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Abstract. According to Tsallis’ seminal book on complex systems: “an
entropy of a system is extensive if, for a large number n of its elements,
the entropy is (asymptotically) proportional to n". According to whether
the focus is on the system or on the entropy, an entropy is extensive for a
given system or a system is extensive for a given entropy. Yet, exhibiting
the right classes of random sequences that are extensive for the right
entropy is far from being trivial, and is mostly a new area for generalized
entropies. This paper aims at giving some examples or classes of random
walks that are extensive for Tsallis entropy.

Keywords: extensivity · complex systems · phi-entropy · random
walks · stochastic process

1 Phi-Entropy Functionals and Extensivity

In the most classical information theory, the sources, identified to random
sequences, are assumed to be ergodic or stationary. For such sources, the Asymp-
totic Equipartition Property (AEP) holds, stating that Shannon entropy asymp-
totically increases linearly with the number of elements of the source, a conse-
quence of the strong additivity of Shannon entropy; see [3] for precise statements
of AEPs for various types of sources. For more complex, non-ergodic systems,
this asymptotics can be highly non linear, requiring to investigate alternative
behaviors or to consider other entropy functionals.

The ϕ-entropy functionals (also called trace entropies) have now been widely
used and studied in numerous scientific fields. The ϕ-entropy of a random vari-
able X with finite or countable state space E and distribution PX is defined
as Sϕ(X) =

∑
x∈E ϕ(PX(x)), with ϕ some smooth function. Classical examples

include Shannon with ϕ(x) = −x log(x), Taneja with ϕ(x) = −xs log(x), and
Tsallis with Ts(X) = 1

s−1 [1 − Λ(X; s)], where Λ(X; s) =
∑

x∈E PX(x)s is the
so-called Dirichlet series associated to X. Here, we will focus on Tsallis entropy,
and suppose that s > 0.

Extensivity of a complex systems is introduced in [10] as follows: "an entropy
of a system is extensive if, for a large number n of its elements (probabilistically
independent or not), the entropy is (asymptotically) proportional to n".
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Precisely, a ϕ-entropy is extensive for a random sequence X = (Xn)n∈N∗ , with
X1:n = (X1, . . . , Xn), if some c > 0 exists such that Sϕ(X1:n) ∼n→∞ c.n; the con-
stant c is the ϕ-entropy rate of the sequence. Intuitively, all variables contribute
equally to the global information of the sequence, an appealing property in con-
nection with the AEP in the theory of stochastic processes and complex systems;
see, e.g., [2]. Extensivity is a two-way relationship of compatibility between an
entropy functional and a complex system: indeed, the entropy is extensive for a
given system or the system is extensive for a given entropy, according to whether
the focus is on the system or on the entropy. Yet, exhibiting the right class of
random sequences that are extensive for the right entropy is far from being triv-
ial, and is mostly a new area for generalized entropies. This paper, as a first step,
aims at giving some examples or classes of random walks that are extensive for
Tsallis entropy, widely in use in complex systems theory; see [10].

For ergodic systems, Shannon entropy is well-known to be extensive while
Tsallis entropy in non-extensive; see e.g. [7]. More generally, [4] establishes that
Shannon entropy is the unique extensive ϕ-entropy for a large class of random
sequences called quasi-power (QP) sequences (see definition given by (2) below),
among the class of the so-called quasi-power-log (QPL) entropies introduced in
[1], satisfying

ϕ(x) ∼0 axs(log x)δ + b, (1)

for some a, b ∈ R, s > 0, δ ∈ {0, 1}. QPL entropies are considered in [9, Eq.
(6.60), p356] and [1] as the simplest expression of generalized entropies for
studying the asymptotic behavior of entropy for random sequences, on which
the present paper focuses. Indeed, the asymptotic behavior of the marginal QPL
entropy of a random sequence is closely linked to the behavior of its Dirichlet
series, characterized for QP sequences by the quasi-power property

Λ(X1:n; s) = c(s)λ(s)n−1 + Rn, s > σ0, (2)

where 0 < σ0 < 1, c and λ are strictly positive analytic functions, λ is strictly
decreasing and λ(1) = c(1) = 1, and Rn is an analytic function such that
|Rn(s)| = O(ρ(s)nλ(s)n) for some ρ(s) ∈]0, 1[. Thanks to Perron-Frobenius the-
orem, the QP property is satisfied by ergodic Markov chains, including indepen-
dent and identically distributed (i.i.d.) sequences. It is also satisfied by a large
variety of dynamic systems, including continuous fraction expansions; see [11].

In another perspective on the characterization of the asymptotic behavior of
entropy, [9] studies uniformly distributed systems, in which each Xn is drawn
from a uniform distribution on a state space that may depend on n; see also [5]
and the references therein. The entropies are classified according to the two
parameters 0 < c ≤ 1 and d ∈ R given by

c = 1 − lim
n

Ω(n)
nΩ′(n)

, d = lim
n

logΩ(n)
[

Ω(n)
nΩ′(n)

+ c − 1
]

, (3)

depending only on the asymptotics of the size Ω(n) = |E(1 : n)| of the state
space E1:n of X1:n. In the context of [5], the asymptotic behavior of Ω(n) is
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assumed to be a smooth expression of n, e.g., nβ with β > 0; then, Ω′(n)
denotes the derivative of this expression at n. The asymptotic classification
includes QPL entropies plus Quasi Power Exponential (QPE) entropies, given
by ϕ(x)∼0 axs exp(−γx) + b, with a, b ∈ R

∗, s ∈ R, and γ ∈ R
∗
+, that are all

asymptotically equivalent to the Tsallis one. Linear combination of such cases
may also be considered, but are asymptotically dominated by one of the terms.
Therefore, the present paper will focus exclusively on the asymptotic behavior
of QPL entropies, for which (c, d) = (s, δ) in (1); see [1] and [9, Table 6.2].

All in all, in [5,9] and the references therein, one can identify the following–
non exhaustive– types of growth, attached with class tags linked to the type of
maximum entropic distribution:

Ω(n) ∼ nb is power-law leading to c = 1 − 1/b, d = 0, and Tsallis entropy;
Ω(n) ∼ Ln1−β

is sub-exponential and leads to c = 1, d = 1 − 1/β, with
0 < β < 1;

Ω(n) ∼ exp(�n) is exponential with c = d = 1, and hence is extensive for
Shannon entropy;

Ω(n) ∼ exp(�ng) is stretched exponential with c = 1, d = 1/g, with g > 1,
and extensive for QPE entropies, asymptotically equal to Tsallis.

The paper aims at showing through examples that various simple systems
are extensive for Tsallis entropy, by using the growth rate of both the size of
the state space and the behavior of the Dirichlet series. This amounts to using
the physics approach in [9] to supplement and clarify the mathematics approach
in [1,4]–and other works along the same lines. The approach developed in [9]
focuses on the complex systems and the induced maximum entropy distribution,
and involves random sequences only via the size of the state space, while we
are here interested in entropy as a function of a random sequence. Indeed, we
focus on the random variables, together with their distributions, involved in the
– asymptotic – behavior of a system and its entropy, as reflected in the Dirichlet
series.

Section 2 begins by considering classical random walks, non-extensive for
Tsallis entropy, but constituting a good starting point for constructing extensive
ones. Then some examples of Tsallis-extensive systems are given in the con-
text of complex systems, in terms of restricted or autocorrelated random walks.
Still, the conditions on these systems appear to be difficult to express simply in
terms of statistical inference, construction, and simulation, of random sequences.
Therefore, the framework is broadened in Sect. 3 by considering non identically
distributed increments, that is delayed random walks. Tuning the marginal dis-
tributions of the increments leads to Tsallis extensive sequences, with explicit
probabilistic conditions allowing for the effective construction of such systems.
Precisely, the main result, Theorem 1, gives a procedure for building random
walks that are Tsallis-extensive, through an opening to non-uniform systems.

2 Random Walks

Let X = (Xn)n∈N∗ be a sequence of independent random variables such that,
for each n ∈ N

∗, Xn takes values in a finite or countable subset E(n) of Z
N.
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Let W = (Wn)n∈N∗ be the random walk on Z
N associated to the increments X

through Wn =
∑n

k=1 Xn, for n ∈ N
∗.

We will derive the asymptotic behavior of the classical and extended random
walks thanks to the following properties satisfied by the Dirichlet series; see,
e.g., [8].

Properties 1 Let X be a discrete random variable taking values in E. Let E =
|E| denote the number of states, possibly infinite. Let s > 0. Then:

1. Λ(X, 1) = 1, and if X is deterministic, then Λ(X, s) = 1 too for all s.
2. logmX < Λ(X; s) < log E, where mX is the number of modes of X.
3. s �→ Λ(X; s) is a smooth decreasing function.
4. If X1, . . . , Xn are independent variables, then Λ(X1:n; s) =

∏n
k=1 Λ(Xk; s).

Classical isotropic random walks (Wn) on Z
I are associated to sequences X

of i.i.d. random variables with common uniform distribution, say Xn ∼ U(E),
on E = {±ei, i ∈ [[1, I]]}, with I ∈ N

∗, where the ei are the canonical vectors of
R

I . Property 1.4 and the i.i.d. assumption yield

Λ(W1:n; s) = Λ(X1:n; s) =
n∏

k=1

Λ(Xk; s), (4)

that is to say Λ(W1:n; s) = (2I)n, so that S(Wn) = n log 2I and Ts(Wn) =
1

s−1

[
1 − (2I)(1−s)n

]
, and hence Shannon is extensive while Tsallis is exponential.

Note that (4) still holds for non identically distributed random variables.
Clearly, alternative choices for Λ(Xk; s) yield alternative behaviors for Λ(X1:n; s)
and hence for Tsallis entropy. Let us give two examples, where the state space
of Xn grows with n.

Example 1

1. The state space of Xn is linearly expanding if Xn ∼ U({±ei, 1 ≤ i ≤ n}),
since then E(1 : n) = |E(n)| = 2n and Ω(n) = 2n.n!. We compute Λ(Wn; s) =
(2nn!)1−s, S(Wn) ∼∞ n log n, and Ts(Wn) = 1

s−1

[
1 − (2nn!)1−s

]
, making

the random walk W over-extensive for both Shannon and Tsallis.
2. The state space of Xn is exponentially expanding if Xn ∼ U({±1}n), since

then E(n) = 2n, and Ω(n) = 2n(n+1), a stretched exponential growth, and
leads to a QPE entropy with c = 1, d = 1/2, asymptotically equal to Tsal-
lis. We compute Λ(Wn; s) = 2(1−s)n(n+1)/2, and S(Wn) ∼∞ log 2n2/2 and
Ts(Wn) = 1

s−1

[
1 − 2(1−s)n(n+1)/2

]
.

Both (4) and Examples 1 show that the marginal Tsallis entropy of random
walks with such inflating state spaces increases at least exponentially fast. To
obtain extensive sequences for Tsallis entropy in this way would require the
state spaces to contract, which is impossible. The approach of [5,6] with either
restricted state spaces or autocorrelated random variables next presented will
pave the way to possible solutions.
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The following restricted binary random walks, with E = {0, 1}, are heuristi-
cally described in [5]. If, asymptotically, the proportion of 1 is the same whichever
be the length of the sequence, then Wn/n converges to a constant limit L ∈ (0; 1),
and Ω(n) = Ln, with exponential growth, and hence W is extensive for Shannon
entropy.

If Wn goes to infinity slower than L.n, its growth is sub-extensive for Shan-
non, and over-extensive otherwise. Such behaviors induce to restrict in some
way the number of either 0 or 1 that the system can produce in n steps. For a
power law growth, Wn converges to a constant g > 0 and Ω(n) ∼ ng, leading to
extensivity for Tsallis entropy with s = 1− 1/g; see [7]. A rigorous presentation
of such a sequence will be obtained in Example 5 below.

Further, autocorrelated random walks are considered in [6]; see also [7]. Sup-
pose here that E(n) = {−1, 1}. In the classical symmetric uncorrelated RW,
P(Xm = −1) = P(Xm = 1) = 1/2, EXm = 0 and EXnXm = δnm. Then
Ω(n) = 2n and hence (c, d) = (1, 1) leads to extensivity for Shannon entropy,
as seen above. Suppose now that the Xn are correlated random variables, with
EXnXm = 1 if αnγ(log n)β < z ≤ αmγ(logm)β and 0 otherwise, for some fixed
integer z and real numbers α, β, γ. Taking γ = 0 and β �= 0 leads to extensivity
for Tsallis entropy. [6] conjectures that all choices of (γ, β) lead to all choices of
(c, d).

Instead of autocorrelated RW, the somewhat less artificial (sic, [6]) ageing
RW can be considered, with Xn = ηnXm−1 where (ηm) is a sequence of binary
random variables taking values ±1 ; see [6] and [9, Chapter 6]. The ensuing
(c, d) depends on the distribution of ηm+1 conditional on the the number of
0 ≤ m ≤ n such that ηm = 1. A suitable choice leads for instance to the
stretched exponential growth and extensivity for a QPE entropy, asymptotically
equal to Tsallis.

Applied systems involving Tsallis entropy are given in [5,9]. For instance, spin
systems with a constant network connectivity lead to extensivity for Shannon
entropy, while random networks growing with constant connectedness require
Tsallis entropy; see [5]. See also [9, p371] for a social network model leading to
Tsallis entropy.

Still, both restricted and autocorrelated systems are difficult to express in
terms of the behavior, statistical inference or simulation of random variables.
The delayed RW that we finally propose in Sect. 3 will be more tractable in
these perspectives.

3 Delayed Random Walks

A super diffusive random walk model in porous media is considered in [5]. Each
time a direction is drawn, �nβ	 steps occur in this direction before another is
drawn, where β ∈ [0, 1[ is fixed. More precisely, a first direction X0 is chosen
at random between two possibilities. Then, the �2β	 following steps equal X1 :
X1 · · · = X�2β	 = X0. At time �2β	, again a direction is chosen at random and
repeated for the following �3β	 steps, and so on. The number of random choices
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after n steps, of order n1−β , decreases in time, and hence Ω(n) 
 2n1−β

, and
(c, d) = (1, 1/(1 − β)); Shannon entropy is no more extensive.

This example leads to the notion of delayed random walks, that we will
develop here in order to construct classes of random sequences that are extensive
for Tsallis entropy. Precisely, we will say that W is a delayed random walk
(DRW) if for identified indices n ∈ D ⊆ N

∗, the behavior of Wn is deterministic
conditionally to W1:n−1. In other words, all Xn are deterministic for these n.

Let us first give three examples where we assume that the random increments
Xn, for n ∈ R = N

∗\D, are drawn uniformly in a finite set E with cardinal E .

Example 2

1. A constant delay κ ∈ N
∗ between random steps leads to R = κN∗ and

Ω(n) = E� n
κ 	, an exponential growth leading to Shannon entropy. We com-

pute Λ(W1:n; s) = E� n
κ 	(1−s).

2. A linearly increasing delay, say R = {1 + n(n + 1)/2, n ∈ N
∗}, leads

to Ω(n) = E�(−1+
√
1+8n)/2	, a stretched exponential growth leading to a

QPE entropy, asymptotically equal to Tsallis. We compute Λ(W1:n; s) =
E�(−1+

√
1+8n)/2	(1−s), and Ts(Wn) = 1

s−1

[
1 − E�(−1+

√
1+8n)/2	(1−s)

]
.

3. An exponentially increasing delay, say R = {2n, n ∈ N
∗}, leads to

Ω(n) = E�log2 n	, a power-law growth leading to Tsallis entropy. We compute
Λ(W1:n; s) = E�log2 n	(1−s), and Ts(W1:n) = 1

s−1

[
1 − E�log2 n	(1−s)

]
, from

which we immediately derive that

1
s − 1

(1 − n(1−s) ln(E)/ln(2)Es−1) < Ts(W1:n) ≤ 1
s − 1

(1 − n(1−s) ln(E)/ln(2)).

In other words, Ts(W1:n) essentially increases as a power of n. For random
increments occurring at times of order 2n(1−s) instead of 2n and if E = 2, we
similarly derive that W1:n is extensive for Ts; this will be rigorously stated in
Example 3 below.

Examples 1 and 2 illustrate how the Dirichlet series of DRW are affected by
state space expansion and delays. On the one hand, the Dirichlet series increase
with the expansion of the system while on the other hand, the faster the delay
lengths increase between random increments, the slower the Dirichlet series and
Ω(n) increase. More generally, one can generate–theoretically–any prescribed
asymptotic behavior for the Dirichlet series and Ω(n) by suitably balancing
between the introduction of delays and the ability to control the Dirichlet series
of the random increments.

Precisely, Properties 1.1 and 1.4 yield the following relation between the
Dirichlet series of the DRW and the Dirichlet series ln = Λ(Xrn

; s) of the incre-
ments,

Λ(W1:n; s) =
˜k∏

k=1

lk, k̃ = max{k : rk ≤ n}. (5)

Let us now exhibit different types DRW that are either strictly extensive
for Tsallis entropy, such that limTs(Wn)/n exists and is not zero, or weakly
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extensive in the sense that both lim infn 1
nTs(Wn) and lim supn

1
nTs(Wn) exist

and are not zero.

Theorem 1. Let s ∈ (0; 1). Let (ln)n∈N∗ be a real sequence such that ln > 1
and �∏n

k=1 lk	 ≥ n for all n. Let W = (Wn)n∈N∗ be the DRW associated to
increments (Xn)n∈N∗ and delays rn = max {�∏n

k=1 lk	 , rn−1 + 1}, where ln =
Λ(Xrn

; s). Then lim supn→∞
1
nTs(W1:n) = 1/(1 − s).

Moreover, if ln converges to L ≥ 1, then lim infn→∞ 1
nTs(W1:n) =

1/(1 − s)L, and W is weakly extensive for Ts. If ln converges to L = 1, then the
extensivity is strict.

Proof. Assume that the sequence (�∏n
k=1 lk	) is strictly increasing so that

rn = �∏n
k=1 lk	. Otherwise, simply discard the first components of W to fit

this assumption.
We compute using (5),

Λ(W1:n; s) =

{∏k
i=1 li if n = rk,

∏k−1
i=1 li if rk−1 < n < rk,

that is piecewise-constant and increasing with respect to n. Its supremum limit
is obtained for the subsequence Λ(W1:rn

; s) =
∏n

k=1 ln, k ∈ N
∗. Since rn =

�∏n
k=1 lk	, we have rn ≤ Λ(W1:rn

; s) ≤ rn + 1, so that

1
1 − s

rn − 1
rn

≤ 1
rn

Ts(W1:rn
) ≤ 1

1 − s
,

and the limsup result holds.
Similarly, the infimum limit exists and is obtained for the subsequence

(W1:rn+1) as soon as ln converges (to L ≥ 1), which finishes the proof. �

Note that Theorem 1 is based on the existence of a random variable X whose
Dirichlet series Λ(X; s) takes any prescribed value � > 1. Thanks to Property 1.2,
this can be achieved in various ways, by choosing X in a parametric model
with state space E and number of modes mX as soon as � ∈ (logmX ; log |E|);
see [8]. Tuning the parameters of the distribution leads to specific values for
which Λ(X; s) = �. See Example 4 below for a Bernoulli model, where l ∈ (1; 2).

The following example illustrates how to generate simple random sequences
that are weakly extensive for Tsallis entropy by suitably introducing delays. Still,
the infimum and supremum limits cannot be equal, hindering strict extensivity.

Example 3. Let s ∈ (0, 1). Let W be a DRW with exponential delays of order
21−s, say rn = max

{⌊
2n(1−s)

⌋
, rn−1 + 1

}
for n ≥ 2, with r1 = 1. Random

increments Xrn
are drawn according to a uniform distribution U({−1, 1}) so

that ln = Λ(Xrn
; s) = 21−s.

Then, Theorem 1 yields Ω(n) ∼ 2� 1
1−s log2 n	, and

lim inf
n→∞

1
n
Ts(Wn) =

1
1 − s

2s−1, lim sup
n→∞

1
n
Ts(Wn) =

1
1 − s

. (6)
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The last example will consider anisotropic random walks, in which the Xrn

are drawn according to an asymmetric binary distribution with probabilities
depending on n.

Example 4. Let rn = max{�∏n
k=1(1 + 1/(k + 1))	, rn−1 + 1} for n ≥ 2, with

r1 = 1. Let X be a sequence of independent variables such that P(Xrn
= 1) =

1−P(Xrn
= −1) = pn, with pn solution of (pn)s+(1−pn)s = 1+1/(n + 1), while

all other Xn are deterministic. By construction, the Dirichlet series associated
with Xn is ln = Λ(Xn, s) = 1+1/(n + 1) which converges to 1. Theorem 1 yields
extensivity of Tsallis entropy.

Further, Examples 1 become Tsallis-extensive by introducing the respective
delays R = {⌊2n(1−s)n!, n > 0

⌋} and R = {⌊2n(n+1)(1−s)/2
⌋} and applying The-

orem 1.
Note that large classes of Tsallis-extensive DRWs can be built from Theo-

rem 1, a construction that was the main aim of the paper.
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