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Wheat Chromosomal Resources 
and Their Role in Wheat Research

Hana Šimková, Petr Cápal and Jaroslav Doležel

analyses. Since the approach overcomes dif-
ficulties due to sequence redundancy and the 
presence of homoeologous subgenomes, the 
chromosomal genomics was adopted by the 
International Wheat Genome Sequencing 
Consortium (IWGSC) as the major strat-
egy to sequence bread wheat genome. The 
dissection of the wheat genome into single 
chromosomes enabled the generation of chro-
mosome survey sequences and stimulated 
international collaboration on producing a 
reference-quality assembly by the clone-by-
clone approach. In parallel, the chromosomal 
resources were used for marker develop-
ment, targeted mapping and gene cloning. 
The most comprehensive approaches to gene 
cloning, such as MutChromSeq and assembly 
via long-range linkage, found their use even 
in the post-sequencing era. The chapter pro-
vides a two-decade retrospective of chromo-
some genomics applied in bread wheat and 
its relatives and reports on the chromosomal 
resources generated and their applications.
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Abstract

Bread wheat (Triticum aestivum L.) is grown 
on more area of land than any other crop, 
and its global significance is challenged only 
by rice. Despite the socioeconomic impor-
tance, the wheat genome research was lag-
ging behind other crops for a long time. It 
was mainly a high complexity of the genome, 
polyploidy and a high content of repeti-
tive elements that were laying obstacles to 
a thorough genome analysis, gene cloning 
and genome sequencing. Solution to these 
problems came in the beginning of the new 
millennium with the emergence of chromo-
some genomics—a new approach to study-
ing complex genomes after dissecting them 
into smaller parts—single chromosomes or 
their arms. This lossless complexity reduc-
tion, enabled by flow-cytometric chromo-
some sorting, reduced the time and cost of 
the experiment and simplified downstream 
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This was a daunting task at that time given its 
genome size exceeding 15 Gb (IWGSC 2018), 
presence of three homoeologous genomes and 
high repeat content.

Despite the difficulties foreseen, participants 
of the workshop on wheat genome sequenc-
ing held in Washington DC in 2003 agreed on 
a need for a bread wheat genome sequence 
(Gill et al. 2004). Among available strategies, it 
was decided to explore the use of DNA librar-
ies prepared from individual chromosomes and 
chromosome arms for the assembly of a global 
physical map and chromosome sequencing. 
As individual chromosomes and chromosome 
arms represent only about 4–6% and 1–3% 
of the bread wheat genome, respectively, dis-
secting the genome to chromosomes or even 
chromosome arms offered a dramatic and 
lossless reduction in DNA sample complex-
ity to facilitate targeted development of DNA 
markers, gene mapping and cloning as well as 
genome sequencing. The chromosome-based 
approach avoided problems due to the presence 
of homoeologous DNA sequences and enabled a 
division of labor so that different groups could 
work on physical mapping and sequencing dif-
ferent chromosomes simultaneously (Gill et al. 
2004). A principal condition for the application 
of this approach was the ability to purify par-
ticular chromosomes and chromosome arms in 
sufficient numbers (~103–106) so that enough 
DNA may be obtained. Until today, the only 
method suitable for this task is flow-cytometric 
sorting.

3.1.1  Flow Cytogenetics

Unlike microscopy, flow cytometry analyzes 
condensed mitotic metaphase chromosomes 
during their movement, one after another, in 
a narrow liquid stream. To distinguish this 
approach from microscopic analysis, the term 
flow cytogenetics has been coined. Prior to flow 
cytometry, chromosomes are stained by a DNA 
fluorochrome so that they can be classified 
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3.1  Development of Wheat 
Chromosome Genomics

The development of DNA sequencing technique 
by Sanger et al. (1977) marked the beginning of 
genomics with a prospect of obtaining complete 
genome sequences and studying entire genomes. 
The progress in DNA sequencing and genome 
assembly technologies, which followed the pio-
neering projects on small bacterial genomes 
(Fleischmann et al. 1995; Fraser et al. 1995), 
made it possible to deliver the first genome of 
a plant—Arabidopsis thaliana (Arabidopsis 
Genome Initiative 2000), followed by Oryza 
sativa (International Rice Genome Sequencing 
Project 2005). Together with the progress in 
human genome sequencing (Lander et al. 2001) 
these achievements stimulated the interest to 
produce genome sequence of hexaploid bread 
wheat (Triticum aestivum, 2n = 6x = 42), one 
of the three most important crops worldwide. 
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according to relative DNA content. The analysis 
can be performed at rates of ~103 s so that large 
numbers of chromosomes can be interrogated to 
obtain statistically accurate data and potentially 
discriminate individual chromosomes. A histo-
gram of DNA content thus obtained is termed 
flow karyotype, and ideally, each chromosome 
is represented by a well-discriminated peak. In 
fact, the extent to which the chromosome peak is 
discriminated from peaks of other chromosomes 
determined the purity in the sorted fraction, or 
the frequency of contaminating chromosomes 
in flow-sorted fraction. Not all flow cytometers 
are equipped by a sorting module, and only 
some are designed to physically separate (sort) 
microscopical particles with particular optical 
parameters. Gray et al. (1975a, b), Stubblefield 
et al. (1975) and Carrano et al. (1976) were the 
first to confirm that flow cytometry can be used 
not only to classify mammalian chromosomes 
according to DNA content, but also to sort them. 
These experiments paved the way to the use 
of flow-sorted chromosomes during the initial 
phases of human genome sequencing (Van Dilla 
and Deaven 1990).

The samples for flow cytometry must have 
a form of a concentrated suspension of intact 
chromosomes. In contrast to animals and 
human, their preparation in plants is hampered 
by low frequency of dividing mitotic cells and 

by the presence of a rigid cell wall. A success-
ful approach has been to artificially induce cell 
cycle synchrony in root tips of hydroponically 
grown seedlings, accumulate dividing cells at 
mitotic metaphase and release intact chromo-
somes from formaldehyde-fixed root tips by 
mechanical homogenization. This high-yielding 
procedure was developed for faba bean (Doležel 
et al. 1992), and by optimizing it for wheat, 
Vrána et al. (2000) set a foundation for using 
flow-sorted chromosomes in wheat genomics 
(Figs. 3.1 and 3.2).

3.1.2  Chromosome Sorting in Wheat

The study of Vrána and co-workers (Vrána et al. 
2000) revealed that out of the 21 chromosomes 
of bread wheat, only chromosome 3B could be 
discriminated from other chromosomes and 
sorted at high purity (Fig. 3.3a). The remaining 
chromosomes formed three composite peaks 
on a flow karyotype, each of them represent-
ing three to ten chromosomes, which could be 
only sorted as groups. In order to determine 
chromosome content in the flow-sorted frac-
tions, samples of ~103 chromosomes were sorted 
onto a microscopic slide and microscopically 
identified after fluorescence in situ hybridiza-
tion with probes giving chromosome-specific 

Fig. 3.1  Major developments in wheat chromosomal genomics
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labeling patterns (Fig. 3.3e; Kubaláková et al. 
2002). The study of Vrána et al. (2000) indi-
cated the suitability of chromosomal stocks 
with altered chromosome sizes for purification 
of other chromosomes than 3B. In two culti-
vars of wheat, the authors identified and sorted 
translocation chromosome 5BL.7BL, which is 
larger than chromosome 3B (Fig. 3.3c). A sub-
sequent study of Kubaláková et al. (2002) con-
firmed the potential of cytogenetic stocks. The 
most important observation concerned the abil-
ity to sort any single chromosome arm, either in 
the form of a telosome or isochromosome. As 
almost all telosomic lines were developed in the 
background of cv. CHINESE SPRING (Sears 
and Sears 1978), their use offered a possibility 
to analyze the wheat genome chromosome-by 

-chromosome. In 13 double-ditelosomic lines, 
both chromosome arms could be discriminated 
and sorted simultaneously (Fig. 3.3b), saving 
time to collect DNA from both arms (Doležel 
et al. 2012).

While this advance made chromosome flow 
sorting technology ready to support various 
genomics analyses in bread wheat (Fig. 3.2), 
including genome sequencing, its dependence 
on cytogenetic stocks limited its potential for 
marker development and gene cloning in other 
wheat genotypes. To overcome this obstacle, 
Giorgi et al. (2013) developed a protocol for 
fluorescent labeling repetitive DNA of chromo-
somes using fluorescence in situ hybridization 
in suspension (FISHIS). Chromosome classifi-
cation based on two fluorescence parameters: 

Fig. 3.2  Applications of wheat chromosomal resources. 
Depending on downstream application, flow-sorted chro-
mosomes can be processed by two distinct approaches. 
For applications with high demand on DNA amount 
and contiguity, i.e., BAC libraries, optical mapping and 
TArgeted Chromosome-based Cloning via long-range 

Assembly (TACCA), high molecular weight (HMW) 
DNA is prepared by purifying chromosomes embedded 
in agarose plugs. Low molecular weight (LMW) DNA, 
to be used for short-read sequencing or DArT marker 
development (DNA microarrays), is obtained after treat-
ing chromosomal DNA in solution
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DNA (after staining by a DNA fluorochrome) 
and fluorescence of regions containing DNA 
repeats (typically GAA microsatellites) labeled 
by FITC enabled discrimination of chromo-
somes with the same or very similar DNA 
content from each other. Depending on geno-
type, bivariate flow karyotyping after FISHIS 
typically allows discrimination of ~13 out of 21 
wheat chromosomes (Fig. 3.3d, e) and provides 
to date the most powerful approach to dissect 
the wheat genome to single chromosomes.

If the FISHIS procedure of Giorgi et al. 
(2013) is not compatible with a downstream 
application of sorted chromosomes and, at the 
same time, appropriate cytogenetic stocks are 
not available, the option is to partition compos-
ite peaks as observed on monovariate flow kary-
otypes (Fig. 3.3a) (Vrána et al. 2015). Although 
this approach does not allow discrimination and 
sorting of single chromosomes, it is suitable 
for obtaining sub-genomic fractions compris-
ing only a few chromosomes, with one of them 

Fig. 3.3  Flow karyotyping of bread wheat. Histograms 
of relative DAPI fluorescence intensities representing 
chromosomes of varying sizes are termed flow karyo-
types. a Flow karyotype of cv. CHINESE SPRING con-
sists of three composite peaks, harboring 3, 7 and 10 
chromosomes, respectively, and a standalone peak repre-
senting the largest wheat chromosome 3B. b Flow karyo-
type of 7D double ditelosomic line, where both the long 
and the short arm of chromosome 7D are discriminated 
and can be sorted simultaneously. c The translocated 
chromosome 5BL.7BL, present in cv. ARINA and some 
other cultivars, is the largest one in the karyotype and can 

be sorted with a high purity. d Standard monoparametric 
flow karyotype of cultivar CERTO, where three chro-
mosomes from composite peak III—2A, 2B and 6B—
form a defined but still unresolvable sub-population. e 
Bivariate flow karyotype of the same cultivar, where the 
difference in relative abundance of GAA repeat motif 
allows further discrimination of these chromosomes and 
results in well-defined populations containing a single 
chromosome type each. The chromosome 2B, shown in 
the inset, can be sorted with purity exceeding 85%. For 
the purity check, FISH was done with probes for GAA 
(green) and Afa repeats (red)
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being more abundant. Vrána et al. (2015) cal-
culated a so-called enrichment factor defined as 
the relative proportion of chromosomal DNA in 
the wheat genome to the proportion of chromo-
somal DNA in a sorted fraction and found that 
a fivefold enrichment was obtained for 17 out 
of 21 wheat chromosomes. Importantly, sub-
genomic fractions for 15 out of the 21 chromo-
somes were not contaminated by homoeologs.

3.1.3  Sorting Chromosomes of Wild 
Wheat Relatives

The method for flow-cytometric chromosome 
analysis and sorting, originally developed for 
hexaploid bread wheat and subsequently modi-
fied for tetraploid durum wheat Triticum turgi-
dum Desf. var. durum, 2n = 4x = 28 (Kubaláková 
et al. 2005) was also found to be suitable to 
sort chromosomes from their wild relatives. In 
fact, two options were explored. One involved 
sorting chromosomes from alien chromosome 
introgression lines of wheat. The samples are 
prepared from synchronized wheat root tips and, 
if the alien chromosome can be discriminated 
on a flow karyotype, it may be sorted (Molnár 
et al. 2011, 2015; Zwyrtková et al. 2022). In a 
similar manner, wheat chromosomes carrying 
introgressions from wild relatives can be puri-
fied (Tiwari et al. 2014; Janáková et al. 2019; 
Bansal et al. 2020). Second and straightforward 
option is to sort chromosomes directly from 
wild relatives. Thus, the protocol of Vrána et al. 
(2000) for wheat has been optimized for a vari-
ety of species from Aegilops, Agropyron and 
Haynaldia (Dasypyrum) genera (summarized 
in Doležel et al. 2021). While in some of them 
(like Aegilops comosa), all chromosomes may 
be discriminated and sorted (Said et al. 2021), in 
majority of species (including Aegilops genicu-
lata, Aegilops biuncialis, Aegilops cylindrica, 
Haynaldia villosa, Agropyron cristatum and oth-
ers) their chromosomes can only be sorted in 
groups of two to five (Molnár et al. 2011, 2015; 
Grosso et al. 2012; Said et al. 2019). As in case 

of wheat, fluorescent labeling of chromosomes 
by FISHIS prior to flow cytometry increased the 
number of chromosomes that could be discrimi-
nated and sorted. Availability of separated chro-
mosomes of the relatives enabled comparative 
studies with the bread wheat genome (Molnár 
et al. 2014, 2016) and have been applied to sup-
port cloning of genes from the tertiary gene pool 
(see Sect. 3.5.1).

3.2  Toward Bread Wheat 
Reference Genome

Need for a quality bread wheat genome that 
would provide access to the complete gene 
catalogue, an unlimited amount of molecu-
lar markers to support genome-based selec-
tion of new varieties and a framework for the 
efficient exploitation of natural and induced 
genetic diversity (Choulet et al. 2014a) stimu-
lated the establishment of the International 
Wheat Genome Sequencing Consortium, a col-
laborative platform launched in 2005 (https://
www.wheatgenome.org). By that time, a proven 
strategy to obtaining high-quality reference 
sequences of large genomes was the clone-
by-clone approach, i.e., sequencing clones 
from large-insert DNA libraries ordered in 
physical maps. These constituted a technol-
ogy-neutral resource for accessing complex 
genomes, enabling possible resequencing of 
the ordered clones by more advanced technolo-
gies. Considering the ability to dissect the wheat 
genome to individual chromosomes or chro-
mosome arms (Vrána et al. 2000; Kubaláková 
et al. 2002), and after confirming the feasibil-
ity of constructing large-insert DNA libraries 
from the flow-sorted chromosomes (Šafář et al. 
2004; Janda et al. 2004), the Consortium set-
tled on coupling the chromosome purification 
with the clone-by-clone strategy and producing 
clone-based physical maps of individual wheat 
chromosomes that would allow the engagement 
of multiple teams in the challenging sequencing 
effort.

https://www.wheatgenome.org
https://www.wheatgenome.org
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3.2.1  Generation of Chromosomal 
BAC Resources

The prerequisite of the proposed strategy was 
the ability to separate by flow sorting each 
of bread wheat chromosomes or chromo-
some arms. This was only possible in cultivar 
CHINESE SPRING (CS), for which a com-
plete set of telosomic lines, essential to sort the 
chromosome arms, was available (Sears and 
Sears 1978), predestining the cultivar to become 
the reference genome of bread wheat. The pri-
mary resource needed to construct a clone-
based physical map is a large-insert genomic 
DNA library, commonly cloned in the bacterial 
artificial chromosome (BAC) vector, typically 
bearing inserts of 100–200 kb. To generate a 
library of these parameters, several micrograms 
of high molecular weight (HMW) DNA are 
needed. Achieving this from the flow-sorted 
material involved the elaboration of a custom-
ized protocol (Šimková et al. 2003) including 
DNA preparation in agarose plugs (Fig. 3.2), 
which enabled cumulating samples from mul-
tiple sorting days. Based on this advance, Šafář 
et al. (2004) constructed the first-ever chro-
mosome-specific BAC library in a eukaryotic 
organism. The library, prepared from two mil-
lion 3B chromosomes flow-sorted over 18 work-
ing days, comprised 67,968 clones with 103 kb 
average insert size, representing 6.2 equivalents 
of the chromosome 3B, whose molecular size 
is close to one gigabase. Further improvements 
in the procedure permitted the construction of 
BAC libraries with chromosome coverage up to 
18 × and average insert size exceeding 120 Kb 
(https://olomouc.ueb.cas.cz/en/resources/
dna-libraries (Šafář et al. 2010; Table 3.1 and 
references therein). The effort toward prepar-
ing the full set of CS libraries for the chromo-
somal physical maps lasted over ten years and 
was completed in the end of 2013 (Fig. 3.1). 
Individual clones and BAC libraries used to 
construct chromosome-specific physical maps 
are publicly available and can be obtained at 
https://cnrgv.toulouse.inrae.fr/en/Library/Wheat. 
Besides the ‘CHINESE SPRING’ BAC librar-
ies generated for the reference genome project, 

several customized chromosomal libraries from 
other cultivars were created for the purpose of 
gene cloning projects, including 3B-specific 
library from cv. HOPE (Mago et al. 2014) and a 
BAC library from 4AL arm of cv. TÄHTI, bear-
ing an introgressed segment of Triticum mili-
tinae (Janáková et al. 2019) (Table 3.1).

Upon their construction, the CS libraries 
were distributed among national teams engaged 
in the IWGSC effort who embarked on con-
structing physical maps. In a proof-of-concept 
experiment, Paux and co-workers (2008) gen-
erated the first chromosomal physical map 
from chromosome 3B, employing SNaPShot-
based High Information Content Fingerprinting 
(HICF) technology (Luo et al. 2003) to gener-
ate fingerprints and FingerPrinted Contig (FPC) 
software to assemble the physical map and 
select minimal tiling path (MTP) for sequenc-
ing. This achievement validated the feasibility 
of constructing sequence-ready physical maps 
of hexaploid wheat by the chromosome-by-
chromosome approach and the strategy was 
subsequently followed for other chromosome 
arms (Table 3.1; IWGSC 2018). As alternative 
procedures, Whole Genome Profiling (WGP, 
van Oeveren et al. 2011) was applied for BAC 
fingerprinting in several projects and Linear 
Topological Contig (LTC, Frenkel et al. 2010) 
software was developed and utilized for map 
assembly and validation. Procedures applied for 
individual chromosomes/arms are summarized 
in IWGSC 2018. The resulting chromosomal 
physical maps are available at https://urgi.ver-
sailles.inra.fr/download/iwgsc/Physical_maps/ 
and displayable at https://urgi.versailles.inra.
fr/gb2/gbrowse/wheat_phys_pub/. In addition 
to the construction of physical maps for several 
chromosomes, the WGP technology was utilized 
to profile MTP clones identified from chromo-
some physical maps constructed previously 
by the HICF procedure. Thus generated WGP 
tags of all 21 wheat chromosomes were used 
to support the assembly of the IWGSC RefSeq 
v1.0 genome and are available for download 
from IWGSC-BayerCropScience WGP™ tags 
https://urgi.versailles.inra.fr/download/iwgsc/
IWGSC_BayerCropScience_WGPTM_tags.

https://olomouc.ueb.cas.cz/en/resources/dna-libraries
https://olomouc.ueb.cas.cz/en/resources/dna-libraries
https://cnrgv.toulouse.inrae.fr/en/Library/Wheat
https://urgi.versailles.inra.fr/download/iwgsc/Physical_maps/
https://urgi.versailles.inra.fr/download/iwgsc/Physical_maps/
https://urgi.versailles.inra.fr/gb2/gbrowse/wheat_phys_pub/
https://urgi.versailles.inra.fr/gb2/gbrowse/wheat_phys_pub/
https://urgi.versailles.inra.fr/download/iwgsc/IWGSC_BayerCropScience_WGPTM_tags
https://urgi.versailles.inra.fr/download/iwgsc/IWGSC_BayerCropScience_WGPTM_tags
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3.2.2  BAC Clone Sequencing

Availability of BAC clones ordered in chro-
mosomal physical maps opened avenue to sys-
tematic analyses of bread wheat genome and 
its selected parts. The early studies, based on 
sequencing ends of BAC clones by Sanger tech-
nology, provided first insights into gene and 
repeat content of particular chromosomes, ena-
bled comparative analyses of homoeologous 
chromosomes and delivered information for 
targeted marker development (Paux et al. 2006; 
Sehgal et al. 2012; Lucas et al. 2012).

Later studies, employing next-generation 
sequencing of whole BAC contigs, provided 
more comprehensive information about organi-
zation of genes and transposable elements 
(TEs). Choulet et al. (2010) sequenced and 
annotated 13 BAC contigs, totaling 18 Mb 
sequence, selected from different regions of the 
3B chromosome and revealed that genes were 
present along the entire chromosome and clus-
tered mainly into numerous small islands of 
3–4 genes separated by large blocks of repeti-
tive elements. They observed that wheat genome 
expansion had occurred homogeneously along 
the chromosome through specific bursts of 
TEs. Bartoš et al. (2012), after sequencing 
a megabase-sized region from wheat arm 3DS 
and comparing it with the homoeologous region 
on wheat chromosome 3B, revealed similar rates 
of non-collinear gene insertion in wheat B and 
D subgenomes with a majority of gene duplica-
tions occurring before their divergence. Li et al. 
(2013) provided valuable information about 
the structure of wheat centromeres. Analyzing 
1.1-Mb region from the centromere of chromo-
some 3B, they revealed that 96% of the DNA 
consisted of TEs. The youngest elements, CRW 
and Quinta, were targeted by the centromere-
specific histone H3 variant CENH3—the marker 
of the functional centromere. In contrast to the 
TEs, long arrays of satellite repeats found in 
the region were not associated with CENH3. 
Several other studies employing sequencing 
of BAC contigs focused on analysis of narrow 
regions comprising their genes of interest (Breen 

et al. 2010; Mago et al. 2014; Janáková et al. 
2019; Tulpová et al. 2019b).

Although these studies markedly advanced 
the knowledge on bread wheat genome, the 
major breakthrough came only with the genera-
tion of chromosome-scale sequence assemblies. 
Choulet and co-workers (2014b) produced a 
BAC-based reference sequence of the largest 
bread wheat chromosome—3B. After sequenc-
ing 8452 BAC clones, representing the 3B MTP, 
the authors assembled a sequence of 833 Mb 
split in 2808 scaffolds, 1358 of which, con-
taining 774 Mb sequence, had known position 
on the chromosome. The assembly comprised 
5326 protein-coding genes, 1938 pseudogenes 
and 85% of transposable elements. Most inter-
estingly, the distribution of structural and func-
tional features along the chromosome revealed 
partitioning correlated with meiotic recom-
bination. Comparative analyses with other 
grass genomes indicated high wheat-specific 
inter- and intrachromosomal gene duplication 
activities that were postulated to be sources of 
variability for adaption. As a contribution to 
the IWGSC sequencing effort, sequence assem-
blies of BAC clones representing complete or 
partial MTPs of seven chromosomes and two 
chromosome arms were produced (Table 3.1 
and references therein; IWGSC 2018) and are 
publicly available at https://urgi.versailles.inrae.
fr/download/iwgsc/BAC_Assemblies/. These 
assemblies, complemented by information from 
chromosomal physical maps, and—for group 7 
chromosomes—also chromosomal optical maps, 
were applied to support the assembly of the 
bread wheat reference genome, IWGSC RefSeq 
v1.0 (IWGSC 2018), as described in Chap. 2.

It is clear nowadays that the whole-genome-
shotgun became the predominant approach to 
sequencing, even for large polyploid genomes. 
Still, the generated wheat chromosomal physical 
maps and BAC clones integrated therein remain 
a valuable genomic resource for bread wheat, 
enabling a fast access to and a detailed analysis 
of a region of interest. The availability of BAC 
clones with a known genomic position facili-
tated a focused and affordable resequencing of 

https://urgi.versailles.inrae.fr/download/iwgsc/BAC_Assemblies/
https://urgi.versailles.inrae.fr/download/iwgsc/BAC_Assemblies/
http://dx.doi.org/10.1007/978-3-031-38294-9_2
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a region of interest with long-read technologies, 
revealing discrepancies and missing segments in 
the previously generated bread wheat assemblies 
(Kapustová et al. 2019; Tulpová et al. 2019b).

3.3  Chromosome Survey 
Sequencing

While the generation of the full set of chromo-
somal libraries, physical maps and BAC clone 
sequences proved to be a long-distance run, 
the requirement for homoeolog-resolved wheat 
genome information was increasing over time. 
Apparently, this demand could be met by low-
pass chromosome sequencing, which would pro-
vide approximate information about the genic 
component of individual chromosomes. The 
separation of each bread wheat chromosome 
or chromosome arm was, in principle, feasible 
but the yield of flow-sorted chromosomes, typi-
cally 1–2 × 105 per sorting day, did not meet the 
demands of the early sequencing technologies 
on the DNA input, which was in the microgram 
range. Coupling of chromosome flow sort-
ing with multiple-displacement amplification 
(MDA) of the chromosomal DNA, originally 
developed for physical mapping on DNA micro-
arrays (Šimková et al. 2008), opened the door 
to shotgun sequencing of cereal chromosomes 
one-by-one. Wheat genome researchers adopted 
the strategy of chromosome survey sequenc-
ing (CSS) developed for barley (Mayer et al. 
2009, 2011). In barley, low-coverage (1–3×) 
chromosomal data, obtained by 454 sequenc-
ing, were compared with reference genomes of 
rice, sorghum and Brachypodium, and EST or 
full-length-cDNA datasets, which led to the esti-
mation of gene content for each of the barley 
chromosomes. Moreover, an integration of the 
shotgun sequence information with the collinear 
gene order of orthologous rice, sorghum and 
Brachypodium genes allowed proposing virtual 
gene order maps of individual chromosomes. 
The syntenic integration, known as genome zip-
per, resolved gene order in regions with limited 
genetic resolution, such as genetic centromeres, 
which were intractable to genetic mapping.

The first experiments with the CSS in bread 
wheat were done to compare chromosome arms 
of homoeologous group 1 (Wicker et al. 2011), 
and it methodologically followed the barley 
model, employing the low-pass 454 sequenc-
ing. The study revealed that all three wheat 
subgenomes had similar sets of genes that were 
syntenic with the model grass genomes but the 
number of genic sequences in non-syntenic posi-
tions outnumbered that of the syntenic ones. 
Further analysis indicated that a large propor-
tion of the genes that were found in only one 
of the three homoeologous wheat chromosomes 
were most probably pseudogenes resulting from 
transposon activity and double-strand break 
repair. These findings were supported by a study 
of Akhunov et al. (2013) who, working with 
CSSs of both arms of chromosome 3A, found 
that ~35% of genes had experienced structural 
rearrangements leading to a variety of mis-sense 
and non-sense mutations—a finding concord-
ant with other studies indicating ongoing pseu-
dogenization of the bread wheat genome. 
Another focus of the CSS studies was the evo-
lutionary rearrangement of wheat chromosomes. 
Hernandez et al. (2012) analyzed bread wheat 
chromosome 4A, which has undergone a major 
series of evolutionary rearrangements. Using 
the genome zipper approach, the authors pro-
duced an ordered gene map of chromosome 4A, 
embracing ~85% of its total gene content, which 
enabled precise localization of the various trans-
location and inversion breakpoints on chromo-
some 4A that differentiate it from its progenitor 
chromosome in the A-subgenome diploid donor.

In contrast to the above studies, Berkman and 
co-workers, aiming to shotgun sequence wheat 
7DS arm, favored the use of the more cost-
efficient Illumina technology and compensated 
its short reads (75–100 bp) by higher sequenc-
ing coverage (34×), which allowed a partial 
assembly of the reads and capture of ~40% of 
the sequence content of the chromosome arm 
(Berkman et al. 2011). Using the same tech-
nology, the team proceeded with sequencing 
the 7BS arm (Berkman et al. 2012) and sup-
plemented the 4A study by delimiting the 7BS 
segment that was involved in the reciprocal 
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translocation that gave rise to the modern 4A 
chromosome. After extending the sequenc-
ing effort to all group7 homoeologs (Berkman 
et al. 2013), the team compared the sequences 
and concluded that there had been more gene 
loss in 7A and 7B than in 7D chromosome. 
Chromosome survey sequences of additional 
chromosomes/arms followed and were mostly 
utilized in estimating gene and repeat con-
tent of particular chromosomes (Vitulo et al. 
2011; Tanaka et al. 2014; Sergeeva et al. 2014; 
Helguera et al. 2015; Garbus et al. 2015; Kaur 
et al. 2019), synteny-based ordering of arising 
clone-based physical maps (Lucas et al. 2013), 
identifying miRNA-coding sequences (Vitulo 
et al. 2011; Kantar et al. 2012; Deng et al. 
2014; Tanaka et al. 2014) and delimiting lin-
age-specific translocations (Lucas et al. 2014). 
Utilization of the chromosome sequencing for 
gene mapping and cloning is described further 
in Sect. 3.5.1.

The chromosome survey sequencing in 
bread wheat has been crowned by a joint effort 
coordinated by the IWGSC, which exploited 
the existing Illumina-based CSSs and comple-
mented them by newly produced Illumina data 
for the remaining chromosomes. The sequences 
were applied to generate draft assemblies and 
genome zippers for all wheat chromosomes 
(IWGSC 2014). As a result, a total of 124,201 
gene loci were annotated and more than 75,000 
genes were positioned along chromosomes. The 
IWGSC team anchored more than 3.6 million 
marker loci to chromosome sequences, uncov-
ered the molecular organization of the three 
subgenomes and described patterns in gene 
expression across the subgenomes. The study 
also provided new insights into the phylogeny of 
hexaploid bread wheat, which was elaborated in 
detail in an accompanying study of Marcussen 
et al. (2014). Moreover, this new wheat genome 
information was used as a reference to analyze 
the cell type-specific expression of homoe-
ologous genes in the developing wheat grain 
(Pfeifer et al. 2014).

The technique of chromosome survey 
sequencing soon expanded beyond the cultivated 
crop and was successfully applied to explore 
individual chromosomes or whole genomes of 
close wheat relatives, such as Aegilops tauschii 
(Akpinar et al. 2015a) and Triticum dicoccoides 
(Akpinar et al. 2015c; 2018), and even spe-
cies from the tertiary gene pool, including Ae. 
geniculata (Tiwari et al. 2015), H. villosa (Xiao 
et al. 2017), Ae. comosa, Aegilops umbellulata 
(Said et al. 2021) and A. cristatum (Zwyrtková 
et al. 2022). These studies informed about the 
chromosome gene content and organization, 
enabling comparative studies important for gene 
transfer from the wild species to the crop as well 
as identifying the sequences enabling marker 
development for tracing introgressions in wheat. 
Specific examples are provided in Sect. 3.5.1 
and Table 3.2.

3.4  Optical Mapping

Extensive experience with preparing quality 
HMW DNA from flow-sorted chromosomes 
paved the way to establish a new branch of 
wheat chromosomal genomics—chromosome 
optical mapping (OM). The OM technology, 
commercialized by Bionano Genomics and 
therefore also known as Bionano genome map-
ping, is a physical mapping technique based on 
labeling and imaging short sequence motives 
along 150 kb to 1 Mb long DNA molecules 
(Lam et al. 2012). Resulting restriction maps, 
assembled from high-coverage single-molecule 
data, are composed of contigs up to > 100 Mb in 
size, which are instrumental in finishing steps 
of genome assemblies by enabling contig scaf-
folding, gap sizing and assembly validation. The 
optical maps also provided a high-resolution and 
cost-effective tool for comparative structural 
genomics.

Staňková et al. (2016) demonstrated the fea-
sibility of generating optical maps from DNA 
of flow-sorted chromosomes and constructed 
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Table 3.2  Leveraging wheat chromosomal resources in gene mapping and cloning

Phenotype Locus Sorted chrom./arm Applied approach References
Stem rust resistance Sr2 3B BAC McNeil et al. (2008)

Mago et al. (2014)
SuSr-D1 7D MutChromSeq Hiebert et al. (2020)

Green bug resistance Gb3 7DL BAC Šimková et al. (2011)
Powdery mildew 
resistance

QPm-tut-4A 4AL SynSNP Jakobson et al. (2012)
CSS, ChromSeq, RICh
BAC, CSS

Abrouk et al. (2017)
Janáková et al. (2019)

Pm2 5D MutChromSeq Sánchez-Martín et al. 
(2016)

Pm21 6V TACCA Xing et al. (2018)
Pm4 2A MutChromSeq Sánchez-Martín et al. 

(2021)
Pm1a 7A ChromSeq Hewitt et al. (2021)

Species cytoplasm 
specific

scs 1D SynSNP Michalak de Jimenez et al. 
(2013)

Leaf rust resistance Lr14a 7BL SynSNP Terracciano et al. (2013)
Lr57 5Mg ChromSeq Tiwari et al. (2014)
Lr22 2D TACCA Thind et al. (2017)
Lr49 4B ChromSeq Nsabiyera et al. (2020)
Lr76 5D/5U ChromSeq Bansal et al. (2020)
Lr14a 7BL.5BL MutChromSeq Kolodziej et al. (2021)

Glume blotch resistance QSng.sfr-3BS 3B ChromSeq Shatalina et al. (2013, 
2014)

Stripe rust resistance Yr40 5Mg ChromSeq Tiwari et al. (2014)
YrAW1 4AL ChromSeq Randhawa et al. (2014)
Yr70 5D/5U ChromSeq Bansal et al. (2020)

Russian wheat aphid 
resistance

Dn2401 7DS CSS, SynSNP
BAC, OM

Staňková et al. (2015)
Tulpová et al. (2019b)

Pre-harvest sprouting 
resistance

Phs-A1 4AL BAC Shorinola et al. (2017)

Semi-dwarfism Rht18 6A MutChromSeq Ford et al. (2018)
Yellow Early Senescence YES-1 3A ChromSeq Harrington et al. (2019)
Fusarium head blight 
resistance

Fhb 7EL ChromSeq Konkin et al. (2022)

BAC BAC-based physical map/BAC sequencing
CSS Chromosome survey sequence
ChromSeq chromosome sequencing
MutChromSeq Mutant chromosome sequencing
OM Optical map
RICh Rearrangement identification and characterization
SynSNP Synteny-based SNP marker development
TACCA TArgeted chromosome-based cloning via long-range assembly
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the first-ever optical map for the bread wheat 
genome. Using 1.6 million flow-sorted 7DS 
chromosome arms and the first-generation plat-
form of Bionano Genomics, the authors pre-
pared a map consisting of 371 contigs with N50 
of 1.3 Mb, which supported a physical-map and 
a BAC-based sequence assembly of the chro-
mosome arm (Tulpová et al. 2019a). Applied 
in a gene cloning project, the OM posed a tar-
geted tool for sequence validation and analysis 
of structural variability in a region of interest 
(Tulpová et al. 2019b). Similar maps have been 
constructed for other group-7 chromosome arms 
and were used in the process of assembling the 
wheat reference genome (IWGSC 2018), as well 
as a complementary BAC-based assembly of 
chromosome 7A (Keeble-Gagnère et al. 2018).

Another set of chromosomal optical maps 
was prepared from chromosome arms 1AS, 
1BS, 6BS and 5DS, the last being generated 
on the second-generation platform of Bionano 
Genomics, with the aim to position and char-
acterize 45S rDNA loci located on those arms. 
The chromosome-based approach applied in 
the rDNA project enabled analyzing the loci 
one-by-one and provided more comprehensive 
information about individual loci than achieved 
in long-read bread wheat assemblies (Tulpová 
et al. 2022).

3.5  Gene Mapping and Cloning

In parallel with the chromosome sequencing 
efforts, the wheat community started exploiting 
flow-sorted chromosomes for targeted marker 
development, aiming to generate a high-density 
map in a region of interest and, possibly, clone 
a gene by a map-based approach. This conven-
tional strategy was later complemented by new 
methods of ‘rapid gene cloning’ (reviewed in 
Bettgenhaeuser and Krattinger, 2019). Some of 
these still capitalize on the complexity reduction 
by chromosome flow sorting but they avoid the 
lengthy step of marker development and map 
saturation while employing mutation genetics 
and comprehensive sequencing techniques to 

assemble a highly contiguous sequence for the 
chromosome of interest.

3.5.1  Marker Development and Map-
Based Gene Cloning

The first effort toward massive marker devel-
opment from a selected chromosome or chro-
mosome arm was bound with the microarray 
platform of Diversity Array Technologies, 
able to identify and utilize polymorphic DNA 
markers without knowledge of the underly-
ing sequence (Jaccoud et al. 2001). Wenzl 
et al. (2010) demonstrated that a chromosome-
enriched DArT array could be developed from 
only a few nanograms of chromosomal DNA. 
Of 711 polymorphic markers derived from non-
amplified DNA of bread wheat chromosome 
3B, 553 (78%) mapped to the chromosome, and 
even higher efficiency (87%) was observed for 
the short arm of bread wheat chromosome 1B 
(1BS).

Before the availability of wheat chromo-
somal survey sequences, researchers aiming to 
develop new markers for their locus of interest 
mined data from sequenced genomes of model 
grasses, mainly rice, Brachypodium and sor-
ghum. Efficiency of this synteny-based approach 
was compromised by limitations in designing 
gene-derived primers with sufficient specificity 
to distinguish homoeologous genes in polyploid 
wheat. Amplified DNA from individual wheat 
chromosome arms used as a template for locus-
specific PCR and subsequent amplicon sequenc-
ing, significantly increased the efficiency of the 
procedure and the facilitated targeted generation 
of gene-associated SNP markers in a time- and 
cost-effective manner (Jakobson et al. 2012; 
Michalak de Jimenez et al. 2013; Terracciano 
et al. 2013; Staňková et al. 2015). Additionally, 
particular chromosomal arms used as a PCR 
template were applied to validate specificity 
of the newly designed markers (Staňková et al. 
2015; Janáková et al. 2019).

Advancement in marker development came 
along with the release of ‘CHINESE SPRING’ 
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CSSs and genome zippers that informed about 
putative gene content and order in the region of 
interest in the reference genome. Nevertheless, 
studies comparing shotgun sequences of CS 
chromosomes with those of other wheat acces-
sions revealed extensive intra- and interchro-
mosomal rearrangements in CS (Ma et al. 2014, 
2015; Liu et al. 2016), implying limitations in 
the transferability of data from the wheat refer-
ence to other genomes. Moreover, it became 
obvious that agronomically important traits 
were frequently controlled by rare, genotype-
specific alleles or had even been introgressed to 
wheat from its relatives. Under such scenario, 
genetic maps had to be created from a map-
ping population derived from a donor of the 
trait and sequence information from the donor 
was essential for marker development. As a 
proof-of-concept experiment, Shatalina et al. 
(2013) generated tenfold coverage of Illumina 
data from chromosome 3B isolated from wheat 
cultivars ARINA and FORNO—the parents of 
their mapping population. Relying on a synteny 
with the Brachypodium genome, they identi-
fied sequences close to coding regions and used 
them to develop 70 SNP markers, which were 
found dispersed over the entire 3B chromo-
some and contributed to fourfold increase in the 
number of available markers. The new mark-
ers were utilized for mapping a QTL confer-
ring resistance to Stagonospora nodorum glume 
blotch located on 3BS (Shatalina et al. 2014). 
Chromosome sequencing was then applied 
by other groups to fine-map Yellow Early 
Senescence 1 (Harrington et al. 2019), leaf rust 
resistance gene Lr49 (Nsabiyera et al. 2020) and 
powdery mildew resistance gene Pm1 (Hewitt 
et al. 2021).

The procedure was also adopted to develop 
markers in species from wheat tertiary gene 
pool, such as Ae. geniculata (Tiwari et al. 
2014) and H. villosa (Wang et al. 2017; Zhang 
et al. 2021), with the aim to trace the alien 
chromatin in the wheat background. For this 
purpose, the method was refined by Abrouk 
et al. (2017) who developed an in silico pipe-
line termed Rearrangement Identification and 
Characterization (RICh). To delimit a segment 

transferred from T. militinae to the long arm of 
chromosome 4A of bread wheat cv. TÄHTI, 
the authors generated a virtual gene order of 
‘TÄHTI’ chromosome 4A. Comparison of 
homoeologous gene density between 4AL arm 
of CS and the arm with the introgression, which 
harbored powdery mildew resistance locus 
QPm.tut-4A, identified alien chromatin with 
169 putative genes originating from T. mili-
tinae. A similar approach was used by Bansal 
et al. (2020) to fine-map leaf rust and stripe rust 
resistance genes Lr76 and Yr70 introduced from 
Ae. umbellulata. The authors sequenced flow-
sorted chromosomes 5U from Ae. umbellulata, 
5D from a bread wheat-Ae. umbellulata intro-
gression line and 5D from the recurrent parent. 
Sequencing reads were explored with the aim 
to identify introgression-specific SNP markers 
whose projection on the IWGSC RefSeq v1.0 
sequence (IWGSC 2018) delimited the intro-
gression to a 9.47 Mb region, in which candi-
dates for Lr76 and Yr70 genes were identified. 
Konkin et al. (2022), streaming to identify genes 
for resistances to several fungal pathogenes, 
including fusarium head blight, sequenced 7EL 
telosome, originated from Thinopyrum elonga-
tum and existing as addition in CS wheat. They 
thus built a reference for comparative transcrip-
tome analysis between CS and CS-7EL addition 
line, which resulted in a list of candidate genes 
for the resistance.

Alongside the wheat chromosomal survey 
sequences, emerging BAC assemblies from indi-
vidual chromosomes of ‘CHINESE SPRING,’ 
just as customized chromosomal BAC librar-
ies from other cultivars showed instrumental 
in gene cloning projects. Šimková et al. (2011) 
demonstrated that BAC libraries constructed 
from chromosome arms 7DS and 7DL, con-
sisting of tens of thousands BAC clones, were 
highly representative and easy to screen, which 
facilitated fast chromosome walking in a region 
of green bug resistance gene Gb3 in 7DL. The 
7DS BAC library was screened for markers 
tightly linked to a Russian wheat aphid resist-
ance locus Dn2401 (Staňková et al. 2015) and 
a BAC contig spanning the locus was identified 
in a 7DS physical map (Tulpová et al. 2019a). 
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BAC clones from 0.83 cM interval, delimited by 
Dn2401-flanking markers, were sequenced by 
combination of short Illumina and long nano-
pore reads and the resulting sequence assem-
bly, validated by optical mapping of the 7DS 
arm (Staňková et al. 2016), revealed six high-
confidence genes. Comparison of 7DS-specific 
optical maps prepared from susceptible cv. 
CHINESE SPRING and resistant line CI2401 
revealed structural variation in proximity of 
Epoxide hydrolase 2, which gave support to 
the gene as the most likely Dn2401 candidate 
(Tulpová et al. 2019b). Similarly, a BAC library 
and physical map of CS 4A chromosome were 
used to approach and analyse pre-harvest sprout-
ing resistance locus Phs-A1, which revealed a 
causal role of TaMKK3-A for the trait (Shorinola 
et al. 2017). Customized BAC libraries con-
structed from 3B chromosome of cv. HOPE 
and 4AL telosome bearing introgressed seg-
ment of T. militinae were utilized to clone stem 
rust resistance gene Sr2 (Mago et al. 2014) and 
to approach powdery mildew resistance locus 
Qpm.tut-4A (Janáková et al. 2019), respectively.

3.5.2  Contemporary Approaches

The completion and release of the ‘CHINESE 
SPRING’ reference genome (IWGSC 2018) in 
hand with rapid technological advancements, 
allowing resequencing and large-scale pan-
genome projects even in a crop with a complex 
polyploid genome, revolutionized strategies of 
gene cloning in bread wheat. Whole-genome 
long-read sequencing, resulting in high-qual-
ity sequence with resolved gene duplications, 
became realistic for wheat but challenges of 
producing, handling and analyzing the big data 
still appear too high for the majority of wheat 
gene cloning projects. Apart from the WGS 
and pan-genome efforts, several approaches 
to rapid gene cloning have been developed 
(Bettgenhaeuser and Krattinger 2019, and Chap. 
10 of this book), including several utilizing the 
complexity reduction by chromosome flow 
sorting. Among them, Mutant Chromosome 
Sequencing (MutChromSeq; Sánchez-Martín 

et al. 2016) and TArgeted Chromosome-based 
Cloning via long-range Assembly (TACCA; 
Thind et al. 2017) have been used most widely. 
As indicated by the acronym, the former method 
couples chromosome flow sorting and sequenc-
ing with reference-free forward genetics. A 
chromosome bearing the gene of interest is 
Illumina-sequenced from both wild type and sev-
eral independent ethyl methanesulfonate (EMS) 
mutants and the sequences are compared. A can-
didate gene is identified based on overlapping 
mutations in a genic region. The feasibility and 
efficiency of the method were first demonstrated 
by re-cloning barley Eceriferum-q gene and by 
de novo cloning wheat powdery mildew resist-
ance gene Pm2 (Sánchez-Martín et al. 2016). 
This speedy, cost-efficient approach to gene 
cloning generated a lot of interest in both wheat 
and barley community (reviewed in Steuernagel 
et al. 2017). It was successfully applied to iden-
tify the semi-dwarfism locus Rht18 in T. durum 
(Ford et al. 2018) and the SuSr-D1 gene that sup-
presses resistance to stem rust in bread wheat 
(Hiebert et al. 2020). Moreover, it contributed to 
cloning the race-specific leaf rust resistance gene 
Lr14a (Kolodziej et al. 2021) and the powdery 
mildew resistance gene Pm4 (Sánchez-Martín 
et al. 2021) from hexaploid wheat.

MutChromSeq is a method of choice for 
traits with a strong phenotype, for which the 
production of independent mutants is feasi-
ble. As an alternative, suitable for any pheno-
type, Thind et al. (2017) proposed a procedure 
based on producing a high-quality de novo 
assembly of the gene-bearing chromosome and 
named it TACCA. The procedure utilized the 
so-called Chicago mapping technique (Putnam 
et al. 2016) developed by Dovetail Genomics. 
To clone leaf rust resistance gene Lr22a, the 
authors flow-sorted and Illumina-sequenced 
wheat chromosome 2D from resistant line CH 
CAMPALA Lr22a. The resulting sequences 
were scaffolded with Chicago long-range link-
age. The assembly comprised 10,344 scaffolds 
with an N50 of 9.76 Mb and with the longest 
scaffold of 36.4 Mb. The high contiguity of the 
chromosomal assembly significantly reduced 
the number of markers needed to delimit the 

http://dx.doi.org/10.1007/978-3-031-38294-9_10
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gene in a narrow interval and, complemented by 
information from EMS mutants, allowed rapid 
cloning of this broad-spectrum resistance gene. 
The TACCA approach was also applied by Xing 
et al. (2018) to clone powdery mildew resistance 
gene Pm21, introduced to bread wheat from H. 
villosa chromosome 6V. Besides, the quality 
chromosomal assemblies generated by long-
range linkage were used for comparative analy-
ses with chromosomes of the wheat reference 
genome (Thind et al. 2018; Xing et al. 2021).

3.6  Conclusions and Perspectives

Since its establishment in 2000, flow-cytomet-
ric chromosome sorting contributed to major 
achievements in bread wheat genomics, includ-
ing the generation of the wheat reference genome. 
Due to the rapid advancements in next-generation 
sequencing technologies, the reduction of genome 
complexity is no more essential in the context of 
whole-genome sequencing, but remains beneficial 
in gene cloning projects that call for a high-qual-
ity sequence from a narrow region of the genome. 
This demand was met in coupling chromosome 
sorting with the long-range linkage method, 
which resulted in contiguous chromosome assem-
blies. Since Dovetail Genomics discontinued 
the Chicago method, other approaches need to 
be developed to satisfy the demand of the wheat 
community. Long-read sequencing technologies, 
such as PacBio or nanopore sequencing, appear to 
be the logical tools for achieving the goal but to 
make them compatible with the flow-sorted mate-
rial, challenges relating to inherent features of the 
flow sorting technique—formaldehyde fixation 
and a high laboriousness of producing large DNA 
amounts—still need to be resolved. Low-input 
protocols, being developed by the sequencing 
companies, go toward this demand.
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