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Abstract. We describe a sparse coding model of visual cortex that
encodes image transformations in an equivariant and hierarchical man-
ner. The model consists of a group-equivariant convolutional layer with
internal recurrent connections that implement sparse coding through
neural population attractor dynamics, consistent with the architecture
of visual cortex. The layers can be stacked hierarchically by introducing
recurrent connections between them. The hierarchical structure enables
rich bottom-up and top-down information flows, hypothesized to underlie
the visual system’s ability for perceptual inference. The model’s equiv-
ariant representations are demonstrated on time-varying visual scenes.
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1 Introduction

Brains have the remarkable ability to build internal models from sensory data
for reasoning, learning, and prediction to guide actions in dynamic environ-
ments. Central to this is the problem of representation—i.e., how do neural
systems construct internal representations of the world? In the Bayesian view,
this requires a generative model mapping from a latent state space to obser-
vations, along with a mechanism for inferring latent states from sensory data.
Thus, understanding the causal structure of the natural world is essential for
forming internal representations. But what is the causal structure of the natural
world? Natural images contain complex transformation groups that act both on
objects and their parts. Variations in object pose, articulation of its parts, even
lighting and color changes, can be described by the actions of groups. Addition-
ally, these variations are hierarchical in nature: scenes are composed of objects,
objects are composed of parts in relative poses, and so on down to low-level
image features. A transformation at the level of an object propagates down the
compositional hierarchy, transforming each of its component parts correspond-
ingly. Finally, object parts and sub-parts can undergo their own independent
transformations. These variations carry important information for understand-
ing and meaningfully interacting with the world. Thus, a rich compositional
hierarchy that is compatible with group actions is essential for forming visual
representations (Fig. 1).
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Fig. 1. Traditional vs Equivariant sparse coding as image I is transformed by action h.

Our contribution. We establish a novel Bayesian model for forming repre-
sentations of visual scenes with equivariant hierarchical part-whole relations by
proposing a group-equivariant extension of hierarchical sparse coding [7].

2 Background: Sparse Coding for Visual Representations

Sparse coding was originally proposed as a model for how neurons in pri-
mary visual cortex represent image data coming from the retina. In contrast
to the feedforward cascade of linear filtering followed by point-wise nonlinearity
commonly utilized in deep learning architectures, sparse coding uses recurrent
dynamics to infer a sparse representation of images in terms of a learned dictio-
nary of image features. When trained on natural images, the learned dictionary
resembles the oriented, localized, and bandpass receptive fields of neurons in
primary visual cortex (area V1) [7].

Fig. 2. (left) Generative model, (center) Energy function where ‖ · ‖2 denotes the
Euclidean norm, ‖ · ‖1 denotes the �1 norm, and λ is a regularization parameter con-
trolling the sparsity of a. ui is the internal state of neuron i, Gi,j = 〈φi, φj〉 models
neuronal interactions, and a(t) = σ(u(t)), where σ is a nonlinearity. (right) LCA circuit
model
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Generative Model. Sparse coding assumes that natural images are described
by a linear generative model with an overcomplete dictionary and additive Gaus-
sian noise ε(x) [7], shown in Fig. 2 (left). Here, the image I is represented as a
function I : X → R, specifically as a vector in the space L2(X) of square-
integrable functions with compact support X ⊂ R

2. Computationally, the sup-
port is discretized as an image patch with n pixels, so that I ∈ R

n. The dic-
tionary Φ comprises D elements: Φ = {φ1, . . . , φD}, with each φi ∈ L2(X),
for i ∈ {1, ...,D}. The size of the dictionary D is typically chosen to be
overcomplete, i.e. larger than the image patch dimension n. The coefficients
a = [a1, . . . , aD] ∈ R

D form the representation of image I.

Energy & Inference Dynamics. Given a dataset, sparse coding attempts
to find a dictionary Φ and a latent representation a ∈ R

D for each image in
the dataset such that, in expectation, neural activations are maximally sparse
and independent. Sparsity is promoted through the use of an i.i.d.prior over a
with scale parameter λ, with the form of the prior chosen to be peaked at zero
with heavy tails compared to a Gaussian (typically Laplacian). Finding the opti-
mal representation a is accomplished by maximizing the posterior distribution
P (a|I, Φ) via minimization of the energy function EI in Fig. 2 (center).
One particularly effective method for minimizing EI with a clear cortical cir-
cuit implementation is the Locally Competitive Algorithm (LCA) [9]. In LCA,
inference is carried out via the temporal dynamics of a population of D neu-
rons. Each neuron is associated with a dictionary element i, and its internal
state is represented by a coefficient ui(t). The evolution of the neural population
state is governed by the dynamics specified in Fig. 2 (center). The gram matrix,
Gi,j = 〈φi, φj〉, specifies the interaction between neuron i and j. In neurobiolog-
ical terms, this corresponds to the excitatory and inhibitory interactions medi-
ated by horizontal connections among V1 neurons. The notation 〈., .〉 refers to the
inner-product between functions in L2(X), 〈φi, φj〉 =

∫
X

φi(x)φj(x)dx. The acti-
vations, interpreted as instantaneous neural firing rates, are given by a nonlinear-
ity applied to the internal state: aj(t) = σ(uj(t)), with σ(u) = u−αλ

1+e−γ(u−λ) , similar
to a smoothed ReLU function with threshold λ and hyperparameters α and γ.
At equilibrium, the latent representation of image I is given by â = arg mina EI .

Dictionary Learning. The dictionary Φ is adapted to the statistics of the data
by minimizing the same energy function EI averaged over the dataset. This is
accomplished by alternating gradient descent on E. Given a current dictionary
Φ, along with a batch of images and their inferred latent representations, â, the
dictionary is updated with one gradient step of E with respect to Φ, averaged
over the batch.

3 Group Equivariant Sparse Coding

Missing in the current formulation of sparse coding is the mathematical struc-
ture to support reasoning about hierarchical object transformations in visual
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scenes. This limits its utility in both unsupervised learning and mechanistic
models of visual cortex. Here we address this problem by explicitly incorporat-
ing group equivariant and hierarchical structure into the sparse coding model.
Prior work has explored imposing topological relations between dictionary ele-
ments by establishing implicit neighborhood relations during training through
co-activation penalties [6], or explicitly coupling steerable pairs or n-tuples of
dictionary elements [8]. More recent work in Geometric Deep Learning (GDL)
has introduced several group equivariant architectures, for example through
the use of group convolutions [3,4]. However, these models are feedforward,
lacking mechanisms for hierarchical inference or rich top-down and bottom up
flows. Aside from [1], these models lack mechanisms for hierarchical part-whole
relations.
We explore the implications of inheriting the dictionary’s geometric structure
through group actions. In particular, we propose a model in which each dictio-
nary element is generated by an action of g on a canonical dictionary element, as
shown in Fig. 3 (right). For example, the group G of 2D rotations acts on the 2D
domain X, inducing a natural action on the space of images in L2(X) defined
over X. We refer the interested reader to [5] for mathematical details on groups
and group actions.

Fig. 3. (left) Geometric generative model, (right) Lie group actions relate dictionary
elements. Here, e is the identity element of G, and the canonical dictionary element is
φe ∈ L2(X). Additionally, L is a linear group action of G in the space of functions on
the domain Lh[f ](x) = f(h−1x).

3.1 Geometric Generative Model

This perspective enables us to rewrite the sparse coding generative model as:

I(x) =
∑

g∈G

φ(g)(x) a(g) + ε(x), (1)

where both the dictionary elements φ(g) and the scalar coefficients a(g) are
indexed with group elements, i.e. “coordinates” in G. In other words, images
are (1) generated by linear combinations of dictionary elements φ, where (2)
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each dictionary element has an explicit coordinate g in the group. The latent
representation a is now a scalar field over the group, a : G → R, illustrated in
Figs. 3 (left) and 1 (right). Intuitively, this perspective gives an explicit geometric
interpretation of both the dictionary Φ and latent representation a in sparse
coding, and thus a route toward modeling transformations which was implicit in
the unstructured vector representation.

3.2 Geometric Inference and LCA

The geometric perspective of sparse coding above allows us to rewrite the LCA
dynamics. Specifically, each neuron is now associated with a group element
g, with internal state u(g). The LCA dynamics are typically computationally
expensive to compute due to the prohibitive size of the neural interaction matrix
Gg,h = 〈φ(g), φ(h)〉. However this term can now be written as a group convo-
lution with a φe-dependent kernel w, leading to a symmetric, local wiring
rule between neurons and efficient computation during inference that is readily
parallelized on GPUs. Hence, we propose a new, provably equivariant inference
method—Geometric LCA, where ∗ denotes group convolution:

u̇(g)(t) = −u(g)(t) − [w ∗ a(t)](g) + 〈φ(g), I〉 (2)

Box 1. Isometry and the Derivation of Geometric LCA

Lemma 1 Consider a function f ∈ L2(X)
and a dictionary element φ(g) ∈ L2(X)
indexed by g ∈ G. If the action of h ∈ G
is isometric on the domain X, then, ∀h ∈ G,
we have:

〈Lh[φ(g)], f〉 = 〈φ(g), Lh−1 [f ]〉
Proof. We have: 〈Lh[φ(g)], f〉

=

∫
X

Lh[φ(g)](x)f(x)dx

=

∫
X

Lhg [φe](x)f(x)dx by def. of φ(g)

=

∫
X

φe((hg)
−1

x)f(x)dx by def. of L

=

∫
X

φe(g
−1

h
−1

x)f(x)dx

x ← hx, h action isometric: d(hx) = dx

=

∫
X

φe(g
−1

x)f(hx)dx

=

∫
X

φ(g)(x)Lh−1 [f ](x)dx

= 〈φ(g), Lh−1 [f ]〉.
This last step leads to the following LCA
dynamics.

Proposition 1: Geometric LCA The
LCA dynamics have the following geometric
formulation

τu̇(g)(t) = −u(g)(t)−[w∗a(t)](g)+〈φ(g), I〉

where ∗ denotes a group convolution.

Proof. Consider the interaction term in the
LCA dynamics:

∑
h∈G, h�=g Gg,ha(h)(t)

=
∑

h∈G, h�=g

〈φ(g), φ(h)〉a(h)(t) by def. of G

=
∑

h∈G, h�=g

〈L−1
h [φ(g)], φe〉a(h)(t) Lemma 1

=
∑

h∈G, h�=g

〈φ(h−1
g), φe〉a(h)(t)

=
∑

h∈G, h�=g

w(g
−1

h)a(h)(t)

= [w ∗ a(t)] (g),

where we define w(g) := 〈φ(g−1), φe〉 for
g 	= e and w(e) = 0.
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Equivariance of Inference and LCA. Next, we demonstrate that the solu-
tions I → a obtained from the LCA dynamics are equivariant. First, we say a
map ψ : X → Z is equivariant to a group G if ψ(Lgx) = L′

gψ(x) ∀g ∈ G, with
Lg, L

′
g representations of G on X and Z respectively. For clarity of exposition, L

is defined as a group action of G on the space L2(X) via domain transformations
Lg[f ](x) = f(g−1x), and the action L′ of G is defined on the space L2(G) of
square integrable functions from G to R, defined as:

L′
h(a)(g) = a(h−1g), ∀g ∈ G, ∀h ∈ G, ∀a ∈ L2(G),

where h−1g refers to the group composition of two group elements. First, we
show that solutions of the ordinary differential equation (ODE) defining the
LCA dynamics exist and are unique. Consider the initial value problem below,
where f denotes the LCA dynamics:

ODE(I) :

{
u̇(g, t) = f(u(g, t), I) ∀g ∈ G, t ∈ R+,

u(g, 0) = 0 ∀g ∈ G.
(3)

Proposition 1 (Existence and Uniqueness of LCA Solutions). Given an
image I, the solution of ODE(I) exists and is unique. We denote it with uI .

Proof. The Cauchy-Lipschitz theorem (Picard-Lindelöf theorem) states that the
initial value problem defined by ODE(I) has a unique solution if the function f
is (i) continuous in t and (ii) Lipschitz continuous in u, where:

f(u(g, t), I) =
1
τ

(−u(g)(t) − [w ∗ a(t)](g) + 〈φ(g), I〉) (4)

The continuity in t stems from the fact that a and u are continuous. We prove
that f(u, I) is Lipschitz continuous in u, i.e. that ∂f

∂u (u, I) is bounded. Observe
that the derivatives of the first and third terms are bounded. The second term
is a convolution composed with a smooth, ReLU-like nonlinearity. As convolu-
tions are bounded linear operators, the question reduces to whether derivative
of the nonlinearity ∂σ

∂u is bounded, which indeed holds. Thus solutions exist and
are unique. Using this fact, we show that the solution of the dynamics trans-
forms equivariantly with image transformations. Let uI be the unique solution
of ODE(I). Similarly, let uLh[I] be the unique solution of:

ODE(Lh[I]) :

{
u̇(g, t) = f(u(g, t), Lh[I]) ∀g ∈ G, t ∈ R+,

u(g, 0) = 0 ∀g ∈ G.
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Proposition 2: Equivariance of LCA Inference Dynamics Take h ∈ G.
The solutions of the LCA dynamics ODE(I) and ODE(Lh[I]) are related by
uLhI = L′

h(uI). Since a(g) = σ(u(g)), it follows that: aLhI = L′
h(aI).

Proof Take h ∈ G and define v(g, t) := uI(h−1g, t),∀g,∀t. We show v verifies
ODE(Lh[I]). First, we verify that v satisfies the initial conditions: v(g, 0) =
uI(h−1g, 0) = 0, ∀g ∈ G. Next, we verify that v satisfies ODE(Lh[I]) ∀g,∀t.

τ v̇(g, t) =
∂

∂t
[τuI(h−1g, t)] (definition of v)

= −uI(h−1g, t) −
∑

g′∈G

w((h−1g)−1g′) · σ(u(g′)) + 〈φ(h−1g), I〉

= −v(g, t) −
∑

g′∈G

w(g−1hg′) · σ(u(g′)) + 〈φ(g), Lh[I]〉 (Lemma 1)

= −v(g, t) −
∑

g′∈G

w(g−1g′) · σ(u(h−1g′)) + 〈φ(g), Lh[I]〉 (g′ ← h−1g′)

= −v(g, t) −
∑

g′∈G

w(g−1g′) · σ(v(g′)) + 〈φ(g), Lh[I]〉 (definition of v)

= f(v(g, t), Lh[I]) (definition of ODE (Lh[I])).

Thus, v is a solution of ODE(Lh[I]), and, by uniqueness, v(g, t) =
uLh[I](g, t) ∀g,∀t. Therefore, uI(h−1g, t) = uLh[I](g, t) ∀g,∀t, and aLhI =
L′

h(aI) as well. Thus, the LCA inference dynamics are equivariant to global
image transformations.

3.3 Equivariances of the Generative Model

Here, we show that the generative model, that is, the function f : a → I that
maps coefficients to images, is also equivariant. There are three types of equiv-
ariance important for representing transformations in natural scenes: global,
part/local, and hierarchical. Here we define these three types and prove that the
generative model is indeed equivariant in these important ways.

Global Equivariance. Traditionally, work on group equivariant neural net-
works (e.g. GCNNs [3,4]) has focused on global equivariance, i.e. equivariance
to a group action L on the domain of the input function. In Box 2, we show that
the geometric form of the sparse coding model is globally equivariant. However,
transformations of natural scenes typically involve actions on objects and parts at
different levels of the hierarchy. That is, transformations of an object at a higher
level of the hierarchy should propagate down compatibly with its parts. In the
context of equivariant sparse coding, the generative model explicitly decomposes
the scene into primitive parts—the first-level dictionary elements. That is, if an
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image I is composed of M objects I1, ..., IM then

I(x) = I1(x) + ... + IM (x)

=
∑

g∈G

φ(g)(x)a1(g) + ... +
∑

g∈G

φ(g)(x)aM (g)

=
∑

g∈G

φ(g)(x) (a1(g) + ... + aM (g)) .

In the context of this generative model, we can define two additional notions that
are essential for natural scene decompositions—local and hierarchical equivari-
ance. We prove that the generative model is indeed equivariant in these two
additional important ways.

Local Equivariance. Using the decomposition above, we define local actions
of G on the space of images L2(X) as:

L
(1)
h [I] = Lh[I1] + ... + IM , ∀h ∈ G, I ∈ L2(X)

L(1) only acts on image part 1, represented by image I1, and likewise on image
part m via L(m). We now prove that these local actions are indeed group actions.
Proof L(1) is a group action. The proof for L(2) follows.
(i) Identity : L

(1)
e [I] = I.

(ii) Closure : L
(1)
h′h[I] = Lh′h[I1]+...+IM = Lh′ [Lh[I1]]+...+IM = L

(1)
h′

[
L
(1)
h [I]

]
.

Here, we have used the definition of L(1) and the fact that L is a group action.
Similarly, we can define local actions L′(m) on the space L2(G) of coefficients am

corresponding to image part Im. By the linearity of the generative model f , a
local action in the space of coefficients yields a local action in the image space,
as shown in Box 2, Proposition 3.

Hierarchical Equivariance. The properties of global and local equivariance
naturally give rise to the hierarchical equivariance of the new generative model.
In other words, when a transformation is applied at the level of an object I (e.g.
the whole scene), transformations propagate down compatibly to its parts (e.g.
I1, ..., IM ). This hierarchical transformation is directly reflected in actions on the
latent coefficients for an object a and its parts a1, ..., aM . See Box 2, Proposition
5. Thus, a hierarchy of transformations in the scene is equivalent to a hierarchy
of transformations in the internal neural representation.
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Box 2. Generative Model: Global, Local, & Hierarchical Equivariance

Proposition 2: Global The generative
model in Eq. 1, I = f(a) is globally G-
equivariant, i.e. for all h ∈ G, we have:

f(L
′
h(a)) = Lh(f(a)) (5)

Proof Take h ∈ G. We have:

Lh[f(a)] = Lh

⎡
⎣∑

g∈G

φ(g)a(g)

⎤
⎦

=
∑
g∈G

Lh [Lg[φe]] a(g)

=
∑
g∈G

φ(hg)a(g)

=
∑
′∈G

φ(g)a(h
−1

g) (g ← h
−1

g)

=
∑
g∈G

φ(g)L
′
h(a)(g).

Thus the model is globally G-equivariant.

Proposition 3: Part/Local Consider the
linear model f , where a = a1 + ... + aM .
f is locally G-equivariant, i.e. ∀h ∈ G, for
m ∈ {1, 2, ..., M}

f
(

L
′(m)
h (a)

)
= L

(m)
h [f(a)] (6)

Proof We have

f
(

L
′(1)
h (a)

)
= f

(
L

′
h(a1) + ... + aM

)

= f
(
L

′
h(a1)

)
+ ... + f(aM )

= f
(
L

′
h(a1)

)
+ ... + IM

= Lh [I1] + ... + IM (by 5)

= L
(1)

[I] (definition of L
(1)

).

Shown for m = 1, this property holds for all
m, thus the model is locally G-equivariant.

Proposition 4: Hierarchical Consider the
linear model f , where a = a1 + ...+aM . For
all h, h′ ∈ G, m ∈ {1, 2, ..., M} we have:

f
(

L
′
h

(
L

′(m)
h′ (a)

))
= Lh

[
L

(m)
h′ [f(a)]

]

Proof Directly from global and local cases:

f
(

L
′
h

(
L

′(m)
h′ (a)

))
= Lh

[
f

(
L

′(m)
h′ (a)

)]

= Lh

[
L

(m)
h′ [f(a)]

]
.

Thus, f is hierarchically G-equivariant.

3.4 Constructing a Hierarchical Generative Model

Finally, the equivariant sparse coding layers can be composed hierarchically,
where first-level activations are describable in terms of second-level activations
over arrangements of parts.

I(x) =
∑

g∈G

φ0(g)a0(g) + ε(x), a0(g) =
K∑

k=1

∑

g∈G

φk
1(g)ak

1(g) + ε(g) (5)

Defining Î =
∑

g∈G φ0(g)a0(g) and â0 =
∑K

k=1

∑
g∈G φk

1(g)ak
1(g), the energy [2]

and geometric LCA inference dynamics are given by

E =
1
2
||I − Î||22 + λ0C(a0) +

1
2
||a0 − â0||22 + λ1C(a1)

τ0u̇0(g) = −u0(g) − [w0 ∗ a0](g) + 〈φ0(g), I〉 + â0(g)

τ1u̇
k
1(g) = −uk

1(g) − [wk
1 ∗ ak

1 ](g) + ak
1(g) + 〈φk

1(g), a0〉
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4 Experiments

To evaluate and characterize the behavior of the proposed hierarchical, equivari-
ant sparse coding model, we construct a synthetic dataset of scenes containing
(1) objects comprised of lower-level parts where (2) parts and wholes are trans-
formed via group actions. We do this by specifying a group G, constructing the
dictionary elements at each level of the hierarchy, and then sampling from the
generative model. For the first layer dictionary, we construct an overcomplete
dictionary of Gabor functions generated by acting on a canonical Gabor template
with a discrete sampling of the group of translations G. The mother Gabor φe is
shown in Fig. 4. We construct K = 2 canonical second-layer dictionary elements
φ1
1, φ

2
1 from arrangements of parts at the preceding level of representation. Next,

we generate the “orbit” of each template by again sampling from the group of
translations G. The templates and selected dictionary elements are shown in
Fig. 4. We then generate a dataset of images by sampling from the generative
model. In particular, we create a sequence of frames in which objects present in
the scene undergo different translations. The resulting images, inferred latents,
and reconstructions are shown in Fig. 4. Note that the latent variables are sparse
and transform equivariantly, as stated in the proofs.

Fig. 4. Figure: (left) a two-layer translation-equivariant architecture with recurrent
connections within and between layers, (right) experimental results demonstrating that
the neural dynamics converge to a sparse, hierarchical representation of the scene which
transforms equivariantly in time with the input video. Column 1: input video frames,
Column 2: first layer gabor coefficient map displayed with sparse equivariant activa-
tions, Columns 3&4: two second layer “object” coefficient maps displayed with sparse
equivariant activations

5 Discussion

By incorporating group structure, we have derived a new sparse coding model
that is equivariant in its response to image transformations, both within a layer
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and across multiple layers stacked in a hierarchy. We believe this is an impor-
tant step toward developing a hierarchical, probabilistic model of visual cortex
capable of performing perceptual inference (e.g. object recognition) on natural
scenes. Surprisingly, the network architecture has the same functional form as
the neural attractor model of Kechen Zhang [10], suggesting new circuit mecha-
nisms in visual cortex for top-down steering, motion computation, and disparity
estimation that could be done in the sparse code domain. Of relevance to deep
learning, this new structure enables inference to be implemented efficiently on
GPUs as (1) a feed-forward group convolution followed by (2) iterative lateral
interaction dynamics implemented by group convolutions between dictionary
elements.

Acknowledgements. The authors thank their helpful colleagues at the Redwood
Center and Bioshape Lab. CS acknowledges support from the NIH NEI Training Grant
T32EY007043.
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