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Abstract. We consider the problem of testing the identity of a reversible
Markov chain against a reference from a single trajectory of observa-
tions. Employing the recently introduced notion of a lumping-congruent
Markov embedding, we show that, at least in a mildly restricted setting,
testing identity to a reversible chain reduces to testing to a symmet-
ric chain over a larger state space and recover state-of-the-art sample
complexity for the problem.
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1 Introduction

Uniformity testing is the flagship problem of the modern distribution testing [1]
research program. From n independent observations sampled from an unknown
distribution μ on a finite space X , the goal is to distinguish between the two
cases where μ is uniform and μ is ε-far from being uniform with respect to
some notion of distance. The complexity of this problem in total variation is
known to be [12] of the order1 of Θ̃(

√|X |/ε2), which compares favorably with
the linear dependency in |X | required for estimating the distribution to precision
ε [17]. Interestingly, the uniform distribution can be replaced by any arbitrary
reference at same statistical cost. In fact, Goldreich [7] proved that the latter
problem formally reduces to the former. Inspired by his approach, we seek and
obtain a reduction result in the much less understood and more challenging
Markovian setting.

1 As is customary in the property testing literature, we respectively write Θ, O and
Ω for tight, upper and lower bounds, and the tilda notation suppresses lower-order
logarithmic factors in any parameter.
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Informal Markovian Problem Statement — The scientist is given the full descrip-
tion of a reference transition matrix P and a single Markov chain Xn

1 sampled
with respect to some unknown transition operator P and arbitrary initial distri-
bution. For fixed proximity parameter ε > 0, the goal is to design an algorithm
that distinguishes between the two cases P = P and K(P, P ) > ε, with high
probability, where K is a contrast function2 between stochastic matrices.

Related Work — Under the contrast function (1) described in Sect. 2, and the
hypothesis that P and P are both irreducible and symmetric over a finite space
X , a first tester with sample complexity Õ(|X | /ε + h), where h [4, Definition 3]
is the hitting time of the reference chain, and a lower bound in Ω(|X | /ε), were
obtained in [4]. In [3], a graph partitioning algorithm delivers, under the same
symmetry assumption, a testing procedure with sample complexity O(|X | /ε4),
i.e. independent of hitting properties. More recently, [6] relaxed the symmetry
requirement, replacing it with a more natural reversibility assumption. The algo-
rithm therein has a sample complexity of O(1/(π�ε

4)), where π� is the minimum
stationary probability of the reference P , gracefully recovering [3] under sym-
metry. In parallel, [18] started and [2] complemented the research program of
inspecting the problem under the infinity norm for matrices, and derived nearly
minimax-optimal bounds.

Contribution — We show how to mostly recover [6] from [3] under additional
assumptions (see Sect. 3), with a technique based on a geometry preserving
embedding. We obtain a more economical proof than [6], which went through
the process of re-deriving a graph partitioning algorithm for the reversible case.
Furthermore, the impact of our approach, by its generality, stretches beyond the
task at hand and is also applicable to related inference problems (see Remark 2).

2 Preliminaries

We let X ,Y be finite sets, and denote P(X ) the set of all probability distributions
over X . All vectors are written as row vectors. For matrices A,B, ρ(A) is the
spectral radius of A, A ◦ B is the Hadamard product of A and B defined by
(A ◦ B)(x, x′) = A(x)B(x′) and A◦1/2(x, x′) =

√
A(x, x′). For n ∈ N, we use

the compact notation xn
1 = (x1, . . . , xn). W(X ) is the set of all row-stochastic

matrices over the state space X , and π is called a stationary distribution for
P ∈ W(X ) when πP = π.

Irreducibility and Reversibility — Let (X ,D) be a digraph with vertex set X
and edge-set D ⊂ X 2. When (X ,D) is strongly connected, a Markov chain with
connection graph (X ,D) is said to be irreducible. We write W(X ,D) for the set

2 General contrast functions under consideration satisfy identity of indiscernibles and
non-negativity (e.g. proper metrics induced from matrix norms), and need not sat-
isfy symmetry or the triangle inequality (e.g. information divergence rate between
Markov processes).
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of irreducible stochastic matrices over (X ,D). When P ∈ W(X ,D), π is unique
and we denote π�

.= minx∈X π(x) > 0 the minimum stationary probability.
When P satisfies the detailed-balance equation π(x)P (x, x′) = π(x′)P (x′, x) for
any (x, x′) ∈ D, we say that P is reversible.

Lumpability — In contradistinction with the distribution setting, merging sym-
bols in a Markov chain may break the Markov property, resulting in a hidden
Markov model. For P ∈ W(Y, E) and a surjective map κ : Y → X merging ele-
ments of Y together, we say that P is κ-lumpable [10] when the output process
still defines a Markov chain. Introducing Sx = κ−1({x}) for the collection of
symbols that merge into x ∈ X , lumpability was characterized by [10, Theo-
rem 6.3.2] as follows. P is κ-lumpable, when for any x, x′ ∈ X , and y1, y2 ∈ Sx,
it holds that

P (y1,Sx′) = P (y2,Sx′).

The lumped transition matrix κ�P ∈ W(X , κ2(E)), with connected edge set

κ2(E) .=
{
(x, x′) ∈ X 2 : ∃(y, y′) ∈ E , (κ(y), κ(y′)) = (x, x′)

}
,

is then given by

κ�P (x, x′) = P (y,Sx′), for some y ∈ Sx.

Contrast Function — We consider the following notion of discrepancy between
two stochastic matrices P, P ′ ∈ W(X ),

K(P, P ′) .= 1 − ρ
(
P ◦1/2 ◦ P ′◦1/2

)
. (1)

Although K made its first appearance in [4] in the context of Markov chain iden-
tity testing, its inception can be traced back to Kazakos [9]. K is directly related
to the Rényi entropy of order 1/2, and asymptotically connected to the Bhat-
tacharyya/Hellinger distance between trajectories (see e.g. proof of Lemma 2).
It is instructive to observe that K vanishes on chains that share an identical
strongly connected component and does not satisfy the triangle inequality for
reducible matrices, hence is not a proper metric on W(X ) [4, p.10, footnote 13].
Some additional properties of K of possible interest are listed in [6, Section 7].

Reduction Approach for Identity Testing of Distributions — Problem reduction
is ubiquitous in the property testing literature. Our work takes inspiration from
[7], who introduced two so-called “stochastic filters” in order to show how in the
distribution setting, identity testing was reducible to uniformity testing, thereby
recovering the known complexity of O(

√|X |/ε2) obtained more directly by [14].
Notable works also include [5], who reduced a collection of distribution testing
problems to �2-identity testing.
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3 The Restricted Identity Testing Problem

Let Vtest ⊂ W(X ) be a class of stochastic matrices of interest, and let P ∈ Vtest

be a fixed reference. The identity testing problem consists in determining, with
high probability, from a single stream of observations Xn

1 = X1, . . . , Xn drawn
according to a transition matrix P ∈ Vtest, whether

P ∈ H0
.=

{
P

}
, or P ∈ H1(ε)

.=
{
P ∈ Vtest : K(P, P ) > ε

}
.

We note the presence of an exclusion region, and regard the problem as a
Bayesian testing problem with a prior which is uniform over the two hypotheses
classes H0 and H1(ε) and vanishes on the exclusion region. Casting our problem
in the minimax framework, the worst-case error probability en(φ, ε) of a given
test φ : X n → {0, 1} is defined as

2en(φ, ε) .= PXn
1 ∼π,P (φ(Xn

1 ) = 1) + sup
P∈H1(ε)

PXn
1 ∼π,P (φ(Xn

1 ) = 0) .

We subsequently define the minimax risk Rn(ε) as,

Rn(ε) .= min
φ : X n→{0,1}

en(φ, ε),

where the minimum is taken over all —possibly randomized— testing proce-
dures. For a confidence parameter δ, the sample complexity is

n�(ε, δ)
.= min {n ∈ N : Rn(ε) < δ} .

We briefly recall the assumptions made in [6]. For (P, P ) ∈ (Vtest,H0),

(A.1) P and P are irreducible and reversible.
(A.2) P and P share the same3 stationary distribution π = π.

The following additional assumptions will make our approach readily applicable.

(B.1) P,P and share the same connection graph, P, P ∈ W(X ,D).
(B.2) The common stationary distribution is rational, π ∈ Q

X .

Remark 1. A sufficient condition for π ∈ Q
X is P (x, x′) ∈ Q for any x, x′ ∈ X .

Without loss of generality, we express π =
(
p1, p2, . . . , p|X |

)
/Δ, for some Δ ∈ N,

and p ∈ N
|X | where 0 < p1 ≤ p2 ≤ · · · ≤ p|X | < Δ. We henceforth denote by Vtest

the subset of stochastic matrices that verify assumptions (A.1), (A.2), (B.1) and
(B.2) with respect to the fixed π ∈ P(X ). Our below-stated theorem provides
an upper bound on the sample complexity n�(ε, δ) in Õ(1/(π�ε)).

3 We note that [6] also slightly loosen the requirement of having a matching stationary
distributions to being close in the sense where ‖π/π − 1‖∞ < ε.
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Theorem 1. Let ε, δ ∈ (0, 1) and let P ∈ Vtest ⊂ W(X ,D). There exists a ran-
domized testing procedure φ : X n → {0, 1}, with n = Õ(1/(π�ε

4)), such that the
following holds. For any P ∈ Vtest and Xn

1 sampled according to P , φ distin-
guishes between the cases P = P and K(P, P ) > ε with error probability less
than δ.

Proof (sketch). Our strategy can be broken down into two steps. First, we employ
a transformation on Markov chains, termed Markov embedding [20], in order to
symmetrize both the reference chain (algebraically, by computing the new transi-
tion matrix) and the unknown chain (operationally, by simulating an embedded
trajectory). Crucially, our transformation preserves the contrast between two
chains and their embedded version (Lemma 2). Second, we invoke the known
tester [3] for symmetric chains as a black box and report its output. The proof
is deferred to Sect. 6.

Remark 2. Our reduction approach has applicability beyond recovery of the sam-
ple complexity of [6], for instance in the tolerant testing setting, where the two
competing hypotheses are

K(P, P ) < ε/2 and K(P, P ) > ε.

Even in the symmetric setting, this problem remains open. Our technique shows
that future work can focus on solving the problem under a symmetry assumption,
as we provide a natural extension to the reversible class.

4 Symmetrization of Reversible Markov Chains

Information geometry — Our construction and notation follow [11], who estab-
lished a dually-flat structure

(W(X ,D), g,∇(e),∇(m))

on the space of irreducible stochastic matrices, where g is a Riemannian metric,
and ∇(e),∇(m) are dual affine (exponential and mixture) connections. Intro-
ducing a model V =

{
Pθ : θ ∈ Θ ⊂ R

d
} ⊂ W(X ,D), we write Pθ ∈ V for the

transition matrix at coordinates θ = (θ1, . . . , θd), and where d is the manifold
dimension of V. Using the shorthand ∂i· .= ∂ ·/∂θi, the Fisher metric is expressed
[11, (9)] in the chart induced basis (∂i)i∈[d] as

gij(θ) =
∑

(x,x′)∈D
πθ(x)Pθ(x, x′)∂i log Pθ(x, x′)∂j log Pθ(x, x′), for i, j ∈ [d]. (2)

Following this formalism, it is possible to define mixture families (m-families)
and exponential families (e-families) of stochastic matrices [8,11].

Example 1. The class Wrev(X ,D) of reversible Markov chains irreducible over a
connection graph (X ,D) forms both an e-family and an m-family of dimension

dim Wrev(X ,D) =
|D| + |�(D)|

2
− 1,

where �(D) ⊂ D is the set of loops present in the connection graph [19, Theo-
rem 3,5].
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Embeddings — The operation converse to lumping is embedding into a larger
space of symbols. In the distribution setting, Markov morphisms were introduced
by Čencov [16] as the natural operations on distributions. In the Markovian set-
ting, [20] proposed the following notion of an embedding for stochastic matrices.

Definition 1 (Markov embedding for Markov chains [20]). We call
Markov embedding, a map Λ� : W(X ,D) → W(Y, E), P 	→ Λ�P , such that for
any (y, y′) ∈ E,

Λ�P (y, y′) = P (κ(y), κ(y′))Λ(y, y′),

and where κ and Λ satisfy the following requirements

(i) κ : Y → X is a lumping function for which κ2(E) = D.
(ii) Λ is a positive function over the edge set, Λ : E → R+.

(iii) Writing
⋃

x∈X Sx = Y for the partition defined by κ, Λ is such that for any
y ∈ Y and x′ ∈ X ,

(κ(y), x′) ∈ D =⇒ (Λ(y, y′))y′∈Sx′ ∈ P(Sx′).

The above embeddings are characterized as the linear maps over the space of
lumpable matrices that satisfy a set of monotonicity requirements and are con-
gruent with respect to the lumping operation [20, Theorem 3.1]. When for any
y, y′ ∈ Y, it additionally holds that Λ(y, y′) = Λ(y′)δ [(κ(y), κ(y′)) ∈ D], the
embedding Λ� is called memoryless [20, Section 3.4.2] and is e/m-geodesic affine
[20, Th. 3.2, Lemma 3.6], preserving both e-families and m-families of stochastic
matrices.

Given π and Δ as defined in Sect. 3, from [20, Corollary 3.3], there exists a
lumping function κ : [Δ] → X , and a memoryless embedding σπ

� : W(X ,D) →
W([Δ], E) with E =

{
(y, y′) ∈ [Δ]2 : (κ(y), κ(y′)) ∈ D}

, such that σπ
� P is sym-

metric. Furthermore, identifying X ∼= {1, 2, . . . , |X |}, its existence is construc-
tively given by

κ(j) = arg min
1≤i≤|X|

{
i∑

k=1

pk ≥ j

}

, with σπ(j) = p−1
κ(j), for any 1 ≤ j ≤ Δ.

As a consequence, we obtain 1. and 2. below.

1. The expression of σπ
� P following algebraic manipulations in Definition 1.

2. A randomized algorithm to memorylessly simulate trajectories from σπ
� P out

of trajectories from P (see [20, Section 3.1]). Namely, there exists a stochastic
mapping Ψπ : X → Δ such that,

X1, . . . , Xn ∼ P =⇒ Ψπ(Xn
1 ) = Ψπ(X1), . . . , Ψπ(Xn) ∼ σπ

� P.

5 Contrast Preservation

It was established in [20, Lemma 3.1] that similar to their distribution counter-
parts, Markov embeddings in Definition 1 preserve the Fisher information met-
ric g in (2), the affine connections ∇(e),∇(m) and the informational (Kullback-
Leibler) divergence between points. In this section, we show that memoryless
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embeddings, such as the symmetrizer σπ
� introduced in Sect. 4, also preserve the

contrast function K. Our proof will rely on first showing that the memoryless
embeddings of [20, Section 3.4.2] induce natural Markov morphisms [15] from
distributions over X n to Yn.

Lemma 1. Let a lumping function κ : Y → X , and

L� : W(X ,D) → W(Y, E)

be a κ-congruent memoryless Markov embedding. For P ∈ W(X ,D), let Qn ∈
P(X n) (resp. Q̃n ∈ P(Yn)) be the unique distribution over stationary paths of
length n induced from P (resp. L�P ). Then there exists a Markov morphism
M� : P(X n) → P(Yn) such that M�Q

n = Q̃n.

Proof. Let κn : Yn → X n be the lumping function on blocks induced from κ,

∀yn
1 ∈ Yn, κn(yn

1 ) = (κ(yt))1≤t≤n ∈ X n,

and introduce

Yn =
⋃

xn
1 ∈X n

Sxn
1
, with Sxn

1
= {yn

1 ∈ Yn : κn(yn
1 ) = xn

1} ,

the partition associated to κn. For any realizable path xn
1 , Qn(xn

1 ) > 0, we define
a distribution Mxn

1 ∈ P(Yn) concentrated on Sxn
1
, and such that for any yn

1 ∈
Sxn

1
, Mxn

1 (yn
1 ) =

∏n
t=1 L(yt). Non-negativity of Mxn

1 is immediate, and

∑

yn
1 ∈Yn

Mxn
1 (yn

1 ) =
∑

yn
1 ∈Yn : κn(yn

1 )=xn
1

Mxn
1 (yn

1 ) =
n∏

t=1

⎛

⎝
∑

yt∈Sxt

L(yt)

⎞

⎠ = 1,

thus Mxn
1 is well-defined. Furthermore, for yn

1 ∈ Yn, it holds that

˜Qn(yn
1 ) = L�π(y1)

n−1
∏

t=1

L�P (yt, yt+1)
(♠)
= π(κ(y1))L(y1)

n−1
∏

t=1

P (κ(yt), κ(yt+1))L(yt)

= Qn(κ(y1), . . . , κ(yn))

n
∏

t=1

L(yt) = Qn(κn(y
n
1 ))

n
∏

t=1

L(yt)

=
∑

xn
1 ∈Xn

Qn(κn(y
n
1 ))M

xn
1 (yn

1 ) = M�Qn(yn
1 ),

where (♠) stems from [20, Lemma 3.5], whence our claim holds.

Lemma 1 essentially states that the following diagram commutes

W(X ,D) L�W(X ,D)

Qn
W(X ,D) Qn

L�W(X ,D),

L�

M�
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for the Markov morphism M� induced by L�, and where we denoted Qn
W(X ,D) ⊂

P(X n) for the set of all distributions over paths of length n induced from the fam-
ily W(X ,D). As a consequence, we can unambiguously write L�Q

n ∈ Qn
L�W(X ,D)

for the distribution over stationary paths of length n that pertains to L�P .

Lemma 2. Let L� : W(X ,D) → W(Y, E) be a memoryless embedding,

K(L�P,L�P ) = K(P, P ).

Proof. We recall for two distributions μ, ν ∈ P(X ) the definition of R1/2 the
Rényi entropy of order 1/2,

R1/2(μ‖ν) .= −2 log

(
∑

x∈X

√
μ(x)ν(x)

)

,

and note that R1/2 is closely related to the Hellinger distance between μ and
ν. This definition extends to the notion of a divergence rate between stochastic
processes (Xt)t∈N, (X ′

t)t∈N on X as follows

R1/2 ((Xt)t∈N‖(X ′
t)t∈N) = lim

n→∞
1
n

R1/2 (Xn
1 ‖X ′n

1 ) ,

and in the irreducible time-homogeneous Markovian setting where (Xt)t∈N,
(X ′

t)t∈N evolve according to transition matrices P and P ′, the above reduces
[13] to

R1/2 ((Xt)t∈N‖(X ′
t)t∈N) = −2 log ρ(P ◦1/2 ◦ P ′◦1/2) = −2 log(1 − K(P, P ′)).

Reorganizing terms and plugging for the embedded stochastic matrices,

K(L�P,L�P ) = 1 − exp
(

−1
2

lim
n→∞

1
n

R1/2

(
L�Q

n‖L�Q
n
))

,

where L�Q
n

is the distribution over stationary paths of length n induced by the
embedded L�P . For any n ∈ N, from Lemma 1 and information monotonicity of
the Rényi divergence, R1/2

(
L�Q

n‖L�Q
n
)

= R1/2

(
Qn‖Q

n
)

, hence our claim.

6 Proof of Theorem 1

We assume that P and P are in Vtest. We reduce the problem as follows. We
construct σπ

� , the symmetrizer4 defined in Sect. 4. We proceed to embed both
the reference chain (using Definition 1) and the unknown trajectory (using the
operational definition in [20, Section 3.1]). We invoke the tester of [3] as a black
box, and report its answer.
4 If we wish to test for the identity of multiple chains against the same reference, we
only need to perform this step once.



336 G. Wolfer and S. Watanabe

Fig. 1. Reduction of the testing problem by isometric embedding.

Completeness case. It is immediate that P = P =⇒ σπ
� P = σπ

� P .

Soundness case. From Lemma 2, K(P, P ) > ε =⇒ K(σπ
� P, σπ

� P ) > ε.
As a consequence of [3, Theorem 10], the sample complexity of testing is

upper bounded by O(Δ/ε4). With π� = p1/Δ and treating p1 as a small constant,
we recover the known sample complexity.
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15. Čencov, N.N.: Algebraic foundation of mathematical statistics. Series Stat. 9(2),
267–276 (1978)
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