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Wheat Chromosomal Resources
and Their Role in Wheat Research

Hana Simkova, Petr Capal and Jaroslav Dolezel

Abstract

Bread wheat (Triticum aestivum L.) is grown
on more area of land than any other crop,
and its global significance is challenged only
by rice. Despite the socioeconomic impor-
tance, the wheat genome research was lag-
ging behind other crops for a long time. It
was mainly a high complexity of the genome,
polyploidy and a high content of repeti-
tive elements that were laying obstacles to
a thorough genome analysis, gene cloning
and genome sequencing. Solution to these
problems came in the beginning of the new
millennium with the emergence of chromo-
some genomics—a new approach to study-
ing complex genomes after dissecting them
into smaller parts—single chromosomes or
their arms. This lossless complexity reduc-
tion, enabled by flow-cytometric chromo-
some sorting, reduced the time and cost of
the experiment and simplified downstream

analyses. Since the approach overcomes dif-
ficulties due to sequence redundancy and the
presence of homoeologous subgenomes, the
chromosomal genomics was adopted by the
International Wheat Genome Sequencing
Consortium (IWGSC) as the major strat-
egy to sequence bread wheat genome. The
dissection of the wheat genome into single
chromosomes enabled the generation of chro-
mosome survey sequences and stimulated
international collaboration on producing a
reference-quality assembly by the clone-by-
clone approach. In parallel, the chromosomal
resources were used for marker develop-
ment, targeted mapping and gene cloning.
The most comprehensive approaches to gene
cloning, such as MutChromSeq and assembly
via long-range linkage, found their use even
in the post-sequencing era. The chapter pro-
vides a two-decade retrospective of chromo-
some genomics applied in bread wheat and
its relatives and reports on the chromosomal
resources generated and their applications.
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Abbreviations

BAC Bacterial artificial chromosome

CSS Chromosome survey sequence

CS cv. Chinese Spring

FISH Fluorescence in situ hybridization

FISHIS Fluorescence in situ hybridiza-
tion in suspension

HICF High information content
fingerprinting

HMW DNA High molecular weight DNA

IWGSC International Wheat Genome
Sequencing Consortium

MDA Multiple-displacement
amplification

MTP Minimal tiling path

MutChromSeq Mutant Chromosome Sequencing

OM Optical map

TE Transposable element

TACCA TArgeted  Chromosome-based
Cloning via long-range Assembly

WGP Whole genome profiling

3.1 Development of Wheat

Chromosome Genomics

The development of DNA sequencing technique
by Sanger et al. (1977) marked the beginning of
genomics with a prospect of obtaining complete
genome sequences and studying entire genomes.
The progress in DNA sequencing and genome
assembly technologies, which followed the pio-
neering projects on small bacterial genomes
(Fleischmann et al. 1995; Fraser etal. 1995),
made it possible to deliver the first genome of
a plant—Arabidopsis thaliana (Arabidopsis
Genome Initiative 2000), followed by Oryza
sativa (International Rice Genome Sequencing
Project 2005). Together with the progress in
human genome sequencing (Lander et al. 2001)
these achievements stimulated the interest to
produce genome sequence of hexaploid bread
wheat (Triticum aestivum, 2n=06x=42), one
of the three most important crops worldwide.

This was a daunting task at that time given its
genome size exceeding 15 Gb (IWGSC 2018),
presence of three homoeologous genomes and
high repeat content.

Despite the difficulties foreseen, participants
of the workshop on wheat genome sequenc-
ing held in Washington DC in 2003 agreed on
a need for a bread wheat genome sequence
(Gill et al. 2004). Among available strategies, it
was decided to explore the use of DNA librar-
ies prepared from individual chromosomes and
chromosome arms for the assembly of a global
physical map and chromosome sequencing.
As individual chromosomes and chromosome
arms represent only about 4-6% and 1-3%
of the bread wheat genome, respectively, dis-
secting the genome to chromosomes or even
chromosome arms offered a dramatic and
lossless reduction in DNA sample complex-
ity to facilitate targeted development of DNA
markers, gene mapping and cloning as well as
genome sequencing. The chromosome-based
approach avoided problems due to the presence
of homoeologous DNA sequences and enabled a
division of labor so that different groups could
work on physical mapping and sequencing dif-
ferent chromosomes simultaneously (Gill et al.
2004). A principal condition for the application
of this approach was the ability to purify par-
ticular chromosomes and chromosome arms in
sufficient numbers (~10°-10°) so that enough
DNA may be obtained. Until today, the only
method suitable for this task is flow-cytometric
sorting.

3.1.1 Flow Cytogenetics

Unlike microscopy, flow cytometry analyzes
condensed mitotic metaphase chromosomes
during their movement, one after another, in
a narrow liquid stream. To distinguish this
approach from microscopic analysis, the term
flow cytogenetics has been coined. Prior to flow
cytometry, chromosomes are stained by a DNA
fluorochrome so that they can be classified
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according to relative DNA content. The analysis
can be performed at rates of ~10% s so that large
numbers of chromosomes can be interrogated to
obtain statistically accurate data and potentially
discriminate individual chromosomes. A histo-
gram of DNA content thus obtained is termed
flow karyotype, and ideally, each chromosome
is represented by a well-discriminated peak. In
fact, the extent to which the chromosome peak is
discriminated from peaks of other chromosomes
determined the purity in the sorted fraction, or
the frequency of contaminating chromosomes
in flow-sorted fraction. Not all flow cytometers
are equipped by a sorting module, and only
some are designed to physically separate (sort)
microscopical particles with particular optical
parameters. Gray et al. (1975a, b), Stubblefield
et al. (1975) and Carrano et al. (1976) were the
first to confirm that flow cytometry can be used
not only to classify mammalian chromosomes
according to DNA content, but also to sort them.
These experiments paved the way to the use
of flow-sorted chromosomes during the initial
phases of human genome sequencing (Van Dilla
and Deaven 1990).

The samples for flow cytometry must have
a form of a concentrated suspension of intact
chromosomes. In contrast to animals and
human, their preparation in plants is hampered
by low frequency of dividing mitotic cells and

by the presence of a rigid cell wall. A success-
ful approach has been to artificially induce cell
cycle synchrony in root tips of hydroponically
grown seedlings, accumulate dividing cells at
mitotic metaphase and release intact chromo-
somes from formaldehyde-fixed root tips by
mechanical homogenization. This high-yielding
procedure was developed for faba bean (Dolezel
etal. 1992), and by optimizing it for wheat,
Vrana et al. (2000) set a foundation for using
flow-sorted chromosomes in wheat genomics
(Figs. 3.1 and 3.2).

3.1.2 Chromosome Sorting in Wheat

The study of Vrana and co-workers (Vrana et al.
2000) revealed that out of the 21 chromosomes
of bread wheat, only chromosome 3B could be
discriminated from other chromosomes and
sorted at high purity (Fig. 3.3a). The remaining
chromosomes formed three composite peaks
on a flow karyotype, each of them represent-
ing three to ten chromosomes, which could be
only sorted as groups. In order to determine
chromosome content in the flow-sorted frac-
tions, samples of ~10% chromosomes were sorted
onto a microscopic slide and microscopically
identified after fluorescence in situ hybridiza-
tion with probes giving chromosome-specific

2014
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Chromosome Chromosomal 2011 sequences @ Gene cloning by
flow sorting BAC library = completed MutChromSeq
. ) Chromosome
in wheat construction survey 2013 2018
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2008 sequencing FISHIS- \é\g:]ze:];eference
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Fig.3.1 Major developments in wheat chromosomal genomics
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Fig.3.2 Applications of wheat chromosomal resources.
Depending on downstream application, flow-sorted chro-
mosomes can be processed by two distinct approaches.
For applications with high demand on DNA amount
and contiguity, i.e., BAC libraries, optical mapping and
TArgeted Chromosome-based Cloning via long-range

labeling patterns (Fig. 3.3e; Kubaldkovd et al.
2002). The study of Vrdna etal. (2000) indi-
cated the suitability of chromosomal stocks
with altered chromosome sizes for purification
of other chromosomes than 3B. In two culti-
vars of wheat, the authors identified and sorted
translocation chromosome 5BL.7BL, which is
larger than chromosome 3B (Fig. 3.3c). A sub-
sequent study of Kubaldkova et al. (2002) con-
firmed the potential of cytogenetic stocks. The
most important observation concerned the abil-
ity to sort any single chromosome arm, either in
the form of a telosome or isochromosome. As
almost all telosomic lines were developed in the
background of cv. CHINESE SPRING (Sears
and Sears 1978), their use offered a possibility
to analyze the wheat genome chromosome-by

Assembly (TACCA), high molecular weight (HMW)
DNA is prepared by purifying chromosomes embedded
in agarose plugs. Low molecular weight (LMW) DNA,
to be used for short-read sequencing or DArT marker
development (DNA microarrays), is obtained after treat-
ing chromosomal DNA in solution

-chromosome. In 13 double-ditelosomic lines,
both chromosome arms could be discriminated
and sorted simultaneously (Fig. 3.3b), saving
time to collect DNA from both arms (DoleZel
et al. 2012).

While this advance made chromosome flow
sorting technology ready to support various
genomics analyses in bread wheat (Fig.3.2),
including genome sequencing, its dependence
on cytogenetic stocks limited its potential for
marker development and gene cloning in other
wheat genotypes. To overcome this obstacle,
Giorgi etal. (2013) developed a protocol for
fluorescent labeling repetitive DNA of chromo-
somes using fluorescence in situ hybridization
in suspension (FISHIS). Chromosome classifi-
cation based on two fluorescence parameters:
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Fig. 3.3 Flow karyotyping of bread wheat. Histograms
of relative DAPI fluorescence intensities representing
chromosomes of varying sizes are termed flow karyo-
types. a Flow karyotype of cv. CHINESE SPRING con-
sists of three composite peaks, harboring 3, 7 and 10
chromosomes, respectively, and a standalone peak repre-
senting the largest wheat chromosome 3B. b Flow karyo-
type of 7D double ditelosomic line, where both the long
and the short arm of chromosome 7D are discriminated
and can be sorted simultaneously. ¢ The translocated
chromosome 5BL.7BL, present in cv. ARINA and some
other cultivars, is the largest one in the karyotype and can

DNA (after staining by a DNA fluorochrome)
and fluorescence of regions containing DNA
repeats (typically GAA microsatellites) labeled
by FITC enabled discrimination of chromo-
somes with the same or very similar DNA
content from each other. Depending on geno-
type, bivariate flow karyotyping after FISHIS
typically allows discrimination of ~13 out of 21
wheat chromosomes (Fig. 3.3d, e) and provides
to date the most powerful approach to dissect
the wheat genome to single chromosomes.

be sorted with a high purity. d Standard monoparametric
flow karyotype of cultivar CERTO, where three chro-
mosomes from composite peak III—2A, 2B and 6B—
form a defined but still unresolvable sub-population. e
Bivariate flow karyotype of the same cultivar, where the
difference in relative abundance of GAA repeat motif
allows further discrimination of these chromosomes and
results in well-defined populations containing a single
chromosome type each. The chromosome 2B, shown in
the inset, can be sorted with purity exceeding 85%. For
the purity check, FISH was done with probes for GAA
(green) and Afa repeats (red)

If the FISHIS procedure of Giorgi et al.
(2013) is not compatible with a downstream
application of sorted chromosomes and, at the
same time, appropriate cytogenetic stocks are
not available, the option is to partition compos-
ite peaks as observed on monovariate flow kary-
otypes (Fig. 3.3a) (Vrdna et al. 2015). Although
this approach does not allow discrimination and
sorting of single chromosomes, it is suitable
for obtaining sub-genomic fractions compris-
ing only a few chromosomes, with one of them
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being more abundant. Vrana et al. (2015) cal-
culated a so-called enrichment factor defined as
the relative proportion of chromosomal DNA in
the wheat genome to the proportion of chromo-
somal DNA in a sorted fraction and found that
a fivefold enrichment was obtained for 17 out
of 21 wheat chromosomes. Importantly, sub-
genomic fractions for 15 out of the 21 chromo-
somes were not contaminated by homoeologs.

3.1.3 Sorting Chromosomes of Wild
Wheat Relatives

The method for flow-cytometric chromosome
analysis and sorting, originally developed for
hexaploid bread wheat and subsequently modi-
fied for tetraploid durum wheat Triticum turgi-
dum Desf. var. durum, 2n=4x=28 (Kubaldkova
et al. 2005) was also found to be suitable to
sort chromosomes from their wild relatives. In
fact, two options were explored. One involved
sorting chromosomes from alien chromosome
introgression lines of wheat. The samples are
prepared from synchronized wheat root tips and,
if the alien chromosome can be discriminated
on a flow karyotype, it may be sorted (Molnar
etal. 2011, 2015; Zwyrtkova et al. 2022). In a
similar manner, wheat chromosomes carrying
introgressions from wild relatives can be puri-
fied (Tiwari et al. 2014; Jandkova et al. 2019;
Bansal et al. 2020). Second and straightforward
option is to sort chromosomes directly from
wild relatives. Thus, the protocol of Vrana et al.
(2000) for wheat has been optimized for a vari-
ety of species from Aegilops, Agropyron and
Haynaldia (Dasypyrum) genera (summarized
in DoleZel et al. 2021). While in some of them
(like Aegilops comosa), all chromosomes may
be discriminated and sorted (Said et al. 2021), in
majority of species (including Aegilops genicu-
lata, Aegilops biuncialis, Aegilops cylindrica,
Haynaldia villosa, Agropyron cristatum and oth-
ers) their chromosomes can only be sorted in
groups of two to five (Molndr et al. 2011, 2015;
Grosso et al. 2012; Said et al. 2019). As in case

of wheat, fluorescent labeling of chromosomes
by FISHIS prior to flow cytometry increased the
number of chromosomes that could be discrimi-
nated and sorted. Availability of separated chro-
mosomes of the relatives enabled comparative
studies with the bread wheat genome (Molnar
et al. 2014, 2016) and have been applied to sup-
port cloning of genes from the tertiary gene pool
(see Sect. 3.5.1).

3.2 Toward Bread Wheat

Reference Genome

Need for a quality bread wheat genome that
would provide access to the complete gene
catalogue, an unlimited amount of molecu-
lar markers to support genome-based selec-
tion of new varieties and a framework for the
efficient exploitation of natural and induced
genetic diversity (Choulet et al. 2014a) stimu-
lated the establishment of the International
Wheat Genome Sequencing Consortium, a col-
laborative platform launched in 2005 (https:/
www.wheatgenome.org). By that time, a proven
strategy to obtaining high-quality reference
sequences of large genomes was the clone-
by-clone approach, i.e., sequencing clones
from large-insert DNA libraries ordered in
physical maps. These constituted a technol-
ogy-neutral resource for accessing complex
genomes, enabling possible resequencing of
the ordered clones by more advanced technolo-
gies. Considering the ability to dissect the wheat
genome to individual chromosomes or chro-
mosome arms (Vrana et al. 2000; Kubalakova
etal. 2002), and after confirming the feasibil-
ity of constructing large-insert DNA libraries
from the flow-sorted chromosomes (gaféf et al.
2004; Janda etal. 2004), the Consortium set-
tled on coupling the chromosome purification
with the clone-by-clone strategy and producing
clone-based physical maps of individual wheat
chromosomes that would allow the engagement
of multiple teams in the challenging sequencing
effort.
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Generation of Chromosomal
BAC Resources

3.2.1

The prerequisite of the proposed strategy was
the ability to separate by flow sorting each
of bread wheat chromosomes or chromo-
some arms. This was only possible in cultivar
CHINESE SPRING (CS), for which a com-
plete set of telosomic lines, essential to sort the
chromosome arms, was available (Sears and
Sears 1978), predestining the cultivar to become
the reference genome of bread wheat. The pri-
mary resource needed to construct a clone-
based physical map is a large-insert genomic
DNA library, commonly cloned in the bacterial
artificial chromosome (BAC) vector, typically
bearing inserts of 100-200 kb. To generate a
library of these parameters, several micrograms
of high molecular weight (HMW) DNA are
needed. Achieving this from the flow-sorted
material involved the elaboration of a custom-
ized protocol (Simkové et al. 2003) including
DNA preparation in agarose plugs (Fig. 3.2),
which enabled cumulating samples from mul-
tiple sorting days. Based on this advance, Safaf
etal. (2004) constructed the first-ever chro-
mosome-specific BAC library in a eukaryotic
organism. The library, prepared from two mil-
lion 3B chromosomes flow-sorted over 18 work-
ing days, comprised 67,968 clones with 103 kb
average insert size, representing 6.2 equivalents
of the chromosome 3B, whose molecular size
is close to one gigabase. Further improvements
in the procedure permitted the construction of
BAC libraries with chromosome coverage up to
18 x and average insert size exceeding 120 Kb
(https://olomouc.ueb.cas.cz/en/resources/
dna-libraries (gaféf et al. 2010; Table 3.1 and
references therein). The effort toward prepar-
ing the full set of CS libraries for the chromo-
somal physical maps lasted over ten years and
was completed in the end of 2013 (Fig. 3.1).
Individual clones and BAC libraries used to
construct chromosome-specific physical maps
are publicly available and can be obtained at
https://cnrgv.toulouse.inrae.fr/en/Library/Wheat.
Besides the ‘CHINESE SPRING’ BAC librar-
ies generated for the reference genome project,

several customized chromosomal libraries from
other cultivars were created for the purpose of
gene cloning projects, including 3B-specific
library from cv. HOPE (Mago et al. 2014) and a
BAC library from 4AL arm of cv. TAHTI, bear-
ing an introgressed segment of Triticum mili-
tinae (Janakova et al. 2019) (Table 3.1).

Upon their construction, the CS libraries
were distributed among national teams engaged
in the IWGSC effort who embarked on con-
structing physical maps. In a proof-of-concept
experiment, Paux and co-workers (2008) gen-
erated the first chromosomal physical map
from chromosome 3B, employing SNaPShot-
based High Information Content Fingerprinting
(HICF) technology (Luo et al. 2003) to gener-
ate fingerprints and FingerPrinted Contig (FPC)
software to assemble the physical map and
select minimal tiling path (MTP) for sequenc-
ing. This achievement validated the feasibility
of constructing sequence-ready physical maps
of hexaploid wheat by the chromosome-by-
chromosome approach and the strategy was
subsequently followed for other chromosome
arms (Table 3.1; IWGSC 2018). As alternative
procedures, Whole Genome Profiling (WGP,
van Oeveren et al. 2011) was applied for BAC
fingerprinting in several projects and Linear
Topological Contig (LTC, Frenkel et al. 2010)
software was developed and utilized for map
assembly and validation. Procedures applied for
individual chromosomes/arms are summarized
in IWGSC 2018. The resulting chromosomal
physical maps are available at https://urgi.ver-
sailles.inra.fr/download/iwgsc/Physical_maps/
and displayable at https://urgi.versailles.inra.
fr/gb2/gbrowse/wheat_phys_pub/. In addition
to the construction of physical maps for several
chromosomes, the WGP technology was utilized
to profile MTP clones identified from chromo-
some physical maps constructed previously
by the HICF procedure. Thus generated WGP
tags of all 21 wheat chromosomes were used
to support the assembly of the IWGSC RefSeq
v1.0 genome and are available for download
from IWGSC-BayerCropScience WGP™ tags
https://urgi.versailles.inra.fr/download/iwgsc/
IWGSC_BayerCropScience_ WGPTM_tags.


https://olomouc.ueb.cas.cz/en/resources/dna-libraries
https://olomouc.ueb.cas.cz/en/resources/dna-libraries
https://cnrgv.toulouse.inrae.fr/en/Library/Wheat
https://urgi.versailles.inra.fr/download/iwgsc/Physical_maps/
https://urgi.versailles.inra.fr/download/iwgsc/Physical_maps/
https://urgi.versailles.inra.fr/gb2/gbrowse/wheat_phys_pub/
https://urgi.versailles.inra.fr/gb2/gbrowse/wheat_phys_pub/
https://urgi.versailles.inra.fr/download/iwgsc/IWGSC_BayerCropScience_WGPTM_tags
https://urgi.versailles.inra.fr/download/iwgsc/IWGSC_BayerCropScience_WGPTM_tags

H. Simkova et al.

34

(panunuoo)

21(S107) '[® 19 yoseqeIeyg

A(L107) e 19 roULIOyS
«(L102) ‘T 12 §AOSIOH *,(0107) ‘T 12 0]

«(ar102) "Te 19 190y
2(8000) ‘Te 19 xned “;(£007) ‘T& 10 fejes

1(0102) T2 12 o'

z1(€107) T8 19 sieey
21(€102) "Te 30 addiiyq
21(€102) e 10 usarg

21(€107) "Te 30 seon']

1(#002) Te 30 epuef

% SQOURIRJIY

SOx
SOx.
SOx

SOx

SOx
SOx

A[quiasse Dy g

xG91
xg8l
Xy Gl
x0°¢l
X991
XL
X011
x¢tcl
XT°6
XC9
x6'1
X6°Cl
X601
xXCS
XCOor1
X9°Cl
XECT
X9°Cl
XT°¢l
Xy'Cl
8¢l
XLGT
XyCl
X811
XLL
08
X7l
X6'9
Xy'e
XN

98e10A0)

0cl
el
£l
8L
I€1
9Tl
OrT1
SOl
9Tl
€01
LOT
SIT
08

41!
901
el
vCl
911
0cl
£cl
0cl
el
148!
[T
601
€01
oIl
a0l
S8

OrT

@D
9ZIS J1asu]

080°9%
0vT'06
89€'8S
YrL€9
4987
091°C6
798°9¢
TIST9
9LITS
896°L9
0zT1°1¢
96T°SS
96T°SS
9LSYT
967°SS
800°CH
89€°8S
896°L9
959°0L
T€8°9S
008°9L
96T°SS
091°C6
YOT°TE
800°¢Y
9¢s6h
0vT'8€El
YTT8yl
891°L8

TIroe
SOUO[d
JO IoquinN

Sv¢

Tve

sdv

14y

Svv

vy

Sdg

1dag

d¢

d¢

d¢

SV¢E

SVe

1ve

1ve

N

1dc

Sd¢

1de

Sve

1ve

sl

141

SVI

VI

VI

as ‘ar ‘ar
as ‘ar ‘ar
as ‘ar ‘ar
as ‘ar ‘ar

UWLIR/QUIOSOWOoIy D)

ONIIdS HSHANIHD
ONIAdS HSHANIHD
ONIIdS HSHNIHD
ONIIdS HSHANIHD
ONIAdS HSANIHO
ONIAdS HSANIHD
ONIAdS HSHANIHD
ONIAdS HSHANIHO
ONIAdS HSHANIHO
ONIAdS HSHNIHO
ONIAdS HSHNIHO
ONIAdS HSHNIHO
ONIAdS HSHNIHO
ONIAdS HSHNIHO
ONIAdS HSHNIHO
ONIAdS HSHNIHO
ONIAdS HSHNIHO
ONIAdS HSHNIHO
ONIIdS HSHNIHD
ONIIdS HSHNIHD
ONIIdS HSANIHD
ONIIdS HSHANIHD
ONIIdS HSHANIHD
ONIIdS HSHANIHD
ONIAdS HSHANIHD
ONIIdS HSHANIHD
ONIAdS HSHANIHD
ONIIdS HSANIHO
ONIIdS HSANIHD
ONIIdS HSANIHD

TeAn[n)

VUsvsdsoery,
VuTvSdsoeer,
vusdaydsoeel,
vuIardsoeel,
VUSvdsoee],
VUTVHdsOeeL
vusagdsoeeL
vuagdspeeL
quadedsoeer,
vuddedsOeer,
vadgedsoee],
qusvyedsoee],
vusvedsoeeL
quIvedsoeer,
VuvedspeeL
vusaedsorelr,
vuIacdsoeer,
vusdgedsoeer,
vuTdedsOeeL
vusvedsoeeL
VUTvzdsDee],
vusdrdsoeer,
vuIgrdsoery,
VUSVdsoeeL,
quTv 1dsOeel,
VUV 1dsoeer,

ouorIdsoeel,

quop1dsoee],
Vuor1dsoeer,

Vo9 dspee],

Qureu AreIqry

SO0INOSAI DY [BWOSOWOIYD JBAYM  L°E d|qgel



35

cAlquasse Dyg pue ‘ dew [eorsyd
parefar < Areiqr Dy g Je[nonied v 03 195a1 A[[eoyroads saouaiayar papraoid Y], “(§10z) DSOMI Ul pasuewwns die sdew [eorsyd payefar pue satreiqi ONIYAS ASANIHD [V
(0T07) ‘T2 30 JeJes UI PUBSILIEII[-BUP/SIOINOSAI/UD/ZO"Sed QAN donowo[o//:sdny Je popiaoid ST SALIRII] AU} INOE UONBULIOJUT [EUONIPPY

3 Wheat Chromosomal Resources and Their Role in Wheat Research

UOISSAITONUIDUI)
1(6107) "Te 10 paOYRUR( X8'9 €Il 800°¢H VY - J—IIHY.L VUTVHwdes],
X8 0€l 880° I+ 141 NOAVd vudiaedee],
1(9000) ‘e 30 epuef XS] 8 087°S9 sl NOAVd vusdiAedee],
X¢'9 091 OLL'EY ¢ ddOH quigedoyee],
1(#10T) “Te 10 03e]N X0'9 8L 09126 q¢ HdOH  vuddgdoHeel
¢z(86107)
Te 30 paodng, (T10T) Te 10 pAOYUIIS SOX X7l 1an! TSI6r SAL ONIYAS ASANIHD vusaLdsoeer
¢2(0207) 'Te 10 Suoq | (110T) Te 10 pAOYwIg SOX X871 SII ¥0€°0S 1dL ONI¥dS ASANIHD vulaLdspeer
SOX X8'G Til ¥0S'1T SdL ONIIdS HSANIHD qusdLdspeer
SOX XGTl 781 849°LT SdL ONIIdS HSANIHD vusdLdspeer
SOX XT'GT 9¢1 096°CL Td. ONIIAS ASANIHD vu1dLdsee],
SOX Xy'G1 vEl 89¢°8S SVL ONI¥AS ASANIHD VUSVLdsDee],
¢2(810T) '[& 10 21QUSeH-9[qoay] SOX XgGI 1Z4! 950°19 TVL ONIAdS dSANIHO VUV LdsOeeL
SOX XEGI el 009°LS S99 ONIIYdS ASANIHD vusgodsoeey,
21(S102) 'Te 10 1ysekeqosy SOk X081 0€1 T€09L 199 ONIIAS ASANIHD vu1dg9dspee],
X091 Y4 4987 SV9 ODNI¥AS ASANIHD VusvodsoeeL
21(#102) Te 10 1uBqaIRSINOg XL'GT €Tl 967°SS IV9 ONI¥dS ASANIHD VUTv9dsOeeL
21(aS107) "Te 10 reurdyy XQO'LT LET 798°9¢ SAS ONIAAS ASANIHD vusasdsoeeL
X091 8C1 096°CL 1AS ONIYAS SANIHD vu1asdsoeer
21(8107) [e 10 vuUIlES SOX X861 (44 9LL'EY S4S ONIIJS ASANIHD vusgsdsoeer,
XL'GT 9CI 008°9L T19S ONIIJS ASANIHD vu1dsdsoee],
%SAOUAIRJY qy) SQUO[D
Aquiasse Dy g a8e10A0D) QZIS 1Isuy Jo IqunN  ULIR/QUWOSOWOIY)) TeATIND) Qureu Areiqry

(ponunuod) ¢ AqEL


https://olomouc.ueb.cas.cz/en/resources/dna-libraries

36

H. Simkova et al.

3.2.2 BACClone Sequencing

Availability of BAC clones ordered in chro-
mosomal physical maps opened avenue to sys-
tematic analyses of bread wheat genome and
its selected parts. The early studies, based on
sequencing ends of BAC clones by Sanger tech-
nology, provided first insights into gene and
repeat content of particular chromosomes, ena-
bled comparative analyses of homoeologous
chromosomes and delivered information for
targeted marker development (Paux et al. 2006;
Sehgal et al. 2012; Lucas et al. 2012).

Later studies, employing next-generation
sequencing of whole BAC contigs, provided
more comprehensive information about organi-
zation of genes and transposable elements
(TEs). Choulet etal. (2010) sequenced and
annotated 13 BAC contigs, totaling 18 Mb
sequence, selected from different regions of the
3B chromosome and revealed that genes were
present along the entire chromosome and clus-
tered mainly into numerous small islands of
3-4 genes separated by large blocks of repeti-
tive elements. They observed that wheat genome
expansion had occurred homogeneously along
the chromosome through specific bursts of
TEs. Barto§ etal. (2012), after sequencing
a megabase-sized region from wheat arm 3DS
and comparing it with the homoeologous region
on wheat chromosome 3B, revealed similar rates
of non-collinear gene insertion in wheat B and
D subgenomes with a majority of gene duplica-
tions occurring before their divergence. Li et al.
(2013) provided valuable information about
the structure of wheat centromeres. Analyzing
1.1-Mb region from the centromere of chromo-
some 3B, they revealed that 96% of the DNA
consisted of TEs. The youngest elements, CRW
and Quinta, were targeted by the centromere-
specific histone H3 variant CENH3—the marker
of the functional centromere. In contrast to the
TEs, long arrays of satellite repeats found in
the region were not associated with CENH3.
Several other studies employing sequencing
of BAC contigs focused on analysis of narrow
regions comprising their genes of interest (Breen

etal. 2010; Mago etal. 2014; Jandkova et al.
2019; Tulpova et al. 2019b).

Although these studies markedly advanced
the knowledge on bread wheat genome, the
major breakthrough came only with the genera-
tion of chromosome-scale sequence assemblies.
Choulet and co-workers (2014b) produced a
BAC-based reference sequence of the largest
bread wheat chromosome—3B. After sequenc-
ing 8452 BAC clones, representing the 3B MTP,
the authors assembled a sequence of 833 Mb
split in 2808 scaffolds, 1358 of which, con-
taining 774 Mb sequence, had known position
on the chromosome. The assembly comprised
5326 protein-coding genes, 1938 pseudogenes
and 85% of transposable elements. Most inter-
estingly, the distribution of structural and func-
tional features along the chromosome revealed
partitioning correlated with meiotic recom-
bination. Comparative analyses with other
grass genomes indicated high wheat-specific
inter- and intrachromosomal gene duplication
activities that were postulated to be sources of
variability for adaption. As a contribution to
the IWGSC sequencing effort, sequence assem-
blies of BAC clones representing complete or
partial MTPs of seven chromosomes and two
chromosome arms were produced (Table 3.1
and references therein; IWGSC 2018) and are
publicly available at https://urgi.versailles.inrae.
fr/download/iwgsc/BAC_Assemblies/. These
assemblies, complemented by information from
chromosomal physical maps, and—for group 7
chromosomes—also chromosomal optical maps,
were applied to support the assembly of the
bread wheat reference genome, IWGSC RefSeq
v1.0 AWGSC 2018), as described in Chap. 2.

It is clear nowadays that the whole-genome-
shotgun became the predominant approach to
sequencing, even for large polyploid genomes.
Still, the generated wheat chromosomal physical
maps and BAC clones integrated therein remain
a valuable genomic resource for bread wheat,
enabling a fast access to and a detailed analysis
of a region of interest. The availability of BAC
clones with a known genomic position facili-
tated a focused and affordable resequencing of
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a region of interest with long-read technologies,
revealing discrepancies and missing segments in
the previously generated bread wheat assemblies
(Kapustova et al. 2019; Tulpov4 et al. 2019b).

3.3 Chromosome Survey

Sequencing

While the generation of the full set of chromo-
somal libraries, physical maps and BAC clone
sequences proved to be a long-distance run,
the requirement for homoeolog-resolved wheat
genome information was increasing over time.
Apparently, this demand could be met by low-
pass chromosome sequencing, which would pro-
vide approximate information about the genic
component of individual chromosomes. The
separation of each bread wheat chromosome
or chromosome arm was, in principle, feasible
but the yield of flow-sorted chromosomes, typi-
cally 1-2 x 10° per sorting day, did not meet the
demands of the early sequencing technologies
on the DNA input, which was in the microgram
range. Coupling of chromosome flow sort-
ing with multiple-displacement amplification
(MDA) of the chromosomal DNA, originally
developed for physical mapping on DNA micro-
arrays (gimkové et al. 2008), opened the door
to shotgun sequencing of cereal chromosomes
one-by-one. Wheat genome researchers adopted
the strategy of chromosome survey sequenc-
ing (CSS) developed for barley (Mayer et al.
2009, 2011). In barley, low-coverage (1-3x)
chromosomal data, obtained by 454 sequenc-
ing, were compared with reference genomes of
rice, sorghum and Brachypodium, and EST or
full-length-cDNA datasets, which led to the esti-
mation of gene content for each of the barley
chromosomes. Moreover, an integration of the
shotgun sequence information with the collinear
gene order of orthologous rice, sorghum and
Brachypodium genes allowed proposing virtual
gene order maps of individual chromosomes.
The syntenic integration, known as genome zip-
per, resolved gene order in regions with limited
genetic resolution, such as genetic centromeres,
which were intractable to genetic mapping.

The first experiments with the CSS in bread
wheat were done to compare chromosome arms
of homoeologous group 1 (Wicker et al. 2011),
and it methodologically followed the barley
model, employing the low-pass 454 sequenc-
ing. The study revealed that all three wheat
subgenomes had similar sets of genes that were
syntenic with the model grass genomes but the
number of genic sequences in non-syntenic posi-
tions outnumbered that of the syntenic ones.
Further analysis indicated that a large propor-
tion of the genes that were found in only one
of the three homoeologous wheat chromosomes
were most probably pseudogenes resulting from
transposon activity and double-strand break
repair. These findings were supported by a study
of Akhunov etal. (2013) who, working with
CSSs of both arms of chromosome 3A, found
that~35% of genes had experienced structural
rearrangements leading to a variety of mis-sense
and non-sense mutations—a finding concord-
ant with other studies indicating ongoing pseu-
dogenization of the bread wheat genome.
Another focus of the CSS studies was the evo-
lutionary rearrangement of wheat chromosomes.
Hernandez et al. (2012) analyzed bread wheat
chromosome 4A, which has undergone a major
series of evolutionary rearrangements. Using
the genome zipper approach, the authors pro-
duced an ordered gene map of chromosome 4A,
embracing ~85% of its total gene content, which
enabled precise localization of the various trans-
location and inversion breakpoints on chromo-
some 4A that differentiate it from its progenitor
chromosome in the A-subgenome diploid donor.

In contrast to the above studies, Berkman and
co-workers, aiming to shotgun sequence wheat
7DS arm, favored the use of the more cost-
efficient Illumina technology and compensated
its short reads (75-100 bp) by higher sequenc-
ing coverage (34x), which allowed a partial
assembly of the reads and capture of ~40% of
the sequence content of the chromosome arm
(Berkman etal. 2011). Using the same tech-
nology, the team proceeded with sequencing
the 7BS arm (Berkman etal. 2012) and sup-
plemented the 4A study by delimiting the 7BS
segment that was involved in the reciprocal
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translocation that gave rise to the modern 4A
chromosome. After extending the sequenc-
ing effort to all group7 homoeologs (Berkman
etal. 2013), the team compared the sequences
and concluded that there had been more gene
loss in 7A and 7B than in 7D chromosome.
Chromosome survey sequences of additional
chromosomes/arms followed and were mostly
utilized in estimating gene and repeat con-
tent of particular chromosomes (Vitulo et al.
2011; Tanaka et al. 2014; Sergeeva et al. 2014;
Helguera et al. 2015; Garbus et al. 2015; Kaur
etal. 2019), synteny-based ordering of arising
clone-based physical maps (Lucas et al. 2013),
identifying miRNA-coding sequences (Vitulo
etal. 2011; Kantar etal. 2012; Deng et al.
2014; Tanaka etal. 2014) and delimiting lin-
age-specific translocations (Lucas et al. 2014).
Utilization of the chromosome sequencing for
gene mapping and cloning is described further
in Sect. 3.5.1.

The chromosome survey sequencing in
bread wheat has been crowned by a joint effort
coordinated by the IWGSC, which exploited
the existing Illumina-based CSSs and comple-
mented them by newly produced Illumina data
for the remaining chromosomes. The sequences
were applied to generate draft assemblies and
genome zippers for all wheat chromosomes
(IWGSC 2014). As a result, a total of 124,201
gene loci were annotated and more than 75,000
genes were positioned along chromosomes. The
IWGSC team anchored more than 3.6 million
marker loci to chromosome sequences, uncov-
ered the molecular organization of the three
subgenomes and described patterns in gene
expression across the subgenomes. The study
also provided new insights into the phylogeny of
hexaploid bread wheat, which was elaborated in
detail in an accompanying study of Marcussen
et al. (2014). Moreover, this new wheat genome
information was used as a reference to analyze
the cell type-specific expression of homoe-
ologous genes in the developing wheat grain
(Pfeifer et al. 2014).

The technique of chromosome survey
sequencing soon expanded beyond the cultivated
crop and was successfully applied to explore
individual chromosomes or whole genomes of
close wheat relatives, such as Aegilops tauschii
(Akpinar et al. 2015a) and Triticum dicoccoides
(Akpinar etal. 2015c; 2018), and even spe-
cies from the tertiary gene pool, including Ae.
geniculata (Tiwari et al. 2015), H. villosa (Xiao
etal. 2017), Ae. comosa, Aegilops umbellulata
(Said et al. 2021) and A. cristatum (Zwyrtkova
et al. 2022). These studies informed about the
chromosome gene content and organization,
enabling comparative studies important for gene
transfer from the wild species to the crop as well
as identifying the sequences enabling marker
development for tracing introgressions in wheat.
Specific examples are provided in Sect. 3.5.1
and Table 3.2.

3.4 Optical Mapping
Extensive experience with preparing quality
HMW DNA from flow-sorted chromosomes
paved the way to establish a new branch of
wheat chromosomal genomics—chromosome
optical mapping (OM). The OM technology,
commercialized by Bionano Genomics and
therefore also known as Bionano genome map-
ping, is a physical mapping technique based on
labeling and imaging short sequence motives
along 150kb to 1 Mb long DNA molecules
(Lam etal. 2012). Resulting restriction maps,
assembled from high-coverage single-molecule
data, are composed of contigs up to>100 Mb in
size, which are instrumental in finishing steps
of genome assemblies by enabling contig scaf-
folding, gap sizing and assembly validation. The
optical maps also provided a high-resolution and
cost-effective tool for comparative structural
genomics.

Stankova et al. (2016) demonstrated the fea-
sibility of generating optical maps from DNA
of flow-sorted chromosomes and constructed
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Table 3.2 Leveraging wheat chromosomal resources in gene mapping and cloning

Phenotype
Stem rust resistance

Green bug resistance

Powdery mildew
resistance

Species cytoplasm
specific
Leaf rust resistance

Glume blotch resistance

Stripe rust resistance

Russian wheat aphid
resistance

Pre-harvest sprouting
resistance

Semi-dwarfism
Yellow Early Senescence

Fusarium head blight
resistance

Locus
Sr2

SuSr-D1
Gb3
QPm-tut-4A

Pm2

Pm21
Pm4

Pmla
scs

Lrida

Lr57

Lr22

Lr49

Lr76

Lri4a
QSng.sfr-3BS

Yr40
YrAwl1
Yr70
Dn2401

Phs-Al
Rht18

YES-1
Fhb

Sorted chrom./arm  Applied approach

3B

7D
7DL
4AL

5D

6V
2A

TA
1D

7BL

SMe

2D

4B
5D/5U
7BL.5BL
3B

SMe
4AL
SD/5U
7DS

4AL

6A
3A
MEIL,

BAC BAC-based physical map/BAC sequencing
CSS Chromosome survey sequence
ChromSeq chromosome sequencing
MutChromSeq Mutant chromosome sequencing

OM Optical map

RICh Rearrangement identification and characterization

SynSNP Synteny-based SNP marker development
TACCA TArgeted chromosome-based cloning via long-range assembly

BAC

MutChromSeq
BAC
SynSNP

CSS, ChromSeq, RICh
BAC, CSS

MutChromSeq

TACCA
MutChromSeq

ChromSeq
SynSNP

SynSNP
ChromSeq
TACCA
ChromSeq
ChromSeq
MutChromSeq
ChromSeq

ChromSeq
ChromSeq
ChromSeq

CSS, SynSNP
BAC, OM
BAC

MutChromSeq
ChromSeq
ChromSeq
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the first-ever optical map for the bread wheat
genome. Using 1.6 million flow-sorted 7DS
chromosome arms and the first-generation plat-
form of Bionano Genomics, the authors pre-
pared a map consisting of 371 contigs with N50
of 1.3 Mb, which supported a physical-map and
a BAC-based sequence assembly of the chro-
mosome arm (Tulpova etal. 2019a). Applied
in a gene cloning project, the OM posed a tar-
geted tool for sequence validation and analysis
of structural variability in a region of interest
(Tulpovad et al. 2019b). Similar maps have been
constructed for other group-7 chromosome arms
and were used in the process of assembling the
wheat reference genome (IWGSC 2018), as well
as a complementary BAC-based assembly of
chromosome 7A (Keeble-Gagnere et al. 2018).

Another set of chromosomal optical maps
was prepared from chromosome arms 1AS,
I1BS, 6BS and 5DS, the last being generated
on the second-generation platform of Bionano
Genomics, with the aim to position and char-
acterize 45S rDNA loci located on those arms.
The chromosome-based approach applied in
the rDNA project enabled analyzing the loci
one-by-one and provided more comprehensive
information about individual loci than achieved
in long-read bread wheat assemblies (Tulpova
et al. 2022).

3.5 Gene Mapping and Cloning

In parallel with the chromosome sequencing
efforts, the wheat community started exploiting
flow-sorted chromosomes for targeted marker
development, aiming to generate a high-density
map in a region of interest and, possibly, clone
a gene by a map-based approach. This conven-
tional strategy was later complemented by new
methods of ‘rapid gene cloning’ (reviewed in
Bettgenhaeuser and Krattinger, 2019). Some of
these still capitalize on the complexity reduction
by chromosome flow sorting but they avoid the
lengthy step of marker development and map
saturation while employing mutation genetics
and comprehensive sequencing techniques to

assemble a highly contiguous sequence for the
chromosome of interest.

3.5.1 Marker Development and Map-

Based Gene Cloning

The first effort toward massive marker devel-
opment from a selected chromosome or chro-
mosome arm was bound with the microarray
platform of Diversity Array Technologies,
able to identify and utilize polymorphic DNA
markers without knowledge of the underly-
ing sequence (Jaccoud etal. 2001). Wenzl
et al. (2010) demonstrated that a chromosome-
enriched DArT array could be developed from
only a few nanograms of chromosomal DNA.
Of 711 polymorphic markers derived from non-
amplified DNA of bread wheat chromosome
3B, 553 (78%) mapped to the chromosome, and
even higher efficiency (87%) was observed for
the short arm of bread wheat chromosome 1B
(1BS).

Before the availability of wheat chromo-
somal survey sequences, researchers aiming to
develop new markers for their locus of interest
mined data from sequenced genomes of model
grasses, mainly rice, Brachypodium and sor-
ghum. Efficiency of this synteny-based approach
was compromised by limitations in designing
gene-derived primers with sufficient specificity
to distinguish homoeologous genes in polyploid
wheat. Amplified DNA from individual wheat
chromosome arms used as a template for locus-
specific PCR and subsequent amplicon sequenc-
ing, significantly increased the efficiency of the
procedure and the facilitated targeted generation
of gene-associated SNP markers in a time- and
cost-effective manner (Jakobson etal. 2012;
Michalak de Jimenez et al. 2013; Terracciano
et al. 2013; Stankova et al. 2015). Additionally,
particular chromosomal arms used as a PCR
template were applied to validate specificity
of the newly designed markers (Stankova et al.
2015; Jandkova et al. 2019).

Advancement in marker development came
along with the release of ‘CHINESE SPRING’
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CSSs and genome zippers that informed about
putative gene content and order in the region of
interest in the reference genome. Nevertheless,
studies comparing shotgun sequences of CS
chromosomes with those of other wheat acces-
sions revealed extensive intra- and interchro-
mosomal rearrangements in CS (Ma et al. 2014,
2015; Liu et al. 2016), implying limitations in
the transferability of data from the wheat refer-
ence to other genomes. Moreover, it became
obvious that agronomically important traits
were frequently controlled by rare, genotype-
specific alleles or had even been introgressed to
wheat from its relatives. Under such scenario,
genetic maps had to be created from a map-
ping population derived from a donor of the
trait and sequence information from the donor
was essential for marker development. As a
proof-of-concept experiment, Shatalina et al.
(2013) generated tenfold coverage of Illumina
data from chromosome 3B isolated from wheat
cultivars ARINA and FORNO—the parents of
their mapping population. Relying on a synteny
with the Brachypodium genome, they identi-
fied sequences close to coding regions and used
them to develop 70 SNP markers, which were
found dispersed over the entire 3B chromo-
some and contributed to fourfold increase in the
number of available markers. The new mark-
ers were utilized for mapping a QTL confer-
ring resistance to Stagonospora nodorum glume
blotch located on 3BS (Shatalina et al. 2014).
Chromosome sequencing was then applied
by other groups to fine-map Yellow Early
Senescence 1 (Harrington et al. 2019), leaf rust
resistance gene Lr49 (Nsabiyera et al. 2020) and
powdery mildew resistance gene Pml (Hewitt
et al. 2021).

The procedure was also adopted to develop
markers in species from wheat tertiary gene
pool, such as Ae. geniculata (Tiwari et al.
2014) and H. villosa (Wang et al. 2017; Zhang
etal. 2021), with the aim to trace the alien
chromatin in the wheat background. For this
purpose, the method was refined by Abrouk
etal. (2017) who developed an in silico pipe-
line termed Rearrangement Identification and
Characterization (RICh). To delimit a segment

transferred from 7. militinae to the long arm of
chromosome 4A of bread wheat cv. TAHTI,
the authors generated a virtual gene order of
‘TAHTI’ chromosome 4A. Comparison of
homoeologous gene density between 4AL arm
of CS and the arm with the introgression, which
harbored powdery mildew resistance locus
QOPm.tut-4A, identified alien chromatin with
169 putative genes originating from 7. mili-
tinae. A similar approach was used by Bansal
et al. (2020) to fine-map leaf rust and stripe rust
resistance genes Lr76 and Yr70 introduced from
Ae. umbellulata. The authors sequenced flow-
sorted chromosomes 5U from Ae. umbellulata,
5D from a bread wheat-Ae. umbellulata intro-
gression line and 5D from the recurrent parent.
Sequencing reads were explored with the aim
to identify introgression-specific SNP markers
whose projection on the IWGSC RefSeq v1.0
sequence (IWGSC 2018) delimited the intro-
gression to a 9.47 Mb region, in which candi-
dates for Lr76 and Yr70 genes were identified.
Konkin et al. (2022), streaming to identify genes
for resistances to several fungal pathogenes,
including fusarium head blight, sequenced 7EL
telosome, originated from Thinopyrum elonga-
tum and existing as addition in CS wheat. They
thus built a reference for comparative transcrip-
tome analysis between CS and CS-7EL addition
line, which resulted in a list of candidate genes
for the resistance.

Alongside the wheat chromosomal survey
sequences, emerging BAC assemblies from indi-
vidual chromosomes of ‘CHINESE SPRING,
just as customized chromosomal BAC librar-
ies from other cultivars showed instrumental
in gene cloning projects. Simkovi et al. (2011)
demonstrated that BAC libraries constructed
from chromosome arms 7DS and 7DL, con-
sisting of tens of thousands BAC clones, were
highly representative and easy to screen, which
facilitated fast chromosome walking in a region
of green bug resistance gene Gb3 in 7DL. The
7DS BAC library was screened for markers
tightly linked to a Russian wheat aphid resist-
ance locus Dn2401 (Stankova et al. 2015) and
a BAC contig spanning the locus was identified
in a 7DS physical map (Tulpova et al. 2019a).
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BAC clones from 0.83 cM interval, delimited by
Dn2401-flanking markers, were sequenced by
combination of short Illumina and long nano-
pore reads and the resulting sequence assem-
bly, validated by optical mapping of the 7DS
arm (Staiikova et al. 2016), revealed six high-
confidence genes. Comparison of 7DS-specific
optical maps prepared from susceptible cv.
CHINESE SPRING and resistant line CI2401
revealed structural variation in proximity of
Epoxide hydrolase 2, which gave support to
the gene as the most likely Dn2401 candidate
(Tulpova et al. 2019b). Similarly, a BAC library
and physical map of CS 4A chromosome were
used to approach and analyse pre-harvest sprout-
ing resistance locus Phs-Al, which revealed a
causal role of TuMKK3-A for the trait (Shorinola
etal. 2017). Customized BAC libraries con-
structed from 3B chromosome of cv. HOPE
and 4AL telosome bearing introgressed seg-
ment of 7. militinae were utilized to clone stem
rust resistance gene Sr2 (Mago et al. 2014) and
to approach powdery mildew resistance locus
Opm.tut-4A (Janakova et al. 2019), respectively.

3.5.2 Contemporary Approaches

The completion and release of the ‘CHINESE
SPRING’ reference genome (IWGSC 2018) in
hand with rapid technological advancements,
allowing resequencing and large-scale pan-
genome projects even in a crop with a complex
polyploid genome, revolutionized strategies of
gene cloning in bread wheat. Whole-genome
long-read sequencing, resulting in high-qual-
ity sequence with resolved gene duplications,
became realistic for wheat but challenges of
producing, handling and analyzing the big data
still appear too high for the majority of wheat
gene cloning projects. Apart from the WGS
and pan-genome efforts, several approaches
to rapid gene cloning have been developed
(Bettgenhaeuser and Krattinger 2019, and Chap.
10 of this book), including several utilizing the
complexity reduction by chromosome flow
sorting. Among them, Mutant Chromosome
Sequencing (MutChromSeq; Sanchez-Martin

etal. 2016) and TArgeted Chromosome-based
Cloning via long-range Assembly (TACCA;
Thind et al. 2017) have been used most widely.
As indicated by the acronym, the former method
couples chromosome flow sorting and sequenc-
ing with reference-free forward genetics. A
chromosome bearing the gene of interest is
[lumina-sequenced from both wild type and sev-
eral independent ethyl methanesulfonate (EMS)
mutants and the sequences are compared. A can-
didate gene is identified based on overlapping
mutations in a genic region. The feasibility and
efficiency of the method were first demonstrated
by re-cloning barley Eceriferum-q gene and by
de novo cloning wheat powdery mildew resist-
ance gene Pm2 (Sdnchez-Martin etal. 2016).
This speedy, cost-efficient approach to gene
cloning generated a lot of interest in both wheat
and barley community (reviewed in Steuernagel
et al. 2017). It was successfully applied to iden-
tify the semi-dwarfism locus RhtI8 in T. durum
(Ford et al. 2018) and the SuSr-D1 gene that sup-
presses resistance to stem rust in bread wheat
(Hiebert et al. 2020). Moreover, it contributed to
cloning the race-specific leaf rust resistance gene
Lri4a (Kolodziej et al. 2021) and the powdery
mildew resistance gene Pm4 (Sanchez-Martin
et al. 2021) from hexaploid wheat.
MutChromSeq is a method of choice for
traits with a strong phenotype, for which the
production of independent mutants is feasi-
ble. As an alternative, suitable for any pheno-
type, Thind et al. (2017) proposed a procedure
based on producing a high-quality de novo
assembly of the gene-bearing chromosome and
named it TACCA. The procedure utilized the
so-called Chicago mapping technique (Putnam
etal. 2016) developed by Dovetail Genomics.
To clone leaf rust resistance gene Lr22a, the
authors flow-sorted and Illumina-sequenced
wheat chromosome 2D from resistant line CH
CAMPALA Lr22a. The resulting sequences
were scaffolded with Chicago long-range link-
age. The assembly comprised 10,344 scaffolds
with an N50 of 9.76 Mb and with the longest
scaffold of 36.4 Mb. The high contiguity of the
chromosomal assembly significantly reduced
the number of markers needed to delimit the
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gene in a narrow interval and, complemented by
information from EMS mutants, allowed rapid
cloning of this broad-spectrum resistance gene.
The TACCA approach was also applied by Xing
et al. (2018) to clone powdery mildew resistance
gene Pm21, introduced to bread wheat from H.
villosa chromosome 6V. Besides, the quality
chromosomal assemblies generated by long-
range linkage were used for comparative analy-
ses with chromosomes of the wheat reference
genome (Thind et al. 2018; Xing et al. 2021).

3.6 Conclusions and Perspectives
Since its establishment in 2000, flow-cytomet-
ric chromosome sorting contributed to major
achievements in bread wheat genomics, includ-
ing the generation of the wheat reference genome.
Due to the rapid advancements in next-generation
sequencing technologies, the reduction of genome
complexity is no more essential in the context of
whole-genome sequencing, but remains beneficial
in gene cloning projects that call for a high-qual-
ity sequence from a narrow region of the genome.
This demand was met in coupling chromosome
sorting with the long-range linkage method,
which resulted in contiguous chromosome assem-
blies. Since Dovetail Genomics discontinued
the Chicago method, other approaches need to
be developed to satisfy the demand of the wheat
community. Long-read sequencing technologies,
such as PacBio or nanopore sequencing, appear to
be the logical tools for achieving the goal but to
make them compatible with the flow-sorted mate-
rial, challenges relating to inherent features of the
flow sorting technique—formaldehyde fixation
and a high laboriousness of producing large DNA
amounts—still need to be resolved. Low-input
protocols, being developed by the sequencing
companies, go toward this demand.
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