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6th Geometric Science of Information Conference
(GSI’23): From Classical To Quantum Information
Geometry

Saint-Malo, France, Pierre Louis Moreau de Maupertuis’ Birthplace

We are celebrating the 10th anniversary of the launch of the GSI conferences cycle,
which were initiated in 2013. As for GSI'13, GSI'15, GSI’17, GSI’19 and GSI'21
(https://franknielsen.github.io/GSI/), the objective of this 6th edition of the SEE GSI
conference, hosted in Saint-Malo, birthplace of Pierre Louis Moreau de Maupertuis, is
to bring together pure and applied mathematicians and engineers with a common interest
in geometric tools and their applications for information analysis. GSI emphasizes the
active participation of young researchers to discuss emerging areas of collaborative
research on the topic of “Geometric Science of Information and its Applications”. In
2023, GSI's main theme was “FROM CLASSICAL TO QUANTUM INFORMATION
GEOMETRY”, and the conference took place at the Palais du Grand Large, in Saint-
Malo, France.

The GSI conference cycle was initiated by the Brillouin Seminar Team as early as
2009 (http://repmus.ircam.fr/brillouin/home). The GSI’21 event was motivated by the
continuity of the first initiative, launched in 2013 (https://web2.see.asso.fr/gsi2013), at
Mines ParisTech, consolidated in 2015 (https://web2.see.asso.fr/gsi2015) at Ecole Poly-
technique, and opened to new communities in 2017 (https://web2.see.asso.fr/gsi2017) at
Mines ParisTech, 2019 (https://web2.see.asso.fr/gsi2019) at ENAC Toulouse and 2021
(https://web2.see.asso.fr/gsi2021) at Sorbonne University. We mention that in 2011, we
organized an Indo-French workshop on the topic of “Matrix Information Geometry”
(https://www.lix.polytechnique.fr/~nielsen/MIG/) that yielded an edited book in 2013,
and in 2017, collaborated at a CIRM seminar in Luminy on the event TGSI’ 17 “Topolog-
ical & Geometrical Structures of Information” (https://fconferences.cirm-math.fr/1680.
html).

GSI satellite events were organized in 2019 and 2020 as FGSI’19 “Foundation
of Geometric Structures of Information” in Montpellier (https://fgsi2019.sciencesconf.
org/) and Les Houches Seminar SPIGL’20 “Joint Structures and Common Foundations
of Statistical Physics, Information Geometry and Inference for Learning” (https://frankn
ielsen.github.io/SPIG-LesHouches2020/).

The technical program of GSI’23 covered all the main topics and highlights in
the domain of the “Geometric Science of Information” including information geometry
manifolds of structured data/information and their advanced applications. These Springer
LNCS proceedings consist solely of original research papers that have been carefully
single-blind peer-reviewed by at least two or three experts. 125 of 161 submissions were
accepted for this volume. Accepted contributions were revised before acceptance.

Like GSI'13, GSI'15,GSI’'17,GSI’19, and GSI’21, GSI’23 addresses inter-relations
between different mathematical domains such as shape spaces (geometric statistics on
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manifolds and Lie groups, deformations in shape space, ...), probability/optimization
and algorithms on manifolds (structured matrix manifolds, structured data/information,
...), relational and discrete metric spaces (graph metrics, distance geometry, relational
analysis,...), computational and Hessian information geometry, geometric structures in
thermodynamics and statistical physics, algebraic/infinite-dimensional/Banach infor-
mation manifolds, divergence geometry, tensor-valued morphology, optimal transport
theory, manifold and topology learning, ... and applications such as geometries of
audio-processing, inverse problems and signal/image processing. GSI’23 topics were
enriched with contributions from Lie Group Machine Learning, Harmonic Analysis
on Lie Groups, Geometric Deep Learning, Geometry of Hamiltonian Monte Carlo,
Geometric & (Poly)Symplectic Integrators, Contact Geometry & Hamiltonian Control,
Geometric and structure-preserving discretizations, Probability Density Estimation &
Sampling in High Dimension, Geometry of Graphs and Networks and Geometry in
Neuroscience & Cognitive Sciences.

At the turn of the century, new and fruitful interactions were discovered between
several branches of science: Information Sciences (information theory, digital commu-
nications, statistical signal processing), Mathematics (group theory, geometry and topol-
ogy, probability, statistics, sheaf theory, ...) and Physics (geometric mechanics, thermo-
dynamics, statistical physics, quantum mechanics, ...). The GSI biannual international
conference cycle is an effort to discover joint mathematical structures to all these disci-
plines by elaboration of a “General Theory of Information” embracing physics science,
information science, and cognitive science in a global scheme.

The GSI'23 conference was structured in 25 sessions of more than 120 papers and
a poster session:

e Geometry and Machine Learning

e Geometric Green Learning - Alice Barbara Tumpach, Diarra Fall & Guillaume
Charpiat

e Neurogeometry Meets Geometric Deep Learning - Remco Duits & Erik
Bekkers, Alessandro Sarti

e Divergences in Statistics & Machine Learning - Michel Broniatowski &
Wolfgang Stummer

e Divergences and Computational Information Geometry

o Computational Information Geometry and Divergences - Frank Nielsen &
Olivier Rioul

o Statistical Manifolds and Hessian Information Geometry - Michel Nguiffo
Boyom

e Statistics, Topology and Shape Spaces

e Statistics, Information and Topology - Pierre Baudot & Grégoire Seargeant-
Perthuis

e Information Theory and Statistics - Olivier Rioul

o Statistical Shape Analysis and more Non-Euclidean Statistics - Stephan
Huckemann & Xavier Pennec
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o Probability and Statistics on Manifolds - Cyrus Mostajeran
o Computing Geometry & Algebraic Statistics - Eliana Duarte & Elias Tsigaridas

e Geometry & Mechanics

e Geometric and Analytical Aspects of Quantization and Non-Commutative
Harmonic Analysis on Lie Groups - Pierre Bieliavsky & Jean-Pierre Gazeau

e Deep Learning: Methods, Analysis and Applications to Mechanical Systems
- Elena Celledoni, James Jackaman, Davide Murari and Brynjulf Owren

e Stochastic Geometric Mechanics - Ana Bela Cruzeiro & Jean-Claude Zambrini

o Geometric Mechanics - Géry de Saxcé & Zdravko Terze

e New trends in Nonholonomic Systems - Manuel de Leon & Leonardo Colombo

e Geometry, Learning Dynamics & Thermodynamics

o Symplectic Structures of Heat & Information Geometry - Frédéric Bar-
baresco & Pierre Bieliavsky

e Geometric Methods in Mechanics and Thermodynamics - Francois Gay-
Balmaz & Hiroaki Yoshimura

e Fluid Mechanics and Symmetry - Frangois Gay-Balmaz & Cesare Tronci

e Learning of Dynamic Processes - Lyudmila Grigoryeva

¢ Quantum Information Geometry

e The Geometry of Quantum States - Florio M. Ciaglia
o Integrable Systems and Information Geometry (From Classical to Quantum)
- Jean-Pierre Francoise, Daisuke Tarama

o Geometry & Biological Structures

e Neurogeometry - Alessandro Sarti, Giovanna Citti & Giovanni Petri

e Bio-Molecular Structure Determination by Geometric Approaches - Antonio
Mucherino

e Geometric Features Extraction in Medical Imaging - Stéphanie Jehan-
Besson & Patrick Clarysse

o Geometry & Applications

e Applied Geometric Learning - Pierre-Yves Lagrave, Santiago Velasco-Forero &
Teodora Petrisor

June 2023 Frank Nielsen
Frédéric Barbaresco

The original version of the book was revised: the book was inadvertently published with a typo
in the frontmatter. This has been corrected. The correction to the book is available at https://doi.
org/10.1007/978-3-031-38271-0_62
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Information Theory with Kernel Methods

Francis Bach
Inria, Ecole Normale Supérieure

Abstract. Estimating and computing entropies of probability distribu-
tions are key computational tasks throughout data science. In many sit-
uations, the underlying distributions are only known through the expec-
tation of some feature vectors, which has led to a series of works within
kernel methods. In this talk, I will explore the particular situation where
the feature vector is a rank-one positive definite matrix, and show how the
associated expectations (a covariance matrix) can be used with informa-
tion divergences from quantum information theory to draw direct links
with the classical notions of Shannon entropies.

Reference

1. Francis, B.: Information theory with kernel methods. To appear IEEE Trans. Inf. Theor
(2022). https://arxiv.org/pdf/2202.08545
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From Alan Turing to Contact Geometry: Towards
a “Fluid Computer”

Eva Miranda
Universitat Politecnica de Catalunya and Centre de Recerca Matematica

Abstract. Is hydrodynamics capable of performing computations?
(Moore 1991) Can a mechanical system (including a fluid flow) simulate
a universal Turing machine? (Tao, 2016)

Etnyre and Ghrist unveiled a mirror between contact geometry and
fluid dynamics reflecting Reeb vector fields as Beltrami vector fields.
With the aid of this mirror, we can answer in the positive the questions
raised by Moore and Tao. This is a recent result that mixes up techniques
from Alan Turing with modern Geometry (contact geometry) to construct
a “Fluid computer” in dimension 3. This construction shows, in particular,
the existence of undecidable fluid paths. I will also explain applications
of this mirror to the detection of escape trajectories in Celestial Mechan-
ics (for which I'll need to extend the mirror to a singular set-up). This
mirror allows us to construct a tunnel connecting problems in Celestial
Mechanics and Fluid Dynamics.

References

1. Robert, C., Eva, M., Daniel, P.-S., Francisco, P.: Constructing turing complete euler
flows in dimension 3. Proc. Natl. Acad. Sci. USA 118(19), 9. Paper No. 2026818118
(2021)

2. Etnyre, J., Ghrist, R.: Contact topology and hydrodynamics: 1. Beltrami fields and
the Seifert conjecture. Nonlinearity 13, 441 (2000)

3. Miranda, E., Oms, C., Peralta-Salas, D.: On the singular Weinstein conjecture and
the existence of escape orbits for b-Beltrami fields. Commun. Contemp. Math. 24(7),
25. Paper No. 2150076 (2022)

4. Tao, T.: Finite time blowup for an averaged three-dimensional Navier—Stokes
equation. J. Am. Math. Soc. 29, 601-674 (2016)

5. Turing, A.: On computable numbers, with an application to the entscheidungsprob-
lem. Proc. London Math. Soc. s2—-42(1), 230-265 (1937). DOI:10.1112/plms/s2-42.
1.230 ISSN 0024-6115
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Transverse Poisson Structures to Adjoint Orbits
in a Complex Semi-simple Lie Algebra

Hervé Sabourin

Director for Strategic projects of the Réseau Figure® (network of 31 universities)
Former Regional Director of the A.U.F. (Agence Universitaire de la Francophonie)
for the Middle East
Former Vice-President of the University of Poitiers, France

Abstract. The notion of transverse Poisson structure has been introduced
by Alan Weinstein stating in his famous splitting theorem that any Pois-
son Manifold M is, in the neighbourhood of each point m, the product of
a symplectic manifold, the symplectic leaf S at m, and a submanifold N
which can be endowed with a structure of Poisson manifold of rank O at
m. N is called a transverse slice at M of S. When M is the dual of a com-
plex Lie algebra g equipped with its standard Lie-Poisson structure, we
know that the symplectic leaf through x is the coadjoint G. x of the adjoint
Lie group G of g. Moreover, there is a natural way to describe the trans-
verse slice to the coadjoint orbit and, using a canonical system of linear
coordinates (q1, ....., gk), it follows that the coefficients of the transverse
Poisson structure are rational in (ql, ....., gk). Then, one can wonder
for which cases that structure is polynomial. Nice answers have been
given when g is semi-simple, taking advantage of the explicit machinery
of semi-simple Lie algebras. One shows that a general adjoint orbit can
be reduced to the case of a nilpotent orbit where the transverse Poisson
structure can be expressed in terms of quasihomogeneous polynomials.
In particular, in the case of the subregular nilpotent orbit the Poisson
structure is given by a determinantal formula and is entirely determined
by the singular variety of nilpotent elements of the slice.

References

1. Sabourin, H.: Sur la structure transverse a une orbite nilpotente adjointe. Canad. J.
Math. 57(4), 750-770 (2005)

2. Sabourin, H.: Orbites nilpotentes sphériques et représentations unipotentes
associées : Le cas SL(n). Represent. Theor. 9, 468—506 (2005)

3. Sabourin, H.: Mémoire d’HDR, Quelques aspects de la méthode des orbites en théorie
de Lie, Décembre (2005)

4. Damianou, P., Sabourin, H., Vanhaecke, P.: Transverse poisson structures to adjoint
orbits in semi-simple Lie algebras, Pacific J. Math. 232, 111-139 (2007)
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5. Sabourin, H., Damianou, P., Vanhaecke, P.: Transverse poisson structures: the sub-
regular and the minimal orbits, differential geometry and its applications. Proc. Conf.
Honour Leonhard Euler, Olomouc, August (2007)

6. Sabourin, H., Damianou, P., Vanhaecke, P.: Nilpotent orbits in simple Lie algebras and
their transverse poisson structures. Am. Inst. Phys. Conf. Proc. Ser. 1023, 148-152
(2008)



Statistics Methods for Medical Image Processing
and Reconstruction

Diarra Fall

Institut Denis Poisson, UMR CNRS, Université d’Orléans & Université de Tours,
France

Abstract. In this talk we will see how statistical methods, from the sim-
plest to the most advanced ones, can be used to address various problems
in medical image processing and reconstruction for different imaging
modalities. Image reconstruction allows the images in question to be
obtained, while image processing (on the already reconstructed images)
aims at extracting some information of interest. We will review several
statistical methods (mainly Bayesian) to address various problems of this

type.

Keywords: Image processing - Image reconstruction - Statistics -
Frequentist - Bayesian - Parametrics - Nonparametrics

References

1. Fall, M.D., Dobigeon, N., Auzou, P.: A bayesian estimation formulation to voxel-
based lesion symptom mapping. In: Proceedings of European Signal Processing
Conference (EUSIPCO), Belgrade, Serbia, September (2022)

2. Fall, M.D.: Bayesian nonparametrics and biostatistics: the case of PET imaging. Int.
J. Biostat. (2019)

3. Fall, M.D., Lavau, E., Auzou, P.: Voxel-based lesion-symptom mapping: a non-
parametric bayesian approach. In: Proceedings of IEEE International Conference
on Acoustics, Speech and Signl Processing (ICASSP) (2018)



Algebraic Statistics and Gibbs Manifolds

Bernd Sturmfels
MPI-MiS Leipzig, Germany

Abstract. Gibbs manifolds are images of affine spaces of symmetric
matrices under the exponential map. They arise in applications such as
optimization, statistics and quantum physics, where they extend the ubig-
uitous role of toric geometry. The Gibbs variety is the zero locus of all
polynomials that vanish on the Gibbs manifold. This lecture gives an
introduction to these objects from the perspective of Algebraic Statistics.

References

—_—

Pavlov, D., Sturmfels, B., Telen, S.: Gibbs manifolds. arXiv:2211.15490

2. Sturmfels, B., Telen, S., Vialard, F.-X., von Renesse, M.: Toric geometry of entropic
regularization. arXiv:2202.01571

3. Sullivant, S.: Algebraic Statistics. graduate studies in mathematics, Am. Math. Soc.
Providence, RI, 194 (2018)

4. Huh, J., Sturmfels, B.: Likelihood geometry, in combinatorial algebraic geometry.
In: Conca, A, et al. Lecture Notes in Mathematics, vol. 2108, Springer, pp. 63—-117
(2014)

5. Geiger, D., Meek, C., Sturmfels, B.: On the toric algebra of graphical models, Annal.

Stat. 34, 1463-1492 (2006)
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Learning of Dynamic Processes

Juan-Pablo Ortega

Head, Division of Mathematical Sciences, Associate Chair (Faculty), School of
Physical and Mathematical Sciences, Nanyang Technological University, Singapore

Abstract. The last decade has seen the emergence of learning techniques
that use the computational power of dynamical systems for information
processing. Some of those paradigms are based on architectures that are
partially randomly generated and require a relatively cheap training effort,
which makes them ideal in many applications. The need for a mathemat-
ical understanding of the working principles underlying this approach,
collectively known as Reservoir Computing, has led to the construc-
tion of new techniques that put together well-known results in systems
theory and dynamics with others coming from approximation and sta-
tistical learning theory. In recent times, this combination has allowed
Reservoir Computing to be elevated to the realm of provable machine
learning paradigms and, as we will see in this talk, it also hints at vari-
ous connections with kernel maps, structure-preserving algorithms, and
physics-inspired learning.

References

1. Gonon, L., Grigoryeva, L., Ortega, J.-P.. Approximation bounds for random neural
networks and reservoir systems. To appear in The Annals of Applied Probability.
Paper (2022)

2. Cuchiero, C., Gonon, L., Grigoryeva, L., Ortega, J.-P., Teichmann, J.: Expressive
power of randomized signature. NeurIPS. Paper (2021)

3. Cuchiero, C., Gonon, L., Grigoryeva, L., Ortega, J.-P., Teichmann, J.: Discrete-time
signatures and randomness in reservoir computing. IEEE Trans. Neural Netw. Learn.
Syst. 33(11), 6321-6330. Paper (2021)

4. Gonon, L., Ortega, J.-P.: Fading memory echo state networks are universal. Neural
Netw. 138, 10-13. Paper (2021)

5. Gonon, L., Grigoryeva, L., Ortega, J.-P.: Risk bounds for reservoir computing. J.
Mach. Learn. Res. 21(240), 1-61. Paper (2020)

6. Gonon, L., Ortega, J.-P.: Reservoir computing universality with stochastic inputs.
IEEE Trans. Neural Netw. Learn. Syst. 31(1), 100-112. Paper (2020)

7. Grigoryeva, L., Ortega, J.-P.: Differentiable reservoir computing. J. Mach. Learn.
Res. 20(179), 1-62. Paper (2019)
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8. Grigoryeva, L., Ortega, J.-P.: Echo state networks are universal. Neural Netw. 108,
495-508. Paper (2018)

9. Grigoryeva, L., Ortega, J.-P.: Universal discrete-time reservoir computers with
stochastic inputs and linear readouts using non-homogeneous state-affine systems.
J. Mach. Learn. Res. 19(24), 1-40. Paper (2018)



Pierre Louis Moreau de Maupertuis, King’s Musketeer
Lieutenant of Science and Son of a Saint-Malo Corsaire

« Héros de la physique, Argonautes nouveaux/Qui franchissez les monts, qui traversez
les eaux/Dont le travail immense et I’exacte mesure/De la Terre étonnée ont fixé la
figure./Dévoilez ces ressorts, qui font la pesanteur./Vous connaissez les lois qu’établit
son auteur. » ... [Heroes of physics, new Argonauts/Who cross the mountains, who cross
the waters/Whose immense work and the exact measure/Of the astonished Earth fixed
the figure./Reveal these springs, which make gravity./You know the laws established by
its author.] - Voltaire on Pierre Louis Moreau de Maupertuis

Son of René Moreau de Maupertuis (1664—1746) a corsair and ship owner from Saint-
Malo, director of the Compagnie des Indes and knighted by Louis XIV, Maupertuis was
offered a cavalry regiment at the age of twenty. His father, with whom he had a very
close relationship, thus opened the doors of the gray musketeers to him, of which he
became lieutenant. Between 1718 and 1721, Maupertuis devoted himself to a military
career, first joining the company of gray musketeers, then a cavalry regiment in Lille,
without abandoning his studies. In 1718, Maupertuis entered the gray musketeers, writes
Formey in his Eloge (1760), but he carried there the love of study, and above all the taste
for geometry. However, his profession as a soldier was not to last long and at the end
of 1721, the learned Malouin finally and permanently went to Paris, as he could not last
long in the idleness of the state of a former military officer in time of peace, and soon
he took leave of it. This moment marks the official entry of Maupertuis into Parisian
intellectual life, halfway between the literary cafés and the benches of the Academy. He
nevertheless preferred to abandon this military career to devote himself to the study of
mathematics, an orientation crowned in 1723 by his appointment as a member of the
Academy of Sciences.

He then published various works of mechanics and astronomy. In 1728, Mauper-
tuis visited London, a trip which marked a decisive turning point in his career. Elected
associate member of the Royal Society, he discovered Newton’s ideas, in particular uni-
versal attraction, of which he was to become an ardent propagandist in France, which
D’ Alembert, in the Discourse preliminary to the Encyclopedia, did not miss. Academi-
cian at 25, Pierre-Louis Moreau de Maupertuis led a perilous expedition to Lapland to
verify Newton’s theory and became famous as “the man who flattened the earth”. Called
by Frederick II to direct the Berlin Academy of Sciences, he was as comfortable in the
royal courts as in the Parisian salons.

The rejection of the Newtonian approach, as well as the distrust of the Cartesian
approach, led Maupertuis to the elaboration of a cosmology different from both the
finalism of some and the anti-finalism of others. It is a cosmology that cannot be attributed
to any particular tradition, and that must rather be read as an independent and creative
elaboration. All of Maupertuis’ cosmology is based on a physical principle which he
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was the first to formulate, namely the principle of least action, the novelty and generality
of which he underlines on several occasions.

His “principle of least action” constitutes an essential contribution to physics to this
day, a fundamental principle in classical mechanics. It states that the motion of a particle
between two points in a conservative system is such that the action integral, defined as the
integral of the Lagrangian over the time interval of motion, is minimized. Maupertuis’
principle was renewed by the Cartan-Poincaré Integral Invariant in the field of geometric
mechanics. In geometric mechanics, the motion of a mechanical system is described in
terms of differential forms on a configuration manifold and the Cartan-Poincaré integral
invariant is associated with a particular differential form called the symplectic form,
which encodes the dynamics of the system. The integral invariant is defined as the integral
of the symplectic form over a closed loop in the configuration manifold. More recently,
Maupertuis’ principle has been extended more recently by Jean-Marie Souriau through
Maxwell’s principle with the hypothesis that the exterior derivative of the Lagrange 2-
form of a general dynamical system vanishes. For systems of material points, Maxwell’s
principle allows us, under certain conditions, to define a Lagrangian and to show that
the Lagrange form is nothing else than the exterior derivative of the Cartan form, in
the study of the calculus of variations. Without denying the importance of the principle
of least action nor the usefulness of these formalisms, Jean-Marie Souriau declares
that Maupertuis’ principle and least action principle seem to him less fundamental than
Maxwell’s principle. His viewpoint seems to him justified because the existence of a
Lagrangian is ensured only locally, and because there exist important systems, such as
those made of particles with spin, to which Maxwell’s principle applies while they have
not a globally defined Lagrangian. Jean-Marie Souriau has also geometrized Noether’s
theorem (algebraic theorem proving that we can associate invariants to symmetries) with
“moment map” (components of moment map are Noether’s invariants).

« La lumiere ne pouvant aller tout-a-la fois par le chemin le plus court, et par celui
du temps le plus prompt ... ne suit-elle aucun des deux, elle prend une route qui a un
avantage plus réel : le chemin qu’elle tient est celui par lequel la quantité d’action
est la moindre. » [Since light cannot go both by the shortest path and by that of the
quickest time... if it does not follow either of the two, it takes a route which has a more
real advantage: the path that it holds is that by which the quantity of action is least.] -
Maupertuis 1744.



ALEAE GEOMETRIA - BLAISE PASCAL’s 400th
Birthday

We celebrate in 2023 Blaise Pascal’s 400th birthday. GSI’23 motto is “ALEA GEOME-
TRIA”.

In 1654, Blaise Pascal submitted a paper to « Celeberrimae matheseos Academiae
Parisiensi » entitled « ALEAE GEOMETRIA : De compositione aleae in ludis ipsi
subjectis »

e «...etsic matheseos demonstrationes cum aleae incertitudine jugendo, et quae con-
traria videntur conciliando, ab utraque nominationem suam accipiens, stupendum
hunc titulum jure sibi arrogat: Aleae Geometria »

e « ... par I'union ainsi réalisée entre les démonstrations des mathématiques et
I’incertitude du hasard, et par la conciliation entre les contraires apparents, elle peut
tirer son nom de part et d’autre et s’arroger a bon droit ce titre étonnant: Géométrie
du Hasard »

e « ... by the union thus achieved between the demonstrations of mathematics and
the uncertainty of chance, and by the conciliation between apparent opposites, it can
take its name from both sides and arrogate to right this amazing title: Geometry of
Chance »

Blaise Pascal had a multi-disciplinary approach of Science, and has developed 4
topics directly related to GSI’23:*

e Blaise Pascal and COMPUTER: Pascaline marks the beginning of the development
of mechanical calculus in Europe, followed by Charles Babbage analytical machine
from 1834 to 1837, a programmable calculating machine combining the inventions of
Blaise Pascal and Jacquard’s machine, with instructions written on perforated cards.

e Blaise Pascal and PROBABILITY: The “calculation of probabilities” began in a
correspondence between Blaise Pascal and Pierre Fermat. In 1654, Blaise Pascal
submitted a short paper to “Celeberrimae matheseos Academiae Parisiensi” with the
title “Aleae Geometria” (Geometry of Chance), that was the seminal paper founding
Probability as a new discipline in Science.

e Blaise Pascaland THERMODYNAMICS: Pascal’s Experiment in the Puy de Dome
to Test the Relation between Atmospheric Pressure and Altitude. In 1647, Blaise
Pascal suggests to raise Torricelli’s mercury barometer at the top of the Puy de Dome
Mountain (France) in order to test the “weight of air” assumption.

e Blaise Pascal and DUALITY: Pascal’s Hexagrammum Mysticum Theorem, and
its dual Brianchon’s Theorem. In 1639 Blaise Pascal discovered, at age sixteen, the
famous hexagon theorem, also developed in “Essay pour les Coniques”, printed in
1640, declaring his intention of writing a treatise on conics in which he would derive
the major theorems of Apollonius from his new theorem.



The GSI’23 Conference is Dedicated to the Memory
of Mademoiselle Paulette Libermann, Geometer Student
of Elie Cartan and André Lichnerowicz, PhD Student
of Charles Ehresmann and Familiar with the Emerald
Coast of French Brittany

Paulette Libermann died on July 10, 2007 in Montrouge near Paris. Admitted to the
entrance examination to the Ecole Normale Supérieure de Sevres in 1938, she was a
pupil of Elie Cartan and André Lichnerowicz. Paulette Libermann was able to learn
about mathematical research under the direction of Elie Cartan, and was a faithful friend
of the Cartan family. After her aggregation, she was appointed to Strasbourg and rubbed
shoulders with Georges Reeb, René Thom and Jean-Louis Koszul. She prepared a thesis
under the direction of Charles Ehresmann, defended in 1953. She was the first ENS
Sevres woman to hold a doctorate in mathematics. She was then appointed professor at
the University of Rennes and after at the Faculty of Sciences of the University of Paris
in 1966. She began to collaborate with Charles-Michel Marle in 1967. She led a seminar
with Charles Ehresmann until his death in 1979, and then alone until 1990. In her thesis,
entitled “On the problem of equivalence of regular infinitesimal structures”, she studied
the symplectic manifolds provided with two transverse Lagrangian foliations and showed
the existence, on the leaves of these foliations, of a canonical flat connection. Later,
Dazord and Molino, in the South-Rhodanian geometry seminar, introduced the notion
of Libermann foliation, linked to Stefan foliations and Haefliger I"-structures. Paulette
Libermann also deepened the importance of the foliations of a symplectic manifold
which she called “simplectically complete”, such as the Poisson bracket of two functions,
locally defined, constant on each leaf, that is also constant on each leaf. She proved that
this property is equivalent to the existence of a Poisson structure on the space of leaves,
such that the canonical projection is a Poisson map, and also equivalent to the complete
integrability of the subbundle symplectically orthogonal to the bundle tangent to the
leaves. She wrote a famous book with Professor Charles-Michel Marle, “Symplectic
Geometry and Analytical Mechanics”. Professor Charles-Michel Marle told us that Miss
Paulette Libermann had bought an apartment in Dinard and spent her summers just in
front of Saint-Malo, and so was familiar with the emerald coast of French Brittany.
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Abstract. In many applications, one is interested in the shape of an
object, like the contour of a bone or the trajectory of joints of a tennis
player, irrespective of the way these shapes are parameterized. However for
analysis of these shape spaces, it is sometimes useful to have a parameter-
ization at hand, in particular if one is interested in deforming shapes. The
purpose of the paper is to examine three different methods that one can
follow to endow shape spaces with a Riemannian metric that is measuring
deformations in a parameterization independent way. The first is via Rie-
mannian submersion on a quotient; the second is via isometric immersion
on a particular slice; and the third is an alternative method that allows for
an arbitrarily chosen complement to the vertical space and a metric degen-
erate along the fibers, which we call the gauge-invariant metric. This allows
some additional flexibility in applications, as we describe.

Keywords: Shape space + Geometric green learning + Geometric
invariants

1 Introduction, Motivation, and a Simple Example

In this paper we will describe three ways to think about geometry on a quo-
tient space of a trivial principal bundle, with application to shape space. The
first is the standard approach via quotients by a group and a Riemannian sub-
mersion. The second is by considering a particular global section of the bundle
and inducing a metric by isometric immersion. The third is newer and consists of
specifying a normal bundle complementary to the vertical bundle, projecting the
metric onto the normal bundle, and taking the quotient of the resulting degener-
ate metric; we refer to this as the gauge-invariant approach. We will begin with
some motivations about our main concern of shape space before presenting an
explicit example in finite dimensions to fix ideas. Then we describe the three
basic methods as (I), (IT), and (III), and finally we discuss how to get from one
to another and the meaning of gauge invariance.
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In order to explain the ideas of the present paper in a simple way, we will
consider the contour of the Statue of Liberty appearing in different layouts in
Fig. 1. Imagine a camera that scans a photo of the Statue and needs to recognize
it regardless of how the photo is held (at any distance, position, or rotation
angle). If we require the photo to be held perpendicular to the camera lens,
then the transformations are rotations, translations, and rescalings. These are
all shape-preserving and we would like the scanner to be able to detect the shape
independently of them. We can handle this in two ways:

1. either one groups together the photos that are transformations of each other,
2. or one specifies a preferred choice of position in space and/or scale as a rep-
resentative.

The first option consists of considering the orbit of the photo under the group;
the second option consists of considering a preferred section of the quotient space
of curves modulo the group. These two different ways of thinking about shapes



Three Methods to Put a Riemannian Metric on Shape Space 5

modulo a given group of transformations are illustrated in Fig. 1. In the second
column we show some examples of the photos in the same orbit under the action
of the group. In the third and fourth columns, a representative of this orbit is
singled out.

Then, when considering contours of objects, another group acting by shape-
preserving transformations is the group of reparameterizations of the contour.
Making the analysis invariant by the group of reparameterizations is a much
more difficult problem than that in the previous paragraph, but it has the same
essential nature, and is the main source of motivation for us.

Corresponding mathematical objects. The mathematical picture to
start with is the following: the group of shape-preserving transformations G
is acting on the space of curves or surfaces F and the shape space S that retain
just the informations that we need is the quotient space S := F/G. The map
that sends a curve to its orbit under the group G is called the canonical projec-
tion and will be denoted be p : F — S. The orbit of a element f € F will also
be denoted by [f] € F/S, in particular p(f) = [f] for any f € F. The triple
(p, F,S8) is a particular example of fiber bundle attached to a smooth action of
a group on a manifold.

When we specify which procedure we follow to choose a representation of each
orbit, one is selecting a preferred section of the fiber bundle p : F — S. A global
section of the fiber bundle p : F — S is a smooth application s : S — F, such
that pos([f]) = [f] for any [f] € S. There is one-to-one correspondance between
the shape space S and the range of s. Defining a global section of p : F — S
is in fact defining a way to choose a preferred element in the fiber p~1([f]) over
[f]. In the case of the group of reparameterizations, it consists of singling out a
preferred parameterization of each oriented shape.

‘Why do we care about the distinction? Depending on the representation
of shape space as a quotient space or as a preferred section, shape analysis may
give different results. Very often, curves or surfaces are centered and scaled as a
pre-processing step. However, the procedure to center or scale the shapes may
influence further analysis. For instance, a Statue of Liberty whose contour has
a fractal behaviour will appear very small if scaling variability is taken care of
by fixing the length of the curve to 1 and will seem visually very different to
analogous statues with smooth boundaries.

Ezxample 1. We begin with the simplest nontrivial example of the three methods
we have in mind for producing a metric on the quotient space by a group action,
given a metric on the full space. Here our full space will be the Heisenberg group
F = R? with the left-invariant metric

ds? = da® + dy? + (dz — ydzx)? (1)

on it, while the group action is vertical translation in the z-direction by a real num-
ber, generated by the flow of the vector field £ = 0,. Hence the group is G = R
under addition, and the quotient space is S = R? with projection p(z,y, z) =
(z,y). We will denote by {e1, e2} the canonical basis of R2. The metric (1) is invari-
ant under this action since none of the components depend on z.
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(I) At every point the field ¢ is vertical since it projects to zero. Horizontal
vectors are those orthogonal to this in the metric (1), and the horizontal bundle
is spanned by the fields hy = 0, + y 0, and hy = 0. This basis is special since
Dp(hy) = e1 and Dp(hs) = e, so we get the usual basis on the quotient. If the
inner product on {ej,e2} comes from the inner product on {hy, hs}, the result
is the Riemannian submersion quotient metric

ds* = du® + dv®. (2)

(IT) The second way to get a natural metric on the quotient S is to embed it
back into F by a section s: § — F, so that po s is the identity. All such sections
are given by the graph of a function (z,y, z) = s(u,v) = (u,v,¥(u,v)) for some
1: R? — R, a choice of a particular representative z = v (u, v) in the equivalence
class 771 (u,v). The image of s is a submanifold of F which we denote by A,
and it inherits the isometric immersion metric

ds* = du® + dv* + [, dv + (Y — v) du] 2, (3)

(III) The third way to get a metric is to declare that movement in the z
direction will be “free,” and only movement transverse to the vertical direc-
tion will have some cost. This corresponds to specifying a space of normal
vectors along each fiber (arbitrary except that it is transverse to the tangent
vectors 0,). Any normal bundle is generated by the span of vector fields of
the form n; = 0, + ¢1(x,y) 0, and ny = 0y + wa(x,y) 0. for some functions
©1,p2: R? — R independent of z to ensure G-invariance. Again this basis is
special since m.(n1) = e; and 7. (ny) = es. To measure movement only in the
normal direction, we define g¢1(U, V) = gr(pn(U),pn(V)) for any vectors U
and V', where py is the projection onto the normal bundle parallel to the vertical
direction. This results in the degenerate metric

ds? = da® + dy® + [p2dy + (91— y) dx]Q. (4)

This formula then induces a nondegenerate quotient metric on the quotient R2.

It is clear that (III) is the most general choice, and that both (I) and (II) are
special cases. The metric (4) matches (2) when the normal bundle coincides with
the horizontal bundle, and otherwise is strictly larger. Meanwhile the immersion
metric (II) in (3) is strictly larger than (I), and no choice of 1 will reproduce it
since 1 would have to satisfy ¢, = 0 and v, = v. This is a failure of integrability,
see Sect. 3.

2 Different Methods to Endow a Quotient
with a Riemannian Metric

In this section, we will suppose that we have at our disposal a Riemannian
metric gz on the space of curves or surfaces F we are interested in, and that
this metric is invariant under a group of shape-preserving transformations G.
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In other words, G preserves the metric gz, i.e. G acts by isometries on F. We
will explain three different ways to endow the quotient space S := F/G with a
Riemannian metric.

The action of a group G on a space of curves or surfaces F will be denoted
by a dot. For instance, if G is the group of translations acting on curves in R?,
g+ F = F + C where C is the constant function given by the coordinates of
the vector of translation defined by the translation g. When G is the group of

reparameterizations, then g - F := F o g~ 1.

(I) Quotient Riemannian metric. The first way to endow the quotient space
S := F/G with a Riemannian metric is through the quotient Riemannian metric.
We recall the following classical Theorem of Riemannian geometry [5,11].

Theorem 1 (Riemannian submersion Theorem). Let F be a manifold
endowed with a Riemannian metric gr, and G a Lie group acting on F in
such a way that F/G is a smooth manifold. Suppose gr is G-invariant and TpF
splits into the direct sum of the tangent space to the fiber and its orthogonal
complement, i.e.,

gr(X,Y) =gr(9- X,9-Y),VX,)Y € TF Vg € G,

5

TrF = Ker(dp)r @ Ker(dp),VF € F, )
then there exists a unique Riemannian metric gi.s on the quotient space S =
F /G such that the canonical projection p : F — S is a Riemannian submersion,
i.e. such that dp : Ker(dp)* — TS is an isometry.

In this Theorem, the space Hor := Ker(dp)* is called the horizontal space
because it is defined as the orthogonal with respect to gz of the vertical space
Ver := Ker(dp) (traditionally the fibers of a fiber bundle are depicted vertically).
Condition (5) is added in order to deal with the infinite-dimensional case where,
for weak Riemannian metrics, this identity is not automatic.

One way to understand the Riemannian submersion Theorem is the following:
first, in order to define a Riemannian metric on the quotient space, one looks
for a subbundle of T'F which is in bijection with T'S. Since the vertical space is
killed by the projection, the transverse space to the vertical space given by the
orthogonal complement is a candidate. The restriction of the Riemannian metric
on it defines uniquely a Riemannian metric on the quotient.

(IT) Riemannian metric induced on a smooth section. Now suppose that
we have chosen a preferred smooth section s : § — F of the fiber bundle p :
F — 8 = F/G, for instance the space of arc-length parameterized curves in the
case where G is the group of orientation-preserving reparameterizations, or the
space of centered curves when G is the group of translations. The smoothness
assumption means that the range of s is a smooth manifold of F, like the space
of arc-length parameterized curves in the space of parameterized curves. We will
denote it by A := s(S). By construction, there is a isomorphism between S and
A which one can use to endow the quotient space S with the induced Riemannian
structure on A by F.
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Theorem 2 (Riemannian immersion Theorem). Given a smooth section
s: S8 — F, there exists a unique Riemannian metric g4 on A := s(S) such that
the inclusion v : A — F is an isometry. Using the isomorphism s : & — A,
there exists a unique Riemannian metric g2, s on S such that s : S — F is an
1sometry.

(ITII) Gauge invariant metric. Here we suppose that we have a vector bundle
Nor over F which is a G-invariant subbundle of T'F transverse to the vertical
bundle Ver := Ker(dp). Using any G-invariant metric g= on F, one can define a
G-invariant metric gy on F that is degenerate along the fiber of the projection
p:F — S. We will explain the meaning of “gauge invariance” later.

Theorem 3. Let gr be a G-invariant metric on F and Nor C TF be a G-
invariant subbundle of TF such that

TrF = Ker(dp)r @& Norp,VF € F. (6)

There exists a unique metric ggy on T F which coincides with g on Nor and is
degenerate exactly along the vertical fibers of p : F — S. It induces a Riemannian
metric gs.s on shape space S such that dp : Nor — T'S is an isometry.

Since we want the inner product to be the same in gg; as in gr when the
vectors are normal, and zero if either vector is vertical, we define gg; by simply
projecting an arbitrary vector onto the normal bundle:

gaGr (Xa Y) =grF (pNor (X)a pNor(Y))a (7)

where py : TpF — Nor is the projection onto the normal bundle parallel to the
vertical space. This is nondegenerate on the quotient since the projection onto
the quotient is an isomorphism when restricted to the normal bundle.

Remark 1. In the case where Nor = Hor, the Riemannian metric g3 s coincides
with the quotient metric g s. Another choice of G-invariant complement to the
vertical space will give another Riemannian metric on the quotient space.

Ezample 2. The main example for shape space consists of the elastic metric first
defined in [4] on the space of planar curves F = {F: [0,1] — R?} by the formula

1
g;_-’b(hl7 ho) = / [a(Dshy, t)(Dshs, t) + b(Dshy, n)(Dsha, n)] ds,
0

F e F, hj € TpF,ds = ||F'(t)||dt, Dsh(t) = H;gg”, t= g n=t (®)
See [1] for a recent survey of its properties. We will follow [6,10] below.

Our group G is the (orientation-preserving) reparameterizations of all these
curves, since we only care about the image F'[0,1], and the shape space is the
quotient F/G. At any F' € F the vertical space is Ver = {mt |m: [0,1] — R}. A
natural section s: S — A C F comes from parameterizing all curves proportional
to arc length. The tangent space T'A to the space of arc-length parameterized
curves is the space of vector fields w along F' such that w’- ¢ = 0. The horizontal
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bundle in the metric (8) is given at each F by the space of vector fields w along
F such that %(w’ 1) — gn(w’ -m) =0 for all ¢t € [0, 1], where & is the curvature
function. Hence computing the projections requires solving an ODE.

A much simpler normal bundle is obtained by just taking the pointwise nor-
mal, i.e., using Nor := {&n | P: [0, 1] — R}, where now the tangential and normal
projections can be computed without solving an ODE.

Instead of parameterizing by arc length we can choose other special parame-
terizations to get the section; for example using speed proportional to the curva-
ture of the shape as in [9]. An example of application to action recognition is given
in [3]. Similar metrics can be defined on surfaces in R3 to get two-dimensional
shape spaces; see for example [7,8].

Remark 2. In the infinite-dimensional case, it is not always possible to find a
complement to the vertical space Ker(dp) as in (6). An example of this phe-
nomemon is provided by shape spaces of non-linear flags (see [2]). In this case,
one has to work with the quotient vector spaces TpF/ Ker(dp) . See [11] for this
more general case.

3 Relationships of the 3 Methods and Gauge Invariance

3.1 Converting Between (I), (II), and (III)

We have seen in Example 1 that in some cases the three metrics coincide when
we start with the same base metric gz, but typically they do not. However if we
allow the metric on F to change, we can convert any metric of the form (I), (II),
or (III) into a metric of the other forms. Here we demonstrate how to do it.

(I) = (III). If we start with a quotient Riemannian submersion metric arising
from gz, how do we get a gauge-invariant metric? We simply define the normal
bundle Nor to be the horizontal bundle Hor of vectors orthogonal in gz to the
vertical bundle, and use the projection pyor as in (7). The new metric ggr on F
will be degenerate but will produce the same metric on the quotient.

(IT) = (III). If we start with a section s that embeds the quotient S into a
submanifold A4 of F, how do we obtain a gauge-invariant metric? Here we define
the normal bundle Nor to be the tangent bundle of the A and proceed as in (7).
Again the new degenerate metric on F will agree with the induced metric on A
(and in particular be nondegenerate there).

(I) = (I1), (IIT)=-(II) As in Example 1, a given normal bundle (in particular
a horizontal bundle from a metric) may not be the tangent bundle of any man-
ifold due to failure of integrability; hence there may not be any way to express
a particular instance of (I) or (III) as a version of (II) with the horizontal space
equal to the tangent space of a particular section. The Frobenius integrability
condition for the bundle, which is equivalent to the curvature of the correspond-
ing connection vanishing, has to be satisfied in order to build a section tangent
to the horizontal space. If one does not require the section to be horizontal, we
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may proceed as in [10] to pull-back the metric from the quotient to the particular
section.

(IIT) = (I), (II)=-(I). Both these cases come from the same metric gz, and
as in Example 1 they may not coincide. However if we are willing to consider
a different metric on F, then we can go from method (III) to method (I) and
still have the same metric on the quotient. Given a G-invariant normal bundle
Nor and a G-invariant metric go 7 which generates the degenerate metric ggr
on F and a metric gs by method (III) via (7), we define a new metric g; # by
choosing any G-invariant Riemannian metric on the tangent bundle Ver to the
fiber and by declaring that Ver and Nor are orthogonal. By construction, the
subbundle Nor is the horizontal bundle in this metric, and we are in case (I).
The same construction works to go from (II) to (I), using the above to get from
(I1) to (III).

3.2 The Meaning of Gauge Invariance

In geometry on shape space, we are often interested primarily in finding mini-
mizing paths between shapes, and a common algorithm is to construct an initial
path between shapes and shorten it by some method. Paths are typically easy
to construct in F and difficult to construct directly in the quotient space S. A
section s: § — F makes this simpler, but especially if the image A = s(S) is not
flat, it can be difficult to keep the shortening constrained on that submanifold.
Our motivating example is when the shapes are parameterized by arc length as
in [10], with a path-straightening or gradient descent algorithm based on the
metric gr: the optimal reduction gives intermediate curves that are typically
no longer parameterized by arc length, and in fact the parameterizations can
become degenerate. As such we may want to apply the group action of repa-
rameterization independently on each of the intermediate shapes to avoid this
breakdown.

If G is a group acting on a space F, define the gauge group as the group
G :={g:[0,1] — G} of paths in G acting on the space of paths ~v: [0,1] — F
in F by the obvious formula (g-+)(t) = g(t) - v(t), i.e., pointwise action in the ¢
parameter. We would like the metric on F to have the property that lengths of
paths are invariant under this action, which essentially allows us to change the
section s “on the fly” if it’s convenient. Since this involves pushing the path in
the direction of the fibers, it is intuitively clear that the metric will need to be
degenerate in those directions. We have the following proposition, whose proof
we defer to [11].

Proposition 1. The length of a path [y] in S measured with the quotient metric
g1.s s equal to the length of any lift v of [y] in F measured with the gauge
mvariant metric ggr.-

Remark 3. The length of v measured with the metric gz differs from the length
of [] unless v is also horizontal. In this case, v = go - 7o for a fixed gy € G.
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Conclusion

We have shown how to view the problem of constructing a Riemannian metric
on a principal bundle quotient such as shape space in three different ways. Any
desired metric on the quotient can be viewed as any one of the three depend-
ing on what is computationally convenient. The gauge-invariant method (III)
is the most general and flexible, capturing the other two more familiar meth-
ods as special cases; it has the advantage that it is convenient for shape space
computations without needing to work on the difficult shape space explicitly.
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Abstract. Locally Linear Embedding is a dimensionality reduction
method which relies on the conservation of barycentric alignments of
neighbour points. It has been designed to learn the intrinsic structure of
a set of points of a Euclidean space lying close to some submanifold. In
this paper, we propose to generalise the method to manifold-valued data,
that is a set of points lying close to some submanifold of a given mani-
fold in which the points are modelled. We demonstrate our algorithm on
some examples in Kendall shape spaces.

Keywords: Locally Linear Embedding - Optimisation on Quotient
Manifolds + Shape Spaces

1 Introduction

Dimensionality reduction is a critical issue when it comes to data analysis on
complex structures. Especially, the data modelled in the context of shape anal-
ysis — for example protein conformations or anatomical shapes — are by nature
high-dimensional data. Common tools for dimensionality reduction have been
originally designed for data described in a Euclidean space. However, objects
like shapes are rather naturally described in a manifold. As an example, Kendall
manifolds [3] encode the idea that two configurations of points — e.g. two protein
conformations — should be compared independently of the coordinate system
they are written in. We refer to such data as manifold-valued data. A first app-
roach to process manifold-valued data then consists in embedding them in a
larger Euclidean space — or equivalently to work extrinsically. This approach has
two main drawbacks. First of all, it ignores the structural information contained
in the manifold model, which then may not be well recovered in areas of low
sampling density. Moreover, there might be a significant gap in dimensionality
between the intrinsic and the extrinsic model in some cases. The manifold of
unparameterised curves [5,8] illustrates well this second point as the extrinsic
and the intrinsic descriptions differ by the removal of parametrisations — dif-
feomorphisms — which is an infinite dimensional space. Thus, when the data
are modelled in a known manifold, it is relevant to look for a generalisation
of existing tools for vector-valued data to manifold-valued data. Locally Linear
Embedding (LLE) has been introduced by Roweis and Saul in [7] as a nonlinear
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dimensionality reduction tool. Given a set of points of a vector space sampled
from some underlying submanifold of lower dimension, the method leverages the
locally linear assumption to characterise each data point as a weighted barycen-
tre of the other points nearby and then embed them in a low-dimensional vector
space accordingly. Essentially, both the weights and the embedding are written
as solutions of a least square problem such that the algorithm is straightforward
to write and implement. LLE differs significantly from other dimension reduc-
tion methods, firstly as it relies on an intrinsic description of the data which
is local — unlike PCA for example — and secondly as it implements a criterion
which is affine rather than metric — as opposed to distance-based methods like
Multi-Dimensional Scaling (MDS) or Isomap. Therefore, because LLE preserves
local affine relationships rather than distances, we expect it to be able to retrieve
different information from the data. While there has already been a consequent
work about extending PCA [1] and MDS methods to manifold-valued data, LLE
has not been yet generalised to our knowledge. In this paper, we propose a
new Riemannian formulation of LLE which we refer to as Riemannian Locally
Embedding (RLLE) and we detail an algorithm for the weights estimation. We
illustrate our method on two examples in Kendall shape spaces and we evaluate
RLLE performance in this setting with respect to the LLE one.

2 Riemannian Locally Linear Embedding

In this section, we recall the algorithm implemented by Locally Linear Embed-
ding (LLE). Since it relies on barycentric coordinates, we extend their definition
in order to generalise the method to Riemannian manifolds.

2.1 Outline of Locally Linear Embedding

Consider n points z1,...,z, € R™ sampled from some underlying submanifold
of lower dimension d. Then at a sufficiently local scale, the points should lie
close to a linear subspace. Under this assumption, each point can be written as
a linear combination of its neighbours up to some residual error. Following this
observation, LLE implements two main steps. First, compute the approximate
barycentric coordinates of x; with respect to its k nearest neighbours, that is for
all 4, find w;; which solve

n
. 2
min ||x74, g wijxjH
Wity ,Win ER j=1

subject to 3 wi; =1

(1)

such that w;; = 0 if x; is not one of the k nearest neighbours of x;. This amounts
to solving n linear system € R¥. Then second step consists of finding n new points
Y1, ..., yn € R? which best retrieve the weights estimated in Problem 1, that is
solve

. n n 2 9
yl,..r-l}z}feRd 1; Hyl _j;1 wijyj“ . ®

Problem 2 is equivalent to an eigenvalue decomposition problem.



14 E. Maignant et al.

2.2 Riemannian Barycentric Coordinates

In order to generalise the method to manifold-valued data, we need to rewrite
Problem 1 in a general non-Euclidean setting. Precisely, we need to extend the
definition of a barycentre and barycentric coordinates. Intuitively, the weighted
barycentre of a set of points is the point which minimises the weighted sum of
squared distances. Let M denote a Riemannian manifold. We define the following.

Definition 1 (Riemannian barycentric coordinates). A point x € M has
barycentric coordinates wy, . .., w, with respect to x1,...,x, € M if

w; log,.(z;) = 0. (3)
=1

K2

where log, denotes the logarithm map of M at x. A point x which satisfies
the previous is called a weighted barycentre of x1,...,x, € M affected with the
weights wi, ..., Wy.

Equation 3 can be interpreted as a first order condition on the minimisation
of the weighted sum of squared distances. We can check that both descriptions
coincide with the usual definition of barycentric coordinates in a Euclidean set-
ting. Indeed, for M = R™ and z,y € M, the logarithm map of M at x is simply
log, (y) =y — «. Therefore, according to the previous definition, the barycentre
of x1,...,x, € M affected with the weights wq,...,w, is the point x which
satisfies * = ), w;x;. For more details, we refer the reader to [6]. Let us now
rewrite Problem 1 for points of a Riemannian manifold.

2.3 Towards Riemannian Locally Linear Embedding

The generalisation of Problem 1 is not straightforward as the previous definition
is an implicit definition and does not allow to write a weighted barycentre in
closed-form except in the Euclidean case. Instead, one can introduce an auxiliary
variable T; € M satisfying Eq.3 and generalise Problem 1 as a constrained
optimisation problem on manifolds. More explicitly, for x1, ...z, € M, solve

min dM(xZ, fZ)Q
z,eM,
Wil,e.,Win ER
subject to >~ wi;logg, (z;) =0 ()

Zj Wij = 1.

It is not trivial however to solve this problem in practice. Especially, the con-
straint »_; wij logz, (;) = 0 lies in the tangent space Tz, M which depends itself
on the value of T; which we wish to optimise. Rather, we propose to look at the
equivalent translated problem

min dM(xi,'fi)Q
T;€EM,
Wity Win ER
subject to > wi; Pr, 4, (logz. (z;)) =0 (5)

ijij =1.
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where P;, ., denotes the parallel transport map of M along the geodesic joining
Z; and z;. Since the parallel transport is an isometric map, Problems 4 and 5 are
equivalent. In this new formulation however, the constraint lies in the tangent
space at x;, which is independent of the optimisation state.

Riemannian Locally Linear Embedding (RLLE) implements two steps
according to the same scheme as LLE. First, the reconstruction step consists
in estimating the weights w;; solving Problem 5. Then, the embedding step
consists in computing the points y; solving Problem 2.

3 Algorithm and Implementation

In this section, we provide one possible algorithm to solve the optimisation Prob-
lem 2 and describe the implementation of our method. We detail the algorithm
for Kendall shape spaces.

3.1 Tangent Space Formulation of the Optimisation Problem

In its current formulation, Problem 5 can be solved using Lagrangian methods
for constrained optimisation on manifolds. However, it can be also be formulated
alternatively as a vector-valued optimisation problem. Precisely, we keep track
of the estimate Z; with the tangent vector v; € T,, M such that

exp,, (vi) = T (6)
where exp,. denotes the exponential map of M at z;. Additionally, we set
uij = Pr, 0, (logz, (2;)) - (7)

We derive the following optimisation problem

min o
Uilseoy Uin €Ty M,
v €Ty, M,
Wil Win ER
subject to Zj wijui; =0 ()

2o wij =1
eXPlexp,  (0:)] (Porlexp,, 0] (Uig)) = 25 (¥]).

Problem 8 is a priori a vector-valued optimisation problem on the product space
(T, M)™ x Ty, M x R™. In fact, since the weight w;; is set to be 0 whenever z; is
not a neighbour of z;, then the correct search space is (T, M )* x T,,, M x R* where
k is the number of neighbours. Now, provided that a basis of T,;, M™ can been
explicitly computed, then the search space is the Euclidean space R™F+mtk,
where m is the dimension of M, and the optimisation task is performed using
standard Lagrangian methods implemented in most libraries. As a reference, we
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use the SLSQP solver from scipy. Note that in practice, the complexity of the
algorithm strongly depends on whether one knows the exponential map and the
parallel transport in closed-form as we will discuss later in the paper. In any
case, it requires an implementation of both methods which is compatible with
automatic differentiation.

Note that another possible way to solve Problem 5 would be to address it
directly as a Riemannian constrained optimisation problem using specific opti-
misation tools like the ones implemented in the Manopt library.

3.2 Riemannian Locally Linear Embedding for Quotient Manifolds

In what follows, we propose to detail the algorithm in the concrete case of Kendall
shape spaces [3]. We recall that Kendall shape spaces carry a quotient structure.
We first describe the algorithm for a general quotient manifold and then give an
explicit formulation for Kendall shape spaces. For there does not always exist
an explicit description for quotient objects, computations in quotient spaces are
generally performed in the top space. It is also often more comfortable. The main
motivation of this subsection is to show how to perform the previous optimisation
task in the top space.

The setting is the following. Let again M be a Riemannian manifold and let
G be a group acting on M. Given z1,...,z, € M, we want to solve Problem 5 for
the corresponding data points 7(z1),...,7(z,) € M/G, where 7 : M — M/G
is the canonical quotient map. Assume that 7 is a Riemannian submersion. The
vertical space of M at a point x, denoted by Ver, M, is defined by

Ver, M = kerd,m. 9)
The tangent space of M at xz admits an orthogonal decomposition
T.M = Ver, M @ Hor, M (10)

and Hor, M is called the horizontal subspace of M at x. A central property is
that the tangent space of M/G at a point m(x) identifies with the horizontal
space of M at z through the tangent map dm. Moreover, geodesics of M/G
correspond exactly to the projection by 7 of horizontal geodesics of M, that is
geodesics spanned by a horizontal vector. Additionally, we define the following

Definition 2 (Horizontal parallel transport). Let v be a horizontal curve in
M. Then we say that the vector field t — v(t) is the horizontal parallel transport
of a horizontal vector v along ~y if it is horizontal and if its projection to the
tangent bundle of M /G is the parallel transport of d,m(v) along w(7y). We denote
the horizontal transport map of M from a point x to a point y by Pfy

Now let us go back to the algorithm. Since the tangent map dr allows to identify
the tangent spaces of M/G and the horizontal spaces of M, we can lift up
Problem 8 to the top manifold M
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min || v;
gilse-,9in€G
u,;l,...,uinEHormi ]\47

v;€Horg; M,

subject to Zj wijt; =0 (11)
Zj Wiy = 1
Gij exp[expzi (vi)] (Px}il,[expmi (vi)] (UZ])) = ZTj (VJ)

The optimisation variables g;; are the elements of the group G lifting up the
equality constraint

ﬂ-(eXp[expmi (vi)] (Pg,[expmi('ui)] (U”Lj))) = 71-(xj)

to the top space. If G is a matrix Lie group, then it identifies to its Lie algebra
g through the matrix exponential such that the search space can still be written
as a vector space.

3.3 Implementation in Kendall Shape Spaces

The implementation of the algorithm for Kendall shape spaces requires to com-
pute the horizontal spaces, the exponential map and the horizontal parallel trans-
port map. The Kendall shape space X7 is defined as the quotient

24 = 58/50(p) (12)

where S§ = {z € M(p,q) | > x; = 0 and ||z|| = 1} is referred as the pre-shape
space [3]. The shape space 271 describes the possible configurations of a set of
points independently of any similarity transformation of the ambient space. The
space S can be understood as the hypersphere of RP(4=1) and its exponential
map is given by

exp, (v) = cos([[v])z + sin([Jv]]) 7= (13)

v
lvll”

The horizontal subspace at x is described as

Hor, M = {v € M(p,q) | > x; =0 and vz’ = 20’ and (z,v) = 0}.

where (-, -) denotes the usual Frobenius scalar product. The horizontal parallel
transport can be computed as the solution of a first-order differential equation as
described in [4]. Its implementation has already been discussed in the previous
work [2] and is available in the library geomstats. Finally, the group of rotations
SO(p) is a Lie group and its Lie algebra is so(p) = Skew(p).

4 Benchmark Experiment

In this section, we illustrate RLLE on two examples in the shape space X3 and we
compare its performance to LLE performance. We then discuss more generally
the advantages of our method depending on the type of data.
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4.1 A Swiss Roll Example in the Shape Space Z‘g

We run two experiments in the Kendall shape space X3, for which we have an
isometric embedding in a hemisphere and therefore a way to visually evaluate
the embedding computed by either method. We first illustrate our algorithm on
a set of data points generated from a mixture of normal distributions on the
hemisphere (Fig. 1). We compare the ability of LLE and RLLE to embed such a
set in the plane. Our implementation of LLE performs first a Procrustean align-
ment step before solving Problem 1. Precisely, it aligns each neighbour x; onto
the point z; by applying the optimal rotation. Note that without this alignment
step, the performance of LLE drops significantly. Then we demonstrate numer-
ically the performance of RLLE on an example derived from the “Swiss Roll”
data set. Explicitly, given a set of shapes sampled along a logarithmic spiral
curve in X3 (Fig. 2), we evaluate the one-dimensional parametrisation computed
by LLE and RLLE with respect to the one given by the arc-length.

LLE RLLE Exact

R (5

Fig. 1. First experiment. The points are equally sampled from two normal distribu-
tions in the hemisphere, flattened into a disk for visualisation. For both methods, the
neighbour graph has been generated with the Riemannian distance. The number of
neighbours k is chosen to optimise the performance of each method: £ = 9 for LLE
and k = 10 for RLLE. Since the methods are by definition invariant by affine transfor-
mation, we align each embedding onto the flattened data set. We observe that LLE is
able to retrieve very local alignments (blue) but fails at a more global scale (red). This
was to be expected as the Euclidean distance approximates the Riemannian distance
locally. On the other hand, RLLE is able to retrieve the alignments at every scale.
(Color figure online)

4.2 Computational Complexity

RLLE shares the main drawback of intrinsic manifold learning methods: it is
computationally quite expensive. Let us detail this point. We mainly focus on the
reconstruction step as the embedding step is common to the LLE method. First,
the search space is a space of dimension km + m + k, where m is the dimension
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- LLE
y N, ee—e—e—o—o e o o
>/ 1 RLLE

Vo ®ooe oo e o
"! ™~ Exact
: l o oo - oo o e

Reconstruction error

| % "/, .' S LLE }—| y
RLLE | H{H

0.0 0.5 1.0 1.5 2.0 2.5 3.0

Fig. 2. Second Experiment. The points are sampled along a spiral curve. We fix k = 3
for both methods. We illustrate the experiment for one sample in the left and upper-
right sub-figures. Both methods are ordering the points correctly. Relative distances
however are better preserved by RLLE. We estimate the absolute error between the
exact embedding and the one computed by RLLE (resp. LLE). The experiment is run
100 times. We summarise the performance of each method in a box plot. We observe
that RLLE performs significantly better and moreover is more stable.

of the manifold M and k is the number of neighbours. For the Kendall shape
space of parameters p and ¢, we have m = p(q — %(p —1)) — 1. Then the number
of optimisation problems to solve is n. Finally, we need to take into account the
computational cost of the exponential and the parallel transport methods. In
the case of Kendall shape spaces, while the first one is free, the latter performs
in O(2sp® + pq) as detailed in [2], where s is the number of integration steps.
Each evaluation of the constraint — and so each step of the optimisation task —
costs the same. Finally, our methods implements a SQP method to solve each
optimisation problem. As a comparison, the solution of Problem 1 is equivalent to
a matrix inversion of dimension k. Therefore, LLE performs in roughly O(nk?),
such that its complexity does not depend on the dimension m of the data.

4.3 Further Discussion

Given the computational cost of RLLE, it is important to understand for which
type of data it is particularly suited. Typically, the locally linear assumption
made by LLE may be valid for large and well-concentrated data sets. In these
cases, both methods should perform the same. Moreover, non-local methods like
PCA or its manifold generalisations provide a correct estimation whenever the
data are sufficiently concentrated. Finally, LLE and RLLE seem of particular use
in cases where a distance-based method does not perform well. These remarks
suggest that RLLE is more specifically designed for small sample size data sets
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with large dispersion, and provides an embedding which might allow to observe
more informative patterns than the ones characterised by the distance only.

5 Conclusion

As for now, RLLE has been implemented for Kendall shape spaces only. We
are contemplating a general implementation of the method into the library
geomstats for various manifolds and quotient manifolds — for example the space
of unlabelled graphs. Applications to real data sets will also be developed in
future works. Especially, we wish to further investigate the analysis of protein
conformations using Kendall’s framework following one of our previous works.

Acknowledgements. We thank G-stats team for the fruitful discussions. This work
was supported by the ERC grant #786854 G-Statistics from the European Research
Council under the European Union’s Horizon 2020 research and innovation program
and by the French government through the 3IA Cote d’Azur Investments ANR-19-
P3IA-0002 managed by the National Research Agency.

References

1. Fletcher, P.T., Lu, C., Pizer, S.M., Joshi, S.: Principal geodesic analysis for the
study of nonlinear statistics of shape. IEEE Trans. Med. Imaging 23(8), 995-1005
(2004)

2. Guigui, N., Maignant, E., Trouvé, A., Pennec, X.: Parallel transport on Kendall
shape spaces. In: Nielsen, F., Barbaresco, F. (eds.) GSI 2021. LNCS, vol. 12829, pp.
103-110. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-80209-7_12

3. Kendall, D.G.: Shape manifolds, procrustean metrics, and complex projective
spaces. Bull. Lond. Math. Soc. 16(2), 81-121 (1984)

4. Kim, K.R., Dryden, I.L., Le, H., Severn, K.E.: Smoothing splines on Riemannian
manifolds, with applications to 3D shape space. J. Roy. Stat. Soc. Ser. B (Stat.
Methodol.) 83(1), 108-132 (2021)

5. Lahiri, S., Robinson, D., Klassen, E.: Precise matching of PL curves in RY in the
square root velocity framework. arXiv preprint arXiv:1501.00577 (2015)

6. Pennec, X.: Barycentric subspace analysis on manifolds. Ann. Stat. 46(6A), 2711—
2746 (2018)

7. Roweis, S.T., Saul, L.K.: Nonlinear dimensionality reduction by locally linear
embedding. Science 290(5500), 2323-2326 (2000)

8. Tumpach, A.B., Preston, S.C.: Quotient elastic metrics on the manifold of arc-length
parameterized plane loops. arXiv preprint arXiv:1601.06139 (2016)


https://doi.org/10.1007/978-3-030-80209-7_12
http://arxiv.org/abs/1501.00577
http://arxiv.org/abs/1601.06139

®

Check for
updates

A Product Shape Manifold Approach for
Optimizing Piecewise-Smooth Shapes

Lidiya Pryymak!®) Tim Suchan?, and Kathrin Welker!

! TU Bergakademie Freiberg, Akademiestr. 6, 09599 Freiberg, Germany
{lidiya.pryymak,kathrin.welker}@math.tu-freiberg.de
2 Helmut Schmidt University, Holstenhofweg 85, 22043 Hamburg, Germany
suchan@hsu-hh.de

Abstract. Spaces where each element describes a shape, so-called shape
spaces, are of particular interest in shape optimization and its applica-
tions. Theory and algorithms in shape optimization are often based on
techniques from differential geometry. Challenges arise when an applica-
tion demands a non-smooth shape, which is commonly-encountered as
an optimal shape for fluid-mechanical problems. In order to avoid the
restriction to infinitely-smooth shapes of a commonly-used shape space,
we construct a space containing shapes in R? that can be identified with
a Riemannian product manifold but at the same time admits piecewise-
smooth curves as elements. We combine the new product manifold with
an approach for optimizing multiple non-intersecting shapes. For the
newly-defined shapes, adjustments are made in the known shape opti-
mization definitions and algorithms to ensure their usability in appli-
cations. Numerical results regarding a fluid-mechanical problem con-
strained by the Navier-Stokes equations, where the viscous energy dissi-
pation is minimized, show its applicability.

Keywords: shape optimization * Riemannian manifolds + product
manifolds - piecewise-smooth shapes - Navier-Stokes equations

1 Introduction

Shape optimization is commonly-applied in engineering in order to optimize
shapes w.r.t. to an objective functional that relies on the solution of a partial
differential equation (PDE). The PDE is required to model the underlying phys-
ical phenomenon, e.g. elastic displacements due to loadings or fluid movement
due to pressure differences. Different methods are available for the shape opti-
mization, however we focus on gradient-based techniques on shape spaces.

An ideal shape space would enable the usage of classical optimization meth-
ods like gradient descent algorithms. Since this is usually not the case, it is
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desirable to define a shape u to be an element of a Riemannian manifold. An
important example of a smooth! manifold allowing a Riemannian structure is
the shape space

B, := B.(S',R?) := Emb(S*, R?)/Diff(S").

An element of B, is a smooth simple closed curve in R?. The space was briefly
investigated in [11]. The existence of Riemannian metrics, geodesics or, more
generally, the differential geometric structure of B. (cf., e.g. [10,11]) reveals
many possibilities like the computation of the shape gradient in shape optimiza-
tion (cf., e.g. [15]). However, since an element of B, is a smooth curve in R?,
the shape space is in general not sufficient to carry out optimization algorithms
on piecewise-smooth shapes, which are often encountered as an optimal shape
for fluid-mechanical problems, see e.g. [14] for a prominent example. In partic-
ular, we are interested in shapes with kinks. Such piecewise-smooth shapes are
generally not elements of a shape space that provides the desired geometrical
properties for applications in shape optimization. Some effort has been put into
constructing a shape space that contains non-smooth shapes, however so far only
a diffeological space structure could be found, cf. e.g. [19,20]. A further issue for
many applications in shape optimization [1,5,8], such as the electrical impedance
tomography, is to consider multi-shapes. A first approach for optimizing smooth
multi-shapes has been presented in [6].

In this paper, we aim to construct a novel shape space holding a Riemannian
structure for optimizing piecewise-smooth multi-shapes. The structure of the
paper is as follows: In Sect.2, we extend the findings related to multi-shapes
in [6] to a novel shape space considering piecewise-smooth shapes. Hereby, we
use the fact that the space of simple, open curves

B.([0,1],R?) := Emb([0, 1], R?)/Diff([0, 1])

is a smooth manifold as well (cf. [9]) and interpret a closed curve with kinks
as a glued-together curve of smooth, open curves, i.e. elements of B.([0, 1], R?).
Moreover, we derive a shape optimization procedure on the novel shape space. In
Sect. 3, we apply the presented optimization technique to a shape optimization
problem constrained by Navier-Stokes equations and present numerical results.

2 Product Space for Optimizing Piecewise-Smooth
Shapes

In this section, we aim to construct a gradient descent algorithm for optimizing
piecewise-smooth multi-shapes, e.g. the multi-shape v = (u1,uz) from Fig. 1. In
Sect. 2.1, we therefore introduce a novel shape space which has the structure of
a Riemannian product manifold. An optimization algorithm on the novel shape
space is formulated in Sect. 2.2.

! Throughout this paper, the term smooth shall refer to infinite differentiability.
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2.1 Product Shape Space

In the following, we introduce a novel shape manifold, whose structure will later
be used to optimize piecewise-smooth shapes. The construction of the novel
shape space is based on a Riemannian product manifold. Therefore, we first
investigate the structure of product manifolds.

We define (U;, G%) to be Riemannian manifolds equipped with the Rieman-
nian metrics G? for alli = 1,..., N € N. The Riemannian metric G* at the point
p € U; will be denoted by

G () Ty x Tylhi — R,

where T,U; denotes the tangent space at a point p € U;. We then define the
product manifold as

N
UN :=U1><...><UN:HUZ‘.
=1

As shown in [6], for the tangent space of product manifolds it holds
TadN = Ty, Uy X -+ x Tapy Uy

Moreover, a product metric can be defined as
N
gN =y ma, (1)
i=1

where 7} are the pushforwards associated with canonical projections. It is obvi-
ous to use the space B, defined in Sect. 1 to construct a specific product shape
space. An issue arises for non-smooth shapes, e.g. the shape u; from Fig. 1. To
fix this issue, we now introduce the new multi-shape space for s shapes built on
the Riemannian product manifold UV .

Definition 1. Let (U;,G?) be Riemannian manifolds equipped with Riemannian
metrics G for alli=1,...,N. Moreover, UN := vazl U;. For s € N, we define
the s-dimensional shape space on UN by

kj+n;—1 s
M UN) == {u= (u1,...,us) |u; € H L{l,an:Nand
I=k; j=1
ki=1, kj+1:kj+njvj:17...7s_1}.

With Definition 1, an element in M,(U") is defined as a group of s shapes
u1,...,Us, where each shape u; is an element of the product of n; smooth man-
ifolds. For U; = B.([0,1],R?) for [ = 1,...,12 and U3 = B.(S',R?), we can
define the shapes presented in Fig. 1 by (uy, ug) € Ma(U'3), where uy € [)2, U
and ug € Uis.
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For applications of Definition 1 in shape optimization problems, it is of
great interest to look at the tangent space of M, (U™ ). Since any element u =
(u1,...,us) € Mg(UN) can be understood as an element @ = (7y, ..., ux) € U,
we set T, M;(UN) = ToUN and

Gu(,¥) = G, ¥) Yo, € T, M UN) = ToUN.

Next, we consider shape optimization problems, i.e. we investigate so-called
shape functionals. A shape functional on M,(U") is given by j: M,(UYN) — R,
u — j(u). In the following paragraph, we investigate solution techniques for
shape optimization problems, i.e. for problems of the form

L ). )
ueﬁl(rim)](u) (2)

2.2 Optimization Technique on M,(U”Y) for Optimizing
Piecewise-Smooth Shapes

A theoretical framework for shape optimization depending on multi-shapes
is presented in [6], where the optimization variable can be represented as
a multi-shape belonging to a product shape space. Among other things, a
multi-pushforward and multi-shape gradient are defined; however, each shape
is assumed to be an element of one shape space. In contrast, Definition 1 also
allows that a shape itself is represented by a product shape space. Therefore, we
need to adapt the findings in [6] to our setting.

To derive a gradient descent algorithm for a shape optimization problem
as in (2), we need a definition for differentiating a shape functional mapping
from a smooth manifold to R. For smooth manifolds, this is achieved using a
pushforward.

Definition 2. For each shape u € MyUYN), the multi-pushforward of a shape
functional j: My(UN) — R is given by the map

(2o TMLWUY) 5 R, 0 S j(o(B)im0 = (0 9) (0)

Thanks to the multi-pushforward, we can define the so-called multi-shape gra-
dient, which is required for optimization algorithms.
Definition 3. The multi-shape gradient for a shape functional j: M,UN) — R
at the point u € M,UN) is given by v € T,M,UN) satisfying

Go' (©,0) = (Gu)up Vo € TaMUY).

We are now able to formulate a gradient descent algorithm on M (™) similar
to the one presented in [6]. For updating the multi-shape w in each iteration, the
multi-exponential map

expuN: TuMs(uN) — MS(Z/[N)a Y= (@h teey QDN) = (expﬂl P11y -5 €XPy SON)
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Algorithm 1. Gradient descent algorithm on M, (U” ) with Armijo backtracking
line search to solve (2)

Input: Initial shape v = (u1,...,us) = (41,...,4n) = @, constants for Armijo back-
tracking and € > 0 for break condition
1: while |jv||gy > € do
2 Compute the multi-shape gradient v with respect to G
3: Compute stepsize o with Armijo backtracking
4 u 4+ expl (—aw)
5: end while

is used. The algorithm is depicted in Algorithm 1.

So far, we have derived an optimization algorithm on M, (UY), i.e. an algo-
rithm for optimizing a non-intersecting group of shapes, where each shape is an
element of a product manifold with a varying number of factor spaces. With
the main goal of this section in mind, we need to further restrict the choice of
shapes in M, (U™) to glued-together piecewise-smooth shapes: We assume that
U; is either B.(S',R?) or B ([0, 1],R?). Moreover, we assume that each shape

(u1,...,us) is closed, where u = (uy,...,us) is chosen from M,(UN). By that
k]‘Jr’rLjfl
we mean that if a shape isu; € [[ U, then either
1=k,

n; = 1 and Z/{kj - Be(SlaRz)
or

Uy = B.([0,1],R?) VI =kj,...,kj +n; — 1 and for
Uj = (Up,, -+ Uk;4n,;—1), it holds that

Uk, 1 (1) = up, 41 41(0) VR =0,...,n; —2 and ug;(0) = up,4n,—1(1).

Finally, we want to address another important issue in shape optimization
algorithms: the development of kinks in smooth shapes over the course of the
optimization. If we view a smooth initial shape, e.g. us from Fig. 1, as an element
in B.(S',R?) no kinks can arise during the optimization of the shape. An app-
roach to fix this issue for applications, where the developments of kinks in shapes
is desired, is to approximate a smooth shape with elements of B.([0,1],R?). A
simple but sufficient choice is using initially straight lines connecting locations
of possible kinks. In this manner, the multi-shape v = (u1,us) from Fig. 1 would
be an element of

Mo U0+ where 11,1 € N and

12414 12+ +1o (3)
up € [[ th=B([0,1, R uy e [[ th = Be([0,1],R?)".

=1 =13+
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3 Application to Navier-Stokes Flow

In the following, we apply Algorithm 1 to a shape optimization problem con-
strained by steady-state Navier-Stokes equations and geometrical constraints. In
Sect. 3.1, we briefly describe the numerical implementation of Algorithm 1. After-
wards, we formulate the optimization problem that will be considered for the
numerical studies in Sect. 3.2, and finally, in Sect. 3.3, we describe the numerical
results.

3.1 Adjustments of Algorithm 1 for Numerical Computations

In order to ensure the numerical applicability of Algorithm 1, adjustments must
be made. We define the space W := {W € H(D,,,R?)|W = 0 on dD,, \ u},
and similarly to [6], we use an optimization approach based on partial shape
derivatives, together with the Steklov-Poincaré metric in Eq. (1). The Steklov-
Poincaré metric is defined in [16] and yields G'(V|,, W|.) = a(V, W) with a
symmetric and coercive bilinear form a: W x W. We replace the multi-shape
gradient with the mesh deformation V' € W, which is obtained by replacing the
multi-pushforward with the multi-shape derivative? in Definition 3. A common
choice for the bilinear form when using the Steklov-Poincaré metric is linear
elasticity

/ e(V):C:e(W)de =dj(u)[W] YW eW, (4)

where (V) = symgrad(V) and C describes the linear elasticity tensor and
A : B is the standard Frobenius inner product and dj(u)[W] denotes the shape
derivative of j at w in direction W. Due to the equivalence of the Steklov-
Poincaré metric and the bilinear form a, we replace the GN-norm in the stop-
ping criterion of the Algorithm 1 with the H!-norm in D,,. Finally, since the
exponential map used in Algorithm 1 is an expensive operation, it is common to
replace it by a so-called retraction. In our computations, we use the retraction
introduced in [17].

3.2 Model Formulation

We consider the problem

. . . o
= —Vuv:Vod 5
uezrélsl(rim](u) uezr»ilgzlﬂv)/u g VYIYYEm ©)

where we constrain the optimization problem by the Navier-Stokes equations and
choose M,(U™) as in (3). The state is denoted as y = (v, p) for which the Navier-
Stokes equations can be found in standard literature and will be omitted here for
brevity. The material constants dynamic viscosity and density are defined as y =

2 We refer to [6] for the definition and details about the multi-shape derivative.
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Fig. 1. Sketch of two shapes u1, uz surrounded by a domain D, C RZ.

1.81 and p = 1.2 - 10?, respectively. We choose homogenous Dirichlet boundary
conditions on the top and bottom boundary as well as on both shapes. The
right boundary is modelled as homogenous Neumann, and the left boundary has
the inhomogenous Dirichlet boundary condition v = (—0.08421 x5 (22 — 1),0) .
We choose the hold-all domain D = (0,1)2, in which two shapes u; and uy are
embedded as shown in Fig.1 with barycenters at (0.3,0.3)" and (0.45,0.75) 7,
respectively.

Additional geometrical constraints are required in order to avoid trivial solu-
tions, see e.g. [12,13], which are implemented as inequality constraints with an
Augmented Lagrange approach as described in [18]. We restrict the area of each
shape vol(u;) to be at 100% initial area. Further, the barycenter bary(u1) is con-
strained to stay between (—0.03, —0.05)" and (0.04,0.03) " of the initial position
in z and y direction, respectively, and the barycenter bary(uz) to stay between
(—0.075,—0.02) T and (0.02,0.05) " of the initial position.

3.3 Numerical Results

The computational domain is discretized with 3512 nodes and 7026 triangu-
lar elements using Gmsh [7] with standard Taylor-Hood elements. An automatic
remesher is available in case the mesh quality deteriorates below a threshold. The
optimization is performed in FEniCS 2019.1.0 [2]. We use a Newton solver and
solve the linearized system of equations using MUMPS 5.5.1 [3,4]. Armijo back-
tracking is performed as described in Algorithm 1 with & = 0.0125, ¢ = 10~*
and p = %. The stopping criterion for each gradient descent is reached when the
H'-norm of the mesh deformation is at or below 10~%. The objective functional
and the H'-norm of the mesh deformation over the course of the optimization
are shown in Fig.2 and the magnitude of the fluid velocity in the computa-
tional domain before, during, and after optimization can be found in Fig. 3. The
optimized shapes can be seen in Fig. 3 on the right. Over the course of the opti-

mization we observe a reduction of the objective functional by approximately



28 L. Pryymak et al.

8-1072
—1 _|
6-1072 B 10
3 = 1072 1
S 401072 2
107%
10-2 4 —4
2 10 HHH' T \HHH' T \HHH' T \HHH' T \HHH' TTT 10 1 T T T
10° 10 10?2 10® 10* 0 10000 20000
optimization iteration optimization iteration

Fig. 2. Optimization results: objective functional (left) and H'-norm of the mesh defor-
mation (right).
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Fig. 3. Fluid velocity magnitude at different stages of the optimization. Figure 3f has
an increased objective functional value in comparison to Fig.3d and 3e, however it
fulfills the geometrical constraints while the others do not yet.
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74%. The norm of the mesh deformation shows an exponential decrease, similar
to a classical gradient descent algorithm. The peaks are caused by remeshing or
by the adjustment of Augmented Lagrange parameters. Initially, the optimizer is
mainly concerned with obtaining a approximate optimized shape, see Fig. 3b-3d,
while the exact fulfillment of geometrical constraints is less relevant. The later
stages optimize small features like the leading and trailing edge of the shape,
see Fig. 3e, any suboptimal kinks that were still remaining are removed, and in
Fig. 3f the geometrical constraints are fulfilled with an infeasibility of below 1076
after k = 7 Augmented Lagrange iterations.

4 Conclusion

A novel shape space M,(U") that provides both, a Riemannian structure and a
possibility to consider glued-together shapes (in particular, shapes with kinks) is
introduced. Additionally, an optimization algorithm, based on findings from [6],
is formulated. The new algorithm is applied to solve an optimization problem
constrained by the Navier-Stokes equations with additional geometrical inequal-
ity constraints, where we have observed a strong reduction of the objective func-
tional and convergence of the gradient descent on M, (U™ ) similar to a classical
gradient descent algorithm. Forthcoming research should involve an investiga-
tion of the development of the shapes’ overlaps (glued-together points) over the
course of the optimization. Moreover, convergence statements need to be inves-
tigated.

References

1. Albuquerque, Y.F., Laurain, A., Sturm, K.: A shape optimization approach for
electrical impedance tomography with point measurements. Inverse Probl. 36(9)
(2020). https://doi.org/10.1088/1361-6420,/ab9ofs7

2. Alnees, M., et al.: The FEniCS project version 1.5. Arch. Numer. Softw. 3(100)
(2015). https://doi.org/10.11588/ans.2015.100.20553

3. Amestoy, P.R., Duff, 1.S., Koster, J., L’Excellent, J.Y.: A fully asynchronous mul-
tifrontal solver using distributed dynamic scheduling. STAM J. Matrix Anal. Appl.
23(1), 15-41 (2001). https://doi.org/10.1137/S0895479899358194

4. Amestoy, P.R., Guermouche, A., L'Excellent, J.Y., Pralet, S.: Hybrid scheduling
for the parallel solution of linear systems. Parallel Comput. 32(2), 136-156 (2006).
https://doi.org/10.1016/j.parco.2005.07.004

5. Cheney, M., Isaacson, D., Newell, J.C.: Electrical impedance tomography. STAM
Rev. Soc. Ind. Appl. Math. 41(1), 85-101 (1999). https://doi.org/10.1137/
S0036144598333613

6. Geiersbach, C., Loayza-Romero, E., Welker, K.: PDE-constrained shape optimiza-
tion: towards product shape spaces and stochastic models. In: Chen, K., Schonlieb,
C.B., Tai, X.C., Younes, L. (eds.) Handbook of Mathematical Models and Algo-
rithms in Computer Vision and Imaging, pp. 1-46. Springer, Cham (2022). https://
doi.org/10.1007/978-3-030-03009-4__120-1


https://doi.org/10.1088/1361-6420/ab9f87
https://doi.org/10.11588/ans.2015.100.20553
https://doi.org/10.1137/S0895479899358194
https://doi.org/10.1016/j.parco.2005.07.004
https://doi.org/10.1137/S0036144598333613
https://doi.org/10.1137/S0036144598333613
https://doi.org/10.1007/978-3-030-03009-4_120-1
https://doi.org/10.1007/978-3-030-03009-4_120-1

30

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

L. Pryymak et al.

. Geuzaine, C., Remacle, J.F.: Gmsh: a 3-D finite element mesh generator with
built-in pre- and post-processing facilities. Int. J. Numer. Methods Eng. 79(11),
1309-1331 (2009). https://doi.org/10.1002/nme.2579

. Kwon, O., Woo, E.J., Yoon, J.R., Seo, J.K.: Magnetic resonance electrical
impedance tomography (MREIT): simulation study of j-substitution algorithm.
IEEE Trans. Biomed. Eng. 49(2), 160-167 (2002). https://doi.org/10.1109/10.
979355

. Michor, P.W.: Manifolds of Differentiable Mappings, vol. 3. Shiva Math-

ematics Series (1980). https://www.mat.univie.ac.at/~michor/manifolds_of

differentiable_ mappings.pdf

Michor, P.W., Mumford, D.: An overview of the Riemannian metrics on spaces

of curves using the Hamiltonian approach. Appl. Comput. Harmon. Anal. 23(1),

74-113 (2007). https://doi.org/10.1016/j.acha.2006.07.004

Michor, P.W., Mumford, D.B.: Riemannian geometries on spaces of plane curves.

J. Eur. Math. Soc. 8, 1-48 (2006). https://doi.org/10.4171/JEMS/37

Mohammadi, B., Pironneau, O.: Applied Shape Optimization for Fluids. Oxford

University Press (2009). https://doi.org/10.1093/acprof:oso/9780199546909.001.

0001

Miiller, P.M., Kihl, N.; Siebenborn, M., Deckelnick, K., Hinze, M., Rung, T.: A

novel p-harmonic descent approach applied to fluid dynamic shape optimization.

Struct. Multidiscip. Optim. 64(6), 3489-3503 (2021). https://doi.org/10.1007/

s00158-021-03030-x

Pironneau, O.: On optimum profiles in Stokes flow. J. Fluid Mech. 59(1), 117-128

(1973). https://doi.org/10.1017/s002211207300145x

Schulz, V.H.: A Riemannian view on shape optimization. Found. Comput. Math.

14(3), 483-501 (2014). https://doi.org/10.1007/s10208-014-9200-5

Schulz, V.H., Siebenborn, M., Welker, K.: Efficient PDE constrained shape opti-

mization based on Steklov-Poincaré-type metrics. STAM J. Optim. 26(4), 2800—

2819 (2016). https://doi.org/10.1137/15m1029369

Schulz, V.H., Welker, K.: On optimization transfer operators in shape spaces.

In: Schulz, V., Seck, D. (eds.) Shape Optimization, Homogenization and Opti-

mal Control, pp. 259-275. Springer, Cham (2018). https://doi.org/10.1007/978-3-

319-90469-6_ 13

Steck, D.: Lagrange multiplier methods for constrained optimization and varia-

tional problems in Banach spaces. Ph.D. thesis, Universitit Wirzburg (2018).

https://opus.bibliothek.uni-wuerzburg.de/frontdoor/index/index/year/2018/

docId/17444

Welker, K.: Efficient PDE constrained shape optimization in shape spaces. Ph.D.

thesis, Universitat Trier (2016). https://doi.org/10.25353 /ubtr-xxxx-6575-788¢/

Welker, K.: Suitable spaces for shape optimization. Appl. Math. Optim. 84(1),

869-902 (2021). https://doi.org/10.1007/s00245-021-09788-2


https://doi.org/10.1002/nme.2579
https://doi.org/10.1109/10.979355
https://doi.org/10.1109/10.979355
https://www.mat.univie.ac.at/~michor/manifolds_of_differentiable_mappings.pdf
https://www.mat.univie.ac.at/~michor/manifolds_of_differentiable_mappings.pdf
https://doi.org/10.1016/j.acha.2006.07.004
https://doi.org/10.4171/JEMS/37
https://doi.org/10.1093/acprof:oso/9780199546909.001.0001
https://doi.org/10.1093/acprof:oso/9780199546909.001.0001
https://doi.org/10.1007/s00158-021-03030-x
https://doi.org/10.1007/s00158-021-03030-x
https://doi.org/10.1017/s002211207300145x
https://doi.org/10.1007/s10208-014-9200-5
https://doi.org/10.1137/15m1029369
https://doi.org/10.1007/978-3-319-90469-6_13
https://doi.org/10.1007/978-3-319-90469-6_13
https://opus.bibliothek.uni-wuerzburg.de/frontdoor/index/index/year/2018/docId/17444
https://opus.bibliothek.uni-wuerzburg.de/frontdoor/index/index/year/2018/docId/17444
https://doi.org/10.25353/ubtr-xxxx-6575-788c/
https://doi.org/10.1007/s00245-021-09788-2

®

Check for
updates

On Canonical Parameterizations of
2D-Shapes

Alice Barbora Tumpach!:2(%)

! Institut CNRS Pauli, Oskar-Morgenstern-Platz 1, 1090 Vienna, Austria
2 University of Lille, Cité scientifique, 59650 Villeneuve d’Ascq, France
alice-barbora.tumpach@univ-1lille.fr
http://math.univ-1illel.fr/~tumpach/Site/home.html

Abstract. This paper is devoted to the study of unparameterized sim-
ple curves in the plane. We propose diverse canonical parameterization
of a 2D-curve. For instance, the arc-length parameterization is canonical,
but we consider other natural parameterizations like the parameteriza-
tion proportional to the curvature of the curve. Both aforementionned
parameterizations are very natural and correspond to a natural physi-
cal movement: the arc-length parameterization corresponds to travelling
along the curve at constant speed, whereas parameterization propor-
tional to curvature corresponds to a constant-speed moving frame. Since
the curvature function of a curve is a geometric invariant of the unpa-
rameterized curve, a parameterization using the curvature function is
a canonical parameterization. The main idea is that to any physically
meaningful strictly increasing function is associated a natural parame-
terization of 2D-curves, which gives an optimal sampling, and which can
be used to compare unparameterized curves in an efficient and pertinent
way. An application to point correspondence in medical imaging is given.

Keywords: Canonical parameterization + Geometric Green Learning -
shape space

1 Introduction

Curves in R? appear in many applications: in shape recognition as outline of an
object, in radar detection as the signature of a signal, as trajectories of cars etc.
There are two main features of the curve: the route and the speed profile. In this
paper, we are only interested in the route drawn by the curve and we will called
it the unparameterized curve. An unparameterized curve can be parameterized
in multiple ways, and the chosen parameterization selects the speed at which
the curve is traversed. Hence a curve can be travelled with many different speed
profiles, like a car can travel with different speeds (not necessarily constant)
along a given road. The choice of a speed profile is called a parameterization of
the curve. It may be physically meaningful or not. For instance, depending on
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applications, there may not be any relevant parameterization of the contour of
the statue of Liberty depicted in Fig. 1. In this paper, we propose various very
natural parameterization of 2D-curves. They are based on the curvature, which
together with the arc-length measure form a complete set of geometric invariants
or descriptors of the unparameterized curves.

2 Different Parameterizations of 2D-shapes

2.1 Arc-Length Parameterization and Signed Curvature

By 2D-shape, we mean the shape drawn by a parameterized curve in the plane.
It is the ordered set of points visited by the curve. The shapes of two curves are
identical if one can reparameterize one curve into the other (using a continuous
increasing function). Any rectifiable planar curve admits a canonical parameter-
ization, its arc-length parameterization, which draws the same shape, but with
constant unit speed. The set of 2D-shapes can be therefore identified with the set
of arc-length parameterized curves, which is not a vector subspace, but rather
an infinite-dimensional submanifold of the space of parameterized curves (see
5.

It may be difficult to compute an explicit formula of the arc-length parameter-
ization of a given rectifiable curve. Fortunately, when working with a computer,
one do not need it. One neither need a concrete parameterization of the curve to
depict it, a sample of points on the curve is enough. To draw the statue of Lib-
erty as in Fig. 1 left, one just needs a finite ordered set of points (the red stars).
The discrete version of an arc-length parameterized curve is a uniformly sam-
pled curve, i.e. an ordered set of equally distant points (for the euclidean metric).
Resampling a curve uniformly is immediate using some appropriate interpola-
tion function like the matlab function spline (the second picture in Fig. 1 shows
a uniform resampling of the statue of liberty).

Consider the set of 2D simple closed curves, such as the contour of Elie
Cartan’s head in Fig.2. After the choice of a starting point and a direction,
there is a unique way to travel the curve at unit speed. In Fig. 2, we have drawn
the velocity vector near the glasses of Elie Cartan, as well as the unit normal
vector which is obtained from the unit tangent vector by a rotation of +7. These
two vectors form an orthonormal basis, i.e. an element (modulo the choice of a
basis of R?) of the Lie group SO(2), which is characterized by a rotation angle.
The rate of variation of this rotation angle is called the signed curvature of the
curve. For instance, when moving along the external outline of the glasses, this
curvature equals the inverse of the radius of the glasses. We have depicted the
curvature function k of Elie Cartan’s head in Fig. 3, first line, when the parameter
s € [0;1] on the horizontal axis is proportional to arc-length, and such that the
entire contour of Elie Cartan’s head is travelled when the parameter reaches 1.
It corresponds to a uniform sampling of the contour. The curvature function is
also depicted when parameterized by two other canonical parameters, namely by
the curvature-length parameter (second line) and the curvarc-length parameter
(third line).
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Fig. 1. The statue of Liberty (left), a uniform resampling using Matlab function spline
(middle), a reconstruction of the statue using its discrete curvature (right). (Color
figure online)

A discrete version of an arc-length parameterized curve is an equilateral
polygon. To draw an equilateral polygon, one just need to know the length of
the edges, the position of the first edge, and the angles between two successive
edges. The sequence of turning-angles is the discrete version of the curvature and
defines a equilateral polygon modulo rotation and translation. In Fig. 1, right,
we have reconstructed the statue of Liberty using the discrete curvature.

In order to interpolate between two parameterized curves, it is easier when the
domains of the parameter coincide. For this reason we will always consider curves
parameterized with a parameter in [0; 1]. A natural parameterization is then the
parameterization proportional to arc-length. It is obtained from the parameter-
ization by arc-length by dividing the arc-length parameter by the length of the
curve L. The corresponding curvature function is also defined on [0;1] and is
obtained from the curvature function parameterized by arc-length by compress-
ing the z-axis by a factor L. To recover the initial curve from the curvature
function associated to the parameter s € [0;1] proportional to arc-length, one
only need to know the length of the curve.
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Fig. 2. Elie Cartan and the moving frame associated to the contour of his head.
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Fig. 3. Signed curvature of Elie Cartan’s head for the parameterization proportional
to arc-length (first line), proportional to the curvature-length (second line), and pro-
portional to the curvarc length (third line).
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2.2 Parameterization Proportional to Curvature-Length

In the same spirit as the scale space of T. Lindeberg [2], and the curvature
scale space of Mackworth and Farcin Mokhtarian [3], we now define another
very natural parameterization space of 2D curves. Its relies on the fact that the
integral of the absolute value of the curvature k is an increasing function on the
interval [0; 1], strictly increasing when there are no flat pieces. In that case the

function . J

r(s) = do Il 0

Jo 6(s)lds

(where k denotes the curvature of the curve) belongs to the group of orientation
preserving diffeomorphisms of the parameter space [0; 1], denoted by Diff* ([0; 1]).
Note that its inverse s(r) can be computed graphically using the fact that its
graph is the symmetric of the graph of r(s) with respect to y = 2. The contour of
Elie Cartan’s head can be reparameterized using the parameter r € [0; 1] instead
of the parameter s € [0;1]. In Fig.4 upper left, we have depicted the graph
of the function s — r(s). A uniform sampling with respect to the parameter
r is obtain by uniformly sampling the vertical-axis (this is materialized by the
green equidistributed horizontal lines) and resampling Elie Cartan’s head at the
sequence of values of the s-parameter given by the abscissa of the corresponding
points on the graph of r (where a green line hits the graph of r a red vertical
line materializes the corresponding abscissa). One sees that this reparameteriza-
tion naturally increases the number of points where the 2D contour is the most
curved, and decreases the number of points on nearly flat pieces of the contour.
For a given number of points, it gives an optimal way to store the information
contained in the contour. The quantity

C= L/O ()]s, @)

where s € [0;1] is proportional to arc-length, is called the total curvature-length
of the curve. It is the length of the curve drawn in SO(2) by the moving frame
associated with the arc-length parameterized curve. For this reason we call this
parameterization the parameterization proportional to curvature-length. In the
right picture of Fig. 4, we show the corresponding resampling of the contour of
Elie Cartan’s head.

This resampling can naturally be adapted in the case of flat pieces resulting
in a sampling where there is no points between two points on the curve joint by
a straight line. In the left picture of Fig.5, we have depicted a sampling of the
statue of Liberty proportional to curvature-length. Note that there are no points
on the base of the statue. The corresponding parameterization has the advantage
of concentrating on the pieces of the contour that are very complex, i.e. where
there is a lot of curvature, and not distributing points on the flat pieces which
are easy to reconstruct (connecting two points by a straight line is easy, but
drawing the moustache of Elie Cartan is harder and needs more information).
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Fig. 4. First line: Integral of the (renormalized) absolute value of the curvature (left),
and corresponding resampling of Elie’s Cartan head (right). Second line: Integral of
the (renormalized) curvarc length (left), and corresponding resampling of Elie’s Cartan
head (right). (Color figure online)

The drawback of using the parameterization proportional to curvature-length
is that one can not reconstruct the flat pieces of a shape without knowing their
lengths (remember that the parameterization proportional to curvature-length
put no point at all on flat pieces). For this reason we propose a parameteri-
zation intermediate between arc-length parameterization and curvature-length
parameterization. We call it curvarc-length parameterization.

2.3 Curvarc-Length Parameterization

In order to define the curvarc-length parameterization, we consider the triple
(P(s),v(s),n(s)), where P(s) is the point of the shape parameterized propor-
tionally to arc-length with s € [0;1], v(s) and n(s) the corresponding unit
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tangent vector and unit normal vector respectively. It defines an element of the
group of rigid motions of R?, called the special Euclidean group and denoted
by SE(2) := R? x SO(2). The point P(s) corresponds to the translation part of
the rigid motion, it is the vector of translation needed to move the origin to the
point of the curve corresponding to the parameter value s. The moving frame
O(s) defined by v(s) and n(s) is the rotation part of the rigid motion. One has
the following equations:

P

P _ 14
ds

Low-(8). @

where L is the length of the curve. Endow SE(2) := R?xSO(2) with the structure
of a Riemannian manifold, product of the plane and the Lie group SO(2) ~ S!.
Then the norm of the tangent vector to the curve s — (P(s),v(s),n(s)) is
L + |k(s)|. Therefore the length of the SE(2)-valued curve is L + fol |k(s)|ds =
L+ % We call it the total curvarc-length. It follows that the following function

Lv(s) and O(s)

_ Jo (L +|s(s)])ds

O = T (o)

(4)

defines a reparameterization of [0; 1]. More generally, one can use the following
canonical parameter to reparameterize a curve in a canonical way:

_ f; L)+ |k(s)|)ds
[y LA+ |k(s)])ds’

ux(s) (5)

where s is the arc-length parameter. In Fig. 5 we show the resulting sampling of
the Statue of Liberty for different values of A. Note that for A = 0, one recovers
the curvature-length parameterization (1), for A = 1 one obtains the curvarc-
length parameterization (4), and when A — 400 the parameterization tends to
the arc-length parameterization.

3 Application to Medical Imaging: Parameterization of
Bones

In the analysis of diseases like Rheumatoid Arthritis, one uses X-ray scans to
evaluate how the disease analogous the bones. One effect of Rheumatoid Arthritis
is erosion of bones, another is joint shrinking [1]. In order to measure joint space,
one has to solve a point correspondence problem. For this, one uses landmarks
along the contours of bones as in Fig.6. These landmarks have to be placed
at the same anatomical positions for every patient. In Fig.7 they are placed
using a method by Hans Henrik Thodberg [4], based on minimum description
length which minimizes the description of a Principal Component Analysis model
capturing the variability of the landmark positions. For instance in Fig.7 left,
the landmark number 56 should always be in the middle of the head of the bone
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Fig. 5. Resampling of the statue of Liberty using Eq. (5) for (from left to right) A =0
(curvature-length parameterization); A = 0.3; A = 1(curvarc-length parameterization);
A = 2; X = 100. The parameterization tends to arc-length parameterization when
A — o0.

because it is used to measure the width between two adjacent bones in order to
detect rheumatoid arthritis.

Although the method by Hans Henrik Thodberg gives good results, it is com-
putationally expensive. In this paper we propose to recover similar results with
a quicker algorithm. It is based on the fact that any geometrically meaningful
parameterization of a contour can be expressed using the arc-length measure
and the curvature of the contour, which are the only geometric invariants of a
2D-curve (modulo translation and rotation). It follows that the parameterization
calculated by Thodberg’s algorithm should be recovered as a parameterization
expressed using arc-length and curvature. We investigate a 2 parameter family
of parameterizations defined by

_ Jo (e x L+ |k(s)|[*)ds
fol(c x L+ |k(s)|M)ds

u(s) (6)

where ¢ and A\ are positive parameters and where L is the length of the curve
and k its curvature function. We recover an analogous parameterization to the
one given by Thodberg’s algorithm with ¢ = 1 and A = 7 at real-time speed
(gain of 2 order of magnitude). Hence, instead of running Thodberg’s algorithm
on new samples (which takes many minutes on a Mac M1), one can use the
optimal parameterization function (6) to place landmarks on the bones at real
time speed (Fig. 8).
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Fig. 8. 14 bones parameterized by Thodberg’s algorithm on one hand and the param-
eterization defined by (6) with ¢ = 1 and A = 7 on the other hand (the two parameter-
izations are superposed). The colored points corresponds to points labelled 1, 48, 56,
66. They overlap for the two methods.

4 Conclusion

We proposed diverse canonical parameterization of 2D-contours, which are
expressed using arc-length and curvature of curves. The curvature-length param-
eterization and the curvarc-length parameterization are very natural examples,
since they corresponds to a constant-speed moving frame in SO(2) and SE(2).
We present an application to the point matching problem in medical imaging
consisting of automatically labeling key points along the contour of bones. We
recover a parameterization analogous to that proposed by Thodberg at real-time
speed. Since we have a family of two-parameter parameterizations, fine-tuning
can be applied to our results to further improve the point matching.
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Abstract. The shape space considered in this article consists of surfaces
embedded in R?, that are decorated with curves. It is a special case of the
Fréchet manifolds of nonlinear flags, i.e. nested submanifolds of a fixed
type. The gauge invariant elastic metric on the shape space of surfaces
involves the mean curvature and the normal deformation, i.e. the sum
and the difference of the principal curvatures 1, k2. The proposed gauge
invariant elastic metrics on the space of surfaces decorated with curves
involve, in addition, the geodesic and normal curvatures kg4, k, of the
curve on the surface, as well as the geodesic torsion 7.

More precisely, we show that, with the help of the Euclidean metric,
the tangent space at (C, X') can be identified with C*°(C) x C*°(X) and
the gauge invariant elastic metrics form a 6-parameter family:

Ge,zy(hi, he) = al/

(hikg + ha|crn)?dl +a2/ (h2)? (k1 — K2)?dA
C Py

+b1/(Dsh1 — ha|cTy)?dl +b2/(h2)2(/~e1+fcg)2dA

(e p

+c1/(DS(h2|c)+thg)2d£ +C2/ |Vhs|?dA,
C x

where hy € C(C), hy € C(X).

Keywords: Shape space -+ Geometric Green Learning - Gauge
invariant elastic metrics

1 Introduction

In this paper we use the elastic metrics on parameterized curves ([5,10]) and
parameterized surfaces ([4]) in order to endow the shape space of surfaces dec-
orated with curves with a family of Riemannian metrics. This shape space of
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decorated surfaces is an example of Fréchet manifold of nonlinear flags, studied
in [3]. These consist of nested submanifolds of an ambient manifold M, of a fixed
type S1 2,06, 2 S,. In our case the ambient manifold is R3 and the
type is the embedding of the equator into the sphere: St - S2.

We emphasize that we do not use the quotient elastic metrics on curves and
surfaces, but rather their gauge invariant relatives (see [8,9]). Indeed, following
[6,7] for surfaces in R?, and [2] for curves in R?, we construct degenerate metrics
on parameterized curves and surfaces by first projecting an arbitrary variation of
a given curve or surface onto the space of vector fields perpendicular to the curve
or surface (for the Euclidean product of R?) and then applying the elastic metric
on this component. By construction, vector fields tangent to the curve or surface
will have vanishing norms, leading to a degenerate metric on pre-shape space.
However, since the degeneracy is exactly along the tangent space to the orbit of
the reparameterization group, these degenerate metrics define Riemannian (i.e.
non-degenerate) metrics on shapes spaces of curves and surfaces (as in Theorem
3 in [8]). The following advantages of this procedure can be mentioned:

e there is no need to compute a complicated horizontal space in order to define
a Riemannian metric on shape space

e the length of paths in shape space equals the length of any of their lifts for the
corresponding degenerate metric, a property called gauge invariance in [6,7].

e the resulting Riemannian metric on shape spaces can be easily expressed in
terms of geometric invariants of curves and surfaces, leading to expressions that
are completely independant of parameterizations.

In this paper, we use the gauge invariant (degenerate) metrics on parame-
terized curves and surfaces obtained from the elastic metrics via the procedure
described above in order to define Riemannian metrics on shape spaces of curves
and surfaces. Then we embed the shape space of nonlinear flags consisting of
surfaces decorated with curves into the Cartesian product of the shape space
of curves in R3 with the shape space of surfaces in R3. The Riemannian metric
obtained on the shape space of nonlinear flags can be made explicit thanks to a
precise description of its tangent space (Theorem 1) and thanks to the geometric
expressions of the metrics used on curves and surfaces, leading to a 6-parameter
family of natural Riemannian metrics (Theorem 2).

2 Shape Spaces of Decorated Surfaces as Manifolds
of Nonlinear Flags

We will consider the shape space of nonlinear flags consisting of pairs (C, X)
such that C is a curve on the surface X embedded in R3. We will restrict our
attention to surfaces of genus 0, and simple curves (the complement to the curve
in the surface has only two connected components), but our construction can
be extended without substantial changes to surfaces of genus g and to a finite
number of curves. The general setting for the Fréchet manifolds on nonlinear
flags of a given type S; -+ Sy =25 --- — S, can be found in [3]. Our type is the
embedding ¢ of the unit circle S' in the unit sphere S? as the equator, thus the
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shape space of nonlinear flags is in this case 7 := Flag, . ., (R?). Examples of
elements (C, X) € F are given in Fig. 1.

Fig. 1. Examples of elements in the shape space of nonlinear Flags: a black belt on a
human body (left), the model nonlinear flag consisting of the equator (in white) on the
sphere, and a black collar on a cat (right)

We will be interested in deforming flags. To this aim, we will represent a
general flag (O, Y) using an embedding F' : S? — R3 such that the image of
the restriction F o of F' to the equator is C. The pair (F o, F') is also called a
parameterization of the flag (C, X). The space of parametrized flags is

P:={F :S* = R? F is an embedding}.

It is called the pre-shape space of flags since objects with same shape but different
parameterizations correspond to different points in P. The set P is a manifold,
as an open subset of the linear space C*°(S?,R?) of smooth functions from S? to
R3. The tangent space to P at F, denoted by TP, is therefore just C>°(S?,R3).

There is a natural projection 7 from the space of parameterized flags P onto
the space of flags F given by

T(F) = ((F o)(8"), F(8%). (1)

Since we are only interested in unparameterized nonlinear flags, we would like
to identify pairs of parameterized curves and surfaces that can be related through
reparameterization. The reparametrization group G is the group of diffeomor-
phisms 7 of S? which restrict to a diffeomorphism of the equator ¢ : S! — S? :

G = {v € Diff(S?) : yo1 =107 for some 7 € Diff(S!)}.

The group G is an infinite-dimensional Fréchet Lie group whose Lie algebra is
the space of vector fields on S? whose restriction to the equator is tangent to the
equator. The right action of G on P is given by F -~ := F o~. It’s a principal
action for the principal G-bundle 7 : P — F.

The elements in P obtained by following a fixed parameterized flag F' € P
when acted on by all elements of G is called the G-orbit of F or the equivalence
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class of F under the action of G, and will be denoted by [F]. The orbit of F' € P
is characterized by the surface X := F(S?) and the curve C := (Fo.)(S'), hence
m(F) = (C,X) (see (1)). The elements in the orbit [F] = {F o+, for v € G} are
all possible parameterizations of (C, X) of the form (F o, F). For instance in
Fig. 2 one can see some parameterized hands with bracelets that are elements of
the same orbit. The set of orbits of P under the group G is called the quotient
space and will be denoted by P/G.

Fig. 2. Examples of elements in the same orbit under the group of reparameterizations:
a hand with a white bracelet presented under different parameterizations.

Proposition 1. The shape space F is isomorphic to the quotient space of the
pre-shape space P by the shape-preserving group G = Diff (S%;1) :

F=P/G.

The shape space F = P/G is a smooth manifold and the canonical projection
m P — F, F s [F]is a submersion (see for instance [3]). The kernel of the
differential of this projection is called the vertical space. It is the tangent space
to the orbit of F' € P under the action of the group G.

Proposition 2. The vertical space Verp of m at some embedding F € P is the
space of vector fields Xp € C>®(S?,R3) such that the deformation vector field
X o F~1 s tangent to the surface X := F(S?) and such that the restriction of
Xr o F~1 to the curve C := F o 1(SY) is tangent to C.

The normal bundle Nor is the vector bundle over the pre-shape space P,
whose fiber over an embedding F' is the quotient vector space

Norp :=TrP/ Verp .

Proposition 3. The right action of G on P induces an action on TP which
preserves the vertical bundle, hence it descends to an action on Nor by vector
bundle homomorphisms. The quotient bundle Nor /G can be identified with the
tangent bundle T'F.

Consider a nonlinear flag (C, Y). Let us denote by v the unit normal vector
field on the oriented surface X, and by t the unit vector field tangent to the
oriented curve C. Set n := v x t the unit normal to the curve C contained in
the tangent space to the surface X. The triple (t,n, ) is an orthonormal frame
along C, called the Darboux frame. We will denote by (-, ) the Euclidian scalar
product on R3.
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Fig. 3. Deformation vector field and Darboux frame (t,n,v), where v is the unit normal
vector field on the oriented surface o, t is the unit vector field tangent to the oriented
curve C and n := v X t is the unit normal to the curve C' contained in the tangent
space to the surface.

Theorem 1. Let F' be a parameterization of (C, X). Consider the linear surjec-
tive map

Up :TpP ~C®(S* R3) — C®(C) x C*(X%), (2)
which maps Xp € TP to (h1, ha) defined by

hi:={((Xpot)o(Foi) ' n)eC>®),
hy == (Xpo F~ 1) e C®(X).

Then the kernel of Wp is the vertical subspace Verp, hence Wg defines a map
from the quotient space Norp = Tr'P/ Verg into C=°(C) x C=(X). The resulting
bundle map ¥ is G-invariant providing an isomorphism between the tangent
space T(c,s)F and C(C) x C=(X).

Proof. Consider X5 such that ¥x(Xr) = 0. Since hy = 0, Xp o F~! is a vector
field tangent to X. Since h; = 0, the restriction of Xp o F~! to the curve C,
given by (Xg o) o (F o)™l is tangent to X and orthogonal to n, hence it is
tangent to C. Thus, by Proposition 2, the kernel of ¥ is exactly Verp.

Let us show that ¥ is G-invariant, i.e. that for v € G,

WF(XF) = LpFo'y(XF [¢] ’}/). (3)

One has 7(F o) = n(F) = (C, X). Moreover the normal vector fields v : ¥ —
R3 and n : C — R3 do not depend on the parameterizations of X and C. For

~v € G, we have
(Xpoy)o(Foy) ' =XpoF!

as deformation vector fields on Y. On the other hand, using the fact that yor =
1o for some 7 € Diff(St), we get

(Xroyou)o(Foyor) ™ = (Xpor)o(Fou)™!

as deformation vector fields on C. The invariance property (3) follows.
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The projection 7 : P — F = P/G is a principal G-bundle, hence the G-
action preserves the vertical bundle Ver. It induces a well-defined G-action on
Nor : for v € G, the class [Xp| € Norp is mapped to the class [Xp o 7] €
Norpo. By G-invariance of ¥, we get a well-defined map on Nor /G which maps
isomorphically the tangent space T sy F into C*°(C) x C*=(X).

Remark 1. The construction in Theorem 1 also works for complete nonlinear
flags of length k in R**!. These are nested submanifolds N; C ... C N, C RFt+1
with dim/N; = ¢. In this case, the tangent space at a complete nonlinear flag can
be identified with C*°(Ny) X ... x C*°(Ny,).

Remark 2. For the pre-shape space of embedded surfaces, there is a natural
section of the projection TP — C*(X), given by variations that are in the
direction of the normal vector field v to the surface Y. In this case, the Euclidean
metric on R? induces a connection on the principal Diff(S?)-bundle P — S,
where S denotes the shape space of surfaces. The problem of finding similar
principal connections for the G-bundle P — F will be addressed in [1].

Remark 3. As in Proposition 2.9 in [3], the shape space F can be seen as a homo-
geneous space for the compactly supported diffeomorphism group Diff.(R?), with
origin the nonlinear flag S' C S? in R3.

3 Riemannian Metrics on Shape Spaces of Nonlinear
Flags

As in [6] and [7], we endow the pre-shape space of parameterized curves and
surfaces with a family of gauge invariant metrics which descend to a family of
Riemannian metric on shape spaces of curves and surfaces. The construction is
explained in Subsect. 3.1. The Riemannian metrics on parameterized curves and
surfaces used in this construction are the elastic metrics given in Subsect. 3.2.
The expression of the Riemannian metrics obtained on nonlinear flags in terms
of the geometric invariants of curves and surfaces is given in Subsect. 3.3.

3.1 Procedure to Construct the Riemannian Metrics

In order to construct a Riemannian metric on the space F of nonlinear flags, we
proceed as follows:

1. we embed our shape space F of surfaces decorated with curves in &1 x So,
with S7 the shape space of curves and Sy the shape space of surfaces.

2. we choose a family g®® of Diff T (S!)-invariant metrics on the space of param-
eterized curves P; (Eq. (6))

3. the family g defines a family of Riemannian metrics on the shape space of
curves S; by restricting to the normal variations of curves

4. we choose a family ¢%? ¢ of Diff " (S?)-invariant metrics on the space of
parameterized surfaces P2 (Eq. (7)).
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5. the family ¢**+¢ defines a family of Riemannian metrics on the shape space
of surfaces S2 by restricting to the normal variations of surfaces

6. the product of these metrics is then restricted to F using the characterization
of the tangent space to F given in Theorem 1.

Remark 4. An equivalent procedure is to pull back to P, via F — (F o, F) €
P1 X Po, the sum of the gauge invariant elastic metrics on the preshape space
P, for curves and Po for surfaces. The result is gauge invariant under G, so it
descends to a Riemannian metric on the shape space F.

Fep Pix P23 (FouF)
Gl lDiH(Sl)xDiff(SQ) (4)
C,X)eF S1x 8 3 (C,X).

3.2 Elastic Metrics on Manifolds of Parameterized Curves
and Surfaces

The family of metrics measuring deformations of curves that we will use is the
family of Diff " (S!)-invariant elastic metrics on parameterized curves P; in [5]:

G20, ho) = /C (D) (Dohl) + b(Duh) (Do) de, (5)

where f € P; is a parameterization of the curve C, h; € TyP; are tangent

vectors to the space of parameterized curves, df = || f(t)||dt, Dsh(t) = H;Eg\l

the arc-length derivative of the variation h, Dshll = (Dsh,t) is the component

along the unit tangent vector field t = H%H to the curve, D,ht = Dsh—(Dgh,t)t

is the component orthogonal to the tangent vector t. Here the a-term measures
streching of the curve, while the b-term measures its bending. Note that this
metric is degenerate: it has a kernel induced by translations of curves.

Let §f denote a perturbation of a parametrized curve f : S' — R?, and let
(6r,6t) denote the corresponding variation of the speed r := ||f(t)| and of the
unit tangent vector field t. It is easy to check that the squared norm of §f for
the metric (5) reads:

is

2
EH6f) == g3 (51.51) :a/81 (‘5:) d£+b/81 |5¢[2d. (6)

The family of metrics measuring deformations of surfaces that we will use is
the family of Diff T (S?)-invariant metrics introduced in [4] and called elastic met-
rics. Let 0 F denote a perturbation of a parametrized surface F', and let (dg, §v)
denote the corresponding perturbation of the induced metric g = F*(-,)gs
and of the unit normal vector field v. Then the squared norm of JF', namely

gu v ¢ (5F,6F), is:

5;4(5F)=a’/ Tr((g*%sg)o)?dAer’/ (Tr(gflag))Z‘dAH’/ v2dA (7)
S2 S2 S2
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where By is the traceless part of a 2 x 2-matrix B defined as Bg = B— TrgB) Ioyo.
The a/-term measures area-preserving changes in the induced metric g, the b'-
term measures changes in the area of patches, and the ¢’-term measures bending.
Similarly to the case of curves, this metric also has kernel induced by translations.

3.3 Geometric Expression of the Riemannian Metrics on Manifolds
of Decorated Surfaces

In this subsection we restrict the reparametrization invariant metrics (6) and
(7) to normal variations. This allows us to express them with the help of the
principal curvatures k1 and ko of the surface, geodesic and normal curvatures
Kg,kn of the curve on the surface, as well as its geodesic torsion 7,. We recall
the identities involving (t,n, v), the Darboux frame:

t =r(kgn+r,r), D=r(—kgt+7yv), »=7r(—Kyt—T,n). (8)

For functions h on the curve we will use the arc-length derivative D;h = h/ r,
because it is invariant under reparametrizations.

Moreover, we split the b-term in (6) into two terms in order to put different
weights on the variations along v and n. This leads to the following result :

Theorem 2. The gauge invariant elastic metrics for parameterized curves
respectively surfaces lead to a 6-parameter family of Riemannian metrics on
the shape space of embedded surfaces decorated with curves:

g(cvg)(hl, hg) = ax / (hllig + h2|clin)2d£ +02/ (h2)2(:‘<§1 - IiQ)sz
C X
+b1/(DSh1 — ha|cTy)?dl +b2/ (ha)? (k1 + K2)?dA
C p
+cl/(DS(h2|c)+thg)2d£ +02/ |Vha|?dA, (9)
C by

for hy € C=(C) and hy € C™(X).
In the proof we will use the following two lemmas:

Lemma 1. Given the normal variation 0f = hyn+hs|cv of the parametrized
curve f = F o on the parametrized surface F, the variation of the speed r and
of the unit tangent vector field t are

or = —r(hikg + ho|ckn), Ot = (%hl — ha|cTy) n+(%h2|c + hitg)v
Proof. For f. = f +e(hyn+hov) + O(g?), we get

7‘? =r2_ 25T2(h1l€g + h2|C’€n) + 0(52)
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using the well known identities (8). Thus 2rér = —2r%(hik,+ha|cfn), hence the
first identity. We use it in the computation of the variation of the unit tangent
goes as follows:

0t = %5f—67rt= *( (h1/€g+h2‘cﬁn)t+(h1—’I“h2|c7'g)
+ (halo + rharg)v) + (hikg + halokn) t = (22 — hy|o7y) n+( 22l hale 4 7Y,

hence the second identity.

Lemma 2. Given the normal variation 0F = hv of the parametrized surface F,
the variation of the unit normal vector field v and the gradient of h with respect
to the induced metric on the surface have the same norm.

Proof. Let (u,v) denote coordinates on S? and let F,, F, denote the partial
derivatives of F' (and similarly for ). Then, as in [6], we get the variation

v = _(hu7 hv)g_l(Fu; F’U)T
On the other hand Vh = g~ 1(h,, h,) . Now we compute

|5V‘2 (hu,hy)g™ ( ws FU)T(Fquv)gil(huahu)T
= (hu7h11)97 (hU7 hv)T = (Vh)Tth = |Vh|2,

using the fact that g = (Fy,, F,) " (Fy, F,).

Proof (of Theorem (2)). Let (t,n,v) be the Darboux frame along the curve
C C X. The normal vector field h;n+(he|c)v to the curve C encodes the
variation of the curve which doesn’t leave the surface Y. Using the Lemma 1,
we obtain the following expression for the elastic metric (6) restricted to this
normal variation:

E1 (hy 1 +(halc)) = a/ (kg + halchn)?dl
C
+ b/ ((Dshl - h2|c7'g)2 + (D5<h2|c) + thg)2) dfb.
C

We will split the b-term in two parts, thus obtaining a 3-parameter family of
metrics, namely

al/(h1n9+h2\cnn)2d€+b1/(Dshl—h2|CTg)2d€+cl/(Ds(h2\0)+thg)2d€.
C C C

The normal vector field hov to the surface X encodes the variation of the
surface. Using Eqn. (12) in [6] the elastic metric (7) restricted to this normal
variation is given by the following geometric expression :

gg*(hzl/) = 2@/

2 K1 — R2 2
| (h2)* ) dA+4b/

(h2)2(n1+n2)2dA+c/ |Vha|2dA.
b X
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Here we use the fact that g~ '6g = —2hy L, where L is the shape operator of the
surface, as well as the identity |dv| = |Vhz|, where V denotes the gradient with
respect to the induced metric on the surface, by Lemma 2.

Renaming the parameters and adding to this elastic metric for the surface
the elastic metric for the curve on the surface obtained above leads to the 6-
parameter family of elastic metrics for the shape space F.

Remark 5. Assuming that the functions hq, hy are constant along the curve C,
the by-term becomes [, (ha|c7y)?d¢ and encodes the variation of the curve nor-
mal to the surface (variation together with the surface) while the ¢; term becomes
J. C(thg)Qdé and encodes the normal variation of the curve inside the surface.

4 Conclusion

In this paper, we identify the tangent spaces to nonlinear flags consisting of
surfaces of genus zero decorated with a simple curve. We use gauge invariant
metrics on parameterized curves and surfaces to endow the space of nonlinear
flags with a family of Riemannian metrics, whose expression is given in terms of
geometric invariants of curves and surfaces.
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Abstract. We present a neurogeometric model for stereo vision and
individuation of 3D perceptual units. We first model the space of position
and orientation of 3D curves in the visual scene as a sub-Riemannian
structure. Horizontal curves in this setting express good continuation
principles in 3D. Starting from the equation of neural activity we apply
harmonic analysis techniques in the sub-Riemannian structure to solve
the correspondence problem and find 3D percepts.

Keywords: Neurogeometry + Stereo vision - 3D perceptual units + 3D
good continuation

1 Introduction

We propose here a neurogeometrical model of stereo vision, in order to describe
the ability of the visual system to infer the three-dimensionality of a visual scene
from the pair of images projected respectively on the left and right retina.

The first differential models of the visual cortex, devoted to the description
of monocular vision, have been proposed by Hoffmann [16] and Koenderink-van
Doorn [19]. Results were unified under the name of neurogeometry by Petitot and
Tondut [23], who related psychophysical experiments of Field, Hayes and Hess [14]
with the contact geometry introduced by Hoffmann [16] and the stochastic app-
roach of Mumford [21]. The functional architecture of the visual cortex has been
described through sub-Riemannian metrics by Citti and Sarti [8] and through
Frenet frames by Zucker [29], and after that a large litterature was developed.

The geometric optics of stereo vision has been proposed by Faugeras in
[13] and a differential model for stereo was proposed by Zucker [29]. A sub-
Riemannian structure of 3D space has been introduced by Duits et al. in [11,12]
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and [24] for 3D image processing. Our model, first introduced in [4], general-
izes these models introducing a sub-Riemannian geometry for stereo vision: it is
presented in Sect. 3. In particular, we will focus on association fields, introduced
in 2D by Field, Hayes and Hess in [14] and modeled in [8,23] and [5]. We will
extend this approach to neural connectivity with integral curves and justify psy-
chophysical experiments on perceptual organization of oriented elements in R?
(19,15,17)).

The main contribution with respect to [4] is the constitution of 3D percepts,
presented in Sect. 4. We start from the model of interactions between neural pop-
ulations proposed by Bressloff-Cowan (|6]) and we modify the integro-differential
equation they propose with the connectivity kernel obtained as fundamental
solution of a sub-Riemannian Fokker Planck. Then, we generalize the stability
analysis proposed by [6] for hallucinations, by [26] for emergence of percepts,
and we show that in this case they correspond to 3D perceptual units.

2 The Stereo Problem

The stereo problem deals with the reconstruction of the three-dimensional visual
scene starting from its perspective projection through left C; and right Cg
optical centers on the two eyes. The setting of the problem involves classical
triangulation instruments (e.g. [13]), and the main issue is to couple in a correct
way the correspondent left Qr = (zr,y) and right Qr = (zg,y) points on the
parallel retinal planes (y = yr = yg), in order to project them back into the
environment space to obtain Q = (r1, 72, 73) € R3, see Fig. 1,(a). This goes under
the name of stereo correspondence.

The main clues for solving the correspondence are the slight differences in
the two projected images, namely the disparities. Our main focus will be on
horizontal positional disparity d := (2 — 2g)/2, which introduces the set of
cyclopean coordinates (x,y, d), together with the mean position = := (zp+xzg)/2.
Since binocularly driven neurons in the primary visual cortex, which perform the
binocular integration, receive input from monocular (orientation selective) cells,
we will choose as additional variables the orientations on left and right monocular
structures: 07, and 0g; but we will not consider orientation disparity, because it
does not seem to be coded directly in the visual cortex, see for example [7].

2.1 The Monocular Model for Orientation-Selective Cells

The hypercolumnar structure selective for orientation of monocular left and right
simple cells in V1 (denoted respectively ¢ = L, R) can be modeled in term of a
fiber bundle, with base (z;,y) € R? identified with the retinal plane, (see [23])
and fiber 0; € R/27Z = S!'. The response O;(z;,y,0;) of these cells to a visual
signal on the retina I'(x;, y) is quantified in terms of a function ¢(z;,y, 6;), called
receptive profile RP and well described by Gabor filters, see Fig. 1,(b). Following
the work of Citti and Sarti [8], the action of these RPs induces a choice of contact
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Prediction LR AD

Fig. 1. (a) Stereo geometry. (b) Above: Gabor filter: model of 2D receptive profile, its
1D section. Below: binocular receptive profile (image adapted from [2]) (¢) The Zucker
model (image adapted from [20]).

form on the whole space:
wp, = —sinb;dx; + cos b;dy. (1)

The visual signal propagates in this cortical structure along integral curves of
vector fields lying in the kernel of this contact form.

2.2 Models of Binocular Cells and Stereo Vision

Ohzawa et al. in [2] found that binocular simple cells in V1 perform a non-
linear integration of left and right monocular cells, displayed in Fig. 1, (b). They
proposed the binocular energy model (BEM), which characterize the binocu-
lar output through an interaction term Op, product of left Op and right Og
monocular outputs:

OB = OROL- (2)

The mathematical model for stereo vision built by Zucker et al. in [1,20] is
based on neural mechanisms of selectivity to position, orientations and curva-
tures of the visual stimulus and it is expressed via instruments of Frenet dif-
ferential geometry. The connections between binocular neurons are described
by helices whose spiral develops along the depth axis, encoding simultaneously
position and orientation disparities. The model is illustrated in Fig. 1, (c).

3 A Sub-Riemannian Model for Stereo Vision

In this section we present the biologically-inspired model proposed in [4].

3.1 The Fiber Bundle of Binocular Cells

The binocular structure is based on monocular ones and it is equipped with a
symmetry that involves the left and right structures, allowing the use of cyclo-
pean coordinates (z,y,d) defined in Sect.2. The set of binocular cells will be
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expressed a fiber bundle with base B = R? the cyclopean retina of coordi-
nates (x,y). The structure of the fiber is F = R x S! x S!, with coordinates
(d,0r,0r) € F. Schematic representation is provided in Fig. 2, (a) and (b).

S IARE A

W
a

Fig. 2. Binocular cell structure and 3D reconstruction. (a) and (b) schematically rep-
resent the binocular fiber bundle in 2D: we visualized a 1D restriction to the direction
z of the basis, the fiber of disparity d in (a) and the fiber of orientations 61 and 0r
in (b). (c) describes reconstruction of a 3D curve from its projections. The normal to
the curves 71, and g on retinal planes are identified by the 1-forms wy, and we,. The
wedge product @y, Awey of their 3D counterpart identify the tangent vector to the 3D
corresponding curve v : R — R3.

3.2 Compatibility with Stereo Triangulation

We can introduce a 2-form starting from the monocular structures that embodies
the binocular energy model, since Eq. (2) can be written in terms of monocular
left and right RPs, see [4, Eq. (18),(49)], obtaining the following result.

Proposition 1. The binocular interaction term Op of (2) can be recast as
wedge product of the two monocular 1-forms wg, and we,, defined in (1):

Op = wy, Nwyg,, - (3)

It is possible to extend the monocular 1-forms wg, and wp,, on retinal planes
to Wy, and wg, l-forms in R3 and obtaining wop N W, . Through the Hodge
duality this 2-form identifies a vector that can be interpreted as the direction of
the tangent to a potential 3D curve in the scene, see Fig. 2 (c).

So, binocular cells couple positions, identified with points in R3, and orienta-
tions in S2, identified with three-dimensional unitary tangent vectors. To solve
the stereo problem the visual system must take into account suitable types of
connections ([27]). It is therefore natural to introduce the perceptual space via
the manifold M = R? X S?&wﬁ and look for appropriate curves in M.

(r1,72,73)

3.3 Stereo Sub-Riemannian Geometry

The sub-Riemannian structure on M can be expressed locally using the chart
6 € (0,27),¢ € (0,7) by considering an orthonormal frame {Y3, Yy, Y.}, where:

1
Y3 = cos 0 sin p0; + sin 0 sin 0y + cos pds, Yy = —
S

Ea@, Y@ = aw. (4)
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The vector field Y3 encodes the tangent of the stimulus, Y, involves orientation
in the depth direction, while Yy involves orientation on the fronto-parallel plane.
We take here into account that contour detectability systematically changed
with the degree to which they are oriented in depth, see [18]. Indeed the vector
Y5 is not defined for ¢ = 0, meaning that we do not perceive correctly contours
which are completely oriented in the depth direction. The vector fields satisfy
the Hérmander condition since the whole space is spanned at every point by the
vectors {Y3,Yy,Y,} and their commutators.

Remark 1. As noted by Duits and Franken in [12], the space R x S? can be
identified with the quotient SE(3)/{0rs} x SO(2). Different sections have dif-
ferent invariance properties; in [24], the authors provide a section which preserves

isotropy in the spherical tangent plane and give the same role to all the angular
variables [11, Thm.1 and Thm.4].

Integral curves with constant coefficients in the local orthonormal frame (4)
are defined by the differential equation:

I(t) = 173,1"(1&) + Cl%,l"(t) + 62?%1“(15) c1,c2 € R. (5)

These curves, displayed in Fig.3 (a), can be thought of in terms of trajectories
in R3 describing a movement in the Y3 direction, and by varying the coefficients
c1 and co in R, they can twist and bend in all space directions. Formally, the
amount of "twisting and bending" in space is measured by curvature k£ and
torsion 7, which in this setting read as: k = \/c} + c3, and 7 = —c; cotan ¢.

5

(a) (b) (c)

Fig. 3. Different families of integral curves (5). (a) General fan of integral curves
described by Eq. (5) with varying ¢; and ¢ in R, enveloping a curve v € R®. (b)
Arc of circles for constant ¢ = 7/2. (c) r3-helices for constant ¢ = 7/3.

The model is then compatible with the previous models of [8] of monocular
vision, since if ¢; = 0 or ¢ = 7/2 then I'(t)gs is a piece of circle (Fig.3, (b)). In
addition it is compatible with the results of [1], based on properties of curvature,
since if ¢ = g with g # 7/2, then I'(t)gs is a r3-helix. The main difference is
that curvature is an extracted feature in [1], while it is coded in connectivity in
our model.
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3.4 Good Continuation in 3D and Stereo Association Fields

The family (5) model neural connectivity (see [4]) and it can be related to the
geometric relationships deriving from psychophysical experiments on perceptual
organization of oriented elements in R3, the basis of the Gestalt law of good
continuation ([28]). This generalizes the 2D concept introduced by Field Hayes
and Hess in [14] (Fig. 4, (a)) of an association field in 3D.

The geometrical affinities between orientations under which a pair of position-
orientation elements in R? x S? are perceived as connected in a 3D scene, have
been determined by [17] with the theory of 3D relatability. Curves that are
suitable to connect these 3D relatable points have the properties of being smooth
and monotonic [9,15], extending good continuity/ regularity in depth. Moreover,
the strength of the relatable edges in co-planar planes with the initial edge must
meet the relations of the bi-dimensional association fields [17].

The family of integral curves (5) locally connects the association fan gener-
ated by 3D relatability geometry (Fig. 4, (b)), satisfying smoothness, monotonic-
ity and compatibility with 2D association fields.

2 :L_Q

\\\\

()

Fig. 4. Display of connectivity. (a) Field Hayes and Hess association field (top) and 2D
integral curves of the Citti-Sarti model [8] (bottom). (b) Fan of 3D relatable points con-
nected by integral curves (5).(c) Iso-surface in R?® of probability density (7) associated
to the curves (5).

4 Constitution of 3D Visual Perceptual Units

Integral curves model the good continuation law, playing a fundamental role
within the problem of perceptual grouping, individuating 3D visual units.

4.1 Sub-Riemannian Fokker Plank Equation and Connectivity
Kernel

The emergence of 3D visual percepts derives from interactions between binocular
cells: according to the Gestalt law of good continuation, entities described by
similar local orientations are more likely to belong to the same perceptual unit.

Following [3,25], we suppose that the signal starting from a binocular neuron
& € R3 x S? evolves following the stochastic process described by the SDE:

art) = YRS’F(t)dt + )\(Y@Jﬂ(t), wap(t))dB(t), AeR, (6)
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with B(t) 2-dimensional Brownian motion. The probability of interaction
between points £ and £’ € M, has a (time-independent) density:

{A (&) Paer, (7)

whose iso-surfaces in R? are displayed in Fig. 4, (c). This probability density coin-
cides with the (time-integrated) fundamental solution of the forward Kolmogorov
differential equation associated to (6) with operator £ = —Y3+A(Yy +Y2) writ-
ten in terms of the chosen vector fields (4). Analytical approximation of the
fundamental solutions have been provided in [12,24], and numerical approxima-
tion with Fourier methods and Monte-Carlo simulations in [10]. We implement
here the latter, following the approach presented in [3], since it is more physio-
logical being based on the stochastic integral curves.

Remark 2. The authors in [24] have shown that the space R? x S? can be identi-
fied with a section of SFE(3) where kernels have symmetry properties with respect
to the group law, and all angles have the same role. In our model, 3D association
field fan depends on the choice of the vector fields, which is not invariant, due to
the different meaning of the considered orientations. Nevertheless, we expect the
kernel to preserve invariance. A comparison between the two approaches based
on parametrix method will be provided in a future paper.

4.2 From Neural Activity to 3D Perceptual Units

The kernels (7) are implemented as facilitation patterns to define the evolution
in time ¢t — a(,t) of the activity of the neural population at £ € M. This
activity is usually modeled through a mean field equation, see [6]:

dal.t) = a6 +o( [ T e +hen). @

where h is the feedforward input, o is a sigmoidal function and J a symmetriza-
tion of (7). When the input h is constant over a subset 2 of M and zero else-
where, it has been proved in [26] that the domain of Eq. (8) reduces to {2 since
the population activity is negligible in the complementary set M\ (2.

We extend the stability analysis around a stationary state a; proposed by
[6] for hallucination and [26] for perceptual units. A perturbation w, difference
between two solutions a — a1, satisfies the eigenvalue problem associated to the
linearized time independent operator

1
[ aeeruie na = ~uten )
2 K
where 1 = 0/(0). As shown in [26] for the 2D case, the eigenvectors represent the

perceptual units, and the eigenvalues their salience. The whole process is strictly
linked with spectral clustering and dimensionality reduction results ([22]).
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4.3 The Proposed Model for the Correspondence Problem

The model can be described as follows. We start from two rectified stereo images.
We couple all possible corresponding points (left and right retinal points with
the same abscissa coordinate): this lifts retinal points in points &; € {2 generating
also false matches, i.e. points that do not belong to the original stimulus. We call
affinity matrix the kernel J evaluated on every couple of lifted points &;,&; € 2
Ji; = J(&,&;). Spectral analysis on J individuates 3D perceptual units, and
solves the stereo correspondence. In this process false matches are eliminated
since the similarity measure introduced by the kernel J groups elements satisfy-
ing the good-continuation constraints.

4.4 Numerical Experiments

We develop the ideas illustrated so far by numerical examples; the main steps
of the algorithm are summarized in Table 1.

Table 1. Recovering 3D visual percepts starting from rectified stereo images.

0 | Gabor filtering the left and right retinal images to obtain for every point (z;,y;) its
corresponding orientation 6; for i = L, R

1 | Recover the domain 2 C R?® x S?, &, € 2,k =1,...n, from the coupling of retinal
images by inverting perspective projections.

Call affinity matrix J the discretization of the kernel J: Ji; := J (&, &;)-

Solve the eigenvalue problem Ja = wa.

Find the ¢ largest eigenvalues {¢;}7_, and the associated eigenvectors {a;}?_;.

For k =1,...,n assign the point & to the clustered labeled by max;{a;(k)}7_;.

DO W N

Join together the clusters with less than @ elements.

Left image Right Image

Loft image Right imago — Ist Percept
7

8 8 8 8 8 8 8
8 8 8 8 8 8 8
s
PUDEES

Fig. 5. (a) Stereo images of a 3D curve. (b) Lifting of the stimulus in R® x S?: points
clustered together are marked by the same color (one main red colored 3D percept);
black points do not belong to any cluster. (c¢) Stereo images of a 3D helix and arc of a
circle. (d) Lifting of (c) in R® x S?: two main clusters (red and blue) correctly segment
into two perceptual units the 3D visual scene. (Color figure online)

The model is first tested on synthetic stereo images of 3D curves (Fig.5
(a),(c)), and perceptual units are correctly recovered (Fig.5 (c),(d)).
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Voo m)

(b)
Fig. 6. (a) Top: couple of natural images. Bottom: Gabor filtering to recover position
and orientation in retinal planes. (b) The application of the algorithm defined in Table 1
individuates the two 3D perceptual units (red and blue points). (Color figure online)

—— lIstclus

—— 2nd Cluster

A second test is performed on a natural image: we pre-process the images
via Gabor filtering, to recover position and orientation on the two retinas, and
then we apply the model. Results are illustrated in Fig. 6.
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Abstract. We build on the recently introduced PDE-G-CNN frame-
work, which proposed the concept of non-linear morphological convolu-
tions that are motivated by solving HJB-PDEs on lifted homogeneous
spaces such as the homogeneous space of 2D positions and orientations
isomorphic to G = SE(2). PDE-G-CNNs generalize G-CNNs and are
provably equivariant to actions of the roto-translation group SFE(2).
Moreover, PDE-G-CNNs automate geometric image processing via ori-
entation scores and allow for a meaningful geometric interpretation.

In this article, we show various functional properties of these networks:

(1.) PDE-G-CNNs satisfy crucial geometric and algebraic symmetries:
they are semiring quasilinear, equivariant, invariant under time scal-
ing, isometric, and are solved by semiring group convolutions.

(2.) PDE-G-CNNs exhibit a high degree of data efficiency: even under
limited availability of training data they show a distinct gain in per-
formance and generalize to unseen test cases from different datasets.

(3.) PDE-G-CNNs are extendable to well-known convolutional architec-
tures. We explore a UNet variant of PDE-G-CNNs which has a new
equivariant U-Net structure with PDE-based morphological convo-
lutions.

We verify the properties and show favorable results on various datasets.

Keywords: Group Equivariant Convolutional Neural Networks -
PDE-Based Image Processing + Lie Groups * Semirings - Riemannian
Geometry

1 Introduction and Background

Convolutional Neural Networks (CNNs) are ubiquitous in modern day computer
vision, and are considered standard computational architectures in most data-
dependent image processing tasks. Recently, there has been a great focus on
designing neural networks that must be invariant or, more generally, equivariant
to generic geometric transformations. CNNs are structurally equivariant to the
group of translations applied on the image function and this is a key reason for
© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
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Fig. 1. A schematic for a CNN, G-CNN and the PDE-G-CNN Layer in a deep neural
network. CNNs are typically processed with R? convolutions, whereas G-CNNs work
with linear G-convolutions in lifted space SFE(2). Elements in SE(2) are denoted by
g = (z,y,0). In PDE-G-CNNs only the convection vector ¢ and the metric parameters
G+,G_ are learned and they lead to kernels that are used for non-linear morphological
convolutions that solve the respective Erosion and Dilation PDE’s in lifted space SE(2).

their success and widespread use. However, CNNs are not invariant/equivariant
to general and more challenging transformations, like, e.g. rotations or affine
transformations. This led to the development of Group Equivariant Convolu-
tional Neural Networks or G-CNNs [3,8,20,23]. G-CNNs do not waste network
capacities and hard-code symmetries in the neural network. However, despite
the impact made by enforcing geometry in network architectures, CNNs and
G-CNNes still have some shortcomings:

1. They lack geometric interpretability in their action. The kernels themselves
lack geometric structure and fail to relate to cortical association fields [7,15]

2. Overall, CNNs and G-CNNs have high network complexity,

3. Training these architectures requires vast amounts of well-annotated, clean
data - that is often sparsely available in applications (e.g. medical imaging).

In [21], PDE-based group convolutional neural networks (PDE-G-CNNs)
were introduced. A typical PDE-G-CNN layer employs numerical solvers for
specifically chosen non-linear evolution PDE’s. These PDE’s are not arbitrary
and have been explored previously in the domain of geometric image analysis
[7,11] and yield theoretically interpretable solutions: they train sparse sets of
association fields from neurogeometry as shown in [4, App-B & Ch. 1]. The
dominant PDEs in a PDE-G-CNN are convection, dilation and erosion. These
three PDE’s correspond to the common notions of shifting, max pooling, and
min pooling over Riemannian balls respectively. They are solved by re-samplings
and so-called morphological convolutions. For a conceptual schematic of the 3
types of convolutional networks, see Fig. 1.

Despite the theoretical development of PDE-G-CNNs [4,5,21], some impor-
tant functional properties of these networks have not been reported in prior
work. In this paper we focus on three important aspects:

1. In Sect.2, we theoretically enumerate a number of geometric and algebraic
properties desirable by a neural network and show that PDE-G-CNNs satisfy



Functional Properties of PDE-G-CNNs 65

them. For e.g. PDE-G-CNNs consist solely of quasilinear (and PDE-solving)
layers w.r.t. a semiring R, that can either be a linear or tropical semiring.
Tropical semirings have been shown to be useful for machine learning [9,14,
18], and we report that they are particularly valuable in PDE-G-CNNs.

2. In Sect. 3, we perform experimental evaluations of CNNs, G-CNNs and PDE-
G-CNNs by varying the amount of data used for training. We evaluate com-
parable versions of these architectures and show that PDE-G-CNNs allow for
strong training data reduction without performance decrease. PDFE-G-CNNs
exhibit a significantly improved training data efficiency.

3. Motivated by the success of convolutional U-Nets [17], we build a PDE based
equivariant PDE-G-UNet and show its applicability in vessel segmentation.

2 Geometric and Algebraic Properties of PDE-G-CNNs

In this section, we provide a concise theory on PDE-G-CNNs with Lie group
domain G = SE(2) and semiring co-domain R. In Theorem 1 we list geomet-
ric properties of PDE-G-CNNs, and end with an explanation on the practical
significance of these properties in geometric deep learning.

Set G = SE(2). It sets the Lie group domain of functions in PDE-G-CNNs.
Recall G = R? x SO(2) = R? x S* = R? x R/(27Z) and write g = (z,y,0) =
(x,0) € G. The group product is g1go = (x1,61)(x2,02) = (x1 + R, X2,01 +
02 Mod 2’/T)

Set semiring R = (R, ®, ®,0,1). It sets the Semiring co-domain of functions
in PDE-G-CNNs. It is either the linear semiring L = (R, +,-,0,1) or a tropical
semiring: 7. = (R U {00}, min, +,00,0), T, = (R U {—o0}, max, +, —00,0). If
R = L we sometimes extend to C.

We set Mp(G) as a set of functions on G associated to the semiring R. For
R = L the set M1 (G) is the set of square integrable functions w.r.t. the Haar-
measure g on G. For R =T the set Mr_(G) is the set of upper semicontinuous
functions on G bounded from below. For R = T, the set Mr, (G) is the set of
lower semicontinuous functions on G bounded from above.

We define the integral Ip associated to that semiring:

IL(f) :/Gf(g)dﬂc(g), I (f) :gilelgf(g), Ir, (f) = sup f(9)- (1)

geG

Write Ir(f) =: € f(g). Define the semimodule, i.e. a ‘R-linear vector space’:
geG

HS = {f : G = R| 5r(£.0) < o0, f € Mp(G)} /~ (2)

with a partition of equivalence classes w.r.t. to the equivalence relation:

f~g&or(f,g) =0 with 6r(f,9) == er D €r p(f(x),9(z)), (3)
zeG
with €, = 1, ep. = —1, er, = 1, and we assume the continuous function pg :

R x R — Rx is a metric up to a monotonic transformation. Then denote H$ as
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the completion of the space HS. On H$ we define the semiring group convolution
® by
(h®f)g) =P ht g e fh), gedq. (4)

heG
For R = L we set pr(a,b) = |a — b|* and have d.(f,9) = |If — gllf ) and

H$ = L5(G). Equation (4) is then a linear group convolution.
For R =T we set pr_(a,b) = |e"®—e~?| and H$ is the closure of the semi-
module HY . Equation (4) is then a morphologlcal group convolution’ [21]. For

R =T, we set pr, (a,b) = |e® — €’| and HG is the closure of the semi-module
HE . As sets one has Lo (G) N C(G) = HG+ NHE as HE = —HE and the
metrics relate similarly by o7 (f, g) = dr, (—f, —g) and

0 <9 € C(G) = br, (4, ~00) = elVlhw® 51 (~),00) = elVlhmi@. (5)

A PDE-G-CNN consist of PDE-layers, Fig. 1, each layer corresponds to a
choice of semiring R and a corresponding PDE system that is solved on G x R*:

L:8W = —cW, or: 9,W = —i9(—Ag,)2 W with ¢ € {0,1},

(6)
T oW = —L|Vg W|o , T: 0,W = L||vg, W],

for all ¢ > 0, always with a € (1,2] and with initial condition W|i—g = f € HS.
Here f is input from the previous layer and W|,—; € H$ is the output. Vector
field ¢ on G is left-invariant and transports along exponential curves in G. The
PDEs are quasilinear w.r.t. the indicated semiring R.

In (6) the gradient Vg and Laplacian Ag are indexed by a left-invariant
metric tensor field G € {Go, G, G- }. Then by left-invariance G = Zijzl gij W'®
w’ has constant coefficients [g;;] € R¥*3 w.r.t. left-invariant (dual) basis:

A =cosf 0 +sinf 0y, A =—sinf 0, +cosf 0, Az = 0s, 1)
w' =cosf dr +sinf dy, w? = —sinf dz+cosf dy, w>=d6.

with (W', Aj) = 0% Similarly ¢ = ZZ L ¢ A; for constant ¢ = (¢!, %, ¢3) € R3.

Remark 1. (Network Parameters of PDE-G-CNNs)

The network parameters in a PDE-G-CNN are given by all convection vectors
¢, all symmetric positive definite(SPD) matrices [G] = [g;;] of all {Gy,G,,G_},
and linear-combination weights of each layer [21].

Remark 2. (Hyper-parameters in PDE-G-CNNs)

Parameter « is constrained to a« € (1,2]. For R = T ,T, it regulates
soft min/max pooling over balls [4, Prop. 1]. For R = L it connects
the Poisson and Gaussian semigroup. Parameter ¢ € {0,1} switches from
fractional diffusion (classical PDE-G-CNNs) to fractional Schrédinger PDEs
(quantum PDE-G-CNNs).
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Remark 8. (Well-posed Solutions of PDE-G-CNNs)

The solutions of PDE-systems (6) are for R = L strongly continuous semigroups
[24] on G, and for R = T as viscosity solutions (Lax-Oleinik solutions) of
dynamic HJB-systems on Riemannian manifold (G, G4) [4, Prop. 1].

Theorem 1. Let &; : Hg — H% be the PDE-solver of the equivariant PDE-
evolution (6) on G = SE(2) with semiring structure R = (R,®,®,0,1) €
{L,T_,T,} on the co-domain. Then &, = @Lg]‘ parameterized by symmetric
positive definite(SPD) [G] or' by c satisfies:

a) Pro by = Drys, b) Jyoepg  Pef = K ® f, c) %@tf:f,

—2
d) YsPD [g] or ceR3 TpeCt (R),p/>0 45,[5%0 = ng(t» [G),te

)

e) oLy = Ly0P;, where L,f(h) = f(g'h),
[) P(a® f1®B® fa) =a®@P(f1) DB R Di(f2), (9)
9) Ir(k{) = 1 and Ip(®ef) = Ir(f),

forallt,s >0, g,h € G, a,8 € R, f,f1,f2 € H%. If we moreover impose h)
VicapVizo @ 0r(f,0) = 0r(P.f,0), then this discards the (fractional) diffusion
in the linear semiring R = L setting.

If we moreover impose i) ki > 0 then this discards the Schrodinger PDE if
R =L and it discards the dilation PDEs of R=T.,.

Proof. Ttem a): follows from well-defined evolution PDEs (Remarks 3), yield-
ing well-known semigroup property in the linear setting [24] and in the tropical
setting [2, Thm. 2.1, (ii)]. See Remark 4 for a short insight on this.

Item b): for R = L the linear evolutions (6) are solved by linear group convolu-
tion with a probability kernel derived in [11]. For R = T the nonlinear evolutions
(6) are solved by a ‘Lax-Oleinik formula’ that gives the viscosity solution that
[4, Prop. 1] is a tropical group convolution with a kernel k; € H$

)\ P
R=T = k() =4 (%¢2) L4 L =1fort>0, (10)
with dg the Riemannian distance of G. Case R = T, follows from case T_ by
@]+ (f) = =@ (—f), max(x) = —min(—=z). In all cases the solutions are
(@.f)(9) = (k] ® [)(9) = P KT (k") ® f(h) (11)
heG

with a kernel that by a) satisfies kfﬂ = k9 @ kY for all t,s > 0.
Item c): strong continuity is well-known: for R = L,q = 0 see [24], for
R =1L,qg=1see [1] also on G [10, Thm. 2|. For R € {T_, T, } see [13].

! Convections and dilations/diffusion do not commute on the non-commutative G,
and the desirable order is first convection and then dilation/diffusion [4, App. B,
Prop. 3].
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Item d): the linear convection PDE in (6) is solved by: W(-,t) = e tf =

R.-tel. [ with unit element ¢ € G, R,U(h) := U(hg), and &i¢ = et =

(e7¢)t = &¢. For the other PDE cases one has: ||V, ,-2gf| = s||Vgf|, and
o —2

Ag-2gf = s2Agf. Thereby ¥y s~0®P; 91 = @L%]t. In particular: @‘lll(t) 91 :@Lg],

with W(t) = ¢!/,

Item e): Semiring group convolution commutes with £ 5 (kY ® L,f)(g) =

D (g @ fla " h)= D i (v 'a " 9) @ f(v)= (Ly(k{ ® f))(9), v=g"h.

hedG velG

Item f): integration f +— I(f) = @ s f(9) is a continuous quasi-linear opera-

tor and so is the pointwise multiplication f(g) — kY(h~'g) ® f(g). Thereby &,

(11) is a concatenation of quasi-linear operators and thereby again quasi-linear.

Item g): for R=L, 1 =1 and o = 2 one has I (k{) = 1: this holds by exact
formulas [11]. For 1 < « < 2 the a-th power of the spectrum in the orthog-
onal spectral decomposition does not affect 0 in the generator spectrum. For
R =T ,T, it follows directly by inspection of the kernel (10). By integration
and quasi-linearity (item f), (11) one has Ir(®.f) = Ir(f).

Item h): we must show dr(f,0) = 6r(®,f,0) for all f € HE:

1) For R = L we have an L5(G)-isometry < the unbounded linear generator
Qf = —cf —iq\AgU|%f is skew-adjoint: (e!?)* = (!9 1 & Q* = -Q < q=1.
2) For R =T, ,T_ this follows by g) as dr, (f,0) = eI+ §p (f,0) = e~ 1),
Item i): One has max{z} = —min{—z} and &, (f) = —®, (—f). So for T,
the convolution kernels are minus the positive erosion kernels of 7 so they are
discarded. For R = L the Schrodinger kernels ¢ = 1 follow from the positive

diffusion kernels ¢ = 0 by ¢ — it so they are discarded. O
Remark 4. (Semigroup Property for R=1T)
Rewrite (10) as k9 (¢) = kP (dg(g,e)) with k'P () = % ‘%|B, 1y B = 1. Then

Voeasizo (ke ®ks)(g) = (kiP @r ki7)(dg(g, ) = ki Ty (dg (g, €)) = kiys(9)-

Above, the first equality follows by the triangular inequality for dg and monotony
of ktP(-) and by realizing that the infimum/minimum over G can be replaced
by the subset reached by any minimizing geodesic connecting e and g and the
semigroup property for morphological scale spaces on R [19] (that follows by
Fenchel transform on R). The final equality is due to the definition of kP and
(10). Then ®is(f) = ks ® f = k7 ® (k] ® f) = (P, 0 ®,)(f) for all f € HE .

Practical Implications: Item a) is called the semigroup property. We call
b) the quasi-linear convolution property allows for fast parallel GPU-code [21]
of PDE-G-CNNs. Item c) is called the strong continuity property implies well-
defined evolution solutions that continuously depend on all ¢ > 0 via a), item
d) is the scaling equivariance property; and avoids scale biases in PDE-G-CNNs;
item e) yields equivariance and item f) is called the quasi-linearity property.
Item g) yields normalisation (of feature maps). Item h) is called the isome-
try property and yields PDE-G-CNNs without fractional diffusion regularisation
[12]. The isometry property avoids contractions when the depth of the network
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Fig. 2. We compare a 6-layer: CNN (25662 parameters), G-CNN (24632 parameters),
and a PDE-G-CNN (2560 parameters) architectures with varying amounts of training
data. All networks are trained only on DRIVE, and their performances on the test
data are plotted as a function of % input training data. PDE-G-CNNs exhibit supe-
rior generalization for intra (DRIVE) and inter (DCA) datasets, especially for limited
training data. The dashed line shows that PDE-G-CNNs outperform CNNs with just
~45% training data and ~10x fewer parameters. The images and their ground truths
are representatives of the respective datasets (i.e. DRIVE and DCA).

increases (hindering classification performances). Item i) of positive kernels is
questionable: The Schrédinger equation gives rise to new Quantum PDE-G-
CNNs, providing optimal transport [16] in PDE-G-CNNs.

3 Data Efficiency of PDE-G-CNNs

We evaluate the performance of comparable architectures of a CNN, G-CNN and
PDE-G-CNNs by reducing the amount of training data. We compare a 6-layer
CNN with 25662 parameters, a 6-layer G-CNN with 24632 parameters and a 6-
layer PDE-G-CNN with 2560 parameters. For the G-CNN and PDE-G-CNN we
discretize with 8 orientations (45° per orientation) and kernels of size 5 x 5 x 5.
We experiment with the vessel segmentation task on the well-known DRIVE
[22] and DCA1 [6] datasets. We make a split of 756% images for training and
25% for testing. The networks are trained in overlapping patches of dimension
64 x 64 with a patch overlap of 16. We randomly shuffle the training patches in
the DRIVE dataset and progressively compile 10% to 100% of the total, and
use this reduced input for the training of all the networks. In order to avoid
possible bias, we run each training 10 times for 60 epochs using randomization
for compiling the reduced training data. In Fig. 2, we compare all networks by
plotting the mean and variance of the performance metrics as a function of the
% input training data.

In addition to reporting the best test error on DRIVE, we apply the same
best-trained networks to the unseen and untrained images in the DCA1 dataset
[6] which comprises 134 X-ray angiograms of coronary arteries with ground truth
segmentation’s (see the example in the right of Fig.2). All images are prepro-
cessed with the adaptive histogram normalization framework of [25].
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I
1

7 T

PDE Evolution Layer § Down Samp (2x2x 1) Conv R? (1x1)
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Fig. 3. We compile a 3-stage PDE-G-UNet using PDE-based group convolutions in the
following order: Convection-Dilation-Erosion (as shown in Fig.1). We up and down-
sample only spatially (2 x 2) and keeping all orientations (x1). We compare with an
equivalent 3-stage U-Net using standard CNNs [17] in Table1l. PDE-G-UNets show
competitive performance, with an order of magnitude lesser parameters. The images
and their ground truths are representatives of the DCA1 dataset [6].

The plots in Fig. 2 demonstrate that despite a significant reduction in net-
work complexity, PDE-G-CNNs have a considerable benefit in training with
limited data and generalize well to unseen examples. Conceptually, these results
highlight the benefits of equivariant PDE action in lifted spaces. In contrast to
learning everything from data alone, PDE-G-CNNs enable the inclusion of geo-
metric inductive bias into the architectures which becomes valuable, especially
in scenarios of limited training data.

4 Equivariant U-Nets with PDE-G-CNNs

V\@ demonstrate a wider applica Table 1. Comparing UNets
bility of PDE-based group convo- . -
. . Architecture Dice|AUC|Params
lutions by constructing a PDE- i
6 Layer CNN 0.7510.90 |2.5x10

based U-Net [17]. We replace reg-
ular convolutions (CNNs) in R?
with the convection PDEs and
PDE-based morphological convo-
lutions in lifted space SFE(2). We implement the spatial up and downsampling
of the feature maps (of the lifted domain SFE(2)) using nearest neighbor interpo-
lation. The hierarchical PDE-G-UNet structure is combined with a mandatory
equivariant lifting and projection layer for the processing of input and output
images respectively in R2. See Fig.3 for an overview of the proposed architec-
ture. We discretize the PDE-G-UNet with 8 orientations and use kernels of size
(5x5x5). We report an evaluation by imputing full images of size 320 x 320 from

6 Layer PDE-G-CNN [0.76[0.92 [2.5%x10°
U-Net (3 stage) [17] [0.77]0.93 [6.2x10°
PDE-G-UNet (3 stage)[0.79]0.92 [3.1x10%
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the DCA1 dataset [6] for all the architectures. We partition the total data into a
train-validation-test split of 67%-8%-25% respectively. We compare two 3-stage
U-Nets trained for 1000 epochs, 5 times and randomly shuffle the training and
validation datasets each iteration. As a reference, we also report the performance
of a 6-Layer fully convolutional CNN and an equivalent PDE-G-CNN. In Table 1,
we report the mean values of the segmentation metrics for all architectures. We
see a favorable performance despite a ~200x reduction in network parameters.

5 Conclusion and Future Work

In this paper, we theoretically enumerate some crucial geometric and algebraic
properties of PDE-G-CNNSs. Practically, we report that they have lower network
complexity, yield a training data reduction and are extendable to more com-
plex architectures. Nevertheless, processing of feature maps in lifted spaces with
non-linear evolution PDE’s demands considerable memory and associated com-
putation. We will aim for faster computation and sparsification of feature maps
for PDE-G-CNNs in future work.
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Abstract. We present an approach for unsupervised learning of geo-
metrically meaningful representations via equivariant variational autoen-
coders (VAEs) with hyperspherical latent representations. The equivari-
ant encoder/decoder ensures that these latents are geometrically mean-
ingful and grounded in the input space. Mapping these geometry-
grounded latents to hyperspheres allows us to interpret them as points in
a Kendall shape space. This paper extends the recent Kendall-shape VAE
paradigm by Vadgama et al. by providing a general definition of Kendall
shapes in terms of group representations to allow for more flexible model-
ing of KS-VAEs. We show that learning with generalized Kendall shapes,
instead of landmark-based shapes, improves representation capacity.

Keywords: Generative models - Kendall shape spaces - shape spaces -
equivariance - Variational Autoencoders * continuous landmarks

1 Introduction

Variational Autoencoders (VAEs) are a class of probabilistic generative mod-
els [11,16] that allows for unsupervised learning of compressed representations.
Amongst other likelihood-based generative frameworks [17], VAEs give
information-rich latent spaces, can be parameterized by neural networks, and
are easy to train; VAEs are a flexible and expressive class of generative models.

In VAESs, disentangling the latent space into an invariant and non-invariant
part for any given transformation is a challenging but often desirable task. In
most cases, in order to make latent spaces invariant, the models need to be
trained separately for each transformation class, and thus generalization can
be difficult. However, adding geometric structure to the latent space has been
found to enhance the generation capacity of VAEs [4]. It can lead to improved
disentanglement if the geometry is designed accordingly [5]. When it comes to
tasks such as domain generalization [7] and data compression [14], it is crucial
to have a clear understanding of how the latent space is encoded.

In this paper, we focus on an equivariant VAE framework, called the Kendall
Shape VAEs (KS-VAEs) [18] as it combines both equivariant representations
as well as well-structured hyperspherical latent representations. We extend [18]
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by introducing generalized Kendall shape spaces. Through this framework, we
alleviate the constraint of KS-VAEs, which could represent only anti-symmetric
continuous shapes, and present that band-limited landmarks are more suitable
to model symmetric shapes.

2 Background

As a preliminary to KS-VAEs, we give a brief introduction to VAEs as an unsu-
pervised representation learning paradigm, as well as its extension to hyper-
spherical VAEs.

VAEs assume the generative process of observations z from an unobserved
latent z through a latent-conditional generator py(z|z) and prior pg(z) where 6
refers to network parameters. When we parameterize the joint distribution by
a neural network, the marginalization over the latent variables to obtain data
evidence pg(x) for likelihood maximization is untractable. So instead, our objec-
tive is to maximize the evidence lower bound (ELBO), using an approximate
posterior gg(z|x), with ¢ being network parameters. The ELBO is given by [11]

L(0,9) = E.q,(z1z) [log po(z]2) — Drcrlge(2|z)|lpe(2)]] -

Optimizing the ELBO allows us to train the encoder (approx. posterior g4(z|x))
to infer compressed representations z of the input z in an unsupervised manner.

Hyperspherical VAEs (SVAEs): In the original VAE, the prior and posterior
are both defined by a normal distribution. In SVAE [5], a von Mises Fisher
(vMF) distribution is the natural choice for a distribution on a sphere, as it is
the stationary distribution of a convection-diffusion process on the hypersphere
S™~1 just like the normal is on R™. The probability density function of the
vMF distribution for a random unit vector z € S™~! is defined as

KJm/Qfl

(27r)m/21m/2,1(/£) ’

q(z|p, k) = Cu (k) exp(ru’ 2),  with  Cp (k) =

[[4||> = 1, K is a concentration parameter and Z, denoting a modified Bessel
function of the first kind at order v. The Kullback-Leibler divergence can be
analytically computed between a vMF distribution vM F(z|u, k) and a uniform
distribution on S™~! U(z) via

7.‘_7’11/2 -1
+logC,, (k) — log M

KL(MF(u,5)[|U(S™ 1)) = "”%

3 Generalized Kendall Shape Space

Kendall Shape VAEs, as proposed in [18], provide a framework for encoding
image data into geometrically meaningful latent representations, which in [18] is
given the interpretation of neural ideograms (learned geometric symbols). More
specifically, an equivariant encoder is used to encode images into Kendall shapes
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whose landmarks through an equivariant design follow the same transformation
laws of SE(m), which is a special Euclidean group of dimension m.

Kendall defined shapes based on the idea that a shape is a translation, scale,
and rotation invariant quantity [9]. More precisely, he defined pre-shapes as k
labeled points in Euclidean space R™. Two configurations of k labeled points are
then regarded as equivalent if their pre-shapes can be transformed into the other
by a rotation about a shared centroid. The quotient structure was extended in
[10] by defining shape space as the quotient of the space of landmark configura-
tions by the group of translations, scale, and rotations. Following this rationale,
we generalize the definition of a shape space in terms of group representations,
taking the original definition as a special case.

3.1 Preliminaries (Group Representations)

We consider the group SO(m) of rotations in R™. Let p : SO(m) — GL(V)
denote a representation of SO(m). Le., p describes transformations on elements
in vector space V that are parameterized by rotations R € SO(m), following
the group structure via p(R)p(R')v = p(RR/)v for all R,R’ € SO(m) and
all v € V. Note, V' does not have to be R™ but can be any vector space that
can be transformed by the group action of SO(m) such as e.g. Lo(S™™1), the
space of square-integrable functions on S™~1. With p,, we denote the irreducible
representations of SO(m), i.e., the rotation matrices (Wigner-D matrices for
m = 3) of frequency I. With ps we denote the left regular representation of
SO(m) on functions on homogeneous spaces, i.e., (pz(R)f)(z) = f(Rtz).
With V,, we denote the vector space associated with group representation p. We
assume each vector space V, is equipped with a norm |-|| and assume p to be
a unitary representation, thus satisfying Vreso(m) @ |p(R)v|| = ||v||. Product
spaces V, = V,, x --- x V,, inherit the norm from the subspaces via ||x||? =

Zf:1||xi||2, withx=x1®---®x; €V,

3.2 Generalized Kendall Shape Space

We define a shape space as the equivalence class of vectors (pre-shapes) that lie
in the same orbit generated by the associated representation p, as given below.

Definition 1 (Pre-shape space). A pre-shape space S, is defined by a block-
diagonal representation p = p1 @ -+ @ pi, of SO(m), or equivalently by its asso-
ciated vector space V, =V, X ---xV, , as

Spo=1xeV, | [x[l=1}. (1)

The sub-vectors x; € V,, in X = X1 @ --- © X}, are called landmarks; S¥, is
identified with the hypersphere S% 1 with d, = dimV,,.

Definition 2 (Shape space). A shape is defined as the equivalence class of
pre-shapes x € S, denoted with [z], by

[z] ={y € Sh |y ~ =z},
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in which © ~ y iff Iresowm) : ¥ = p(R)z. A shape space then is the space of
equivalence classes of pre-shapes, denoted as the quotient space S,/ ~.

The classic Kendall shape space as defined in [6] is a shape space S%,/ ~ with
representation p(R) = @ip1(R) = @xR. A Kendall shape thus consists of k m-
dimensional landmarks x; € R™, i.e., the sub-vectors in x = x1®- - -®xy € (IR’")’c
that simply transform by the usual rotation matrices. Kendall shapes further
have the property that the landmarks are centered, i.e., Zle x; = 0.

Remark 1. In our general formulation of shape spaces, we omit the constraint
that the landmarks sum to 0. In some special cases, this constraint can be
enforced, but in a general sense, it is not natural because the landmarks do
not have to literally correspond to spatial landmarks in R™. Qur definition of
pre-shape is independent of how it is obtained. When encoding a shape from a
point cloud, it is common to center and normalize it to unit length to obtain
translation and scale invariance. However, we do not assume how the shape is
obtained, allowing for direct rescaling of the point cloud. In this case, the result-
ing shape loses translation invariance, and a shifted point cloud is considered a
different shape. Therefore, if centering is not included in the encoding process,
translation can be seen as an additional degree of freedom to describe a shape.

3.3 The Procrustes Problem, Pose, and Canonicalization

The geometry of pre-shapes is equivalent to that of hyperspheres, which allows
for convenient (and analytic) geometric analysis such as the computation of
distances between shapes. However, the quotient structure has the practical dis-
advantage that in order to compare shapes, one has to align them (as much as
possible) and compare the pre-shapes in each equivalence class that is closest.
This matching problem is called Procrustes analysis and involves minimizing the
distance between pre-shapes over translation, reflection, rotation, and scaling.

Since often it is possible to assign a unique pose to a given shape, Procrustes’s
problem boils down to simply aligning their poses. Specifically, we define the pose
g = (t,s,R) of a generalized shape as a translation t, scale s, and rotation R in
the group SIM(m).

Definition 3 (Geometric pose, canonical shape). A pre-shape x € [xg] €
SP /| ~ can be equipped with a pose g = (t,s,R) € SIM(m), such x = p(R)xo.
Le., the rotation part R of the pose describes the rotation of a canonical shape
xo to pre-shape x. Any pre-shape lies in the SO(m)-orbit of a canonical shape.

Remark 2. As noted in Remark 1, we consider shapes as equivalence classes over
rotations and do not explicitly take translation and scale into account. In appli-
cations it might be beneficial to keep track of such attributes via an equivariant
pose extractor, that could be used to canonicalize an vector and obtain a fully
SIM (m) invariant shape extractor. Here, we only aim for rotation invariance.
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If one has access to a pose, the Procrustes problem is significantly simplified
by simply aligning any shape y to z via p(R.)p(R,)'y. In our work, we use
an equivariant architecture to simultaneously predict a pre-shape x and a rota-
tional pose R, which allows us to map any predicted pre-shape to its canonical
pose g = p(R™1)x. This is a practically useful way of representing an equiva-
lence class of shapes to a single representative. In recent deep learning literature,
such a mapping is called a canonicalization function [8] and has the practical
benefit that canonicalized representations are invariant and do not require spe-
cialized equivariant architectures in down-stream tasks. In our KS-VAE setting,
we work with neural networks that are translation and rotation equivariant by
design, through SF(2) equivariant group convolutions [1], and the data does not
exhibit scale variations. In principle, one could make use of STM (m) equivariant
architectures [12] to also take scale into account.

X .. i @
A s
f(m)
® o
®

o

[ )
o
(a) Sequence of points (b) Spherical glyph (¢c) Points and glyphs

Fig. 1. Generalization of classical Kendall shapes.

3.4 Continuous Shapes: Spherical Glyphs as Landmarks

In equivariant deep learning literature, it is common to consider feature fields as
a bundle of “fibers” that transform by actions of SO(m) [20]. Features in such
fibers are understood to carry directional information and implicitly encode for
feature signals on SO(m) at each location in space. That is, these signals can
be mapped to a set of Fourier-like coefficients relative to a basis of irreducible
representations of SO(m) [13].

Many practical equivariant deep learning libraries explicitly assign to points
in space either a signal on S™~1 or SO(m), or a vector of Fourier coefficients that
can be turned into such a signal via an inverse Fourier transform. That is, regu-
lar group convolutional networks encode features fields on SE(m) which allows
for considering SO(m) signals at each fixed location, i.e., fx(R) := f(x,R).
Steerable group equivariant architectures encode for fields of Fourier coefficients
that can be mapped to signals on SO(m) via fyx(R) := F~![f(x)]. Such sig-
nals transform via the regular representations p, of SO(m). When designing
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equivariant encoders/decoders for the purpose of KS-VAEs, it is thus of practi-
cal value to understand that such fibers can directly be used as landmarks in a
generalized Kendall shape space. We will refer to shape spaces with p = ©%_,p,
as continuous Kendall shape spaces.

It is natural to think of spherical signals as geometric shapes through so-
called glyph visualizations [15] for their use in diffusion MRI or [2] for the sake
of visualizing feature fields in equivariant graph NNs. Concretely, a spherical
signal f : S™~! — R can be turned into its geometric form as spherical glyph s
via

s={f(n)n|neSm'}.

Using such spherical glyphs (equivalently spherical signals) as landmarks thus
allows the construction of fully continuous shapes, see Fig. 1b.

3.5 Neural Ideograms

Our general definition of shapes allows for the mixing of landmarks of different
types, which conceptually corresponds to defining shapes in terms of geometric
primitives. Alluding to the idea of neural ideograms of [18], one could mix multi-
ple glyphs (and their centers) as in Fig. 1¢, to form abstract symbols much alike
the ancient (hiero)glyphs, however, now to be defined by a neural network.

4 Method

equivariant

equivariant

Q? Encoder Decoder t?

Fig. 2. Kendall Shape VAE pipeline. The equivariant encoder encodes the equivalence
class of a transformation (here rotations), extracts a pose, and gives a p and . A latent
variable is sampled from vMF(u, k), and along with the extracted pose, the decoder
gives the output reconstruction.

The KS-VAE consists of an encoder Enc : Ly(R™) — V, x RT x SO(m) that
models the approximate posterior distribution ¢(z|z) = VM F(z|u, ), through
the prediction of u € V,, kappa € Rt and a pose R € SO(m). As such, it predicts
the mean 1 € V), in an equivariant manner, and the predicted concentration
parameter V5 3 K +— Kk = ef € RT invariantly. The mean y is obtained as a
vector in V), that transforms via p, and which we normalize to obtain 1 € S%,. We



Continuous KS-VAEs 79

emphasize that the inference of p should be equivariant if we want the landmarks
in SX to be geometrically meaningful with respect to the content in the input
image. In our 2D setting, the pose Ry is obtained by predicting a vector n € V5,
of which #(n) = arctan(n,, n,) parametrizes the rotation angle (Fig. 2).

5 Experiments

In this section, we perform experiments with continuous KS-VAE and compare
them with standard KS-VAE. For completeness, we show the Kendall shape
spaces in a pure autoencoder form as well (KS-AE) as well as an autoencoder in
the continuous case (continuous KS-AE). We compare these models with vanilla
VAEs, hyperspherical VAEs as well as their autoencoder counterparts in an
unsupervised way, without any prior knowledge of the equivalence classes or the
poses of every instance.

All the models use the same architecture for the encoder/decoder, except
for the type of convolutions used. The baselines AE and S-AE use normal (non-
rotationally equivariant) convolutions. The KS-VAEs use roto-translation equiv-
ariant convolutions with fibers that transform via regular representations of the
discrete subgroup SO(2, N) = Cy of cyclic permutations. The input images are
padded with zeros at the bottom and right to obtain images of size 29 x 29.

For the equivariant encoder and decoder we used the interpolation-based
library se2cnn from [1], but recommend escnn from [3,19] for extensions to 3D.
The encoder shrinks the image to a single pixel using multiple group convolutions
(without spatial padding). What remains at this pixel is a signal over SO(2, N).
Our networks are based on a discretization of N = 9. We can decompose these
signals into their irreps via a Fourier transform to obtain vectors that transform
via different types of irreducible representations p; when needed. We then use
the following options for the Kendall shape space.

— KS-VAE: The encoder predicts k landmarks in R? = V5, which are normal-
ized to unit length. The pre-shape space is thus S2¢~1.

— KS-VAE continuous: The encoder predicts k signals over SO(2, N) which
are band-limited to maximum frequency |N/2] and the mean is subtracted.
We use N = 9 and thus effectively encode to 8-dimensional landmarks, which
when normalized gives points in a S8~

For quantitative analysis, we present the results of reconstruction loss with
different models for the MNIST dataset, where the training dataset is not rotated
and the testing data is randomly rotated. Here, we compare our model with
vanilla autoencoder (AE), hyperspherical autoencoder (S-AE) as well as the
discrete case of Kendall shape autoencoder (KS-AE) and similarity with their
variational counterparts. All the models are trained for 50 epochs.
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Table 1. Comparing reconstruction losses of different models

Model Latent dim | # of landmarks | loss

AE 8 - 99.89 + 1.32
S-AE 8 - 91.03 + .020
KS-AE 8 4 89.77 £+ .041
KS-AE continuous |8 1 88.06 + .022
VAE 8 - 124.3 £+ .031
S-VAE 8 110.3 = .048
KS-VAE 8 4 84.60 + .012
KS-VAE continuous | 8 1 80.07 + .057

6 Conclusion

Our approach mixes the advantages of equivariance with that of hyperspherical
latent variable models, which combined gives us Kendall shape latent representa-
tions. The advantage is supported by results in Table 1, which show that hyper-
spherical outperform plain VAEs, which in turn are outperformed by equivariant
hyperspherical VAEs (KS-VAEs). Our main contribution is the formulation of
continuous Kendall shape space in a group theoretical language that is compat-
ible with the state of the art in geometric deep learning. Although not explored
in this paper, previous work [18] has shown that it is possible to visualize the
learned latent shapes. We believe it is an exciting direction for future work to
explore the potential of using the Kendall shape framework to build interac-
tive and interpretable systems for the visualization of features through neural
ideograms.
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Abstract. We consider a framework including multiple augmentation
regularisation by generalised divergences to induce invariance for non-
group transformations during training of convolutional neural networks.
Experiments on supervised classification of images at different scales not
considered during training illustrate that our proposed method performs
better than classical data augmentation.

1 Introduction

Deep neural networks are the primary model for learning functions from data,
in different tasks ranging from classification to generation. Convolutional neural
networks (CNNs) have become a widely used method across multiple domains.
The translation equivariance of convolutions is one of the key aspects to their
success [23]. This equivariance is induced by applying the same convolutional
filter to each area of an image producing learned weights that are independent
of the location. This mechanism is called weight sharing. Ideally, CNNs should
perform equally well regardless of input scale, rotation or reflections. Numerous
attempts have been made to address using the formalism of group-convolutions
[12], steerable filters [8], moving frames [31], wavelet [2], partial differential equa-
tions [36], Gaussian filters [26], Elementary Symmetric Polynomials [27] among
others. Despite all these recent advances, it is still unclear what is the most ade-
quate way to adapt these methods for the case of more general transformations
that cannot be considered as a group [30,38]. The most commonly used solu-
tion is to take advantage of data augmentation, where the inputs are randomly
transformed during training to induce an output (which is) insensible to some
given transformations [34]. But still data augmentation implies neither equiv-
ariance nor invariance. An more elaborated path would be to apply the weight
sharing mechanism for each discretisation of the transformation, followed by an
integration in the sense of [22]. In this paper, we study the use of contrastive
based regularisation on a set of transformations during training. Surprisingly,
our proposition presents the best performance considering the power of general-
isation outside the interval of values where the transformation has been sampled
during training. This phenomenon is illustrated in the case of supervised classi-
fication on aerial images and traffic signs at different scales.
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2 Proposition

2.1 Motivation

Data augmentation is nowadays one of the main components of the design of
efficient training for deep learning models. Initially proposed to improve over-
sampling on class-imbalanced datasets [9] or to prevent overfitting when the
model contains more parameters than training points [24]. Recent research has
shown its interest in increasing generalization ability especially when augmenta-
tions yield samples that are diverse [15]. We restrict our study to augmentations
which act on a single sample and do not modify labels, this means that we do
not consider mizup augmentations [40]. Namely, we study augmentations which
can be written as (¢(x),y), where (x,y) denotes an input-label pair, and t € 7 is
a random transformation sampled from a set of possible transformations 7. Let
f denotes a projection from the input space to a latent space. The latent space
is said to be invariant to 7 if for any input x and any t € T, f(t(x)) = f(x).
Practitioners recommend to use data augmentation to induce invariance by train-
ing [3]. Usually, data augmentation consists of randomly applying an element
of the set of 7 during training. An alternative to data augmentation is possible
when 7 is a group. One can construct an invariant function fp(x;n) from a non-
invariant function gy(x) by integrating over all the group actions. This concept
is referred to as insensitivity [37], soft-invariance [4], or deformation stability [6).
The special case in which there exist a subgroup H where the computation can
be reduced to summing over H is called Reynolds design [29]. For topological
groups, there is a non-zero, translation invariant measure called Haar measure
that can be used to define invariant convolution on a group [20,28] or invariance
by integration of kernels [17,25]. An alternative to define an invariant function,
is to use composition of equivariant functions followed by an invariant pooling
in the Geometric Deep Learning Blueprint [6]. In both cases, the invariance is
defined by structure [3] which can be seen as a constraint in the model that one
is learning.

However, in many applications, the transformations under study is not a
group, so that the above arguments are not easily generalizable. In this paper
we are interested in using data augmentation to induce invariance during train-
ing in deep learning models for the case where the set 7 is not a group.
The idea is to include a regularisation term that takes into account K reali-
sations of the transformation family, i.e, in the loss function, we will include
Lossy(x,t1(x),t2(x)),...,tx(x))) where the ¢; denotes a random value of trans-
formations 7. To apply this method we do not need any requirements on the
transformations 7 .

2.2 Related Work

The idea of using multiple random augmentations (K is our case) during training
is also found in the following methods:
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Semi-supervised Learning. In a semisupervised case, [41] proposed to learn
a classifier penalised for quick changes in its predictions.

Self-training. Self-training also known as decision-directed or self-taught learn-
ing machine, is one of the earliest approach in semi-supervised learning [14,32].
The idea of these approaches is to start by learning a supervised classifier on
the labelled training set, and then, at each iteration, the classifier selects a part
of the unlabelled data and assigns pseudo-labels to them using the classifier’s
predictions. These pseudo-labeled examples are considered as additional labeled
examples in the following iterations. The function loss includes a trade-off term
to balance the influence of pseudo labels.

Self-supervised Learning. Most of these works are placed in a joint-
embedding framework [10,18], where augmented views (usually two) are gen-
erated from a source image. These two views are then projected to an encoder,
giving representations, and then through a projection back to an embedding
space. Finally, a loss minimises the distance between the embeddings, i.e. makes
them invariant to the augmentations, and is combined with a regularisation loss
to spread embeddings in space.

Data Augmentation Regularisations. A negative aspect of data augmenta-
tion has been illustrated in [13] which is the slow down of training speed and a
minimal effect on the variance of the model. The idea of using multiple augmen-
tation per image in the same minibatch has been used to solve that problem,
and it has been used to improve at the same time the classifier’s generalisation
performance [13]. This simple modification computes an average of the mini-
batch on different augmentations that asymptotically approaches a Reynolds
operator [29] when the number of considered augmentations gets as large as
possible. Recently, [5,39] proposed the use of a regularisation term for multiple
augmentations, which is the mechanism that we will evaluate in this paper.

2.3 Supervised Regularisation by Generalised Divergences

We propose to use multiple data augmentations in the target transformation,
and use a generalised divergence as a regularisation term. The idea follows those
presented in [11], and is contrary to the usual mechanism of data augmentation,
where the network is trained to classify in the same class each of the augmen-
tations, but never considers a term related to the divergence produced by the
transformation. Since we use K augmentations, we must consider a divergence
from multiple probability distributions, which is called generalised divergences.
We consider the classical framework of training deep learning models from N
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Fig. 1. Scheme of our proposition. We propose to use a regularisation that considers
multiple realisations of the transformation family, this regularisation uses generalised
divergences. Since you want to evaluate the invariance of a classification problem, the
model uses only the classification of the original image (not of the transformations).
The probability distributions are obtained in the output of a softmax layer.

samples {X1, X2, ...,Xx | and as objective minimising the following loss function:
N N
Loss(x,y) = ZLosschSS(yi, 7i) + Z Lossy (X, to(Xi), t1(X;), - -, t (Xi)),
i i

(1)
where ¢; denotes the prediction of the model, and y; the ground-truth class of
the i-th sample x; (Fig.1).

The first term is a supervised classification term, and the second term Lossy
is the main interest of our proposition. We propose to use statistical divergences
to compare the outputs produced by model f applied to the original data x and
K + 1 random augmentations of x, i.e. {x;,t0(x;),t1(X;),-..,tx(x;)}. In our
supervised case, we use the last layer of the model f, which is usually a sum-one
layer (softmax) indicating the probability of belonging to a given class. For two
probability distributions P, @), the most renowned statistical divergence rooted
in information theory [21] is the Kullback-Leibler divergence,

Drr(PlIQ) =" P(x)log (ggi) .
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Defining divergence between more than two distributions has been studied
for many authors called often generalised divergences or dissimilarity coefficient
in [33]. Let K > 1 be a fixed natural number. Each generalised divergence R
that we consider here, satisfies the following properties:

1. R(Py, Py, Pa,...,Pk) <0
2. R(Po,Pl,Pg,...,PK):0Whenever P0=P1 ::PK
3. R is invariant to permutation of input components.

These three properties are important for the minimisation of this divergence to
induce the invariance during training in the case we are studying. Accordingly,
we consider the following two generalised divergences, the Average Divergence
[33]

1

K
KETD > Dxr(PP) (2)

,j=0,i#]
the Information radius [35] which is the generalised mean of the Rényi’s diver-
gences between each of the P;’s and the generalised mean of all the P;’s,

RI(PO,Pla-PQ?"'vPK):

K K

1

Ro(Po, P1, Py, Pi) = > Drr((K+1)7")  PjlIP) (3)
i J

In the following section, we compare the use of (1), considering as Lossy the
average divergence in (2) or the information radius (3) (Fig.2).

3 Experiments

In this experimental section, we have followed the training protocol presented in
[1] on two datasets, Aerial and Traffic Signs, which contains images 64 x 64 RGB-
color images on 48 different scales. The objective is to obtain a scale and trans-
lation invariant model for supervised classification on nine (resp. 16) classes on

Fig. 2. Examples of images at different parameter transformation in the two considered
datasets. From left to right: Scale 1, 3, 23, 25, 45 and 47. Training is done considering
only images of intermediate scales (17 to 32) in both training and validation. Evaluation
is performed on both small (0 to 16) and large (33-48) scales. In first row: An example
of Traffic Sign dataset. In second row: An example of Aerial dataset.
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Fig. 3. Detailed plots of scale generalisation on Mid2Rest scenario in Aerial datasets
(Left) and Traffic Sign dataset (Right). Five repetitions of the training is illustrated
per method. Our proposition performs clearly better than classical data augmentation.

Table 1. Results of the Generalised Divergence in Aerial and Traffic Sign dataset
on scales non-considered during training. A visual comparison of results are shown in

Fig.3

Aerial Small Scales Large Scales

Method A test acc. | £std test acc. | £std

Data Aug. 0.0 |0.776 | +0.014 [0.845 |40.008 Traffic Sign Small Scales Large Scales

Av.Div.(2) |05 |0.854 | +£0.013 |08y | o011 ethed A_|testacc |dstd |test acc |tstd
10 0852 40016 0888 | L0009  DataAug.  [0.0[0.721 [+0.021]0.824 | +0.024
1.5 |0.858 |+ 0.013 0.889 |40.011  Av.Div. (2) |0.5/0.821 |40.014 |0.898 | +0.020
2.0 |0.841 | +0.028 [0.880 | +0.020 1.0/ 0.829 |+0.012 |0.921 | +0.018
2.5 |0.846 |£0.015 |0.881 | +0.009 1.5/0.820 |40.015 0.902 | 40.012
3.0 |0.834 40023 |0.877 |+0.018 2.0 0.806 |=£0.027 |0.886 | +0.025
3.5 |0.833 |£0.008 |0.873 |£0.017 2.50.797 | +0.044 |0.883 | +0.034
4.0 0.822 | +0.021 |0.864 | +0.016 3.0/0.789 | +0.025 |0.882 |+0.018
5.0 |0.828 | +0.016 |0.872 | +0.022 3.5/0.754 | +0.026 |0.842 | +0.028
10.0/0.824 |+0.019 |0.865 |+0.012 4.0/0.743 | +0.026 |0.832 | +0.042

Inf. Rad.(3) 0.5 [0.845 |40.016 0.878 [40.017  Inf Rad.(3) |0.5/0.806 |+0.012 |0.908 | +0.017
1.0 |0.847 |£0.012 [0.885 | +0.011 1.0/0.825 |£0.022 |0.921 | +0.016
1.5 0.853 |+0.010 |0.881 | 40.009 1.5/0.829 |40.014 0.918 | +0.015
2.0 0.853 |£0.009 |0.884 | +0.011 2.0 0.830 |£0.016 |0.918 | +0.007
25 0.850 | +0.014 |0.887 | +0.005 2.5/0.815 | 40.020 |0.906 | +0.016
3.0 |0.859 | +0.013 [0.885 | +0.010 3.0/0.828 | +0.013 |0.909 |+0.018
3.5 0.841 | +0.008 |0.886 | +0.009 3.5/0.818 | +0.019 |0.898 |+0.014
40 0839 |£0.018 |0.877 |+0.016 4.0/ 0.823 |£0.020 |0.917 | +0.016
5.0 |0.845 |£0.017 |0.883 | +0.010
10.0 [ 0.829 | £0.014 |0.870 | +0.011

Aerial (resp. Traffic Signs) dataset. Keen readers are referred to [1,16,19,30,38]
for a deeper understanding of different propositions for scale invariant convolu-
tional networks. Following [1] the model is a CNN with two layers using cat-
egorical cross-entropy as a supervised term in (1). An example per dataset at
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different scales is shown in Fig. 2. The models are trained on the middle inter-
val of the transformation parameterisation and the performance of the models
are evaluated outside this interval. This is called Mid2Rest scenario in [1]. The
value of K in (3) and (2) has been set equal to three in our experiments. Quan-
titative comparison of results are found in Table 1 for both considered datasets.
The reported result is the average and standard deviation of performance on the
scales and images that were not considered during training. On the considered
datasets, the information radius (3) presents better results in terms of perfor-
mance over the unseen scales, with respect to both the average divergence (2),
and the classical data augmentation method. Finally, for a better illustration of
the difficulty of the task, the best value of the lambda and regularisation func-
tion is compared with the data augmentation in five random training runs, and
compared across the different scales for the two databases in Fig. 3.

4 Conclusions

In this paper we present a proposal for the use of regularisation from multi-
ple data augmentation with generalised divergences. Quantitative results show
the interest of our method in the case of generalisation to scales that have not
been considered during training. Future studies may include the study of multi-
parametric transformations, as these are used to avoid overfitting in large neural
networks. Additionally, generalised divergence considering barycenters for prob-
ability distributions in [7] seems a promising direction to generalise the results
of this article.
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Abstract. We describe a sparse coding model of visual cortex that
encodes image transformations in an equivariant and hierarchical man-
ner. The model consists of a group-equivariant convolutional layer with
internal recurrent connections that implement sparse coding through
neural population attractor dynamics, consistent with the architecture
of visual cortex. The layers can be stacked hierarchically by introducing
recurrent connections between them. The hierarchical structure enables
rich bottom-up and top-down information flows, hypothesized to underlie
the visual system’s ability for perceptual inference. The model’s equiv-
ariant representations are demonstrated on time-varying visual scenes.

Keywords: Equivariance - Sparse coding - Generative models

1 Introduction

Brains have the remarkable ability to build internal models from sensory data
for reasoning, learning, and prediction to guide actions in dynamic environ-
ments. Central to this is the problem of representation—i.e., how do neural
systems construct internal representations of the world? In the Bayesian view,
this requires a generative model mapping from a latent state space to obser-
vations, along with a mechanism for inferring latent states from sensory data.
Thus, understanding the causal structure of the natural world is essential for
forming internal representations. But what is the causal structure of the natural
world? Natural images contain complex transformation groups that act both on
objects and their parts. Variations in object pose, articulation of its parts, even
lighting and color changes, can be described by the actions of groups. Addition-
ally, these variations are hierarchical in nature: scenes are composed of objects,
objects are composed of parts in relative poses, and so on down to low-level
image features. A transformation at the level of an object propagates down the
compositional hierarchy, transforming each of its component parts correspond-
ingly. Finally, object parts and sub-parts can undergo their own independent
transformations. These variations carry important information for understand-
ing and meaningfully interacting with the world. Thus, a rich compositional
hierarchy that is compatible with group actions is essential for forming visual
representations (Fig. 1).
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Input Traditional Sparse Coding Equivariant Sparse Coding
Image unstructured coefficients group-structured coefficients ¢(g)
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Fig. 1. Traditional vs Equivariant sparse coding as image [ is transformed by action h.

Our contribution. We establish a novel Bayesian model for forming repre-
sentations of visual scenes with equivariant hierarchical part-whole relations by
proposing a group-equivariant extension of hierarchical sparse coding [7].

2 Background: Sparse Coding for Visual Representations

Sparse coding was originally proposed as a model for how neurons in pri-
mary visual cortex represent image data coming from the retina. In contrast
to the feedforward cascade of linear filtering followed by point-wise nonlinearity
commonly utilized in deep learning architectures, sparse coding uses recurrent
dynamics to infer a sparse representation of images in terms of a learned dictio-
nary of image features. When trained on natural images, the learned dictionary
resembles the oriented, localized, and bandpass receptive fields of neurons in
primary visual cortex (area V1) [7].

Generative Model Energy & Inference Dynamics Neural LCA
D
- a a 4y, 1 (R
EB-E8 B 5o e |
— i=1
D d (t) Leak Lateral interactions Similarity
»
I(z) = Z a;idi(z) + € T = ) - > Gija;(t) + (¢, 1)
i=1 J#i
Fig. 2. (left) Generative model, (center) Energy function where || - |2 denotes the
Euclidean norm, || - |1 denotes the ¢1 norm, and A is a regularization parameter con-

trolling the sparsity of a. u; is the internal state of neuron i, G;; = (¢;, ¢;) models
neuronal interactions, and a(t) = o(u(t)), where o is a nonlinearity. (right) LCA circuit
model
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Generative Model. Sparse coding assumes that natural images are described
by a linear generative model with an overcomplete dictionary and additive Gaus-
sian noise €(x) [7], shown in Fig. 2 (left). Here, the image I is represented as a
function I : X — R, specifically as a vector in the space Lo(X) of square-
integrable functions with compact support X C R?. Computationally, the sup-
port is discretized as an image patch with n pixels, so that I € R”. The dic-
tionary @ comprises D elements: & = {¢1,...,¢p}, with each ¢; € La(X),
for ¢ € {1,...,D}. The size of the dictionary D is typically chosen to be
overcomplete, i.e. larger than the image patch dimension n. The coefficients
a=lai,...,ap] € RP form the representation of image I.

Energy & Inference Dynamics. Given a dataset, sparse coding attempts
to find a dictionary @ and a latent representation a € R? for each image in
the dataset such that, in expectation, neural activations are maximally sparse
and independent. Sparsity is promoted through the use of an i.i.d.prior over a
with scale parameter A, with the form of the prior chosen to be peaked at zero
with heavy tails compared to a Gaussian (typically Laplacian). Finding the opti-
mal representation a is accomplished by maximizing the posterior distribution
P(a]I,®) via minimization of the energy function E; in Fig.2 (center).

One particularly effective method for minimizing E; with a clear cortical cir-
cuit implementation is the Locally Competitive Algorithm (LCA) [9]. In LCA,
inference is carried out via the temporal dynamics of a population of D neu-
rons. Each neuron is associated with a dictionary element ¢, and its internal
state is represented by a coefficient u;(t). The evolution of the neural population
state is governed by the dynamics specified in Fig. 2 (center). The gram matrix,
Gi.j = (¢, ¢;), specifies the interaction between neuron ¢ and j. In neurobiolog-
ical terms, this corresponds to the excitatory and inhibitory interactions medi-
ated by horizontal connections among V1 neurons. The notation ( .) refers to the
inner-product between functions in Ly (X), (¢, ¢;) = [ ¢i(x)¢;(x)dx. The acti-
vations, interpreted as instantaneous neural firing rates, are glven by a nonlinear-
ity applied to the internal state: a;(t) = o (u,;(t)), with a(u) = ﬁ, similar
to a smoothed ReLU function with threshold A and hyperparameters a and ~.
At equilibrium, the latent representation of image I is given by @ = argmin, E;.

Dictionary Learning. The dictionary @ is adapted to the statistics of the data
by minimizing the same energy function E; averaged over the dataset. This is
accomplished by alternating gradient descent on E. Given a current dictionary
@, along with a batch of images and their inferred latent representations, a, the
dictionary is updated with one gradient step of F with respect to @, averaged
over the batch.

3 Group Equivariant Sparse Coding

Missing in the current formulation of sparse coding is the mathematical struc-
ture to support reasoning about hierarchical object transformations in visual
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scenes. This limits its utility in both unsupervised learning and mechanistic
models of visual cortex. Here we address this problem by explicitly incorporat-
ing group equivariant and hierarchical structure into the sparse coding model.
Prior work has explored imposing topological relations between dictionary ele-
ments by establishing implicit neighborhood relations during training through
co-activation penalties [6], or explicitly coupling steerable pairs or n-tuples of
dictionary elements [8]. More recent work in Geometric Deep Learning (GDL)
has introduced several group equivariant architectures, for example through
the use of group convolutions [3,4]. However, these models are feedforward,
lacking mechanisms for hierarchical inference or rich top-down and bottom up
flows. Aside from [1], these models lack mechanisms for hierarchical part-whole
relations.

We explore the implications of inheriting the dictionary’s geometric structure
through group actions. In particular, we propose a model in which each dictio-
nary element is generated by an action of g on a canonical dictionary element, as
shown in Fig. 3 (right). For example, the group G of 2D rotations acts on the 2D
domain X, inducing a natural action on the space of images in Lo(X) defined
over X. We refer the interested reader to [5] for mathematical details on groups
and group actions.

G-Equivariant Generative Model Lie Group Structure in the Dictionary
Scale
Phase Shift
Color
I(x) =) ¢(g)(z) alg) + €(x)
h geG
where -1 -1 =
P =7 ox) =L ox) ¢ =Tl
¢e € Lo (X) ’ ¢(g) (x) e L-‘? [¢5} (m) Translation Rotation General Action

Fig. 3. (left) Geometric generative model, (right) Lie group actions relate dictionary
elements. Here, e is the identity element of GG, and the canonical dictionary element is
¢e € Lo(X). Additionally, L is a linear group action of G in the space of functions on
the domain Lx[f](z) = f(h™'x).

3.1 Geometric Generative Model

This perspective enables us to rewrite the sparse coding generative model as:

I(@) =" ¢(9)(z) alg) + e(x), (1)

geqG

where both the dictionary elements ¢(g) and the scalar coefficients a(g) are
indexed with group elements, i.e. “coordinates” in G. In other words, images
are (1) generated by linear combinations of dictionary elements ¢, where (2)
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each dictionary element has an explicit coordinate g in the group. The latent
representation a is now a scalar field over the group, a : G — R, illustrated in
Figs. 3 (left) and 1 (right). Intuitively, this perspective gives an explicit geometric
interpretation of both the dictionary @ and latent representation a in sparse
coding, and thus a route toward modeling transformations which was implicit in
the unstructured vector representation.

3.2 Geometric Inference and LCA

The geometric perspective of sparse coding above allows us to rewrite the LCA
dynamics. Specifically, each neuron is now associated with a group element
g, with internal state u(g). The LCA dynamics are typically computationally
expensive to compute due to the prohibitive size of the neural interaction matrix
Gg.n = (¢(g9), #(h)). However this term can now be written as a group convo-
lution with a ¢.-dependent kernel w, leading to a symmetric, local wiring
rule between neurons and efficient computation during inference that is readily
parallelized on GPUs. Hence, we propose a new, provably equivariant inference
method—Geometric LCA, where * denotes group convolution:

u(g)(t) = —u(g)(t) — [wa(t)l(g) + (¢(9), 1) (2)

Box 1. Isometry and the Derivation of Geometric LCA

Lemma 1 Consider a function f € Ly(X) Proposition 1: Geometric LCA The
and a dictionary element ¢(g) € L2(X) LCA dynamics have the following geometric
indexed by g € G. If the action of h € G formulation

is isometric on the domain X, then, Vh € G,

e have: ri(g)(t) = ~u(g)(t) ~ [wa())(9)+(3(9), 1
(Lnlo(9)], £) = (#(9), Lp,—1 [f])
Proof. We have: (Lp[¢(g)], f) where * denotes a group convolution.
= /;( Ly [p(9)(z) f(z)dx Proof. Consider the interaction term in the

LCA dynamics: -, cq, pzy Gg,na(h)(t)
= /X Liglge](x) f(z)dz by def. of ¢(g)

= (6(0), #())a(h)(8) by def. of G
:/Xd;e((hg)*lm)f(m)dz by def. of L ha;#g I Y

= 1 a emma
:/Xd)c(g_lh_ll’)f(d?)dm *}LGG,Z}L#EJU/}L [#(9)], pe)a(h)(t) L 1
z «— hz, h action isometric: d(hz) = dx = Z (6(h ™1 g), de)al(h)(t)
= [ ouls™ D)1 L

PR = 3wl 'mah)()

B hEG, h#g
= [ #@@L, @) TN

=({¢(9), Ly—1[£])-

This last step leads to the following LCA  where we define w(g) = (#(g™ 1), ¢e) for
dynamics. g # e and w(e) = 0.
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Equivariance of Inference and LCA. Next, we demonstrate that the solu-
tions I — a obtained from the LCA dynamics are equivariant. First, we say a
map ¢ : X — Z is equivariant to a group G if ¢(Lyz) = Ljy(z) Vg € G, with
L, qu representations of G on X and Z respectively. For clarity of exposition, L
is defined as a group action of G on the space L2 (X) via domain transformations
Ly[fl(z) = f(g~'x), and the action L' of G is defined on the space Lo(G) of
square integrable functions from G to R, defined as:

L, (a)(g) =a(h™tg), Vg€ G, YheG, Yac Ly(Q),

where h™1g refers to the group composition of two group elements. First, we
show that solutions of the ordinary differential equation (ODE) defining the
LCA dynamics exist and are unique. Consider the initial value problem below,
where f denotes the LCA dynamics:

u(g,t) = f(u(g,t),I) Vg€ G,teRy,

u(g,0) =0 Vg € G. ®)

ODE(I) : {

Proposition 1 (Existence and Uniqueness of LCA Solutions). Given an
image I, the solution of ODE(I) exists and is unique. We denote it with u'.

Proof. The Cauchy-Lipschitz theorem (Picard-Lindeldf theorem) states that the
initial value problem defined by ODE(I) has a unique solution if the function f
is (i) continuous in ¢ and (ii) Lipschitz continuous in wu, where:

flulg, 1), 1) = % (—u(g)(t) = [w+a(®)l(9) + (6(9), I)) (4)

The continuity in ¢ stems from the fact that a and u are continuous. We prove
that f(u,I) is Lipschitz continuous in u, i.e. that %(u, I) is bounded. Observe
that the derivatives of the first and third terms are bounded. The second term
is a convolution composed with a smooth, ReL.U-like nonlinearity. As convolu-
tions are bounded linear operators, the question reduces to whether derivative
of the nonlinearity g—z is bounded, which indeed holds. Thus solutions exist and
are unique. Using this fact, we show that the solution of the dynamics trans-
forms equivariantly with image transformations. Let u! be the unique solution
of ODE([). Similarly, let u*»!!] be the unique solution of:

u(g,t) = f(u(g,t),LylI]) Vg e G,teRy,

ODE(L[I) {u(g 0)=0 Vg €G.
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Proposition 2: Equivariance of LCA Inference Dynamics Take h € G.
The solutions of the LCA dynamics ODE(I) and ODE(Ly[I]) are related by
ulnl = L} (u!). Since a(g) = o(u(g)), it follows that: al»! = L} (a?).

Proof Take h € G and define v(g,t) := ul (h~'g,t), Vg, Vt. We show v verifies
ODE(Lp[I]). First, we verify that v satisfies the initial conditions: v(g,0) =
ul(h=1g,0) = 0, Vg € G. Next, we verify that v satisfies ODE(L[I]) Vg, Vt.

T0(g,t) = %[Tul(h_lg,t)] (definition of v)

=—u'(h'g,t) = Y w((h'g)'g) - o(ulg) + ($(h"g), I)

g9’ eG
= —v(g.t) = Y wlg thg') - o(ulg") + (¢(g), Lull]) (Lemma 1)
g'eG
=—v(g,t) = Y wlg™'g) - o(u(h™g) + (¢(9), Lull) (9" —h™'g)
g'€G
= —v(g.t) = Y wlg~tg) - o(v(g") + (6(g), Lull]) (definition of v)
g'eG

= f(v(g,t), Lp[I]) (definition of ODE (Ly[I])).

Thus, v is a solution of ODE(Ly[I]), and, by uniqueness, wv(g,t) =
ulnll(g,t) Vg,Vt. Therefore, u!(h='g,t) = ulrll(g,t) Vg,Vt, and a*r! =
L) (a') as well. Thus, the LCA inference dynamics are equivariant to global
image transformations.

3.3 Equivariances of the Generative Model

Here, we show that the generative model, that is, the function f : a — I that
maps coefficients to images, is also equivariant. There are three types of equiv-
ariance important for representing transformations in natural scenes: global,
part/local, and hierarchical. Here we define these three types and prove that the
generative model is indeed equivariant in these important ways.

Global Equivariance. Traditionally, work on group equivariant neural net-
works (e.g. GCNNs [3,4]) has focused on global equivariance, i.e. equivariance
to a group action L on the domain of the input function. In Box 2, we show that
the geometric form of the sparse coding model is globally equivariant. However,
transformations of natural scenes typically involve actions on objects and parts at
different levels of the hierarchy. That is, transformations of an object at a higher
level of the hierarchy should propagate down compatibly with its parts. In the
context of equivariant sparse coding, the generative model explicitly decomposes
the scene into primitive parts—the first-level dictionary elements. That is, if an
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image I is composed of M objects Iy, ..., Ip; then

I(.%‘) = Il(x) + ...+ I]u(.’L‘)
=Y d(@)(@)ai(g) + ..+ > dlg)(x)anm(g)

geG geG
=Y 6(9)(@) (ar(g) + -+ an(g)).
geG

In the context of this generative model, we can define two additional notions that
are essential for natural scene decompositions—Ilocal and hierarchical equivari-
ance. We prove that the generative model is indeed equivariant in these two
additional important ways.

Local Equivariance. Using the decomposition above, we define local actions
of G on the space of images Ly(X) as:

L) = LplL] + o+ Inr,  Vh € G, 1 € La(X)

LM only acts on image part 1, represented by image I, and likewise on image
part m via L™ . We now prove that these local actions are indeed group actions.
Proof LW is a group action. The proof for L(?) follows.

(i) Identity : LV[1] = I.

(ii) Closure : L) [I] = Ly [L] 4.4+ Ins = Ly [La[L]] 4+ Tny = LY [Lg)m].

Here, we have used the definition of L(!) and the fact that L is a group action.
Similarly, we can define local actions L'™ on the space Lo(G) of coefficients a,,
corresponding to image part I,,,. By the linearity of the generative model f, a
local action in the space of coefficients yields a local action in the image space,
as shown in Box 2, Proposition 3.

Hierarchical Equivariance. The properties of global and local equivariance
naturally give rise to the hierarchical equivariance of the new generative model.
In other words, when a transformation is applied at the level of an object I (e.g.
the whole scene), transformations propagate down compatibly to its parts (e.g.
I, ..., Ins). This hierarchical transformation is directly reflected in actions on the
latent coefficients for an object a and its parts a1, ..., aps. See Box 2, Proposition
5. Thus, a hierarchy of transformations in the scene is equivalent to a hierarchy
of transformations in the internal neural representation.
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Box 2. Generative Model: Global, Local, & Hierarchical Equivariance

Proposition 2: Global The generative Proof We have
model in Eq. 1, I = f(a) is globally G-

equivariant, i.e. for all h € G, we have: ¥ (L/h(l)(a)) =f (L;L(al) + . tan)
! —
F(Ly (@) = Lu(f(a)) (5) — £ (Lh(aD)) + - + Flans)
Proof Take h € G. We have: = f(Lh(a1) + oo+ Ins
=Ln[h]+..+In (by5)
Lnlf Z o(g (1) .. (1)
pr=re’ = L'[I] (definition of L*"’).
= Z Lp [Lg¢ell alg) Shown for m = 1, this property holds for all
geG m, thus the model is locally G-equivariant.
= Z ¢(hg)a(g) Proposition 4: Hierarchical Consider the
geG linear model f, where a = a1 + ... +an. For

_ _ all h, W € G, m € {1,2,..., M} we have:
= S d(@ahle) (9 —h'g) ! b

_ ; $(9) L (a)(9) 7 (24 (557 @)) = L [L7 ()]
- 1. (a)(9).
geqG

Thus the model is globally G-equivariant. Proof Directly from global and local cases:

Proposition 3: Part/Local Consider the

linear model f, where a = a1 + ... + am. L' (L™ (q - L L’(m) @
f is locally G-equivariant, i.e. Vh € G, for f( h ( R ( ))) " [f( ( ))]

m € {1,2,..., M} L [257) [£(@)]]
F(Lim@) = L™ is@) - (6)

Thus, f is hierarchically G-equivariant.

3.4 Constructing a Hierarchical Generative Model

Finally, the equivariant sparse coding layers can be composed hierarchically,
where first-level activations are describable in terms of second-level activations
over arrangements of parts.

2) =Y do(9)ao(g) + (@), aolg) =D Y #f(9)df(9) +elg)  (5)

geG k=1geqG

Defining [ = ¥, ¢, do(g)ao(g) and o = X1, 5, s ¢k (9)ak (g), the energy [2]
and geometric LCA inference dynamics are given by

1 - 1 N
= 51T =115+ XoClao) + 5llao = doll5 + M1 C(ar)

Toto(9) = —uo(g) — [wo * aol(g) + (bo(g), I) + ao(g)
nif(9) = —uf(g) — [wi * at](g) + i (9) + (¢1(9), ao)
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4 Experiments

To evaluate and characterize the behavior of the proposed hierarchical, equivari-
ant sparse coding model, we construct a synthetic dataset of scenes containing
(1) objects comprised of lower-level parts where (2) parts and wholes are trans-
formed via group actions. We do this by specifying a group G, constructing the
dictionary elements at each level of the hierarchy, and then sampling from the
generative model. For the first layer dictionary, we construct an overcomplete
dictionary of Gabor functions generated by acting on a canonical Gabor template
with a discrete sampling of the group of translations G. The mother Gabor ¢, is
shown in Fig. 4. We construct K = 2 canonical second-layer dictionary elements
#1, ¢? from arrangements of parts at the preceding level of representation. Next,
we generate the “orbit” of each template by again sampling from the group of
translations G. The templates and selected dictionary elements are shown in
Fig. 4. We then generate a dataset of images by sampling from the generative
model. In particular, we create a sequence of frames in which objects present in
the scene undergo different translations. The resulting images, inferred latents,
and reconstructions are shown in Fig. 4. Note that the latent variables are sparse
and transform equivariantly, as stated in the proofs.

E Input 1st Layer 2nd Layer2 Recon
quivariant : R2 :G->R a:G->R j:R2
Architecture LR >R 4 ] 1 I:R°>R

2nd Layer
a:G - R?

/\‘
v’
1st Layer
a,:G—> R

r
-«
-

Input J i} . ‘
I:R2o> R .
1 2
i

Fig. 4. Figure: (left) a two-layer translation-equivariant architecture with recurrent
connections within and between layers, (right) experimental results demonstrating that
the neural dynamics converge to a sparse, hierarchical representation of the scene which
transforms equivariantly in time with the input video. Column 1: input video frames,
Column 2: first layer gabor coefficient map displayed with sparse equivariant activa-
tions, Columns 3&4: two second layer “object” coefficient maps displayed with sparse
equivariant activations

vt

vt

-

5 Discussion

By incorporating group structure, we have derived a new sparse coding model
that is equivariant in its response to image transformations, both within a layer
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and across multiple layers stacked in a hierarchy. We believe this is an impor-
tant step toward developing a hierarchical, probabilistic model of visual cortex
capable of performing perceptual inference (e.g. object recognition) on natural
scenes. Surprisingly, the network architecture has the same functional form as
the neural attractor model of Kechen Zhang [10], suggesting new circuit mecha-
nisms in visual cortex for top-down steering, motion computation, and disparity
estimation that could be done in the sparse code domain. Of relevance to deep
learning, this new structure enables inference to be implemented efficiently on
GPUs as (1) a feed-forward group convolution followed by (2) iterative lateral
interaction dynamics implemented by group convolutions between dictionary
elements.

Acknowledgements. The authors thank their helpful colleagues at the Redwood
Center and Bioshape Lab. CS acknowledges support from the NIH NEI Training Grant
T32EY007043.
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Abstract. In information theory—as well as in the adjacent fields of
statistics, geometry, machine learning and artificial intelligence—it is
important to solve high-dimensional optimization problems on directed
distances (divergences), under very non-restrictive (e.g. non-convex) con-
straints. Such a task can be comfortably achieved by the new dimension-
free bare (pure) simulation method of [6,7]. In the present paper, we give
some new insightful details on one cornerstone of this approach.

Keywords: p—divergence - High-dimensional optimization

1 Directed Distances, Divergences

As usual, a divergence is a function D : RE x RE = R with the following prop-
erties: D(Q,P) > 0 for K—dimensional vectors Q,P € RX, and D(Q,P) = 0
ifft Q = P. Since in general, D(Q,P) # D(P,Q) and the triangle inequality
is not satisfied, D(Q,P) can be interpreted as directed distance from Q to P;
accordingly, the divergences D can be connected to geometric issues in various
different ways, see e.g. the detailed discussion in Sect. 1.5 of [5], and [15]. Typ-
ically, a divergence D is generated by some function ¢. For the latter, here we
fundamentally require:

(Gl) ¢ :] —00,00[— [0,00] is lower semicontinuous and convex;

(G2) ¢(1) =0,

(G3) the effective domain dom(p) = {t € R : ¢(t) < oo} has interior
int(dom(y)) of the form int(dom(y)) =]a,b[ for some —c0 < a < 1 <

b < oo;!

(G4) ¢ i)s strictly convex in a neighborhood [t°¢,¢5°[ C]a, b] of one (t*¢ < 1 <
t3°).
+

! notice that (G3) follows from (G1), (G2) and the requirement that int(dom(y)) is
non-empty.
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Also, we set ¢(a) := limy |4 p(t) and @(b) := limyyy, ¢(¢). The class of all functions
¢ with (G1), (G2), (G3) and (G4’) will be denoted by Y (]a, b[). For ¢ € T(]a, b)),
P:= (p1,..pr) ERE;:={R:=(r1,....,7x) ERE : r; >0foralli=1,...,K}
and Q := (q1,...,qx) € Q@ C RE, we define as directed distance the generalized
p—divergence (generalized Csiszar-Ali-Silvey-Morimoto divergence)

K
D,(QP):=) p -w(%);
v ;; g P

for a comprehensive technical treatment, see e.g. [4]. Comprehensive overviews
on these important (generalized) ¢—divergences are given in e.g. [5,6,12,18], and
the references therein. Notice that the total variation distance D, (Q,P) =

Zszl Dk PTV (g—’;) = 2521 | pr — qi | with o7y (t) := |t — 1| is not covered here.
2 Optimization and Bare Simulation Solution Method
Problem 1. For pregiven ¢ € 7T (la,b]), positive-entries vector P :=

(p1, ., pK) € RE, (or from some subset thereof), and subset & C RE with regu-
larity properties

d(Q) =l (int (),  int () #£0, (1)
find
deh, PAQP). ?
provided that
dnf Dy(Q,P) < co. (3)

Remark 2. (a) In case that a minimizer Q* of (2) exists—i.e. Q* lies in §2
and satisfies D,(Q*,P) = infqeq D, (Q,P)—then this Q* can be interpreted
as an information projection of P on Q . For the related context of probability measures,
information projections have been addressed e.g. in [8,9] for the subcase of the
Kullback-Leibler information divergence (also called I— divergence), see also e.g.
[13] for a nice exposition in connection with the differential geometry of proba-
bility model parameters and general ¢.

(b) When  is not closed but merely satisfies (1), then the infimum in (2) may
not be reached in 0 although being finite; whenever, additionally, € is a closed
set then a minimzer Q* € Q exists. In the subsetup where €2 is a closed convex
set and int(Q) # 0, (1) is satisfied and the minimizer Q* € Q in (2) is attained
and even unique. When ¥ is open and satisfies (1), then the infimum in (2)
exists but is generally reached at some generalized projection of P on Q0 (see [9] for
the Kullback-Leibler divergence case of probability measures, which extends to
any p—divergence in our framework). However, in this paper we only deal with
finding the infimum/minimum in (2) (rather than a corresponding minimiger ).

(c) Our approach is predestined for non- or semiparametric models. For instance,
(1) is valid for appropriate tubular neighborhoods of parametric models or for
more general non-parametric settings such as e.g. shape constraints.
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According to our work [6], the above-mentioned Problem 1 can be solved by
a new dimension-free precise bare simulation (BS) method to be explained in
the following, where—(only) for the sake of brevity—we assume the additional

constraint Z,K;l p; = 1 for the rest of this paper. We first suppose

Condition 3. The divergence generator ¢ in (2) satisfies (G1) to (G4’) (i.e.
v € T(Ja,b])) and additionally there holds the representation

¢(t) = sup <z t— log/Rez'yd((y)> ,  teR, (4)

z€R

for some probability measure ¢ on the real line R such that the function z —
2

MGF(z) := [ e*Yd((y) is finite on some open interval containing zero®.
The class of all functions ¢ which satisfy this cornerstone Condition 3 will be
denoted by 7 (]a, b[). By means of this, for each fixed ¢ € 1'(Ja, b]) we construct
in [6] a sequence (€W ),en of RE —valued random variables/random vectors (on
an auxiliary probability space (X, .27,[1)) as follows: for any n € N and any k €
{1,..., K}, let ng := |n-px | where |x] denotes the integer part of z. Thus one has
lim,, o 7= = pg. Moreover, we assume that n € N is large enough, namely n >
maXpe(1,.. K} é, and decompose the set {1,...,n} of all integers from 1 to n into

the following disjoint blocks: Il(n) ={1,...,nm}, I2(n) ={n1+1,...,n1 + na},
and so on until the last block Ig’) = {Zf:_ll ng + 1,...,n} which therefore
contains all integers from ny 4+ ... + ng_1 + 1 to n. Clearly, I,g") has n, > 1
elements (i.e. card(1 ,i")) = ny, where card(A) denotes the number of elements in
aset A) for all k € {1,..., K —1}, and the last block Iﬁg) has n—zf:_ll ng > 1
elements which anyhow satisfies lim,,_, card(Iﬁ?)) /n = pk. Furthermore, con-
sider a vector W := (W7y,...,W,,) where the W;’s are i.i.d. copies of the random
variable W whose distribution is associated with the divergence-generator ¢
through (4), in the sense that N[W € -] = ([-]. We group the W;’s according to

the above-mentioned blocks and sum them up blockwise, in order to build the
following K — component random vector

eV = (% 3 W% 3 W)

ierl™ el

For such a context, in [6] we obtain the following solution of Problem 1:

? this implies that [y d((y) =1 (cf. (G11i) below) and that ¢ has light tails.
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Theorem 4. Under Condition 3, there holds the “bare-simulation (BS) mini-
mizability”
1
inf D,(Q,P)=— lim —log N[¢VY € Q
dnf Dy(QP) = - lim —log N[, € Q]

for any & C RE with regularity properties (1) and finiteness property (3).

In [6], we also give versions for the case Zfil p; # 1 (and hence, ¢ needs to be
transformed), versions for constraint sets € in the probability simplex, as well as
numerous solved cases. An extension of this bare simulation method to arbitrary
divergences D(Q,P) (e.g. Bregman distances) can be found in [7].

Theorem 4 provides our principle for the approzimation of the solution of the
deterministic optimization problem (2). Indeed, by replacing the involved limit
by its finite counterpart, we deduce for given large n

1
nf D@QP) ~ — logN[el € ] (5)
it remains to estimate the right-hand side of (5). The latter can be performed
either by a naive estimator of the frequency of those replications of €W which
hit ©, or more efficiently by some improved estimator, see [6,7] for details.

We can also deduce that the rate of convergence in Theorem 4 is
(0] (nil -log n) Indeed, since the K components in £V are independent, each
of them being a weighted empirical mean of independent summands, we can
combine the proof of Theorem 8 in [6] (with the special choice Zfil pi = 1)
with e.g. Theorem 11.1 in [14] in order to derive the existence of two constants
c1 > 0, co > 0 such that

ey - K/2 . gmminfaes De(QP) < lﬂ[é,‘fv c B} < ¢y -n K2 gmminfaen Dy (QP)

for any hyper-rectangle B in R¥, which entails the above-mentioned order of the
convergence in Theorem 4. A complete development of such bounds together with
the corresponding tuning of the number of replicates in order to approximate
M [EXV € B] for fixed n is postponed to forthcoming work.

3 Finding/Constructing the Distribution of the Weights

As seen above, in our bare-simulation-optimization context it is important to
verify the cornerstone Condition 3. For this, in Theorem 22 of [6] we have devel-
oped one special method (see (7),(8) below) of constructing “good candidates”
o and ( for Condition 3, and for those we have also given some additional con-
ditions in order to fully verify Condition 3. As a new contribution, let us now
give some more general view on the verification of Condition 3, delivering also
insights and details additional to our investigations [6]. Subsequently, we discuss
the following direction: starting from a concrete optimization problem (2) with
pregiven g satisfying G(1),(G2),(G3),(G4’), one would first like to verify whether
the representability (4) holds, without finding the corresponding ¢ explicitly. For
this sake, we first present some fundamental properties of all ¢ € Y(]a, b[):
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Proposition 5. Let ¢ satisfy Condition 3 (i.e. ¢ € Y(Ja,b[)). Then the follow-
ing assertions hold:

(G4) ¢ is strictly convexr only in a non-empty neighborhood [t°¢,t5°[ C la, b]

(G5)
(G6)

(G7)

(G8)

(G9)

(G9i)

(GYii)

(G9iii)

(G9iv)

of one (t°¢ <1 < t5°);
¢ is continuously differentiable on ]a,b| (i.e. ¢ € C1(]a,b]);
@ s infinitly differentiable on [t°¢,t5°[ (i.e. ¢ € C®(]t*°,t5°]), and
hence, ¢'(1) =0, ¢"(t) > 0 for all t €]t>¢,t5°];
notice that the left-hand second derivative and the right-hand second
derivative of ¢ may not coincide at t°¢ respectively at t5° (i.e. possible
non-second-differentiability at these two points);
if a > —oo, then a = t°¢;
if a = —oo, then either t5¢ = —co or p(t) = p(t5°) + ¢’ (£5°) - (t — t5°)
for allt €] — o0, t%¢[ (affine-linearity); notice that ¢ (t°¢) < 0;
if b < oo, then b= t%%;
if b= oo, then either t3° = oo or ¢(t) = @(t5°) + ¢'(t5°) - (t — t5°) for
all t €]t5°,00[ (affine-linearity); notice that ¢'(t3°) > 0;
the Fenchel-Legendre transform (also called convex conjugate) of ¢

@ (z) =sup(z-t—(t)) = sup (z-t—¢(t)), z€R, (6)

teR t€]a,b|

has the following properties:
int(dom(¢*)) =]A_, Ay[, where dom(p*) == {z € R : —0c0 < ¢*(2) <
oo},
A= infte]a,b[ 90/(t) = limy |, (P,(t) =@
Ag 1= SUPyelq p @ (8) = limypy ¢ (2) =2 ¢'(b) > 0;
if a > —oo, then
— A = —o0;
— the function z — e~ @*t¥ () = M(z) is absolutely monotone on
] — 00,0], i.e. all derivatives exist and satisfy %M(z) >0 (k € No,
z €] —00,0]);
— lim, o- M(2) =1;
if b < oo, then

— Ap =005

— the function z — e*t¢ (=2 = M(2) is absolutely monotone on
] ) 0[7

— lim, _o- M(z) =1;

if a = —o0 and b = oo, then

— the function z — e®”*) =: M(z) is exponentially convex on |A_, A{][,
i.e. M(+) is continuous and satisfies

Z ci~cj~M(%) >0 foralln € N,c;,¢c; € R and z;, z; €]A_, AL ];

ij=1

notice that exponential-convexity is stronger than the usual log-
convezity.

— lim, ,o- M(2) =1;
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(G10) the endpoints of int(dom(p)) =]a,b] have the following important
“functioning” for the underlying probability distribution C (cf. (4))
respectively of an associated random variable W with (-] := N[W € -]:

(G10i) a = inf supp(€) = inf supp(W), b = sup supp(€) = sup supp(W), where
supp(() respectively supp(W') denotes the support of  respectively W ;
consequently, |a, b= int(conv(supp(())) = int(conv(supp(W))) where
conv(A) denotes the convex hull of a set A;

(G10i) if a > —oo, then p(a) = —log([{a}] = —logNW = a]; conse-
quently,
a = min supp(() = min supp(W) if and only if ([{a}] =NW =a] >0
if and only if v(a) < oo if and only if a € dom(y);

(G10iii) if b < 0o, then p(b) = —log ([{b}] = —logN[W =b]; consequently,
b = max supp(() = max supp(W) if and only if ([{b}] = NW =b] >0
if and only if p(b) < oo if and only if b € dom(y).

(G11) the first two derivatives of ¢ at the point 1 have the following important
“functioning” for ( respectively W :

(G11i) 1= ¢'710) = [y d((y) = En[W] where ¢'~'(-) denotes the inverse
of the first derivative ©'(-) of ¢(+),

2
(G11ii) gy = Jy (v = e FACD) dily) = EnlW?] = (En[W])* = Vara[W];
thus, scaling ¢- ¢ (¢ > 0) does not change the mean 1 but the variance

of W.

Notice that (G4) is stronger than (G4’). The proof of Proposition 5 will be given
in Sect. 4. The properties (G1) to (G9iv) constitute necessary (shape-geometric)
conditions for a pregiven function ¢ to belong to 1'(Ja,b[)); accordingly, these
should be verified first, in concrete situations where one aims to optimize D,
through Theorem 4. For the sufficiency, we obtain

Proposition 6. Suppose that ¢ : | — o0, 00| — [0, 0] satisfies (G1) to (G8), and
recall the notations in (G9i). Then, ¢ € T (Ja,b]) if one of the following three
conditions holds:

(a) a > —o00, \_ = —o0, and z — e~ **¢"(3) s absolutely monotone on | —
00, 0[,
(b) b< oo, \; =00, and z — e"*t¥"(=2) s absolutely monotone on | — 00, 0],
¢) a=—00, b=00, and z — e¥ ¥ is exponentially convex on ]A_, Ay[.
+

The proof of Proposition 6 will be given in Sect.4; notice that—due to (G9ii)
respectively (G9iii)—the two cases “a > —oo, A_ > —o0” respectively “b < oo,
Ay < o0” can not appear. As far as applicability is concerned, it is well known
that, in general, verifying absolute monotonicity is typically more comfortable
than verifying exponential convexity. Hence, the boundary points a and b of
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int(dom(p)) play an important role, also (in case that one starts from a pregiven
) because they indicate the support of the desired € to be searched for; for the
latter task, one typically should know the explicit form of the Fenchel-Legendre
transform ¢* which can sometimes be hard to determine. This hardness issue
also applies for the reverse direction of starting from a concrete probability
distribution ¢ with light tails, computing its log-moment-generating function z —
A¢(z) = log MGF(z) and the corresponding Fenchel-Legendre transform Af
which is nothing but the associated divergence generator ¢. However, as already
indicated above, in Theorem 22 of [6] we have developed a comfortable method to
considerably ease these problems, as follows (where for the sake of brevity we only
present a special case thereof): we start from a function F :]— o0, 0o[+— [—00, 00]
with int(dom(F)) =]ap,bp| for some —oco < ap < 1 < bp < 0o, which is smooth
(infinitely continuously differentiable) and strictly increasing on |ag,bp[, and
which satisfies F'(1) = 0. From this, we construct |A_, \;[:= int(Range(F)),
2, t5°[:==lar,br[, Ja,b] with a := t° - 1;_}(A_) — 00 - §_oop(A-) and b :=

5100} (A4 ) +00-10,00[ (A ), as well as the following two functions ¢ : |—o00, 0o —
[0,00] and A : ] — 00, 00[ — [—00, 0] by
F(t)— ;" F ! (w)du € [0,00], if ¢ et ],
¢ F (%) — fo( )Ffl( )du €10, 00], if t =12 > —o0,
F : sc
ot) = t3° - F (t35°) — fo )F Yu)du €10, 00], if t =t5° < o0, (7)
P) + M- - (t —1¢2°) €]0,00], if ¢ > —oo and t €] — o0, t%,
P5) + At - (t—t55) €10, 00], if t3° < oo and t €]t5°, o0,
00, else,
fo “u)du €] - oo,00], if z €], A4,
“(u)du € [—o0, 0], if z=A_ > —o0,
Ay o o P e € oo i (%)
Jo F (u)du € [—o0,00], if z =Xy < o0.
o0, else.

For this construction, we have shown in [6] that p(t) = sup,cg (2 -t — A(2)) for
all t € R and that z — exp(A(z)) is a “good candidate” for a moment generating
function of a probability distribution ¢, and hence for the representability (4).
Additionally, we can also straightforwardly show that ¢ satisfies (G1) to (G8),
and consequently, Proposition 6 generalizes the Proposition 24 of [6]. Numerous
examples for the applicability of (7),(8) are given in [6].

4 Proofs

Proof of Proposition 5. Suppose that ¢ satisfies (G1) and (G3). Moreover,
recall the required representability (4); the involved Laplace-Stieltjes transform

R>z— MGF(z) = /[Rez'y d((y) = Enle*"] 9)
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of a probability measure  on the real line R respectively of an associated random
variable W (with ([-] := N[W € -]) has the following fundamental properties,
according to well-known general theory:

(M1) MGF¢ takes values in ]0, co];

(M2) dom(MGFy) is an interval which contains 0 and may be degenerated
or even the whole real line; correspondingly, we denote its interior by
1A=, A4 [ := int(dom(MGF¢)) which may be the empty set (in case that
dom(MGF¢) = {0}, i.e. A_ = Ay = 0); clearly, there holds A_ € [—o0,0]
and Ay € [0, 00];

(M3) MGF¢ is continuous on dom(MGF¢) and lower semicontinuous on R;

(M4) if A_ # A} then MGF; is real analytic and thus infinitely differentiable
on JA_, ALf;

(Mb) if MGF is finite in a neighborhood of zero, i.e. 0 € ]A_, Ay [ with A_ < A4,
then for all £ € Ny the k—th moment of { respectively W exists and is
finite and can be computed in terms of the k—th derivative M GF((k) as

MGE® (0) = /R y" di(y) = Bn[W),

which, by the way, then allows the interpretation of MGF¢ as “moment

generating function of ¢ resp. W7”; since in Condition 3 we assume 0 €

JA=, A4 [, we have used the abbreviation M GF (rather than LSTy) in (9);
(M6) if A_ # Ay, then MGF is strictly convex on JA_, Ay [.

Hence, the logarithm of the Laplace-Stieltjes transform

z v+ A(2) :=1log MGF((z) := log/ e*Y d((y) = log Enle*"] (10)
R
(which in case of 0 € J]A_, Ay [ can be interpreted as cumulant generating function)
“carries over” (M1) to (M6), which partially can be even refined:

(C1) Ag takes values in | — 00, 00];

(C2) dom(A¢) = dom(MGF¢) and thus int(dom(A¢)) =)A=, A+];
(C3) Ag is continuous on dom(A¢) and lower semicontinuous on R;
(C4) if A_ # AL, then A¢ is infinitely differentiable on |A_, AL ];
(C5) if 0 €]A_, A, ], then

A0) =0, 4(0) = [ ydi(y) = BV (1)
10 = [ (s [ 794@) " deto) = EalW?) = (Bl W)? = VaraW (12
(C6) under the assumption A_ # Ay there holds: A is strictly convex on

JA—, A4[ if and only if € is not a one-point distribution (Dirac mass) if
and only if W is not a.s. constant; otherwise, A¢ is linear;
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(C7) under the assumption that ¢ is not a one-point distribution (Dirac
mass)—with the notations a := inf supp(() = infsupp(W), b :=
sup supp(() = supsupp(W), ¢ = inf{Ai(2) : 2 €A, [} =
lim, |\ A¢(2) and
3¢ 1= sup{A¢(2) : z €]A_, A1} = limy1a, A¢(2)—one gets the follow-

ing:
(C7i) Jeze, 15[ € a, b;
(CTii) if @ > —o0, then A_ = —oc0, ¢ = lim,_._ o Af(2) = lim,_._o 242 =
a;
(CTiii) if b < oo, then A = 00, #° = lim, o0 Af(2) = lim, 00 A<7<Z> = b,
(CTiv) if a = —oo and A\ = —oo0, then 3¢ = lim,, _ A¢(2) = —0c0 = q;

)
)
(C7v) if b= oo and Ay = oo, then ¢3¢ = lim, o A¢(2) = 0o = b;
(C7vi) if A_ €] — 00,0[ and t5¢ > —o0, then a = —o0, A¢(A_) €] — o0, 0],
Ag(z) = 0o for all 2 < A, A(A-) €] —00,00];
(Crvii) if Ay €]0,00[ and t5¢ < oo, then b = oo, A¢(Ay) €]—00,00[, A¢(z) = 00
for all 2 > Ay, Ag(Ay) €] —00,00[;
(C7viii) if A_ €] — 00,0[ and t°¢ = —o0, then a = —o0;
(Crix) if Ay €]0,00[ and t3° = oo, then b = oo.

Notice that (C7ii) to (C7ix) cover all possible constellations. For a proof of (C7ii)
to (C7vii) as well as further details, see e.g. Section9.1 in [3]. By contradiction,
(C7viii) follows from (C7ii) and (C7ix) follows from (C7iii). Moreover, (CT7i) is a
consequence of (CT7ii) to (C7ix). As a side remark, notice that (C6) refines (M6).
To proceed with our proof of Proposition 5, due to the requirement (4) one has

@(t) =sup (z -t — A¢(2)) =: A (1), teR, (13)

z€R

i.e. the divergence generator ¢ must be equal to the Fenchel-Legendre transform
Ag of a cumulant generating function Ag) of some probability distribution (, such
that A= < 0 < A4 holds. Moreover, ¢ should satisfy ¢(1) = 0 (cf. (G2)), and
should be finite as well as strictly convex in a non-empty neighborhood ¢%¢, 5]
of 1 (cf. (G4")). The latter rules out that ( is any one-point distribution (Dirac
distribution), say ¢ = d,, for some yo € R, since in such a situation one gets
A(z) = 2 - yo, and thus ¢(t) = Af(t) = 0 for t = yo and p(t) = Af(t) = oo
for all t € R\{yo} (even in the case yo = 1 for which ¢(1) = 0 is satisfied).
Consequently, A¢ is strictly convex on |A_, Ay[ = int(dom(A¢)) (cf. (C6)) and
(C7) applies. Clearly, by continuity one gets

Act) = sup  (t-z— A(2)), teR. (14)
ZEIA_ A4

For t €]t*,15°[, the optimization problem (14) can be solved explicitly by the
well-known “pure/original” Legendre transform, namely

Ap(t) =t AN (1) — A (Agl(t)), £ e e (15)
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Let us inspect the further cases ¢t < ¢*¢. In the contexts of (C7iv) and (C7viii),
this is obsolete since ¢°¢ = a = —oo. For (CTii), where ¢°° = a > —o0, one can
show A¢(a) = —log([{a}] = —logN[W = a] which together with (13) proves
(G10ii); moreover, Ag(t) = oo for all ¢ < a (see e.g. Section9.1 of [3]). In the
setup (C7vi), where ¢2 > a = —ooc it is clear that Af(t2°) = ¢2¢- /lf{l(tsf) -
A(ATH(E9)) = #2¢ - A — A¢(A-) and

AL(8) = t- A = AgA) = AF () + A_ - (t— %) for all t €] — 00, £°°[. (16)

As far as the cases t > t%¢ is concerned, in the situations of (C7v) and (CTix),
this is obsolete since t3° = b = oo. For (C7iii), where t3° = b < 0o, one can show
A{(b) = —log ([{b}] = —log N[W = b] which together with (13) proves (G10iii);
moreover, A¢(t) = oo for all t > b (see e.g. Sect. 9.1 of [3]). In the setup (C7vii),
where 5% < b = oo it is clear that Af(t5°) = t5¢ - AT (t5°) — A(A ' (t59)) =
tj_c . )\+ — A(()\+) and

Ap(t) =t Ay — Ag\y) = A(#) + Ay - (¢t —£5°) for all ¢t €]5¢, 00 (17)

As a side effect, we have thus also proved (G10i) (notice that in (C7) we have
started with a, b to be the endpoints of the support of ¢ respectively W, in con-
trast to (G3) of the definition of 1'(Ja, b) where a, b are defined as the endpoints
of the effective domain of ¢). To proceed, from (13) and (15) we obtain

¢(t) = (40)' (1) = AT (1), (1) = (4)" () = M >0, t et t5],
C\*°¢
(18)

which—together with the investigations below (15)—provides (G4) and (G5);
moreover, (G6) is immediate since the infinite differentiability is straightforward
and ¢'(1) = 0 because we have required both the nonnegativity of ¢ and (G2)
(cf. the definition of 7'(Ja,b[)). The property (G7) follows from (C7ii), (C7iv),
(C7viii), (13), (16) and ¢ (t°¢) = Af(_l(ts_c) = A_. Analogously, we get (G8) from
(Criii), (C7v), (CTix), (13), (17) and ¢'(t5°) = Af{l(tf’f) =)

Let us continue with (G9). By applying the general theory of double Fenchel-
Legendre transforms (bi-conjugates), (6) turns into

p(2) = A(2),  z€R, (19)

which deduces (G9i). The properties (G9ii), (G9iii) and (G9iv) follow from the
following theorem and the discussion thereafter.

Theorem 7. (a) Let M :] — 00,0] —]0,00[ be continuous on | — 0o, 0] with

M(0) = 1. Then one has

M is absolutely monotone on | — 00, 0] <

3 unique prob. distr. ¢ on [0,00] s.t. M(z) = / e*Yd((y) for all z €] — 00,0].
0
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(b) Let I be an open interval which contains 0, and M : I — [0, 0o[ be continuous
with M(0) = 1. Then one gets
M is exponentially convexr <=

3 unique prob. distr. ( on ] — 00,00 s.t. M(z)z/

— 00

oo

e*Yd((y) for all z € I.

Assertion (a) of Theorem 7 is known as (probability-version of) Bernstein’s theo-
rem [2] (see e.g. also [16]), whereas assertion (b) is known as (probability-version
of) Widder’s theorem [19] (see e.g. also [1,10,11,17,20]). From (10), (19), (G9i)
and Theorem 7(b), the first item in (G9iv) follows immediately by using the
choice I =]A_, A\, [. Under the additional knowledge a > —oco (and consequently
A_ = —o0) employed together with (G10i) and thus N[W > a] = ([[a,o[] = 1,
one arrives at

ef (F)maz— / e* W= d((y) = / 7 d((y) = Enle* ™ )], 2 €]—00, A4 [, (20)
a 0

where the probability distribution ([-] := ([ + a] is the a—shifted companion
of (; recall that A, > 0. Put in other words, I]_I[W €)= Z[] is the probability

distribution of the (a.s.) nonnegative random variable W := W — a. Similarly, if
¢ € T(Ja,b]) and b < oo (and hence Ay = c0), one can derive from (G10i) and
its consequence MW < b] = ([] — 00,b]] =1 that

b 9] ~
e = [ agy)= [T Tl = Bolem ), €] - 00,2
—00 0
(21)
where —A_ > 0 and ([-] := ([b— -] is the mirrored—b—shifted companion of

([-]. This means that N[IW € -] = ([-] is the probability distribution of the (a.s.)
nonnegative random variable W := b—W. By using this, Theorem 7(a) together

with (20) (respectively (21)) implies the second item of (G9ii) (respectively of
(G9iii)). Finally, we obtain (G11i) and (G11ii) from (18), (11) and (12). |

Proof of Proposition 6. The assertions follow straightforwardly from Theorem
7, (10), (19), (20), (21), (18) (and the discussion thereafter) as well as (M5). B
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Abstract. According to Tsallis’ seminal book on complex systems: “an
entropy of a system is extensive if, for a large number n of its elements,
the entropy is (asymptotically) proportional to n". According to whether
the focus is on the system or on the entropy, an entropy is extensive for a
given system or a system is extensive for a given entropy. Yet, exhibiting
the right classes of random sequences that are extensive for the right
entropy is far from being trivial, and is mostly a new area for generalized
entropies. This paper aims at giving some examples or classes of random
walks that are extensive for Tsallis entropy.

Keywords: extensivity - complex systems -+ phi-entropy - random
walks - stochastic process

1 Phi-Entropy Functionals and Extensivity

In the most classical information theory, the sources, identified to random
sequences, are assumed to be ergodic or stationary. For such sources, the Asymp-
totic Equipartition Property (AEP) holds, stating that Shannon entropy asymp-
totically increases linearly with the number of elements of the source, a conse-
quence of the strong additivity of Shannon entropy; see [3] for precise statements
of AEPs for various types of sources. For more complex, non-ergodic systems,
this asymptotics can be highly non linear, requiring to investigate alternative
behaviors or to consider other entropy functionals.

The g-entropy functionals (also called trace entropies) have now been widely
used and studied in numerous scientific fields. The ¢-entropy of a random vari-
able X with finite or countable state space E and distribution Py is defined
as Sy (X) = > ,cp w(Px(x)), with ¢ some smooth function. Classical examples
include Shannon with ¢(z) = —zlog(x), Taneja with ¢(z) = —a*®log(x), and
Tsallis with Ty(X) = A5[1 — A(X;s)], where A(X;s) = Y, .p Px(2)* is the
so-called Dirichlet series associated to X. Here, we will focus on Tsallis entropy,
and suppose that s > 0.

Extensivity of a complex systems is introduced in [10] as follows: "an entropy
of a system is extensive if, for a large number n of its elements (probabilistically
independent or not), the entropy is (asymptotically) proportional to n".
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Precisely, a p-entropy is extensive for a random sequence X = (X, )pen+, with
X1 = (X4,...,X,,), if some ¢ > 0 exists such that S, (X1.,,) ~n—oo ¢.1; the con-
stant ¢ is the p-entropy rate of the sequence. Intuitively, all variables contribute
equally to the global information of the sequence, an appealing property in con-
nection with the AEP in the theory of stochastic processes and complex systems;
see, e.g., [2]. Extensivity is a two-way relationship of compatibility between an
entropy functional and a complex system: indeed, the entropy is extensive for a
given system or the system is extensive for a given entropy, according to whether
the focus is on the system or on the entropy. Yet, exhibiting the right class of
random sequences that are extensive for the right entropy is far from being triv-
ial, and is mostly a new area for generalized entropies. This paper, as a first step,
aims at giving some examples or classes of random walks that are extensive for
Tsallis entropy, widely in use in complex systems theory; see [10].

For ergodic systems, Shannon entropy is well-known to be extensive while
Tsallis entropy in non-extensive; see e.g. [7]. More generally, [4] establishes that
Shannon entropy is the unique extensive w-entropy for a large class of random
sequences called quasi-power (QP) sequences (see definition given by (2) below),
among the class of the so-called quasi-power-log (QPL) entropies introduced in
[1], satisfying

p(x) ~o az®(logz)’ + b, (1)

for some a,b € R, s > 0, § € {0,1}. QPL entropies are considered in [9, Eq.
(6.60), p356] and [1] as the simplest expression of generalized entropies for
studying the asymptotic behavior of entropy for random sequences, on which
the present paper focuses. Indeed, the asymptotic behavior of the marginal QPL
entropy of a random sequence is closely linked to the behavior of its Dirichlet
series, characterized for QP sequences by the quasi-power property

AX1inis) = c(s)A(s)" ™" + Ru, s> 00, (2)

where 0 < 0¢p < 1, ¢ and X are strictly positive analytic functions, A is strictly
decreasing and A(1) = ¢(1) = 1, and R, is an analytic function such that
|Rn(s)] = O(p(s)"A(s)™) for some p(s) €]0,1[. Thanks to Perron-Frobenius the-
orem, the QP property is satisfied by ergodic Markov chains, including indepen-
dent and identically distributed (i.i.d.) sequences. It is also satisfied by a large
variety of dynamic systems, including continuous fraction expansions; see [11].

In another perspective on the characterization of the asymptotic behavior of
entropy, [9] studies uniformly distributed systems, in which each X, is drawn
from a uniform distribution on a state space that may depend on n; see also [5]
and the references therein. The entropies are classified according to the two
parameters 0 < ¢ < 1 and d € R given by

i ) limloe 0(m) | 20
¢=1—lin Y IOR d 1n1g9(){n0/(n)+ 1}, (3)

depending only on the asymptotics of the size 2(n) = |E(1 : n)| of the state
space Ei., of Xi.,. In the context of [5], the asymptotic behavior of §2(n) is
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assumed to be a smooth expression of n, e.g., n® with 8 > 0; then, £2'(n)
denotes the derivative of this expression at n. The asymptotic classification
includes QPL entropies plus Quasi Power Exponential (QPE) entropies, given
by ¢(x) ~g ax® exp(—yx) 4+ b, with a,b € R*, s € R, and v € R, that are all
asymptotically equivalent to the Tsallis one. Linear combination of such cases
may also be considered, but are asymptotically dominated by one of the terms.
Therefore, the present paper will focus exclusively on the asymptotic behavior
of QPL entropies, for which (c,d) = (s,9) in (1); see [1] and [9, Table6.2].

All in all, in [5,9] and the references therein, one can identify the following—
non exhaustive— types of growth, attached with class tags linked to the type of
maximum entropic distribution:

2(n) ~ n is power-law leading to ¢ = 1 — 1/b,d = 0, and Tsallis entropy;

2n) ~ Ln'"
0<p<l;

2(n) ~ exp(¢n) is exponential with ¢ = d = 1, and hence is extensive for
Shannon entropy;

2(n) ~ exp(fn?) is stretched exponential with ¢ = 1,d = 1/g, with g > 1,
and extensive for QPE entropies, asymptotically equal to Tsallis.

The paper aims at showing through examples that various simple systems
are extensive for Tsallis entropy, by using the growth rate of both the size of
the state space and the behavior of the Dirichlet series. This amounts to using
the physics approach in [9] to supplement and clarify the mathematics approach
in [1,4]-and other works along the same lines. The approach developed in [9]
focuses on the complex systems and the induced maximum entropy distribution,
and involves random sequences only via the size of the state space, while we
are here interested in entropy as a function of a random sequence. Indeed, we
focus on the random variables, together with their distributions, involved in the
— asymptotic — behavior of a system and its entropy, as reflected in the Dirichlet
series.

Section 2 begins by considering classical random walks, non-extensive for
Tsallis entropy, but constituting a good starting point for constructing extensive
ones. Then some examples of Tsallis-extensive systems are given in the con-
text of complex systems, in terms of restricted or autocorrelated random walks.
Still, the conditions on these systems appear to be difficult to express simply in
terms of statistical inference, construction, and simulation, of random sequences.
Therefore, the framework is broadened in Sect. 3 by considering non identically
distributed increments, that is delayed random walks. Tuning the marginal dis-
tributions of the increments leads to Tsallis extensive sequences, with explicit
probabilistic conditions allowing for the effective construction of such systems.
Precisely, the main result, Theorem 1, gives a procedure for building random
walks that are Tsallis-extensive, through an opening to non-uniform systems.

is sub-exponential and leads to ¢ = 1, d = 1 — 1/, with

2 Random Walks

Let X = (X, )nen+ be a sequence of independent random variables such that,
for each n € N*, X,, takes values in a finite or countable subset E(n) of ZN.
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Let W = (W, )nen- be the random walk on ZY associated to the increments X
through W,, = >"7_, X,,, for n € N*.

We will derive the asymptotic behavior of the classical and extended random
walks thanks to the following properties satisfied by the Dirichlet series; see,

e.g., [8].

Properties 1 Let X be a discrete random variable taking values in E. Let £ =
|E| denote the number of states, possibly infinite. Let s > 0. Then:

1. A(X,1) =1, and if X is deterministic, then A(X,s) =1 too for all s.

2. logmx < A(X;s) <logé&, where mx is the number of modes of X.

3. s — A(X;s) is a smooth decreasing function.

4. If X1,..., X, are independent variables, then A(X1.n;s) = [[h_q A(Xk;s).

Classical isotropic random walks (W,,) on Z! are associated to sequences X
of i.i.d. random variables with common uniform distribution, say X,, ~ U(E),
on E = {+e;,i € [1,I]}, with I € N*, where the e; are the canonical vectors of
R’. Property 1.4 and the i.i.d. assumption yield

A(len; ) Xl ny S H Xka » (4)

that is to say A(Wi.,;s) = (2I)", so that S(W,) = nlog2l and T (W,) =
L [1—(2I )1=#)"]  and hence Shannon is extensive while Tsallis is exponential.

Note that (4) still holds for non identically distributed random variables.
Clearly, alternative choices for A(Xy; s) yield alternative behaviors for A(X7.,,; s)
and hence for Tsallis entropy. Let us give two examples, where the state space

of X,, grows with n.

Example 1

1. The state space of X,, is linearly expanding if X,, ~ U({£e;,1 < i < n}),
since then £(1 : n) = |E(n)| = 2n and 2(n) = 2™.nl. We compute A(W,,;s) =
(2"n))1=%, S(W,,) ~o nlogn, and T,(W,) = -5 [1 - (2"n!)!~*], making
the random walk W over-extensive for both Shannon and Tsallis.

2. The state space of X,, is exponentially expanding if X,, ~ U({£1}"), since
then £(n) = 27, and 2(n) = 2"tV a stretched exponential growth, and
leads to a QPE entropy with ¢ = 1, d = 1/2, asymptotically equal to Tsal-
lis. We compute A(W,,;s) = 20=)n(m+1)/2 and S(W,,) ~s log2n?/2 and
Té(Wn) — i [1 _ 2(1—s)n(n+1)/2] )

Both (4) and Examples 1 show that the marginal Tsallis entropy of random
walks with such inflating state spaces increases at least exponentially fast. To
obtain extensive sequences for Tsallis entropy in this way would require the
state spaces to contract, which is impossible. The approach of [5,6] with either
restricted state spaces or autocorrelated random variables next presented will
pave the way to possible solutions.
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The following restricted binary random walks, with E = {0, 1}, are heuristi-
cally described in [5]. If, asymptotically, the proportion of 1 is the same whichever
be the length of the sequence, then W,, /n converges to a constant limit L € (0;1),
and £2(n) = L™, with exponential growth, and hence W is extensive for Shannon
entropy.

If W, goes to infinity slower than L.n, its growth is sub-extensive for Shan-
non, and over-extensive otherwise. Such behaviors induce to restrict in some
way the number of either 0 or 1 that the system can produce in n steps. For a
power law growth, W,, converges to a constant g > 0 and 2(n) ~ n9, leading to
extensivity for Tsallis entropy with s =1 — 1/g; see [7]. A rigorous presentation
of such a sequence will be obtained in Example 5 below.

Further, autocorrelated random walks are considered in [6]; see also [7]. Sup-
pose here that E(n) = {—1,1}. In the classical symmetric uncorrelated RW,
P(X,, =-1) =PX,, =1 =1/2, EX,, = 0 and EX,,X,,, = 0psm. Then
2(n) = 2™ and hence (¢,d) = (1,1) leads to extensivity for Shannon entropy,
as seen above. Suppose now that the X,, are correlated random variables, with
E X, X,, = 1if an?(logn)? < z < am”(logm)” and 0 otherwise, for some fixed
integer z and real numbers «, 3,~. Taking v = 0 and 3 # 0 leads to extensivity
for Tsallis entropy. [6] conjectures that all choices of (v, 3) lead to all choices of
(c,d).

Instead of autocorrelated RW, the somewhat less artificial (sic, [6]) ageing
RW can be considered, with X,, = 1, X,,_1 where (1,,) is a sequence of binary
random variables taking values +1 ; see [6] and [9, Chapter 6]. The ensuing
(¢,d) depends on the distribution of 7,,+1 conditional on the the number of
0 < m < n such that n,, = 1. A suitable choice leads for instance to the
stretched exponential growth and extensivity for a QPE entropy, asymptotically
equal to Tsallis.

Applied systems involving Tsallis entropy are given in [5,9]. For instance, spin
systems with a constant network connectivity lead to extensivity for Shannon
entropy, while random networks growing with constant connectedness require
Tsallis entropy; see [5]. See also [9, p371] for a social network model leading to
Tsallis entropy.

Still, both restricted and autocorrelated systems are difficult to express in
terms of the behavior, statistical inference or simulation of random variables.
The delayed RW that we finally propose in Sect.3 will be more tractable in
these perspectives.

3 Delayed Random Walks

A super diffusive random walk model in porous media is considered in [5]. Each
time a direction is drawn, [n”] steps occur in this direction before another is
drawn, where 5 € [0, 1] is fixed. More precisely, a first direction Xq is chosen
at random between two possibilities. Then, the [27] following steps equal X :
X1+ = X|95) = Xo. At time |27], again a direction is chosen at random and
repeated for the following |3 | steps, and so on. The number of random choices
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after n steps, of order n'=# decreases in time, and hence £2(n) ~ on' ™’
(¢,d) = (1,1/(1 — )); Shannon entropy is no more extensive.

This example leads to the notion of delayed random walks, that we will
develop here in order to construct classes of random sequences that are extensive
for Tsallis entropy. Precisely, we will say that W is a delayed random walk
(DRW) if for identified indices n € D C N*, the behavior of W), is deterministic
conditionally to Wi.,,_1. In other words, all X,, are deterministic for these n.

Let us first give three examples where we assume that the random increments
X, for n € R = N*\ D, are drawn uniformly in a finite set E with cardinal £.

, and

Example 2

1. A constant delay x € N* between random steps leads to R = skN* and
2(n) = EL%], an exponential growth leading to Shannon entropy. We com-
pute A(Wi.,;s) = ELR10=5),

2. A linearly increasing delay, say R = {1l + n(n+1)/2,n € N*}, leads
to 2(n) = gli=1+v 1+8")/2J, a stretched exponential growth leading to a
QPE entropy, asymptotically equal to Tsallis. We compute A(Wi.,;s) =

ELIHVITE)/2)(1=9) and T (W) = L [1 _ el(=1+viTan)/2)(1-s)]

3. An exponentially increasing delay, say R = {2",n € N*}, leads to
2(n) = glo827) 3 power-law growth leading to Tsallis entropy. We compute
AWip;s) = Ellogz n](1=5) = and Ts(Wip) = sil [1 — Ellog, ”J(lfs)} , from
which we immediately derive that

(1 . n(lfs) 1n(5)/ln(2)gsfl) < Ts(len) < 1 (1 . n(lfs)ln(f)/ln@)).

s—1 s—1

In other words, T(W7i.,) essentially increases as a power of n. For random
increments occurring at times of order 2"(1=%) instead of 2" and if £ = 2, we
similarly derive that Wj., is extensive for T; this will be rigorously stated in
Example 3 below.

Examples 1 and 2 illustrate how the Dirichlet series of DRW are affected by
state space expansion and delays. On the one hand, the Dirichlet series increase
with the expansion of the system while on the other hand, the faster the delay
lengths increase between random increments, the slower the Dirichlet series and
2(n) increase. More generally, one can generate-theoretically—any prescribed
asymptotic behavior for the Dirichlet series and {2(n) by suitably balancing
between the introduction of delays and the ability to control the Dirichlet series
of the random increments.

Precisely, Properties 1.1 and 1.4 yield the following relation between the
Dirichlet series of the DRW and the Dirichlet series I,, = A(X..;s) of the incre-
ments,

k ~
AWy 8) = H lg, k=max{k:r, <n}. (5)
k=1

Let us now exhibit different types DRW that are either strictly extensive
for Tsallis entropy, such that limT,(W,,)/n exists and is not zero, or weakly
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extensive in the sense that both liminf,, %TS(Wn) and lim sup,, %TS(WH) exist
and are not zero.

Theorem 1. Let s € (0;1). Let (In)nen- be a real sequence such that I, > 1
and [[Ti—i k] > n for all n. Let W = (W,,)nen+ be the DRW associated to
increments (X, )nen- and delays o, = max {|[[;_, k) ,rn—1 + 1}, where I, =
A(X,,;s). Then limsup,, . +Ts(Wiy) =1/(1 - s).

Moreover, if 1, converges to L > 1, then liminf,_ . %TS(Wlm) =

1/(1 = s)L, and W is weakly extensive for Ts. If l,, converges to L = 1, then the
extensivity s strict.

Proof. Assume that the sequence (|[];_,l]) is strictly increasing so that
rn = [[1p_y k). Otherwise, simply discard the first components of W to fit
this assumption.

We compute using (5),

k .
A(len;S) — H%:_1llz 1 n Tk,
[Lo Lifre—r <n <y,
that is piecewise-constant and increasing with respect to n. Its supremum limit
is obtained for the subsequence A(W1y.. ;s) = HZ:1 ln, k € N*. Since r, =
([Tre; ik, we have r, < A(Wyy ;s) <1y, + 1, so that
1 r—1 1 1

< —T, (Wi, ) <
1—s r, ~ 1, (1'”)_1—3

)

and the limsup result holds.
Similarly, the infimum limit exists and is obtained for the subsequence
(Wi.r, +1) as soon as I, converges (to L > 1), which finishes the proof. [J

Note that Theorem 1 is based on the existence of a random variable X whose
Dirichlet series A(X; s) takes any prescribed value £ > 1. Thanks to Property 1.2,
this can be achieved in various ways, by choosing X in a parametric model
with state space E and number of modes mx as soon as £ € (logmx;log|E|);
see [8]. Tuning the parameters of the distribution leads to specific values for
which A(X;s) = £. See Example 4 below for a Bernoulli model, where [ € (1;2).

The following example illustrates how to generate simple random sequences
that are weakly extensive for Tsallis entropy by suitably introducing delays. Still,
the infimum and supremum limits cannot be equal, hindering strict extensivity.

Example 3. Let s € (0,1). Let W be a DRW with exponential delays of order
21=% say r, = max{@”(l*S)J s Tn—1 —|—1} for n > 2, with r; = 1. Random
increments X, are drawn according to a uniform distribution U ({—1,1}) so
that 1, = A(X,,;s) = 217%.

Then, Theorem 1 yields 2(n) ~ 9l 7%s logs "J, and

1 1 1
liminf —T4(W,,) = 1725*1, limsup —T(W,,) =

n—oo M — S n—oo N 1—8.
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The last example will consider anisotropic random walks, in which the X,
are drawn according to an asymmetric binary distribution with probabilities
depending on n.

Example 4. Let r, = max{|[[[,_;(1 4+ 1/(k+1))],rp—1 + 1} for n > 2, with
r1 = 1. Let X be a sequence of independent variables such that P(X, =1) =
1-P(X,, = —1) = p,, with p,, solution of (p,)*+(1—p,)* = 1+1/(n + 1), while
all other X,, are deterministic. By construction, the Dirichlet series associated
with X, is l,, = A(X,,,s) = 1+1/(n + 1) which converges to 1. Theorem 1 yields
extensivity of Tsallis entropy.

Further, Examples 1 become Tsallis-extensive by introducing the respective
delays R = {[2"=*)nl, n > 0|} and R = {|2"("+1D(1=%)/2|} and applying The-
orem 1.

Note that large classes of Tsallis-extensive DRWs can be built from Theo-
rem 1, a construction that was the main aim of the paper.
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Abstract. In this paper, we consider semiparametric models defined by
moment constraints, with unknown parameter, for right censored data.
We derive estimates, confidence regions and tests for the parameter of
interest, by means of minimizing empirical divergences between the con-
sidered models and the Kaplan-Meier empirical measure. This approach
leads to a new natural adaptation of the empirical likelihood method to
the present context of right censored data. The asymptotic properties
of the proposed estimates and tests are studied, including consistency
and asymptotic distributions. Simulation results are given, illustrating
the performance of the proposed estimates and confidence regions.

Keywords: Survival analysis - Confidence regions - Tests - Censored
data - Moment condition models - Minimum divergence - Duality

1 Introduction

Let X be a nonnegative real random variable with cumulative distribution func-
tion Fx. We consider semiparametric statistical models defined by moment con-
dition equations, of the form

E[Q(X7 9)] =0, (1)

where § € © C R? is the parameter of interest, g(-,-) == (g1(-,-), .-, g¢(-,)) T €
R* is some known Rf-valued function defined on R x O, ¢ > d, and E[] is
used to denote the mathematical expectation. For complete observations (i.e.,
for observations of X without censoring), these models have been widely studied
in statistics and econometrics literature. We quote for example [22] who used
the empirical likelihood (EL) method, see [19], to define estimates for 6 and to
construct confidence regions and tests on the parameter. [9] introduced the gen-
eralized method of moments (GMM). As an alternative to the GMM estimates,
[26] introduced a class of generalized empirical likelihood (GEL) estimates. The
properties of these estimates have been studied in [16], who have compared them
with the GMM approach. In many practical situations, a censorship phenomenon
may prevent the complete observation of the variable of interest X. There exist
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various kinds of censorship, but we focus, in the present paper, on the right
censoring one. In this case, instead of observing X, we have at disposal a sample
(Z1,41),...,(Zn, Ay) of independent copies of the pair (Z := min(X, R), A),
where R is a nonnegative censoring variable and A := 1;;_y is the indicator of
censorship, taking the value 1 if Z = X and 0 otherwise. To deal with model (1)
in this situation, several adaptations of the EL method have been introduced in
the literature for the right censoring context. We cite the EL method of [27] and
the weighted EL method (WEL) introduced by [23]. The first one studied model
(1) with g(z,0) = &(z) — 6, where & is some real valued function. Remarking

that E [5( ()Z )] = 0, where Sg(:) is the survival function of R, they defined,

by analogy with the case of complete data, the “estimated” empirical likelihood
profile

L(#):= max le (2)

P1,---,Pn €[0,1]

subject to the constraints

En:pivm- =60 and zn:pi =1, (3)
i—1 i=1

where V,,; 1= %, S(n)( -) being the Kaplan-Meier estimator of Sr(-). They
R i

solved this optimization problem and defined the log-likelihood ratio in the same
way as that introduced by [17]. They also showed that the obtained log-likelihood
ratio, multiplied by some estimated quantity, converges to a chi-square distri-
bution with one degree of freedom. Therefore, they used this asymptotic dis-
tribution to construct confidence interval for 6. This approach has been widely
adopted in the literature. [21] used it to estimate the mean residual life of X,
taking g(z,0) = (v — 29 — 0) L{z>4,}, Where x¢ is a fixed point at which the
mean residual life is evaluated. Independently, [23] considered model (1), with
g(z,0) = x — 6, and proposed weighted empirical likelihood ratio (WELR) con-
fidence interval for . [23] estimated the lower and the upper bounds of this
interval, similarly to the work of [18], by solving these two optimization prob-
lems

Xin :: min E piZ!
7PmE 0 1
and
Xun :— max E piZ 1,
71)7716[0 1

both subject to
m m
Y opi=1 and [[@:/p)" > ¢,
i=1 i=1

where (Z])i<i<m (m < n) are the distinct values, in increasing order, of
(Zi)1<i<n and p; := PTIL(M(ZZ(), PEM(.) being the “Kaplan-Meier empirical mea-
sure” described in Sect. 2 below. The constant ¢ is calculated according to the
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level of the confidence interval, using the asymptotic distribution of the WELR,
which is a scaled chi-square distribution, as shown in the same paper. A similar
approach has been employed by [24] in quantile estimation and by [25] for two-
sample semiparametric problem. Otherwise, based on the approach of [11,27]
used some influence functions to give another adaptation of the EL method to
the censoring context. The same device has been used by [10] to treat the case
of the presence of covariables. [29] applied the adjusted empirical likelihood of
[5] in the case of right censored data. Furthermore, other versions of the EL
method for censored data have been employed in different problems, including
the regression ones such as in [8], [1,28] and [20]. On the other hand, the the-
ory of p-divergences and duality, developed in [2] have been intensively used in
inferential statistics, see [14] and [3] for parametric problems, and [15] for two-
sample semiparametric density ratio models. The study of parametric models via
p-divergences has been extended to the case of censored data by [6]. [4] applied
the theory of p-divergences to the study of model (1), generalizing the EL app-
roach. Moreover, they gave a new point of view of the EL method, showing that it
is equivalent to minimizing the “modified” Kullback-Leibler divergence (K L,,),
called also the likelihood-divergence (LD), between the model and the empirical
measure of the data. In the present paper, we follow this point of view and we
construct our estimators by minimizing divergences between the model and the
Kaplan-Meier empirical measure. This leads to a new more natural adaptation
of the EL approach to the right censoring context using the particular case of the
likelihood divergence. We carry out an extensive simulation study to compare
our approach with the EL method of [27] and the WEL method of [23]. The sim-
ulation results show that the proposed likelihood divergence-based method has
generally better performance than the existing ones. Concerning our theoretical
results, we establish weak consistency and asymptotic normality for the proposed
estimates of the parameter §. For that, we apply a central limit theorem (CLT)
in the case of censored data, see [30], and a uniform strong law of large numbers
(USLLN) in the same case. We build confidence regions for 6 and perform tests
on the model and the parameter §. We provide the asymptotic distributions of
the proposed test statistics, both under the null and the alternative hypotheses.
The theoretical results we obtain have many applications such as those given in
the following examples.

Example 1 (Confidence intervals for the survival function, and the mean resid-
ual life). Taking g(x,0) = L{z>a0y — 0 in model (1), where xq is a fived point,
one can see that the true value of 8 is the survival function of X evaluated at
xo. Therefore, the techniques we study can be used to construct confidence bound
for the survival function. Taking g(x,0) = (v — 20 — 0) L {z>4,}, one can obtain
confidence bounds for the mean residual life.

Example 2 (Confidence intervals for the mean residual life). At a fized point
Zo, the mean residual life of X is defined by the conditional expectation M(xg) :=
E[X — 29| X > x0]. It represents the expected value of the remaining lifetimes
after xo. The mean residual life exposes the survival characteristics of the phe-
nomenon of interest, better than the popular hazard function (see e.g. [12]).
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The study of M(xo) can be considered in the framework of model (1) taking
9(x,0) = (v — 20 — 0) Lz>0,1- Therefore, we can construct, as in the previous
example, confidence intervals for M(xg).

Example 3 Consider the model (1) with g(z,0) = (z — 6,2 — h(0))T, where
h(-) is some known function. In this case, the true value of 0 is the mean of X.
These models include all the distributions for which the second order moment can
be written as an explicit function of the first order one. Many usual distributions
in survival analysis belong to this class of distributions, such as the exponential
and the Rayleigh ones. Considering the semiparametric model (1) instead of a
fully parametric one, leads to more robust estimates of the mean of X . Moreover,
the divergence estimates we propose can be used to construct estimators of the
distribution function of X.

The rest is organized as follows. Section 2 describes the Kaplan-Meier empirical
measure. In Sect. 3, we introduce the minimum divergence estimates. In Sect. 4,
we provide the asymptotic properties of the proposed estimates and test statis-
tics. Section b presents some simulation results. The proofs of our theoretical
results, as well as many other simulation results, are available from the authors.

2 The Kaplan-Meier Empirical Measure

Let X be a nonnegative lifetime random variable with a continuous distri-
bution function Fx(-). We suppose that X is right censored by a nonnega-
tive random variable R, independent of X. The available observations consist
of a sample (Z1,44),...,(Zn, Ay) of independent copies of the pair (Z, A),
where Z := min(X,R) and A := lyx<p) (I;) denotes the indicator func-
tion). In all the sequel, for any real random variable V, Fy (z) := P(V < z),
Sy (z) :=1— Fy(x) and Ty := sup{z € R such that Fy(x) < 1} denote, respec-
tively, the distribution function, the survival function and the upper endpoint
of the support of V. Furthermore, for any right continuous function K : R — R,
we set K(z7) :=lim_> K(z —¢) and Ag(z) := K(z) — K(z~), whenever the
limit exists. We assume that Tx < Tg, which ensures that we can observe X
on the whole of its support. A popular estimator of F'x, in the context of right
censoring, is the following product-limit estimator, introduced by [13],
_ — D(Z;)
Fo(z):=1=Su(x):=1- ][] (1 U(Z;)) :

i| Z <z

(4)

where (Z])i1<i<m (m n) are the distinct values, in increasing order, of

<
(Zi)lgigm D( ) = ZAj]l{Zj:Z{} and U(Z{) = Z]I{ZJZZ{}' Sn(x) =

I Zi<a (1 D(z, )> is the Kaplan-Meier estimate of the survival function Sx (-)

U(z;)
of X. The empirical measure of F},(.), denote it PXM(.), can be written as
~ Ap, (Zi)
PEM () A Noz ()= 8
Z F, 7 () Dz % (),

i=1



Empirical Likelihood with Censored Data 129

with the convention % = 0, J,(-) being the Dirac measure which puts all the
mass at the point z, for all z. Let Sgl)() be the “product-limit” estimator,

of the survival function Sg(-) of the censorship variable R, given by Sl(z") () ==

Iy zi<o (1= B3 ) where D(Z]) = 3 (1= Aj)1{z,-z). Note that the above

j=1
NAY
estimates S, (-) and S}(%")(-) can be written as Sy, (z) = [ 2, <z ( " ) " and

n—j+1
), Y.
SR (.’1?) - Hj | Zjy<w (nfjil)

of the observations Z1, ..., Z,. Using these two relations, one can show that,

’ , where Z(1), ..., Z,) are the order statistics

PEM() = 1221 m 6z, () = i—zlwi 6z,()- (5)

with the weights
A;

= Vi=1...,n. (6)
nSE(Z;)

w; -

3 Minimum Divergence Estimators

Denote by M the space of all signed finite measures (s.f.m.) on (R, B(R)), and
consider the statistical model M := (Jy.g Ma, Mp being the set of all Q € M
st [z dQ(z) = 1 and [pg(,0)dQ(z) = 0, g == (g1,...,9¢)" € R’ being
some specified Rf-valued function of z € R and vector parameter § € © C R%.
We denote O, if it exists, the true value of the parameter, i.e., the value such
that (s.t.) Px € My,, where Px is the probability distribution of the lifetime
X. We will define estimates, confidence areas and test statistics for 6. For
that, we will use some results on the theory of divergences and duality from [2]
and [4]. Let ¢ be a convex function from R to [0,+o00] such that its domain
dom, = {z € Rs.t. ¢(r) < oo} is an interval with endpoints a, < 1 < by,
(which may be bounded or not, open or not). We assume that ¢(1) = 0 and
that ¢ is closed. For any probability measure (p.m.) P on the measurable
space (R,B(R)) and for any s.f.m. @ € M, the ¢-divergence between @ and
P, when @ is absolutely continuous with respect to (a.c.w.r.t.) P, is defined by
D,(Q,P) == [y (%(w)) dP(z), where %(-) is the Radon-Nikodym deriva-
tive. When @ is not a.c.w.r.t. P, we set D, (Q, P) := +00. Recall that the diver-
gence associated to the convex function p(z) = zlogx —x+1, is called Kullback-
Leibler divergence (K L-divergence), and that the divergence associated to the
convex function p(z) = —log z+x—1, is called “modified” Kullback-Leibler diver-
gence (K L,,), or Likelihood-divergence (L D). In all the sequel, for simplicity and
convenience, we will use the notation (LD) for this particular divergence. Let 6
be a given value in ©. The “plug-in” estimate of D,(My, Px) is ﬁSO(M@, Px) :=
infoem, Do (Q,PEM). If the projection Q(g") of PEM on M, exists, then it is

clear that an) is a.c.w.r.t. PEM; this means that the support of Qén) must
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be included in the support of PEXM  which is the set of the uncensored data

{Z;st.ie{l,...,n} and A; = 1}. Therefore, define the sets of discrete s.f.m
M= {Q acavrt. PEM ST Q(Z:) = 1 and Y1, Q(Z)g(Zi,6) = 0},
then the estimate D,(My, Px) can be written as

Dy(Mg, Px) = inf D,(Q,PEM), (7)
Qemi™

This constrained optimization problem can be transformed to unconstrained one,
using the convex conjugate ¢* of . In fact, using Proposition 4.1 of [4], one can
show that

n 4
Dy(Mg, Px) = sup Sto— Y wip™ (to+ Y t;g;(Zi,0) | ¢ (8)
=1

£
teR+ =1

Taking into account this result, we will redefine the estimate ZA)S(, (Mg, Px) as

follows. Let t := (to,t1,...,t)" € R"™ G := (Irxo,91,-..,90) ", t' g(x,0) :=
¢ 1T =

to+ > 51 t95(,0), m(z,0,t) == ¢ (tTg(z,0)),

Aé”) = {t e R st ag < t' 5(Z;,0) < b,

forall i =1,...,n with A; =1},
and

L
Ao =t e R™ st /Rw(to +3 " t105(,0))] dPx (z) < o0

j=1

Denote, for any p.m. P on (R,B(R)) and for any function f integrable with
respect to P, Pf := [, f(x)dP(z). We redefine D,(My, Px) as follows

Dy(Mg, Px) := sup {to —PEMm(0,t)}, (9)
teal™

and we estimate D, (M, Px) and 67, by analogy with the case of complete data
(see [4]), by

ﬁw(M,Px) = inf sup {to —PEMm(0,t)} (10)
€0 1 alm
0

and R

0, = arginf sup {to —PLX"m(0,t)}. (11)
0co teAén)

For the particular case of the likelihood divergence, which corresponds to the EL
approach in complete data (see [4] Remark 4.4), we have ¢(z) := —logz+xz —1
and ¢*(z) := —log(1 — ). Hence, we obtain the following new version of the EL

estimate of 1 for the present context of censored data

O.p = arginf sup {to + Zwl log (1 — tTg(Z, 9))} ) (12)
0€0 el i=1
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4 Asymptotic Properties of the Proposed Estimates

In order to state our results, we need to define the advanced time transformation
of a function h : R — R with respect to Fx, introduced by [7]. It is given by

~ 1

+oo
h(zx) := 1—FX($>/I h(u) dFx (u), Vo € R.

Assumption 1: (a) Py € M and 0y € O is the unique solution in 6 of
E(g(X,0)) = 0; (b) © C R is compact; (c) g(X,0) is continuous at each
6 € © with probability one; (d) E(supgecg [|9(X,0)||*) < oo for some a > 2;
(e) the matrix 2 := E(g(X,07)g(X,07)") is nonsingular; (f) the matrix V; :=
(W) 1<ij<o, where vl = [ (gi(x, 0r) = Gi(x, 07)) (g5 (2, 07) — G (x, Or)) Sc2)
is well defined and nonsingular.

Theorem 1 Under Assumption 1, with probability approaching one as n — oo,
the estimate 0, exists, and converges to Or in probability. L 3" w;g(Z;,0,) =

Op(1/y/n), tA(@,) = argsup,. ,m {to —]P’nKMm(@,,t)} exists and belongs to
Op
int(/lg:)) with probability approaching one as n — oo, and t(0,) = Op(1//n).

Additional assumptions are needed to establish the asymptotic normality. Con-
sider the matrices G := E(9g(X,07)/00),% = (GT27'G)", H := G071,

P = 07" — 27'GEGTN'. Denote also t(A,) := (t1,...,t)", where
to,t1, ..., ty are the components of the vector tA(GS(,). Assumption 2 : (a) 07 €

int(O); (b) with probability one, g(X, #) is continuously differentiable in a neigh-
borhood Ny, of 6, and E(supeeNsT l0g(X,0)/00]) < oo; (c) rank(G) = d =:
dim(O).

Theorem 2 Under Assumptions 1 and 2,

1. \/ﬁ(@p — HT,Z(@@)T)T converges in distribution to a centered normal random
HViH" HV, P
PViHT PVlP) '
2. The statistic 277,1590 (M, Px) converges in distribution to Y'Y, where Y is a
centered normal random vector with covariance matriz  (2Y/2)T PV, PQY/?,
Q= Q2(QY2)T being the Cholesky decomposition of £2.

vector with covariance matrix V = (

At a fixed 0 € O, we will show that ﬁ@(Mg, Px) converges in probability
to Dy (Mg, Px) and we will give the limiting distribution of D, (Mg, Px) both
when Px € My and when Px ¢ My. Assumption 3 : (a) Py € My and
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6 is the unique solution of E(g(X,0)) = 0; (b) E(|lg(X,0)]|*) < oo for some
a > 2; (c) the matrix 2 := E(g(X,0)g(X,0)") is nonsingular; (d) the matrix
Vi = ()1 <o where o)) o= [ (gi(x,0)~i(2, 0)) (g, (x, 0)— G (z, 0)) S5
is well defined and nonsingular.

Theorem 3 Under Assumption 3,

1. 1) := arg SUp, _ 1) {to —PEMm(0,t)} exists and belongs to z'nt(/lén)) with
6

probability approaching one as n — oo, and t(0) = Op(1//n);
2. The statistic 2nD,(Mg, Px) converges in distribution to Y'Y, where Y

is a centered normal random wvector with covariance matriz (£2*/2)~1V;
((91/2)—1)T.

Remark 1 (Confidence region for the parameter). Let « €]0, 1] be a fized level,
according to part 2 of this Theorem, the set {§ € O s.t. ZnEW(Mg,PX) <
q(1—a)} 15 an asymptotic confidence region for Or, where qu_q) is the (1 — a)-
quantile of the distribution of YIY,Awith Y a centered normal random vector
with covariance matriz (2V/2)= V1 ((2Y/2)~1)T, where 2 and Vi are the empir-
ical counterparts of {2 and Vi respectively. With an appropriate choice of the
function g(z,0), one can construct confidence intervals for the mean, the sur-
vival function and the mean residual life of X. A simulation study, available
from the authors, shows that when we use the likelihood divergence (the modified

Kullback-Leibler divergence), these confidence intervals outperform those based
on the EL methods of [27], [21] and [23].

5 Simulation Results

Consider the model M := |Jycg My, where O :=]0,00[ and g(z,0) = (z —
6,22 —20%)T. The nonnegative random variable X is distributed as €(a), which
belongs to this model with 67 = E(X) = 1/a. We compare the estimates .0
with the EL estimator based on the method of [27] (which we denote by fzy)
and the plug-in estimator of E(X), 6 := Jg 2 dPEM (). The variable of censoring
R is distributed as £(b). We take different values of the parameters a and b to
get different rates of censoring. For the estimation of 61, we generate samples
of size n = 100 of the latent variables and we calculate the estimates (9\L D, §E L
and 0 corresponding to each sample. We compute the mean squared error (MSE)

for each estimate, based on 1000 replications. We obtain the following results
(Table 1).
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Table 1. The obtained results for the estimation of the parameter in the exponential
model.

a 4 7 3 2

b 1 3 2 3

Rate of censoring | 20% 30% 40% 60%

0r =1/a 0.25 0.1429 |0.3333 | 0.5
é\LD 0.2398 | 0.1307 | 0.3165 | 0.4829
OpL 0.2391 | 0.1302 | 0.3118 | 0.4531
] 0.2425 |0.1343 |0.2965 |0.3445
nx MSE(@pp) |0.0428 0.0394 0.0578 0.0697
n X MSE(AEL) 0.0432 |0.0410 |0.0679 |0.2277
n X MSE(@) 0.0922 |0.0485 |0.4446 |3.8423

From these results, one can see that our proposed estimate §LD outperforms
both estimates 8g;, and 6.
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Abstract. A methodology is proposed to build statistical test procedures
pertaining to models with incomplete information; the lack of information
corresponds to a nuisance parameter in the description of the model. The
supremal approach based on the dual representation of CASM divergences
(or f—divergences) is fruitful; it leads to M-estimators with simple and
standard limit distribution, and it is versatile with respect to the choice of
the divergence. Duality approaches to divergence-based optimisation are
widely considered in statistics, data analysis and machine learning: indeed,
they avoid any smoothing or grouping technique which would be necessary
for a more direct divergence minimisation approach for the same problem.
We are interested in a widely considered but still open problem which
consists in testing the number of components in a parametric mixture.
Although common, this is still a challenging problem since the correspond-
ing model is non-regular particularly because of the true parameter lying
on the boundary of the parameter space. This range of problems has been
considered by many authors who tried to derive the asymptotic distribu-
tion of some statistic under boundary conditions. The present approach
based on supremal divergence M-estimators makes the true parameter an
interior point of the parameter space, providing a simple solution for a dif-
ficult question. To build a composite test, we aggregate simple tests.

Keywords: Non-regular models + Dual form of f-divergences -
Statistical test aggregation - Number of components in mixture models

1 Dual Representation of the ¢p-Divergences and Tests
We consider CASM divergences (see [15] for definitions and properties):

99Yap if Q << P
D,(Q.p) = { I #lar)IP 1 Q
400 otherwise
where () and P are probability measures on the same probability space. Extensions
to divergences between probability measures and signed measures can be found in
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[22]. Dual formulations of divergences can be found in [7,16]. Another interpreta-
tion of these formulations can be found in [9, Section 4.6]. They are widely consid-
ered in statistics, data analysis and machine learning (see e.g. [4,20]).

Asin [1], let F be some class of B-measurable (borelian) real valued functions
and let Mz ={P € M: [|f|dP < co,Vf € F} where M is the space of prob-
ability measures. Let any P* € M, which shall be the underlying true unknown
probability law in a statistical context in the following sections. Assume that ¢
is differentiable and strictly convex. Then, for all P € Mz such that D, (P, P*)
is finite and ¢'(dP/dP*) belongs to F, D, admits the dual representation (see
Theorem 4.4 in [6]):

D, (P, P*) = sup/fdP—/ga#(f)dP*, (1)

feF

where ¥ () = sup,cg tx —(t) is the Fenchel-Legendre convex conjugate. More-
over, the supremum is uniquely attained at f = ¢'(dP/dP*).

This result can be used in two directions. First, a statistical model, e.g.
a parametrical model {Py : § € O} with Py is absolutely continuous with
respect to some dominating measure p for any 6, naturally induces a family
F ={¢'(po/per) : 6,0" € O}. This is the main framework of this paper.

Conversely, a class of functions F defines the distribution pairs P and @
that can be compared, which are these such that ¢'(dP/dQ) € F. Furthermore
it induces a divergence D, on these pairs. A typical example is the logistic model.

The KLm divergence is defined by the generator ¢ : x € R — —logx + = — 1
and leads to the maximum likelihood estimator for both forms of estimation for
the supremal estimator, once of which is defined bellow (see Remark 3.2 in [7]).

We consider in this paper the problem of testing the number of components
in a mixture model. This question has been considered by various authors. |2,
10,12,14,17] have considered likelihood ratio tests and showed some difficulties
with those due to the fact that the likelihood ratio statistic is unbounded with
respect to m. [17] prove that its distribution is driven by a loglogn term in a
specific simple Gaussian mixture model. The test statistic needs to be calibrated
in accordance with this result. But first, as stated by [17], the convergence to the
limit distribution is extremely slow, making this result unpractical. And second,
it seems very difficult to derive the corresponding term for a different model,
and even more so for a general situation.

Our approach to this problem is suggested by the dual representation of the
divergence. For the KLm divergence, it amounts to considering the maximum
likelihood estimator itself as a test statistic instead of the usual maximum value
of the likelihood function. This leads to a well-defined limiting distribution for
the test statistic under the null. This holds for a class of estimators obtained by
substituting KLm by any regular divergence. This approach also eliminates the
curse of irregularity encountered by many authors for the problem of testing the
number of components in a mixture.

Since we are interested in composite hypotheses, there is no justification in
this context that the likelihood ratio test would be the best (in terms of uniform
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power) as is usually considered (e.g. [8,18]) and [13] showed what difficulties
likelihood ratio tests can encounter in this context.

[8] considered tests based on an estimation of the minimum divergence
between the true distribution and the null model. In we make use of the unic-
ity of the optimiser of the dual representation of the divergence in (1) and of
the supremal divergence estimator introduced by [7]. An immediate practical
advantage of this choice as compared to estimating the minimum divergence is
that one less optimisation is needed. Moreover [23] showed that this estimator
is robust for several choices of the divergence.

Our procedure for composite hypotheses consists in the aggregation of simple
tests in the spirit of [11]. [5] used a similar aggregation procedure for testing
between two distributions under noisy data and obtained some control of the
resulting test power.

2 Notation and Hypotheses

Let {fl(.;el) 1 0, € 91}, ©; C RP, and {f2(.;92) 10y € 92}, O, C RY, be
probability density families with respect to a o-finite measure A on (X, ). For
some fixed open interval Ja,b[> 0, let © Cla,b[xO1 x O, and

grp =1 —=m)f1(.;601) +7fa(.;02)

for any (m,0) € © with 6 = (61, 02).

Assume that x1,...,2, € R have been observed and they are modelled as
a realisation of the i.i.d. sample Xi,..., X, which distribution P* := g« g«.A
is known up to the parameters (7*,6*) € @. Our aim is to test the hypothesis
Hy:7*=0.

Assume that gr 9 = gr+9- = T =7",01 =07 and, if 7 #0, 0 = 65.

Let g be a probability density with respect to A such that Supp(g) C
Supp(gr,e) for any (7, 0) € O such that

)| gdA < 0.

Let us define for any (7, 60) € O,

Mg xeX*—»/ )gd/\ ® (gfe)(x)

and assume that (m,0) — mgg(x) is continuous for any z € X. Let us also
assume that

V(7,0) € ©,3r¢ > 0/Vr <1y, P* sup My | < 00
d((7,0),(m,0))<r

where d(-,-) denotes the Euclidean distance and where, as usual, the operator-
type notation P*Y denotes the expectation—with respect to the probability
measure P*—of the random variable Y.
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Theorem 1. For any (7*,6*) € ©

Dy(g.\, gr= 9+ X) = sup P mgg,
(m,0)€0
which we call the supremal form of the divergence. Moreover attainment holds
uniquely at (m,0) = (7*,6%).

Definition 1. Let P,, denote the empirical measure pertaining to the sample
X1,...,X,. Define R
(7r,0) := arg maxP,my g
(7,0)

the supremal estimator of (7*,0%).

The existence of (fné) can be guaranteed by assuming that @ is compact.
When uniqueness does not hold, consider any maximizer. This class of estimators
has been introduced in [7], under the name dual @-divergence estimators.

3 Consistency of the Supremal Divergence Estimator

Let us first state the consistency of the supremal divergence estimator of the
proportion and the parameters of the existing component, when the non-existing
component parameters are fixed, uniformly over the latter.

Here and below, by abuse of notation, we let ¢'(;%-) stand for = —

S0/<gf.(;2c))> and so on.

Remark that, for 7* = 0 and any 6] € ©; and 0, € @2, we can unambiguously
write My g for M+ 03 0, SINCE the parameter 5 is not involved in the expression

of mo)gf)gz.

Theorem 2. Assume that 7 = 0 and let for any 05 € Oy, (7(62),01(0)) €
la,b[x 61 such that

ezig(gz anﬁ(ez),él(QQ)ﬁz = Pamze o; — op«(1). (2)

Then R X
sup d((7(62),01(62)), (0,67)) —— 0.

02€02 n—oo

The convergence holds a.s. in the particular case of (2) when, a.s.,

Vo, € Oy, (73'(02), él(eg)) S argmax  FPp,my g, 0,- (3)
(m,01)€]a,b[xO1
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4 Asymptotic Distribution of the Supremal Divergence
Estimator

Under Ho (7* = 0), the joint asymptotic distribution of (7 (62), 7(63)) is provided
by the following theorem. The interior of © will be denoted by 6.
Theorem 3. Let o € Oy and 0y € Oy such that (r*,0;,02) € O and
(7*,07,04) € ©. Write
@(02) = {( ,01) 6] — Q, 1[)(@1 : (7r,01792) € 6}
= {(m,01) €] — 00,1[xO1 : (7,01, 05) € O},

—_~

and let (7,01) and (7',0}) be such that

(,61) € argmax P,mgg, 0,
(m,01)€O(02)
(#',0)) € argmax Pz o, 01
(m,01)€O(65)
Assume that ™ = 0.
Moreover, assume that :

— (7,01) € O(62) = Moy 0,(x) (resp. (w,01) € OBY) = Mg, 05(x)) is dif-

le]
ferentiable \-a.e. with derivative 1. g, = (85 ﬂ’01’02> (resp. Y 5, =
207 "'m:01.02 ) | (76, '

2 ,
(%’me’el’ez) ) such that P*tpr- 9= = 0 (resp. P*¢.. 4. =0).
aiglm‘/rﬁh@’z 7,01) L
- (m, 01) € O(02) — P g, (resp. (m,6h) € O(03) — P* , ) is differentiable
at 7*, 07 with invertible derivative matriz H = D(P*w)K ) (resp. H =
D(Py/ )‘( )
— {Wr9, = (7, 01) € O(6)} and {%r o : (m,6,) € O(0,)} are P*-Donsker.
[ (W, @)= (2)PAP* (@) T 0 and (], (2) =6 g ()PP () 25
0.

1

Assume that H=D(P*1) |<*) =P*D*(h K,,:) (resp. H'=D(P*y’) ‘( )—
P*DA(W) 12y ) with P*|D ))(1 o) (resp.”P* D) (1 where

1 1
h:(m6)€ 9(92) — My g, 0,(x) (resp. b 2 (m,601) € O(0%) — Mr.6,.6, (z)).
Then with a, (resp. al) being the (1,1)-entry of the matriz H;! -
(Pa), o 71'0) H ' (resp. of Hi7 ' ( nl// T ) H!~')—where H, (resp
H] ) denotes the Hessian matriz of (m,01) — P M 01,0, (Tesp. of (m,01) —

Pomz g, 0,) at the point (fr,él), which is supposed to be invertible with high
probability—one gets

a

c
\/%(ﬁ/ . = N(0,U)

3
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1 b
U—< b f) (4)

aa’

with

where b is the (1,1)-entry of the matriz H~! - (Pwﬂ*ygfwf;ﬁ{) -H'7' and a
(resp. a’) the (1, 1) entry of the matriz H~' - (Pwﬂ*ﬁ“{;ﬁ’ef) - H™Y (resp. of
H' = (P get o) - H' ).

This result naturally generalises to k-tuples. The marginal result for 6 actu-

ally also holds when 7* > 0 and s = 63, which is useful to control the power of
the test procedure to be defined.

Let us consider as a test statistic T, = supy, /-7 and let us reject Ho

when 7, takes large values. It seems sensible to reduce 7 for each value of 65
so that, under Hy, it is asymptotically distributed as a N'(0,1) and that the
(reduced) values of 7 for different values of 82 can be compared. In practice, the
abymptotic variance has to be estimated hence the substitution of 7, 91, and P,
for 7, 057, and P* in H =1 P*¢)« 01 YL, o*H 1. This choice is justified in [19].

The Bonferoni aggregation rule is not sensible here since the tests for different
values of 05 are obviously not independent so that such a procedure would lead
to a conservative test. Hence the need in Theorem 3 for the joint asymptotic
distribution to take the dependence between 7 for different values of 6. This
leads to the study of the asymptotic distribution of 7;, which should be the
distribution of sup W where W is a Gaussian process which covariance structure
is given by Theorem 3. This will be proved in the forthcoming section.

5 Asymptotic Distribution of the Supremum of Supremal
Divergence Estimators

Hy is assumed to hold in this section.

It is stated that the asymptotic distribution of T;, is that of the supremum
of a Gaussian process with the covariance \/L as in (4).

Then it is stated that the distribution of the latter can be approximated by
maximising the Gaussian process with the covariance —22 —, where a,,, a,, and

n@y

b, are estimations of the corresponding quantities, on a finite grid of values for
0s.
Let X be the centred Gaussian process over @5 with

V@Q, 9/2 c 62,7’(92, 0/2) = COV(ng,Xgé) =

~

where a and b are defined in Theorem 3.

Theorem 4. Under general regularity conditions pertaining to the class of
derivatives of m (Glivenko-Cantelli classes), we have

i — 1) 5 X
an
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This results from [21] when dim(©2) = 1 and [24] when dim(6O3) > 1.

Theorem 5. Under the same general regularity conditions as above, we have

T, = sup X (62).
02€0>

The proof of the last result when dim(©3) = 1 makes use of the fact that
Oy — @(03) is cadlag ([21]). This is a reasonable assumption, which holds in
the examples which we considered. We are eager for counter-examples! When
dim(©3) > 1, the result holds also by [3].

Let now X™ be the centred Gaussian process over O with

bn

ana

W03, 04 € O, Cov(Xp,, Xpy) =

where a,,, al, are defined in Theorem 3 and b,, is defined analogously.

TheoremNG. Let, for any § > 0, 8‘25 be a finite set such that V0, € 927352 c
65/|62 — Os|| < 6. Then

MS: sup Xg, ﬁM: sup Xp,.

62€03 5—0 02€02

6 Algorithm

Our algorithm for testing that the data was sampled from a single-component
mixture (Hy : 7#* = 0) against a two-component mixture (H; : 7* > 0) is
presented in Algorithm 1.

In this algorithm, 7(fs) is defined in (2) and (3). It depends on g. This The-
orems hold as long as g fulfils Supp(g) C Supp(gr¢) for any (m,8) € ©. However
it has to be chosen with care. The constants in the asymptotic distribution in
Theorem 3 depend on it. Moreover [23] argue that the choice of g can influence
the robustness properties of the procedure.

The choice of ¢ is also obviously crucial (see also [23] for the induced robust-
ness properties).

The choice of ¢ and g are important practical questions which are work in
progress.

As already stated, the supremal estimator for the modified Kullback-Leibler
divergence ¢ : z € R™* — —logz + 2 — 1 is the usual maximum likelihood
estimator. In this instance the estimator does not depend on g.
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Algorithm 1: Test of Hy: one component vs Hy: two components

Input LY, {f1(701) 10, € @1}, {fQ(.;QQ) 105 € 92}, n, K, Qg, p e [0, 1]

n

L. let t = supy,cq, Wﬁ(ﬂg)
2. for ke {l,...,K}

bn R ’
(a) sample (Xt)te@g ~ ./\/(0, (%)t,t’e@g)

(b) let £y = max;c g3 Tt

3. ift > empirical_quantile((fk)ke{lymVK}71 — p) reject Hy else don’t reject

Hy vs Hy.
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Abstract. We first explain how the information geometry of Breg-
man manifolds brings a natural generalization of scalar quasi-arithmetic
means that we term quasi-arithmetic centers. We study the invariance
and equivariance properties of quasi-arithmetic centers from the view-
point of the Fenchel-Young canonical divergences. Second, we consider
statistical quasi-arithmetic mixtures and define generalizations of the
Jensen-Shannon divergence according to geodesics induced by affine con-
nections.

Keywords: Legendre-type function - quasi-arithmetic means -
co-monotonicity + information geometry - statistical mixtures -
Jensen-Shannon divergence

1 Introduction

Let A1 = {(wi,...,wp) : w; > 0,3, w; =1} C R? denotes the closed
(n — 1)-dimensional standard simplex sitting in R™, 9 be the set boundary oper-
ator, and A2 _; = A, _1\0A,_1 the open standard simplex. Weighted quasi-
arithmetic means [12] (QAMs) generalize the ordinary weighted arithmetic mean
Ay, ..., xpsw) =), wiz; as follows:

Definition 1 (Weighted quasi-arithmetic mean (1930’s)). Let f : I C
R — R be a strictly monotone and differentiable real-valued function. The
weighted quasi-arithmetic mean (QAM) My(x1,...,xn;w) between n scalars
T1,...,T, € I C R with respect to a normalized weight vector w € A,_1, is

defined by
My(xy, ... en;w) = f <sz’f($z‘)> :
i=1

Let us write for short Mg(zy,...,2,) = Mf(;vl,..wxn;%w..,%), and

My o(z,y) = My(z,y;,1 — o) for @ € [0,1], the weighted bivariate QAM.
A QAM satisfies the in-betweenness property:

min{zy,...,z,} < My(x1,..., 25 w) < max{zi,...,z,},

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
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and we have [16] My(x,y) = M (z,y) if and only if g(t) = Af(t)+c for A € R\{0}
and ¢ € R. The power means M, (x,y) := M, (x,y) are obtained for the following
continuous family of QAM generators indexed by p € R:

[ peR{0}, i, [ (1+1p)F, peR\{0},
fp(t) - {1og(t), p=0. ’ fp 1(t) B {exp(tf zz 0. ’

Special cases of the power means are the harmonic mean (H = M_;), the geo-
metric mean (G = M), the arithmetic mean (A = M), and the quadratic mean
also called root mean square (Q = M3). A QAM is said positively homogeneous
if and only if My(Az, A\y) = A M¢(x,y) for all A > 0. The power means M, are
the only positively homogeneous QAMs [12].

In Sect. 2, we define a generalization of quasi-arithmetic means called quasi-
arithmetic centers (Definition 3) induced by a Legendre-type function. We show
that the gradient maps of convex conjugate functions are co-monotone (Propo-
sition 1). We then study their invariance and equivariance properties (Propo-
sition 2). In Sect.4, we define quasi-arithmetic mixtures (Definition 4), show
their connections to geodesics, and define a generalization of the Jensen-Shannon
divergence with respect to affine connections (Definition 5).

2  Quasi-arithmetic Centers and Information Geometry

2.1 Quasi-arithmetic Centers

To generalize scalar QAMSs to other non-scalar types such as vectors or matrices,
we face two difficulties:

1. we need to ensure that the generator G : X — R admits a global inverse!

G, and
2. we would like the smooth function G to bear a generalization of monotonicity
of univariate functions.

We consider a well-behaved class F of non-scalar functions G (i.e., vector or
matrix functions) which admits global inverse functions G~! belonging to the
same class F: Namely, we consider the gradient maps of Legendre-type functions
where Legendre-type functions are defined as follows:

Definition 2 (Legendre type function [24]). (O, F) is of Legendre type if
the function F : © C X — R is strictly conver and differentiable with © # 0 an
open convez set and

lim, (%F(AQ +(1=XN)f) = -0, VOecO,Vcoo. (1)

! The inverse function theorem [10,11] in multivariable calculus states only the local
existence of an inverse continuously differentiable function G~! for a multivariate
function G provided that the Jacobian matrix of G is not singular.
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Legendre-type functions F(©) admits a convex conjugate F*(n) of Legendre
type via the Legendre transform (Theorem 1 [24]):

F*(n) = (VF " (n),n) — F(VF~(n)),

where (6,7) denotes the inner product in X (e.g., Euclidean inner product
(0,1) = 0Ty for X = R%, the Hilbert-Schmidt inner product (A, B) := tr(ABT)
where tr(-) denotes the matrix trace for X = Maty 4(R), etc.), and n € H with H
the image of the gradient map VF : © — H. Moreover, we have VF* = (VF)~!
and VF = (VF*)~! i.e., gradient maps of conjugate functions are reciprocal to
each others.

The gradient of a strictly convex function of Legendre type exhibit a gen-
eralization of the notion of monotonicity of univariate functions: A function
G : X — R is said strictly increasing co-monotone if

V01,00 € X, 01 # 05, (01— 02,G(61) — G(62)) > 0.
and strictly decreasing co-monotone if —G is strictly increasing co-monotone.

Proposition 1 (Gradient co-monotonicity [25]). The gradient functions
VF(0) and VF*(n) of the Legendre-type convex conjugates F' and F* in F are
strictly increasing co-monotone functions.

Proof. We have to prove that

<92 — 01,VF(92) — VF(01)> > 0, Vo, 7é 0, € © (2)
(ne —m, VE*(n2) = VE*(m)) >0, Vg #m € H (3)

The inequalities follow by interpreting the terms of the left-hand-side of Eq. 2
and Eq.3 as Jeffreys-symmetrization [17] of the dual Bregman divergences [9]
Br and Bp-:

Bp(01 : 92) = F(@l) — F(gz) — <91 — 92,VF(92)> Z 07
Bp«(n :m2) = F*(m) = F*(n2) = {m — m2, VF"(n2)) = 0,

where the first equality holds if and only if #; = 65 and the second inequality
holds iff n; = 2. Indeed, we have the following Jeffreys-symmetrization of the
dual Bregman divergences:

BF(91 : 92) —|—BF(92 : 91) = <92 — 91,VF(92) — VF(91)> >0, V6, 7’5 02
Brp«(m :n2) + Bp=(n2 :m) = (2 —m, VF*(n2) = VEF* (1)) >0, Vi # 2

O

Definition 3 (Quasi-arithmetic centers, QACs)). Let F : © — R
be a strictly conver and smooth real-valued function of Legendre-type in F.
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The weighted quasi-arithmetic average of 01,...,0, and w € A,_1 is defined
by the gradient map VF as follows:

Myp(0y,...,0,;w) = VE™* (Z inF(Hi)> ; (4)
= VF* (Z wl-VF(Gi)> : (5)

where VF* = (VF)™! is the gradient map of the Legendre transform F* of F.

We recover the usual definition of scalar QAMs My (Definition 1) when

= fat f(u)du for a strictly increasing or strictly decreasing and continuous
function f: My = Mp/ (with f=! = (F’)~!). Notice that we only need to consider
F to be strictly convex or strictly concave and smooth to define a multivariate
QAM since MVF = M—VF~

Ezxample 1 (Matriz example). Consider the strictly convex function [8] F' :
Sym, , (d) — R with F'(§) = —logdet(f), where det(-) denotes the matrix deter-
minant. Function F() is strictly convex and differentiable [8] on the domain
of d-dimensional symmetric positive-definite matrices Sym, , (d) (open convex
cone). We have

F(0) = —logdet(0),
VE(0) = -0~ =:n(0),
VF~(n) = =:0(n)
F(n) = < ( )sm) — F(0(n)) = —d — logdet(—n),

where the dual parameter 1 belongs to the d-dimensional negative-definite matrix
domain, and the inner matrix product is the Hilbert-Schmidt inner product
(A, B) :=tr(ABT), where tr(-) denotes the matrix trace. It follows that

Myp(01,605) =267 +6;1)71

is the matrix harmonic mean [1] generalizing the scalar harmonic mean H (a,b) =

si% for a,b > 0. Other examples of matrix means are reported in [7].

2.2 Quasi-arithmetic Barycenters and Dual Geodesics
A Bregman generator F : © — R induces a dually flat space [4]
(©,9(0) = V3F(6),V,V")

that we call a Bregman manifold (Hessian manifold with a global chart), where
V is the flat connection with Christoffel symbols I',;(8) = 0 and V* is the dual
connection with respect to g such that F*ijk(n) =0.
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In a Bregman manifold, the primal geodesics yv (P, Q;t) are obtained as
line segments in the #-coordinate system (because the Christoffel symbols of
the connection V vanishes in the f-coordinate system) while the dual geodesics
vv+ (P, Q;t) are line segments in the 7-coordinate system (because the Christof-
fel symbols of the dual connection V* vanishes in the n-coordinate system).
The dual geodesics define interpolation schemes (PQ)V(t) = v (P, Q;t) and
(PQ)V" () = yv+(P,Q;t) between input points P and Q with P = vy (P, Q;0) =
v+ (P,Q;0) and Q = yv(P,Q;1) = vv+(P,Q;1) when ¢ ranges in [0,1]. We
express the coordinates of the interpolated points on vy and v+ using quasi-
arithmetic averages as follows:

(PO = s (P @i = [T Lo
(PO () = - (P.0st) = | eV LR D tt)ﬂ @

where id denotes the identity mapping. See Fig. 1.

V-geodesic vy (P, Q;t) = (PQ)V(t)

- Mia(0(P),0(Q);1 —t,t
PQ™ () = (Afsls‘ ((n()P)(yngQ);l—va) )

P Q

V*-geodesic v- (P, Q;t) = (PQ)Y (1)

(PQ)V*(t) _ < JWVF( ( ) (Q) 1_t t) )

(M,g,V,V*) Mia(n(P),n(Q); 1 —t,1)

Fig.1. The points on dual geodesics in a dually flat spaces have dual coordinates
expressed with quasi-arithmetic averages.

Quasi-arithmetic centers were also used by a geodesic bisection algorithm
to approximate the circumcenter of the minimum enclosing balls with respect
to the canonical divergence in Bregman manifolds in [21], and for defining the
Riemannian center of mass between two symmetric positive-definite matrices
with respect to the trace metric in [15]. See also [22,23].

3 Invariance and Equivariance Properties

A dually flat manifold [4] (M,g,V,V*) has a canonical divergence [2] Dy v~
which can be expressed either as a primal Bregman divergence in the V-affine
coordinate system 6 (using the convex potential function F(f)) or as a dual
Bregman divergence in the V*-affine coordinate system 7 (using the convex con-
jugate potential function F*(n)), or as dual Fenchel-Young divergences [18] using



152 F. Nielsen

the mixed coordinate systems 6 and 7. The dually flat manifold (M, g, V,V*)
(a particular case of Hessian manifolds [26] which admit a global coordinate
system) is thus characterized by (0, F(0);n, F*(n)) which we shall denote by
(M,g,V,V*) — DFS(0, F(0);n, F*(n)) (or in short (M, g,V,V*) — (6, F(0))).
However, the choices of parameters § and n and potential functions F(#) and
F*(n) are not unique since they can be chosen up to affine reparameterizations
and additive affine terms [4]: (M, g,V,V*) — DFS([0, F(0);n, F*(n)]) where []
denotes the equivalence class that has been called purposely the affine Legendre
invariance in [14]:

First, consider changing the potential function F'(6) by adding an affine term:
F(0) = F(0) + {(c,0) + d. We have VF(0) = VF(0) + ¢ = 7. Inverting VF(z) =
VF(z) +c =1y, we get VF~1(y) = VF(y — ¢). We check that Bp(f; : ) =
Bp(@l : 92) = vav* (P1 : PQ) with G(Pl) =: 91 and 0(P2) =: 92. It is indeed well-
known that Bregman divergences modulo affine terms coincide [5]. For the quasi-
arithmetic averages Mgz and Myp, we thus obtain the following invariance
property:

Mgp(01,...;00w) = Myr(01,...;0,;w).

Second, consider an affine change of coordinates § = A0 + b for A € GL(d)
and b € RY, and define the potential function F(f) such that F(0) = F(#). We
have § = A=1(§ — b) and F(x) = F(A~!(z — b)). It follows that

VF(z) = (A"HTVF(A Yz - b)),
and we check that BF(&T-T) = Bp(6; : 09):
@) - F(B3) — (B - 03, VE@)).
01) — F(02) — (A(61 — 62)) T (A~") TV F(65),
(91) — F(02) — (91 — 92) ( ) VF(GQ) = BF(91 . 6‘2)
(A=1A)T=]

This highlights the invariance that Dy v« (P : P2) = Bp(61 : 02) = Bpg,.0,)
i.e., the canonical divergence does not change under a reparameterization of the
V-affine coordinate system. For the induced quasi-arithmetic averages Mg 7 and
My, we have VE(z) = (A=) TVF(A~Y(z — b)) = y, we calculate

z=VF(z) " (y) = AVF (A ™)) Ly) +b,

Brr@am) =

and we have

Mgy, ..., 0h;w) == VE (> w;VF(f

= (VF)~ ( Z w; VF (0 >

= AVF ' (ATH) AT wiVF(6:) | +b,
=71 2
MVF'(Gh “en ,én,w) = AMVF(Ql, [P ,9n,w) + b
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More generally, we may define F(6) = F(Af + b) + (c,0) + d and get via
Legendre transformation F*(77) = F*(A*n + b*) + {(¢*,n) + d* (with A* b*, c*
and d* expressed using A,b,c and d since these parameters are linked by the
Legendre transformation).

Third, the canonical divergences should be considered relative divergences
(and not absolute divergences), and defined according to a prescribed arbi-
trary “unit” A > 0. Thus we can scale the canonical divergence by A > 0, i.e.,
DA,V,V* = )\Dv7v*. We have D)\7v7v*(P1 : Pz) = )\Bp(el : 92) = )\BF* (772 : 771),
and ABp (07 : 02) = Byp(01 : 02) (and VAF = AV F). We check the scale invari-
ance of quasi-arithmetic averages: Myvpr = My p.

Proposition 2 (Invariance and equivariance of QACs). Let F(0) be a
function of Legendre type. Then F(0) := AM(F(A8+0b)+{(c,0)+d) for A € GL(d),
b,c € R? deR? and X\ € Ruq is a Legendre-type function, and we have

Mgy =AMygr+b.

This proposition generalizes the invariance property of scalar QAMs, and
untangles the role of scale A > 0 from the other invariance roles brought by the
Legendre transformation.

Consider the Mahalanobis divergence A? (i.e., the squared Mahalanobis dis-
tance A) as a Bregman divergence obtained for the quadratic form generator
Fo(8) = %GTQQ + cf + k for a symmetric positive-definite d x d matrix @,
c € R? and k € R. We have:

A%(01,05) = Bp, (01 : 6) = %(92 —01)" Q (6 —0y).

When @ = I, the identity matrix, the Mahalanobis divergence coincides with
the Euclidean divergence? (i.e., the squared Euclidean distance). The Legendre

convex conjugate is
* 1 —
F*(n) = 50" Q"'n = Fg-:(n),
and we have n = VFqo(0) = Q0 and 6 = VI (n) = Q" 'n. Thus we get the
following dual quasi-arithmetic averages:

Mypg (01, ., 0n;w) = Q' <Z wiQ@‘) = szﬂi = Mia(01,...,0n;w),
i=1 i=1

Myrs(m, .- omiw) = Q (Zw@‘%) = Mia(m, ..., s w).
=1

The dual quasi-arithmetic centers My g, and My Fy induced by a Maha-
lanobis Bregman generator Fg coincide since Myg, = Mvpé = M,;q. This

2 The squared Euclidean/Mahalanobis divergence are not metric distances since they
fail the triangle inequality.
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means geometrically that the left-sided and right-sided centroids of the under-

lying canonical divergences match. The average My r, (61,...,0n;w) expresses
the centroid C' = Cr = C, in the #-coordinate system (0(C) = ) and the aver-
age My Fy (M, ..., nn; w) expresses the same centroid in the 7-coordinate system

(n(C) = n). In that case of self-dual flat Euclidean geometry, there is an affine
transformation relating the #- and 7-coordinate systems:n = Q6 and 0 = Q" 'n.
As we shall see this is because the underlying geometry is self-dual Euclidean
flat space (M7 JEuclidean vEuclideany vEuclidean = vEuclidean) and that both dual
connections coincide with the Euclidean connection (i.e., the Levi-Civita con-
nection of the Euclidean metric). In this particular case, the dual coordinate
systems are just related by affine transformations.

4 Quasi-arithmetic Mixtures and Jensen-Shannon-type

Divergences
Consider a quasi-arithmetic mean M and n probability distributions Py, ..., P,
all dominated by a measure u, and denote by p; = %—F:, ey Pn = ddi" their
Radon-Nikodym derivatives. Let us define statistical My-miztures of pq,...,pn:

Definition 4. The My-mizture of n densities p1, ..., p, weighted by w € A} is
defined by

— M;(pi(z), ..., pu(z);w)
S My(pr(x), ... ,pp(x);w)dp(z)

(plu e 7p’n;w)JWf ((E) :

The quasi-arithmetic mixture (QAMIX) (p1,...,pn;w)M7 generalizes the
ordinary statistical mixture Zle w;pi(x) when f(t) = t and My = A is
the arithmetic mean. A statistical M¢-mixture can be interpreted as the M-
integration of its weighted component densities, the densities p;. The power
mixtures (py,...,pn; w)™»(x) (including the ordinary and geometric mixtures)
are called a-mixtures in [3] with a(p) = 1 —2p (or equivalently p = 15%). A nice
characterization of the c-mixtures is that these mixtures are the density cen-
troids of the weighted mixture components with respect to the a-divergences [3]

(proven by calculus of variation):

(p1y- s po;w)Me = arg m;nzwiDa(Pi,pL
i

where D,, denotes the a—divergences [4,20]. See also the entropic means defined
according to f-divergences [6]. M -mixtures can also been used to define a gen-
eralization of the Jensen-Shannon divergence [17] between densities p and ¢ as
follows:

D3¢ (p,9) == = (Dxr(p: (p9)™7) + Dxr.(q : (pg)™1)) > 0, (8)

DN =
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where Dxi,(p: q) = [ p(x)log (I)d,u( ) is the Kullback-Leibler divergence, and
(pe)™+ = (p,q;3,%)™. The ordinary JSD is recovered when f(f) = t and

Mf = A:
1 + +
Djs(p,q) = (DKL ( P 5 q) + Dx1 ( P 5 q)) .

In general, we may consider quasi-arithmetic paths between densities on the
space P of probability density functions with a common support all dominated
by a reference measure. On P, we can build a parametric statistical model called
a My-mixture family of order n as follows:

M o
Foolor,p f{po,pl,...,pn;(e,l))Mf : HGAH}.

In particular, power g-paths have been investigated in [13] with applications in
annealing importance sampling and other Monte Carlo methods.

To conclude, let us give a geometric definition of a generalization of the Jensen-
Shannon divergence on P according to an arbitrary affine connection [4,27] V:

Definition 5 (Affine connection-based V-Jensen-Shannon divergence).
Let V be an affine connection on the space of densities P, and v (p,q;t) the
geodesic linking density p = vv(p, ¢;0) to density ¢ = yv(p,q;1). Then the V-
Jensen-Shannon divergence is defined by:

D¥(p,q) == % <DKL (p 0Ny <p,q; ;)) + Dk1 <q iy (p7 a; ;))) )

When V = V™ is chosen as the mixture connection [4], we end up with the
ordinary Jensen-Shannon divergence since yym (p, g; %) = %. When V = V°,
the exponential connection, we get the geometric Jensen-Shannon divergence [17]
since yve(p, ¢; %) = (pq)¢ is a statistical geometric mixture. We may consider
the a-connections [4] V® of parametric or non-parametric statistical models, and
skew the geometric Jensen-Shannon divergence to define the g-skewed V*-JSD:

D3 5(p.q) = BDxL(p : vve(p,¢; ) + (1 — B) Dr(q : yve(p,g: 8)).  (10)

A longer technical report of this work is available [19].
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Abstract. In this study, we consider parametric binary choice models
from the perspective of information geometry. The set of models is a
dually flat manifold with dual connections, which are naturally derived
from the Fisher information metric. Under the dual connections, the
canonical divergence and the Kullback—Leibler (KL) divergence of the
binary choice model coincide if and only if the model is a logit. The
results are applied to a logit estimation with linear constraints.

Keywords: Binary Choice Models - Discrete Choice Models - Logit -
Multinomial Logit - Single-Index Models

1 Introduction

Information geometry has been applied to econometric models such as the stan-
dard linear model, Poisson regression, Wald tests, the ARMA model, and many
other examples [3,4,8,10]. In the present study, we apply the method to a stan-
dard binary choice model. Let z be an R%-valued random vector. Let y € {0,1}
be a binary outcome such that

1 if y*>0
Y= e , (1)
0 if y*<0

where § € RY, y* = -0 —¢, ¢ I x, and E[e] = 0. The choice probability
conditioned on x is given by

Ply=1|z}=P{e<z-0|z}=F(z-0), (2)

where the distribution F of € is known to a statistician. Let py be the density of
the binary response model given by

po(y.x) = Fz-0)Y(1 — F(az-0)) Vpx(x), (y,2) € {0,1} xRY,  (3)

where px denotes the marginal density of x.
The model is commonly used in social sciences to describe the choices made
by decision-makers between two alternatives. These alternatives may represent

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
F. Nielsen and F. Barbaresco (Eds.): GSI 2023, LNCS 14071, pp. 157-166, 2023.
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school, labor supply, marital status, or transportation choices. See [9,11] for a
list of empirical applications in the social sciences.
The model is referred to as probit when F is the standard normal distribution,

that is,
| 52
F(u) = exp | —— | ds,
@) /_Oo 2m p( 2>

and logit when F' is the standard logistic distribution, that is,

expu

F(u) (4)

 l4expu’
The logit model is particularly popular due to its closed-form choice probability
F(z-0), which is easily interpretable [11]. We aim to show that among parametric
binary response models, the logit model exhibits good geometric properties owing
to its ‘conditional’ exponentiality.

The remainder of this paper is organized as follows. In Sect. 2, the geometry
of the binary choice model is formulated. In Sect. 3, we introduce the canonical
divergence and the Kullback—Leibler (KL) divergence. In particular, we demon-
strate that the logit is a unique model, the canonical divergence of which is
equal to the KL divergence. In Sect. 4, we consider the logit model with linear
constraints. In Sect. 5, we summarize our conclusions.

2 Geometry of the Binary Choice Models

Assume that F : R — [0, 1] is a smooth distribution function of €. Let © C R?
be an open set of parameters 0. Given px, the set of models

P={po|0€cO} (5)

is considered as a d-dimensional C'*® manifold with a canonical coordinate system
0 — po.
The tangent space of P at py is simply denoted as TpP and is given by

TyP = Span {(01)e, -~ ,(0a)a},

where 0; = 8%1- for i =1,--- ,d. The score of the model is
y—F(z-0)
Z - .0

and the Fisher information matrix is

G@=E(;bwa(§bon=EW%®mw7

where
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In the following, we assume that the integral £ [T(m . H)xxT] is finite for every 6 €
©. The assumption is trivially satisfied if f is continuous and positive everywhere
on R and if x has a bounded support.

The Fisher information metric g is introduced on TyP by

X </OM \/@du> Y (/Ow\/@duﬂ

for X, Y € TpP. In particular, the (¢, j) component of g at 6 is

g@(X7Y) =F

gij(ﬁ) = gg(@i, 8]) =F [’I”(ZZ? . 9)$Z:Z?]] .

Hence, the Levi-Civita connection V of (P, g) is given by the connection coeffi-
cients
Lij e (0) = 5 [(9)ogr; (0) + (05)09ik (0) — (Ok)ogi; ()

Er'(z - 0)z;xjx]

N~ N —

for 1 < 4,7,k < n. The coefficients show symmetry on (i, j, k). In particular,
I k(8) = I 1(0), which implies that (P, g, V) is a tortion-free manifold. The
symmetry of the connection is caused by the single-index structure of the model.
G(0) depends on 6 only through the linear index x - 6.

Due to the symmetry of the Levi-Civita connection, the a-connection V()

is defined naturally by

11—«

I(60) = —5=Tij(6) (7)

for each a € R. A pair (V(®,V(=%)) provides the dual connections of (P, g)
such that
Xgo(Y.2) = go(V{'Y.2) + 90 (Y, V™ 2)

for every X,Y,Z € X(P), where X(P) is the family of smooth vector fields on
P.

Theorem 1. (P, g, VD VD) is a dually flat space with dual affine coordi-
nates (0,n); 0 is the VY -affine coordinate, and n = (n1,--- ,na) given by

< /0 " r(u)du) xj] (8)

for 1< j <d is the V(=Y -affine coordinate.

nj=~F
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Proof. For a =1, Fi(;rkl) = 0 holds for all 4, j, and k. Moreover, given that
gij(0) = 9:0;9(0)
holds with potential ¢ : ©® — R defined by

/OM (/Ovr(u)du> dv] ,

the dual-affine coordinates are obtained as

z-0
n; =0;9(0) =F [(/0 r(u)du) xj]

for1 <j<d. O

() =E

For convenience, we denote the inverse function of
Y :0 = R0 = (019(0), - ,0a1p(9))

by (9¢)~!. Because the Hessian §%1() is equal to the Fisher information matrix
G(6) and is therefore positive definite, di : © — 0Y(O) is invertible at any

n € dY(O).
The dual potential ¢(n) is given by

() =max -0 = (0) =n- (0) " (n) — L((O%) "' (n), (9)
which is the Legendre transformation of (). Let 9% = 8%1' for 1 <i < d, then

0" = d'p(n) holds.

Corollary 1. The V&Y _geodesic path connecting p,q € P is given by t €
[0,1] — pyex1) € P, where
t

oY = (1—1)0, + 10, (10)

and
6. = (9%) (1 =ty + ty) (11)
for0 <t <1.

The V(~Y_geodesic is a solution to the ordinary differential equation,
ét = G(et)il(nq —Np)s Oo = 0p.
To see this, let 17§71) = 81#(97571)) = (1 —t)np + tng. Then,

d (- iy ad (-
V=0t )ZoY

dt t = T]q - 77177
where G(Gt(fl)) = 62w(9§71)).
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3 The Logit Model

For a dually flat manifold with dual affine coordinates (6, 7) and dual potentials
(1, @), the canonical divergence (or U-divergence with U = 1)) is defined as

D(pllg) = ¢ (1p) +1(6q) = np - b4 (12)

[2,6,7]. For the binary response model, the divergence is given as

D(pllg) = [np - 0p — V(0p)] + 9 (0g) — np - b
z-0p
(/ r(u)du> x- (0 — 9;,)]
0

]Cij(Jévr(U)du> "
(13)

for each p and ¢ in P, because p(n,) =1, - 8, — ¢¥(6,) and

z-04 v
/ (/ r(u)du> dv| .
-0, 0
The following results are standard.

Theorem 2. Letp, q, r be in P. Let 61 be the VD _geodesic path connecting
p and q, and let 1) be the V(=Y -geodesic path connecting q and r. If 6+1)
and 00~V are orthogonal at the intersection q in the sense that

aN pen (4N g-n ) Z
gq((dt)qet ’(dt)qeq =9,

D(p|lr) = D(pllq) + D(q||r). (14)
Corollary 2. The Pythagorean formula (14) holds if (n, —ng) - (64 — 6,) = 0.

) —E

P(0g) —¥(0p) = E

then we have

An alternative for the divergence on P is the KL divergence
Py, fﬂ)}
q(y, x)

In the case of the binary response model, the KL divergence is

yF(z-0,) + (1 —y)(1 —F(xﬁp))}
yF(z-04) + (1 —y)(1 = F(z-6,))

—F [F(ac .6,) log (%ﬂ

+E {(1 _ F(x-6,))log (W)] (15)

M@m&hg

M@mz&hg

because E,[y|z] = F(x-0,). The canonical divergence (13) and the KL divergence
(15) generally do not coincide. As shown below, in a special case where F' is a
logistic distribution, they are equivalent.
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Theorem 3. D = KL holds for arbitrary px if and only if F is a logistic
distribution; that is,
exp(fu)
Flu) = ——————, 16
(w) 1+ exp(Bu) (16)
where B > 0.

Proof. If F is a logistic distribution, then SF(1 — F) = f. This equation is
substituted on the right-hand side of (13) to obtain D = K'L.
Now, we assume that D = KL holds for an arbitrary px. Because

f(x'9p>2 xxT}
F(z-0,)(1—F(z-6,))

(00),(00)a D(pla) = —E [

and

f(@-0p)f(z-0y) x:UT] :

D(pllq) = KL(pl||q) implies that

f(z- 9;0)2 flz- Gp)f(x ) 04)

F(z-0,)(1 = F(z-0p)) F(z-0,)(1 = F(x-0,))

for arbitrary p and ¢. By the principle of the separation of variables, this is
possible only if there exists a positive constant § such that

),
F(u)(1 = F(u))
Therefore, F' is the logistic distribution. a

In the case of 8 = 1, the results in the previous section are largely simplified.
The Fisher information metric is given by

9i(0) = E[f(z - 0)x;z;]
for 1 <i,j < d. The V(=D-affine coordinate 7 is expressed as
nj = E[F(z - 0)z;]
for 1 < j < d. The potential is given as
¥(0) = E log (1 + exp(z - 0))]. (17)
The canonical divergence is expressed as follows:

1 + exp(x - gp) p)x] . (9q - 9p)7 (18)

D(plg) = E {10% ( 1+ exp(z -0

which is equal to K L(p||q).
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The logit model exhibits geometrically desirable properties because of the
explicit integrability of F. We say that a statistical model P = {py | 6 € O} is
an exponential family if it is expressed as

d
p(z,0) =exp |C(z) + ZQiﬁi(z) —(6)] . (19)

It is widely known that the (curved) exponential family possesses desirable prop-
erties such as higher-order efficiency of the maximum likelihood estimation [1,5].
Although the logit model is not truly exponential, the conditional density pg(y|x)
is still written as

po(ylz) = exp ((z - 0)d1(y) + do(y) — ¢¥(0|x)), (20)
where
ity =i
51‘(1‘/){0 i y;«éi’
and

Y(0]x) = log (1 + exp(z - 0)).
Conditioned by z, the model (20) belongs to an exponential family with potential
(0|z). Notably, 1(0) = E [¢(0]z)].

The marginal density px does not appear in the score of the model (6).
Hence, px plays a minor role in the estimation of 8. The statistical properties
of the model are primarily determined by pg(y|z), and the following result is
obtained.

Theorem 4. Assume that the density of z conditioned on w with respect to
some positive measure v(dz) is given by

q0(2|w) = exp (0 - B(z[w) — ¢ (0w)), (21)

where B(z|w) is an R%-valued function of (z,w), and

P(0|w) := log/exp (0 - B(z|w)) d=. (22)

Then, the KL divergence of Q = {qy|0 € O} is equivalent to the canonical
divergence D of Q with potential ¥(0) = E [¢(0 | w)].

We can generalize Theorem 3 to cover the multinomial discrete choice model.
Let {1,--- ,k} be the set of choices. Assume that the choice probability condi-
tioned on z is now given by

Ply=i|z}=F(x-0;)

for 1 < i < k, where F is a smooth distribution function and 6 = [01 Gk] S
(RH* with §; = (6},---,09) € Re. Let px be the marginal density of z and
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let © C (R?)* be the set of parameters. Then, the multinomial choice model
{po | 6 € O} is given by

k

po(y, ) =Y 8i(y)F(x - 0;)px (x). (23)

i=1

In particular, when F' is the standard logit distribution, the model becomes the
multinomial logit model with the choice probability

exp(x - 6;)
>jm exp(a - 0;)

for 1 < 4 < k. The model is a conditional exponential family because it is
expressed as

poly = ilz) = (24)

k
po(y|z) = exp [Z Si(y)x - 0; — (0|x)
=1

with conditional potential ¢ (0|x) = log 2?21 exp(z - 6;). Hence, the set of mod-
els {pgl0 € O} is a dually flat space with dual affine coordinates (6,7) and

potential () = E [logZ?zl exp(x-ﬁj)}, where n = [n1---me] € (RYF,
ni = i1, ,mia) € RY, and

Mg =FE

exp( - 0;) CEl]
Sk exp(z - ;)

for 1 < i < kand 1 < [ < d. Furthermore, the canonical divergence D is
equivalent to the KL divergence as a result of Theorem 4.

4 Linearly Constraint Logistic Regression

In this section, we applied the results of the previous section to the logit model
with linear constraints. In empirical applications, we typically aim to estimate
under the linear constraint hypothesis, Hy : H'0 = ¢, where H = [hl e hm]
is an d x m matrix with rank(H) = m < d, and ¢ = (c1,- -+ ,¢m) € R™. Let
Py = {pg €P |0 €M}, where H= {0 € ©| H'0 = c}. Suppose that the true
model p does not belong to P(H). Then, the KL projection I : P — P(H) is
given by

ITp = argmin KL(p||g) subject to ¢ € P(H). (25)

In the following, we assumed that F' is a standard logistic distribution.

Theorem 5. ¢ = IIp if and only if n, — 1, € Image(H).
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Proof. Let L£(0,)\) = KL(p|lpg) — > e, A(hi - 0 — ¢;) be the Lagrangian corre-

1=

sponding to (25) with Lagrange multipliers A = (AL, .-+ | A™). As 6 — K L(p||py)
is convex, a necessary and sufficient condition for minimization is given by

0 U
%KL(I)HPG) = Xh; € Image(H).
=1

As KL = D, in contrast,

9 8
59 KL wllpe) = 55 [¢(np) +9(0) =11y - 6] =1 = mp-

O
The condition 7, — 1, € Image(H) is satisfied if A}, ---, A™ € R such that
Ng — Mp = >.ivy A'h; exists. Hence, the conditions given in the theorem are
written as m o
n—= e Ahi =1p
H'o=c ,
n = 0Y(0)

which are 2d + m equations with 2d + m variables (6,7, A). The solution is given
by 6 = (01) "1 (n,+HN\), where A solves H " (01) "1 (n,+H\) = c. The solution is
approximated well by A = (H T G(0,)"*H)~'(c— H'8,) if 6, locates sufficiently
close to ‘H and might be recursively updated by the standard Newton-Raphson
method.

5 Conclusions

In this study, we have investigated the geometry of parametric binary response
models. The model was established as a dually flat space, where the canonical
coefficient parameter 6 acts as an affine coordinate. The dual flat property intro-
duces a canonical divergence into the model. The divergence is equivalent to the
KL divergence if and only if the model is a logit. As an application example, the
KL projection of the logit model onto an affine linear subspace was geometrically
characterized.

The dual flatness of the binary response model is caused by the single-index
structure of the model, which depends on the parameter 6 only through the
linear index « - #, making the Levi-Civita connection coefficients I5; 5 symmet-
rical on (i, j, k). Therefore, the results of this study can be extended to a more
general class of single-index models, including nonlinear regressions, truncated
regressions, and ordered discrete response models.
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Abstract. The authors suggested a family of Poincaré distributions on
the upper half plane, which is essentially the same as a family of hyper-
boloid distributions on the two dimensional hyperbolic space. This family
has an explicit form of normalizing constant and is SL(2, R)-invariant.
In this paper, as a g-analogue of Poincaré distributions, we propose a
g-exponential family on the upper half plane with an explicit form of
normalizing constant and show that it is also SL(2,R)-invariant.

Keywords: g-exponential family - upper half plane - Poincaré
distribution

1 Introduction

In the field of Tsallis statistics, g-exponential families play an essential role. In
fact, the family of ¢g-Gaussian distributions (including Cauchy distributions) is
an important family of distributions on R and is widely used. It is a g-analogue
of the family of Gaussian distributions and has the following good properties:

(i) normalizing constant has an explicit form,
(ii) it is scaling and translation invariant as a family (Aff(R)-invariant).

The property (i) enables us to perform practical inferences easily. The other
property (ii) is closely related to transformation models, which have been studied
well, for example, in [6,7] and are useful for Bayesian learning ([11]).

On the other hand, the upper half plane has a good exponential family called
Poincaré distributions ([15]), which is essentially the same as a family of hyper-
boloid distributions ([5,10]) on the 2-dimensional hyperbolic space, and as a
family of Gauss densities on Poincaré unit disk ([3]) based on Souriau’s sym-
plectic model of statistical mechanics (see [2,12] for example).

In this paper, we introduce a g-analogue of the family of Poincaré distri-
butions on the upper half plane H. This family also has the following good
properties:

(i) normalizing constant has an explicit form,
(ii) it is SL(2, R)-invariant as a family.
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2 Preliminary

In this section, we recall the definition of a g-exponential family (Definition 2),
the notion of G-invariance of a family of distributions (Definition 4) and the
definition of a relatively G-invariant measure (Definition 6). Let X be a locally
compact Hausdorff space and R(X) the set of all Radon measures on X.

Definition 1 (g-logarithmic function, g-exponential function [17], see
also [1, Sect. 2.1], [13, Sect. 2.2|for more details). For ¢ € R, we define the
g-logarithmic function Ing: Ryg — R by

’ 1dt:{f_qwq—1) (¢ # 1),

1 = —
nq(x) |t log (¢=1).

We denote the image of Ing by I,. Namely,
I,={zeR |1+ (1-q)z >0}

We define the q-exponential function exp,: I, — Rxo as the inverse function of
In,, That s,
1
1+ (1 —-qz)™ (¢#1),
S e R ()
exp T (g=1).
Definition 2 (¢-exponential family, [1, Sect. 2.2],[13, Definition 2.1]). A

subset P C R(X) consisting of probability measures is a g-exponential family on
X if there exists a triple (u, V,T) such that

(i) p € R(X),
1) V is a finite dimensional vector space over R,
(ii)
(i) T : X — V is a continuous map,
i) for any v € P, there exists 0 € VV and ¢(0) € R such that
¥
(a) —{0,T(z)) — () € I, for any x € X and

(b) dv(z) = exp,(— (0, T(x)) — ¢(0))du(x),
where V'V denotes the dual space of V and (-,+) : V¥ x V — R denotes the
natural pairing.

We call the triple (u,V,T) a realization of P. ([4] call it representation for
g=1.)

Remark 1. In the case where ¢ = 1, a g-exponential family on X is nothing but
an exponential family on X.

From now on, let G be a locally compact group, and X a locally compact
Hausdorff space equipped with a continuous G-action.

Definition 3. The group G naturally acts on R(X) by pushforward as follows:

(9-1)(B) := (g *B) for a Borel measurable set B C X.
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Definition 4. A subset P C R(X) is said to be G-invariant if
g-pEP foranypeP,ged.

Definition 5 (]9, Sect. 2.3]). For u,v € R(X), we say p and v are strongly
equivalent if there exists a continuous function f: X — Rsg satisfying v(B) =
fB fdp for any Borel measurable subset B of X. This relation is an equivalence
relation on R(X).

Definition 6 (]9, Sect. 2.6], [8, (7.1.1) Definition 1]). A measure 1 € R(X)
1s said to be relatively G-invariant if u and g- p are strongly equivalent and there
exists a continuous group homomorphism x: G — Rsq satisfying

d(g-p)(x) = x(g) " 'du(z) (g€ G,z e X).

We say p is G-invariant if y = 1.

3 Construction of a g-Exponential Family

Let X be a locally compact Hausdorff space. In this section, we write down a
method to construct g-exponential families on X. Concretely, first, we choose a
triple (u, V,T'), and construct a g-exponential family on X with the realization
(1, V, T). We have two such ways. Here, 11 is a Radon measure on X, V is a finite
dimensional vector space over R, and T': X — V is a continuous map.

Definition 7 (construction of a g-exponential family). We put
O, :=1{0 € V| there exists 1y € R satisfying the conditions (i) and (i)},
(i) —(0,T(x)) — g € I, for any x € X,
(ii) [,cx expy(= (0, T(x)) — vo)du(x) =1,
and define
dvp(z) = exp,(— (6, T(x)) — o)du(z) € R(X) (8 € O,).

Then, the obtained family Py := {vg}oco, is a q-exponential family on X with
a realization (u,V,T). We call ©4 the parameter space of Pg.

Definition 8 (another construction of a g-exponential family). We put
O,:={0cVV|—(0,T(x)) €1, for any x € X},
dijg(z) = exp,(— (0, T(x)))du(x) for 6 € O,

/dﬁ9<00},
X

—1
ne = cotlg € R(X), co:= </ dﬁé) (6 € 7).
X

0y = {aeéq

Then, the obtained family Py := {ne | 6 € OF} is a q-exponential family on X.
We call ©F the parameter space of Py.
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The assertion that the obtained family P¢ is a g-exponential family on X in
the sense of Definition 2 with a realization (u, V,T) follows from the following;:
Proposition 1. P; C P,.
Proof. Take any 6 € ©f. Then there exists ¢y > 0 such that 7y = cp7jp. We put

lg:=Ingco € I,, 0 := (14 (1—q)ly)0 € V.
By applying Note 1 below for a := — (0, T(x)) and (3 := £y, we have
dng(x) = codije(z) = expy(— (0, T(x)) + Lo)du(z).

Therefore, we have 1y € P,.

The following Note 1 can be verified by a direct calculation easily.

Note 1. For a, 3 € I, the following properties hold.

(i) A1+ (1 —-g)B)a+pB e Iy,
(ii) (exp, a)(exp, B) = exp,((1+ (1 — q)B)a + B3).

Remark 2. Sometimes P, = Pg holds. In fact, the example given in Sect.4 is
the case where P, = P;. However, we do not give its proof in this article. On
the other hand, there is an example where Py C P, (see Example 1 below).

Example 1. We put X := R and ¢ := 2. We take a triple (u, V,T) as follows: p
is the Lebesgue measure on X, V :=R, T: X — V, 2 — 1 + 2. Then we have

P = ELdaz )
! At ]y

1 A
Pq = {ﬂ)\Q—&-xde}Aw’

where dx denotes the Lebesgue measure on R. Especially, we have Pg C Pg.

4 A g-Exponential Family on the Upper Half Plane

We give an example of Definition 8 on the upper half plane.

We consider the upper half plane X := H = {# € C | Imz > 0} with
the Poincaré metric. Let p be the Riemannian measure on X, that is, du(z) =
y~2dxdy. We put V := Sym(2,R) and consider the following continuous map:

1 /72 4 42
T:X—>V,z::x+\/—1yb—><x jc_y T)
Y

We identify V¥ = Sym(2,R)" with Sym(2,R) by the following inner product:
Sym(2,R) x Sym(2,R) - R, (X,Y)+— Tr(XY).

We denote by Sym™ (2, R) the set of all positive definite symmetric matrices of
size two.



A g-Analogue of the Family of Poincaré distributions on the upper half plane 171

Theorem 1. Let ¢ € R. The obtained g-exponential family Py on X from the
triple (u, V,T) above by Definition 8 is given as follows: In the case where ¢ < 1
or2 < q, P; =10, and in the case where q € [1,2),

(_ a(z? + y?) + 2bx + c) dxdy}
y v J,_ (a b) €Sym+ (2,R) 7
bc

2—q)D
where ¢y = ( 9) D :=+/ac— b2

W(equ(—QD))%q’

This theorem follows from Lemmas 1, 2, Proposition 2, and the calculation
of normalizing constant in Sect.5. Since the case of ¢ = 1 is known in [15,
Example 1], we assume ¢ # 1.

Lemmas 1, 2 below follows from easy calculation.

Lemma 1. We have

i
()

Lemma 2. In the case of ¢ > 1, (0 c) ¢ 07 forc>0.

(a > 0,ac —b*>>0) or(abO,cZO)} (g > 1),

(a < 0,ac—b*>0) or(a:b:O,CSO)} (g <1).

Proposition 2. In the case of ¢ < 1, the obtained family Pg from the triple
(1, V, T) is empty.

Proof. Take any 6 := (a,b,c) € éq. Then, we have (a < 0 and ac — b? > 0) or
(a =b=0and ¢ < 0). In the both cases, (6,T(z)) < ay for any z € H holds,
which implies

expy(— (0, 7(2))) = exp,(—ay).

Since the right hand side depends only on y, the function exp,(—(0,7(2))) is
not integrable.

Now, let us consider the SL(2,R)-invariance of the family Pg. To see the
natural SL(2, R)-action on R(X), let us recall that the Lie group SL(2,R) acts
on the upper half plane H as a fractional transformation. Namely,

az+b ab
Zi= where g = <c d) € SL(2,R) and z € H.

Theorem 2. The obtained q-exponential family P on the upper half plane in
Theorem 1 is SL(2,R)-invariant, and the SL(2,R)-action on the parameter space
Sym™(2,R) is given as follows:

SL(2,R) x Sym™(2,R) — Sym™(2,R), (g, 59) — ‘g ' Sg™".
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Proof. The upper half plane with SL(2,R)-action can be identified with the
homogeneous space G/H = SL(2,R)/SO(2) by the G-equivariant map

H — G/H, z— a(z)H, where a(z) := <\0[ f) €G (z=z+V—1y),
VY

which satisfies g-a(z) = a(g-z) for g € G, z € H. For § = (Z i) € Sym™(2,R),

d770(2) = ¢y equ ( ( +y )y+ 2b{L‘+ C) d,u(z)

= cpexpy(— Tr(0a(2)'a(2)))dpu(2).
Let g € G, 0 € OF and put 0 := tg=1g—! € ©y. Since the Riemannian measure
w on ‘H is G-invariant, we have
d(g-19)(2) < exp, (= Tr (69~ a(2) (g a(2)))) d(g - 1)(2)
= expy(— Tr('g 09~ a(2) a(2)))du(z) = dijor (2)

Since the pushforward of a probability measure is also a probability measure, we
get g - g = ng. Theorem 2 was proved.

5 Calculation of the Normalizing Constant

In this section, we verify that the family P has the explicit form as in Theorem 1
by calculating the normalizing constant. From Lemmas 1, 2 in Sect. 4, it is enough
to consider the following:

ab
bc
Vdet 0 = Vac — b2. We take r > 0 such that ¢ = 1—&—%

Setting 3. Letq>1,9—< >€éq with a > 0, ac —b%> > 0 and D :=

The normalizing constant of the family follows from the following;:

Proposition 3. Under Setting 3,

a(z? +y?) + 2bx + ¢\ dady
equ y "

B m(equ(fQD))Q*q (g <2 and ac — b* > 0),
] (g >2 orac—1b*=0).

To prove proposition above, we prepare a definition and lemmas.

Definition 9 (Wallis’s integral). For r € R, we call W, below Wallis’s
integral.

W, = /2 cos” 0df € (0,].
0
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Lemma3 (Z)W <00 = r>—1,

(it) [ (a® +1)""dx = 2Wo(,_1),

(iii) f_oo ax? 4+ b)""dx = %b%’TWQ(T_l) (a,b>0),

(i) [ (a( :1:2 +27) + 1) = J=(2a+1)2 "Wy ) (a> 0,7 €R),
(0) W, = 3B(L,250) (r > —1),

(vi) WWT 1= 3= (r>0).

Proof. Since (i), (i ) (1ii) and (v) are easy, we prove only (iv) and (vi).
(iv): Put I := [["(a(z® + 272) + 1)""de and x =t !, then we get

I= / (a(t* +t72) + 1) "t 2dt.
0

Therefore

I= 5 /000(1 + a7 (a(x? + 272) + 1) "d.

Putu=z—2"1 then I = [ (au®+2a+1)""du. Thus (iv) follows from (iii).
(vi): From (v), we have

1 r+1 17 1rd)r=
r¥Vr— B Bl-,z)=+
L (2 2 ) (2 2) 4

Here, we used I'(1) = /7 and I'(s + 1) = sI'(s) for s > 0.

Lemma 4. Under Setting 3,

i
o a(z? +y?) + 2bz + ¢ 2ry (2 D? 2
/ exp, (— ( Y 2/ ) dzr= Ty (r (ay + ay) + 1) W,_o.

Proof. Since we have

o, (_a(x2 +y2;+ 2bx+c> _ exp, (_Z <x+ Z>2 - (ay+ 5;))
_ (((q—l)g) <x+2>2+ ((Q—l) (ay+ )+1)>_

By applying Lemma 3 (iii), we get the desired equality.

r
2

Proof (of Proposition 3). By Tonelli’s theorem and Lemma 4,

a(z? +y?) + 2bx + ¢\ dady
eXPq y " (1)

L))
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(Casel): ¢ > 2.

Since we have ¢ > 2 <= r < 1, by Lemma 3 (i), this integral does not converge.
(Case2): ac — b = 0.

We may assume r > 1. Since we have D = 0,

1—r
o (2 D? 2 L/9 =
/ ( (ay+> +1> y*%dyz/ (a+1> y’%dy:oo.
0 T ay 0 T

As a result, the integral (2) does not converge.

(Case3): Otherwise. Put s := \/E

g and by using Lemma 3 (iv), we have

1—r

S 2 1_%
(2) =2W,_9y/ 2—1; / (?(32 +57) + 1) ds = WT_QWT_%” (%D + 1> .
0

Here, (2D + 1)1—5 = (exp,(—2D))*~% and from Lemma 3 (vi), W,_oW, 325 =

@D
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Abstract. Hyperbolic geometry has become popular in machine learn-
ing due to its capacity to embed discrete hierarchical graph structures
with low distortions into continuous spaces for further downstream pro-
cessing. It is thus becoming important to consider statistical models and
inference methods for data sets grounded in hyperbolic spaces. In this
work, we study the statistical f-divergences between two kinds of hyper-
bolic distributions: The Poincaré distributions and the related hyper-
boloid distributions. By exhibiting maximal invariants of group actions,
we show how these f-divergences can be expressed as functions of canon-
ical terms.

Keywords: exponential family - group action - maximal invariant -
Csiszar’s f-divergence + hyperbolic distributions

1 Introduction

Hyperbolic geometry! [2] is very well suited for embedding tree graphs with low
distortions [20] as hyperbolic Delaunay subgraphs of embedded tree nodes. So
a recent trend in machine learning and data science is to embed discrete hier-
archical graphs into continuous spaces with low distortions for further down-
stream processing. There exists many models of hyperbolic geometry [2] like the
Poincaré disk or upper-half plane conformal models, the Klein non-conformal
disk model, the Beltrami hemisphere model, the Minkowski or Lorentz hyper-
boloid model, etc. We can transform one model of hyperbolic geometry to
another model by a bijective mapping yielding a corresponding isometric embed-
ding [11]. As a byproduct of the low-distortion hyperbolic embeddings of hier-
archical graphs, many embedded data sets are nowadays available in hyperbolic
model spaces, and those data sets need to be further processed. Thus it is impor-
tant to build statistical models and inference methods for these hyperbolic data

! Hyperbolic geometry has constant negative curvature and the volume of hyperbolic
balls increases exponentially with respect to their radii rather than polynomially as
in Euclidean spaces.
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sets using probability distributions with support hyperbolic model spaces, and
to consider statistical mixtures in those spaces for modeling arbitrary smooth
densities.

Let us quickly review some of the various families of probability distributions
defined in hyperbolic models as follows: One of the very first proposed family
of such “hyperbolic distributions” was proposed in 1981 [16] and are nowadays
commonly called the hyperboloid distributions in reference to their support: The
hyperboloid distributions are defined on the Minkowski upper sheet hyperboloid
by analogy to the von-Mises Fisher distributions [3] which are defined on the
sphere. Another work by Barbaresco [4] defined the so-called Souriau-Gibbs dis-
tributions (2019) in the Poincaré disk (Eq. 57 of [4], a natural exponential family)
with its Fisher information metric coinciding with the Poincaré hyperbolic Rie-
mannian metric (the Poincaré unit disk is a homogeneous space where the Lie
group SU(1,1) acts transitively).

In this paper, we focus on Ali-Silvey-Csiszar’s f-divergences between hyper-
bolic distributions [1,14]. In Sect.2, we prove using Eaton’s method of group
action maximal invariants [15,19] that all f-divergences (including the Kullback-
Leibler divergence) between Poincaré distributions [21] can be expressed canon-
ically as functions of three terms (Proposition 1 and Theorem 1). Then, we
deal with the hyperboloid distributions in dimension 2 in §3. We also consider
g-deformed family of these distributions [23]. We exhibit a correspondence in
84 between the upper-half plane and the Minkowski hyperboloid 2D sheet. The
f-divergences between the hyperboloid distributions are in spirit very geometric
because it exhibits a beautiful and clear maximal invariant which has connections
with the side-angle-side congruence criteria for triangles in hyperbolic geometry.
This paper summarizes the preprint [18] with some proofs omitted: We refer the
reader to the preprint for more details and other topics than f-divergences.

2 The Poincaré Distributions

Tojo and Yoshino [21-23] described a versatile method to build exponential
families of distributions on homogeneous spaces which are invariant under the
action of a Lie group G generalizing the construction in [13]. They exemplify their
so-called “G// H-method" on the upper-half plane H := {(z,y) € R? : y > 0} by
constructing an exponential family with probability density functions invariant
under the action of Lie group G = SL(2,R), the set of invertible matrices with
unit determinant. We call these distributions the Poincaré distributions, since
their sample space X = G/H ~ H, and we study this set of distributions as
an exponential family [8]: The probability density function (pdf) of a Poincaré
distribution [21] expressed using a 3D vector parameter § = (a,b,c) € R? is
given by

Vac — b2 exp(2vac — b2 a(z2+y2)+ 2z +c\ 1
pol(z,y) = i Ve (M) LW

m Y
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where 6 belongs to the parameter space
6 :={(a,b,c) R :a>0,¢>0, ac—b*> > 0}.

The set @ forms an open 3D convex cone. Thus the Poincaré distribution family
has a 3D parameter cone space and the sample space is the hyperbolic upper
plane. We can also use a matrix form to express the pdf. Indeed, we can naturally
identify © with the set of real symmetric positive-definite matrices Sym™ (2, R)

by the mapping (a,b,c) — {a b} . Hereafter, we denote the determinant of 6 by

be
ab
bel
The f-divergence [1,14] induced by a convex generator f : (0,00) — R
between two pdfs p(x,y) and ¢(z,y) defined on the support H is defined by

Dilp: q) = /Hp(af,y)f <ZE§Z§> dz dy. (2)

6] := ac — b* > 0 and the trace of 6 by tr(d) = a + ¢ for § = (a,b,c) ~

Since Dy¢[p : q] > f(1), we consider convex generators f(u) such that f(1) = 0.
Moreover, in order to satisfy the law of the indiscernibles (i.e., D¢[p : ¢] = 0
iff p(z,y) = q(z,y)), we require f to be strictly convex at 1. The class of f-
divergences includes the total variation distance (f(u) = |u — 1|), the Kullback-
Leibler divergence (f(u) = —log(u), and its two common symmetrizations,
namely, the Jeffreys divergence and the Jensen-Shannon divergence), the squared
Hellinger divergence, the Pearson and Neyman sided y2-divergences, the a-
divergences, etc.

We state the notion of maximal invariant by following [15]: Let G be a group
acting on a set X. We denote the group action by (g,z) — gz.

Definition 1 (Maximal invariant). We say that a map ¢ from X to a set’Y
is mazximal invariant if it is invariant, specifically, (gx) = p(x) for every g € G
and x € X, and furthermore, whenever p(x1) = p(x2) there exists g € G such
that xo = gxy.

It can be shown that every invariant map is a function of a maximal invariant
[15]. Specifically, if a map 9 from X to a set Z is invariant, then, there exists a
unique map @ from ¢(X) to Z such that @ o = .

These invariant/maximal invariant concepts can be understood using group
orbits: For each € X, we may consider its orbit O, := {gz € X : ¢g € G}.
A map is invariant when it is constant on orbits and maximal invariant when
orbits have distinct map values.

We denote by ATe the transpose of a square matrix A and A~ the transpose
of the inverse matrix A~! of a regular matrix A. It holds that A=T = (AT)~L.

Let SL(2,R) be the group of 2 x 2 real matrices with unit determinant.

Proposition 1. Define a group action of SL(2,R) to Sym™(2,R)? by

(9.(0,0)) — (g~ "0g~ ", g~ T0'g7 ). (3)
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Define a map S : Sym™(2,R)? — (Rs0)? x R by
S(0,0") = (|9\7 \9’|,tr(9'9_1)) . (4)
Then, the map S is mazimal invariant of the group action.

Proof. Observe that S is invariant with respect to the group action: S (6,0") =
S(g.0,9.0'). Assume that S (6V,0) = S (é?l/) %) We see that there exists
gory € SL(2,R) such that gyy.0(H) = 99(1)9(1 gem = +/|0M|I3, where I denotes
the 2 x 2 identity matrix. Then, §(1) = Wge(l>ga(1>. Let ) := gp1,.0) =
9o 0@ gg)- Then tr (00) = tr (0% g5, 950)) = /10D tr (02 (9D) 7). We
define g,5; and 6 in the same manner. Then, tr (6®)) = tr (9(3)) and |§®)| =

‘9(3) ‘ Hence the set of eigenvalues of §®) and 3) are identical with each other.

By this and (%), 06) ¢ Sym(2,R), there exists h € SO(2) such that h.0() = 9.
Hence (hgya)).0) = 95,0 We also see that

(hgo)).0D = gy .0V = \/|9D| I, = ’9(”’ Iy = o500

Thus we have (55,55)) = (gpa hgem).(0V,609).

Remark 1 (This is pointed by an anonymous referee. ). We can consider an exten-
sion of Proposition 1 to a case of higher degree of matrices. Let n > 2 and assume
that 6,60" € Sym(n,R). Let Py g (t) :=|(1—t)0+1t0’| for t € R. where |A| denotes
the determinant of a square matrix A. This is a polynomial in ¢t with degree n.
Assume that Py, g1 = Py, ¢, for 61,07,02,05 € Sym(n,R). We can factor 0; as
9, = L] L; for some L;, i = 1,2. Let I,, be the identity matrix of degree n. Then,
Po, o/ (t) = |0:|| Ty +t(Ly T0/L7 —1,)], i = 1,2. Since Ly ' 0L € Sym(n, R), the
set, of eigenvalues of LfTegLfl and Ly T9§L2 is identical with each other. Hence
there exists an orthogonal matrix @ such that Ly ' /L, = QLT "0/L7'Q. Let
G := L7'QLy. Then, §; = GT6,G and 0 = G #,G. We finally remark that
Py, 91 = Py, g, holds if and only if Py, o/ (t) = Py, ¢, (t) for n + 1 different values
of t.
If n = 2, then,

Pyg(t) = (1 —1)%0]* +t20')% + t(1 —t) 0] tr (0’67 1). (5)
Hence the arguments above give an alternative proof of Proposition 1.
Proposition 2 (Invariance of f-divergences under group action).
Dy [po : por] = Dy [pg*TGg*1 :pg*TG’g*I] .

For g € SL(2,R), we denote the pushforward measure of a measure v on H
by the map z — ¢g.z on Hby vog™'.

The latter part of the following proof utilizes the method used in the proof
of [21, Proposition 1].
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Proof. We first see that for g € SL(2,R),

Dy po:per] =Dy [poog " ipgog']. (6)

Let p(dazdy) := dady/y? Then it is well-known that p is invariant with
respect to the action of SL(2,R) on H, that is, u = po g~! for g € SL(2,R).
Define a map ¢ : © x H — R+ by

2 2 2h
o0,z + yi) = o) wabede [ab}

Yy bc

Then, (0, z) = ¢(g.0, g.z) for g € SL(2,R).
Since

0 2,/10
flexp(2/ o)

po(z,y)dady = xp(—¢(0, z + yi))p(dady),

we have pgo g~ ! = Dg.0- Hence,

Dylpoog ' :pyog '] =Dylpgo:pgel. (7)
The assertion follows from (6) and (7).
By Propositions 1 and 2, we get

Theorem 1. FEvery f-divergence between two Poincaré distributions pg and pg
is a function of (|6],]0'|,tr (¢07")) and invariant with respect to the SL(2,R)-
action.

We obtained exact formulae for the Kullback-Leibler divergence, the squared
Hellinger divergence, and the Neyman chi-squared divergence.

Proposition 3. We have the following results for two Poincaré distributions pg
and pg: .

(i) (Kullback-Leibler divergence) Let f(u) = —logu. Then,

Dylpa ool = 1o g+ 2 (VI = VITT) + (5 + VIT) (@) - 2)

(8)
(i) (squared Hellinger divergence) Let f(u) = (y/u — 1)?/2. Then,

2|9|1/4|9/|1/4 exp (|9|1/2 + |9/|1/2)
|6 + 0'|1/2 exp (|9 + 9’|1/2)

Dylpo : por] =1 — 9)

(iii) (Neyman chi-squared divergence) Let f(u) := (u—1)%. Assume that 20'—0 €
6. Then,

16" exp(4]6/['/?)
10[17220" — 0]/ exp (2(]60]7/% + 20" — 0]1/2))

Dylpo : por] = —1.  (10)
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We remark that |0 + 0’| and |20’ — 6| can be expressed by using |6],|¢’|, and
tr(0'6~1). Indeed, we have

0 +6'| = 10| +|0'] + |0] tr(6'671),
120" — 0| = 4]0'| + 0] — 2|0| tr (6’67 1).

Thus the KLD between two Poincaré distributions is asymmetric in general.
The situation is completely different from the Cauchy distribution whose f-
divergences are always symmetric [19,24].

Recently, Tojo and Yoshino [23] introduced a notion of deformed exponen-
tial family associated with their G/H method in representation theory. As an
example of it, they considered a family of deformed Poincaré distributions with
indexg>1.Forzel,:=={xeR:(1-qz+1>0}let

exp,(z) == ((1 — ¢z + DY e,

For q € [1,2), let a g-deformed Poincaré distribution be the distribution

pola,y) = Cq(\/W) exp, (_a(m +y?) + 20z + c) 1 (1)

y y?’
(2—q)z

w(equ(—Qx))Q*
for g-deformed Poincaré distributions, so we also obtain that

where 6 € © and ¢,(z) :=

7 In this case, Proposition 2 holds

Theorem 2. Let ¢ € [1,2). Every f-divergence between two q-deformed
Poincaré distributions pg and py: is a function of (|6],]6'|, tr (067")).

We can show this by Theorem 4 below and the correspondence principle in §4.

3 The Two-Dimensional Hyperboloid Distributions

We first give the definition of the Lobachevskii space (in reference to Minkowski
hyperboloid model of hyperbolic geometry also called the Lorentz model) and the
parameter space of the hyperboloid distribution. We focus on the bidimensional
case d = 2. Let

L? .= {(Jco,xl,xg) eR3:zg = \/1—&—95%—&—35%}7
Oz = {(00,01,92) ERB 16 > \/0%"‘0%}

Let the Minkowski inner product [12] be

and

[(zo,21,22), (Yo, y1,Y2)] := Toyo — T1y1 — ZT2Y2.

We have L? = {z € R® : [z,2] = 1}.
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Now we define the hyperboloid distribution by following [5,7,9]. Hereafter,
for ease of notation, we let 0] := [0,0]*/2, § € Opz. For 6 € Oy2, we define a
probability measure Py on L¢ ~ R? by

Py(dzidzs) := c2(]0]) exp(—[0, T]) u(dx1dxs), (12)

where we let co(t) = ;(Z);I;(I%, t >0,z := <\/1+x%+x§,m1,x2), and
o 1
w(dzidas) = \/mdxldmg.

Remark 2. The 1D hyperboloid distribution was first introduced in statistics
in 1977 [6] to model the log-size distributions of particles from aeolian sand
deposits, but the 3D hyperboloid distribution was later found already studied in
statistical physics in 1911 [17]. The 2D hyperboloid distribution was investigated
in 1981 [10].

Now we consider group actions on the space of parameters Op2. Let the
indefinite special orthogonal group be

SO(1,2) := {4 € SL(3,R) : [Az, Ay] = [z,y] Vz,y € R*},

and SOg(1,2) := {A € SO(1,2) : A(L?) =L2}.
An action of SOg(1,2) to (@L2)2 is defined by

SO00(1,2) x (612)° 3 (A, (0,0')) — (A0, AO') € (Or2)>.

Proposition 4. (60,60") — ([6,6],[0',0'],[0,0']) is mazimal invariant for the
action of SOy(1,2) to (Or2)>.

In the following proof, all vectors are column vectors.

Proof. 1t is clear that the map is invariant with respect to the group action.
Assume that

(160,001, 102,01, [0, 027) = ([0™,00] , [92,6™] , |90, 0] ).

M o ~ —~
Let Q/J’L = F:(ii)r wi = ‘2%7 1= 172 Then, [1/J17¢2] = |:¢17w2:| .
We first consider the case that ¢y = ¢ = (1,0,0)7. Let 1 =

T 7 (i = o\ _ 2 2 _
(wio, i1, Ti2) i = (Tio, Ti1, Ti2) , @ = 1,2. Then, x99 = 220 > 0, 25, + 25, =
—~ 2 —~ 2 . . .

T91” + x22” and hence there exists a special orthogonal matrix P such that

P(x21,220)" = (f;l,@é)—r- Let A := <(1) ]03) Then, A € SO¢(1,2), Ay =

(1,0,0)T = ¢ and Avn = ¢,
We second consider the general case. Since the action of SOg(1,2) to L2
defined by (A,) — A is transitive, there exist A, B € SOg(1,2) such that

Ay = By = (1,0,0) T. Thus this case is attributed to the first case.
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We regard p as a probability measure on LL2. We recall that [A60, AZ] = [0, 7]
for A € SOg(1,2). We remark that p is an SO(1, 2)-invariant Borel measure [16]
on 2. Now we have that

Theorem 3. Every f-divergence between pg and pg: is invariant with respect to
the action of SOg(1,2), and is a function of the triplet ([0,6],[0’,6],10,6')), i.e.,

the pairwise Minkowski inner products of 0 and 6.

There is a clear geometric interpretation of this fact: The side-angle-side
theorem for triangles in Euclidean geometry states that if two sides and the
included angle of one triangle are equal to two sides and the included angle of
another triangle, then the triangles are congruent. This is also true for the hyper-
bolic geometry and it corresponds to Proposition 4 above. Every f-divergence is
determined by the triangle formed by a pair of the parameters (6,6’) when f is
fixed.

Proposition 5. We have the following results for two hyperboloid distributions
Po and pyr .

(i) (Kullback-Leibler divergence) Let f(u) = —logu. Then,

Do pwl =tog (Jgh) ~ w01+ GG+ By

(ii) (squared Hellinger divergence) Let f(u) = (y/u — 1)%/2. Then,

_20]Y210"[? exp (101/2 + 16'1/2)

D : ’ :1
#po = por] |0+ 6" exp (|6 + 6|/2)

(14)

(iii) (Neyman chi-squared divergence) Let f(u) := (u—1)2. Assume that 20'—6 €
Or2. Then,
|6"]* exp(2]6"])

D Dy | = — 1. 15
slpo : po’] 10][26" — 0] exp(|6] + |20 — 6]) (15)

Now we consider deformations of the hyperboloid distribution. For ¢ € [1,2),
we let a g-deformed hyperboloid distribution be the distribution

1

T1,22) = cq(]0]) e —10,7]) —F/—,
po(x1,T2) q(| ) qu( [0, 7]) \/m

__ (2-9
where ¢,(2) := o (oxpy(— )P T

In the same manner as in the derivation of Theorem 3, we obtain that

(16)

Theorem 4 (Canonical terms of the f-divergences between deformed
hyperboloid distributions). Let ¢ € [1,2). Then, every f-divergence between
q-deformed hyperboloid distributions pg and pg: is invariant with respect to the
action of SO¢(1,2), and is a function of the triplet ([0,0],[0',6¢],10,6']).
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4 Correspondence Principle

It is well-known that there exists a correspondence between the 2D Lobachevskii
space L. = IL.? (hyperboloid model) and the Poincaré upper-half plane H.

Proposition 6 (Correspondence between the parameter spaces). For
0 = (a,b,c) € Oy := {(a,b, ¢):a>0,¢>0,ac> bQ}, let 01, := (a+c,a—c,2b) €
OL. We denote the f-divergence on 1L and H by Dﬂf‘[~ ;<] and D?L : <] respectively.
Then,

(i) For 0,0 € Oy,
60| = [0, 6] = 41601, 6% = [0, 6] = 416", [6r,67] = 2/6]tx(6'67 ). (17)
(ii) For every f and 0,0’ € H,
DY [pa. Lpy ) = DY [po : por] - (18)

For (i), at its first glance, there seems to be an inconsistency in notation.
However, |0| is the Minkowski norm for 6 € 6y, and, |0| is the determinant for
0 € ©,, so the notation is consistent in each setting. By this assertion, it suffices
to compute the f-divergences between the hyperboloid distributions on L.

d dad
Let pg(dzdy) := a:zy and pp(dzdy) = e By the change of
Yy V14 a?+y?
variable ) )
l—2*—y* =z 9
H> (z,y)— (X,Y) = <,> € R%,
(@.9) = (X.Y) L

by recalling the correspondence between the parameters in Eq. (17), it holds
that y2pe(x,y) = V1+ X2+ Y2puu(X,Y), and pg(dzdy) = pup(dXdY).

Acknowledgements. The authors are grateful to two anonymous referees for valuable
comments. It is worth of special mention that Remark 1 is suggested by one referee
and the proof of Proposition 2 is suggested by the other referee.
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Abstract. We investigate evidence lower bound (ELBO) with general-
ized/deformed entropy and generalized/deformed divergence, in place
of Shannon entropy and KL divergence in the standard framework.
Two equivalent forms of deformed ELBO have been proposed, suit-
able for either Tsallis or Rényi deformation that have been unified in
the recent framework of A-deformation (Wong and Zhang, 2022, IEEE
Trans Inform Theory). The decomposition formulae are developed for A-
deformed ELBO, or A-ELBO in short, now for real-valued A (with A =0
reducing to the standard case). The meaning of the deformation factor
A in the A-deformed ELBO and its performance for variational autoen-
coder (VAE) are investigated. Naturally emerging from our formulation is
a deformation homotopy probability distribution function that extrapo-
lates encoder distribution and the latent prior. Results show that A values
around 0.5 generally achieve better performance in image reconstruction
for generative models.

Keywords: evidence lower bound + A-deformation - Tsallis and Rényi
divergence -+ variational autoencoder - deformation homotopy

1 Introduction

The concept of evidence lower bound (ELBO) was first proposed in [9], which
introduced an efficient inference and learning framework where prior distribution
and likelihood are explicitly modeled, in the presence of continuous latent vari-
ables to overcome intractable posterior distributions. ELBO has its name because
it provides a lower bound for the log-likelihood of the observed data. Since opti-
mization of lower bound amounts to a minimization of divergences [9,12], ELBO
has founded its use in many applications such as variational autoencoder (VAE)
and Bayesian neural networks.

One research direction extending the standard ELBO forrlnulation is through

z-—9-1

the use of g-logarithmic function [22], defined as log, () = *3—— for real num-

ber g, instead of the log function (¢ = 1) in defining Shannon entropy and KL
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divergence. Introduced by Tsallis in 1988 in the context of generalizing KL diver-
gence, this scheme parallels Rényi’s generalization of Shannon entropy in 1961.
Making use of the associated Rényi divergence, tighter ELBO bounds (Rényi
bound) was investigated [12]. Later, Tsallis divergence was likewise adopted for
ELBO, and a g-deformed lower bound was obtained in [10] and [19]. That Rényi
and Tsallis entropies and divergences are both monotonically related, see e.g.
[15], actually reflects a deformation of an underlying dually flat Hessian geometry
[24-26]. So Rényi bound and ¢-deformed lower bound represent generalizations
to the original ELBO framework that are still analytically trackable.

Other studies have extended the ELBO framework to the more general f-
divergence [8], used K-sample generalized evidence lower bound [3], or applied
the ideas of Tsallis deformation to model predictive control (MPC) algorithm
[23]. Numerical experiments on different tasks showed that proposed new ELBOs
are tighter and much closer to the estimated true log-likelihood [19], and that
the models trained with these bounds outperformed the baseline comparisons
[12,19]. Put in this backdrop, our current work will reexamine deformation to the
ELBO by the Tsallis/Rényi deformation by developing corresponding formulae,
and provide a systematic interpretation of the effect of deformation parameter
on the generalized bounds.

The rest of our paper is organized as follows. After a brief review of the vanilla
VAE framework (Sect.2.1) and Tsallis and Rényi deformation (Sect.2.2), we
define the A-deformed ELBO for both the Tsallis and Rényi scenario (Sect. 2.3)
and then provide the corresponding decomposition formulae (Sect. 2.4). Numer-
ical results are reported in Sect. 3. Section 4 provides the conclusion with a dis-
cussion of the A-deformation in relation to robustness (Sect.4.1) and to other
divergence functions (Sect. 4.2). The overarching goal of our paper is to extend
the above suite of formulae with KL divergence to more generalized cases with
Rényi and Tsallis divergence, unified under A-deformation framework of Wong
and Zhang (2022).

2 X-ELBO

2.1 A Review on Vanilla VAE

Let us first have a look at the basic framework of VAE, which is an application
of ELBO to the encoder/decoder architecture in computer vision [9]. Assume a
dataset X = {z(W}N | consists of N i.i.d. samples generated by a probability
distribution p(x) with a latent variable z. The decoder distribution for recon-
structing images x is denoted as py(x|z), and the encoder distribution is denoted
as gy (z|z), with intractable original posterior distribution p(z|z). The symbols
0 and ¢ represent learnable parameters for the decoder p and the encoder g,
respectively. Without confusion, we also use p(z) to denote the prior distribu-
tion of z.



188 K. Cheng and J. Zhang

The log-likelihood of the data x can be decomposed as

logp(x) = Eq,(z|2)[log p(z)] (1)
)  molalp(2)aselo)
= Bauceo) |8 ol ?
— By o logpo(ol2)] - Dlag(ela) Ip(2)] + DlgoGlollpllo).  (3)

Here E,,(.|2) denotes expectation over random variable z ~ q4(z|z). D[q|[p]
denotes the KL divergence between two distributions ¢ and p. Then the following
identity

log p(z) — Dlgy(2|2)|lp(z|2)] = By, (1) log po(x]2)] — Dlgs(2|2)lIp(2)]  (4)

motivates the definition of evidence lower bound (ELBO) as the right hand-side
of the above, such that maximizing ELBO is equivalent to minimizing the KL
divergence between g, (-|x) and p(-|x) since logp(z) is a constant.

Definition 1. ELBO (Evidence Lower Bound), denoted as L, is
L(z) = log p(x) — Dlge(z])]|p(z]x)] ()
= Eq,(zla) [l0g po(22)] — Dlgs(2|2)[[p(2)]- (6)

The second line is a rearrangement of terms; it combines reconstruction
—Eq,(z|2)[log pe(z]2)] and variational approximation loss D|ge(z|z)||p(2)]. For
VAE, the importance of this decomposition lies in its use in training [16,18,20].

2.2 Tsallis and Rényi Deformation

Let us recall Rényi and Tsallis divergence. In the following definitions, P and
@ are two probability distributions with respect to a reference measure u such
that P < p and @ < pu. We also denote p = % and ¢ = %.

Definition 2. The Tsallis divergence from Q to P is

(B =1 A dy — 1
—/q- q/\ du=fq Su (7)

DIl = ~E, [logA fj _

Definition 3. The Rényi divergence from Q to P is

(2)] -l

Lemma 1. The relationship between Tsallis and Rényi divergence is

1
Dylgllp] = — log B,

e(-3Dllallp]) _ log[~A - DYq|lp] + 1
T DRl = = _3[”] Lo

DY [qllp] =
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Denote a pair of mutually inverse monotonic increasing functions

0 eM —
ma) = D = St (10)

Then the above relationship can be written using the scaling functions xy, yx:

D} lqllp) = v-»(DXallp]) <= D{lallp) = k(D5 [allp])-
This parallels the relationship between Tsallis entropy HI and Rényi entropy
Hf‘:

Hy [q|lp) = (Hylallp) <= Hillallp] = ma(H [allp)-
2.3 A-ELBO Defined

In this subsection we develop A-deformed ELBO formulae under Tsallis and
Rényi deformation, which we write as L (z) and L{(z). We call these A-
deformed ELBO, or A-ELBO for short. Throughout the rest of the paper, we
consider A € R, A # 0; the vanilla ELBO will be recovered as a special case when
taking the limit of A — 0.

Definition 4. The Tsallis ELBO is defined as [19]

(p(x,z> )A - [bg (p(w) )} an
G (2[) "1 N ao(zl)
Definition 5. The Rényi ELBO is defined as [12]

A
L (x) = %10%Eq¢<z|x) Kp(x’z)) 1 (12)

1
L3 (@) = 1 By o)

q(2|7)
One immediately finds that
Proposition 1. The relationship between Tsallis ELBO and Rényi ELBO is

LE(2) =  tog (AL () + 1) = ma(L4 (a) (13)

and

1) = 1 (AW 1) = (@) (14)

This shows that Tsallis ELBO and Rényi ELBO are intrinsically equivalent from
an optimization perspective.
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2.4 Decomposition Formulae

We now show (proof omitted) that the deformed ELBOs are related to the
deformed divergence via the following decomposition formulae.

Theorem 1. The A-deformed ELBO and \-deformed divergence in either Tsal-
lis or Rényi form satisfy the generalized decomposition equation

logy p(z) = L3 + DXlas(z[2)|lp(z]2)] - p(2)* (15)

log p(x) = LT + DX[gy(2]2)[[p(z])] - (16)

Theorem 2. The decomposition of A-deformed ELBO, in terms of reconstruc-
tion minus divergence-to-prior, is:

(i) The case of Tsallis ELBO

L3 () = By, (21 llog (p(@]2))] - Cx () — DY lgs (2]2)|Ip()]; (17)
(ii) The case of Rényi ELBO
L (x) = ka(Bu, o1a) (logr (p(2]2)))) = D [ge(2]2)l[p(2)]. (18)

In both (i) and (ii), an extrapolating function uy is defined by

)1—>\ A 1 A

as(2x)' () gp(zlz) p(2)
Cx () [ qs(z|x) —2p(2)rdz

with normalization Cy(x) given by

uy(zlz) =

Note that
uo(2|z) = gp(zlz),  ui(z]z) = p(2),
and [wuy(z|z)dz = 1 for every A, meaning that this is a probability distribu-
tion function — it extrapolates the encoder distribution g4 (z|z) and the latent
prior p(z) with the deformation parameter A as extrapolating parameter. In
information-theoretic language, it is actually an e-geodesic connecting p(-) and
qs(-|z). We call it deformation homotopy function.

3 Numerical Simulation

3.1 Monte Carlo Approximation of the Rényi Bound

In the previous Section, it is shown (Lemma 1) that the optimization of Tsallis
and Rényi lower bound are equivalent. So in simulation studies below, we adopt
Rényi lower bound as the loss function since it is more numerically effective than
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that of Tsallis. In order to optimize the A-deformed ELBO, we need to find a way
to approximate the bound when A # 0. Ref [12] proposed a method to calculate
the Rényi bound using K independent samples z; ~ gy(z|z) for k = 1,..., K
using

f/A,K(

Ki [(%ZZI )A] ' (20)

>/\+—‘

This is the numerical estimator for

A
L (z) = ilog Eq, (212 [(P(%Z) ) 1 . (21)

q0(2|7)

Note that although this is a biased estimator for Lg, the bias will approach zero
as K — oo [12]. In order to calculate Ly g (z), in each iteration we calculate
p(z)|2x), p(zx) and gg(2zk|z) in turn. If the Gaussian assumption holds for the
prior p, for the encoder ¢(-|z), and for the decoder p(-|z), then the likelihood can
be explicitly calculated with input z and sampled zj.

3.2 Deformation Homotopy uy (z|z) under Gaussian assumption

Consider two multivariate Gaussian distributions p and ¢ with location and scale
parameter p,, X, and g, 2. Suppose that they have the same dimension d as
determined by the dimension of latent variable z, and assume that the marginal
distributions are independent. Then the deformed homotopy wy(z|z) will still
be a multivariate Gaussian distribution with mean vector and variance matrix
given by,

Hu = [)‘Eq “pp + (1- /\)Ep ) Nq] @ [/\Zq “Lgxr + (1 - /\)Ep “Laxa], (22)

Yu=[2p @] 0N+ (1-X)2]. (23)

with ® and @ as Hadamard product and division.

3.3 Experimental Results

Here we perform numerical experiments on A-deformed ELBO using the VAE
architecture. The results will be compared for different A values from —oo to
+oo with a main attention to the range (0,1). Some classical variants of VAE
including IWAE and VR-max are included as special cases of A\-deformed VAE,
and are well approximated using MC sampled ELBO.

We used MNIST as the dataset for our numerical experiments. The encoder
and decoder are designed using convolutional layers, deconvolutional layers, max-
pooling layers, Relu layers and batchnorm layers. The latent space is in dimension
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of 50, which defines two random vectors representing the mean and variance of
the distribution (of the same dimension). These two vectors are output by the
encoder using two separate linear layers. The approximated posterior is assumed
as a standard Gaussian distribution, with a diagonal covariance matrix. The
output model is a Bernoulli distribution for each pixel. We trained each model
for 500 epochs using Adam optimizer with a batch size of 128 and a learning
rate of 5e-4. The complete Python codes for are available here https://github.
com/kaimingCheng/lambda_deformed _VAE.

In testing we adopted the metric the negative log-likelihood (NLL)
—logp(z) =~ —ﬁ0,5000(x), the same metric as reported in the previous works
[2,16]. It was shown that with a large K the IWAE estimator L will be very
close to the log-likelihood Inp(x), which will serve as a good indicator of the
model performance. And also we list the negative log-likelihood (NLL) values by
category for the negative log-likelihood of testing samples.

Figure 1a shows that the best A\ values for the reconstruction and generating
are around 0.5 (typically 0.4 to 0.6). The model will become less capable either
when A — 0o or A — —o0, but it is more steady when going to positive infinity.
Some special cases are IWAE (A = 1.0) and VR-max (A = +oc0), which are
both better than vanilla VAE (A = 0.0). Figure 1b presents the negative log
likelihood (NLL) values across different categories of each A. As expected, the
better model is always uniformly better across all categories of inputs, meaning
that the generative/reconstruction abilities are also uniformly better.

104 {
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102 { \

100 { \\ 100
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80
o] \

941 60
__—
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(a) (b)
Fig. 1. a). The negative log-likelihoods (Y-axis) is plotted against A values. (b). The

negative log-likelihoods (Y-axis) plotted against the ten categories of digits (X-axis),
for different A\ values.
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Fig. 2. From top left to bottom right: the reconstructed samples of the 25 samples on
the right using A € {1.0,0.7,0.5,0.2,0.1,0.0}. Each A value corresponds to one 5 x 5
panel, running from top left (A = 1.0) to bottom right (A = 0.0).
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w
~
~|
W
2]
A

N

~[AN[O[O )~ N

]
|
S CIEYEES M

\A
~D

-
BRI (ORSER

QQ

53
oY
9|2]
El

g

~H |~
W

ws|sf=
EENE EIESERPNINY
™~
(S\

HHEE SEIEEI
N

BNSIN MEN
SINEYS B
~ |~ [o0| |

6

V)
) [~

4 Conclusions and Discussions

Synthesizing previous generalizations of ELBO based on Rényi and Tsallis
divergences, this paper provided a suite of formulae for decomposing the \-
deformed evidence lower bound (ELBO) as a generalized reconstruction loss
minus deformed divergence. We discovered a deformation homotopy function
uy(z|z), which is a family of distribution lying in-between (i.e., extrapolating)
the encoding distribution and the prior for latent variable. Our newly developed
formulae revealed that the deformed reconstruction loss is to be calculated as
expectation with respect to the uy(z|z) distribution rather than with respect to
the encoder distribution g4 under both Rényi and Tsallis cases. We also per-
formed simulations on variational autoencoder (VAE) using different A values.
The results show that the \-VAE achieves the best results when A is set around
0.5, and the negative log likelihood (NLL) are uniformly better under each cat-
egory in MNIST dataset.
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4.1 Robustness Vs. Flexibility

To explain why some A values in the deformation homotopy distribution uy(z|x)
lead to better results, we note that a A\ — 1 value close to 1 will make the
deformed prior distribution uy (z|z) more close to a fixed standard normal as we
assumed, while A — 0 will make it close to the encoder g4(z|x), which is variant in
training. When taking expectation with u;(z|x) = p(z), then the training process
will be robust because u1(z|x) now is independent of z. On the other hand, the
standard VAE framework, the reconstruction loss is calculated using ug(z|z) =
¢4(z|x), which is more flexible. A trade-off between these two extreme cases of
robustness vs flexibility will lead to a best A value lying in between 0.4 to 0.6.
It is consistent with the strategy of sacrificing efficiency to achieve robustness in
parameter estimation — algorithms with robustness property handle outliers and
additive noise well with improved accuracy in statistical inference, hypothesis
testing and optimization problems [5,11,17,21]. Using power divergence (called
[O-divergence) to achieve robustness was studied in great length by S. Eguchi,
e.g. [7,13,14].

4.2 Related Divergences

The Tsallis-Rényi type divergence is equivalent in forms (apart from a scaling
factor) to the alpha divergences [4]

Dalqllp] = ﬁ [1 - /qapl‘“du}

and power divergences [1,6,13]

Dlll] = 555 [ [t 1}

Ref. [5] showed that the alpha and beta divergences can be generated from each
other, and from another one called gamma divergences [7], and that alpha diver-
gences are flexible and efficient for nonnegative matrix and tensor factorizations,
while the beta and gamma divergences are applied for robust PCA, clustering
and parameter estimation. So our findings of best performance for A ~ 0.5 is con-
sistent with these earlier approaches to robustness in machine learning. Future
research would focus on analytic properties of deformation homotopy function,
which is revealed by our current approach.
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1 Introduction

One of the most natural structures on the tangent bundle of a Riemannian man-
ifold is the Sasakian metric introduced in [11] and then studied and generalized
in various ways, e.g. [1,3,6,12]. In particular, having a statistical structure on
a manifold M, that is, a pair (g, V), where g is a Riemannian metric tensor
field and V is a torsion-free connection, for which Vg is a symmetric cubic
form, one produces a metric on the tangent bundle 7'M depending on g and V.
Although this structure is not, in general, the one introduced by Sasaki, it is
called Sasakian.

An important case is when a statistical structure is Hessian. In this case the
structure on the tangent bundle is Kéhler. Its holomorphic sectional curvature
and other properties are discussed in [13]. If a statistical structure is not Hessian,
controlling the curvature on the tangent bundle is more complicated. There are
various curvatures on statistical manifolds, see [8,9]. The curvatures appear in
the formulas for the curvature tensors on the tangent bundle. In this paper we
present and discuss some of such formulas and their consequences. We propose
some results in relation with a classical theorem of Sasaki. In particular, we have

Theorem 1. If the Sasakian metric on the tangent bundle of a statistical man-
ifold is flat, then the statistical structure is Hessian, its Riemannian metric is
flat and its difference tensor is parallel relative to the statistical connection. The
converse is also true.

The paper does not contain proofs of the results. The proofs are provided
in [10].
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2 Curvatures on Statistical Manifolds

In this section we collect some facts dealing with the geometry of statistical
structures. The facts are used to formulate and prove the results of this paper.
All details for this section can be found, for instance, in [8] and [9].

A statistical structure on a manifold M is a pair (g, V), where g is a metric
tensor field and V is a torsion-free connection (called a statistical connection
for g) such that (Vxg)(Y,Z) = (Vyg)(X,Z) for every X,Y,Z. In this paper
X,Y,Z,.... stand for tangent vectors or vector fields (local) on M, depend-
ing on the context. The following notation is adopted: VT'(X, Xy, ..., X;) =
(VxT)(Xy, ..., Xk) for any tensor field of type (I, k). Thus, for a statistical struc-
ture (g, V) the cubic form Vg is totally symmetric.

Let (g,V) be a statistical structure on M. The difference tensor of this
structure is given by the formula K (X,Y) := KxY := VxY — V%Y, where V9
stands for the Levi-Civita connection of g. The difference tensor is symmetric
and symmetric relative to g. The following relation holds

for every X,Y, Z. The dual connection V* for V is given by
Xg(Y,Z) = g(VxY,Z) + g(X,Vx 2). (1)

If V is a statistical connection for g, then so is the connection V*. For the dual
structure (g, V*) the difference tensor is equal to —K.

A statistical structure (g, V) is called trivial, if V = V9, i.e. if K = 0.

The curvature tensor for V (resp. V*, V9) will be denoted by R (resp. R*,
R9). The two curvature tensors R and R* are related by the formula

9(R(X,Y)Z, W) = —g(R"(X, Y)W, Z). (2)

The following conditions are equivalent:

1) R = R*,

2) the (1, 3)-tensor field VIK is symmetric,

3) g(R(X,Y)Z,W) is skew-symmetric relative to Z, W, for every X, Y, Z, W.

Statistical structures satisfying the second condition were called conjugate
symmetric in [4]. The above conditions are well-known in affine differential geom-
etry, where they characterize equiaffine spheres.

Except for the curvature tensors R and R* we have the curvature tensor
[K, K] given by

[K,K|(X,Y)Z = [Kx,Ky]Z = KxKyZ — Ky KxZ. 3)

This curvature tensor has all algebraic properties needed to define a sectional
curvature. In particular, g[Kx, Ky]|Z,W) = —g[Kx, Ky|W, Z). Therefore, we
can define the K-sectional curvature k¥ as follows

K (1) = g([K, K](X, Y)Y, X), (4)
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for a vector plane II C T, M and its orthonormal basis X,Y".

There exist a few nice formulas relating various curvatures on a statistical
manifold. Recall those, which are important for formulating and proving the
formulas from the last section of this paper. Firstly, we have

R(X,Y)=RI(X,Y)+ (V4 K)y — (V{ . K)x + [Kx,Ky], (5)

R(X,Y)=RI(X,Y)+ (VxK)y — (VyK)x — [Kx, Ky], (6)
Writing (5) for the dual structure (g, V*) and adding both equalities we get

R(X,Y)+ R*(X,Y)=2RI(X,Y) + 2[Kx, Ky]. (7)
The tensor field )
R(X,Y) = §(R(X, Y)+ R*(X,Y)) (8)

has the same algebraic properties as the Riemannian curvature tensor. In particu-
lar, g(R(X,Y)Z,W) = —g(R(X,Y)W, Z). Therefore, we can define a sectional
curvature of (g, V) by means of R, which, in general, is not possible using sep-
arately R or R*. If a statistical structure is conjugate symmetric, then R = R
and we can define the sectional curvature just for V. Of course, we still have the
sectional curvature k9 determined by g and V9.

For each above curvature tensor we can define the Ricci tensor in the stan-
dard manner. Denote by Ric9, Ric, Ric*, Ric, Ric¥ the Ricci tensors for the
curvature tensors RY, R, R*, R and [K, K] respectively. In particular, we have

_ Ric + Ric*

Ri
c 9

(9)
Having the Ricci tensors, one can define scalar curvatures as the traces rel-
ative to g of the corresponding Ricci tensors. In particular, we have the scalar

curvature p for V, that is,
p = tr4Ric. (10)

Similarly we can define the scalar curvature p* for V*, but for any statistical
structure p = p* (by (2)).

We have the 1-form 7 on M given by 7(X) = tr Kx. It is called the first
Koszul form (or the Czebyszev form — in affine differential geomtry, e.g. [5]). If
Vg is the volume form determined by g, then Vxvy, = —7(X)v,. We now have

dr(X,Y) = tr R(X,Y). (11)

Hence, the Ricci tensor Ric of V is symmetric if and only if 7 is closed. The
same holds for Ric*. In particular, the Ricci tensor Ric is symmetric if and
only if the (0,2)- tensor V7 is symmetric (equivalently V97 is symmetric). The
second Koszul form is the (0, 2)-tensor field V7. If a statistical structure is conju-
gate symmetric, then its Ricci tensor Ric is automatically symmetric. The Ricci
tensor is symmetric if and only if Ric = Ric *.



202 B. Opozda

If 7 = 0, the statistical structure is called traceless (or apolar). Such struc-
tures play a fundamental role in the classical affine differential geometry, see
[5,7].

The form 7 appears also in subsequent curvature formulas. For instance, we
have

RicK(X,Y) = ~tr (KxKy) + 7(K(X,Y)), (12)
Ric (X,Y) = Ric9(X,Y) + Ric X(X,Y) + (div V' K)(X,Y) — VI7(X,Y), (13)

where (div V' K)(X,Y) = tr {T,M > U — (V{K)(X,Y) € T,M}.

Recall also the following relation between the scalar curvature p and the
metric scalar curvature p9. The formula is known in affine differential geometry
as the affine theorema egregium.

p?=p+ K7 —I7]* (14)

For later use we introduce a tensor field r of type (1,3) by the formula

29(W,r(X,Y, 2)) = g(R(W, X)Y, Z). (15)

A statistical structure (g, V) is Hessian if and only if the statistical connection
V is flat, [13]. The structure is automatically conjugate symmetric and, by (5),
R9 = —[K, K]. Conversely, using again (5), one sees that if a statistical struc-
ture is conjugate symmetric and RY = —[K, K|, then the structure is Hessian.
Note that each Hessian manifold can be locally realized on an equiaffine sphere,
which, as a manifold, is a locally strongly convex hypersurface in an affine space
R where n = dim M. In general, the theory of equiaffine (or, in another
terminology, relative) hypersurfaces in R"*! provides a lot of examples of sta-
tistical structures satisfying many remarkable properties. But, in general, not
all statistical structures can be realized (even locally) on affine hypersurfaces.
In particular, a necessary condition for the local realizability is the projective
flatness of the dual connection. This condition is very restrictive. For the theory
of affine hypersurfaces we refer to [5] or [7].

3 The Sasaki Metric Determined by A statistical
Structure

Let M be an n-dimensional manifold. Consider the tangent bundle 7 : TM —
M. Denote by TT M the tangent bundle of T'M.

Take the differential 7, : TTM — TM. For each point & € T M the space
Ve = ker (my)¢ is called the vertical vertical space at £. The space Ve can be
easily identified with Ty M. Namely, let p = (§) and X € T, M. We define
the vertical lift X¢ of X to £ by saying that the curve ¢t — ¢ + ¢tX lying in
the affine space T, M is an integral curve of the vector X ¢ - We shall write it as
follows: X¢ = [t — £ +tX]. It is clear that Ve = {X¢ : X € T)M} and the
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assignment T, M 5 X — X¢ € Ve is a linear isomorphism. The vertical bundle
V = Ugerm is a smooth n-dimensional vector subbundle of TTM, so it is a
distribution in TT'M. The distribution is clearly integrable.

Let V be a connection on M. The connection determines the horizontal
distribution ‘H = UgeTM He in TTM complementary to V, that is, He © Ve =
T:TM for each £ € T M. We now briefly explain how to obtain the horizontal
distribution. For details we refer to [1]. The horizontal lift X! of a vector X €
T, M can be obtained as follows. Take a geodesic (relative to V) (t) determined
by X. By using the parallel transport of the vector & along 7 relative to V we
obtain a curve t — & in T M, where & = £. We set th = [t — &]. We see that
(W*)E(Xgh) = [t — 7(&)] = [t — y(t)] = X. We now set He = {X/; X € T,M}.
The assignment X € T,M — X ,? € H¢ is a linear isomorphism. If X is a smooth
vector field on M, then X? and X" will stand for the vertical and horizontal
lifts to T'M. The vertical and horizontal lifts are smooth vector fields on T'M.
Of course, X can be a locally defined vector field, say on U C M, and then the
lifts are defined on T'M .

For a smooth function f on M we have the function F' = fow on TM. It is
clear that

X'F=0, (X"F)¢= (X[ )n(e)- (16)

We have the following formulas for the Lie bracket of vertical and horizontal
lifts of vector fields on M, e.g. [1].

Lemma 1. If X, Y € X(M), then we have
XV, Y] =0, [X"Y']=(VxY)", (X" Y"e = [X, V] — (R(X,Y)E)E,

(17)
where R is the curvature tensor of V.

The almost complex J structure on the manifold T M is given as follows:

JXU = X" JX"=-X" for Xe€XM). (18)
Using Lemma 1 and computing the Nijenjuis product [J, J] one proves, [1].

Proposition 1. The almost complex structure J is complex if and only if the
connection V is without torsion and its curvature tensor R vanishes.

Assume now that we have a statistical structure (g,V) on M. The metric
tensor field g can be lifted to T'M in various ways. It is natural to use a combi-
nation of the ideas proposed in [11] and [1]. In the literature concerning the lifts
of structures to tangent bundles a few other types of lifts are studied.

We consider the following metric tensor field g on T'M:

g(Xv7YU> :g(X,Y) :g(thyh)7 g(vayh) =0. (19)

The metric tensor g is called the Sasaki metric, although Sasaki used in his
construction the Levi-Civita connection VY.
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The metric tensor g is almost Hermitian relative to J. One also sees that the
almost symplectic form w of this almost Hermitian structure is symplectic. To
prove that dw = 0 it is sufficient to use (1) and the first Bianchi identity for the
dual connection V*, [12].

4 Curvatures of the Sasaki Metric

Using properties of the curvatures mentioned in Sect.2 and making suitable
computations, see [10], one obtains formulas for the curvatures of g.

Proposition 2. The curvature tensor RE’ of g is given by the following formulas:

RI(XV, YV Z" = ([Ky,Kx]Z)?

AKX, 2),6Y) - r(Ev 2650y, )
Rg(va Yv)Zh = {K(T(Z, fa Y)a X) - K(T(Zv ga X)a Y)}U (21)
+{R9(X7 Y)Z + T(T(Z7£’ Y)’§7X) - T(T(Z,f,X),ﬁ,Y)}h,
RI(X°,YMZ" ={-LiR(Y,Z2)X + [Kx,Ky|Z + VK(Y, X, Z)
*%R(Yﬂ"(Z,ﬁ,X))E}U (22)

H3K(X,R(Y, 2)€) + (K (Y, 2),6, X) + (Vyr)(Z,£, X)
_K(K T(Z7£’X)) - T(K f,K(X, Z))}h7

RI(XV,YM)Z° = {K(r(Y,£ 2),X) + 5R(Y, K(X, Z))¢}"
H[Ky, Kx]Z +r(r(Y, &, 2),€, X) (23)
—r(Y,X,Z) — (VK)(Y, X, Z)}",
RI(X" YMZM = (RY(X,Y)Z)"
+5{r(X, & R(Y, 2)8) — (Y, &, R(X, 2)€) — 2r(Z,&, R(X,Y)E)}"
((?é ()) R(X,K(Y,Z))¢

A(VZR)(X,Y) — R( +
 R(X, Z2)§) — 2K(Z, R(X, Y)E)}"

+K(X, R(Y, 2)¢) — K
RI(XM Y™ ZY = (RI(X,Y)Z)?
+3{R(X,1(Y,€, 2))€ — R(Y,r(X, €, Z))E}
H(Vyr)(X, ¢, 2) = (Vxr)(Y, €, 2) (25)
+K(X,r(Y,§,2)) - K(Y,r(X,§, Z) + K(R(X,Y)§, Z)
+r(X, & K(Y, 2))}"
In what follows e, ..., e, will stand for an orthonormal basis of 7}, M, where
p=m(§).
Proposition 3. For any statistical structure and the induced Riemannian struc-
ture in the tangent bundle we have
Ric9(Y?, Z) = 1(Ric (Y Z)—Ric*(Y,2))+ V7Y, Z)
+1 ZU 1 g(R(ela ej)é-v Y)g(R(ela ej)£7 Z)

:<i

—(div VJK)(Y Z) - r(K(Y, 2)) (26)
+Z Z?j:l g<R<ei7 ej)gv Y)g(R(eia 647‘)57 Z)
Ricd(Y", Z") = Ric(Y, Z) + 3V7(Y,Z) + AVr(Z,Y) (27)

— 330 9(R(ei, Y)E, R(es, Z)€).
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As a consequence we obtain

Corollary 1. For any statistical structure we have the following formula for the
scalar curvature p9 of the Sasakian metric on the tangent bundle

n

5 1
pi=p+2tr,Vr — 1 Z | R(e:,e;)€|* (28)

ij=1

Denote by k9(X® A Y?), where a,b = v or h, the sectional curvature of § by
span{X®,Y®}. Let X, Y? be a pair of unit vectors in T:T.M. By Proposition 2
we have

Proposition 4. For any statistical structure we have
(X" AYY) = —k5(X AY), (29)
. 3
KI(XPAYR) = KI(XAY) — TIRECY)E?, (30)

EI(XUAY") = kB(XAY)+g(VE(Y, X,Y), X) + |r(Y, & X)) (31)

For a Hessian structure we have

EI(XUAY?)=kI(X NY), (32)
EI(X"AYh) =kI(X AY), (33)
EI(XUAYH) = —k9(X AY) +g(VK(Y,X,Y), X). (34)

Recall a classical theorem of Sasaki, [3,11].

Theorem 2. Let g be a metric tensor on M and § be the Sasaki metric on T'M
determined by g and V9. Then g is flat if and only if g is flat.

In [2] a few generalizations of this theorem were proved. For instance,

Theorem 3. Let g be a metric tensor on M and § the Sasaki metric on T M
determined by g and V9. If the sectional curvature of § is bounded on T M, then
g is flat on M.

The scalar curvature of g is constant on TM if and only if g is flat on M.

Using the formulas presented in this section we can formulate the following
generalizations of the above theorems.

Theorem 4. Let (g,V) be a statistical structure on M and g be the Sasakian
metric on TM determined by g and V. If V is not flat, then the sectional
curvature of g on TM is unbounded from above and below.

If V is not flat, then the scalar curvature of g is unbounded from below on T M.

Note that in the case of the Sasakian metrics determined by statistical struc-
tures, the flatness of a statistical connection (i.e. for Hessian structures) does
not imply the flatness of the Sasakian metric. Namely, we have
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Theorem 5. If the Sasakian metric on the tangent bundle of a statistical man-
ifold is flat, then the statistical structure is Hessian, its Riemannian metric is
flat and its difference tensor is parallel relative to the statistical connection. The
converse is also true.

The Hessian structure from the last theorem, although it satisfies many con-
ditions, does not have to be trivial. Namely, consider the following example

Example 1. Let M = {z = (z1,...,2,) E R"1: 2, >0Vi=1,..,n}. Let g
be the standard flat metric tensor field on M and let eq, ..., e, be the canonical
basis in R""!. Define a symmetric (1,2)-tensor field K on M as follows

K(ei,ej) =0  for i#j, (35)
K(ei,ei) = Nieg for i=1,..,n,

where \;(r) = —z; '. One sees that K is symmetric relative to g and [K, K] = 0.
When we define V = V9 + K, then the statistical structure (g, V) is non-trivial,
Hessian, g is flat and VK = 0.
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Abstract. The aim of this work is to prove that the Amari manifold of
beta distributions of the first kind distribution have dual potential, dual
coordinate pairs and his corresponding gradient system is linearizable
and Hamiltonian.
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1 Introduction

In 1993, Nakamura’s work [7], pointed out that certain gradient flows on Gaus-
sian and multinomial distributions are completely integrable Hamiltonian sys-
tems. In the same year, Fujiwara’s work [6] propose a prove of a theorem giving a
method of studying the complete integrability of gradient systems for some even
dimensional statistical manifold with a potential function. This work is focuses
on the study of gradient systems defined on

1
S = {pg : [0;1] — [0; 1};/ po(x)de = 1}, 6 = (a,b) € RYL x RY;
0
where
1
B(a,b)
is the Beta distribution law of the first kind. It is also obvious that this family

have a potential function see [8]. Therefore, according to Amari’s Theorem 3.4
in [1], it have a pair of dual coordinates {0, n}. More explicitly, as in [§],

po(x) = exp [0 log(x) + Oz log(1 — z) — P(6)]

with 6 = (91,92), 91 = a — 1,92 =b—1 and @(9) = IOg(B(gl + 1,92 + 1))
Therefore, according to Ovidiu [§8], & is its related potential function. We can
then conclude that our model have

pe(x) = x“fl(l — x)bilﬂ[o,l] (z),

(0;, m; = 0, P)
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as dual coordinate pair. In this work we show that (6, n) satisfying the following
biorthogonal property: _
9(0g,, Oy,) =67.

K2

With ¢ the Fisher information metric. Where the natural basis of the tangent
space 1,,S at a point p € S is

0
{9: = 74,

}

with respect to the coordinate system 6, and

0
{00 = 5,0t

with respect to the associated dual coordinate system 7. Furthermore, we deduce
from the Legendre equation the following expression of the dual potential func-
tion

It should be noted that the dual potential function is known as entropy in
Koszul’s work in [4]. We can then conclude that the gradient system of our
model (5, g) is linearizable and it is equivalent to

M= —1-
We show that the dual potential function can be put in the following form:
¥(n) = E[-logq(X,0)]
where gy is the density at maximum entropy and it is defined by:

67(91 log 462 log(1—x))

z,0) = '
Q( ) f()l e— (01 log z+02 log(1—x)) ]

Using qg, we show that Hamiltonian function’s which is associate to our gradient

system is
E[—log(1 — )]

"= "E log(@)

2 Riemannian Structure on Set of Beta Distributions

According to Ovidiu’s [8], the Beta law of the first kind distribution given by:

po(r) = Blab) 21— 2)" M (), (1)

with

1 1
(a,b) e R} xR}, B(a,b) = / 227 (1 —2)" e, / po(x)dx = 1.
0 0
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In this section we present the geometric structure that we will study came from
the work J.L.Koszul’s work recalled by Barbaresco [2-4]. According to Ovidiu [§],
the manifold defined from exponential families and admit a potential function.
Let us state the following proposition

Proposition 1. The probability density

1
01+1,05+1)

po(z) = B 2 (1= 2)% 1 ()

1s of exponential family, with
1
6= (01,05) €] — 15 +o0[x] — 13 +oc], B(6r + 1,0, + 1) :/ (1 - o) da.
0

Proof. The density function (1) can be rewritten as follows:
po(x) = exp [—log(z) — log(1 — ) + alog(x) + blog(1l — ) — log(B(a,b))].
Which imply that
log po(x) = —log(x) —log(1l — z) 4+ alog(x) + blog(1l — z) — log(B(a,b)).
According to Ovidiu Calin [8], (1) is of exponential family. We write,
log pg(z) = (a — 1) log(z) + (b — 1) log(1l — z) — log(B(a,b)).
And denote,
01=a—1,0,=0b—1; 6 =(01,0,) €] — 1;+00[x] — 1; +00[

a new parametrization. The Beta law of the first kind distribution (1) become

1 61 6
= 1 - 2]1 2
po(z) B0, + 1,0, + 1)93 ( ) [0,1}(13) (2)
and .
B0, + 1,0, +1) = / 2%.(1 — z)%dx.
0
Then

log pg(x) = 01 log(x) + O21og(1 — z) —log(B(6r + 1,62 +1)).
According to Ovidiu Calin [8], (2) is also of exponential family. Since
l(z,0) =logpg(x) = 01f1(x) + 02 f2(x) — D(6), (3)
with

D(0) = log(B(01 + 1,02+ 1)) = 10g/01 x91.(1 — x)QQdm. (4)

fi(x) =log(x), fa(z) =log(1 — x).
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2.1 Existence of a Pair of Dual Coordinates

Let
01,65 E] — 1;-‘1-00[
1 x € [0;1]
S=qpo(x) = (1 —x)%2, B61+1,0+1)=
B0, +1,6,+1) fol 291 (1 — 2)02da

Jo po(a)dz =1

be the statistical manifold. The function @ defined by (4) is called potential
function. As this family admits a potential function then it follow from Amari’s
Theorem 3.5 and 3.4 that there exists functions ¢ and ¥ such that:

n; = 0;9(0), 0; = 9" (n). (5)

are dual coordinates of S. It is well known that ¢ and ¥ satisfy the following
Legendre equation

W(n) = Oin; — 2(0). (6)
Using (4) and (5) we have
fol log(x)e(ﬁl log £+02 log(1—2)) 1, fol log(1 — x)e(el log z+02 log(1—x)) .

fOl e(01log z+02 log(1—2)) T2 = fOl e(01log x+02 log(1—2))

m =
(7)

9i5 = (D6, 00,)g = g (Da,,09,) . (8)
Then we can use the Amari’s [1], [—representation associated respectively to
coordinate 6 and 7; and define the following scalar production on Ty where Ty
is the [—representation of the tangent space with respect to the coordinate 6,

9ij = E [89il(9,$)89jl(9,1‘)] =-E [agiagjl(a, l‘)] . (9)
Using (8), (9) and (3) we have:
1
1 (61 log x+02 log(lfz))d
o, (fo og(x)e xﬂ _E[-1

fOl e(01log z+02 log(1—2)) 4

We define,

g (09, U(z,80),0,,(x,0)) =E

B fol log(x)e(el log z+62 log(1—x)) 7, B
g(@ell(xﬁ),aml(x,@)) =E [am ( fol 6(91 log 7402 log(l—z))dx =0.
1
1 1— (01 log z+02 log(l—ac))d
9 (O0,1(2.0). 0,,1(x.0) = E |2, (ff’ el o 2| -1

fOl (61 log a+62 log(1—2)) e

Then the two bases {0y, }7_; and {8,,}3_,, are said to be biorthogonal. There-
fore,

fol 6, 1Og(w)e(91 log z+03 log(1—x)) . fol 'R log(lfm)e(f’l log z+03 log(1—x)) ..
LP( ) - fol e(61 log z+63 log(1—)) du fol e(01 log z+63 log(1—)) dup

_ IOg f()l 6(01 log z+02 log(lfz))dx

represent the dual potential of the potential @. In the following section we show
that this dual potential is an entropy.
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2.2 Potential Function and Shannon Entropy

The potential function is given by:

1
d(0) = —log L = —log/ e~ (OrlogatOzlog(l=) gy
fOl e(01 log 2+05 log(1—2)) 0

(10)
Let us state the following Theorem which will allow us to prove that the dual
potential an entropy.

Theorem 1. Let S be the statistical manifold. Then, the associate dual potential
function ¥, solution of Legendre equation (6) is

¥(n) = E[-logq(X,0)] (11)

with
e~ (01 log x+02 log(1—x))

6) = .
q(.’L‘ ) fOl e— (01 log z+021og(1—2)) q

Proof. Using (10) we have

fol ~log(x)e~ (91 log a+02 log(1=2)) g, )

m=— JTe— (1 Togat0z loa(1l-2) g ; 19
. fgl _]Og(l_r)e*(9110gw+92 log(1—2)) g, ( )
N2 = — [T e (01108 =105 108 (1-)) gy

According to Amari’s [1] the entropy function is given by the relation (6). There-
fore
f()l —0, 10g($)€7(01 log x+6o log(lfz))dx

1 ¢—(01 log x40 log(1—x)) dp

fo — 95 log(1—z)e~ (01 log z+62 fo%(l—z))dw
- fol o— (01 log 2105 log(1—2)) do

( log f — (601 log z+65 log(1— z))dx

(13)

S0,
0 —6(91 log 462 log(1—=x)) "
q(z,0) = fol o— (01 log z+02 log(1—x)) (19)

is the maximum entropy density. By applying the one 1—form of Koszul
n=a=dP(0)

and Koszul’s normalisation contraint as in [4], We have the following constraints:

B 1 _log(z)e~ (01108 +03 log(1-2))
m=- fo [Te— (1 Tog o102 Toa(1—2) g xZ;
o 1 — iog(l—x)e‘“’l log x+03 log(1—=)) (15)
2 = — fo T e= (01 Tog et Tos(1-2) dg T

and

— (01 log z+02 log(1—z))
/ z,0)dr = / dr =1
0 f e—(01log 2402 log(1—2)) (]
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We denote

U(n) = log fol e~ (01 logz+0z log(1—2)) go fol —0611og(x) T e T dz }

T,— (01 log o103 log(1—2)) gz
67(81 log 2409 log(1—2x))

1
- fo —02log(1 — ) JE e @rlogatoz loa(1-0) gy dz.

(16)
An we obtain
¥(n) = log fol e~ (01log 02 log(1-2)) - an
1 — (61 log z+69 log(l—x))
_ fo (=01 logx — O3 log(1l — x)) folee*(ell 1oix+922 1ogg;<1ﬂ»)>dxdx

The relation (17) becomes:

w(n) — log fol e—(61 log z+02 log(l—a;))daj
_ ! (Jog e~ (61 log -6 log(1—a) e=(alos 0y los(1-0) (18)
Jy (loge ) x.

01 e~ (01 log x+ 05 log(1—2)) gy,

So we can write

W(’I’]) _ |:_ IOg fol e—(91 log x+62 IOg(l_w))dit. (fol fl e~ 01 logz—03 log(1—x) dl’)
0

(01 Tog 2103 Tog(1-2)) g
— (01 log 2405 log(1—z))
16—(9 Tog 2105 log(1—2)) dx}

e (O1logw+ozlog(1-2)) gy

+ fol log 67(01 log z+05 log(1—x)) )

and obtain the following relation
1 e—01logz—0> log(1—=z) e—01logz—0> log(1—=x)
U(n) =— / T : dog | — dx
0 fO e—(01logz+02log(1-2)) o fO e— (01 log z+02 log(1—2)) (4

the relation (20) becomes

o) = / (~log g (2)) .g0 () d. (21)

Therefore:
¥(n) = E[-logq(X,0)].

Therefore it follow from this Theorem and Koszul’s work that (14) is the density
function at maximum entropy.

2.3 Associated Information Metric

To make the link with the Koszul’s work, recalled by Barbaresco [2,5] we note
the Fisher metric by I(0) = [g;;] given by Amari [1] is a Hessian metric, which
is written as the Hessian of a potential function given by:

_0%P(0) _ 9°P(9)
ol - (i ).

T 902001 902005
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Thus we have the Koszul’s metric associated with the model on the manifold S:

L TAG) As(6)
l9is] = [AM) A3<9>}

with
1 611 6 log(1—
y (0) fol ]ogQ(:E)e(el log 7+03 log(1—1)) . (fo IOg(x)e( 1log z+62 log(1—2)) 1,
1 = - 1 + 2 5
fo (01 1og x+05 log(1—x)) (fol o (01 log 205 log(l—ﬂﬂ))dx)
A (9) N _fol log(z) log(1—z)e(f1 log @02 log(1—2)) g,
2 - T (01 log o103 log(1—2)) g
N (fol log(z)e(01 108 2402 1og(1—x)%dm)(f01 log(lfx)e(‘;l log x+05 log(l—m))dm) .
(fol e(01 log z+02 log(lfz))dl) ’
n (9) _ f01 10g2(171)e(01 log 2402 log(1—2)) 7. (fol log(l—m)e(el log z+69 log(lfw))dl‘)z
3 - JT e Togetoz Tos(T=2) dg (fol (01 log o105 log(lfz))dz)Q

2.4 Associated Gradient System

The objective in this part is to build the gradient system defined on S.
The inverse of the matrix:

[g ] 1_ Bl(o) BQ(Q)
Y By (0) Bs(9)
with
(Jid log? (1—z)e 01 1o 2403 10x(1=2)) g) ([1 (01 low a+03 low(1=2)) 4.
By (9) == m(a)(fol (61 log 2105 1og(1—m))dI)2
+(f) log(1—)e(01 o8 oH02 108) ;)
m(e)(fol (01 log z+6 log(l—z‘)}dx)z ;
B (0) (fol log(x) log(1—a)e(®1 log +02 log(l—:r,))dx)(fol (01 log w405 log(l—:c))dx)
2 =

m(e)gfol (01 log w+62 log(1-2)) o)
7(f01 log(z)e(01 108 o402 log(1— )dl,)(fol log(1—z)e(01 log 402 log(lfm))dm)
mw)(fol e(01 log z+0 log(l—:{:))dw)z ’

(f01 log? (z)c(01 108 2402 log(l—a)))dm) (f()l (01 log z+02 log(l—af:))dm)
m(a)(fol e(01 log z+05 103(171)){”)2
_(f01 log(m)e(el log z+64 log(lfz))dm)Q
m(e)(fol e(01 log o+05 log(l—m»dw)z

B3(0) = —
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(fol log? ()e(01 o8 #+02 log(l—m))dm)(fol log? (1—a)e %1 108 =402 log(l—m))dz)
- (fl 6(8110g1+92 log(1—2)) gz ) *

1.2 01 log z+05 log(1—=
f (01 log 405 lOg 1 I d:L’ (fO log (I)e( 11'og 2 log( ))dI)
0 (fol (01 log z+0o log(lfz))dx)zl

2
(fol log(l B x)e(el log 462 log(lf:n))dx> (fol e(01logz+0, log(lfm))ddl,)
(fol log(m)e(el log 4604 log(l—z))dm)Q(fol log(l—m)e(el log 24605 log(lfx))dr)
- (f01 (01 log z+05 log(lfz))dz)él

1 01 log 2465 log(1—x 2
fl e(61log z+02log(1-2)) 7.\ 4 (fo log(z)e(f1 log =402 loa( ))dx)
0 (fgl e(01 logz+0o lug(lfw))dx)éi

X

(f()l IOg(]. o m)e(el log z+02 log(lfzr))dx
((fol log(2) log(1—a)e 01 108 2+02 log(l—m))dz)(fol (01 log 2+07 log(l—w))dz)
[l (011082402 los(1-2)) g 4
B (fol log()e(®1 log =+62 log(l—m))dm) (fol log(1—a)e(é1 log 2+02 1og(17m))dz))2
(fol (01 log z+0 log(l—w))daj)él .

So, the gradient system will therefore be written as follows:
(J log® (1—z)el01 o8 = H021080=2) 4 ) ([ L log(z)e 01 108 wH02 los(1=x)) gp;)
m(9 (fl (61 log 4604 log(l—‘l‘))dw

01 log 463 log(1— 3
fl 6(01 log x40 log(l_m))dx _ (fg log(z)e(?1 1o +62 los( ”»dac)
0 m(e)(fol (01 log a+03 log(1—2)) 4o )>
(fol log(1—a)e(01 log #+02 1og<171))dm)(f01 log(z) log(1—a)e(01 108 2+02 log(lfz))dz)
m(e)(fol e(01 lolg x+0g log((el—lm))cj—me)QB1 s
fl 6(01 log z+02 log(lfx))dz . (fo log(z)e'%1 '8 2 log dw)
0 m(g)(fol (61 log 2165 log(lfzn))dx)d
.f()l 10g(1 _ I)e(el log 462 log(lfz))dl.

(j log(z)e(f1 log +62 log“*l))d:ﬁ)(fol log() log(1—a)e(®1 108 #+02 log(l—x))dx)
m(@)(-fol (01 log w+03 log(1—-2)) 4.}
1 (61 log 409 log(1—=x)) 2
fl (01 log z+0; log(1— a:))dx) + (fo log(x)e'”1 2 dx)

61 =

0,
( 0 m(0)( [ e(01 108 a+03 log(1-2) 4z )
<f01 log(1 — z)e (01 log z+02 lOg(17$))d1') + () log(ll—x)e(ellrog 1+92‘10g7('1*55))d;1;)
m((’)(fo e(61 log x+05 log(1 x))dx)
(f01 1og (1 — z)e@r log+0 log(l—x))dx) <f01 o(0110g 5405 log(l—x))dl,)
(fol log(1— m)e(el log z+609 log(1— I))dw)

m(g)(fol e(61 log x+65 log(1— J.))dz)
(22)
We determine the linear system associated with this system gradient. So, we

calculate: 77 = [gi;] 0 and obtain:
(n)=[aaid)-(n)

f[]l c(91 log ©+69 log(1—wx)) log zdx

7'71 . - fol (01 Tog z+03 log(1—2)) g
7-72 = fol (81 log e +03 log(1=2)) 155 (1 _z)dz

- fOl e(01 log 2463 log(1—x)) dup

And then




Geometric Properties of Beta Distributions 215

According the relation (7), we conclude that:

(0)-(3)

2 —12

So, the linear system associated with our gradient system is
n=-n.

We have the following Theorem.

Theorem 2. The Hamiltonian of the gradient system (22 ) for the beta family
of the first species manifold is given by:
f()l log(l _ 1‘)6(01 log(z)+02 log(lfaz))daj

fol log(x:)e(01 log #-+02 log(1-2)) dg;

and
E[—log(1 — z)]

E[—log(x)]

which is a constant of motion of the dynamical system (22).

H:

Proof. According to Fujiwara’s Theorem [6] we have

2
H=—. 23
" (23)

Using (7), we obtain:

B fOl log(1 — z)e(f1 108(@)+b2 log(1-2)) g,

a fol log(z)e(01 log 2-+02 log(1—))

Using (10) we have the expression (12). By consider (14) the density at maximum
entropy we have the relation (15). Therefore (23) become:

E[—log(1 — )] .

"= "E log(@)

By a direct calculation we obtain

dH _ OMH df | OH db,

A — = 24
dt 0601 dt 00y dt (24)
with
OH fol log(1—) log(z)e(?1 108 2 +02 log(1=2)) g,
06, — Tlog(z)e(?1 log 2+05 105(1-2)) gy
1 o\, (01 log x+65 log(1—x)) 17 .2 (61 log 2405 log(1—=))
n Jg log(1—z)e dx)( [, log®(z)e dx (25)

(fol log(z)e 01 log #+02 log(l—m))d$)2
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and
o fol log? (1—x)e(91 108 7402 log(1-2)) g,
80, — f1 log(z)e(P1 o8 z+02Tog(1=2)) 4z
. (S 1og(1—2)e(®1 108 2402 10x({22) 1) ( [1 log(x) log (1—)e(®1 198 ++02 1ox(1-2)) 4.) (26)

(fOl log(x)e(gl log 4604 log(lfz))dz)2

Using (25) and (26) in (24) and the gradient system (22) we have:

dH
— =0.
dt
H is a constant of motion of the dynamical system (22). O

3 Conclusion

The beta distribution of the first kind present the geometric structure that we
will study based on the work J.L.Koszul recalled by Barbaresco [2].
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Abstract. The main concern of this paper is to prove that the vector
space IR? have non trivial KV structures and some of them have non
trivail KV cohomology. We propose the explicite computation of one of
them.

Keywords: KV algebra + KV cohomology - Jacobi element

1 Introduction

In other to consolidate the following Gertenhaber assumption, every restricted
deformation theory generates its proper cohomology theory, [5], Boyom
complete the Nijenhuis work and define the complex of KV cohomology in [3].
Since that period it style hard to find paper in which KV structure and their KV
coholology are constructed on a given vector space. The aims of this paper is to
prove that IR? admit non trivial KV structure and that some of KV structure
on IR? have non trivial KV cohomology.

2 On the Space of KV Structures on IR?

Note (e1,ez) the canonical basis of IR?; (&3, e3) its dual basis and Sol((IR?, KV')
the set of KV-structures on IR?. For any element z of Sol((IR?, KV'), there exist
two bilinear forms I'; on IR?; i = 1,2 such that u = (I, Ib).

Each such I} : R? — TR, i = {1,2}, is entirely determine by a 2 x 2 matrix.
Let us consider the following such representations.

I Iy )7 I35 I,
By a straightforward computation, we have the following result.

Supported by UFD-SF-UMa-2023.

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
F. Nielsen and F. Barbaresco (Eds.): GSI 2023, LNCS 14071, pp. 217-225, 2023.
https://doi.org/10.1007,/978-3-031-38271-0_22


http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-38271-0_22&domain=pdf
http://orcid.org/0009-0005-6791-4266
http://orcid.org/0000-0002-2653-3636
https://doi.org/10.1007/978-3-031-38271-0_22

218 M. Herguey and J. Dongho

Lemma 1. y = (I1,1%) define a KV structure on IR* if and only if
I}, T, T4, T, satisfy the following relation.

inl(F1222* F1111* F2212) + F1121(F1111* F2212) + I3l =0

Iyp(2I5 — Iy — 15y) + LIy — I55) =0 (1)
F121(F112 _2F211 +F222)+F221(F111 _F221) =0

TH(NYy = Ipy + T5) + T3 (I — I55) = TH Ty =0

We denote, Sol°(IR, KV') the set solution u = (I't, I'?) of equation (1) such that
I'', I'? are not symmetric and I'i’; # 0 for all k,4,j € {1,2}.

From relation (1) and the definition of the KV structures, we can easily prove
the following theorem.

Theorem 1. The set Sol((IR*, KV) of KV structures on IR? is;

Sol((R?, KV) ~ (Re} @ e + R*ej @ €3) x (R*e} ® e})U

(Rejy ®@ef +R¥e; @ e3 +Res @el) x (Ref @ e3)U

(Ret ® €5 + IRej ® e5) x (Reb ® e + Ref ® €5 + Reb ® e5)U

R¥e; ® e x (IR"e; ® ef + Rej ® e3)U

R¥ef ®ef x (IR'ef @ ef + R¥e1* ® ef + R¥el ® e5)U

(Re; ®@ei +Re; ®ei) x (R7ef @ ef + R'el @ ef)U

Rej ® e5 URe} ® e U (IRef ® ef + Red ® e3) x (Re} @ ef + Res @ eb)U
Sol°(R, KV)

(2)

and Sol°(R, KV) # 0.

To illustrate this theorem we will now study the set I'ype = {ptape = (aei @ e +
bes ®es)er+(ces®es)eq, a, b, c € IR*}. This is the main objective of the following
lemma.

Lemma 2. e = {ptabe; a, b, ¢} C Sol(IR, KV)
Proof. For any a,b,c € IR, we denote
Habe = (€3 @ €] + feg @ e3)er + ce; @ €3)es. 3)

More explicitly, we have:

tabe (U, v) = (augvy + bugus)ey + cugvaes.
For all u,v,w € IR, such that u = wuje; + uses,v = wvie; + veeg and w =
wie1 + waes. Denote

(KV1) (u,v,w) = (uv)w — u(vw)
(KV2) (v,u,w) = (vu)w — v(uw)
(KV3) (’U/, v, ’LU) - (’U, u, U})
According to the definition of g4, we have: Firstly

uv = (augvy + bugvs, cusve) = (X,Y)
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then
(uwv)w = (aYwy + bY wa, cYws)

= (acugvawy + beugvaws, c2usvaws)
Secondly vw = (avowy + bvgws, cvaws) = (T, Z).
u(vw) = (auaT + bus Z, cus Z)

= (aus(avowi + bvaws) + bug(cvaws), cCusvows)
= (a%uguowy + acugvaws + beusvaws, c2ugvaws)

And then
(u,v,w) = (augvy(cwi — bws) — a*ugvowy, 0). (4)
In other hand, we have: Firstly vu = (avouy + bvaus, cvous) = (X,Y) and

(vu)w = (aYwy + bY wa, Y ws)
= (acvaugwy + bevausws, c2vausws)

Secondly uw = (auswy + bugws, cusws) = (T, Z) and

v(uw) = (aveT + bve Z, cva Z)
= (a®vauswy + abvaugws) + bevauswa, c2vaugws)
And then
(v, u,w) = (avauz(cw; — bws) — a2v2u2w1,0) (5)

The relations (4) and (5) allows us to complete the proof. O

In what follows, p will designate pqpe for a given (a,b,¢) € R* x R* x R* of
non zero real numbers.

3 On the Koszul-Vulberg Cohomology of u

Let ¢ > 1 be a positive integer. Let Cq(IRQ) be the vector space of all g-linear
maps from IR? to IR?. Recall that C¥9(IR?) is a IR>-KV-module with respect to the
following two actions of IR*: For all a, a; € R?*j=1,...,qand ¢ € CI(IR* R?) :

(a@)(ah-'waq) :u(a, (‘P(alv"'vaq))) - ;1':1 cp(alv"'v,u'(a7aj)v--'aaq) (6)
(pa)(ar...aq) = p((p(ar...aq)), a)

For any p = 1,...,q define e,(a) : C¢(R?) — C9~'(IR?), by;
(ep(a)p)(ar, ..., aq—1) = @(ai, ...,ap—1,a,ap, ...ag—1)

The KV coboundary operator of order ¢, associated to wu, is the additive
application 69 : C9(IR?) — C9t'(IR?) such that for any ¢ € C9(IR?) and
(a1, .y agy1) € (R?)IF, §9(p) € CIT(IR?) is given by the following formula.

(0%p)(a1,...,aq41) = lequ_i_l(—l)j{(aj(p)(al, ey @y ey Qg1 )+ )
(eq(aj)(pagri)(ar, ..., dj, ..., agy1)}
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It is prove in [3] that 62 = 0. But to become a complex, he complete C(IR?) =
@D,>1 C1(IR?) by J(A) = {¢£ € A;(a,b,¢) = 0,Va,b € A}; named the set of
Jacobi elements of A. We recall that

8% J(A) = CHAA) : £ 69%(8) r u— —ué + &u.

01 () (u,v) = —up(v) + p(uv) — p(u)v (8)

820(u, v, w) = vp(u, w) — up(v,w) + ¢ (v, uw) — p(u, vw)+

p(uwv, w) — p(vu, w) + p(u, v)w — (v, u)w

From these expressions, we have:
1(8°(€)) (u, v) = —ud®(€)(v) + 6°(&) (uv) — 6°(§) (u)v
= —u(—v§ + &) + (—uvg + {uv) — (—uf + {u)v
= uv€ — ulv — uvé€ + Euv + ulv — Euv

= wv€ — uv€ + ué — ué + Euv — Euv
=0

Therefore,
510’ =0 (9)

In other hand, for all f € C*(IR?), we have;
02(0*(f))(a, b, c)

= —a(51)(b,6)+(51f)(ab76)+(51f)( ac) — (0 1 f)(b, a)c
+ (3" f)(a,¢) — (3")(ba, ¢) — (8 f)(a,bc) + (6" f)(a, b)e
= —a{=bf(c) + f(be) — f(b)e} + {—(ab)f(c) + f((ab)c)
— flab)e} +{=bf(ac) + f(b(ac)) — f(b)(ac)}

+ —{=0f(@))c + f(ba)e - (f b)a))c} +bb{)—ff(0) + f(ac)

— fla)e} —{=(ba) f(c) + f((ba)

+ —{—af(bc) + f(a(be)) — f(a)(be)} + {—af(b) + f(ab) — f(a)b}c

= +a(bf(c)) — af(be) +a(f(b)e) — (ab) f(c) + f((ab)e)

— flab)e —bf(ac) + f(b(ac)) — f(b)(ac)

+ (bf(a))e = fba)e + (f(b)a)e — blaf(c))

= b(f(a)c) + (ba) f(c) = f((ba)e) + f(ba)e

+ af(be) — f(a(be)) + f(a)(be) — (af(b))e+
= [+a(bf(c)) — (ab) f(c) = b(af(c)) + (ba)

) — f(b)(ac) + (f(b)a)c —
)(be) = (f 30— (f

+ [+a(f(b)e (af
+ [+f(a (a (a)c) + (bf(
+ [+/((ab)e) + f(blac)) — f(a(be)) f((ba)c)
+[+f(ab)c— flab)e] + [+af(be) — af(be)]
+ [+f(ba)e = f(ba)e] + [+Df(ac) = bf(ac)]

It is obvious that the last line of above expression is zero. More explicitly, for all
f € CY(IR?),a,b,c € IR?, we have:

82(8" f)(a,b,¢) = [(a,b, f(c)) — (b,a,
+[(a, f(b),¢) = (f(b),a,c)] + [(f(a),
{f[(baye) — (abc)]+[(ab—

+[f(ba — ba)lc + b[f(ac — ac)] =

) +bf(ac)

flab)e — (f(a)b)c
)]

)c]
)e]

Ja

(b
f(a)(b
f(e)—b f(e
(ac) + (f(b)a) b)
)b b )e a)
c) ]

g(c))) (b, f(a), )]
able + alf (b — be) (10)
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Tt follow from (10) that
5208t =0 (11)

Therefore the following modules are well defined. HY% (1), H v (1), Hay (1)
The next section is devoted to their computation.

4 KV Cohomology of the KV Structure p on IR?.

Let 1 € Sol((IR?, KV) defined by; p(u,v) = (ayz’ + byy', cyy’) with a # 0,b #
0,c # 0.

4.1 Computation of HY (u)
In this subsection, we will prove the following proposition
Proposition 1. The first KV cohomology of the KV structure on IR* defined
by n = (ael ® e + bey @ el)er + c(e @ e3)eq is:

HY% (1) = R(=bey + (c — a)ey) (12)
Proof. The application

§%: C°(IR?) = J,(R?) — C'(R?)

3 = 0°(¢)

is defined by 6°(¢)(u) = —ué + &u, V€ € J,(IR?) and u € IR? but, the jacobian
of R? is:
Ju(R?) = {¢ € R?, Ass,,(u,v,€) = 0,Yu,v € R?}.

Let u = (z,y), v = (z,y ) and £ = (z”,y") be three vectors of IR%. We have:
Assy(u,v,€) = (ale — a)yy'z" — abyy'y”,0)
So: If a = 0 then J,(IR?*) = IR?. If not,

Assy(u,v,8) =0 <= Assy(ei,e;,§) =0,1<14,5,<2
= (c—c)z" -y =0

which is the vectorial line directed by —be; + (¢ — a)ea. Therefore,

ulR) = {ﬁgbz‘? +a(270 wea) ez (13)

and then,
Kerd® = {€ € R?,6°(¢)(u) = 0,u € R}
~ R(—aey + (¢ — a)ez)
We conclude that
Hiy (n) = R(~bey + (c — a)ea) (14)
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4.2 Computation of Hj, (p)
In this subsection we will essentially prove the following proposition

Proposition 2. The second KV cohomology of the KV structure on IR? defined
by n = (ael ® e + bely @ ed)er + c(e @ e5)eais:

R .
IR(O ‘105) if a#c
Hicy (p) ~ (15)
IR<(1)(1)) if a=c

Proof. Tt ensure from the definition of

§': CY(IR?) — C2(IR?)
fl = 61f17

that; for all u, v elements of IR?, we have:

01 fu(u,v) = —ufi(v) + fr(uw) = fi(u)v

where f; is represented by its matrix A = (: é\})

Let u = (x,y) and v = (x',yl) be two vectors of IR?. One has the following
expression of §* f; (u,v):
' f1(u,v)=((—ay)za’ + (=by)zy’ + (=by — aX)z'y + (ba + (c — a) B — 2bA)yy/,
(—ev)ay’ + (a = c)ya'y + (by — cA)yy').
Then

51f1(u,v) =0+ 51f1(6i,€j) = O,Vi,j =1,2.

In other words, a, 3,7 and A are solution of the following equation.
v=0, A=0, ba+(c—a)f=0
One distinguishes two cases.

(i) If ¢ # a, the we obtain:

b
7:07 )‘:07 6: «
a—c
b
OZTCOZ
fi= (0 ; )
From where we deduce that
1 12t
Keré —<<05_C)>]R
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(ii) If ¢ = a, then we obtain:

So,

(0B
fl—(oo)

Kers! = <<8(1))>]R

Let g be a linear map from IR? to IR? defined by his matrix B = <ZH Zu ) .
21 U22

It follows from the definition that g € I m(52 if and only if there exist £ €
J,,(R?) such that (&) =g

Therefore,

g € Imd° & §°¢(u) = g(u), Yu € IR?
& —ug + fu = g(u)
< g(u)=0

Therefore, Imd® = {0} and

Hll(V(:U’) ~ K€T617

4.3 Computation of HZ, (1)
The main objective of this section is the prove the following proposition

Proposition 3. Let = (aef @ef +bel ®e3)er +cles ®es)es be a KV structure
on IR? with (a,b,c) # (0,0,0), then:

(i) If ¢ # 2a, then the third KV cohomology of u on IR? is:

c—a

b
Hf(v(u) ~ R[(ef®e]+ Eei ®es)er+( ey el +el®es)es| DR (e] ®el ey

(ii) If ¢ = 2a, then the third KV cohomology of i on IR? is

* * b * * 2a * * * *
Hiey (1) = R[(—3e} ®@ €] + et ® e5)er + (_?61 ® e +e3 @ e)es]

Proof. According to its definition, the application
62: C*(R?) — C3(IR?)
fa = 52f 2

is defined by, for all u, v, w elements of IR?, we have:

6 fau, v, w) = vfa(u, w) — ufo(v,w) + fa(v,uw) — fa(u,vw) + fa(uv,w) — fa(vu,w)
+ f2(u,’U)’LU - fQ(U,U)UJ
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ef ]
gh )\ k1
denote the matrix representation of fo with respect to the basis {e1, ea} of IR?.

Let u = (z,y), v = (¢/,3y) and w = (2”,y") be three elements of IR*. We have
the following expression of 62 fo(u, v, w):

Let

((—ae + bi + aj — ak)yz'z"

—(—ae +bi+ aj — ak)xy'zs"” + (—2a + c)iyr'y” — (—2a + c)izy'y”,
(=be — cf +2bj — ak)yx'z" — (=be — cf + 2bj — ak)xy'z"
+(=bi+ (—a+c)j — ck)ya'y” — (=bi + (-a+c)j — ck)zy'y")

8 fo(u, v, w)=

Then

§2f2(U,U,UI) =0+ 62f2(ei7ej7ek) = 071 S i7j7k S 2
—ae+bi+aj—ak=0
(—2a+¢)i=0
—be—cf+2bj —ak =0
—bi+ (—a+c)j—ck=0

—

We distinguish the case.
(i) ¢ # 2a.

In this case, an element fy of C%(IR?) is in kerd? if and only if
[(7 = k)(ef @ei) + (et @ eh) + g(es ® ef) + h(es ® ef)]es
fo€ { +lile; @ e3) + 520 (c3 @ ef) + I(eh @ e3)]exs
Jk,h € R, c#2a
Therefore,
Kerd® =~ R[(e] @ e}) + 2(ef @ e3)ler ® R[(e] @ e3) + (€3 @ ef)les ©
IiR[*(@T ®ei)ler & R(e3 ® e])]er & R(e3 ® e3)]er & R(e3 ® e3)]e.
et

g = (une; ®ej +uize] @ eb + usied @ ef + ugses Qed)er+
(vi1€] ® ef + vige] ® ed + varel ® el + vagel @ eh)es ’

be an element of C?(IR?); g is in Imd" if and only if there exist f; € C(IR?)
such that; for all u,v € IR?, we have §*(f1)(u,v) = g(u,v). In other words,
f1 is solution of a linear equation system having ¢ as right hand side and of
which the matrix representation is:

bc—al —-2b CUgo

00 —a0 DUy

00 0 0 Dbuiy — auis

00 —b-—a D

00 0 0 Deupn — avia

00 0 0 f(a—c)uu—i-avgl
00 0 —(a+4c):ug +va

00 0 0 e
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What allows us to write;

* * b * * * * * *
(u11e] ® el + Zuiie] @ €5 + uzies @ el + uzzel Q e3)er+
1 2 =
g €Imé = kerd” N4 (Sune] ®es + ““Curies ® ef + vazes ® e3)es;
. 2 2 2
U1, U21, U22,v22 € IR;c # 2a,¢“ —a” #0 bec# —a

Therefore, the space of 1-coboundary is
Imst ~ (ug1ef ® e + uges R e3)er + (vaged ® e3)es;
Uo1, U2, Va2 € Ry ¢ # 2a,¢® —a? #0  be # —a?
The result follows from the fact that

H% (p) ={Z ,z € Kerd?}
= {z + Imé*,x € Kers?}

(ii) ¢ = 2a.

In this case, an element fy of C%(IR?) is in kerd? if and only if

(25 = 3k)(e1 ® e1) + 2h(et @ €3) + g(e5 @ €f) + hle; ® e3)]es
f2 G a g a * * ¢ ; * * * * * *

+[(57 — 23k) (el @e7) +j(ef ®e3) + k(es @ e7) + 1(e3 @ e3)]ez
Therefore,
Kerd? ~ R[2(ef ®e})er + (e ®e}) + (e ®e3)ea] ®IR[-3(ef ®ef) + L(ef ®
e3)er+ 32 (ef@e})+(es@ei)eo] DR [(e3 e ) er DR [(e3@e3 ) e R[(e3@e o]

By a straightforward computation, we prove that
(ur1€e] ® ef + gullef ® ed + ugred ® el + uxes @ ed)er+
Imé* =~ { (2uiiel @ eb +upiels @ et + vagel @ €3);
u11, Uge, U21, V22 € R;2b # —a
Therefore, we deduce the result from the fact that,
HZ., (u) = {7 ,x € Keré*}
={z+Imé*,z € Keré?}
O
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Abstract. In conventional information geometry, the deep relationship
between differential geometrical structures such as the Fisher metric and
a-connections and statistical theory has been investigated for statistical
models satisfying regularity conditions. However, the study of informa-
tion geometry on non-regular statistical models has not been fully inves-
tigated. A one-sided truncated exponential family (0TEF) is a typical
example. In this study, we define the Riemannian metric on the oTEF
model not in a formal way but in the way compatible with the asymptotic
properties of MLE in statistical theory. Then, we define alpha-parallel
priors and show that the one-parallel prior exists on the oTEF model.

Keywords: truncated exponential family - information geometry -
noninformative priors - alpha-parallel prior

1 Introduction

Information geometry is the study of statistical models by differential geometry.
From the standpoint of geometry, a statistical model consisting of a collection
of parameterized probability distributions can be regarded as a manifold. Then,
when the statistical model satisfies certain regularity conditions, Chentsov’s the-
orem leads to a natural differential geometrical structure [8]. The natural dif-
ferential geometrical structure consists of the Riemannian metric defined by the
Fisher information matrix and a one-parameter family of affine connections.
They are called the Fisher metric and a-connections respectively. Information
geometry of regular statistical models has been studied for a long time, and a
deep relationship between the above geometrical structures and the statistical
properties of statistical models has been revealed [4,5].

However, for non-regular statistical models, their geometric properties have
not been fully investigated. One reason is the inapplicability of Chentsov’s theo-
rem to non-regular models, which prevents the geometrical structure from being
determined naturally. For example, while the Fisher information matrix on a
regular statistical model has two equivalent definitions, these definitions do not
agree with each other on a statistical model where the support of a probability
density function depends on the parameter. In prior research, Amari [3] provides
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an idea that the Finsler geometry is familiar to non-regular models, especially
for the location family.

In the present study, we take the one-sided truncated exponential family
(oTEF) [7] as one of the most important non-regular statistical models, and dis-
cuss desirable geometrical structures. This family covers many practical exam-
ples like Pareto distributions, truncated normal distributions, and two-parameter
exponential distributions. Statistical properties of the oTEF model, in particu-
lar, those related to point estimation theory, have been investigated by several
authors [2,7]. Recently, in information geometry, Yoshioka and Tanaka [13]| shows
the existence of 1-parallel prior on the oTEF.

This paper aims to define a family of appropriate affine connections for
the oTEF. In the quest for suitable affine connections, we emphasize that an
exponential family possesses a-parallel priors for all values of a. Using formally
defined o connections, the existence of only a 1-connection is observed. As a sub-
stitute for the a-connections, we introduce a 1-parameter family of affine connec-
tions as B-connections. Subsequently, we show that §-connections are equiaffine
for all § values. This property is congruent with the case of the exponential
family.

We introduce a one-sided truncated exponential family (oTEF) in Sect. 2.
Then, Sect.3 defines a Riemannian metric on the oTEF. In Sect. 4, we define
(B-connections on the oTEF and prove there exist [-parallel priors for all 3.
Section 4 also reviews a-parallel priors in regular cases.

2 One-Sided Truncated Exponential Family

First, we introduce the one-sided truncated exponential family as follows:

Definition 1 (One-sided Truncated Exponential Family [7]). Let the
parameter space © be an open subset of R™ and I = (I, I5) be an open interval.
Let P = {Py~ :0 €O,y €I} be a parametrized family of probability distribu-
tions. When each probability distribution Py ., has its probability density function

p(x;0,7) = exp {Z 0'Fi(x) + C(z) — ww,v)} Appy(e) (@el), (1)

i=1

CeC(), F,eC>®()(i=1,...,n), ¥ € C®°(OxI) with respect to the Lebesgue
measure, we call P as a one-sided truncated exponential family (oTEF).

We have two kinds of parameters, 6 is called the natural parameter and -~y
is called the truncation parameter. Since 8 € R™ v € R, the oTEF P is an
(n + 1)-dimensional statistical model. We often use the abbreviated notation:
9;=0/00" (i =1,...,n), &y = /97 below.

Clearly, the oTEF model is a non-regular statistical model, which does not
satisfy regularity conditions. Indeed, the support of the probability density func-
tion p(z;6,v) as a function of = is written as the interval [y, I5], which depends
on the parameter ~.
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On the other hand, when the truncation parameter -y is prescribed, consider-
ing the n-dimensional submodel £, = {Fy - : 8 € O}, the oTEF is an exponential
family.

3 Definition of Riemannian Structure on the oTEF
Model

In this section, let us define the Riemannian metric on the oTEF model.

Yoshioka and Tanaka [13] provide a Riemannian metric for the oTEF based
on the asymptotic variance of MLEs. The asymptotic behavior of MLEs on the
oTEF is discussed by Akahira [1].

Definition 2 (Riemannian metric on the oTEF model [13]). Let P denote
the oTEF model with the probability density (1). We define the Riemannian
metric g on the oTEF model P as

9i5 = E[0;1(X;0,7)9;1(X;0,7)],

Jiy = 07

Gyy = {_8v1/}(977>}2
fori,j=1,...,n, wherel(xz;0,v) = logp(x;0,7).

This Riemannian metric is different from the negative Hessian form
—E [0,0y log p|, because the expectation E [0, log p| does not vanish. As shown
by Li et al. [10], the negative Hessian form is sometimes not positive definite on
the Pareto model (See Example 1 in Sect. 4). On the Pareto model, we obtain

1

1 _ 1
(—E[0.0logpl), , = (_921 07) ’
v

which is not positive definite except 0 < 6 < 1.

4 «-parallel Priors on the oTEF Model

Next, we consider affine connections on the non-regular model, a oTEF. Our
purpose is to provide a suitable extension of a-connections in regular models for
the oTEF.

To establish our approach, let us return to the geometric property of an
exponential family, one of the typical regular models. We focus on the fact that
the exponential family is famous as statistically equiaffine for a-connections [12].
This property confirms the exponential family has a-parallel prior for all « € R.

This section provides an extension of the a-connections, referred to as the
(B-connection. Furthermore, we will show that the G-connection is equiaffine for
any .
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4.1 Equiaffine Structure on Regular Models

Before the discussion of equiaffine connections on the oTEF, we briefly review
equiaffine connections and a-parallel priors in regular cases. Please see Takeuchi
and Amari [12] for more details.

In Bayesian statistics, for a given statistical model P, we need a probability
distribution over the model parameter space, which is called a prior distribution,
or simply a prior. We often denote a prior density function as 7. (7(£) > 0 and
J=m(€)d¢ = 1.) If we have certain information on the parameter in advance,
then the prior should reflect this, and such a prior is often called a subjective
prior. If not, we adopt a certain criterion and use a prior obtained through the
criterion. Such priors are called noninformative priors.

A volume element on an n-dimensional model manifold corresponds to a prior
density function over the parameter space (¢ € = C R™) in a one-to-one manner.
For a prior 7(§), its corresponding volume element w is an n-form (differential
form of degree n) and is written as

w=m(&)dE' A+ A dET

in the local coordinate system. We identify a prior density @ with a volume
element w below.

To define a-parallel priors, we introduce a geometric property of affine con-
nections.

Definition 3 (equiaffine). Let P be an n-dimensional manifold with an affine
connection induced by a covariant derivative V.

An affine connection V is equiaffine if there exists a volume element w such
that

Vw=0

holds everywhere in P. Furthermore, such a volume element w is said to be a
parallel volume element with respect to V.

For an affine connection V, a necessary and sufficient condition to be
equiaffine is described by its curvature. The following proposition holds for a
manifold with an affine connection V. Let Rijkl be the components of the Rie-
mannian curvature tensor [5] of V, defined as

Rijit = 0; Tyt — 05 Tyt + T Tjp™ — Ty Ti™, (4,5, k1 =1,...,n)
where I jkl denotes the connection coefficients of V.

Proposition 1 (Nomizu and Sasaki [11]). The following conditions are
equivalent:

- V is equiaffine,
- Rt =0,

k n k
where Riji* =, _; Riji".
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Note that the Levi-Civita connection is always equiaffine [11].

Returning to the statistical model, we define the a-parallel prior distribution.
Let P be an n-dimensional regular statistical manifold.

a-parallel priors are a family of priors that generalizes the Jeffreys prior from
the standpoint of information geometry. The definition is as follows:

Definition 4. Let (%) denote a covariant derivative operator with respect to an
a-connection. When the a-connection is equiaffine, a parallel volume element
w(®) ezists.

Then, the prior © corresponding to the volume element w(®) is called an a-
parallel prior.

In regular statistical models, the Jeffreys prior is the O-parallel prior and
necessarily exists. However, there is no guarantee that an a-parallel prior exists
when « # 0. In other words, a geometrical structure on a model manifold deter-
mines the existence of such priors.

Takeuchi and Amari [12] give a necessary and sufficient condition for a-
parallel priors to exist.

Proposition 2 (Takeuchi and Amari [12]). For a model manifold P, if
aiTjkk —@TJ =0 (Z,j = 1,...,n), (2)

then the a-parallel prior exists for any o € R. Otherwise, only the 0-parallel
PTioT exists.

If a statistical model satisfies the condition (2), the model is called statistically
equiaffine. An exponential family is one of the statistically equiaffine models [12],
which has a-parallel priors for all o € R. We will construct a family of affine
connections based on this fact.

4.2 «-parallel Priors on a oTEF

Let us return to the discussion of affine connections in the oTEF.

First, we define a-connections formally in the same way as regular models
[5].
Definition 5 (a-connection). For every o € R, we define an a-connection on
the oTEF model with the coefficients

(@) 1—
Tabe (0,7) = E (0,041 9,1] + ——

E [0,10510:l] (a,b,e=1,...,n,7),

where | =logp(X;6,7).
(@)
We write the covariant derivative with respect to the a-connection as V.
Unlike the regular cases, the equation

(o) g
Tabe (6:7) =Lape =5 B(0al0p10,1
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g
does not hold, where ["45 . denotes the connection coefficients of the Levi-Civita
connection. Then, the a-connections do not include the Levi-Civita connection
in the oTEF. For example, in the Pareto model, it holds that
()
F’Y"hl (977) = 07
0

g
r ,1 (97’7) = T 5-
Y 72

Let us consider the oTEF model with the a-connection. Then we obtain the

following theorem.

Theorem 1 (Yoshioka and Tanaka [13]|). Let P denote the oTEF model
endowed with the Riemannian metric in Definition 2 and the a-connections in
Definition 5. Then, an o-parallel volume element exists when o = 1. Let 7!
denote the density of the 1-parallel volume element. It is written as

Tr(l) (9,7) X = 'W (03’7) .

Proof. Fix any a € R arbitrarily.
We will check the condition in Proposition 1,

(@
Rape” = 0.

By calculation of the a-connection coefficients, we have

(@)

R ijaa = 07

(@) 1-—-
R = —5 {0:0, log (det(gu)) + (n +1)9:0,}

for i,7=1,...,n, where ¢» = ¢(6,~).

@)
Thus, R .. = 0 and there exists an a-parallel prior when o = 1.
According to Takeuchi and Amari [12], the 1-parallel prior 71 satisfies

(1)
0, log ) =p,°
= O log(~0,)

fora=1,...,n,7.
Therefore, the 1-parallel prior for P is given as

7D (8,7) o —0,9.

The above 1-parallel prior coincides with a certain noninformative prior called
the (Bernardo’s) reference prior on a non-regular statistical model [9]. It is
obtained through an information-theoretic argument. We apply their argument
to the oTEF model setting v as the parameter of interest and € as the nuisance
parameter. Then, we obtain Tghosa(6,7) < —0,%, which agrees with the 1-
parallel prior in Theorem 1.
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4.3 [-parallel Priors on a oTEF

The above a-connections are not equiaffine for almost all a. This result differs
from the case of the exponential family. For example, in a family of left-truncated
exponential distributions [1],

@ ., (-t

Rl'ya - 9
holds for all « since ¢ = —6~+ — log §. This model has only 1-parallel prior.
1)
However, Theorem 1 provides an equiaffine connection, the 1-connection V.
We now construct another extension of the regular a-connections based on the
two equiaffine connections: the 1-connection and the Levi-Civita connection.
The following lemma is elemental for the extension.

Lemma 1. Let P be an n-dimensional manifold, and let V°, V' be equiaffine
)
connections on P. For each 8 € R, we define an affine connection ¥V on P by
(B)
V= (1-p)V!+ sV
® . _ )
Then, for each 8 € R, V is also an equiaffine connection.

Proof. Let 0 = (917...,0") € O be a coordinate system on P. In the 6-

0 1
coordinates, we write the connection coefficients of V0, V! as {Fijk} , {Fijk},

)] )]
respectively. Also, we denote the curvature tensor of ¥V by R.

®8)
Then, the connection coefficients of V¥ are given by

() 0 1 o
Ii*=Q0-p)Ii"+B8 1" (i,j,k=1,...,n).

We need to verify the condition in Proposition 1:

)
Rt =0 (i,j=1,...,n).

Calculating the left-hand side, we get

(8) 0 0 1 1
Rij" = (1-p) <5i L —0; Fikk> +4 (@' Iig" —0; Fikk) .

Here, since V?, V! are equiaffine connections, we have
) ? q b
0 0
k k
0; I'ji~ — 05 I'y” = 0,
1 1
k k
0 Iji” — 0 Iy =0

foralli,j=1,...,n.

)
Therefore, in the affine connection V, we have



Alpha-parallel Priors on a One-Sided Truncated Exponential Family 233

Based on the above lemma, we define a family of affine connections that
connect the 1-connection and the Levi-Civita connection via a parameter 3.

Definition 6 (8-connection). For every 8 € R, we define [-connections on
the oTEF model with the coefficients

®)
I abe (0,7) = BE [02001 0:l] + (1 = B)I7

ab,c

(a7b7c = 17"'77?"7)7
where I'Y denotes the Levi-Civita connection.

In regular models, the (-connections coincide with the a-connections when
(8 = a. They represent a new extension of Amari’s geometric structure.

Theorem 2. Let P denote the oTEF model endowed with the Riemannian met-
ric in Definition 2 and (-connections in Definition 6. Then, for every (3, the
B-parallel volume element exists. Let 7P denote the density of the [-parallel

volume element. It is written as
1-p
7 oc {det (g;5)} 7 (=059) .
Proof. Fix any 3 € R arbitrarily.
Lemma 1 and Definition 6 confirm that the §-connection is equiaffine.
The representation of -parallel priors is given as follows.
The sum of the (B-connection coefficients satisfies that
B) 1-—
It = 250,108 (det(g;0)) + dilos (~0,0),
B) 1-3
o = —5—0;log(det(g;x)) + 8, log (=0,¢).

Therefore, from Proposition 1 by Takeuchi and Amari [12], we obtain:

1-p
7)o {det (g)} % (<01
When 3 = 0, 7% agrees with the Jeffreys prior and when 3 = 1, it agrees
with the 1-parallel prior in Theorem 1.

Ezample 1 (Pareto model). A family of Pareto distributions [6], having a density
function
6~
p(x,&,'y) = Wl['y,oo) ({,C € (01 OO))

with parameter 6,+ € (0, 00), is one of the famous o TEFs.
Since ¥(0,v) = —log 6§ — flog v, the Riemannian metric of the Pareto model

is represented as
1
= 0
(92 2
0 (%))
v

Then, the §-parallel priors for 5 € R is

98
78 o —.
Y
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5 Concluding Remarks

In the present study, we proposed a new extension of a-connections for a oTEF,
referred to as [-connections, based on the fact that exponential families are
statistically equiaffine. As shown in Sect. 4, the B-connections in the oTEF have
(B-parallel priors for all 3. Then, the (-connections have the same geometric
property as a-connections in exponential families.

On the other hand, in the statistical inference of regular models, a-
connections appear in the higher-order asymptotic behavior of estimators. It
is interesting to consider how (-connections work on statistical inference on the
oTEF. Also, to reveal the relationship with Amari’s Finsler structure on location
family [3] is a topic of interest.
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Abstract. In this paper, we compare geodesics for conformal submer-
sion with horizontal distribution. Then, proved a condition for the com-
pleteness of statistical connection for a conformal submersion with hori-
zontal distribution.

Keywords: Conformal Submersion + Fundamental equation -
Geodesics

1 Introduction

Riemannian submersion is a special tool in differential geometry and it has got
application in different areas such as Kaluza-Klein theory, Yang-Mills theory,
supergravity and superstring theories, statistical machine learning processes,
medical imaging, theory of robotics and the statistical analysis on manifolds.
O’Neill [6] defined a Riemannian submersion and obtained the fundamental equa-
tions of Riemannian submersion for Riemannian manifolds. In [7], O’Neill com-
pare the geodesics of M and B for a semi-Riemannian submersion 7 : M — B.
Abe and Hasegawa [2]| defined an affine submersion with horizontal distribution
which is a dual notion of affine immersion and obtained the fundamental equa-
tions. They compare the geodesics of M and B for an affine submersion with
horizontal distribution 7 : M — B.

Conformal submersion and the fundamental equations of conformal submer-
sion were also studied by many researchers, see [4,8| for example. Horizontally
conformal submersion is a generalization of the Riemannian submersion. Hori-
zontally conformal submersion is a special horizontally conformal map which got
introduced independently by Fuglede [3] and Ishihara [5]. Their study focuses
on the conformality relation between metrics on the Riemannian manifolds and
Levi-Civita connections. The present authors defined conformal submersion with
horizontal distribution and studied statistical manifold structure obtained using
conformal submersion with horizontal distribution [9,10]. In this paper, we com-
pare the geodesics for conformal submersion with horizontal distribution and
obtained some interesting results. In Sect. 2, relevant basic concepts are given.
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In Sect.3, we obtained some fundamental equations of conformal submersion
with horizontal distribution. In Sect.4, we proved a necessary and sufficient
condition for 7 o o to be a geodesic of B when o is a geodesic of M for
m: (M,V,gm) — (B,V*,¢) a conformal submersion with horizontal distri-
bution. Completeness of statistical connection with respect to conformal sub-
mersion with horizontal distribution is given in Sect. 5. Throughout this paper,
all the objects are assumed to be smooth.

2 Preliminaries

In this section, the concepts like submersion with horizontal distribution and
affine submersion with horizontal distribution are given.

Let M and B be Riemannian manifolds with dimension n and m respectively
with n > m. An onto map 7 : M — B is called a submersion if 7, : T,M —
Ty B is onto for all p € M. For a submersion 7 : M — B, 77 1(b) is a
submanifold of M of dimension (n — m) for each b € B. These submanifolds
7n=1(b) are called fibers. Set V(M),, = Ker(m.,) for each p € M.

Definition 1. A submersion ™ : M — B is called a submersion with horizontal
distribution if there is a smooth distribution p — H(M), such that

T,M = V(M), P H(M),. (1)

We call V(M),, (H(M),) the vertical (horizontal) subspace of T,M. H and V
denote the projections of the tangent space of M onto the horizontal and vertical
subspaces, respectively.

Note 1. Let # : M — B be a submersion with horizontal distribution H(M).
Then, 7 |3 (ar),: H(M)p — Tr (B is an isomorphism for each p € M.

Definition 2. A wvector field Y on M is said to be projectable if there exists a
vector field Yy on B such that m.(Y,) = Yz for each p € M, that is Y and
Y, are w- related. A vector field X on M is said to be basic if it is projectable
and horizontal. Every vector field X on B has a unique smooth horizontal lift,
denoted by X, to M.

Definition 3. Let V and V* be affine connections on M and B respectively.
m: (M,V) — (B, V*) is said to be an affine submersion with horizontal distri-
bution if m : M — B is a submersion with horizontal distribution and satisfies
H(VY) = (VLY), for vector fields X,Y in X(B), where X(B) denotes the
set of all vector fields on B.

Note 2. Abe and Hasegawa [2| proved that the connection V on M induces
a connection V' on B when 7 : M — B is a submersion with horizontal
distribution and H(V 3 Y') is projectable for all vector fields X and Y on B.

A connection VVV on the subbundle V(M) is defined by (VVV)gV =
V(VgV) for any vertical vector field V' and any vector field E on M. For each
b € B, VVV induces a unique connection V® on the fiber 7~1(b). Abe and
Hasegawa [2| proved that if V is torsion free, then V® and V' are also torsion
free.
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3 Conformal Submersion with Horizontal Distribution

In this section, we consider the conformal submersion with horizontal distribu-
tion which is a generalization of the affine submersion with horizontal distribu-
tion [9]. Here, we obtained some fundamental equations of conformal submersion
with horizontal distribution for Riemannian manifolds.

Definition 4 [9]. Let 7 : (M, g,) — (B,gy) be a conformal submersion
and let V and V* be affine connections on M and B, respectively. Then,
7 : (M,V) — (B,V*) is said to be a conformal submersion with horizontal
distribution H(M) = V(M) if

H(VY) = (V) + X(9)Y + V()X — H(grades)gm(X,Y),
for some ¢ € C*°(M) and for all X,Y € X(B).

Note 3. If ¢ is constant, it turns out to be an affine submersion with horizontal
distribution.

As in the case of affine submersion with horizontal distribution we have,

Lemma 1. Let7w: (M,V) — (B, V*) be conformal submersion with horizontal
distribution, then

H(Tor(V)(X,Y)) = (Tor(V9)(X,Y)). 2)

V(Tor(V)(V,W)) = (Tor(V)(V,W)). 3)
Proof. Proof follows immediately form the definition of the conformal submer-
sion with horizontal distribution.

Corollary 1. IfV is torsion-free, then V* and V are also torsion-free.

Fundamental tensors 7' and A for a conformal submersion with horizontal
distribution 7 : (M, V) — (B, V*) are defined for £ and F' in X(M) by

TpF = HVye(VE) + VVye(HF).
and
AgF = VVHE(HF) + HVHE(VF)

Note that these are (1,2)-tensors.
We have the fundamental equations correspond to the conformal submersion
with horizontal distribution. Let R be the curvature tensor of (M, V) defined by

R(E,F)G = V[X,y]G —VEVrG+ VEVEG,

for £, F'and G in X(M). Similarly, we denote the curvature tensor of V* (respec-
tively V) by R* (respectively R). Define (1,3)-tensors R72Fs for conformal
submersion with horizontal distribution by
RPP2P(E F)G = P3V (p, p,p, i P3G — P3V p,p(P3V p,p P3G)
+P3V p,p(PsV p e P3G),
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where P, =HorV (i =1,2,3) and E, F, G are in X(M). Then, the following
fundamental equations for conformal submersion with horizontal distribution can
be obtained.

Theorem 1. Let X,Y,Z be horizontal and U, V., W wvertical vector fields in M.
Then,

VR(U, V)W = RYWY(U, V)W + Ty TyW — Ty Ty W.

HRU, V)W =H(VvT)uW — H(VuT)vW — Trorvy vy W-
VR(U, V)X == H(VVT)UX - V(VUT)VX - TTO'I”(V)(U,V)X-
HR(U, V)X = RVYU V)X + TyTy X — TyTy X.

VR(U,X)V = RV"™W(U, X))V — Ty AxV — AxTy V.

HR(U, X)V = H(VXT)UV — H(VUA)XV — AAXUV + TTUXV

~Tror(vyv,x)V — Aror(vyw,x)V-

VR(U,X)Y =V(VxT)yY —V(VuA)xY — AsvY + TryxY
~Tror(vyv,x)Y — Aror(vyw,x)Y-

HR(U,X)Y = RV (U, X)Y — Ty AxY + AxTyY.

VR(X,Y)U = R""YV(X, YU 4+ Ay AxU — Ax Ay U.

HR(X,Y)U =H(VyA)xU —H(VxA)yyU +TayyU — Ta, xU
~Tror(vy(x, 1)U — Aror(vy(x,v) U

VR(X,Y)Z =V(VyA)xZ —V(VxAyZ +TayyZ —TayxZ
~Tror(v)(X,Y)Z = ATor(v)(x,Y)Z-

HR(X,Y)Z = RPN (X Y)Z + Ay AxZ — Ax Ay Z.

Proof. Proof follows directly from the definition of conformal submersion with
horizontal distribution.

4 (Geodesics

In this section, for a conformal submersion with horizontal distribution we prove
a necessary and sufficient condition for 7 o o to be a geodesic of B when o is
a geodesic of M. Let M, B be Riemannian manifolds and 7 : M — B be a
submersion. Let E be a vector field on a curve o in M and the horizontal part
‘H(E) and the vertical part V(E) of E be denoted by H and V, respectively.
moo is a curve in B and E, denote the vector field 7. (E) = 7. (H) on the curve
7 oo in B. E, denote the covariant derivative of F, and is a vector field on
7 o 0. The horizontal lift to ¢ of E’ is denoted by E’. In [7], O’Neil compared
the geodesics for semi-Riemannian submersion and Abe and Hasegawa [2]| have
done it for affine submersion with horizontal distribution.

Let 7 : (M, V,gm) — (B, V*, g) be a conformal submersion with horizon-
tal distribution H(M). Throughout this section we assume V is torsion free.
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A curve o is a geodesic if and only if H(c”) = 0 and V(¢”) = 0, where ¢” is
the covariant derivative of ¢’. So, first we obtain the equations for H(E’) and
V(E') for a vector field E on the curve ¢ in M for a conformal submersion with
horizontal distribution.

Theorem 2. Let w: (M, V,g,,) — (B, V*, gp) be a conformal submersion with
horizontal distribution, and let E = H +V be a vector field on curve o in M.
Then, we have

T (H(E")) = BL + 1. (AxU + AxV + Ty V) — e*m.(grad,¢) gy (7. X, 7. H)
+X () H + H(p)m X,
V(E') = AxH + Ty H +V(V'),

where X = H(c") and U = V(d').

Proof. Consider a neighborhood of an arbitrary point o(t) of the curve o in M.
By choosing the base fields Wh,....,W,,, where n = dimB, near 7(c(t)) on B
and an appropriate vertical base field near o(t), we can derive

Z (¢ Wi)r(o(t)) + Z (Vv Wi ro)) (4)

Z r(t o) T Z (M4, Wi)) (o (1))
+7T*((AHU) (AxV) + (TUV))‘fr(U(t))7 (5)

where W; be the horizontal lift of W;, for i = 1,2,...n and ri(t) ( respectively
s¥(t)) be the coefficients of H (respectively of X ) in the representation using
the base fields W; restricted to o.

Since 7 is a conformal submersion with horizontal distribution

T (H(VuX)) = Vo inymX + X(¢)m H + H(p)m. X
- 2¢7T* (gradﬂ'd))gb(ﬂ-*X; W*H)

Hence

T (H(E")) = BL + 1. (AxU + AxV + Ty V) — e* . (grad,¢) gy (7. X, 7. H)
+X(p)m H + H(¢)m X.

Similarly we can prove V(E') = AxH + Ty H + V(V').

For o we have
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Corollary 2. Let o be a curve in M with X = H(c') and U = V(o’). Then,

T.(H(0")) = 0! + 1.2AxU 4+ TyU) — 2?7, (grad.¢) gy (7. X, 7. X)
+2X (¢)m, X, (6)
V(O’H) = AxX + TUX + V(U’), (7)

where o) denotes the covariant derivative of (moo)’.

Now for a conformal submersion with horizontal distribution we prove a
necessary and sufficient condition for 7 o ¢ to become a geodesic of B when o is
a geodesic of M.

Theorem 3. Let m: (M,V,gmn) — (B, V* gy) be a conformal submersion with
horizontal distribution. If o is a geodesic of M, then wo o is a geodesic of B if
and only if

1.(2AxU + TyU)) + 2X (¢)m. X = m.(grad.¢) || X ||,
where X = H(o’) and U =V(c’) and || X ||*= gm(X, X).

Proof. Since o is a geodesic on M from the Eq. (6)

o = (grad.9) | X ||* —m(2AxU + TyU) — 2dé(X)m. X.
Hence, 7o o is a geodesic on B if and only if
T (2AxU + TyU)) + 2X (¢)7. X = 7o (grad.) || X ||* .

Remark 1. If o is a horizontal geodesic (that is, o is a geodesic with V(¢’) = 0),
then 7 o o is a geodesic if and only if 2X (¢)m,. X = 7.(grad.¢) || X ||*.

5 Completeness of Statistical Connections

Completeness of connection on statistical manifolds is an interesting area of
study in information geometry. In [11], Nagouchi started the study of the com-
pleteness of the statistical connection on a certain type of statistical manifolds
(In his study, he referred this kind of statistical manifolds as “special” statistical
manifolds). In [12], Barbara Opozda obtained some results on completeness of
statistical connection. In this section, we give a condition for completeness of
statistical connection for conformal submersion with horizontal distribution.

For a torsion-free affine connection V and a semi-Riemannian metric g,,, we
say (M, V, g,) is a statistical manifold if Vg, is a symmetric (0, 3)- tensor. For
statistical manifolds the dual connections are also torsion-free [1].
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Definition 5. Let (M, V, g,,) and (B, V*, g) be statistical manifolds, 7 : M —
B be a conformal submersion with horizontal distribution and a be a smooth
curve in B. Let o be the tangent vector field of a and (') be its horizontal lift.
Define the horizontal lift of the smooth curve o as the integral curve o on M of

(a).
Now, we have

Proposition 1. Let (M, V,g,,) and (B,V*, g,) be statistical manifolds, 7 :
M — B be a conformal submersion with horizontal distribution such that
AzZ = 0 for all horizontal vector fields Z. Then, every horizontal lift of a
geodesic of B is a geodesic of M if and only if 2X (¢)m. X = m.(grad,¢) || X ||?,
where X is the horizontal part of the tangent vector field of the horizontal lift of
the geodesic on B.

Proof. Let o be a geodesic on B, ¢ be the horizontal lift of o. Then, we have
moo = aand o'(t) = (¢/(t). Let X = H(o'(t)) and U = V(o'(t)), clearly
X = (&/(t)) and U = 0. Then, from the Egs. (6) and (7)

T (H(o")) = o — 7w (grad,¢) | X ||* +2X (¢)7m. X.
V(UH) = AxX

Since « is a geodesic and Ax X = 0 we have, 0" = 0 if and only if 2X (¢)m. X =
7.(grad.) || X ||>. That is, every horizontal lift of a geodesic of B is a geodesic
of M if and only if 2X (¢)m. X = 7. (grad.o) || X |*.

Theorem 4. Let (M, V,g,,) and (B,V*,gp) be statistical manifolds, = : M —
B be a conformal submersion with horizontal distribution such that AzZ =
0 for all horizontal vector fields Z. Then, V* is geodesically complete if V is
geodesically complete and 2X (¢)me X = m.(grad,¢) | X ||?, where X is the
horizontal part of the tangent vector field of the horizontal lift of the geodesic
on B.

Proof. Let a be a geodesic of B and & be its horizontal lift to M, by Proposition
(1) & is a geodesic on M. Since V is geodesically complete, & can be defined on
the entire real line. Then, the projected curve of the extension of & is a geodesic
and is the extension of «, that is V* is geodesically complete.
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Abstract. We define the notion of a measure family: a pre-cosheaf of
finite measures over a finite set; every joint measure on a product of finite
sets has an associated measure family. To each measure family there
is an associated index, or “Euler characteristic”, related to the Tsallis
deformation of mutual information. This index is further categorified
by a (weighted) simplicial complex whose topology retains information
about the correlations between various subsystems.

1 Introduction

Questions relating to the independence of random variables have a deep rela-
tionship to questions of topology and geometry: given the data of a multipartite,
a.k.a. “joint” measure, there is an emergent “space” that encodes the relationship
between various subsystems. Topological invariants of this emergent space cap-
ture non-trivial correlations between different subsystems: this includes numer-
ical invariants—such as the Euler characteristic—which roughly indicate how
much information is shared characteristic, as well as “higher” invariants—such
as cohomology—that capture what information is shared. In [11] these ideas were
explored, using a language engineered for an audience interested in the purely
quantum regime, i.e., “non-commutative” measure theory. This note provides a
sketch of the categorical underpinnings of these ideas in the opposite “classical”
or “commutative” extreme, focusing on finite atomic measure spaces for brevity.
Some of these underpinnings are partly outlined in the recorded talks [12,13].

The majority of this note is dedicated to formalizing the working parts that
underlie the “commutative diagram” in Fig. 1. The word “space” is taken to mean
a (semi-)simplicial measure or a (weighted semi-)simplicial set, and the grayed
out mystery box indicates a suspected “weighted” version of cohomology that
may provide a novel measure of shared information. The classical picture that
is presented here is unified with the quantum picture of [11] using the language
of von Neumann algebras.! A reader wishing to learn how this fits into a larger
picture should consult [11] and the talks [12,13]. The upcoming paper [9] is a
related spin-off of the categorical and W*-algebraic underpinnings of some ideas
discussed here.

1 Qee [15] for a precise categorical equivalence between commutative W*-algebras and
(localizable) measurable spaces.

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
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Fig. 1. A “commutative diagram” summarizing the big picture behind the definitions
and results stated in this note.

Our categorical perspective of measures on finite sets has close ties to the
work of Baez, Fritz, and Leinster [2,3], and the quantum mechanical general-
ization is related to the work of Parzygnat [14]. The homotopical or homologi-
cal perspective has strong relations to the work of Baudot and Bennequin [4];
Vigneaux [18]; Sergeant-Perthuis [16]; and Drummond-Cole, Park, and Ter-
illa [7,8]. Ideas around the index (Sect.4.3) bear relation to the work of Lang,
Baudot, Quax, and Forré [10].

2 Preliminaries

In this note, a (finite) measure p consists of the data of a finite set (2, and
a function Subset(2,) — R that evaluates to zero on () and satisfies the
additivity condition: the value on a subset U reduces to the sum of its evaluation
on points of U. In a mild abuse of notation, we use u to denote the function
Subset(f2,) = R>o. We allow for measures to be identically zero on a set, and
also allow for the empty measure: the unique measure on the empty set.?

If p and v are measures with 2, = 2, = 2 we write p < v if u(U) < v(U)
for all U C (2. Given a measure y, and a function between sets f: 2, — I, the
pushforward measure f p is the measure with set {2y , =T’ and (f W) =

,u[ifl(U)] for any U CT'. When f_p = v we call f measure-preserving.

2 The empty measure corresponds to the zero expectation value on the zero algebra.
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3 The Category of Finite Measures

Definition 1. Meas is the category with objects given by finite measures, and a
morphism f: pu — v defined by an underlying function on sets f: 2, — §2, such
that i*u <.

Remark 1. Meas utilizes the relation < to define a larger class of morphisms
than the similarly named category in the work of Baez-Fritz-Leinster [2,3], who
define morphisms as measure-preserving functions. Nevertheless, isomorphisms
are measure-preserving bijections (Lemma 2); so the notion of isomorphism coin-
cides with that of Baez-Fritz-Leinster.

Lemma 1. Meas has:

1. A symmetric monoidal structure induced by the product of underlying sets:
Let jn and v be measures, then u ® v is the product measure on §2, x (2,

2. Coproduct B induced by the disjoint union [] of sets: for any measures p
and v, 2,m, = 2,112, and (nBv)(U) = p(UN2,)+v(UNIL,) for any
UC,1102.

Proof. Verifying that ® provides a symmetric monoidal structure is straight-
forward. To see that B is a coproduct, note that the inclusion map ¢,: 2, —
2, 1192, defines a valid morphism ¢,: p — pBv as (v, )«p = pB0g, < pBuv.
Similarly, ¢, : 2, — 2, ][ {2, defines a morphism ¢, : ¥ — p H v. The universal
property follows in part by the fact that ][] is a coproduct for sets.

Remark 2. The operation ® is a categorical product in Meas, but it is not a
categorical product in the quantum-classical enlargement of Meas.

Remark 3. The fact that H is a coproduct relies on the presence of non-
probability measures and maps that are not measure preserving.3

3.1 The Rig of Isomorphism Classes of Measures
The following lemma is straightforward.

Lemma 2. f: u — v is an isomorphism if and only if f is a bijection and
fp=v.

Remark 4. One can generalize the class of morphisms in Meas to the class of
stochastic maps that manifest algebraically as completely positive contractions
on x-algebras of C-valued random variables. Even in this situation, isomorphisms
would still be measure-preserving bijections.

3 If one works with probability measures and measure-preserving maps, B instead
manifests as an operadic structure which encapsulates the ability to take convex
linear combinations of probability measures; this is the approach taken by [6].
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The collection of isomorphism classes [Meas| of Meas is a set.? Moreover,
letting [u] denote the isomorphism class of an object u, we can define binary
operations + and - by: [u] + [v] = [p B v] and [u] - [v] = [p ® v] for any pair
of objects u and v. These equip [Meas| with the structure of a commutative rig:
a commutative ring dropping the condition that there are additive inverses (a
ring without “negatives”). The empty measure () provides an additive (+) unit,
and the unit measure on the one-point set provides a multiplicative (-) unit.

The following theorem is a take on the observations of Baez-Fritz-Leinster
in [2].

Theorem 1. Let O(C) denote the ring of holomorphic functions on C. There
is a unital homomorphism dim: [Meas] — O(C), defined on any [p] by:
dim[u]: C — C
g Y p({wh)? = dimg[u],

wEeR,
where, for any XA >0, A% :=1lim, o A% i.e., A\ =1 if A > 0 and 0° := 0.

Remark 5. There is a reflective full subcategory of Meas generated by “faithful”
measures: measures g such that p({w}) > 0 for all w € £2,,. The homomorphism
dim is an isomorphism on this full subcategory (see [2]).

Remark 6. An extension of Theorem 1 to finite-dimensional quantum-classical
systems appears in the constructions of [11, Sect. 8.4.1].

Remark 7. The parameter ¢ in dim, has several potential interpretations:

1. As a character of a continuous complex irreducible representation of the mul-
tiplicative group Rs¢: every such representation is of the form mg,: Ryo —
Aut(C) for some ¢ € C such that mgy(A\)z = Az.

2. As a (negative) inverse temperature: dim_glu] is the partition function
Zwe 2, e PEW) associated to the classical system with state space 2, and
energy function E: 2, — R given by F(w) := log[u({w})].

3. As the parameter defining a g-norm for an L9 space.

A detailed justification for the first and third interpretation is left for future
work. The second interpretation is is also discussed in [2].

4 Measure Families

Definition 2. A measure family u is the data of a finite set F, and a functor

Subset(P,) — Meas,

4 It is easy to write down a natural bijection of [Meas] with 177 (R>0)*™, taking
RXO .= {x} to correspond to the empty measure. This observatlon can be used to
equip [Meas] with a topology as in [3].
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where Subset(B,) is the category with objects given by subsets of P,, and a unique
morphism T — V if and only if T C V. Analogous to the situation for measures,
we abuse notation and denote the functor by .

Given a function between finite sets f: B, — @, we can define the push-
forward of a measure family p as the measure family i* p: Subset(Q) — Meas
defined by

(f, W(T) = ulf (D)

for every T' C Q. Given two measure families p and v with P = F, = R,, we say
u < v if and only if 7y = 27 and u(T') < v(T') for every T C P.

Definition 3. The category of measure families MeasFam is the category with
objects given by measure families, and a morphism f: u— v defined by a func-
tion f: By — P, such that Lf <wv.

There are various versions of “lifts” of the monoidal operations H and ® on
Meas to monoidal operations on MeasFam; the following versions will be useful.

Definition 4. Let u and v be measure families, then uHBv and p®v are mea-
sure families with P,m and P, g both defined as the disjoint union P, [ P,.
On a subset T C P, [P, we define (WBv)(T) = uwT NPF,)BVTNPR), and
(M V)(T) = wT NPF) v(T NPR). The definitions on inclusions follow from
the obvious induced morphisms.

Definition 5. Let u be a measure family, and T C P,; then p|p: Subset(T) —
Meas denotes the obuvious restriction. We say p is a 2-measure if u(0) is the
empty measure and there is an isomorphism p —— EE]peP M p)-

2-measures are measure families where all global data is given by gluing together
local data.® This is a categorified notion of the additivity condition for a measure.

4.1 2-Measures from Measures

Let p be a measure, then there is a measure family R*: Subset(f2,) — Meas
given by the restriction of u to subsets of P. On objects, it acts in the following
way: for T C (2, nonempty, R*T := pu|r, where u|r the restriction of p to
subsets of T'; to the empty set we assign the empty measure. To every inclusion
T C V, it assigns the morphism R*T — R*V whose underlying map is the
inclusion map 1" — V. The additivity condition on a measure requires that for
any subset T' C P the identity map T — T 