 
and synbiotics are promising candidates to replace antibiotics and have been used for 
the treatment and control of pathogens in tilapia aquaculture. In this chapter, the use 
of prebiotics and synbiotics as growth promoters and as alternatives to antibiotics in 
tilapia aquaculture has been addressed, along with their possible mechanism of 
action. Moreover, the positive effects of pre and synbiotics on tilapia health are 
also highlighted with emphases on growth, immune modulation, and alteration in gut 
microflora. 

Keywords Prebiotic · Gut · Microbiota · Oligosaccharide · Fermentation 

6.1 Introduction 

Aquaculture is one of the fastest food-producing sectors that can provide protein-rich 
food to the growing human population (Fiorella et al. 2021; Edwards et al. 2019; 
Butt et al. 2021). In 2020, fisheries and aquaculture production reached a record of 
214 million tons, worth about USD 424 billion (FAO 2022). Tilapia, a member of 
the Cichlid family, is the second most commonly farmed fish worldwide (Prabu et al. 
2019), with a production of 5.584.4 million tons (FAO 2022). Production of tilapia is
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projected to increase to 7.3 MT by 2030 (FAO 2022; Kobayashi et al. 2015). 
Currently, tilapia is grown and traded commercially in more than 140 nations 
worldwide (Munguti et al. 2022). Tilapia is a great choice for warm-water aquacul-
ture because of its many advantages, such as high growth rate, well-adapted, 
tolerance to stress and diseases, high fertility, rapid rate of generation, acceptance 
of artificial feeds right away following yolk-sac absorption and capacity to feed at a 
low trophic level (Ng and Romano 2013). To enhance tilapia production and 
financial returns, there is currently a paradigm shift away from an extensive aqua-
culture approach toward super intensive system due to its socioeconomic signifi-
cance (Henriksson et al. 2021). However, super-intensive aquacultural practices 
have led to over-reliance on commercial feed, environmental contamination from 
the release of nutrient-rich water into the environment, and disease outbreaks are all 
consequences of these aquaculture operations (Abdel-Latif et al. 2020a). One of the 
biggest issues facing aquaculture growers today is a drop in production caused by 
pathogens. The most prevalent bacterial infections in tilapia that significantly reduce 
its yield are Aeromonas hydrophila, Streptococcus iniae, and Streptococcus 
agalactiae (Eissa et al. 2021; Gewaily et al. 2021). As a result, throughout the past 
few decades, disease outbreaks have been managed by using antibiotics and chemo-
therapeutics (Rico et al. 2014). However, their unauthorized use has significantly 
altered the fish’s microbiota, which may harm their immunity (Kokou et al. 2020; 
Payne et al. 2021). Additionally, the unrestricted use of antibiotics in aquaculture has 
resulted in the development of antibiotic-resistant bacteria and their metabolites, 
which have the potential to contaminate aquaculture products intended for human 
consumption (Henriksson et al. 2018; Miranda et al. 2018). Consuming such tainted 
aquaculture products could alter human gut microbiota, which could impact human 
health (Cabello and Godfrey 2016; Henriksson et al. 2018). Since the use of 
antibiotics in aquaculture has recently been prohibited, research on the use of pre-
biotics and synbiotics against pathogenic bacteria has come to the fore as one of the 
most effective environmentally friendly and sustainable alternatives to control 
bacterial outbreaks in aquaculture and to enhance fish growth and immunity (Wee 
et al. 2022; Yilmaz et al. 2022; Rohani et al. 2022). In light of the importance of 
tilapia production, this chapter provides an in-depth analysis of the use of prebiotics 
and synbiotics in tilapia aquaculture while highlighting the growth, immunological 
parameters, and disease resistance utilized in evaluating fish health following their 
application.
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6.1.1 Prebiotics 

Gibson and Roberfroid were the first to introduce the idea of prebiotics, which they 
described as “an indigestible fiber that can enhance the growth and activity of health-
promoting bacteria in the intestine and beneficially affect the host" (Gibson and 
Roberfroid 1995). Similarly, Bindels et al. (2015a) described prebiotics as "non-
digestible food ingredients that are broken down into simpler substances, enhancing



the growth and activity of preferred microorganisms found in the gastrointestinal 
tract and benefiting the health of the host". Guerreiro et al. (2017) presented them as 
“useful food ingredients that have numerous favorable effects on the host”. Due to 
the development of antibiotic-resistant strains, the appearance of drug residues in the 
host, changes in the microbial community of the gut and the culture system, and 
lowered immunity, the use of antibiotics in aquaculture have recently come under 
heavy fire (Watts et al. 2017; Ibrahim et al. 2020; Henriksson et al. 2018). The 
manufacture, preservation, and pelleting processes for the probiotic-based feed could 
prevent probiotics from surviving or growing. The efficiency of the feed may be 
decreased if it is processed in an improper or unfavorable environment (Lauzon et al. 
2014a). Prebiotics has so recently gained popularity as a probiotic and antibiotic 
substitute. Numerous studies and remarks have been published highlighting the 
advantages of prebiotics in aquaculture (Guerreiro et al. 2017; Akhter et al. 2015; 
Cavalcante et al. 2020; Nawaz et al. 2018). Prebiotics that are widely used in tilapia 
farming includes β-glucan, inulin, fructooligosaccharides (FOS), short-chain 
fructooligosaccharides (scFOS), mannan oligosaccharides (MOS), 
galactooligosaccharides (GOS), xylooligosaccharides (XOS), pectin, raffinose, and 
chitosan. Depending on how much they are polymerized into monosaccharides, 
oligosaccharides, and polysaccharides, certain carbohydrates are also categorized 
as prebiotics (Ringø et al. 2010b). 
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Short-chain fatty acids (SCFAs) and lactate can be produced by the metabolizing 
of prebiotics by the helpful bacteria Lactobacillus and Bifidobacterium (Markowiak-
Kopeć and Śliżewska 2020; Davani-Davari et al. 2019). While lactate serves as a 
stimulant for gluconeogenesis, SCFAs can also be absorbed through the digestive 
system to serve as an energy source (Denev et al. 2009). The colon's pH is decreased 
by the formation of SCFAs, which slows the spread of infections and promotes the 
growth of lactic acid-producing bacteria like Bifidobacterium (Markowiak-Kopeć 
and Śliżewska 2020; Parada Venegas et al. 2019; Tiwari et al. 2019; Nagpal et al. 
2018). Prebiotics work similarly by competing with glycoconjugates on the epithe-
lial lining to boost SCFAs, cytokines, and mucus production while decreasing the 
number of pathogenic bacteria (Lauzon et al. 2014a; Hoseinifar et al. 2017a). They 
have an advantageous impact on the host's growth characteristics, including ultimate 
weight, weight increase, daily weight gain, specific growth rate, dietary conversion 
ratio, feed efficiency ratio, and protein efficiency ratio (Mohammadian et al. 2021; 
Nazarudin et al. 2020; Butt et al. 2021; Hahor et al. 2019; Jami et al. 2019). 

Prebiotics added to the diet can help boost the activity of digestive enzymes. 
Digestive enzyme levels were found to be higher in animals that gained weight and 
had better feed conversion efficiency (Nedaei et al. 2019; Abasubong et al. 2019;  Li  
et al. 2019; El Basuini et al. 2020). However, no sustained improvements were seen 
because prebiotics was also identified in certain investigations to act ineffectively 
(Hoseinifar et al. 2015a; Eshaghzadeh et al. 2015; Dobšíková et al. 2013). By 
triggering the non-specific immune system and fostering healthy microorganisms, 
prebiotics can improve immunity even further (Hoseinifar et al. 2015a; Song et al. 
2014). The favorable microbiota enhances immunity in the host, protects against 
dangerous bacteria in the colon, and maintains a healthy balance between the



microbiota of the digestive and immune systems (Gomez and Balcazar 2008). To 
qualify as possible prebiotics, prebiotic candidates must meet the following require-
ments in both in vivo and in vitro studies: they must be able to (i) withstand stomach 
and abdominal acid, (ii) start a variety of enzymatic reactions and processes, (iii) 
improve intestinal digesting, (iv) encouragement of microbial fermentation, and 
(v) encourage the growth of beneficial microorganisms that can improve health 
status (Bindels et al. 2015b; Schrezenmeir and de Vrese 2001). Yet not all prebiotics 
meet these requirements (Lauzon et al. 2014a). 
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6.1.2 Synbiotics 

The word "synbiotic" is a mixture of two Greek terms "συν" and "βíoς", meaning 
"joint or together" and "life" respectively (Kolida and Gibson 2011). A dietary 
supplement known as a "synbiotic" beneficially combines probiotics and prebiotics. 
A substance that modifies the opportunistic bacterial community of the host species' 
digestive system to enable probiotics to thrive and survive there (Chauhan and 
Chorawala 2012; Das et al. 2017). Prebiotics are chosen for synbiotic formulation 
based on their capacity to subtly encourage the growth and survival of advantageous 
bacteria within their desired range (Davani-Davari et al. 2019). Probiotics are 
selected based on how they specifically benefit the host (Hill et al. 2014). The 
selection of probiotics, on the other hand, is based on their overall advantages for 
the host, whereas the selection of prebiotics is based on their potential to stimulate 
the growth of probiotic bacteria as their primary function (Kolida and Gibson 2011; 
Markowiak and Śliżewska 2017). The synergistic effects of synbiotics have been the 
subject of most recent investigations, which have been emphasized exclusively 
(Torrecillas et al. 2018; Cavalcante et al. 2020; Sewaka et al. 2019; Hasan et al. 
2018; Kumar et al. 2018; Villumsen et al. 2020). 

The prebiotics' mode of action in the host species mostly determines how 
synbiotics are composed (Zepeda-Hernández et al. 2021; Li et al. 2020). Prebiotics 
that are low in polymerization, however, is better suited for the generation of 
synbiotics than those that are high in polymerization (Grimoud et al. 2010), since 
they hydrolyze the developed beneficial strains and produce primary and secondary 
metabolites that may have favorable effects on the host (Mazzola et al. 2015). 
Additionally, the administration of synbiotics is more beneficial than probiotic use 
alone due to increased microbial survival when combined with prebiotics and vice 
versa (Merrifield et al. 2010). However, prebiotics offers greater tolerance to large 
variations in oxygen, temperature, and pH (Cunningham et al. 2021). As a beneficial 
substitute for Nile tilapia, the following research has demonstrated the usefulness of 
synbiotics. Further evidence of its efficiency in fish farming comes from the greater 
stimulation of host species' growth and survival. This happens through the produc-
tion of pancreatic enzymes, which improve enzymatic digestion, modify intestinal 
microbiota, and lowers mortality rates by altering potential immune responses, and 
antagonistic species of harmful organisms.
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6.2 Modes of Action 

Prebiotics' mode of action has been suggested by several in recent years, but the 
paths by which they function in aquaculture are not fully understood. Prebiotics' 
application in tilapia farming has received a lot of recent attention from aquacultur-
ists (Zhou et al. 2020; Poolsawat et al. 2021; Koch et al. 2021; Wan-Mohtar et al. 
2021; Souza et al. 2020; Mohammadi et al. 2020). Prebiotics has been shown to 
boost tilapia's resistance to infections (Poolsawat et al. 2021; Koch et al. 2021; 
Pilarski et al. 2017), immune system activation and regulation (Koch et al. 2021; 
Mohammadi et al. 2020), intestinal microbiota augmentation, regulation, and mod-
ification (Poolsawat et al. 2021; Zhou et al. 2020; Souza et al. 2020), enhancement of 
the host species' capacity for development and survival (Pilarski et al. 2017; 
Poolsawat et al. 2021), antioxidant activity (Abdel-Latif et al. 2020b; Dawood 
et al. 2020c), improvements in enzyme activity (Poolsawat et al. 2021; Zhou et al. 
2020), and opposed to toxicity (Abdelhamid et al. 2020). 

The use of probiotics and prebiotics in tilapia farming has been explored inde-
pendently, while the idea of synbiotics has only lately come into existence 
(Mugwanya et al. 2022). Since being used in tilapia, synbiotics have proven a 
variety of action mechanisms. According to Laice et al. (2021), synbiotics can 
increase production and improve the sustainability of Nile tilapia. Nile tilapia fed 
a combination of probiotic DBA®, MOS, and chitosan, led to the enhancement of 
growth and disease resistance against Aeromonas hydrophila (Cavalcante et al. 
2020). They can also multiply immunological functions including lysozyme activity 
and boost resistance to bacterial infection (Sewaka et al. 2019). Additionally, it has 
been discovered that the tilapia gut has greater digestive enzyme activity, which has 
led to enhanced growth (Hassaan et al. 2020). 

6.3 Application of Prebiotics in Tilapia 

6.3.1 Prebiotics as Growth Promoters and Disease Protection 

The aquaculture industry with the goal is to achieve maximum production with 
minimum cost. Prebiotics has been used as an effective tool to obtain this goal. In the 
past decades, many studies have been conducted to access the effects of different 
prebiotics on Nile tilapia growth and feed utilization. 

6.3.1.1 β-glucan 

β-glucan has been used as a growth promoter and disease prevention in fish. In Nile 
tilapia, Sherif and Mahfouz (2019) reported that dietary incorporation of β-glucans at 
0.5 g.kg-1 feed for 2 weeks significantly increased relative level protection against



Aeromonas hydrophila. Recently, Souza et al. (2020) indicated that feeding Nile 
tilapia with β-glucan led to a higher survival rate and disease resistance against the 
Vibrionaceae family. More recently, Nile tilapia supplemented with β-glucan at 
0.1% significantly enhanced growth and disease resistance against both Aeromonas 
sobria and Streptococcus agalactiae strains (Koch et al. 2021). Similarly, significant 
enhancement of growth, feed conversion ratio, villus length, villus width, goblet cell 
count, and disease resistance were observed in Nile tilapia fed β-glucan 
(Chirapongsatonkul et al. 2019; Dawood et al. 2020e). The beneficial effects of 
β-glucan on the gut flora may provide a credible explanation for growth enhance-
ment (Meena et al. 2013). β-glucans are non-digestible feed components that 
function as prebiotics, enhancing the health of the host by promoting the growth 
and/or activity of specific gut bacteria (Miest et al. 2016; Ghaedi et al. 2016). 
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6.3.1.2 Fructooligosaccharide (FOS) 

FOS has been applied in aquaculture as a functional supplement to improve farmed 
fish growth and health status (Rohani et al. 2022). Supplementation of FOS could 
improve Nile tilapia’s growth performance (Abd El-Gawad et al. 2016b). However, 
no significant differences in growth rates were observed in fish-fed scFOS (Liu et al. 
2017b). In contrast, gut adherence microbiota and disease resistance was signifi-
cantly increased in fish-fed scFOS (Liu et al. 2017b). The authors hypothesized that 
dietary scFOS would have a selective promotion on various Lactobacillus strains in 
tilapia because it enhanced the relative abundance of L. brevies, L. plantarum, and 
L. rhamnosus. Although the exact mode of action is unknown, FOS's benefits for 
growth performance may be related to better digestion, immunity, and intestinal 
homeostasis maintenance through manipulation of the intestinal microbiota 
(Hu et al. 2019; Markowiak and Śliżewska 2017). 

6.3.1.3 Mannanoligosaccharide (MOS) 

MOS is one of the popular prebiotics used in aquaculture. Two studies have been 
conducted on Nile tilapia. Yuji-Sado et al. (2015) revealed that MOS-supplemented 
diets significantly enhanced intestinal fold height; whereas no impacts on growth 
performance were observed. In contrast, fish given MOS showed higher growth and 
survival rates as well as a lower FCR than CPF-intoxicated fish (Dawood et al. 
2020c). The influence of MOS on the GIT microbial community, which can cause 
beneficial bacteria to generate digestive enzymes, determines how effective feed 
utilization will be (Jami et al. 2019; Mohammadian et al. 2019). Digestive enzymes 
disassemble the nutrients so that they are readily available within the GIT, improving 
their rates of absorption (Dawood et al. 2019a). Since the rate of nutrient digestion 
and absorption increased, it is anticipated that fish will develop faster and be in better 
overall health (Dawood et al. 2020b).
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6.3.1.4 Inulin 

In terms of final weight, weight increase, specific growth rate, and feed conversion 
ratio, dietary inclusion of inulin at 5 g kg-1 improved growth responses and feed 
utilization efficiency (Tiengtam et al. 2015b). Supplementation of 5 g kg-1 inulin led 
to greater intestinal villi height, larger relative goblet cells, increased lactic acid 
bacteria, and Bifidobacterium spp., but decreased Vibrio spp. (Boonanuntanasarn 
et al. 2018). Likewise, the administration of inulin at 0.4% resulted in a better growth 
rate and feed conversion ratio (Zhou et al. 2020). Fish administered a higher dose of 
inulin (0.8%) did not exhibit a higher impact on their ability to grow. Similarly, fish 
fed with diets enriched with 3% inulin exhibited poorer weight gains than fish fed 
with basal, 1%, and 2% inulin (Reza et al. 2009). Arctic char Salvelinus alpinus 
suffered negative effects from high supplementation levels of inulin (15%) (Olsen 
et al. 2001). These adverse effects of higher inulin supplementation may be attrib-
uted to the intestinal microbiota's inability to ferment excessive amounts of inulin, 
and extra inulin that builds up in the gut may be harmful to the enterocytes (Olsen 
et al. 2001; Hunt et al. 2019), forcing Nile tilapia to expend energy on inulin 
detoxification rather than using it to benefit the host. 

6.3.1.5 Xylooligosaccharides (XOS) 

Doan et al. (2018) reported that dietary inclusion of corncob-derived XOS signifi-
cantly improved the growth performance and survival rate of Nile tilapia against 
Streptococcus agalactiae. Similar results were observed in tilapia fed 1-2 g kg-1 

feed, where weight gain, nutrient retention, feed conversion ratio, protease, amylase, 
villus height, muscular thickness, numbers of lactic acid bacteria, and Bacillus were 
significantly enhanced. Furthermore, dietary XOS dramatically decreased tilapia's 
overall mortality following an Aeromonas hydrophila injection (Poolsawat et al. 
2021). Although the precise mechanism by which XOS dramatically enhances fish 
development performance is yet unknown, it may be because XOS serves as a 
prebiotic and immunostimulant. Additionally, studies on dietary XOS have shown 
positive effects on gut lactic acid bacteria (LAB) and an increase in the activity of the 
amylase and protease enzymes (Hoseinifar et al. 2014; Xu et al. 2009). The role of 
LAB in enhancing growth performance, controlling pathogens by the competitive 
exclusion of adhesion sites, and producing SCFA, hydrogen peroxide, antibiotics, 
bacteriocins, siderophores, and lysozyme are all well documented (Hoseinifar et al. 
2015a; Xia et al. 2018; Li et al. 2018). LAB also affects the fish’s physiological and 
immune responses (Hoseinifar et al. 2015a; Nayak 2010; Merrifield et al. 2014; 
Ringø et al. 2010a). On the other hand, the metabolites acetic, lactic, propionic, and 
butyric acid are increased when prebiotics are supplemented (Ríos-Covián et al. 
2016; Hoseinifar et al. 2017b). Further research on tilapia and CDXOS is warranted 
since, like in vertebrates, these SCFAs may benefit the immune cells in the 
gut-associated lymphoid tissue. (Bach Knudsen et al. 2003; Hoseinifar et al.
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2015a). SCFAs are also taken up by the host and used as an energy source, with 
butyrate serving as the primary fuel for the colonic wall (den Besten et al. 2013). The 
dietary XOS, on the other hand, was shown in certain experiments to have just a 
small impact on the growth performance of white shrimp (Wang et al. 2010; Sun 
et al. 2019), Caspian white fish (Rutilus frisii kutum) (Hoseinifar et al. 2014), white 
sea bream (Guerreiro et al. 2016), and seabream (Sparidentex hasta) juvenile 
(Morshedi et al. 2018). Intestinal microbiota, administration techniques, diet com-
position, dosage, and species may all have an impact on how effective XOS is at 
promoting growth (Hoseinifar et al. 2016a). 
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6.3.1.6 Other Prebiotics 

According to Abu-Elala et al. (2015), dietary regimens containing 1% chitosan have 
significantly boosted resistance to Aeromonas hydrophila and enhanced water 
quality. This could be a result of chitosan's activating impact on phagocytic cells, 
which causes them to discharge their mediators, including lysosomal enzymes, 
cationic peptides, complement components, and reactive oxygen species, all of 
which have antimicrobial effects against fish infections (Sajid et al. 2010; Ni  
et al. 2011). At a dosage of 0.1%, chitosan exhibited bactericidal effects that were 
generally more potent against gram-positive bacteria than gram-negative bacteria 
(No et al. 2002). According to some theories, its capacity to improve the permeabil-
ity of the outer membrane of Gram-negative bacteria is what causes it to have an 
antibacterial effect (Chirkov 2002; Bégin and Van Calsteren 1999). By presumably 
competing with Ca++ for electronegative positions on the membrane without pro-
viding dimensional stability, the positive charges of chitosan disrupt the negatively 
charged residues of macromolecules at the surface of bacterial cells, making the 
membrane permeable (Bégin and Van Calsteren 1999). According to Meng et al. 
(2017) study employing chitooligosaccharides (COS), supplementing with 0.4 and 
0.8 g kg-1 COS considerably improved growth performance, with the best value 
seen in fish fed 0.4 g kg-1 diet. COS could positively enhance growth rate because of 
its ability to improve feed intake (Tang et al. 2005), nutrient digestibility (Chen et al. 
2009; Wang et al. 2009), growth hormone, and IGF-I concentrations (Tang et al. 
2005). 

Doan et al. (2018) conducted a study using pectin obtained from orange peels and 
found that Nile tilapia had greater growth metrics and were more resistant to disease 
from Streptococcus agalactiae. This improvement may be the outcome of improved 
digestive function brought on by the prevalence of beneficial bacteria in the gut 
(Wang An et al. 2017; Zhigang et al. 2013). Ho et al. (2017) demonstrated that pectin 
can be fermented by gut bacteria and highlighted its potential for application as a 
novel prebiotic. Additionally, positive effects on the gut microbiota and an increase 
in the activity of digestive enzymes including amylase, lipase, and protease (Dawood 
and Koshio 2016; Eshaghzadeh et al. 2015; Hoseinifar et al. 2016b; Kühlwein et al. 
2014) or liver enzyme activities (Zhang et al. 2013; Hoseinifar et al. 2015a), along 
with improved appetite, increased vitamins, dissection of indigestible elements, and



optimizing gut morphology (Irianto and Austin 2002; Hoseinifar et al. 2015c) have 
been recorded after consuming prebiotics. The fish's innate immune system was 
activated after being treated with pectin, which explains why resistance was signif-
icantly increased. Pectin may be a potential component for preventing diseases in 
both humans and animals, according to some research (Lattimer and Haub 2010; 
Wen et al. 2022; Wang et al. 2022). 
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Dietary inclusion of raffinose and pistachio hull-derived polysaccharide (PHDP) 
also led to better growth rates and disease resistance to Aeromonas hydrophila 
(Abdel-Latif et al. 2020b; Mohammadi et al. 2020). Raffinose greatly increased 
the growth rates of tilapia, which is likely due to the induced feed efficiency, as seen 
by the fish's low FCR. Raffinose causes the intestinal microbiota to secrete digesting 
enzymes, which improves fish's GIT's ability to absorb nutrients (Berrocoso et al. 
2017). Because PHDP serves as a prebiotic and promotes the formation of healthy 
probiotic flora, it has positive benefits on growth rate and disease resistance (Akbari-
Alavijeh et al. 2018; Li et al. 2019), or powerful antibacterial activities of poly-
phenols, which are implicated in bacterial cell breakdown through their lipophilic 
characteristics (Stratev et al. 2018). 

6.3.1.7 Combination of Prebiotics 

A combination of prebiotics with each other or with other bioactive compounds 
could improve the growth performance and disease resistance of Nile tilapia. Dietary 
inclusion of β-glucan with MOS led to better growth performance and disease 
resistance to L. gravieae, A. hydrophila, and S. iniae (Abu-Elala et al. 2018; Chen 
et al. 2019). The manipulation of MOS on intestinal microbiota may be a factor in 
the underpinning mechanisms of the current growth results. Increased villus integ-
rity, improved digestion and absorption (Fernandez et al. 2002; Dimitroglou et al. 
2009), and the production of energy and building protein from β-glucan degraded by 
glucanases in the digestive gland were all outcomes of MOS (Misra et al. 2006). The 
Nile tilapia's growth performance significantly improved when fed β-glucan and 
Chlorella vulgaris (Abdelhamid et al. 2020). This outcome could be attributable to 
CV high-quality protein, which increases fish weight gain and final weight (Kang 
et al. 2013). Additionally, CV contains growth-promoting ingredients including 
S-nucleotide adenosyl peptide complex, which could alter an animal's ability to 
grow and digest the food (Han et al. 2002). The distinct, varied macro- and 
micronutrients found in CV include proteins, polysaccharides, -carotene, -carotene, 
minerals, vitamins, pro-vitamins, chlorophyll, and lutein (Panahi et al. 2016). Addi-
tionally, our findings demonstrated that β-glucan enhanced growth efficiency fol-
lowing DZN toxicity. This increase in β-glucan's growth efficiency may be caused 
by the glucanase's likely breakdown of the glucan, which encourages the transfer of 
additional proteins for growth. Furthermore, β-glucan enhanced the release of 
digestive enzymes, which may have contributed to the improvement of growth 
(Guzmán-Villanueva et al. 2014). Similar to this, combining β-glucan with either 
propylene glycol or Aspergillus oryzae dramatically improved Nile tilapia growth



performance and disease resistance (Abd El Tawab et al. 2016; Dawood et al. 
2020a). 
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6.3.2 Prebiotics as Immunomodulatory 

6.3.2.1 β-glucan 

In teleost fish, β-glucans' ability to modulate immunity has been extensively 
explored (Petit et al. 2019). β-glucan treatment frequently has an immune-
stimulating impact and can lead to an increase in resistance to both viral and bacterial 
illnesses, regardless of the administration route or fish species (Dalmo and Bogwald 
2008; Meena et al. 2013; Petit and Wiegertjes 2016). There have been documented 
distinct mechanisms for β-glucan identification and/or downstream signaling in both 
mammalian vertebrates (Brown and Williams 2009; Legentil et al. 2015) and 
invertebrates (Cerenius et al. 2009; Soltanian et al. 2009), specific pathways for 
β-glucan identification and/or downstream signaling have been identified. Although 
β-glucans are frequently used in aquaculture, the precise processes underlying the 
produced effects for teleost fish are poorly understood (Petit et al. 2019). 

Sado et al. (2016) indicated that Nile tilapia fed β-glucan for 15 days significantly 
enhanced serum lysozyme, leukocyte count, and neutrophil number. In another 
study, Sherif and Mahfouz (2019) reported that dietary inclusion of β-glucan at 
0.5 g kg-1 feed for 2 weeks significantly improved the fish immune status both 
innate and adapted immune response. Similarly, dietary incorporation of β-glucan 
from mushroom and yeast at 10 μg per fish significantly up-regulated relative 
immune gene expressions (Chirapongsatonkul et al. 2019). Dawood et al. (2020e) 
also revealed that dietary inclusion of β-glucan significantly increased lysozyme and 
phagocytic activities, and up-regulated INF-γ, TNF-α, IL-1β, and HSP70 gene 
expressions. In a recent study, Koch et al. (2021) also reported that a β-glucan 
incorporated diet resulted in higher lysozyme, respiratory burst, and 
myeloperoxidase activities of Nile tilapia. However, no effects of β-glucan on 
serum lysozyme activity of Nile tilapia were found (Souza et al. 2020). β-glucan is 
well known for its capacity to stimulate the complement system, reactive oxygen 
metabolite formation, and phagocytic cells' ability to create antimicrobial com-
pounds like lysosomal enzymes (Ji et al. 2017; Goodridge et al. 2009). Additionally, 
Engstad (1993) noted that salmon possessed BG receptors on its phagocyte mem-
brane and that these receptors could be influenced by BG supplementation. The 
interaction between helpful microorganism cells and intestinal epithelial cells, which 
is thought to improve mucosal immunity in the host gut and tighten the epithelial 
junction, produce antimicrobial peptides and mucosal immunoglobulin, control 
inflammatory response, and subsequently stimulate the immune response, is respon-
sible for BG's immunomodulating activity (Raa 2015).
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6.3.2.2 Fructooligosaccharide (FOS) 

Numerous edible plants, including onions and edible burdock, contain 
fructooligosaccharides (FOS), which are created commercially when 
fructosyltransferase reacts with sucrose (Mitsuoka et al. 1987). FOS is an example 
of a prebiotic, which are foods that pass undigested by pancreatic and small intestine 
enzymes in the human gut and instead reaches the colon, where they have advanta-
geous effects. According to reports, dietary FOS affects the host by promoting the 
proliferation and activity of beneficial bacteria in the colon (Cummings et al. 2001), 
which in turn affects many aspects of intestinal function (Grisdale-Helland et al. 
2008). These bacteria produce organic acids that are advantageous to the host 
(Gibson 1998; Roberfroid 2000). Inhibiting the growth of dangerous germs, enhanc-
ing the absorption of critical nutrients, synthesizing specific vitamins, and enhancing 
immunological function are additional examples of potential health-promoting 
advantages (Li et al. 2007). According to reports, FOS could increase production 
through improved growth, stimulated immune response, and higher resistance to fish 
infections, overcoming the drawbacks and side effects of antibiotics and other 
medications (Akrami et al. 2013; Guerreiro et al. 2014; Zhang et al. 2013; Soleimani 
et al. 2012). The dietary addition of FOS at 0, 1, 2, and 3% for 6 weeks significantly 
increased serum IgM and lysozyme activity in Nile tilapia (Abd El-Gawad et al. 
2016b). The enhanced lysozyme activity was likely caused by the increased leuko-
cyte production brought on by dietary FOS (Zhang et al. 2013) because neutrophils 
and macrophages are the primary producers of fish lysozyme (Fischer et al. 2006). 
FOS's ability to stimulate the growth of helpful bacteria like lactobacilli and 
bifidobacteria, which produce lipopolysaccharides with immunostimulatory quali-
ties, may be responsible for its ability to stimulate the immune system (Passos and 
Park 2003). Additionally, the FOS fermentation's final products, acetate, propionate, 
and lactic acid, are essential in influencing the immune system (Passos and Park 
2003). Additionally, FOS was able to interact with the toll-like receptor 2 (TLR2) 
found on macrophages (Vogt et al. 2013) and upregulate the expression of antimi-
crobial peptides, which play a crucial role in fish disease resistance due to their 
importance in innate immune defense (Zhang et al. 2014). 

6.3.2.3 Mannanoligosaccharide (MOS) 

One well-known prebiotic that has lately been used in aquaculture is 
mannanoligosaccharide (MOS). MOS is made from the cell walls of the yeast 
Saccharomyces cerevisiae (Gelibolu et al. 2018). By preventing pathogenic bacteria 
from adhering to the digestive tract, regulating the intestinal microbiota, and 
maintaining intestinal integrity, MOS aided in the improvement of fish growth 
performance and health conditions (Ringø et al. 2010b; Fernández-Montero et al. 
2019). The dietary inclusion of MOS at 1% considerably increased lysozyme and 
phagocytic activities in Nile tilapia, according to Dawood et al. (2020c). Prebiotics



can maintain a neutral pH in the GI tract, creating an ideal environment for good 
bacteria to boost phagocytic activity and upregulate the expression of the CAT, 
GPX, GPX, IL-1, IL-8, and IFN-γ genes (Dawood et al. 2020b). However, Yuji-
Sado et al. (2015) reported that MOS had no impact on Nile tilapia's immunological 
parameters. It is well recognized that the effects of MOS largely depend on the biotic 
factors of farmed fish, such as species, rearing circumstances, length of supplemen-
tation, age, and size of fish (Sweetman et al. 2010; Song et al. 2014). 
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6.3.2.4 Inulin 

Inulin is a non-digestible carbohydrate found in a variety of fruits, vegetables, and 
grains. It is frequently used as an ingredient in functional foods and is commercially 
made from the chicory root (Madrigal and Sangronis 2007; de Almeida Gualtieri 
et al. 2013). Inulin has lately been used as an immunostimulant in aquaculture. 
Tiengtam et al. (2015b) found that inulin-containing diets at 0, 2.5, and 5 g kg-1 for 
8 weeks increased lysozyme activity in Nile tilapia. Inulin predominantly stimulates 
the synthesis of IL-10 and NK cell cytotoxicity in Peyer's patches of immunological 
cells in animal studies. IgA signaling in the ileum and caecum, splenic NK cell 
cytotoxicity, and splenocyte cytokine levels are further immunological processes 
that inulin modulates (de Almeida Gualtieri et al. 2013). According to Watzl et al. 
(2005) finding, inulin predominantly modifies immunological GALT parameters. 

6.3.2.5 Xylooligosaccharides (XOS) 

Xylooligosaccharides (XOS), which include xylobiose, xylotriose, xylotetrose, and 
others, are polymers of sugar oligomers made up of xylose units through -(1, 4)-
xylosidic connections (Kumar and Satyanarayana 2011). It is possible to generate 
xylooligosaccharides using chemical (Samanta et al. 2012), enzymatic (Jayapal et al. 
2013), or a mix of chemical and enzymatic processes (Samanta et al. 2015). Apart 
from specifically promoting the development of healthy gut flora (Manisseri and 
Gudipati 2012), XOS was also shown to stimulate the immune system in hybrid 
catfish (Hahor et al. 2019), lessen the activity of pro-carcinogenic enzymes in the 
gastrointestinal tract of Sprague-Dawley rats treated with 1, 2-dimethyl hydrazine 
(Hsu et al. 2004), and improve intestinal mineral absorption and immune stimulation 
in albino rats (Mumtaz et al. 2009). Doan et al. (2018) revealed that consuming XOS 
produced from maize cobs dramatically improved skin mucus and serum immunity 
in Nile tilapia. Similar outcomes were observed in Nile tilapia fed XOS for 8 weeks 
at doses of 0 (CON), 0.5 (X-1), 1 (X-2), 2 (X-3), and 4 (X-4) g kg-1 (Poolsawat et al. 
2021). The short-chain fatty acids that the gut microbiota produces during prebiotic 
fermentation, which can serve as an antibiotic substrate and a messenger for enhanc-
ing immune function, may be connected to the enhanced immunological and anti-
oxidant characteristics (Bermudez-Brito et al. 2012; Song et al. 2014). According to 
Yu et al. (2015) adding xylooligosaccharides generated from corncob to the diet had



an impact on the rising levels of gut microbiota and short-chain fatty acids 
(CDXOS). 
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6.3.2.6 Other Prebiotics 

The second-most prevalent biopolymer in nature is chitin, while chitosan is a 
polycationic linear polysaccharide that is produced when chitin is partially 
deacetylated (Crini 2022). The pharmaceutical, biotech, and agricultural industries 
have recently used chitin and chitosan extensively (Wang and Zhuang 2022). In 
recent years, the aquaculture sector has employed chitin and chitosan as feed 
supplements in the diets of fish and shellfish (Kamilya and Khan 2020). In Nile 
tilapia, Abu-Elala et al. (2015) indicated that dietary inclusion of chitosan obtained 
from shrimp shell at 0, 0.5%, 1%, and 2% significantly increased phagocytic 
activity/index, NBT, lysozyme activity, and ACH50. In another study with low 
molecular weight chitooligosaccharide (LMV-COS), Meng et al. (2017) reported 
that inclusion levels of 0, 0.1, 0.2, 0.4, and 0.8 g kg-1 resulted in higher phagocytic 
and lysozyme activities. Similar results were noticed in Nile tilapia-fed orange-
derived pectin, raffinose, and pistachio hulls-derived polysaccharide (Abdel-Latif 
et al. 2020b; Mohammadi et al. 2020). 

6.3.2.7 Combination of Prebiotics 

A combination of two prebiotics or prebiotics with other active components has been 
widely applied in aquaculture. Abd El Tawab et al. (2016) dietary inclusion of 
β-glucan + propylene glycol at 0; 0.5; 1.0 and 1.5 mL resulted in higher lysozyme 
and nitroblue-tetrazolium activities of Nile tilapia. Similar results were noticed in 
Nile tilapia fed β-glucan (βG) and mannan-oligosaccharides (MOS), where they 
reported significantly enhanced phagocytic and lysozyme activities, as well as 
immune-related genes expressions (Abu-Elala et al. 2018; Chen et al. 2019). Com-
bination of β-glucan with Aspergillus oryzae or Chlorella vulgaris significantly 
improved non-specific immunity and up-regulated TNF-α and IL-10 gene expres-
sions (Dawood et al. 2019b; Abdelhamid et al. 2020). 

6.4 Synbiotics in Tilapia 

6.4.1 Synbiotics as Growth Promoters and Disease Protection 

Due to their positive effects on immune response and, consequently, disease resis-
tance, synbiotics have received more attention in aquaculture recently (Carbone and 
Faggio 2016; Huynh et al. 2018). Liu et al. (2017b) reported that synbiotics between 
scFOS and Lactobacilli resulted in better growth performance, feed conversion ratio,



disease resistance, and gut microbiota. These could result from partial dietary protein 
or amino acid consumption by allochthonous bacteria (Dai et al. 2012; Dai et al. 
2010). Similarly, the dietary combination of lactic acid bacteria with Jerusalem 
artichoke, low molecular weight sodium alginate, pectin, xylooligosaccharide, and 
β-glucan significantly enhanced growth performance and disease resistance of tilapia 
(Sewaka et al. 2019; Van Doan et al. 2016a; Van Doan et al. 2019b; Dawood et al. 
2020f; Van Doan et al. 2019c). A combination of kefir and LMWSA, MOS and 
chitosan with DBA®, and MOS with probiotics also increased growth performance 
and disease resistance (Van Doan et al. 2017b; Cavalcante et al. 2020; Laice et al. 
2021). This may be caused by the addition of an unsuitable prebiotic as the substrate 
in a synbiotic mixture, which prevented a chosen probiotic from fermenting to form 
short-chain fatty acids (Hoseinifar et al. 2015b). When fish are fed a synbiotic diet, 
their growth performance is significantly improved, which could be attributed to the 
probiotic's increased survival and colonization or the prebiotic's improved digest-
ibility (Rodriguez-Estrada et al. 2009; Ai et al. 2011; Ye et al. 2011; Liew et al. 
2015). It is generally known that consuming dietary probiotics and prebiotics can 
cause the fermentation of bioactive microbial metabolites like organic acids, fatty 
acids, bioactive peptides, and vitamins (Munir et al. 2016; Stanton et al. 2005). 
These bioactive substances will speed up digestion in the intestine, which will boost 
growth rates. Additionally, the presence of advantageous bacteria in the stomach 
may boost microbial balance, which in turn improves nutrient absorption and 
utilization (Gatesoupe 1999; Lara-Flores et al. 2003). 
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6.4.2 Synbiotics as Immunomodulatory 

Synbiotic supplementation in aquaculture has been proven to boost innate and 
specific immune responses (Amenyogbe et al. 2020). Van Doan et al. (2017b) 
indicated that dietary inclusion of kefir and LMWSA significantly boosted skin 
mucus and serum immunities of Nile tilapia. Although the precise processes through 
which kefir affects fish's innate immune system have not been shown, they may be 
related to kefir's potential probiotic effects (Ali et al. 2022). Previous research has 
shown that advantageous bacteria can increase host resistance, non-specific humoral 
responses, and the exclusion of prospective pathogens (Nikoskelainen et al. 2003; 
Rengpipat et al. 2000; Newaj-Fyzul and Austin 2015; Akhter et al. 2015; Lazado 
et al. 2015; De et al. 2014; Llewellyn et al. 2014; Nayak 2010). Probiotics have also 
been shown to modulate the host's immune response through interactions with 
epithelial cells and by raising the secretion of anti-inflammatory cytokines, which 
may result in decreasing inflammation (Denev et al. 2009). The activity and number 
of lymphocytes, intraepithelial cells, and acidophilic granulocytes were all affected 
at the cellular level by the addition of probiotics (Picchietti et al. 2007). Additionally, 
fish can have their systemic immune responses triggered by probiotics (Lazado et al. 
2015).
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Improvements to the Nile tilapia's skin mucus immune response, serum immuni-
ties, and gene expression have been documented when various prebiotics and lactic 
acid bacteria are combined (Van Doan et al. 2016a, 2019b, c, Dawood et al. 2020f). 
Prebiotics and lactic acid bacteria may have an impact on the fish immunological 
response, as evidenced by the remarkable improvement that was seen in this study. 
Prebiotics and LAB may work together to enhance the number of lactobacilli and 
bifidobacteria in mouse feces while decreasing the viability of Enterococcus, 
Enterobacter, and Clostridia species (Markowiak and Śliżewska 2017; Vieco-Saiz 
et al. 2019). Corn cob-derived xylooligosaccharide (CDXOS), which was fermented 
with L. plantarum, was found to have strong superoxide anion radical-scavenging 
abilities, according to an in vitro antioxidant assay (Yu et al. 2015). 

6.5 Conclusion 

Using prebiotics and synbiotics in tilapia aquaculture has advantages for sustainable 
food supply to fulfill the rising worldwide need for animal protein. For the host 
organism to perform better and develop immunity, knowledge of the dosage and 
duration of administration is crucial. Under both normal and environmental stress 
circumstances, longer administration times appear to have a more favorable impact 
on fish performance and immune response. Prebiotics and synbiotics also appear to 
have effects that are dose-dependent and reliant on the fish's culture circumstances. 
Although numerous studies have been carried out to clarify their mode of action, 
further research is required to fully comprehend how they affect the activity of 
digestive enzymes, and the utilization of carbohydrates, fatty acids, and minerals. 
Similarly, further work needs to be done to understand how these feed additives 
affect tilapia's metabolic profile, gut microbiome, and gene expression using omics 
technology. Additionally, insufficient research has been done, as far as we are aware, 
to determine how these feed supplements affect tilapia when they are exposed to 
pesticide, heavy metal, and fungal toxicity, as well as virus and fungus infections. 
We, therefore, urge future research on tilapia to concentrate on these areas to protect 
the sustainable production of tilapia under various ecological systems. 
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Chapter 7 
Medicinal Plants in Tilapia Aquaculture 

Mehwish Faheem, Seyed Hossein Hoseinifar, and Farid Firouzbakhsh 

Abstract Tilapia are a group of fish belonging to the family Cichlidae. Because of 
their mild flavor and tasty flesh, tilapia has become the second most important 
aquaculture species after carp. Two highly cultured species of tilapia are 
Oreochromis mossambicus and Oreochromis niloticus. Tilapia aquaculture is 
expanding enormously and up to 6.6 million tons of tilapia is expected by 2030 
annually. With the intensification of tilapia culture and the environmental manipu-
lation of culture systems, there is an increase in infectious diseases and economic 
losses due to disease and stress. A lot of consideration has to be given to health 
management and the proper use of prophylactics. Various methods are used for 
disease prevention and control in tilapia aquaculture. Chemotherapeutic agents like 
antibiotics, biotherapeutic agents like probiotics, prebiotics symbiotics, and medic-
inal plants are often used. The use of medicinal plants is gaining much attention as 
they are eco-friendly, sustainable, and have the least environmental impact. Medic-
inal plants improve growth, appetite, and disease resistance and also boost the 
immune system of aquatic organisms. Powder of different parts of medicinal plants 
and extracts are used while routes of administration include oral, immersion, and in 
form of injections. Oral administration as feed additives is the most commonly used 
method. This chapter will focus on the use of different medicinal plants in tilapia
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aquaculture, their routes of administration, and their effects on fish physiology. 
Moreover, various modes of action of these medicinal plants are also discussed.
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Keywords Herbs · Immune parameters · Disease resistance · Antioxidant defense · 
Bioactive compounds 

7.1 Introduction 

The human population is increasing at a very high rate and it is expected to reach up 
to 10 billion by 2050 (Hoseinifar et al. 2020a, b). With the increase in population, the 
demand for animal protein is also increasing. Considered the fastest-growing food-
producing sector in the world, aquaculture is recognized as a possible sustainable 
solution for food security and increased dietary nutrition in developing countries 
(Adewole 2014). Fish and shellfish are important animal-based proteins and account 
for 16.7% of total animal-based protein intake globally. Captured fisheries are 
declining in past decades and many resources are almost exploited, therefore, the 
intensification and expansion of aquaculture are required to produce enough animal-
based protein to meet increasing demand (Delgado et al. 2003). 

Tilapia is the common name used for three genera (Tilapia, Sarotherodon, and 
Oreochromis) belonging to the family Cichlidae. Tilapias are important species in 
aquaculture with growing consumer preference (Ahmad et al. 2009). Aquaculture 
has observed an increase in tilapia culture in the last few years as these species are 
distributed worldwide (El-Sayed 2006) and are considered as most important fish 
species of the 21st century. Currently, more than 135 countries are doing tilapia 
culture (FAO 2014). Global annual production of tilapia was 4.5 million tons in 2013 
and by 2030 it’s expected to grow to 6.6. Million tons (Kuebutornye and Abarike 
2020). Annual tilapia culture makes up about 12.2% of total finfish culture globally 
(El-Sayed 2019). Highly cultured species of tilapia belong to the genera 
Oreochromis. Mozambique tilapia (Oreochromis mossambicus) and Nile tilapia 
(Oreochromis niloticus) are widely cultured. Around 90% of tilapia culture is of 
O. niloticus (FAO 2016). Tilapia are among a few fish species that can be cultured in 
almost all types of culture systems viz. pond culture, static pond culture, integrated 
fish culture, recirculation or closed cycle systems in temperate countries, etc. 
(Fitzsimmons 2000). Recently the intensive cage culture of tilapia is gaining popu-
larity around the globe. 

With the rising global demand, the intensive culture of tilapia is gaining much 
attraction. However, diet quality, infectious diseases, and resistance to various 
therapeutics are major constraints in the intensification of tilapia culture (Ahmad 
et al. 2011; Elkafrawy 2020). Moreover, intensification is stressful to fish and leads 
to the weakening of the immune system hence leading to infections (Roosta and 
Hoseinifar 2014). To manage the losses resulting from disease and pathogen infec-
tions, farmers are extensively using different chemicals mainly antibiotics



(Hoseinifar et al. 2017a, b, c, d; Nawaz et al. 2018). Antibiotics have been used 
successfully to treat fish diseases but indiscriminate use of antibiotics has resulted in 
resistance and accumulation of antibiotic residues in the environment and the fish 
tissues leading to the emergence of multiple antibiotic-resistant (MAR) strains 
(Seyfried et al. 2010; Rossolini et al. 2014; Santos and Ramos 2016; Hoseinifar 
et al. 2017a, b, c, d; Nawaz et al. 2018). Widespread use of vaccines and antibiotics 
is expensive and impractical in fish farms and a single vaccine works against only 
one type of pathogen (Harikrishnan et al. 2011; Plant and LaPatra 2011). Therefore, 
fish farmers are advised to improve fish husbandry and the water quality of ponds 
and use sustainable dietary supplements to strengthen the immune system of fish 
(Daniels and Hoseinifar 2014). Organic fish farming or green aquaculture relies 
mainly on eco-friendly approaches to avoid disease and infection. Feed additives e.g. 
Pro- and pre-biotics and medicinal plants are now being used as an alternative to 
antibiotics in aquaculture. Among these feed additives, medicinal plants provide the 
most sustainable and eco-friendly alternative to antibiotics (Abarike et al. 2018; 
Awad and Awaad 2017) and are used to strengthen the fish immune system 
(Srichaiyo et al. 2020; Mohammadi et al. 2020a, b). 
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In the current chapter, a detailed review of existing literature about the use of 
medicinal plants in tilapia aquaculture is provided along with the possible mode of 
action. Furthermore, future perspectives and areas to be focused on are highlighted. 

7.2 Importance of Medicinal Herbs/Plants in Aquaculture 

Medicinal plants include parts of plants (flowers, seeds, leaves, and roots), plant-
derived products, spices, herbs, and seaweed (Hai 2015). The use of medicinal and 
edible plants, vegetable herbs, and seeds dates back in human history (Davidson-
Hunt 2000). Traditional medicines and drugs were made by using medicinal plants 
and they enhanced the utilization of dietary energy and increased performance 
efficiency. Moreover, medicinal plants act as natural tonics and restoratives (Götti 
et al. 2014). Herbs and spices were used to improve storage stability and impart 
flavors to a variety of foods (Ahmad et al. 2011). Medicinal plants/herbs are used in 
the treatment of different ailments (e.g. lowering blood cholesterol and prevention of 
cancer) by activating the immune system (Desai et al. 2008; Greenwell and Rahman 
2015). Antimicrobial substances were used to treat bacterial disease in fish (Van 
Doan et al. 2020; Ashour et al. 2020; Ceballos-Francisco et al. 2020; Abdel-Tawwab 
and El-Araby 2021). 

Medicinal plants are inexpensive, usually readily available, and have no or 
minimal effects on fish health and they don’t contribute negatively to the environ-
ment (Na-Phatthalung et al. 2018). Different parts (leaves, roots, seeds, skin, flowers, 
and fruit) are used because of their rich nutritional value and therapeutic properties 
(Akinyemi et al. 2018). Medicinal plants contain a variety of biologically active 
compounds like carotenoids, flavonoids, terpenoids, polyphenols, tocopherols, gly-
cosides, alkaloids, lectins, saponins, cinnamic acid, polypeptides, quinone, tannins,



folic acid, biogenic amines, steroids, phytoandrogens, and phytosterols (Mulat et al. 
2020). Medicinal plants also contain many vitamins (riboflavin, thiamine, niacin, 
and ascorbic acid), and trace minerals (calcium, sodium, zinc, iron, magnesium, and 
potassium) (Hussain et al. 2011; Ibrahim et al. 2019). All these compounds enhance 
fish growth, nutrient digestibility, gut health, gut microbiota, digestive enzymes, 
immunity, and anti-oxidant status (Citarasu 2010; Mohiseni et al. 2017; Astuya et al. 
2017; Faheem et al. 2020). 
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There are almost 17,000 known species of plants and around 8,000 species of 
plants are being used in traditional medicines in many countries like Pakistan, India, 
Sri Lanka, China, Japan, and Thailand (Singh 2015; Hai 2015). Medicinal plants are 
used in traditional medicines as antioxidants (Guardiola et al. 2018; Parham et al. 
2020), as antimicrobial, antifungal, antiparasitic, and antiviral agents (Tagboto and 
Townson 2001; Dhama et al. 2018; Kalsoom et al. 2020; Parham et al. 2020). 
Medicinal plants also have anti-inflammatory and stress-releasing properties 
(Reyes-Becerril et al. 2019; Shourbela et al. 2020). The use of medicinal plants in 
traditional medicines as an appetizing agent, hepatoprotective, gastro-protective, 
nephroprotective, hematoprotective, and immunostimulatory agent (Bai et al. 
2009; Ayaz et al. 2017; Okaiyeto et al. 2018; Asnaashari et al. 2018; Esmail and 
Ali 2019; Abdel-Tawwab and Hamed 2020; Faheem et al. 2020) also very popular. 
For example, Cinnamon possesses potent antioxidants, and anti-inflammatory and 
anti-mutagenic compounds (Ahmad et al. 2011). Parsley is of high nutritive value as 
the extract can counteract the toxic effects of aflatoxin in fish. Parsley contains a high 
amount of vitamins A, C, riboflavin, and niacin and is also a rich source of minerals 
like sodium, calcium, magnesium, iron, and zinc (Peter 2001). Both seeds of Nigella 
sativa and seed oil are used as an immune booster and confer many positive health 
benefits (Mohammed and Arias 2016; Latif et al. 2020). 

7.3 Bioactive Compounds of Medicinal Plants 

Medicinal plants have various bioactive compounds, and phytochemicals, which are 
mainly responsible for their positive health effects. Various types of phytochemicals 
e.g. flavonoids, alkaloids, essential oils, phytosterols, etc. are present in many plants 
and plant parts. Some anti-nutrient factors are also present in plants along with 
phytochemicals. These anti-nutrient factors, sometimes decrease the effectiveness of 
medicinal plants. These anti-nutrient factors are now decreased or eliminated by 
making extracts or by using enzymes. 

7.3.1 Flavonoids 

Flavonoids are secondary plant metabolites. Structurally, flavonoids are 
di-phenylpropanes, a three-carbon ring molecule having two benzene rings attached



on both sides of the carbon chain. Flavonoids are present in plants in various 
forms like flavanols, flavanone, flavones, isoflavones, flavan-3-ol, and anthocyanins. 
When a different functional group or compound like methyl group, hydroxyl group, 
sugar, or oxygen attaches to the 3-carbon chain, various classes of flavonoids are 
formed. 
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Many plants and herbs contain flavonoids e.g., tea is rich in catechin, 
epigallocatechin, and epicatechin while onions, olives, grapefruit, barriers, and 
red wine are rich in quercetin, tamarixetin, myricetin, and kaempferol. Citrus fruits 
like lemons, grapefruit, and oranges contain a variety of flavanones like hesperidin, 
taxifolin, naringenin, and naringin. Isoflavones, e.g., daidzin and genistin, are 
present in soybean. The skin of many fruits is also a source of flavonoids, the 
skin of tomato and red pepper is loaded with rutin, chrysin, luteolin, apigenin, and 
luteolin glucosides. Cherry, strawberry, and raspberry contain anthocyanidin and 
cyanidin. Flavonoids are known for their antioxidant property. However, the 
antioxidative potential of flavonoids is dependent on the presence and configura-
tion of functional groups. Flavonoids having B-ring configuration have potent 
radical scavenging potential, they produce stable flavonoid radicals by donating 
hydrogen and electron to reactive oxygen species like hydroxyl, peroxyl, and 
peroxynitrite. Flavonoids also have other pharmacological properties like antiviral, 
antiallergic, antibacterial, anti-inflammatory, and vasodilatory. 

7.3.2 Alkaloids 

Alkaloids are the organic metabolites of plants having basic properties. 
Structurally, they are heterocyclic compounds. The pharmacologically active 
class of alkaloids is isoquinoline. Major and important isoquinoline is 
sanguinarine which belongs to benzo[c]phenanthridine alkaloid and has immu-
nomodulatory, anti-inflammatory, and antibacterial properties. Sanguinarine also 
promotes growth by enhancing feed intake and lowering the degradation of 
amino acids. 

7.3.3 Essential Oils 

Aromatic plants produce essential oils that are hydrophobic concentrates having a 
strong odor. Essential oils have antimicrobial, anti-inflammatory, and analgesic 
properties. The essential oil extracted from oregano, Origanum heracleoticum, 
have thymol, carvacrol, and monoterpenoid phenolic compounds as major phyto-
chemicals. An in vitro study with phytochemicals like cymene and carvacrol has 
revealed that they have bactericidal activities against Salmonella typhi 
(Rattanachaikunsopon and Phumkhachorn 2009). Therefore, it is believed that



phenolic compounds present either in plant extracts or essential oil have anti-
bacterial properties, that can modulate gut microflora leading to better utilization 
of nutrients and hence better growth performance in fish. 

166 M. Faheem et al.

7.3.4 Triterpenoids 

Triterpenoids are hydrocarbons having six isoprene units with substitution or dis-
placement of the methyl group with oxygen. They are present in a variety of 
medicinal plants with antitumor antibacterial, and antiviral potential, role in glucose 
metabolism and diabetes. Examples of triterpenoids include lupol, glycyrrhizin, 
botulin, oleanolic and glycyrrhetinic, ursolic, maslinic, and betulinic acid. 
Triterpenoids belonging to ursane, oleanane, and lupane (betulin, betulinic acid, 
and lupeol) had anti-cancerous properties because of their anti-inflammatory poten-
tial. Rainbow trout fed with varying levels of maslinic acid showed improved 
growth. 

7.3.5 Phytoandrogens 

Many plants possess bioactive compounds that have similar effects as testosterone, 
such bioactive compounds are called phytoandrogens as they are produced from 
plants. Seeds of fenugreek have a bioactive compound called diosgenin which is a 
steroid-based sapogenin, similarly, soy has an isoflavone compound called daidzein 
and gutta-percha tree has triterpenoids that have androgenic properties. 

7.4 Effect of Medicinal Plants on Fish Physiology 
and Growth 

Fish growth may be defined as the increase in fish weight and length with time. It is a 
somatic trait and is characterized by an increase in fish weight due to enhanced 
synthesis of protein. The growth of fish depends mainly on stocking density, water 
quality parameters, and quality and quantity of food. While the endogenous cues 
also have an important role in fish growth. Both endogenous and exogenous signals 
are received and integrated by the central nervous system and regulate fish growth, 
appetite, and metabolism. In teleost, the primary regulators of fish growth are 
insulin-like growth factors and growth hormones. 

Upon receiving the exogenous signals, the brain produces growth hormone 
releasing hormone and dopamine that act on the pituitary. Somatotrophs that are 
located in the anterior portion of the pituitary are responsible for the production of



growth hormones (GHs). Once released in the blood circulation, these GHs bind to 
their receptors, present in various tissues and organs mainly the liver, and activate 
many metabolic pathways including the production of insulin-like growth factors. 
Both growth hormones and insulin-like growth factors are responsible for growth, 
metabolism, osmoregulation, and reproduction. The growth axis in a teleost is 
elaborated in Fig. 7.1. A balanced feed with an optimum quantity of essential 
nutrients that enhance fish growth is one of the major challenges in aquaculture. 
The addition of plants/herbs that can stimulate fish growth is an active area of 
research and many researchers are working on the addition of plant-based supple-
ments to the diet that enhances the growth of tilapia. Details of such studies are listed 
in Table 7.1. Medicinal plants can directly act on the pituitary and enhance the 
synthesis and release GHs or on the liver to stimulate the release of insulin-like 
growth factors. Supplementing tilapia diets with 0.5% curcumin resulted in 
enhanced mRNA expression of GHs in the brain and IGFs in the liver, indicating 
that medicinal plants might directly act on the growth axis. Similarly, when tilapia 
feed is supplemented with 4 and 6 ppm of D-limonene, it resulted in higher mRNA 
levels of both GHs and IGF-I. Medicinal plants also stimulate growth by enhancing
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Fig. 7.1 Growth axis in a teleost adapted from
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the appetite of fish. The addition of medicinal plants increases the attraction towards 
food, increased feed acceptance, and palatability.
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Intensive aquaculture results in stress on fish which leads to detrimental effects on 
fish health through improper feed utilization, changes in intestinal functions, and 
inability to digest consumed feed (Hegazi and Hasanein 2010; Yilmaz 2019). The 
intestine of fish is the main entrance to the fish body, and various pathogens can alter 
the local intestinal immunity that results in an increased probability of pathogen 
infection (Abid et al. 2013; Standen et al. 2016). Many feed additives are used in fish 
feed, and bioactive components of medicinal plants improve intestinal functions by 
increasing nutrient digestibility, enzyme secretion, feed utilization, and increasing 
healthy gut microflora (Van Kooyk and Rabinovich 2008). Natural growth pro-
moters are present in medicinal plants that were found to improve body weight, 
survival rate, and feed conversion ratio in fish (El-Dakar 2004; Shalaby 2004). 

Growth promoting effects of medicinal herbs may be due to the nutrient digest-
ibility and thus leading to enhanced absorbance of nutrients. Many spices stimulate 
digestion by increasing the secretions of bile and digestive enzymes (Platel et al. 
2002). Important compounds present in herbs and spices act as attractants for fish 
leading to better feeding and improved growth. Growth of Tilapia zillii improved 
after adding olfactory stimulants to feed (Adams et al. 1988). 

Organium vulgare extract was found to increase body weight, weight gain%, 
SGR, and survival rate due to the presence of antioxidants (tocopherols, total polar 
compounds, fatty acids, and oxidative stability) and antimicrobial compounds 
(Ahmad et al. 2009; de Souza Pereira et al. 2017). Diets containing feed additives 
(0.5% cinnamon and 1% marjoram) showed better growth performance when fed to 
tilapia (Abdel Wahab et al. 2007; Abdel El-Maksoud et al. 1999). 1% supplemen-
tation of cinnamon was reported to act as a natural growth promoter in the diets of 
tilapia. The presence of cinnamon in the diet enhances the sensory stimulation of fish 
which may result in improved appetite and thus lead to improved growth (Ahmad 
et al. 2011). Similarly, dietary supplementation of clove and basil at 0.5% improved 
the feed conversion ratio in tilapia (Brum et al. 2017). An increase in body weight 
gain was observed after feeding Nile tilapia with A. vera (Gabriel et al. 2015). 
Dietary inclusion of licorice root powder, aqueous, and methanolic extracts of 
licorice root powder improve growth performance and feed utilization in Nile Tilapia 
(Abdel-Tawwab and El-Araby 2021). 

Many active compounds like phenols, flavonoids and isoflavonoids, saponins, 
and coumarins present in medicinal plants and herbs improve nutrient digestibility 
leading to better growth and weight gain in fish (Poolsawat et al. 2020; Bostami et al. 
2021).
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7.5 Medicinal Plants to Improve Pathogen Resistance 
in Tilapia 

Mortalities due to pathogen infection are huge in tilapia culture and lead to substan-
tial losses. There is a dire need to look for sustainable solutions and prophylactics to 
manage pathogen resistance and damage caused by pathogens. Many bacterial, 
fungal, and viral pathogens are responsible for disease outbreaks in tilapia culture. 
Important pathogens of tilapia are Branchiomyces, Dactylogyrus, Saprolegnia, 
Trichodina, Dactylogyrus, Iridovirus, Francisella, Nocardia, Flavobacterium, and 
Edwarsiella (Absali and Mohamad 2010; MSD Animal Health 2012). Major bacte-
rial pathogens of tilapia culture belong to the genera Streptococcus especially 
Streptococcus iniae and Streptococcus agalactoe. Almost 82% of pathogens iso-
lated from farmed tilapia belonged to Streptococcus agalactoe (MSD Animal Health 
2012; Li et al. 2014). Other economically important bacterial pathogens of tilapia are 
Aeromonas hydrophila, Francisella spp., and Edwardsiella spp. 

7.5.1 Streptococcus agalactiae 

Streptococcus agalactiae is a gram-positive bacteria of cultured fish both in fresh-
water and marine water (Kümmerer 2009). Infections with Streptococcus agalactiae 
occurs both in juvenile and adults with a prevalence rate of 40-60% (Pretto-Giordano 
et al. 2010). Streptococcus agalactiae cause infection in tilapia, rainbow trout, 
channel catfish, and silver sea bream in tropical and temperate climates (Ye et al. 
2011). Once infected with bacteria, fish show erratic swimming, injuries in the skin, 
loss of appetite, swelling in the abdominal region, paleness of the liver, loss of 
coordination in movement, and softening of the head region (Figueiredo et al. 2006; 
Pretto-Giordano et al. 2010; Chen et al. 2012). S. agalactiae can survive for long 
periods in pond water and mud; however, water is the primary route of transmission 
for S. agalactiae. Around 90-100% mortalities were recorded in tilapia after infec-
tion with S. agalactiae. Virulence of this bacteria in tilapia depends upon CFU and 
strain. The 72-h lethal dose (LD50) of  S. agalactiae in tilapia is 1.12 × 10

6 CFU/ml 
(Bondad-Reantaso et al. 2005; Mian et al. 2009) while the concentration ranging 
from 1 × 101 to 1 × 105 CFU caused 80-100% mortalities in cultured Nile Tilapia 
(Hernández et al. 2009). 

7.5.2 Aeromonas hydrophila 

Genus Aeromonas is gram-negative bacteria that belongs to the family 
Aeromonadaceae which has four species i.e. Aeromonas hydrophila, Aeromonas. 
salmonicida, Aeromonas sobria, and Aeromonas piscicola. These are facultative



pathogens and cause dermal red plague or hemorrhagic septicemia syndrome. These 
pathogens were isolated from tilapia, goldfish, channel catfish, rainbow trout, and 
salmon (Molnár and Csaba 2005; Rattanachaikunsopon and Phumkhachorn 2009; 
Austin and Austin 2012). Members of the genus Aeromonas are naturally present in 
many habitats including freshwater, the degree of infection caused by the pathogens 
depends greatly on environmental conditions, dissolved oxygen, ammonia levels, 
and species of fish (Beaz-Hidalgo and Figueras 2012). Among four species of the 
genus Aeromonas, Aeromonas hydrophila is the most important with a prevalence of 
up to 80% in freshwater (Beaz-Hidalgo et al. 2012; Soto-Rodríguez et al. 2013) it is  
present on the skin of fish and in the digestive system (Harikrishnand and 
Balasundaram 2005). Loss of appetite, weakness, hemorrhages in gills and skin, 
and necrosis of vital organs are major signs of Aeromonas infection (Bastardo et al. 
2012). Other symptoms include loss of scales, accumulation of fluid in the body, and 
loss of vision (Yardimci and Aydin 2011). 
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7.5.3 Francisella spp. 

Members of the genus Francisella are gram-negative and facultative aerobic bacteria 
and have two species i.e. Francisella noatunensis orientalis occurs in tropical zones 
and Francisella noatunensis noatunensis (Colquhoun and Duodu 2011). Both 
species are distributed globally with a prevalence of up to 90% in freshwater 
aquaculture systems (Ottem et al. 2007; Jeffery et al. 2010). Francisella is transmit-
ted horizontally in the freshwater culture system and it has been isolated from Nile 
tilapia, white and striped bass, salmon, and Atlantic cod (Ostland et al. 2006; Ottem 
et al. 2007; Kamaishi et al. 2010). Fish infected with Francisella spp. shows loss of 
appetite, erratic swimming pattern, hemorrhage around the pectoral fin, and anemia 
(Soto et al. 2009). Severe infection results in gill hyperplasia, enlargement of the 
kidney and spleen, and necrosis of vital organs (Mauel et al. 2007; Ottem et al. 
2009). 

7.5.4 Edwardsiella spp. 

Genus Edwardsiella is a group of gram-negative pathogens and has four species i.e. 
Edwardsiella tarda, Edwardsiella Ictaluri, Edwardsiella hoshinae, and 
Edwardsiella anguillimortifera. 

Edwardsiella ictaluri is commonly present but Edwardsiella tarda is an econom-
ically important species that also cause zoonosis (Bastardo et al. 2012). E. tarda has 
been isolated from channel catfish, Nile tilapia, hybrid tilapia, turbot, red seabream, 
and Japanese eel (Burr et al. 2012). Infection with E. trada depends mainly on 
temperature, the presence of organic matter in the pond, and water quality



parameters. General symptoms of infection include bulging of eyes, spiral swim-
ming, swelling of the abdominal region, and pale eyes. 

174 M. Faheem et al.

The use of vaccines and antibiotics to control pathogen infection is common 
practice among tilapia fish farmers around the globe. Uncontrolled use of antibiotics 
resulted in the emergence of resistance, therefore plants and plants-derived 
chemicals are now being used in tilapia culture to avoid the spread of disease 
(Table 7.2). 

Tilapia fed with different medicinal plants showed improved growth and resis-
tance to pathogens (Table 7.2). Tilapia fed with Echinacea showed improved 
survival rates against P. fluorescens infections (Aly et al. 2008). Similarly, the 
addition of Cinnamon (0.5%) to the diets of tilapia resulted in improved gut 
microbial content and feed absorption. Moreover, guts of tipalia fed with cinnamon 
containing diet had a smaller number of harmful bacteria like Campylobacter jejuni, 
Bacillus sp., Enterobacter sp., Escherichia coli, Listeria monocytogenes, Klebsiella 
pneumoniae, Staphylococcus aureus, etc. (Abdel Wahab et al. 2007). Similarly, the 
addition of Cinnamomum camphora to the diet increased the survival rate in tilapia 
when exposed to Streptococcus agalactiae (Kareem et al. 2016). Several medicinal 
plants e.g. Lonicera japonica (Japanese honeysuckle), Nyctanthes arbortristis (night 
jasmine), Panax quinquefolium (American ginseng), Tinospora cordifolia, 
Glycyrrhiza glabra (Licorice) protect tilapia against A. hydrophila challenge 
(Sudhakaran et al. 2006; Ardo et al. 2008; Kirubakaran et al. 2010; Abdel-Tawwab 
and El-Araby 2021). Supplementing feed of tilapia with leaf extract and dried leaves 
of rosemary increases survival rate when challenged with Streptococcus iniae 
(Abutbul et al. 2004). Tilapia showed increased resistance against Streptococcus 
agalactiae when fed with varying levels of Sophora flavescens (Wu et al. 2013). 

In addition to protection against bacterial pathogens, medicinal plants, and herbs 
also protect tilapia against parasitic infections. Indian almond (Terminalia catappa), 
garlic (Allium sativum), and extracts of green tea protect tilapia against Trichodina 
sp. infections (Chitmanat et al. 2005; El-Deen 2010). 

Many bioactive compounds found in plants have medicinal properties. Active 
compounds like Thymol and Carvacrol have lipophilic properties and can cause the 
breakdown of the bacterial cell wall (Lambert et al. 2001; Ultee et al. 1998; Conner 
1993; Helander et al. 1998). Other compounds like ρ-cymene present in Oregano 
cause swelling of the bacterial cell membranes and hence destroy the bacterial cell 
(Ultee et al. 2002). The addition of herbs increases mucus lysozyme activity which 
can break down peptidoglycans of the bacterial cell wall (Magnadottir 2010). It is 
believed that the addition of medicinal plants to the diet of tilapia improved immune 
response and hence provided better resistance to pathogens.
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7.6 Medicinal Plants and Improved Immune System: 
Possible Mechanism of Action 

The immune system is a complex physiological, chemical, and metabolic process 
that protects the organism against foreign materials such as bacteria, viruses, pro-
tozoa, fungi, etc.. The immune system is usually divided into two categories, innate 
(non-specific or natural) immune system, and adaptive (specific or acquired) 
immune system. 

7.6.1 Innate Immune System 

The innate immune system is present in almost 98% of all multicellular organisms 
and from a phylogenetic point of view, and it is the oldest immune system. The 
innate immune system act as the first line of defense against infection and humoral 
and cellular components of this system is present even before exposure to foreign 
material. As it is non-specific, the reaction mounted against a foreign material is 
always the same. 

Components of the innate immune system include 

i. Chemical and physical barriers e.g. skin and mucus 
ii. Cellular and humoral components e.g. blood proteins (complement & acute 

phase, cytokines, natural killer cells, eosinophils, and phagocytic cells (macro-
phages and neutrophils)) 

The innate immune system of fish is highly robust (Rombout et al. 2005). Toll-
like receptors (TLR) and complement components are the first lines of defense. Toll-
like receptors are the principal inducer of innate immune response and complement 
components of the innate adaptive immune response. 

Scales, skin, and mucus along with gills and the gastrointestinal tract provide 
physical protection against pathogens (Alexander and Ingram 1992). The innate 
immune response is initiated when there is tissue damage, or any pathogen is sensed 
by leukocytes. Inflammation is the first response of the innate immune system to 
evade pathogen replication and initiate the process of cellular repair. Many leuko-
cytes i.e. Neutrophils, macrophages, monocytes, etc. are recruited to the site of 
inflammation. Each type has a different function but they work in precise coordina-
tion to subside the effects of pathogens. 

The innate immune system of teleosts works through precise mechanisms to 
destroy pathogens. These mechanisms include degranulation, diapedesis, phagocy-
tosis, oxidative burst, and opsonic and hemolytic serum activities. 

Upon detection of the foreign substance, a large amount of anti-microbial mol-
ecules and inflammatory mediators are released from neutrophils and mast cells. 
This process is known as degranulation. These chemicals induce diapedesis or 
chemotaxis i.e. movement of leukocytes towards the site of infection so the pathogen



and foreign molecule can be eliminated. Upon reaching the site of infection, 
leukocytes start the process of phagocytosis i.e. engulfing the foreign particles or 
pathogens. Pattern recognition receptors (PRRs) present on immune cells detect the 
conserved pathogen-associated molecular patterns (PAMPs) present on microbes 
and foreign bodies and make a PRR-PAMP complex which is engulfed by 
lysosomes. 
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Production and release of reactive oxygen species (ROS) and reactive nitrogen 
species (RNS) from leukocytes cause respiratory burst activity (Swindle et al. 2002). 
These ROS/RNS takes part in degranulation and diapedesis and also help in the 
removal of phagolysosomes. Along with these mechanisms, the innate immune 
response also modifies the foreign bodies/microbes/virus to increase their interaction 
with phagocytes and cytotoxic cells. This process is called Opsonization. The 
complement component of innate immune response can neutralize viruses by 
enveloping them (Whyte 2007). 

In fish, cells of innate immune response include neutrophils, macrophages/mono-
cytes, mast cells, non-specific cytotoxic cells, and other nuclear leukocytes. 

Neutrophils are round with large granular vesicles. They are mainly present in 
hematopoietic tissues and the peritoneal exudate. Neutrophils are also present in the 
blood, gills, gonads, submucosa of the intestine, and skin (Mulero et al. 2007). In 
teleost, the primary function of neutrophils is phagocytosis (Sepulcre et al. 2002). 
Neutrophils also release reactive oxygen species, produce cytokines, and express a 
broad range of toll-like receptors (Sepulcre et al. 2002). 

Macrophages/monocytes are horseshoe-shaped or round cells mainly present in 
the head kidney, spleen, thymus, gills, connective tissue, and peritoneal exudate 
(Lieschke et al. 2001). Macrophages sometimes form melanomacrophage centers, a 
dark-colored cluster in hematopoietic tissue (Herraez and Zapata 1986). The main 
function of macrophages is phagocytosis along with neutrophils, they also release 
ROS and various cytokines in fish (Uribe et al. 2011). 

Mast cells, also known as eosinophilic granular cells (EGCs) in fish are very 
large, round-granulated cells. They are mainly present in the head kidney, spleen, 
epidermis, intestinal epithelial, and gastrointestinal-associated hematopoietic tissue 
(Da'as Uribe et al. 2011; Prykhozhij and Berman 2014). In fish, mast cells produce 
anti-microbial peptides that induce activation and chemotaxis of neutrophils 
(Prykhozhij and Berman 2014; Crivellato et al. 2015). 

Non-specific cytotoxic cells are small agranulocytes and are present in the kidney, 
spleen, thymus, blood, and body fluid (Rubio-Godoy 2010; Uribe et al. 2011). They 
have cytotoxic activity against viruses, and protozoa and also produce a variety of 
cytokines (Utke et al. 2008). 

Humoral components of innate immune response include lysozymes, antimicro-
bial peptides, protease, complement components, eicosanoids, reactive oxygen and 
nitrogen species (ROS/RNS), and cytokines. 

Cytokines are regulatory molecules of the innate immune system and include 
tumor necrosis factor α (TNFα), interferons (IFN), interleukin (IL), and chemokines. 

Tumor necrosis factor α (TNFα) is produced by leukocytes, it activates macro-
phages that leads to increased respiratory burst activity and phagocytosis (Whyte



2007; Uribe et al. 2011). It also induces the expression of cyclooxygenase 2 and 
leukocytes (IL-1β, IL-8) (Zou et al. 2003). Tumor necrosis factor-alpha (TNF-α) is  
capable of mounting a powerful antimicrobial response. It activates many host-
responsive genes, induces apoptosis, and inhibits intracellular replication of the 
pathogen (Reyes-Cerpa et al. 2012). It also mediates the NF-κB signaling pathway 
(Rahman and McFadden 2006). Interleukin-8 is a chemokine that is produced by 
macrophages in response to pathogens and other cytokines like TNF-α. 
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Interferons (IFN-α and IFN-β) inhibit the viral replication within infected cells 
and also modify the expression of various immune genes thus providing protection 
against viral infection in infected and non-infected cells (de Veer et al. 2001; Samuel 
2001; Uribe et al. 2011). Another important type of interferon is IFN-γ which is 
produced by T-cells and non-specific cytotoxic cells. IFN-γ in fish serves the same 
function as IFN-γ in mammals (Zou and Secombes 2016). 

Interleukins include important pro-inflammatory and inflammatory cytokines. 
Interleukins are classified into 6 sub-categories (IL-1, IL-2, IL-6, IL-10, IL-12, 
IL-17) (Savan and Sakai 2006). IL-1 includes pro-inflammatory cytokines IL-1β 
and IL-18. Inteleukin-1β is expressed in macrophages and neutrophils and elicits a 
humoral response (Savan and Sakai 2006). Interleukin-18 is present in many differ-
ent cells like T and B cells, and macrophages and induces secretion of interferon-γ 
(Whyte 2007). IL-2 derives lymphocyte differentiation; production of IFN-γ is also 
modulated by IL-2 (Díaz-Rosales et al. 2009; Corripio-Miyar et al. 2007). Il-6 and 
IL-12 are important inflammatory cytokines (Zante et al. 2015) while IL-10 is an 
anti-inflammatory cytokine that limits the production of pro-inflammatory cytokines 
(Karan et al. 2016). 

Chemokines are a superfamily of cytokines that include CXC, CC, C, and CX3C 
classes. They are produced by many different cells and their major function is to 
attract and engage cells at the site of infection and convert innate immune response to 
adaptive response. 

7.6.2 Adaptive Immune Response 

The adaptive or specific immune response is specific for each pathogen and has a 
memory so upon successive encounters with the same pathogen; a more pronounced 
response is mounted (Male and Roitt 2001). 

The main components of the adaptive immune response are 

i. The cellular component includes lymphocytes (B and T-cells) 
ii. The humeral component includes immunoglobulins like IgM, IgD, and IgT/Z. 

T-cells are mainly produced in the thymus, spleen, and head kidney (Nakanishi 
et al. 2015). T-cells have also been detected in blood, gut, and skin (Rombout et al. 
2005). In line mammals, T-cells are divided into T-cytotoxic cells and T-helper cells. 
Cytotoxic T-cells have the same cell-mediated cytotoxic function as their mamma-
lian counterpart (Fisher et al. 2006).
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In fish, B-cells are mainly produced by the head kidney and thymus, and spleen 
(Crowhurst et al. 2002; Salinas et al. 2011) and propagate in the intestine and 
peritoneal cavity (Rombout et al. 2005; Parra et al. 2015). B-cells produce immu-
noglobulins which precipitate and agglutinate the antigens for better phagocytosis. 
Antibodies also activate complement components (Rubio-Godoy 2010). 

Antibodies are present in blood, skin, gills, intestine, and bile (Cain et al. 2000; 
Hatten et al. 2001). Different types of immunoglobulins are present in fish e.g. IgM, 
IgD, IgT/Z. IgM is the most common and predominant antibiotic found in fish 
(Rubio-Godoy 2010). 

The immune system of organisms is affected by various endogenous and exog-
enous factors that lead to either stimulation or suppression of the immune system 
(Trichet 2010; Nawaz et al. 2018). The immune system of fish comprises an innate 
and adaptive immune system. Goblet cells present in fish skin secrete mucus 
(Sanahuja et al. 2019). Mucus is the first line of defense and provides a biological, 
physical, and immunological barrier against pathogens and other exogenous 
chemicals (Esteban 2012; Cordero et al. 2016). Many enzymes like proteases and 
antiproteases, lysozyme, peroxidases, phosphatases, and esterases made major com-
ponents of fish skin mucus. Many immunoglobulins, complement components, and 
antimicrobial peptides are part of fish skin mucus (Adel et al. 2018; Mohammadi 
et al. 2020a, b). 

In fish, major organs that possess hematopoietic activities are the kidney (head 
kidney), thymus, and spleen (Reyes-Cerpa et al. 2012). The major cells that mount 
the innate immune response by secreting cytokines are neutrophils, mast cells, 
macrophages, and non-specific killer cells (Awad and Awaad 2017). Some impor-
tant pro-inflammatory cytokines secreted by the cells of the innate immune response 
are tumor necrosis factor-alpha (TNF-α) and interleukin-8 (IL-8). Interleukin-8 is 
responsible for attracting lymphocytes and neutrophils and also induces a powerful 
respiratory burst activity (Laing et al. 2002). Interferon-γ (IFN-γ) is produced by 
T-lymphocytes and natural killer cells and is responsible for inducing synthesis of 
nitrous oxide, enhanced respiratory burst activity, and enhanced macrophage-
mediated phagocytosis of the pathogen (Arts et al. 2010; Grayfer et al. 2010). 

Herbs and medicinal plants can elicit the fish immune system by activating cells 
of the innate and adaptive immune system, phagocytosis, and complement system 
which result in protection against pathogens (Watanuki et al. 2006; Hoseinifar et al. 
2020a, b). Different medicinal plants have been used in tilapia culture to improve the 
immune response (Table 7.3). Herbs interact with lymphoid organs associated with 
the skin (SALT), gills (GIALT), and gut (GALT) to enhance mucus immunity 
(Vallejos-Vidal et al. 2016; Martin and Krol 2017). The immunostimulatory prop-
erties of medicinal plants can also be attributed to various bioactive compounds. 
Polyphenols such as catechins can modulate the immune system by interacting with 
immune cells and regulating the secretions of chemokines and proinflammatory 
cytokines. Moreover, medicinal plants stimulate the immune system through respi-
ratory burst activity. Hydrogen peroxide & superoxide anions produced as a result of 
respiratory burst activity provide a powerful antimicrobial activity; moreover, these
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ions also influence the release of inflammatory cytokines (Klebanoff 1992; Rieger 
et al. 2010).
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Medicinal plants/ herbs are well known for their immunomodulatory potential. 
Many herbs have immunostimulatory properties while many have anti-inflammatory 
properties. The immunoregulatory action of medicinal plants is dependent on the 
bioactive components. Medicinal plants exhibit anti-inflammatory action by 
inhibiting or activating many immune pathways. One possible mode of action may 
be the inhibition of enzymes involved in the arachidonic acid pathway. Arachidonic 
acid is formed from the lipid of the cellular membranes upon the action of phos-
pholipase A2. This arachidonic acid produces inflammatory mediators. Many anti-
inflammatory drugs block phospholipase A2 which leads to the inhibition of 
arachidonic acid synthesis and ultimately the formation of inflammatory mediators. 
Bioactive compounds present in the plants act as natural inhibitors of phospholipase 
A2 e.g., quercetin, a flavonoid, was the first plant-based inhibitor of phospholipase 
A2. Many other plants such as pimientillo (Xylopia frutescens), onion (Allium cepa), 
garlic (Allium sativum), and turmeric (Curcuna longa) have been reported to have 
phospholipase inhibitory activity. Medicinal plants also inhibit 15-lipoxygenases 
(LOX), an enzyme that is involved in the synthesis of leukotrienes from arachidonic 
acid. Leukotrienes are important mediators of pro-inflammatory and allergic reac-
tions. Inhibition of LOX activity is linked with a decreased production of 
pro-inflammatory cytokines. Ethanolic and methanolic extracts of many plants can 
inhibit 15-LOX activity. Ethanolic extracts of Ajuga genevensis were found to 
inhibit 15-LOX up to 30% while methanolic extracts of Petroselinum crispum 
(parsley) and Apium graveolens (celery) inhibit LOX activity up to 50%. This 
inhibition activity may be attributed to the bioactive components like luteolin, 
luteolin-O-glucoside, caffeic acid, and apigenin present in plants. 

Medicinal plants also exert their immunomodulatory action through the inhibition 
of prostaglandins. Prostaglandins are also known as eicosanoids. These are active 
lipid compounds produced from arachidonic acid and regulate blood flow, blood 
clotting, and inflammation. Cyclooxygenases (COX1 and COX-2) are responsible 
for the synthesis of prostaglandins from arachidonic acid. Non-steroidal anti-inflam-
matory drugs (NSAIDs) are used to block COX’s active sites, lowering the synthesis 
of prostaglandins and thus decreasing inflammation. Bioactive compounds of many 
medicinal plants have NSAID-like modes of action that can block the activity of 
COX. Bioactive compounds, acetyl-β-boswellic acid present in Boswellia carterii 
and betulinic acid present in Glycyrrhiza uralensis, are active inhibitors of COX-1 
while senkyunolide-O present in Ligusticum chuanxiong and cryptotanshinone, 
present in Salvia miltiorrhiza activity inhibit COX-2. Similarly, phenethyl-trans-
ferulate present in Notopterygium incisum and roburic acid present in Gentiana 
macrophylla can actively inhibit both isoforms of COX. 

Plants and their bioactive compounds exert their cellular regulation by activating 
or inhibiting different protein kinases e.g. protein kinase C and mitogen-activated 
protein kinase that are involved in various signal transduction pathways. These 
medicinal plants can directly or indirectly influence the production of 
pro-inflammatory cytokines. The DNA-binding capacity of different transcription



factors (such as activator protein-1 or nuclear factor-kappa B) is also influenced by 
these compounds resulting in the regulation of downstream targeted genes. 
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7.6.3 Immunostimulatory Mode of Action 

Immunostimulant is a term used for any molecule/compound that can stimulate the 
immune system of the organism. This immunostimulation can be specific through 
vaccines and antigens or can be non-specific through drugs or nutrients. Active 
compounds in plants and herbs can stimulate nonspecific immune responses. In the 
last decade, a lot of research has been done on finding the plant/herb or their active 
compounds that can stimulate the immune response in fish so the need for vaccines 
can be avoided. The use of herbal parts and their extracts are beneficial as they are 
cheap, can stimulate nonspecific immune responses leave no memory, are sustain-
able, and have almost no hazardous footprints on the environment. 

Phagocytes play an important role in the non-specific immune response and exert 
an anti-microbial response through NADPH phagocyte oxidase or inducible nitric 
oxide synthase (iNOS) pathways. 

Inducible nitric oxide synthase (iNOS) pathway can be activated by chemokines 
e.g. interferon gamma (IFN-γ) and tumor necrosis factor-α (TNF-α). Upon activa-
tion, this led to the production of reactive nitrogen species by macrophages. In an 
in vitro study with rat hepatocytes, it was reported that IFN-γ and TNF- α (alone or in 
combination with LPS) stimulate the inducible nitric oxide synthase (iNOS) path-
way. Reactive nitrogen species also activate the NF-kB signaling pathway in the 
mononuclear cells of peripheral blood which is an important factor for 
proinflammatory cytokine transcription. 

Another possible mechanism through which medicinal plants activate the 
immune system is through toll-like receptors (TLRs). These are transmembrane 
proteins and are the first to detect parasites, bacteria, fungi, and viruses. Around 
17 TLRs have been identified in teleost. These TLRs may be located in endosomal 
and lysosomal compartments or maybe cell surface orientated. These TLRs are 
associated with adaptor proteins, each of which initiates a different signaling path-
way. Two important adaptors that initiate immune-related signaling pathways are 
TRIF-related adaptor molecule (TRAM) and Myeloid differentiation primary-
response protein 88(MyD88)> The end product of these signaling pathways may 
be the production of cytokines or activation of other pathways like MAPK and 
NF-kB pathway. 

Toll-like receptors recognize the pathogen through pathogen-associated molecu-
lar patterns and activate the respective adaptor protein (either TRAM or MyD88). 
These activated adaptors in turn activate transcriptional factors which bind with the 
DNA and upregulate the synthesis of pro-inflammatory cytokines, interferons, 
chemokines, and anti-microbial peptides (Li et al. 2014). Medicinal plants and 
herbs influence the TLR pathway and stimulate the immune response. 
Supplementing the diet of yellow catfish with Glycyrrhiza uralensis stimulated the



TLR pathway and upregulate the expression of TLRs and MyD88 resulting in more 
production of interleukins. Similarly, supplementing the fish diet with a mixture of 
Chinese herbs resulted in the activation of TLR5 and MAPK pathways. 
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Different medicinal plants have been used in tilapia aquaculture as immune 
stimulants, details of which have been mentioned in Table 7.3. 

7.7 Conclusion 

The present chapter provides in-depth knowledge about the use of medicinal plants 
in tilapia aquaculture. In the light of literature reviewed here, it is suggested that the 
use of medicinal plants provides a sustainable, less costly, and eco-friendly alterna-
tive to antibiotics. Moreover, the use of medicinal plants has positive effects on the 
fish's physiological system by improving gut health, increase in digestive enzymes 
and antioxidants, and stimulating the immune system hence improving growth and 
disease resistance. Most importantly, supplementation of herbs/spices improves feed 
conversion ratio and feed utilization/absorption by fish. However, it must be kept in 
mind that the addition of a large number of medicinal plants may cause unwanted 
effects in fish and these effects may be species-specific. Therefore, the optimal range 
of medicinal plants inclusion and duration of feeding must be determined before the 
addition of that herb in tilapia feed on a large scale. 
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Chapter 8 
Alternative Protein Sources for Sustainable 
Tilapia Farming 

Sherine Ragab, Mohmed Hassaan, Kevin Fitzsimmons, 
and Ehab El-Haroun 

Abstract During the past 20 years, there has been a growing concern about how 
best to replace fish meals with more sustainable, cost-effective, and environment-
friendly ingredients. A global crisis of high feed prices, expansion of the aquaculture 
sector, and the increasing proportion of farmed fish have run into a decrease in the 
supply of fishmeal products. Therefore, scientists have redoubled efforts to discover 
alternatives and more renewable ingredients for aquafeeds worldwide. The goal has 
been to protect ecosystems and increase economic viability based on enhanced 
efficiency of production facility outputs and nutritional efficiency. A key challenge 
though is sourcing sustainable, renewable protein ingredients. This chapter reviews 
the advances, novel ingredients, and new techniques that serve the mission for the 
future of aquafeed research on alternatives for fishmeal to achieve global aquaculture 
sustainability, with a focus on partial or full replacement of fishmeal, especially in 
the feed of tilapia. 

Keywords Aquaculture · Sustainability · Plant-based protein · Animal-based 
Protein 

S. Ragab 
Ministry of Agriculture, Giza, Egypt 

M. Hassaan 
Animal Production Department, Fish Nutrition Research Laboratory, Faculty of Agriculture, 
Benha University, Banha, Egypt 

K. Fitzsimmons 
Department of Soil Water and Environmental Science, College of Agriculture and Life 
Sciences, University of Arizona, Tucson, AZ, USA 

E. El-Haroun (✉) 
Fish Nutrition Research Laboratory, Faculty of Agriculture, Cairo University, Giza, Egypt 

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023 
S. H. Hoseinifar, H. Van Doan (eds.), Novel Approaches Toward Sustainable Tilapia 
Aquaculture, Applied Environmental Science and Engineering for a Sustainable 
Future, https://doi.org/10.1007/978-3-031-38321-2_8

201

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-38321-2_8&domain=pdf
https://doi.org/10.1007/978-3-031-38321-2_8#DOI


202 S. Ragab et al.

8.1 Introduction 

The world population is predicted to reach 9.8 billion by 2050, which consequently 
will increase our need for protein by 30%–80% (Hua et al. 2019). However, the 
aquaculture industry faces big challenges to provide balanced amino acid proteins 
and other essential nutrients (SOFIA 2020; Barrows et al. 2007). Aquaculture will be 
considered a major source of animal protein in the near future to satisfy the 
nutritional needs of a rising human population (Gamboa-Delgado and Marquez-
Reyes 2018). Already, animal nutrition plays a main role in aquaculture (Kaushik 
et al. 2011). Feed costs make up a significant fraction of total fish production costs, 
representing 40–70% of operating costs (USB 2008). Protein is the most essential 
nutrient needed for growth to be efficiently utilized and is relatively expensive. Thus, 
fishmeal (FM) has been considered an essential of aquafeeds, supplying over 60% of 
the protein total. Therefore, it has been the most costly ingredient in aquafeeds and 
has been the favorite dietary protein source for many fish feeds due to its essential 
amino acid profile, vitamin-mineral content, high digestibility, and palatability 
(Miles and Chapman 2006). The production of fishmeal fluctuates depending on 
several items including global environmental conditions including El Niño—La 
Niña oscillation, government fishing subsidies, and availability of fishing crews. 
The general situation for the last 30 years has been decreasing fishmeal supply as 
stocks are overfished and fishers resort to capturing juveniles of non-forage fishes., 
Therefore, the development of alternative sources of protein has become a priority of 
research in aquaculture. Affordable and sustainable alternative ingredients would 
compensate for the shortages of fishmeal and fish oil and help to achieve aquaculture 
sustainability and increase industry profitability (Ayadi et al. 2012; Nathaly et al. 
2018; Alsager et al. 2018). The development of alternative ingredients would also 
address the competition for limited feed resources with other animal livestock, 
especially in the poultry industry (Hardy 2010). The aquafeed industry currently 
relies on derived ingredients to formulate cost-effective diets with a target by 2025 to 
supply 40 million tons of aquafeeds (Aas et al. 2019; Willora et al. 2020; Hua et al. 
2019). Hence, FM is increasingly replaced with ingredients such as plant and 
terrestrial animal proteins, agriculture by-products, and microbial proteins to par-
tially or replace FM without compromising the growth performance of the fish or 
feed utilization efficiency. In addition, the industry has learned to remove many 
Anti-Nutrition Factors in certain animal and plant-based ingredients by soaking, 
cooking, fermentation, chemical and enzyme treatment, and deficiency of particular 
amino acids by using additives (Archit et al. 2019). In this chapter, we review the 
beneficial use of alternative protein sources in aquafeeds for a more sustainable and 
secure future for the aquaculture industry, with the potential to partially or fully 
substitute for fish feed, especially in the feed of tilapia (Table 8.1).
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8.1.1 Animal-Based Protein Sources 

Animal by-products are well known as valuable sources of protein in aquafeeds and 
are recognized for their high content of protein, comparable amino acid profiles, 
ready availability within the market, and competitive price (Hassaan et al. 2018; 
Moutinho et al. 2017). The types of animal protein mainly are meat and bone meal 
(MBM), poultry by-product meal (PBM), feather meal, and insect meal (Bureau 
et al. 2000; Metts et al. 2011; Wu et al. 2018). 

8.1.1.1 Meat and Bone Meal 

Meat and bone meal (MBM) is typically 48–52% protein, 33–35% ash, 8–12% fat, 
and 4–7% water. Meat and bone meal (MBM) has several advantages including 
(i) high protein content, minerals, good amino acid profile, lack of anti-nutritional 
factors, and a reasonable price usually less than fish meal (Ferouz, et al. 2012; 
Suloma et al. 2013). The nutritive value of meat and bone meal depends on the 
quality of raw materials and the processing techniques (Kureshy et al. 2000). 
However, the occurrence of bone, high levels of ash and mineral content can limit 
the amount used in fish diets (Bureau et al. 1999). A recent research stated that meat 
and bone meal could positively substitute for fish meal for up to 75% of diets for 
Mozambique tilapia or seabream without compromising performance (Gomaa and 
El Moghazy 2014; Davies et al. 2020). In addition, Yang et al. (2004) and Hu et al. 
(2008) found that MBM supplemented with lysine and methionine successfully 
replaced up to 50% of the fishmeal enhancing growth performance for gibel carp 
(Carassius auratus gibelius). 

8.1.1.2 Poultry by-Products 

Poultry by-product meal (PBM) is often considered the most important animal 
protein source for replacing fish meal (Meeker and Hamilton 2006). The AAFCO 
(USA) defines poultry by-product meal as the ground, rendered, clean parts of the 
carcass of slaughtered poultry such as necks, heads, feet, undeveloped eggs, giz-
zards, and intestines (provided their content is removed), exclusive of feathers 
(Watson 2006). Whole poultry carcass meal can also be obtained from culled laying 
hens (spent hen meal), notably in areas where there is no market for culled hens 
(Hertrampf and Piedad-Pascual 2000). Poultry by-product meal (PBM) has been 
shown to substitute for 80–90% fishmeal in fish feed. With high protein content 
(55–75%), and an essential amino acids profile similar to FM’s AAs profile, except 
for lower lysine and methionine levels, PBM can lower costs in fish diets (Gupta 
et al. 2020; Gonzalez-Rodrıguez et al. 2016; Heuzé et al. 2015). However, the 
composition of PBM depends on processing conditions and drying techniques, and 
the original raw materials (Johnson and Parsons 1997). Previous trials have been



conducted to investigate the effects of replacing FM by PBM for several fish species 
including Nile tilapia, redbelly tilapia (Coptodon zillii), and hybrid striped bass 
(Metwalli 2008; El-Husseiny et al. 2006; Yones and Metwalli 2015; Dawood et al. 
2020; Yildrim et al. 2009; Rawles et al. 2009). Tacon et al. recommended that 
10–30% of PBM could replace FM depending on the type of fish and processing 
technique. Recent research conducted by Yones and Metwalli (2015) found that up 
to 100% of FM could be replaced by PBM with positive impacts on the growth of 
O. niloticus. El-Haroun and Burea (2007); El-Haroun et al. (2009) found using blood 
meal, or a combination of animal protein including PBM up to 30% in rainbow trout 
diets, could replace fish meal with growth matching the control diet with fish meal as 
the main source of protein. Furthermore, Dawood et al. (2020) found that PBM 
could replace up to 20% of FM content, without any negative impacts on the 
performance and feed utilization efficiency of Nile tilapia. NRC (2011) concluded 
that two main factors could limit the high inclusion of PBM in aquatic feeds; (i) high 
lipid content, and (ii) the deficiency of DHA and EPA in lipids of PBM. 
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8.1.1.3 Feather Meal 

Feather meal (FEM) is a by-product of poultry processing, made from poultry 
feathers by partially grinding them under pressure and heat, and then additional 
grinding and drying. Although total protein content levels are high, the bioavailabil-
ity of this nitrogen may be low due to the difficulty of digestion and assimilation 
from the presence of beta-keratin and fibrous fiber components (Adelina et al. 2019). 
This has been a constraint of using FEM in aquafeeds. Several protocols and 
solutions have been developed to mitigate these challenges and enhance- diet 
quality, flavor, and improvement in terms of digestibility (Nursinatrio Nugroho 
2019) including (i) hydrolysis and; (ii) fermentation techniques improving protein 
digestibility and palatability (Isika et al. 2006; Madigan and Martinko 2005). 
Laporte et al. (2007) and Davies et al. (2009) demonstrated that using these tech-
niques improved the coefficients of crude protein (CP) from 67 to 87% indicating a 
significant improvement in the digestibility of feather meal. These enhancements 
could be attributed to good manufacturing techniques and the optimization of the 
processing conditions (Poppi et al. 2011). Thus, the inclusion of feather meals in 
diets can decrease the cost of feed and thus help in the exploitation of these 
by-products (Bishop et al. 1995). Kumari and Sundarabarathy (2011); Suloma 
et al. (2014) and Abwao et al. (2017) found that FEM could replace up to 65% of 
FM in diets for Nile tilapia without negative impacts on performance or feed 
utilization. Similarly, Farahiyah et al. (2018) and Yong et al. (2018) found that 
FM could be replaced at 15–30% with feather meal without compromising the 
growth performance, feed utilization, and protein efficiency in juvenile red hybrid 
tilapia and Nile tilapia. 

Hydrolyzed feather meal (HFM) is another type of feather meal with keratins 
being hydrolyzed, that is commonly used due to its high crude protein content (74%– 
91%) (Campos et al. 2017; Divakala et al. 2009; Munguti et al. 2014; Suloma et al.



2014) and is highly digestible ~80% (Davies et al. 2020). Recent research confirmed 
this idea as Yu et al. (2020) and Suloma et al. (2014) found that up to 25–45% or 
66%, respectively, of FM, could be replaced by HFM without affecting growth rate 
or feed utilization on O. niloticus. Nursinatrio Nugroho (2019) and Yones and 
Metwalli (2015) reported that 12% of hydrolyzed feather meal incorporated into 
red tilapia and juvenile Nile tilapia diets enhanced growth compared to the control 
with fish meal as the sole source of protein. 
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8.1.1.4 Insect Meal 

Historically, the European Union, the US, and other countries had strict regulations 
regarding insects and insect parts allowed in feed ingredients or finished feed. With 
the advent of farmed insect meals specifically as an ingredient, regulations are being 
rewritten. In 2021, there are about ten insect species that have received approval for 
use in animal feeds in major markets and are considered non-pathogenic (Wang and 
Shelomi 2017). The most heavily researched are the black soldier fly, the common 
housefly, and the yellow mealworm. Larval meals from these as well as crickets, 
grasshoppers, and silkworms all have high levels of crude protein (similar to 
soymeal and fishmeal) and lipids. Insect meals show promise as an ingredient in 
aquafeed due to their increasing availability and superior protein content of up to 
60–70%, depending on the stage and species of insect (Prachom et al. 2021) and 
balanced amino acid profiles, vitamins, and minerals similar to that of FM (Barroso 
et al. 2014; Henry et al. 2015; Gasco et al. 2019). Their amino acid composition is 
comparable to FM and protein digestibility is high, and these can substitute for 
25–100% of soybean meal or fishmeal protein in aquafeeds. High oil content in some 
insect meals can be extracted to produce another value-added product, biodiesel; and 
the defatted insect meals have protein content even higher than soybean meal or 
fishmeal. Several insect meals are recognized for providing high productivity and 
low FCR (Berggren et al. 2019; IPIFF 2018; Bruni et al. 2018). The main challenge 
of using certain insect meals is their unfavorable fatty acids (FA’)s profiles, which 
can be altered by the feed offered to the insect larvae or by removal of FAs using 
different processing and drying techniques (Lock et al. 2016; Ferrer et al. 2019). 

Defatted insect meal can contain up to 83% crude protein (Makkar et al. 
2014a, b). Previous studies confirmed that insect meals can partially or completely 
replace FM (Silvia et al. 2019; Tran et al. 2015; Henry et al. 2015). Belghit et al. 
(2019) and Borgogno et al. (2017) found that 100% of fish meal could be replaced 
with different types of insect meals that could help to boost growth performance, 
disease resistance, and immune response (Ido et al. 2019). Confirming this hypoth-
esis (Gasco et al. 2016; Iaconisi et al. 2018; Magalhães et al. 2017; Renna et al. 2017; 
Bruni et al. 2018; Devic et al. 2018; Wang et al. 2017) found that up to 70% 
substitution of fish meal with the black soldier fly meal obtained growth performance 
and feed efficiency matching basal diets with the fish meal as the main source 
of protein. Kurniawan et al. (2018) reported using BSF that up to 14% replacement 
of fish meal improved growth and FCR (P ≤ 0.05) in Nile tilapia with replacement of



fish meal in the control diet. Successful 75% FM substitution with Musca domestica 
(MD) was reported in Nile tilapia (Ogunji et al. 2007) and in hybrid tilapia up to 30% 
(Yildirim-Aksoy et al. 2020). The sum of this research highlights the importance of 
FM replacement with BSF and variation with larval meal level depending on fish 
species and processing techniques (Henry et al. 2015). 
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8.1.2 Plant-Based Protein Sources 

Modified plant proteins treated with exogenous enzymes or solid-state fermentation 
(SSF) are finding their way into aquafeeds, as a complete or partial replacement for 
FM due to their low cost and increasing availability. Modified plant protein sources 
including soybean oil meal (SBM), sunflower meal, and cottonseed meal are con-
sidered promising ingredients to partially or totally replace fish meal in aquafeeds 
(Puja et al. 2019). The main challenges of using these untreated ingredients are 
(i) low initial protein content, (ii) high fiber content (iii) the presence of 
antinutritional factors (ANFs), (iv) unbalanced profile of EAA, and (v) deficit of 
essential AAs lysine and methionine, and low palatability which negatively impact 
their use in fish diets (Henry et al. 2015; Naylor et al. 2009; Oliva-Teles et al. 2015). 
Different strategies are used in ingredient processing to mitigate and avoid the 
negative impacts of ANF on plant ingredients (Puja et al. 2019). Soaking, heat 
treatment, fermentation, and enzymatic treatment are available as detoxification 
methods (Aguihe et al. 2017). Modified plant proteins are providing partial or total 
replacement of FM in many fish species (Hassaan et al. 2019; Bowyer et al. 2020), 
based on new advances in feed technology processing and gene technology. Many 
studies to evaluate alternatives to FM have been conducted with plant proteins, 
which have achieved success in fish diets (Glencross et al. 2011; Ngo et al. 2016; 
Agbo et al. 2015; Al-Thobaiti et al. (2017). These studies reported the substitution of 
FM by a mixture of plant protein sources (soya bean meal, cottonseed meal, 
groundnut cake, corn gluten meal, and wheat gluten meal) or using new technology 
including solid state fermentation (SSF) was able to replace FM (50%) in the diets 
for Nile tilapia (O. niloticus) and 75–100% in common carp and seabream respec-
tively without affecting growth performance or feed utilization. The results showed 
that fish meals can be replaced up to 100% by a mixture of plant proteins without a 
negative impact on growth, feed utilization, and fish health. 

8.1.2.1 Soybean Meal 

Soybean meal (SBM) is certainly the most common plant protein source to replace 
FM protein in fish diets with its high protein content (45–55%) (Ozkan et al. 2015). 
A challenge of using SBM in fish diets is ANFs (Cabral et al. 2011; Gerile and 
Pirhonen 2017). To maximize the incorporation of SBM in fish diets it is necessary 
to eliminate or inactivate its ANFs content (Sales 2009). Different processing



techniques have been adapted to remove ANFs to adjust and enhance the nutritive 
value of SBM including soaking, solvent-extracting, or fermenting processes (Hotz 
and Gibson 2007). Selective breeding and advanced genetic tools have been 
employed to increase the level of essential AAs that were otherwise limited in 
older soybean varieties to mimic FM (Llanes and Toledo 2011; Hassaan et al. 2015). 
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Feeding trials with several species of fish reported that improved versions of SBM 
could enhance performance, digestibility, and immune function compared to tradi-
tional SMB and FM (Bansemer et al. 2015; Ferrara et al. 2015; Liu et al. 2017; 
Grisdalle-Helland et al. 2002; Bonaldo et al. 2008; Zhou et al. 2011). Choi et al. 
(2019) reported that fermented SBM was used to replace 40% of FM without a 
negative impact on the growth performance and feed utilization of rainbow trout. Ye 
et al. found that up to 75% of FM could be replaced by a complementary mixture of 
plant protein (soybean meal, corn gluten meal, and cottonseed meal) without signif-
icant differences in growth and feed utilization of hybrid Nile tilapia. Also, 
Obirikorang et al. (2020) found that up to 42% of fish meals could be replaced 
with SBM in Nile tilapia and up to 30% in hybrid tilapia. However, as the price for 
fermented SBM is increasing there is interest in less-traditional plant protein sources 
to improve the sustainability of aquafeeds, aquaculture, and farmers’ profitability 
(Fawole et al. 2016). 

8.1.2.2 Cottonseed Meal (CSM) 

The more common end-efficient technique used for the production of cottonseed 
meal is the extraction of oil from cottonseed meal. Cottonseed meal (CSM) has been 
used as an alternative ingredient to both fishmeal and soybean meal due to its lower 
cost, being readily available in some countries, particularly in the USA, China, India, 
and Egypt. Cottonseed meal has advantages including (i) nutritive value, (ii) good 
palatability. (iv) low cost and (vi) good protein content which is variable (23–53%) 
contingent on the processing (Yue and Zhou 2008; Ng and Romano 2013; El-Saidy 
and Saad 2011). The main challenge of using cottonseed meal in aquafeed could be 
summarized: (i) low levels of EAAs such as methionine and lysine., (ii) CSM 
contains high concentrations of the ANFs phytic acid and gossypol, and (iii) CSM 
contains a toxic pigment that decreases lysine availability (Ayadi et al. 2012). 
Previous trials reported that CSM was used to replace FM and SBM in the diets of 
O. niloticus without effects on growth performance (El-Saidy et al. 2012; Agbo et al. 
2011). Sun et al. (2015) reported that CSM replaced up to 16% of FM in a feed trial 
for black seabream without negative effects on performance and feed conversion 
ratio. Additional research proved the benefits of using CSM to replace FM for hybrid 
tilapia and Nile tilapia (Yue and Zhou 2008; Soltan et al. 2015; El-Saidy and Saad 
2011).
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8.1.2.3 Sunflower Seed 

The nutritive value of sunflower meal is similar to that of soybean meal and contains 
high amounts of sulfur amino acids. However, it contains relatively high amounts of 
crude fiber, low lysine content, and contains high ANFs protease and arginase 
inhibitors which have limited the incorporation of CSM in aquafeed (Gonzalez-
Salas et al. 2014; Ochieng et al. 2017). Previous research concluded that the quality 
and quantity of protein in the sunflower meal depended on the oil extraction 
technique. 

Ochieng et al. (2017) reported that up to 25% of FM could be replaced with CSM 
in Nile tilapia diets without (P ≥ 0.05) impacting growth. Soltan et al. (2015) found 
that up to 25% of FM could be replaced by fermented sunflower meal for Nile tilapia, 
without negative impacts on performance, feed consumption, or protein efficiency 
ratio. Abdel et al. (2008) confirmed the possibility of substituting up to 30% of soy 
protein with sunflower and sesame seed for Nile tilapia without impacts on perfor-
mance and carcass composition. However, the high inclusion of sunflower could 
affect protein conversion in the fish. In addition, (Abdel et al. 2010; Mugo-Bundi 
et al. 2013) found that the protein level in the body composition tended to decrease 
consistently with the high ash and crude fiber content in the diets. When testing 
the cumulative presence of sunflower meal up to 100% replacement, increasing the 
inclusion of CSM led to reduced digestibility and consequently a decrease in the 
growth rate of fish. 

8.1.2.4 Rapeseed or Canola Seed 

The chemical composition of rapeseed oil meal or canola protein concentrate (CPC) 
contains high levels of crude protein equal to FM with high content of lysine and 
methionine compared to SBM (Gonzalez-Salas et al. 2014). Friedman (1996) stated 
that the amino acid profile of canola protein is superior compared to many other plant 
proteins. However, some disadvantages limit the inclusion of rapeseed meals in both 
fresh and marine water species such as the high amount of fiber and ANFs including 
glucosinolates, tannins, and phytate (Ayadi et al. 2012). Burr et al. (2013) reported 
that for Salmo salar, there was not a significant difference in growth comparing the 
salmon fed the 0% CPC and the 10% CPC diets (p > 0.05). Canola protein 
concentrates significantly depressed growth when included in the diet at 20%, but 
not at 10%, indicating that canola could be used as a minor feed ingredient when 
available. The nutritive value and quality of canola meal rely on the intensity of heat 
and drying techniques used within oil extraction. However, excessive heating during 
the processing leading can lead to the reduction of protein digestibility and amino 
acid availability, especially lysine (Ayadi et al. 2012). An early trial conducted by 
Lim et al. (1997) found that rapeseed meal protein was a cost-effective replacement 
for FM. Soares et al. (2001) stated that rapeseed meal could substitute for 49% of 
SBM in tilapia diets. Mohammadi et al. (2019) found that canola meal can replace up



to 35% of SBM or FM for hybrid tilapia without any impact on the growth of fish. 
Plaipetch and Yakupitiyage (2014) found that up to 50% of yeast-fermented canola 
meal in O. niloticus could be included in a diet without a negative impact on growth, 
survival, or feed consumption. Though, a high inclusion level of rapeseed meal up to 
75–100% had an adverse effect on nutrient digestion and protein utilization effi-
ciency of Nile tilapia. 
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8.1.2.5 Lupin Meal and Pea Meal 

Lupin meals (LM) are recognized to be a unique replacer of FM or SBM due to their 
high content of protein (up to 45%), balanced nutritional characteristics, palatability, 
high digestibility, and stable price in the market (Bartkiene et al. 2015; Rajeev and 
Bavitha 2015; Lucas et al. 2015). The major concern about the inclusion of lupins in 
aquafeeds is the presence of some ANFs, which can reduce nutrient availability and 
digestibility (Petterson 2000; Francis et al. 2001). Burel et al. (2000) found up to 
45% extruded lupin meal diets could substitute for fishmeal with positive support of 
the growth performance of rainbow trout, and turbot (Psetta maxima). Abdel-
Moneim Yones (2010) found that LM succeeded to replace FM in hybrid red tilapia 
without affecting growth performance. The appropriateness of lupin meal in 
aquafeeds could have a positive effect on the fish diet, as it would alleviate the 
dependence on imported plant-based proteins (Anwar et al. 2020). Furthermore, 
Vo-Binh et al. (2015) reported that fermented lupin meal succeeded to replace 70% 
of FM without significant changes in performance and FCR compared to the basal 
diets in Nile tilapia containing FM as a main source of protein. The findings of these 
results stated that FM and soybean meal could be replaced by lupin meal without 
affecting performance, survival, and nutrient utilization efficiency (Pham et al. 
2020). 

Øverland et al. (2009) reported that pea protein concentrate was shown to be a 
promising new protein ingredient for salmonids and could replace 20% of high-
quality fish meal protein in the feed without any adverse effect on growth perfor-
mance, carcass composition, or histology of the gut. Schulz et al. (2007) reported 
that for juvenile Nile tilapia inclusion of 30% protein derived from pea protein 
isolate in the diet resulted in a growth performance (in terms of WG and SGR) that 
did not differ significantly from the diet with 100% of protein derived from FM. 

8.1.2.6 Linseed Meal 

Linseed meal has been recognized for its high protein content (30%), after the 
extraction of its oil (Oomah and Mazza 1993). However, it has some components 
limiting its use in fish nutrition (i) high fiber content (37%) and its water retention 
capacity are considered responsible for the depletion of growth that reduces food 
intake (Ndou et al. 2017; Goulart et al. 2015), and (ii) trypsin inhibitor and total 
polyphenolic compounds which may impair the assimilation and availability of the



nutrients (Soltan 2005; Francis et al. 2001). The high fiber content could contribute 
to a high capacity to engross water and increase volume thereby limiting intestinal 
topography capacity and degrading the nutrients (Eastwood et al. 2009). The 
application of protein isoelectric precipitation is a solution to mitigate the ANFs, 
increase the incorporation of linseed in aquafeeds and increase protein concentration 
and eliminate the antinutrients components in fish diets, (Lovatto et al. 2014, 2015, 
2016). Soltan (2005) compared raw LSM with roasted LSM and autoclaved LSM as 
substitutes for SBM in tilapia diets. The trials demonstrated that there was no 
significant difference in growth or FCR with up to 25% replacement of SBM with 
roasted or autoclaved LSM but a 7% decrease in feed cost. At the level of 75% 
replacement, there were significant decreases in growth and FCR, but feed costs 
were decreased by 18%. Pianesso et al. (2020) found that up to 40% linseed protein 
concentrate (LPC) could replace FM in silver catfish without influence on growth 
and nutrient efficiency. Wei et al. (2018) found that the replacement of fish oil with 
linseed oil in the fish feed did not affect performance, SGR, feed efficiency, or 
survival rate in Nile tilapia. Hanafy (2006) tested several diet formulations including 
LSM and concluded that soybean could be completely replaced by linseed in Nile 
tilapia diets without adverse effects on the growth rate when diets supplemented with 
Yucca schidigera as an additional nutrient and functional ingredient source. 
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8.1.3 Microbial Biomass and Macro-Algae (Seaweeds) 

Recently feed nutritionists are examining different sources of microbial proteins 
(bacteria, algae, and yeast) as novel ingredients for fish (Pacheco-Vega et al. 2018). 
Single-cell proteins (SCP) have the highest protein content (65–85%) and contain 
balanced essential amino acid profiles. Moreover, SCP products are rapidly increas-
ing in volume, renewable, and constitute a variety of compounds that can be blended 
to substitute for protein sources such as FM and SBM (Intraco 2020; Sharif et al. 
2021; Hua et al. 2019; Jones et al. 2020). The quality and quantity of single-cell 
proteins vary widely due to feed sources, type of bacteria, algae or yeast, conditions 
of fermentation, and processing technique (Øverland et al. 2010). Previous research 
conducted by (Zamani et al. 2020; Gamboa-Delgado et al. 2016; Zhao et al. 2015; 
Rosales et al. 2017; Tlusty et al. 2017; Kalhoro et al. 2018; Sun et al. 2015; Chen 
et al. 2020) found that SCP could replace FM of SBM up to 60% in O. niloticus diets 
without effects on growth rate feed consumption. Likewise, Aas et al. (2006) found 
that yeast biomass could be included in 30% of the diet instead of fishmeal with no 
effect on fish growth rate and nutrient absorption. The benefits of microalga biomass 
as a feed additive or substitute for FM or SBM in tilapia fish feed have been 
documented with positive impacts on growth and feed efficiency (Gamboa-Delgado 
and Marquez-Reyes 2018; Sarker et al. 2018). The inclusion of Spirulina up to 10% 
has been reported as a feasible alternative to enhance the nutritional value in the feed 
of Nile tilapia (Rosas et al. 2019; Van Vo et al. 2020). Also, up to 30% replacement 
of fish meal by Arthrospira maxima without negative impact on the performance of



red tilapia has been reported (Rincón et al. 2012). Badawy et al. (2008) reported that 
the substitution of up to 50% FM with Chlorella sp. and Scenedesmus sp. enhanced 
the growth of Nile tilapia. Replacement of fish meal by Spirulina platensis at up to 
100% did not cause negative effects on growth in various fish species Nandeesha 
et al. (2001). 
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The use of seaweed as an aquaculture feed ingredient has demonstrated positive 
responses to enhance growth performance, feed utilization, enhance serum param-
eters, immune responses, hematological parameters, and disease resistance of many 
fish species; gray mullet (Mugil cephalus), rainbow trout, Asian sea bass (Lates 
calcarifer), Nile tilapia, rabbitfish, red tilapia, and Atlantic salmon (Zeraatpisheh 
et al. 2018; Akbary and Aminikhoei 2018; Akbary et al. 2018; Yangthong et al. 
2016; Meurer et al. 2009; Hussein 2017; Ashour et al. 2020; Doan et al. 2017; 
Yengkhom et al. 2018; Hosseinifer et al. 2020; Yengkhom et al. 2018; Abdel-Aziz 
and Ragab 2017; El-Tawil 2010; Collins et al. 2019), without any negative effect on 
fish. Pratiwy et al. (2018) found that the inclusion of 8% Sargassum meal enhanced 
the growth of Nile tilapia. Younis et al. (2018) reported that up to 20% of red algae 
inclusion in the diet improved the performance, feed utilization, and body compo-
sition of tilapia. 
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Chapter 9 
Sustainable Tilapia Farming, the Role 
of Culture Systems 

Hien Van Doan 

Abstract Considering environmental sustainability and vulnerability to the effects 
of climate change on fish production, sustainable and adaptable aquaculture systems 
are necessary”. Biofloc technology (BFT) and recirculating aquaculture systems 
(RAS) are eco-friendly, water efficient, highly productive intensive farming systems, 
which are not associated with adverse environmental impacts, such as habitat 
destruction, water pollution and eutrophication, biotic depletion, ecological effects 
on biodiversity due to captive fish and exotic species escape, disease outbreaks, and 
parasite transmission. Moreover, BFT and RAS operate in an indoor controlled 
environment, and thus, are only minimally affected by climatic factors, including 
rainfall variation, flood, drought, global warming, cyclone, salinity fluctuation, 
ocean acidification, and sea level rise. This chapter provides into insight the appli-
cation of these techniques for sustainable tilapia production, which focuses on their 
effects on growth performance, immune response, and disease resistance. 

Keywords Tilapia · Sustainable · Biofloc technology · RAS 

9.1 Introduction 

Aquaculture, is one of the fastest food-producing sectors, with an average annual 
growth rate of 5.3% during the period 2001–2018, and production has increased by 
over 600% since 1990 (FAO 2020b). Global aquaculture production achieved 82.1 
million tons in 2018, of which inland aquaculture produced 51.3 million tons (62%), 
while coastal and marine aquaculture1 reached 30.8 million tons (38%) (FAO 
2020b). Aquaculture is performed in various environments and regions, employing 
various technologies, and cultured systems, and raising many species (Ahmad et al. 
2022). Asia accounts for around 90% of global aquaculture production (FAO 
2020a, b), and aquaculture, with its expansion outpacing global population growth,
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is playing an important role in boosting food production for contribution to food 
security and human nutrition (Pradeepkiran 2019). Although the expansion of 
aquaculture, the challenge of feeding a growing global population, which is expected 
to reach 9.7 billion by 2050 (Bahar et al. 2020), is a vivid reality, which is central in 
global political and scientific debates (Berners-Lee et al. 2018). Because of popula-
tion growth and stagnation of capture fisheries, global aquaculture production is 
challenged to achieve remarkable targets, estimated to possibly reach 109 million 
tons in 2030 (FAO 2020a, b), and 140 million tons in 2050 (Waite et al. 2014).

230 H. Van Doan

To achieve the required further increase in global seafood production, aquaculture 
is envisaged as the only available solution, but it could bring additional adverse 
environmental effects if its expansion is not based on sustainable farming systems 
(Ahmed and Turchini 2021). Accordingly, the rapid growth of aquaculture has been 
linked to raising concerns about its environmental sustainability (Ahmad et al. 2022; 
Tom et al. 2021). Broadly, aquaculture has already been increasingly associated with 
a great variety of negative environmental impacts, including habitat destruction, 
water pollution and eutrophication, biotic depletion, disease and parasite transmis-
sion, and greenhouse gas (GHG) emissions (Ahmed et al. 2019; (Carballeira Braña 
et al. 2021; Adegbeye et al. 2019; Kosten et al. 2020). For example, some intensive 
aquaculture practices have been reported to cause antibiotic pollution, eutrophica-
tion, land occupation, and other environmental hazards (Dauda et al. 2019). The 
invasion of exotic fish species in some aquaculture systems has been reported to 
have potentially negative effects on biodiversity and the ecosystem; (Banha et al. 
2022; Kiruba-Sankar et al. 2018). Freshwater aquaculture, particularly tilapia, has 
been reported to cause adverse effects on water resources with a broad range of 
impacts on the biodiversity, ecosystems, and societies (Bashir et al. 2020; Kaleem 
and Bio Singou Sabi 2021; Moyo and Rapatsa 2021). Tilapia aquaculture has also 
been censured for a variety of environmental issues, including water pollution and 
pathogen transmission to wild fish (Shaaban et al. 2021). The environment, on the 
other hand, has a series of impacts and imposes certain limitations on aquaculture, 
with climate change posing a significant threat to increasing global fish production 
(Baag and Mandal 2022; Maulu et al. 2021). A wide range of climatic factors, such 
as rainfall, flood, drought, cyclone, global warming, sea surface temperature change, 
salinity fluctuation, ocean acidification, and sea level rise have a significant impact 
on aquaculture practices (Ahmed et al. 2019). In essence, future climate change will 
certainly have adverse impacts on sustainable increasing aquaculture production 
(Ahmed et al. 2019; Boyd et al. 2020). It is therefore necessary to develop and 
implement adaptation strategies to cope with these challenges. 

Considering the environmental concerns and impacts, as well as the vulnerability 
to the effects of climate change and other environmental variables of fish production 
in aquaculture, one of the potential and increasingly proposed adaptation strategies is 
the implementation of sustainable aquaculture systems, such as BFT and RAS. 
These systems allow for rising fish in a land-based, indoor, and controlled environ-
ment to minimize the direct interactions between the production processes and the 
environment (Ahmed and Turchini 2021; Khanjani et al. 2022). They offer benefits



in improving aquaculture production that could contribute to the achievement of 
sustainable development goals (Bossier and Ekasari 2017; Nguyen et al. 2021). This 
technology could result in higher productivity with less impact on the environment. 
Furthermore, biofloc systems may be developed and performed in integration with 
other food production, thus promoting productive integrated systems, aiming at 
producing more food and feed from the same area of land with less input (Nisar 
et al. 2022). The chapter aims to address different aspects of BFT and RAS as 
alternatives for sustainable tilapia production. 
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9.2 Biofloc Technology 

9.2.1 History of Biofloc Technology (BFT) 

The biofloc system (BFT) evolved as an alternative to the conventional aquaculture 
system that is used in shrimp and tilapia productions (Ulloa Walker et al. 2020). It 
originated in the 1970s at the French Research Institute for Exploitation of the Sea 
(IFREMER) with Gerard Cuzon as the pioneer (Emerenciano et al. 2012; Devi and 
Kurup 2015). The BFT was then widely applied in commercial shrimp farming 
(Samocha et al. 2019). In the 1990s, different studies at pilot and commercial scales 
were conducted in the USA with penaeid shrimp led by J. Stephen Hopkins and with 
finfish at the Technion-Israel Institute of Technology led by Yoram Avnimelech 
(Emerenciano et al. 2013). In the mid-2000s, several studies on penaeid shrimp were 
conducted at the Federal University of Rio Grande-FURG (Brazil) led by Wilson 
Wasielesky and the Texas A&M University (Corpus Christi Campus, USA) led by 
Tzachi Samocha. After that, there was a significant increase in the number of 
scientific publications about biofloc technology worldwide. The number has 
increased from less than 10 in 2009 to more than 100 publications in 2018, with 
studies conducted mainly in Brazil, China, the United States of America, Mexico, 
and India (Ulloa Walker et al. 2020), helping to strengthen the technology and boost 
the industry. Another important factor for such progress was the wide range of 
courses and lectures offered in both scientific and commercial events for the scien-
tific community, academia, and aquaculturists. However, despite the progress and 
benefits of BFT as reported by the scientific community and academia, there is still 
room for its commercial expansion. For example, in Indonesia, it is estimated that 
only 20–25% of shrimp production has occurred using biofloc technology (Thong 
2014). Among the reasons behind such a scenario are the higher implementation and 
production costs compared to traditional land-based systems, and the complexities in 
the management and implementation of the technology, which requires greater 
technical knowledge and permanent monitoring of water quality (Avnimelech 
2015).
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9.2.2 Principles of Biofloc Technology 

The BFT operates on the principle of nutrient recycling by maintaining a higher 
carbon: nitrogen (C: N) ratio above 15 to stimulate the mass growth of heterotrophic 
bacteria (Guo et al. 2020). Higher C: N ratio is maintained when more carbon 
sources, such as molasses, cassava, hay, sugarcane, starch, wheat bran, cellulose, 
etc., are sprayed on the surface of pond water with continuous aeration (Ogello et al. 
2021). Under favorable BFT conditions, up to 0.5 g of heterotrophic bacterial 
biomass g-1 substrate of carbon can be produced (Eding et al. 2006). With the 
information that 1 g of carbon produces 0.5 g of bacteria, farmers can estimate 
quantities of floc in the culture systems (Nisar et al. 2022). The biofloc process 
stimulates the natural growth of macro-aggregates of organisms that enhance self-
nitrification in the culture water (Jamal et al. 2020). 

In outdoor BFT systems, the photosynthetic pathway that produces algae nor-
mally precedes the bio-flocking process (Ogello et al. 2021). The algae provide a 
substrate to which the bioflocs attach and are usually referred to as green bioflocs 
(Ahmad et al. 2017; Khanjani and Sharifinia 2020). Under indoor conditions, 
bioflocs are mainly bacteria and are referred to as brown bioflocs (El-Sayed 2021; 
Emerenciano et al. 2021). With the addition of an adequate carbon source bacterial 
floc stimulates a second production line that involves the degradation of organic 
wastes by bacteria to produce billions of bacterial cells under optimum aeration 
conditions (Khanjani et al. 2022). During this process, autotrophic and heterotrophic 
bacteria proliferate and attract billions of other cells including diatoms, fungi, algae, 
protozoans, and various types of plankton (Avnimelech 2007; Bossier and Ekasari 
2017). The traditional aquaculture ponds lack injection of carbon source, and 
aeration mechanisms and thus harbor fewer and less diverse bacterial communities, 
as opposed to BFT (Felix and Menaga 2021). Small quantities of bacteria cannot 
form substantial flocs in the culture system. The sediment of traditional ponds 
accumulates higher quantities (49%) of nitrogenous waste while the BFT pond 
sediments have less (5%) nitrogenous waste (Ogello et al. 2021). 

9.2.3 Biofloc in Tilapia 

Tilapia has played an important role in global aquaculture in recent decades (FAO 
2020a). It ranks the second most cultured fish species worldwide due to its fast 
growth, resistance to various environmental conditions, and capability of being 
produced in dense and ultra-dense forms (Menaga et al. 2019; Avnimelech 2007; 
Avnimelech 2015; Khanjani et al. 2021). Moreover, tilapia is an omnivore species 
that filter food particles and easily feeds on a rich natural food source and biofloc-
dependent microorganisms (Durigon et al. 2020; Prabu et al. 2019). Considering the 
above considerations, tilapia is a suitable candidate for the biofloc system (Khanjani 
et al. 2022). The biofloc technique has been accepted in many countries over the past



decade (Vyas 2020). Currently, the biofloc technique has been successfully devel-
oped in large-scale farms in Asia (China, South Korea), Latin America, and Central 
America, as well as on a small scale in the United States, Italy, and other countries. In 
addition, many research centers and academic institutions are expanding BFT, 
mainly in key areas such as growth, nutrition, reproduction, microbial ecology, 
biotechnology, and economics (Khanjani and Sharifinia 2020). 
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9.2.3.1 Biofloc as Growth Promoters 

In situ utilization of microbial flocs generated in biofloc systems by some aquacul-
ture organisms as well as the utilization of processed biofloc as a feed ingredient has 
been well documented (Kuhn et al. 2009; Kuhn et al. 2010; Anand et al. 2014). It has 
been demonstrated that the concentrations of free amino acids such as alanine, 
glutamate, arginine, and glycine, which are known attractants in the shrimp diet, 
are present in biofloc (Vyas 2020; Ahmad et al. 2017). Levels in biofloc were found 
to be comparable to that of the shrimp commercial diet suggesting that biofloc are 
likely to be recognized as food particles by some aquaculture organisms. Further-
more, biofloc technology application in larviculture may provide an easily accessible 
food source for the larvae outside the regular feeding moments, thus minimizing 
possible negative social interaction during feeding (Ekasari et al. 2015b). 

Studies by various researchers have reported that the biofloc system improves the 
growth performance of the Nile tilapia (Azim and Little 2008; Luo et al. 2013; 
Mirzakhani et al. 2019; Khanjani et al. 2021; Table 9.1). The improved growth 
performance was attributed to optimum water quality and continuous production of 
biofloc. Biofloc contains poly beta-hydroxybutyrate (De Schryver and Verstraete 
2009) and bioactive compounds, such as carotenoids, chlorophylls, and 
phytosteroids that promote the growth of cultured aquatic organisms. The adaptabil-
ity of tilapia to biofloc consumption and digestion of microbial protein has been 
demonstrated in several studies (Azim and Little 2008). Avnimelech (2007) reported 
that the production of biofloc in fish ponds can meet 50% of tilapia’s protein 
requirements. Khanjani et al. (2021) found that tilapia feed better on the biofloc 
impacted by molasses daily, resulting in the highest biomass increase and the lowest 
feed conversion ratio. Based on their results, the highest feed conversion ratio and 
the lowest protein efficiency were observed in the control treatment without biofloc. 
Researchers have found that a combination of biofloc and artificial foods improves 
feed conversion ratio and feed efficiency (Khanjani et al. 2021; Mirzakhani et al. 
2019). 

Biofloc includes bacterial proteins, polyhydroxy butyrate, and bacteria containing 
peptidoglycan or lipopolysaccharides, which can promote growth performance 
(Khanjani and Sharifinia 2020). In addition, biofloc have probiotic properties that 
help fish in digestion and absorption of artificial diets. In the study using orange peel-
derived pectin (OPDP) added to the biofloc system, Doan et al. (2018) indicated that 
the inclusion of 10 g kg-1 OPDP significantly improved the growth performance and 
feed utilization of Nile tilapia. Similarly, a significant increase in growth
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performance and feed utilization were observed in Nile tilapia fed dietary inclusion 
of OPDP and Lactobacillus plantarum, chestnut polyphenols (CSP), watermelon 
rind powder (WMRP), pineapple peel powder (PAPP), watermelon rind powder 
(WMRP) + L. plantarum, pineapple peel powder (PAPP) + L. plantarum, amla 
(Phyllanthus emblica) fruit extract, coffee silverskin (CSS), spent coffee grounds 
(SCG) (Van Doan et al. 2019; 2020a, b; 2021a, b, c, d; 2022a, b). Significant 
improvement in growth performance and FCR may be attributable to the bioactive 
compounds of these supplementations, which act not only as a nutrient source for 
fish but also are carbon sources for microbial protein production in biofloc systems. 
In studies using host-associated probiotics (Bacillus altitudinis B61-34b and Lacto-
bacillus paracasei l61-27b), the authors indicated that supplementation of host-
associated probiotics in indoor biofloc system resulted in better growth performance 
and feed utilization compared to the control group. This may be due to the comple-
mentary roles of biofloc and B. altitudinis. Numerous investigations have demon-
strated that biofloc offers an essential nutrient source for tilapia (Ekasari et al. 2014a; 
Green et al. 2019). The addition of Bacillus spp. in cultured water or diets lowers 
ammonium levels in fish culture systems (Dash et al. 2018; Elsabagh et al. 2018). 
Furthermore, the presence of favorable microbial flocs and external probiotics will 
likely boost the number of valuable microbiota in the tilapia’s digestive system 
(Rohani et al. 2022; de Sousa et al. 2019). Increased secretion of digestive enzymes 
through the colonization of bacteria facilitates the absorption of nutrients by the 
intestinal epithelial cells (Liu et al. 2017). Bacillus produces many biological sub-
stances, including cellulase, phytase, tannase, chitinase, xylanase, protease, amylase, 
and lipase (Ringø 2020). Favorable bacteria also release several nutrients, in partic-
ular vitamins, amino acids, and fatty acids, and diminish lethal feedstuffs and 
infectious bacteria (Zaineldin et al. 2021). Recently, the dietary inclusion of rambu-
tan and long seed powder or rambutan peel in the Nile tilapia diet led to an increase 
in growth rate and feed utilization (Xuan et al. 2022; Wannavijit et al. 2022). It has 
been reported that these seeds are known as carbon sources (Yang et al. 2015; 
Lawtae and Tangsathitkulchai 2021) and has hence been used in biofloc system 
(Liu et al. 2019). It has been observed that adding carbon to a biofloc system causes 
heterotrophic bacteria to utilize the inorganic nitrogen by changing the water C: N 
ratio, resulting in a higher microbic protein source for the host and improved water 
quality (Guo et al. 2020). In addition, incorporating a carbon source leads to the 
formation of biofloc, a new protein source for fish (Krummenauer et al. 2020; Tinh 
et al. 2021). Additionally, these products also act as potential prebiotics or carbo-
hydrate (Estrada-Gil et al. 2022; Jahurul et al. 2020). Similarly, supplementation of 
pizzeria by-product de Sousa et al. (2019); dietary digestible protein and digestible 
energy (Durigon et al. 2019); phosphatidylcholine (Sousa et al. 2020); Tenebrio 
molitor meal (TM) (Tubin et al. 2020); symbiotics (Laice et al. 2021); beneficial 
bacteria (Mohammadi et al. 2021); dietary phytase (Green et al. 2021), and chitosan 
(Chutia et al. 2022) led to higher growth rate and feed utilization.
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Another common study aspect using biofloc technology is the application of 
different carbon sources and their effects on tilapia growth and feed conversion ratio. 
(Mirzakhani et al. (2019) reported that fish in a biofloc system with 100% of wheat



flour at a C:N ratio of 15:1 showed the highest growth performance with improved 
intestine histoarchitecture. Wheat flour as a major source of starch and energy can 
also provide substantial amounts of other nutrients such as protein, vitamins, and 
phytochemicals and especially high fiber content (ca. 12%) compared to the lower 
fiber content in molasses (ca. 0.5%) (Shewry and Hey 2015). These nutrients might 
enhance the biochemical composition and bioactive compounds of biofloc. In 
addition, dispersed particles of wheat flour in water may provide a good substrate 
for the development and growth of microorganisms and bacteria because of which 
the nutrition value of the produced biofloc increases, ultimately influencing the fish 
growth and immune response (Mirzakhani et al. (2019). García-Ríos et al. (2019) 
indicated that the fingerlings obtained in BFT, with corn and sugar as C sources, had 
a similar growth rate to the control. However, the BFT promotes significant savings 
in feed (41.1 to 58.9%) and water (67.4 to 75.5%) compared to the traditional 
method. Similar results were in the study of Zaki et al. (2020), where the authors 
indicated that Increased growth and feed utilization were recorded in 40 fish per m3 

fed with broken rice flour. El-Hawarry et al. (2021) also found that the growth rate 
was improved in the groups of fish under low stocking density with molasses and 
glycerol as carbon sources. Carbon source affects the cultured species’ growth 
depending on the formatted biofloc characteristics, such as its “volume, chemical 
composition, and ability to store bioactive compounds (Wang et al. 2015; Zhao et al. 
2016). Additionally, microbial flocs which are formed from different carbon sources 
act as a supplemental food source that constantly provides additional essential amino 
acids profile (microbial protein), polyunsaturated fatty acids, minerals, vitamins, and 
an external source of digestive enzymes (Avnimelech 2007; Azim and Little 2008; 
Bakhshi et al. 2018; De Schryver and Verstraete 2009). In contrast, the use of 
biochar as an alternative carbon source for biofloc technology did not affect the 
growth rate of Nile tilapia (Abakari et al. 2020). Although biochar is regarded as a 
recalcitrant carbon source, the utilization of biochar-derived carbon by heterotrophic 
bacteria has been described (Farrell et al. 2013). 
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Effects of stocking density on Nile tilapia growth raised in biofloc systems have 
been conducted by several researchers. Liu et al. (2018) showed that low stocking 
density (166 fish/m-3 ) improved growth performance and FCR of Nile tilapia raised 
in the biofloc system. Similarly, Manduca et al. (2021) reported that tilapia stocking 
density in BFT around 33 fish m-3 had higher profitability since it produces a large 
proportion of harvested fish that reach high body weights, and possibly high selling 
prices, combined with desirable biomass. Recently, Sarsangi Aliabad et al. (2022) 
also suggested that the stocking density of 1000/m3 for larviculture of tilapia in BFT 
uses water and equipment more efficiently. Biofloc acts as the natural food that 
contributes significantly to the nutrition of tilapia fingerlings, allowing the reduction 
of the feeding rations. Biofloc consumption corresponds to 50% of the daily food of 
tilapia (Avnimelech 2007). Another study revealed that 25% of the protein require-
ment of tilapia could be provided by floc consumption (Avnimelech 2015). Besides, 
significantly improved growth performance, FCR, and digestive enzymes were 
observed in Nile tilapia raised in biofloc combined with different conditions, such 
as in-situ and ex-situ biofloc (Menaga et al. 2019), jaggery-based BFT (Elayaraja



et al. 2020); light levels (Khanjani and Sharifinia 2021); salinities (Kumari et al. 
2021); grade feeding rates (Oliveira et al. 2021), and 17-α-methyltestosterone (Costa 
e Silva et al. 2022). 
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9.2.3.2 Biofloc as Immunostimulants 

Bioflocs also offer a lot of MAMPs (microbial-associated molecular patterns), which 
may be recognized as immunostimulants, resulting in higher resistance to diseases 
(Ekasari et al. 2014b, 2015a). Additionally, it consists of a wide range of organic 
compounds, such as carotenoids, chlorophylls, bromophenols, phytosterols, and 
antibacterials that have a positive effect on immune factors of cultivated aquatic 
species (Crab et al. 2010; Najdegerami et al. 2016; Bakhshi et al. 2018; Mirzakhani 
et al. 2019). 

The effects of biofloc in combination with different functional feed additives on 
the immune response of Nile tilapia have been reported in previous studies (Doan 
et al. 2018; Van Doan et al. 2019, 2020a, b; 2021a, b, c, d; 2022a, b; Xuan et al. 
2022; Le Xuan et al. 2022; Wannavijit et al. 2022; Table 9.2). Similar findings were 
observed in Nile tilapia fed in-situ and ex-situ biofloc (Menaga et al. 2019); 
phosphatidylcholine (Sousa et al. 2020); symbiotics (Laice et al. 2021); beneficial 
bacteria (Mohammadi et al. 2021), and probiotics (Bañuelos-Vargas et al. 2021). 
These substances act as immunostimulants and/or carbon sources for the prolifera-
tion of microbial proteins in the biofloc system. 

Carbon source applications in the biofloc system could result in better immune 
response in Nile tilapia. Mirzakhani et al. (2019) indicated that fish reared in a 
biofloc system based on 100% wheat flour and a C/N ratio of 15 demonstrated the 
humoral immune response. Similarly, a significant increase in innate and specific 
immune responses was observed in Nile tilapia raised in biofloc with biochar 
(Abakari et al. 2020) and jaggery-based BFT (Elayaraja et al. 2020) as carbon 
sources. Carbon sources play a vital role in the proliferation of microbial protein 
in biofloc systems, which in turn act as immunostimulants for culture species 
(Panigrahi et al. 2019). Carbon sources and stocking densities also have a great 
impact on Nile tilapia’s immune response raised under the biofloc system. 
El-Hawarry et al. (2021) indicated that the growth rate and growth-related genes 
were improved in the groups of fish under low stocking density (LSD) with molasses 
and glycerol as carbon sources. Recently, (Sarsangi Aliabad et al. 2022) also 
reported that the BFT system improved water quality, growth performance, and 
immune function of Nile tilapia fry. 

9.2.3.3 Biofloc as Disease Prevention Techniques 

In biofloc systems, aquaculture animals may also benefit from reduced pathogen 
pressure (Bossier and Ekasari 2017). Some studies demonstrated that the presence of 
potentially pathogenic bacteria might be reduced in biofloc systems (Gustilatov et al. 
2022; de Lima Vieira et al. 2021; Khanjani et al. 2022; Table 9.3). Increase disease
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resistance against Streptococcus agalactiae and Aeromonas hydrophila have been 
reported in Nile tilapia-fed orange peels derived pectin (OPDP) (Doan et al. 2018); 
OPDP and L. plantarum (Van Doan et al. 2019); in-situ and ex-situ biofloc (Menaga 
et al. 2019); jaggery-based BFT (Elayaraja et al. 2020); chestnut polyphenols (CSP) 
(Van Doan et al. 2020a); watermelon rind powder (WMRP) (Van Doan et al. 
2020b); pineapple peel powder (PAPP) (Van Doan et al. 2021a); pineapple peel 
powder (PAPP) + L. plantarum (Van Doan et al. 2021d); coffee silverskin (CSS) 
(Van Doan et al. 2021c); amla (Phyllanthus emblica) fruit extract (Van Doan et al. 
2022b); beneficial bacteria (Mohammadi et al. 2021); spent coffee grounds (SCG) 
(Van Doan et al. 2022a). It has been also reported that a biofloc system could reduce 
ectoparasite spread Durigon et al. (2019). A significant increase in disease resistance 
may be attributable to the presence of MAMPs in the biofloc system, which may be 
recognized as immunostimulants, resulting in higher resistance to diseases (Ekasari 
et al. 2014b). In addition, it may be due to the prebiotic and probiotic properties of 
feed additives, which are known to enhance the immune response and disease 
resistance of Nile tilapia (Cavalcante et al. 2020; Cano-Lozano et al. 2022).
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9.3 Recirculating Aquaculture Systems (RAS) 

9.3.1 Brief History of Development 

Though in its infancy and still considered to be a recent innovation, the basic 
technology of RAS has existed for over 65 years, with the first, pioneering RAS 
research activity being conducted in Japan in the 1950s (Murray et al. 2014; Saeki 
1958). According to Espinal and Matulić (2019), the technology of RAS including 
aquaponics has been developed over the past 40 years. In the 1970s, a German 
program demonstrated the feasibility of intensive carp production in RAS, and 
subsequently, the Danish Aquaculture Institute undertook an innovative effort to 
develop further technical aspects of RAS (Goldman 2016). The idea for commercial 
fish production in RAS was first fostered in Denmark in the mid-1970s, and the first 
commercial RAS was then built in 1980 (Warrer-Hansen 2015). The Danish efforts 
supported the development of one of the initial commercial RAS industries, specif-
ically for the production of European eel (Anguilla Anguilla) (Goldman 2016). This 
work inspired the subsequent further development and uptake of RAS in other 
European countries in the late 1980s and 1990s (Martins et al. 2010). Over the last 
25–35 years, a significant and growing experience in designing, building, and 
operating RAS, particularly in Nordic countries, has been reported (Dalsgaard 
et al. 2013). The initial success of the RAS-based European eel industry also inspired 
to development of RAS in North America (Goldman 2016). In China, marine RAS 
was initiated in the 1980s, and since then China has made considerable progress in 
RAS (Ying et al. 2015). Since the 2000s, further development of RAS has occurred 
in Europe, North America, Australia, and other aquaculture-producing countries 
(Espinal and Matulić 2019; Martins et al. 2010).



250 H. Van Doan

A significant acceleration in the development of RAS technology has been 
observed over the last two decades (Espinal and Matulić 2019), and RAS have 
become popular in recent years. RAS has been developed to grow fish where 
inadequate biophysical conditions, water scarcity, poor water quality, and unfavor-
able environment exist (Murray et al. 2014). According to Malone (2013), RAS 
provides an alternative production method when environmental regulations, disease, 
land availability, salinity, temperature, and water supply prevent more cost-effective 
alternatives. However, other factors stimulated the development and implementation 
of RAS. For example, RAS are increasingly being used for Mediterranean marine 
fish and salmonid production cycle, particularly for juvenile stages, before being 
transferred into outdoor grow-out systems, such as cages or flow-through raceways 
(Bostock et al. 2016; Clarke and Bostock 2017; Terjesen et al. 2013). In fact, RAS 
can be used for broodstock and seedstock production, which can support cage and 
net-pen aquaculture (Malone 2013). In Europe and North America, RAS was 
developed as an alternative to the cage culture of salmon (Murray et al. 2014). 
RAS has also been developed to culture exotic fish species, to avoid adverse effects 
on native species and biodiversity (Malone 2013; Murray et al. 2014). 

9.3.2 Basic Principles of RAS Operation and Production 

RAS are land-based, indoor fish-rearing facilities, where fish are stocked in tanks 
within a controlled environment, and where filtration is applied to purify water by 
removing metabolic wastes of stock, before being recirculated into the system itself. 
Water purification is achieved through mechanical and/or biological filtration, ster-
ilization, and oxygenation. Different levels of sophistication and efficiency can be 
achieved, but generally, all RAS have a high degree (>90%) of water reuse (Murray 
et al. 2014; Badiola et al. 2012). RAS provides opportunities to enhance waste 
management, reduce water usage, and nutrient recycling (Martins et al. 2010; 
Murray et al. 2014; van Rijn 2013). 

Although RAS have been initially developed and are ideally suited to produce 
freshwater as well as warm water fish species, RAS is flexible and can be modified 
and adapted to be operated with brackish and marine water as well as cold water 
species (Helfrich and Libey 1991). Therefore, by decoupling fish production from 
the marine environment, RAS may offer an alternative to traditional and net pen 
aquaculture (O’Shea et al. 2019). RAS can also provide suitable environmental 
conditions for fish species that are sensitive to water quality (Zhang et al. 2011). 
Despite RAS the potential to produce diverse seafood products, RAS is generally 
utilized to culture high-value fish, with high stocking densities and year-round 
production to offset high operational costs (Dalsgaard et al. 2013; Martins et al. 
2010; Murray et al. 2014). Nevertheless, other fish species, including arctic char, 
clarias, halibut, pangasius, tilapia, and turbot are also commonly produced in RAS 
(Badiola et al. 2018; Ngoc et al. 2016a; Ngoc et al. 2016b; Summerfelt and Vinci 
2008). The selection of fish species can be “market-driven” due to a high return on



investment to keep the RAS profitable (Badiola et al. 2017). The choice of fish also 
depends on the fast-growing and hardy fish in RAS (Badiola et al. 2018). 
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RAS can be categorized into five types: (1) hatchery and grow-out, (2) breeding, 
(3) long-term holding, (4) short-term holding, and (5) display (Yanong 2012). 
Moreover, RAS can be incorporated into an “integrated agriculture-aquaculture” 
system, which is known as aquaponics (Martins et al. 2010). Aquaponics is consid-
ered a particular type of RAS, where vegetable plants are included with fish to 
provide water filtration and crop diversification (Goddek et al. 2019). RAS have 
greater control over production outcomes, and the productivity of RAS depends on 
culture species, stocking densities, feeding rate, duration of the production cycle, and 
other management aspects. According to available scientific literature, the stocking 
densities of RAS range from 70 to 120 kg/m3 with feed conversion ratio (FCR) 
values from 0.8 to 1.1. RAS can be of various sizes including small, medium, and 
large (Helfrich and Libey 1991), with a large-scale RAS typically being able to 
produce 400e500 tons of fish per annum (Murray et al. 2014). However, even higher 
stocking densities and total production values are currently reported by some 
commercial producers. According to (Bregnballe 2015), RAS are highly productive 
intensive farming, which generates vast quantities of fish (500 tons/ha/year) in a 
comparatively small volume of water. Because of higher production, RAS is often 
referred to as “hyper” or “super” intensive farming (O’Shea et al. 2019). 

9.3.3 RAS in Tilapia Culture 

There is limited information regarding the application of RAS in Nile tilapia 
farming. It has been reported that RAS is a costly engineering approach, with a 
high initial investment in installation and operation (Murray et al. 2014). The 
reported annual production cost of RAS (US$2250e8800 per ton) is considerably 
higher than conventional pond aquaculture (US$2000 per ton) (Waite et al. 2014). 
Additionally, the Economic viability of RAS requires a long payback period, on 
average 8 years (Badiola et al. 2012). Wang et al. (2020) indicated that light intensity 
and photoperiod manipulation did not cause a significant chronic stress response in 
tilapia. This study demonstrated that light intensity, especially at 2000 lx, and 
photoperiod manipulation could stimulate the growth of tilapia in the RAS and 
significantly affect economic profitability. Another study using a different magnetic 
field (Hassan et al. 2018) showed that based on the growth, water properties, and 
serum biochemistry, it was concluded that magnetized water at 0.15 T intensity may 
improve tilapia growth in recirculating aquaculture systems. Recently, Deng et al. 
(2022) indicated that rearing fish larvae in RAS supports better survival compared to 
the flow-through system, while dietary probiotic supplementation further modulates 
the gut bacterial composition and stimulates the presence of beneficial bacteria 
during early life. It has been reported that RAS has a more stable and diverse 
microbial community composition, which could result in better growth performance 
compared to other culture systems (Deng et al. 2022). In addition, RAS could reduce



the ammonium and toxic gas in the culture system (Villar-Navarro et al. 2021; 
Nguyen et al. 2021). 
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A comparison between RAS, clear water, and biofloc system has been conducted 
in Nile tilapia. (Fleckenstein et al. 2018) indicated that clear water or hybrid systems 
may be a better choice for tilapia nurseries than chemoautotrophic biofloc systems 
due to the short-term periods in which nurseries operate and the volatility of 
nitrification in biofloc systems. In another study, Cao et al. (2020) indicated that 
There was no significant difference between the RASs and BFT aquaculture systems 
in terms of P recovery rate. The regular backwashing of the drum filter and biological 
filter in RAS accounted for 41 ± 2% of input N and 39 ± 2% of input P. Approx-
imately 54% of unassimilated nitrogen N was removed by nitrification in the BFT 
aquaculture systems. The results from the present study suggest that nitrification may 
be the dominant pathway for ammonia removal in a BFT aquaculture system rather 
than by heterotrophic bacterial assimilation. RAS is characterized as a closed 
aquaculture and water reuse system; however, without an efficient and effective 
system for the treatment of discharged water and solids, this characterization only 
seems to indicate potential. Significantly, the treatment of the solids and water 
discharged from RASs has been suggested by (Luo et al. 2013). In BFT systems, 
most unused N and P are retained in biofloc and nitrate in tanks. The biofloc can be 
used for shrimp feed (Ray et al. 2017) or for feeding Artemia (Luo et al. 2017). 
Nitrate may be reduced by denitrification and dissimilatory nitrate reduction to 
ammonium (DNRA) activities in the BFT systems (Chutivisut et al. 2014). In 
these respects, the production activity in BFT systems may be more closed than 
that of RAS (Cao et al. 2020). 
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