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The Wheat Transcriptome 
and Discovery of Functional 
Gene Networks
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have enabled the prediction of gene func-
tions in wheat but only for a handful of traits. 
Combining advanced analysis methods with 
better sequencing technology will increase 
our capacity to place gene expression in 
wheat in the context of functions of genes 
that influence agronomically important traits.
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5.1  Gene Function Through Gene 
Expression

In order to understand gene function, one of 
the first things researchers would like to do is 
measure gene expression—when, where and 
how much of a gene’s transcript is present? 
Measuring the expression level of a single gene 
through quantitative PCR can reveal insight 
into a specific gene and its potential biological 
role. However, to explore the integrated nature 
of gene expression and how entire biological 
processes work at the transcriptional level, it 
is desirable to measure the expression level of 
multiple genes simultaneously using transcrip-
tomics. In model species, transcriptomics has 
shed insight into the regulation of developmen-
tal processes, responses to the environment and 
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Abstract

Gene expression patterns have been a widely 
applied source of information to start under-
standing gene function in multiple plant 
species. In wheat, the advent of increas-
ingly accurate and complete gene annota-
tions now enables transcriptomic studies to 
be carried out on a routine basis and studies 
by groups around the world have compared 
gene expression changes under an array of 
environmental and developmental stages. 
However, associating data from differentially 
expressed genes to understanding the biologi-
cal role of these genes and their applications 
for breeding is a major challenge. Recently, 
the first steps to apply network-based 
approaches to characterise gene expression 
have been taken in wheat and these networks 
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design of homoeolog-specific primers for each 
gene of interest. The use of transcriptomics 
allows quicker and easier homoeolog-specific 
gene expression measurements. Several differ-
ent ways to quantify homoeolog-specific gene 
expression in allopolyploids have been imple-
mented including alignment to the individual 
subgenomes and read classification according 
to mismatches or inter-homoeolog SNPs (Kuo 
et al. 2020), alignment to the whole genome 
sequence using a standard aligner and select-
ing only uniquely mapping reads (e.g. He et al. 
2022) or pseudoalignment to the transcrip-
tome using kallisto which has been demon-
strated to assign reads to appropriate homoeolog 
using nullitetrasomic lines (Borrill et al. 2016; 
Ramírez-González et al. 2018). Homoeolog-
specific gene analysis has been used to study 
multiple biological questions and has for exam-
ple revealed homoeolog-specific gene expression 
responses to stress conditions (e.g. Clavijo et al. 
2017) and developmental stage and tissue-spe-
cific homoeolog expression (Ramírez-González 
et al. 2018). In order to maximise information 
gained from applying transcriptomic approaches, 
it is necessary to define which genes are pre-
sent within the genome and have accurate gene 
annotations to capture the complexities of gene 
expression in this polyploid species.

5.3  Building Transcriptome 
Annotations in Wheat

5.3.1  Expressed Sequence Tags 
and Full-Length cDNAs

The large size of the wheat genome made 
sequencing the entire wheat genome and the 
genes within it a difficult prospect in the 1990s 
and 2000s due to the high cost and sequenc-
ing technology limitations (see also Chap. 1). 
However, the importance and usefulness of 
having gene sequence information was clear. 
An alternative way to obtain gene sequence 
focussed on expressed sequence tags (ESTs), 
which provided a quicker way to determine 

genotype-specific responses, all of which would 
be highly advantageous to understand for wheat 
improvement. Therefore, transcriptomics has 
been widely applied in wheat biology.

Initially, transcriptomics largely relied upon 
microarray approaches. These were useful 
in determining gene expression patterns, but 
microarrays in wheat were limited because of 
the incomplete gene model annotations avail-
able when microarrays were designed, therefore 
many genes were missing from the arrays. The 
advent of RNA-seq to measure gene expres-
sion enabled more accurate measurement of the 
wheat transcriptome. Transcriptomics could be 
applied even before high-quality genome assem-
blies were available because de novo transcrip-
tome assemblies could be generated to answer 
specific biological questions using individual 
datasets. However, to get the highest quality and 
most comprehensive results in a transcriptomic 
experiment, having a reference transcriptome 
is valuable and also removes the requirement 
to carry out a de novo assembly for each new 
project. Furthermore, the availability of a refer-
ence transcriptome facilitates the identification 
of homoeolog-specific transcripts and therefore 
allows gene expression to be quantified in a 
homoeolog-specific manner.

5.2  Measuring Homoeolog-Specific 
Gene Expression

As consequence of the polyploid nature of 
wheat, > 50% of genes in the wheat genome 
are present as triads of related homoeologous 
genes on the A, B and D subgenomes (IWGSC 
et al. 2018). Studies on a gene-by-gene basis 
have revealed that each homoeolog in wheat can 
have different expression levels. For example, 
the calcium-dependent protein kinase TaCPK2 
has differential responses to stress between 
homeologs with the A homeolog upregulated 
in response to powdery mildew infection and 
the D homoeolog upregulated in response to 
cold stress (Geng et al. 2013). However, to 
analyse homoeolog-specific expression using 
qPCR is labour-intensive and requires the 
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gene sequences and expression information 
(Fig. 5.1). ESTs were generated by extracting 
RNA from a tissue or tissues of interest and 
building a cDNA library in E. coli. Plasmids 
from the E. coli library were extracted and 
sequenced through Sanger sequencing before 
bioinformatic analysis to group sequences into 
contigs containing related sequences. ESTs were 
generated from multiple wheat tissues (Ogihara 
et al. 2003; Manickavelu et al. 2012) and sam-
ples grown under stress conditions (Chao et al. 
2006; Mochida et al. 2006) resulting in the 
identification of over 1 million EST sequences 
grouped into tens of thousands of contigs. By 
filtering these contigs for sequences contain-
ing both start and stop codons, it was possi-
ble to identify full-length cDNA representing 

entire coding sequences, although the numbers 
were significantly lower than the number of 
ESTs. For example, the 1 million EST generated 
by Manickavelu et al. (2012) were classified 
into 37,138 contigs of which ~ 7000 were full 
length. Significant efforts were made to obtain 
a good representation of full-length cDNAs, and 
the resulting sequences (~ 20,000 full-length 
cDNAs) were gathered into databases (Kawaura 
et al. 2009; Mochida et al. 2009).

5.3.2  Integrating Gene Annotation 
into Genome Assemblies

In parallel with the development of flcDNA 
libraries, many groups embarked upon 

Fig. 5.1  Improvements in transcriptome assemblies 
in the last 20 years. Transcriptome sequences have pro-
gressed from expressed sequence tags (EST) which had 
unknown chromosomal positions and were often par-
tial sequences, through full-length cDNAs (flcDNAs) 
to the initial genome assemblies (454 assembly) which 
often lacked annotation, through to fragmented assem-
blies with gene model predictions such as the CHINESE 

SPRING Survey (CSS) and The Genome Analysis 
Centre (TGAC) assembly, to highly complete transcrip-
tome assemblies on contiguous chromosome-scale scaf-
folds (RefSeqv1.1). Sequencing and assembly of tran-
scriptomes for multiple wheat cultivars will reveal the 
pan-transcriptome and variation therein including copy 
number variation (CNV)
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projects to sequence the wheat genome. The first 
sequence of a wheat genome with associated 
gene annotations was published in 2012 using 
the cultivar CHINESE SPRING (Brenchley 
et al. 2012). The low sequencing coverage (5x) 
using 454 technology meant that the assembly 
was highly fragmented (over 5 million scaf-
folds), yet it was extremely useful to research-
ers offering the first extensive set of genomic 
sequences. Approximately 95,000 genes were 
annotated using orthologs to flcDNAs from 
rice, sorghum, Brachypodium and barley. Two-
thirds of these genes were assigned to the A, B 
or D subgenome but it was not possible to assign 
genes to individual chromosomes. This data pro-
vided larger number of gene annotations than 
were available from flcDNAs, although not all 
flcDNAs were represented and many of the gene 
models were fragmented (Fig. 5.1). Nonetheless, 
this assembly illustrated that whole genome 
sequencing of wheat was possible and could 
make major contributions to generating a com-
plete set of gene models.

The next major improvement in gene models 
was achieved by applying flow-sorting technol-
ogy to separate individual chromosome arms 
prior to sequencing (see Chap. 3). This allowed 
gene models to be assigned to individual chro-
mosome arms, identifying homoeologous genes 
with confidence, and positional information was 
added through the use of synteny and genetic 
mapping approaches. In total 124,201 genes 
were annotated and assigned to individual chro-
mosomes, and 75,183 had positional informa-
tion. These genes were located across a total 
10.2 Gb assembly of CHINESE SPRING (the 
CHINESE SPRING Survey; CSS; Fig. 5.1; 
IWGSC et al. 2014). However, the fragmented 
nature of this assembly with only 70% of the 
assembly in contigs longer than 1 kb, meant that 
although the number of genes identified was 
high, many genes were not full length for exam-
ple due to a gene model being truncated at the 
end of a contig (Brinton et al. 2018).

Improvements to assembling complete gene 
models came largely through improved conti-
guity in genome assemblies. The use of varying 
sized mate-pair libraries and a new assembly 

algorithm produced a new CHINESE SPRING 
assembly (Clavijo et al. 2017) with a longer 
contig size with over 80% of the assembly hav-
ing contigs larger than 32 kb. In total 104,091 
gene models were annotated, which is ~ 20,000 
genes fewer than in the CSS assembly (IWGSC 
et al. 2014), but these new gene models were 
generally more complete because the higher 
assembly contiguity meant it was much less 
likely that a gene model was truncated at 
the end of a contig (Fig. 5.1). An additional 
CHINESE SPRING assembly (Triticum3.1) 
achieved much-increased contiguity by combin-
ing Illumina short reads with PacBio long reads, 
with over 50% of the assembly having contigs 
larger than 232 kb (Zimin et al. 2017), but this 
assembly lacked gene annotations.

The next step change came with the publi-
cation of the RefSeqv1.0 CHINESE SPRING 
genome assembly (IWGSC et al. 2018). This 
pseudomolecule-level 14.5 Gb assembly used 
a de novo assembly approach, an improved 
assembly method and additional layers of 
genetic, physical and sequencing data to gener-
ate a long-range ordered assembly with accu-
rate assignment of homoeologs. In total 107,891 
high-confidence genes were annotated by com-
bining the outputs of two prediction pipelines. 
These gene models represented a higher propor-
tion of conserved BUSCO single-copy genes 
than previous assemblies with 90% of BUSCO 
genes present as three complete copies in the 
RefSeq assembly, compared to 70% in the 
TGAC assembly and 25% in the CSS assembly. 
Approximately, 2,000 gene models were manu-
ally refined, resulting in the RefSeqv1.1 gene 
model set (Fig. 5.1).

Although highly complete, further improve-
ments have been made to these gene models. 
By combining the long-read-based Triticum_
aestivum_3.1 genome assembly with informa-
tion from the RefSeqv1.0 assembly to improve 
scaffolding and annotation, a more complete 
(15.1 GB) annotated CHINESE SPRING 
assembly was obtained: Triticum_aestivum_4.0 
(Alonge et al. 2020). The use of long reads 
enabled many repeat regions to be expanded 
in this assembly, including regions containing 

http://dx.doi.org/10.1007/978-3-031-38294-9_3
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thousands of additional gene copies. This gave 
a total of 108,639 genes localised to individual 
chromosomes. In parallel, further refinements 
were made to the RefSeqv1.0 by incorporating 
optical maps and PacBio long reads to generate 
RefSeqv2.1 (Zhu et al. 2021). Although the total 
assembly size did not change much (14.6 GB 
in RefSeqv2.1 vs. 14.5 GB in RefSeqv1.0), 
positions and orientations of scaffolds were 
corrected for 10% of the genome and gaps 
were filled. In total 106,913 high-confidence 
genes were annotated by aligning gene anno-
tations from the RefSeqv1.1 and community 
annotations.

5.3.3  Remaining Challenges 
to Improve the Accuracy 
and Completeness of the Gene 
Model Set

Discrepancies remain between the Triticum_aes-
tivum_4.0 and RefSeqv2.1 assemblies in some 
regions, and integration of new data types will 
be required to resolve localised gaps or errors, 
and to assign all scaffolds to accurate posi-
tions. Gene annotations may also be inaccurate 
in a minority of regions due to remaining gaps 
or inaccuracies. Both these assemblies rely on 
the transfer of gene models from RefSeqv1.1, 
so there may be value in re-annotating these 
genomes from de novo predictions and RNA-
seq data to take advantage of these more accu-
rate sequences. A final consequence of relying 
largely on the RefSeqv1.1 gene models is that 
alternative spliced isoforms may not be fully 
represented with only 15.7% of high-confidence 
genes having alternative isoforms (IWGSC et al. 
2018), due to conservative parameters used dur-
ing the transcriptome assembly.

Although technical challenges remain to 
perfect the CHINESE SPRING gene models, a 
more pressing challenge will be to identify vari-
ation between gene models in different wheat 
cultivars. Work by Montenegro et al. (2017) 
showed that gene content was variable between 
18 wheat cultivars, with ~ 81,000 genes shared 

between all cultivars and an additional 60,000 
genes detected in at least one cultivar. The large 
average number of genes detected in each culti-
var in this study (128,656) may be an artefact of 
basing gene model discovery on the fragmented 
CSS assembly; nonetheless, the variation in 
gene models is likely to have significant conse-
quences to understanding wheat biology (see 
Chap. 4). More recently whole genome sequenc-
ing of 15 cultivars in additional to CHINESE 
SPRING revealed extensive structural and 
haplotype divergence between wheat cultivars 
(Fig. 5.1; Walkowiak et al. 2020). Significant 
differences were found in gene content between 
cultivars with ~ 12% of genes showing pres-
ence–absence variation, although this was based 
on projecting gene annotations from CHINESE 
SPRING, rather than de novo genome annota-
tion tailored to each cultivar. Individual genome 
annotations for each of these high-quality 
genome sequences will be a valuable resource 
for biologists and breeders alike and is likely to 
identify genes absent from CHINESE SPRING.

Beyond increasing the number of cultivars, 
it will also be important to increase the accu-
racy of gene models beyond the coding region, 
which is so far the most accurate portion of 
wheat gene models. The 5′ and 3′ untranslated 
regions are annotated in many genes, but their 
accuracy is not known and specialised next-gen-
eration sequencing approaches could be used, 
such as CAGE-seq to identify transcription start 
sites and PolyA-seq to identify transcription 
end sites, as has been done in cotton to gener-
ate accurate untranslated region annotations 
(Wang et al. 2019). The use of PacBio Iso-seq 
long reads in conjunction with Illumina short 
reads and stringent filtering can also increase 
the accuracy of transcript start and end sites, 
as well as providing information about splice 
junctions. This has been achieved in wheat’s 
close relative barley (Coulter et al. 2021). This 
approach identified that 73% of multi-exonic 
barley genes had two or more transcript iso-
forms, suggesting that the current wheat anno-
tations may be missing transcript isoforms in 
many multi-exonic genes.

http://dx.doi.org/10.1007/978-3-031-38294-9_4
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5.4  Methods of Measuring Gene 
Expression at the  
Genome-Wide Level

The availability of high-quality gene models 
now facilitates the accurate measurements of 
gene expression using RNA-seq. The most com-
mon type of RNA-seq is the enrichment and 
subsequent sequencing of polyadenylated RNA 
to study mRNA levels. Reduced representation 
sequencing can also be applied to reduce costs. 
For example, 3′ end sequencing can be used for 
investigating the expression profile of genes at a 
lower cost due to reduced sequencing require-
ments and targeted RNA-seq can be used to 
sequence-specific targets, primarily those with 
low expression profiles. More recently, low 
input RNA-seq methods from small tissues to 
single-cell approaches have been developed. 
These enable the measurement of gene expres-
sion in different cell types and determine co-
expression and gene regulation in single cells, 
although their application in wheat remains 
limited.

5.5  Diverse Biological 
Questions Can Be Answered 
with Transcriptomics

Transcriptomics approaches have been applied 
in many different types of studies in wheat. 
These include observing changes in the tran-
scriptome over a developmental time course, 
studying gene expression responses to differ-
ent stresses or investigating the effect of a spe-
cific gene on downstream molecular pathways 
(Fig. 5.2).

5.6  Elucidating Genetic Control 
of Developmental Processes

Transcriptomic approaches can help build 
understanding of developmental processes by 
studying gene expression throughout a time 
course or by focussing on the transcriptional 

changes induced by manipulating a gene reg-
ulating development, for example through 
mutants or overexpression. Here we will dis-
cuss typical approaches which use RNA-seq to 
understand developmental processes in wheat.

5.6.1  Studying Gene Expression 
During Time Courses

Grain development is an important process 
which influences final yield and quality in all 
cereal crops and has therefore been examined 
at the transcriptomic level by several groups. 
For example, using the CHINESE SPRING 
Survey (CSS) sequence annotation, Pfeifer 
et al. (2014) identified cell-type and homoe-
olog-specific gene expression during grain 
development at three timepoints. Building upon 
this work Chi et al. (2019) studied gene expres-
sion across four timepoints in grain develop-
ment, although they did not dissect grains into 
individual cell types. Differentially expressed 
genes were clustered into groups based on 
developmental stages and assigned putative 
functions based on gene ontology (GO) and 
Kyoto Encyclopaedia of Genes and Genomes 
(KEGG) enrichment analyses. Many more dif-
ferentially expressed genes were identified than 
was possible using previous microarray-based 
approaches and the more accurate and complete 
gene models facilitated the analysis (Yu et al. 
2016). A similar approach was used to investi-
gate wheat spike development at four different 
stages (Feng et al. 2017). Clustering analysis 
of genes differentially expressed over the time 
course identified dynamically expressed tran-
scription factors which the authors hypothesise 
may regulate spikelet initiation and floral organ 
patterning, inferred from their times of expres-
sion and orthologs in model plants. The puta-
tive functions of the differentially expressed 
genes found in this study were assigned using 
GO enrichment analysis, giving an insight into 
the functions of individual genes as well as 
temporal dynamics of expression (Feng et al. 
2017).
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Fig. 5.2  RNA-seq is frequently used to assess the 
effects of altering a single gene or environmental/devel-
opmental change on gene expression. The data collected 
is used to identify differentially expressed genes (DEGs) 
which can then be analysed through methods including 
Kyoto Encyclopedia of Genes and Genomes (KEGG) 

pathway or gene ontology (GO) analysis, or by cluster-
ing gene expression profiles. Specific exploring of dif-
ferentially expressed genes, pathway and clustering 
information can uncover the biological pathways and 
mechanisms through which a gene or environmental/
developmental response operates
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5.6.2  Understanding the Influence 
of Individual Genetic 
Components on a 
Developmental Process

Understanding general expression changes dur-
ing development is important, but many geneti-
cists aim to characterise the precise effects of 
individual genes and RNA-seq can contribute 
to this goal. Flowering time is one of the best-
characterised processes in wheat with many 
important genes identified. Transcriptomic 
approaches have deepened our understand-
ing of flowering time pathways by comparing 
the expression profiles of wild type and plants 
mutated in or overexpressing key floral regula-
tors (see also Chap. 11). For example, Pearce 
et al. (2016) studied the phytochrome light 
receptors using RNA-seq-based methods to bet-
ter understand how they regulate the develop-
mental transitions controlled by changes in light 
levels. Under long-day conditions, PHYB was 
found to regulate approximately six times more 
genes than PHYC and only a small number of 
genes were under transcriptional control of both 
phytochrome genes. Similarly, under short-day 
conditions PHYB influenced the transcription of 
approximately five times more genes than PHYC 
(Kippes et al. 2020). Surprisingly in phyB and 
phyC mutants flowering was accelerated under 
short-day conditions, which is unexpected in 
a long-day plant like wheat. Transcriptomic 
analysis revealed this may be mediated through 
flowering promoting genes VRN-A1 and PPD-
B1. This work shows that these RNA-seq tran-
scriptome methods can uncover the functions 
of genes in a developmental process as well as 
identify downstream targets of these genes.

5.6.3  Atlases of Gene Expression

Beyond individual studies of gene expres-
sion, collating gene expression data for future 
analysis via gene expression atlases allows 
researchers to address a range of biological 
questions without the need to carry out more 
RNA-sequencing. Several different atlases 

have been built for wheat including the expVIP 
gene expression atlas which contains RNA-seq 
data from > 1,000 RNA-seq samples, includ-
ing diverse tissue types, developmental stages, 
cultivars and environmental conditions (Borrill 
et al. 2016; Ramírez-González et al. 2018). 
A pictorial representation of gene expression 
across 70 different tissue-developmental stages 
is also available through the wheat eFP browser 
which provides a powerful tool for intuitive 
gene expression exploration (Winter et al. 2007; 
Ramírez-González et al. 2018).

5.7  Response to Environmental 
Stress

Transcriptome analyses are also a powerful tool 
to understand how wheat responds to different 
environmental stresses, including both abiotic 
and biotic stresses. Genome-wide scale changes 
in the transcriptome can be investigated by 
examining the transcriptome changes after the 
application of the stress or differences between 
plants with susceptible or resistant genotypes. 
The effect of single genes on the response can 
be investigated by comparing lines with precise 
genetic differences such as near-isogenic lines, 
overexpression or mutant lines.

5.7.1  Genome-Wide Transcriptional 
Responses to Stress Conditions

RNA-seq has been used to characterise gene 
expression changes in response to a wide range 
of environmental stresses from pathogen infec-
tion (e.g. Zhang et al. 2014; Dobon et al. 2016) 
through to abiotic stresses including drought, 
heat, salinity and cold (e.g. Liu et al. 2015; Xiong 
et al. 2017; Li et al. 2018; Gálvez et al. 2019). 
The effects of yellow rust infection on gene 
expression is one of the best studied pathogen 
infections in wheat, at the transcriptional level. 
Here we will explore insights that have been 
gained using RNA-seq to study rust infection, 
which may be widely applicable to other patho-
systems and to other environmental interactions.

http://dx.doi.org/10.1007/978-3-031-38294-9_11
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Early studies using RNA-seq examined 
temporal changes in gene expression in wheat 
(Zhang et al. 2014), or in both wheat and the 
fungal pathogen itself revealing temporal inter-
actions between host and pathogen (Dobon 
et al. 2016). Comparisons between suscepti-
ble and resistant lines have also proved fruitful. 
Infection with a mixture of powdery mildew 
and leaf rust revealed that a specific set of 
genes were downregulated only in the suscep-
tible line. These genes had functions related to 
programmed cell death and response to cel-
lular damage, indicating that the two fungal 
pathogens evade the wheat defense system by 
inducing transcriptional level changes (Poretti 
et al. 2021). This agrees with earlier results 
which examined a time course of RNA-seq in 
wheat plants infected with yellow rust. Immune 
response regulators were rapidly upregulated 
after yellow rust infection, but this upregula-
tion was suppressed in subsequent timepoints. 
Only in resistant interactions was this suppres-
sion alleviated, while in susceptible reactions 
the immune response regulators continued to be 
suppressed (Dobon et al. 2016). This parallels 
the findings of Poretti et al. (2021) that specific 
suppression is required in susceptible wheat 
lines for successful infection.

Transcriptomics studies are also now lead-
ing to the identification and functional char-
acterisation of genes involved in pathogen 
resistance and susceptibility. Corredor-Moreno 
et al. (2021) used data from 68 pathogen-
infected wheat varieties to investigate genes 
which influence wheat rust susceptibility. Since 
samples were collected from different varieties, 
growth conditions and developmental stages, 
the authors clustered gene expression profiles 
to identify genes linked to yellow rust suscepti-
bility. This reduced the amount of background 
differentially expressed genes which are not 
involved in the infection response, but instead 
are linked to variety, growth condition or devel-
opmental stage. By focussing on clusters which 
showed strong expression differences between 
the most and least susceptible cultivars, suscep-
tibility-associated genes were identified. These 
susceptibility-associated genes were enriched 

for branched-chain amino acid (BCAA) biosyn-
thetic genes. Comparison with publicly avail-
able data highlighted the gene branched-chain 
aminotransferase 1 (TaBCAT1) as a candidate 
gene, which was ultimately validated as a sus-
ceptibility gene using mutant lines. This study 
highlights a new way of identifying genes with 
roles in infection response and shows the poten-
tial genetic variation we can find beyond the 
pairwise comparisons of lines with different sus-
ceptibilities, which is the more routine approach.

5.7.2  Elucidating Biological 
Mechanisms of Stress-
Associated Genes Using 
Transcriptomics

It is becoming increasingly routine to character-
ise lines with phenotypic alternations in stress 
responses using RNA-seq. This can provide 
insight into the molecular pathways through 
which a gene involved in stress responses oper-
ates and identify future breeding targets down-
stream in the process.

Taking drought stress as an example, several 
studies have recently associated NAC transcrip-
tion factors with drought tolerance and stud-
ied the pathways through which they act. The 
first NAC gene (TaSNAC8-6A) improved seed-
ling stage drought tolerance (Mao et al. 2020). 
RNA-seq analysis in roots showed that even 
under well-watered conditions, genes with GO 
terms associated with drought, auxin and ABA 
responses were upregulated in lines overexpress-
ing this gene. Under drought conditions, more 
genes associated with drought, auxin and ABA 
response were upregulated, in the overexpres-
sion line than in well-watered conditions. The 
authors hypothesise that these changes enhance 
root development and increase water use effi-
ciency, leading to increased drought tolerance. 
The second NAC (TaNAC071-A) increased 
yield under drought conditions by increasing 
water use efficiency (Mao et al. 2022). RNA-
seq in leaves revealed that stress-responsive 
pathways such as response to abscisic acid and 
response to osmotic stress were upregulated in 
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lines overexpressing this NAC. Furthermore, 
orthologs of well-established drought-inducible 
genes were upregulated in the overexpression 
lines including genes involved in stomatal clo-
sure, suggesting that TaNAC071-A may increase 
drought tolerance by more quickly closing the 
stomata and reducing the transpiration rate. 
Interestingly, a separate study revealed through 
RNA-seq that increasing stomatal closure under 
drought is a common mechanism controlled by 
NAC transcription factors in wheat Ma et al. 
(2022).

5.8  Limitations of Current 
Transcriptomic Studies

A common limitation in many species is that 
RNA-seq has generally been carried out on 
pooled tissue which results in the loss of a large 
amount of potential information from single 
cells or individual tissue types. For example, 
by sampling a whole leaf and grinding it up 
prior to RNA extraction, the generated expres-
sion profiles are an average across many cell 
types. Therefore, any spatial differences expres-
sion within a tissue cannot be observed. Until 
recently, large quantities of RNA were needed 
for RNA-seq; therefore in order to study spe-
cific cell/tissue types, labour-intensive meth-
ods had to be used to gather large quantities of 
material such as aleurone and endosperm from 
developing grain (Pfeifer et al. 2014) and devel-
oping meiocytes (Martín et al. 2018). However, 
the development of low input RNA-seq meth-
ods now allows gene expression studies with 
much reduced sample collection requirements 
and enables studies on very small tissue sam-
ples which were not feasible before. Low input 
methods were used by Backhaus et al. (2022) 
to investigate the gene expression patterns in 
different regions of the developing spike. The 
developing spike was dissected at double ridge 
and glume primordia stage into three sections 
(apical, central, basal) for sequencing, with-
out any pooling of different samples required. 
Surprisingly Backhaus et al. (2022) found that 
the largest differences in the transcriptome were 

between the basal and apical sections, rather 
than between different consecutive timepoints 
of development. The discovery that position 
has a stronger effect than the developmental 
time point could not have been made by doing 
bulk-RNA-seq of the whole spike, as has been 
done by previous studies (e.g. Feng et al. 2017), 
uncovering the unique and powerful information 
available using this low input approach.

While the ability to sequence small samples 
is a major step forwards, resolution at the single-
cell level is now being applied in other plant 
species such as Arabidopsis (Thibivilliers et al. 
2020). However, single-cell RNA-seq (scRNA-
seq) still has limitations including the complex-
ity of the method itself, mainly the capture of 
single cells (Chen et al. 2019) and the risk of 
overamplification based on the small amount of 
RNA provided from a single or small number 
of cells (Hrdlickova et al. 2017). However, the 
main issue for scRNA-seq in plant transcrip-
tomics is the need to degrade the cell wall, with 
the different compositions and types meaning 
different protocols are required (Thibivilliers 
et al. 2020). The application of scRNA-seq will 
present new opportunities for wheat research, 
and success in applying this method to mono-
cots such as rice and maize (e.g. Xu et al. 2021; 
Zhang et al. 2021) lay the groundwork for future 
studies.

A second key limitation of many studies to 
date has been the use of glasshouse and con-
trolled environment conditions, to minimise var-
iations in transcriptome changes due to factors 
other than what is being experimentally manipu-
lated. However, this is not necessarily indica-
tive of gene expression during development or 
responses to stress in the field environment. It is 
becoming increasingly important to understand 
gene expression in real-world fluctuating envi-
ronments, and field-based studies are becom-
ing more common (e.g. Quijano et al. 2015; Li 
et al. 2018; Corredor-Moreno et al. 2021). Field-
based studies can develop increased insight 
into biological pathways and provide important 
information for breeding. For example, a field-
based experiment revealed that multiple inter-
active pathways that influence cold tolerance to 
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prepare for over-winter stress, and these com-
plex interactions may have been missed in con-
trolled environment conditions where changes 
are often abrupt (Li et al. 2018). However, varia-
bility in gene expression caused by environmen-
tal influence can be strong and make analysing 
changes due to a single gene difficult, as was 
found for the powdery mildew resistance allele 
Pm3b (Quijano et al. 2015). Therefore, research-
ers will need to assess the relative benefits of the 
realistic nature of gene expression under field 
conditions against the potential pitfalls for each 
experiment.

5.9  Constructing Gene Networks 
for Hypothesis Generation 
and Candidate Gene 
Identification

Although comparisons of gene expression 
between samples at different timepoints or 
in different environmental conditions can be 
informative, applying network approaches to 
understand gene interactions and pathway-level 
responses to environmental and developmen-
tal changes is a complementary and powerful 
approach. Networks can integrate a wide range 
of information from gene expression and co-
expression through to protein-level interac-
tions and scientific literature links (Hassani-Pak 
et al. 2016), but here we will focus on gene 
networks built mainly from gene expression 
measurements.

5.9.1  Co-expression Networks

Co-expression networks can be built from 
thousands of genes using the similarity in their 
expression patterns across multiple conditions to 
determine which genes are grouped (Fig. 5.3a). 
Based on “guilt-by-association” genes that 
belong to the same co-expression group are 
often considered to be co-regulated, for example 
by shared transcription factors, and to be part of 
the same biological process.

An important application of gene co-expres-
sion networks is the functional annotation 
of uncharacterised genes (Serin et al. 2016). 
The development of a high-quality reference 
sequence for wheat enabled the generation of 
detailed co-expression networks focussing on 
specific wheat tissues (leaf, grain, root and 
spike) and stress conditions (abiotic and biotic) 
(Ramírez-González et al. 2018). A comparison 
of the four tissue-specific networks revealed 
modules of genes which were uniquely co-
expressed in the root including several genes 
whose orthologs regulate root development in 
Arabidopsis. The other genes present in these 
root-specific modules represent novel genes 
that according to “guilt-by-association” may 
play roles in root development. Additional stud-
ies have used co-expression networks to iden-
tify candidate genes involved in meiosis, grain 
development and flowering time pathways 
(IWGSC et al. 2018; Alabdullah et al. 2019; Chi 
et al. 2019).

While these studies showed the potential of 
co-expression networks to identify candidate 
genes associated with a biological process of 
interest, functional validation of newly identi-
fied genes was lacking. The value of these pre-
dictions has been illustrated in wheat using the 
disease-related network generated by Ramírez-
González et al. (2018). Polturak et al. (2022) 
revealed that the top pathogen-induced mod-
ules contained multiple clusters of physically 
adjacent genes that correspond to six pathogen-
induced biosynthetic pathways. Heterologous 
expression of these co-expressed genes in 
Nicotiana benthamiana produced flavonoids and 
terpenes that may play a role in defence signal-
ling or as phytoalexins. This study shows the 
power of co-expression to assign functions to 
previously uncharacterised genes.

Several online tools have been developed 
which allow wheat researchers to identify genes 
that are co-expressed. WheatOmics allows users 
to search for genes co-expressed with a gene of 
interest in either grain or multi-tissue co-expres-
sion networks (Ma et al. 2021) and KnetMiner 
integrates information about co-expression 



86 T. Andleeb et al.

from a network built using 850 wheat RNA-seq 
samples with a meiosis-specific co-expression, 
network (IWGSC et al. 2018; Alabdullah et al. 
2019; Hassani‐Pak et al. 2021). Online tools 
are also available to construct co-expression 
networks using custom datasets, such as unpub-
lished RNA-seq data including CoExpNetViz 
(Tzfadia et al. 2016) and Gene Network 
Construction Tool Kit (GeNeCK) (Zhang et al. 
2019).

5.9.2  Gene Regulatory Networks

In contrast to co-expression networks, the links 
within gene regulatory networks (GRNs) rep-
resent direct gene interactions rather than the 
association of expression patterns (Fig. 5.3b). 
GRNs can be built using transcriptome data 
alone, or they can incorporate additional data 
types for transcription factor-DNA interactions 
which inform the network structure (reviewed in 

Fig. 5.3  Graphical representation of gene networks. 
a Gene co-expression networks group genes with simi-
lar expression patterns across multiple conditions. 
Interactions between genes (circles) can be direct or indi-
rect. b Gene regulatory networks represent direct interac-
tions between genes with directionality. In the example 

here, a transcription factor (TF; yellow pentagon) is 
expressed earlier in time and binds to the promoter sites 
of two downstream genes (blue); the regulatory network 
on the right shows the directionality of these interactions 
(arrowheads)
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Ko and Brandizzi 2020). GRNs typically have a 
scale-free network architecture with a few hub 
genes with multiple connections to other genes 
and many poorly connected nodes (Barabasi 
and Oltvai 2004). The hub genes act as master 
regulators of a GRN and play important roles in 
biological systems and therefore identifying and 
manipulating hub genes may enable the manipu-
lation of a biological process of interest.

GRNs in wheat have been used to generate 
hypotheses about gene function and to iden-
tify hub genes which have a strong influence 
on a biological process. A large GRN was built 
using 850 RNA-seq samples to predict transcrip-
tion factor-target interactions using the machine 
learning-based GENIE3 algorithm (Huynh-Thu 
et al. 2010). To test the validity of the tran-
scription factor targets identified by GENIE3, 
Harrington et al. (2020) compared the target 
genes of the senescence-regulating transcription 
factor NAM-A1 to genes differentially expressed 
in nam-a1 mutant lines compared to wild type. 
The NAM-A1 target genes predicted by GENIE3 
overlapped considerably with the differentially 
expressed genes in lines with reduced NAM-A1 
expression, indicating that GENIE3 can provide 
biologically relevant predictions. Furthermore, 
additional senescence-associated transcription 
factors were identified by combining GENIE3 
target information with independent senescence-
related expression data. Similarly, combining 
the GENIE3 network with co-expression net-
works enabled the identification of candidate 
genes involved in root development and stress 
responses (Ramírez-González et al. 2018).

While the GENIE3 approach relies upon 
diverse RNA-seq samples from different tissues 
and conditions, GRNs have also proved valu-
able to understand developmental timeseries in 
wheat. A ten-timepoint time course of flag leaf 
senescence was sampled and the resulting RNA-
seq data was used to construct a GRN using the 
time-aware causal structure inference algorithm 
(Penfold and Wild 2011; Borrill et al. 2019). 
Filtering the GRN for highly connected and 
central hub genes identified known senescence 
regulator NAM-A1 amongst the 36 top-ranked 

genes, indicating that this approach identified 
biologically relevant genes. Functional valida-
tion of NAM-A2, another top-ranked gene and an 
uncharacterised paralog of NAM-A1, showed the 
power of this approach to identify genes regulat-
ing senescence.

5.9.3  Limitations of Gene Networks

The first attempts to use gene networks in 
wheat have focussed on hypothesis genera-
tion and identifying candidate genes involved 
in a biological process of interest. While use-
ful insights have been gained, there is still more 
work to be done to fully leverage the power of 
gene networks. To date, most gene networks in 
wheat have been built using gene expression 
data, although some other types of information 
are incorporated into tools such as Knetminer 
and inetbio (Lee et al. 2017; Hassani‐Pak et al. 
2021). In other species, the accuracy of net-
works has been improved by incorporating addi-
tional data sources such as transcription factor 
binding sites, open chromatin regions and pro-
tein–protein interactions (reviewed in Haque 
et al. 2019; Ko and Brandizzi 2020). In wheat, 
these types of data are becoming available, for 
example with the publication of accessible chro-
matin regions identified by ATAC-seq (Concia 
et al. 2020) and this information could be incor-
porated into future networks to improve the pre-
dictive ability.

A second challenge is the validation of gene 
networks in wheat. In model systems com-
parison to “gold standard” networks allows 
the accuracy of different network construction 
methods to be determined (Marbach et al. 2012). 
However, in wheat, we know little about the true 
topology of gene networks so validation using 
this approach is not possible. Instead, network 
predictions can be validated on an individual 
gene basis by examining mutant or gene-edited 
lines for predicted phenotypic effects (Borrill 
et al. 2019). Alternatively, gene interactions 
in the network could be tested using molecu-
lar biology approaches. Another promising 
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approach is to integrate several different net-
work construction approaches which can boost 
the breadth and accuracy of gene interactions in 
biological networks (Marbach et al. 2012).

A final issue which affects wheat gene net-
works is that having a large polyploid genome 
with > 110,000 genes presents practical chal-
lenges for some GRN construction techniques. 
Although co-expression can be carried out on 
thousands of genes simultaneously (e.g. IWGSC 
et al. 2018; Ramírez-González et al. 2018), 
some widely used GRN approaches only permit 
tens to hundreds of genes due to computational 
constraints. One method to circumvent this 
limitation is to filter genes likely to be of inter-
est before entering them into the GRN to reduce 
the number of genes (e.g. Borrill et al. 2019). 
Alternatively, some algorithms such as GENIE3 
can use tens of thousands of genes as input, 
although the computational steps take several 
weeks on a high-performance computing cluster, 
therefore this approach will not be accessible to 
all.

5.10  Conclusions and Future 
Outlook

The use of transcriptomics has greatly increased 
in wheat over the past few years, benefitting 
from a high-quality genome annotation and 
decreasing sequencing costs. Accurate gene 
models now simplify the analysis of transcrip-
tomic data and increase the value of the bio-
logical information gained. While traditional 
studies have focussed on understanding changes 
in gene expression in response to environmen-
tal stresses or developmental changes, there are 
an increasingly varied applications of RNA-seq 
from identifying candidate genes by surveying 
genetically diverse populations through to build-
ing gene regulatory networks for hypothesis 
generation. Rapid developments in technolo-
gies for transcriptomics will enable us to deepen 
our understanding of wheat biology for exam-
ple uncovering high-resolution gene expression 
patterns.
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