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Abstract. In many applications, one is interested in the shape of an
object, like the contour of a bone or the trajectory of joints of a tennis
player, irrespective of the way these shapes are parameterized. However for
analysis of these shape spaces, it is sometimes useful to have a parameter-
ization at hand, in particular if one is interested in deforming shapes. The
purpose of the paper is to examine three different methods that one can
follow to endow shape spaces with a Riemannian metric that is measuring
deformations in a parameterization independent way. The first is via Rie-
mannian submersion on a quotient; the second is via isometric immersion
on a particular slice; and the third is an alternative method that allows for
an arbitrarily chosen complement to the vertical space and a metric degen-
erate along the fibers, which we call the gauge-invariant metric. This allows
some additional flexibility in applications, as we describe.

Keywords: Shape space · Geometric green learning · Geometric
invariants

1 Introduction, Motivation, and a Simple Example

In this paper we will describe three ways to think about geometry on a quo-
tient space of a trivial principal bundle, with application to shape space. The
first is the standard approach via quotients by a group and a Riemannian sub-
mersion. The second is by considering a particular global section of the bundle
and inducing a metric by isometric immersion. The third is newer and consists of
specifying a normal bundle complementary to the vertical bundle, projecting the
metric onto the normal bundle, and taking the quotient of the resulting degener-
ate metric; we refer to this as the gauge-invariant approach. We will begin with
some motivations about our main concern of shape space before presenting an
explicit example in finite dimensions to fix ideas. Then we describe the three
basic methods as (I), (II), and (III), and finally we discuss how to get from one
to another and the meaning of gauge invariance.
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Fig. 1. Examples of group actions on 2D simple closed curves and different choices of
sections of the corresponding fiber bundle.

In order to explain the ideas of the present paper in a simple way, we will
consider the contour of the Statue of Liberty appearing in different layouts in
Fig. 1. Imagine a camera that scans a photo of the Statue and needs to recognize
it regardless of how the photo is held (at any distance, position, or rotation
angle). If we require the photo to be held perpendicular to the camera lens,
then the transformations are rotations, translations, and rescalings. These are
all shape-preserving and we would like the scanner to be able to detect the shape
independently of them. We can handle this in two ways:

1. either one groups together the photos that are transformations of each other,
2. or one specifies a preferred choice of position in space and/or scale as a rep-

resentative.

The first option consists of considering the orbit of the photo under the group;
the second option consists of considering a preferred section of the quotient space
of curves modulo the group. These two different ways of thinking about shapes



Three Methods to Put a Riemannian Metric on Shape Space 5

modulo a given group of transformations are illustrated in Fig. 1. In the second
column we show some examples of the photos in the same orbit under the action
of the group. In the third and fourth columns, a representative of this orbit is
singled out.

Then, when considering contours of objects, another group acting by shape-
preserving transformations is the group of reparameterizations of the contour.
Making the analysis invariant by the group of reparameterizations is a much
more difficult problem than that in the previous paragraph, but it has the same
essential nature, and is the main source of motivation for us.

Corresponding mathematical objects. The mathematical picture to
start with is the following: the group of shape-preserving transformations G
is acting on the space of curves or surfaces F and the shape space S that retain
just the informations that we need is the quotient space S := F/G. The map
that sends a curve to its orbit under the group G is called the canonical projec-
tion and will be denoted be p : F → S. The orbit of a element f ∈ F will also
be denoted by [f ] ∈ F/S, in particular p(f) = [f ] for any f ∈ F . The triple
(p,F ,S) is a particular example of fiber bundle attached to a smooth action of
a group on a manifold.

When we specify which procedure we follow to choose a representation of each
orbit, one is selecting a preferred section of the fiber bundle p : F → S. A global
section of the fiber bundle p : F → S is a smooth application s : S → F , such
that p◦s([f ]) = [f ] for any [f ] ∈ S. There is one-to-one correspondance between
the shape space S and the range of s. Defining a global section of p : F → S
is in fact defining a way to choose a preferred element in the fiber p−1([f ]) over
[f ]. In the case of the group of reparameterizations, it consists of singling out a
preferred parameterization of each oriented shape.

Why do we care about the distinction? Depending on the representation
of shape space as a quotient space or as a preferred section, shape analysis may
give different results. Very often, curves or surfaces are centered and scaled as a
pre-processing step. However, the procedure to center or scale the shapes may
influence further analysis. For instance, a Statue of Liberty whose contour has
a fractal behaviour will appear very small if scaling variability is taken care of
by fixing the length of the curve to 1 and will seem visually very different to
analogous statues with smooth boundaries.

Example 1. We begin with the simplest nontrivial example of the three methods
we have in mind for producing a metric on the quotient space by a group action,
given a metric on the full space. Here our full space will be the Heisenberg group
F ∼= R

3 with the left-invariant metric

ds2 = dx2 + dy2 + (dz − y dx)2 (1)

on it, while the group action is vertical translation in the z-direction by a real num-
ber, generated by the flow of the vector field ξ = ∂z. Hence the group is G = R

under addition, and the quotient space is S = R
2 with projection p(x, y, z) =

(x, y). We will denote by {e1, e2} the canonical basis ofR2. The metric (1) is invari-
ant under this action since none of the components depend on z.
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(I) At every point the field ξ is vertical since it projects to zero. Horizontal
vectors are those orthogonal to this in the metric (1), and the horizontal bundle
is spanned by the fields h1 = ∂x + y ∂z and h2 = ∂y. This basis is special since
Dp(h1) = e1 and Dp(h2) = e2, so we get the usual basis on the quotient. If the
inner product on {e1, e2} comes from the inner product on {h1, h2}, the result
is the Riemannian submersion quotient metric

ds2 = du2 + dv2. (2)

(II) The second way to get a natural metric on the quotient S is to embed it
back into F by a section s : S → F , so that p◦ s is the identity. All such sections
are given by the graph of a function (x, y, z) = s(u, v) = (u, v, ψ(u, v)) for some
ψ : R2 → R, a choice of a particular representative z = ψ(u, v) in the equivalence
class π−1(u, v). The image of s is a submanifold of F which we denote by A,
and it inherits the isometric immersion metric

ds2 = du2 + dv2 +
[
ψv dv + (ψu − v) du

]2
. (3)

(III) The third way to get a metric is to declare that movement in the z
direction will be “free,” and only movement transverse to the vertical direc-
tion will have some cost. This corresponds to specifying a space of normal
vectors along each fiber (arbitrary except that it is transverse to the tangent
vectors ∂z). Any normal bundle is generated by the span of vector fields of
the form n1 = ∂x + ϕ1(x, y) ∂z and n2 = ∂y + ϕ2(x, y) ∂z for some functions
ϕ1, ϕ2 : R2 → R independent of z to ensure G-invariance. Again this basis is
special since π∗(n1) = e1 and π∗(n2) = e2. To measure movement only in the
normal direction, we define gGI(U, V ) = gF

(
pN (U), pN (V )

)
for any vectors U

and V , where pN is the projection onto the normal bundle parallel to the vertical
direction. This results in the degenerate metric

ds2 = dx2 + dy2 +
[
ϕ2 dy + (ϕ1 − y) dx

]2
. (4)

This formula then induces a nondegenerate quotient metric on the quotient R
2.

It is clear that (III) is the most general choice, and that both (I) and (II) are
special cases. The metric (4) matches (2) when the normal bundle coincides with
the horizontal bundle, and otherwise is strictly larger. Meanwhile the immersion
metric (II) in (3) is strictly larger than (I), and no choice of ψ will reproduce it
since ψ would have to satisfy ψv = 0 and ψu = v. This is a failure of integrability,
see Sect. 3.

2 Different Methods to Endow a Quotient
with a Riemannian Metric

In this section, we will suppose that we have at our disposal a Riemannian
metric gF on the space of curves or surfaces F we are interested in, and that
this metric is invariant under a group of shape-preserving transformations G.
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In other words, G preserves the metric gF , i.e. G acts by isometries on F . We
will explain three different ways to endow the quotient space S := F/G with a
Riemannian metric.

The action of a group G on a space of curves or surfaces F will be denoted
by a dot. For instance, if G is the group of translations acting on curves in R

2,
g · F = F + C where C is the constant function given by the coordinates of
the vector of translation defined by the translation g. When G is the group of
reparameterizations, then g · F := F ◦ g−1.

(I) Quotient Riemannian metric. The first way to endow the quotient space
S := F/G with a Riemannian metric is through the quotient Riemannian metric.
We recall the following classical Theorem of Riemannian geometry [5,11].

Theorem 1 (Riemannian submersion Theorem). Let F be a manifold
endowed with a Riemannian metric gF , and G a Lie group acting on F in
such a way that F/G is a smooth manifold. Suppose gF is G-invariant and TFF
splits into the direct sum of the tangent space to the fiber and its orthogonal
complement, i.e.,

gF (X,Y ) = gF (g · X, g · Y ),∀X,Y ∈ TF ,∀g ∈ G,

TFF = Ker(dp)F ⊕ Ker(dp)⊥F ,∀F ∈ F ,
(5)

then there exists a unique Riemannian metric g1,S on the quotient space S =
F/G such that the canonical projection p : F → S is a Riemannian submersion,
i.e. such that dp : Ker(dp)⊥ → TS is an isometry.

In this Theorem, the space Hor := Ker(dp)⊥ is called the horizontal space
because it is defined as the orthogonal with respect to gF of the vertical space
Ver := Ker(dp) (traditionally the fibers of a fiber bundle are depicted vertically).
Condition (5) is added in order to deal with the infinite-dimensional case where,
for weak Riemannian metrics, this identity is not automatic.

One way to understand the Riemannian submersion Theorem is the following:
first, in order to define a Riemannian metric on the quotient space, one looks
for a subbundle of TF which is in bijection with TS. Since the vertical space is
killed by the projection, the transverse space to the vertical space given by the
orthogonal complement is a candidate. The restriction of the Riemannian metric
on it defines uniquely a Riemannian metric on the quotient.

(II) Riemannian metric induced on a smooth section. Now suppose that
we have chosen a preferred smooth section s : S → F of the fiber bundle p :
F → S = F/G, for instance the space of arc-length parameterized curves in the
case where G is the group of orientation-preserving reparameterizations, or the
space of centered curves when G is the group of translations. The smoothness
assumption means that the range of s is a smooth manifold of F , like the space
of arc-length parameterized curves in the space of parameterized curves. We will
denote it by A := s(S). By construction, there is a isomorphism between S and
A which one can use to endow the quotient space S with the induced Riemannian
structure on A by F .
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Theorem 2 (Riemannian immersion Theorem). Given a smooth section
s : S → F , there exists a unique Riemannian metric gA on A := s(S) such that
the inclusion ι : A ↪→ F is an isometry. Using the isomorphism s : S → A,
there exists a unique Riemannian metric g2,S on S such that s : S → F is an
isometry.

(III) Gauge invariant metric. Here we suppose that we have a vector bundle
Nor over F which is a G-invariant subbundle of TF transverse to the vertical
bundle Ver := Ker(dp). Using any G-invariant metric gF on F , one can define a
G-invariant metric gGI on F that is degenerate along the fiber of the projection
p : F → S. We will explain the meaning of “gauge invariance” later.

Theorem 3. Let gF be a G-invariant metric on F and Nor ⊂ TF be a G-
invariant subbundle of TF such that

TFF = Ker(dp)F ⊕ NorF ,∀F ∈ F . (6)

There exists a unique metric gGI on TF which coincides with gF on Nor and is
degenerate exactly along the vertical fibers of p : F → S. It induces a Riemannian
metric g3,S on shape space S such that dp : Nor → TS is an isometry.

Since we want the inner product to be the same in gGI as in gF when the
vectors are normal, and zero if either vector is vertical, we define gGI by simply
projecting an arbitrary vector onto the normal bundle:

gGI(X,Y ) = gF
(
pNor(X), pNor(Y )

)
, (7)

where pN : TFF → Nor is the projection onto the normal bundle parallel to the
vertical space. This is nondegenerate on the quotient since the projection onto
the quotient is an isomorphism when restricted to the normal bundle.

Remark 1. In the case where Nor = Hor, the Riemannian metric g3,S coincides
with the quotient metric g1,S . Another choice of G-invariant complement to the
vertical space will give another Riemannian metric on the quotient space.

Example 2. The main example for shape space consists of the elastic metric first
defined in [4] on the space of planar curves F = {F : [0, 1] → R

2} by the formula

ga,bF (h1, h2) =
∫ 1

0

[
a(Dsh1, t)(Dsh2, t) + b(Dsh1,n)(Dsh2,n)

]
ds,

F ∈ F , hi ∈ TFF , ds = ‖F ′(t)‖dt, Dsh(t) =
ḣ(t)

‖Ḟ (t)‖ , t = Ḟ
‖Ḟ‖ , n = t⊥. (8)

See [1] for a recent survey of its properties. We will follow [6,10] below.
Our group G is the (orientation-preserving) reparameterizations of all these

curves, since we only care about the image F [0, 1], and the shape space is the
quotient F/G. At any F ∈ F the vertical space is Ver = {mt |m : [0, 1] → R}. A
natural section s : S → A ⊂ F comes from parameterizing all curves proportional
to arc length. The tangent space TA to the space of arc-length parameterized
curves is the space of vector fields w along F such that w′ · t = 0. The horizontal
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bundle in the metric (8) is given at each F by the space of vector fields w along
F such that d

dt (w
′ · t)− b

aκ(w′ ·n) = 0 for all t ∈ [0, 1], where κ is the curvature
function. Hence computing the projections requires solving an ODE.

A much simpler normal bundle is obtained by just taking the pointwise nor-
mal, i.e., using Nor := {Φn |Φ : [0, 1] → R}, where now the tangential and normal
projections can be computed without solving an ODE.

Instead of parameterizing by arc length we can choose other special parame-
terizations to get the section; for example using speed proportional to the curva-
ture of the shape as in [9]. An example of application to action recognition is given
in [3]. Similar metrics can be defined on surfaces in R

3 to get two-dimensional
shape spaces; see for example [7,8].

Remark 2. In the infinite-dimensional case, it is not always possible to find a
complement to the vertical space Ker(dp) as in (6). An example of this phe-
nomemon is provided by shape spaces of non-linear flags (see [2]). In this case,
one has to work with the quotient vector spaces TFF/Ker(dp)F . See [11] for this
more general case.

3 Relationships of the 3 Methods and Gauge Invariance

3.1 Converting Between (I), (II), and (III)

We have seen in Example 1 that in some cases the three metrics coincide when
we start with the same base metric gF , but typically they do not. However if we
allow the metric on F to change, we can convert any metric of the form (I), (II),
or (III) into a metric of the other forms. Here we demonstrate how to do it.

(I) ⇒ (III). If we start with a quotient Riemannian submersion metric arising
from gF , how do we get a gauge-invariant metric? We simply define the normal
bundle Nor to be the horizontal bundle Hor of vectors orthogonal in gF to the
vertical bundle, and use the projection pNor as in (7). The new metric gGI on F
will be degenerate but will produce the same metric on the quotient.

(II) ⇒ (III). If we start with a section s that embeds the quotient S into a
submanifold A of F , how do we obtain a gauge-invariant metric? Here we define
the normal bundle Nor to be the tangent bundle of the A and proceed as in (7).
Again the new degenerate metric on F will agree with the induced metric on A
(and in particular be nondegenerate there).

(I) ⇒ (II), (III)⇒(II) As in Example 1, a given normal bundle (in particular
a horizontal bundle from a metric) may not be the tangent bundle of any man-
ifold due to failure of integrability; hence there may not be any way to express
a particular instance of (I) or (III) as a version of (II) with the horizontal space
equal to the tangent space of a particular section. The Frobenius integrability
condition for the bundle, which is equivalent to the curvature of the correspond-
ing connection vanishing, has to be satisfied in order to build a section tangent
to the horizontal space. If one does not require the section to be horizontal, we
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may proceed as in [10] to pull-back the metric from the quotient to the particular
section.

(III) ⇒ (I), (II)⇒(I). Both these cases come from the same metric gF , and
as in Example 1 they may not coincide. However if we are willing to consider
a different metric on F , then we can go from method (III) to method (I) and
still have the same metric on the quotient. Given a G-invariant normal bundle
Nor and a G-invariant metric g2,F which generates the degenerate metric gGI

on F and a metric gS by method (III) via (7), we define a new metric g1,F by
choosing any G-invariant Riemannian metric on the tangent bundle Ver to the
fiber and by declaring that Ver and Nor are orthogonal. By construction, the
subbundle Nor is the horizontal bundle in this metric, and we are in case (I).
The same construction works to go from (II) to (I), using the above to get from
(II) to (III).

3.2 The Meaning of Gauge Invariance

In geometry on shape space, we are often interested primarily in finding mini-
mizing paths between shapes, and a common algorithm is to construct an initial
path between shapes and shorten it by some method. Paths are typically easy
to construct in F and difficult to construct directly in the quotient space S. A
section s : S → F makes this simpler, but especially if the image A = s(S) is not
flat, it can be difficult to keep the shortening constrained on that submanifold.
Our motivating example is when the shapes are parameterized by arc length as
in [10], with a path-straightening or gradient descent algorithm based on the
metric gF : the optimal reduction gives intermediate curves that are typically
no longer parameterized by arc length, and in fact the parameterizations can
become degenerate. As such we may want to apply the group action of repa-
rameterization independently on each of the intermediate shapes to avoid this
breakdown.

If G is a group acting on a space F , define the gauge group as the group
G := {g : [0, 1] → G} of paths in G acting on the space of paths γ : [0, 1] → F
in F by the obvious formula (g · γ)(t) = g(t) · γ(t), i.e., pointwise action in the t
parameter. We would like the metric on F to have the property that lengths of
paths are invariant under this action, which essentially allows us to change the
section s “on the fly” if it’s convenient. Since this involves pushing the path in
the direction of the fibers, it is intuitively clear that the metric will need to be
degenerate in those directions. We have the following proposition, whose proof
we defer to [11].

Proposition 1. The length of a path [γ] in S measured with the quotient metric
g1,S is equal to the length of any lift γ of [γ] in F measured with the gauge
invariant metric gGI .

Remark 3. The length of γ measured with the metric gF differs from the length
of [γ] unless γ is also horizontal. In this case, γ = g0 · γ0 for a fixed g0 ∈ G.
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4 Conclusion

We have shown how to view the problem of constructing a Riemannian metric
on a principal bundle quotient such as shape space in three different ways. Any
desired metric on the quotient can be viewed as any one of the three depend-
ing on what is computationally convenient. The gauge-invariant method (III)
is the most general and flexible, capturing the other two more familiar meth-
ods as special cases; it has the advantage that it is convenient for shape space
computations without needing to work on the difficult shape space explicitly.
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