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Abstract. A methodology is proposed to build statistical test procedures
pertaining to models with incomplete information; the lack of information
corresponds to a nuisance parameter in the description of the model. The
supremal approach based on the dual representation of CASM divergences
(or f−divergences) is fruitful; it leads to M-estimators with simple and
standard limit distribution, and it is versatile with respect to the choice of
the divergence. Duality approaches to divergence-based optimisation are
widely considered in statistics, data analysis and machine learning: indeed,
they avoid any smoothing or grouping technique which would be necessary
for a more direct divergence minimisation approach for the same problem.

We are interested in a widely considered but still open problem which
consists in testing the number of components in a parametric mixture.
Although common, this is still a challenging problem since the correspond-
ing model is non-regular particularly because of the true parameter lying
on the boundary of the parameter space. This range of problems has been
considered by many authors who tried to derive the asymptotic distribu-
tion of some statistic under boundary conditions. The present approach
based on supremal divergence M-estimators makes the true parameter an
interior point of the parameter space, providing a simple solution for a dif-
ficult question. To build a composite test, we aggregate simple tests.

Keywords: Non-regular models · Dual form of f -divergences ·
Statistical test aggregation · Number of components in mixture models

1 Dual Representation of the ϕ-Divergences and Tests

We consider CASM divergences (see [15] for definitions and properties):

Dϕ(Q,P ) =

{∫
ϕ(dQ

dP )dP if Q << P

+∞ otherwise

where Q and P are probability measures on the same probability space. Extensions
to divergences between probability measures and signed measures can be found in
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[22]. Dual formulations of divergences can be found in [7,16]. Another interpreta-
tion of these formulations can be found in [9, Section 4.6]. They are widely consid-
ered in statistics, data analysis and machine learning (see e.g. [4,20]).

As in [1], let F be some class of B-measurable (borelian) real valued functions
and let MF = {P ∈ M :

∫ |f |dP < ∞,∀f ∈ F} where M is the space of prob-
ability measures. Let any P ∗ ∈ M, which shall be the underlying true unknown
probability law in a statistical context in the following sections. Assume that ϕ
is differentiable and strictly convex. Then, for all P ∈ MF such that Dϕ(P, P ∗)
is finite and ϕ′(dP/dP ∗) belongs to F , Dϕ admits the dual representation (see
Theorem 4.4 in [6]):

Dϕ(P, P ∗) = sup
f∈F

∫
fdP −

∫
ϕ#(f)dP ∗, (1)

where ϕ#(x) = supt∈R
tx−ϕ(t) is the Fenchel-Legendre convex conjugate. More-

over, the supremum is uniquely attained at f = ϕ′(dP/dP ∗).
This result can be used in two directions. First, a statistical model, e.g.

a parametrical model {Pθ : θ ∈ Θ} with Pθ is absolutely continuous with
respect to some dominating measure μ for any θ, naturally induces a family
F = {ϕ′(pθ/pθ′) : θ, θ′ ∈ Θ}. This is the main framework of this paper.

Conversely, a class of functions F defines the distribution pairs P and Q
that can be compared, which are these such that ϕ′(dP/dQ) ∈ F . Furthermore
it induces a divergence Dϕ on these pairs. A typical example is the logistic model.

The KLm divergence is defined by the generator ϕ : x ∈ R �→ −logx + x − 1
and leads to the maximum likelihood estimator for both forms of estimation for
the supremal estimator, once of which is defined bellow (see Remark 3.2 in [7]).

We consider in this paper the problem of testing the number of components
in a mixture model. This question has been considered by various authors. [2,
10,12,14,17] have considered likelihood ratio tests and showed some difficulties
with those due to the fact that the likelihood ratio statistic is unbounded with
respect to n. [17] prove that its distribution is driven by a log log n term in a
specific simple Gaussian mixture model. The test statistic needs to be calibrated
in accordance with this result. But first, as stated by [17], the convergence to the
limit distribution is extremely slow, making this result unpractical. And second,
it seems very difficult to derive the corresponding term for a different model,
and even more so for a general situation.

Our approach to this problem is suggested by the dual representation of the
divergence. For the KLm divergence, it amounts to considering the maximum
likelihood estimator itself as a test statistic instead of the usual maximum value
of the likelihood function. This leads to a well-defined limiting distribution for
the test statistic under the null. This holds for a class of estimators obtained by
substituting KLm by any regular divergence. This approach also eliminates the
curse of irregularity encountered by many authors for the problem of testing the
number of components in a mixture.

Since we are interested in composite hypotheses, there is no justification in
this context that the likelihood ratio test would be the best (in terms of uniform
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power) as is usually considered (e.g. [8,18]) and [13] showed what difficulties
likelihood ratio tests can encounter in this context.

[8] considered tests based on an estimation of the minimum divergence
between the true distribution and the null model. In we make use of the unic-
ity of the optimiser of the dual representation of the divergence in (1) and of
the supremal divergence estimator introduced by [7]. An immediate practical
advantage of this choice as compared to estimating the minimum divergence is
that one less optimisation is needed. Moreover [23] showed that this estimator
is robust for several choices of the divergence.

Our procedure for composite hypotheses consists in the aggregation of simple
tests in the spirit of [11]. [5] used a similar aggregation procedure for testing
between two distributions under noisy data and obtained some control of the
resulting test power.

2 Notation and Hypotheses

Let {f1( . ; θ1) : θ1 ∈ Θ1}, Θ1 ⊂ R
p, and {f2( . ; θ2) : θ2 ∈ Θ2}, Θ2 ⊂ R

q, be
probability density families with respect to a σ-finite measure λ on (X ,B). For
some fixed open interval ]a, b[� 0, let Θ ⊂]a, b[×Θ1 × Θ2, and

gπ,θ = (1 − π)f1( . ; θ1) + πf2( . ; θ2)

for any (π, θ) ∈ Θ with θ = (θ1, θ2).
Assume that x1, . . . , xn ∈ R have been observed and they are modelled as

a realisation of the i.i.d. sample X1, . . . , Xn which distribution P
∗ := gπ∗,θ∗ .λ

is known up to the parameters (π∗, θ∗) ∈ Θ. Our aim is to test the hypothesis
H0 : π∗ = 0.

Assume that gπ,θ = gπ∗,θ∗ ⇒ π = π∗, θ1 = θ∗
1 and, if π∗ 
= 0, θ2 = θ∗

2 .
Let g be a probability density with respect to λ such that Supp(g) ⊂

Supp(gπ,θ) for any (π, θ) ∈ Θ such that

∀(π, θ) ∈ Θ,

∫ ∣∣∣∣ϕ′(
g

gπ,θ
)
∣∣∣∣ gdλ < ∞.

Let us define for any (π, θ) ∈ Θ,

mπ,θ : x ∈ X �→
∫

ϕ′
( g

gπ,θ

)
gdλ − ϕ#

( g

gπ,θ

)
(x)

and assume that (π, θ) �→ mπ,θ(x) is continuous for any x ∈ X . Let us also
assume that

∀(π̃, θ̃) ∈ Θ,∃r0 > 0/∀r ≤ r0, P ∗ ∣∣ sup
d((π̃,θ̃),(π,θ))<r

mπ,θ

∣∣ < ∞

where d(·, ·) denotes the Euclidean distance and where, as usual, the operator-
type notation P

∗Y denotes the expectation—with respect to the probability
measure P

∗—of the random variable Y .



Tests Based on Supremal Divergence Estimators 139

Theorem 1. For any (π∗, θ∗) ∈ Θ

Dϕ(g.λ, gπ∗,θ∗ .λ) = sup
(π,θ)∈Θ

P ∗mπ,θ,

which we call the supremal form of the divergence. Moreover attainment holds
uniquely at (π, θ) = (π∗, θ∗).

Definition 1. Let Pn denote the empirical measure pertaining to the sample
X1, . . . , Xn. Define

(π̂, θ̂) := argmax
(π,θ)

Pnmπ,θ

the supremal estimator of (π∗, θ∗).

The existence of (π̂, θ̂) can be guaranteed by assuming that Θ is compact.
When uniqueness does not hold, consider any maximizer. This class of estimators
has been introduced in [7], under the name dual ϕ-divergence estimators.

3 Consistency of the Supremal Divergence Estimator

Let us first state the consistency of the supremal divergence estimator of the
proportion and the parameters of the existing component, when the non-existing
component parameters are fixed, uniformly over the latter.

Here and below, by abuse of notation, we let ϕ′( g
gπ,θ

)
stand for x �→

ϕ′( g(x)
gπ,θ(x)

)
, and so on.

Remark that, for π∗ = 0 and any θ∗
1 ∈ Θ1 and θ2 ∈ Θ2, we can unambiguously

write mπ∗,θ∗
1

for mπ∗,θ∗
1 ,θ2 since the parameter θ2 is not involved in the expression

of m0,θ∗
1 ,θ2 .

Theorem 2. Assume that π∗ = 0 and let for any θ2 ∈ Θ2, (π̂(θ2), θ̂1(θ2)) ∈
]a, b[×Θ1 such that

inf
θ2∈Θ2

Pnmπ̂(θ2),θ̂1(θ2),θ2
≥ Pnmπ∗,θ∗

1
− oP ∗(1). (2)

Then
sup

θ2∈Θ2

d
(
(π̂(θ2), θ̂1(θ2)), (0, θ∗

1)
) P ∗

−−−−→
n→∞ 0.

The convergence holds a.s. in the particular case of (2) when, a.s.,

∀θ2 ∈ Θ2, (π̂(θ2), θ̂1(θ2)) ∈ argmax
(π,θ1)∈]a,b[×Θ1

Pnmπ,θ1,θ2 . (3)
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4 Asymptotic Distribution of the Supremal Divergence
Estimator

Under H0 (π∗ = 0), the joint asymptotic distribution of (π̂(θ2), π̂(θ′
2)) is provided

by the following theorem. The interior of Θ will be denoted by Θ̊.

Theorem 3. Let θ2 ∈ Θ2 and θ′
2 ∈ Θ2 such that (π∗, θ∗

1 , θ2) ∈ Θ̊ and
(π∗, θ∗

1 , θ
′
2) ∈ Θ̊. Write

Θ(θ2) = {(π, θ1) ∈] − ∞, 1[×Θ1 : (π, θ1, θ2) ∈ Θ}
Θ(θ′

2) = {(π, θ1) ∈] − ∞, 1[×Θ1 : (π, θ1, θ
′
2) ∈ Θ},

and let (π̂, θ̂1) and (π̂′, θ̂′
1) be such that

(π̂, θ̂1) ∈ argmax
(π,θ1)∈Θ(θ2)

Pnmπ,θ1,θ2

(π̂′, θ̂′
1) ∈ argmax

(π,θ1)∈Θ(θ′
2)

Pnmπ,θ1,θ′
2
.

Assume that π∗ = 0.
Moreover, assume that :

– (π, θ1) ∈ Θ(θ2) �→ mπ,θ1,θ2(x) (resp. (π, θ1) ∈ Θ(θ′
2) �→ mπ,θ1,θ′

2
(x)) is dif-

ferentiable λ-a.e. with derivative ψπ,θ1 =
(

∂
∂π mπ,θ1,θ2
∂

∂θ1
mπ,θ1,θ2

)
|(π,θ1)

(resp. ψ′
π,θ1

=( ∂
∂π mπ,θ1,θ′

2
∂

∂θ1
mπ,θ1,θ′

2

)
|(π,θ1)

) such that P ∗ψπ∗,θ∗
1
= 0 (resp. P ∗ψ′

π∗,θ∗
1
= 0).

– (π, θ1) ∈ Θ(θ2) �→ P ∗ψπ,θ1 (resp. (π, θ1) ∈ Θ(θ′
2) �→ P ∗ψ′

π,θ1
) is differentiable

at π∗, θ∗
1 with invertible derivative matrix H = D(P ∗ψ)∣∣

∣

(
π∗
θ∗
1

) (resp. H ′ =

D(P ∗ψ′)∣∣
∣

(
π∗
θ∗
1

) ).

– {ψπ,θ1 : (π, θ1) ∈ Θ(θ2)} and {ψ′
π,θ1

: (π, θ1) ∈ Θ(θ′
2)} are P ∗-Donsker.

–
∫
(ψπ̂,θ̂1

(x)−ψπ∗,θ∗
1
(x))2dP ∗(x) P ∗

−−→ 0 and
∫
(ψ′

π̂,θ̂1
(x)−ψ′

π∗,θ∗
1
(x))2dP ∗(x) P ∗

−−→
0.

Assume that H=D(P ∗ψ)∣∣
∣

(
π∗
θ∗
1

)=P ∗D2(h)∣∣
∣

(
π∗
θ∗
1

) (resp. H ′=D(P ∗ψ′)∣∣
∣

(
π∗
θ∗
1

)=

P ∗D2(h′)∣∣
∣

(
π∗
θ∗
1

) ) with P ∗|D2(h)∣∣
∣

(
π∗
θ∗
1

) | < ∞ (resp. P ∗|D2(h′)∣∣
∣

(
π∗
θ∗
1

) | < ∞) where

h : (π, θ1) ∈ Θ(θ2) �→ mπ,θ1,θ2(x) (resp. h′ : (π, θ1) ∈ Θ(θ′
2) �→ mπ,θ1,θ′

2
(x)).

Then with an (resp. a′
n) being the (1, 1)-entry of the matrix H−1

n ·(
Pnψπ̂,θ̂1

ψT
π̂,θ̂1

) · H−1
n (resp. of H ′−1

n · (
Pnψ′

π̂,θ̂1
ψ′T

π̂,θ̂1

) · H ′−1
n )—where Hn (resp.

H ′
n) denotes the Hessian matrix of (π, θ1) �→ Pnmπ,θ1,θ2 (resp. of (π, θ1) �→

Pnmπ,θ1,θ′
2
) at the point (π̂, θ̂1), which is supposed to be invertible with high

probability—one gets ⎛
⎝

√
n
an

(π̂ − π∗)√
n
a′

n
(π̂′ − π∗)

⎞
⎠ L−→ N (0, U)
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with

U =

(
1 b√

aa′
b√
aa′ 1

)
(4)

where b is the (1, 1)-entry of the matrix H−1 · (
Pψπ∗,θ∗

1
ψ′T

π∗,θ∗
1

) · H ′−1, and a

(resp. a′) the (1, 1)-entry of the matrix H−1 · (
Pψπ∗,θ∗

1
ψT

π∗,θ∗
1

) · H−1 (resp. of
H ′−1 · (

Pψ′
π∗,θ∗

1
ψ′T

π∗,θ∗
1

) · H ′−1).

This result naturally generalises to k-tuples. The marginal result for θ actu-
ally also holds when π∗ > 0 and θ2 = θ∗

2 , which is useful to control the power of
the test procedure to be defined.

Let us consider as a test statistic Tn = supθ2

√
n
an

π̂ and let us reject H0

when Tn takes large values. It seems sensible to reduce π̂ for each value of θ2
so that, under H0, it is asymptotically distributed as a N (0, 1) and that the
(reduced) values of π̂ for different values of θ2 can be compared. In practice, the
asymptotic variance has to be estimated hence the substitution of π̂, θ̂1, and Pn

for π∗, θ∗
1 , and P ∗ in H−1P ∗ψπ∗,θ∗

1
ψT

π∗,θ∗
1
H−1. This choice is justified in [19].

The Bonferoni aggregation rule is not sensible here since the tests for different
values of θ2 are obviously not independent so that such a procedure would lead
to a conservative test. Hence the need in Theorem 3 for the joint asymptotic
distribution to take the dependence between π̂ for different values of θ2. This
leads to the study of the asymptotic distribution of Tn which should be the
distribution of supW where W is a Gaussian process which covariance structure
is given by Theorem 3. This will be proved in the forthcoming section.

5 Asymptotic Distribution of the Supremum of Supremal
Divergence Estimators

H0 is assumed to hold in this section.
It is stated that the asymptotic distribution of Tn is that of the supremum

of a Gaussian process with the covariance b√
aa′ , as in (4).

Then it is stated that the distribution of the latter can be approximated by
maximising the Gaussian process with the covariance bn√

ana′
n

, where an, a′
n, and

bn are estimations of the corresponding quantities, on a finite grid of values for
θ2.

Let X be the centred Gaussian process over Θ2 with

∀θ2, θ
′
2 ∈ Θ2, r(θ2, θ′

2) = Cov(Xθ2 ,Xθ′
2
) =

b√
aa′

where a and b are defined in Theorem 3.

Theorem 4. Under general regularity conditions pertaining to the class of
derivatives of m (Glivenko-Cantelli classes), we have√

n

an
(π̂n − π∗) L−→ X.
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This results from [21] when dim(Θ2) = 1 and [24] when dim(Θ2) > 1.

Theorem 5. Under the same general regularity conditions as above, we have

Tn
L−→ sup

θ2∈Θ2

X(θ2).

The proof of the last result when dim(Θ2) = 1 makes use of the fact that
θ2 �→ π̂(θ2) is cadlag ([21]). This is a reasonable assumption, which holds in
the examples which we considered. We are eager for counter-examples! When
dim(Θ2) > 1, the result holds also by [3].

Let now Xn be the centred Gaussian process over Θ2 with

∀θ2, θ
′
2 ∈ Θ2,Cov(Xn

θ2
,Xn

θ′
2
) =

bn√
ana′

n

where an, a′
n are defined in Theorem 3 and bn is defined analogously.

Theorem 6. Let, for any δ > 0, Θδ
2 be a finite set such that ∀θ2 ∈ Θ2,∃θ̃2 ∈

Θδ
2/‖θ2 − θ̃2‖ ≤ δ. Then

M δ
n = sup

θ2∈Θδ
2

Xn
θ2

L−−−−→
n→∞
δ→0

M = sup
θ2∈Θ2

Xθ2 .

6 Algorithm

Our algorithm for testing that the data was sampled from a single-component
mixture (H0 : π∗ = 0) against a two-component mixture (H1 : π∗ > 0) is
presented in Algorithm 1.

In this algorithm, π̂(θ2) is defined in (2) and (3). It depends on g. This The-
orems hold as long as g fulfils Supp(g) ⊂ Supp(gπ,θ) for any (π, θ) ∈ Θ. However
it has to be chosen with care. The constants in the asymptotic distribution in
Theorem 3 depend on it. Moreover [23] argue that the choice of g can influence
the robustness properties of the procedure.

The choice of ϕ is also obviously crucial (see also [23] for the induced robust-
ness properties).

The choice of ϕ and g are important practical questions which are work in
progress.

As already stated, the supremal estimator for the modified Kullback-Leibler
divergence ϕ : x ∈ R

+∗ �→ − log x + x − 1 is the usual maximum likelihood
estimator. In this instance the estimator does not depend on g.
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Algorithm 1: Test of H0: one component vs H1: two components
Input : ϕ, {f1( . ; θ1) : θ1 ∈ Θ1}, {f2( . ; θ2) : θ2 ∈ Θ2}, n, K, Θδ

2, p ∈ [0, 1]

1. let t = supθ2∈Θ2

√
n

an(θ2)
π̂(θ2)

2. for k ∈ {1, . . . , K}
(a) sample (Xt)t∈Θδ

2
∼ N (

0, ( bn(t,t′)√
an(t)an(t′)

)t,t′∈Θδ
2

)
(b) let t̃k = maxt∈Θδ

2
xt

3. if t ≥ empirical_quantile((t̃k)k∈{1,...,K}, 1 − p) reject H0 else don’t reject
H0 vs H1.
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