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Abstract. Information geometry is the study of interactions between
random variables by means of metric, divergences, and their geometry.
Categorical probability has a similar aim, but uses algebraic structures,
primarily monoidal categories, for that purpose. As recent work shows,
we can unify the two approaches by means of enriched category the-
ory into a single formalism, and recover important information-theoretic
quantities and results, such as entropy and data processing inequalities.
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1 Metrics and Divergences on Monoidal Categories

A monoidal category [15, Sect. VII.1] is an algebraic structure used to describe
processes that can be composed both sequentially and in parallel. Before intro-
ducing their metric enrichment, we sketch their fundamental aspects and their
graphical representation. See the reference above for the full definition and for
the details.

1.1 Monoidal Categories and Their Graphical Calculus

First of all, a category C consists of objects, which we can view as spaces of
possible states, or alphabets, and which we denote by capital letters such as
X, Y , A, B. We also have morphisms or arrows between them. A morphism
f : A → B can be seen as a process or a channel with input from A and output
in B. Graphically, we represent objects as wires and morphisms as boxes, to be
read from left to right.

X Yf

Morphisms can be composed sequentially, with their composition represented
as follows,

X
Y gf Z
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and having a category means that the composition is associative and unital.
A relevant example is the category FinStoch of finite sets, which we view as
finite alphabets, and stochastic matrices between them, which we view as noisy
channels. A stochastic matrix f : X → Y is a matrix of entries f(y|x) ∈ [0, 1],
which we can view as transition probabilities, such that

∑
y f(y|x) = 1 for each

x ∈ X.
A monoidal structure on C is what allows us to have morphisms with several

inputs and outputs, represented as follows.

X Y

A B
g

This is accomplished by forming, for each two object X and A, a new object,
which we call X ⊗ A. This assignment is moreover functorial, in the sense of a
two-variable functor ⊗ : C × C → C, meaning that we also multiply morphisms.
Given f : X → Y and g : A → B we get a morphism f ⊗ g : X ⊗ A → Y ⊗ B,
which we represent as follows,

X Yf

A Bh

and which we can interpret as executing f and g independently and in parallel.
We also have morphisms with no inputs or outputs. For example, a state or

source is a morphism with no inputs.

Xp

This is accomplished by means of a distinguished object I, called the unit, with
the property that X ⊗ I ∼= I ⊗ X ∼= X, so that it behaves similarly to a neutral
element for the tensor product. In FinStoch, I is the one-element set: stochastic
matrices I → X are simply probability measures on X.

A monoidal category is then a category C equipped with a distinguished
object I, called the unit, and a product functor ⊗ : C×C → C which is associative
and unital up to particular isomorphisms. This makes the structure analogous
to a monoid, hence the name. A monoidal category is symmetric whenever there
is a particular involutive isomorphism

X

Y

Y

X

for each pair of objects X,Y , analogously to commutative monoids. For the
details, see once again [15, Sect. VII.1].

Let’s now equip these structures with metrics and divergences.
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1.2 Metrics and Divergences, and a Fundamental Principle

Definition 1. A divergence or statistical distance on a set X is a function

X × X [0,∞]

(x, y) D(x ‖ y)

D

such that D(x ‖ x) = 0.
We call the pair (X,D) a divergence space.
We call the divergence D strict if D(x ‖ y) = 0 implies x = y.

Every metric is a strict divergence which is moreover finite, symmetric, and
satisfies a triangle inequality. The Kullback-Leibler divergence (see the next
section) is an example of a non-metric divergence.

Definition 2. A divergence on a monoidal category C amounts to

– For each pair of objects X and Y , a divergence DX,Y on the set of morphisms
X → Y , or more briefly just D;

such that

– The composition of morphisms in the following form

X Y Z

f

f ′

g

g′

satisfies the following inequality,

D(g ◦ f ‖ g′ ◦ f ′) ≤ D(f ‖ f ′) + D(g ‖ g′); (1)

– The tensor product of morphisms in the following form

X ⊗ A Y ⊗ B

f⊗h

f ′⊗h′

satisfies the following inequality,

D
(
(f ⊗ h) ‖ (f ′ ⊗ h′)

) ≤ D(f ‖ f ′) + D(h ‖ h′). (2)

We can interpret this definition in terms of the following fundamental prin-
ciple of categorical information geometry : We can bound the distance between
complex configurations in terms of their simpler components.

For example, the distance or divergence between the two systems depicted
below

g

X

Y

p

f

g′

X

Y

p′
f ′
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is bounded by D(p, p′) + D(f, f ′) + D(g, g′). More generally, for any string dia-
grams of any configuration, the distance or divergence between the resulting
constructions will always be bounded by the divergence between the basic build-
ing blocks.

An important consequence of this principle, which can be obtained by setting,
for example, p = p′ and f = f ′ but not g = g′ in the example above, is that
adding the same block to both sides, in any sequential or parallel direction, cannot
increase the distance or divergence. This is a wide generalization of Shannon’s
data processing inequalities, which say that the divergence between two sources
cannot increase by processing them in the same way. (See [18, Sect. 2.1])

In the next two sections we are going to see two main examples of monoidal
categories with divergences: Markov categories, in particular FinStoch, and cat-
egories of couplings.

2 Markov Categories and Divergences

Markov categories are particular monoidal categories with a structure that makes
them very well suited for modeling probabilistic processes.1 They were defined
in their current form in [5], building up on previous work (see Sect. 2.1).

A Markov category is a symmetric monoidal category where each object X is
equipped with two particular maps called “copy” and “discard”, and represented
as follows.

X

X

X

X

Note that the copy map has output X ⊗ X and the discard map has output
I, i.e. “no output”. These maps have to satisfy some properties (commutative
comonoid axioms) which ensure that the interpretation as “copy” and “discard”
maps is indeed consistent. See [5] as well as [18] for more details on this.

Example 1 (The category FinStoch). We can construct a category of finite alpha-
bets and noisy channels, called FinStoch, as follows.

– Its objects are finite sets, which we denote by X, Y , Z, etc.
– A morphism X → Y is a stochastic matrix, i.e. a matrix of nonnegative entries

with columns indexed by the elements of X, and rows indexed by the elements
of Y ,

X × Y [0, 1]

(x, y) f(y|x)

f

1 Despite the name, Markov categories are not only suited to model Markov pro-
cesses, but arbitrary stochastic processes. Indeed, arbitrary joint distributions can
be formed, and the Markov property states that the stochastic dependencies between
the variables are faithfully represented by a particular graph. If the graph is (equiv-
alent to) a single chain, we have a Markov process. In general, the graph is more
complex. In this respect, Markov categories are similar to, but more general than,
Markov random fields. See [6] for more details on this.
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such that each column sums to one,
∑

y∈Y

f(y|x) = 1 for every x ∈ X.

We can interpret f(y|x) as a conditional or transition probability from state
x ∈ X to state y ∈ Y , or we can interpret f as a family of probability measures
fx over Y indexed by the elements of X.

FinStoch is a Markov category with the copy maps X → X ⊗ X given by
mapping x to (x, x) deterministically for each x ∈ X, and discard maps given
by the unique stochastic matrix X → 1, i.e. a row matrix of entries 1.

2.1 A Brief History of the Idea

The first known study of some aspects of probability theory via categorical
methods is due to Lawvere [12], where he defined the category FinStoch out-
lined above, as well as its generalization to arbitrary measurable spaces. Some of
those ideas reappeared in the work of Giry [9] in terms of monads. Lawvere was
also the first to see the potential of enriched category theory in metric geometry
[13], although it seems that he never used these ideas to study probability theory.

The same categories of probabilistic mappings were defined independently
by Chentsov [1], and used to set the stage for the (differential) geometry of
probability distributions [2]. Interestingly, Chentsov’s work involves categories
of probabilistic mappings as well as their geometry, but he never merged the
two approaches into a geometric enrichment of the category of kernels (most
likely because at that time, enriched category theory was still in its infancy).2
The influence of Chentsov on the present work is therefore two-fold, and the
main challenge of this work is integrating his two approaches, geometric and
categorical, into one unified formalism.

Markov categories, and the more general GS or CD categories, first appeared
in [8] in the context of graph rewriting. Similar structures reappeared indepen-
dently in the work of Golubtsov [10], and were applied for the first time to
probability, statistics and information theory. The idea of using “copy” and “dis-
card” maps to study probability came independently to several other authors,
most likely initially unaware of each other’s work, such as Fong [4], Cho and
Jacobs [3], and Fritz [5]. (Here we follow the conventions and terminology of [5].)

Finally, the idea to use both category theory and geometry to study the
properties of entropy was inspired by the work of Gromov [11]. This work has a
similar philosophy, but follows a different approach.

For more information on the history of these ideas, we refer the reader to [5,
Introduction], to [7, Remark 2.2], and to [18, Introduction].
2 The geometry of the category of Markov kernels studied by Chentsov in [2, Sects. 4

and 6] is not metric geometry, it is a study of invariants in the sense of Klein’s Erlan-
gen Program. More related to the present work are, rather, the invariant information
characteristics of Sect. 8 of [2]. Much of classical information geometry, and hence
indirectly this work, is built upon those notions.
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2.2 Divergences on Markov Categories

As Markov categories are monoidal categories, one can enrich them in diver-
gences according to Definition 2 (see also [18, Sect. 2]).

Here are two important examples of divergences that we can put on FinStoch.

Example 2 (The Kullback-Leibler divergence). Let X and Y be finite sets, and
let f, g : X → Y be stochastic matrices. The relative entropy or Kullback-Leibler
divergence between f and g is given by

DKL(f ‖ g) := max
x∈X

∑

y∈Y

f(y|x) log f(y|x)
g(y|x) ,

with the convention that 0 log(0/0) = 0 and p log(p/0) = ∞ for p 
= 0.

Example 3 (The total variation distance). Let X and Y be finite sets, and let
f, g : X → Y be stochastic matrices. The total variation distance between f and
g is given by

DT (f ‖ g) := max
x∈X

1
2

∑

y∈Y

∣
∣f(y|x) − g(y|x)∣∣.

See [18] for why these examples satisfy the conditions of Definition 2. This in
particular implies that all these quantities satisfy a very general version of the
data processing inequality, see the reference above for more information.

Remark 1. It is well known that the KL divergence and the total variation dis-
tance, as well as Rényi’s α-divergences, are special cases of f-divergences [16].
It is still an open question whether all f -divergences give an enrichment on
FinStoch. However, Tsallis’ q-divergences do not [18, Sect. 2.3.4].

3 Categories of Couplings and Divergences

Besides Markov categories, another example of divergence-enriched categories
relevant for the purposes of information theory are categories of couplings. The
category FinCoup has

– As objects, finite probability spaces, i.e. pairs (X, p) where X is a finite set
and p is a probability distribution on it;

– As morphisms (X, p) → (Y, q), couplings of p and q, i.e. probability measures
s on X ⊗ Y which have p and q as their respective marginals;

– The identity (X, p) → (X, p) is given by the pushforward of p along the diag-
onal map X → X ⊗ X;

– The composition of couplings is given by the conditional product : for s :
(X, p) → (Y, q) and y : (Y, q) → (Z, r)

(t ◦ s)(x, z) :=
∑

y

s(x, y) t(y, z)
q(y)

,

where the sum is taken over the y ∈ Y such that q(y) > 0.
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More information about this category, and its generalization to the continu-
ous case, can be found in [17].

The two choices of divergence outlined in the previous section also work for
the category FinCoup.

Example 4 (Kullback-Leibler divergence). Let (X, p) and (Y, q) be finite prob-
ability spaces, and let s and t be couplings of p and q. The Kullback-Leibler
divergence

DKL(s ‖ t) :=
∑

x,y

s(x, y) log
s(x, y)
t(x, y)

can be extended to a divergence on the whole of FinCoup, i.e. the conditions of
Definition 2 are satisfied.

Example 5 (Total variation distance). Let (X, p) and (Y, q) be finite probability
spaces, and let s and t be couplings of p and q. The total variation distance

DT (s, t) :=
1
2

∑

x,y

∣
∣s(x, y) − t(x, y)

∣
∣

can be extended to a divergence on the whole of FinCoup, i.e. the conditions of
Definition 2 are satisfied.

The category FinCoup is moreover an enriched dagger category. A coupling
(X, p) → (Y, q) can also be seen as a coupling (Y, q) → (X, p), and this choice
does not have any effect on the metrics or divergences. This property is analogous
to, but independent from, the symmetry of the distance in a metric space.

Categories of couplings and Markov categories are tightly related, for more
information see [5, Definition 13.7 and Proposition 13.8]. Further links between
the two structures will be established in future work.

4 Recovering Information-Theoretic Quantities

One of the most interesting features of categorical information geometry is that
basic information-theoretic quantities can be recovered from categorical prime
principles. These include Shannon’s entropy and mutual information for discrete
sources. Here are some examples, more details can be found in [18].

4.1 Measures of Randomness

Markov categories come equipped with a notion of deterministic morphisms, [5,
Definition 10.1]. Let’s review here the version for sources.

Definition 3. A source p on X in a Markov category is called deterministic if
and only if copying its output has the same effect as running it twice indepen-
dently:

=

X

X

X

X
p

p

p

(3)
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Let’s try to interpret this notion. First of all, if p is a source which outputs
deterministically a single element x of X, then both sides output the ordered
pair (x, x), and hence they are equal. Instead, if p is random, the left-hand
side will have perfectly correlated output, while the right-hand side will display
identically distributed, but independent outputs.

In FinStoch Eq. (3) reduces to

p(x) = p(x)2

for all x ∈ X, so that deterministic sources are precisely those probability distri-
butions p whose entries are only zero and one, i.e. the “Dirac deltas”. It is then
natural to define as our measure of randomness the discrepancy between the two
sides of Eq. (3).

Definition 4. Let C be a Markov category with divergence D. The entropy of a
source p is the quantity

H(p) := D
(
copy ◦ p ‖ (p ⊗ p)

)
, (4)

i.e. the divergence between the two sides of (3). (Note that the order matters.)

Example 6. In FinStoch, equipped with the KL divergence, our notion of entropy
recovers exactly Shannon’s entropy:

HKL(p) = DKL

(
copy ◦ p ‖ (p ⊗ p)

)

=
∑

x,x′∈X

p(x) δx,x′ log
p(x) δx,x′

p(x) p(x′)

= −
∑

x∈X

p(x) log p(x).

Example 7. FinStoch, equipped with the total variation distance, our notion of
entropy gives the Gini-Simpson index [14], used for example in ecology to quan-
tify diversity:

HT =
1
2

∑

x,x′∈X

∣
∣p(x) δx,x′ − p(x) p(x′)

∣
∣

=
1
2

∑

x∈X

p(x)

⎛

⎝1 − p(x) +
∑

x′ �=x

p(x′)

⎞

⎠

= 1 −
∑

x∈X

p(x)2.

Rényi’s α-entropies can also be obtained in this way (see [18, Sect. 4.2.2]),
while it is still unclear whether Tsallis’ q-entropies can be obtained in this way
for q 
= 2 (see [18, Question 4.4]).

The fundamental principle of Sect. 1 implies a data processing inequality for
entropy generalizing the traditional one. See [18, Sect. 4] for more details.
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4.2 Measures of Stochastic Interaction

Just as for determinism, Markov categories are equipped with a notion of stochas-
tic and conditional independence [5, Definition 12.12 and Lemma 12.11]. For
sources it reads as follows.

Definition 5. A joint source h on X ⊗ Y in a Markov category displays inde-
pendence between X and Y if and only if

=X

Y

X

Y

h

h

h

(5)

For discrete probability measures, this is exactly the condition

p(x, y) = p(x) p(y),

i.e. that p is the product of its marginals. It is a natural procedure in information
theory to quantify the stochastic dependence of the variables X and Y by taking
the divergence between both sides of the equation.

Definition 6. Let C be a Markov category with a divergence D. The mutual
information displayed by a joint source h on X ⊗Y is the divergence between the
two sides of Eq. (5),

ID(h) := D
(
h ‖ (hX ⊗ hY )

)
.

Note that the order of the arguments of D matters.

In FinStoch, with the KL divergence, one recovers exactly Shannon’s mutual
information. This is well known fact in information theory, and through our
formalism, it acquires categorical significance. Using other notion of divergences
one can obtain other analogues of mutual information, such as a total variation-
based one. Moreover, once again the fundamental principle of Sect. 1 implies a
data processing inequality for mutual information generalizing the traditional
one. See [18, Sect. 3] for more on this.

Acknowledgements. The author would like to thank Tobias Fritz, Tomáš Gonda
and Sam Staton for the helpful discussions and feedback, the anonymous reviewers
for their constructive comments, and Swaraj Dash for the help with translating from
Russian.

References

1. Chentsov, N.N.: The categories of mathematical statistics. Dokl. Akad. Nauk SSSR
164, 511–514 (1965)

2. Chentsov, N.N.: Statistical decision rules and optimal inference. Nauka (1972)



Categorical Information Geometry 277

3. Cho, K., Jacobs, B.: Disintegration and Bayesian inversion via string dia-
grams. Math. Struct. Comput. Sci. 29, 938–971 (2019). https://doi.org/10.1017/
S0960129518000488

4. Fong, B.: Causal theories: a categorical perspective on Bayesian networks. Master’s
thesis, University of Oxford (2012). arXiv:1301.6201

5. Fritz, T.: A synthetic approach to Markov kernels, conditional independence and
theorems on sufficient statistics. Adv. Math. 370, 107239 (2020). arXiv:1908.07021

6. Fritz, T., Klingler, A.: The d-separation criterion in categorical probability (2022).
arXiv:2207.05740

7. Fritz, T., Liang, W.: Free GS-monoidal category and free Markov categories (2022).
arXiv:2204.02284

8. Gadducci, F.: On the algebraic approach to concurrent term rewriting. Ph.D. the-
sis, University of Pisa (1996)

9. Giry, M.: A categorical approach to probability theory. In: Banaschewski, B. (ed.)
Categorical Aspects of Topology and Analysis. LNM, vol. 915, pp. 68–85. Springer,
Heidelberg (1982). https://doi.org/10.1007/BFb0092872

10. Golubtsov, P.V.: Axiomatic description of categories of information transformers.
Problemy Peredachi Informatsii 35(3), 80–98 (1999)

11. Gromov, M.: In search for a structure, Part 1: on entropy (2013). https://www.ihes.
fr/ gromov/wp-content/uploads/2018/08/structre-serch-entropy-july5-2012.pdf

12. Lawvere, F.W.: The category of probabilistic mappings (1962). Unpublished notes
13. Lawvere, W.: Metric spaces, generalized logic and closed categories. Rendiconti del

seminario matematico e fisico di Milano 43 (1973). http://www.tac.mta.ca/tac/
reprints/articles/1/tr1abs.html

14. Leinster, T.: Entropy and Diversity. Cambridge University Press (2021)
15. Mac Lane, S.: Categories for the Working Mathematician. Graduate Texts in Math-

ematics, vol. 5, 2nd edn. Springer, New York (1998). https://doi.org/10.1007/978-
1-4757-4721-8

16. Morozova, E., Chentsov, N.N.: Natural geometry on families of probability laws.
Itogi Nauki i Tekhniki. Sovremennye Problemy Matematiki. Fundamental’nye
Napravleniya 83, 133–265 (1991)

17. Perrone, P.: Lifting couplings in Wasserstein spaces (2021). arXiv:2110.06591
18. Perrone, P.: Markov categories and entropy (2022). arXiv:2212.11719

https://doi.org/10.1017/S0960129518000488
https://doi.org/10.1017/S0960129518000488
http://arxiv.org/abs/1301.6201
http://arxiv.org/abs/1908.07021
http://arxiv.org/abs/2207.05740
http://arxiv.org/abs/2204.02284
https://doi.org/10.1007/BFb0092872
https://www.ihes.fr/~gromov/expository/579
https://www.ihes.fr/~gromov/expository/579
http://www.tac.mta.ca/tac/reprints/articles/1/tr1abs.html
http://www.tac.mta.ca/tac/reprints/articles/1/tr1abs.html
https://doi.org/10.1007/978-1-4757-4721-8
https://doi.org/10.1007/978-1-4757-4721-8
http://arxiv.org/abs/2110.06591
http://arxiv.org/abs/2212.11719

	Categorical Information Geometry
	1 Metrics and Divergences on Monoidal Categories
	1.1 Monoidal Categories and Their Graphical Calculus
	1.2 Metrics and Divergences, and a Fundamental Principle

	2 Markov Categories and Divergences
	2.1 A Brief History of the Idea
	2.2 Divergences on Markov Categories

	3 Categories of Couplings and Divergences
	4 Recovering Information-Theoretic Quantities
	4.1 Measures of Randomness
	4.2 Measures of Stochastic Interaction

	References




