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6th Geometric Science of Information Conference
(GSI’23): From Classical To Quantum Information

Geometry

Saint-Malo, France, Pierre Louis Moreau de Maupertuis’ Birthplace

We are celebrating the 10th anniversary of the launch of the GSI conferences cycle,
which were initiated in 2013. As for GSI’13, GSI’15, GSI’17, GSI’19 and GSI’21
(https://franknielsen.github.io/GSI/), the objective of this 6th edition of the SEE GSI
conference, hosted in Saint-Malo, birthplace of Pierre Louis Moreau de Maupertuis, is
to bring together pure and appliedmathematicians and engineers with a common interest
in geometric tools and their applications for information analysis. GSI emphasizes the
active participation of young researchers to discuss emerging areas of collaborative
research on the topic of “Geometric Science of Information and its Applications”. In
2023, GSI’s main theme was “FROM CLASSICAL TO QUANTUM INFORMATION
GEOMETRY”, and the conference took place at the Palais du Grand Large, in Saint-
Malo, France.

The GSI conference cycle was initiated by the Brillouin Seminar Team as early as
2009 (http://repmus.ircam.fr/brillouin/home). The GSI’21 event was motivated by the
continuity of the first initiative, launched in 2013 (https://web2.see.asso.fr/gsi2013), at
Mines ParisTech, consolidated in 2015 (https://web2.see.asso.fr/gsi2015) at Ecole Poly-
technique, and opened to new communities in 2017 (https://web2.see.asso.fr/gsi2017) at
Mines ParisTech, 2019 (https://web2.see.asso.fr/gsi2019) at ENAC Toulouse and 2021
(https://web2.see.asso.fr/gsi2021) at Sorbonne University. We mention that in 2011, we
organized an Indo-French workshop on the topic of “Matrix Information Geometry”
(https://www.lix.polytechnique.fr/~nielsen/MIG/) that yielded an edited book in 2013,
and in 2017, collaborated at a CIRM seminar in Luminy on the event TGSI’17 “Topolog-
ical & Geometrical Structures of Information” (https://fconferences.cirm-math.fr/1680.
html).

GSI satellite events were organized in 2019 and 2020 as FGSI’19 “Foundation
of Geometric Structures of Information” in Montpellier (https://fgsi2019.sciencesconf.
org/) and Les Houches Seminar SPIGL’20 “Joint Structures and Common Foundations
of Statistical Physics, Information Geometry and Inference for Learning” (https://frankn
ielsen.github.io/SPIG-LesHouches2020/).

The technical program of GSI’23 covered all the main topics and highlights in
the domain of the “Geometric Science of Information” including information geometry
manifolds of structureddata/information and their advanced applications.TheseSpringer
LNCS proceedings consist solely of original research papers that have been carefully
single-blind peer-reviewed by at least two or three experts. 125 of 161 submissions were
accepted for this volume. Accepted contributions were revised before acceptance.

Like GSI’13, GSI’15, GSI’17, GSI’19, and GSI’21, GSI’23 addresses inter-relations
between different mathematical domains such as shape spaces (geometric statistics on
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manifolds and Lie groups, deformations in shape space, ...), probability/optimization
and algorithms on manifolds (structured matrix manifolds, structured data/information,
...), relational and discrete metric spaces (graph metrics, distance geometry, relational
analysis,...), computational and Hessian information geometry, geometric structures in
thermodynamics and statistical physics, algebraic/infinite-dimensional/Banach infor-
mation manifolds, divergence geometry, tensor-valued morphology, optimal transport
theory, manifold and topology learning, ... and applications such as geometries of
audio-processing, inverse problems and signal/image processing. GSI’23 topics were
enriched with contributions from Lie Group Machine Learning, Harmonic Analysis
on Lie Groups, Geometric Deep Learning, Geometry of Hamiltonian Monte Carlo,
Geometric & (Poly)Symplectic Integrators, Contact Geometry & Hamiltonian Control,
Geometric and structure-preserving discretizations, Probability Density Estimation &
Sampling in High Dimension, Geometry of Graphs and Networks and Geometry in
Neuroscience & Cognitive Sciences.

At the turn of the century, new and fruitful interactions were discovered between
several branches of science: Information Sciences (information theory, digital commu-
nications, statistical signal processing), Mathematics (group theory, geometry and topol-
ogy, probability, statistics, sheaf theory, ...) and Physics (geometric mechanics, thermo-
dynamics, statistical physics, quantum mechanics, ...). The GSI biannual international
conference cycle is an effort to discover joint mathematical structures to all these disci-
plines by elaboration of a “General Theory of Information” embracing physics science,
information science, and cognitive science in a global scheme.

The GSI’23 conference was structured in 25 sessions of more than 120 papers and
a poster session:

• Geometry and Machine Learning

• Geometric Green Learning - Alice Barbara Tumpach, Diarra Fall & Guillaume
Charpiat

• Neurogeometry Meets Geometric Deep Learning - Remco Duits & Erik
Bekkers, Alessandro Sarti

• Divergences in Statistics & Machine Learning - Michel Broniatowski &
Wolfgang Stummer

• Divergences and Computational Information Geometry

• Computational Information Geometry and Divergences - Frank Nielsen &
Olivier Rioul

• Statistical Manifolds and Hessian Information Geometry - Michel Nguiffo
Boyom

• Statistics, Topology and Shape Spaces

• Statistics, Information and Topology - Pierre Baudot & Grégoire Seargeant-
Perthuis

• Information Theory and Statistics - Olivier Rioul
• Statistical Shape Analysis and more Non-Euclidean Statistics - Stephan

Huckemann & Xavier Pennec
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• Probability and Statistics on Manifolds - Cyrus Mostajeran
• Computing Geometry & Algebraic Statistics - Eliana Duarte & Elias Tsigaridas

• Geometry & Mechanics

• Geometric and Analytical Aspects of Quantization and Non-Commutative
Harmonic Analysis on Lie Groups - Pierre Bieliavsky & Jean-Pierre Gazeau

• Deep Learning: Methods, Analysis and Applications to Mechanical Systems
- Elena Celledoni, James Jackaman, Davide Murari and Brynjulf Owren

• Stochastic Geometric Mechanics - Ana Bela Cruzeiro & Jean-Claude Zambrini
• Geometric Mechanics - Géry de Saxcé & Zdravko Terze
• New trends in Nonholonomic Systems - Manuel de Leon & Leonardo Colombo

• Geometry, Learning Dynamics & Thermodynamics

• Symplectic Structures of Heat & Information Geometry - Frédéric Bar-
baresco & Pierre Bieliavsky

• Geometric Methods in Mechanics and Thermodynamics - François Gay-
Balmaz & Hiroaki Yoshimura

• Fluid Mechanics and Symmetry - François Gay-Balmaz & Cesare Tronci
• Learning of Dynamic Processes - Lyudmila Grigoryeva

• Quantum Information Geometry

• The Geometry of Quantum States - Florio M. Ciaglia
• Integrable Systems and Information Geometry (From Classical to Quantum)

- Jean-Pierre Francoise, Daisuke Tarama

• Geometry & Biological Structures

• Neurogeometry - Alessandro Sarti, Giovanna Citti & Giovanni Petri
• Bio-Molecular Structure Determination by Geometric Approaches - Antonio

Mucherino
• Geometric Features Extraction in Medical Imaging - Stéphanie Jehan-

Besson & Patrick Clarysse

• Geometry & Applications

• Applied Geometric Learning - Pierre-Yves Lagrave, Santiago Velasco-Forero &
Teodora Petrisor

June 2023 Frank Nielsen
Frédéric Barbaresco

The original version of the book was revised: the book was inadvertently published with a typo
in the frontmatter. This has been corrected. The correction to the book is available at https://doi.
org/10.1007/978-3-031-38271-0_62

https://doi.org/10.1007/978-3-031-38271-0_62
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Information Theory with Kernel Methods

Francis Bach

Inria, Ecole Normale Supérieure

Abstract. Estimating and computing entropies of probability distribu-
tions are key computational tasks throughout data science. In many sit-
uations, the underlying distributions are only known through the expec-
tation of some feature vectors, which has led to a series of works within
kernel methods. In this talk, I will explore the particular situation where
the feature vector is a rank-one positive definite matrix, and show how the
associated expectations (a covariance matrix) can be used with informa-
tion divergences from quantum information theory to draw direct links
with the classical notions of Shannon entropies.

Reference

1. Francis, B.: Information theorywith kernelmethods. To appear IEEETrans. Inf. Theor
(2022). https://arxiv.org/pdf/2202.08545

https://arxiv.org/pdf/2202.08545


From Alan Turing to Contact Geometry: Towards
a “Fluid Computer”

Eva Miranda

Universitat Politècnica de Catalunya and Centre de Recerca Matemàtica

Abstract. Is hydrodynamics capable of performing computations?
(Moore 1991) Can a mechanical system (including a fluid flow) simulate
a universal Turing machine? (Tao, 2016)

Etnyre and Ghrist unveiled a mirror between contact geometry and
fluid dynamics reflecting Reeb vector fields as Beltrami vector fields.
With the aid of this mirror, we can answer in the positive the questions
raised by Moore and Tao. This is a recent result that mixes up techniques
fromAlan TuringwithmodernGeometry (contact geometry) to construct
a “Fluid computer” in dimension 3. This construction shows, in particular,
the existence of undecidable fluid paths. I will also explain applications
of this mirror to the detection of escape trajectories in Celestial Mechan-
ics (for which I’ll need to extend the mirror to a singular set-up). This
mirror allows us to construct a tunnel connecting problems in Celestial
Mechanics and Fluid Dynamics.

References

1. Robert, C., Eva, M., Daniel, P.-S., Francisco, P.: Constructing turing complete euler
flows in dimension 3. Proc. Natl. Acad. Sci. USA 118(19), 9. Paper No. e2026818118
(2021)

2. Etnyre, J., Ghrist, R.: Contact topology and hydrodynamics: I. Beltrami fields and
the Seifert conjecture. Nonlinearity 13, 441 (2000)

3. Miranda, E., Oms, C., Peralta-Salas, D.: On the singular Weinstein conjecture and
the existence of escape orbits for b-Beltrami fields. Commun. Contemp. Math. 24(7),
25. Paper No. 2150076 (2022)

4. Tao, T.: Finite time blowup for an averaged three-dimensional Navier–Stokes
equation. J. Am. Math. Soc. 29, 601–674 (2016)

5. Turing, A.: On computable numbers, with an application to the entscheidungsprob-
lem. Proc. London Math. Soc. s2–42(1), 230–265 (1937). DOI:10.1112/plms/s2-42.
1.230 ISSN 0024-6115

https://doi.org/10.1112/plms/s2-42.1.230


Transverse Poisson Structures to Adjoint Orbits
in a Complex Semi-simple Lie Algebra

Hervé Sabourin

Director for Strategic projects of the Réseau Figure® (network of 31 universities)
Former Regional Director of the A.U.F. (Agence Universitaire de la Francophonie)

for the Middle East
Former Vice-President of the University of Poitiers, France

Abstract. The notion of transverse Poisson structure has been introduced
by Alan Weinstein stating in his famous splitting theorem that any Pois-
son Manifold M is, in the neighbourhood of each point m, the product of
a symplectic manifold, the symplectic leaf S at m, and a submanifold N
which can be endowed with a structure of Poisson manifold of rank 0 at
m. N is called a transverse slice at M of S. When M is the dual of a com-
plex Lie algebra g equipped with its standard Lie-Poisson structure, we
know that the symplectic leaf through x is the coadjoint G. x of the adjoint
Lie group G of g. Moreover, there is a natural way to describe the trans-
verse slice to the coadjoint orbit and, using a canonical system of linear
coordinates (q1, ….., qk), it follows that the coefficients of the transverse
Poisson structure are rational in (q1, ….., qk). Then, one can wonder
for which cases that structure is polynomial. Nice answers have been
given when g is semi-simple, taking advantage of the explicit machinery
of semi-simple Lie algebras. One shows that a general adjoint orbit can
be reduced to the case of a nilpotent orbit where the transverse Poisson
structure can be expressed in terms of quasihomogeneous polynomials.
In particular, in the case of the subregular nilpotent orbit the Poisson
structure is given by a determinantal formula and is entirely determined
by the singular variety of nilpotent elements of the slice.

References

1. Sabourin, H.: Sur la structure transverse à une orbite nilpotente adjointe. Canad. J.
Math. 57(4), 750–770 (2005)

2. Sabourin, H.: Orbites nilpotentes sphériques et représentations unipotentes
associées : Le cas SL(n). Represent. Theor. 9, 468–506 (2005)

3. Sabourin, H.:Mémoire d’HDR,Quelques aspects de laméthode des orbites en théorie
de Lie, Décembre (2005)

4. Damianou, P., Sabourin, H., Vanhaecke, P.: Transverse poisson structures to adjoint
orbits in semi-simple Lie algebras, Pacific J. Math. 232, 111–139 (2007)
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5. Sabourin, H., Damianou, P., Vanhaecke, P.: Transverse poisson structures: the sub-
regular and the minimal orbits, differential geometry and its applications. Proc. Conf.
Honour Leonhard Euler, Olomouc, August (2007)

6. Sabourin, H., Damianou, P., Vanhaecke, P.: Nilpotent orbits in simple Lie algebras and
their transverse poisson structures. Am. Inst. Phys. Conf. Proc. Ser. 1023, 148–152
(2008)



Statistics Methods for Medical Image Processing
and Reconstruction

Diarra Fall

Institut Denis Poisson, UMR CNRS, Université d’Orléans & Université de Tours,
France

Abstract. In this talk we will see how statistical methods, from the sim-
plest to the most advanced ones, can be used to address various problems
in medical image processing and reconstruction for different imaging
modalities. Image reconstruction allows the images in question to be
obtained, while image processing (on the already reconstructed images)
aims at extracting some information of interest. We will review several
statistical methods (mainly Bayesian) to address various problems of this
type.

Keywords: Image processing · Image reconstruction · Statistics ·
Frequentist · Bayesian · Parametrics · Nonparametrics

References

1. Fall, M.D., Dobigeon, N., Auzou, P.: A bayesian estimation formulation to voxel-
based lesion symptom mapping. In: Proceedings of European Signal Processing
Conference (EUSIPCO), Belgrade, Serbia, September (2022)

2. Fall, M.D.: Bayesian nonparametrics and biostatistics: the case of PET imaging. Int.
J. Biostat. (2019)

3. Fall, M.D., Lavau, E., Auzou, P.: Voxel-based lesion-symptom mapping: a non-
parametric bayesian approach. In: Proceedings of IEEE International Conference
on Acoustics, Speech and Signl Processing (ICASSP) (2018)



Algebraic Statistics and Gibbs Manifolds

Bernd Sturmfels

MPI-MiS Leipzig, Germany

Abstract. Gibbs manifolds are images of affine spaces of symmetric
matrices under the exponential map. They arise in applications such as
optimization, statistics and quantum physics, where they extend the ubiq-
uitous role of toric geometry. The Gibbs variety is the zero locus of all
polynomials that vanish on the Gibbs manifold. This lecture gives an
introduction to these objects from the perspective of Algebraic Statistics.

References

1. Pavlov, D., Sturmfels, B., Telen, S.: Gibbs manifolds. arXiv:2211.15490
2. Sturmfels, B., Telen, S., Vialard, F.-X., von Renesse, M.: Toric geometry of entropic

regularization. arXiv:2202.01571
3. Sullivant, S.: Algebraic Statistics. graduate studies in mathematics, Am. Math. Soc.

Providence, RI, 194 (2018)
4. Huh, J., Sturmfels, B.: Likelihood geometry, in combinatorial algebraic geometry.

In: Conca, A., et al. Lecture Notes in Mathematics, vol. 2108, Springer, pp. 63–117
(2014)

5. Geiger, D., Meek, C., Sturmfels, B.: On the toric algebra of graphical models, Annal.
Stat. 34, 1463–1492 (2006)
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Learning of Dynamic Processes

Juan-Pablo Ortega

Head, Division of Mathematical Sciences, Associate Chair (Faculty), School of
Physical and Mathematical Sciences, Nanyang Technological University, Singapore

Abstract. The last decade has seen the emergence of learning techniques
that use the computational power of dynamical systems for information
processing. Some of those paradigms are based on architectures that are
partially randomly generated and require a relatively cheap training effort,
which makes them ideal in many applications. The need for a mathemat-
ical understanding of the working principles underlying this approach,
collectively known as Reservoir Computing, has led to the construc-
tion of new techniques that put together well-known results in systems
theory and dynamics with others coming from approximation and sta-
tistical learning theory. In recent times, this combination has allowed
Reservoir Computing to be elevated to the realm of provable machine
learning paradigms and, as we will see in this talk, it also hints at vari-
ous connections with kernel maps, structure-preserving algorithms, and
physics-inspired learning.

References

1. Gonon, L., Grigoryeva, L., Ortega, J.-P.: Approximation bounds for random neural
networks and reservoir systems. To appear in The Annals of Applied Probability.
Paper (2022)

2. Cuchiero, C., Gonon, L., Grigoryeva, L., Ortega, J.-P., Teichmann, J.: Expressive
power of randomized signature. NeurIPS. Paper (2021)

3. Cuchiero, C., Gonon, L., Grigoryeva, L., Ortega, J.-P., Teichmann, J.: Discrete-time
signatures and randomness in reservoir computing. IEEE Trans. Neural Netw. Learn.
Syst. 33(11), 6321–6330. Paper (2021)

4. Gonon, L., Ortega, J.-P.: Fading memory echo state networks are universal. Neural
Netw. 138, 10–13. Paper (2021)

5. Gonon, L., Grigoryeva, L., Ortega, J.-P.: Risk bounds for reservoir computing. J.
Mach. Learn. Res. 21(240), 1–61. Paper (2020)

6. Gonon, L., Ortega, J.-P.: Reservoir computing universality with stochastic inputs.
IEEE Trans. Neural Netw. Learn. Syst. 31(1), 100–112. Paper (2020)

7. Grigoryeva, L., Ortega, J.-P.: Differentiable reservoir computing. J. Mach. Learn.
Res. 20(179), 1–62. Paper (2019)



xxvi J.-P. Ortega

8. Grigoryeva, L., Ortega, J.-P.: Echo state networks are universal. Neural Netw. 108,
495–508. Paper (2018)

9. Grigoryeva, L., Ortega, J.-P.: Universal discrete-time reservoir computers with
stochastic inputs and linear readouts using non-homogeneous state-affine systems.
J. Mach. Learn. Res. 19(24), 1–40. Paper (2018)



Pierre Louis Moreau de Maupertuis, King’s Musketeer
Lieutenant of Science and Son of a Saint-Malo Corsaire

« Héros de la physique, Argonautes nouveaux/Qui franchissez les monts, qui traversez
les eaux/Dont le travail immense et l’exacte mesure/De la Terre étonnée ont fixé la
figure./Dévoilez ces ressorts, qui font la pesanteur./Vous connaissez les lois qu’établit
son auteur. »… [Heroes of physics, newArgonauts/Who cross themountains, who cross
the waters/Whose immense work and the exact measure/Of the astonished Earth fixed
the figure./Reveal these springs, which make gravity./You know the laws established by
its author.] - Voltaire on Pierre Louis Moreau de Maupertuis

Son of René Moreau de Maupertuis (1664–1746) a corsair and ship owner from Saint-
Malo, director of the Compagnie des Indes and knighted by Louis XIV, Maupertuis was
offered a cavalry regiment at the age of twenty. His father, with whom he had a very
close relationship, thus opened the doors of the gray musketeers to him, of which he
became lieutenant. Between 1718 and 1721, Maupertuis devoted himself to a military
career, first joining the company of gray musketeers, then a cavalry regiment in Lille,
without abandoning his studies. In 1718,Maupertuis entered the graymusketeers, writes
Formey in his Éloge (1760), but he carried there the love of study, and above all the taste
for geometry. However, his profession as a soldier was not to last long and at the end
of 1721, the learned Malouin finally and permanently went to Paris, as he could not last
long in the idleness of the state of a former military officer in time of peace, and soon
he took leave of it. This moment marks the official entry of Maupertuis into Parisian
intellectual life, halfway between the literary cafés and the benches of the Academy. He
nevertheless preferred to abandon this military career to devote himself to the study of
mathematics, an orientation crowned in 1723 by his appointment as a member of the
Academy of Sciences.

He then published various works of mechanics and astronomy. In 1728, Mauper-
tuis visited London, a trip which marked a decisive turning point in his career. Elected
associate member of the Royal Society, he discovered Newton’s ideas, in particular uni-
versal attraction, of which he was to become an ardent propagandist in France, which
D’Alembert, in the Discourse preliminary to the Encyclopedia, did not miss. Academi-
cian at 25, Pierre-Louis Moreau de Maupertuis led a perilous expedition to Lapland to
verify Newton’s theory and became famous as “the man who flattened the earth”. Called
by Frederick II to direct the Berlin Academy of Sciences, he was as comfortable in the
royal courts as in the Parisian salons.

The rejection of the Newtonian approach, as well as the distrust of the Cartesian
approach, led Maupertuis to the elaboration of a cosmology different from both the
finalismof some and the anti-finalismof others. It is a cosmology that cannot be attributed
to any particular tradition, and that must rather be read as an independent and creative
elaboration. All of Maupertuis’ cosmology is based on a physical principle which he
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was the first to formulate, namely the principle of least action, the novelty and generality
of which he underlines on several occasions.

His “principle of least action” constitutes an essential contribution to physics to this
day, a fundamental principle in classical mechanics. It states that the motion of a particle
between two points in a conservative system is such that the action integral, defined as the
integral of the Lagrangian over the time interval of motion, is minimized. Maupertuis’
principle was renewed by the Cartan-Poincaré Integral Invariant in the field of geometric
mechanics. In geometric mechanics, the motion of a mechanical system is described in
terms of differential forms on a configuration manifold and the Cartan-Poincaré integral
invariant is associated with a particular differential form called the symplectic form,
which encodes the dynamics of the system.The integral invariant is defined as the integral
of the symplectic form over a closed loop in the configuration manifold. More recently,
Maupertuis’ principle has been extended more recently by Jean-Marie Souriau through
Maxwell’s principle with the hypothesis that the exterior derivative of the Lagrange 2-
form of a general dynamical system vanishes. For systems of material points, Maxwell’s
principle allows us, under certain conditions, to define a Lagrangian and to show that
the Lagrange form is nothing else than the exterior derivative of the Cartan form, in
the study of the calculus of variations. Without denying the importance of the principle
of least action nor the usefulness of these formalisms, Jean-Marie Souriau declares
that Maupertuis’ principle and least action principle seem to him less fundamental than
Maxwell’s principle. His viewpoint seems to him justified because the existence of a
Lagrangian is ensured only locally, and because there exist important systems, such as
those made of particles with spin, to which Maxwell’s principle applies while they have
not a globally defined Lagrangian. Jean-Marie Souriau has also geometrized Noether’s
theorem (algebraic theorem proving that we can associate invariants to symmetries) with
“moment map” (components of moment map are Noether’s invariants).

« La lumière ne pouvant aller tout-à-la fois par le chemin le plus court, et par celui
du temps le plus prompt … ne suit-elle aucun des deux, elle prend une route qui a un
avantage plus réel : le chemin qu’elle tient est celui par lequel la quantité d’action
est la moindre. » [Since light cannot go both by the shortest path and by that of the
quickest time... if it does not follow either of the two, it takes a route which has a more
real advantage: the path that it holds is that by which the quantity of action is least.] -
Maupertuis 1744.



ALEAE GEOMETRIA – BLAISE PASCAL’s 400th
Birthday

We celebrate in 2023 Blaise Pascal’s 400th birthday. GSI’23 motto is “ALEA GEOME-
TRIA”.

In 1654, Blaise Pascal submitted a paper to « Celeberrimae matheseos Academiae
Parisiensi » entitled « ALEAE GEOMETRIA : De compositione aleae in ludis ipsi
subjectis »

• « … et sic matheseos demonstrationes cum aleae incertitudine jugendo, et quae con-
traria videntur conciliando, ab utraque nominationem suam accipiens, stupendum
hunc titulum jure sibi arrogat: Aleae Geometria »

• « … par l’union ainsi réalisée entre les démonstrations des mathématiques et
l’incertitude du hasard, et par la conciliation entre les contraires apparents, elle peut
tirer son nom de part et d’autre et s’arroger à bon droit ce titre étonnant: Géométrie
du Hasard »

• « … by the union thus achieved between the demonstrations of mathematics and
the uncertainty of chance, and by the conciliation between apparent opposites, it can
take its name from both sides and arrogate to right this amazing title: Geometry of
Chance »

Blaise Pascal had a multi-disciplinary approach of Science, and has developed 4
topics directly related to GSI’23:*

• Blaise Pascal and COMPUTER: Pascaline marks the beginning of the development
of mechanical calculus in Europe, followed by Charles Babbage analytical machine
from 1834 to 1837, a programmable calculating machine combining the inventions of
Blaise Pascal and Jacquard’s machine, with instructions written on perforated cards.

• Blaise Pascal and PROBABILITY: The “calculation of probabilities” began in a
correspondence between Blaise Pascal and Pierre Fermat. In 1654, Blaise Pascal
submitted a short paper to “Celeberrimae matheseos Academiae Parisiensi” with the
title “Aleae Geometria” (Geometry of Chance), that was the seminal paper founding
Probability as a new discipline in Science.

• Blaise Pascal and THERMODYNAMICS:Pascal’s Experiment in the PuydeDôme
to Test the Relation between Atmospheric Pressure and Altitude. In 1647, Blaise
Pascal suggests to raise Torricelli’s mercury barometer at the top of the Puy de Dome
Mountain (France) in order to test the “weight of air” assumption.

• Blaise Pascal and DUALITY: Pascal’s Hexagrammum Mysticum Theorem, and
its dual Brianchon’s Theorem. In 1639 Blaise Pascal discovered, at age sixteen, the
famous hexagon theorem, also developed in “Essay pour les Coniques”, printed in
1640, declaring his intention of writing a treatise on conics in which he would derive
the major theorems of Apollonius from his new theorem.



The GSI’23 Conference is Dedicated to the Memory
of Mademoiselle Paulette Libermann, Geometer Student

of Elie Cartan and André Lichnerowicz, PhD Student
of Charles Ehresmann and Familiar with the Emerald

Coast of French Brittany

Paulette Libermann died on July 10, 2007 in Montrouge near Paris. Admitted to the
entrance examination to the Ecole Normale Supérieure de Sèvres in 1938, she was a
pupil of Elie Cartan and André Lichnerowicz. Paulette Libermann was able to learn
about mathematical research under the direction of Elie Cartan, and was a faithful friend
of the Cartan family. After her aggregation, she was appointed to Strasbourg and rubbed
shoulders with Georges Reeb, René Thom and Jean-Louis Koszul. She prepared a thesis
under the direction of Charles Ehresmann, defended in 1953. She was the first ENS
Sèvres woman to hold a doctorate in mathematics. She was then appointed professor at
the University of Rennes and after at the Faculty of Sciences of the University of Paris
in 1966. She began to collaborate with Charles-Michel Marle in 1967. She led a seminar
with Charles Ehresmann until his death in 1979, and then alone until 1990. In her thesis,
entitled “On the problem of equivalence of regular infinitesimal structures”, she studied
the symplecticmanifolds providedwith two transverseLagrangian foliations and showed
the existence, on the leaves of these foliations, of a canonical flat connection. Later,
Dazord and Molino, in the South-Rhodanian geometry seminar, introduced the notion
of Libermann foliation, linked to Stefan foliations and Haefliger �-structures. Paulette
Libermann also deepened the importance of the foliations of a symplectic manifold
which she called “simplectically complete”, such as the Poisson bracket of two functions,
locally defined, constant on each leaf, that is also constant on each leaf. She proved that
this property is equivalent to the existence of a Poisson structure on the space of leaves,
such that the canonical projection is a Poisson map, and also equivalent to the complete
integrability of the subbundle symplectically orthogonal to the bundle tangent to the
leaves. She wrote a famous book with Professor Charles-Michel Marle, “Symplectic
Geometry andAnalyticalMechanics”. Professor Charles-MichelMarle told us thatMiss
Paulette Libermann had bought an apartment in Dinard and spent her summers just in
front of Saint-Malo, and so was familiar with the emerald coast of French Brittany.



xxxii The GSI’23 conference is dedicated to the memory

GSI’23 Sponsors

THALES (https://www.thalesgroup.com/en) and European Horizon CaLIGOLA
(https://site.unibo.it/caligola/en) were both PLATINIUM SPONSORS of the SEE
GSI’23 conference.

https://www.thalesgroup.com/en
https://site.unibo.it/caligola/en
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Abstract. In many applications, one is interested in the shape of an
object, like the contour of a bone or the trajectory of joints of a tennis
player, irrespective of the way these shapes are parameterized. However for
analysis of these shape spaces, it is sometimes useful to have a parameter-
ization at hand, in particular if one is interested in deforming shapes. The
purpose of the paper is to examine three different methods that one can
follow to endow shape spaces with a Riemannian metric that is measuring
deformations in a parameterization independent way. The first is via Rie-
mannian submersion on a quotient; the second is via isometric immersion
on a particular slice; and the third is an alternative method that allows for
an arbitrarily chosen complement to the vertical space and a metric degen-
erate along the fibers, which we call the gauge-invariant metric. This allows
some additional flexibility in applications, as we describe.

Keywords: Shape space · Geometric green learning · Geometric
invariants

1 Introduction, Motivation, and a Simple Example

In this paper we will describe three ways to think about geometry on a quo-
tient space of a trivial principal bundle, with application to shape space. The
first is the standard approach via quotients by a group and a Riemannian sub-
mersion. The second is by considering a particular global section of the bundle
and inducing a metric by isometric immersion. The third is newer and consists of
specifying a normal bundle complementary to the vertical bundle, projecting the
metric onto the normal bundle, and taking the quotient of the resulting degener-
ate metric; we refer to this as the gauge-invariant approach. We will begin with
some motivations about our main concern of shape space before presenting an
explicit example in finite dimensions to fix ideas. Then we describe the three
basic methods as (I), (II), and (III), and finally we discuss how to get from one
to another and the meaning of gauge invariance.

Supported by FWF grant I 5015-N, Institut CNRS Pauli and University of Lille.
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
F. Nielsen and F. Barbaresco (Eds.): GSI 2023, LNCS 14071, pp. 3–11, 2023.
https://doi.org/10.1007/978-3-031-38271-0_1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-38271-0_1&domain=pdf
https://doi.org/10.1007/978-3-031-38271-0_1


4 A. B. Tumpach and S. C. Preston

Fig. 1. Examples of group actions on 2D simple closed curves and different choices of
sections of the corresponding fiber bundle.

In order to explain the ideas of the present paper in a simple way, we will
consider the contour of the Statue of Liberty appearing in different layouts in
Fig. 1. Imagine a camera that scans a photo of the Statue and needs to recognize
it regardless of how the photo is held (at any distance, position, or rotation
angle). If we require the photo to be held perpendicular to the camera lens,
then the transformations are rotations, translations, and rescalings. These are
all shape-preserving and we would like the scanner to be able to detect the shape
independently of them. We can handle this in two ways:

1. either one groups together the photos that are transformations of each other,
2. or one specifies a preferred choice of position in space and/or scale as a rep-

resentative.

The first option consists of considering the orbit of the photo under the group;
the second option consists of considering a preferred section of the quotient space
of curves modulo the group. These two different ways of thinking about shapes
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modulo a given group of transformations are illustrated in Fig. 1. In the second
column we show some examples of the photos in the same orbit under the action
of the group. In the third and fourth columns, a representative of this orbit is
singled out.

Then, when considering contours of objects, another group acting by shape-
preserving transformations is the group of reparameterizations of the contour.
Making the analysis invariant by the group of reparameterizations is a much
more difficult problem than that in the previous paragraph, but it has the same
essential nature, and is the main source of motivation for us.

Corresponding mathematical objects. The mathematical picture to
start with is the following: the group of shape-preserving transformations G
is acting on the space of curves or surfaces F and the shape space S that retain
just the informations that we need is the quotient space S := F/G. The map
that sends a curve to its orbit under the group G is called the canonical projec-
tion and will be denoted be p : F → S. The orbit of a element f ∈ F will also
be denoted by [f ] ∈ F/S, in particular p(f) = [f ] for any f ∈ F . The triple
(p,F ,S) is a particular example of fiber bundle attached to a smooth action of
a group on a manifold.

When we specify which procedure we follow to choose a representation of each
orbit, one is selecting a preferred section of the fiber bundle p : F → S. A global
section of the fiber bundle p : F → S is a smooth application s : S → F , such
that p◦s([f ]) = [f ] for any [f ] ∈ S. There is one-to-one correspondance between
the shape space S and the range of s. Defining a global section of p : F → S
is in fact defining a way to choose a preferred element in the fiber p−1([f ]) over
[f ]. In the case of the group of reparameterizations, it consists of singling out a
preferred parameterization of each oriented shape.

Why do we care about the distinction? Depending on the representation
of shape space as a quotient space or as a preferred section, shape analysis may
give different results. Very often, curves or surfaces are centered and scaled as a
pre-processing step. However, the procedure to center or scale the shapes may
influence further analysis. For instance, a Statue of Liberty whose contour has
a fractal behaviour will appear very small if scaling variability is taken care of
by fixing the length of the curve to 1 and will seem visually very different to
analogous statues with smooth boundaries.

Example 1. We begin with the simplest nontrivial example of the three methods
we have in mind for producing a metric on the quotient space by a group action,
given a metric on the full space. Here our full space will be the Heisenberg group
F ∼= R

3 with the left-invariant metric

ds2 = dx2 + dy2 + (dz − y dx)2 (1)

on it, while the group action is vertical translation in the z-direction by a real num-
ber, generated by the flow of the vector field ξ = ∂z. Hence the group is G = R

under addition, and the quotient space is S = R
2 with projection p(x, y, z) =

(x, y). We will denote by {e1, e2} the canonical basis ofR2. The metric (1) is invari-
ant under this action since none of the components depend on z.
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(I) At every point the field ξ is vertical since it projects to zero. Horizontal
vectors are those orthogonal to this in the metric (1), and the horizontal bundle
is spanned by the fields h1 = ∂x + y ∂z and h2 = ∂y. This basis is special since
Dp(h1) = e1 and Dp(h2) = e2, so we get the usual basis on the quotient. If the
inner product on {e1, e2} comes from the inner product on {h1, h2}, the result
is the Riemannian submersion quotient metric

ds2 = du2 + dv2. (2)

(II) The second way to get a natural metric on the quotient S is to embed it
back into F by a section s : S → F , so that p◦ s is the identity. All such sections
are given by the graph of a function (x, y, z) = s(u, v) = (u, v, ψ(u, v)) for some
ψ : R2 → R, a choice of a particular representative z = ψ(u, v) in the equivalence
class π−1(u, v). The image of s is a submanifold of F which we denote by A,
and it inherits the isometric immersion metric

ds2 = du2 + dv2 +
[
ψv dv + (ψu − v) du

]2
. (3)

(III) The third way to get a metric is to declare that movement in the z
direction will be “free,” and only movement transverse to the vertical direc-
tion will have some cost. This corresponds to specifying a space of normal
vectors along each fiber (arbitrary except that it is transverse to the tangent
vectors ∂z). Any normal bundle is generated by the span of vector fields of
the form n1 = ∂x + ϕ1(x, y) ∂z and n2 = ∂y + ϕ2(x, y) ∂z for some functions
ϕ1, ϕ2 : R2 → R independent of z to ensure G-invariance. Again this basis is
special since π∗(n1) = e1 and π∗(n2) = e2. To measure movement only in the
normal direction, we define gGI(U, V ) = gF

(
pN (U), pN (V )

)
for any vectors U

and V , where pN is the projection onto the normal bundle parallel to the vertical
direction. This results in the degenerate metric

ds2 = dx2 + dy2 +
[
ϕ2 dy + (ϕ1 − y) dx

]2
. (4)

This formula then induces a nondegenerate quotient metric on the quotient R
2.

It is clear that (III) is the most general choice, and that both (I) and (II) are
special cases. The metric (4) matches (2) when the normal bundle coincides with
the horizontal bundle, and otherwise is strictly larger. Meanwhile the immersion
metric (II) in (3) is strictly larger than (I), and no choice of ψ will reproduce it
since ψ would have to satisfy ψv = 0 and ψu = v. This is a failure of integrability,
see Sect. 3.

2 Different Methods to Endow a Quotient
with a Riemannian Metric

In this section, we will suppose that we have at our disposal a Riemannian
metric gF on the space of curves or surfaces F we are interested in, and that
this metric is invariant under a group of shape-preserving transformations G.
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In other words, G preserves the metric gF , i.e. G acts by isometries on F . We
will explain three different ways to endow the quotient space S := F/G with a
Riemannian metric.

The action of a group G on a space of curves or surfaces F will be denoted
by a dot. For instance, if G is the group of translations acting on curves in R

2,
g · F = F + C where C is the constant function given by the coordinates of
the vector of translation defined by the translation g. When G is the group of
reparameterizations, then g · F := F ◦ g−1.

(I) Quotient Riemannian metric. The first way to endow the quotient space
S := F/G with a Riemannian metric is through the quotient Riemannian metric.
We recall the following classical Theorem of Riemannian geometry [5,11].

Theorem 1 (Riemannian submersion Theorem). Let F be a manifold
endowed with a Riemannian metric gF , and G a Lie group acting on F in
such a way that F/G is a smooth manifold. Suppose gF is G-invariant and TFF
splits into the direct sum of the tangent space to the fiber and its orthogonal
complement, i.e.,

gF (X,Y ) = gF (g · X, g · Y ),∀X,Y ∈ TF ,∀g ∈ G,

TFF = Ker(dp)F ⊕ Ker(dp)⊥F ,∀F ∈ F ,
(5)

then there exists a unique Riemannian metric g1,S on the quotient space S =
F/G such that the canonical projection p : F → S is a Riemannian submersion,
i.e. such that dp : Ker(dp)⊥ → TS is an isometry.

In this Theorem, the space Hor := Ker(dp)⊥ is called the horizontal space
because it is defined as the orthogonal with respect to gF of the vertical space
Ver := Ker(dp) (traditionally the fibers of a fiber bundle are depicted vertically).
Condition (5) is added in order to deal with the infinite-dimensional case where,
for weak Riemannian metrics, this identity is not automatic.

One way to understand the Riemannian submersion Theorem is the following:
first, in order to define a Riemannian metric on the quotient space, one looks
for a subbundle of TF which is in bijection with TS. Since the vertical space is
killed by the projection, the transverse space to the vertical space given by the
orthogonal complement is a candidate. The restriction of the Riemannian metric
on it defines uniquely a Riemannian metric on the quotient.

(II) Riemannian metric induced on a smooth section. Now suppose that
we have chosen a preferred smooth section s : S → F of the fiber bundle p :
F → S = F/G, for instance the space of arc-length parameterized curves in the
case where G is the group of orientation-preserving reparameterizations, or the
space of centered curves when G is the group of translations. The smoothness
assumption means that the range of s is a smooth manifold of F , like the space
of arc-length parameterized curves in the space of parameterized curves. We will
denote it by A := s(S). By construction, there is a isomorphism between S and
A which one can use to endow the quotient space S with the induced Riemannian
structure on A by F .
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Theorem 2 (Riemannian immersion Theorem). Given a smooth section
s : S → F , there exists a unique Riemannian metric gA on A := s(S) such that
the inclusion ι : A ↪→ F is an isometry. Using the isomorphism s : S → A,
there exists a unique Riemannian metric g2,S on S such that s : S → F is an
isometry.

(III) Gauge invariant metric. Here we suppose that we have a vector bundle
Nor over F which is a G-invariant subbundle of TF transverse to the vertical
bundle Ver := Ker(dp). Using any G-invariant metric gF on F , one can define a
G-invariant metric gGI on F that is degenerate along the fiber of the projection
p : F → S. We will explain the meaning of “gauge invariance” later.

Theorem 3. Let gF be a G-invariant metric on F and Nor ⊂ TF be a G-
invariant subbundle of TF such that

TFF = Ker(dp)F ⊕ NorF ,∀F ∈ F . (6)

There exists a unique metric gGI on TF which coincides with gF on Nor and is
degenerate exactly along the vertical fibers of p : F → S. It induces a Riemannian
metric g3,S on shape space S such that dp : Nor → TS is an isometry.

Since we want the inner product to be the same in gGI as in gF when the
vectors are normal, and zero if either vector is vertical, we define gGI by simply
projecting an arbitrary vector onto the normal bundle:

gGI(X,Y ) = gF
(
pNor(X), pNor(Y )

)
, (7)

where pN : TFF → Nor is the projection onto the normal bundle parallel to the
vertical space. This is nondegenerate on the quotient since the projection onto
the quotient is an isomorphism when restricted to the normal bundle.

Remark 1. In the case where Nor = Hor, the Riemannian metric g3,S coincides
with the quotient metric g1,S . Another choice of G-invariant complement to the
vertical space will give another Riemannian metric on the quotient space.

Example 2. The main example for shape space consists of the elastic metric first
defined in [4] on the space of planar curves F = {F : [0, 1] → R

2} by the formula

ga,bF (h1, h2) =
∫ 1

0

[
a(Dsh1, t)(Dsh2, t) + b(Dsh1,n)(Dsh2,n)

]
ds,

F ∈ F , hi ∈ TFF , ds = ‖F ′(t)‖dt, Dsh(t) =
ḣ(t)

‖Ḟ (t)‖ , t = Ḟ
‖Ḟ‖ , n = t⊥. (8)

See [1] for a recent survey of its properties. We will follow [6,10] below.
Our group G is the (orientation-preserving) reparameterizations of all these

curves, since we only care about the image F [0, 1], and the shape space is the
quotient F/G. At any F ∈ F the vertical space is Ver = {mt |m : [0, 1] → R}. A
natural section s : S → A ⊂ F comes from parameterizing all curves proportional
to arc length. The tangent space TA to the space of arc-length parameterized
curves is the space of vector fields w along F such that w′ · t = 0. The horizontal
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bundle in the metric (8) is given at each F by the space of vector fields w along
F such that d

dt (w
′ · t)− b

aκ(w′ ·n) = 0 for all t ∈ [0, 1], where κ is the curvature
function. Hence computing the projections requires solving an ODE.

A much simpler normal bundle is obtained by just taking the pointwise nor-
mal, i.e., using Nor := {Φn |Φ : [0, 1] → R}, where now the tangential and normal
projections can be computed without solving an ODE.

Instead of parameterizing by arc length we can choose other special parame-
terizations to get the section; for example using speed proportional to the curva-
ture of the shape as in [9]. An example of application to action recognition is given
in [3]. Similar metrics can be defined on surfaces in R

3 to get two-dimensional
shape spaces; see for example [7,8].

Remark 2. In the infinite-dimensional case, it is not always possible to find a
complement to the vertical space Ker(dp) as in (6). An example of this phe-
nomemon is provided by shape spaces of non-linear flags (see [2]). In this case,
one has to work with the quotient vector spaces TFF/Ker(dp)F . See [11] for this
more general case.

3 Relationships of the 3 Methods and Gauge Invariance

3.1 Converting Between (I), (II), and (III)

We have seen in Example 1 that in some cases the three metrics coincide when
we start with the same base metric gF , but typically they do not. However if we
allow the metric on F to change, we can convert any metric of the form (I), (II),
or (III) into a metric of the other forms. Here we demonstrate how to do it.

(I) ⇒ (III). If we start with a quotient Riemannian submersion metric arising
from gF , how do we get a gauge-invariant metric? We simply define the normal
bundle Nor to be the horizontal bundle Hor of vectors orthogonal in gF to the
vertical bundle, and use the projection pNor as in (7). The new metric gGI on F
will be degenerate but will produce the same metric on the quotient.

(II) ⇒ (III). If we start with a section s that embeds the quotient S into a
submanifold A of F , how do we obtain a gauge-invariant metric? Here we define
the normal bundle Nor to be the tangent bundle of the A and proceed as in (7).
Again the new degenerate metric on F will agree with the induced metric on A
(and in particular be nondegenerate there).

(I) ⇒ (II), (III)⇒(II) As in Example 1, a given normal bundle (in particular
a horizontal bundle from a metric) may not be the tangent bundle of any man-
ifold due to failure of integrability; hence there may not be any way to express
a particular instance of (I) or (III) as a version of (II) with the horizontal space
equal to the tangent space of a particular section. The Frobenius integrability
condition for the bundle, which is equivalent to the curvature of the correspond-
ing connection vanishing, has to be satisfied in order to build a section tangent
to the horizontal space. If one does not require the section to be horizontal, we
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may proceed as in [10] to pull-back the metric from the quotient to the particular
section.

(III) ⇒ (I), (II)⇒(I). Both these cases come from the same metric gF , and
as in Example 1 they may not coincide. However if we are willing to consider
a different metric on F , then we can go from method (III) to method (I) and
still have the same metric on the quotient. Given a G-invariant normal bundle
Nor and a G-invariant metric g2,F which generates the degenerate metric gGI

on F and a metric gS by method (III) via (7), we define a new metric g1,F by
choosing any G-invariant Riemannian metric on the tangent bundle Ver to the
fiber and by declaring that Ver and Nor are orthogonal. By construction, the
subbundle Nor is the horizontal bundle in this metric, and we are in case (I).
The same construction works to go from (II) to (I), using the above to get from
(II) to (III).

3.2 The Meaning of Gauge Invariance

In geometry on shape space, we are often interested primarily in finding mini-
mizing paths between shapes, and a common algorithm is to construct an initial
path between shapes and shorten it by some method. Paths are typically easy
to construct in F and difficult to construct directly in the quotient space S. A
section s : S → F makes this simpler, but especially if the image A = s(S) is not
flat, it can be difficult to keep the shortening constrained on that submanifold.
Our motivating example is when the shapes are parameterized by arc length as
in [10], with a path-straightening or gradient descent algorithm based on the
metric gF : the optimal reduction gives intermediate curves that are typically
no longer parameterized by arc length, and in fact the parameterizations can
become degenerate. As such we may want to apply the group action of repa-
rameterization independently on each of the intermediate shapes to avoid this
breakdown.

If G is a group acting on a space F , define the gauge group as the group
G := {g : [0, 1] → G} of paths in G acting on the space of paths γ : [0, 1] → F
in F by the obvious formula (g · γ)(t) = g(t) · γ(t), i.e., pointwise action in the t
parameter. We would like the metric on F to have the property that lengths of
paths are invariant under this action, which essentially allows us to change the
section s “on the fly” if it’s convenient. Since this involves pushing the path in
the direction of the fibers, it is intuitively clear that the metric will need to be
degenerate in those directions. We have the following proposition, whose proof
we defer to [11].

Proposition 1. The length of a path [γ] in S measured with the quotient metric
g1,S is equal to the length of any lift γ of [γ] in F measured with the gauge
invariant metric gGI .

Remark 3. The length of γ measured with the metric gF differs from the length
of [γ] unless γ is also horizontal. In this case, γ = g0 · γ0 for a fixed g0 ∈ G.
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4 Conclusion

We have shown how to view the problem of constructing a Riemannian metric
on a principal bundle quotient such as shape space in three different ways. Any
desired metric on the quotient can be viewed as any one of the three depend-
ing on what is computationally convenient. The gauge-invariant method (III)
is the most general and flexible, capturing the other two more familiar meth-
ods as special cases; it has the advantage that it is convenient for shape space
computations without needing to work on the difficult shape space explicitly.
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Abstract. Locally Linear Embedding is a dimensionality reduction
method which relies on the conservation of barycentric alignments of
neighbour points. It has been designed to learn the intrinsic structure of
a set of points of a Euclidean space lying close to some submanifold. In
this paper, we propose to generalise the method to manifold-valued data,
that is a set of points lying close to some submanifold of a given mani-
fold in which the points are modelled. We demonstrate our algorithm on
some examples in Kendall shape spaces.
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1 Introduction

Dimensionality reduction is a critical issue when it comes to data analysis on
complex structures. Especially, the data modelled in the context of shape anal-
ysis – for example protein conformations or anatomical shapes – are by nature
high-dimensional data. Common tools for dimensionality reduction have been
originally designed for data described in a Euclidean space. However, objects
like shapes are rather naturally described in a manifold. As an example, Kendall
manifolds [3] encode the idea that two configurations of points – e.g. two protein
conformations – should be compared independently of the coordinate system
they are written in. We refer to such data as manifold-valued data. A first app-
roach to process manifold-valued data then consists in embedding them in a
larger Euclidean space – or equivalently to work extrinsically. This approach has
two main drawbacks. First of all, it ignores the structural information contained
in the manifold model, which then may not be well recovered in areas of low
sampling density. Moreover, there might be a significant gap in dimensionality
between the intrinsic and the extrinsic model in some cases. The manifold of
unparameterised curves [5,8] illustrates well this second point as the extrinsic
and the intrinsic descriptions differ by the removal of parametrisations – dif-
feomorphisms – which is an infinite dimensional space. Thus, when the data
are modelled in a known manifold, it is relevant to look for a generalisation
of existing tools for vector-valued data to manifold-valued data. Locally Linear
Embedding (LLE) has been introduced by Roweis and Saul in [7] as a nonlinear
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dimensionality reduction tool. Given a set of points of a vector space sampled
from some underlying submanifold of lower dimension, the method leverages the
locally linear assumption to characterise each data point as a weighted barycen-
tre of the other points nearby and then embed them in a low-dimensional vector
space accordingly. Essentially, both the weights and the embedding are written
as solutions of a least square problem such that the algorithm is straightforward
to write and implement. LLE differs significantly from other dimension reduc-
tion methods, firstly as it relies on an intrinsic description of the data which
is local – unlike PCA for example – and secondly as it implements a criterion
which is affine rather than metric – as opposed to distance-based methods like
Multi-Dimensional Scaling (MDS) or Isomap. Therefore, because LLE preserves
local affine relationships rather than distances, we expect it to be able to retrieve
different information from the data. While there has already been a consequent
work about extending PCA [1] and MDS methods to manifold-valued data, LLE
has not been yet generalised to our knowledge. In this paper, we propose a
new Riemannian formulation of LLE which we refer to as Riemannian Locally
Embedding (RLLE) and we detail an algorithm for the weights estimation. We
illustrate our method on two examples in Kendall shape spaces and we evaluate
RLLE performance in this setting with respect to the LLE one.

2 Riemannian Locally Linear Embedding

In this section, we recall the algorithm implemented by Locally Linear Embed-
ding (LLE). Since it relies on barycentric coordinates, we extend their definition
in order to generalise the method to Riemannian manifolds.

2.1 Outline of Locally Linear Embedding

Consider n points x1, . . . , xn ∈ R
m sampled from some underlying submanifold

of lower dimension d. Then at a sufficiently local scale, the points should lie
close to a linear subspace. Under this assumption, each point can be written as
a linear combination of its neighbours up to some residual error. Following this
observation, LLE implements two main steps. First, compute the approximate
barycentric coordinates of xi with respect to its k nearest neighbours, that is for
all i, find wij which solve

min
wi1,...,win∈R

∥
∥xi −

n∑

j=1

wijxj

∥
∥
2

subject to
∑

j wij = 1
(1)

such that wij = 0 if xj is not one of the k nearest neighbours of xi. This amounts
to solving n linear system ∈ R

k. Then second step consists of finding n new points
y1, . . . , yn ∈ R

d which best retrieve the weights estimated in Problem 1, that is
solve

min
y1,...,yn∈Rd

n∑

i=1

∥
∥yi −

n∑

j=1

wijyj
∥
∥
2
. (2)

Problem 2 is equivalent to an eigenvalue decomposition problem.
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2.2 Riemannian Barycentric Coordinates

In order to generalise the method to manifold-valued data, we need to rewrite
Problem 1 in a general non-Euclidean setting. Precisely, we need to extend the
definition of a barycentre and barycentric coordinates. Intuitively, the weighted
barycentre of a set of points is the point which minimises the weighted sum of
squared distances. Let M denote a Riemannian manifold. We define the following.

Definition 1 (Riemannian barycentric coordinates). A point x ∈ M has
barycentric coordinates w1, . . . , wn with respect to x1, . . . , xn ∈ M if

n∑

i=1

wi logx(xi) = 0. (3)

where logx denotes the logarithm map of M at x. A point x which satisfies
the previous is called a weighted barycentre of x1, . . . , xn ∈ M affected with the
weights w1, . . . , wn.

Equation 3 can be interpreted as a first order condition on the minimisation
of the weighted sum of squared distances. We can check that both descriptions
coincide with the usual definition of barycentric coordinates in a Euclidean set-
ting. Indeed, for M = R

m and x, y ∈ M , the logarithm map of M at x is simply
logx(y) = y − x. Therefore, according to the previous definition, the barycentre
of x1, . . . , xn ∈ M affected with the weights w1, . . . , wn is the point x which
satisfies x =

∑

i wixi. For more details, we refer the reader to [6]. Let us now
rewrite Problem 1 for points of a Riemannian manifold.

2.3 Towards Riemannian Locally Linear Embedding

The generalisation of Problem 1 is not straightforward as the previous definition
is an implicit definition and does not allow to write a weighted barycentre in
closed-form except in the Euclidean case. Instead, one can introduce an auxiliary
variable x̂i ∈ M satisfying Eq. 3 and generalise Problem 1 as a constrained
optimisation problem on manifolds. More explicitly, for x1, . . . xn ∈ M , solve

min
x̂i∈M,

wi1,...,win∈R

dM (xi, x̂i)2

subject to
∑

j wij logx̂i
(xj) = 0

∑

j wij = 1.

(4)

It is not trivial however to solve this problem in practice. Especially, the con-
straint

∑

j wij logx̂i
(xj) = 0 lies in the tangent space Tx̂i

M which depends itself
on the value of x̂i which we wish to optimise. Rather, we propose to look at the
equivalent translated problem

min
x̂i∈M,

wi1,...,win∈R

dM (xi, x̂i)2

subject to
∑

j wijPx̂i,xi

(

logx̂i
(xj)

)

= 0
∑

j wij = 1.

(5)
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where Px̂i,xi
denotes the parallel transport map of M along the geodesic joining

x̂i and xi. Since the parallel transport is an isometric map, Problems 4 and 5 are
equivalent. In this new formulation however, the constraint lies in the tangent
space at xi, which is independent of the optimisation state.

Riemannian Locally Linear Embedding (RLLE) implements two steps
according to the same scheme as LLE. First, the reconstruction step consists
in estimating the weights wij solving Problem 5. Then, the embedding step
consists in computing the points yi solving Problem 2.

3 Algorithm and Implementation

In this section, we provide one possible algorithm to solve the optimisation Prob-
lem 2 and describe the implementation of our method. We detail the algorithm
for Kendall shape spaces.

3.1 Tangent Space Formulation of the Optimisation Problem

In its current formulation, Problem 5 can be solved using Lagrangian methods
for constrained optimisation on manifolds. However, it can be also be formulated
alternatively as a vector-valued optimisation problem. Precisely, we keep track
of the estimate x̂i with the tangent vector vi ∈ Txi

M such that

expxi
(vi) = x̂i (6)

where expxi
denotes the exponential map of M at xi. Additionally, we set

uij = Px̂i,xi

(

logx̂i
(xj)

)

. (7)

We derive the following optimisation problem

min
ui1,...,uin∈Txi

M,
vi∈Txi

M,
wi1,...,win∈R

‖vi‖2

subject to
∑

j wijuij = 0
∑

j wij = 1

exp[expxi
(vi)]

(

Pxi,[expxi
(vi)](uij)

)

= xj (∀j).

(8)

Problem 8 is a priori a vector-valued optimisation problem on the product space
(Txi

M)n ×Txi
M ×R

n. In fact, since the weight wij is set to be 0 whenever xj is
not a neighbour of xi, then the correct search space is (Txi

M)k×Txi
M×R

k where
k is the number of neighbours. Now, provided that a basis of Txi

Mn can been
explicitly computed, then the search space is the Euclidean space R

mk+m+k,
where m is the dimension of M , and the optimisation task is performed using
standard Lagrangian methods implemented in most libraries. As a reference, we
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use the SLSQP solver from scipy. Note that in practice, the complexity of the
algorithm strongly depends on whether one knows the exponential map and the
parallel transport in closed-form as we will discuss later in the paper. In any
case, it requires an implementation of both methods which is compatible with
automatic differentiation.

Note that another possible way to solve Problem 5 would be to address it
directly as a Riemannian constrained optimisation problem using specific opti-
misation tools like the ones implemented in the Manopt library.

3.2 Riemannian Locally Linear Embedding for Quotient Manifolds

In what follows, we propose to detail the algorithm in the concrete case of Kendall
shape spaces [3]. We recall that Kendall shape spaces carry a quotient structure.
We first describe the algorithm for a general quotient manifold and then give an
explicit formulation for Kendall shape spaces. For there does not always exist
an explicit description for quotient objects, computations in quotient spaces are
generally performed in the top space. It is also often more comfortable. The main
motivation of this subsection is to show how to perform the previous optimisation
task in the top space.

The setting is the following. Let again M be a Riemannian manifold and let
G be a group acting on M . Given x1, . . . , xn ∈ M , we want to solve Problem 5 for
the corresponding data points π(x1), . . . , π(xn) ∈ M/G, where π : M → M/G
is the canonical quotient map. Assume that π is a Riemannian submersion. The
vertical space of M at a point x, denoted by Verx M , is defined by

Verx M = ker dxπ. (9)

The tangent space of M at x admits an orthogonal decomposition

TxM = Verx M ⊕ Horx M (10)

and Horx M is called the horizontal subspace of M at x. A central property is
that the tangent space of M/G at a point π(x) identifies with the horizontal
space of M at x through the tangent map dπ. Moreover, geodesics of M/G
correspond exactly to the projection by π of horizontal geodesics of M , that is
geodesics spanned by a horizontal vector. Additionally, we define the following

Definition 2 (Horizontal parallel transport). Let γ be a horizontal curve in
M . Then we say that the vector field t → v(t) is the horizontal parallel transport
of a horizontal vector v along γ if it is horizontal and if its projection to the
tangent bundle of M/G is the parallel transport of dxπ(v) along π(γ). We denote
the horizontal transport map of M from a point x to a point y by PH

x,y.

Now let us go back to the algorithm. Since the tangent map dπ allows to identify
the tangent spaces of M/G and the horizontal spaces of M , we can lift up
Problem 8 to the top manifold M
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min
gi1,...,gin∈G

ui1,...,uin∈Horxi
M,

vi∈Horxi
M,

wi1,...,win∈R

‖vi‖2

subject to
∑

j wijuij = 0
∑

j wij = 1

gij · exp[expxi
(vi)]

(

PH
xi,[expxi

(vi)]
(uij)

)

= xj (∀j).

(11)

The optimisation variables gij are the elements of the group G lifting up the
equality constraint

π(exp[expxi
(vi)]

(

PH
xi,[expxi

(vi)]
(uij)

)

) = π(xj)

to the top space. If G is a matrix Lie group, then it identifies to its Lie algebra
g through the matrix exponential such that the search space can still be written
as a vector space.

3.3 Implementation in Kendall Shape Spaces

The implementation of the algorithm for Kendall shape spaces requires to com-
pute the horizontal spaces, the exponential map and the horizontal parallel trans-
port map. The Kendall shape space Σq

p is defined as the quotient

Σq
p = Sq

p/SO(p) (12)

where Sq
p = {x ∈ M(p, q) | ∑

xi = 0 and ‖x‖ = 1} is referred as the pre-shape
space [3]. The shape space Σq

p describes the possible configurations of a set of
points independently of any similarity transformation of the ambient space. The
space Sq

p can be understood as the hypersphere of Rp(q−1) and its exponential
map is given by

expx(v) = cos(‖v‖)x + sin(‖v‖)
v

‖v‖ . (13)

The horizontal subspace at x is described as

Horx M =
{

v ∈ M(p, q) | ∑
xi = 0 and vxt = xvt and 〈x, v〉 = 0

}

.

where 〈·, ·〉 denotes the usual Frobenius scalar product. The horizontal parallel
transport can be computed as the solution of a first-order differential equation as
described in [4]. Its implementation has already been discussed in the previous
work [2] and is available in the library geomstats. Finally, the group of rotations
SO(p) is a Lie group and its Lie algebra is so(p) = Skew(p).

4 Benchmark Experiment

In this section, we illustrate RLLE on two examples in the shape space Σ3
3 and we

compare its performance to LLE performance. We then discuss more generally
the advantages of our method depending on the type of data.
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4.1 A Swiss Roll Example in the Shape Space Σ3
3

We run two experiments in the Kendall shape space Σ3
3 , for which we have an

isometric embedding in a hemisphere and therefore a way to visually evaluate
the embedding computed by either method. We first illustrate our algorithm on
a set of data points generated from a mixture of normal distributions on the
hemisphere (Fig. 1). We compare the ability of LLE and RLLE to embed such a
set in the plane. Our implementation of LLE performs first a Procrustean align-
ment step before solving Problem 1. Precisely, it aligns each neighbour xj onto
the point xi by applying the optimal rotation. Note that without this alignment
step, the performance of LLE drops significantly. Then we demonstrate numer-
ically the performance of RLLE on an example derived from the “Swiss Roll”
data set. Explicitly, given a set of shapes sampled along a logarithmic spiral
curve in Σ3

3 (Fig. 2), we evaluate the one-dimensional parametrisation computed
by LLE and RLLE with respect to the one given by the arc-length.

Fig. 1. First experiment. The points are equally sampled from two normal distribu-
tions in the hemisphere, flattened into a disk for visualisation. For both methods, the
neighbour graph has been generated with the Riemannian distance. The number of
neighbours k is chosen to optimise the performance of each method: k = 9 for LLE
and k = 10 for RLLE. Since the methods are by definition invariant by affine transfor-
mation, we align each embedding onto the flattened data set. We observe that LLE is
able to retrieve very local alignments (blue) but fails at a more global scale (red). This
was to be expected as the Euclidean distance approximates the Riemannian distance
locally. On the other hand, RLLE is able to retrieve the alignments at every scale.
(Color figure online)

4.2 Computational Complexity

RLLE shares the main drawback of intrinsic manifold learning methods: it is
computationally quite expensive. Let us detail this point. We mainly focus on the
reconstruction step as the embedding step is common to the LLE method. First,
the search space is a space of dimension km + m + k, where m is the dimension
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Fig. 2. Second Experiment. The points are sampled along a spiral curve. We fix k = 3
for both methods. We illustrate the experiment for one sample in the left and upper-
right sub-figures. Both methods are ordering the points correctly. Relative distances
however are better preserved by RLLE. We estimate the absolute error between the
exact embedding and the one computed by RLLE (resp. LLE). The experiment is run
100 times. We summarise the performance of each method in a box plot. We observe
that RLLE performs significantly better and moreover is more stable.

of the manifold M and k is the number of neighbours. For the Kendall shape
space of parameters p and q, we have m = p(q − 1

2 (p− 1))− 1. Then the number
of optimisation problems to solve is n. Finally, we need to take into account the
computational cost of the exponential and the parallel transport methods. In
the case of Kendall shape spaces, while the first one is free, the latter performs
in O(2sp3 + pq) as detailed in [2], where s is the number of integration steps.
Each evaluation of the constraint – and so each step of the optimisation task –
costs the same. Finally, our methods implements a SQP method to solve each
optimisation problem. As a comparison, the solution of Problem 1 is equivalent to
a matrix inversion of dimension k. Therefore, LLE performs in roughly O(nk3),
such that its complexity does not depend on the dimension m of the data.

4.3 Further Discussion

Given the computational cost of RLLE, it is important to understand for which
type of data it is particularly suited. Typically, the locally linear assumption
made by LLE may be valid for large and well-concentrated data sets. In these
cases, both methods should perform the same. Moreover, non-local methods like
PCA or its manifold generalisations provide a correct estimation whenever the
data are sufficiently concentrated. Finally, LLE and RLLE seem of particular use
in cases where a distance-based method does not perform well. These remarks
suggest that RLLE is more specifically designed for small sample size data sets
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with large dispersion, and provides an embedding which might allow to observe
more informative patterns than the ones characterised by the distance only.

5 Conclusion

As for now, RLLE has been implemented for Kendall shape spaces only. We
are contemplating a general implementation of the method into the library
geomstats for various manifolds and quotient manifolds – for example the space
of unlabelled graphs. Applications to real data sets will also be developed in
future works. Especially, we wish to further investigate the analysis of protein
conformations using Kendall’s framework following one of our previous works.
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Abstract. Spaces where each element describes a shape, so-called shape
spaces, are of particular interest in shape optimization and its applica-
tions. Theory and algorithms in shape optimization are often based on
techniques from differential geometry. Challenges arise when an applica-
tion demands a non-smooth shape, which is commonly-encountered as
an optimal shape for fluid-mechanical problems. In order to avoid the
restriction to infinitely-smooth shapes of a commonly-used shape space,
we construct a space containing shapes in R

2 that can be identified with
a Riemannian product manifold but at the same time admits piecewise-
smooth curves as elements. We combine the new product manifold with
an approach for optimizing multiple non-intersecting shapes. For the
newly-defined shapes, adjustments are made in the known shape opti-
mization definitions and algorithms to ensure their usability in appli-
cations. Numerical results regarding a fluid-mechanical problem con-
strained by the Navier-Stokes equations, where the viscous energy dissi-
pation is minimized, show its applicability.

Keywords: shape optimization · Riemannian manifolds · product
manifolds · piecewise-smooth shapes · Navier-Stokes equations

1 Introduction

Shape optimization is commonly-applied in engineering in order to optimize
shapes w.r.t. to an objective functional that relies on the solution of a partial
differential equation (PDE). The PDE is required to model the underlying phys-
ical phenomenon, e.g. elastic displacements due to loadings or fluid movement
due to pressure differences. Different methods are available for the shape opti-
mization, however we focus on gradient-based techniques on shape spaces.

An ideal shape space would enable the usage of classical optimization meth-
ods like gradient descent algorithms. Since this is usually not the case, it is
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desirable to define a shape u to be an element of a Riemannian manifold. An
important example of a smooth1 manifold allowing a Riemannian structure is
the shape space

Be := Be(S1,R2) := Emb(S1,R2)/Diff(S1).

An element of Be is a smooth simple closed curve in R
2. The space was briefly

investigated in [11]. The existence of Riemannian metrics, geodesics or, more
generally, the differential geometric structure of Be (cf., e.g. [10,11]) reveals
many possibilities like the computation of the shape gradient in shape optimiza-
tion (cf., e.g. [15]). However, since an element of Be is a smooth curve in R

2,
the shape space is in general not sufficient to carry out optimization algorithms
on piecewise-smooth shapes, which are often encountered as an optimal shape
for fluid-mechanical problems, see e.g. [14] for a prominent example. In partic-
ular, we are interested in shapes with kinks. Such piecewise-smooth shapes are
generally not elements of a shape space that provides the desired geometrical
properties for applications in shape optimization. Some effort has been put into
constructing a shape space that contains non-smooth shapes, however so far only
a diffeological space structure could be found, cf. e.g. [19,20]. A further issue for
many applications in shape optimization [1,5,8], such as the electrical impedance
tomography, is to consider multi-shapes. A first approach for optimizing smooth
multi-shapes has been presented in [6].

In this paper, we aim to construct a novel shape space holding a Riemannian
structure for optimizing piecewise-smooth multi-shapes. The structure of the
paper is as follows: In Sect. 2, we extend the findings related to multi-shapes
in [6] to a novel shape space considering piecewise-smooth shapes. Hereby, we
use the fact that the space of simple, open curves

Be([0, 1],R2) := Emb([0, 1],R2)/Diff([0, 1])

is a smooth manifold as well (cf. [9]) and interpret a closed curve with kinks
as a glued-together curve of smooth, open curves, i.e. elements of Be([0, 1],R2).
Moreover, we derive a shape optimization procedure on the novel shape space. In
Sect. 3, we apply the presented optimization technique to a shape optimization
problem constrained by Navier-Stokes equations and present numerical results.

2 Product Space for Optimizing Piecewise-Smooth
Shapes

In this section, we aim to construct a gradient descent algorithm for optimizing
piecewise-smooth multi-shapes, e.g. the multi-shape u = (u1, u2) from Fig. 1. In
Sect. 2.1, we therefore introduce a novel shape space which has the structure of
a Riemannian product manifold. An optimization algorithm on the novel shape
space is formulated in Sect. 2.2.

1 Throughout this paper, the term smooth shall refer to infinite differentiability.
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2.1 Product Shape Space

In the following, we introduce a novel shape manifold, whose structure will later
be used to optimize piecewise-smooth shapes. The construction of the novel
shape space is based on a Riemannian product manifold. Therefore, we first
investigate the structure of product manifolds.

We define (Ui, Gi) to be Riemannian manifolds equipped with the Rieman-
nian metrics Gi for all i = 1, . . . , N ∈ N. The Riemannian metric Gi at the point
p ∈ Ui will be denoted by

Gi
p(·, ·) : TpUi × TpUi → R,

where TpUi denotes the tangent space at a point p ∈ Ui. We then define the
product manifold as

UN := U1 × . . . × UN =
N∏

i=1
Ui.

As shown in [6], for the tangent space of product manifolds it holds

TũUN ∼= Tũ1U1 × · · · × TũN
UN .

Moreover, a product metric can be defined as

GN =
N∑

i=1
π∗
i Gi, (1)

where π∗
i are the pushforwards associated with canonical projections. It is obvi-

ous to use the space Be defined in Sect. 1 to construct a specific product shape
space. An issue arises for non-smooth shapes, e.g. the shape u1 from Fig. 1. To
fix this issue, we now introduce the new multi-shape space for s shapes built on
the Riemannian product manifold UN .

Definition 1. Let (Ui, Gi) be Riemannian manifolds equipped with Riemannian
metrics Gi for all i = 1, . . . , N . Moreover, UN :=

∏N
i=1 Ui. For s ∈ N, we define

the s-dimensional shape space on UN by

Ms(UN ) := {u = (u1, . . . , us) | uj ∈
kj+nj−1∏

l=kj

Ul,

s∑

j=1
nj = N and

k1 = 1, kj+1 = kj + nj ∀j = 1, . . . , s − 1}.

With Definition 1, an element in Ms(UN ) is defined as a group of s shapes
u1, . . . , us, where each shape uj is an element of the product of nj smooth man-
ifolds. For Ul = Be([0, 1],R2) for l = 1, . . . , 12 and U13 = Be(S1,R2), we can
define the shapes presented in Fig. 1 by (u1, u2) ∈ M2(U13), where u1 ∈ ∏12

l=1 Ul

and u2 ∈ U13.
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For applications of Definition 1 in shape optimization problems, it is of
great interest to look at the tangent space of Ms(UN ). Since any element u =
(u1, . . . , us) ∈ Ms(UN ) can be understood as an element ũ = (ũ1, . . . , ũN ) ∈ UN ,
we set TuMs(UN ) = TũUN and

Gu(ϕ, ψ) = Gũ(ϕ, ψ) ∀ϕ, ψ ∈ TuMs(UN ) = TũUN .

Next, we consider shape optimization problems, i.e. we investigate so-called
shape functionals. A shape functional on Ms(UN ) is given by j : Ms(UN ) → R,
u �→ j(u). In the following paragraph, we investigate solution techniques for
shape optimization problems, i.e. for problems of the form

min
u∈Ms(UN )

j(u). (2)

2.2 Optimization Technique on Ms(UN) for Optimizing
Piecewise-Smooth Shapes

A theoretical framework for shape optimization depending on multi-shapes
is presented in [6], where the optimization variable can be represented as
a multi-shape belonging to a product shape space. Among other things, a
multi-pushforward and multi-shape gradient are defined; however, each shape
is assumed to be an element of one shape space. In contrast, Definition 1 also
allows that a shape itself is represented by a product shape space. Therefore, we
need to adapt the findings in [6] to our setting.

To derive a gradient descent algorithm for a shape optimization problem
as in (2), we need a definition for differentiating a shape functional mapping
from a smooth manifold to R. For smooth manifolds, this is achieved using a
pushforward.

Definition 2. For each shape u ∈ Ms(UN ), the multi-pushforward of a shape
functional j : Ms(UN ) → R is given by the map

(j∗)u : TuMs(UN ) → R, ϕ �→ d
dt

j(ϕ(t))t=0 = (j ◦ ϕ)
′
(0).

Thanks to the multi-pushforward, we can define the so-called multi-shape gra-
dient, which is required for optimization algorithms.

Definition 3. The multi-shape gradient for a shape functional j : Ms(UN ) → R

at the point u ∈ Ms(UN ) is given by ψ ∈ TuMs(UN ) satisfying

GN
u (ψ, ϕ) = (j∗)uϕ ∀ϕ ∈ TũMs(UN ).

We are now able to formulate a gradient descent algorithm on Ms(UN ) similar
to the one presented in [6]. For updating the multi-shape u in each iteration, the
multi-exponential map

expN
u : TuMs(UN ) → Ms(UN ), ϕ = (ϕ1, . . . , ϕN ) �→ (expũ1 ϕ1, . . . , expũN

ϕN )
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Algorithm 1. Gradient descent algorithm on Ms(UN ) with Armijo backtracking
line search to solve (2)
Input: Initial shape u = (u1, . . . , us) = (ũ1, . . . , ũN ) = ũ, constants for Armijo back-

tracking and ε > 0 for break condition
1: while ‖v‖GN > ε do
2: Compute the multi-shape gradient v with respect to GN

3: Compute stepsize α with Armijo backtracking
4: u ← expN

u (−αv)
5: end while

is used. The algorithm is depicted in Algorithm 1.
So far, we have derived an optimization algorithm on Ms(UN ), i.e. an algo-

rithm for optimizing a non-intersecting group of shapes, where each shape is an
element of a product manifold with a varying number of factor spaces. With
the main goal of this section in mind, we need to further restrict the choice of
shapes in Ms(UN ) to glued-together piecewise-smooth shapes: We assume that
Ui is either Be(S1,R2) or Be([0, 1],R2). Moreover, we assume that each shape
(u1, . . . , us) is closed, where u = (u1, . . . , us) is chosen from Ms(UN ). By that

we mean that if a shape is uj ∈
kj+nj−1∏

l=kj

Ul, then either

nj = 1 and Ukj
= Be(S1,R2)

or

Ul = Be([0, 1],R2) ∀l = kj , . . . , kj + nj − 1 and for
uj = (ukj

, . . . , ukj+nj−1), it holds that
ukj+h(1) = ukj+h+1(0) ∀h = 0, . . . , nj − 2 and ukj

(0) = ukj+nj−1(1).

Finally, we want to address another important issue in shape optimization
algorithms: the development of kinks in smooth shapes over the course of the
optimization. If we view a smooth initial shape, e.g. u2 from Fig. 1, as an element
in Be(S1,R2) no kinks can arise during the optimization of the shape. An app-
roach to fix this issue for applications, where the developments of kinks in shapes
is desired, is to approximate a smooth shape with elements of Be([0, 1],R2). A
simple but sufficient choice is using initially straight lines connecting locations
of possible kinks. In this manner, the multi-shape u = (u1, u2) from Fig. 1 would
be an element of

M2(U12+l1+l2), where l1, l2 ∈ N and

u1 ∈
12+l1∏

l=1

Ul = Be([0, 1],R2)12+l1 , u2 ∈
12+l1+l2∏

l=13+l1

Ul = Be([0, 1],R2)l2 .
(3)



26 L. Pryymak et al.

3 Application to Navier-Stokes Flow

In the following, we apply Algorithm 1 to a shape optimization problem con-
strained by steady-state Navier-Stokes equations and geometrical constraints. In
Sect. 3.1, we briefly describe the numerical implementation of Algorithm 1. After-
wards, we formulate the optimization problem that will be considered for the
numerical studies in Sect. 3.2, and finally, in Sect. 3.3, we describe the numerical
results.

3.1 Adjustments of Algorithm 1 for Numerical Computations

In order to ensure the numerical applicability of Algorithm 1, adjustments must
be made. We define the space W := {W ∈ H1(Du,R2)| W = 0 on ∂Du \ u},
and similarly to [6], we use an optimization approach based on partial shape
derivatives, together with the Steklov-Poincaré metric in Eq. (1). The Steklov-
Poincaré metric is defined in [16] and yields Gi(V |u, W |u) = a(V , W ) with a
symmetric and coercive bilinear form a : W × W. We replace the multi-shape
gradient with the mesh deformation V ∈ W, which is obtained by replacing the
multi-pushforward with the multi-shape derivative2 in Definition 3. A common
choice for the bilinear form when using the Steklov-Poincaré metric is linear
elasticity

∫

Du

ε(V ) : C : ε(W ) dx = dj(u)[W ] ∀W ∈ W, (4)

where ε(V ) = sym grad(V ) and C describes the linear elasticity tensor and
A : B is the standard Frobenius inner product and dj(u)[W ] denotes the shape
derivative of j at u in direction W . Due to the equivalence of the Steklov-
Poincaré metric and the bilinear form a, we replace the GN -norm in the stop-
ping criterion of the Algorithm 1 with the H1-norm in Du. Finally, since the
exponential map used in Algorithm 1 is an expensive operation, it is common to
replace it by a so-called retraction. In our computations, we use the retraction
introduced in [17].

3.2 Model Formulation

We consider the problem

min
u∈Ms(UN )

j(u) := min
u∈Ms(UN )

∫

Du

μ

2 ∇v : ∇v dx, (5)

where we constrain the optimization problem by the Navier-Stokes equations and
choose Ms(UN ) as in (3). The state is denoted as y = (v, p) for which the Navier-
Stokes equations can be found in standard literature and will be omitted here for
brevity. The material constants dynamic viscosity and density are defined as μ =
2 We refer to [6] for the definition and details about the multi-shape derivative.
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Fig. 1. Sketch of two shapes u1, u2 surrounded by a domain Du ⊂ R
2.

1.81 and ρ = 1.2 · 105, respectively. We choose homogenous Dirichlet boundary
conditions on the top and bottom boundary as well as on both shapes. The
right boundary is modelled as homogenous Neumann, and the left boundary has
the inhomogenous Dirichlet boundary condition v = (−0.08421 x2 (x2 − 1), 0)�.
We choose the hold-all domain D = (0, 1)2, in which two shapes u1 and u2 are
embedded as shown in Fig. 1 with barycenters at (0.3, 0.3)� and (0.45, 0.75)�,
respectively.

Additional geometrical constraints are required in order to avoid trivial solu-
tions, see e.g. [12,13], which are implemented as inequality constraints with an
Augmented Lagrange approach as described in [18]. We restrict the area of each
shape vol(ui) to be at 100% initial area. Further, the barycenter bary(u1) is con-
strained to stay between (−0.03, −0.05)� and (0.04, 0.03)� of the initial position
in x and y direction, respectively, and the barycenter bary(u2) to stay between
(−0.075, −0.02)� and (0.02, 0.05)� of the initial position.

3.3 Numerical Results

The computational domain is discretized with 3512 nodes and 7026 triangu-
lar elements using Gmsh [7] with standard Taylor-Hood elements. An automatic
remesher is available in case the mesh quality deteriorates below a threshold. The
optimization is performed in FEniCS 2019.1.0 [2]. We use a Newton solver and
solve the linearized system of equations using MUMPS 5.5.1 [3,4]. Armijo back-
tracking is performed as described in Algorithm 1 with α̃ = 0.0125, σ = 10−4

and ρ̃ = 1
10 . The stopping criterion for each gradient descent is reached when the

H1-norm of the mesh deformation is at or below 10−4. The objective functional
and the H1-norm of the mesh deformation over the course of the optimization
are shown in Fig. 2 and the magnitude of the fluid velocity in the computa-
tional domain before, during, and after optimization can be found in Fig. 3. The
optimized shapes can be seen in Fig. 3 on the right. Over the course of the opti-
mization we observe a reduction of the objective functional by approximately
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Fig. 2. Optimization results: objective functional (left) and H1-norm of the mesh defor-
mation (right).

Fig. 3. Fluid velocity magnitude at different stages of the optimization. Figure 3f has
an increased objective functional value in comparison to Fig. 3d and 3e, however it
fulfills the geometrical constraints while the others do not yet.
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74%. The norm of the mesh deformation shows an exponential decrease, similar
to a classical gradient descent algorithm. The peaks are caused by remeshing or
by the adjustment of Augmented Lagrange parameters. Initially, the optimizer is
mainly concerned with obtaining a approximate optimized shape, see Fig. 3b–3d,
while the exact fulfillment of geometrical constraints is less relevant. The later
stages optimize small features like the leading and trailing edge of the shape,
see Fig. 3e, any suboptimal kinks that were still remaining are removed, and in
Fig. 3f the geometrical constraints are fulfilled with an infeasibility of below 10−6

after k = 7 Augmented Lagrange iterations.

4 Conclusion

A novel shape space Ms(UN ) that provides both, a Riemannian structure and a
possibility to consider glued-together shapes (in particular, shapes with kinks) is
introduced. Additionally, an optimization algorithm, based on findings from [6],
is formulated. The new algorithm is applied to solve an optimization problem
constrained by the Navier-Stokes equations with additional geometrical inequal-
ity constraints, where we have observed a strong reduction of the objective func-
tional and convergence of the gradient descent on Ms(UN ) similar to a classical
gradient descent algorithm. Forthcoming research should involve an investiga-
tion of the development of the shapes’ overlaps (glued-together points) over the
course of the optimization. Moreover, convergence statements need to be inves-
tigated.
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Abstract. This paper is devoted to the study of unparameterized sim-
ple curves in the plane. We propose diverse canonical parameterization
of a 2D-curve. For instance, the arc-length parameterization is canonical,
but we consider other natural parameterizations like the parameteriza-
tion proportional to the curvature of the curve. Both aforementionned
parameterizations are very natural and correspond to a natural physi-
cal movement: the arc-length parameterization corresponds to travelling
along the curve at constant speed, whereas parameterization propor-
tional to curvature corresponds to a constant-speed moving frame. Since
the curvature function of a curve is a geometric invariant of the unpa-
rameterized curve, a parameterization using the curvature function is
a canonical parameterization. The main idea is that to any physically
meaningful strictly increasing function is associated a natural parame-
terization of 2D-curves, which gives an optimal sampling, and which can
be used to compare unparameterized curves in an efficient and pertinent
way. An application to point correspondence in medical imaging is given.

Keywords: Canonical parameterization · Geometric Green Learning ·
shape space

1 Introduction

Curves in R
2 appear in many applications: in shape recognition as outline of an

object, in radar detection as the signature of a signal, as trajectories of cars etc.
There are two main features of the curve: the route and the speed profile. In this
paper, we are only interested in the route drawn by the curve and we will called
it the unparameterized curve. An unparameterized curve can be parameterized
in multiple ways, and the chosen parameterization selects the speed at which
the curve is traversed. Hence a curve can be travelled with many different speed
profiles, like a car can travel with different speeds (not necessarily constant)
along a given road. The choice of a speed profile is called a parameterization of
the curve. It may be physically meaningful or not. For instance, depending on
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applications, there may not be any relevant parameterization of the contour of
the statue of Liberty depicted in Fig. 1. In this paper, we propose various very
natural parameterization of 2D-curves. They are based on the curvature, which
together with the arc-length measure form a complete set of geometric invariants
or descriptors of the unparameterized curves.

2 Different Parameterizations of 2D-shapes

2.1 Arc-Length Parameterization and Signed Curvature

By 2D-shape, we mean the shape drawn by a parameterized curve in the plane.
It is the ordered set of points visited by the curve. The shapes of two curves are
identical if one can reparameterize one curve into the other (using a continuous
increasing function). Any rectifiable planar curve admits a canonical parameter-
ization, its arc-length parameterization, which draws the same shape, but with
constant unit speed. The set of 2D-shapes can be therefore identified with the set
of arc-length parameterized curves, which is not a vector subspace, but rather
an infinite-dimensional submanifold of the space of parameterized curves (see
[5]).

It may be difficult to compute an explicit formula of the arc-length parameter-
ization of a given rectifiable curve. Fortunately, when working with a computer,
one do not need it. One neither need a concrete parameterization of the curve to
depict it, a sample of points on the curve is enough. To draw the statue of Lib-
erty as in Fig. 1 left, one just needs a finite ordered set of points (the red stars).
The discrete version of an arc-length parameterized curve is a uniformly sam-
pled curve, i.e. an ordered set of equally distant points (for the euclidean metric).
Resampling a curve uniformly is immediate using some appropriate interpola-
tion function like the matlab function spline (the second picture in Fig. 1 shows
a uniform resampling of the statue of liberty).

Consider the set of 2D simple closed curves, such as the contour of Elie
Cartan’s head in Fig. 2. After the choice of a starting point and a direction,
there is a unique way to travel the curve at unit speed. In Fig. 2, we have drawn
the velocity vector near the glasses of Elie Cartan, as well as the unit normal
vector which is obtained from the unit tangent vector by a rotation of +π

2 . These
two vectors form an orthonormal basis, i.e. an element (modulo the choice of a
basis of R

2) of the Lie group SO(2), which is characterized by a rotation angle.
The rate of variation of this rotation angle is called the signed curvature of the
curve. For instance, when moving along the external outline of the glasses, this
curvature equals the inverse of the radius of the glasses. We have depicted the
curvature function κ of Elie Cartan’s head in Fig. 3, first line, when the parameter
s ∈ [0; 1] on the horizontal axis is proportional to arc-length, and such that the
entire contour of Elie Cartan’s head is travelled when the parameter reaches 1.
It corresponds to a uniform sampling of the contour. The curvature function is
also depicted when parameterized by two other canonical parameters, namely by
the curvature-length parameter (second line) and the curvarc-length parameter
(third line).
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Fig. 1. The statue of Liberty (left), a uniform resampling using Matlab function spline
(middle), a reconstruction of the statue using its discrete curvature (right). (Color
figure online)

A discrete version of an arc-length parameterized curve is an equilateral
polygon. To draw an equilateral polygon, one just need to know the length of
the edges, the position of the first edge, and the angles between two successive
edges. The sequence of turning-angles is the discrete version of the curvature and
defines a equilateral polygon modulo rotation and translation. In Fig. 1, right,
we have reconstructed the statue of Liberty using the discrete curvature.

In order to interpolate between two parameterized curves, it is easier when the
domains of the parameter coincide. For this reason we will always consider curves
parameterized with a parameter in [0; 1]. A natural parameterization is then the
parameterization proportional to arc-length. It is obtained from the parameter-
ization by arc-length by dividing the arc-length parameter by the length of the
curve L. The corresponding curvature function is also defined on [0; 1] and is
obtained from the curvature function parameterized by arc-length by compress-
ing the x-axis by a factor L. To recover the initial curve from the curvature
function associated to the parameter s ∈ [0; 1] proportional to arc-length, one
only need to know the length of the curve.
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Fig. 2. Elie Cartan and the moving frame associated to the contour of his head.
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Fig. 3. Signed curvature of Elie Cartan’s head for the parameterization proportional
to arc-length (first line), proportional to the curvature-length (second line), and pro-
portional to the curvarc length (third line).
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2.2 Parameterization Proportional to Curvature-Length

In the same spirit as the scale space of T. Lindeberg [2], and the curvature
scale space of Mackworth and Farcin Mokhtarian [3], we now define another
very natural parameterization space of 2D curves. Its relies on the fact that the
integral of the absolute value of the curvature κ is an increasing function on the
interval [0; 1], strictly increasing when there are no flat pieces. In that case the
function

r(s) =

∫ s

0
|κ(s)|ds

∫ 1

0
|κ(s)|ds

(1)

(where κ denotes the curvature of the curve) belongs to the group of orientation
preserving diffeomorphisms of the parameter space [0; 1], denoted by Diff+([0; 1]).
Note that its inverse s(r) can be computed graphically using the fact that its
graph is the symmetric of the graph of r(s) with respect to y = x. The contour of
Elie Cartan’s head can be reparameterized using the parameter r ∈ [0; 1] instead
of the parameter s ∈ [0; 1]. In Fig. 4 upper left, we have depicted the graph
of the function s �→ r(s). A uniform sampling with respect to the parameter
r is obtain by uniformly sampling the vertical-axis (this is materialized by the
green equidistributed horizontal lines) and resampling Elie Cartan’s head at the
sequence of values of the s-parameter given by the abscissa of the corresponding
points on the graph of r (where a green line hits the graph of r a red vertical
line materializes the corresponding abscissa). One sees that this reparameteriza-
tion naturally increases the number of points where the 2D contour is the most
curved, and decreases the number of points on nearly flat pieces of the contour.
For a given number of points, it gives an optimal way to store the information
contained in the contour. The quantity

C = L

∫ 1

0

|κ(s)|ds, (2)

where s ∈ [0; 1] is proportional to arc-length, is called the total curvature-length
of the curve. It is the length of the curve drawn in SO(2) by the moving frame
associated with the arc-length parameterized curve. For this reason we call this
parameterization the parameterization proportional to curvature-length. In the
right picture of Fig. 4, we show the corresponding resampling of the contour of
Elie Cartan’s head.

This resampling can naturally be adapted in the case of flat pieces resulting
in a sampling where there is no points between two points on the curve joint by
a straight line. In the left picture of Fig. 5, we have depicted a sampling of the
statue of Liberty proportional to curvature-length. Note that there are no points
on the base of the statue. The corresponding parameterization has the advantage
of concentrating on the pieces of the contour that are very complex, i.e. where
there is a lot of curvature, and not distributing points on the flat pieces which
are easy to reconstruct (connecting two points by a straight line is easy, but
drawing the moustache of Elie Cartan is harder and needs more information).
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Fig. 4. First line: Integral of the (renormalized) absolute value of the curvature (left),
and corresponding resampling of Elie’s Cartan head (right). Second line: Integral of
the (renormalized) curvarc length (left), and corresponding resampling of Elie’s Cartan
head (right). (Color figure online)

The drawback of using the parameterization proportional to curvature-length
is that one can not reconstruct the flat pieces of a shape without knowing their
lengths (remember that the parameterization proportional to curvature-length
put no point at all on flat pieces). For this reason we propose a parameteri-
zation intermediate between arc-length parameterization and curvature-length
parameterization. We call it curvarc-length parameterization.

2.3 Curvarc-Length Parameterization

In order to define the curvarc-length parameterization, we consider the triple
(P (s),v(s),n(s)), where P (s) is the point of the shape parameterized propor-
tionally to arc-length with s ∈ [0; 1], v(s) and n(s) the corresponding unit
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tangent vector and unit normal vector respectively. It defines an element of the
group of rigid motions of R

2, called the special Euclidean group and denoted
by SE(2) := R

2
� SO(2). The point P (s) corresponds to the translation part of

the rigid motion, it is the vector of translation needed to move the origin to the
point of the curve corresponding to the parameter value s. The moving frame
O(s) defined by v(s) and n(s) is the rotation part of the rigid motion. One has
the following equations:

dP

ds
= Lv(s) and O(s)−1 d

ds
O(s) =

(
0 −κ(s)

κ(s) 0

)
, (3)

where L is the length of the curve. Endow SE(2) := R
2
�SO(2) with the structure

of a Riemannian manifold, product of the plane and the Lie group SO(2) � S
1.

Then the norm of the tangent vector to the curve s �→ (P (s),v(s),n(s)) is
L + |κ(s)|. Therefore the length of the SE(2)-valued curve is L +

∫ 1

0
|κ(s)|ds =

L+ C
L . We call it the total curvarc-length. It follows that the following function

u(s) =

∫ s

0
(L + |κ(s)|)ds

∫ 1

0
(L + |κ(s)|)ds

(4)

defines a reparameterization of [0; 1]. More generally, one can use the following
canonical parameter to reparameterize a curve in a canonical way:

uλ(s) =

∫ s

0
Lλ + |κ(s)|)ds

∫ 1

0
Lλ + |κ(s)|)ds

, (5)

where s is the arc-length parameter. In Fig. 5 we show the resulting sampling of
the Statue of Liberty for different values of λ. Note that for λ = 0, one recovers
the curvature-length parameterization (1), for λ = 1 one obtains the curvarc-
length parameterization (4), and when λ → +∞ the parameterization tends to
the arc-length parameterization.

3 Application to Medical Imaging: Parameterization of
Bones

In the analysis of diseases like Rheumatoid Arthritis, one uses X-ray scans to
evaluate how the disease analogous the bones. One effect of Rheumatoid Arthritis
is erosion of bones, another is joint shrinking [1]. In order to measure joint space,
one has to solve a point correspondence problem. For this, one uses landmarks
along the contours of bones as in Fig. 6. These landmarks have to be placed
at the same anatomical positions for every patient. In Fig. 7 they are placed
using a method by Hans Henrik Thodberg [4], based on minimum description
length which minimizes the description of a Principal Component Analysis model
capturing the variability of the landmark positions. For instance in Fig. 7 left,
the landmark number 56 should always be in the middle of the head of the bone
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Fig. 5. Resampling of the statue of Liberty using Eq. (5) for (from left to right) λ = 0
(curvature-length parameterization); λ = 0.3;λ = 1(curvarc-length parameterization);
λ = 2;λ = 100. The parameterization tends to arc-length parameterization when
λ → ∞.

because it is used to measure the width between two adjacent bones in order to
detect rheumatoid arthritis.

Although the method by Hans Henrik Thodberg gives good results, it is com-
putationally expensive. In this paper we propose to recover similar results with
a quicker algorithm. It is based on the fact that any geometrically meaningful
parameterization of a contour can be expressed using the arc-length measure
and the curvature of the contour, which are the only geometric invariants of a
2D-curve (modulo translation and rotation). It follows that the parameterization
calculated by Thodberg’s algorithm should be recovered as a parameterization
expressed using arc-length and curvature. We investigate a 2 parameter family
of parameterizations defined by

u(s) =

∫ s

0
(c ∗ L + |κ(s)|λ)ds

∫ 1

0
(c ∗ L + |κ(s)|λ)ds

(6)

where c and λ are positive parameters and where L is the length of the curve
and κ its curvature function. We recover an analogous parameterization to the
one given by Thodberg’s algorithm with c = 1 and λ = 7 at real-time speed
(gain of 2 order of magnitude). Hence, instead of running Thodberg’s algorithm
on new samples (which takes many minutes on a Mac M1), one can use the
optimal parameterization function (6) to place landmarks on the bones at real
time speed (Fig. 8).
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Fig. 6. Landmarks on bones used to measure joint space (courtesy of [1]).

Fig. 7. Point correspondence on three different bones using the method of [4].
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Fig. 8. 14 bones parameterized by Thodberg’s algorithm on one hand and the param-
eterization defined by (6) with c = 1 and λ = 7 on the other hand (the two parameter-
izations are superposed). The colored points corresponds to points labelled 1, 48, 56,
66. They overlap for the two methods.

4 Conclusion

We proposed diverse canonical parameterization of 2D-contours, which are
expressed using arc-length and curvature of curves. The curvature-length param-
eterization and the curvarc-length parameterization are very natural examples,
since they corresponds to a constant-speed moving frame in SO(2) and SE(2).
We present an application to the point matching problem in medical imaging
consisting of automatically labeling key points along the contour of bones. We
recover a parameterization analogous to that proposed by Thodberg at real-time
speed. Since we have a family of two-parameter parameterizations, fine-tuning
can be applied to our results to further improve the point matching.
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Abstract. The shape space considered in this article consists of surfaces
embedded in R

3, that are decorated with curves. It is a special case of the
Fréchet manifolds of nonlinear flags, i.e. nested submanifolds of a fixed
type. The gauge invariant elastic metric on the shape space of surfaces
involves the mean curvature and the normal deformation, i.e. the sum
and the difference of the principal curvatures κ1, κ2. The proposed gauge
invariant elastic metrics on the space of surfaces decorated with curves
involve, in addition, the geodesic and normal curvatures κg, κn of the
curve on the surface, as well as the geodesic torsion τg.

More precisely, we show that, with the help of the Euclidean metric,
the tangent space at (C, Σ) can be identified with C∞(C)×C∞(Σ) and
the gauge invariant elastic metrics form a 6-parameter family:

G(C,Σ)(h1, h2) = a1

∫
C

(h1κg + h2|Cκn)
2d� +a2

∫
Σ

(h2)
2(κ1 − κ2)

2dA

+ b1

∫
C

(Dsh1 − h2|Cτg)
2d� +b2

∫
Σ

(h2)
2(κ1 + κ2)

2dA

+ c1

∫
C

(Ds(h2|C) + h1τg)
2d� +c2

∫
Σ

|∇h2|2dA,

where h1 ∈ C∞(C), h2 ∈ C∞(Σ).

Keywords: Shape space · Geometric Green Learning · Gauge
invariant elastic metrics

1 Introduction

In this paper we use the elastic metrics on parameterized curves ([5,10]) and
parameterized surfaces ([4]) in order to endow the shape space of surfaces dec-
orated with curves with a family of Riemannian metrics. This shape space of
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decorated surfaces is an example of Fréchet manifold of nonlinear flags, studied
in [3]. These consist of nested submanifolds of an ambient manifold M , of a fixed
type S1

ι1−→ S2
ι2−→ · · · → Sr. In our case the ambient manifold is R

3 and the
type is the embedding of the equator into the sphere: S1 ι−→ S

2.
We emphasize that we do not use the quotient elastic metrics on curves and

surfaces, but rather their gauge invariant relatives (see [8,9]). Indeed, following
[6,7] for surfaces in R

3, and [2] for curves in R
3, we construct degenerate metrics

on parameterized curves and surfaces by first projecting an arbitrary variation of
a given curve or surface onto the space of vector fields perpendicular to the curve
or surface (for the Euclidean product of R3) and then applying the elastic metric
on this component. By construction, vector fields tangent to the curve or surface
will have vanishing norms, leading to a degenerate metric on pre-shape space.
However, since the degeneracy is exactly along the tangent space to the orbit of
the reparameterization group, these degenerate metrics define Riemannian (i.e.
non-degenerate) metrics on shapes spaces of curves and surfaces (as in Theorem
3 in [8]). The following advantages of this procedure can be mentioned:
• there is no need to compute a complicated horizontal space in order to define
a Riemannian metric on shape space
• the length of paths in shape space equals the length of any of their lifts for the
corresponding degenerate metric, a property called gauge invariance in [6,7].
• the resulting Riemannian metric on shape spaces can be easily expressed in
terms of geometric invariants of curves and surfaces, leading to expressions that
are completely independant of parameterizations.

In this paper, we use the gauge invariant (degenerate) metrics on parame-
terized curves and surfaces obtained from the elastic metrics via the procedure
described above in order to define Riemannian metrics on shape spaces of curves
and surfaces. Then we embed the shape space of nonlinear flags consisting of
surfaces decorated with curves into the Cartesian product of the shape space
of curves in R

3 with the shape space of surfaces in R
3. The Riemannian metric

obtained on the shape space of nonlinear flags can be made explicit thanks to a
precise description of its tangent space (Theorem 1) and thanks to the geometric
expressions of the metrics used on curves and surfaces, leading to a 6-parameter
family of natural Riemannian metrics (Theorem 2).

2 Shape Spaces of Decorated Surfaces as Manifolds
of Nonlinear Flags

We will consider the shape space of nonlinear flags consisting of pairs (C,Σ)
such that C is a curve on the surface Σ embedded in R

3. We will restrict our
attention to surfaces of genus 0, and simple curves (the complement to the curve
in the surface has only two connected components), but our construction can
be extended without substantial changes to surfaces of genus g and to a finite
number of curves. The general setting for the Fréchet manifolds on nonlinear
flags of a given type S1

ι1−→ S2
ι2−→ · · · → Sr can be found in [3]. Our type is the

embedding ι of the unit circle S
1 in the unit sphere S

2 as the equator, thus the
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shape space of nonlinear flags is in this case F := Flag
S1

ι
↪→S2

(R3). Examples of
elements (C,Σ) ∈ F are given in Fig. 1.

Fig. 1. Examples of elements in the shape space of nonlinear Flags: a black belt on a
human body (left), the model nonlinear flag consisting of the equator (in white) on the
sphere, and a black collar on a cat (right)

We will be interested in deforming flags. To this aim, we will represent a
general flag (C,Σ) using an embedding F : S2 → R

3 such that the image of
the restriction F ◦ ι of F to the equator is C. The pair (F ◦ ι, F ) is also called a
parameterization of the flag (C,Σ). The space of parametrized flags is

P := {F : S2 → R
3, F is an embedding}.

It is called the pre-shape space of flags since objects with same shape but different
parameterizations correspond to different points in P. The set P is a manifold,
as an open subset of the linear space C∞(S2,R3) of smooth functions from S

2 to
R

3. The tangent space to P at F , denoted by TF P, is therefore just C∞(S2,R3).
There is a natural projection π from the space of parameterized flags P onto

the space of flags F given by

π(F ) = ((F ◦ ι)(S1), F (S2)). (1)

Since we are only interested in unparameterized nonlinear flags, we would like
to identify pairs of parameterized curves and surfaces that can be related through
reparameterization. The reparametrization group G is the group of diffeomor-
phisms γ of S2 which restrict to a diffeomorphism of the equator ι : S1 ↪→ S

2 :

G = {γ ∈ Diff(S2) : γ ◦ ι = ι ◦ γ̄ for some γ̄ ∈ Diff(S1)}.

The group G is an infinite-dimensional Fréchet Lie group whose Lie algebra is
the space of vector fields on S

2 whose restriction to the equator is tangent to the
equator. The right action of G on P is given by F · γ := F ◦ γ. It’s a principal
action for the principal G-bundle π : P → F .

The elements in P obtained by following a fixed parameterized flag F ∈ P
when acted on by all elements of G is called the G-orbit of F or the equivalence



44 I. Ciuclea et al.

class of F under the action of G, and will be denoted by [F ]. The orbit of F ∈ P
is characterized by the surface Σ := F (S2) and the curve C := (F ◦ ι)(S1), hence
π(F ) = (C,Σ) (see (1)). The elements in the orbit [F ] = {F ◦ γ, for γ ∈ G} are
all possible parameterizations of (C,Σ) of the form (F ◦ ι, F ). For instance in
Fig. 2 one can see some parameterized hands with bracelets that are elements of
the same orbit. The set of orbits of P under the group G is called the quotient
space and will be denoted by P/G.

Fig. 2. Examples of elements in the same orbit under the group of reparameterizations:
a hand with a white bracelet presented under different parameterizations.

Proposition 1. The shape space F is isomorphic to the quotient space of the
pre-shape space P by the shape-preserving group G = Diff(S2; ι) :

F = P/G.

The shape space F = P/G is a smooth manifold and the canonical projection
π : P → F , F �→ [F ] is a submersion (see for instance [3]). The kernel of the
differential of this projection is called the vertical space. It is the tangent space
to the orbit of F ∈ P under the action of the group G.

Proposition 2. The vertical space VerF of π at some embedding F ∈ P is the
space of vector fields XF ∈ C∞(S2,R3) such that the deformation vector field
XF ◦ F−1 is tangent to the surface Σ := F (S2) and such that the restriction of
XF ◦ F−1 to the curve C := F ◦ ι(S1) is tangent to C.

The normal bundle Nor is the vector bundle over the pre-shape space P,
whose fiber over an embedding F is the quotient vector space

NorF := TF P/VerF .

Proposition 3. The right action of G on P induces an action on TP which
preserves the vertical bundle, hence it descends to an action on Nor by vector
bundle homomorphisms. The quotient bundle Nor /G can be identified with the
tangent bundle TF .

Consider a nonlinear flag (C,Σ). Let us denote by ν the unit normal vector
field on the oriented surface Σ, and by t the unit vector field tangent to the
oriented curve C. Set n := ν × t the unit normal to the curve C contained in
the tangent space to the surface Σ. The triple (t,n, ν) is an orthonormal frame
along C, called the Darboux frame. We will denote by 〈·, ·〉 the Euclidian scalar
product on R

3.
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Fig. 3. Deformation vector field and Darboux frame (t, n, ν), where ν is the unit normal
vector field on the oriented surface σ, t is the unit vector field tangent to the oriented
curve C and n := ν × t is the unit normal to the curve C contained in the tangent
space to the surface.

Theorem 1. Let F be a parameterization of (C,Σ). Consider the linear surjec-
tive map

ΨF : TF P � C∞(S2,R3) → C∞(C) × C∞(Σ), (2)

which maps XF ∈ TF P to (h1, h2) defined by

h1 := 〈(XF ◦ ι) ◦ (F ◦ ι)−1,n〉 ∈ C∞(C),

h2 := 〈XF ◦ F−1, ν〉 ∈ C∞(Σ).

Then the kernel of ΨF is the vertical subspace VerF , hence ΨF defines a map
from the quotient space NorF = TF P/VerF into C∞(C)×C∞(Σ). The resulting
bundle map Ψ is G-invariant providing an isomorphism between the tangent
space T(C,Σ)F and C∞(C) × C∞(Σ).

Proof. Consider XF such that ΨF (XF ) = 0. Since h2 = 0, XF ◦ F−1 is a vector
field tangent to Σ. Since h1 = 0, the restriction of XF ◦ F−1 to the curve C,
given by (XF ◦ ι) ◦ (F ◦ ι)−1, is tangent to Σ and orthogonal to n, hence it is
tangent to C. Thus, by Proposition 2, the kernel of Ψ is exactly VerF .

Let us show that Ψ is G-invariant, i.e. that for γ ∈ G,

ΨF (XF ) = ΨF◦γ(XF ◦ γ). (3)

One has π(F ◦ γ) = π(F ) = (C,Σ). Moreover the normal vector fields ν : Σ →
R

3 and n : C → R
3 do not depend on the parameterizations of Σ and C. For

γ ∈ G, we have
(XF ◦ γ) ◦ (F ◦ γ)−1 = XF ◦ F−1

as deformation vector fields on Σ. On the other hand, using the fact that γ ◦ ι =
ι ◦ γ̄ for some γ̄ ∈ Diff(S1), we get

(XF ◦ γ ◦ ι) ◦ (F ◦ γ ◦ ι)−1 = (XF ◦ ι) ◦ (F ◦ ι)−1

as deformation vector fields on C. The invariance property (3) follows.
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The projection π : P → F = P/G is a principal G-bundle, hence the G-
action preserves the vertical bundle Ver. It induces a well-defined G-action on
Nor : for γ ∈ G, the class [XF ] ∈ NorF is mapped to the class [XF ◦ γ] ∈
NorF◦γ . By G-invariance of Ψ , we get a well-defined map on Nor /G which maps
isomorphically the tangent space T(C,Σ)F into C∞(C) × C∞(Σ).

Remark 1. The construction in Theorem 1 also works for complete nonlinear
flags of length k in R

k+1. These are nested submanifolds N1 ⊂ ... ⊂ Nk ⊂ R
k+1

with dimNi = i. In this case, the tangent space at a complete nonlinear flag can
be identified with C∞(N1) × ... × C∞(Nk).

Remark 2. For the pre-shape space of embedded surfaces, there is a natural
section of the projection TF P → C∞(Σ), given by variations that are in the
direction of the normal vector field ν to the surface Σ. In this case, the Euclidean
metric on R

3 induces a connection on the principal Diff(S2)-bundle P → S,
where S denotes the shape space of surfaces. The problem of finding similar
principal connections for the G-bundle P → F will be addressed in [1].

Remark 3. As in Proposition 2.9 in [3], the shape space F can be seen as a homo-
geneous space for the compactly supported diffeomorphism group Diffc(R3), with
origin the nonlinear flag S

1 ⊂ S
2 in R

3.

3 Riemannian Metrics on Shape Spaces of Nonlinear
Flags

As in [6] and [7], we endow the pre-shape space of parameterized curves and
surfaces with a family of gauge invariant metrics which descend to a family of
Riemannian metric on shape spaces of curves and surfaces. The construction is
explained in Subsect. 3.1. The Riemannian metrics on parameterized curves and
surfaces used in this construction are the elastic metrics given in Subsect. 3.2.
The expression of the Riemannian metrics obtained on nonlinear flags in terms
of the geometric invariants of curves and surfaces is given in Subsect. 3.3.

3.1 Procedure to Construct the Riemannian Metrics

In order to construct a Riemannian metric on the space F of nonlinear flags, we
proceed as follows:

1. we embed our shape space F of surfaces decorated with curves in S1 × S2,
with S1 the shape space of curves and S2 the shape space of surfaces.

2. we choose a family ga,b of Diff+(S1)-invariant metrics on the space of param-
eterized curves P1 (Eq. (6))

3. the family ga,b defines a family of Riemannian metrics on the shape space of
curves S1 by restricting to the normal variations of curves

4. we choose a family ga′,b′,c′
of Diff+(S2)-invariant metrics on the space of

parameterized surfaces P2 (Eq. (7)).
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5. the family ga′,b′,c′
defines a family of Riemannian metrics on the shape space

of surfaces S2 by restricting to the normal variations of surfaces
6. the product of these metrics is then restricted to F using the characterization

of the tangent space to F given in Theorem 1.

Remark 4. An equivalent procedure is to pull back to P, via F �→ (F ◦ ι, F ) ∈
P1 × P2, the sum of the gauge invariant elastic metrics on the preshape space
P1 for curves and P2 for surfaces. The result is gauge invariant under G, so it
descends to a Riemannian metric on the shape space F .

F ∈ P
G

��

�    P1 × P2 
 (F ◦ ι, F )

Diff(S1)×Diff(S2)

��
(C,Σ) ∈ F �    S1 × S2 
 (C,Σ).

(4)

3.2 Elastic Metrics on Manifolds of Parameterized Curves
and Surfaces

The family of metrics measuring deformations of curves that we will use is the
family of Diff+(S1)-invariant elastic metrics on parameterized curves P1 in [5]:

ga,b
f (h1, h2) =

∫
C

[
a(Dsh

‖
1)(Dsh

‖
2) + b(Dsh

⊥
1 )(Dsh

⊥
2 )

]
d	, (5)

where f ∈ P1 is a parameterization of the curve C, hi ∈ TfP1 are tangent
vectors to the space of parameterized curves, d	 = ‖ḟ(t)‖dt, Dsh(t) = ḣ(t)

‖ḟ(t)‖ is

the arc-length derivative of the variation h, Dsh
‖ = 〈Dsh, t〉 is the component

along the unit tangent vector field t = ḟ

‖ḟ‖ to the curve, Dsh
⊥ = Dsh−〈Dsh, t〉 t

is the component orthogonal to the tangent vector t. Here the a-term measures
streching of the curve, while the b-term measures its bending. Note that this
metric is degenerate: it has a kernel induced by translations of curves.

Let δf denote a perturbation of a parametrized curve f : S1 → R
3, and let

(δr, δt) denote the corresponding variation of the speed r := ‖ḟ(t)‖ and of the
unit tangent vector field t. It is easy to check that the squared norm of δf for
the metric (5) reads:

E ′
f (δf) := ga,b

f (δf, δf) = a

∫
S1

(
δr

r

)2

d	 + b

∫
S1

|δt|2d	. (6)

The family of metrics measuring deformations of surfaces that we will use is
the family of Diff+(S2)-invariant metrics introduced in [4] and called elastic met-
rics. Let δF denote a perturbation of a parametrized surface F , and let (δg, δν)
denote the corresponding perturbation of the induced metric g = F ∗〈·, ·〉R3

and of the unit normal vector field ν. Then the squared norm of δF , namely
ga′,b′,c′

F (δF, δF ), is:

E ′′
F (δF ) = a′

∫
S2

Tr((g−1δg)0)2dA + b′
∫
S2

(Tr(g−1δg))2dA + c′
∫
S2

|δν|2dA (7)
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where B0 is the traceless part of a 2×2-matrix B defined as B0 = B− Tr(B)
2 I2×2.

The a′-term measures area-preserving changes in the induced metric g, the b′-
term measures changes in the area of patches, and the c′-term measures bending.
Similarly to the case of curves, this metric also has kernel induced by translations.

3.3 Geometric Expression of the Riemannian Metrics on Manifolds
of Decorated Surfaces

In this subsection we restrict the reparametrization invariant metrics (6) and
(7) to normal variations. This allows us to express them with the help of the
principal curvatures κ1 and κ2 of the surface, geodesic and normal curvatures
κg, κn of the curve on the surface, as well as its geodesic torsion τg. We recall
the identities involving (t,n, ν), the Darboux frame:

ṫ = r(κg n +κnν), ṅ = r(−κg t +τgν), ν̇ = r(−κn t −τg n). (8)

For functions h on the curve we will use the arc-length derivative Dsh = ḣ/r,
because it is invariant under reparametrizations.

Moreover, we split the b-term in (6) into two terms in order to put different
weights on the variations along ν and n. This leads to the following result :

Theorem 2. The gauge invariant elastic metrics for parameterized curves
respectively surfaces lead to a 6-parameter family of Riemannian metrics on
the shape space of embedded surfaces decorated with curves:

G(C,Σ)(h1, h2) = a1

∫
C

(h1κg + h2|Cκn)2d	 +a2

∫
Σ

(h2)2(κ1 − κ2)2dA

+ b1

∫
C

(Dsh1 − h2|Cτg)2d	 +b2

∫
Σ

(h2)2(κ1 + κ2)2dA

+ c1

∫
C

(Ds(h2|C) + h1τg)2d	 +c2

∫
Σ

|∇h2|2dA, (9)

for h1 ∈ C∞(C) and h2 ∈ C∞(Σ).

In the proof we will use the following two lemmas:

Lemma 1. Given the normal variation δf = h1 n +h2|Cν of the parametrized
curve f = F ◦ ι on the parametrized surface F , the variation of the speed r and
of the unit tangent vector field t are

δr = −r(h1κg + h2|Cκn), δ t = (1
r ḣ1 − h2|Cτg) n +(1

r ḣ2|C + h1τg)ν

Proof. For fε = f + ε(h1 n +h2ν) + O(ε2), we get

r2
ε = r2 − 2εr2(h1κg + h2|Cκn) + O(ε2)
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using the well known identities (8). Thus 2rδr = −2r2(h1κg +h2|Cκn), hence the
first identity. We use it in the computation of the variation of the unit tangent
goes as follows:

δ t = 1
r δḟ − δr

r t = 1
r (−r(h1κg + h2|Cκn) t +(ḣ1 − rh2|Cτg) n

+ (ḣ2|C + rh1τg)ν) + (h1κg + h2|Cκn) t = ( ḣ1
r − h2|Cτg) n +( ḣ2|C

r + h1τg)ν,

hence the second identity.

Lemma 2. Given the normal variation δF = hν of the parametrized surface F ,
the variation of the unit normal vector field ν and the gradient of h with respect
to the induced metric on the surface have the same norm.

Proof. Let (u, v) denote coordinates on S
2 and let Fu, Fv denote the partial

derivatives of F (and similarly for h). Then, as in [6], we get the variation

δν = −(hu, hv)g−1(Fu, Fv)
.

On the other hand ∇h = g−1(hu, hv)
. Now we compute

|δν|2 = (hu, hv)g−1(Fu, Fv)
(Fu, Fv)g−1(hu, hv)


= (hu, hv)g−1(hu, hv)
 = (∇h)
g∇h = |∇h|2,

using the fact that g = (Fu, Fv)
(Fu, Fv).

Proof (of Theorem (2)). Let (t,n, ν) be the Darboux frame along the curve
C ⊂ Σ. The normal vector field h1 n +(h2|C)ν to the curve C encodes the
variation of the curve which doesn’t leave the surface Σ. Using the Lemma 1,
we obtain the following expression for the elastic metric (6) restricted to this
normal variation:

E ′
F (h1 n +(h2|C)ν) = a

∫
C

(h1κg + h2|Cκn)2d	

+ b

∫
C

(
(Dsh1 − h2|Cτg)2 + (Ds(h2|C) + h1τg)2

)
d	.

We will split the b-term in two parts, thus obtaining a 3-parameter family of
metrics, namely

a1

∫
C

(h1κg +h2|Cκn)2d	+b1

∫
C

(Dsh1−h2|Cτg)2d	+c1

∫
C

(Ds(h2|C)+h1τg)2d	.

The normal vector field h2ν to the surface Σ encodes the variation of the
surface. Using Eqn. (12) in [6] the elastic metric (7) restricted to this normal
variation is given by the following geometric expression :

E ′′
F (h2ν) = 2a

∫
Σ

(h2)2(κ1 − κ2)2dA + 4b

∫
Σ

(h2)2(κ1 + κ2)2dA + c

∫
Σ

|∇h2|2dA.
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Here we use the fact that g−1δg = −2h2L, where L is the shape operator of the
surface, as well as the identity |δν| = |∇h2|, where ∇ denotes the gradient with
respect to the induced metric on the surface, by Lemma 2.

Renaming the parameters and adding to this elastic metric for the surface
the elastic metric for the curve on the surface obtained above leads to the 6-
parameter family of elastic metrics for the shape space F .

Remark 5. Assuming that the functions h1, h2 are constant along the curve C,
the b1-term becomes

∫
C

(h2|Cτg)2d	 and encodes the variation of the curve nor-
mal to the surface (variation together with the surface) while the c1 term becomes∫

C
(h1τg)2d	 and encodes the normal variation of the curve inside the surface.

4 Conclusion

In this paper, we identify the tangent spaces to nonlinear flags consisting of
surfaces of genus zero decorated with a simple curve. We use gauge invariant
metrics on parameterized curves and surfaces to endow the space of nonlinear
flags with a family of Riemannian metrics, whose expression is given in terms of
geometric invariants of curves and surfaces.
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Abstract. We present a neurogeometric model for stereo vision and
individuation of 3D perceptual units. We first model the space of position
and orientation of 3D curves in the visual scene as a sub-Riemannian
structure. Horizontal curves in this setting express good continuation
principles in 3D. Starting from the equation of neural activity we apply
harmonic analysis techniques in the sub-Riemannian structure to solve
the correspondence problem and find 3D percepts.

Keywords: Neurogeometry · Stereo vision · 3D perceptual units · 3D
good continuation

1 Introduction

We propose here a neurogeometrical model of stereo vision, in order to describe
the ability of the visual system to infer the three-dimensionality of a visual scene
from the pair of images projected respectively on the left and right retina.

The first differential models of the visual cortex, devoted to the description
of monocular vision, have been proposed by Hoffmann [16] and Koenderink-van
Doorn [19]. Results were unified under the name of neurogeometry by Petitot and
Tondut [23], who related psychophysical experiments of Field, Hayes and Hess [14]
with the contact geometry introduced by Hoffmann [16] and the stochastic app-
roach of Mumford [21]. The functional architecture of the visual cortex has been
described through sub-Riemannian metrics by Citti and Sarti [8] and through
Frenet frames by Zucker [29], and after that a large litterature was developed.

The geometric optics of stereo vision has been proposed by Faugeras in
[13] and a differential model for stereo was proposed by Zucker [29]. A sub-
Riemannian structure of 3D space has been introduced by Duits et al. in [11,12]
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
F. Nielsen and F. Barbaresco (Eds.): GSI 2023, LNCS 14071, pp. 53–62, 2023.
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and [24] for 3D image processing. Our model, first introduced in [4], general-
izes these models introducing a sub-Riemannian geometry for stereo vision: it is
presented in Sect. 3. In particular, we will focus on association fields, introduced
in 2D by Field, Hayes and Hess in [14] and modeled in [8,23] and [5]. We will
extend this approach to neural connectivity with integral curves and justify psy-
chophysical experiments on perceptual organization of oriented elements in R

3

([9,15,17]).
The main contribution with respect to [4] is the constitution of 3D percepts,

presented in Sect. 4. We start from the model of interactions between neural pop-
ulations proposed by Bressloff-Cowan ([6]) and we modify the integro-differential
equation they propose with the connectivity kernel obtained as fundamental
solution of a sub-Riemannian Fokker Planck. Then, we generalize the stability
analysis proposed by [6] for hallucinations, by [26] for emergence of percepts,
and we show that in this case they correspond to 3D perceptual units.

2 The Stereo Problem

The stereo problem deals with the reconstruction of the three-dimensional visual
scene starting from its perspective projection through left CL and right CR

optical centers on the two eyes. The setting of the problem involves classical
triangulation instruments (e.g. [13]), and the main issue is to couple in a correct
way the correspondent left QL = (xL, y) and right QR = (xR, y) points on the
parallel retinal planes (y = yL = yR), in order to project them back into the
environment space to obtain Q = (r1, r2, r3) ∈ R

3, see Fig. 1,(a). This goes under
the name of stereo correspondence.

The main clues for solving the correspondence are the slight differences in
the two projected images, namely the disparities. Our main focus will be on
horizontal positional disparity d := (xL − xR)/2, which introduces the set of
cyclopean coordinates (x, y, d), together with the mean position x := (xL+xR)/2.
Since binocularly driven neurons in the primary visual cortex, which perform the
binocular integration, receive input from monocular (orientation selective) cells,
we will choose as additional variables the orientations on left and right monocular
structures: θL and θR; but we will not consider orientation disparity, because it
does not seem to be coded directly in the visual cortex, see for example [7].

2.1 The Monocular Model for Orientation-Selective Cells

The hypercolumnar structure selective for orientation of monocular left and right
simple cells in V1 (denoted respectively i = L,R) can be modeled in term of a
fiber bundle, with base (xi, y) ∈ R

2 identified with the retinal plane, (see [23])
and fiber θi ∈ R/2πZ ≡ S

1. The response Oi(xi, y, θi) of these cells to a visual
signal on the retina I(xi, y) is quantified in terms of a function ϕ(xi, y, θi), called
receptive profile RP and well described by Gabor filters, see Fig. 1,(b). Following
the work of Citti and Sarti [8], the action of these RPs induces a choice of contact
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Fig. 1. (a) Stereo geometry. (b) Above: Gabor filter: model of 2D receptive profile, its
1D section. Below: binocular receptive profile (image adapted from [2]) (c) The Zucker
model (image adapted from [20]).

form on the whole space:

ωθi
= − sin θidxi + cos θidy. (1)

The visual signal propagates in this cortical structure along integral curves of
vector fields lying in the kernel of this contact form.

2.2 Models of Binocular Cells and Stereo Vision

Ohzawa et al. in [2] found that binocular simple cells in V1 perform a non-
linear integration of left and right monocular cells, displayed in Fig. 1, (b). They
proposed the binocular energy model (BEM), which characterize the binocu-
lar output through an interaction term OB , product of left OL and right OR

monocular outputs:
OB = OROL. (2)

The mathematical model for stereo vision built by Zucker et al. in [1,20] is
based on neural mechanisms of selectivity to position, orientations and curva-
tures of the visual stimulus and it is expressed via instruments of Frenet dif-
ferential geometry. The connections between binocular neurons are described
by helices whose spiral develops along the depth axis, encoding simultaneously
position and orientation disparities. The model is illustrated in Fig. 1, (c).

3 A Sub-Riemannian Model for Stereo Vision

In this section we present the biologically-inspired model proposed in [4].

3.1 The Fiber Bundle of Binocular Cells

The binocular structure is based on monocular ones and it is equipped with a
symmetry that involves the left and right structures, allowing the use of cyclo-
pean coordinates (x, y, d) defined in Sect. 2. The set of binocular cells will be
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expressed a fiber bundle with base B = R
2 the cyclopean retina of coordi-

nates (x, y). The structure of the fiber is F = R × S
1 × S

1, with coordinates
(d, θL, θR) ∈ F . Schematic representation is provided in Fig. 2, (a) and (b).

Fig. 2. Binocular cell structure and 3D reconstruction. (a) and (b) schematically rep-
resent the binocular fiber bundle in 2D: we visualized a 1D restriction to the direction
x of the basis, the fiber of disparity d in (a) and the fiber of orientations θL and θR

in (b). (c) describes reconstruction of a 3D curve from its projections. The normal to
the curves γL and γR on retinal planes are identified by the 1-forms ωθL and ωθR . The
wedge product ω̃θL ∧ ω̃θR of their 3D counterpart identify the tangent vector to the 3D
corresponding curve γ : R → R

3.

3.2 Compatibility with Stereo Triangulation

We can introduce a 2-form starting from the monocular structures that embodies
the binocular energy model, since Eq. (2) can be written in terms of monocular
left and right RPs, see [4, Eq. (18),(49)], obtaining the following result.

Proposition 1. The binocular interaction term OB of (2) can be recast as
wedge product of the two monocular 1-forms ωθL

and ωθR
defined in (1):

OB = ωθR
∧ ωθL

. (3)

It is possible to extend the monocular 1-forms ωθL
and ωθR

on retinal planes
to ω̃θL

and ω̃θR
1-forms in R

3 and obtaining ω̃θR
∧ ω̃θL

. Through the Hodge
duality this 2-form identifies a vector that can be interpreted as the direction of
the tangent to a potential 3D curve in the scene, see Fig. 2 (c).

So, binocular cells couple positions, identified with points in R
3, and orienta-

tions in S
2, identified with three-dimensional unitary tangent vectors. To solve

the stereo problem the visual system must take into account suitable types of
connections ([27]). It is therefore natural to introduce the perceptual space via
the manifold M = R

3
(r1,r2,r3)

� S
2
(θ,ϕ), and look for appropriate curves in M.

3.3 Stereo Sub-Riemannian Geometry

The sub-Riemannian structure on M can be expressed locally using the chart
θ ∈ (0, 2π), ϕ ∈ (0, π) by considering an orthonormal frame {Y3, Yθ, Yϕ}, where:

Y3 = cos θ sinϕ∂1 + sin θ sinϕ∂2 + cosϕ∂3, Yθ =
1

sinϕ
∂θ, Yϕ = ∂ϕ. (4)
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The vector field Y3 encodes the tangent of the stimulus, Yϕ involves orientation
in the depth direction, while Yθ involves orientation on the fronto-parallel plane.
We take here into account that contour detectability systematically changed
with the degree to which they are oriented in depth, see [18]. Indeed the vector
Yθ is not defined for ϕ = 0, meaning that we do not perceive correctly contours
which are completely oriented in the depth direction. The vector fields satisfy
the Hörmander condition since the whole space is spanned at every point by the
vectors {Y3, Yθ, Yϕ} and their commutators.

Remark 1. As noted by Duits and Franken in [12], the space R
3

� S
2 can be

identified with the quotient SE(3)/{0|R3} × SO(2). Different sections have dif-
ferent invariance properties; in [24], the authors provide a section which preserves
isotropy in the spherical tangent plane and give the same role to all the angular
variables [11, Thm.1 and Thm.4].

Integral curves with constant coefficients in the local orthonormal frame (4)
are defined by the differential equation:

Γ̇ (t) = �Y3,Γ (t) + c1�Yθ,Γ (t) + c2�Yϕ,Γ (t) c1, c2 ∈ R. (5)

These curves, displayed in Fig. 3 (a), can be thought of in terms of trajectories
in R

3 describing a movement in the Y3 direction, and by varying the coefficients
c1 and c2 in R, they can twist and bend in all space directions. Formally, the
amount of "twisting and bending" in space is measured by curvature k and
torsion τ , which in this setting read as: k =

√
c21 + c22, and τ = −c1 cotanϕ.

Fig. 3. Different families of integral curves (5). (a) General fan of integral curves
described by Eq. (5) with varying c1 and c2 in R, enveloping a curve γ ∈ R

3. (b)
Arc of circles for constant ϕ = π/2. (c) r3-helices for constant ϕ = π/3.

The model is then compatible with the previous models of [8] of monocular
vision, since if c1 = 0 or ϕ = π/2 then Γ (t)|R3 is a piece of circle (Fig. 3, (b)). In
addition it is compatible with the results of [1], based on properties of curvature,
since if ϕ = ϕ0 with ϕ0 �= π/2, then Γ (t)|R3 is a r3-helix. The main difference is
that curvature is an extracted feature in [1], while it is coded in connectivity in
our model.
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3.4 Good Continuation in 3D and Stereo Association Fields

The family (5) model neural connectivity (see [4]) and it can be related to the
geometric relationships deriving from psychophysical experiments on perceptual
organization of oriented elements in R

3, the basis of the Gestalt law of good
continuation ([28]). This generalizes the 2D concept introduced by Field Hayes
and Hess in [14] (Fig. 4, (a)) of an association field in 3D.

The geometrical affinities between orientations under which a pair of position-
orientation elements in R

3
� S

2 are perceived as connected in a 3D scene, have
been determined by [17] with the theory of 3D relatability. Curves that are
suitable to connect these 3D relatable points have the properties of being smooth
and monotonic [9,15], extending good continuity/ regularity in depth. Moreover,
the strength of the relatable edges in co-planar planes with the initial edge must
meet the relations of the bi-dimensional association fields [17].

The family of integral curves (5) locally connects the association fan gener-
ated by 3D relatability geometry (Fig. 4, (b)), satisfying smoothness, monotonic-
ity and compatibility with 2D association fields.

Fig. 4. Display of connectivity. (a) Field Hayes and Hess association field (top) and 2D
integral curves of the Citti-Sarti model [8] (bottom). (b) Fan of 3D relatable points con-
nected by integral curves (5).(c) Iso-surface in R

3 of probability density (7) associated
to the curves (5).

4 Constitution of 3D Visual Perceptual Units

Integral curves model the good continuation law, playing a fundamental role
within the problem of perceptual grouping, individuating 3D visual units.

4.1 Sub-Riemannian Fokker Plank Equation and Connectivity
Kernel

The emergence of 3D visual percepts derives from interactions between binocular
cells: according to the Gestalt law of good continuation, entities described by
similar local orientations are more likely to belong to the same perceptual unit.

Following [3,25], we suppose that the signal starting from a binocular neuron
ξ ∈ R

3
� S

2 evolves following the stochastic process described by the SDE:

dΓ (t) = YR3,Γ (t)dt + λ(Yθ,Γ (t), Yϕ,Γ (t))dB(t), λ ∈ R, (6)
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with B(t) 2-dimensional Brownian motion. The probability of interaction
between points ξ and ξ′ ∈ M, has a (time-independent) density:

{Jλ(ξ, ξ′)}λ∈R, (7)

whose iso-surfaces in R
3 are displayed in Fig. 4, (c). This probability density coin-

cides with the (time-integrated) fundamental solution of the forward Kolmogorov
differential equation associated to (6) with operator L = −Y3+λ(Y 2

θ +Y 2
ϕ ) writ-

ten in terms of the chosen vector fields (4). Analytical approximation of the
fundamental solutions have been provided in [12,24], and numerical approxima-
tion with Fourier methods and Monte-Carlo simulations in [10]. We implement
here the latter, following the approach presented in [3], since it is more physio-
logical being based on the stochastic integral curves.

Remark 2. The authors in [24] have shown that the space R
3

� S
2 can be identi-

fied with a section of SE(3) where kernels have symmetry properties with respect
to the group law, and all angles have the same role. In our model, 3D association
field fan depends on the choice of the vector fields, which is not invariant, due to
the different meaning of the considered orientations. Nevertheless, we expect the
kernel to preserve invariance. A comparison between the two approaches based
on parametrix method will be provided in a future paper.

4.2 From Neural Activity to 3D Perceptual Units

The kernels (7) are implemented as facilitation patterns to define the evolution
in time t �→ a(ξ, t) of the activity of the neural population at ξ ∈ M. This
activity is usually modeled through a mean field equation, see [6]:

∂ta(ξ, t) = −a(ξ, t) + σ
(∫

M
J(ξ, ξ′)a(ξ′, t)dξ′ + h(ξ, t)

)
, (8)

where h is the feedforward input, σ is a sigmoidal function and J a symmetriza-
tion of (7). When the input h is constant over a subset Ω of M and zero else-
where, it has been proved in [26] that the domain of Eq. (8) reduces to Ω since
the population activity is negligible in the complementary set M \ Ω.

We extend the stability analysis around a stationary state a1 proposed by
[6] for hallucination and [26] for perceptual units. A perturbation u, difference
between two solutions a − a1, satisfies the eigenvalue problem associated to the
linearized time independent operator

∫

Ω

J(ξ, ξ′)u(ξ′, t)dξ′ =
1
μ

u(ξ, t) (9)

where μ = σ′(0). As shown in [26] for the 2D case, the eigenvectors represent the
perceptual units, and the eigenvalues their salience. The whole process is strictly
linked with spectral clustering and dimensionality reduction results ([22]).
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4.3 The Proposed Model for the Correspondence Problem

The model can be described as follows. We start from two rectified stereo images.
We couple all possible corresponding points (left and right retinal points with
the same abscissa coordinate): this lifts retinal points in points ξi ∈ Ω generating
also false matches, i.e. points that do not belong to the original stimulus. We call
affinity matrix the kernel J evaluated on every couple of lifted points ξi, ξj ∈ Ω:
Ji,j := J(ξi, ξj). Spectral analysis on J individuates 3D perceptual units, and
solves the stereo correspondence. In this process false matches are eliminated
since the similarity measure introduced by the kernel J groups elements satisfy-
ing the good-continuation constraints.

4.4 Numerical Experiments

We develop the ideas illustrated so far by numerical examples; the main steps
of the algorithm are summarized in Table 1.

Table 1. Recovering 3D visual percepts starting from rectified stereo images.

0 Gabor filtering the left and right retinal images to obtain for every point (xi, yi) its
corresponding orientation θi for i = L, R

1 Recover the domain Ω ⊂ R
3

� S
2, ξk ∈ Ω, k = 1, . . . n, from the coupling of retinal

images by inverting perspective projections.
2 Call affinity matrix J the discretization of the kernel J : Jij := J(ξi, ξj).
3 Solve the eigenvalue problem Ja = ιa.
4 Find the q largest eigenvalues {ιi}q

i=1 and the associated eigenvectors {ai}q
i=1.

5 For k = 1, . . . , n assign the point ξk to the clustered labeled by maxi{ai(k)}q
i=1.

6 Join together the clusters with less than Q elements.

Fig. 5. (a) Stereo images of a 3D curve. (b) Lifting of the stimulus in R
3

� S
2: points

clustered together are marked by the same color (one main red colored 3D percept);
black points do not belong to any cluster. (c) Stereo images of a 3D helix and arc of a
circle. (d) Lifting of (c) in R

3
� S

2: two main clusters (red and blue) correctly segment
into two perceptual units the 3D visual scene. (Color figure online)

The model is first tested on synthetic stereo images of 3D curves (Fig. 5
(a),(c)), and perceptual units are correctly recovered (Fig. 5 (c),(d)).
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Fig. 6. (a) Top: couple of natural images. Bottom: Gabor filtering to recover position
and orientation in retinal planes. (b) The application of the algorithm defined in Table 1
individuates the two 3D perceptual units (red and blue points). (Color figure online)

A second test is performed on a natural image: we pre-process the images
via Gabor filtering, to recover position and orientation on the two retinas, and
then we apply the model. Results are illustrated in Fig. 6.
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Abstract. We build on the recently introduced PDE-G-CNN frame-
work, which proposed the concept of non-linear morphological convolu-
tions that are motivated by solving HJB-PDEs on lifted homogeneous
spaces such as the homogeneous space of 2D positions and orientations
isomorphic to G = SE(2). PDE-G-CNNs generalize G-CNNs and are
provably equivariant to actions of the roto-translation group SE(2).
Moreover, PDE-G-CNNs automate geometric image processing via ori-
entation scores and allow for a meaningful geometric interpretation.

In this article, we show various functional properties of these networks:

(1.) PDE-G-CNNs satisfy crucial geometric and algebraic symmetries:
they are semiring quasilinear, equivariant, invariant under time scal-
ing, isometric, and are solved by semiring group convolutions.

(2.) PDE-G-CNNs exhibit a high degree of data efficiency: even under
limited availability of training data they show a distinct gain in per-
formance and generalize to unseen test cases from different datasets.

(3.) PDE-G-CNNs are extendable to well-known convolutional architec-
tures. We explore a UNet variant of PDE-G-CNNs which has a new
equivariant U-Net structure with PDE-based morphological convo-
lutions.

We verify the properties and show favorable results on various datasets.

Keywords: Group Equivariant Convolutional Neural Networks ·
PDE-Based Image Processing · Lie Groups · Semirings · Riemannian
Geometry

1 Introduction and Background

Convolutional Neural Networks (CNNs) are ubiquitous in modern day computer
vision, and are considered standard computational architectures in most data-
dependent image processing tasks. Recently, there has been a great focus on
designing neural networks that must be invariant or, more generally, equivariant
to generic geometric transformations. CNNs are structurally equivariant to the
group of translations applied on the image function and this is a key reason for
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
F. Nielsen and F. Barbaresco (Eds.): GSI 2023, LNCS 14071, pp. 63–72, 2023.
https://doi.org/10.1007/978-3-031-38271-0_7
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Fig. 1. A schematic for a CNN, G-CNN and the PDE-G-CNN Layer in a deep neural
network. CNNs are typically processed with R2 convolutions, whereas G-CNNs work
with linear G-convolutions in lifted space SE(2). Elements in SE(2) are denoted by
g = (x, y, θ). In PDE-G-CNNs only the convection vector c and the metric parameters
G+, G− are learned and they lead to kernels that are used for non-linear morphological
convolutions that solve the respective Erosion and Dilation PDE’s in lifted space SE(2).

their success and widespread use. However, CNNs are not invariant/equivariant
to general and more challenging transformations, like, e.g. rotations or affine
transformations. This led to the development of Group Equivariant Convolu-
tional Neural Networks or G-CNNs [3,8,20,23]. G-CNNs do not waste network
capacities and hard-code symmetries in the neural network. However, despite
the impact made by enforcing geometry in network architectures, CNNs and
G-CNNs still have some shortcomings:

1. They lack geometric interpretability in their action. The kernels themselves
lack geometric structure and fail to relate to cortical association fields [7,15]

2. Overall, CNNs and G-CNNs have high network complexity,
3. Training these architectures requires vast amounts of well-annotated, clean

data - that is often sparsely available in applications (e.g. medical imaging).

In [21], PDE-based group convolutional neural networks (PDE-G-CNNs)
were introduced. A typical PDE-G-CNN layer employs numerical solvers for
specifically chosen non-linear evolution PDE’s. These PDE’s are not arbitrary
and have been explored previously in the domain of geometric image analysis
[7,11] and yield theoretically interpretable solutions: they train sparse sets of
association fields from neurogeometry as shown in [4, App-B & Ch. 1]. The
dominant PDEs in a PDE-G-CNN are convection, dilation and erosion. These
three PDE’s correspond to the common notions of shifting, max pooling, and
min pooling over Riemannian balls respectively. They are solved by re-samplings
and so-called morphological convolutions. For a conceptual schematic of the 3
types of convolutional networks, see Fig. 1.

Despite the theoretical development of PDE-G-CNNs [4,5,21], some impor-
tant functional properties of these networks have not been reported in prior
work. In this paper we focus on three important aspects:

1. In Sect. 2, we theoretically enumerate a number of geometric and algebraic
properties desirable by a neural network and show that PDE-G-CNNs satisfy
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them. For e.g. PDE-G-CNNs consist solely of quasilinear (and PDE-solving)
layers w.r.t. a semiring R, that can either be a linear or tropical semiring.
Tropical semirings have been shown to be useful for machine learning [9,14,
18], and we report that they are particularly valuable in PDE-G-CNNs.

2. In Sect. 3, we perform experimental evaluations of CNNs, G-CNNs and PDE-
G-CNNs by varying the amount of data used for training. We evaluate com-
parable versions of these architectures and show that PDE-G-CNNs allow for
strong training data reduction without performance decrease. PDE-G-CNNs
exhibit a significantly improved training data efficiency.

3. Motivated by the success of convolutional U-Nets [17], we build a PDE based
equivariant PDE-G-UNet and show its applicability in vessel segmentation.

2 Geometric and Algebraic Properties of PDE-G-CNNs

In this section, we provide a concise theory on PDE-G-CNNs with Lie group
domain G = SE(2) and semiring co-domain R. In Theorem 1 we list geomet-
ric properties of PDE-G-CNNs, and end with an explanation on the practical
significance of these properties in geometric deep learning.

Set G = SE(2). It sets the Lie group domain of functions in PDE-G-CNNs.
Recall G = R2

� SO(2) ≡ R2
� S1 ≡ R2

� R/(2πZ) and write g = (x, y, θ) =
(x, θ) ∈ G. The group product is g1g2 = (x1, θ1)(x2, θ2) = (x1 + Rθ1x2, θ1 +
θ2 Mod 2π).

Set semiring R = (R,⊕,⊗,0,1). It sets the Semiring co-domain of functions
in PDE-G-CNNs. It is either the linear semiring L = (R,+, ·, 0, 1) or a tropical
semiring: T− = (R ∪ {∞},min,+,∞, 0), T+ = (R ∪ {−∞},max,+,−∞, 0). If
R = L we sometimes extend to C.

We set MR(G) as a set of functions on G associated to the semiring R. For
R = L the set ML(G) is the set of square integrable functions w.r.t. the Haar-
measure μG on G. For R = T− the set MT−(G) is the set of upper semicontinuous
functions on G bounded from below. For R = T+ the set MT+(G) is the set of
lower semicontinuous functions on G bounded from above.

We define the integral IR associated to that semiring:

IL(f) =
∫

G

f(g) dμG(g), IT−(f) = inf
g∈G

f(g), IT+(f) = sup
g∈G

f(g). (1)

Write IR(f) =:
⊕
g∈G

f(g). Define the semimodule, i.e. a ‘R-linear vector space’:

HG
R = {f : G → R | δR(f,0) < ∞, f ∈ MR(G)} /∼ (2)

with a partition of equivalence classes w.r.t. to the equivalence relation:

f ∼ g ⇔ δR(f, g) = 0 with δR(f, g) := εR

⊕
x∈G

εR ρ(f(x), g(x)), (3)

with εL = 1, εT− = −1, εT+ = 1, and we assume the continuous function ρR :
R×R → R≥0 is a metric up to a monotonic transformation. Then denote HG

R as
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the completion of the space HG
R . On HG

R we define the semiring group convolution
� by

(f1 � f2)(g) =
⊕
h∈G

f1(h−1g) ⊗ f2(h), g ∈ G. (4)

For R = L we set ρL(a, b) = |a − b|2 and have δL(f, g) = ‖f − g‖2
L2(G) and

HG
L = L2(G). Equation (4) is then a linear group convolution.
For R = T− we set ρT−(a, b) = |e−a −e−b| and HG

T− is the closure of the semi-
module HG

T− . Equation (4) is then a ‘morphological group convolution’ [21]. For
R = T+ we set ρT+(a, b) = |ea − eb| and HG

T+
is the closure of the semi-module

HG
T− . As sets one has L∞(G) ∩ C(G) = HG

T+
∩ HG

T− as HG
T+

= −HG
T− and the

metrics relate similarly by δT−(f, g) = δT+(−f,−g) and

0 ≤ ψ ∈ C(G) ⇒ δT+(ψ,−∞) = e‖ψ‖L∞(G) , δT−(−ψ,∞) = e‖ψ‖L∞(G) . (5)

A PDE-G-CNN consist of PDE-layers, Fig. 1, each layer corresponds to a
choice of semiring R and a corresponding PDE system that is solved on G×R+:

L : ∂tW = −cW, or: ∂tW = −iq(−ΔG0)
α
2 W with q ∈ {0, 1},

T−: ∂tW = − 1
α‖∇G−W‖α , T+: ∂tW = 1

α‖∇G+W‖α,
(6)

for all t ≥ 0, always with α ∈ (1, 2] and with initial condition W |t=0 = f ∈ HG
R.

Here f is input from the previous layer and W |t=1 ∈ HG
R is the output. Vector

field c on G is left-invariant and transports along exponential curves in G. The
PDEs are quasilinear w.r.t. the indicated semiring R.

In (6) the gradient ∇G and Laplacian ΔG are indexed by a left-invariant
metric tensor field G ∈ {G0,G+,G−}. Then by left-invariance G =

∑3
i,j=1 gij ωi ⊗

ωj has constant coefficients [gij ] ∈ R3×3 w.r.t. left-invariant (dual) basis:

A1 = cos θ ∂x + sin θ ∂y, A2 = − sin θ ∂x + cos θ ∂y, A3 = ∂θ,
ω1 = cos θ dx + sin θ dy, ω2 = − sin θ dx + cos θ dy, ω3 = dθ.

(7)

with 〈ωi,Aj〉 = δi
j . Similarly c =

∑3
i=1 ciAi for constant c = (c1, c2, c3) ∈ R3.

Remark 1. (Network Parameters of PDE-G-CNNs)
The network parameters in a PDE-G-CNN are given by all convection vectors
c, all symmetric positive definite(SPD) matrices [G] = [gij ] of all {G0,G+,G−},
and linear-combination weights of each layer [21].

Remark 2. (Hyper-parameters in PDE-G-CNNs)
Parameter α is constrained to α ∈ (1, 2]. For R = T−, T+ it regulates
soft min/max pooling over balls [4, Prop. 1]. For R = L it connects
the Poisson and Gaussian semigroup. Parameter q ∈ {0, 1} switches from
fractional diffusion (classical PDE-G-CNNs) to fractional Schrödinger PDEs
(quantum PDE-G-CNNs).
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Remark 3. (Well-posed Solutions of PDE-G-CNNs)
The solutions of PDE-systems (6) are for R = L strongly continuous semigroups
[24] on G, and for R = T− as viscosity solutions (Lax-Oleinik solutions) of
dynamic HJB-systems on Riemannian manifold (G,G±) [4, Prop. 1].

Theorem 1. Let Φt : HG
R → HG

R be the PDE-solver of the equivariant PDE-
evolution (6) on G = SE(2) with semiring structure R = (R,⊕,⊗,0,1) ∈
{L, T−, T+} on the co-domain. Then Φt = Φ

[G],c
t parameterized by symmetric

positive definite(SPD) [G] or1 by c satisfies:

a) Φt ◦ Φs = Φt+s, b) ∃kG
t ∈HG

R
: Φtf = kG

t � f, c) lim
t↓0

Φtf =f,

d) ∀SPD [G] or c∈R3∃ψ∈C1(R),ψ′>0 : Φ
[G],c
t = Φ

(ψ(t))−2[G],tc
1 ,

(8)

e) Φt ◦ Lg = Lg ◦ Φt, where Lgf(h) = f(g−1h),
f) Φt(α ⊗ f1 ⊕ β ⊗ f2) = α ⊗ Φt(f1) ⊕ β ⊗ Φt(f2),

g) IR(kG
t ) = 1 and IR(Φtf) = IR(f),

(9)

for all t, s ≥ 0, g, h ∈ G, α, β ∈ R, f, f1, f2 ∈ HG
R. If we moreover impose h)

∀f∈HR
∀t≥0 : δR(f,0) = δR(Φtf,0), then this discards the (fractional) diffusion

in the linear semiring R = L setting.
If we moreover impose i) kt > 0 then this discards the Schrödinger PDE if

R = L and it discards the dilation PDEs of R = T+.

Proof. Item a): follows from well-defined evolution PDEs (Remarks 3), yield-
ing well-known semigroup property in the linear setting [24] and in the tropical
setting [2, Thm. 2.1, (ii)]. See Remark 4 for a short insight on this.
Item b): for R = L the linear evolutions (6) are solved by linear group convolu-
tion with a probability kernel derived in [11]. For R = T− the nonlinear evolutions
(6) are solved by a ‘Lax-Oleinik formula’ that gives the viscosity solution that
[4, Prop. 1] is a tropical group convolution with a kernel kt ∈ HG

T−

R = T− ⇒ kG
t (g) = t

β

(
dG(g,e)

t

)β

, 1
α + 1

β = 1 for t > 0, (10)

with dG the Riemannian distance of G. Case R = T+ follows from case T− by
Φ

T+
t (f) = −Φ

T−
t (−f), max(x) = −min(−x). In all cases the solutions are

(Φtf)(g) = (kG
t � f)(g) =

⊕
h∈G

kG
t (h−1g) ⊗ f(h) (11)

with a kernel that by a) satisfies kG
t+s = kG

t � kG
t for all t, s ≥ 0.

Item c): strong continuity is well-known: for R = L, q = 0 see [24], for
R = L, q = 1 see [1] also on G [10, Thm. 2]. For R ∈ {T−, T+} see [13].

1 Convections and dilations/diffusion do not commute on the non-commutative G,
and the desirable order is first convection and then dilation/diffusion [4, App. B,
Prop. 3].
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Item d): the linear convection PDE in (6) is solved by: W (·, t) = e−tcf =
Re−t c|e f with unit element e ∈ G, RgU(h) := U(hg), and Φtc

1 = e−tc =
(e−c)t = Φc

t . For the other PDE cases one has: ‖∇s−2Gf‖ = s‖∇Gf‖, and
Δs−2Gf = s2ΔGf . Thereby ∀t,s>0Φ

s−2[G]
t = Φ

[G]
sαt. In particular: Φ

Ψ(t)−2[G]
1 =Φ

[G]
t ,

with Ψ(t) = t1/α.
Item e): Semiring group convolution commutes with Lq: (kG

t � Lqf)(g) =⊕
h∈G

κG
t (h−1g) ⊗ f(q−1h)=

⊕
v∈G

κG
t (v−1q−1g) ⊗ f(v)= (Lq(kG

t � f))(g), v = q−1h.

Item f): integration f �→ I(f) =
⊕

g∈G f(g) is a continuous quasi-linear opera-
tor and so is the pointwise multiplication f(g) �→ kG

t (h−1g) ⊗ f(g). Thereby Φt

(11) is a concatenation of quasi-linear operators and thereby again quasi-linear.

Item g): for R = L, 1 = 1 and α = 2 one has IR(kG
t ) = 1: this holds by exact

formulas [11]. For 1 < α ≤ 2 the α-th power of the spectrum in the orthog-
onal spectral decomposition does not affect 0 in the generator spectrum. For
R = T−, T+ it follows directly by inspection of the kernel (10). By integration
and quasi-linearity (item f), (11) one has IR(Φtf) = IR(f).
Item h): we must show δR(f,0) = δR(Φtf,0) for all f ∈ HG

R:
1) For R = L we have an L2(G)-isometry ⇔ the unbounded linear generator
Qf = −cf − iq|ΔG0 |

α
2 f is skew-adjoint: (etQ)∗ = (etQ)−1 ⇔ Q∗ = −Q ⇔ q = 1.

2) For R = T+, T− this follows by g) as δT+(f,0) = eIT+ (f), δT−(f,0) = e−IT− (f).
Item i): One has max{x} = −min{−x} and Φ

T+
t (f) = −Φ

T−
t (−f). So for T+

the convolution kernels are minus the positive erosion kernels of T− so they are
discarded. For R = L the Schrödinger kernels q = 1 follow from the positive
diffusion kernels q = 0 by t �→ it so they are discarded. ��
Remark 4. (Semigroup Property for R = T−)
Rewrite (10) as kG

t (g) = k1D
t (dG(g, e)) with k1D

t (x) = t
β

∣∣x
t

∣∣β , 1
α + 1

β = 1. Then

∀g∈G∀s,t≥0 : (kt � ks)(g) = (k1D
t �R k1D

s )(dG(g, e)) = k1D
t+s(dG(g, e)) = kt+s(g).

Above, the first equality follows by the triangular inequality for dG and monotony
of k1D

t (·) and by realizing that the infimum/minimum over G can be replaced
by the subset reached by any minimizing geodesic connecting e and g and the
semigroup property for morphological scale spaces on R [19] (that follows by
Fenchel transform on R). The final equality is due to the definition of k1D

t and
(10). Then Φt+s(f) = kG

t+s � f = kG
t � (kG

s � f) = (Φt ◦ Φs)(f) for all f ∈ HG
T− .

Practical Implications: Item a) is called the semigroup property. We call
b) the quasi-linear convolution property allows for fast parallel GPU-code [21]
of PDE-G-CNNs. Item c) is called the strong continuity property implies well-
defined evolution solutions that continuously depend on all t ≥ 0 via a), item
d) is the scaling equivariance property ; and avoids scale biases in PDE-G-CNNs,
item e) yields equivariance and item f) is called the quasi-linearity property.
Item g) yields normalisation (of feature maps). Item h) is called the isome-
try property and yields PDE-G-CNNs without fractional diffusion regularisation
[12]. The isometry property avoids contractions when the depth of the network
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Fig. 2. We compare a 6-layer: CNN (25662 parameters), G-CNN (24632 parameters),
and a PDE-G-CNN (2560 parameters) architectures with varying amounts of training
data. All networks are trained only on DRIVE, and their performances on the test
data are plotted as a function of % input training data. PDE-G-CNNs exhibit supe-
rior generalization for intra (DRIVE) and inter (DCA) datasets, especially for limited
training data. The dashed line shows that PDE-G-CNNs outperform CNNs with just
∼45% training data and ∼10x fewer parameters. The images and their ground truths
are representatives of the respective datasets (i.e. DRIVE and DCA).

increases (hindering classification performances). Item i) of positive kernels is
questionable: The Schrödinger equation gives rise to new Quantum PDE-G-
CNNs, providing optimal transport [16] in PDE-G-CNNs.

3 Data Efficiency of PDE-G-CNNs

We evaluate the performance of comparable architectures of a CNN, G-CNN and
PDE-G-CNNs by reducing the amount of training data. We compare a 6-layer
CNN with 25662 parameters, a 6-layer G-CNN with 24632 parameters and a 6-
layer PDE-G-CNN with 2560 parameters. For the G-CNN and PDE-G-CNN we
discretize with 8 orientations (45◦ per orientation) and kernels of size 5 × 5× 5.
We experiment with the vessel segmentation task on the well-known DRIVE
[22] and DCA1 [6] datasets. We make a split of 75% images for training and
25% for testing. The networks are trained in overlapping patches of dimension
64× 64 with a patch overlap of 16. We randomly shuffle the training patches in
the DRIVE dataset and progressively compile 10% to 100% of the total, and
use this reduced input for the training of all the networks. In order to avoid
possible bias, we run each training 10 times for 60 epochs using randomization
for compiling the reduced training data. In Fig. 2, we compare all networks by
plotting the mean and variance of the performance metrics as a function of the
% input training data.

In addition to reporting the best test error on DRIVE, we apply the same
best-trained networks to the unseen and untrained images in the DCA1 dataset
[6] which comprises 134 X-ray angiograms of coronary arteries with ground truth
segmentation’s (see the example in the right of Fig. 2). All images are prepro-
cessed with the adaptive histogram normalization framework of [25].
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Fig. 3. We compile a 3-stage PDE-G-UNet using PDE-based group convolutions in the
following order: Convection-Dilation-Erosion (as shown in Fig. 1). We up and down-
sample only spatially (2 × 2) and keeping all orientations (×1). We compare with an
equivalent 3-stage U-Net using standard CNNs [17] in Table 1. PDE-G-UNets show
competitive performance, with an order of magnitude lesser parameters. The images
and their ground truths are representatives of the DCA1 dataset [6].

The plots in Fig. 2 demonstrate that despite a significant reduction in net-
work complexity, PDE-G-CNNs have a considerable benefit in training with
limited data and generalize well to unseen examples. Conceptually, these results
highlight the benefits of equivariant PDE action in lifted spaces. In contrast to
learning everything from data alone, PDE-G-CNNs enable the inclusion of geo-
metric inductive bias into the architectures which becomes valuable, especially
in scenarios of limited training data.

4 Equivariant U-Nets with PDE-G-CNNs

Table 1. Comparing UNets
Architecture Dice AUC Params
6 Layer CNN 0.75 0.90 2.5×104

6 Layer PDE-G-CNN 0.76 0.92 2.5×103

U-Net (3 stage) [17] 0.77 0.93 6.2×106

PDE-G-UNet (3 stage) 0.79 0.92 3.1×104

We demonstrate a wider applica-
bility of PDE-based group convo-
lutions by constructing a PDE-
based U-Net [17]. We replace reg-
ular convolutions (CNNs) in R2

with the convection PDEs and
PDE-based morphological convo-
lutions in lifted space SE(2). We implement the spatial up and downsampling
of the feature maps (of the lifted domain SE(2)) using nearest neighbor interpo-
lation. The hierarchical PDE-G-UNet structure is combined with a mandatory
equivariant lifting and projection layer for the processing of input and output
images respectively in R2. See Fig. 3 for an overview of the proposed architec-
ture. We discretize the PDE-G-UNet with 8 orientations and use kernels of size
(5×5×5). We report an evaluation by imputing full images of size 320 × 320 from
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the DCA1 dataset [6] for all the architectures. We partition the total data into a
train-validation-test split of 67%–8%–25% respectively. We compare two 3-stage
U-Nets trained for 1000 epochs, 5 times and randomly shuffle the training and
validation datasets each iteration. As a reference, we also report the performance
of a 6-Layer fully convolutional CNN and an equivalent PDE-G-CNN. In Table 1,
we report the mean values of the segmentation metrics for all architectures. We
see a favorable performance despite a ∼200x reduction in network parameters.

5 Conclusion and Future Work

In this paper, we theoretically enumerate some crucial geometric and algebraic
properties of PDE-G-CNNs. Practically, we report that they have lower network
complexity, yield a training data reduction and are extendable to more com-
plex architectures. Nevertheless, processing of feature maps in lifted spaces with
non-linear evolution PDE’s demands considerable memory and associated com-
putation. We will aim for faster computation and sparsification of feature maps
for PDE-G-CNNs in future work.

Acknowledgement. We gratefully acknowledge the Dutch Foundation of Science
NWO for funding of VICI 2020 Exact Sciences (Duits, Geometric learning for Image
Analysis VI.C. 202-031). The git repository containing the vanilla PDE-G-CNN imple-
mentations can be found at: https://gitlab.com/bsmetsjr/lietorch.
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Abstract. We present an approach for unsupervised learning of geo-
metrically meaningful representations via equivariant variational autoen-
coders (VAEs) with hyperspherical latent representations. The equivari-
ant encoder/decoder ensures that these latents are geometrically mean-
ingful and grounded in the input space. Mapping these geometry-
grounded latents to hyperspheres allows us to interpret them as points in
a Kendall shape space. This paper extends the recent Kendall-shape VAE
paradigm by Vadgama et al. by providing a general definition of Kendall
shapes in terms of group representations to allow for more flexible model-
ing of KS-VAEs. We show that learning with generalized Kendall shapes,
instead of landmark-based shapes, improves representation capacity.

Keywords: Generative models · Kendall shape spaces · shape spaces ·
equivariance · Variational Autoencoders · continuous landmarks

1 Introduction

Variational Autoencoders (VAEs) are a class of probabilistic generative mod-
els [11,16] that allows for unsupervised learning of compressed representations.
Amongst other likelihood-based generative frameworks [17], VAEs give
information-rich latent spaces, can be parameterized by neural networks, and
are easy to train; VAEs are a flexible and expressive class of generative models.

In VAEs, disentangling the latent space into an invariant and non-invariant
part for any given transformation is a challenging but often desirable task. In
most cases, in order to make latent spaces invariant, the models need to be
trained separately for each transformation class, and thus generalization can
be difficult. However, adding geometric structure to the latent space has been
found to enhance the generation capacity of VAEs [4]. It can lead to improved
disentanglement if the geometry is designed accordingly [5]. When it comes to
tasks such as domain generalization [7] and data compression [14], it is crucial
to have a clear understanding of how the latent space is encoded.

In this paper, we focus on an equivariant VAE framework, called the Kendall
Shape VAEs (KS-VAEs) [18] as it combines both equivariant representations
as well as well-structured hyperspherical latent representations. We extend [18]
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
F. Nielsen and F. Barbaresco (Eds.): GSI 2023, LNCS 14071, pp. 73–81, 2023.
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by introducing generalized Kendall shape spaces. Through this framework, we
alleviate the constraint of KS-VAEs, which could represent only anti-symmetric
continuous shapes, and present that band-limited landmarks are more suitable
to model symmetric shapes.

2 Background

As a preliminary to KS-VAEs, we give a brief introduction to VAEs as an unsu-
pervised representation learning paradigm, as well as its extension to hyper-
spherical VAEs.

VAEs assume the generative process of observations x from an unobserved
latent z through a latent-conditional generator pθ(x|z) and prior pθ(z) where θ
refers to network parameters. When we parameterize the joint distribution by
a neural network, the marginalization over the latent variables to obtain data
evidence pθ(x) for likelihood maximization is untractable. So instead, our objec-
tive is to maximize the evidence lower bound (ELBO), using an approximate
posterior qφ(z|x), with φ being network parameters. The ELBO is given by [11]

L(θ, φ) = Ez∼qφ(z|x) [log pθ(x|z) − DKL[qφ(z|x)||pθ(z)]] .

Optimizing the ELBO allows us to train the encoder (approx. posterior qφ(z|x))
to infer compressed representations z of the input x in an unsupervised manner.

Hyperspherical VAEs (SVAEs): In the original VAE, the prior and posterior
are both defined by a normal distribution. In SVAE [5], a von Mises Fisher
(vMF) distribution is the natural choice for a distribution on a sphere, as it is
the stationary distribution of a convection-diffusion process on the hypersphere
Sm−1, just like the normal is on R

m. The probability density function of the
vMF distribution for a random unit vector z ∈ Sm−1 is defined as

q(z|μ, κ) = Cm(κ) exp(κμT z) , with Cm(κ) =
κm/2−1

(2π)m/2Im/2−1(κ)
,

||μ||2 = 1, κ is a concentration parameter and Iν denoting a modified Bessel
function of the first kind at order ν. The Kullback-Leibler divergence can be
analytically computed between a vMF distribution vMF (z|μ, κ) and a uniform
distribution on Sm−1 U(x) via

KL(vMF (μ, κ)||U(Sm−1)) = κ
Im/2(k)

Im/2−1(k)
+ log Cm(κ) − log

2(πm/2)
Γ (m/2)

−1

.

3 Generalized Kendall Shape Space

Kendall Shape VAEs, as proposed in [18], provide a framework for encoding
image data into geometrically meaningful latent representations, which in [18] is
given the interpretation of neural ideograms (learned geometric symbols). More
specifically, an equivariant encoder is used to encode images into Kendall shapes
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whose landmarks through an equivariant design follow the same transformation
laws of SE(m), which is a special Euclidean group of dimension m.

Kendall defined shapes based on the idea that a shape is a translation, scale,
and rotation invariant quantity [9]. More precisely, he defined pre-shapes as k
labeled points in Euclidean space R

m. Two configurations of k labeled points are
then regarded as equivalent if their pre-shapes can be transformed into the other
by a rotation about a shared centroid. The quotient structure was extended in
[10] by defining shape space as the quotient of the space of landmark configura-
tions by the group of translations, scale, and rotations. Following this rationale,
we generalize the definition of a shape space in terms of group representations,
taking the original definition as a special case.

3.1 Preliminaries (Group Representations)

We consider the group SO(m) of rotations in R
m. Let ρ : SO(m) → GL(V )

denote a representation of SO(m). I.e., ρ describes transformations on elements
in vector space V that are parameterized by rotations R ∈ SO(m), following
the group structure via ρ(R)ρ(R′)v = ρ(RR′)v for all R,R′ ∈ SO(m) and
all v ∈ V . Note, V does not have to be R

m but can be any vector space that
can be transformed by the group action of SO(m) such as e.g. L2(Sm−1), the
space of square-integrable functions on Sm−1. With ρl, we denote the irreducible
representations of SO(m), i.e., the rotation matrices (Wigner-D matrices for
m = 3) of frequency l. With ρL we denote the left regular representation of
SO(m) on functions on homogeneous spaces, i.e., (ρL(R)f)(x) = f(R−1 x).
With Vρ we denote the vector space associated with group representation ρ. We
assume each vector space Vρ is equipped with a norm ‖·‖ and assume ρ to be
a unitary representation, thus satisfying ∀R∈SO(m) : ‖ρ(R)v‖ = ‖v‖. Product
spaces Vρ = Vρ1 × · · · × Vρk

inherit the norm from the subspaces via ‖x‖2 =
∑k

i=1‖xi‖2, with x = x1 ⊕ · · · ⊕ xk ∈ Vρ.

3.2 Generalized Kendall Shape Space

We define a shape space as the equivalence class of vectors (pre-shapes) that lie
in the same orbit generated by the associated representation ρ, as given below.

Definition 1 (Pre-shape space). A pre-shape space Sρ
m is defined by a block-

diagonal representation ρ = ρ1 ⊕ · · · ⊕ ρk of SO(m), or equivalently by its asso-
ciated vector space Vρ = Vρ1 × · · · × Vρk

, as

Sρ
m = {x ∈ Vρ | ‖x‖ = 1} . (1)

The sub-vectors xi ∈ Vρi
in x = x1 ⊕ · · · ⊕ xk are called landmarks; Sρ

m is
identified with the hypersphere Sdρ−1 with dρ = dim Vρ.

Definition 2 (Shape space). A shape is defined as the equivalence class of
pre-shapes x ∈ Sρ

m, denoted with [x], by

[x] = {y ∈ Sρ
m | y ∼ x} ,
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in which x ∼ y iff ∃R∈SO(m) : y = ρ(R)x. A shape space then is the space of
equivalence classes of pre-shapes, denoted as the quotient space Sρ

m/ ∼.

The classic Kendall shape space as defined in [6] is a shape space Sρ
m/ ∼ with

representation ρ(R) = ⊕kρ1(R) = ⊕kR. A Kendall shape thus consists of k m-
dimensional landmarks xi ∈ R

m, i.e., the sub-vectors in x = x1⊕· · ·⊕xk ∈ (Rm)k

that simply transform by the usual rotation matrices. Kendall shapes further
have the property that the landmarks are centered, i.e.,

∑k
i=1 xi = 0.

Remark 1. In our general formulation of shape spaces, we omit the constraint
that the landmarks sum to 0. In some special cases, this constraint can be
enforced, but in a general sense, it is not natural because the landmarks do
not have to literally correspond to spatial landmarks in R

m. Our definition of
pre-shape is independent of how it is obtained. When encoding a shape from a
point cloud, it is common to center and normalize it to unit length to obtain
translation and scale invariance. However, we do not assume how the shape is
obtained, allowing for direct rescaling of the point cloud. In this case, the result-
ing shape loses translation invariance, and a shifted point cloud is considered a
different shape. Therefore, if centering is not included in the encoding process,
translation can be seen as an additional degree of freedom to describe a shape.

3.3 The Procrustes Problem, Pose, and Canonicalization

The geometry of pre-shapes is equivalent to that of hyperspheres, which allows
for convenient (and analytic) geometric analysis such as the computation of
distances between shapes. However, the quotient structure has the practical dis-
advantage that in order to compare shapes, one has to align them (as much as
possible) and compare the pre-shapes in each equivalence class that is closest.
This matching problem is called Procrustes analysis and involves minimizing the
distance between pre-shapes over translation, reflection, rotation, and scaling.

Since often it is possible to assign a unique pose to a given shape, Procrustes’s
problem boils down to simply aligning their poses. Specifically, we define the pose
g = (t, s,R) of a generalized shape as a translation t, scale s, and rotation R in
the group SIM(m).

Definition 3 (Geometric pose, canonical shape). A pre-shape x ∈ [x0] ∈
Sρ

m/ ∼ can be equipped with a pose g = (t, s,R) ∈ SIM(m), such x = ρ(R)x0.
I.e., the rotation part R of the pose describes the rotation of a canonical shape
x0 to pre-shape x. Any pre-shape lies in the SO(m)-orbit of a canonical shape.

Remark 2. As noted in Remark 1, we consider shapes as equivalence classes over
rotations and do not explicitly take translation and scale into account. In appli-
cations it might be beneficial to keep track of such attributes via an equivariant
pose extractor, that could be used to canonicalize an vector and obtain a fully
SIM(m) invariant shape extractor. Here, we only aim for rotation invariance.
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If one has access to a pose, the Procrustes problem is significantly simplified
by simply aligning any shape y to x via ρ(Rx)ρ(Ry)−1y. In our work, we use
an equivariant architecture to simultaneously predict a pre-shape x and a rota-
tional pose R, which allows us to map any predicted pre-shape to its canonical
pose x0 = ρ(R−1)x. This is a practically useful way of representing an equiva-
lence class of shapes to a single representative. In recent deep learning literature,
such a mapping is called a canonicalization function [8] and has the practical
benefit that canonicalized representations are invariant and do not require spe-
cialized equivariant architectures in down-stream tasks. In our KS-VAE setting,
we work with neural networks that are translation and rotation equivariant by
design, through SE(2) equivariant group convolutions [1], and the data does not
exhibit scale variations. In principle, one could make use of SIM(m) equivariant
architectures [12] to also take scale into account.

Fig. 1. Generalization of classical Kendall shapes.

3.4 Continuous Shapes: Spherical Glyphs as Landmarks

In equivariant deep learning literature, it is common to consider feature fields as
a bundle of “fibers” that transform by actions of SO(m) [20]. Features in such
fibers are understood to carry directional information and implicitly encode for
feature signals on SO(m) at each location in space. That is, these signals can
be mapped to a set of Fourier-like coefficients relative to a basis of irreducible
representations of SO(m) [13].

Many practical equivariant deep learning libraries explicitly assign to points
in space either a signal on Sm−1 or SO(m), or a vector of Fourier coefficients that
can be turned into such a signal via an inverse Fourier transform. That is, regu-
lar group convolutional networks encode features fields on SE(m) which allows
for considering SO(m) signals at each fixed location, i.e., fx(R) := f(x,R).
Steerable group equivariant architectures encode for fields of Fourier coefficients
that can be mapped to signals on SO(m) via fx(R) := F−1[f̂(x)]. Such sig-
nals transform via the regular representations ρL of SO(m). When designing
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equivariant encoders/decoders for the purpose of KS-VAEs, it is thus of practi-
cal value to understand that such fibers can directly be used as landmarks in a
generalized Kendall shape space. We will refer to shape spaces with ρ = ⊕k

i=1ρL
as continuous Kendall shape spaces.

It is natural to think of spherical signals as geometric shapes through so-
called glyph visualizations [15] for their use in diffusion MRI or [2] for the sake
of visualizing feature fields in equivariant graph NNs. Concretely, a spherical
signal f : Sm−1 → R can be turned into its geometric form as spherical glyph s
via

s = {f(n)n | n ∈ Sm−1} .

Using such spherical glyphs (equivalently spherical signals) as landmarks thus
allows the construction of fully continuous shapes, see Fig. 1b.

3.5 Neural Ideograms

Our general definition of shapes allows for the mixing of landmarks of different
types, which conceptually corresponds to defining shapes in terms of geometric
primitives. Alluding to the idea of neural ideograms of [18], one could mix multi-
ple glyphs (and their centers) as in Fig. 1c, to form abstract symbols much alike
the ancient (hiero)glyphs, however, now to be defined by a neural network.

4 Method

Fig. 2. Kendall Shape VAE pipeline. The equivariant encoder encodes the equivalence
class of a transformation (here rotations), extracts a pose, and gives a μ and κ. A latent
variable is sampled from vMF(μ, κ), and along with the extracted pose, the decoder
gives the output reconstruction.

The KS-VAE consists of an encoder Enc : L2(Rm) → Vρ × R
+ × SO(m) that

models the approximate posterior distribution q(z|x) = V MF (z|μ, κ), through
the prediction of μ ∈ Vρ, ˜kappa ∈ R

+ and a pose R ∈ SO(m). As such, it predicts
the mean μ ∈ Vρ in an equivariant manner, and the predicted concentration
parameter Vρ0

	 κ̃ 
→ κ = eκ̃ ∈ R
+ invariantly. The mean μ is obtained as a

vector in Vρ that transforms via ρ, and which we normalize to obtain μ ∈ Sρ
m. We
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emphasize that the inference of μ should be equivariant if we want the landmarks
in Sk

m to be geometrically meaningful with respect to the content in the input
image. In our 2D setting, the pose Rθ is obtained by predicting a vector n ∈ Vρ1

of which θ(n) = arctan(ny, nx) parametrizes the rotation angle (Fig. 2).

5 Experiments

In this section, we perform experiments with continuous KS-VAE and compare
them with standard KS-VAE. For completeness, we show the Kendall shape
spaces in a pure autoencoder form as well (KS-AE) as well as an autoencoder in
the continuous case (continuous KS-AE). We compare these models with vanilla
VAEs, hyperspherical VAEs as well as their autoencoder counterparts in an
unsupervised way, without any prior knowledge of the equivalence classes or the
poses of every instance.

All the models use the same architecture for the encoder/decoder, except
for the type of convolutions used. The baselines AE and S-AE use normal (non-
rotationally equivariant) convolutions. The KS-VAEs use roto-translation equiv-
ariant convolutions with fibers that transform via regular representations of the
discrete subgroup SO(2, N) = CN of cyclic permutations. The input images are
padded with zeros at the bottom and right to obtain images of size 29 × 29.

For the equivariant encoder and decoder we used the interpolation-based
library se2cnn from [1], but recommend escnn from [3,19] for extensions to 3D.
The encoder shrinks the image to a single pixel using multiple group convolutions
(without spatial padding). What remains at this pixel is a signal over SO(2, N).
Our networks are based on a discretization of N = 9. We can decompose these
signals into their irreps via a Fourier transform to obtain vectors that transform
via different types of irreducible representations ρl when needed. We then use
the following options for the Kendall shape space.

– KS-VAE: The encoder predicts k landmarks in R
2 ≡ Vρ1

which are normal-
ized to unit length. The pre-shape space is thus S2k−1.

– KS-VAE continuous: The encoder predicts k signals over SO(2, N) which
are band-limited to maximum frequency �N/2
 and the mean is subtracted.
We use N = 9 and thus effectively encode to 8-dimensional landmarks, which
when normalized gives points in a S8k−1.

For quantitative analysis, we present the results of reconstruction loss with
different models for the MNIST dataset, where the training dataset is not rotated
and the testing data is randomly rotated. Here, we compare our model with
vanilla autoencoder (AE), hyperspherical autoencoder (S-AE) as well as the
discrete case of Kendall shape autoencoder (KS-AE) and similarity with their
variational counterparts. All the models are trained for 50 epochs.
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Table 1. Comparing reconstruction losses of different models

Model Latent dim # of landmarks loss

AE 8 – 99.89 ± 1.32

S-AE 8 – 91.03 ± .020

KS-AE 8 4 89.77 ± .041

KS-AE continuous 8 1 88.06 ± .022

VAE 8 – 124.3 ± .031

S-VAE 8 – 110.3 ± .048

KS-VAE 8 4 84.60 ± .012

KS-VAE continuous 8 1 80.07 ± .057

6 Conclusion

Our approach mixes the advantages of equivariance with that of hyperspherical
latent variable models, which combined gives us Kendall shape latent representa-
tions. The advantage is supported by results in Table 1, which show that hyper-
spherical outperform plain VAEs, which in turn are outperformed by equivariant
hyperspherical VAEs (KS-VAEs). Our main contribution is the formulation of
continuous Kendall shape space in a group theoretical language that is compat-
ible with the state of the art in geometric deep learning. Although not explored
in this paper, previous work [18] has shown that it is possible to visualize the
learned latent shapes. We believe it is an exciting direction for future work to
explore the potential of using the Kendall shape framework to build interac-
tive and interpretable systems for the visualization of features through neural
ideograms.

References

1. Bekkers, E.J., et al.: Roto-translation covariant convolutional networks for medical
image analysis. In: MICCAI (2018). https://github.com/ebekkers/se2cnn

2. Brandstetter, J., Hesselink, R., van der Pol, E., Bekkers, E., Welling, M.: Geometric
and physical quantities improve E(3) equivariant message passing. In: ICLR (2022)

3. Cesa, G., Lang, L., Weiler, M.: A program to build E(N)-equivariant steerable
CNNs. In: ICLR (2022)

4. Chadebec, C., Allassonnière, S.: Data augmentation with variational autoencoders
and manifold sampling (2021). https://doi.org/10.48550/ARXIV.2103.13751

5. Davidson, T.R., Falorsi, L., De Cao, N., Kipf, T., Tomczak, J.M.: Hyperspherical
variational auto-encoders. In: 34th Conference on UAI (2018)
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Abstract. We consider a framework including multiple augmentation
regularisation by generalised divergences to induce invariance for non-
group transformations during training of convolutional neural networks.
Experiments on supervised classification of images at different scales not
considered during training illustrate that our proposed method performs
better than classical data augmentation.

1 Introduction

Deep neural networks are the primary model for learning functions from data,
in different tasks ranging from classification to generation. Convolutional neural
networks (CNNs) have become a widely used method across multiple domains.
The translation equivariance of convolutions is one of the key aspects to their
success [23]. This equivariance is induced by applying the same convolutional
filter to each area of an image producing learned weights that are independent
of the location. This mechanism is called weight sharing. Ideally, CNNs should
perform equally well regardless of input scale, rotation or reflections. Numerous
attempts have been made to address using the formalism of group-convolutions
[12], steerable filters [8], moving frames [31], wavelet [2], partial differential equa-
tions [36], Gaussian filters [26], Elementary Symmetric Polynomials [27] among
others. Despite all these recent advances, it is still unclear what is the most ade-
quate way to adapt these methods for the case of more general transformations
that cannot be considered as a group [30,38]. The most commonly used solu-
tion is to take advantage of data augmentation, where the inputs are randomly
transformed during training to induce an output (which is) insensible to some
given transformations [34]. But still data augmentation implies neither equiv-
ariance nor invariance. An more elaborated path would be to apply the weight
sharing mechanism for each discretisation of the transformation, followed by an
integration in the sense of [22]. In this paper, we study the use of contrastive
based regularisation on a set of transformations during training. Surprisingly,
our proposition presents the best performance considering the power of general-
isation outside the interval of values where the transformation has been sampled
during training. This phenomenon is illustrated in the case of supervised classi-
fication on aerial images and traffic signs at different scales.
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2 Proposition

2.1 Motivation

Data augmentation is nowadays one of the main components of the design of
efficient training for deep learning models. Initially proposed to improve over-
sampling on class-imbalanced datasets [9] or to prevent overfitting when the
model contains more parameters than training points [24]. Recent research has
shown its interest in increasing generalization ability especially when augmenta-
tions yield samples that are diverse [15]. We restrict our study to augmentations
which act on a single sample and do not modify labels, this means that we do
not consider mixup augmentations [40]. Namely, we study augmentations which
can be written as (t(x), y), where (x, y) denotes an input-label pair, and t ∈ T is
a random transformation sampled from a set of possible transformations T . Let
f denotes a projection from the input space to a latent space. The latent space
is said to be invariant to T if for any input x and any t ∈ T , f(t(x)) = f(x).
Practitioners recommend to use data augmentation to induce invariance by train-
ing [3]. Usually, data augmentation consists of randomly applying an element
of the set of T during training. An alternative to data augmentation is possible
when T is a group. One can construct an invariant function fθ(x; η) from a non-
invariant function gθ(x) by integrating over all the group actions. This concept
is referred to as insensitivity [37], soft-invariance [4], or deformation stability [6].
The special case in which there exist a subgroup H where the computation can
be reduced to summing over H is called Reynolds design [29]. For topological
groups, there is a non-zero, translation invariant measure called Haar measure
that can be used to define invariant convolution on a group [20,28] or invariance
by integration of kernels [17,25]. An alternative to define an invariant function,
is to use composition of equivariant functions followed by an invariant pooling
in the Geometric Deep Learning Blueprint [6]. In both cases, the invariance is
defined by structure [3] which can be seen as a constraint in the model that one
is learning.

However, in many applications, the transformations under study is not a
group, so that the above arguments are not easily generalizable. In this paper
we are interested in using data augmentation to induce invariance during train-
ing in deep learning models for the case where the set T is not a group.
The idea is to include a regularisation term that takes into account K reali-
sations of the transformation family, i.e, in the loss function, we will include
LossT (x, t1(x), t2(x)), . . . , tK(x))) where the ti denotes a random value of trans-
formations T . To apply this method we do not need any requirements on the
transformations T .

2.2 Related Work

The idea of using multiple random augmentations (K is our case) during training
is also found in the following methods:
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Semi-supervised Learning. In a semisupervised case, [41] proposed to learn
a classifier penalised for quick changes in its predictions.

Self-training. Self-training also known as decision-directed or self-taught learn-
ing machine, is one of the earliest approach in semi-supervised learning [14,32].
The idea of these approaches is to start by learning a supervised classifier on
the labelled training set, and then, at each iteration, the classifier selects a part
of the unlabelled data and assigns pseudo-labels to them using the classifier’s
predictions. These pseudo-labeled examples are considered as additional labeled
examples in the following iterations. The function loss includes a trade-off term
to balance the influence of pseudo labels.

Self-supervised Learning. Most of these works are placed in a joint-
embedding framework [10,18], where augmented views (usually two) are gen-
erated from a source image. These two views are then projected to an encoder,
giving representations, and then through a projection back to an embedding
space. Finally, a loss minimises the distance between the embeddings, i.e. makes
them invariant to the augmentations, and is combined with a regularisation loss
to spread embeddings in space.

Data Augmentation Regularisations. A negative aspect of data augmenta-
tion has been illustrated in [13] which is the slow down of training speed and a
minimal effect on the variance of the model. The idea of using multiple augmen-
tation per image in the same minibatch has been used to solve that problem,
and it has been used to improve at the same time the classifier’s generalisation
performance [13]. This simple modification computes an average of the mini-
batch on different augmentations that asymptotically approaches a Reynolds
operator [29] when the number of considered augmentations gets as large as
possible. Recently, [5,39] proposed the use of a regularisation term for multiple
augmentations, which is the mechanism that we will evaluate in this paper.

2.3 Supervised Regularisation by Generalised Divergences

We propose to use multiple data augmentations in the target transformation,
and use a generalised divergence as a regularisation term. The idea follows those
presented in [11], and is contrary to the usual mechanism of data augmentation,
where the network is trained to classify in the same class each of the augmen-
tations, but never considers a term related to the divergence produced by the
transformation. Since we use K augmentations, we must consider a divergence
from multiple probability distributions, which is called generalised divergences.
We consider the classical framework of training deep learning models from N
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Fig. 1. Scheme of our proposition. We propose to use a regularisation that considers
multiple realisations of the transformation family, this regularisation uses generalised
divergences. Since you want to evaluate the invariance of a classification problem, the
model uses only the classification of the original image (not of the transformations).
The probability distributions are obtained in the output of a softmax layer.

samples {x1,x2, . . . ,xN} and as objective minimising the following loss function:

Loss(x, y) =
N∑

i

Lossclass(yi, ŷi) + α

N∑

i

LossT (xi, t0(xi), t1(xi), . . . , tK(xi)),

(1)
where ŷi denotes the prediction of the model, and yi the ground-truth class of
the i-th sample xi (Fig. 1).

The first term is a supervised classification term, and the second term LossT
is the main interest of our proposition. We propose to use statistical divergences
to compare the outputs produced by model f applied to the original data x and
K + 1 random augmentations of x, i.e. {xi, t0(xi), t1(xi), . . . , tK(xi)}. In our
supervised case, we use the last layer of the model f , which is usually a sum-one
layer (softmax) indicating the probability of belonging to a given class. For two
probability distributions P,Q, the most renowned statistical divergence rooted
in information theory [21] is the Kullback-Leibler divergence,

DKL(P ||Q) =
∑

P (x) log
(

P (x)
Q(x)

)
.



86 S. Velasco-Forero

Defining divergence between more than two distributions has been studied
for many authors called often generalised divergences or dissimilarity coefficient
in [33]. Let K ≥ 1 be a fixed natural number. Each generalised divergence R
that we consider here, satisfies the following properties:

1. R(P0, P1, P2, . . . , PK) ≤ 0
2. R(P0, P1, P2, . . . , PK) = 0 whenever P0 = P1 = . . . = PK

3. R is invariant to permutation of input components.

These three properties are important for the minimisation of this divergence to
induce the invariance during training in the case we are studying. Accordingly,
we consider the following two generalised divergences, the Average Divergence
[33]

R1(P0, P1, P2, . . . , PK) =
1

K(K + 1)

K∑

i,j=0,i �=j

DKL(Pi||Pj) (2)

the Information radius [35] which is the generalised mean of the Rényi’s diver-
gences between each of the Pi’s and the generalised mean of all the Pi’s,

R2(P0, P1, P2, . . . , PK) =
1

K + 1

K∑

i

DKL((K + 1)−1
K∑

j

Pj ||Pi) (3)

In the following section, we compare the use of (1), considering as LossT the
average divergence in (2) or the information radius (3) (Fig. 2).

3 Experiments

In this experimental section, we have followed the training protocol presented in
[1] on two datasets, Aerial and Traffic Signs, which contains images 64×64 RGB-
color images on 48 different scales. The objective is to obtain a scale and trans-
lation invariant model for supervised classification on nine (resp. 16) classes on

Fig. 2. Examples of images at different parameter transformation in the two considered
datasets. From left to right: Scale 1, 3, 23, 25, 45 and 47. Training is done considering
only images of intermediate scales (17 to 32) in both training and validation. Evaluation
is performed on both small (0 to 16) and large (33–48) scales. In first row: An example
of Traffic Sign dataset. In second row: An example of Aerial dataset.
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Fig. 3. Detailed plots of scale generalisation on Mid2Rest scenario in Aerial datasets
(Left) and Traffic Sign dataset (Right). Five repetitions of the training is illustrated
per method. Our proposition performs clearly better than classical data augmentation.

Table 1. Results of the Generalised Divergence in Aerial and Traffic Sign dataset
on scales non-considered during training. A visual comparison of results are shown in
Fig. 3

Aerial Small Scales Large Scales

Method λ test acc. ±std test acc. ±std

Data Aug. 0.0 0.776 ±0.014 0.845 ±0.008

Av. Div.(2) 0.5 0.854 ±0.013 0.889 ±0.011

1.0 0.852 ±0.016 0.888 ±0.009

1.5 0.858 ± 0.013 0.889 ±0.011

2.0 0.841 ±0.028 0.880 ±0.020

2.5 0.846 ±0.015 0.881 ±0.009

3.0 0.834 ±0.023 0.877 ±0.018

3.5 0.833 ±0.008 0.873 ±0.017

4.0 0.822 ±0.021 0.864 ±0.016

5.0 0.828 ±0.016 0.872 ±0.022

10.0 0.824 ±0.019 0.865 ±0.012

Inf. Rad.(3) 0.5 0.845 ±0.016 0.878 ±0.017

1.0 0.847 ±0.012 0.885 ±0.011

1.5 0.853 ±0.010 0.881 ±0.009

2.0 0.853 ±0.009 0.884 ±0.011

2.5 0.850 ±0.014 0.887 ±0.005

3.0 0.859 ±0.013 0.885 ±0.010

3.5 0.841 ±0.008 0.886 ±0.009

4.0 0.839 ±0.018 0.877 ±0.016

5.0 0.845 ±0.017 0.883 ±0.010

10.0 0.829 ±0.014 0.870 ±0.011

Traffic Sign Small Scales Large Scales

Method λ test acc. ±std test acc. ±std

Data Aug. 0.0 0.721 ± 0.021 0.824 ±0.024

Av. Div. (2) 0.5 0.821 ±0.014 0.898 ±0.020

1.0 0.829 ±0.012 0.921 ±0.018

1.5 0.820 ±0.015 0.902 ±0.012

2.0 0.806 ±0.027 0.886 ±0.025

2.5 0.797 ±0.044 0.883 ±0.034

3.0 0.789 ±0.025 0.882 ±0.018

3.5 0.754 ±0.026 0.842 ±0.028

4.0 0.743 ±0.026 0.832 ±0.042

Inf. Rad.(3) 0.5 0.806 ±0.012 0.908 ±0.017

1.0 0.825 ±0.022 0.921 ±0.016

1.5 0.829 ±0.014 0.918 ±0.015

2.0 0.830 ±0.016 0.918 ±0.007

2.5 0.815 ±0.020 0.906 ±0.016

3.0 0.828 ±0.013 0.909 ±0.018

3.5 0.818 ±0.019 0.898 ±0.014

4.0 0.823 ±0.020 0.917 ±0.016

Aerial (resp. Traffic Signs) dataset. Keen readers are referred to [1,16,19,30,38]
for a deeper understanding of different propositions for scale invariant convolu-
tional networks. Following [1] the model is a CNN with two layers using cat-
egorical cross-entropy as a supervised term in (1). An example per dataset at
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different scales is shown in Fig. 2. The models are trained on the middle inter-
val of the transformation parameterisation and the performance of the models
are evaluated outside this interval. This is called Mid2Rest scenario in [1]. The
value of K in (3) and (2) has been set equal to three in our experiments. Quan-
titative comparison of results are found in Table 1 for both considered datasets.
The reported result is the average and standard deviation of performance on the
scales and images that were not considered during training. On the considered
datasets, the information radius (3) presents better results in terms of perfor-
mance over the unseen scales, with respect to both the average divergence (2),
and the classical data augmentation method. Finally, for a better illustration of
the difficulty of the task, the best value of the lambda and regularisation func-
tion is compared with the data augmentation in five random training runs, and
compared across the different scales for the two databases in Fig. 3.

4 Conclusions

In this paper we present a proposal for the use of regularisation from multi-
ple data augmentation with generalised divergences. Quantitative results show
the interest of our method in the case of generalisation to scales that have not
been considered during training. Future studies may include the study of multi-
parametric transformations, as these are used to avoid overfitting in large neural
networks. Additionally, generalised divergence considering barycenters for prob-
ability distributions in [7] seems a promising direction to generalise the results
of this article.
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Abstract. We describe a sparse coding model of visual cortex that
encodes image transformations in an equivariant and hierarchical man-
ner. The model consists of a group-equivariant convolutional layer with
internal recurrent connections that implement sparse coding through
neural population attractor dynamics, consistent with the architecture
of visual cortex. The layers can be stacked hierarchically by introducing
recurrent connections between them. The hierarchical structure enables
rich bottom-up and top-down information flows, hypothesized to underlie
the visual system’s ability for perceptual inference. The model’s equiv-
ariant representations are demonstrated on time-varying visual scenes.

Keywords: Equivariance · Sparse coding · Generative models

1 Introduction

Brains have the remarkable ability to build internal models from sensory data
for reasoning, learning, and prediction to guide actions in dynamic environ-
ments. Central to this is the problem of representation—i.e., how do neural
systems construct internal representations of the world? In the Bayesian view,
this requires a generative model mapping from a latent state space to obser-
vations, along with a mechanism for inferring latent states from sensory data.
Thus, understanding the causal structure of the natural world is essential for
forming internal representations. But what is the causal structure of the natural
world? Natural images contain complex transformation groups that act both on
objects and their parts. Variations in object pose, articulation of its parts, even
lighting and color changes, can be described by the actions of groups. Addition-
ally, these variations are hierarchical in nature: scenes are composed of objects,
objects are composed of parts in relative poses, and so on down to low-level
image features. A transformation at the level of an object propagates down the
compositional hierarchy, transforming each of its component parts correspond-
ingly. Finally, object parts and sub-parts can undergo their own independent
transformations. These variations carry important information for understand-
ing and meaningfully interacting with the world. Thus, a rich compositional
hierarchy that is compatible with group actions is essential for forming visual
representations (Fig. 1).
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Fig. 1. Traditional vs Equivariant sparse coding as image I is transformed by action h.

Our contribution. We establish a novel Bayesian model for forming repre-
sentations of visual scenes with equivariant hierarchical part-whole relations by
proposing a group-equivariant extension of hierarchical sparse coding [7].

2 Background: Sparse Coding for Visual Representations

Sparse coding was originally proposed as a model for how neurons in pri-
mary visual cortex represent image data coming from the retina. In contrast
to the feedforward cascade of linear filtering followed by point-wise nonlinearity
commonly utilized in deep learning architectures, sparse coding uses recurrent
dynamics to infer a sparse representation of images in terms of a learned dictio-
nary of image features. When trained on natural images, the learned dictionary
resembles the oriented, localized, and bandpass receptive fields of neurons in
primary visual cortex (area V1) [7].

Fig. 2. (left) Generative model, (center) Energy function where ‖ · ‖2 denotes the
Euclidean norm, ‖ · ‖1 denotes the �1 norm, and λ is a regularization parameter con-
trolling the sparsity of a. ui is the internal state of neuron i, Gi,j = 〈φi, φj〉 models
neuronal interactions, and a(t) = σ(u(t)), where σ is a nonlinearity. (right) LCA circuit
model
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Generative Model. Sparse coding assumes that natural images are described
by a linear generative model with an overcomplete dictionary and additive Gaus-
sian noise ε(x) [7], shown in Fig. 2 (left). Here, the image I is represented as a
function I : X → R, specifically as a vector in the space L2(X) of square-
integrable functions with compact support X ⊂ R

2. Computationally, the sup-
port is discretized as an image patch with n pixels, so that I ∈ R

n. The dic-
tionary Φ comprises D elements: Φ = {φ1, . . . , φD}, with each φi ∈ L2(X),
for i ∈ {1, ...,D}. The size of the dictionary D is typically chosen to be
overcomplete, i.e. larger than the image patch dimension n. The coefficients
a = [a1, . . . , aD] ∈ R

D form the representation of image I.

Energy & Inference Dynamics. Given a dataset, sparse coding attempts
to find a dictionary Φ and a latent representation a ∈ R

D for each image in
the dataset such that, in expectation, neural activations are maximally sparse
and independent. Sparsity is promoted through the use of an i.i.d.prior over a
with scale parameter λ, with the form of the prior chosen to be peaked at zero
with heavy tails compared to a Gaussian (typically Laplacian). Finding the opti-
mal representation a is accomplished by maximizing the posterior distribution
P (a|I, Φ) via minimization of the energy function EI in Fig. 2 (center).
One particularly effective method for minimizing EI with a clear cortical cir-
cuit implementation is the Locally Competitive Algorithm (LCA) [9]. In LCA,
inference is carried out via the temporal dynamics of a population of D neu-
rons. Each neuron is associated with a dictionary element i, and its internal
state is represented by a coefficient ui(t). The evolution of the neural population
state is governed by the dynamics specified in Fig. 2 (center). The gram matrix,
Gi,j = 〈φi, φj〉, specifies the interaction between neuron i and j. In neurobiolog-
ical terms, this corresponds to the excitatory and inhibitory interactions medi-
ated by horizontal connections among V1 neurons. The notation 〈., .〉 refers to the
inner-product between functions in L2(X), 〈φi, φj〉 =

∫
X

φi(x)φj(x)dx. The acti-
vations, interpreted as instantaneous neural firing rates, are given by a nonlinear-
ity applied to the internal state: aj(t) = σ(uj(t)), with σ(u) = u−αλ

1+e−γ(u−λ) , similar
to a smoothed ReLU function with threshold λ and hyperparameters α and γ.
At equilibrium, the latent representation of image I is given by â = arg mina EI .

Dictionary Learning. The dictionary Φ is adapted to the statistics of the data
by minimizing the same energy function EI averaged over the dataset. This is
accomplished by alternating gradient descent on E. Given a current dictionary
Φ, along with a batch of images and their inferred latent representations, â, the
dictionary is updated with one gradient step of E with respect to Φ, averaged
over the batch.

3 Group Equivariant Sparse Coding

Missing in the current formulation of sparse coding is the mathematical struc-
ture to support reasoning about hierarchical object transformations in visual
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scenes. This limits its utility in both unsupervised learning and mechanistic
models of visual cortex. Here we address this problem by explicitly incorporat-
ing group equivariant and hierarchical structure into the sparse coding model.
Prior work has explored imposing topological relations between dictionary ele-
ments by establishing implicit neighborhood relations during training through
co-activation penalties [6], or explicitly coupling steerable pairs or n-tuples of
dictionary elements [8]. More recent work in Geometric Deep Learning (GDL)
has introduced several group equivariant architectures, for example through
the use of group convolutions [3,4]. However, these models are feedforward,
lacking mechanisms for hierarchical inference or rich top-down and bottom up
flows. Aside from [1], these models lack mechanisms for hierarchical part-whole
relations.
We explore the implications of inheriting the dictionary’s geometric structure
through group actions. In particular, we propose a model in which each dictio-
nary element is generated by an action of g on a canonical dictionary element, as
shown in Fig. 3 (right). For example, the group G of 2D rotations acts on the 2D
domain X, inducing a natural action on the space of images in L2(X) defined
over X. We refer the interested reader to [5] for mathematical details on groups
and group actions.

Fig. 3. (left) Geometric generative model, (right) Lie group actions relate dictionary
elements. Here, e is the identity element of G, and the canonical dictionary element is
φe ∈ L2(X). Additionally, L is a linear group action of G in the space of functions on
the domain Lh[f ](x) = f(h−1x).

3.1 Geometric Generative Model

This perspective enables us to rewrite the sparse coding generative model as:

I(x) =
∑

g∈G

φ(g)(x) a(g) + ε(x), (1)

where both the dictionary elements φ(g) and the scalar coefficients a(g) are
indexed with group elements, i.e. “coordinates” in G. In other words, images
are (1) generated by linear combinations of dictionary elements φ, where (2)
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each dictionary element has an explicit coordinate g in the group. The latent
representation a is now a scalar field over the group, a : G → R, illustrated in
Figs. 3 (left) and 1 (right). Intuitively, this perspective gives an explicit geometric
interpretation of both the dictionary Φ and latent representation a in sparse
coding, and thus a route toward modeling transformations which was implicit in
the unstructured vector representation.

3.2 Geometric Inference and LCA

The geometric perspective of sparse coding above allows us to rewrite the LCA
dynamics. Specifically, each neuron is now associated with a group element
g, with internal state u(g). The LCA dynamics are typically computationally
expensive to compute due to the prohibitive size of the neural interaction matrix
Gg,h = 〈φ(g), φ(h)〉. However this term can now be written as a group convo-
lution with a φe-dependent kernel w, leading to a symmetric, local wiring
rule between neurons and efficient computation during inference that is readily
parallelized on GPUs. Hence, we propose a new, provably equivariant inference
method—Geometric LCA, where ∗ denotes group convolution:

u̇(g)(t) = −u(g)(t) − [w ∗ a(t)](g) + 〈φ(g), I〉 (2)

Box 1. Isometry and the Derivation of Geometric LCA

Lemma 1 Consider a function f ∈ L2(X)
and a dictionary element φ(g) ∈ L2(X)
indexed by g ∈ G. If the action of h ∈ G
is isometric on the domain X, then, ∀h ∈ G,
we have:

〈Lh[φ(g)], f〉 = 〈φ(g), Lh−1 [f ]〉
Proof. We have: 〈Lh[φ(g)], f〉

=

∫
X

Lh[φ(g)](x)f(x)dx

=

∫
X

Lhg [φe](x)f(x)dx by def. of φ(g)

=

∫
X

φe((hg)
−1

x)f(x)dx by def. of L

=

∫
X

φe(g
−1

h
−1

x)f(x)dx

x ← hx, h action isometric: d(hx) = dx

=

∫
X

φe(g
−1

x)f(hx)dx

=

∫
X

φ(g)(x)Lh−1 [f ](x)dx

= 〈φ(g), Lh−1 [f ]〉.
This last step leads to the following LCA
dynamics.

Proposition 1: Geometric LCA The
LCA dynamics have the following geometric
formulation

τu̇(g)(t) = −u(g)(t)−[w∗a(t)](g)+〈φ(g), I〉

where ∗ denotes a group convolution.

Proof. Consider the interaction term in the
LCA dynamics:

∑
h∈G, h�=g Gg,ha(h)(t)

=
∑

h∈G, h�=g

〈φ(g), φ(h)〉a(h)(t) by def. of G

=
∑

h∈G, h�=g

〈L−1
h [φ(g)], φe〉a(h)(t) Lemma 1

=
∑

h∈G, h�=g

〈φ(h−1
g), φe〉a(h)(t)

=
∑

h∈G, h�=g

w(g
−1

h)a(h)(t)

= [w ∗ a(t)] (g),

where we define w(g) := 〈φ(g−1), φe〉 for
g 	= e and w(e) = 0.
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Equivariance of Inference and LCA. Next, we demonstrate that the solu-
tions I → a obtained from the LCA dynamics are equivariant. First, we say a
map ψ : X → Z is equivariant to a group G if ψ(Lgx) = L′

gψ(x) ∀g ∈ G, with
Lg, L

′
g representations of G on X and Z respectively. For clarity of exposition, L

is defined as a group action of G on the space L2(X) via domain transformations
Lg[f ](x) = f(g−1x), and the action L′ of G is defined on the space L2(G) of
square integrable functions from G to R, defined as:

L′
h(a)(g) = a(h−1g), ∀g ∈ G, ∀h ∈ G, ∀a ∈ L2(G),

where h−1g refers to the group composition of two group elements. First, we
show that solutions of the ordinary differential equation (ODE) defining the
LCA dynamics exist and are unique. Consider the initial value problem below,
where f denotes the LCA dynamics:

ODE(I) :

{
u̇(g, t) = f(u(g, t), I) ∀g ∈ G, t ∈ R+,

u(g, 0) = 0 ∀g ∈ G.
(3)

Proposition 1 (Existence and Uniqueness of LCA Solutions). Given an
image I, the solution of ODE(I) exists and is unique. We denote it with uI .

Proof. The Cauchy-Lipschitz theorem (Picard-Lindelöf theorem) states that the
initial value problem defined by ODE(I) has a unique solution if the function f
is (i) continuous in t and (ii) Lipschitz continuous in u, where:

f(u(g, t), I) =
1
τ

(−u(g)(t) − [w ∗ a(t)](g) + 〈φ(g), I〉) (4)

The continuity in t stems from the fact that a and u are continuous. We prove
that f(u, I) is Lipschitz continuous in u, i.e. that ∂f

∂u (u, I) is bounded. Observe
that the derivatives of the first and third terms are bounded. The second term
is a convolution composed with a smooth, ReLU-like nonlinearity. As convolu-
tions are bounded linear operators, the question reduces to whether derivative
of the nonlinearity ∂σ

∂u is bounded, which indeed holds. Thus solutions exist and
are unique. Using this fact, we show that the solution of the dynamics trans-
forms equivariantly with image transformations. Let uI be the unique solution
of ODE(I). Similarly, let uLh[I] be the unique solution of:

ODE(Lh[I]) :

{
u̇(g, t) = f(u(g, t), Lh[I]) ∀g ∈ G, t ∈ R+,

u(g, 0) = 0 ∀g ∈ G.
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Proposition 2: Equivariance of LCA Inference Dynamics Take h ∈ G.
The solutions of the LCA dynamics ODE(I) and ODE(Lh[I]) are related by
uLhI = L′

h(uI). Since a(g) = σ(u(g)), it follows that: aLhI = L′
h(aI).

Proof Take h ∈ G and define v(g, t) := uI(h−1g, t),∀g,∀t. We show v verifies
ODE(Lh[I]). First, we verify that v satisfies the initial conditions: v(g, 0) =
uI(h−1g, 0) = 0, ∀g ∈ G. Next, we verify that v satisfies ODE(Lh[I]) ∀g,∀t.

τ v̇(g, t) =
∂

∂t
[τuI(h−1g, t)] (definition of v)

= −uI(h−1g, t) −
∑

g′∈G

w((h−1g)−1g′) · σ(u(g′)) + 〈φ(h−1g), I〉

= −v(g, t) −
∑

g′∈G

w(g−1hg′) · σ(u(g′)) + 〈φ(g), Lh[I]〉 (Lemma 1)

= −v(g, t) −
∑

g′∈G

w(g−1g′) · σ(u(h−1g′)) + 〈φ(g), Lh[I]〉 (g′ ← h−1g′)

= −v(g, t) −
∑

g′∈G

w(g−1g′) · σ(v(g′)) + 〈φ(g), Lh[I]〉 (definition of v)

= f(v(g, t), Lh[I]) (definition of ODE (Lh[I])).

Thus, v is a solution of ODE(Lh[I]), and, by uniqueness, v(g, t) =
uLh[I](g, t) ∀g,∀t. Therefore, uI(h−1g, t) = uLh[I](g, t) ∀g,∀t, and aLhI =
L′

h(aI) as well. Thus, the LCA inference dynamics are equivariant to global
image transformations.

3.3 Equivariances of the Generative Model

Here, we show that the generative model, that is, the function f : a → I that
maps coefficients to images, is also equivariant. There are three types of equiv-
ariance important for representing transformations in natural scenes: global,
part/local, and hierarchical. Here we define these three types and prove that the
generative model is indeed equivariant in these important ways.

Global Equivariance. Traditionally, work on group equivariant neural net-
works (e.g. GCNNs [3,4]) has focused on global equivariance, i.e. equivariance
to a group action L on the domain of the input function. In Box 2, we show that
the geometric form of the sparse coding model is globally equivariant. However,
transformations of natural scenes typically involve actions on objects and parts at
different levels of the hierarchy. That is, transformations of an object at a higher
level of the hierarchy should propagate down compatibly with its parts. In the
context of equivariant sparse coding, the generative model explicitly decomposes
the scene into primitive parts—the first-level dictionary elements. That is, if an
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image I is composed of M objects I1, ..., IM then

I(x) = I1(x) + ... + IM (x)

=
∑

g∈G

φ(g)(x)a1(g) + ... +
∑

g∈G

φ(g)(x)aM (g)

=
∑

g∈G

φ(g)(x) (a1(g) + ... + aM (g)) .

In the context of this generative model, we can define two additional notions that
are essential for natural scene decompositions—local and hierarchical equivari-
ance. We prove that the generative model is indeed equivariant in these two
additional important ways.

Local Equivariance. Using the decomposition above, we define local actions
of G on the space of images L2(X) as:

L
(1)
h [I] = Lh[I1] + ... + IM , ∀h ∈ G, I ∈ L2(X)

L(1) only acts on image part 1, represented by image I1, and likewise on image
part m via L(m). We now prove that these local actions are indeed group actions.
Proof L(1) is a group action. The proof for L(2) follows.
(i) Identity : L

(1)
e [I] = I.

(ii) Closure : L
(1)
h′h[I] = Lh′h[I1]+...+IM = Lh′ [Lh[I1]]+...+IM = L

(1)
h′

[
L
(1)
h [I]

]
.

Here, we have used the definition of L(1) and the fact that L is a group action.
Similarly, we can define local actions L′(m) on the space L2(G) of coefficients am

corresponding to image part Im. By the linearity of the generative model f , a
local action in the space of coefficients yields a local action in the image space,
as shown in Box 2, Proposition 3.

Hierarchical Equivariance. The properties of global and local equivariance
naturally give rise to the hierarchical equivariance of the new generative model.
In other words, when a transformation is applied at the level of an object I (e.g.
the whole scene), transformations propagate down compatibly to its parts (e.g.
I1, ..., IM ). This hierarchical transformation is directly reflected in actions on the
latent coefficients for an object a and its parts a1, ..., aM . See Box 2, Proposition
5. Thus, a hierarchy of transformations in the scene is equivalent to a hierarchy
of transformations in the internal neural representation.
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Box 2. Generative Model: Global, Local, & Hierarchical Equivariance

Proposition 2: Global The generative
model in Eq. 1, I = f(a) is globally G-
equivariant, i.e. for all h ∈ G, we have:

f(L
′
h(a)) = Lh(f(a)) (5)

Proof Take h ∈ G. We have:

Lh[f(a)] = Lh

⎡
⎣∑

g∈G

φ(g)a(g)

⎤
⎦

=
∑
g∈G

Lh [Lg[φe]] a(g)

=
∑
g∈G

φ(hg)a(g)

=
∑
′∈G

φ(g)a(h
−1

g) (g ← h
−1

g)

=
∑
g∈G

φ(g)L
′
h(a)(g).

Thus the model is globally G-equivariant.

Proposition 3: Part/Local Consider the
linear model f , where a = a1 + ... + aM .
f is locally G-equivariant, i.e. ∀h ∈ G, for
m ∈ {1, 2, ..., M}

f
(

L
′(m)
h (a)

)
= L

(m)
h [f(a)] (6)

Proof We have

f
(

L
′(1)
h (a)

)
= f

(
L

′
h(a1) + ... + aM

)

= f
(
L

′
h(a1)

)
+ ... + f(aM )

= f
(
L

′
h(a1)

)
+ ... + IM

= Lh [I1] + ... + IM (by 5)

= L
(1)

[I] (definition of L
(1)

).

Shown for m = 1, this property holds for all
m, thus the model is locally G-equivariant.

Proposition 4: Hierarchical Consider the
linear model f , where a = a1 + ...+aM . For
all h, h′ ∈ G, m ∈ {1, 2, ..., M} we have:

f
(

L
′
h

(
L

′(m)
h′ (a)

))
= Lh

[
L

(m)
h′ [f(a)]

]

Proof Directly from global and local cases:

f
(

L
′
h

(
L

′(m)
h′ (a)

))
= Lh

[
f

(
L

′(m)
h′ (a)

)]

= Lh

[
L

(m)
h′ [f(a)]

]
.

Thus, f is hierarchically G-equivariant.

3.4 Constructing a Hierarchical Generative Model

Finally, the equivariant sparse coding layers can be composed hierarchically,
where first-level activations are describable in terms of second-level activations
over arrangements of parts.

I(x) =
∑

g∈G

φ0(g)a0(g) + ε(x), a0(g) =
K∑

k=1

∑

g∈G

φk
1(g)ak

1(g) + ε(g) (5)

Defining Î =
∑

g∈G φ0(g)a0(g) and â0 =
∑K

k=1

∑
g∈G φk

1(g)ak
1(g), the energy [2]

and geometric LCA inference dynamics are given by

E =
1
2
||I − Î||22 + λ0C(a0) +

1
2
||a0 − â0||22 + λ1C(a1)

τ0u̇0(g) = −u0(g) − [w0 ∗ a0](g) + 〈φ0(g), I〉 + â0(g)

τ1u̇
k
1(g) = −uk

1(g) − [wk
1 ∗ ak

1 ](g) + ak
1(g) + 〈φk

1(g), a0〉
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4 Experiments

To evaluate and characterize the behavior of the proposed hierarchical, equivari-
ant sparse coding model, we construct a synthetic dataset of scenes containing
(1) objects comprised of lower-level parts where (2) parts and wholes are trans-
formed via group actions. We do this by specifying a group G, constructing the
dictionary elements at each level of the hierarchy, and then sampling from the
generative model. For the first layer dictionary, we construct an overcomplete
dictionary of Gabor functions generated by acting on a canonical Gabor template
with a discrete sampling of the group of translations G. The mother Gabor φe is
shown in Fig. 4. We construct K = 2 canonical second-layer dictionary elements
φ1
1, φ

2
1 from arrangements of parts at the preceding level of representation. Next,

we generate the “orbit” of each template by again sampling from the group of
translations G. The templates and selected dictionary elements are shown in
Fig. 4. We then generate a dataset of images by sampling from the generative
model. In particular, we create a sequence of frames in which objects present in
the scene undergo different translations. The resulting images, inferred latents,
and reconstructions are shown in Fig. 4. Note that the latent variables are sparse
and transform equivariantly, as stated in the proofs.

Fig. 4. Figure: (left) a two-layer translation-equivariant architecture with recurrent
connections within and between layers, (right) experimental results demonstrating that
the neural dynamics converge to a sparse, hierarchical representation of the scene which
transforms equivariantly in time with the input video. Column 1: input video frames,
Column 2: first layer gabor coefficient map displayed with sparse equivariant activa-
tions, Columns 3&4: two second layer “object” coefficient maps displayed with sparse
equivariant activations

5 Discussion

By incorporating group structure, we have derived a new sparse coding model
that is equivariant in its response to image transformations, both within a layer
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and across multiple layers stacked in a hierarchy. We believe this is an impor-
tant step toward developing a hierarchical, probabilistic model of visual cortex
capable of performing perceptual inference (e.g. object recognition) on natural
scenes. Surprisingly, the network architecture has the same functional form as
the neural attractor model of Kechen Zhang [10], suggesting new circuit mecha-
nisms in visual cortex for top-down steering, motion computation, and disparity
estimation that could be done in the sparse code domain. Of relevance to deep
learning, this new structure enables inference to be implemented efficiently on
GPUs as (1) a feed-forward group convolution followed by (2) iterative lateral
interaction dynamics implemented by group convolutions between dictionary
elements.

Acknowledgements. The authors thank their helpful colleagues at the Redwood
Center and Bioshape Lab. CS acknowledges support from the NIH NEI Training Grant
T32EY007043.
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Abstract. In information theory—as well as in the adjacent fields of
statistics, geometry, machine learning and artificial intelligence—it is
important to solve high-dimensional optimization problems on directed
distances (divergences), under very non-restrictive (e.g. non-convex) con-
straints. Such a task can be comfortably achieved by the new dimension-
free bare (pure) simulation method of [6,7]. In the present paper, we give
some new insightful details on one cornerstone of this approach.

Keywords: ϕ−divergence · High-dimensional optimization

1 Directed Distances, Divergences

As usual, a divergence is a function D : RK × RK �→ R with the following prop-
erties: D(Q,P) ≥ 0 for K−dimensional vectors Q,P ∈ RK , and D(Q,P) = 0
iff Q = P. Since in general, D(Q,P) �= D(P,Q) and the triangle inequality
is not satisfied, D(Q,P) can be interpreted as directed distance from Q to P;
accordingly, the divergences D can be connected to geometric issues in various
different ways, see e.g. the detailed discussion in Sect. 1.5 of [5], and [15]. Typ-
ically, a divergence D is generated by some function ϕ. For the latter, here we
fundamentally require:

(G1) ϕ : ] − ∞,∞[→ [0,∞] is lower semicontinuous and convex;
(G2) ϕ(1) = 0;
(G3) the effective domain dom(ϕ) := {t ∈ R : ϕ(t) < ∞} has interior

int(dom(ϕ)) of the form int(dom(ϕ)) = ]a, b[ for some −∞ ≤ a < 1 <
b ≤ ∞;1

(G4’) ϕ is strictly convex in a neighborhood ]tsc
− , tsc

+ [⊆ ]a, b[ of one (tsc
− < 1 <

tsc
+ ).

1 notice that (G3) follows from (G1), (G2) and the requirement that int(dom(ϕ)) is
non-empty.
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Also, we set ϕ(a) := limt↓a ϕ(t) and ϕ(b) := limt↑b ϕ(t). The class of all functions
ϕ with (G1), (G2), (G3) and (G4’) will be denoted by ˜Υ (]a, b[). For ϕ ∈ ˜Υ (]a, b[),
P := (p1, .., pK) ∈ RK

>0 := {R := (r1, . . . , rK) ∈ RK : ri > 0 for all i = 1, . . . , K}
and Q := (q1, . . . , qK) ∈ Ω ⊂ RK , we define as directed distance the generalized
ϕ−divergence (generalized Csiszár-Ali-Silvey-Morimoto divergence)

Dϕ(Q,P) :=
K

∑

k=1

pk · ϕ

(

qk

pk

)

;

for a comprehensive technical treatment, see e.g. [4]. Comprehensive overviews
on these important (generalized) ϕ−divergences are given in e.g. [5,6,12,18], and
the references therein. Notice that the total variation distance DϕT V

(Q,P) =
∑K

k=1 pk ·ϕTV

(

qk

pk

)

=
∑K

k=1 | pk − qk | with ϕTV (t) := |t−1| is not covered here.

2 Optimization and Bare Simulation Solution Method

Problem 1. For pregiven ϕ ∈ ˜Υ (]a, b[), positive-entries vector P :=
(p1, .., pK) ∈ RK

>0 (or from some subset thereof), and subset Ω ⊂ RK with regu-
larity properties

cl(Ω) = cl (int (Ω)) , int (Ω) �= ∅, (1)

find
inf

Q∈Ω
Dϕ(Q,P), (2)

provided that
inf

Q∈Ω
Dϕ(Q,P) < ∞. (3)

Remark 2. (a) In case that a minimizer Q∗ of (2) exists—i.e. Q∗ lies in Ω
and satisfies Dϕ(Q∗,P) = infQ∈Ω Dϕ(Q,P)—then this Q∗ can be interpreted
as an information projection of P on Ω . For the related context of probability measures,
information projections have been addressed e.g. in [8,9] for the subcase of the
Kullback-Leibler information divergence (also called I−divergence), see also e.g.
[13] for a nice exposition in connection with the differential geometry of proba-
bility model parameters and general ϕ.
(b) When Ω is not closed but merely satisfies (1), then the infimum in (2) may
not be reached in Ω although being finite; whenever, additionally, Ω is a closed
set then a minimzer Q∗ ∈ Ω exists. In the subsetup where Ω is a closed convex
set and int(Ω) �= ∅, (1) is satisfied and the minimizer Q∗ ∈ Ω in (2) is attained
and even unique. When Ω is open and satisfies (1), then the infimum in (2)
exists but is generally reached at some generalized projection of P on Ω (see [9] for
the Kullback-Leibler divergence case of probability measures, which extends to
any ϕ−divergence in our framework). However, in this paper we only deal with
finding the infimum/minimum in (2) (rather than a corresponding minimizer).
(c) Our approach is predestined for non- or semiparametric models. For instance,
(1) is valid for appropriate tubular neighborhoods of parametric models or for
more general non-parametric settings such as e.g. shape constraints.
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According to our work [6], the above-mentioned Problem 1 can be solved by
a new dimension-free precise bare simulation (BS) method to be explained in
the following, where—(only) for the sake of brevity—we assume the additional
constraint

∑K
i=1 pi = 1 for the rest of this paper. We first suppose

Condition 3. The divergence generator ϕ in (2) satisfies (G1) to (G4’) (i.e.
ϕ ∈ ˜Υ (]a, b[)) and additionally there holds the representation

ϕ(t) = sup
z∈R

(

z · t − log
∫

R
ez·yd“(y)

)

, t ∈ R, (4)

for some probability measure “ on the real line R such that the function z �→
MGF“(z) :=

∫

R ez·yd“(y) is finite on some open interval containing zero2.

The class of all functions ϕ which satisfy this cornerstone Condition 3 will be
denoted by Υ (]a, b[). By means of this, for each fixed ϕ ∈ Υ (]a, b[) we construct
in [6] a sequence (ξW

n )n∈N of RK−valued random variables/random vectors (on
an auxiliary probability space (X,A ,˝)) as follows: for any n ∈ N and any k ∈
{1, . . . , K}, let nk := �n·pk
 where �x
 denotes the integer part of x. Thus one has
limn→∞ nk

n = pk. Moreover, we assume that n ∈ N is large enough, namely n ≥
maxk∈{1,...,K} 1

pk
, and decompose the set {1, . . . , n} of all integers from 1 to n into

the following disjoint blocks: I
(n)
1 := {1, . . . , n1}, I

(n)
2 := {n1 + 1, . . . , n1 + n2},

and so on until the last block I
(n)
K := {∑K−1

k=1 nk + 1, . . . , n} which therefore
contains all integers from n1 + . . . + nK−1 + 1 to n. Clearly, I

(n)
k has nk ≥ 1

elements (i.e. card(I(n)k ) = nk where card(A) denotes the number of elements in
a set A) for all k ∈ {1, . . . , K −1}, and the last block I

(n)
K has n−∑K−1

k=1 nk ≥ 1
elements which anyhow satisfies limn→∞ card(I(n)K )/n = pK . Furthermore, con-
sider a vector W := (W1, . . . , Wn) where the Wi’s are i.i.d. copies of the random
variable W whose distribution is associated with the divergence-generator ϕ
through (4), in the sense that ˝[W ∈ · ] = “[ · ]. We group the Wi’s according to
the above-mentioned blocks and sum them up blockwise, in order to build the
following K− component random vector

ξW
n :=

( 1
n

∑

i∈I
(n)
1

Wi, . . . ,
1
n

∑

i∈I
(n)
K

Wi

)

.

For such a context, in [6] we obtain the following solution of Problem 1:

2 this implies that
∫
R y d“(y) = 1 (cf. (G11i) below) and that “ has light tails.
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Theorem 4. Under Condition 3, there holds the “bare-simulation (BS) mini-
mizability”

inf
Q∈Ω

Dϕ(Q,P) = − lim
n→∞

1
n
log ˝

[

ξW
n ∈ Ω

]

for any Ω ⊂ RK with regularity properties (1) and finiteness property (3).

In [6], we also give versions for the case
∑K

i=1 pi �= 1 (and hence, ϕ needs to be
transformed), versions for constraint sets Ω in the probability simplex, as well as
numerous solved cases. An extension of this bare simulation method to arbitrary
divergences D(Q,P) (e.g. Bregman distances) can be found in [7].

Theorem 4 provides our principle for the approximation of the solution of the
deterministic optimization problem (2). Indeed, by replacing the involved limit
by its finite counterpart, we deduce for given large n

inf
Q∈Ω

Dϕ(Q,P) ≈ − 1
n
log˝

[

ξW
n ∈ Ω

]

; (5)

it remains to estimate the right-hand side of (5). The latter can be performed
either by a naive estimator of the frequency of those replications of ξW

n which
hit Ω, or more efficiently by some improved estimator, see [6,7] for details.

We can also deduce that the rate of convergence in Theorem 4 is
O

(

n−1 · log n
)

. Indeed, since the K components in ξW
n are independent, each

of them being a weighted empirical mean of independent summands, we can
combine the proof of Theorem 8 in [6] (with the special choice

∑K
i=1 pi = 1)

with e.g. Theorem 11.1 in [14] in order to derive the existence of two constants
c1 > 0, c2 > 0 such that

c1 · n−K/2 · e−n·infQ∈B Dϕ(Q,P) ≤ ˝
[

ξW
n ∈ B

] ≤ c2 · n−K/2 · e−n·infQ∈B Dϕ(Q,P)

for any hyper-rectangle B in RK , which entails the above-mentioned order of the
convergence in Theorem 4. A complete development of such bounds together with
the corresponding tuning of the number of replicates in order to approximate
˝

[

ξW
n ∈ B

]

for fixed n is postponed to forthcoming work.

3 Finding/Constructing the Distribution of the Weights

As seen above, in our bare-simulation-optimization context it is important to
verify the cornerstone Condition 3. For this, in Theorem 22 of [6] we have devel-
oped one special method (see (7),(8) below) of constructing “good candidates”
ϕ and “ for Condition 3, and for those we have also given some additional con-
ditions in order to fully verify Condition 3. As a new contribution, let us now
give some more general view on the verification of Condition 3, delivering also
insights and details additional to our investigations [6]. Subsequently, we discuss
the following direction: starting from a concrete optimization problem (2) with
pregiven ϕ satisfying G(1),(G2),(G3),(G4′), one would first like to verify whether
the representability (4) holds, without finding the corresponding “ explicitly. For
this sake, we first present some fundamental properties of all ϕ ∈ Υ (]a, b[):



On a Cornerstone of Bare-Simulation Distance/Divergence Optimization 109

Proposition 5. Let ϕ satisfy Condition 3 (i.e. ϕ ∈ Υ (]a, b[)). Then the follow-
ing assertions hold:

(G4) ϕ is strictly convex only in a non-empty neighborhood ]tsc
− , tsc

+ [⊆ ]a, b[
of one (tsc

− < 1 < tsc
+ );

(G5) ϕ is continuously differentiable on ]a, b[ (i.e. ϕ ∈ C1(]a, b[);
(G6) ϕ is infinitly differentiable on ]tsc

− , tsc
+ [ (i.e. ϕ ∈ C∞(]tsc

− , tsc
+ [), and

hence, ϕ′(1) = 0, ϕ′′(t) > 0 for all t ∈ ]tsc
− , tsc

+ [;
notice that the left-hand second derivative and the right-hand second
derivative of ϕ may not coincide at tsc

− respectively at tsc
+ (i.e. possible

non-second-differentiability at these two points);
(G7) if a > −∞, then a = tsc

− ;
if a = −∞, then either tsc

− = −∞ or ϕ(t) = ϕ(tsc
− ) + ϕ′(tsc

− ) · (t − tsc
− )

for all t ∈ ] − ∞, tsc
− [ (affine-linearity); notice that ϕ′(tsc

− ) < 0;
(G8) if b < ∞, then b = tsc

+ ;
if b = ∞, then either tsc

+ = ∞ or ϕ(t) = ϕ(tsc
+ ) + ϕ′(tsc

+ ) · (t − tsc
+ ) for

all t ∈ ]tsc
+ ,∞[ (affine-linearity); notice that ϕ′(tsc

+ ) > 0;
(G9) the Fenchel-Legendre transform (also called convex conjugate) of ϕ

ϕ∗(z) = sup
t∈R

(z · t − ϕ(t)) = sup
t∈]a,b[

(z · t − ϕ(t)) , z ∈ R, (6)

has the following properties:
(G9i) int(dom(ϕ∗)) =]λ−, λ+[, where dom(ϕ∗) := {z ∈ R : −∞ < ϕ∗(z) <

∞},
λ− := inft∈]a,b[ ϕ

′(t) = limt↓a ϕ′(t) =: ϕ′(a) < 0 and
λ+ := supt∈]a,b[ ϕ

′(t) = limt↑b ϕ′(t) =: ϕ′(b) > 0;
(G9ii) if a > −∞, then

— λ− = −∞;
— the function z �→ e−a·z+ϕ∗(z) =: M(z) is absolutely monotone on
] − ∞, 0[, i.e. all derivatives exist and satisfy ∂k

∂zk M(z) ≥ 0 (k ∈ N0,
z ∈ ] − ∞, 0[);
— limz→0− M(z) = 1;

(G9iii) if b < ∞, then
— λ+ = ∞;
— the function z �→ eb·z+ϕ∗(−z) =: M(z) is absolutely monotone on
] − ∞, 0[;
— limz→0− M(z) = 1;

(G9iv) if a = −∞ and b = ∞, then
— the function z �→ eϕ∗(z) =: M(z) is exponentially convex on ]λ−, λ+[,
i.e. M(·) is continuous and satisfies

n
∑

i,j=1

ci · cj ·M
(zi + zj

2

)

≥ 0 for all n ∈ N, ci, cj ∈ R and zi, zj ∈ ]λ−, λ+[;

notice that exponential-convexity is stronger than the usual log-
convexity.

— limz→0− M(z) = 1;
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(G10) the endpoints of int(dom(ϕ)) = ]a, b[ have the following important
“functioning” for the underlying probability distribution “ (cf. (4))
respectively of an associated random variable W with “[· ] := ˝[W ∈ · ]:

(G10i) a = inf supp(“) = inf supp(W ), b = sup supp(“) = sup supp(W ), where
supp(“) respectively supp(W ) denotes the support of “ respectively W ;
consequently, ]a, b[ = int(conv(supp(“))) = int(conv(supp(W ))) where
conv(A) denotes the convex hull of a set A;

(G10ii) if a > −∞, then ϕ(a) = − log “[{a}] = − log˝[W = a ]; conse-
quently,
a = min supp(“) = min supp(W ) if and only if “[{a}] = ˝[W = a ] > 0
if and only if ϕ(a) < ∞ if and only if a ∈ dom(ϕ);

(G10iii) if b < ∞, then ϕ(b) = − log “[{b}] = − log˝[W = b ]; consequently,
b = max supp(“) = max supp(W ) if and only if “[{b}] = ˝[W = b ] > 0
if and only if ϕ(b) < ∞ if and only if b ∈ dom(ϕ).

(G11) the first two derivatives of ϕ at the point 1 have the following important
“functioning” for “ respectively W :

(G11i) 1 = ϕ′−1(0) =
∫

R y d“(y) = E˝[W ] where ϕ′−1(·) denotes the inverse
of the first derivative ϕ′(·) of ϕ(·),

(G11ii) 1
ϕ′′(1) =

∫

R

(

y − ∫

R ỹ d“(ỹ)
)2

d“(y) = E˝[W 2]− (E˝[W ])2 = V ar˝[W ];
thus, scaling c̃ · ϕ (c̃ > 0) does not change the mean 1 but the variance
of W .

Notice that (G4) is stronger than (G4’). The proof of Proposition 5 will be given
in Sect. 4. The properties (G1) to (G9iv) constitute necessary (shape-geometric)
conditions for a pregiven function ϕ to belong to Υ (]a, b[)); accordingly, these
should be verified first, in concrete situations where one aims to optimize Dϕ

through Theorem 4. For the sufficiency, we obtain

Proposition 6. Suppose that ϕ : ]−∞,∞[ �→ [0,∞] satisfies (G1) to (G8), and
recall the notations in (G9i). Then, ϕ ∈ Υ (]a, b[) if one of the following three
conditions holds:

(a) a > −∞, λ− = −∞, and z �→ e−a·z+ϕ∗(z) is absolutely monotone on ] −
∞, 0[,

(b) b < ∞, λ+ = ∞, and z �→ eb·z+ϕ∗(−z) is absolutely monotone on ] − ∞, 0[,
(c) a = −∞, b = ∞, and z �→ eϕ∗(z) is exponentially convex on ]λ−, λ+[.

The proof of Proposition 6 will be given in Sect. 4; notice that—due to (G9ii)
respectively (G9iii)—the two cases “a > −∞, λ− > −∞” respectively “b < ∞,
λ+ < ∞” can not appear. As far as applicability is concerned, it is well known
that, in general, verifying absolute monotonicity is typically more comfortable
than verifying exponential convexity. Hence, the boundary points a and b of
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int(dom(ϕ)) play an important role, also (in case that one starts from a pregiven
ϕ) because they indicate the support of the desired “ to be searched for; for the
latter task, one typically should know the explicit form of the Fenchel-Legendre
transform ϕ∗ which can sometimes be hard to determine. This hardness issue
also applies for the reverse direction of starting from a concrete probability
distribution “ with light tails, computing its log-moment-generating function z �→
Λ“(z) := logMGF“(z) and the corresponding Fenchel-Legendre transform Λ∗

“
which is nothing but the associated divergence generator ϕ. However, as already
indicated above, in Theorem 22 of [6] we have developed a comfortable method to
considerably ease these problems, as follows (where for the sake of brevity we only
present a special case thereof): we start from a function F : ]−∞,∞[ �→ [−∞,∞]
with int(dom(F )) = ]aF , bF [ for some −∞ ≤ aF < 1 < bF ≤ ∞, which is smooth
(infinitely continuously differentiable) and strictly increasing on ]aF , bF [, and
which satisfies F (1) = 0. From this, we construct ]λ−, λ+[ := int(Range(F )),
]tsc

− , tsc
+ [ := ]aF , bF [, ]a, b[ with a := tsc

− · 1{−∞}(λ−) − ∞ · 1]−∞,0[(λ−) and b :=
tsc
+ ·1{∞}(λ+)+∞·1]0,∞[(λ+), as well as the following two functions ϕ : ]−∞,∞[ �→
[0,∞] and Λ : ] − ∞,∞[ �→ [−∞,∞] by

ϕ(t) :=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

t · F (t) − ∫ F (t)

0
F −1(u) du ∈ [0, ∞[, if t ∈ ]tsc

− , tsc
+ [,

tsc
− · F (tsc

− ) − ∫ F(tsc
− )

0 F −1(u) du ∈ ]0, ∞], if t = tsc
− > −∞,

tsc
+ · F (tsc

+ ) − ∫ F(tsc
+ )

0 F −1(u) du ∈ ]0, ∞], if t = tsc
+ < ∞,

ϕ(tsc
− ) + λ− · (t − tsc

− ) ∈ ]0, ∞], if tsc
− > −∞ and t ∈ ] − ∞, tsc

− [,

ϕ(tsc
+ ) + λ+ · (t − tsc

+ ) ∈ ]0, ∞], if tsc
+ < ∞ and t ∈ ]tsc

+ , ∞[,

∞, else,

(7)

Λ(z) :=

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

∫ z

0
F −1(u) du ∈ ] − ∞, ∞[, if z ∈ ]λ−, λ+[,∫ λ−

0
F −1(u) du ∈ [−∞, ∞], if z = λ− > −∞,

∫ λ+
0

F −1(u) du ∈ [−∞, ∞], if z = λ+ < ∞.

∞, else.

(8)

For this construction, we have shown in [6] that ϕ(t) = supz∈R (z · t − Λ(z)) for
all t ∈ R and that z �→ exp(Λ(z)) is a “good candidate” for a moment generating
function of a probability distribution “, and hence for the representability (4).
Additionally, we can also straightforwardly show that ϕ satisfies (G1) to (G8),
and consequently, Proposition 6 generalizes the Proposition 24 of [6]. Numerous
examples for the applicability of (7),(8) are given in [6].

4 Proofs

Proof of Proposition 5. Suppose that ϕ satisfies (G1) and (G3). Moreover,
recall the required representability (4); the involved Laplace-Stieltjes transform

R � z �→ MGF“(z) :=
∫

R
ez·y d“(y) = E˝[ez·W ] (9)
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of a probability measure “ on the real line R respectively of an associated random
variable W (with “[· ] := ˝[W ∈ · ]) has the following fundamental properties,
according to well-known general theory:

(M1) MGF“ takes values in ]0,∞];
(M2) dom(MGF“) is an interval which contains 0 and may be degenerated

or even the whole real line; correspondingly, we denote its interior by
]λ−, λ+[ := int(dom(MGF“)) which may be the empty set (in case that
dom(MGF“) = {0}, i.e. λ− = λ+ = 0); clearly, there holds λ− ∈ [−∞, 0]
and λ+ ∈ [0,∞];

(M3) MGF“ is continuous on dom(MGF“) and lower semicontinuous on R;
(M4) if λ− �= λ+ then MGF“ is real analytic and thus infinitely differentiable

on ]λ−, λ+[;
(M5) if MGF“ is finite in a neighborhood of zero, i.e. 0 ∈ ]λ−, λ+[ with λ− < λ+,

then for all k ∈ N0 the k−th moment of “ respectively W exists and is
finite and can be computed in terms of the k−th derivative MGF

(k)
“ as

MGF
(k)
“ (0) =

∫

R
yk d“(y) = E˝[W k],

which, by the way, then allows the interpretation of MGF“ as “moment
generating function of “ resp. W ”; since in Condition 3 we assume 0 ∈
]λ−, λ+[, we have used the abbreviation MGF“ (rather than LST“) in (9);

(M6) if λ− �= λ+, then MGF“ is strictly convex on ]λ−, λ+[.

Hence, the logarithm of the Laplace-Stieltjes transform

z �→ Λ“(z) := logMGF“(z) := log
∫

R
ez·y d“(y) = logE˝[ez·W ] (10)

(which in case of 0 ∈ ]λ−, λ+[ can be interpreted as cumulant generating function)
“carries over” (M1) to (M6), which partially can be even refined:

(C1) Λ“ takes values in ] − ∞,∞];
(C2) dom(Λ“) = dom(MGF“) and thus int(dom(Λ“)) = ]λ−, λ+[;
(C3) Λ“ is continuous on dom(Λ“) and lower semicontinuous on R;
(C4) if λ− �= λ+, then λ“ is infinitely differentiable on ]λ−, λ+[;
(C5) if 0 ∈ ]λ−, λ+[, then

Λ“(0) = 0, Λ′
“(0) =

∫

R
y d“(y) = E˝[W ], (11)

Λ′′
“ (0) =

∫

R

(

y −
∫

R
ỹ d“(ỹ)

)2

d“(y) = E˝[W 2] − (E˝[W ])2 = V ar˝[W ]; (12)

(C6) under the assumption λ− �= λ+ there holds: Λ“ is strictly convex on
]λ−, λ+[ if and only if “ is not a one-point distribution (Dirac mass) if
and only if W is not a.s. constant; otherwise, Λ“ is linear;
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(C7) under the assumption that “ is not a one-point distribution (Dirac
mass)—with the notations a := inf supp(“) = inf supp(W ), b :=
sup supp(“) = sup supp(W ), tsc

− := inf{Λ′
“(z) : z ∈ ]λ−, λ+[} =

limz↓λ− Λ′
“(z) and

tsc
+ := sup{Λ′

“(z) : z ∈ ]λ−, λ+[} = limz↑λ+ Λ′
“(z)—one gets the follow-

ing:
(C7i) ]tsc

− , tsc
+ [ ⊆ ]a, b[;

(C7ii) if a > −∞, then λ− = −∞, tsc
− = limz→−∞ Λ′

“(z) = limz→−∞
Λ“(z)

z =
a;

(C7iii) if b < ∞, then λ+ = ∞, tsc
+ = limz→∞ Λ′

“(z) = limz→∞
Λ“(z)

z = b;
(C7iv) if a = −∞ and λ− = −∞, then tsc

− = limz→−∞ Λ′
“(z) = −∞ = a;

(C7v) if b = ∞ and λ+ = ∞, then tsc
+ = limz→∞ Λ′

“(z) = ∞ = b;
(C7vi) if λ− ∈ ] − ∞, 0[ and tsc

− > −∞, then a = −∞, Λ“(λ−) ∈ ] − ∞,∞[,
Λ“(z) = ∞ for all z < λ−, Λ′

“(λ−) ∈ ] − ∞,∞[;
(C7vii) if λ+ ∈ ]0,∞[ and tsc

+ < ∞, then b = ∞, Λ“(λ+) ∈ ]−∞,∞[, Λ“(z) = ∞
for all z > λ+, Λ′

“(λ+) ∈ ] − ∞,∞[;
(C7viii) if λ− ∈ ] − ∞, 0[ and tsc

− = −∞, then a = −∞;
(C7ix) if λ+ ∈ ]0,∞[ and tsc

+ = ∞, then b = ∞.

Notice that (C7ii) to (C7ix) cover all possible constellations. For a proof of (C7ii)
to (C7vii) as well as further details, see e.g. Section 9.1 in [3]. By contradiction,
(C7viii) follows from (C7ii) and (C7ix) follows from (C7iii). Moreover, (C7i) is a
consequence of (C7ii) to (C7ix). As a side remark, notice that (C6) refines (M6).
To proceed with our proof of Proposition 5, due to the requirement (4) one has

ϕ(t) = sup
z∈R

(z · t − Λ“(z)) =: Λ∗
“ (t), t ∈ R, (13)

i.e. the divergence generator ϕ must be equal to the Fenchel-Legendre transform
Λ∗
“ of a cumulant generating function Λ“) of some probability distribution “, such

that λ− < 0 < λ+ holds. Moreover, ϕ should satisfy ϕ(1) = 0 (cf. (G2)), and
should be finite as well as strictly convex in a non-empty neighborhood ]tsc

− , tsc
+ [

of 1 (cf. (G4’)). The latter rules out that “ is any one-point distribution (Dirac
distribution), say “ = δy0 for some y0 ∈ R, since in such a situation one gets
Λ“(z) = z · y0, and thus ϕ(t) = Λ∗

“ (t) = 0 for t = y0 and ϕ(t) = Λ∗
“ (t) = ∞

for all t ∈ R\{y0} (even in the case y0 = 1 for which ϕ(1) = 0 is satisfied).
Consequently, Λ“ is strictly convex on ]λ−, λ+[ = int(dom(Λ“)) (cf. (C6)) and
(C7) applies. Clearly, by continuity one gets

Λ∗
“ (t) = sup

z∈]λ−,λ+[

(t · z − Λ“(z)) , t ∈ R. (14)

For t ∈]tsc
− , tsc

+ [, the optimization problem (14) can be solved explicitly by the
well-known “pure/original” Legendre transform, namely

Λ∗
“ (t) = t · Λ′−1

“ (t) − Λ“

(

Λ′−1
“ (t)

)

, t ∈ ]tsc
− , tsc

+ [. (15)
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Let us inspect the further cases t ≤ tsc
− . In the contexts of (C7iv) and (C7viii),

this is obsolete since tsc
− = a = −∞. For (C7ii), where tsc

− = a > −∞, one can
show Λ∗

“ (a) = − log “[{a}] = − log˝[W = a ] which together with (13) proves
(G10ii); moreover, Λ∗

“ (t) = ∞ for all t < a (see e.g. Section 9.1 of [3]). In the
setup (C7vi), where tsc

− > a = −∞ it is clear that Λ∗
“ (t

sc
− ) = tsc

− · Λ′−1
“ (tsc

− ) −
Λ“(Λ′−1

“ (tsc
− )) = tsc

− · λ− − Λ“(λ−) and

Λ∗
“ (t) = t · λ− − Λ“(λ−) = Λ∗

“ (t
sc
− ) + λ− · (t − tsc

− ) for all t ∈ ] − ∞, tsc
− [. (16)

As far as the cases t ≥ tsc
+ is concerned, in the situations of (C7v) and (C7ix),

this is obsolete since tsc
+ = b = ∞. For (C7iii), where tsc

+ = b < ∞, one can show
Λ∗
“ (b) = − log “[{b}] = − log˝[W = b ] which together with (13) proves (G10iii);

moreover, Λ∗
“ (t) = ∞ for all t > b (see e.g. Sect. 9.1 of [3]). In the setup (C7vii),

where tsc
+ < b = ∞ it is clear that Λ∗

“ (t
sc
+ ) = tsc

+ · Λ′−1
“ (tsc

+ ) − Λ“(Λ′−1
“ (tsc

+ )) =
tsc
+ · λ+ − Λ“(λ+) and

Λ∗
“ (t) = t · λ+ − Λ“(λ+) = Λ∗

“ (t
sc
+ ) + λ+ · (t − tsc

+ ) for all t ∈ ]tsc
+ ,∞[. (17)

As a side effect, we have thus also proved (G10i) (notice that in (C7) we have
started with a, b to be the endpoints of the support of “ respectively W , in con-
trast to (G3) of the definition of ˜Υ (]a, b[) where a, b are defined as the endpoints
of the effective domain of ϕ). To proceed, from (13) and (15) we obtain

ϕ′(t) = (Λ∗
“ )

′(t) = Λ′−1
“ (t), ϕ′′(t) = (Λ∗

“ )
′′(t) =

1
Λ′′
“

(

Λ′−1
“ (t)

) > 0, t ∈ ]tsc
− , tsc

+ [,

(18)
which—together with the investigations below (15)—provides (G4) and (G5);
moreover, (G6) is immediate since the infinite differentiability is straightforward
and ϕ′(1) = 0 because we have required both the nonnegativity of ϕ and (G2)
(cf. the definition of ˜Υ (]a, b[)). The property (G7) follows from (C7ii), (C7iv),
(C7viii), (13), (16) and ϕ′(tsc

− ) = Λ′−1
“ (tsc

− ) = λ−. Analogously, we get (G8) from
(C7iii), (C7v), (C7ix), (13), (17) and ϕ′(tsc

+ ) = Λ′−1
“ (tsc

+ ) = λ+.
Let us continue with (G9). By applying the general theory of double Fenchel-

Legendre transforms (bi-conjugates), (6) turns into

ϕ∗(z) = Λ“(z), z ∈ R, (19)

which deduces (G9i). The properties (G9ii), (G9iii) and (G9iv) follow from the
following theorem and the discussion thereafter.

Theorem 7. (a) Let M : ] − ∞, 0] �→ ]0,∞[ be continuous on ] − ∞, 0] with
M(0) = 1. Then one has

M is absolutely monotone on ] − ∞, 0[ ⇐⇒
∃ unique prob. distr. ˜̃“ on [0, ∞[ s.t. M(z) =

∫ ∞

0

ez·yd˜̃“(y) for all z ∈ ] − ∞, 0[.
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(b) Let I be an open interval which contains 0, and M : I �→ [0,∞[ be continuous
with M(0) = 1. Then one gets

M is exponentially convex ⇐⇒
∃ unique prob. distr. ˜

˜“ on ] − ∞,∞[ s.t. M(z)=
∫ ∞

−∞
ez·yd˜˜“(y) for all z ∈ I.

Assertion (a) of Theorem 7 is known as (probability-version of) Bernstein’s theo-
rem [2] (see e.g. also [16]), whereas assertion (b) is known as (probability-version
of) Widder’s theorem [19] (see e.g. also [1,10,11,17,20]). From (10), (19), (G9i)
and Theorem 7(b), the first item in (G9iv) follows immediately by using the
choice I = ]λ−, λ+[. Under the additional knowledge a > −∞ (and consequently
λ− = −∞) employed together with (G10i) and thus ˝[W ≥ a ] = “[ [a,∞[ ] = 1,
one arrives at

eϕ∗(z)−a·z =
∫ ∞

a

ez·(y−a) d“(y)=
∫ ∞

0

ez·ỹ d˜˜“(ỹ)=E˝[ez·(W−a)], z ∈ ]−∞, λ+[, (20)

where the probability distribution ˜

˜“[ · ] := “[ · + a ] is the a−shifted companion

of “; recall that λ+ > 0. Put in other words, ˝[˜W ∈ · ] = ˜

˜“[ · ] is the probability
distribution of the (a.s.) nonnegative random variable ˜W := W − a. Similarly, if
ϕ ∈ Υ (]a, b[) and b < ∞ (and hence λ+ = ∞), one can derive from (G10i) and
its consequence ˝[W ≤ b ] = “[ ] − ∞, b] ] = 1 that

eϕ∗(−z)+b·z =
∫ b

−∞
ez·(b−y) d“(y)=

∫ ∞

0

ez·ỹ d˜˜“(ỹ)=E˝[ez·(b−W )], z ∈ ] − ∞,−λ−[,

(21)

where −λ− > 0 and ˜

˜“[ · ] := “[ b − · ] is the mirrored−b−shifted companion of

“[ · ]. This means that ˝[˜W ∈ · ] = ˜

˜“[ · ] is the probability distribution of the (a.s.)
nonnegative random variable ˜W := b−W . By using this, Theorem 7(a) together
with (20) (respectively (21)) implies the second item of (G9ii) (respectively of
(G9iii)). Finally, we obtain (G11i) and (G11ii) from (18), (11) and (12). �
Proof of Proposition 6. The assertions follow straightforwardly from Theorem
7, (10), (19), (20), (21), (18) (and the discussion thereafter) as well as (M5). �
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Abstract. According to Tsallis’ seminal book on complex systems: “an
entropy of a system is extensive if, for a large number n of its elements,
the entropy is (asymptotically) proportional to n". According to whether
the focus is on the system or on the entropy, an entropy is extensive for a
given system or a system is extensive for a given entropy. Yet, exhibiting
the right classes of random sequences that are extensive for the right
entropy is far from being trivial, and is mostly a new area for generalized
entropies. This paper aims at giving some examples or classes of random
walks that are extensive for Tsallis entropy.

Keywords: extensivity · complex systems · phi-entropy · random
walks · stochastic process

1 Phi-Entropy Functionals and Extensivity

In the most classical information theory, the sources, identified to random
sequences, are assumed to be ergodic or stationary. For such sources, the Asymp-
totic Equipartition Property (AEP) holds, stating that Shannon entropy asymp-
totically increases linearly with the number of elements of the source, a conse-
quence of the strong additivity of Shannon entropy; see [3] for precise statements
of AEPs for various types of sources. For more complex, non-ergodic systems,
this asymptotics can be highly non linear, requiring to investigate alternative
behaviors or to consider other entropy functionals.

The ϕ-entropy functionals (also called trace entropies) have now been widely
used and studied in numerous scientific fields. The ϕ-entropy of a random vari-
able X with finite or countable state space E and distribution PX is defined
as Sϕ(X) =

∑
x∈E ϕ(PX(x)), with ϕ some smooth function. Classical examples

include Shannon with ϕ(x) = −x log(x), Taneja with ϕ(x) = −xs log(x), and
Tsallis with Ts(X) = 1

s−1 [1 − Λ(X; s)], where Λ(X; s) =
∑

x∈E PX(x)s is the
so-called Dirichlet series associated to X. Here, we will focus on Tsallis entropy,
and suppose that s > 0.

Extensivity of a complex systems is introduced in [10] as follows: "an entropy
of a system is extensive if, for a large number n of its elements (probabilistically
independent or not), the entropy is (asymptotically) proportional to n".
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Precisely, a ϕ-entropy is extensive for a random sequence X = (Xn)n∈N∗ , with
X1:n = (X1, . . . , Xn), if some c > 0 exists such that Sϕ(X1:n) ∼n→∞ c.n; the con-
stant c is the ϕ-entropy rate of the sequence. Intuitively, all variables contribute
equally to the global information of the sequence, an appealing property in con-
nection with the AEP in the theory of stochastic processes and complex systems;
see, e.g., [2]. Extensivity is a two-way relationship of compatibility between an
entropy functional and a complex system: indeed, the entropy is extensive for a
given system or the system is extensive for a given entropy, according to whether
the focus is on the system or on the entropy. Yet, exhibiting the right class of
random sequences that are extensive for the right entropy is far from being triv-
ial, and is mostly a new area for generalized entropies. This paper, as a first step,
aims at giving some examples or classes of random walks that are extensive for
Tsallis entropy, widely in use in complex systems theory; see [10].

For ergodic systems, Shannon entropy is well-known to be extensive while
Tsallis entropy in non-extensive; see e.g. [7]. More generally, [4] establishes that
Shannon entropy is the unique extensive ϕ-entropy for a large class of random
sequences called quasi-power (QP) sequences (see definition given by (2) below),
among the class of the so-called quasi-power-log (QPL) entropies introduced in
[1], satisfying

ϕ(x) ∼0 axs(log x)δ + b, (1)

for some a, b ∈ R, s > 0, δ ∈ {0, 1}. QPL entropies are considered in [9, Eq.
(6.60), p356] and [1] as the simplest expression of generalized entropies for
studying the asymptotic behavior of entropy for random sequences, on which
the present paper focuses. Indeed, the asymptotic behavior of the marginal QPL
entropy of a random sequence is closely linked to the behavior of its Dirichlet
series, characterized for QP sequences by the quasi-power property

Λ(X1:n; s) = c(s)λ(s)n−1 + Rn, s > σ0, (2)

where 0 < σ0 < 1, c and λ are strictly positive analytic functions, λ is strictly
decreasing and λ(1) = c(1) = 1, and Rn is an analytic function such that
|Rn(s)| = O(ρ(s)nλ(s)n) for some ρ(s) ∈]0, 1[. Thanks to Perron-Frobenius the-
orem, the QP property is satisfied by ergodic Markov chains, including indepen-
dent and identically distributed (i.i.d.) sequences. It is also satisfied by a large
variety of dynamic systems, including continuous fraction expansions; see [11].

In another perspective on the characterization of the asymptotic behavior of
entropy, [9] studies uniformly distributed systems, in which each Xn is drawn
from a uniform distribution on a state space that may depend on n; see also [5]
and the references therein. The entropies are classified according to the two
parameters 0 < c ≤ 1 and d ∈ R given by

c = 1 − lim
n

Ω(n)
nΩ′(n)

, d = lim
n

logΩ(n)
[

Ω(n)
nΩ′(n)

+ c − 1
]

, (3)

depending only on the asymptotics of the size Ω(n) = |E(1 : n)| of the state
space E1:n of X1:n. In the context of [5], the asymptotic behavior of Ω(n) is
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assumed to be a smooth expression of n, e.g., nβ with β > 0; then, Ω′(n)
denotes the derivative of this expression at n. The asymptotic classification
includes QPL entropies plus Quasi Power Exponential (QPE) entropies, given
by ϕ(x)∼0 axs exp(−γx) + b, with a, b ∈ R

∗, s ∈ R, and γ ∈ R
∗
+, that are all

asymptotically equivalent to the Tsallis one. Linear combination of such cases
may also be considered, but are asymptotically dominated by one of the terms.
Therefore, the present paper will focus exclusively on the asymptotic behavior
of QPL entropies, for which (c, d) = (s, δ) in (1); see [1] and [9, Table 6.2].

All in all, in [5,9] and the references therein, one can identify the following–
non exhaustive– types of growth, attached with class tags linked to the type of
maximum entropic distribution:

Ω(n) ∼ nb is power-law leading to c = 1 − 1/b, d = 0, and Tsallis entropy;
Ω(n) ∼ Ln1−β

is sub-exponential and leads to c = 1, d = 1 − 1/β, with
0 < β < 1;

Ω(n) ∼ exp(�n) is exponential with c = d = 1, and hence is extensive for
Shannon entropy;

Ω(n) ∼ exp(�ng) is stretched exponential with c = 1, d = 1/g, with g > 1,
and extensive for QPE entropies, asymptotically equal to Tsallis.

The paper aims at showing through examples that various simple systems
are extensive for Tsallis entropy, by using the growth rate of both the size of
the state space and the behavior of the Dirichlet series. This amounts to using
the physics approach in [9] to supplement and clarify the mathematics approach
in [1,4]–and other works along the same lines. The approach developed in [9]
focuses on the complex systems and the induced maximum entropy distribution,
and involves random sequences only via the size of the state space, while we
are here interested in entropy as a function of a random sequence. Indeed, we
focus on the random variables, together with their distributions, involved in the
– asymptotic – behavior of a system and its entropy, as reflected in the Dirichlet
series.

Section 2 begins by considering classical random walks, non-extensive for
Tsallis entropy, but constituting a good starting point for constructing extensive
ones. Then some examples of Tsallis-extensive systems are given in the con-
text of complex systems, in terms of restricted or autocorrelated random walks.
Still, the conditions on these systems appear to be difficult to express simply in
terms of statistical inference, construction, and simulation, of random sequences.
Therefore, the framework is broadened in Sect. 3 by considering non identically
distributed increments, that is delayed random walks. Tuning the marginal dis-
tributions of the increments leads to Tsallis extensive sequences, with explicit
probabilistic conditions allowing for the effective construction of such systems.
Precisely, the main result, Theorem 1, gives a procedure for building random
walks that are Tsallis-extensive, through an opening to non-uniform systems.

2 Random Walks

Let X = (Xn)n∈N∗ be a sequence of independent random variables such that,
for each n ∈ N

∗, Xn takes values in a finite or countable subset E(n) of Z
N.
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Let W = (Wn)n∈N∗ be the random walk on Z
N associated to the increments X

through Wn =
∑n

k=1 Xn, for n ∈ N
∗.

We will derive the asymptotic behavior of the classical and extended random
walks thanks to the following properties satisfied by the Dirichlet series; see,
e.g., [8].

Properties 1 Let X be a discrete random variable taking values in E. Let E =
|E| denote the number of states, possibly infinite. Let s > 0. Then:

1. Λ(X, 1) = 1, and if X is deterministic, then Λ(X, s) = 1 too for all s.
2. logmX < Λ(X; s) < log E, where mX is the number of modes of X.
3. s �→ Λ(X; s) is a smooth decreasing function.
4. If X1, . . . , Xn are independent variables, then Λ(X1:n; s) =

∏n
k=1 Λ(Xk; s).

Classical isotropic random walks (Wn) on Z
I are associated to sequences X

of i.i.d. random variables with common uniform distribution, say Xn ∼ U(E),
on E = {±ei, i ∈ [[1, I]]}, with I ∈ N

∗, where the ei are the canonical vectors of
R

I . Property 1.4 and the i.i.d. assumption yield

Λ(W1:n; s) = Λ(X1:n; s) =
n∏

k=1

Λ(Xk; s), (4)

that is to say Λ(W1:n; s) = (2I)n, so that S(Wn) = n log 2I and Ts(Wn) =
1

s−1

[
1 − (2I)(1−s)n

]
, and hence Shannon is extensive while Tsallis is exponential.

Note that (4) still holds for non identically distributed random variables.
Clearly, alternative choices for Λ(Xk; s) yield alternative behaviors for Λ(X1:n; s)
and hence for Tsallis entropy. Let us give two examples, where the state space
of Xn grows with n.

Example 1

1. The state space of Xn is linearly expanding if Xn ∼ U({±ei, 1 ≤ i ≤ n}),
since then E(1 : n) = |E(n)| = 2n and Ω(n) = 2n.n!. We compute Λ(Wn; s) =
(2nn!)1−s, S(Wn) ∼∞ n log n, and Ts(Wn) = 1

s−1

[
1 − (2nn!)1−s

]
, making

the random walk W over-extensive for both Shannon and Tsallis.
2. The state space of Xn is exponentially expanding if Xn ∼ U({±1}n), since

then E(n) = 2n, and Ω(n) = 2n(n+1), a stretched exponential growth, and
leads to a QPE entropy with c = 1, d = 1/2, asymptotically equal to Tsal-
lis. We compute Λ(Wn; s) = 2(1−s)n(n+1)/2, and S(Wn) ∼∞ log 2n2/2 and
Ts(Wn) = 1

s−1

[
1 − 2(1−s)n(n+1)/2

]
.

Both (4) and Examples 1 show that the marginal Tsallis entropy of random
walks with such inflating state spaces increases at least exponentially fast. To
obtain extensive sequences for Tsallis entropy in this way would require the
state spaces to contract, which is impossible. The approach of [5,6] with either
restricted state spaces or autocorrelated random variables next presented will
pave the way to possible solutions.
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The following restricted binary random walks, with E = {0, 1}, are heuristi-
cally described in [5]. If, asymptotically, the proportion of 1 is the same whichever
be the length of the sequence, then Wn/n converges to a constant limit L ∈ (0; 1),
and Ω(n) = Ln, with exponential growth, and hence W is extensive for Shannon
entropy.

If Wn goes to infinity slower than L.n, its growth is sub-extensive for Shan-
non, and over-extensive otherwise. Such behaviors induce to restrict in some
way the number of either 0 or 1 that the system can produce in n steps. For a
power law growth, Wn converges to a constant g > 0 and Ω(n) ∼ ng, leading to
extensivity for Tsallis entropy with s = 1− 1/g; see [7]. A rigorous presentation
of such a sequence will be obtained in Example 5 below.

Further, autocorrelated random walks are considered in [6]; see also [7]. Sup-
pose here that E(n) = {−1, 1}. In the classical symmetric uncorrelated RW,
P(Xm = −1) = P(Xm = 1) = 1/2, EXm = 0 and EXnXm = δnm. Then
Ω(n) = 2n and hence (c, d) = (1, 1) leads to extensivity for Shannon entropy,
as seen above. Suppose now that the Xn are correlated random variables, with
EXnXm = 1 if αnγ(log n)β < z ≤ αmγ(logm)β and 0 otherwise, for some fixed
integer z and real numbers α, β, γ. Taking γ = 0 and β �= 0 leads to extensivity
for Tsallis entropy. [6] conjectures that all choices of (γ, β) lead to all choices of
(c, d).

Instead of autocorrelated RW, the somewhat less artificial (sic, [6]) ageing
RW can be considered, with Xn = ηnXm−1 where (ηm) is a sequence of binary
random variables taking values ±1 ; see [6] and [9, Chapter 6]. The ensuing
(c, d) depends on the distribution of ηm+1 conditional on the the number of
0 ≤ m ≤ n such that ηm = 1. A suitable choice leads for instance to the
stretched exponential growth and extensivity for a QPE entropy, asymptotically
equal to Tsallis.

Applied systems involving Tsallis entropy are given in [5,9]. For instance, spin
systems with a constant network connectivity lead to extensivity for Shannon
entropy, while random networks growing with constant connectedness require
Tsallis entropy; see [5]. See also [9, p371] for a social network model leading to
Tsallis entropy.

Still, both restricted and autocorrelated systems are difficult to express in
terms of the behavior, statistical inference or simulation of random variables.
The delayed RW that we finally propose in Sect. 3 will be more tractable in
these perspectives.

3 Delayed Random Walks

A super diffusive random walk model in porous media is considered in [5]. Each
time a direction is drawn, �nβ	 steps occur in this direction before another is
drawn, where β ∈ [0, 1[ is fixed. More precisely, a first direction X0 is chosen
at random between two possibilities. Then, the �2β	 following steps equal X1 :
X1 · · · = X�2β	 = X0. At time �2β	, again a direction is chosen at random and
repeated for the following �3β	 steps, and so on. The number of random choices
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after n steps, of order n1−β , decreases in time, and hence Ω(n) 
 2n1−β

, and
(c, d) = (1, 1/(1 − β)); Shannon entropy is no more extensive.

This example leads to the notion of delayed random walks, that we will
develop here in order to construct classes of random sequences that are extensive
for Tsallis entropy. Precisely, we will say that W is a delayed random walk
(DRW) if for identified indices n ∈ D ⊆ N

∗, the behavior of Wn is deterministic
conditionally to W1:n−1. In other words, all Xn are deterministic for these n.

Let us first give three examples where we assume that the random increments
Xn, for n ∈ R = N

∗\D, are drawn uniformly in a finite set E with cardinal E .

Example 2

1. A constant delay κ ∈ N
∗ between random steps leads to R = κN∗ and

Ω(n) = E� n
κ 	, an exponential growth leading to Shannon entropy. We com-

pute Λ(W1:n; s) = E� n
κ 	(1−s).

2. A linearly increasing delay, say R = {1 + n(n + 1)/2, n ∈ N
∗}, leads

to Ω(n) = E�(−1+
√
1+8n)/2	, a stretched exponential growth leading to a

QPE entropy, asymptotically equal to Tsallis. We compute Λ(W1:n; s) =
E�(−1+

√
1+8n)/2	(1−s), and Ts(Wn) = 1

s−1

[
1 − E�(−1+

√
1+8n)/2	(1−s)

]
.

3. An exponentially increasing delay, say R = {2n, n ∈ N
∗}, leads to

Ω(n) = E�log2 n	, a power-law growth leading to Tsallis entropy. We compute
Λ(W1:n; s) = E�log2 n	(1−s), and Ts(W1:n) = 1

s−1

[
1 − E�log2 n	(1−s)

]
, from

which we immediately derive that

1
s − 1

(1 − n(1−s) ln(E)/ln(2)Es−1) < Ts(W1:n) ≤ 1
s − 1

(1 − n(1−s) ln(E)/ln(2)).

In other words, Ts(W1:n) essentially increases as a power of n. For random
increments occurring at times of order 2n(1−s) instead of 2n and if E = 2, we
similarly derive that W1:n is extensive for Ts; this will be rigorously stated in
Example 3 below.

Examples 1 and 2 illustrate how the Dirichlet series of DRW are affected by
state space expansion and delays. On the one hand, the Dirichlet series increase
with the expansion of the system while on the other hand, the faster the delay
lengths increase between random increments, the slower the Dirichlet series and
Ω(n) increase. More generally, one can generate–theoretically–any prescribed
asymptotic behavior for the Dirichlet series and Ω(n) by suitably balancing
between the introduction of delays and the ability to control the Dirichlet series
of the random increments.

Precisely, Properties 1.1 and 1.4 yield the following relation between the
Dirichlet series of the DRW and the Dirichlet series ln = Λ(Xrn

; s) of the incre-
ments,

Λ(W1:n; s) =
˜k∏

k=1

lk, k̃ = max{k : rk ≤ n}. (5)

Let us now exhibit different types DRW that are either strictly extensive
for Tsallis entropy, such that limTs(Wn)/n exists and is not zero, or weakly
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extensive in the sense that both lim infn 1
nTs(Wn) and lim supn

1
nTs(Wn) exist

and are not zero.

Theorem 1. Let s ∈ (0; 1). Let (ln)n∈N∗ be a real sequence such that ln > 1
and �∏n

k=1 lk	 ≥ n for all n. Let W = (Wn)n∈N∗ be the DRW associated to
increments (Xn)n∈N∗ and delays rn = max {�∏n

k=1 lk	 , rn−1 + 1}, where ln =
Λ(Xrn

; s). Then lim supn→∞
1
nTs(W1:n) = 1/(1 − s).

Moreover, if ln converges to L ≥ 1, then lim infn→∞ 1
nTs(W1:n) =

1/(1 − s)L, and W is weakly extensive for Ts. If ln converges to L = 1, then the
extensivity is strict.

Proof. Assume that the sequence (�∏n
k=1 lk	) is strictly increasing so that

rn = �∏n
k=1 lk	. Otherwise, simply discard the first components of W to fit

this assumption.
We compute using (5),

Λ(W1:n; s) =

{∏k
i=1 li if n = rk,

∏k−1
i=1 li if rk−1 < n < rk,

that is piecewise-constant and increasing with respect to n. Its supremum limit
is obtained for the subsequence Λ(W1:rn

; s) =
∏n

k=1 ln, k ∈ N
∗. Since rn =

�∏n
k=1 lk	, we have rn ≤ Λ(W1:rn

; s) ≤ rn + 1, so that

1
1 − s

rn − 1
rn

≤ 1
rn

Ts(W1:rn
) ≤ 1

1 − s
,

and the limsup result holds.
Similarly, the infimum limit exists and is obtained for the subsequence

(W1:rn+1) as soon as ln converges (to L ≥ 1), which finishes the proof. �

Note that Theorem 1 is based on the existence of a random variable X whose
Dirichlet series Λ(X; s) takes any prescribed value � > 1. Thanks to Property 1.2,
this can be achieved in various ways, by choosing X in a parametric model
with state space E and number of modes mX as soon as � ∈ (logmX ; log |E|);
see [8]. Tuning the parameters of the distribution leads to specific values for
which Λ(X; s) = �. See Example 4 below for a Bernoulli model, where l ∈ (1; 2).

The following example illustrates how to generate simple random sequences
that are weakly extensive for Tsallis entropy by suitably introducing delays. Still,
the infimum and supremum limits cannot be equal, hindering strict extensivity.

Example 3. Let s ∈ (0, 1). Let W be a DRW with exponential delays of order
21−s, say rn = max

{⌊
2n(1−s)

⌋
, rn−1 + 1

}
for n ≥ 2, with r1 = 1. Random

increments Xrn
are drawn according to a uniform distribution U({−1, 1}) so

that ln = Λ(Xrn
; s) = 21−s.

Then, Theorem 1 yields Ω(n) ∼ 2� 1
1−s log2 n	, and

lim inf
n→∞

1
n
Ts(Wn) =

1
1 − s

2s−1, lim sup
n→∞

1
n
Ts(Wn) =

1
1 − s

. (6)
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The last example will consider anisotropic random walks, in which the Xrn

are drawn according to an asymmetric binary distribution with probabilities
depending on n.

Example 4. Let rn = max{�∏n
k=1(1 + 1/(k + 1))	, rn−1 + 1} for n ≥ 2, with

r1 = 1. Let X be a sequence of independent variables such that P(Xrn
= 1) =

1−P(Xrn
= −1) = pn, with pn solution of (pn)s+(1−pn)s = 1+1/(n + 1), while

all other Xn are deterministic. By construction, the Dirichlet series associated
with Xn is ln = Λ(Xn, s) = 1+1/(n + 1) which converges to 1. Theorem 1 yields
extensivity of Tsallis entropy.

Further, Examples 1 become Tsallis-extensive by introducing the respective
delays R = {⌊2n(1−s)n!, n > 0

⌋} and R = {⌊2n(n+1)(1−s)/2
⌋} and applying The-

orem 1.
Note that large classes of Tsallis-extensive DRWs can be built from Theo-

rem 1, a construction that was the main aim of the paper.
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Abstract. In this paper, we consider semiparametric models defined by
moment constraints, with unknown parameter, for right censored data.
We derive estimates, confidence regions and tests for the parameter of
interest, by means of minimizing empirical divergences between the con-
sidered models and the Kaplan-Meier empirical measure. This approach
leads to a new natural adaptation of the empirical likelihood method to
the present context of right censored data. The asymptotic properties
of the proposed estimates and tests are studied, including consistency
and asymptotic distributions. Simulation results are given, illustrating
the performance of the proposed estimates and confidence regions.

Keywords: Survival analysis · Confidence regions · Tests · Censored
data · Moment condition models · Minimum divergence · Duality

1 Introduction

Let X be a nonnegative real random variable with cumulative distribution func-
tion FX . We consider semiparametric statistical models defined by moment con-
dition equations, of the form

E [g(X, θ)] = 0, (1)

where θ ∈ Θ ⊂ R
d is the parameter of interest, g(·, ·) := (g1(·, ·), . . . , g�(·, ·))� ∈

R
� is some known R

�-valued function defined on R × Θ, � ≥ d, and E[·] is
used to denote the mathematical expectation. For complete observations (i.e.,
for observations of X without censoring), these models have been widely studied
in statistics and econometrics literature. We quote for example [22] who used
the empirical likelihood (EL) method, see [19], to define estimates for θ and to
construct confidence regions and tests on the parameter. [9] introduced the gen-
eralized method of moments (GMM). As an alternative to the GMM estimates,
[26] introduced a class of generalized empirical likelihood (GEL) estimates. The
properties of these estimates have been studied in [16], who have compared them
with the GMM approach. In many practical situations, a censorship phenomenon
may prevent the complete observation of the variable of interest X. There exist
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various kinds of censorship, but we focus, in the present paper, on the right
censoring one. In this case, instead of observing X, we have at disposal a sample
(Z1,Δ1), . . . , (Zn,Δn) of independent copies of the pair (Z := min(X,R),Δ),
where R is a nonnegative censoring variable and Δ := 1{Z=X} is the indicator of
censorship, taking the value 1 if Z = X and 0 otherwise. To deal with model (1)
in this situation, several adaptations of the EL method have been introduced in
the literature for the right censoring context. We cite the EL method of [27] and
the weighted EL method (WEL) introduced by [23]. The first one studied model
(1) with g(x, θ) = ξ(x) − θ, where ξ is some real valued function. Remarking
that E

[
ξ(Zi)Δi

SR(Zi)

]
= θ, where SR(·) is the survival function of R, they defined,

by analogy with the case of complete data, the “estimated” empirical likelihood
profile

L(θ) := max
p1,...,pn∈[0,1]

n∏
i=1

pi (2)

subject to the constraints
n∑

i=1

piVni = θ and
n∑

i=1

pi = 1, (3)

where Vni := ξ(Zi)Δi

S
(n)
R (Zi)

, S
(n)
R (·) being the Kaplan-Meier estimator of SR(·). They

solved this optimization problem and defined the log-likelihood ratio in the same
way as that introduced by [17]. They also showed that the obtained log-likelihood
ratio, multiplied by some estimated quantity, converges to a chi-square distri-
bution with one degree of freedom. Therefore, they used this asymptotic dis-
tribution to construct confidence interval for θ. This approach has been widely
adopted in the literature. [21] used it to estimate the mean residual life of X,
taking g(x, θ) = (x − x0 − θ)1{x>x0}, where x0 is a fixed point at which the
mean residual life is evaluated. Independently, [23] considered model (1), with
g(x, θ) = x − θ, and proposed weighted empirical likelihood ratio (WELR) con-
fidence interval for θ. [23] estimated the lower and the upper bounds of this
interval, similarly to the work of [18], by solving these two optimization prob-
lems

X̂L,n := min
p1,...,pm∈[0,1]

m∑
i=1

piZ
′
i

and

X̂U,n := max
p1,...,pm∈[0,1]

m∑
i=1

piZ
′
i,

both subject to
m∑

i=1

pi = 1 and
m∏

i=1

(pi/p̂i)mp̂i ≥ c,

where (Z ′
i)1≤i≤m (m ≤ n) are the distinct values, in increasing order, of

(Zi)1≤i≤n and p̂i := P
KM
n (Z ′

i), PKM
n (·) being the “Kaplan-Meier empirical mea-

sure” described in Sect. 2 below. The constant c is calculated according to the
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level of the confidence interval, using the asymptotic distribution of the WELR,
which is a scaled chi-square distribution, as shown in the same paper. A similar
approach has been employed by [24] in quantile estimation and by [25] for two-
sample semiparametric problem. Otherwise, based on the approach of [11,27]
used some influence functions to give another adaptation of the EL method to
the censoring context. The same device has been used by [10] to treat the case
of the presence of covariables. [29] applied the adjusted empirical likelihood of
[5] in the case of right censored data. Furthermore, other versions of the EL
method for censored data have been employed in different problems, including
the regression ones such as in [8], [1,28] and [20]. On the other hand, the the-
ory of ϕ-divergences and duality, developed in [2] have been intensively used in
inferential statistics, see [14] and [3] for parametric problems, and [15] for two-
sample semiparametric density ratio models. The study of parametric models via
ϕ-divergences has been extended to the case of censored data by [6]. [4] applied
the theory of ϕ-divergences to the study of model (1), generalizing the EL app-
roach. Moreover, they gave a new point of view of the EL method, showing that it
is equivalent to minimizing the “modified” Kullback-Leibler divergence (KLm),
called also the likelihood-divergence (LD), between the model and the empirical
measure of the data. In the present paper, we follow this point of view and we
construct our estimators by minimizing divergences between the model and the
Kaplan-Meier empirical measure. This leads to a new more natural adaptation
of the EL approach to the right censoring context using the particular case of the
likelihood divergence. We carry out an extensive simulation study to compare
our approach with the EL method of [27] and the WEL method of [23]. The sim-
ulation results show that the proposed likelihood divergence-based method has
generally better performance than the existing ones. Concerning our theoretical
results, we establish weak consistency and asymptotic normality for the proposed
estimates of the parameter θ. For that, we apply a central limit theorem (CLT)
in the case of censored data, see [30], and a uniform strong law of large numbers
(USLLN) in the same case. We build confidence regions for θ and perform tests
on the model and the parameter θ. We provide the asymptotic distributions of
the proposed test statistics, both under the null and the alternative hypotheses.
The theoretical results we obtain have many applications such as those given in
the following examples.

Example 1 (Confidence intervals for the survival function, and the mean resid-
ual life). Taking g(x, θ) = 1{x>x0} − θ in model (1), where x0 is a fixed point,
one can see that the true value of θ is the survival function of X evaluated at
x0. Therefore, the techniques we study can be used to construct confidence bound
for the survival function. Taking g(x, θ) = (x − x0 − θ)1{x>x0}, one can obtain
confidence bounds for the mean residual life.

Example 2 (Confidence intervals for the mean residual life). At a fixed point
x0, the mean residual life of X is defined by the conditional expectation M(x0) :=
E [X − x0 |X > x0] . It represents the expected value of the remaining lifetimes
after x0. The mean residual life exposes the survival characteristics of the phe-
nomenon of interest, better than the popular hazard function (see e.g. [12]).
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The study of M(x0) can be considered in the framework of model (1) taking
g(x, θ) = (x − x0 − θ)1{x>x0}. Therefore, we can construct, as in the previous
example, confidence intervals for M(x0).

Example 3 Consider the model (1) with g(x, θ) = (x − θ, x2 − h(θ))�, where
h(·) is some known function. In this case, the true value of θ is the mean of X.
These models include all the distributions for which the second order moment can
be written as an explicit function of the first order one. Many usual distributions
in survival analysis belong to this class of distributions, such as the exponential
and the Rayleigh ones. Considering the semiparametric model (1) instead of a
fully parametric one, leads to more robust estimates of the mean of X. Moreover,
the divergence estimates we propose can be used to construct estimators of the
distribution function of X.

The rest is organized as follows. Section 2 describes the Kaplan-Meier empirical
measure. In Sect. 3, we introduce the minimum divergence estimates. In Sect. 4,
we provide the asymptotic properties of the proposed estimates and test statis-
tics. Section 5 presents some simulation results. The proofs of our theoretical
results, as well as many other simulation results, are available from the authors.

2 The Kaplan-Meier Empirical Measure

Let X be a nonnegative lifetime random variable with a continuous distri-
bution function FX(·). We suppose that X is right censored by a nonnega-
tive random variable R, independent of X. The available observations consist
of a sample (Z1,Δ1), . . . , (Zn,Δn) of independent copies of the pair (Z,Δ),
where Z := min(X,R) and Δ := 1{X≤R} (1{.} denotes the indicator func-
tion). In all the sequel, for any real random variable V, FV (x) := P (V ≤ x),
SV (x) := 1−FV (x) and TV := sup{x ∈ R such that FV (x) < 1} denote, respec-
tively, the distribution function, the survival function and the upper endpoint
of the support of V. Furthermore, for any right continuous function K : R → R,
we set K(x−) := lim

ε
>→0

K(x − ε) and ΔK(x) := K(x) − K(x−), whenever the
limit exists. We assume that TX ≤ TR, which ensures that we can observe X
on the whole of its support. A popular estimator of FX , in the context of right
censoring, is the following product-limit estimator, introduced by [13],

Fn(x) := 1 − Sn(x) := 1 −
∏

i | Z′
i≤x

(
1 − D(Z ′

i)
U(Z ′

i)

)
, (4)

where (Z ′
i)1≤i≤m (m ≤ n) are the distinct values, in increasing order, of

(Zi)1≤i≤n, D(Z ′
i) :=

n∑
j=1

Δj1{Zj=Z′
i} and U(Z ′

i) :=
n∑

j=1

1{Zj≥Z′
i}. Sn(x) :=

∏
i | Z′

i≤x

(
1 − D(Z′

i)
U(Z′

i)

)
is the Kaplan-Meier estimate of the survival function SX(·)

of X. The empirical measure of Fn(.), denote it P
KM
n (·), can be written as

P
KM
n (·) :=

m∑
i=1

ΔFn
(Z ′

i) δZ′
i
(·) =

n∑
i=1

ΔFn
(Zi)

D(Zi)
δZi

(·),
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with the convention 0
0 = 0, δx(·) being the Dirac measure which puts all the

mass at the point x, for all x. Let S
(n)
R (·) be the “product-limit” estimator,

of the survival function SR(·) of the censorship variable R, given by S
(n)
R (x) :=

∏
i | Z′

i≤x

(
1 − D(Z′

i)
U(Z′

i)

)
, where D(Z ′

i) :=
n∑

j=1

(1−Δj)1{Zj=Z′
i}. Note that the above

estimates Sn(·) and S
(n)
R (·) can be written as Sn(x) =

∏
j | Z(j)≤x

(
n−j

n−j+1

)Δj

and

S
(n)
R (x) =

∏
j | Z(j)≤x

(
n−j

n−j+1

)1−Δj

, where Z(1), . . . , Z(n) are the order statistics
of the observations Z1, . . . , Zn. Using these two relations, one can show that,

P
KM
n (·) =

n∑
i=1

Δi

nS
(n)
R (Z−

i )
δZi

(·) =:
n∑

i=1

wi δZi
(·). (5)

with the weights

wi :=
Δi

nS
(n)
R (Z−

i )
, ∀i = 1 . . . , n. (6)

3 Minimum Divergence Estimators

Denote by M the space of all signed finite measures (s.f.m.) on (R,B(R)), and
consider the statistical model M :=

⋃
θ∈Θ Mθ, Mθ being the set of all Q ∈ M

s.t.
∫
R

dQ(x) = 1 and
∫
R

g(x, θ) dQ(x) = 0, g := (g1, . . . , g�)� ∈ R
� being

some specified R
�-valued function of x ∈ R and vector parameter θ ∈ Θ ⊂ R

d.
We denote θT , if it exists, the true value of the parameter, i.e., the value such
that (s.t.) PX ∈ MθT

, where PX is the probability distribution of the lifetime
X. We will define estimates, confidence areas and test statistics for θT . For
that, we will use some results on the theory of divergences and duality from [2]
and [4]. Let ϕ be a convex function from R to [0,+∞] such that its domain
domϕ := {x ∈ R s.t. ϕ(x) < ∞} is an interval with endpoints aϕ < 1 < bϕ

(which may be bounded or not, open or not). We assume that ϕ(1) = 0 and
that ϕ is closed. For any probability measure (p.m.) P on the measurable
space (R,B(R)) and for any s.f.m. Q ∈ M , the ϕ-divergence between Q and
P , when Q is absolutely continuous with respect to (a.c.w.r.t.) P , is defined by
Dϕ(Q,P ) :=

∫
R

ϕ
(

dQ
dP (x)

)
dP (x), where dQ

dP (·) is the Radon-Nikodym deriva-
tive. When Q is not a.c.w.r.t. P , we set Dϕ(Q,P ) := +∞. Recall that the diver-
gence associated to the convex function ϕ(x) = x log x−x+1, is called Kullback-
Leibler divergence (KL-divergence), and that the divergence associated to the
convex function ϕ(x) = − log x+x−1, is called “modified” Kullback-Leibler diver-
gence (KLm), or Likelihood-divergence (LD). In all the sequel, for simplicity and
convenience, we will use the notation (LD) for this particular divergence. Let θ

be a given value in Θ. The “plug-in” estimate of Dϕ(Mθ, PX) is D̂ϕ(Mθ, PX) :=
infQ∈Mθ

Dϕ(Q,PKM
n ). If the projection Q

(n)
θ of PKM

n on Mθ exists, then it is
clear that Q

(n)
θ is a.c.w.r.t. P

KM
n ; this means that the support of Q

(n)
θ must
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be included in the support of P
KM
n , which is the set of the uncensored data

{Zi s.t. i ∈ {1, . . . , n} and Δi = 1}. Therefore, define the sets of discrete s.f.m
M(n)

θ :=
{
Q a.c.w.r.t. PKM

n ,
∑n

i=1 Q(Zi) = 1 and
∑n

i=1 Q(Zi)g(Zi, θ) = 0
}

,

then the estimate D̂ϕ(Mθ, PX) can be written as

D̂ϕ(Mθ, PX) = inf
Q∈M(n)

θ

Dϕ(Q,PKM
n ). (7)

This constrained optimization problem can be transformed to unconstrained one,
using the convex conjugate ϕ∗ of ϕ. In fact, using Proposition 4.1 of [4], one can
show that

D̂ϕ(Mθ, PX) = sup
t∈R1+�

⎧
⎨
⎩t0 −

n∑
i=1

wi ϕ∗

⎛
⎝t0 +

�∑
j=1

tjgj(Zi, θ)

⎞
⎠
⎫
⎬
⎭ . (8)

Taking into account this result, we will redefine the estimate D̂ϕ(Mθ, PX) as
follows. Let t := (t0, t1, . . . , t�)� ∈ R

1+�, g := (1R×Θ, g1, . . . , g�)�, t� g(x, θ) :=
t0 +

∑�
j=1 tjgj(x, θ), m(x, θ, t) := ϕ∗(t�g(x, θ)),

Λ
(n)
θ := {t ∈ R

1+� s.t. a∗
ϕ < t� g(Zi, θ) < b∗

ϕ, for all i = 1, . . . , n with Δi = 1},

and

Λθ :=

⎧
⎨
⎩t ∈ R

1+� s.t.
∫

R

|ϕ∗(t0 +
�∑

j=1

tjgj(x, θ))| dPX(x) < ∞
⎫
⎬
⎭ .

Denote, for any p.m. P on (R,B(R)) and for any function f integrable with
respect to P , Pf :=

∫
R

f(x) dP (x). We redefine D̂ϕ(Mθ, PX) as follows

D̂ϕ(Mθ, PX) := sup
t∈Λ

(n)
θ

{t0 − P
KM
n m(θ, t)}, (9)

and we estimate Dϕ(M, PX) and θT , by analogy with the case of complete data
(see [4]), by

D̂ϕ(M, PX) := inf
θ∈Θ

sup
t∈Λ

(n)
θ

{
t0 − P

KM
n m(θ, t)

}
(10)

and
θ̂ϕ := arg inf

θ∈Θ
sup

t∈Λ
(n)
θ

{
t0 − P

KM
n m(θ, t)

}
. (11)

For the particular case of the likelihood divergence, which corresponds to the EL
approach in complete data (see [4] Remark 4.4), we have ϕ(x) := − log x+x− 1
and ϕ∗(x) := − log(1−x). Hence, we obtain the following new version of the EL
estimate of θT for the present context of censored data

θ̂LD := arg inf
θ∈Θ

sup
t∈Λ

(n)
θ

{
t0 +

n∑
i=1

wi log
(
1 − t�g(Zi, θ)

)
}

. (12)
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4 Asymptotic Properties of the Proposed Estimates

In order to state our results, we need to define the advanced time transformation
of a function h : R → R with respect to FX , introduced by [7]. It is given by

h̃(x) :=
1

1 − FX(x)

∫ +∞

x

h(u) dFX(u), ∀x ∈ R.

Assumption 1: (a) PX ∈ M and θT ∈ Θ is the unique solution in θ of
E(g(X, θ)) = 0; (b) Θ ⊂ R

d is compact; (c) g(X, θ) is continuous at each
θ ∈ Θ with probability one; (d) E(supθ∈Θ ‖g(X, θ)‖α) < ∞ for some α > 2;
(e) the matrix Ω := E(g(X, θT )g(X, θT )�) is nonsingular; (f) the matrix V1 :=
(v(1)

i,j )1≤i,j≤�, where v
(1)
i,j :=

∫
R
(gi(x, θT )− g̃i(x, θT ))(gj(x, θT )− g̃j(x, θT )) dFX(x)

SR(x−) ,
is well defined and nonsingular.

Theorem 1 Under Assumption 1, with probability approaching one as n → ∞,
the estimate θ̂ϕ exists, and converges to θT in probability. 1

n

∑n
i=1 wig(Zi, θ̂ϕ) =

OP (1/
√

n), t̂(θ̂ϕ) := arg sup
t∈Λ

(n)
̂θϕ

{
t0 − P

KM
n m(θ̂ϕ, t)

}
exists and belongs to

int(Λ(n)
̂θϕ

) with probability approaching one as n → ∞, and t̂(θ̂ϕ) = OP (1/
√

n).

Additional assumptions are needed to establish the asymptotic normality. Con-
sider the matrices G := E(∂g(X, θT )/∂θ),Σ := (G�Ω−1G)−1,H := ΣG�Ω−1,

P := Ω−1 − Ω−1GΣG�Ω−1. Denote also t̂(θ̂ϕ) := (t̂1, . . . , t̂�)�, where
t̂0, t̂1, . . . , t̂� are the components of the vector t̂(θ̂ϕ). Assumption 2 : (a) θT ∈
int(Θ); (b) with probability one, g(X, θ) is continuously differentiable in a neigh-
borhood NθT

of θT , and E(supθ∈NθT
‖∂g(X, θ)/∂θ‖) < ∞; (c) rank(G) = d =:

dim(Θ).

Theorem 2 Under Assumptions 1 and 2,

1.
√

n(θ̂ϕ − θT , t̂(θ̂ϕ)�)� converges in distribution to a centered normal random

vector with covariance matrix V :=
(

HV1H
� HV1P

PV1H
� PV1P

)
.

2. The statistic 2nD̂ϕ(M, PX) converges in distribution to Y �Y , where Y is a
centered normal random vector with covariance matrix (Ω1/2)�PV1PΩ1/2,
Ω =: Ω1/2(Ω1/2)� being the Cholesky decomposition of Ω.

At a fixed θ ∈ Θ, we will show that D̂ϕ(Mθ, PX) converges in probability
to Dϕ(Mθ, PX) and we will give the limiting distribution of D̂ϕ(Mθ, PX) both
when PX ∈ Mθ and when PX /∈ Mθ. Assumption 3 : (a) PX ∈ Mθ and
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θ is the unique solution of E(g(X, θ)) = 0; (b) E(‖g(X, θ)‖α) < ∞ for some
α > 2; (c) the matrix Ω := E(g(X, θ)g(X, θ)�) is nonsingular; (d) the matrix
V1 := (v(1)

i,j )1≤i,j≤�, where v
(1)
i,j :=

∫
R
(gi(x, θ)−g̃i(x, θ))(gj(x, θ)−g̃j(x, θ)) dFX(x)

SR(x−) ,
is well defined and nonsingular.

Theorem 3 Under Assumption 3,

1. t̂(θ) := arg sup
t∈Λ

(n)
θ

{
t0 − P

KM
n m(θ, t)

}
exists and belongs to int(Λ(n)

θ ) with

probability approaching one as n → ∞, and t̂(θ) = OP (1/
√

n);
2. The statistic 2nD̂ϕ(Mθ, PX) converges in distribution to Y �Y , where Y

is a centered normal random vector with covariance matrix (Ω1/2)−1V1

((Ω1/2)−1)�.

Remark 1 (Confidence region for the parameter). Let α ∈]0, 1[ be a fixed level,
according to part 2 of this Theorem, the set {θ ∈ Θ s.t. 2nD̂ϕ(Mθ, PX) ≤
q(1−α)} is an asymptotic confidence region for θT , where q(1−α) is the (1 − α)-
quantile of the distribution of Y �Y , with Y a centered normal random vector
with covariance matrix (Ω̂1/2)−1V̂1((Ω̂1/2)−1)�, where Ω̂ and V̂1 are the empir-
ical counterparts of Ω and V1 respectively. With an appropriate choice of the
function g(x, θ), one can construct confidence intervals for the mean, the sur-
vival function and the mean residual life of X. A simulation study, available
from the authors, shows that when we use the likelihood divergence (the modified
Kullback-Leibler divergence), these confidence intervals outperform those based
on the EL methods of [27], [21] and [23].

5 Simulation Results

Consider the model M :=
⋃

θ∈Θ Mθ, where Θ :=]0,∞[ and g(x, θ) := (x −
θ, x2 − 2θ2)�. The nonnegative random variable X is distributed as E(a), which
belongs to this model with θT = E(X) = 1/a. We compare the estimates θ̂LD

with the EL estimator based on the method of [27] (which we denote by θ̂EL)
and the plug-in estimator of E(X), θ̃ :=

∫
R

x dPKM
n (x). The variable of censoring

R is distributed as E(b). We take different values of the parameters a and b to
get different rates of censoring. For the estimation of θT , we generate samples
of size n = 100 of the latent variables and we calculate the estimates θ̂LD, θ̂EL

and θ̃ corresponding to each sample. We compute the mean squared error (MSE)
for each estimate, based on 1000 replications. We obtain the following results
(Table 1).
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Table 1. The obtained results for the estimation of the parameter in the exponential
model.

a 4 7 3 2

b 1 3 2 3

Rate of censoring 20% 30% 40% 60%

θT = 1/a 0.25 0.1429 0.3333 0.5

̂θLD 0.2398 0.1307 0.3165 0.4829
̂θEL 0.2391 0.1302 0.3118 0.4531

˜θ 0.2425 0.1343 0.2965 0.3445

n × MSE(̂θLD) 0.0428 0.0394 0.0578 0.0697
n × MSE(̂θEL) 0.0432 0.0410 0.0679 0.2277

n × MSE(˜θ) 0.0922 0.0485 0.4446 3.8423

From these results, one can see that our proposed estimate θ̂LD outperforms
both estimates θ̂EL and θ̃.

References

1. Bouadoumou, M., Zhao, Y., Lu, Y.: Jackknife empirical likelihood for the acceler-
ated failure time model with censored data. Comm. Statist. Simulation Comput.
44(7), 1818–1832 (2015). https://doi.org/10.1080/03610918.2013.833234

2. Broniatowski, M., Keziou, A.: Minimization of φ-divergences on sets of signed
measures. Studia Sci. Math. Hungar. 43(4), 403–442 (2006). https://doi.org/10.
1556/SScMath.43.2006.4.2

3. Broniatowski, M., Keziou, A.: Parametric estimation and tests through divergences
and the duality technique. J. Multivariate Anal. 100(1), 16–36 (2009). https://doi.
org/10.1016/j.jmva.2008.03.011

4. Broniatowski, M., Keziou, A.: Divergences and duality for estimation and test
under moment condition models. J. Statist. Plann. Inference 142(9), 2554–2573
(2012). https://doi.org/10.1016/j.jspi.2012.03.013

5. Chen, J., Variyath, A.M., Abraham, B.: Adjusted empirical likelihood and its prop-
erties. J. Comput. Graph. Statist. 17(2), 426–443 (2008). https://doi.org/10.1198/
106186008X321068

6. Cherfi, M.: Dual divergences estimation for censored survival data. J. Statist.
Plann. Inference 142(7), 1746–1756 (2012). https://doi.org/10.1016/j.jspi.2012.02.
052

7. Efron, B., Johnstone, I.M.: Fisher’s information in terms of the hazard rate. Ann.
Statist. 18(1), 38–62 (1990). https://doi.org/10.1214/aos/1176347492

8. Fang, K.T., Li, G., Lu, X., Qin, H.: An empirical likelihood method for semipara-
metric linear regression with right censored data. Comput. Math. Methods Med.
pp. Art. ID 469373, 9 (2013). https://doi.org/10.1155/2013/469373

9. Hansen, L.P.: Large sample properties of generalized method of moments estima-
tors. Econometrica 50(4), 1029–1054 (1982). https://doi.org/10.2307/1912775

https://doi.org/10.1080/03610918.2013.833234
https://doi.org/10.1556/SScMath.43.2006.4.2
https://doi.org/10.1556/SScMath.43.2006.4.2
https://doi.org/10.1016/j.jmva.2008.03.011
https://doi.org/10.1016/j.jmva.2008.03.011
https://doi.org/10.1016/j.jspi.2012.03.013
https://doi.org/10.1198/106186008X321068
https://doi.org/10.1198/106186008X321068
https://doi.org/10.1016/j.jspi.2012.02.052
https://doi.org/10.1016/j.jspi.2012.02.052
https://doi.org/10.1214/aos/1176347492
https://doi.org/10.1155/2013/469373
https://doi.org/10.2307/1912775


134 M. Boukeloua and A. Keziou

10. He, S., Liang, W.: Empirical likelihood for right censored data with covariables.
Sci. China Math. 57(6), 1275–1286 (2014). https://doi.org/10.1007/s11425-014-
4808-0

11. He, S., Liang, W., Shen, J., Yang, G.: Empirical likelihood for right censored life-
time data. J. Amer. Statist. Assoc. 111(514), 646–655 (2016). https://doi.org/10.
1080/01621459.2015.1024058

12. Jeong, J.-H.: Statistical Inference on Residual Life. SBH, Springer, New York
(2014). https://doi.org/10.1007/978-1-4939-0005-3

13. Kaplan, E.L., Meier, P.: Nonparametric estimation from incomplete observations.
J. Amer. Statist. Assoc. 53, 457–481 (1958), http://links.jstor.org/sici?sici=0162-
1459(195806)53:282<457:NEFIO>2.0.CO;2-Z&origin=MSN

14. Keziou, A.: Dual representation of φ-divergences and applications. C. R.
Math. Acad. Sci. Paris 336(10), 857–862 (2003). https://doi.org/10.1016/S1631-
073X(03)00215-2

15. Keziou, A., Leoni-Aubin, S.: On empirical likelihood for semiparametric two-
sample density ratio models. J. Statist. Plann. Inference 138(4), 915–928 (2008).
https://doi.org/10.1016/j.jspi.2007.02.009

16. Newey, W.K., Smith, R.J.: Higher order properties of GMM and generalized empir-
ical likelihood estimators. Econometrica 72(1), 219–255 (2004). https://doi.org/10.
1111/j.1468-0262.2004.00482.x

17. Owen, A.: Empirical likelihood ratio confidence regions. Ann. Statist. 18(1), 90–
120 (1990). https://doi.org/10.1214/aos/1176347494

18. Owen, A.B.: Empirical likelihood ratio confidence intervals for a single functional.
Biometrika 75(2), 237–249 (1988). https://doi.org/10.1093/biomet/75.2.237

19. Owen, A.B.: Empirical Likelihood. Chapman and Hall/CRC (2001)
20. Pan, X.R., Zhou, M.: Empirical likelihood ratio in terms of cumulative hazard

function for censored data. J. Multivariate Anal. 80(1), 166–188 (2002). https://
doi.org/10.1006/jmva.2000.1977

21. Qin, G., Zhao, Y.: Empirical likelihood inference for the mean residual life under
random censorship. Statist. Probab. Lett. 77(5), 549–557 (2007). https://doi.org/
10.1016/j.spl.2006.09.018

22. Qin, J., Lawless, J.: Empirical likelihood and general estimating equations. Ann.
Statist. 22(1), 300–325 (1994). https://doi.org/10.1214/aos/1176325370

23. Ren, J.J.: Weighted empirical likelihood ratio confidence intervals for the mean
with censored data. Ann. Inst. Statist. Math. 53(3), 498–516 (2001). https://doi.
org/10.1023/A:1014612911961

24. Ren, J.J.: Smoothed weighted empirical likelihood ratio confidence intervals for
quantiles. Bernoulli 14(3), 725–748 (2008). https://doi.org/10.3150/08-BEJ129

25. Ren, J.J.: Weighted empirical likelihood in some two-sample semiparametric mod-
els with various types of censored data. Ann. Statist. 36(1), 147–166 (2008).
https://doi.org/10.1214/009053607000000695

26. Smith, R.J.: Alternative semi-parametric likelihood approaches to generalized
method of moments estimation. Econ. J. 107(441), 503–519 (1997)

27. Wang, Q.H., Jing, B.Y.: Empirical likelihood for a class of functionals of survival
distribution with censored data. Ann. Inst. Statist. Math. 53(3), 517–527 (2001).
https://doi.org/10.1023/A:1014617112870

28. Wu, T.T., Li, G., Tang, C.: Empirical likelihood for censored linear regression and
variable selection. Scand. J. Stat. 42(3), 798–812 (2015). https://doi.org/10.1111/
sjos.12137

https://doi.org/10.1007/s11425-014-4808-0
https://doi.org/10.1007/s11425-014-4808-0
https://doi.org/10.1080/01621459.2015.1024058
https://doi.org/10.1080/01621459.2015.1024058
https://doi.org/10.1007/978-1-4939-0005-3
http://links.jstor.org/sici?sici=0162-1459(195806)53:282<457:NEFIO>2.0.CO;2-Z&origin=MSN
http://links.jstor.org/sici?sici=0162-1459(195806)53:282<457:NEFIO>2.0.CO;2-Z&origin=MSN
https://doi.org/10.1016/S1631-073X(03)00215-2
https://doi.org/10.1016/S1631-073X(03)00215-2
https://doi.org/10.1016/j.jspi.2007.02.009
https://doi.org/10.1111/j.1468-0262.2004.00482.x
https://doi.org/10.1111/j.1468-0262.2004.00482.x
https://doi.org/10.1214/aos/1176347494
https://doi.org/10.1093/biomet/75.2.237
https://doi.org/10.1006/jmva.2000.1977
https://doi.org/10.1006/jmva.2000.1977
https://doi.org/10.1016/j.spl.2006.09.018
https://doi.org/10.1016/j.spl.2006.09.018
https://doi.org/10.1214/aos/1176325370
https://doi.org/10.1023/A:1014612911961
https://doi.org/10.1023/A:1014612911961
https://doi.org/10.3150/08-BEJ129
https://doi.org/10.1214/009053607000000695
https://doi.org/10.1023/A:1014617112870
https://doi.org/10.1111/sjos.12137
https://doi.org/10.1111/sjos.12137


Empirical Likelihood with Censored Data 135

29. Zheng, J., Shen, J., He, S.: Adjusted empirical likelihood for right censored lifetime
data. Statist. Papers 55(3), 827–839 (2014). https://doi.org/10.1007/s00362-013-
0529-7

30. Zhou, M.: Empirical likelihood method in survival analysis. CRC Press, Boca
Raton, FL, Chapman & Hall/CRC Biostatistics Series (2016)

https://doi.org/10.1007/s00362-013-0529-7
https://doi.org/10.1007/s00362-013-0529-7


Aggregated Tests Based on Supremal
Divergence Estimators for Non-regular

Statistical Models

Jean-Patrick Baudry1,3(B), Michel Broniatowski1, and Cyril Thommeret1,2

1 Sorbonne Université and Université Paris Cité, CNRS, Laboratoire de Probabilités,
Statistique et Modélisation, 75005 Paris, France

jean-patrick.baudry@sorbonne-universite.fr
2 Safran Group, Paris, France

3 4 place Jussieu, 75005 Paris, France

Abstract. A methodology is proposed to build statistical test procedures
pertaining to models with incomplete information; the lack of information
corresponds to a nuisance parameter in the description of the model. The
supremal approach based on the dual representation of CASM divergences
(or f−divergences) is fruitful; it leads to M-estimators with simple and
standard limit distribution, and it is versatile with respect to the choice of
the divergence. Duality approaches to divergence-based optimisation are
widely considered in statistics, data analysis and machine learning: indeed,
they avoid any smoothing or grouping technique which would be necessary
for a more direct divergence minimisation approach for the same problem.

We are interested in a widely considered but still open problem which
consists in testing the number of components in a parametric mixture.
Although common, this is still a challenging problem since the correspond-
ing model is non-regular particularly because of the true parameter lying
on the boundary of the parameter space. This range of problems has been
considered by many authors who tried to derive the asymptotic distribu-
tion of some statistic under boundary conditions. The present approach
based on supremal divergence M-estimators makes the true parameter an
interior point of the parameter space, providing a simple solution for a dif-
ficult question. To build a composite test, we aggregate simple tests.

Keywords: Non-regular models · Dual form of f -divergences ·
Statistical test aggregation · Number of components in mixture models

1 Dual Representation of the ϕ-Divergences and Tests

We consider CASM divergences (see [15] for definitions and properties):

Dϕ(Q,P ) =

{∫
ϕ(dQ

dP )dP if Q << P

+∞ otherwise

where Q and P are probability measures on the same probability space. Extensions
to divergences between probability measures and signed measures can be found in
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[22]. Dual formulations of divergences can be found in [7,16]. Another interpreta-
tion of these formulations can be found in [9, Section 4.6]. They are widely consid-
ered in statistics, data analysis and machine learning (see e.g. [4,20]).

As in [1], let F be some class of B-measurable (borelian) real valued functions
and let MF = {P ∈ M :

∫ |f |dP < ∞,∀f ∈ F} where M is the space of prob-
ability measures. Let any P ∗ ∈ M, which shall be the underlying true unknown
probability law in a statistical context in the following sections. Assume that ϕ
is differentiable and strictly convex. Then, for all P ∈ MF such that Dϕ(P, P ∗)
is finite and ϕ′(dP/dP ∗) belongs to F , Dϕ admits the dual representation (see
Theorem 4.4 in [6]):

Dϕ(P, P ∗) = sup
f∈F

∫
fdP −

∫
ϕ#(f)dP ∗, (1)

where ϕ#(x) = supt∈R
tx−ϕ(t) is the Fenchel-Legendre convex conjugate. More-

over, the supremum is uniquely attained at f = ϕ′(dP/dP ∗).
This result can be used in two directions. First, a statistical model, e.g.

a parametrical model {Pθ : θ ∈ Θ} with Pθ is absolutely continuous with
respect to some dominating measure μ for any θ, naturally induces a family
F = {ϕ′(pθ/pθ′) : θ, θ′ ∈ Θ}. This is the main framework of this paper.

Conversely, a class of functions F defines the distribution pairs P and Q
that can be compared, which are these such that ϕ′(dP/dQ) ∈ F . Furthermore
it induces a divergence Dϕ on these pairs. A typical example is the logistic model.

The KLm divergence is defined by the generator ϕ : x ∈ R �→ −logx + x − 1
and leads to the maximum likelihood estimator for both forms of estimation for
the supremal estimator, once of which is defined bellow (see Remark 3.2 in [7]).

We consider in this paper the problem of testing the number of components
in a mixture model. This question has been considered by various authors. [2,
10,12,14,17] have considered likelihood ratio tests and showed some difficulties
with those due to the fact that the likelihood ratio statistic is unbounded with
respect to n. [17] prove that its distribution is driven by a log log n term in a
specific simple Gaussian mixture model. The test statistic needs to be calibrated
in accordance with this result. But first, as stated by [17], the convergence to the
limit distribution is extremely slow, making this result unpractical. And second,
it seems very difficult to derive the corresponding term for a different model,
and even more so for a general situation.

Our approach to this problem is suggested by the dual representation of the
divergence. For the KLm divergence, it amounts to considering the maximum
likelihood estimator itself as a test statistic instead of the usual maximum value
of the likelihood function. This leads to a well-defined limiting distribution for
the test statistic under the null. This holds for a class of estimators obtained by
substituting KLm by any regular divergence. This approach also eliminates the
curse of irregularity encountered by many authors for the problem of testing the
number of components in a mixture.

Since we are interested in composite hypotheses, there is no justification in
this context that the likelihood ratio test would be the best (in terms of uniform
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power) as is usually considered (e.g. [8,18]) and [13] showed what difficulties
likelihood ratio tests can encounter in this context.

[8] considered tests based on an estimation of the minimum divergence
between the true distribution and the null model. In we make use of the unic-
ity of the optimiser of the dual representation of the divergence in (1) and of
the supremal divergence estimator introduced by [7]. An immediate practical
advantage of this choice as compared to estimating the minimum divergence is
that one less optimisation is needed. Moreover [23] showed that this estimator
is robust for several choices of the divergence.

Our procedure for composite hypotheses consists in the aggregation of simple
tests in the spirit of [11]. [5] used a similar aggregation procedure for testing
between two distributions under noisy data and obtained some control of the
resulting test power.

2 Notation and Hypotheses

Let {f1( . ; θ1) : θ1 ∈ Θ1}, Θ1 ⊂ R
p, and {f2( . ; θ2) : θ2 ∈ Θ2}, Θ2 ⊂ R

q, be
probability density families with respect to a σ-finite measure λ on (X ,B). For
some fixed open interval ]a, b[� 0, let Θ ⊂]a, b[×Θ1 × Θ2, and

gπ,θ = (1 − π)f1( . ; θ1) + πf2( . ; θ2)

for any (π, θ) ∈ Θ with θ = (θ1, θ2).
Assume that x1, . . . , xn ∈ R have been observed and they are modelled as

a realisation of the i.i.d. sample X1, . . . , Xn which distribution P
∗ := gπ∗,θ∗ .λ

is known up to the parameters (π∗, θ∗) ∈ Θ. Our aim is to test the hypothesis
H0 : π∗ = 0.

Assume that gπ,θ = gπ∗,θ∗ ⇒ π = π∗, θ1 = θ∗
1 and, if π∗ 
= 0, θ2 = θ∗

2 .
Let g be a probability density with respect to λ such that Supp(g) ⊂

Supp(gπ,θ) for any (π, θ) ∈ Θ such that

∀(π, θ) ∈ Θ,

∫ ∣∣∣∣ϕ′(
g

gπ,θ
)
∣∣∣∣ gdλ < ∞.

Let us define for any (π, θ) ∈ Θ,

mπ,θ : x ∈ X �→
∫

ϕ′
( g

gπ,θ

)
gdλ − ϕ#

( g

gπ,θ

)
(x)

and assume that (π, θ) �→ mπ,θ(x) is continuous for any x ∈ X . Let us also
assume that

∀(π̃, θ̃) ∈ Θ,∃r0 > 0/∀r ≤ r0, P ∗ ∣∣ sup
d((π̃,θ̃),(π,θ))<r

mπ,θ

∣∣ < ∞

where d(·, ·) denotes the Euclidean distance and where, as usual, the operator-
type notation P

∗Y denotes the expectation—with respect to the probability
measure P

∗—of the random variable Y .
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Theorem 1. For any (π∗, θ∗) ∈ Θ

Dϕ(g.λ, gπ∗,θ∗ .λ) = sup
(π,θ)∈Θ

P ∗mπ,θ,

which we call the supremal form of the divergence. Moreover attainment holds
uniquely at (π, θ) = (π∗, θ∗).

Definition 1. Let Pn denote the empirical measure pertaining to the sample
X1, . . . , Xn. Define

(π̂, θ̂) := argmax
(π,θ)

Pnmπ,θ

the supremal estimator of (π∗, θ∗).

The existence of (π̂, θ̂) can be guaranteed by assuming that Θ is compact.
When uniqueness does not hold, consider any maximizer. This class of estimators
has been introduced in [7], under the name dual ϕ-divergence estimators.

3 Consistency of the Supremal Divergence Estimator

Let us first state the consistency of the supremal divergence estimator of the
proportion and the parameters of the existing component, when the non-existing
component parameters are fixed, uniformly over the latter.

Here and below, by abuse of notation, we let ϕ′( g
gπ,θ

)
stand for x �→

ϕ′( g(x)
gπ,θ(x)

)
, and so on.

Remark that, for π∗ = 0 and any θ∗
1 ∈ Θ1 and θ2 ∈ Θ2, we can unambiguously

write mπ∗,θ∗
1

for mπ∗,θ∗
1 ,θ2 since the parameter θ2 is not involved in the expression

of m0,θ∗
1 ,θ2 .

Theorem 2. Assume that π∗ = 0 and let for any θ2 ∈ Θ2, (π̂(θ2), θ̂1(θ2)) ∈
]a, b[×Θ1 such that

inf
θ2∈Θ2

Pnmπ̂(θ2),θ̂1(θ2),θ2
≥ Pnmπ∗,θ∗

1
− oP ∗(1). (2)

Then
sup

θ2∈Θ2

d
(
(π̂(θ2), θ̂1(θ2)), (0, θ∗

1)
) P ∗

−−−−→
n→∞ 0.

The convergence holds a.s. in the particular case of (2) when, a.s.,

∀θ2 ∈ Θ2, (π̂(θ2), θ̂1(θ2)) ∈ argmax
(π,θ1)∈]a,b[×Θ1

Pnmπ,θ1,θ2 . (3)
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4 Asymptotic Distribution of the Supremal Divergence
Estimator

Under H0 (π∗ = 0), the joint asymptotic distribution of (π̂(θ2), π̂(θ′
2)) is provided

by the following theorem. The interior of Θ will be denoted by Θ̊.

Theorem 3. Let θ2 ∈ Θ2 and θ′
2 ∈ Θ2 such that (π∗, θ∗

1 , θ2) ∈ Θ̊ and
(π∗, θ∗

1 , θ
′
2) ∈ Θ̊. Write

Θ(θ2) = {(π, θ1) ∈] − ∞, 1[×Θ1 : (π, θ1, θ2) ∈ Θ}
Θ(θ′

2) = {(π, θ1) ∈] − ∞, 1[×Θ1 : (π, θ1, θ
′
2) ∈ Θ},

and let (π̂, θ̂1) and (π̂′, θ̂′
1) be such that

(π̂, θ̂1) ∈ argmax
(π,θ1)∈Θ(θ2)

Pnmπ,θ1,θ2

(π̂′, θ̂′
1) ∈ argmax

(π,θ1)∈Θ(θ′
2)

Pnmπ,θ1,θ′
2
.

Assume that π∗ = 0.
Moreover, assume that :

– (π, θ1) ∈ Θ(θ2) �→ mπ,θ1,θ2(x) (resp. (π, θ1) ∈ Θ(θ′
2) �→ mπ,θ1,θ′

2
(x)) is dif-

ferentiable λ-a.e. with derivative ψπ,θ1 =
(

∂
∂π mπ,θ1,θ2
∂

∂θ1
mπ,θ1,θ2

)
|(π,θ1)

(resp. ψ′
π,θ1

=( ∂
∂π mπ,θ1,θ′

2
∂

∂θ1
mπ,θ1,θ′

2

)
|(π,θ1)

) such that P ∗ψπ∗,θ∗
1
= 0 (resp. P ∗ψ′

π∗,θ∗
1
= 0).

– (π, θ1) ∈ Θ(θ2) �→ P ∗ψπ,θ1 (resp. (π, θ1) ∈ Θ(θ′
2) �→ P ∗ψ′

π,θ1
) is differentiable

at π∗, θ∗
1 with invertible derivative matrix H = D(P ∗ψ)∣∣

∣

(
π∗
θ∗
1

) (resp. H ′ =

D(P ∗ψ′)∣∣
∣

(
π∗
θ∗
1

) ).

– {ψπ,θ1 : (π, θ1) ∈ Θ(θ2)} and {ψ′
π,θ1

: (π, θ1) ∈ Θ(θ′
2)} are P ∗-Donsker.

–
∫
(ψπ̂,θ̂1

(x)−ψπ∗,θ∗
1
(x))2dP ∗(x) P ∗

−−→ 0 and
∫
(ψ′

π̂,θ̂1
(x)−ψ′

π∗,θ∗
1
(x))2dP ∗(x) P ∗

−−→
0.

Assume that H=D(P ∗ψ)∣∣
∣

(
π∗
θ∗
1

)=P ∗D2(h)∣∣
∣

(
π∗
θ∗
1

) (resp. H ′=D(P ∗ψ′)∣∣
∣

(
π∗
θ∗
1

)=

P ∗D2(h′)∣∣
∣

(
π∗
θ∗
1

) ) with P ∗|D2(h)∣∣
∣

(
π∗
θ∗
1

) | < ∞ (resp. P ∗|D2(h′)∣∣
∣

(
π∗
θ∗
1

) | < ∞) where

h : (π, θ1) ∈ Θ(θ2) �→ mπ,θ1,θ2(x) (resp. h′ : (π, θ1) ∈ Θ(θ′
2) �→ mπ,θ1,θ′

2
(x)).

Then with an (resp. a′
n) being the (1, 1)-entry of the matrix H−1

n ·(
Pnψπ̂,θ̂1

ψT
π̂,θ̂1

) · H−1
n (resp. of H ′−1

n · (
Pnψ′

π̂,θ̂1
ψ′T

π̂,θ̂1

) · H ′−1
n )—where Hn (resp.

H ′
n) denotes the Hessian matrix of (π, θ1) �→ Pnmπ,θ1,θ2 (resp. of (π, θ1) �→

Pnmπ,θ1,θ′
2
) at the point (π̂, θ̂1), which is supposed to be invertible with high

probability—one gets ⎛
⎝

√
n
an

(π̂ − π∗)√
n
a′

n
(π̂′ − π∗)

⎞
⎠ L−→ N (0, U)
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with

U =

(
1 b√

aa′
b√
aa′ 1

)
(4)

where b is the (1, 1)-entry of the matrix H−1 · (
Pψπ∗,θ∗

1
ψ′T

π∗,θ∗
1

) · H ′−1, and a

(resp. a′) the (1, 1)-entry of the matrix H−1 · (
Pψπ∗,θ∗

1
ψT

π∗,θ∗
1

) · H−1 (resp. of
H ′−1 · (

Pψ′
π∗,θ∗

1
ψ′T

π∗,θ∗
1

) · H ′−1).

This result naturally generalises to k-tuples. The marginal result for θ actu-
ally also holds when π∗ > 0 and θ2 = θ∗

2 , which is useful to control the power of
the test procedure to be defined.

Let us consider as a test statistic Tn = supθ2

√
n
an

π̂ and let us reject H0

when Tn takes large values. It seems sensible to reduce π̂ for each value of θ2
so that, under H0, it is asymptotically distributed as a N (0, 1) and that the
(reduced) values of π̂ for different values of θ2 can be compared. In practice, the
asymptotic variance has to be estimated hence the substitution of π̂, θ̂1, and Pn

for π∗, θ∗
1 , and P ∗ in H−1P ∗ψπ∗,θ∗

1
ψT

π∗,θ∗
1
H−1. This choice is justified in [19].

The Bonferoni aggregation rule is not sensible here since the tests for different
values of θ2 are obviously not independent so that such a procedure would lead
to a conservative test. Hence the need in Theorem 3 for the joint asymptotic
distribution to take the dependence between π̂ for different values of θ2. This
leads to the study of the asymptotic distribution of Tn which should be the
distribution of supW where W is a Gaussian process which covariance structure
is given by Theorem 3. This will be proved in the forthcoming section.

5 Asymptotic Distribution of the Supremum of Supremal
Divergence Estimators

H0 is assumed to hold in this section.
It is stated that the asymptotic distribution of Tn is that of the supremum

of a Gaussian process with the covariance b√
aa′ , as in (4).

Then it is stated that the distribution of the latter can be approximated by
maximising the Gaussian process with the covariance bn√

ana′
n

, where an, a′
n, and

bn are estimations of the corresponding quantities, on a finite grid of values for
θ2.

Let X be the centred Gaussian process over Θ2 with

∀θ2, θ
′
2 ∈ Θ2, r(θ2, θ′

2) = Cov(Xθ2 ,Xθ′
2
) =

b√
aa′

where a and b are defined in Theorem 3.

Theorem 4. Under general regularity conditions pertaining to the class of
derivatives of m (Glivenko-Cantelli classes), we have√

n

an
(π̂n − π∗) L−→ X.
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This results from [21] when dim(Θ2) = 1 and [24] when dim(Θ2) > 1.

Theorem 5. Under the same general regularity conditions as above, we have

Tn
L−→ sup

θ2∈Θ2

X(θ2).

The proof of the last result when dim(Θ2) = 1 makes use of the fact that
θ2 �→ π̂(θ2) is cadlag ([21]). This is a reasonable assumption, which holds in
the examples which we considered. We are eager for counter-examples! When
dim(Θ2) > 1, the result holds also by [3].

Let now Xn be the centred Gaussian process over Θ2 with

∀θ2, θ
′
2 ∈ Θ2,Cov(Xn

θ2
,Xn

θ′
2
) =

bn√
ana′

n

where an, a′
n are defined in Theorem 3 and bn is defined analogously.

Theorem 6. Let, for any δ > 0, Θδ
2 be a finite set such that ∀θ2 ∈ Θ2,∃θ̃2 ∈

Θδ
2/‖θ2 − θ̃2‖ ≤ δ. Then

M δ
n = sup

θ2∈Θδ
2

Xn
θ2

L−−−−→
n→∞
δ→0

M = sup
θ2∈Θ2

Xθ2 .

6 Algorithm

Our algorithm for testing that the data was sampled from a single-component
mixture (H0 : π∗ = 0) against a two-component mixture (H1 : π∗ > 0) is
presented in Algorithm 1.

In this algorithm, π̂(θ2) is defined in (2) and (3). It depends on g. This The-
orems hold as long as g fulfils Supp(g) ⊂ Supp(gπ,θ) for any (π, θ) ∈ Θ. However
it has to be chosen with care. The constants in the asymptotic distribution in
Theorem 3 depend on it. Moreover [23] argue that the choice of g can influence
the robustness properties of the procedure.

The choice of ϕ is also obviously crucial (see also [23] for the induced robust-
ness properties).

The choice of ϕ and g are important practical questions which are work in
progress.

As already stated, the supremal estimator for the modified Kullback-Leibler
divergence ϕ : x ∈ R

+∗ �→ − log x + x − 1 is the usual maximum likelihood
estimator. In this instance the estimator does not depend on g.
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Algorithm 1: Test of H0: one component vs H1: two components
Input : ϕ, {f1( . ; θ1) : θ1 ∈ Θ1}, {f2( . ; θ2) : θ2 ∈ Θ2}, n, K, Θδ

2, p ∈ [0, 1]

1. let t = supθ2∈Θ2

√
n

an(θ2)
π̂(θ2)

2. for k ∈ {1, . . . , K}
(a) sample (Xt)t∈Θδ

2
∼ N (

0, ( bn(t,t′)√
an(t)an(t′)

)t,t′∈Θδ
2

)
(b) let t̃k = maxt∈Θδ

2
xt

3. if t ≥ empirical_quantile((t̃k)k∈{1,...,K}, 1 − p) reject H0 else don’t reject
H0 vs H1.
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valuable comments and suggestions which helped improving the article.

References

1. Al Mohamad, D.: Towards a better understanding of the dual representation of phi
divergences. Stat. Pap. 59(3), 1205–1253 (2016). https://doi.org/10.1007/s00362-
016-0812-5

2. Bickel, P.J., Chernoff, H.: Asymptotic distribution of the likelihood ratio statistic
in a prototypical non regular problem. In: Statistics and Probability: A Raghu Raj
Bahadur Festschrift, pp. 83–96 (1993)

3. Bickel, P.J., Wichura, M.J.: Convergence criteria for multiparameter stochastic
processes and some applications. Ann. Math. Stat. 42(5), 1656–1670 (1971)

4. Birrell, J., Dupuis, P., Katsoulakis, M.A., Pantazis, Y., Rey-Bellet, L.: (f, γ)-
divergences: interpolating between f-divergences and integral probability metrics.
J. Mach. Learn. Res. 23(1), 1816–1885 (2022)

5. Broniatowski, M., Jurečková, J., Moses, A.K., Miranda, E.: Composite tests under
corrupted data. Entropy 21(1), 63 (2019)

6. Broniatowski, M., Keziou, A.: Minimization of ϕ-divergences on sets of signed
measures. Studia Scientiarum Mathematicarum Hungarica 43(4), 403–442 (2006)

7. Broniatowski, M., Keziou, A.: Parametric estimation and tests through divergences
and the duality technique. J. Multivar. Anal. 100(1), 16–36 (2009)

8. Broniatowski, M., Miranda, E., Stummer, W.: Testing the number and the nature
of the components in a mixture distribution. In: Nielsen, F., Barbaresco, F. (eds.)
GSI 2019. LNCS, vol. 11712, pp. 309–318. Springer, Cham (2019). https://doi.org/
10.1007/978-3-030-26980-7_32

9. Broniatowski, M., Stummer, W.: Some universal insights on divergences for statis-
tics, machine learning and artificial intelligence. In: Geometric Structures of Infor-
mation, pp. 149–211 (2019)

10. Feng, Z., McCulloch, C.E.: Statistical inference using maximum likelihood esti-
mation and the generalized likelihood ratio when the true parameter is on the
boundary of the parameter space. Stat. Probabil. Lett. 13(4), 325–332 (1992)

11. Garel, B.: Asymptotic theory of the likelihood ratio test for the identification of a
mixture. J. Stat. Plan. Infer. 131(2), 271–296 (2005)

12. Ghosh, J.K., Sen, P.K.: On the asymptotic performance of the log likelihood ratio
statistic for the mixture model and related results. Technical report, North Carolina
State University. Department of Statistics (1984)

https://doi.org/10.1007/s00362-016-0812-5
https://doi.org/10.1007/s00362-016-0812-5
https://doi.org/10.1007/978-3-030-26980-7_32
https://doi.org/10.1007/978-3-030-26980-7_32


144 J.-P. Baudry et al.

13. Hall, P., Stewart, M.: Theoretical analysis of power in a two-component normal
mixture model. J. Stat. Plan. Infer. 134(1), 158–179 (2005)

14. Hartigan, J.A.: Statistical theory in clustering. J. Classif. 2(1), 63–76 (1985)
15. Liese, F., Vajda, I.: Convex statistical distances, vol. 95. Teubner (1987)
16. Liese, F., Vajda, I.: On divergences and informations in statistics and information

theory. IEEE Trans. Inf. Theory 52(10), 4394–4412 (2006)
17. Liu, X., Shao, Y.: Asymptotics for the likelihood ratio test in a two-component

normal mixture model. J. Stat. Plan. Infer. 123(1), 61–81 (2004)
18. Lo, Y., Mendell, N.R., Rubin, D.B.: Testing the number of components in a normal

mixture. Biometrika 88(3), 767–778 (2001)
19. McLachlan, G., Peel, D.: Finite Mixture Models. Wiley, New York (2000)
20. Nguyen, X., Wainwright, M.J., Jordan, M.I.: Estimating divergence functionals

and the likelihood ratio by convex risk minimization. IEEE Trans. Inf. Theory
56(11), 5847–5861 (2010)

21. Pollard, D.: Convergence of Stochastic Processes. Springer, Heidelberg (2012).
https://doi.org/10.1007/978-1-4612-5254-2

22. Rüschendorf, L.: On the minimum discrimination information theorem. In: Statis-
tical Decisions, pp. 263–283 (1984)

23. Toma, A., Broniatowski, M.: Dual divergence estimators and tests: robustness
results. J. Multivar. Anal. 102(1), 20–36 (2011)

24. van der Vaart, A., Wellner, J.A.: Weak Convergence and Empirical Processes.
Springer, Heidelberg (1996). https://doi.org/10.1007/978-1-4757-2545-2

https://doi.org/10.1007/978-1-4612-5254-2
https://doi.org/10.1007/978-1-4757-2545-2


Computational Information Geometry
and Divergences



Quasi-arithmetic Centers,
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and the Jensen-Shannon ∇-Divergences
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Abstract. We first explain how the information geometry of Breg-
man manifolds brings a natural generalization of scalar quasi-arithmetic
means that we term quasi-arithmetic centers. We study the invariance
and equivariance properties of quasi-arithmetic centers from the view-
point of the Fenchel-Young canonical divergences. Second, we consider
statistical quasi-arithmetic mixtures and define generalizations of the
Jensen-Shannon divergence according to geodesics induced by affine con-
nections.

Keywords: Legendre-type function · quasi-arithmetic means ·
co-monotonicity · information geometry · statistical mixtures ·
Jensen-Shannon divergence

1 Introduction

Let Δn−1 = {(w1, . . . , wn) : wi ≥ 0,
∑

i wi = 1} ⊂ R
d denotes the closed

(n− 1)-dimensional standard simplex sitting in R
n, ∂ be the set boundary oper-

ator, and Δ◦
n−1 = Δn−1\∂Δn−1 the open standard simplex. Weighted quasi-

arithmetic means [12] (QAMs) generalize the ordinary weighted arithmetic mean
A(x1, . . . , xn;w) =

∑
i wixi as follows:

Definition 1 (Weighted quasi-arithmetic mean (1930’s)). Let f : I ⊂
R → R be a strictly monotone and differentiable real-valued function. The
weighted quasi-arithmetic mean (QAM) Mf (x1, . . . , xn;w) between n scalars
x1, . . . , xn ∈ I ⊂ R with respect to a normalized weight vector w ∈ Δn−1, is
defined by

Mf (x1, . . . , xn;w) := f−1

(
n∑

i=1

wif(xi)

)

.

Let us write for short Mf (x1, . . . , xn) := Mf (x1, . . . , xn; 1
n , . . . , 1

n ), and
Mf,α(x, y) := Mf (x, y;α, 1 − α) for α ∈ [0, 1], the weighted bivariate QAM.
A QAM satisfies the in-betweenness property:

min{x1, . . . , xn} ≤ Mf (x1, . . . , xn;w) ≤ max{x1, . . . , xn},

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
F. Nielsen and F. Barbaresco (Eds.): GSI 2023, LNCS 14071, pp. 147–156, 2023.
https://doi.org/10.1007/978-3-031-38271-0_15
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and we have [16] Mg(x, y) = Mf (x, y) if and only if g(t) = λf(t)+c for λ ∈ R\{0}
and c ∈ R. The power means Mp(x, y) := Mfp

(x, y) are obtained for the following
continuous family of QAM generators indexed by p ∈ R:

fp(t) =
{

tp−1
p , p ∈ R\{0},

log(t), p = 0.
, f−1

p (t) =
{
(1 + tp)

1
p , p ∈ R\{0},

exp(t), p = 0.
,

Special cases of the power means are the harmonic mean (H = M−1), the geo-
metric mean (G = M0), the arithmetic mean (A = M1), and the quadratic mean
also called root mean square (Q = M2). A QAM is said positively homogeneous
if and only if Mf (λx, λy) = λMf (x, y) for all λ > 0. The power means Mp are
the only positively homogeneous QAMs [12].

In Sect. 2, we define a generalization of quasi-arithmetic means called quasi-
arithmetic centers (Definition 3) induced by a Legendre-type function. We show
that the gradient maps of convex conjugate functions are co-monotone (Propo-
sition 1). We then study their invariance and equivariance properties (Propo-
sition 2). In Sect. 4, we define quasi-arithmetic mixtures (Definition 4), show
their connections to geodesics, and define a generalization of the Jensen-Shannon
divergence with respect to affine connections (Definition 5).

2 Quasi-arithmetic Centers and Information Geometry

2.1 Quasi-arithmetic Centers

To generalize scalar QAMs to other non-scalar types such as vectors or matrices,
we face two difficulties:

1. we need to ensure that the generator G : X → R admits a global inverse1
G−1, and

2. we would like the smooth function G to bear a generalization of monotonicity
of univariate functions.

We consider a well-behaved class F of non-scalar functions G (i.e., vector or
matrix functions) which admits global inverse functions G−1 belonging to the
same class F : Namely, we consider the gradient maps of Legendre-type functions
where Legendre-type functions are defined as follows:

Definition 2 (Legendre type function [24]). (Θ,F ) is of Legendre type if
the function F : Θ ⊂ X → R is strictly convex and differentiable with Θ �= ∅ an
open convex set and

lim
λ→0

d

dλ
F (λθ + (1 − λ)θ̄) = −∞, ∀θ ∈ Θ,∀θ̄ ∈ ∂Θ. (1)

1 The inverse function theorem [10,11] in multivariable calculus states only the local
existence of an inverse continuously differentiable function G−1 for a multivariate
function G provided that the Jacobian matrix of G is not singular.
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Legendre-type functions F (Θ) admits a convex conjugate F ∗(η) of Legendre
type via the Legendre transform (Theorem 1 [24]):

F ∗(η) =
〈∇F−1(η), η

〉 − F (∇F−1(η)),

where 〈θ, η〉 denotes the inner product in X (e.g., Euclidean inner product
〈θ, η〉 = θ�η for X = R

d, the Hilbert-Schmidt inner product 〈A,B〉 := tr(AB�)
where tr(·) denotes the matrix trace for X = Matd,d(R), etc.), and η ∈ H with H
the image of the gradient map ∇F : Θ → H. Moreover, we have ∇F ∗ = (∇F )−1

and ∇F = (∇F ∗)−1, i.e., gradient maps of conjugate functions are reciprocal to
each others.

The gradient of a strictly convex function of Legendre type exhibit a gen-
eralization of the notion of monotonicity of univariate functions: A function
G : X → R is said strictly increasing co-monotone if

∀θ1, θ2 ∈ X, θ1 �= θ2, 〈θ1 − θ2, G(θ1) − G(θ2)〉 > 0.

and strictly decreasing co-monotone if −G is strictly increasing co-monotone.

Proposition 1 (Gradient co-monotonicity [25]). The gradient functions
∇F (θ) and ∇F ∗(η) of the Legendre-type convex conjugates F and F ∗ in F are
strictly increasing co-monotone functions.

Proof. We have to prove that

〈θ2 − θ1,∇F (θ2) − ∇F (θ1)〉 > 0, ∀θ1 �= θ2 ∈ Θ (2)
〈η2 − η1,∇F ∗(η2) − ∇F ∗(η1)〉 > 0, ∀η1 �= η2 ∈ H (3)

The inequalities follow by interpreting the terms of the left-hand-side of Eq. 2
and Eq. 3 as Jeffreys-symmetrization [17] of the dual Bregman divergences [9]
BF and BF ∗ :

BF (θ1 : θ2) = F (θ1) − F (θ2) − 〈θ1 − θ2,∇F (θ2)〉 ≥ 0,
BF ∗(η1 : η2) = F ∗(η1) − F ∗(η2) − 〈η1 − η2,∇F ∗(η2)〉 ≥ 0,

where the first equality holds if and only if θ1 = θ2 and the second inequality
holds iff η1 = η2. Indeed, we have the following Jeffreys-symmetrization of the
dual Bregman divergences:

BF (θ1 : θ2) + BF (θ2 : θ1) = 〈θ2 − θ1,∇F (θ2) − ∇F (θ1)〉 > 0, ∀θ1 �= θ2

BF ∗(η1 : η2) + BF ∗(η2 : η1) = 〈η2 − η1,∇F ∗(η2) − ∇F ∗(η1)〉 > 0, ∀η1 �= η2

�

Definition 3 (Quasi-arithmetic centers, QACs)). Let F : Θ → R

be a strictly convex and smooth real-valued function of Legendre-type in F .
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The weighted quasi-arithmetic average of θ1, . . . , θn and w ∈ Δn−1 is defined
by the gradient map ∇F as follows:

M∇F (θ1, . . . , θn;w) := ∇F−1

(
∑

i

wi∇F (θi)

)

, (4)

= ∇F ∗
(

∑

i

wi∇F (θi)

)

, (5)

where ∇F ∗ = (∇F )−1 is the gradient map of the Legendre transform F ∗ of F .

We recover the usual definition of scalar QAMs Mf (Definition 1) when
F (t) =

∫ t

a
f(u)du for a strictly increasing or strictly decreasing and continuous

function f : Mf = MF ′ (with f−1 = (F ′)−1). Notice that we only need to consider
F to be strictly convex or strictly concave and smooth to define a multivariate
QAM since M∇F = M−∇F .

Example 1 (Matrix example). Consider the strictly convex function [8] F :
Sym++(d) → R with F (θ) = − log det(θ), where det(·) denotes the matrix deter-
minant. Function F (θ) is strictly convex and differentiable [8] on the domain
of d-dimensional symmetric positive-definite matrices Sym++(d) (open convex
cone). We have

F (θ) = − log det(θ),
∇F (θ) = −θ−1 =: η(θ),

∇F−1(η) = −η−1 =: θ(η)
F ∗(η) = 〈θ(η), η〉 − F (θ(η)) = −d − log det(−η),

where the dual parameter η belongs to the d-dimensional negative-definite matrix
domain, and the inner matrix product is the Hilbert-Schmidt inner product
〈A,B〉 := tr(AB�), where tr(·) denotes the matrix trace. It follows that

M∇F (θ1, θ2) = 2(θ−1
1 + θ−1

2 )−1,

is the matrix harmonic mean [1] generalizing the scalar harmonic mean H(a, b) =
2ab
a+b for a, b > 0. Other examples of matrix means are reported in [7].

2.2 Quasi-arithmetic Barycenters and Dual Geodesics

A Bregman generator F : Θ → R induces a dually flat space [4]

(Θ, g(θ) = ∇2
θF (θ),∇,∇∗)

that we call a Bregman manifold (Hessian manifold with a global chart), where
∇ is the flat connection with Christoffel symbols Γijk(θ) = 0 and ∇∗ is the dual
connection with respect to g such that Γ ∗ijk(η) = 0.
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In a Bregman manifold, the primal geodesics γ∇(P,Q; t) are obtained as
line segments in the θ-coordinate system (because the Christoffel symbols of
the connection ∇ vanishes in the θ-coordinate system) while the dual geodesics
γ∇∗(P,Q; t) are line segments in the η-coordinate system (because the Christof-
fel symbols of the dual connection ∇∗ vanishes in the η-coordinate system).
The dual geodesics define interpolation schemes (PQ)∇(t) = γ∇(P,Q; t) and
(PQ)∇

∗
(t) = γ∇∗(P,Q; t) between input points P and Q with P = γ∇(P,Q; 0) =

γ∇∗(P,Q; 0) and Q = γ∇(P,Q; 1) = γ∇∗(P,Q; 1) when t ranges in [0, 1]. We
express the coordinates of the interpolated points on γ∇ and γ∇∗ using quasi-
arithmetic averages as follows:

(PQ)∇(t) = γ∇(P,Q; t) =
[

Mid(θ(P ), θ(Q); 1 − t, t)
M∇F ∗(η(P ), η(Q); 1 − t, t)

]

, (6)

(PQ)∇
∗
(t) = γ∇∗(P,Q; t) =

[
M∇F (θ(P ), θ(Q); 1 − t, t)
Mid(η(P ), η(Q); 1 − t, t)

]

, (7)

where id denotes the identity mapping. See Fig. 1.

(M, g,∇,∇∗)

P Q

∇-geodesic γ∇(P,Q; t) = (PQ)∇(t)

∇∗-geodesic γ∇∗(P,Q; t) = (PQ)∇
∗
(t)

(PQ)∇(t) =
(

Mid(θ(P ), θ(Q); 1 − t, t)
M∇F∗(η(P ), η(Q); 1 − t, t)

)

(PQ)∇
∗
(t) =

(
M∇F (θ(P ), θ(Q); 1 − t, t)
Mid(η(P ), η(Q); 1 − t, t)

)

Fig. 1. The points on dual geodesics in a dually flat spaces have dual coordinates
expressed with quasi-arithmetic averages.

Quasi-arithmetic centers were also used by a geodesic bisection algorithm
to approximate the circumcenter of the minimum enclosing balls with respect
to the canonical divergence in Bregman manifolds in [21], and for defining the
Riemannian center of mass between two symmetric positive-definite matrices
with respect to the trace metric in [15]. See also [22,23].

3 Invariance and Equivariance Properties

A dually flat manifold [4] (M, g,∇,∇∗) has a canonical divergence [2] D∇,∇∗

which can be expressed either as a primal Bregman divergence in the ∇-affine
coordinate system θ (using the convex potential function F (θ)) or as a dual
Bregman divergence in the ∇∗-affine coordinate system η (using the convex con-
jugate potential function F ∗(η)), or as dual Fenchel-Young divergences [18] using
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the mixed coordinate systems θ and η. The dually flat manifold (M, g,∇,∇∗)
(a particular case of Hessian manifolds [26] which admit a global coordinate
system) is thus characterized by (θ, F (θ); η, F ∗(η)) which we shall denote by
(M, g,∇,∇∗) ← DFS(θ, F (θ); η, F ∗(η)) (or in short (M, g,∇,∇∗) ← (Θ,F (θ))).
However, the choices of parameters θ and η and potential functions F (θ) and
F ∗(η) are not unique since they can be chosen up to affine reparameterizations
and additive affine terms [4]: (M, g,∇,∇∗) ← DFS([θ, F (θ); η, F ∗(η)]) where [·]
denotes the equivalence class that has been called purposely the affine Legendre
invariance in [14]:

First, consider changing the potential function F (θ) by adding an affine term:
F̄ (θ) = F (θ) + 〈c, θ〉 + d. We have ∇F̄ (θ) = ∇F (θ) + c = η̄. Inverting ∇F̄ (x) =
∇F (x) + c = y, we get ∇F̄−1(y) = ∇F (y − c). We check that BF (θ1 : θ2) =
BF̄ (θ1 : θ2) = D∇,∇∗(P1 : P2) with θ(P1) =: θ1 and θ(P2) =: θ2. It is indeed well-
known that Bregman divergences modulo affine terms coincide [5]. For the quasi-
arithmetic averages M∇F̄ and M∇F , we thus obtain the following invariance
property:

M∇F̄ (θ1, . . . ; θn;w) = M∇F (θ1, . . . ; θn;w).
Second, consider an affine change of coordinates θ̄ = Aθ + b for A ∈ GL(d)

and b ∈ R
d, and define the potential function F̄ (θ̄) such that F̄ (θ̄) = F (θ). We

have θ = A−1(θ̄ − b) and F̄ (x) = F (A−1(x − b)). It follows that

∇F̄ (x) = (A−1)�∇F (A−1(x − b)),

and we check that BF̄ (θ1:θ2)
= BF (θ1 : θ2):

BF̄ (F̄ (θ1:θ2)
= F̄ (θ1) − F̄ (θ2) − 〈

θ1 − θ2,∇F̄ (θ2)
〉
,

= F (θ1) − F (θ2) − (A(θ1 − θ2))�(A−1)�∇F (θ2),
= F (θ1) − F (θ2) − (θ1 − θ2)� A�(A−1)�

︸ ︷︷ ︸
(A−1A)�=I

∇F (θ2) = BF (θ1 : θ2).

This highlights the invariance that D∇,∇∗(P1 : P2) = BF (θ1 : θ2) = BF̄ (θ̄1:θ̄2),
i.e., the canonical divergence does not change under a reparameterization of the
∇-affine coordinate system. For the induced quasi-arithmetic averages M∇F̄ and
M∇F , we have ∇F̄ (x) = (A−1)�∇F (A−1(x − b)) = y, we calculate

x = ∇F̄ (x)−1(y) = A∇F̄−1(((A−1)�)−1y) + b,

and we have

M∇F̄ (θ̄1, . . . , θ̄n;w) := ∇F̄−1(
∑

i

wi∇F̄ (θ̄i)),

= (∇F̄ )−1

(

(A−1)�
∑

i

wi∇F (θi)

)

,

= A∇F−1

⎛

⎝((A−1)�)−1(A−1)�
︸ ︷︷ ︸

=I

∑

i

wi∇F (θi)

⎞

⎠ + b,

M∇F̄ (θ̄1, . . . , θ̄n;w) = AM∇F (θ1, . . . , θn;w) + b
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More generally, we may define F̄ (θ̄) = F (Aθ + b) + 〈c, θ〉 + d and get via
Legendre transformation F̄ ∗(η̄) = F ∗(A∗η + b∗) + 〈c∗, η〉 + d∗ (with A∗, b∗, c∗

and d∗ expressed using A, b, c and d since these parameters are linked by the
Legendre transformation).

Third, the canonical divergences should be considered relative divergences
(and not absolute divergences), and defined according to a prescribed arbi-
trary “unit” λ > 0. Thus we can scale the canonical divergence by λ > 0, i.e.,
Dλ,∇,∇∗ := λD∇,∇∗ . We have Dλ,∇,∇∗(P1 : P2) = λBF (θ1 : θ2) = λBF ∗(η2 : η1),
and λBF (θ1 : θ2) = BλF (θ1 : θ2) (and ∇λF = λ∇F ). We check the scale invari-
ance of quasi-arithmetic averages: Mλ∇F = M∇F .

Proposition 2 (Invariance and equivariance of QACs). Let F (θ) be a
function of Legendre type. Then F̄ (θ̄) := λ(F (Aθ+b)+〈c, θ〉+d) for A ∈ GL(d),
b, c ∈ R

d, d ∈ R
d and λ ∈ R>0 is a Legendre-type function, and we have

M∇F̄ = AM∇F + b.

This proposition generalizes the invariance property of scalar QAMs, and
untangles the role of scale λ > 0 from the other invariance roles brought by the
Legendre transformation.

Consider the Mahalanobis divergence Δ2 (i.e., the squared Mahalanobis dis-
tance Δ) as a Bregman divergence obtained for the quadratic form generator
FQ(θ) = 1

2θ�Qθ + cθ + κ for a symmetric positive-definite d × d matrix Q,
c ∈ R

d and κ ∈ R. We have:

Δ2(θ1, θ2) = BFQ
(θ1 : θ2) =

1
2
(θ2 − θ1)� Q (θ2 − θ1).

When Q = I, the identity matrix, the Mahalanobis divergence coincides with
the Euclidean divergence2 (i.e., the squared Euclidean distance). The Legendre
convex conjugate is

F ∗(η) =
1
2
η�Q−1η = FQ−1(η),

and we have η = ∇FQ(θ) = Qθ and θ = ∇F ∗
Q(η) = Q−1η. Thus we get the

following dual quasi-arithmetic averages:

M∇FQ
(θ1, . . . , θn;w) = Q−1

(
n∑

i=1

wiQθi

)

=
n∑

i=1

wiθi = Mid(θ1, . . . , θn;w),

M∇F ∗
Q
(η1, . . . , ηn;w) = Q

(
n∑

i=1

wiQ
−1ηi

)

= Mid(η1, . . . , ηn;w).

The dual quasi-arithmetic centers M∇FQ
and M∇F ∗

Q
induced by a Maha-

lanobis Bregman generator FQ coincide since M∇FQ
= M∇F ∗

Q
= Mid. This

2 The squared Euclidean/Mahalanobis divergence are not metric distances since they
fail the triangle inequality.
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means geometrically that the left-sided and right-sided centroids of the under-
lying canonical divergences match. The average M∇FQ

(θ1, . . . , θn;w) expresses
the centroid C = C̄R = C̄L in the θ-coordinate system (θ(C) = θ) and the aver-
age M∇F ∗

Q
(η1, . . . , ηn;w) expresses the same centroid in the η-coordinate system

(η(C) = η). In that case of self-dual flat Euclidean geometry, there is an affine
transformation relating the θ- and η-coordinate systems:η = Qθ and θ = Q−1η.
As we shall see this is because the underlying geometry is self-dual Euclidean
flat space (M, gEuclidean,∇Euclidean,∇∗

Euclidean = ∇Euclidean) and that both dual
connections coincide with the Euclidean connection (i.e., the Levi-Civita con-
nection of the Euclidean metric). In this particular case, the dual coordinate
systems are just related by affine transformations.

4 Quasi-arithmetic Mixtures and Jensen-Shannon-type
Divergences

Consider a quasi-arithmetic mean Mf and n probability distributions P1, . . . , Pn

all dominated by a measure μ, and denote by p1 = dP1
dμ , . . . , pn = dPn

dμ their
Radon-Nikodym derivatives. Let us define statistical Mf -mixtures of p1, . . . , pn:

Definition 4. The Mf -mixture of n densities p1, . . . , pn weighted by w ∈ Δ◦
n is

defined by

(p1, . . . , pn;w)Mf (x) :=
Mf (p1(x), . . . , pn(x);w)

∫
Mf (p1(x), . . . , pn(x);w)dμ(x)

.

The quasi-arithmetic mixture (QAMIX) (p1, . . . , pn;w)Mf generalizes the
ordinary statistical mixture

∑d
i=1 wipi(x) when f(t) = t and Mf = A is

the arithmetic mean. A statistical Mf -mixture can be interpreted as the Mf -
integration of its weighted component densities, the densities pi. The power
mixtures (p1, . . . , pn;w)Mp(x) (including the ordinary and geometric mixtures)
are called α-mixtures in [3] with α(p) = 1−2p (or equivalently p = 1−α

2 ). A nice
characterization of the α-mixtures is that these mixtures are the density cen-
troids of the weighted mixture components with respect to the α-divergences [3]
(proven by calculus of variation):

(p1, . . . , pn;w)Mα = argmin
p

∑

i

wiDα(pi, p),

where Dα denotes the α−divergences [4,20]. See also the entropic means defined
according to f -divergences [6]. Mf -mixtures can also been used to define a gen-
eralization of the Jensen-Shannon divergence [17] between densities p and q as
follows:

D
Mf

JS (p, q) :=
1
2

(
DKL(p : (pq)Mf ) + DKL(q : (pq)Mf )

) ≥ 0, (8)
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where DKL(p : q) =
∫

p(x) log p(x)
q(x)dμ(x) is the Kullback-Leibler divergence, and

(pq)Mf := (p, q; 1
2 , 1

2 )
Mf . The ordinary JSD is recovered when f(t) = t and

Mf = A:

DJS(p, q) =
1
2

(

DKL

(

p :
p + q

2

)

+ DKL

(

q :
p + q

2

))

.

In general, we may consider quasi-arithmetic paths between densities on the
space P of probability density functions with a common support all dominated
by a reference measure. On P, we can build a parametric statistical model called
a Mf -mixture family of order n as follows:

FMf
p0,p1,...,pn :=

{
(p0, p1, . . . , pn; (θ, 1))Mf : θ ∈ Δ◦

n

}
.

In particular, power q-paths have been investigated in [13] with applications in
annealing importance sampling and other Monte Carlo methods.

To conclude, let us give a geometric definition of a generalization of the Jensen-
Shannon divergence on P according to an arbitrary affine connection [4,27] ∇:

Definition 5 (Affine connection-based ∇-Jensen-Shannon divergence).
Let ∇ be an affine connection on the space of densities P, and γ∇(p, q; t) the
geodesic linking density p = γ∇(p, q; 0) to density q = γ∇(p, q; 1). Then the ∇-
Jensen-Shannon divergence is defined by:

DJS
∇ (p, q) :=

1
2

(

DKL

(

p : γ∇

(

p, q;
1
2

))

+ DKL

(

q : γ∇

(

p, q;
1
2

)))

. (9)

When ∇ = ∇m is chosen as the mixture connection [4], we end up with the
ordinary Jensen-Shannon divergence since γ∇m(p, q; 1

2 ) =
p+q
2 . When ∇ = ∇e,

the exponential connection, we get the geometric Jensen-Shannon divergence [17]
since γ∇e(p, q; 1

2 ) = (pq)G is a statistical geometric mixture. We may consider
the α-connections [4] ∇α of parametric or non-parametric statistical models, and
skew the geometric Jensen-Shannon divergence to define the β-skewed ∇α-JSD:

DJS
∇α,β(p, q) = β DKL(p : γ∇α(p, q;β)) + (1 − β)DKL(q : γ∇α(p, q;β)). (10)

A longer technical report of this work is available [19].
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Abstract. In this study, we consider parametric binary choice models
from the perspective of information geometry. The set of models is a
dually flat manifold with dual connections, which are naturally derived
from the Fisher information metric. Under the dual connections, the
canonical divergence and the Kullback–Leibler (KL) divergence of the
binary choice model coincide if and only if the model is a logit. The
results are applied to a logit estimation with linear constraints.

Keywords: Binary Choice Models · Discrete Choice Models · Logit ·
Multinomial Logit · Single-Index Models

1 Introduction

Information geometry has been applied to econometric models such as the stan-
dard linear model, Poisson regression, Wald tests, the ARMA model, and many
other examples [3,4,8,10]. In the present study, we apply the method to a stan-
dard binary choice model. Let x be an R

d-valued random vector. Let y ∈ {0, 1}
be a binary outcome such that

y =

{
1 if y∗ ≥ 0
0 if y∗ < 0

, (1)

where θ ∈ R
d, y∗ = x · θ − ε, ε ⊥⊥ x, and E[ε] = 0. The choice probability

conditioned on x is given by

P{y = 1 | x} = P{ε ≤ x · θ | x} = F (x · θ), (2)

where the distribution F of ε is known to a statistician. Let pθ be the density of
the binary response model given by

pθ(y, x) = F (x · θ)y(1 − F (x · θ))1−ypX(x), (y, x) ∈ {0, 1} × R
d, (3)

where pX denotes the marginal density of x.
The model is commonly used in social sciences to describe the choices made

by decision-makers between two alternatives. These alternatives may represent

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
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school, labor supply, marital status, or transportation choices. See [9,11] for a
list of empirical applications in the social sciences.

The model is referred to as probit when F is the standard normal distribution,
that is,

F (u) =
∫ u

−∞

1√
2π

exp
(

−s2

2

)
ds,

and logit when F is the standard logistic distribution, that is,

F (u) =
expu

1 + expu
. (4)

The logit model is particularly popular due to its closed-form choice probability
F (x·θ), which is easily interpretable [11]. We aim to show that among parametric
binary response models, the logit model exhibits good geometric properties owing
to its ‘conditional’ exponentiality.

The remainder of this paper is organized as follows. In Sect. 2, the geometry
of the binary choice model is formulated. In Sect. 3, we introduce the canonical
divergence and the Kullback–Leibler (KL) divergence. In particular, we demon-
strate that the logit is a unique model, the canonical divergence of which is
equal to the KL divergence. In Sect. 4, we consider the logit model with linear
constraints. In Sect. 5, we summarize our conclusions.

2 Geometry of the Binary Choice Models

Assume that F : R → [0, 1] is a smooth distribution function of ε. Let Θ ⊂ R
d

be an open set of parameters θ. Given pX , the set of models

P = {pθ | θ ∈ Θ} (5)

is considered as a d-dimensional C∞ manifold with a canonical coordinate system
θ 	→ pθ.

The tangent space of P at pθ is simply denoted as TθP and is given by

TθP = Span {(∂1)θ, · · · , (∂d)θ} ,

where ∂i = ∂
∂θi

for i = 1, · · · , d. The score of the model is

∂

∂θ
log pθ(y, x) =

y − F (x · θ)
F (x · θ)(1 − F (x · θ))

f(x · θ)x (6)

and the Fisher information matrix is

G(θ) = E

(
∂

∂θ
log pθ

) (
∂

∂θ
log pθ

)�
= E

[
r(x · θ)xx�]

,

where

r(u) =
f(u)2

F (u)(1 − F (u))
.
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In the following, we assume that the integral E
[
r(x · θ)xx�]

is finite for every θ ∈
Θ. The assumption is trivially satisfied if f is continuous and positive everywhere
on R and if x has a bounded support.

The Fisher information metric g is introduced on TθP by

gθ(X,Y ) = E

[
X

(∫ x·θ

0

√
r(u)du

)
Y

(∫ x·θ

0

√
r(u)du

)]

for X, Y ∈ TθP. In particular, the (i, j) component of g at θ is

gij(θ) = gθ(∂i, ∂j) = E [r(x · θ)xixj ] .

Hence, the Levi–Civita connection ∇ of (P, g) is given by the connection coeffi-
cients

Γij,k(θ) =
1
2

[
(∂i)θgkj(θ) + (∂j)θgik(θ) − (∂k)θgij(θ)

]
=

1
2
E [r′(x · θ)xixjxj ]

for 1 ≤ i, j, k ≤ n. The coefficients show symmetry on (i, j, k). In particular,
Γij,k(θ) = Γji,k(θ), which implies that (P, g,∇) is a tortion-free manifold. The
symmetry of the connection is caused by the single-index structure of the model.
G(θ) depends on θ only through the linear index x · θ.

Due to the symmetry of the Levi–Civita connection, the α-connection ∇(α)

is defined naturally by

Γ
(α)
ij,k(θ) =

1 − α

2
Γij,k(θ) (7)

for each α ∈ R. A pair (∇(α),∇(−α)) provides the dual connections of (P, g)
such that

Xgθ(Y,Z) = gθ(∇(α)
X Y,Z) + gθ(Y,∇(−α)

X Z)

for every X,Y,Z ∈ X (P), where X (P) is the family of smooth vector fields on
P.

Theorem 1. (P, g,∇(+1),∇(−1)) is a dually flat space with dual affine coordi-
nates (θ, η); θ is the ∇(+1)-affine coordinate, and η = (η1, · · · , ηd) given by

ηj = E

[(∫ x·θ

0

r(u)du

)
xj

]
(8)

for 1 ≤ j ≤ d is the ∇(−1)-affine coordinate.
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Proof. For α = 1, Γ
(+1)
ij,k ≡ 0 holds for all i, j, and k. Moreover, given that

gij(θ) = ∂i∂jψ(θ)

holds with potential ψ : Θ → R defined by

ψ(θ) = E

[∫ x·θ

0

(∫ v

0

r(u)du

)
dv

]
,

the dual-affine coordinates are obtained as

ηj = ∂jψ(θ) = E

[(∫ x·θ

0

r(u)du

)
xj

]

for 1 ≤ j ≤ d. �


For convenience, we denote the inverse function of

∂ψ : Θ → R
d, θ 	→ η = (∂1ψ(θ), · · · , ∂dψ(θ))

by (∂ψ)−1. Because the Hessian ∂2ψ(θ) is equal to the Fisher information matrix
G(θ) and is therefore positive definite, ∂ψ : Θ → ∂ψ(Θ) is invertible at any
η ∈ ∂ψ(Θ).

The dual potential ϕ(η) is given by

ϕ(η) = max
θ

η · θ − ψ(θ) = η · (∂ψ)−1(η) − ψ((∂ψ)−1(η)), (9)

which is the Legendre transformation of ψ(θ). Let ∂i = ∂
∂ηi

for 1 ≤ i ≤ d, then
θi = ∂iϕ(η) holds.

Corollary 1. The ∇(±1)-geodesic path connecting p, q ∈ P is given by t ∈
[0, 1] → p

θ
(±1)
t

∈ P, where

θ
(+1)
t = (1 − t)θp + tθq (10)

and
θ
(−1)
t = (∂ψ)−1((1 − t)ηp + tηq) (11)

for 0 ≤ t ≤ 1.

The ∇(−1)-geodesic is a solution to the ordinary differential equation,

θ̇t = G(θt)−1(ηq − ηp), θ0 = θp.

To see this, let η
(−1)
t = ∂ψ(θ(−1)

t ) = (1 − t)ηp + tηq. Then,

d

dt
η
(−1)
t = ∂2ψ(θ(−1)

t )
d

dt
θ
(−1)
t = ηq − ηp,

where G(θ(−1)
t ) = ∂2ψ(θ(−1)

t ).
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3 The Logit Model

For a dually flat manifold with dual affine coordinates (θ, η) and dual potentials
(ψ,ϕ), the canonical divergence (or U -divergence with U = ψ) is defined as

D(p‖q) = ϕ(ηp) + ψ(θq) − ηp · θq (12)

[2,6,7]. For the binary response model, the divergence is given as

D(p‖q) = [ηp · θp − ψ(θp)] + ψ(θq) − ηp · θq

= E

[∫ x·θq

x·θp

(∫ v

0

r(u)du

)
dv

]
− E

[(∫ x·θp

0

r(u)du

)
x · (θq − θp)

]

(13)

for each p and q in P, because ϕ(ηp) = ηp · θp − ψ(θp) and

ψ(θq) − ψ(θp) = E

[∫ x·θq

x·θp

(∫ v

0

r(u)du

)
dv

]
.

The following results are standard.

Theorem 2. Let p, q, r be in P. Let θ(+1) be the ∇(+1)-geodesic path connecting
p and q, and let θ(−1) be the ∇(−1)-geodesic path connecting q and r. If θ(+1)

and θ(−1) are orthogonal at the intersection q in the sense that

gq

((
d

dt

)
q

θ
(+1)
t ,

(
d

dt

)
q

θ(−1)
q

)
= 0,

then we have
D(p‖r) = D(p‖q) + D(q‖r). (14)

Corollary 2. The Pythagorean formula (14) holds if (ηp − ηq) · (θq − θr) = 0.

An alternative for the divergence on P is the KL divergence

KL(p‖q) = Ep

[
log

p(y, x)
q(y, x)

]
.

In the case of the binary response model, the KL divergence is

KL(p‖q) = Ep

[
log

yF (x · θp) + (1 − y)(1 − F (x · θp))
yF (x · θq) + (1 − y)(1 − F (x · θq))

]

= E

[
F (x · θp) log

(
F (x · θp)
F (x · θq)

)]

+E

[
(1 − F (x · θp)) log

(
1 − F (x · θp)
1 − F (x · θq)

)]
(15)

because Ep[y|x] = F (x·θp). The canonical divergence (13) and the KL divergence
(15) generally do not coincide. As shown below, in a special case where F is a
logistic distribution, they are equivalent.
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Theorem 3. D = KL holds for arbitrary pX if and only if F is a logistic
distribution; that is,

F (u) =
exp(βu)

1 + exp(βu)
, (16)

where β > 0.

Proof. If F is a logistic distribution, then βF (1 − F ) = f . This equation is
substituted on the right-hand side of (13) to obtain D = KL.

Now, we assume that D ≡ KL holds for an arbitrary pX . Because

(∂θ)p(∂θ)qD(p‖q) = −E

[
f(x · θp)2

F (x · θp)(1 − F (x · θp))
xx�

]

and
(∂θ)p(∂θ)qKL(p‖q) = −E

[
f(x · θp)f(x · θq)

F (x · θq)(1 − F (x · θq))
xx�

]
,

D(p‖q) ≡ KL(p‖q) implies that

f(x · θp)2

F (x · θp)(1 − F (x · θp))
≡ f(x · θp)f(x · θq)

F (x · θq)(1 − F (x · θq))

for arbitrary p and q. By the principle of the separation of variables, this is
possible only if there exists a positive constant β such that

f(u)
F (u)(1 − F (u))

≡ β.

Therefore, F is the logistic distribution. �

In the case of β = 1, the results in the previous section are largely simplified.

The Fisher information metric is given by

gij(θ) = E [f(x · θ)xixj ]

for 1 ≤ i, j ≤ d. The ∇(−1)-affine coordinate η is expressed as

ηj = E [F (x · θ)xj ]

for 1 ≤ j ≤ d. The potential is given as

ψ(θ) = E [log (1 + exp(x · θ))] . (17)

The canonical divergence is expressed as follows:

D(p‖q) = E

[
log

(
1 + exp(x · θq)
1 + exp(x · θp)

)]
− E

[
exp(x · θp)

1 + exp(x · θp)
x

]
· (θq − θp), (18)

which is equal to KL(p‖q).
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The logit model exhibits geometrically desirable properties because of the
explicit integrability of F . We say that a statistical model P = {pθ | θ ∈ Θ} is
an exponential family if it is expressed as

p(z, θ) = exp

[
C(z) +

d∑
i=1

θiβi(z) − ψ(θ)

]
. (19)

It is widely known that the (curved) exponential family possesses desirable prop-
erties such as higher-order efficiency of the maximum likelihood estimation [1,5].
Although the logit model is not truly exponential, the conditional density pθ(y|x)
is still written as

pθ(y|x) = exp ((x · θ)δ1(y) + δ0(y) − ψ(θ|x)) , (20)

where

δi(y) =

{
1 if y = i

0 if y �= i
,

and
ψ(θ|x) = log (1 + exp(x · θ)) .

Conditioned by x, the model (20) belongs to an exponential family with potential
ψ(θ|x). Notably, ψ(θ) = E [ψ(θ|x)].

The marginal density pX does not appear in the score of the model (6).
Hence, pX plays a minor role in the estimation of θ. The statistical properties
of the model are primarily determined by pθ(y|x), and the following result is
obtained.

Theorem 4. Assume that the density of z conditioned on w with respect to
some positive measure ν(dz) is given by

qθ(z|w) = exp (θ · β(z|w) − ψ(θ|w)) , (21)

where β(z|w) is an R
d-valued function of (z, w), and

ψ(θ|w) := log
∫

exp (θ · β(z|w)) dz. (22)

Then, the KL divergence of Q = {qθ|θ ∈ Θ} is equivalent to the canonical
divergence D of Q with potential ψ(θ) = E [ψ(θ | w)].

We can generalize Theorem 3 to cover the multinomial discrete choice model.
Let {1, · · · , k} be the set of choices. Assume that the choice probability condi-
tioned on x is now given by

P{y = i | x} = F (x · θi)

for 1 ≤ i ≤ k, where F is a smooth distribution function and θ =
[
θ1 · · · θk

] ∈
(Rd)k with θi = (θ1i , · · · , θd

i ) ∈ R
d. Let pX be the marginal density of x and
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let Θ ⊂ (Rd)k be the set of parameters. Then, the multinomial choice model
{ρθ | θ ∈ Θ} is given by

ρθ(y, x) =
k∑

i=1

δi(y)F (x · θi)pX(x). (23)

In particular, when F is the standard logit distribution, the model becomes the
multinomial logit model with the choice probability

ρθ(y = i|x) = exp(x · θi)∑k
j=1 exp(x · θj)

(24)

for 1 ≤ i ≤ k. The model is a conditional exponential family because it is
expressed as

ρθ(y|x) = exp

[
k∑

i=1

δi(y)x · θi − ψ(θ|x)
]

with conditional potential ψ(θ|x) = log
∑k

j=1 exp(x · θj). Hence, the set of mod-
els {ρθ|θ ∈ Θ} is a dually flat space with dual affine coordinates (θ, η) and
potential ψ(θ) = E

[
log

∑k
j=1 exp(x · θj)

]
, where η =

[
η1 · · · ηk

] ∈ (Rd)k,

ηi = (ηi,1, · · · , ηi,d) ∈ R
d, and

ηi,l = E

[
exp(x · θi)∑k

j=1 exp(x · θj)
xl

]

for 1 ≤ i ≤ k and 1 ≤ l ≤ d. Furthermore, the canonical divergence D is
equivalent to the KL divergence as a result of Theorem 4.

4 Linearly Constraint Logistic Regression

In this section, we applied the results of the previous section to the logit model
with linear constraints. In empirical applications, we typically aim to estimate θ
under the linear constraint hypothesis, H0 : H�θ = c, where H =

[
h1 · · · hm

]
is an d × m matrix with rank(H) = m < d, and c = (c1, · · · , cm) ∈ R

m. Let
PH = {pθ ∈ P | θ ∈ H}, where H = {θ ∈ Θ | H�θ = c}. Suppose that the true
model p does not belong to P(H). Then, the KL projection Π : P → P(H) is
given by

Πp = argmin KL(p‖q) subject to q ∈ P(H). (25)

In the following, we assumed that F is a standard logistic distribution.

Theorem 5. q = Πp if and only if ηq − ηp ∈ Image(H).
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Proof. Let L(θ, λ) = KL(p‖pθ) − ∑m
i=1 λi(hi · θ − ci) be the Lagrangian corre-

sponding to (25) with Lagrange multipliers λ = (λ1, · · · , λm). As θ 	→ KL(p‖pθ)
is convex, a necessary and sufficient condition for minimization is given by

∂

∂θ
KL(p‖pθ) =

m∑
i=1

λihi ∈ Image(H).

As KL = D, in contrast,

∂

∂θ
KL(p‖pθ) =

∂

∂θ

[
ϕ(ηp) + ψ(θ) − ηp · θ

]
= ηq − ηp.

�

The condition ηq − ηp ∈ Image(H) is satisfied if λ1, · · · , λm ∈ R such that

ηq − ηp =
∑m

i=1 λihi exists. Hence, the conditions given in the theorem are
written as ⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

η − ∑m
i=1 λihi = ηp

H�θ = c

η = ∂ψ(θ)

,

which are 2d+m equations with 2d+m variables (θ, η, λ). The solution is given
by θ = (∂ψ)−1(ηp+Hλ), where λ solves H�(∂ψ)−1(ηp+Hλ) = c. The solution is
approximated well by λ = (H�G(θp)−1H)−1(c−H�θp) if θp locates sufficiently
close to H and might be recursively updated by the standard Newton-Raphson
method.

5 Conclusions

In this study, we have investigated the geometry of parametric binary response
models. The model was established as a dually flat space, where the canonical
coefficient parameter θ acts as an affine coordinate. The dual flat property intro-
duces a canonical divergence into the model. The divergence is equivalent to the
KL divergence if and only if the model is a logit. As an application example, the
KL projection of the logit model onto an affine linear subspace was geometrically
characterized.

The dual flatness of the binary response model is caused by the single-index
structure of the model, which depends on the parameter θ only through the
linear index x · θ, making the Levi–Civita connection coefficients Γij,k symmet-
rical on (i, j, k). Therefore, the results of this study can be extended to a more
general class of single-index models, including nonlinear regressions, truncated
regressions, and ordered discrete response models.
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Abstract. The authors suggested a family of Poincaré distributions on
the upper half plane, which is essentially the same as a family of hyper-
boloid distributions on the two dimensional hyperbolic space. This family
has an explicit form of normalizing constant and is SL(2,R)-invariant.
In this paper, as a q-analogue of Poincaré distributions, we propose a
q-exponential family on the upper half plane with an explicit form of
normalizing constant and show that it is also SL(2,R)-invariant.

Keywords: q-exponential family · upper half plane · Poincaré
distribution

1 Introduction

In the field of Tsallis statistics, q-exponential families play an essential role. In
fact, the family of q-Gaussian distributions (including Cauchy distributions) is
an important family of distributions on R and is widely used. It is a q-analogue
of the family of Gaussian distributions and has the following good properties:

(i) normalizing constant has an explicit form,
(ii) it is scaling and translation invariant as a family (Aff(R)-invariant).

The property (i) enables us to perform practical inferences easily. The other
property (ii) is closely related to transformation models, which have been studied
well, for example, in [6,7] and are useful for Bayesian learning ([11]).

On the other hand, the upper half plane has a good exponential family called
Poincaré distributions ([15]), which is essentially the same as a family of hyper-
boloid distributions ([5,10]) on the 2-dimensional hyperbolic space, and as a
family of Gauss densities on Poincaré unit disk ([3]) based on Souriau’s sym-
plectic model of statistical mechanics (see [2,12] for example).

In this paper, we introduce a q-analogue of the family of Poincaré distri-
butions on the upper half plane H. This family also has the following good
properties:

(i) normalizing constant has an explicit form,
(ii) it is SL(2, R)-invariant as a family.
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2 Preliminary

In this section, we recall the definition of a q-exponential family (Definition 2),
the notion of G-invariance of a family of distributions (Definition 4) and the
definition of a relatively G-invariant measure (Definition 6). Let X be a locally
compact Hausdorff space and R(X) the set of all Radon measures on X.

Definition 1 (q-logarithmic function, q-exponential function [17], see
also [1, Sect. 2.1], [13, Sect. 2.2]for more details). For q ∈ R, we define the
q-logarithmic function lnq : R>0 → R by

lnq(x) :=
∫ x

1

1
tq

dt =

{
1

1−q (x1−q − 1) (q �= 1),
log x (q = 1).

We denote the image of lnq by Iq. Namely,

Iq = {x ∈ R | 1 + (1 − q)x > 0}.

We define the q-exponential function expq : Iq → R>0 as the inverse function of
lnq, That is,

expq(x) :=

{
(1 + (1 − q)x)

1
1−q (q �= 1),

exp x (q = 1).

Definition 2 (q-exponential family, [1, Sect. 2.2],[13, Definition 2.1]). A
subset P ⊂ R(X) consisting of probability measures is a q-exponential family on
X if there exists a triple (μ, V, T ) such that

(i) μ ∈ R(X),
(ii) V is a finite dimensional vector space over R,
(iii) T : X → V is a continuous map,
(iv) for any ν ∈ P, there exists θ ∈ V ∨ and ϕ(θ) ∈ R such that

(a) −〈θ, T (x)〉 − ϕ(θ) ∈ Iq for any x ∈ X and
(b) dν(x) = expq(−〈θ, T (x)〉 − ϕ(θ))dμ(x),
where V ∨ denotes the dual space of V and 〈·, ·〉 : V ∨ × V → R denotes the
natural pairing.

We call the triple (μ, V, T ) a realization of P. ([4] call it representation for
q = 1.)

Remark 1. In the case where q = 1, a q-exponential family on X is nothing but
an exponential family on X.

From now on, let G be a locally compact group, and X a locally compact
Hausdorff space equipped with a continuous G-action.

Definition 3. The group G naturally acts on R(X) by pushforward as follows:

G × R(X) → R(X), (g, μ) �→ g · μ.

(g · μ)(B) := μ(g−1B) for a Borel measurable set B ⊂ X.
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Definition 4. A subset P ⊂ R(X) is said to be G-invariant if

g · p ∈ P for any p ∈ P, g ∈ G.

Definition 5 ([9, Sect. 2.3]). For μ, ν ∈ R(X), we say μ and ν are strongly
equivalent if there exists a continuous function f : X → R>0 satisfying ν(B) =∫

B
fdμ for any Borel measurable subset B of X. This relation is an equivalence

relation on R(X).

Definition 6 ([9, Sect. 2.6], [8, (7.1.1) Definition 1]). A measure μ ∈ R(X)
is said to be relatively G-invariant if μ and g ·μ are strongly equivalent and there
exists a continuous group homomorphism χ : G → R>0 satisfying

d(g · μ)(x) = χ(g)−1dμ(x) (g ∈ G, x ∈ X).

We say μ is G-invariant if χ ≡ 1.

3 Construction of a q-Exponential Family

Let X be a locally compact Hausdorff space. In this section, we write down a
method to construct q-exponential families on X. Concretely, first, we choose a
triple (μ, V, T ), and construct a q-exponential family on X with the realization
(μ, V, T ). We have two such ways. Here, μ is a Radon measure on X, V is a finite
dimensional vector space over R, and T : X → V is a continuous map.

Definition 7 (construction of a q-exponential family). We put

Θq := {θ ∈ V ∨ | there exists ψθ ∈ R satisfying the conditions (i) and (ii)},

(i) −〈θ, T (x)〉 − ψθ ∈ Iq for any x ∈ X,
(ii)

∫
x∈X

expq(−〈θ, T (x)〉 − ψθ)dμ(x) = 1,

and define

dνθ(x) := expq(−〈θ, T (x)〉 − ψθ)dμ(x) ∈ R(X) (θ ∈ Θq).

Then, the obtained family Pq := {νθ}θ∈Θq
is a q-exponential family on X with

a realization (μ, V, T ). We call Θq the parameter space of Pq.

Definition 8 (another construction of a q-exponential family). We put

Θ̃q := {θ ∈ V ∨ | − 〈θ, T (x)〉 ∈ Iq for any x ∈ X},

dη̃θ(x) := expq(−〈θ, T (x)〉)dμ(x) for θ ∈ Θ̃q,

Θo
q :=

{
θ ∈ Θ̃q

∣∣∣∣
∫

X

dη̃θ < ∞
}

,

ηθ := cθη̃θ ∈ R(X), cθ :=
(∫

X

dη̃θ

)−1

(θ ∈ Θo
q).

Then, the obtained family Po
q := {ηθ | θ ∈ Θo

q} is a q-exponential family on X.
We call Θo

q the parameter space of Po
q .
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The assertion that the obtained family Po
q is a q-exponential family on X in

the sense of Definition 2 with a realization (μ, V, T ) follows from the following:

Proposition 1. Po
q ⊂ Pq.

Proof. Take any θ ∈ Θo
q . Then there exists cθ > 0 such that ηθ = cθη̃θ. We put

	θ := lnq cθ ∈ Iq, θ′ := (1 + (1 − q)	θ)θ ∈ V ∨.

By applying Note 1 below for α := −〈θ, T (x)〉 and β := 	θ, we have

dηθ(x) = cθdη̃θ(x) = expq(−〈θ′, T (x)〉 + 	θ)dμ(x).

Therefore, we have ηθ ∈ Pq.

The following Note 1 can be verified by a direct calculation easily.

Note 1. For α, β ∈ Iq, the following properties hold.

(i) (1 + (1 − q)β)α + β ∈ Iq,
(ii) (expq α)(expq β) = expq((1 + (1 − q)β)α + β).

Remark 2. Sometimes Pq = Po
q holds. In fact, the example given in Sect. 4 is

the case where Pq = Po
q . However, we do not give its proof in this article. On

the other hand, there is an example where Po
q � Pq (see Example 1 below).

Example 1. We put X := R and q := 2. We take a triple (μ, V, T ) as follows: μ
is the Lebesgue measure on X, V := R, T : X → V , x �→ 1 + x2. Then we have

Po
q =

{
1
π

λ

λ2 + x2
dx

}
λ>1

,

Pq =
{

1
π

λ

λ2 + x2
dx

}
λ>0

,

where dx denotes the Lebesgue measure on R. Especially, we have Po
q � Pq.

4 A q-Exponential Family on the Upper Half Plane

We give an example of Definition 8 on the upper half plane.
We consider the upper half plane X := H = {z ∈ C | Im z > 0} with

the Poincaré metric. Let μ be the Riemannian measure on X, that is, dμ(z) =
y−2dxdy. We put V := Sym(2, R) and consider the following continuous map:

T : X → V, z := x +
√−1y �→ 1

y

(
x2 + y2 x

x 1

)
.

We identify V ∨ = Sym(2, R)∨ with Sym(2, R) by the following inner product:

Sym(2, R) × Sym(2, R) → R, (X,Y ) �→ Tr(XY ).

We denote by Sym+(2, R) the set of all positive definite symmetric matrices of
size two.
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Theorem 1. Let q ∈ R. The obtained q-exponential family Po
q on X from the

triple (μ, V, T ) above by Definition 8 is given as follows: In the case where q < 1
or 2 ≤ q, Po

q = ∅, and in the case where q ∈ [1, 2),

Po
q =

{
cθ expq

(
−a(x2 + y2) + 2bx + c

y

)
dxdy

y2

}
θ:=

⎛
⎝a b

b c

⎞
⎠∈Sym+(2,R)

,

where cθ =
(2 − q)D

π(expq(−2D))2−q
, D :=

√
ac − b2.

This theorem follows from Lemmas 1, 2, Proposition 2, and the calculation
of normalizing constant in Sect. 5. Since the case of q = 1 is known in [15,
Example 1], we assume q �= 1.

Lemmas 1, 2 below follows from easy calculation.

Lemma 1. We have

Θ̃q =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

{(
a b

b c

) ∣∣∣∣∣(a > 0, ac − b2 ≥ 0) or (a = b = 0, c ≥ 0)

}
(q > 1),

{(
a b

b c

) ∣∣∣∣∣(a < 0, ac − b2 ≥ 0) or (a = b = 0, c ≤ 0)

}
(q < 1).

Lemma 2. In the case of q > 1,
(

0 0
0 c

)
�∈ Θo

q for c ≥ 0.

Proposition 2. In the case of q < 1, the obtained family Po
q from the triple

(μ, V, T ) is empty.

Proof. Take any θ := (a, b, c) ∈ Θ̃q. Then, we have (a < 0 and ac − b2 ≥ 0) or
(a = b = 0 and c ≤ 0). In the both cases, 〈θ, T (z)〉 ≤ ay for any z ∈ H holds,
which implies

expq(−〈θ, T (z)〉) ≥ expq(−ay).

Since the right hand side depends only on y, the function expq(−〈θ, T (z)〉) is
not integrable.

Now, let us consider the SL(2, R)-invariance of the family Po
q . To see the

natural SL(2, R)-action on R(X), let us recall that the Lie group SL(2, R) acts
on the upper half plane H as a fractional transformation. Namely,

g · z :=
az + b

cz + d
, where g =

(
a b
c d

)
∈ SL(2, R) and z ∈ H.

Theorem 2. The obtained q-exponential family Po
q on the upper half plane in

Theorem 1 is SL(2, R)-invariant, and the SL(2, R)-action on the parameter space
Sym+(2, R) is given as follows:

SL(2, R) × Sym+(2, R) → Sym+(2, R), (g, S) �→ tg−1Sg−1.
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Proof. The upper half plane with SL(2, R)-action can be identified with the
homogeneous space G/H = SL(2, R)/SO(2) by the G-equivariant map

H → G/H, z �→ α(z)H, where α(z) :=

(√
y x√

y

0 1√
y

)
∈ G (z = x +

√−1y),

which satisfies g ·α(z) = α(g · z) for g ∈ G, z ∈ H. For θ =
(

a b
b c

)
∈ Sym+(2, R),

dηθ(z) = cθ expq

(
−a(x2 + y2) + 2bx + c

y

)
dμ(z)

= cθ expq(−Tr(θα(z)tα(z)))dμ(z).

Let g ∈ G, θ ∈ Θo
q and put θ′ := tg−1θg−1 ∈ Θo

q . Since the Riemannian measure
μ on H is G-invariant, we have

d(g · ηθ)(z) ∝ expq

(−Tr
(
θg−1α(z)t(g−1α(z))

))
d(g · μ)(z)

= expq(−Tr(tg−1θg−1α(z)tα(z)))dμ(z) = dη̃θ′(z)

Since the pushforward of a probability measure is also a probability measure, we
get g · ηθ = ηθ′ . Theorem 2 was proved.

5 Calculation of the Normalizing Constant

In this section, we verify that the family Po
q has the explicit form as in Theorem 1

by calculating the normalizing constant. From Lemmas 1, 2 in Sect. 4, it is enough
to consider the following:

Setting 3. Let q > 1, θ =
(

a b
b c

)
∈ Θ̃q with a > 0, ac − b2 ≥ 0 and D :=

√
det θ =

√
ac − b2. We take r > 0 such that q = 1 + 2

r .

The normalizing constant of the family follows from the following:

Proposition 3. Under Setting 3,
∫ ∞

0

∫ ∞

−∞
expq

(
−a(x2 + y2) + 2bx + c

y

)
dxdy

y2

=

{
π

(2−q)D (expq(−2D))2−q (q < 2 and ac − b2 > 0),

∞ (q ≥ 2 or ac − b2 = 0).

To prove proposition above, we prepare a definition and lemmas.

Definition 9 (Wallis’s integral). For r ∈ R, we call Wr below Wallis’s
integral.

Wr :=
∫ π

2

0

cosr θdθ ∈ (0,∞].
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Lemma 3. (i) Wr < ∞ ⇐⇒ r > −1,
(ii)

∫ ∞
−∞(x2 + 1)−rdx = 2W2(r−1),

(iii)
∫ ∞

−∞(ax2 + b)−rdx = 2√
a
b

1
2−rW2(r−1) (a, b > 0),

(iv)
∫ ∞
0

(a(x2 + x−2) + 1)−rdx = 1√
a
(2a + 1)

1
2−rW2(r−1) (a > 0, r ∈ R),

(v) Wr = 1
2B( 12 , r+1

2 ) (r > −1),
(vi) WrWr−1 = π

2r (r > 0).

Proof. Since (i), (ii), (iii) and (v) are easy, we prove only (iv) and (vi).
(iv): Put I :=

∫ ∞
0

(a(x2 + x−2) + 1)−rdx and x = t−1, then we get

I =
∫ ∞

0

(a(t2 + t−2) + 1)−rt−2dt.

Therefore
I =

1
2

∫ ∞

0

(1 + x−2)(a(x2 + x−2) + 1)−rdx.

Put u = x−x−1, then I = 1
2

∫ ∞
−∞(au2+2a+1)−rdu. Thus (iv) follows from (iii).

(vi): From (v), we have

WrWr−1 =
1
4
B

(
1
2
,
r + 1

2

)
B

(
1
2
,
r

2

)
=

1
4

Γ ( 12 )Γ ( r+1
2 )

Γ ( r
2 + 1)

Γ ( 12 )Γ ( r
2 )

Γ ( r+1
2 )

=
π

2r
.

Here, we used Γ (12 ) =
√

π and Γ (s + 1) = sΓ (s) for s > 0.

Lemma 4. Under Setting 3,

∫ ∞

−∞
expq

(
−a(x2 + y2) + 2bx + c

y

)
dx=

√
2ry

a

(
2
r

(
ay +

D2

ay

)
+ 1

) 1−r
2

Wr−2.

Proof. Since we have

expq

(
−a(x2 + y2) + 2bx + c

y

)
= expq

(
−a

y

(
x +

b

a

)2

−
(

ay +
D2

ay

))

=

((
(q − 1)a

y

) (
x +

b

a

)2

+
(
(q − 1)

(
ay + D2

ay

)
+ 1

))− r
2

.

By applying Lemma 3 (iii), we get the desired equality.

Proof (of Proposition 3). By Tonelli’s theorem and Lemma 4,
∫ ∞

0

∫ ∞

−∞
expq

(
−a(x2 + y2) + 2bx + c

y

)
dxdy

y2
(1)

=Wr−2

√
2r

a

∫ ∞

0

(
2
r

(
ay +

D2

ay

)
+ 1

) 1−r
2

y− 3
2 dy. (2)
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(Case1): q ≥ 2.
Since we have q ≥ 2 ⇐⇒ r ≤ 1, by Lemma 3 (i), this integral does not converge.
(Case2): ac − b2 = 0.
We may assume r > 1. Since we have D = 0,

∫ ∞

0

(
2
r

(
ay +

D2

ay

)
+ 1

) 1−r
2

y− 3
2 dy ≥

∫ 1

0

(
2
r
a + 1

) 1−r
2

y− 3
2 dy = ∞.

As a result, the integral (2) does not converge.
(Case3): Otherwise. Put s :=

√
D
ay , and by using Lemma 3 (iv), we have

(2) =2Wr−2

√
2r

D

∫ ∞

0

(
2D

r
(s2 + s−2) + 1

) 1−r
2

ds = Wr−2Wr−3
2r

D

(
4

r
D + 1

)1− r
2

.

Here,
(
4
r D + 1

)1− r
2 = (expq(−2D))2−q and from Lemma 3 (vi), Wr−2Wr−3

2r
D =

π
(2−q)D .
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Abstract. Hyperbolic geometry has become popular in machine learn-
ing due to its capacity to embed discrete hierarchical graph structures
with low distortions into continuous spaces for further downstream pro-
cessing. It is thus becoming important to consider statistical models and
inference methods for data sets grounded in hyperbolic spaces. In this
work, we study the statistical f -divergences between two kinds of hyper-
bolic distributions: The Poincaré distributions and the related hyper-
boloid distributions. By exhibiting maximal invariants of group actions,
we show how these f -divergences can be expressed as functions of canon-
ical terms.

Keywords: exponential family · group action · maximal invariant ·
Csiszár’s f -divergence · hyperbolic distributions

1 Introduction

Hyperbolic geometry1 [2] is very well suited for embedding tree graphs with low
distortions [20] as hyperbolic Delaunay subgraphs of embedded tree nodes. So
a recent trend in machine learning and data science is to embed discrete hier-
archical graphs into continuous spaces with low distortions for further down-
stream processing. There exists many models of hyperbolic geometry [2] like the
Poincaré disk or upper-half plane conformal models, the Klein non-conformal
disk model, the Beltrami hemisphere model, the Minkowski or Lorentz hyper-
boloid model, etc. We can transform one model of hyperbolic geometry to
another model by a bijective mapping yielding a corresponding isometric embed-
ding [11]. As a byproduct of the low-distortion hyperbolic embeddings of hier-
archical graphs, many embedded data sets are nowadays available in hyperbolic
model spaces, and those data sets need to be further processed. Thus it is impor-
tant to build statistical models and inference methods for these hyperbolic data
1 Hyperbolic geometry has constant negative curvature and the volume of hyperbolic

balls increases exponentially with respect to their radii rather than polynomially as
in Euclidean spaces.
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sets using probability distributions with support hyperbolic model spaces, and
to consider statistical mixtures in those spaces for modeling arbitrary smooth
densities.

Let us quickly review some of the various families of probability distributions
defined in hyperbolic models as follows: One of the very first proposed family
of such “hyperbolic distributions” was proposed in 1981 [16] and are nowadays
commonly called the hyperboloid distributions in reference to their support: The
hyperboloid distributions are defined on the Minkowski upper sheet hyperboloid
by analogy to the von-Mises Fisher distributions [3] which are defined on the
sphere. Another work by Barbaresco [4] defined the so-called Souriau-Gibbs dis-
tributions (2019) in the Poincaré disk (Eq. 57 of [4], a natural exponential family)
with its Fisher information metric coinciding with the Poincaré hyperbolic Rie-
mannian metric (the Poincaré unit disk is a homogeneous space where the Lie
group SU(1, 1) acts transitively).

In this paper, we focus on Ali-Silvey-Csiszár’s f -divergences between hyper-
bolic distributions [1,14]. In Sect. 2, we prove using Eaton’s method of group
action maximal invariants [15,19] that all f -divergences (including the Kullback-
Leibler divergence) between Poincaré distributions [21] can be expressed canon-
ically as functions of three terms (Proposition 1 and Theorem 1). Then, we
deal with the hyperboloid distributions in dimension 2 in §3. We also consider
q-deformed family of these distributions [23]. We exhibit a correspondence in
§4 between the upper-half plane and the Minkowski hyperboloid 2D sheet. The
f -divergences between the hyperboloid distributions are in spirit very geometric
because it exhibits a beautiful and clear maximal invariant which has connections
with the side-angle-side congruence criteria for triangles in hyperbolic geometry.
This paper summarizes the preprint [18] with some proofs omitted: We refer the
reader to the preprint for more details and other topics than f -divergences.

2 The Poincaré Distributions

Tojo and Yoshino [21–23] described a versatile method to build exponential
families of distributions on homogeneous spaces which are invariant under the
action of a Lie group G generalizing the construction in [13]. They exemplify their
so-called “G/H-method" on the upper-half plane H := {(x, y) ∈ R

2 : y > 0} by
constructing an exponential family with probability density functions invariant
under the action of Lie group G = SL(2,R), the set of invertible matrices with
unit determinant. We call these distributions the Poincaré distributions, since
their sample space X = G/H � H, and we study this set of distributions as
an exponential family [8]: The probability density function (pdf) of a Poincaré
distribution [21] expressed using a 3D vector parameter θ = (a, b, c) ∈ R

3 is
given by

pθ(x, y) :=
√

ac − b2 exp(2
√

ac − b2)
π

exp
(

−a(x2 + y2) + 2bx + c

y

)
1
y2

, (1)
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where θ belongs to the parameter space

Θ := {(a, b, c) ∈ R
3 : a > 0, c > 0, ac − b2 > 0}.

The set Θ forms an open 3D convex cone. Thus the Poincaré distribution family
has a 3D parameter cone space and the sample space is the hyperbolic upper
plane. We can also use a matrix form to express the pdf. Indeed, we can naturally
identify Θ with the set of real symmetric positive-definite matrices Sym+(2,R)

by the mapping (a, b, c) �→
[

a b
b c

]
. Hereafter, we denote the determinant of θ by

|θ| := ac − b2 > 0 and the trace of θ by tr(θ) = a + c for θ = (a, b, c) �
[

a b
b c

]
.

The f -divergence [1,14] induced by a convex generator f : (0,∞) → R

between two pdfs p(x, y) and q(x, y) defined on the support H is defined by

Df [p : q] :=
∫
H

p(x, y) f

(
q(x, y)
p(x, y)

)
dxdy. (2)

Since Df [p : q] ≥ f(1), we consider convex generators f(u) such that f(1) = 0.
Moreover, in order to satisfy the law of the indiscernibles (i.e., Df [p : q] = 0
iff p(x, y) = q(x, y)), we require f to be strictly convex at 1. The class of f -
divergences includes the total variation distance (f(u) = |u − 1|), the Kullback-
Leibler divergence (f(u) = − log(u), and its two common symmetrizations,
namely, the Jeffreys divergence and the Jensen-Shannon divergence), the squared
Hellinger divergence, the Pearson and Neyman sided χ2-divergences, the α-
divergences, etc.

We state the notion of maximal invariant by following [15]: Let G be a group
acting on a set X. We denote the group action by (g, x) �→ gx.

Definition 1 (Maximal invariant). We say that a map ϕ from X to a set Y
is maximal invariant if it is invariant, specifically, ϕ(gx) = ϕ(x) for every g ∈ G
and x ∈ X, and furthermore, whenever ϕ(x1) = ϕ(x2) there exists g ∈ G such
that x2 = gx1.

It can be shown that every invariant map is a function of a maximal invariant
[15]. Specifically, if a map ψ from X to a set Z is invariant, then, there exists a
unique map Φ from ϕ(X) to Z such that Φ ◦ ϕ = ψ.

These invariant/maximal invariant concepts can be understood using group
orbits: For each x ∈ X, we may consider its orbit Ox := {gx ∈ X : g ∈ G}.
A map is invariant when it is constant on orbits and maximal invariant when
orbits have distinct map values.

We denote by A�e the transpose of a square matrix A and A−� the transpose
of the inverse matrix A−1 of a regular matrix A. It holds that A−� = (A�)−1.

Let SL(2,R) be the group of 2 × 2 real matrices with unit determinant.

Proposition 1. Define a group action of SL(2,R) to Sym+(2,R)2 by

(g, (θ, θ′)) �→ (g−�θg−1, g−�θ′g−1). (3)
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Define a map S : Sym+(2,R)2 → (R>0)2 × R by

S(θ, θ′) :=
(|θ|, |θ′|, tr(θ′θ−1)

)
. (4)

Then, the map S is maximal invariant of the group action.

Proof. Observe that S is invariant with respect to the group action: S (θ, θ′) =
S (g.θ, g.θ′). Assume that S

(
θ(1), θ(2)

)
= S

(
θ̃(1), θ̃(2)

)
. We see that there exists

gθ(1) ∈ SL(2,R) such that gθ(1) .θ(1) = g−�
θ(1)θ

(1)g−1
θ(1) =

√
|θ(1)|I2, where I2 denotes

the 2 × 2 identity matrix. Then, θ(1) =
√

|θ(1)|g�
θ(1)gθ(1) . Let θ(3) := gθ(1) .θ(2) =

g−�
θ(1)θ

(2)g−1
θ(1) . Then tr

(
θ(3)

)
= tr

(
θ(2)g−1

θ(1)g
−�
θ(1)

)
=

√
|θ(1)| tr (

θ(2)(θ(1))−1
)
. We

define g
˜θ(1) and θ̃(3) in the same manner. Then, tr

(
θ(3)

)
= tr

(
θ̃(3)

)
and |θ(3)| =∣∣∣θ̃(3)

∣∣∣. Hence the set of eigenvalues of θ(3) and θ̃(3) are identical with each other.

By this and θ(3), θ̃(3) ∈ Sym(2,R), there exists h ∈ SO(2) such that h.θ(3) = θ̃(3).
Hence (hgθ(1)).θ(2) = g

˜θ(1) θ̃
(2). We also see that

(hgθ(1)).θ(1) = gθ(1) .θ(1) =
√∣∣θ(1)∣∣ I2 =

√∣∣∣θ̃(1)
∣∣∣ I2 = g

˜θ(1) .θ̃
(1).

Thus we have
(
θ̃(1), θ̃(2)

)
= (g−1

θ(1)hgθ(1)).(θ(1), θ(2)).

Remark 1 (This is pointed by an anonymous referee.). We can consider an exten-
sion of Proposition 1 to a case of higher degree of matrices. Let n ≥ 2 and assume
that θ, θ′ ∈ Sym(n,R). Let Pθ,θ′(t) := |(1− t)θ+ tθ′| for t ∈ R. where |A| denotes
the determinant of a square matrix A. This is a polynomial in t with degree n.
Assume that Pθ1,θ′

1
= Pθ2,θ′

2
for θ1, θ

′
1, θ2, θ

′
2 ∈ Sym(n,R). We can factor θi as

θi = L�
i Li for some Li, i = 1, 2. Let In be the identity matrix of degree n. Then,

Pθi,θ′
i
(t) = |θi||In+t(L−�

i θ′
iL

−1
i −In)|, i = 1, 2. Since L−�

i θ′
iL

−1
i ∈ Sym(n,R), the

set of eigenvalues of L−�
1 θ′

iL
−1
1 and L−�

2 θ′
iL

−1
2 is identical with each other. Hence

there exists an orthogonal matrix Q such that L−�
2 θ′

iL
−1
2 = Q�L−�

1 θ′
iL

−1
1 Q. Let

G := L−1
1 QL2. Then, θ2 = G�θ1G and θ′

2 = G�θ′
1G. We finally remark that

Pθ1,θ′
1
= Pθ2,θ′

2
holds if and only if Pθ1,θ′

1
(t) = Pθ2,θ′

2
(t) for n+ 1 different values

of t.
If n = 2, then,

Pθ,θ′(t) = (1 − t)2|θ|2 + t2|θ′|2 + t(1 − t) |θ| tr(θ′θ−1). (5)

Hence the arguments above give an alternative proof of Proposition 1.

Proposition 2 (Invariance of f-divergences under group action).

Df [pθ : pθ′ ] = Df

[
pg−�θg−1 : pg−�θ′g−1

]
.

For g ∈ SL(2,R), we denote the pushforward measure of a measure ν on H

by the map z �→ g.z on H by ν ◦ g−1.
The latter part of the following proof utilizes the method used in the proof

of [21, Proposition 1].
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Proof. We first see that for g ∈ SL(2,R),

Df [pθ : pθ′ ] = Df

[
pθ ◦ g−1 : pθ′ ◦ g−1

]
. (6)

Let μ(dxdy) := dxdy/y2. Then it is well-known that μ is invariant with
respect to the action of SL(2,R) on H, that is, μ = μ ◦ g−1 for g ∈ SL(2,R).

Define a map ϕ : Θ × H → R>0 by

ϕ(θ, x + yi) :=
a(x2 + y2) + 2bx + c

y
, θ =

[
a b
b c

]
.

Then, ϕ(θ, z) = ϕ(g.θ, g.z) for g ∈ SL(2,R).
Since

pθ(x, y)dxdy =

√|θ| exp(2√|θ|)
π

exp(−ϕ(θ, x + yi))μ(dxdy),

we have pθ ◦ g−1 = pg.θ. Hence,

Df

[
pθ ◦ g−1 : pθ′ ◦ g−1

]
= Df [pg.θ : pg.θ′ ] . (7)

The assertion follows from (6) and (7).

By Propositions 1 and 2, we get

Theorem 1. Every f-divergence between two Poincaré distributions pθ and pθ′

is a function of
(|θ|, |θ′|, tr (

θ′θ−1
))

and invariant with respect to the SL(2,R)-
action.

We obtained exact formulae for the Kullback-Leibler divergence, the squared
Hellinger divergence, and the Neyman chi-squared divergence.

Proposition 3. We have the following results for two Poincaré distributions pθ

and pθ′ .

(i) (Kullback-Leibler divergence) Let f(u) = − log u. Then,

Df [pθ : pθ′ ] =
1
2
log

|θ|
|θ′| + 2

(√
|θ| −

√
|θ′|

)
+

(
1
2
+

√
|θ|

)
(tr(θ′θ−1) − 2).

(8)
(ii) (squared Hellinger divergence) Let f(u) = (

√
u − 1)2/2. Then,

Df [pθ : pθ′ ] = 1 − 2|θ|1/4|θ′|1/4 exp
(|θ|1/2 + |θ′|1/2

)
|θ + θ′|1/2 exp

(|θ + θ′|1/2
) . (9)

(iii) (Neyman chi-squared divergence) Let f(u) := (u−1)2. Assume that 2θ′−θ ∈
Θ. Then,

Df [pθ : pθ′ ] =
|θ′| exp(4|θ′|1/2)

|θ|1/2|2θ′ − θ|1/2 exp
(
2(|θ|1/2 + |2θ′ − θ|1/2)

) − 1. (10)
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We remark that |θ + θ′| and |2θ′ − θ| can be expressed by using |θ|, |θ′|, and
tr(θ′θ−1). Indeed, we have

|θ + θ′| = |θ| + |θ′| + |θ| tr(θ′θ−1),
|2θ′ − θ| = 4|θ′| + |θ| − 2|θ| tr(θ′θ−1).

Thus the KLD between two Poincaré distributions is asymmetric in general.
The situation is completely different from the Cauchy distribution whose f -
divergences are always symmetric [19,24].

Recently, Tojo and Yoshino [23] introduced a notion of deformed exponen-
tial family associated with their G/H method in representation theory. As an
example of it, they considered a family of deformed Poincaré distributions with
index q > 1. For x ∈ Iq := {x ∈ R : (1 − q)x + 1 > 0}, let

expq(x) := ((1 − q)x + 1)1/(1−q), x ∈ Iq.

For q ∈ [1, 2), let a q-deformed Poincaré distribution be the distribution

pθ(x, y) := cq(
√

|θ|) expq

(
−a(x2 + y2) + 2bx + c

y

)
1
y2

, (11)

where θ ∈ Θ and cq(x) :=
(2 − q)x

π(expq(−2x))2−q
. In this case, Proposition 2 holds

for q-deformed Poincaré distributions, so we also obtain that

Theorem 2. Let q ∈ [1, 2). Every f-divergence between two q-deformed
Poincaré distributions pθ and pθ′ is a function of

(|θ|, |θ′|, tr (
θ′θ−1

))
.

We can show this by Theorem 4 below and the correspondence principle in §4.

3 The Two-Dimensional Hyperboloid Distributions

We first give the definition of the Lobachevskii space (in reference to Minkowski
hyperboloid model of hyperbolic geometry also called the Lorentz model) and the
parameter space of the hyperboloid distribution. We focus on the bidimensional
case d = 2. Let

L
2 :=

{
(x0, x1, x2) ∈ R

3 : x0 =
√

1 + x2
1 + x2

2

}
,

and
ΘL2 :=

{
(θ0, θ1, θ2) ∈ R

3 : θ0 >
√

θ21 + θ22

}
.

Let the Minkowski inner product [12] be

[(x0, x1, x2), (y0, y1, y2)] := x0y0 − x1y1 − x2y2.

We have L
2 = {x ∈ R

3 : [x, x] = 1}.
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Now we define the hyperboloid distribution by following [5,7,9]. Hereafter,
for ease of notation, we let |θ| := [θ, θ]1/2, θ ∈ ΘL2 . For θ ∈ ΘL2 , we define a
probability measure Pθ on L

d � R
d by

Pθ(dx1dx2) := c2(|θ|) exp(−[θ, x̃])μ(dx1dx2), (12)

where we let c2(t) := t exp(t)
2(2π)1/2

, t > 0, x̃ :=
(√

1 + x2
1 + x2

2, x1, x2

)
, and

μ(dx1dx2) := 1√
1+x2

1+x2
2

dx1dx2.

Remark 2. The 1D hyperboloid distribution was first introduced in statistics
in 1977 [6] to model the log-size distributions of particles from aeolian sand
deposits, but the 3D hyperboloid distribution was later found already studied in
statistical physics in 1911 [17]. The 2D hyperboloid distribution was investigated
in 1981 [10].

Now we consider group actions on the space of parameters ΘL2 . Let the
indefinite special orthogonal group be

SO(1, 2) :=
{
A ∈ SL(3,R) : [Ax,Ay] = [x, y] ∀x, y ∈ R

3
}

,

and SO0(1, 2) :=
{
A ∈ SO(1, 2) : A(L2) = L

2
}

.

An action of SO0(1, 2) to (ΘL2)2 is defined by

SO0(1, 2) × (ΘL2)2 � (A, (θ, θ′)) �→ (Aθ,Aθ′) ∈ (ΘL2)2 .

Proposition 4. (θ, θ′) �→ ([θ, θ], [θ′, θ′], [θ, θ′]) is maximal invariant for the
action of SO0(1, 2) to (ΘL2)2.

In the following proof, all vectors are column vectors.

Proof. It is clear that the map is invariant with respect to the group action.
Assume that(

[θ(1), θ(1)], [θ(2), θ(2)], [θ(1), θ(2)]
)
=

([
θ̃(1), θ̃(1)

]
,
[
θ̃(2), θ̃(2)

]
,
[
θ̃(1), θ̃(2)

])
.

Let ψi := θ(i)

|θ(i)| , ψ̃i :=
˜θ(i)

∣

∣

∣

˜θ(i)
∣

∣

∣

, i = 1, 2. Then, [ψ1, ψ2] =
[
ψ̃1, ψ̃2

]
.

We first consider the case that ψ1 = ψ̃1 = (1, 0, 0)�. Let ψi =
(xi0, xi1, xi2)�, ψ̃i = (x̃i0, x̃i1, x̃i2)

�
, i = 1, 2. Then, x20 = x̃20 > 0, x2

21 + x2
22 =

x̃21
2 + x̃22

2 and hence there exists a special orthogonal matrix P such that

P (x21, x22)� = (x̃21, x̃22)
�. Let A :=

(
1 0
0 P

)
. Then, A ∈ SO0(1, 2), Aψ1 =

(1, 0, 0)� = ψ̃1 and Aψ2 = ψ̃2.
We second consider the general case. Since the action of SO0(1, 2) to L

2

defined by (A,ψ) �→ Aψ is transitive, there exist A,B ∈ SO0(1, 2) such that
Aψ1 = Bψ̃1 = (1, 0, 0)�. Thus this case is attributed to the first case.
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We regard μ as a probability measure on L
2. We recall that [Aθ,Ax̃] = [θ, x̃]

for A ∈ SO0(1, 2). We remark that μ is an SO(1, 2)-invariant Borel measure [16]
on L

2. Now we have that

Theorem 3. Every f-divergence between pθ and pθ′ is invariant with respect to
the action of SO0(1, 2), and is a function of the triplet ([θ, θ], [θ′, θ′], [θ, θ′]), i.e.,
the pairwise Minkowski inner products of θ and θ′.

There is a clear geometric interpretation of this fact: The side-angle-side
theorem for triangles in Euclidean geometry states that if two sides and the
included angle of one triangle are equal to two sides and the included angle of
another triangle, then the triangles are congruent. This is also true for the hyper-
bolic geometry and it corresponds to Proposition 4 above. Every f -divergence is
determined by the triangle formed by a pair of the parameters (θ, θ′) when f is
fixed.

Proposition 5. We have the following results for two hyperboloid distributions
pθ and pθ′ .

(i) (Kullback-Leibler divergence) Let f(u) = − log u. Then,

Df [pθ : pθ′ ] = log
( |θ|

|θ′|
)

− |θ′| + [θ, θ′]
[θ, θ]

+
[θ, θ′]
|θ| − 1. (13)

(ii) (squared Hellinger divergence) Let f(u) = (
√

u − 1)2/2. Then,

Df [pθ : pθ′ ] = 1 − 2|θ|1/2|θ′|1/2 exp (|θ|/2 + |θ′|/2)
|θ + θ′| exp (|θ + θ′|/2) . (14)

(iii) (Neyman chi-squared divergence) Let f(u) := (u−1)2. Assume that 2θ′−θ ∈
ΘL2 . Then,

Df [pθ : pθ′ ] =
|θ′|2 exp(2|θ′|)

|θ||2θ′ − θ| exp(|θ| + |2θ′ − θ|) − 1. (15)

Now we consider deformations of the hyperboloid distribution. For q ∈ [1, 2),
we let a q-deformed hyperboloid distribution be the distribution

pθ(x1, x2) := cq(|θ|) expq (− [θ, x̃])
1√

1 + x2
1 + x2

2

, (16)

where cq(z) :=
(2 − q)z

2π(expq(−z))2−q
.

In the same manner as in the derivation of Theorem 3, we obtain that

Theorem 4 (Canonical terms of the f-divergences between deformed
hyperboloid distributions). Let q ∈ [1, 2). Then, every f-divergence between
q-deformed hyperboloid distributions pθ and pθ′ is invariant with respect to the
action of SO0(1, 2), and is a function of the triplet ([θ, θ], [θ′, θ′], [θ, θ′]).
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4 Correspondence Principle

It is well-known that there exists a correspondence between the 2D Lobachevskii
space L = L

2 (hyperboloid model) and the Poincaré upper-half plane H.

Proposition 6 (Correspondence between the parameter spaces). For
θ = (a, b, c) ∈ ΘH :=

{
(a, b, c) : a > 0, c > 0, ac > b2

}
, let θL := (a+c, a−c, 2b) ∈

ΘL. We denote the f-divergence on L and H by DL

f [· : ·] and DH

f [· : ·] respectively.
Then,

(i) For θ, θ′ ∈ ΘH,

|θL|2 = [θL, θL] = 4|θ|, |θ′
L
|2 = [θ′

L
, θ′

L
] = 4|θ′|, [θL, θ′

L
] = 2|θ|tr(θ′θ−1). (17)

(ii) For every f and θ, θ′ ∈ H,

DL

f

[
pθL

: pθ′
L

]
= DH

f [pθ : pθ′ ] . (18)

For (i), at its first glance, there seems to be an inconsistency in notation.
However, |θ| is the Minkowski norm for θ ∈ θL, and, |θ| is the determinant for
θ ∈ Θv, so the notation is consistent in each setting. By this assertion, it suffices
to compute the f -divergences between the hyperboloid distributions on L.

Let μH(dxdy) :=
dxdy

y2
and μL(dxdy) :=

dxdy√
1 + x2 + y2

. By the change of

variable

H � (x, y) �→ (X,Y ) =
(
1 − x2 − y2

2y
,
x

y

)
∈ R

2,

by recalling the correspondence between the parameters in Eq. (17), it holds
that y2pθ(x, y) =

√
1 + X2 + Y 2pθL(X,Y ), and μH(dxdy) = μL(dXdY ).

Acknowledgements. The authors are grateful to two anonymous referees for valuable
comments. It is worth of special mention that Remark 1 is suggested by one referee
and the proof of Proposition 2 is suggested by the other referee.
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Abstract. We investigate evidence lower bound (ELBO) with general-
ized/deformed entropy and generalized/deformed divergence, in place
of Shannon entropy and KL divergence in the standard framework.
Two equivalent forms of deformed ELBO have been proposed, suit-
able for either Tsallis or Rényi deformation that have been unified in
the recent framework of λ-deformation (Wong and Zhang, 2022, IEEE
Trans Inform Theory). The decomposition formulae are developed for λ-
deformed ELBO, or λ-ELBO in short, now for real-valued λ (with λ = 0
reducing to the standard case). The meaning of the deformation factor
λ in the λ-deformed ELBO and its performance for variational autoen-
coder (VAE) are investigated. Naturally emerging from our formulation is
a deformation homotopy probability distribution function that extrapo-
lates encoder distribution and the latent prior. Results show that λ values
around 0.5 generally achieve better performance in image reconstruction
for generative models.

Keywords: evidence lower bound · λ-deformation · Tsallis and Rényi
divergence · variational autoencoder · deformation homotopy

1 Introduction

The concept of evidence lower bound (ELBO) was first proposed in [9], which
introduced an efficient inference and learning framework where prior distribution
and likelihood are explicitly modeled, in the presence of continuous latent vari-
ables to overcome intractable posterior distributions. ELBO has its name because
it provides a lower bound for the log-likelihood of the observed data. Since opti-
mization of lower bound amounts to a minimization of divergences [9,12], ELBO
has founded its use in many applications such as variational autoencoder (VAE)
and Bayesian neural networks.

One research direction extending the standard ELBO formulation is through
the use of q-logarithmic function [22], defined as logq(x) = x1−q−1

1−q for real num-
ber q, instead of the log function (q = 1) in defining Shannon entropy and KL

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
F. Nielsen and F. Barbaresco (Eds.): GSI 2023, LNCS 14071, pp. 186–196, 2023.
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divergence. Introduced by Tsallis in 1988 in the context of generalizing KL diver-
gence, this scheme parallels Rényi’s generalization of Shannon entropy in 1961.
Making use of the associated Rényi divergence, tighter ELBO bounds (Rényi
bound) was investigated [12]. Later, Tsallis divergence was likewise adopted for
ELBO, and a q-deformed lower bound was obtained in [10] and [19]. That Rényi
and Tsallis entropies and divergences are both monotonically related, see e.g.
[15], actually reflects a deformation of an underlying dually flat Hessian geometry
[24–26]. So Rényi bound and q-deformed lower bound represent generalizations
to the original ELBO framework that are still analytically trackable.

Other studies have extended the ELBO framework to the more general f -
divergence [8], used K-sample generalized evidence lower bound [3], or applied
the ideas of Tsallis deformation to model predictive control (MPC) algorithm
[23]. Numerical experiments on different tasks showed that proposed new ELBOs
are tighter and much closer to the estimated true log-likelihood [19], and that
the models trained with these bounds outperformed the baseline comparisons
[12,19]. Put in this backdrop, our current work will reexamine deformation to the
ELBO by the Tsallis/Rényi deformation by developing corresponding formulae,
and provide a systematic interpretation of the effect of deformation parameter
on the generalized bounds.

The rest of our paper is organized as follows. After a brief review of the vanilla
VAE framework (Sect. 2.1) and Tsallis and Rényi deformation (Sect. 2.2), we
define the λ-deformed ELBO for both the Tsallis and Rényi scenario (Sect. 2.3)
and then provide the corresponding decomposition formulae (Sect. 2.4). Numer-
ical results are reported in Sect. 3. Section 4 provides the conclusion with a dis-
cussion of the λ-deformation in relation to robustness (Sect. 4.1) and to other
divergence functions (Sect. 4.2). The overarching goal of our paper is to extend
the above suite of formulae with KL divergence to more generalized cases with
Rényi and Tsallis divergence, unified under λ-deformation framework of Wong
and Zhang (2022).

2 λ-ELBO

2.1 A Review on Vanilla VAE

Let us first have a look at the basic framework of VAE, which is an application
of ELBO to the encoder/decoder architecture in computer vision [9]. Assume a
dataset X = {x(i)}N

i=1 consists of N i.i.d. samples generated by a probability
distribution p(x) with a latent variable z. The decoder distribution for recon-
structing images x is denoted as pθ(x|z), and the encoder distribution is denoted
as qφ(z|x), with intractable original posterior distribution p(z|x). The symbols
θ and φ represent learnable parameters for the decoder p and the encoder q,
respectively. Without confusion, we also use p(z) to denote the prior distribu-
tion of z.
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The log-likelihood of the data x can be decomposed as

log p(x) = Eqφ(z|x)[log p(x)] (1)

= Eqφ(z|x)

[
log

pθ(x|z)p(z)qφ(z|x)
p(z|x)qφ(z|x)

]
(2)

= Eqφ(z|x)[log pθ(x|z)] − D[qφ(z|x)||p(z)] + D[qφ(z|x)||p(z|x)]. (3)

Here Eqφ(z|x) denotes expectation over random variable z ∼ qφ(z|x). D[q||p]
denotes the KL divergence between two distributions q and p. Then the following
identity

log p(x) − D[qφ(z|x)||p(z|x)] = Eqφ(z|x)|[log pθ(x|z)] − D[qφ(z|x)||p(z)] (4)

motivates the definition of evidence lower bound (ELBO) as the right hand-side
of the above, such that maximizing ELBO is equivalent to minimizing the KL
divergence between qφ(·|x) and p(·|x) since log p(x) is a constant.

Definition 1. ELBO (Evidence Lower Bound), denoted as L, is

L(x) = log p(x) − D[qφ(z|x)||p(z|x)] (5)
= Eqφ(z|x)[log pθ(x|z)] − D[qφ(z|x)||p(z)]. (6)

The second line is a rearrangement of terms; it combines reconstruction
−Eqφ(z|x)[log pθ(x|z)] and variational approximation loss D[qφ(z|x)||p(z)]. For
VAE, the importance of this decomposition lies in its use in training [16,18,20].

2.2 Tsallis and Rényi Deformation

Let us recall Rényi and Tsallis divergence. In the following definitions, P and
Q are two probability distributions with respect to a reference measure μ such
that P � μ and Q � μ. We also denote p = dP

dμ and q = dQ
dμ .

Definition 2. The Tsallis divergence from Q to P is

DT
λ [q||p] = −Eq

[
logλ

p

q

]
= −

∫
q ·

(p
q )λ − 1

λ
dμ =

∫
q1−λpλdμ − 1

−λ
(7)

Definition 3. The Rényi divergence from Q to P is

DR
λ [q||p] =

1
−λ

log Eq

[(
p

q

)λ
]

=
log

∫
q1−λpλdμ

−λ
(8)

Lemma 1. The relationship between Tsallis and Rényi divergence is

DT
λ [q||p] =

e(−λ·DR
λ [q||p]) − 1
−λ

⇐⇒ DR
λ [q||p] =

log[−λ · DT
λ [q||p] + 1]

−λ
. (9)
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Denote a pair of mutually inverse monotonic increasing functions

κλ(t) =
log[λt + 1]

λ
⇐⇒ γλ(t) =

eλt − 1
λ

. (10)

Then the above relationship can be written using the scaling functions κλ, γλ:

DT
λ [q||p] = γ−λ(DR

λ [q||p]) ⇐⇒ DR
λ [q||p] = κ−λ(DT

λ [q||p]).

This parallels the relationship between Tsallis entropy HT
λ and Rényi entropy

HR
λ :

HT
λ [q||p] = γλ(HR

λ [q||p]) ⇐⇒ HR
λ [q||p] = κλ(HT

λ [q||p]).

2.3 λ-ELBO Defined

In this subsection we develop λ-deformed ELBO formulae under Tsallis and
Rényi deformation, which we write as LT

λ (x) and LR
λ (x). We call these λ-

deformed ELBO, or λ-ELBO for short. Throughout the rest of the paper, we
consider λ ∈ R, λ �= 0; the vanilla ELBO will be recovered as a special case when
taking the limit of λ → 0.

Definition 4. The Tsallis ELBO is defined as [19]

LT
λ (x) =

1
λ

Eqφ(z|x)

[(
p(x, z)
qφ(z|x)

)λ

− 1

]
= Eq

[
logλ

(
p(x, z)
qφ(z|x)

)]
(11)

Definition 5. The Rényi ELBO is defined as [12]

LR
λ (x) =

1
λ

log Eqφ(z|x)

[(
p(x, z)
qφ(z|x)

)λ
]

(12)

One immediately finds that

Proposition 1. The relationship between Tsallis ELBO and Rényi ELBO is

LR
λ (x) =

1
λ

log
(
λLT

λ (x) + 1
)

= κλ(LT
λ (x)) , (13)

and
LT

λ (x) =
1
λ

(
eλLR

λ (x) − 1
)

= γλ(LR
λ (x)). (14)

This shows that Tsallis ELBO and Rényi ELBO are intrinsically equivalent from
an optimization perspective.
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2.4 Decomposition Formulae

We now show (proof omitted) that the deformed ELBOs are related to the
deformed divergence via the following decomposition formulae.

Theorem 1. The λ-deformed ELBO and λ-deformed divergence in either Tsal-
lis or Rényi form satisfy the generalized decomposition equation

logλ p(x) = LT
λ + DT

λ [qφ(z|x)||p(z|x)] · p(x)λ , (15)

log p(x) = LR
λ + DR

λ [qφ(z|x)||p(z|x)] . (16)

Theorem 2. The decomposition of λ-deformed ELBO, in terms of reconstruc-
tion minus divergence-to-prior, is:

(i) The case of Tsallis ELBO

LT
λ (x) = Euλ(z|x)[logλ(p(x|z))] · Cλ(x) − DT

λ [qφ(z|x)||p(z)]; (17)

(ii) The case of Rényi ELBO

LR
λ (x) = κλ(Euλ(z|x)(logλ(p(x|z)))) − DR

λ [qφ(z|x)||p(z)]. (18)

In both (i) and (ii), an extrapolating function uλ is defined by

uλ(z|x) =
qφ(z|x)1−λp(z)λ

Cλ(x)
=

qφ(z|x)1−λp(z)λ∫
qφ(z|x)1−λp(z)λdz

. (19)

with normalization Cλ(x) given by

Cλ(x) =
∫

qφ(z|x)1−λp(z)λdz.

Note that
u0(z|x) = qφ(z|x), u1(z|x) = p(z),

and
∫

uλ(z|x)dz = 1 for every λ, meaning that this is a probability distribu-
tion function — it extrapolates the encoder distribution qφ(z|x) and the latent
prior p(z) with the deformation parameter λ as extrapolating parameter. In
information-theoretic language, it is actually an e-geodesic connecting p(·) and
qφ(·|x). We call it deformation homotopy function.

3 Numerical Simulation

3.1 Monte Carlo Approximation of the Rényi Bound

In the previous Section, it is shown (Lemma 1) that the optimization of Tsallis
and Rényi lower bound are equivalent. So in simulation studies below, we adopt
Rényi lower bound as the loss function since it is more numerically effective than
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that of Tsallis. In order to optimize the λ-deformed ELBO, we need to find a way
to approximate the bound when λ �= 0. Ref [12] proposed a method to calculate
the Rényi bound using K independent samples zk ∼ qφ(z|x) for k = 1, ...,K
using

L̂λ,K(x) =
1
λ

log
1
K

K∑
k=1

[(
p(zk, x)
qφ(zk|x)

)λ
]

. (20)

This is the numerical estimator for

LR
λ (x) =

1
λ

log Eqφ(z|x)

[(
p(x, z)
qφ(z|x)

)λ
]

. (21)

Note that although this is a biased estimator for LR, the bias will approach zero
as K → ∞ [12]. In order to calculate L̂λ,K(x), in each iteration we calculate
p(x|zk), p(zk) and qφ(zk|x) in turn. If the Gaussian assumption holds for the
prior p, for the encoder q(·|x), and for the decoder p(·|z), then the likelihood can
be explicitly calculated with input x and sampled zk.

3.2 Deformation Homotopy uλ(z|x) under Gaussian assumption

Consider two multivariate Gaussian distributions p and q with location and scale
parameter μp, Σp and μq, Σq. Suppose that they have the same dimension d as
determined by the dimension of latent variable z, and assume that the marginal
distributions are independent. Then the deformed homotopy uλ(z|x) will still
be a multivariate Gaussian distribution with mean vector and variance matrix
given by,

μu = [λΣq · μp + (1 − λ)Σp · μq] 
 [λΣq · 1d×1 + (1 − λ)Σp · 1d×1] , (22)

Σu = [Σp ⊗ Σq] 
 [λΣq + (1 − λ)Σp] . (23)

with ⊗ and 
 as Hadamard product and division.

3.3 Experimental Results

Here we perform numerical experiments on λ-deformed ELBO using the VAE
architecture. The results will be compared for different λ values from −∞ to
+∞ with a main attention to the range (0, 1). Some classical variants of VAE
including IWAE and VR-max are included as special cases of λ-deformed VAE,
and are well approximated using MC sampled ELBO.

We used MNIST as the dataset for our numerical experiments. The encoder
and decoder are designed using convolutional layers, deconvolutional layers, max-
pooling layers, Relu layers and batchnorm layers. The latent space is in dimension
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of 50, which defines two random vectors representing the mean and variance of
the distribution (of the same dimension). These two vectors are output by the
encoder using two separate linear layers. The approximated posterior is assumed
as a standard Gaussian distribution, with a diagonal covariance matrix. The
output model is a Bernoulli distribution for each pixel. We trained each model
for 500 epochs using Adam optimizer with a batch size of 128 and a learning
rate of 5e-4. The complete Python codes for are available here https://github.
com/kaimingCheng/lambda deformed VAE.

In testing we adopted the metric the negative log-likelihood (NLL)
− log p(x) ≈ −L̂0,5000(x), the same metric as reported in the previous works
[2,16]. It was shown that with a large K the IWAE estimator L̂K will be very
close to the log-likelihood ln p(x), which will serve as a good indicator of the
model performance. And also we list the negative log-likelihood (NLL) values by
category for the negative log-likelihood of testing samples.

Figure 1a shows that the best λ values for the reconstruction and generating
are around 0.5 (typically 0.4 to 0.6). The model will become less capable either
when λ → ∞ or λ → −∞, but it is more steady when going to positive infinity.
Some special cases are IWAE (λ = 1.0) and VR-max (λ = +∞), which are
both better than vanilla VAE (λ = 0.0). Figure 1b presents the negative log
likelihood (NLL) values across different categories of each λ. As expected, the
better model is always uniformly better across all categories of inputs, meaning
that the generative/reconstruction abilities are also uniformly better.

Fig. 1. a). The negative log-likelihoods (Y-axis) is plotted against λ values. (b). The
negative log-likelihoods (Y-axis) plotted against the ten categories of digits (X-axis),
for different λ values.

https://github.com/kaimingCheng/lambda_deformed_VAE
https://github.com/kaimingCheng/lambda_deformed_VAE
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Fig. 2. From top left to bottom right: the reconstructed samples of the 25 samples on
the right using λ ∈ {1.0, 0.7, 0.5, 0.2, 0.1, 0.0}. Each λ value corresponds to one 5 × 5
panel, running from top left (λ = 1.0) to bottom right (λ = 0.0).

Fig. 3. From top to bottom: randomly generated samples, with each row corresponding
to a fixed λ value taken from λ ∈ {1.0, 0.7, 0.5, 0.2, 0.1, 0.0}.

4 Conclusions and Discussions

Synthesizing previous generalizations of ELBO based on Rényi and Tsallis
divergences, this paper provided a suite of formulae for decomposing the λ-
deformed evidence lower bound (ELBO) as a generalized reconstruction loss
minus deformed divergence. We discovered a deformation homotopy function
uλ(z|x), which is a family of distribution lying in-between (i.e., extrapolating)
the encoding distribution and the prior for latent variable. Our newly developed
formulae revealed that the deformed reconstruction loss is to be calculated as
expectation with respect to the uλ(z|x) distribution rather than with respect to
the encoder distribution qφ under both Rényi and Tsallis cases. We also per-
formed simulations on variational autoencoder (VAE) using different λ values.
The results show that the λ-VAE achieves the best results when λ is set around
0.5, and the negative log likelihood (NLL) are uniformly better under each cat-
egory in MNIST dataset.



194 K. Cheng and J. Zhang

4.1 Robustness Vs. Flexibility

To explain why some λ values in the deformation homotopy distribution uλ(z|x)
lead to better results, we note that a λ → 1 value close to 1 will make the
deformed prior distribution uλ(z|x) more close to a fixed standard normal as we
assumed, while λ → 0 will make it close to the encoder qφ(z|x), which is variant in
training. When taking expectation with u1(z|x) ≡ p(z), then the training process
will be robust because u1(z|x) now is independent of x. On the other hand, the
standard VAE framework, the reconstruction loss is calculated using u0(z|x) ≡
qφ(z|x), which is more flexible. A trade-off between these two extreme cases of
robustness vs flexibility will lead to a best λ value lying in between 0.4 to 0.6.
It is consistent with the strategy of sacrificing efficiency to achieve robustness in
parameter estimation — algorithms with robustness property handle outliers and
additive noise well with improved accuracy in statistical inference, hypothesis
testing and optimization problems [5,11,17,21]. Using power divergence (called
β-divergence) to achieve robustness was studied in great length by S. Eguchi,
e.g. [7,13,14].

4.2 Related Divergences

The Tsallis-Rényi type divergence is equivalent in forms (apart from a scaling
factor) to the alpha divergences [4]

Dα[q||p] =
1

α(1 − α)

[
1 −

∫
qαp1−αdμ

]

and power divergences [1,6,13]

Dλ[q||p] =
1

λ(λ + 1)

[∫
qλ+1p−λdμ − 1

]
.

Ref. [5] showed that the alpha and beta divergences can be generated from each
other, and from another one called gamma divergences [7], and that alpha diver-
gences are flexible and efficient for nonnegative matrix and tensor factorizations,
while the beta and gamma divergences are applied for robust PCA, clustering
and parameter estimation. So our findings of best performance for λ � 0.5 is con-
sistent with these earlier approaches to robustness in machine learning. Future
research would focus on analytic properties of deformation homotopy function,
which is revealed by our current approach.

References

1. Basu, A., Harris, I.R., Hjort, N.L., Jones, M.: Robust and efficient estimation by
minimising a density power divergence. Biometrika 85(3), 549–559 (1998)

2. Burda, Y., Grosse, R., Salakhutdinov, R.: Importance weighted autoencoders
(2015). https://doi.org/10.48550/ARXIV.1509.00519

https://doi.org/10.48550/ARXIV.1509.00519
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1 Introduction

One of the most natural structures on the tangent bundle of a Riemannian man-
ifold is the Sasakian metric introduced in [11] and then studied and generalized
in various ways, e.g. [1,3,6,12]. In particular, having a statistical structure on
a manifold M, that is, a pair (g,∇), where g is a Riemannian metric tensor
field and ∇ is a torsion-free connection, for which ∇g is a symmetric cubic
form, one produces a metric on the tangent bundle TM depending on g and ∇.
Although this structure is not, in general, the one introduced by Sasaki, it is
called Sasakian.

An important case is when a statistical structure is Hessian. In this case the
structure on the tangent bundle is Kähler. Its holomorphic sectional curvature
and other properties are discussed in [13]. If a statistical structure is not Hessian,
controlling the curvature on the tangent bundle is more complicated. There are
various curvatures on statistical manifolds, see [8,9]. The curvatures appear in
the formulas for the curvature tensors on the tangent bundle. In this paper we
present and discuss some of such formulas and their consequences. We propose
some results in relation with a classical theorem of Sasaki. In particular, we have

Theorem 1. If the Sasakian metric on the tangent bundle of a statistical man-
ifold is flat, then the statistical structure is Hessian, its Riemannian metric is
flat and its difference tensor is parallel relative to the statistical connection. The
converse is also true.

The paper does not contain proofs of the results. The proofs are provided
in [10].
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2 Curvatures on Statistical Manifolds

In this section we collect some facts dealing with the geometry of statistical
structures. The facts are used to formulate and prove the results of this paper.
All details for this section can be found, for instance, in [8] and [9].

A statistical structure on a manifold M is a pair (g,∇), where g is a metric
tensor field and ∇ is a torsion-free connection (called a statistical connection
for g) such that (∇Xg)(Y,Z) = (∇Y g)(X,Z) for every X,Y,Z. In this paper
X,Y,Z, .... stand for tangent vectors or vector fields (local) on M, depend-
ing on the context. The following notation is adopted: ∇T (X,X1, ...,Xk) =
(∇XT )(X1, ...,Xk) for any tensor field of type (l, k). Thus, for a statistical struc-
ture (g,∇) the cubic form ∇g is totally symmetric.

Let (g,∇) be a statistical structure on M. The difference tensor of this
structure is given by the formula K(X,Y ) := KXY := ∇XY − ∇g

XY, where ∇g

stands for the Levi-Civita connection of g. The difference tensor is symmetric
and symmetric relative to g. The following relation holds

−2g(K(X,Y ), Z) = ∇g(X,Y,Z)

for every X,Y,Z. The dual connection ∇∗ for ∇ is given by

Xg(Y,Z) = g(∇XY,Z) + g(X,∇∗
XZ). (1)

If ∇ is a statistical connection for g, then so is the connection ∇∗. For the dual
structure (g,∇∗) the difference tensor is equal to −K.

A statistical structure (g,∇) is called trivial, if ∇ = ∇g, i.e. if K = 0.
The curvature tensor for ∇ (resp. ∇∗, ∇g) will be denoted by R (resp. R∗,

Rg). The two curvature tensors R and R∗ are related by the formula

g(R(X,Y )Z,W ) = −g(R∗(X,Y )W,Z). (2)

The following conditions are equivalent:
1) R = R∗,
2) the (1, 3)-tensor field ∇gK is symmetric,
3) g(R(X,Y )Z,W ) is skew-symmetric relative to Z,W , for every X,Y,Z,W .
Statistical structures satisfying the second condition were called conjugate

symmetric in [4]. The above conditions are well-known in affine differential geom-
etry, where they characterize equiaffine spheres.

Except for the curvature tensors R and R∗ we have the curvature tensor
[K,K] given by

[K,K](X,Y )Z = [KX ,KY ]Z = KXKY Z − KY KXZ. (3)

This curvature tensor has all algebraic properties needed to define a sectional
curvature. In particular, g[KX ,KY ]Z,W ) = −g[KX ,KY ]W,Z). Therefore, we
can define the K-sectional curvature kK as follows

kK(Π) = g([K,K](X,Y )Y,X), (4)



On the Tangent Bundles of Statistical Manifolds 201

for a vector plane Π ⊂ TpM and its orthonormal basis X,Y .
There exist a few nice formulas relating various curvatures on a statistical

manifold. Recall those, which are important for formulating and proving the
formulas from the last section of this paper. Firstly, we have

R(X,Y ) = Rg(X,Y ) + (∇g
XK)Y − (∇g

Y K)X + [KX ,KY ], (5)

R(X,Y ) = Rg(X,Y ) + (∇XK)Y − (∇Y K)X − [KX ,KY ], (6)

Writing (5) for the dual structure (g,∇∗) and adding both equalities we get

R(X,Y ) + R∗(X,Y ) = 2Rg(X,Y ) + 2[KX ,KY ]. (7)

The tensor field
R(X,Y ) =

1
2
(R(X,Y ) + R∗(X,Y )) (8)

has the same algebraic properties as the Riemannian curvature tensor. In particu-
lar, g(R(X,Y )Z,W ) = −g(R(X,Y )W,Z). Therefore, we can define a sectional
curvature of (g,∇) by means of R, which, in general, is not possible using sep-
arately R or R∗. If a statistical structure is conjugate symmetric, then R = R
and we can define the sectional curvature just for ∇. Of course, we still have the
sectional curvature kg determined by g and ∇g.

For each above curvature tensor we can define the Ricci tensor in the stan-
dard manner. Denote by Ric g, Ric , Ric ∗, Ric, Ric K the Ricci tensors for the
curvature tensors Rg, R, R∗, R and [K,K] respectively. In particular, we have

Ric =
Ric + Ric ∗

2
. (9)

Having the Ricci tensors, one can define scalar curvatures as the traces rel-
ative to g of the corresponding Ricci tensors. In particular, we have the scalar
curvature ρ for ∇, that is,

ρ = tr gRic . (10)

Similarly we can define the scalar curvature ρ∗ for ∇∗, but for any statistical
structure ρ = ρ∗ (by (2)).

We have the 1-form τ on M given by τ(X) = tr KX . It is called the first
Koszul form (or the Czebyszev form – in affine differential geomtry, e.g. [5]). If
νg is the volume form determined by g, then ∇Xνg = −τ(X)νg. We now have

dτ(X,Y ) = tr R(X,Y ). (11)

Hence, the Ricci tensor Ric of ∇ is symmetric if and only if τ is closed. The
same holds for Ric ∗. In particular, the Ricci tensor Ric is symmetric if and
only if the (0, 2)- tensor ∇τ is symmetric (equivalently ∇gτ is symmetric). The
second Koszul form is the (0, 2)-tensor field ∇τ . If a statistical structure is conju-
gate symmetric, then its Ricci tensor Ric is automatically symmetric. The Ricci
tensor is symmetric if and only if Ric = Ric ∗.
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If τ = 0, the statistical structure is called traceless (or apolar). Such struc-
tures play a fundamental role in the classical affine differential geometry, see
[5,7].

The form τ appears also in subsequent curvature formulas. For instance, we
have

Ric K(X,Y ) = −tr (KXKY ) + τ(K(X,Y )), (12)

Ric (X,Y ) = Ric g(X,Y ) + Ric K(X,Y ) + (div ∇g

K)(X,Y ) − ∇gτ(X,Y ), (13)

where (div ∇g

K)(X,Y ) = tr {TpM � U → (∇g
UK)(X,Y ) ∈ TpM}.

Recall also the following relation between the scalar curvature ρ and the
metric scalar curvature ρg. The formula is known in affine differential geometry
as the affine theorema egregium.

ρg = ρ + ‖K‖2 − ‖τ‖2. (14)

For later use we introduce a tensor field r of type (1, 3) by the formula

2g(W, r(X,Y,Z)) = g(R(W,X)Y,Z). (15)

A statistical structure (g,∇) is Hessian if and only if the statistical connection
∇ is flat, [13]. The structure is automatically conjugate symmetric and, by (5),
Rg = −[K,K]. Conversely, using again (5), one sees that if a statistical struc-
ture is conjugate symmetric and Rg = −[K,K], then the structure is Hessian.
Note that each Hessian manifold can be locally realized on an equiaffine sphere,
which, as a manifold, is a locally strongly convex hypersurface in an affine space
Rn+1, where n = dimM. In general, the theory of equiaffine (or, in another
terminology, relative) hypersurfaces in Rn+1 provides a lot of examples of sta-
tistical structures satisfying many remarkable properties. But, in general, not
all statistical structures can be realized (even locally) on affine hypersurfaces.
In particular, a necessary condition for the local realizability is the projective
flatness of the dual connection. This condition is very restrictive. For the theory
of affine hypersurfaces we refer to [5] or [7].

3 The Sasaki Metric Determined by A statistical
Structure

Let M be an n-dimensional manifold. Consider the tangent bundle π : TM →
M. Denote by TTM the tangent bundle of TM.

Take the differential π∗ : TTM → TM. For each point ξ ∈ TM the space
Vξ = ker (π∗)ξ is called the vertical vertical space at ξ. The space Vξ can be
easily identified with Tπ(ξ)M. Namely, let p = π(ξ) and X ∈ TpM. We define
the vertical lift Xv

ξ of X to ξ by saying that the curve t → ξ + tX lying in
the affine space TpM is an integral curve of the vector Xv

ξ . We shall write it as
follows: Xv

ξ = [t → ξ + tX]. It is clear that Vξ = {Xv
ξ : X ∈ TpM} and the
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assignment TpM � X → Xv
ξ ∈ Vξ is a linear isomorphism. The vertical bundle

V =
⋃

ξ∈TM is a smooth n-dimensional vector subbundle of TTM, so it is a
distribution in TTM. The distribution is clearly integrable.

Let ∇ be a connection on M. The connection determines the horizontal
distribution H =

⋃
ξ∈TM Hξ in TTM complementary to V, that is, Hξ ⊕ Vξ =

TξTM for each ξ ∈ TM. We now briefly explain how to obtain the horizontal
distribution. For details we refer to [1]. The horizontal lift Xh

ξ of a vector X ∈
TpM can be obtained as follows. Take a geodesic (relative to ∇) γ(t) determined
by X. By using the parallel transport of the vector ξ along γ relative to ∇ we
obtain a curve t → ξt in TM, where ξ0 = ξ. We set Xh

ξ = [t → ξt]. We see that
(π∗)ξ(Xh

ξ ) = [t → π(ξt)] = [t → γ(t)] = X. We now set Hξ = {Xh
ξ ; X ∈ TpM}.

The assignment X ∈ TpM → Xh
ξ ∈ Hξ is a linear isomorphism. If X is a smooth

vector field on M, then Xv and Xh will stand for the vertical and horizontal
lifts to TM. The vertical and horizontal lifts are smooth vector fields on TM.
Of course, X can be a locally defined vector field, say on U ⊂ M, and then the
lifts are defined on TM|U .

For a smooth function f on M we have the function F = f ◦ π on TM. It is
clear that

XvF = 0, (XhF )ξ = (Xf)π(ξ). (16)

We have the following formulas for the Lie bracket of vertical and horizontal
lifts of vector fields on M, e.g. [1].

Lemma 1. If X,Y ∈ X (M), then we have

[Xv, Y v] = 0, [Xh, Y v] = (∇XY )v, [Xh, Y h]ξ = [X,Y ]hξ − (R(X,Y )ξ)v
ξ ,

(17)
where R is the curvature tensor of ∇.

The almost complex J structure on the manifold TM is given as follows:

JXv = Xh, JXh = −Xv for X ∈ X (M). (18)

Using Lemma 1 and computing the Nijenjuis product [J, J ] one proves, [1].

Proposition 1. The almost complex structure J is complex if and only if the
connection ∇ is without torsion and its curvature tensor R vanishes.

Assume now that we have a statistical structure (g,∇) on M. The metric
tensor field g can be lifted to TM in various ways. It is natural to use a combi-
nation of the ideas proposed in [11] and [1]. In the literature concerning the lifts
of structures to tangent bundles a few other types of lifts are studied.

We consider the following metric tensor field g̃ on TM :

g̃(Xv, Y v) = g(X,Y ) = g̃(Xh, Y h), g̃(Xv, Y h) = 0. (19)

The metric tensor g̃ is called the Sasaki metric, although Sasaki used in his
construction the Levi-Civita connection ∇g.
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The metric tensor g̃ is almost Hermitian relative to J . One also sees that the
almost symplectic form ω of this almost Hermitian structure is symplectic. To
prove that dω = 0 it is sufficient to use (1) and the first Bianchi identity for the
dual connection ∇∗, [12].

4 Curvatures of the Sasaki Metric

Using properties of the curvatures mentioned in Sect. 2 and making suitable
computations, see [10], one obtains formulas for the curvatures of g̃.

Proposition 2. The curvature tensor Rg̃
ξ of g̃ is given by the following formulas:

Rg̃(Xv, Y v)Zv = ([KY ,KX ]Z)v

+{r(K(X,Z), ξ, Y ) − r(K(Y,Z), ξ,X)}h,
(20)

Rg̃(Xv, Y v)Zh = {K(r(Z, ξ, Y ),X) − K(r(Z, ξ,X), Y )}v

+{Rg(X,Y )Z + r(r(Z, ξ, Y ), ξ,X) − r(r(Z, ξ,X), ξ, Y )}h,
(21)

Rg̃(Xv, Y h)Zh = {− 1
2R(Y,Z)X + [KX ,KY ]Z + ∇K(Y,X,Z)
− 1

2R(Y, r(Z, ξ,X))ξ}v

+{− 1
2K(X,R(Y,Z)ξ) + r(K(Y,Z), ξ,X) + (∇Y r)(Z, ξ,X)
−K(Y, r(Z, ξ,X)) − r(Y, ξ,K(X,Z))}h,

(22)

Rg̃(Xv, Y h)Zv = {K(r(Y, ξ, Z),X) + 1
2R(Y,K(X,Z))ξ}v

+{[KY ,KX ]Z + r(r(Y, ξ, Z), ξ,X)
−r(Y,X,Z) − (∇K)(Y,X,Z)}h,

(23)

Rg̃(Xh, Y h)Zh = (Rg(X,Y )Z)h

+ 1
2{r(X, ξ,R(Y,Z)ξ) − r(Y, ξ,R(X,Z)ξ) − 2r(Z, ξ,R(X,Y )ξ)}h

1
2{(∇ZR)(X,Y ) − R(Y,K(X,Z))ξ + R(X,K(Y,Z))ξ

+K(X,R(Y,Z)ξ) − K(Y,R(X,Z)ξ) − 2K(Z,R(X,Y )ξ)}v

(24)

Rg̃(Xh, Y h)Zv = (Rg(X,Y )Z)v

+ 1
2{R(X, r(Y, ξ, Z))ξ − R(Y, r(X, ξ, Z))ξ}v

+{(∇Y r)(X, ξ, Z) − (∇Xr)(Y, ξ, Z)
+K(X, r(Y, ξ, Z)) − K(Y, r(X, ξ, Z) + K(R(X,Y )ξ, Z)

+r(X, ξ,K(Y,Z))}h

(25)

In what follows e1, ..., en will stand for an orthonormal basis of TpM, where
p = π(ξ).

Proposition 3. For any statistical structure and the induced Riemannian struc-
ture in the tangent bundle we have

Ric g̃(Y v, Zv) = 1
2 (Ric (Y,Z) − Ric ∗(Y,Z)) + ∇τ(Y,Z)

+ 1
4

∑n
ij=1 g(R(ei, ej)ξ, Y )g(R(ei, ej)ξ, Z)

= −(div ∇g

K)(Y,Z) − τ(K(Y,Z))
+ 1

4

∑n
ij=1 g(R(ei, ej)ξ, Y )g(R(ei, ej)ξ, Z)

(26)

Ric g̃(Y h, Zh) = Ric(Y,Z) + 1
2∇τ(Y,Z) + 1

2∇τ(Z, Y )
− 1

2

∑n
i=1 g(R(ei, Y )ξ,R(ei, Z)ξ). (27)
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As a consequence we obtain

Corollary 1. For any statistical structure we have the following formula for the
scalar curvature ρg̃ of the Sasakian metric on the tangent bundle

ρg̃
ξ = ρ + 2tr g∇τ − 1

4

n∑

ij=1

‖R(ei, ej)ξ‖2. (28)

Denote by kg̃(Xa ∧ Y b), where a, b = v or h, the sectional curvature of g̃ by
span{Xa, Y b}. Let Xa, Y b be a pair of unit vectors in TξTM. By Proposition 2
we have

Proposition 4. For any statistical structure we have

kg̃(Xv ∧ Y v) = −kK(X ∧ Y ), (29)

kg̃(Xh ∧ Y h) = kg(X ∧ Y ) − 3
4
‖R(X,Y )ξ‖2, (30)

kg̃(Xv ∧ Y h) = kK(X ∧ Y ) + g(∇K(Y,X, Y ),X) + ‖r(Y, ξ,X)‖2. (31)

For a Hessian structure we have

kg̃(Xv ∧ Y v) = kg(X ∧ Y ), (32)

kg̃(Xh ∧ Y h) = kg(X ∧ Y ), (33)

kg̃(Xv ∧ Y h) = −kg(X ∧ Y ) + g(∇K(Y,X, Y ),X). (34)

Recall a classical theorem of Sasaki, [3,11].

Theorem 2. Let g be a metric tensor on M and g̃ be the Sasaki metric on TM
determined by g and ∇g. Then g̃ is flat if and only if g is flat.

In [2] a few generalizations of this theorem were proved. For instance,

Theorem 3. Let g be a metric tensor on M and g̃ the Sasaki metric on TM
determined by g and ∇g. If the sectional curvature of g̃ is bounded on TM, then
g is flat on M.
The scalar curvature of g̃ is constant on TM if and only if g is flat on M.

Using the formulas presented in this section we can formulate the following
generalizations of the above theorems.

Theorem 4. Let (g,∇) be a statistical structure on M and g̃ be the Sasakian
metric on TM determined by g and ∇. If ∇ is not flat, then the sectional
curvature of g̃ on TM is unbounded from above and below.
If ∇ is not flat, then the scalar curvature of g̃ is unbounded from below on TM.

Note that in the case of the Sasakian metrics determined by statistical struc-
tures, the flatness of a statistical connection (i.e. for Hessian structures) does
not imply the flatness of the Sasakian metric. Namely, we have
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Theorem 5. If the Sasakian metric on the tangent bundle of a statistical man-
ifold is flat, then the statistical structure is Hessian, its Riemannian metric is
flat and its difference tensor is parallel relative to the statistical connection. The
converse is also true.

The Hessian structure from the last theorem, although it satisfies many con-
ditions, does not have to be trivial. Namely, consider the following example

Example 1. Let M = {x = (x1, ..., xn) ∈ Rn+1 : xi > 0 ∀i = 1, ..., n}. Let g
be the standard flat metric tensor field on M and let e1, ..., en be the canonical
basis in Rn+1. Define a symmetric (1, 2)-tensor field K on M as follows

K(ei, ej) = 0 for i �= j,
K(ei, ei) = λiei for i = 1, ..., n,

(35)

where λi(x) = −x−1
i . One sees that K is symmetric relative to g and [K,K] = 0.

When we define ∇ = ∇g +K, then the statistical structure (g,∇) is non-trivial,
Hessian, g is flat and ∇K = 0.
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Abstract. The aim of this work is to prove that the Amari manifold of
beta distributions of the first kind distribution have dual potential, dual
coordinate pairs and his corresponding gradient system is linearizable
and Hamiltonian.

Keywords: Hamiltonian system · statistical manifold · gradient
system

1 Introduction

In 1993, Nakamura’s work [7], pointed out that certain gradient flows on Gaus-
sian and multinomial distributions are completely integrable Hamiltonian sys-
tems. In the same year, Fujiwara’s work [6] propose a prove of a theorem giving a
method of studying the complete integrability of gradient systems for some even
dimensional statistical manifold with a potential function. This work is focuses
on the study of gradient systems defined on

S =
{

pθ : [0; 1] −→ [0; 1];
∫ 1

0

pθ(x)dx = 1
}

, θ = (a, b) ∈ R
∗
+ × R

∗
+;

where
pθ(x) =

1
B(a, b)

xa−1(1 − x)b−11l[0,1](x),

is the Beta distribution law of the first kind. It is also obvious that this family
have a potential function see [8]. Therefore, according to Amari’s Theorem 3.4
in [1], it have a pair of dual coordinates {θ, η}. More explicitly, as in [8],

pθ(x) = exp [θ1 log(x) + θ2 log(1 − x) − Φ(θ)]

with θ = (θ1, θ2), θ1 = a − 1, θ2 = b − 1 and Φ(θ) = log(B(θ1 + 1, θ2 + 1)).
Therefore, according to Ovidiu [8], Φ is its related potential function. We can
then conclude that our model have

(θi, ηi = ∂θi
Φ)
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as dual coordinate pair. In this work we show that (θ, η) satisfying the following
biorthogonal property:

g(∂θi
, ∂ηj

) = δj
i .

With g the Fisher information metric. Where the natural basis of the tangent
space TpS at a point p ∈ S is

{∂θi
=

∂

∂θi
}

with respect to the coordinate system θ, and

{∂ηi
=

∂

∂ηi
}

with respect to the associated dual coordinate system η. Furthermore, we deduce
from the Legendre equation the following expression of the dual potential func-
tion

Ψ = θiηi − Φ.

It should be noted that the dual potential function is known as entropy in
Koszul’s work in [4]. We can then conclude that the gradient system of our
model (S, g) is linearizable and it is equivalent to

η̇i = −ηi.

We show that the dual potential function can be put in the following form:

Ψ(η) = E [− log q(X, θ)]

where qθ is the density at maximum entropy and it is defined by:

q(x, θ) =
e−(θ1 log x+θ2 log(1−x))∫ 1

0
e−(θ1 log x+θ2 log(1−x))dx

.

Using qθ, we show that Hamiltonian function’s which is associate to our gradient
system is

H =
E[− log(1 − x)]
E[− log(x)]

.

2 Riemannian Structure on Set of Beta Distributions

According to Ovidiu’s [8], the Beta law of the first kind distribution given by:

pθ(x) =
1

B(a, b)
xa−1(1 − x)b−11l[0,1](x), (1)

with

(a, b) ∈ IR∗
+ × IR∗

+, B(a, b) =
∫ 1

0

xa−1.(1 − x)b−1dx,

∫ 1

0

pθ(x)dx = 1.
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In this section we present the geometric structure that we will study came from
the work J.L.Koszul’s work recalled by Barbaresco [2–4]. According to Ovidiu [8],
the manifold defined from exponential families and admit a potential function.
Let us state the following proposition

Proposition 1. The probability density

pθ(x) =
1

B(θ1 + 1, θ2 + 1)
xθ1(1 − x)θ21l[0,1](x)

is of exponential family, with

θ = (θ1, θ2) ∈] − 1;+∞[×] − 1;+∞[, B(θ1 + 1, θ2 + 1) =
∫ 1

0

xθ1 .(1 − x)θ2dx.

Proof. The density function (1) can be rewritten as follows:

pθ(x) = exp [− log(x) − log(1 − x) + a log(x) + b log(1 − x) − log(B(a, b))] .

Which imply that

log pθ(x) = − log(x) − log(1 − x) + a log(x) + b log(1 − x) − log(B(a, b)).

According to Ovidiu Calin [8], (1) is of exponential family. We write,

log pθ(x) = (a − 1) log(x) + (b − 1) log(1 − x) − log(B(a, b)).

And denote,

θ1 = a − 1, θ2 = b − 1; θ = (θ1, θ2) ∈] − 1;+∞[×] − 1;+∞[

a new parametrization. The Beta law of the first kind distribution (1) become

pθ(x) =
1

B(θ1 + 1, θ2 + 1)
xθ1(1 − x)θ21l[0,1](x) (2)

and

B(θ1 + 1, θ2 + 1) =
∫ 1

0

xθ1 .(1 − x)θ2dx.

Then

log pθ(x) = θ1 log(x) + θ2 log(1 − x) − log(B(θ1 + 1, θ2 + 1)).

According to Ovidiu Calin [8], (2) is also of exponential family. Since

l(x, θ) = log pθ(x) = θ1f1(x) + θ2f2(x) − Φ(θ), (3)

with

Φ(θ) = log(B(θ1 + 1, θ2 + 1)) = log
∫ 1

0

xθ1 .(1 − x)θ2dx. (4)

f1(x) = log(x), f2(x) = log(1 − x).

��
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2.1 Existence of a Pair of Dual Coordinates

Let

S =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

pθ(x) =
1

B(θ1 + 1, θ2 + 1)
xθ1(1 − x)θ2 ,

θ1, θ2 ∈] − 1;+∞[
x ∈ [0; 1]
B(θ1 + 1, θ2 + 1) =∫ 1

0
xθ1 .(1 − x)θ2dx∫ 1

0
pθ(x)dx = 1

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

be the statistical manifold. The function Φ defined by (4) is called potential
function. As this family admits a potential function then it follow from Amari’s
Theorem 3.5 and 3.4 that there exists functions Φ and Ψ such that:

ηi = ∂iΦ(θ), θi = ∂iΨ(η). (5)

are dual coordinates of S. It is well known that Φ and Ψ satisfy the following
Legendre equation

Ψ(η) = θiηi − Φ(θ). (6)
Using (4) and (5) we have

η1 =

∫ 1

0
log(x)e(θ1 log x+θ2 log(1−x))dx∫ 1

0
e(θ1 log x+θ2 log(1−x))dx

, η2 =

∫ 1

0
log(1 − x)e(θ1 log x+θ2 log(1−x))dx∫ 1

0
e(θ1 log x+θ2 log(1−x))dx

.

(7)
We define,

gij = 〈∂θi
, ∂θj

〉g := g
(
∂θi

, ∂θj

)
. (8)

Then we can use the Amari’s [1], l−representation associated respectively to
coordinate θ and η; and define the following scalar production on Tθ where Tθ

is the l−representation of the tangent space with respect to the coordinate θ,

gij = E
[
∂θi

l(θ, x)∂θj
l(θ, x)

]
= −E

[
∂θi

∂θj
l(θ, x)

]
. (9)

Using (8), (9) and (3) we have:

g (∂θ1 l(x, θ), ∂η1 l(x, θ))=E

[
∂η1

(∫ 1

0
log(x)e(θ1 log x+θ2 log(1−x))dx∫ 1

0
e(θ1 log x+θ2 log(1−x))dx

)]
= E [1]=1.

g (∂θ1 l(x, θ), ∂η2 l(x, θ)) = E

[
∂η2

(∫ 1

0
log(x)e(θ1 log x+θ2 log(1−x))dx∫ 1

0
e(θ1 log x+θ2 log(1−x))dx

)]
= 0.

g (∂θ2 l(x, θ), ∂η2 l(x, θ)) = E

[
∂η2

(∫ 1

0
log(1 − x)e(θ1 log x+θ2 log(1−x))dx∫ 1

0
e(θ1 log x+θ2 log(1−x))dx

)]
= 1.

Then the two bases {∂θi
}2i=1 and {∂ηj

}2j=1, are said to be biorthogonal. There-
fore,

Ψ(η) =
∫ 1
0 θ1 log(x)e(θ1 log x+θ2 log(1−x))dx

∫ 1
0 e(θ1 log x+θ2 log(1−x))dx

+
∫ 1
0 θ2 log(1−x)e(θ1 log x+θ2 log(1−x))dx

∫ 1
0 e(θ1 log x+θ2 log(1−x))dx

− log
∫ 1

0
e(θ1 log x+θ2 log(1−x))dx

represent the dual potential of the potential Φ. In the following section we show
that this dual potential is an entropy.
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2.2 Potential Function and Shannon Entropy

The potential function is given by:

Φ(θ) = − log
1∫ 1

0
e(θ1 log x+θ2 log(1−x))dx

= − log
∫ 1

0

e−(θ1 log x+θ2 log(1−x))dx.

(10)
Let us state the following Theorem which will allow us to prove that the dual
potential an entropy.

Theorem 1. Let S be the statistical manifold. Then, the associate dual potential
function Ψ , solution of Legendre equation (6) is

Ψ(η) = E [− log q(X, θ)] (11)

with

q(x, θ) =
e−(θ1 log x+θ2 log(1−x))∫ 1

0
e−(θ1 log x+θ2 log(1−x))dx

.

Proof. Using (10) we have

η1 = −
∫ 1
0 − log(x)e−(θ1 log x+θ2 log(1−x))dx

∫ 1
0 e−(θ1 log x+θ2 log(1−x))dx

;

η2 = −
∫ 1
0 − log(1−x)e−(θ1 log x+θ2 log(1−x))dx

∫ 1
0 e−(θ1 log x+θ2 log(1−x))dx

.

⎫⎬
⎭ (12)

According to Amari’s [1] the entropy function is given by the relation (6). There-
fore

Ψ(η) = log
∫ 1

0
e−(θ1 log x+θ2 log(1−x))dx −

∫ 1
0 −θ1 log(x)e−(θ1 log x+θ2 log(1−x))dx

∫ 1
0 e−(θ1 log x+θ2 log(1−x))dx

−
∫ 1
0 −θ2 log(1−x)e−(θ1 log x+θ2 log(1−x))dx

∫ 1
0 e−(θ1 log x+θ2 log(1−x))dx

⎫⎬
⎭
(13)

so,

q(x, θ) =
−e(θ1 log x+θ2 log(1−x))∫ 1

0
e−(θ1 log x+θ2 log(1−x))dx

(14)

is the maximum entropy density. By applying the one 1−form of Koszul

η = α = dΦ(θ)

and Koszul’s normalisation contraint as in [4], We have the following constraints:

η1 = − ∫ 1

0
− log(x)e−(θ1 log x+θ2 log(1−x))

∫ 1
0 e−(θ1 log x+θ2 log(1−x))dx

dx;

η2 = − ∫ 1

0
− log(1−x)e−(θ1 log x+θ2 log(1−x))

∫ 1
0 e−(θ1 log x+θ2 log(1−x))dx

dx

⎫⎬
⎭ (15)

and ∫ 1

0

q(x, θ)dx =
∫ 1

0

e−(θ1 log x+θ2 log(1−x))∫ 1

0
e−(θ1 log x+θ2 log(1−x))dx

dx = 1.
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We denote

Ψ(η) = log
∫ 1

0
e−(θ1 log x+θ2 log(1−x))dx − ∫ 1

0
−θ1 log(x)

e−(θ1 log x+θ2 log(1−x))
∫ 1
0 e−(θ1 log x+θ2 log(1−x))dx

dx

− ∫ 1

0
−θ2 log(1− x) e−(θ1 log x+θ2 log(1−x))

∫ 1
0 e−(θ1 log x+θ2 log(1−x))dx

dx.

⎫
⎬

⎭

(16)

An we obtain

Ψ(η) = log
∫ 1

0
e−(θ1 log x+θ2 log(1−x))dx

− ∫ 1

0
(−θ1 log x − θ2 log(1 − x)) e−(θ1 log x+θ2 log(1−x))

∫ 1
0 e−(θ1 log x+θ2 log(1−x))dx

dx.

}
(17)

The relation (17) becomes:

Ψ(η) = log
∫ 1

0
e−(θ1 log x+θ2 log(1−x))dx

− ∫ 1

0

(
log e−(θ1 log x+θ2 log(1−x))

)
. e−(θ1 log x+θ2 log(1−x))
∫ 1
0 e−(θ1 log x+θ2 log(1−x))dx

dx.

}
(18)

So we can write

Ψ(η) = −
[
− log

∫ 1

0
e−(θ1 log x+θ2 log(1−x))dx.

(∫ 1

0
e−θ1 log x−θ2 log(1−x)

∫ 1
0 e−(θ1 log x+θ2 log(1−x))dx

dx
)

+
∫ 1

0
log e−(θ1 log x+θ2 log(1−x)). e−(θ1 log x+θ2 log(1−x))

∫ 1
0 e−(θ1 log x+θ2 log(1−x))dx

dx
]

⎫⎬
⎭

(19)
and obtain the following relation

Ψ(η) = −
[∫ 1

0

e−θ1 log x−θ2 log(1−x)∫ 1

0
e−(θ1 log x+θ2 log(1−x))dx

. log

(
e−θ1 log x−θ2 log(1−x)∫ 1

0
e−(θ1 log x+θ2 log(1−x))dx

)
dx

]

(20)
the relation (20) becomes

Ψ(η) =
∫ 1

0

(− log qθ(x)) .qθ(x)dx. (21)

Therefore:
Ψ(η) = E [− log q(X, θ)] .

��
Therefore it follow from this Theorem and Koszul’s work that (14) is the density
function at maximum entropy.

2.3 Associated Information Metric

To make the link with the Koszul’s work, recalled by Barbaresco [2,5] we note
the Fisher metric by I(θ) = [gij ] given by Amari [1] is a Hessian metric, which
is written as the Hessian of a potential function given by:

[gij ] =

(
− ∂2Φ(θ)

∂θ1∂θ1
− ∂2Φ(θ)

∂θ1∂θ2

− ∂2Φ(θ)
∂θ2∂θ1

− ∂2Φ(θ)
∂θ2∂θ2

)
.
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Thus we have the Koszul’s metric associated with the model on the manifold S:

[gij ] =
[

A1(θ) A2(θ)
A2(θ) A3(θ)

]

with

A1(θ)= −
∫ 1

0
log2(x)e(θ1 log x+θ2 log(1−x))dx∫ 1

0
e(θ1 log x+θ2 log(1−x))dx

+

(∫ 1

0
log(x)e(θ1 log x+θ2 log(1−x))dx

)2
(∫ 1

0
e(θ1 log x+θ2 log(1−x))dx

)2 ;

A2(θ) = −
∫ 1
0 log(x) log(1−x)e(θ1 log x+θ2 log(1−x))dx

∫ 1
0 e(θ1 log x+θ2 log(1−x))dx

+(
∫ 1
0 log(x)e(θ1 log x+θ2 log(1−x))dx)(

∫ 1
0 log(1−x)e(θ1 log x+θ2 log(1−x))dx)

(
∫ 1
0 e(θ1 log x+θ2 log(1−x))dx)2

;

A3(θ) = −
∫ 1
0 log2(1−x)e(θ1 log x+θ2 log(1−x))dx

∫ 1
0 e(θ1 log x+θ2 log(1−x))dx

+ (
∫ 1
0 log(1−x)e(θ1 log x+θ2 log(1−x))dx)2

(
∫ 1
0 e(θ1 log x+θ2 log(1−x))dx)2

.

2.4 Associated Gradient System

The objective in this part is to build the gradient system defined on S.
The inverse of the matrix:

[gij ]−1 =
[

B1(θ) B2(θ)
B2(θ) B3(θ)

]

with

B1(θ) = − (
∫ 1
0 log2(1−x)e(θ1 log x+θ2 log(1−x))dx)(

∫ 1
0 e(θ1 log x+θ2 log(1−x))dx)

m(θ)(
∫ 1
0 e(θ1 log x+θ2 log(1−x))dx)2

+(
∫ 1
0 log(1−x)e(θ1 log x+θ2 log)dx)2

m(θ)(
∫ 1
0 e(θ1 log x+θ2 log(1−x))dx)2

;

B2(θ) =
(
∫ 1
0 log(x) log(1−x)e(θ1 log x+θ2 log(1−x))dx)(

∫ 1
0 e(θ1 log x+θ2 log(1−x))dx)

m(θ)(
∫ 1
0 e(θ1 log x+θ2 log(1−x))dx)2

−(
∫ 1
0 log(x)e(θ1 log x+θ2 log(1−x))dx)(

∫ 1
0 log(1−x)e(θ1 log x+θ2 log(1−x))dx)

m(θ)(
∫ 1
0 e(θ1 log x+θ2 log(1−x))dx)2

;

B3(θ) = − (
∫ 1
0 log2(x)e(θ1 log x+θ2 log(1−x))dx)(

∫ 1
0 e(θ1 log x+θ2 log(1−x))dx)

m(θ)(
∫ 1
0 e(θ1 log x+θ2 log(1−x))dx)2

−(
∫ 1
0 log(x)e(θ1 log x+θ2 log(1−x))dx)2

m(θ)(
∫ 1
0 e(θ1 log x+θ2 log(1−x))dx)2

.
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where

m(θ) = − (
∫ 1
0 log2(x)e(θ1 log x+θ2 log(1−x))dx)(

∫ 1
0 log2(1−x)e(θ1 log x+θ2 log(1−x))dx)

(
∫ 1
0 e(θ1 log x+θ2 log(1−x))dx)4

×(∫ 1

0
e(θ1 log x+θ2 log(1−x))dx

)2
− (

∫ 1
0 log2(x)e(θ1 log x+θ2 log(1−x))dx)
(
∫ 1
0 e(θ1 log x+θ2 log(1−x))dx)4

×(∫ 1

0
log(1 − x)e(θ1 log x+θ2 log(1−x))dx

)2 (∫ 1

0
e(θ1 log x+θ2 log(1−x))dx

)

− (
∫ 1
0 log(x)e(θ1 log x+θ2 log(1−x))dx)2(

∫ 1
0 log(1−x)e(θ1 log x+θ2 log(1−x))dx)

(
∫ 1
0 e(θ1 log x+θ2 log(1−x))dx)4

×(∫ 1

0
e(θ1 log x+θ2 log(1−x))dx

)
+ (

∫ 1
0 log(x)e(θ1 log x+θ2 log(1−x))dx)2

(
∫ 1
0 e(θ1 log x+θ2 log(1−x))dx)4

×(∫ 1

0
log(1 − x)e(θ1 log x+θ2 log(1−x))dx

)2
− ((

∫ 1
0 log(x) log(1−x)e(θ1 log x+θ2 log(1−x))dx)(

∫ 1
0 e(θ1 log x+θ2 log(1−x))dx)

(
∫ 1
0 e(θ1 log x+θ2 log(1−x))dx)4

− (
∫ 1
0 log(x)e(θ1 log x+θ2 log(1−x))dx)(

∫ 1
0 log(1−x)e(θ1 log x+θ2 log(1−x))dx))2

(
∫ 1
0 e(θ1 log x+θ2 log(1−x))dx)4

.

So, the gradient system will therefore be written as follows:

θ̇1 = (
∫ 1
0 log2(1−x)e(θ1 log x+θ2 log(1−x))dx)(

∫ 1
0 log(x)e(θ1 log x+θ2 log(1−x))dx)

m(θ)(
∫ 1
0 e(θ1 log x+θ2 log(1−x))dx)3

×(∫ 1

0
e(θ1 log x+θ2 log(1−x))dx

)
− (

∫ 1
0 log(x)e(θ1 log x+θ2 log(1−x))dx)3

m(θ)(
∫ 1
0 e(θ1 log x+θ2 log(1−x))dx)3

− (
∫ 1
0 log(1−x)e(θ1 log x+θ2 log(1−x))dx)(

∫ 1
0 log(x) log(1−x)e(θ1 log x+θ2 log(1−x))dx)

m(θ)(
∫ 1
0 e(θ1 log x+θ2 log(1−x))dx)3

×(∫ 1

0
e(θ1 log x+θ2 log(1−x))dx

)
− (

∫ 1
0 log(x)e(θ1 log x+θ2 log(1−x))dx)

m(θ)(
∫ 1
0 e(θ1 log x+θ2 log(1−x))dx)3

×(∫ 1

0
log(1 − x)e(θ1 log x+θ2 log(1−x))dx

)2
θ̇2 = − (

∫ 1
0 log(x)e(θ1 log x+θ2 log(1−x))dx)(

∫ 1
0 log(x) log(1−x)e(θ1 log x+θ2 log(1−x))dx)

m(θ)(
∫ 1
0 e(θ1 log x+θ2 log(1−x))dx)3

×(∫ 1

0
e(θ1 log x+θ2 log(1−x))dx

)
+ (

∫ 1
0 log(x)e(θ1 log x+θ2 log(1−x))dx)2

m(θ)(
∫ 1
0 e(θ1 log x+θ2 log(1−x))dx)3

×(∫ 1

0
log(1 − x)e(θ1 log x+θ2 log(1−x))dx

)
+ (

∫ 1
0 log(1−x)e(θ1 log x+θ2 log(1−x))dx)

m(θ)(
∫ 1
0 e(θ1 log x+θ2 log(1−x))dx)3

×(∫ 1

0
log2(1 − x)e(θ1 log x+θ2 log(1−x))dx

)(∫ 1

0
e(θ1 log x+θ2 log(1−x))dx

)

− (
∫ 1
0 log(1−x)e(θ1 log x+θ2 log(1−x))dx)3

m(θ)(
∫ 1
0 e(θ1 log x+θ2 log(1−x))dx)3

.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
(22)

We determine the linear system associated with this system gradient. So, we

calculate: −̇→η = [gij ]
−̇→
θ and obtain:(

η̇1
η̇2

)
=
[

A1(θ) A2(θ)
A2(θ) A3(θ)

]
.

(
η1
η2

)
.

And then (
η̇1
η̇2

)
=

⎛
⎝ −

∫ 1
0 e(θ1 log x+θ2 log(1−x)) log xdx

∫ 1
0 e(θ1 log x+θ2 log(1−x))dx

−
∫ 1
0 e(θ1 log x+θ2 log(1−x)) log(1−x)dx

∫ 1
0 e(θ1 log x+θ2 log(1−x))dx

⎞
⎠ .
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According the relation (7), we conclude that:
(

η̇1
η̇2

)
=
(−η1

−η2

)
.

So, the linear system associated with our gradient system is

η̇ = −η.

We have the following Theorem.

Theorem 2. The Hamiltonian of the gradient system (22 ) for the beta family
of the first species manifold is given by:

H =

∫ 1

0
log(1 − x)e(θ1 log(x)+θ2 log(1−x))dx∫ 1

0
log(x)e(θ1 log x+θ2 log(1−x))dx

and
H =

E[− log(1 − x)]
E[− log(x)]

,

which is a constant of motion of the dynamical system (22).

Proof. According to Fujiwara’s Theorem [6] we have

H =
η2
η1

. (23)

Using (7), we obtain:

H =

∫ 1

0
log(1 − x)e(θ1 log(x)+θ2 log(1−x))dx∫ 1

0
log(x)e(θ1 log x+θ2 log(1−x))dx

.

Using (10) we have the expression (12). By consider (14) the density at maximum
entropy we have the relation (15). Therefore (23) become:

H =
E[− log(1 − x)]
E[− log(x)]

.

By a direct calculation we obtain

dH
dt

=
∂H
∂θ1

dθ1
dt

+
∂H
∂θ2

dθ2
dt

. (24)

with

∂H
∂θ1

= −
∫ 1
0 log(1−x) log(x)e(θ1 log x+θ2 log(1−x))dx

∫ 1
0 log(x)e(θ1 log x+θ2 log(1−x))dx

+(
∫ 1
0 log(1−x)e(θ1 log x+θ2 log(1−x))dx)(

∫ 1
0 log2(x)e(θ1 log x+θ2 log(1−x))dx)

(
∫ 1
0 log(x)e(θ1 log x+θ2 log(1−x))dx)2

⎫⎪⎬
⎪⎭ (25)
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and

∂H
∂θ2

= −
∫ 1
0 log2(1−x)e(θ1 log x+θ2 log(1−x))dx
∫ 1
0 log(x)e(θ1 log x+θ2 log(1−x))dx

+(
∫ 1
0 log(1−x)e(θ1 log x+θ2 log(1−x))dx)(

∫ 1
0 log(x) log(1−x)e(θ1 log x+θ2 log(1−x))dx)

(
∫ 1
0 log(x)e(θ1 log x+θ2 log(1−x))dx)2

.

⎫⎪⎬
⎪⎭ (26)

Using (25) and (26) in (24) and the gradient system (22) we have:

dH
dt

= 0.

H is a constant of motion of the dynamical system (22). ��

3 Conclusion

The beta distribution of the first kind present the geometric structure that we
will study based on the work J.L.Koszul recalled by Barbaresco [2].

Acknowledgements. I gratefully acknowledge all my discussions with members of
ERAG of the University of Maroua. Thanks are due to Dr. Kemajou Theophile for
fruitful discussions.
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Abstract. The main concern of this paper is to prove that the vector
space IR2 have non trivial KV structures and some of them have non
trivail KV cohomology. We propose the explicite computation of one of
them.

Keywords: KV algebra · KV cohomology · Jacobi element

1 Introduction

In other to consolidate the following Gertenhaber assumption, every restricted
deformation theory generates its proper cohomology theory, [5], Boyom
complete the Nijenhuis work and define the complex of KV cohomology in [3].
Since that period it style hard to find paper in which KV structure and their KV
coholology are constructed on a given vector space. The aims of this paper is to
prove that IR2 admit non trivial KV structure and that some of KV structure
on IR2 have non trivial KV cohomology.

2 On the Space of KV Structures on IR2

Note (e1, e2) the canonical basis of IR2; (e∗
1, e

∗
2) its dual basis and Sol((IR2,KV )

the set of KV-structures on IR2. For any element μ of Sol((IR2,KV ), there exist
two bilinear forms Γi on IR2; i = 1, 2 such that μ = (Γ1, Γ2).
Each such Γi : IR2 −→ IR, i = {1, 2}, is entirely determine by a 2 × 2 matrix.
Let us consider the following such representations.

Γ1 =
(

Γ 1
11 Γ 1

12

Γ 1
21 Γ 1

22

)
, Γ2 =

(
Γ 2
11 Γ 2

12

Γ 2
21 Γ 2

22

)

By a straightforward computation, we have the following result.
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Lemma 1. μ = (Γ1, Γ2) define a KV structure on IR2 if and only if
Γ 1
11, Γ

1
22, Γ

2
11, Γ

2
22 satisfy the following relation.

⎧⎪⎪⎨
⎪⎪⎩

Γ 1
21(Γ

2
12 − Γ 1

11 − Γ 2
21) + Γ 1

12(Γ
1
11 − Γ 2

21) + Γ 1
22Γ

2
11 = 0

Γ 1
22(2Γ

2
12 − Γ 1

11 − Γ 2
21) + Γ 1

12(Γ
1
12 − Γ 2

22) = 0
Γ 2
11(Γ

1
12 − 2Γ 1

21 + Γ 2
22) + Γ 2

21(Γ
1
11 − Γ 2

21) = 0
Γ 2
12(Γ

1
12 − Γ 1

21 + Γ 2
22) + Γ 2

21(Γ
1
12 − Γ 2

22) − Γ 2
11Γ

1
22 = 0

(1)

We denote, Sol0(IR,KV ) the set solution μ = (Γ 1, Γ 2) of equation (1) such that
Γ 1, Γ 2 are not symmetric and Γ k

ij �= 0 for all k, i, j ∈ {1, 2}.
From relation (1) and the definition of the KV structures, we can easily prove
the following theorem.

Theorem 1. The set Sol((IR2,KV ) of KV structures on IR2 is;

Sol((IR2,KV ) � (IRe∗
2 ⊗ e∗

1 + IR∗e∗
2 ⊗ e∗

2) × (IR∗e∗
2 ⊗ e∗

2)∪
(IRe∗

2 ⊗ e∗
1 + IR∗e∗

1 ⊗ e∗
2 + IR∗e∗

2 ⊗ e∗
2) × (IRe∗

1 ⊗ e∗
2)∪

(IRe∗
1 ⊗ e∗

2 + IRe∗
2 ⊗ e∗

2) × (IRe∗
2 ⊗ e∗

1 + IRe∗
1 ⊗ e∗

2 + IRe∗
2 ⊗ e∗

2)∪
IR∗e∗

1 ⊗ e∗
1 × (IR∗e∗

1 ⊗ e∗
1 + IRe∗

1 ⊗ e∗
2)∪

IR∗e∗
1 ⊗ e∗

1 × (IR∗e∗
1 ⊗ e∗

1 + IR∗e1∗ ⊗ e∗
1 + IR∗e∗

1 ⊗ e∗
2)∪

(IR∗e∗
1 ⊗ e∗

1 + IRe∗
2 ⊗ e∗

1) × (IR∗e∗
1 ⊗ e∗

1 + IR∗e∗
2 ⊗ e∗

1)∪
IRe∗

1 ⊗ e∗
2 ∪ IRe∗

1 ⊗ e∗
1 ∪ (IRe∗

1 ⊗ e∗
1 + IRe∗

2 ⊗ e∗
2) × (IRe∗

1 ⊗ e∗
1 + IRe∗

2 ⊗ e∗
2)∪

Sol0(IR,KV )

(2)

and Sol0(IR,KV ) �= ∅.

To illustrate this theorem we will now study the set Γabc = {μabc = (ae∗
2 ⊗ e∗

1 +
be∗

2⊗e∗
2)e1+(ce∗

2⊗e∗
2)e2, a, b, c ∈ IR∗}. This is the main objective of the following

lemma.

Lemma 2. Γabc = {μabc; a, b, c} ⊂ Sol(IR,KV )

Proof. For any a, b, c ∈ IR, we denote

μabc = (αe∗
2 ⊗ e∗

1 + βe∗
2 ⊗ e∗

2)e1 + c(e∗
2 ⊗ e∗

2)e2. (3)

More explicitly, we have:
μabc(u, v) = (au2v1 + bu2v2)e1 + cu2v2e2.

For all u, v, w ∈ IR, such that u = u1e1 + u2e2, v = v1e1 + v2e2 and w =
w1e1 + w2e2. Denote

(KV1) (u, v, w) = (uv)w − u(vw)
(KV2) (v, u, w) = (vu)w − v(uw)
(KV3) (u, v, w) − (v, u, w)

According to the definition of μabc, we have: Firstly

uv = (au2v1 + bu2v2, cu2v2) = (X,Y )
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then
(uv)w = (aY w1 + bY w2, cY w2)

= (acu2v2w1 + bcu2v2w2, c
2u2v2w2)

Secondly vw = (av2w1 + bv2w2, cv2w2) = (T,Z).

u(vw) = (au2T + bu2Z, cu2Z)
= (au2(av2w1 + bv2w2) + bu2(cv2w2), c2u2v2w2)
= (a2u2v2w1 + acu2v2w2 + bcu2v2w2, c

2u2v2w2)

And then
(u, v, w) = (au2v2(cw1 − bw2) − a2u2v2w1, 0). (4)

In other hand, we have: Firstly vu = (av2u1 + bv2u2, cv2u2) = (X,Y ) and

(vu)w = (aY w1 + bY w2, cY w2)
= (acv2u2w1 + bcv2u2w2, c

2v2u2w2)

Secondly uw = (au2w1 + bu2w2, cu2w2) = (T,Z) and

v(uw) = (av2T + bv2Z, cv2Z)
= (a2v2u2w1 + abv2u2w2) + bcv2u2w2, c

2v2u2w2)

And then
(v, u, w) = (av2u2(cw1 − bw2) − a2v2u2w1, 0) (5)

The relations (4) and (5) allows us to complete the proof. 
�
In what follows, μ will designate μabc for a given (a, b, c) ∈ IR∗ × IR∗ × IR∗ of
non zero real numbers.

3 On the Koszul-Vulberg Cohomology of µ

Let q > 1 be a positive integer. Let Cq(IR2) be the vector space of all q-linear
maps from IR2 to IR2. Recall that Cq(IR2) is a IR2-KV-module with respect to the
following two actions of IR2: For all a, aj ∈ IR2; j = 1, ..., q and ϕ ∈ Cq(IR2, IR2) :

(aϕ)(a1, ..., aq) = μ(a, (ϕ(a1, ..., aq))) − ∑q
j=1 ϕ(a1, ..., μ(a, aj), ..., aq)

(ϕa)(a1...aq) = μ((ϕ(a1...aq)), a)
(6)

For any ρ = 1, ..., q define eρ(a) : Cq(IR2) → Cq−1(IR2), by;

(eρ(a)ϕ)(a1, ..., aq−1) = ϕ(a1, ..., aρ−1, a, aρ, ...aq−1)

The KV coboundary operator of order q, associated to μ, is the additive
application δq : Cq(IR2) → Cq+1(IR2) such that for any ϕ ∈ Cq(IR2) and
(a1, ..., aq+1) ∈ (IR2)q+1, δq(ϕ) ∈ Cq+1(IR2) is given by the following formula.

(δqϕ)(a1, ..., aq+1) =
∑

1≤j≤q+1(−1)j{(ajϕ)(a1, ..., âj , ..., aq+1)+
(eq(aj)(ϕaq+1)(a1, ..., âj , ..., ˆaq+1)} (7)
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It is prove in [3] that δ2 = 0. But to become a complex, he complete C(IR2) =⊕
q≥1 Cq(IR2) by J(A) = {ξ ∈ A; (a, b, ξ) = 0,∀a, b ∈ A}; named the set of

Jacobi elements of A. We recall that

δ0 : J(A) → C1(A,A) : ξ 
→ δ0(ξ) : u 
→ −uξ + ξu.
δ1(ϕ)(u, v) = −uϕ(v) + ϕ(uv) − ϕ(u)v
δ2ϕ(u, v, w) = vϕ(u,w) − uϕ(v, w) + ϕ(v, uw) − ϕ(u, vw)+
ϕ(uv,w) − ϕ(vu,w) + ϕ(u, v)w − ϕ(v, u)w

⎫⎪⎪⎬
⎪⎪⎭

(8)

From these expressions, we have:

δ1(δ0(ξ))(u, v) = −uδ0(ξ)(v) + δ0(ξ)(uv) − δ0(ξ)(u)v
= −u(−vξ + ξv) + (−uvξ + ξuv) − (−uξ + ξu)v
= uvξ − uξv − uvξ + ξuv + uξv − ξuv
= uvξ − uvξ + uξ − uξ + ξuv − ξuv
= 0

Therefore,
δ1 ◦ δ0 = 0 (9)

In other hand, for all f ∈ C1(IR2), we have;

δ2(δ1(f))(a, b, c)
= −a(δ1)(b, c) + (δ1f)(ab, c) + (δ1f)(b, ac) − (δ1f)(b, a)c
+ b(δ1f)(a, c) − (δ1)(ba, c) − (δ1f)(a, bc) + (δ1f)(a, b)c
= −a{−bf(c) + f(bc) − f(b)c} + {−(ab)f(c) + f((ab)c)
− f(ab)c} + {−bf(ac) + f(b(ac)) − f(b)(ac)}
+ −{−(bf(a))c + f(ba)c − (f(b)a)c} + b{−af(c) + f(ac)
− f(a)c} − {−(ba)f(c) + f((ba)c) − f(ba)c}
+ −{−af(bc) + f(a(bc)) − f(a)(bc)} + {−af(b) + f(ab) − f(a)b}c
= +a(bf(c)) − af(bc) + a(f(b)c) − (ab)f(c) + f((ab)c)
− f(ab)c − bf(ac) + f(b(ac)) − f(b)(ac)
+ (bf(a))c − f(ba)c + (f(b)a)c − b(af(c)) + bf(ac)
− b(f(a)c) + (ba)f(c) − f((ba)c) + f(ba)c
+ af(bc) − f(a(bc)) + f(a)(bc) − (af(b))c + f(ab)c − (f(a)b)c
= [+a(bf(c)) − (ab)f(c) − b(af(c)) + (ba)f(c)]
+ [+a(f(b)c) − f(b)(ac) + (f(b)a)c − (af(b))c]
+ [+f(a)(bc) − (f(a)b)c − b(f(a)c) + (bf(a))c]
+ [+f((ab)c) + f(b(ac)) − f(a(bc))f((ba)c)]
+ [+f(ab)c − f(ab)c] + [+af(bc) − af(bc)]
+ [+f(ba)c − f(ba)c] + [+bf(ac) − bf(ac)]

It is obvious that the last line of above expression is zero. More explicitly, for all
f ∈ C1(IR2), a, b, c ∈ IR2, we have:

δ2(δ1f)(a, b, c) = [(a, b, f(c)) − (b, a, f(c))]
+[(a, f(b), c) − (f(b), a, c)] + [(f(a), b, c) − (b, f(a), c)]
+[f [(b, a, c) − (a, b, c)]] + [f(ab − ab)]c + a[f(bc − bc)]
+[f(ba − ba)]c + b[f(ac − ac)] = 0

(10)
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It follow from (10) that
δ2 ◦ δ1 = 0 (11)

Therefore the following modules are well defined. H0
KV (μ),H1

KV (μ), H2
KV (μ)

The next section is devoted to their computation.

4 KV Cohomology of the KV Structure µ on IR2.

Let μ ∈ Sol((IR2,KV ) defined by; μ(u, v) = (ayx′ + byy′, cyy′) with a �= 0, b �=
0, c �= 0.

4.1 Computation of H0
KV (µ)

In this subsection, we will prove the following proposition

Proposition 1. The first KV cohomology of the KV structure on IR2 defined
by μ = (ae∗

1 ⊗ e∗
1 + be∗

2 ⊗ e∗
2)e1 + c(e∗

2 ⊗ e∗
2)e2 is:

H0
KV (μ) ≈ IR(−be1 + (c − a)e2) (12)

Proof. The application

δ0 : C0(IR2) = Jμ(IR2) → C1(IR2)
ξ 
→ δ0(ξ)

is defined by δ0(ξ)(u) = −uξ + ξu, ∀ξ ∈ Jμ(IR2) and u ∈ IR2 but, the jacobian
of IR2 is:

Jμ(IR2) = {ξ ∈ IR2, Assμ(u, v, ξ) = 0,∀u, v ∈ IR2}.

Let u = (x, y), v = (x
′
, y

′
) and ξ = (x

′′
, y

′′
) be three vectors of IR2. We have:

Assμ(u, v, ξ) = (a(c − a)yy′x′′ − abyy′y′′, 0)

So: If a = 0 then Jμ(IR2) = IR2. If not,

Assμ(u, v, ξ) = 0 ⇐⇒ Assμ(ei, ej , ξ) = 0, 1 ≤ i, j,≤ 2
⇐⇒ (c − c)x′′ − by′′ = 0

which is the vectorial line directed by −be1 + (c − a)e2. Therefore,

Jμ(IR2) �
{
IR(−be1 + (c − a)e2) if a �= 0
IR2 if a = 0

(13)

and then,
Kerδ0 = {ξ ∈ IR2, δ0(ξ)(u) = 0, u ∈ IR}

� IR(−ae1 + (c − a)e2)

We conclude that
H0

KV (μ) � IR(−be1 + (c − a)e2) (14)


�
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4.2 Computation of H1
KV (µ)

In this subsection we will essentially prove the following proposition

Proposition 2. The second KV cohomology of the KV structure on IR2 defined
by μ = (ae∗

1 ⊗ e∗
1 + be∗

2 ⊗ e∗
2)e1 + c(e∗

2 ⊗ e∗
2)e2is:

H1
KV (μ) ≈

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

IR
(
1 b

a−c

0 0

)
if a �= c

IR
(
0 1
1 0

)
if a = c

(15)

Proof. It ensure from the definition of

δ1 : C1(IR2) → C2(IR2)
f1 
→ δ1f1,

that; for all u, v elements of IR2, we have:

δ1f1(u, v) = −uf1(v) + f1(uv) − f1(u)v

where f1 is represented by its matrix A =
(

α β
γ λ

)

Let u = (x, y) and v = (x
′
, y

′
) be two vectors of IR2. One has the following

expression of δ1f1(u, v):
δ1f1(u, v)=((−aγ)xx′ + (−bγ)xy′ + (−bγ − aλ)x′y + (bα + (c − a)β − 2bλ)yy′,
(−cγ)xy′ + (a − c)γx′y + (bγ − cλ)yy′).
Then

δ1f1(u, v) = 0 ⇐⇒ δ1f1(ei, ej) = 0,∀i, j = 1, 2.

In other words, α, β, γ and λ are solution of the following equation.

γ = 0, λ = 0, bα + (c − a)β = 0

One distinguishes two cases.

(i) If c �= a, the we obtain:

γ = 0, λ = 0, β =
b

a − c
α

f1 =
(

α b
a−cα

0 0

)

From where we deduce that

Kerδ1 = 〈
(
1 b

a−c

0 0

)
〉IR



KV Cohomology Group of Some KV Structures on IR2 223

(ii) If c = a, then we obtain:

γ = 0, λ = 0, α = 0

So,

f1 =
(
0 β
0 0

)

Therefore,

Kerδ1 = 〈
(
0 1
0 0

)
〉IR

Let g be a linear map from IR2 to IR2 defined by his matrix B =
(

u11 u12

u21 u22

)
.

It follows from the definition that g ∈ Imδ0μ if and only if there exist ξ ∈
Jμ(IR2) such that δ0μ(ξ) = g.

g ∈ Imδ0 ⇔ δ0ξ(u) = g(u),∀u ∈ IR2

⇔ −uξ + ξu = g(u)
⇔ g(u) = 0

Therefore, Imδ0 = {0} and

H1
KV (μ) ≈ Kerδ1,


�

4.3 Computation of H2
KV (µ)

The main objective of this section is the prove the following proposition

Proposition 3. Let μ = (ae∗
1 ⊗e∗

1+be∗
2 ⊗e∗

2)e1+c(e∗
2 ⊗e∗

2)e2 be a KV structure
on IR2 with (a, b, c) �= (0, 0, 0), then:

(i) If c �= 2a, then the third KV cohomology of μ on IR2 is:

H2
KV (μ) ≈ IR[(e∗

1⊗e∗
1+

b

c
e∗
1⊗e∗

2)e1+(
c − a

c
e∗
2⊗e∗

1+e∗
1⊗e∗

2)e2]⊕IR(e∗
1⊗e∗

1)e1

(ii) If c = 2a, then the third KV cohomology of μ on IR2 is

H2
KV (μ) ≈ IR[(−3e∗

1 ⊗ e∗
1 +

b

a
e∗
1 ⊗ e∗

2)e1 + (−2a
b

e∗
1 ⊗ e∗

1 + e∗
2 ⊗ e∗

1)e2]

Proof. According to its definition, the application

δ2 : C2(IR2) → C3(IR2)
f2 
→ δ2f2

is defined by, for all u, v, w elements of IR2, we have:

δ2f2(u, v, w) = vf2(u, w) − uf2(v, w) + f2(v, uw) − f2(u, vw) + f2(uv, w) − f2(vu, w)
+ f2(u, v)w − f2(v, u)w
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Let ((
e f
g h

)
,

(
i j
k l

))

denote the matrix representation of f2 with respect to the basis {e1, e2} of IR2.
Let u = (x, y), v = (x′, y′) and w = (x′′, y′′) be three elements of IR2. We have
the following expression of δ2f2(u, v, w):

δ2f2(u, v, w)=

⎛
⎜⎜⎝

((−ae + bi + aj − ak)yx′x′′

−(−ae + bi + aj − ak)xy′x′′ + (−2a + c)iyx′y′′ − (−2a + c)ixy′y′′,
(−be − cf + 2bj − ak)yx′x′′ − (−be − cf + 2bj − ak)xy′x′′

+(−bi + (−a + c)j − ck)yx′y′′ − (−bi + (−a + c)j − ck)xy′y′′)

⎞
⎟⎟⎠.

Then
δ2f2(u, v, w) = 0 ⇐⇒ δ2f2(ei, ej , ek) = 0, 1 ≤ i, j, k ≤ 2

⇐⇒

⎧⎪⎪⎨
⎪⎪⎩

−ae + bi + aj − ak = 0
(−2a + c)i = 0
−be − cf + 2bj − ak = 0
−bi + (−a + c)j − ck = 0

We distinguish the case.
(i) c �= 2a.

In this case, an element f2 of C2(IR2) is in kerδ2 if and only if

f2 ∈
⎧⎨
⎩

[(j − k)(e∗
1 ⊗ e∗

1) + j b
c (e

∗
1 ⊗ e∗

2) + g(e∗
2 ⊗ e∗

1) + h(e∗
2 ⊗ e∗

2)]e1
+[j(e∗

1 ⊗ e∗
2) + j c−a

c (e∗
2 ⊗ e∗

1) + l(e∗
2 ⊗ e∗

2)]e2;
j, k, h ∈ IR, c �= 2a

⎫⎬
⎭

Therefore,
Kerδ2 ≈ IR[(e∗

1 ⊗ e∗
1) +

b
c (e

∗
1 ⊗ e∗

2)]e1 ⊕ IR[(e∗
1 ⊗ e∗

2) +
c−a

c (e∗
2 ⊗ e∗

1)]e2 ⊕
IR[−(e∗

1 ⊗ e∗
1)]e1 ⊕ IR[(e∗

2 ⊗ e∗
1)]e1 ⊕ IR[(e∗

2 ⊗ e∗
2)]e1 ⊕ IR[(e∗

2 ⊗ e∗
2)]e2.

Let
g = (u11e

∗
1 ⊗ e∗

1 + u12e
∗
1 ⊗ e∗

2 + u21e
∗
2 ⊗ e∗

1 + u22e
∗
2 ⊗ e∗

2)e1+
(v11e∗

1 ⊗ e∗
1 + v12e

∗
1 ⊗ e∗

2 + v21e
∗
2 ⊗ e∗

1 + v22e
∗
2 ⊗ e∗

2)e2
;

be an element of C2(IR2); g is in Imδ1 if and only if there exist f1 ∈ C(IR2)
such that; for all u, v ∈ IR2, we have δ1(f1)(u, v) = g(u, v). In other words,
f1 is solution of a linear equation system having g as right hand side and of
which the matrix representation is:⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

b c − a 0 −2b
... u22

0 0 −a 0
... u11

0 0 0 0
... bu11 − au12

0 0 −b −a
... u21

0 0 0 0
... cu11 − av12

0 0 0 0
... (a − c)u11 + av21

0 0 0 −(a + c)
... u21 + v22

0 0 0 0
... v11

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
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What allows us to write;

g ∈ Imδ1 ≈ kerδ2 ∩
⎧⎨
⎩

(u11e
∗
1 ⊗ e∗

1 + b
a
u11e

∗
1 ⊗ e∗

2 + u21e
∗
2 ⊗ e∗

1 + u22e
∗
2 ⊗ e∗

2)e1+
( c
a
u11e

∗
1 ⊗ e∗

2 + a−c
c

u11e
∗
2 ⊗ e∗

1 + v22e
∗
2 ⊗ e∗

2)e2;
u11, u21, u22, v22 ∈ IR; c �= 2a, c2 − a2 �= 0 bc �= −a2

⎫⎬
⎭

Therefore, the space of 1-coboundary is

Imδ1 ≈
{
(u21e

∗
1 ⊗ e∗

1 + u22e
∗
2 ⊗ e∗

2)e1 + (v22e∗
2 ⊗ e∗

2)e2;
u21, u22, v22 ∈ IR; c �= 2a, c2 − a2 �= 0 bc �= −a2

}

The result follows from the fact that
H2

KV (μ) = {x , x ∈ Kerδ2}
= {x + Imδ1, x ∈ Kerδ2}

(ii) c = 2a.
In this case, an element f2 of C2(IR2) is in kerδ2 if and only if

f2 ∈
{
[(2j − 3k)(e∗

1 ⊗ e∗
1) +

b
ak(e∗

1 ⊗ e∗
2) + g(e∗

2 ⊗ e∗
1) + h(e∗

2 ⊗ e∗
2)]e1

+[(a
b j − 2a

b k)(e∗
1 ⊗ e∗

1) + j(e∗
1 ⊗ e∗

2) + k(e∗
2 ⊗ e∗

1) + l(e∗
2 ⊗ e∗

2)]e2

}

Therefore,
Kerδ2 ≈ IR[2(e∗

1 ⊗e∗
1)e1+

a
b (e

∗
1 ⊗e∗

1)+(e∗
1 ⊗e∗

2)e2]⊕ IR[−3(e∗
1 ⊗e∗

1)+
b
a (e

∗
1 ⊗

e∗
2)e1+

−a2
b (e∗

1⊗e∗
1)+(e∗

2⊗e∗
1)e2]⊕IR[(e∗

2⊗e∗
1)]e1⊕IR[(e∗

2⊗e∗
2)]e1IR[(e

∗
2⊗e∗

2)e2]

By a straightforward computation, we prove that

Imδ1 ≈
⎧⎨
⎩

(u11e
∗
1 ⊗ e∗

1 +
b
au11e

∗
1 ⊗ e∗

2 + u21e
∗
2 ⊗ e∗

1 + u22e
∗
2 ⊗ e∗

2)e1+
(2u11e

∗
1 ⊗ e∗

2 + u11e
∗
2 ⊗ e∗

1 + v22e
∗
2 ⊗ e∗

2);
u11, u22, u21, v22 ∈ IR; 2b �= −a

⎫⎬
⎭

Therefore, we deduce the result from the fact that,

H2
KV (μ) = {x , x ∈ Kerδ2}

= {x + Imδ1, x ∈ Kerδ2}

�
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Abstract. In conventional information geometry, the deep relationship
between differential geometrical structures such as the Fisher metric and
α-connections and statistical theory has been investigated for statistical
models satisfying regularity conditions. However, the study of informa-
tion geometry on non-regular statistical models has not been fully inves-
tigated. A one-sided truncated exponential family (oTEF) is a typical
example. In this study, we define the Riemannian metric on the oTEF
model not in a formal way but in the way compatible with the asymptotic
properties of MLE in statistical theory. Then, we define alpha-parallel
priors and show that the one-parallel prior exists on the oTEF model.

Keywords: truncated exponential family · information geometry ·
noninformative priors · alpha-parallel prior

1 Introduction

Information geometry is the study of statistical models by differential geometry.
From the standpoint of geometry, a statistical model consisting of a collection
of parameterized probability distributions can be regarded as a manifold. Then,
when the statistical model satisfies certain regularity conditions, Chentsov’s the-
orem leads to a natural differential geometrical structure [8]. The natural dif-
ferential geometrical structure consists of the Riemannian metric defined by the
Fisher information matrix and a one-parameter family of affine connections.
They are called the Fisher metric and α-connections respectively. Information
geometry of regular statistical models has been studied for a long time, and a
deep relationship between the above geometrical structures and the statistical
properties of statistical models has been revealed [4,5].

However, for non-regular statistical models, their geometric properties have
not been fully investigated. One reason is the inapplicability of Chentsov’s theo-
rem to non-regular models, which prevents the geometrical structure from being
determined naturally. For example, while the Fisher information matrix on a
regular statistical model has two equivalent definitions, these definitions do not
agree with each other on a statistical model where the support of a probability
density function depends on the parameter. In prior research, Amari [3] provides
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an idea that the Finsler geometry is familiar to non-regular models, especially
for the location family.

In the present study, we take the one-sided truncated exponential family
(oTEF) [7] as one of the most important non-regular statistical models, and dis-
cuss desirable geometrical structures. This family covers many practical exam-
ples like Pareto distributions, truncated normal distributions, and two-parameter
exponential distributions. Statistical properties of the oTEF model, in particu-
lar, those related to point estimation theory, have been investigated by several
authors [2,7]. Recently, in information geometry, Yoshioka and Tanaka [13] shows
the existence of 1-parallel prior on the oTEF.

This paper aims to define a family of appropriate affine connections for
the oTEF. In the quest for suitable affine connections, we emphasize that an
exponential family possesses α-parallel priors for all values of α. Using formally
defined α connections, the existence of only a 1-connection is observed. As a sub-
stitute for the α-connections, we introduce a 1-parameter family of affine connec-
tions as β-connections. Subsequently, we show that β-connections are equiaffine
for all β values. This property is congruent with the case of the exponential
family.

We introduce a one-sided truncated exponential family (oTEF) in Sect. 2.
Then, Sect. 3 defines a Riemannian metric on the oTEF. In Sect. 4, we define
β-connections on the oTEF and prove there exist β-parallel priors for all β.
Section 4 also reviews α-parallel priors in regular cases.

2 One-Sided Truncated Exponential Family

First, we introduce the one-sided truncated exponential family as follows:

Definition 1 (One-sided Truncated Exponential Family [7]). Let the
parameter space Θ be an open subset of Rn and I = (I1, I2) be an open interval.
Let P = {Pθ,γ : θ ∈ Θ, γ ∈ I} be a parametrized family of probability distribu-
tions. When each probability distribution Pθ,γ has its probability density function

p(x; θ, γ) = exp

{
n∑

i=1

θiFi(x) + C(x) − ψ(θ, γ)

}
· 1[γ,I2)(x) (x ∈ I) , (1)

C ∈ C(I), Fi ∈ C∞(I) (i = 1, . . . , n), ψ ∈ C∞(Θ×I) with respect to the Lebesgue
measure, we call P as a one-sided truncated exponential family (oTEF).

We have two kinds of parameters, θ is called the natural parameter and γ
is called the truncation parameter. Since θ ∈ R

n, γ ∈ R, the oTEF P is an
(n + 1)-dimensional statistical model. We often use the abbreviated notation:
∂i = ∂/∂θi (i = 1, . . . , n), ∂γ = ∂/∂γ below.

Clearly, the oTEF model is a non-regular statistical model, which does not
satisfy regularity conditions. Indeed, the support of the probability density func-
tion p(x; θ, γ) as a function of x is written as the interval [γ, I2], which depends
on the parameter γ.
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On the other hand, when the truncation parameter γ is prescribed, consider-
ing the n-dimensional submodel Eγ = {Pθ,γ : θ ∈ Θ}, the oTEF is an exponential
family.

3 Definition of Riemannian Structure on the oTEF
Model

In this section, let us define the Riemannian metric on the oTEF model.
Yoshioka and Tanaka [13] provide a Riemannian metric for the oTEF based

on the asymptotic variance of MLEs. The asymptotic behavior of MLEs on the
oTEF is discussed by Akahira [1].

Definition 2 (Riemannian metric on the oTEF model [13]). Let P denote
the oTEF model with the probability density (1). We define the Riemannian
metric g on the oTEF model P as

gij = E [∂il(X; θ, γ)∂j l(X; θ, γ)] ,
giγ = 0,

gγγ = {−∂γψ(θ, γ)}2

for i, j = 1, . . . , n, where l(x; θ, γ) = log p(x; θ, γ).

This Riemannian metric is different from the negative Hessian form
−E [∂a∂b log p], because the expectation E [∂γ log p] does not vanish. As shown
by Li et al. [10], the negative Hessian form is sometimes not positive definite on
the Pareto model (See Example 1 in Sect. 4). On the Pareto model, we obtain

(−E [∂a∂b log p])a,b =

(
1
θ2 − 1

γ

− 1
γ

θ
γ2

)
,

which is not positive definite except 0 < θ < 1.

4 α-parallel Priors on the oTEF Model

Next, we consider affine connections on the non-regular model, a oTEF. Our
purpose is to provide a suitable extension of α-connections in regular models for
the oTEF.

To establish our approach, let us return to the geometric property of an
exponential family, one of the typical regular models. We focus on the fact that
the exponential family is famous as statistically equiaffine for α-connections [12].
This property confirms the exponential family has α-parallel prior for all α ∈ R.

This section provides an extension of the α-connections, referred to as the
β-connection. Furthermore, we will show that the β-connection is equiaffine for
any β.
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4.1 Equiaffine Structure on Regular Models

Before the discussion of equiaffine connections on the oTEF, we briefly review
equiaffine connections and α-parallel priors in regular cases. Please see Takeuchi
and Amari [12] for more details.

In Bayesian statistics, for a given statistical model P, we need a probability
distribution over the model parameter space, which is called a prior distribution,
or simply a prior. We often denote a prior density function as π. (π(ξ) ≥ 0 and∫

Ξ
π(ξ)dξ = 1.) If we have certain information on the parameter in advance,

then the prior should reflect this, and such a prior is often called a subjective
prior. If not, we adopt a certain criterion and use a prior obtained through the
criterion. Such priors are called noninformative priors.

A volume element on an n-dimensional model manifold corresponds to a prior
density function over the parameter space (ξ ∈ Ξ ⊂ R

n) in a one-to-one manner.
For a prior π(ξ), its corresponding volume element ω is an n-form (differential
form of degree n) and is written as

ω = π(ξ)dξ1 ∧ · · · ∧ dξn

in the local coordinate system. We identify a prior density π with a volume
element ω below.

To define α-parallel priors, we introduce a geometric property of affine con-
nections.

Definition 3 (equiaffine). Let P be an n-dimensional manifold with an affine
connection induced by a covariant derivative ∇.

An affine connection ∇ is equiaffine if there exists a volume element ω such
that

∇ω = 0

holds everywhere in P. Furthermore, such a volume element ω is said to be a
parallel volume element with respect to ∇.

For an affine connection ∇, a necessary and sufficient condition to be
equiaffine is described by its curvature. The following proposition holds for a
manifold with an affine connection ∇. Let Rijk

l be the components of the Rie-
mannian curvature tensor [5] of ∇, defined as

Rijk
l = ∂i Γjk

l − ∂j Γik
l + Γim

l Γjk
m − Γjm

l Γik
m, (i, j, k, l = 1, . . . , n)

where Γjk
l denotes the connection coefficients of ∇.

Proposition 1 (Nomizu and Sasaki [11]). The following conditions are
equivalent:

– ∇ is equiaffine,
– Rijk

k = 0,

where Rijk
k =

∑n
k=1 Rijk

k.
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Note that the Levi-Civita connection is always equiaffine [11].
Returning to the statistical model, we define the α-parallel prior distribution.

Let P be an n-dimensional regular statistical manifold.
α-parallel priors are a family of priors that generalizes the Jeffreys prior from

the standpoint of information geometry. The definition is as follows:

Definition 4. Let
(α)

∇ denote a covariant derivative operator with respect to an
α-connection. When the α-connection is equiaffine, a parallel volume element
ω(α) exists.

Then, the prior π corresponding to the volume element ω(α) is called an α-
parallel prior.

In regular statistical models, the Jeffreys prior is the 0-parallel prior and
necessarily exists. However, there is no guarantee that an α-parallel prior exists
when α �= 0. In other words, a geometrical structure on a model manifold deter-
mines the existence of such priors.

Takeuchi and Amari [12] give a necessary and sufficient condition for α-
parallel priors to exist.

Proposition 2 (Takeuchi and Amari [12]). For a model manifold P, if

∂iTjk
k − ∂jTik

k = 0 (i, j = 1, . . . , n), (2)

then the α-parallel prior exists for any α ∈ R. Otherwise, only the 0-parallel
prior exists.

If a statistical model satisfies the condition (2), the model is called statistically
equiaffine. An exponential family is one of the statistically equiaffine models [12],
which has α-parallel priors for all α ∈ R. We will construct a family of affine
connections based on this fact.

4.2 α-parallel Priors on a oTEF

Let us return to the discussion of affine connections in the oTEF.
First, we define α-connections formally in the same way as regular models

[5].

Definition 5 (α-connection). For every α ∈ R, we define an α-connection on
the oTEF model with the coefficients

(α)

Γ ab,c (θ, γ) = E [∂a∂bl ∂cl] +
1 − α

2
E [∂al ∂bl ∂cl] (a, b, c = 1, . . . , n, γ),

where l = log p(X; θ, γ).

We write the covariant derivative with respect to the α-connection as
(α)

∇ .
Unlike the regular cases, the equation

(α)

Γ ab,c (θ, γ) =
g

Γ ab,c −α

2
E [∂al∂bl∂cl]
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does not hold, where
g

Γ ab,c denotes the connection coefficients of the Levi-Civita
connection. Then, the α-connections do not include the Levi-Civita connection
in the oTEF. For example, in the Pareto model, it holds that

(α)

Γ γγ,1 (θ, γ) = 0,
g

Γ γγ,1 (θ, γ) = − θ

γ2
.

Let us consider the oTEF model with the α-connection. Then we obtain the
following theorem.

Theorem 1 (Yoshioka and Tanaka [13]). Let P denote the oTEF model
endowed with the Riemannian metric in Definition 2 and the α-connections in
Definition 5. Then, an α-parallel volume element exists when α = 1. Let π(1)

denote the density of the 1-parallel volume element. It is written as

π(1) (θ, γ) ∝ −∂γψ (θ, γ) .

Proof. Fix any α ∈ R arbitrarily.
We will check the condition in Proposition 1,

(α)

R abc
c = 0.

By calculation of the α-connection coefficients, we have

(α)

R ija
a = 0,

(α)

R iγa
a =

1 − α

2
{∂i∂γ log (det(gkl)) + (n + 1)∂i∂γψ}

for i, j = 1, . . . , n, where ψ = ψ(θ, γ).

Thus,
(α)

R abc
c = 0 and there exists an α-parallel prior when α = 1.

According to Takeuchi and Amari [12], the 1-parallel prior π(1) satisfies

∂a log π(1) =
(1)

Γ ab
b

= ∂a log(−∂γψ)

for a = 1, . . . , n, γ.
Therefore, the 1-parallel prior for P is given as

π(1)(θ, γ) ∝ −∂γψ.

The above 1-parallel prior coincides with a certain noninformative prior called
the (Bernardo’s) reference prior on a non-regular statistical model [9]. It is
obtained through an information-theoretic argument. We apply their argument
to the oTEF model setting γ as the parameter of interest and θ as the nuisance
parameter. Then, we obtain πGhosal(θ, γ) ∝ −∂γψ, which agrees with the 1-
parallel prior in Theorem 1.
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4.3 β-parallel Priors on a oTEF

The above α-connections are not equiaffine for almost all α. This result differs
from the case of the exponential family. For example, in a family of left-truncated
exponential distributions [1],

(α)

R 1γa
a = − (1 − α)(n + 1)

2
holds for all α since ψ = −θγ − log θ. This model has only 1-parallel prior.

However, Theorem 1 provides an equiaffine connection, the 1-connection
(1)

∇ .
We now construct another extension of the regular α-connections based on the
two equiaffine connections: the 1-connection and the Levi-Civita connection.

The following lemma is elemental for the extension.

Lemma 1. Let P be an n-dimensional manifold, and let ∇0,∇1 be equiaffine

connections on P. For each β ∈ R, we define an affine connection
(β)

∇ on P by

(β)

∇= (1 − β)∇1 + β∇0.

Then, for each β ∈ R,
(β)

∇ is also an equiaffine connection.

Proof. Let θ =
(
θ1, . . . , θn

) ∈ Θ be a coordinate system on P. In the θ-

coordinates, we write the connection coefficients of ∇0,∇1 as
{

0

Γ ij
k

}
,

{
1

Γ ij
k

}
,

respectively. Also, we denote the curvature tensor of
(β)

∇ by
(β)

R .

Then, the connection coefficients of
(β)

∇ are given by

(β)

Γ ij
k = (1 − β)

0

Γ ij
k + β

1

Γ ij
k (i, j, k = 1, . . . , n) .

We need to verify the condition in Proposition 1:

(β)

R ijk
k = 0 (i, j = 1, . . . , n).

Calculating the left-hand side, we get

(β)

R ijk
k = (1 − β)

(
∂i

0

Γ jk
k − ∂j

0

Γ ik
k

)
+ β

(
∂i

1

Γ jk
k − ∂j

1

Γ ik
k

)
.

Here, since ∇0,∇1 are equiaffine connections, we have

∂i

0

Γ jk
k − ∂j

0

Γ ik
k = 0,

∂i

1

Γ jk
k − ∂j

1

Γ ik
k = 0

for all i, j = 1, . . . , n.

Therefore, in the affine connection
(β)

∇ , we have

(β)

R ijk
k = 0 (i, j = 1, . . . , n).
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Based on the above lemma, we define a family of affine connections that
connect the 1-connection and the Levi-Civita connection via a parameter β.
Definition 6 (β-connection). For every β ∈ R, we define β-connections on
the oTEF model with the coefficients

(β)

Γ ab,c (θ, γ) = βE [∂a∂bl ∂cl] + (1 − β)Γ g
ab,c (a, b, c = 1, . . . , n, γ),

where Γ g denotes the Levi-Civita connection.
In regular models, the β-connections coincide with the α-connections when

β = α. They represent a new extension of Amari’s geometric structure.

Theorem 2. Let P denote the oTEF model endowed with the Riemannian met-
ric in Definition 2 and β-connections in Definition 6. Then, for every β, the
β-parallel volume element exists. Let π(β) denote the density of the β-parallel
volume element. It is written as

π(β) ∝ {det (gij)}
1−β
2 (−∂γψ) .

Proof. Fix any β ∈ R arbitrarily.
Lemma 1 and Definition 6 confirm that the β-connection is equiaffine.
The representation of β-parallel priors is given as follows.
The sum of the β-connection coefficients satisfies that

(β)

Γ ia
a =

1 − β

2
∂i log (det(gjk)) + ∂i log (−∂γψ) ,

(β)

Γ γa
a =

1 − β

2
∂γ log (det(gjk)) + ∂γ log (−∂γψ) .

Therefore, from Proposition 1 by Takeuchi and Amari [12], we obtain:

π(β) ∝ {det (gij)}
1−β
2 (−∂γψ) .

When β = 0, π(β) agrees with the Jeffreys prior and when β = 1, it agrees
with the 1-parallel prior in Theorem 1.

Example 1 (Pareto model). A family of Pareto distributions [6], having a density
function

p(x, θ, γ) =
θγθ

xθ+1
1[γ,∞) (x ∈ (0,∞))

with parameter θ, γ ∈ (0,∞), is one of the famous oTEFs.
Since ψ(θ, γ) = − log θ − θ log γ, the Riemannian metric of the Pareto model

is represented as ( 1
θ2 0

0
(

θ
γ

)2

)
.

Then, the β-parallel priors for β ∈ R is

π(β) ∝ θβ

γ
.
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5 Concluding Remarks

In the present study, we proposed a new extension of α-connections for a oTEF,
referred to as β-connections, based on the fact that exponential families are
statistically equiaffine. As shown in Sect. 4, the β-connections in the oTEF have
β-parallel priors for all β. Then, the β-connections have the same geometric
property as α-connections in exponential families.

On the other hand, in the statistical inference of regular models, α-
connections appear in the higher-order asymptotic behavior of estimators. It
is interesting to consider how β-connections work on statistical inference on the
oTEF. Also, to reveal the relationship with Amari’s Finsler structure on location
family [3] is a topic of interest.
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Abstract. In this paper, we compare geodesics for conformal submer-
sion with horizontal distribution. Then, proved a condition for the com-
pleteness of statistical connection for a conformal submersion with hori-
zontal distribution.
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1 Introduction

Riemannian submersion is a special tool in differential geometry and it has got
application in different areas such as Kaluza-Klein theory, Yang-Mills theory,
supergravity and superstring theories, statistical machine learning processes,
medical imaging, theory of robotics and the statistical analysis on manifolds.
O’Neill [6] defined a Riemannian submersion and obtained the fundamental equa-
tions of Riemannian submersion for Riemannian manifolds. In [7], O’Neill com-
pare the geodesics of M and B for a semi-Riemannian submersion π : M −→ B.
Abe and Hasegawa [2] defined an affine submersion with horizontal distribution
which is a dual notion of affine immersion and obtained the fundamental equa-
tions. They compare the geodesics of M and B for an affine submersion with
horizontal distribution π : M −→ B.

Conformal submersion and the fundamental equations of conformal submer-
sion were also studied by many researchers, see [4,8] for example. Horizontally
conformal submersion is a generalization of the Riemannian submersion. Hori-
zontally conformal submersion is a special horizontally conformal map which got
introduced independently by Fuglede [3] and Ishihara [5]. Their study focuses
on the conformality relation between metrics on the Riemannian manifolds and
Levi-Civita connections. The present authors defined conformal submersion with
horizontal distribution and studied statistical manifold structure obtained using
conformal submersion with horizontal distribution [9,10]. In this paper, we com-
pare the geodesics for conformal submersion with horizontal distribution and
obtained some interesting results. In Sect. 2, relevant basic concepts are given.
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In Sect. 3, we obtained some fundamental equations of conformal submersion
with horizontal distribution. In Sect. 4, we proved a necessary and sufficient
condition for π ◦ σ to be a geodesic of B when σ is a geodesic of M for
π : (M,∇, gm) → (B,∇∗, gb) a conformal submersion with horizontal distri-
bution. Completeness of statistical connection with respect to conformal sub-
mersion with horizontal distribution is given in Sect. 5. Throughout this paper,
all the objects are assumed to be smooth.

2 Preliminaries

In this section, the concepts like submersion with horizontal distribution and
affine submersion with horizontal distribution are given.

Let M and B be Riemannian manifolds with dimension n and m respectively
with n > m. An onto map π : M −→ B is called a submersion if π∗p : TpM −→
Tπ(p)B is onto for all p ∈ M. For a submersion π : M −→ B, π−1(b) is a
submanifold of M of dimension (n − m) for each b ∈ B. These submanifolds
π−1(b) are called fibers. Set V(M)p = Ker(π∗p) for each p ∈ M.

Definition 1. A submersion π : M −→ B is called a submersion with horizontal
distribution if there is a smooth distribution p −→ H(M)p such that

TpM = V(M)p
⊕

H(M)p. (1)

We call V(M)p (H(M)p) the vertical (horizontal) subspace of TpM. H and V
denote the projections of the tangent space of M onto the horizontal and vertical
subspaces, respectively.

Note 1. Let π : M −→ B be a submersion with horizontal distribution H(M).
Then, π∗ |H(M)p : H(M)p −→ Tπ(p)B is an isomorphism for each p ∈ M.

Definition 2. A vector field Y on M is said to be projectable if there exists a
vector field Y∗ on B such that π∗(Yp) = Y∗π(p) for each p ∈ M, that is Y and
Y∗ are π- related. A vector field X on M is said to be basic if it is projectable
and horizontal. Every vector field X on B has a unique smooth horizontal lift,
denoted by X̃, to M.

Definition 3. Let ∇ and ∇∗ be affine connections on M and B respectively.
π : (M,∇) −→ (B,∇∗) is said to be an affine submersion with horizontal distri-
bution if π : M −→ B is a submersion with horizontal distribution and satisfies
H(∇X̃ Ỹ ) = (∇∗

XY )˜, for vector fields X,Y in X (B), where X (B) denotes the
set of all vector fields on B.

Note 2. Abe and Hasegawa [2] proved that the connection ∇ on M induces
a connection ∇′ on B when π : M −→ B is a submersion with horizontal
distribution and H(∇X̃ Ỹ ) is projectable for all vector fields X and Y on B.

A connection V∇V on the subbundle V(M) is defined by (V∇V)EV =
V(∇EV ) for any vertical vector field V and any vector field E on M. For each
b ∈ B, V∇V induces a unique connection ∇̂b on the fiber π−1(b). Abe and
Hasegawa [2] proved that if ∇ is torsion free, then ∇̂b and ∇′ are also torsion
free.
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3 Conformal Submersion with Horizontal Distribution

In this section, we consider the conformal submersion with horizontal distribu-
tion which is a generalization of the affine submersion with horizontal distribu-
tion [9]. Here, we obtained some fundamental equations of conformal submersion
with horizontal distribution for Riemannian manifolds.

Definition 4 [9]. Let π : (M, gm) −→ (B, gb) be a conformal submersion
and let ∇ and ∇∗ be affine connections on M and B, respectively. Then,
π : (M,∇) −→ (B,∇∗) is said to be a conformal submersion with horizontal
distribution H(M) = V(M)⊥ if

H(∇X̃ Ỹ ) = ˜(∇∗
XY ) + X̃(φ)Ỹ + Ỹ (φ)X̃ − H(gradπφ)gm(X̃, Ỹ ),

for some φ ∈ C∞(M) and for all X,Y ∈ X (B).

Note 3. If φ is constant, it turns out to be an affine submersion with horizontal
distribution.

As in the case of affine submersion with horizontal distribution we have,

Lemma 1. Let π : (M,∇) −→ (B,∇∗) be conformal submersion with horizontal
distribution, then

H(Tor(∇)(X̃, Ỹ )) = ˜(Tor(∇∗)(X,Y )). (2)
V(Tor(∇)(V,W )) = (Tor(∇̂)(V,W )). (3)

Proof. Proof follows immediately form the definition of the conformal submer-
sion with horizontal distribution.

Corollary 1. If ∇ is torsion-free, then ∇∗ and ∇̂ are also torsion-free.

Fundamental tensors T and A for a conformal submersion with horizontal
distribution π : (M,∇) −→ (B,∇∗) are defined for E and F in X (M) by

TEF = H∇VE(VF ) + V∇VE(HF ).

and
AEF = V∇HE(HF ) + H∇HE(VF ).

Note that these are (1, 2)-tensors.
We have the fundamental equations correspond to the conformal submersion

with horizontal distribution. Let R be the curvature tensor of (M,∇) defined by

R(E,F )G = ∇[X,Y ]G − ∇E∇F G + ∇F ∇EG,

for E,F and G in X (M). Similarly, we denote the curvature tensor of ∇∗ (respec-
tively ∇̂) by R∗ (respectively R̂). Define (1, 3)-tensors RP1,P2,P3 for conformal
submersion with horizontal distribution by

RP1,P2,P3(E,F )G = P3∇[P1E,P2F ]P3G − P3∇P1E(P3∇P2F P3G)
+P3∇P2F (P3∇P1EP3G),
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where Pi = H or V (i = 1, 2, 3) and E,F,G are in X (M). Then, the following
fundamental equations for conformal submersion with horizontal distribution can
be obtained.

Theorem 1. Let X,Y,Z be horizontal and U, V,W vertical vector fields in M.
Then,

VR(U, V )W = RVVV(U, V )W + TV TUW − TUTV W.

HR(U, V )W = H(∇V T )UW − H(∇UT )V W − TTor(∇)(U,V )W.

VR(U, V )X = H(∇V T )UX − V(∇UT )V X − TTor(∇)(U,V )X.

HR(U, V )X = RVVH(U, V )X + TV TUX − TUTV X.

VR(U,X)V = RVHV(U,X)V − TUAXV − AXTUV.

HR(U,X)V = H(∇XT )UV − H(∇UA)XV − AAXUV + TTUXV

−TTor(∇)(U,X)V − ATor(∇)(U,X)V.

VR(U,X)Y = V(∇XT )UY − V(∇UA)XY − AAXUY + TTUXY

−TTor(∇)(U,X)Y − ATor(∇)(U,X)Y.

HR(U,X)Y = RVHH(U,X)Y − TV AXY + AXTUY.

VR(X,Y )U = RHHV(X,Y )U + AY AXU − AXAY U.

HR(X,Y )U = H(∇Y A)XU − H(∇XA)Y U + TAXY U − TAY XU

−TTor(∇)(X,Y )U − ATor(∇)(X,Y )U.

VR(X,Y )Z = V(∇Y A)XZ − V(∇XA)Y Z + TAXY Z − TAY XZ

−TTor(∇)(X,Y )Z − ATor(∇)(X,Y )Z.

HR(X,Y )Z = RHHH(X,Y )Z + AY AXZ − AXAY Z.

Proof. Proof follows directly from the definition of conformal submersion with
horizontal distribution.

4 Geodesics

In this section, for a conformal submersion with horizontal distribution we prove
a necessary and sufficient condition for π ◦ σ to be a geodesic of B when σ is
a geodesic of M. Let M, B be Riemannian manifolds and π : M → B be a
submersion. Let E be a vector field on a curve σ in M and the horizontal part
H(E) and the vertical part V(E) of E be denoted by H and V , respectively.
π ◦σ is a curve in B and E∗ denote the vector field π∗(E) = π∗(H) on the curve
π ◦ σ in B. E′

∗ denote the covariant derivative of E∗ and is a vector field on
π ◦ σ. The horizontal lift to σ of E′

∗ is denoted by Ẽ′∗. In [7], O’Neil compared
the geodesics for semi-Riemannian submersion and Abe and Hasegawa [2] have
done it for affine submersion with horizontal distribution.

Let π : (M,∇, gm) → (B,∇∗, gb) be a conformal submersion with horizon-
tal distribution H(M). Throughout this section we assume ∇ is torsion free.
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A curve σ is a geodesic if and only if H(σ′′) = 0 and V(σ′′) = 0, where σ′′ is
the covariant derivative of σ′. So, first we obtain the equations for H(E′) and
V(E′) for a vector field E on the curve σ in M for a conformal submersion with
horizontal distribution.

Theorem 2. Let π : (M,∇, gm) → (B,∇∗, gb) be a conformal submersion with
horizontal distribution, and let E = H + V be a vector field on curve σ in M.
Then, we have

π∗(H(E′)) = E′
∗ + π∗(AXU + AXV + TUV ) − e2φπ∗(gradπφ)gb(π∗X,π∗H)

+X(φ)π∗H + H(φ)π∗X,

V(E′) = AXH + TUH + V(V ′),

where X = H(σ′) and U = V(σ′).

Proof. Consider a neighborhood of an arbitrary point σ(t) of the curve σ in M.
By choosing the base fields W1, ....,Wn, where n = dimB, near π(σ(t)) on B
and an appropriate vertical base field near σ(t), we can derive

(E′
∗)t =

∑

i

ri′(t)(Wi)π(σ(t)) +
∑

i,k

ri(t)sk(t)(∇∗
Wk

Wi)π(σ(t)), (4)

π∗(H(E′)t) =
∑

i

ri′(t)(Wi)π(σ(t)) +
∑

i,k

ri(t)sk(t)π∗(H(∇W̃k
W̃i))π(σ(t))

+π∗((AHU) + (AXV ) + (TUV ))π(σ(t)), (5)

where W̃i be the horizontal lift of Wi, for i = 1, 2, ...n and ri(t) ( respectively
sk(t)) be the coefficients of H (respectively of X ) in the representation using
the base fields W̃i restricted to σ.

Since π is a conformal submersion with horizontal distribution

π∗(H(∇HX)) = ∇∗
π∗(H)π∗X + X(φ)π∗H + H(φ)π∗X

−e2φπ∗(gradπφ)gb(π∗X,π∗H).

Hence

π∗(H(E′)) = E′
∗ + π∗(AXU + AXV + TUV ) − e2φπ∗(gradπφ)gb(π∗X,π∗H)

+X(φ)π∗H + H(φ)π∗X.

Similarly we can prove V(E′) = AXH + TUH + V(V ′).

For σ′′ we have
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Corollary 2. Let σ be a curve in M with X = H(σ′) and U = V(σ′). Then,

π∗(H(σ′′)) = σ′′
∗ + π∗(2AXU + TUU) − e2φπ∗(gradπφ)gb(π∗X,π∗X)

+2X(φ)π∗X, (6)
V(σ′′) = AXX + TUX + V(U ′), (7)

where σ′′
∗ denotes the covariant derivative of (π ◦ σ)′.

Now for a conformal submersion with horizontal distribution we prove a
necessary and sufficient condition for π ◦ σ to become a geodesic of B when σ is
a geodesic of M.

Theorem 3. Let π : (M,∇, gm) → (B,∇∗, gb) be a conformal submersion with
horizontal distribution. If σ is a geodesic of M, then π ◦ σ is a geodesic of B if
and only if

π∗(2AXU + TUU)) + 2X(φ)π∗X = π∗(gradπφ) ‖ X ‖2,

where X = H(σ′) and U = V(σ′) and ‖ X ‖2= gm(X,X).

Proof. Since σ is a geodesic on M from the Eq. (6)

σ′′
∗ = π∗(gradπφ) ‖ X ‖2 −π∗(2AXU + TUU) − 2dφ(X)π∗X.

Hence, π ◦ σ is a geodesic on B if and only if

π∗(2AXU + TUU)) + 2X(φ)π∗X = π∗(gradπφ) ‖ X ‖2 .

Remark 1. If σ is a horizontal geodesic (that is, σ is a geodesic with V(σ′) = 0),
then π ◦ σ is a geodesic if and only if 2X(φ)π∗X = π∗(gradπφ) ‖ X ‖2.

5 Completeness of Statistical Connections

Completeness of connection on statistical manifolds is an interesting area of
study in information geometry. In [11], Nagouchi started the study of the com-
pleteness of the statistical connection on a certain type of statistical manifolds
(In his study, he referred this kind of statistical manifolds as “special” statistical
manifolds). In [12], Barbara Opozda obtained some results on completeness of
statistical connection. In this section, we give a condition for completeness of
statistical connection for conformal submersion with horizontal distribution.

For a torsion-free affine connection ∇ and a semi-Riemannian metric gm, we
say (M,∇, gm) is a statistical manifold if ∇gm is a symmetric (0, 3)- tensor. For
statistical manifolds the dual connections are also torsion-free [1].
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Definition 5. Let (M,∇, gm) and (B,∇∗, gb) be statistical manifolds, π : M →
B be a conformal submersion with horizontal distribution and α be a smooth
curve in B. Let α′ be the tangent vector field of α and ˜(α′) be its horizontal lift.
Define the horizontal lift of the smooth curve α as the integral curve σ on M of
(α̃′).

Now, we have

Proposition 1. Let (M,∇, gm) and (B,∇∗, gb) be statistical manifolds, π :
M → B be a conformal submersion with horizontal distribution such that
AZZ = 0 for all horizontal vector fields Z. Then, every horizontal lift of a
geodesic of B is a geodesic of M if and only if 2X(φ)π∗X = π∗(gradπφ) ‖ X ‖2,
where X is the horizontal part of the tangent vector field of the horizontal lift of
the geodesic on B.

Proof. Let α be a geodesic on B, σ be the horizontal lift of α. Then, we have
π ◦ σ = α and σ′(t) = ˜(α′(t)). Let X = H(σ′(t)) and U = V(σ′(t)), clearly
X = ˜(α′(t)) and U = 0. Then, from the Eqs. (6) and (7)

π∗(H(σ′′)) = α′′ − π∗(gradπφ) ‖ X ‖2 +2X(φ)π∗X.

V(σ′′) = AXX.

Since α is a geodesic and AXX = 0 we have, σ′′ = 0 if and only if 2X(φ)π∗X =
π∗(gradπφ) ‖ X ‖2. That is, every horizontal lift of a geodesic of B is a geodesic
of M if and only if 2X(φ)π∗X = π∗(gradπφ) ‖ X ‖2.
Theorem 4. Let (M,∇, gm) and (B,∇∗, gb) be statistical manifolds, π : M →
B be a conformal submersion with horizontal distribution such that AZZ =
0 for all horizontal vector fields Z. Then, ∇∗ is geodesically complete if ∇ is
geodesically complete and 2X(φ)π∗X = π∗(gradπφ) ‖ X ‖2, where X is the
horizontal part of the tangent vector field of the horizontal lift of the geodesic
on B.

Proof. Let α be a geodesic of B and α̃ be its horizontal lift to M, by Proposition
(1) α̃ is a geodesic on M. Since ∇ is geodesically complete, α̃ can be defined on
the entire real line. Then, the projected curve of the extension of α̃ is a geodesic
and is the extension of α, that is ∇∗ is geodesically complete.
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Abstract. We define the notion of a measure family: a pre-cosheaf of
finite measures over a finite set; every joint measure on a product of finite
sets has an associated measure family. To each measure family there
is an associated index, or “Euler characteristic”, related to the Tsallis
deformation of mutual information. This index is further categorified
by a (weighted) simplicial complex whose topology retains information
about the correlations between various subsystems.

1 Introduction

Questions relating to the independence of random variables have a deep rela-
tionship to questions of topology and geometry: given the data of a multipartite,
a.k.a. “joint” measure, there is an emergent “space” that encodes the relationship
between various subsystems. Topological invariants of this emergent space cap-
ture non-trivial correlations between different subsystems: this includes numer-
ical invariants—such as the Euler characteristic—which roughly indicate how
much information is shared characteristic, as well as “higher” invariants—such
as cohomology—that capture what information is shared. In [11] these ideas were
explored, using a language engineered for an audience interested in the purely
quantum regime, i.e., “non-commutative” measure theory. This note provides a
sketch of the categorical underpinnings of these ideas in the opposite “classical”
or “commutative” extreme, focusing on finite atomic measure spaces for brevity.
Some of these underpinnings are partly outlined in the recorded talks [12,13].

The majority of this note is dedicated to formalizing the working parts that
underlie the “commutative diagram” in Fig. 1. The word “space” is taken to mean
a (semi-)simplicial measure or a (weighted semi-)simplicial set, and the grayed
out mystery box indicates a suspected “weighted” version of cohomology that
may provide a novel measure of shared information. The classical picture that
is presented here is unified with the quantum picture of [11] using the language
of von Neumann algebras.1 A reader wishing to learn how this fits into a larger
picture should consult [11] and the talks [12,13]. The upcoming paper [9] is a
related spin-off of the categorical and W∗-algebraic underpinnings of some ideas
discussed here.
1 See [15] for a precise categorical equivalence between commutative W∗-algebras and
(localizable) measurable spaces.

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
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Fig. 1. A “commutative diagram” summarizing the big picture behind the definitions
and results stated in this note.

Our categorical perspective of measures on finite sets has close ties to the
work of Baez, Fritz, and Leinster [2,3], and the quantum mechanical general-
ization is related to the work of Parzygnat [14]. The homotopical or homologi-
cal perspective has strong relations to the work of Baudot and Bennequin [4];
Vigneaux [18]; Sergeant-Perthuis [16]; and Drummond-Cole, Park, and Ter-
illa [7,8]. Ideas around the index (Sect. 4.3) bear relation to the work of Lang,
Baudot, Quax, and Forré [10].

2 Preliminaries

In this note, a (finite) measure μ consists of the data of a finite set Ωμ and
a function Subset(Ωμ) → R≥0 that evaluates to zero on ∅ and satisfies the
additivity condition: the value on a subset U reduces to the sum of its evaluation
on points of U . In a mild abuse of notation, we use μ to denote the function
Subset(Ωμ) → R≥0. We allow for measures to be identically zero on a set, and
also allow for the empty measure: the unique measure on the empty set.2

If μ and ν are measures with Ωμ = Ων = Ω we write μ ≤ ν if μ(U) ≤ ν(U)
for all U ⊆ Ω. Given a measure μ, and a function between sets f : Ωμ → Γ, the
pushforward measure f∗μ is the measure with set Ωf∗μ := Γ and (f∗μ)(U) :=
μ[f−1(U)] for any U ⊆ Γ. When f∗μ = ν we call f measure-preserving.

2 The empty measure corresponds to the zero expectation value on the zero algebra.
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3 The Category of Finite Measures

Definition 1. Meas is the category with objects given by finite measures, and a
morphism f : μ → ν defined by an underlying function on sets f : Ωμ → Ων such
that f∗μ ≤ ν.

Remark 1. Meas utilizes the relation ≤ to define a larger class of morphisms
than the similarly named category in the work of Baez-Fritz-Leinster [2,3], who
define morphisms as measure-preserving functions. Nevertheless, isomorphisms
are measure-preserving bijections (Lemma 2); so the notion of isomorphism coin-
cides with that of Baez-Fritz-Leinster.

Lemma 1. Meas has:

1. A symmetric monoidal structure induced by the product of underlying sets:
Let μ and ν be measures, then μ ⊗ ν is the product measure on Ωμ × Ων .

2. Coproduct � induced by the disjoint union
∐

of sets: for any measures μ
and ν, Ωμ�ν := Ωμ

∐
Ων and (μ � ν)(U) := μ(U ∩ Ωμ) + ν(U ∩ Ων) for any

U ⊆ Ωμ

∐
Ων .

Proof. Verifying that ⊗ provides a symmetric monoidal structure is straight-
forward. To see that � is a coproduct, note that the inclusion map ιμ : Ωμ →
Ωμ

∐
Ων defines a valid morphism ιμ : μ → μ � ν as (ιμ)∗μ = μ � 0Ων

≤ μ � ν.
Similarly, ιν : Ων → Ωμ

∐
Ων defines a morphism ιν : ν → μ � ν. The universal

property follows in part by the fact that
∐

is a coproduct for sets.

Remark 2. The operation ⊗ is a categorical product in Meas, but it is not a
categorical product in the quantum-classical enlargement of Meas.

Remark 3. The fact that � is a coproduct relies on the presence of non-
probability measures and maps that are not measure preserving.3

3.1 The Rig of Isomorphism Classes of Measures

The following lemma is straightforward.

Lemma 2. f : μ → ν is an isomorphism if and only if f is a bijection and
f∗μ = ν.

Remark 4. One can generalize the class of morphisms in Meas to the class of
stochastic maps that manifest algebraically as completely positive contractions
on ∗-algebras of C-valued random variables. Even in this situation, isomorphisms
would still be measure-preserving bijections.

3 If one works with probability measures and measure-preserving maps, � instead
manifests as an operadic structure which encapsulates the ability to take convex
linear combinations of probability measures; this is the approach taken by [6].
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The collection of isomorphism classes [Meas] of Meas is a set.4 Moreover,
letting [μ] denote the isomorphism class of an object μ, we can define binary
operations + and · by: [μ] + [ν] := [μ � ν] and [μ] · [ν] := [μ ⊗ ν] for any pair
of objects μ and ν. These equip [Meas] with the structure of a commutative rig:
a commutative ring dropping the condition that there are additive inverses (a
ring without “negatives”). The empty measure ∅ provides an additive (+) unit,
and the unit measure on the one-point set provides a multiplicative (·) unit.

The following theorem is a take on the observations of Baez-Fritz-Leinster
in [2].

Theorem 1. Let O(C) denote the ring of holomorphic functions on C. There
is a unital homomorphism dim: [Meas] → O(C), defined on any [μ] by:

dim[μ] : C −→ C

q 	−→
∑

ω∈Ωμ

μ({ω})q =: dimq[μ],

where, for any λ ≥ 0, λ0 := limq→0 λq: i.e., λ0 = 1 if λ > 0 and 00 := 0.

Remark 5. There is a reflective full subcategory of Meas generated by “faithful”
measures: measures μ such that μ({ω}) > 0 for all ω ∈ Ωμ. The homomorphism
dim is an isomorphism on this full subcategory (see [2]).

Remark 6. An extension of Theorem 1 to finite-dimensional quantum-classical
systems appears in the constructions of [11, Sect. 8.4.1].

Remark 7. The parameter q in dimq has several potential interpretations:

1. As a character of a continuous complex irreducible representation of the mul-
tiplicative group R>0: every such representation is of the form mq : R>0 →
Aut(C) for some q ∈ C such that mq(λ)z = λqz.

2. As a (negative) inverse temperature: dim−β [μ] is the partition function∑
ω∈Ωμ

e−βE(ω), associated to the classical system with state space Ωμ and
energy function E : Ωμ → R given by E(ω) := log[μ({ω})].

3. As the parameter defining a q-norm for an Lq space.

A detailed justification for the first and third interpretation is left for future
work. The second interpretation is is also discussed in [2].

4 Measure Families

Definition 2. A measure family μ is the data of a finite set Pμ and a functor

Subset(Pμ) −→ Meas,
4 It is easy to write down a natural bijection of [Meas] with

∐∞
n=0(R≥0)×n, taking

R
×0 := {�} to correspond to the empty measure. This observation can be used to

equip [Meas] with a topology as in [3].
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where Subset(Pμ) is the category with objects given by subsets of Pμ, and a unique
morphism T → V if and only if T ⊆ V . Analogous to the situation for measures,
we abuse notation and denote the functor by μ.

Given a function between finite sets f : Pμ → Q, we can define the push-
forward of a measure family μ as the measure family f∗ μ : Subset(Q) → Meas
defined by

(f∗ μ)(T ) := μ[f−1(T )]

for every T ⊆ Q. Given two measure families μ and ν with P = Pμ = Pν, we say
μ ≤ ν if and only if Ωμ(T ) = Ων(T ) and μ(T ) ≤ ν(T ) for every T ⊆ P .

Definition 3. The category of measure families MeasFam is the category with
objects given by measure families, and a morphism f : μ→ ν defined by a func-
tion f : Pμ → Pν such that f∗ μ ≤ ν.

There are various versions of “lifts” of the monoidal operations � and ⊗ on
Meas to monoidal operations on MeasFam; the following versions will be useful.

Definition 4. Let μ and ν be measure families, then μ� ν and μ⊗ ν are mea-
sure families with Pμ� ν and Pμ⊗ ν both defined as the disjoint union Pμ

∐
Pν.

On a subset T ⊆ Pμ
∐

Pν we define (μ� ν)(T ) := μ(T ∩ Pμ) � ν(T ∩ Pν), and
(μ⊗ ν)(T ) := μ(T ∩ Pμ) ⊗ ν(T ∩ Pν). The definitions on inclusions follow from
the obvious induced morphisms.

Definition 5. Let μ be a measure family, and T ⊆ Pμ; then μ |T : Subset(T ) →
Meas denotes the obvious restriction. We say μ is a 2-measure if μ(∅) is the
empty measure and there is an isomorphism μ ∼−→ �p∈P μ |{p}.

2-measures are measure families where all global data is given by gluing together
local data.5 This is a categorified notion of the additivity condition for a measure.

4.1 2-Measures from Measures

Let μ be a measure, then there is a measure family Rμ : Subset(Ωμ) → Meas
given by the restriction of μ to subsets of P . On objects, it acts in the following
way: for T ⊆ Ωμ nonempty, RμT := μ|T , where μ|T the restriction of μ to
subsets of T ; to the empty set we assign the empty measure. To every inclusion
T ⊆ V , it assigns the morphism RμT → RμV whose underlying map is the
inclusion map T ↪→ V . The additivity condition on a measure requires that for
any subset T ⊆ P the identity map T → T induces an isomorphism of measures:
RμT

∼−→ �t∈TRμ({t}). As a result, Rμ is a 2-measure. Conversely, any 2-measure
that reduces to a coproduct of measure families on one point sets defines a
measure on Pμ.

5 In some sense a 2-measure is an “acyclic cosheaf” of measures.
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4.2 Measure Families from Multipartite Measures

Definition 6. A multipartite measure µ over a finite subset P is a collection of
sets {Ωp}p∈P , and a measure μP : Subset(

∏
p∈P Ωp) → R≥0.

Given a multipartite measure µ over P , define ΩT as
∏

t∈T Ωt if T �= ∅, and
the one-point set {�} if T = ∅. Let p

T
: ΩP → ΩT denote the projection map if

T �= ∅ and the map to the point otherwise. Then to each subset T ⊆ P , we can
assign a reduced (or “marginal”) measure μT := (p

T
)∗μP .

The data of the reduced measures collects into a functor Subset(P )op →
Meas that takes a subset T of P to μT , and takes an inclusion T ⊆ V to the
morphism μV → μT provided by the projection ΩV → ΩT . Because this functor
is contravariant, it is not a measure family; however, we can make it one by
composing with the functor (−)c

P : Subset(Ω)op → Subset(Ω) that takes a subset
of P to its complement. The result is a measure family

Aµ : Subset(P ) −→ Meas,

which acts on objects by taking T to μT c . Factorizability questions about µ are
equivalent to factorizability questions about Aμ: e.g. μP =

⊗
p∈P μp, if and only

if there is an isomorphism Aµ ∼−→ ⊗
p∈P Aµ|{p}.

4.3 The Index

Definition 7. Let μ be a measure family. The index of μ is defined as the holo-
morphic function

X[μ] :=
|Pμ|∑

k=0

(−1)k dim

⎡

⎣�
|T |=k

μ(T c)

⎤

⎦ .

The evaluation of X[μ] at q ∈ C is denoted as Xq[μ].

The complement in the definition is for convenience;6 without it, the definition
would be the same up to the overall sign (−1)|Pμ|. Theorem 1 and manipulations
of the inclusion-exclusion relation defining the index lead to the following results.

Theorem 2. The index only depends on isomorphism classes of measure fami-
lies; moreover, X[μ⊗ ν] = X[μ]X[ν] for any measure families μ and ν.

Proposition 1. If μ and ν measure families with Pμ and Pν non-empty, then
Xq[μ� ν] = 0. In particular, X vanishes on any 2-measure μ with |Pμ| ≥ 2.

According to Proposition 1, a non-vanishing index indicates that there is an
obstruction to an “additive” (�) descent of data. For a multipartite measure
µ, we are more interested in an obstruction to a “multiplicative” (⊗) descent of

6 One can define an index with respect to any cover of Pµ; but our primary interest
will be the cover that is the complement of the finest partition of Pμ.
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data, i.e., a failure to factorize. As the discussion below indicates, this can be
detected by looking at the derivative of q 	→ Xq[Aµ] at q = 1 (where X1[Aµ] = 0).

Tsallis Mutual Information and the q → 1 Limit. For a multipartite mea-
sure µ we have:

Xq[Aµ] =
∑

∅⊆T ⊆P

(−1)|T |
(

∑

ω∈ΩT

μT ({ω})q

)

.

If µ is a multipartite probability measure (μP (P ) = 1), then a bit of manipula-
tion demonstrates that Iq[µ] := 1

q−1Xq[Aµ] can be rewritten as:

Iq[µ] =
∑

∅�=T ⊆P

(−1)|T |−1STs
q (μT ),

where STs
q (μ) := 1

q−1 [1 − ∑
ω∈Ω μ({ω})q] is the Tsallis deformation of mutual

information. Multipartite mutual information is recovered in the limit that q → 1.
If µ is a multipartite measure on a one-element set, then Iq[µ] is simply the
Tsallis entropy. This observation can be combined with multiplicativity of the
index (Theorem 2), to demonstrate that the multipartite mutual information of
a multipartite measure on P must vanish if the measure factorizes with respect
to any partition of P : see [11, Sect. 8.5].

The q → 0 Limit. dim0 μ, which is limq→0 dimq μ by definition, is an integer
counting the number of points of Ωμ with non-vanishing measure. Thus, for μ
any measure family, X0[μ] is an integer. This is a hint that X0[μ] is related to
the Euler characteristic of a topological space.

4.4 (Semi-)Simplicial Objects

By viewing a measure family μ as a pre-cosheaf and applying Čech techniques
with respect to a cover of Pμ, we can construct an (augmented)7 semi-simplicial
object in Meas: an (augmented) semi-simplicial measure. In this note, we spe-
cialize to the “complementary cover” {{p}c}p∈Pμ of Pμ and choose a total order
on P .8 Using the fact that the intersection of complements is the complement of
a union, the non-trivial part of the resulting augmented semi-simplicial measure
can be summarized by a diagram in Meas of the form:

Degree −1
︷ ︸︸ ︷
μ(∅c) ←−

Degree 0
︷ ︸︸ ︷

�
|T |=1

μ(T c) ←−←− · · ·
←−←−
...←−︸︷︷︸

n − 1 arrows

Degree n − 2
︷ ︸︸ ︷

�
|T |=n−1

μ(T c)
←−←−
...←−︸︷︷︸

n arrows

Degree n − 1
︷ ︸︸ ︷
μ(P c

μ ) , (1)

7 Augmented in this context means there is an additional degree −1 component and
a single map from the degree 0 component to the degree −1 component.

8 All interesting quantities are equivariant under change of total order.
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where: n = |P |, degree ≥ n components are taken to be the empty measure, and
the arrows satisfy the face-map relations of an augmented semi-simplicial object.
The holomorphic function −X[μ], where X[μ] is the index of Definition 7, can be
thought of as the graded dimension or “Euler characteristic” of (1).

Remark 8. In the special case that μ = Aµ for a multipartite measure µ over P ,
the complements disappear: for any T ⊆ P , we have Aµ(T c) = μT (the reduced
measure on

∏
t∈T Ωt). With this specialization, diagram (1) becomes:

Degree −1
︷︸︸︷
μ∅ ←−

Degree 0
︷ ︸︸ ︷

�
|T |=1

μT
←−←− · · ·

←−←−
...←−

Degree |P | − 2
︷ ︸︸ ︷

�
|T |=|P |−1

μT

←−←−
...←−

Degree |P | − 1
︷︸︸︷
μP , (2)

where, as before, we ignore the empty measures in degree ≥ |P | components. The
augmentation map into the degree −1 component has underlying map given by
the unique map

∐
p∈P Ωp → {�} = Ω∅, and the remaining face maps are induced

by projection maps composed with inclusions into disjoint unions. For instance,
if P = {1, 2}, the two face maps out of the degree 1 component have underlying
maps given by the following compositions (letting i ∈ {1, 2}):

Ω1 × Ω2
project−−−−→ Ωi

include
↪−−−−→ Ω1

∐
Ω2.

Remark 9. One can also apply Čech techniques to produce (augmented) simpli-
cial objects rather than (augmented) semi-simplicial objects (see, [5] and [1, Sect.
25.1–25.5]). Simplicial objects include additional “degeneracies” and extend the
diagram (1) infinitely far to the right with possibly non-empty measures. The
invariants of the underlying measure family that are discussed in this note—Euler
characteristics, indices, and cohomology—can be recovered by passing through
either version: yielding results that are equivalent, or canonically isomorphic.
This note focuses on the semi-simplicial version for pedagogical reasons and
immediate connections to the computational underpinnings of [11].

(Semi-)Simplicial Sets. From the semi-simplicial measure (1), one can derive
an (augmented) semi-simplicial set: a slight generalization of a simplicial com-
plex. Indeed, there is a functor:

S : FinMeas −→ FinSet

that assigns to a measure μ, its support:

Sμ := {ω ∈ Ωμ : μ(ω) �= 0},

and assigns to a morphism f : μ → ν, the morphism Sf : Sμ → Sν whose underly-
ing function on sets is the restriction f |Sμ: a valid assignment as f(Sμ) ⊆ Sν due
to the condition f∗μ ≤ ν. Applying S to our semi-simplicial measure, we obtain
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an augmented semi-simplicial set Δ[μ] whose non-trivial part is summarized by
the following diagram in FinSet (with n = |Pμ|):

Degree −1
︷ ︸︸ ︷
S μ(∅c) ←−

Degree 0
︷ ︸︸ ︷∐

|T |=1

S μ(T c) ←−←− · · ·
←−←−
...←−

Degree n − 2
︷ ︸︸ ︷∐

|T |=n−1

S μ(T c)
←−←−
...←−

Degree n − 1
︷ ︸︸ ︷
S μ(P c

μ ) .

The Euler characteristic of Δ[μ], denoted χ(Δ[μ]), is the negative of the q = 0
evaluation (or q → 0 limit) of the index:

χ(Δ[μ]) :=
|Pμ|−1∑

k=−1

(−1)k

⎛

⎝
∑

|T |=k+1

|S μ(T c)|
⎞

⎠ = −X0[μ].

Geometric Realizations. Specialize to μ = Aµ, and define Δµ := Δ[Aµ], which
is summarized by the diagram:

Sμ∅←−
∐

|T |=1

SμT
←−←− · · ·

←−←−
...←−

∐

|T |=|P |−1

SμT

←−←−
...←−

SμP .

Let Δ′
µ denote the semi-simplicial set obtained by removing the augmenta-

tion map9 into Sμ∅. To construct the geometric realization |Δ′
µ|, observe that

0-simplices are given by points ω ∈ ∐
p∈P Ωp such that μ{p}({ω}) �= 0

for every p ∈ P . Higher k-simplices are given by collections of 0-simplices
with non-vanishing measure as computed with respect to the reduced measure
�|T |=k+1 μT . The geometric realization is simple: first identify P = PAµ with the
set {1, · · · , n}, then for each (ω1, · · · , ωn) ∈ ∏n

i=1 Ωi with μ({(ω1, · · · , ωn)}) �= 0,
draw an (n − 1)-simplex with vertices ω1, ω2, . . . , ωn.

When µ is a bipartite measure on the set P = {1, 2}, the geometric realiza-
tion |Δ′

µ| might look familiar: it is a bipartite (directed) graph whose vertices
are colored by points in P . A bit of experimentation demonstrates that the con-
nectivity of this graph is closely related to the correlations between “subsystems”
1 and 2.

Cohomology. If we apply the functor10 HomFinSet(−,C) : FinSetop → FinVectC
to Δμ, we obtain a cosimplicial vector space; this can can be turned into a cochain
complex by taking alternating sums of face maps. For μ = Aµ, this complex looks
like (letting C[−] be shorthand for HomFinSet(−,C)):

Degree -1
︷︸︸︷
C −→

Degree 0
︷ ︸︸ ︷∏

|T |=1

C[SμT ] −→
Degree 1

︷ ︸︸ ︷∏

|T |=2

C[SμT ] −→ · · · −→
Degree |P | − 1

︷ ︸︸ ︷
C[SμP ] −→ 0 −→ · · ·

9 If μP does not vanish everywhere, then |Sμ∅| = |{�}| = 1. Consequently, one can
show that X0[Aµ] = 1− χ(Δ′

μ).
10 This is a specialization of a functor from (localizable) measurable spaces to

the Banach space underlying the W∗-algebra of essentially bounded measurable
functions.
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The cohomology H• of this cochain complex is the reduced simplicial cohomology
of the geometric realization |Δ′

µ| with coefficients in C. Representatives of Hk

can be interpreted as assignments of C-valued random variables to all subsystems
(subsets of PAµ) of size k+1, such that these assignments have linear correlations
that do not reduce to correlations on subsystems of size k. Random variables on
the subsystem of size 0, coming from the degree −1 component, are the constant
random variables. For a bipartite measure on P = {1, 2}, a representative of
a non-zero element in H0 is a pair (r1, r2) of random variables such that (for
i ∈ {1, 2}): ri is a random variable on Ωi that is not almost everywhere (a.e.)
equal to zero, ri is non-constant, and r1 ⊗ 1 − 1 ⊗ r2 is a.e. equal to zero with
respect to the measure on Ω1 × Ω2. See [11, Sect. 7.4] and [11, Sect. 6.5] for
interpretations of the quantum mechanical analogs of H0 and higher Hk; these
interpretations can be translated into precise statements for the classical context
of this note.11

Remark 10. As a source of new invariants of multipartite measures, one might
also study the cohomology ring of |Δµ| with coefficients in a commutative ring
R: a graded R-algebra. In fact, the story in this section can be souped-up to use
part of the monoidal Dold-Kan correspondence in order to produce a differential
graded R-algebra from a measure family.

5 Some Future Directions

The reduced measures associated to a multipartite measure supply a “weight” to
the simplices of its associated semi-simplicial set. Thus, in some sense, the index
is a weighted Euler characteristic. It is natural to suspect that there is a weighted
version of cohomology categorifying the index for all values of q: the mystery box
of Fig. 1. Moreover, the existence of a canonically associated semi-simplicial set
to a multipartite measure may open the door to measures of shared information
using combinatorial invariants, such as the Stanley-Reisner ring (the “face ring
of a simplicial complex” in [17]).

References

1. Stacks Project. https://stacks.math.columbia.edu. Accessed 16 May 2023
2. Baez, J., Fritz, T., Leinster, T.: Entropy as a functor (2011). https://ncatlab.org/

johnbaez/revision/Entropy+as+a+functor/55
3. Baez, J., Fritz, T., Leinster, T.: A characterization of entropy in terms of informa-

tion loss. Entropy 13(11), 1945–1957 (2011)
4. Baudot, P., Bennequin, D.: The homological nature of entropy. Entropy 17, 3253–

3318 (2015). https://doi.org/10.3390/e17053253
5. Bennequin, D., Peltre, O., Sergeant-Perthuis, G., Vigneaux, J.P.: Extra-fine sheaves

and interaction decompositions (2020). arXiv:2009.12646

11 The classical analog of the GNS and the commutant complexes of [11] both reduce
to the alternating sum of face maps complex that is used in this note.

https://stacks.math.columbia.edu
https://ncatlab.org/johnbaez/revision/Entropy+as+a+functor/55
https://ncatlab.org/johnbaez/revision/Entropy+as+a+functor/55
https://doi.org/10.3390/e17053253
http://arxiv.org/abs/2009.12646


Higher Information from Families of Measures 257

6. Bradley, T.D.: Entropy as a topological operad derivation. Entropy 23(9), 1195
(2021)

7. Drummond-Cole, G., Park, J.S., Terilla, J.: Homotopy probability theory I (2015).
arXiv:1302.3684

8. Drummond-Cole, G., Park, J.S., Terilla, J.: Homotopy probability theory II (2015).
arXiv:1302.5385

9. Geiko, R., Mainiero, T., Moore, G.: A categorical triality: Matrix product factors,
positive maps and von Neumann bimodules (2022)

10. Lang, L., Baudot, P., Quax, R., Forré, P.: Information decomposition dia-
grams applied beyond shannon entropy: a generalization of Hu’s theorem (2022).
arXiv:2202.09393

11. Mainiero, T.: Homological tools for the quantum mechanic (2019).
arXiv: 1901.02011

12. Mainiero, T.: The secret topological life of shared information (2020). https://
youtu.be/XgbZSwRlAjU, String-Math

13. Mainiero, T.: Higher entropy. In: Symposium on Categorical Semantics of Entropy
at CUNY (2022). https://youtu.be/6cFDviX0hUs,

14. Parzygnat, A.J.: A functorial characterization of von Neumann entropy (2020).
arXiv:2009.07125

15. Pavlov, D.: Gelfand-type duality for commutative von Neumann algebras. J. Pure
Appl. Algebra 226(4), 106884 (2022). arXiv:2005.05284

16. Sergeant-Perthuis, G.: Intersection property, interaction decomposition, regional-
ized optimization and applications (2021). https://doi.org/10.13140/RG.2.2.19278.
38729

17. Stanley, R.P.: Combinatorics and Commutative Algebra, Progress in Mathematics,
vol. 41, 2nd edn. Birkhäuser Boston Inc., Boston (1996)

18. Vigneaux, J.: The structure of information: from probability to homology (2017).
arXiv: 1709.07807

http://arxiv.org/abs/1302.3684
http://arxiv.org/abs/1302.5385
http://arxiv.org/abs/2202.09393
http://arxiv.org/abs/1901.02011
https://youtu.be/XgbZSwRlAjU
https://youtu.be/XgbZSwRlAjU
https://youtu.be/6cFDviX0hUs,
http://arxiv.org/abs/2009.07125
http://arxiv.org/abs/2005.05284
https://doi.org/10.13140/RG.2.2.19278.38729
https://doi.org/10.13140/RG.2.2.19278.38729
http://arxiv.org/abs/1709.07807


A Categorical Approach to Statistical
Mechanics

Grégoire Sergeant-Perthuis(B)

Inria Paris, OURAGAN, Paris, France
gregoireserper@gmail.com

Abstract. ‘Rigorous’ Statistical Mechanics is centered on the mathe-
matical study of statistical systems. In this article, we show that impor-
tant concepts in this field have a natural expression in terms of category
theory. We show that statistical systems are particular representations of
partially ordered sets (posets) and express their phases as invariants of
these representations. This work opens the way to the use of homological
algebra to compute phases of statistical systems. In particular we com-
pute the invariants of projective poset representations. We remark that
in this formalism finite-size systems are allowed to have several phases.

Keywords: Applied category theory · Statistical mechanics

1 Introduction

Statistical physics is a framework that focuses on the probabilistic descrip-
tion of complex systems: a collection of interacting ‘particles’ or components
of a whole in most generality [19]. Its main feature is to introduce an energy
function H for the system, that associates to any of its configurations a real
value; the probability p of a configuration is given in terms of the Boltzmann
distribution (p = e−βH/

∫
dxe−βH(x)), which associates high energy configura-

tions to unlikely events. We will call ‘statistical system’ the complex system
provided with the Boltzmann distribution. Statistical physics serves as a rich
framework for probabilistic modeling ‘in general’. It has several names depend-
ing on the community [15]; for example, it is called ‘energy-based modeling’ in
machine learning, the probabilistic model is called a Gibbs Random Field in
graphical modeling and is a particular case of statistical system. It is widely
used in engineering, two examples are: computational structural biology (com-
putational statistical physics: Hamiltonian Monte Carlo) [5,16], robotics (rein-
forcement learning: Markov Chains, Markov Decision Processes) [26].

Applied Category Theory: New foundations, based on topology and
geometry were proposed for probability theory, information theory, deep learn-
ing [2,6,8,12,25]. More generally they fall in a field of research that has recently
emerged, Applied Category Theory, which focuses on applying these principles
to engineering [1,6–8,18,25].
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Contribution: In this paper, we propose to build a bridge between geometry
and (rigorous) statistical physics by showing that the standard formal definition
of a statistical system, a ‘specification’ (Definition 1.23 [10]), can be identified
with a particular representation of a partially ordered set (poset).

Representations of posets have a precise geometric interpretation [4,13,23,24,
27], and there is a rich literature coming from algebra, geometry, and topology
to study them. In particular, we hope that this work opens the way to the
systematic algebraic study of statistical systems.

Characterizing the phases (Gibbs measures) of a statistical system is a central
subject of statistical mechanics. As one step in this direction, we show that
phases of statistical systems are geometric invariants of these representations
and compute them for ‘projective’ poset representation. In particular in this
setting system of ‘finite size’ can have multiple phases, which is not possible in
the current formalism for phase transition.

2 Structure of the Paper and Contribution

We start by recalling some important notions of (rigorous) statistical mechanics
[10] (specifications, Gibbs measures). We then show that the standard concept
that encodes the statistical system, which is the notion of ‘specifications’, can be
extended into a poset representation; we also show that the Gibbs measures of
a statistical system are geometric invariants of this representation. From there,
we propose a novel categorical formulation for statistical mechanics; we define
‘generalized specifications’ and ‘generalized Gibbs measures’ for those specifica-
tions. We give a first result on characterizing generalized Gibbs measures for
a certain class of generalized specifications (projective poset representations).
Such specifications were characterized in [21] and relate to independent random
variables. On the other hand, injective representations were characterized in [20]
and their relationship with the marginal extension problem is studied in [3]; a
unifying perspective for Hilbert spaces can be found in [22]. In the formalism we
propose statistical systems of ‘finite’ size’ can have multiple phases.

3 Background: Rigorous Statistical Mechanics

We will follow the presentation of Georgii’s reference book Gibbs Measures and
Phase Transitions [10].

Definition 1 (Markov Kernel). A Markov kernel π from the measurable space
(E,E ) to the measurable space (E1,E1) is a function π : E1 × E → [0, 1] such
that

1. ∀ω ∈ E, π(.|ω) is a measure on E1

2. ∀A ∈ E1, π(A|.) is a measurable map from E to R

3. ∀ω ∈ E, π(E1|ω) = 1, i.e. π(.|ω) is a probability measure.
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We will denote a Markov kernel π from (E,E ) to (E1,E1) as π : (E,E ) →
(E1,E1). We denote [(E,E ), (E1,E1)]K , the set of kernels from (E,E ) to (E1,E1);
if there is no ambiguity on the σ−algebras the spaces are provided with, we will
simply denote it as [E,E1]K . We denote P(E), the space of probability distri-
butions over E; it is a measurable space for the smallest σ−algebra that makes
the evaluation maps, on measurable sets of E, measurable.

Markov kernels can be composed as follows. Let π : E → E1, π1 : E1 → E2

be two Markov kernels, then the composition π1 ◦ π : E → E2 is the following
Markov kernel: for any A ∈ E2 and ω ∈ E,

π1 ◦ π(A|ω) =
∫

π1(A|ω1)π(dω1|ω) (3.1)

A measurable map f : (E,E ) → (E1,E1) between two measurable spaces can
be extended into the following Markov kernel: for any A ∈ E1 and ω ∈ E,

πf (A|ω) = 1[f(ω) ∈ A] (3.2)

To avoid having too many notations, we will denote πf as f and the context
will specify if f refers to the measurable map or its extension; for example, a
composition π◦f between a Markov kernel π and f necessarily means that, here,
f refers to πf . We will also denote π1 ◦ π as π1π.

A probability measures p ∈ P(E) can also be identified with the following
Markov kernel πp from ∗, the measurable space with one element, to (E,E ); for
any A ∈ E , πp(A|∗) = p(A). Similarly we identify p and πp.

Remark 1. Measurable spaces and measurable maps form a category. Giry [11]
and Lawvere [14] are the first to have remarked that measurable spaces and
Markov kernels also form a category; the latter category is ‘dual’ to the first, it
is its Kleisli category.

Definition 2 (Proper Kernel, Sect. 1.1. [10]). Let E1 ⊆ E be two σ-algebras of
a set E, a kernel π ∈ [(E,E1), (E,E )]K is proper if and only if, for any A ∈ E ,
B ∈ E1,

π(A ∩ B|.) = π(A|.)1B (3.3)

Let us set the notations. I is the set of components of a complex system.
(Ei,Ei, i ∈ I) is a collection of measurable spaces, with each Ei being the space
of configuration (state space) of the component i ∈ I. (E,E ) denotes the state
space of the system; it is the product E :=

∏

i∈I

Ei with the product σ-algebra. For

a sub-collection of components a ⊆ I, we denote Ea :=
∏

i∈a Ei the associated
state space, and Ea the associated product σ−algebra. ia : E → Ea is the
projection that sends a configuration ω := (ωi, i ∈ I) to the configuration of the
sub-collection a, (ωi, i ∈ a). Finally, let us denote Pf (I) the set of finite subsets
of I.
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Definition 3 (Specification, Adaptation of Def. 1.23 [10]). A specification γ
with state space (E,E ) is a collection (γa, a ∈ Pf (I)) of proper Markov kernels
such that for any a ∈ Pf (I), γa ∈ [(Ea,Ea), (E,E )]K and which satisfies that
for any b ⊆ a, i.e. a ⊆ b and any A ∈ E ,

γb ◦ ib ◦ γa(A|.) = γa(A|.) (3.4)

Remark 2. In Definition (1.23) [10], E is the product over the same measurable
space X over I and I is a countably infinite set.

In the standard definition of specification (Definition 3) the Markov kernels
encode border conditions for experiments that only involve finite numbers of
components (a ∈ Pf (I)). It is what formally encodes the statistical system.
The next definition defines the ‘phases’ of the system.

Definition 4 (Gibbs measures, Def. 1.23 [10]). Let γ be a specification with
state space E; the set of probability measures,

G (γ) := {p ∈ P(E) : Ep(A|Ea) = γa(A|.) p a.s.} (3.5)

is the set of Gibbs measures of γ.

One of the central problems of (rigorous) statistical mechanics is to under-
stand the relationship between a specification γ (statistical system) and its set
of Gibbs measures G (γ) (its phases).

4 Statistical Systems as Poset Representations

Theorem 1. Let γ be a specification with state space E. For any a, b ∈ Pf (I)
such that b ⊆ a, there is a unique Markov kernel F a

b : Ea → Eb such that the
following diagram commutes,

Ea E

Eb

γa

F a
b

γb (4.1)

i.e. such that γb ◦ F a
b = γa. Furthermore for any collection a, b, c ∈ Pf (I)

with a ⊆ b ⊆ c,

F b
c ◦ F a

b = F a
c (4.2)

Proof. Let b ⊆ a, let F a
b satisfy the commutative diagram 4.1, then,

ibγbF
a
b = ibγa (4.3)
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therefore,

F a
b = ibγa (4.4)

For any a, b ∈ A such that b ⊆ a let F a
b = ibγa then for c ⊆ b ⊆ a,

F b
c F a

b = icγbi
bγa (4.5)

Equation 3.4 can be rewritten as, for b ⊆ a,

γbi
bγa = γa (4.6)

therefore,

F b
c F a

b = F a
c (4.7)

Definition 5 (Partially ordered set). A partially ordered set (poset), (A ,≤), is
a set A provided with a binary relation ≤: A × A → {0, 1}, such that

1. reflexive: ∀a ∈ A , a ≤ a
2. transitive: if c ≤ b and b ≤ a then c ≤ a
3. antisymmetric: if b ≤ a and a ≤ b then a = b

(Pf (I),⊆) is a poset for the inclusion relation; (Pf (I),⊇) is also a poset for
the reversed inclusion relation: b ⊇ a ⇐⇒ a ⊆ b. The convention is to denote
(Pf (I),⊇) as Pf (I)op because what relates (Pf (I),⊇) to Pf (I) is the fact
that the order is ‘opposed’; the same convention holds for any poset; A op is the
set A with opposed order.

We call a representation of the poset A : a collection of ‘spaces’ (G(a), a ∈ A )
and a collection of ‘maps’ (Gb

a : G(b) → G(a); b, a ∈ A , b ≤ a) which satisfies
for any c ≤ b ≤ a, Gb

c ◦ Ga
b = Ga

c . We keep the notion of ‘poset representation’
a bit vague for now (we do not say what ‘spaces’ or ‘maps’ are); we keep this
notion vague at this stage but in the next section will make this notion formal
by introducing the concept of category and of functor.

Theorem 1 implies that a specification γ can be promoted to a representation
F of (Pf (I),⊇).

Theorem 2. Let γ be a specification with state space E, let p ∈ G (γ). For any
a ∈ A let pa := ia ◦ p; it is the marginal distribution on Ea of p. Then, for any
a, b ∈ Pf (I) such that b ⊆ a,

F a
b ◦ pa = pb (4.8)

Proof. For any a, b ∈ Pf (I) such that b ⊆ a,

γb ◦ (F a
b pa) = p (4.9)

therefore, F a
b pa = ibp and

F a
b pa = pb (4.10)
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5 Categorical Formulation

A category ‘plays the role of’ collections of spaces and of continuous maps
between those spaces; spaces are called ‘objects’, and continuous maps are called
‘morphisms’ (see I.1 [17] for a formal definition). Categories are usually denoted
in bold, e.g. C. A classical example of a category is the category of sets, Set,
that has as objects sets and as morphisms maps. We will denote Mes the cate-
gory that has as objects measurable space and as morphisms measurable maps
(Sect. 1 [11]); we will denote Kern the category that has as object measurable
spaces and as morphisms Markov kernels (the Kleisli category of the monad
Mes).

Definition 6 (Functor, I.3 [17]). A functor F : C → C1 is a ‘generalized func-
tion’:

1. that sends an object O of the source category C to an object F (O) of the
target category C1

2. that sends a morphism f : O → O1 ofC to a morphism F (f) : F (O) → F (O1)
of C1

3. that respects the composition of two morphisms in C: for two morphisms of
C, f : O → O1 and f1 : O1 → O2, then F (f1 ◦ f) = F (f1) ◦ F (f).

A poset, (A ,≤), can be seen as a category, A, with at most one morphism
between two objects: the objects of A are the elements of A and for any two
elements b, a ∈ A there is one morphism b → a when b ≤ a. From now we
will drop the bold notation for the category A and denote it simply as A . A
functor G from a poset A to a category C is precisely a collection of maps Gb

a

for b, a ∈ A such that b ≤ a, which satisfy Gb
a ◦ Gc

b = Gc
a for any three elements

c ≤ b ≤ a. A functor from A to some target category is what we will call a
representation of the poset A ; in general, the target category is the category of
vector spaces or modules [23]. For this article, the target category will be Mes
and Kern.

Consider a functor G : A → Set from a poset A to the category of sets. A
collection (xa, a ∈ A ) is called a section of G if for any b ≤ a, Gb

a(xb) = xa; the
set of sections of a poset representation is called the limit of G ( III.4 [17]) and
denoted limG. It is an ‘invariant’ of G that can be computed using homological
algebra when the target category of G is enriched with some algebraic structure
(Chap. 13 [9]).

In Theorem 1 we showed that we can associate to a specification γ, a functor
from (Pf (I),⊇) to Kern. The convention is to call a functor with source A op,
a presheaf. In Theorem 2 we showed that Gibbs measures of γ are ‘sections’ of
F . We will denote this set of ‘sections’ as [∗, F ]K,A ; more precisely for a functor
F : A → Kern,

[∗, F ]K,A := {(pa ∈ P(F (a)), a ∈ A )| ∀b ≤ a, F b
apb = pa} (5.1)
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Introducing the presheaf F and [∗, F ]K,A is our way to emphasize that the
compatible measures p ∈ [∗, F ]K,A don’t have to be measures over the whole
space E. There is no need to define statistical systems ‘globally’, one can also
define them ‘locally’.

Let us now introduce the more general, categorical setting we propose for
statistical systems.

Definition 7 (Generalized Specification, A -Specifications). Let A be a poset,
a generalized specification over A , or simply A -specification, is a couple (G,F )
of a presheaf and a functor where G : A op → Mes and F : A → Kern are such
that for any a, b ∈ A with b ≤ a,

Ga
bF b

a = id (5.2)

In the previous definition G encodes the collection of projections iab : Ea →
Eb for b ⊆ a; it is in some way the ‘skeleton’ of the spaces of observables of
the statistical system. It is a key ingredient for the generalization of (rigorous)
statistical mechanics to a categorical framework.

Definition 8 (Gibbs measures for A -specifications). Let γ = (G,F ) be an A -
specification, we call the Gibbs measures of γ the sections of F ,

Gg(γ) := [∗, F ]K,A (5.3)

Proposition 1 (Category of A -Specification). Let us call objects all A -
specifications. Call morphisms between two A -specifications, (G,F ) and (G1, F1)
couples of natural transformations (φ, ψ) with

1. φ : G → G1 a morphism of presheaves in Mes
2. ψ : F → F1 a morphism of functors in Kern

that satisfy for any a ∈ A ,

φaψa = id (5.4)

Then this collection of objects and morphisms forms a category. We will call
this category the category of A -specifications and denote it as Sp(A ).

6 Gibbs Measure of Projective Specifications

Let E be a measurable space; we denote L∞(E) the set of bounded, real-valued,
measurable functions over E. L∞ defines a presheaf from Mes and Kern to
the category of vector spaces Vect. For the definition and characterization of
projective presheaf over a poset see [4,13,27].
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Definition 9 (Projective A -specifications). An A -specification (G,F ) is called
projective when L∞ ◦F is a projective presheaf (in Vect). In other words, there
is a collection of presheaves (Sa, a ∈ A ) such that, L∞ ◦ F ∼= ⊕

a∈A Sa where
for any b ≥ a, Sa(b) is a constant vector space denoted Sa and Sa

b
c = id for any

a ≤ c ≤ b and Sa(b) = 0 if b �≥ a. The collection of presheaves (Sa, a ∈ A ) is
called the decomposition of (G,F ).

For any poset A , symmetrizing the order defines the following equivalence
relation,

∀a, b ∈ A , a ∼ b ⇐⇒ a ≤ b or b ≤ a (6.1)

The equivalence classes of this equivalence relation are the connected com-
ponents of A that we will denote as C (A ). To each element of a ∈ A one
can associate its connected component C (a). If each connected component has
a minimum element, in other words, if for any C ∈ C (A ), and any b ∈ C, there
is c ∈ C such that, c ≤ b, then we shall denote, C∗(A ) as the collection of these
minimum elements; if not C∗(A ) = ∅.

To conclude this article let us characterize Gibbs measures of projective A -
specifications.

Theorem 3. Let γ be a projective A -specification. If at least one of the con-
nected components of A does not have a minimum element, i.e. when,

C∗(A ) = ∅ (6.2)

then,

Gg(γ) = ∅ (6.3)

if not,
Gg(γ) =

∏

a∈C∗(A )

P(γ(a)) (6.4)

Proof. Let us denote L∞G as i and, L∞F as π; (i, π) is decomposable, let
(Sa, a ∈ A ) be its decomposition. For any a, b ∈ A such that b ≤ a and
μ ∈ G (γ), let us denote L∞μ as ν.

νbπ
a
b (

∑

c≤a

Sc(a)(v)) = νa(
∑

c≤a

Sc(a)(v)) (6.5)

therefore,

νb(
∑

c≤b

Sc
a
b (v)) = νaiba(

∑

c≤b

Sc
a
b (v)) = νa(

∑

c≤a

Sc(a)(v)) (6.6)

and so,
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νa(
∑

c≤a
c �≤b

Sc(a)) = 0 (6.7)

Therefore for any a �∈ C∗(A ), νa|Sa(a) = 0. Furthermore,

colim i ∼=
⊕

a∈A

Sa(a). (6.8)

ν is uniquely determined by (νa|Sa(a), a ∈ A ); if there is a connected com-
ponent C ∈ C (A ) that does not have a minimal element, for any a ∈ C,

νa|Sa
= 0 (6.9)

Therefore for any a ∈ C, νa = 0; this is contradictory with the fact that
μa ∈ P(γ(a)) and so,

Gg(γ) = ∅ (6.10)

When C∗(A ) is non empty for any functor, H, from A to Set,

limH ∼=
∏

a∈C∗(A )

H(a) (6.11)

therefore,

Gg(γ) =
∏

a∈C∗(A )

P(γ(a)) (6.12)
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Abstract. Information geometry is the study of interactions between
random variables by means of metric, divergences, and their geometry.
Categorical probability has a similar aim, but uses algebraic structures,
primarily monoidal categories, for that purpose. As recent work shows,
we can unify the two approaches by means of enriched category the-
ory into a single formalism, and recover important information-theoretic
quantities and results, such as entropy and data processing inequalities.

Keywords: Category Theory · Markov Categories · Graphical
Models · Divergences · Information Geometry

1 Metrics and Divergences on Monoidal Categories

A monoidal category [15, Sect. VII.1] is an algebraic structure used to describe
processes that can be composed both sequentially and in parallel. Before intro-
ducing their metric enrichment, we sketch their fundamental aspects and their
graphical representation. See the reference above for the full definition and for
the details.

1.1 Monoidal Categories and Their Graphical Calculus

First of all, a category C consists of objects, which we can view as spaces of
possible states, or alphabets, and which we denote by capital letters such as
X, Y , A, B. We also have morphisms or arrows between them. A morphism
f : A → B can be seen as a process or a channel with input from A and output
in B. Graphically, we represent objects as wires and morphisms as boxes, to be
read from left to right.

X Yf

Morphisms can be composed sequentially, with their composition represented
as follows,

X
Y gf Z
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and having a category means that the composition is associative and unital.
A relevant example is the category FinStoch of finite sets, which we view as
finite alphabets, and stochastic matrices between them, which we view as noisy
channels. A stochastic matrix f : X → Y is a matrix of entries f(y|x) ∈ [0, 1],
which we can view as transition probabilities, such that

∑
y f(y|x) = 1 for each

x ∈ X.
A monoidal structure on C is what allows us to have morphisms with several

inputs and outputs, represented as follows.

X Y

A B
g

This is accomplished by forming, for each two object X and A, a new object,
which we call X ⊗ A. This assignment is moreover functorial, in the sense of a
two-variable functor ⊗ : C × C → C, meaning that we also multiply morphisms.
Given f : X → Y and g : A → B we get a morphism f ⊗ g : X ⊗ A → Y ⊗ B,
which we represent as follows,

X Yf

A Bh

and which we can interpret as executing f and g independently and in parallel.
We also have morphisms with no inputs or outputs. For example, a state or

source is a morphism with no inputs.

Xp

This is accomplished by means of a distinguished object I, called the unit, with
the property that X ⊗ I ∼= I ⊗ X ∼= X, so that it behaves similarly to a neutral
element for the tensor product. In FinStoch, I is the one-element set: stochastic
matrices I → X are simply probability measures on X.

A monoidal category is then a category C equipped with a distinguished
object I, called the unit, and a product functor ⊗ : C×C → C which is associative
and unital up to particular isomorphisms. This makes the structure analogous
to a monoid, hence the name. A monoidal category is symmetric whenever there
is a particular involutive isomorphism

X

Y

Y

X

for each pair of objects X,Y , analogously to commutative monoids. For the
details, see once again [15, Sect. VII.1].

Let’s now equip these structures with metrics and divergences.
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1.2 Metrics and Divergences, and a Fundamental Principle

Definition 1. A divergence or statistical distance on a set X is a function

X × X [0,∞]

(x, y) D(x ‖ y)

D

such that D(x ‖ x) = 0.
We call the pair (X,D) a divergence space.
We call the divergence D strict if D(x ‖ y) = 0 implies x = y.

Every metric is a strict divergence which is moreover finite, symmetric, and
satisfies a triangle inequality. The Kullback-Leibler divergence (see the next
section) is an example of a non-metric divergence.

Definition 2. A divergence on a monoidal category C amounts to

– For each pair of objects X and Y , a divergence DX,Y on the set of morphisms
X → Y , or more briefly just D;

such that

– The composition of morphisms in the following form

X Y Z

f

f ′

g

g′

satisfies the following inequality,

D(g ◦ f ‖ g′ ◦ f ′) ≤ D(f ‖ f ′) + D(g ‖ g′); (1)

– The tensor product of morphisms in the following form

X ⊗ A Y ⊗ B

f⊗h

f ′⊗h′

satisfies the following inequality,

D
(
(f ⊗ h) ‖ (f ′ ⊗ h′)

) ≤ D(f ‖ f ′) + D(h ‖ h′). (2)

We can interpret this definition in terms of the following fundamental prin-
ciple of categorical information geometry : We can bound the distance between
complex configurations in terms of their simpler components.

For example, the distance or divergence between the two systems depicted
below

g

X

Y

p

f

g′

X

Y

p′
f ′
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is bounded by D(p, p′) + D(f, f ′) + D(g, g′). More generally, for any string dia-
grams of any configuration, the distance or divergence between the resulting
constructions will always be bounded by the divergence between the basic build-
ing blocks.

An important consequence of this principle, which can be obtained by setting,
for example, p = p′ and f = f ′ but not g = g′ in the example above, is that
adding the same block to both sides, in any sequential or parallel direction, cannot
increase the distance or divergence. This is a wide generalization of Shannon’s
data processing inequalities, which say that the divergence between two sources
cannot increase by processing them in the same way. (See [18, Sect. 2.1])

In the next two sections we are going to see two main examples of monoidal
categories with divergences: Markov categories, in particular FinStoch, and cat-
egories of couplings.

2 Markov Categories and Divergences

Markov categories are particular monoidal categories with a structure that makes
them very well suited for modeling probabilistic processes.1 They were defined
in their current form in [5], building up on previous work (see Sect. 2.1).

A Markov category is a symmetric monoidal category where each object X is
equipped with two particular maps called “copy” and “discard”, and represented
as follows.

X

X

X

X

Note that the copy map has output X ⊗ X and the discard map has output
I, i.e. “no output”. These maps have to satisfy some properties (commutative
comonoid axioms) which ensure that the interpretation as “copy” and “discard”
maps is indeed consistent. See [5] as well as [18] for more details on this.

Example 1 (The category FinStoch). We can construct a category of finite alpha-
bets and noisy channels, called FinStoch, as follows.

– Its objects are finite sets, which we denote by X, Y , Z, etc.
– A morphism X → Y is a stochastic matrix, i.e. a matrix of nonnegative entries

with columns indexed by the elements of X, and rows indexed by the elements
of Y ,

X × Y [0, 1]

(x, y) f(y|x)

f

1 Despite the name, Markov categories are not only suited to model Markov pro-
cesses, but arbitrary stochastic processes. Indeed, arbitrary joint distributions can
be formed, and the Markov property states that the stochastic dependencies between
the variables are faithfully represented by a particular graph. If the graph is (equiv-
alent to) a single chain, we have a Markov process. In general, the graph is more
complex. In this respect, Markov categories are similar to, but more general than,
Markov random fields. See [6] for more details on this.
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such that each column sums to one,
∑

y∈Y

f(y|x) = 1 for every x ∈ X.

We can interpret f(y|x) as a conditional or transition probability from state
x ∈ X to state y ∈ Y , or we can interpret f as a family of probability measures
fx over Y indexed by the elements of X.

FinStoch is a Markov category with the copy maps X → X ⊗ X given by
mapping x to (x, x) deterministically for each x ∈ X, and discard maps given
by the unique stochastic matrix X → 1, i.e. a row matrix of entries 1.

2.1 A Brief History of the Idea

The first known study of some aspects of probability theory via categorical
methods is due to Lawvere [12], where he defined the category FinStoch out-
lined above, as well as its generalization to arbitrary measurable spaces. Some of
those ideas reappeared in the work of Giry [9] in terms of monads. Lawvere was
also the first to see the potential of enriched category theory in metric geometry
[13], although it seems that he never used these ideas to study probability theory.

The same categories of probabilistic mappings were defined independently
by Chentsov [1], and used to set the stage for the (differential) geometry of
probability distributions [2]. Interestingly, Chentsov’s work involves categories
of probabilistic mappings as well as their geometry, but he never merged the
two approaches into a geometric enrichment of the category of kernels (most
likely because at that time, enriched category theory was still in its infancy).2
The influence of Chentsov on the present work is therefore two-fold, and the
main challenge of this work is integrating his two approaches, geometric and
categorical, into one unified formalism.

Markov categories, and the more general GS or CD categories, first appeared
in [8] in the context of graph rewriting. Similar structures reappeared indepen-
dently in the work of Golubtsov [10], and were applied for the first time to
probability, statistics and information theory. The idea of using “copy” and “dis-
card” maps to study probability came independently to several other authors,
most likely initially unaware of each other’s work, such as Fong [4], Cho and
Jacobs [3], and Fritz [5]. (Here we follow the conventions and terminology of [5].)

Finally, the idea to use both category theory and geometry to study the
properties of entropy was inspired by the work of Gromov [11]. This work has a
similar philosophy, but follows a different approach.

For more information on the history of these ideas, we refer the reader to [5,
Introduction], to [7, Remark 2.2], and to [18, Introduction].
2 The geometry of the category of Markov kernels studied by Chentsov in [2, Sects. 4

and 6] is not metric geometry, it is a study of invariants in the sense of Klein’s Erlan-
gen Program. More related to the present work are, rather, the invariant information
characteristics of Sect. 8 of [2]. Much of classical information geometry, and hence
indirectly this work, is built upon those notions.
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2.2 Divergences on Markov Categories

As Markov categories are monoidal categories, one can enrich them in diver-
gences according to Definition 2 (see also [18, Sect. 2]).

Here are two important examples of divergences that we can put on FinStoch.

Example 2 (The Kullback-Leibler divergence). Let X and Y be finite sets, and
let f, g : X → Y be stochastic matrices. The relative entropy or Kullback-Leibler
divergence between f and g is given by

DKL(f ‖ g) := max
x∈X

∑

y∈Y

f(y|x) log f(y|x)
g(y|x) ,

with the convention that 0 log(0/0) = 0 and p log(p/0) = ∞ for p 
= 0.

Example 3 (The total variation distance). Let X and Y be finite sets, and let
f, g : X → Y be stochastic matrices. The total variation distance between f and
g is given by

DT (f ‖ g) := max
x∈X

1
2

∑

y∈Y

∣
∣f(y|x) − g(y|x)∣∣.

See [18] for why these examples satisfy the conditions of Definition 2. This in
particular implies that all these quantities satisfy a very general version of the
data processing inequality, see the reference above for more information.

Remark 1. It is well known that the KL divergence and the total variation dis-
tance, as well as Rényi’s α-divergences, are special cases of f-divergences [16].
It is still an open question whether all f -divergences give an enrichment on
FinStoch. However, Tsallis’ q-divergences do not [18, Sect. 2.3.4].

3 Categories of Couplings and Divergences

Besides Markov categories, another example of divergence-enriched categories
relevant for the purposes of information theory are categories of couplings. The
category FinCoup has

– As objects, finite probability spaces, i.e. pairs (X, p) where X is a finite set
and p is a probability distribution on it;

– As morphisms (X, p) → (Y, q), couplings of p and q, i.e. probability measures
s on X ⊗ Y which have p and q as their respective marginals;

– The identity (X, p) → (X, p) is given by the pushforward of p along the diag-
onal map X → X ⊗ X;

– The composition of couplings is given by the conditional product : for s :
(X, p) → (Y, q) and y : (Y, q) → (Z, r)

(t ◦ s)(x, z) :=
∑

y

s(x, y) t(y, z)
q(y)

,

where the sum is taken over the y ∈ Y such that q(y) > 0.
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More information about this category, and its generalization to the continu-
ous case, can be found in [17].

The two choices of divergence outlined in the previous section also work for
the category FinCoup.

Example 4 (Kullback-Leibler divergence). Let (X, p) and (Y, q) be finite prob-
ability spaces, and let s and t be couplings of p and q. The Kullback-Leibler
divergence

DKL(s ‖ t) :=
∑

x,y

s(x, y) log
s(x, y)
t(x, y)

can be extended to a divergence on the whole of FinCoup, i.e. the conditions of
Definition 2 are satisfied.

Example 5 (Total variation distance). Let (X, p) and (Y, q) be finite probability
spaces, and let s and t be couplings of p and q. The total variation distance

DT (s, t) :=
1
2

∑

x,y

∣
∣s(x, y) − t(x, y)

∣
∣

can be extended to a divergence on the whole of FinCoup, i.e. the conditions of
Definition 2 are satisfied.

The category FinCoup is moreover an enriched dagger category. A coupling
(X, p) → (Y, q) can also be seen as a coupling (Y, q) → (X, p), and this choice
does not have any effect on the metrics or divergences. This property is analogous
to, but independent from, the symmetry of the distance in a metric space.

Categories of couplings and Markov categories are tightly related, for more
information see [5, Definition 13.7 and Proposition 13.8]. Further links between
the two structures will be established in future work.

4 Recovering Information-Theoretic Quantities

One of the most interesting features of categorical information geometry is that
basic information-theoretic quantities can be recovered from categorical prime
principles. These include Shannon’s entropy and mutual information for discrete
sources. Here are some examples, more details can be found in [18].

4.1 Measures of Randomness

Markov categories come equipped with a notion of deterministic morphisms, [5,
Definition 10.1]. Let’s review here the version for sources.

Definition 3. A source p on X in a Markov category is called deterministic if
and only if copying its output has the same effect as running it twice indepen-
dently:

=

X

X

X

X
p

p

p

(3)
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Let’s try to interpret this notion. First of all, if p is a source which outputs
deterministically a single element x of X, then both sides output the ordered
pair (x, x), and hence they are equal. Instead, if p is random, the left-hand
side will have perfectly correlated output, while the right-hand side will display
identically distributed, but independent outputs.

In FinStoch Eq. (3) reduces to

p(x) = p(x)2

for all x ∈ X, so that deterministic sources are precisely those probability distri-
butions p whose entries are only zero and one, i.e. the “Dirac deltas”. It is then
natural to define as our measure of randomness the discrepancy between the two
sides of Eq. (3).

Definition 4. Let C be a Markov category with divergence D. The entropy of a
source p is the quantity

H(p) := D
(
copy ◦ p ‖ (p ⊗ p)

)
, (4)

i.e. the divergence between the two sides of (3). (Note that the order matters.)

Example 6. In FinStoch, equipped with the KL divergence, our notion of entropy
recovers exactly Shannon’s entropy:

HKL(p) = DKL

(
copy ◦ p ‖ (p ⊗ p)

)

=
∑

x,x′∈X

p(x) δx,x′ log
p(x) δx,x′

p(x) p(x′)

= −
∑

x∈X

p(x) log p(x).

Example 7. FinStoch, equipped with the total variation distance, our notion of
entropy gives the Gini-Simpson index [14], used for example in ecology to quan-
tify diversity:

HT =
1
2

∑

x,x′∈X

∣
∣p(x) δx,x′ − p(x) p(x′)

∣
∣

=
1
2

∑

x∈X

p(x)

⎛

⎝1 − p(x) +
∑

x′ �=x

p(x′)

⎞

⎠

= 1 −
∑

x∈X

p(x)2.

Rényi’s α-entropies can also be obtained in this way (see [18, Sect. 4.2.2]),
while it is still unclear whether Tsallis’ q-entropies can be obtained in this way
for q 
= 2 (see [18, Question 4.4]).

The fundamental principle of Sect. 1 implies a data processing inequality for
entropy generalizing the traditional one. See [18, Sect. 4] for more details.
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4.2 Measures of Stochastic Interaction

Just as for determinism, Markov categories are equipped with a notion of stochas-
tic and conditional independence [5, Definition 12.12 and Lemma 12.11]. For
sources it reads as follows.

Definition 5. A joint source h on X ⊗ Y in a Markov category displays inde-
pendence between X and Y if and only if

=X

Y

X

Y

h

h

h

(5)

For discrete probability measures, this is exactly the condition

p(x, y) = p(x) p(y),

i.e. that p is the product of its marginals. It is a natural procedure in information
theory to quantify the stochastic dependence of the variables X and Y by taking
the divergence between both sides of the equation.

Definition 6. Let C be a Markov category with a divergence D. The mutual
information displayed by a joint source h on X ⊗Y is the divergence between the
two sides of Eq. (5),

ID(h) := D
(
h ‖ (hX ⊗ hY )

)
.

Note that the order of the arguments of D matters.

In FinStoch, with the KL divergence, one recovers exactly Shannon’s mutual
information. This is well known fact in information theory, and through our
formalism, it acquires categorical significance. Using other notion of divergences
one can obtain other analogues of mutual information, such as a total variation-
based one. Moreover, once again the fundamental principle of Sect. 1 implies a
data processing inequality for mutual information generalizing the traditional
one. See [18, Sect. 3] for more on this.

Acknowledgements. The author would like to thank Tobias Fritz, Tomáš Gonda
and Sam Staton for the helpful discussions and feedback, the anonymous reviewers
for their constructive comments, and Swaraj Dash for the help with translating from
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Abstract. Given any finite set equipped with a probability measure, one
may compute its Shannon entropy or information content. The entropy
becomes the logarithm of the cardinality of the set when the uniform
probability is used. Leinster introduced a notion of Euler characteristic
for certain finite categories, also known as magnitude, that can be seen
as a categorical generalization of cardinality. This paper aims to connect
the two ideas by considering the extension of Shannon entropy to finite
categories endowed with probability, in such a way that the magnitude
is recovered when a certain choice of “uniform” probability is made.

Keywords: Entropy · Magnitude · Categories · Information measure ·
Topology

1 Introduction

Given a finite set X endowed with a probability measure p, its Shannon entropy
[1] is given by

H(p) = −
∑

x∈X

p(x) ln p(x). (1)

In particular, taking the uniform probability u : x �→ 1/|X| yields H(u) =
ln |X|. We may thus view Shannon entropy as a probabilistic generalization of
cardinality. A categorical generalization of cardinality may be found in the Euler
characteristic or magnitude of finite ordinary categories [2], defined as follows.

Let A be a finite category. The zeta function ζ : Ob(A)×Ob(A) → Q is given
by ζ(x, y) = |Hom(x, y)|, the cardinality of the hom-set, for any x, y ∈ Ob(A).
A weighting on A is a function k• : Ob(A) → Q such that

∑

b∈Ob(A)

ζ(a, b)kb = 1 (2)

for all a ∈ Ob(A). Similarly, a coweighting on A is a function k• : Ob(A) → Q

such that ∑

b∈Ob(A)

ζ(b, a)kb = 1 (3)
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for all a ∈ Ob(A). Equivalently, one may view a coweighting on A as a weighting
on Aop. If A admits both a weighting and a coweighting, then

∑

a∈Ob(A)

ka =
∑

a∈Ob(A)

ka; (4)

in this case, the magnitude of A, denoted χ(A), is defined as the common value
of both sums.

Magnitude enjoys algebraic properties reminiscent of cardinality, such as
χ(A

∐
B) = χ(A) + χ(B) and χ(A × B) = χ(A)χ(B). Moreover, when A

is a discrete category (i.e. it only has identity arrows), χ(A) = |Ob(A)|. Hence
magnitude may be regarded as a categorical generalization of cardinality.

We ask if there is an extension of Shannon entropy from finite sets to finite
categories that gives a probabilistic generalization of the magnitude; in partic-
ular, we want this extension to give us the logarithm of the magnitude under
some “uniform” choice of probabilities and to coincide with Shannon entropy
when specialized to discrete categories.

The rest of this paper is organized as follows. In Sect. 2, we introduce the cat-
egory ProbFinCat whose objects are categorical probabilistic triples (A, p, φ)
and whose morphisms are probability-preserving functors. In Sect. 3, we define
a function H of categorical probabilistic triples that shares analogous proper-
ties to those used by Shannon [1] to characterize the entropy (1). This function
H allows us to recover the set-theoretical Shannon entropy and the categorical
magnitude for particular choices of p or φ. In Sect. 4, we discuss the possibility
of characterizing the “information loss” given by H in the spirit of [3].

2 Probabilistic Categories

Definition 1. A categorical probabilistic triple (A, p, φ) consists of

1. a finite category A,
2. a probability p on Ob(A), and
3. a function φ : Ob(A) × Ob(A) → [0,∞) such that φ(a, a) > 0 for all objects

a of A, and φ(b, b′) = 0 whenever there is no arrow from b to b′ in A.

The definition gives a lot of flexibility for φ, provided it reflects the incidence
relations in the category. It might be the ζ function introduced above. Alterna-
tively, it might be a measure of similarity between two objects, see next section.
Finally, it might be a transition kernel, in which case for every a ∈ Ob(A), the
function φ(·, a) is a probability mass function on the objects b such that an arrow
a → b exists in A; we treat this case in more detail in Sect. 4.

Remark 1. Given a categorical probabilistic triple (A, p, φ), set N = |Ob(A)|
and enumerate the objects of A, in order to introduce a matrix Zφ of size N ×N

whose (i, j)-component (Zφ)ij is φ(ai, aj). A linear system �f = Zφ�g expresses
each f(ai) as

∑
aj :ai→aj

φ(ai, aj)g(aj). In certain cases the matrix Zφ can be
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inverted to express �g as a function of �f . For instance, when A is a poset and φ =
ζ, the matrix Z = Zζ is invertible and its inverse is known as the Möbius function;
it was introduced by Rota in [4], as a generalization of the number-theoretic
Möbius function. Similarly, if φ is a probabilistic transition kernel and Zφ is
invertible, this process might be seen as an inversion of a system of conditional
expectations.

We define a category ProbFinCat of probabilistic (finite) categories whose
objects are categorical probabilistic triples. A morphism F : (A, p, φ) → (B, q, θ)
in ProbFinCat is given by a functor F : A → B such that for all b ∈ Ob(B),

q(b) = F∗p(b) =
∑

a∈F −1(b)

p(a). (5)

and for all b, b′ ∈ Ob(B),

θ(b, b′) = F∗φ(b, b′) =

⎧
⎪⎪⎨

⎪⎪⎩

∑
a′∈F−1(b′) p(a′)

∑
a∈F−1(b) φ(a,a′)

F∗p(b′) F∗p(b′) > 0

1 b = b′, F∗p(b′) = 0

0 b �= b′, F∗p(b′) = 0

. (6)

Remark that (5) corresponds to the push-forward of probabilities under the
function induced by F on objects. In turn, when b �→ φ(b, a) is a probability of
transition, (6) gives a probability of a transition θ(b, b′) from b′ to b in B as a
weighted average of all the transitions from preimages of b′ to preimages of b.

Lemma 1 shows that the function F∗φ defined by (6) is compatible with our
definition of a categorical probabilistic triple. Lemma2 establishes the functori-
ality of (5) and (6).

Lemma 1. Let (A, p, φ) be a categorical probabilistic triple, B a finite category,
and. F : A → B be a functor. Then F∗φ(b, b) > 0 for all b ∈ Ob(B), and
F∗φ(b, b′) = 0 whenever Hom(b, b′) = ∅.
Proof. Let b, b′ be objects of B and suppose that F∗p(b) > 0 (otherwise
F∗φ(b, b) > 0 and F∗φ(b, b′) = 0 by definition).

To prove the first claim, remark that

F∗φ(b, b) ≥
∑

a∈F −1(b)

p(a)φ(a, a) ≥ min
a∈F −1(b)

φ(a, a)F∗p(b) > 0. (7)

If Hom(b, b′) = ∅ then Hom(a, a′) = ∅ for any a ∈ F−1(b) and a′ ∈ F−1(b′); it
follows that φ(a, a′) = 0 by Definition 1. Then it is clear from (6) that F∗θ(b, b′)
vanishes.

Lemma 2. Let (A, p, φ) F→ (B, q, θ) G→ (C, r, ψ) be a diagram in ProbFinCat.
Then (G ◦ F )∗p = G∗(F∗p) = G∗q and (G ◦ F )∗φ = G∗(F∗φ) = G∗θ.
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Proof. For any c ∈ C,

(G ◦ F )∗p(c) =
∑

a∈(G◦F )−1(c)

p(a) =
∑

b∈G−1(c)

∑

a∈F −1(b)

p(a) =
∑

b∈G−1(c)

F∗(b).

Similarly, for any c, c′ ∈ Ob(C),

(G ◦ F )∗φ(c, c′) =
1

G∗(F∗p)(c)

∑

b′∈G−1(c′)

∑

a′∈F −1(b′)

p(a′)
∑

b∈G−1(c)

∑

a∈F −1(b)

φ(a, a′)

=
1

G∗q(c)

∑

b′∈G−1(c)

q(b′)
∑

b∈G−1(c)

⎛

⎝
∑

a′∈F −1(b′)

p(a′)
F∗p(b′)

∑

a∈F −1(b)

φ(a, a′)

⎞

⎠

= G∗(F∗φ)(c, c′) = G∗θ(c, c′).

We also consider probability preserving products and weighted sums as fol-
lows. For any two categorical probabilistic triples (A, p, φ), (B, q, θ), we define
their probability preserving product (A, p, φ) ⊗ (B, q, θ) to be the triple (A ×
B, p ⊗ q, φ ⊗ θ) where for any 〈a, b〉, 〈a′, b′〉 ∈ Ob(A × B),

(p ⊗ q)(〈a, b〉) = p(a)q(b), and (θ ⊗ φ)(〈a, b〉, 〈a′, b′〉) = θ(a, a′)φ(b, b′). (8)

Given any λ ∈ [0, 1], we define the weighted sum (A, p, φ) ⊕λ (B, q, θ) by
(A

∐
B, p ⊕λ q, φ ⊕ θ) where

(p ⊕λ q)(x) =

{
λp(x) x ∈ Ob(A)
(1 − λ)q(x) x ∈ Ob(B)

(9)

and

(φ ⊕ θ)(x, y) =

⎧
⎪⎨

⎪⎩

φ(x, y) x, y ∈ Ob(A)
θ(x, y) x, y ∈ Ob(B)
0 otherwise

. (10)

Given morphisms fi : (Ai, piφi) → (Bi, qi, θi), for i = 1, 2, there is a unique
morphism

λf1 ⊕ (1 − λ)f2 : (A1, p1φ1) ⊕λ (A2, p2φ2) → (B1, q1, θ1) ⊕λ (B2, q2, θ2) (11)

that restricts to f1 on A1 and to f2 on A2.
Finally, we introduce a notion of continuity for functions defined on cat-

egorical probabilistic triples. Let {(Ak, pk, φk)}k∈N be a sequence of categor-
ical probabilistic triples; we say that {(Ak, pk, φk)}k converges to an object
(A, p, φ) of ProbFinCat if Ak = A for sufficiently large k and {pk}k, {φk}k

converge pointwise as sequences of functions to p and φ respectively. A func-
tion G : Ob(ProbFinCat) → R is continuous if for any convergent sequence
{(Ak, pk, φk)}k∈N → (A, p, φ), the sequence {G(Ak, pk, φk)}k∈N converges to
G(A, p, φ).
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Similarly, a sequence of morphisms fn : (An, pn, θn) → (Bn, qn, ψn) coverges
to f : (A, p, θ) → (B, q, ψ) if An = A, Bn = B and fn = f (as functors)
for n big enough, and pn → p and θn → θ converge pointwise. Functors from
ProbFinCat to a topological (semi)group—seen as a one-point category—are
continuous if they are sequentially continuous. One obtains in this way a gener-
alization of the notions of continuity discussed in [3, p. 4] to our setting, which
is compatible with the faithful embedding of the category FinProb of finite
probability spaces considered there into ProbFinCat which maps a finite set
equipped with a probability (A, p) to the triple (A, p, δ), where A is the dis-
crete category with object set A and δ is the Kronecker delta function, given by
δ(x, x) = 1 for all x ∈ ObA, and δ(x, y) = 0 whenever x 
= y.

3 Categorical Entropy

Let Z be a general matrix in MatN×N ([0,∞)) with strictly positive diagonal
entries and p a probability on a finite set of cardinality N . In the context of
[5, Ch. 6], which discusses measures of ecological diversity, Z corresponds to a
species similarity matrix and p to the relative abundance of a population of N
different species. The species diversity of order 1 is given by

1DZ(p) =
N∏

i=1

1
(Zp)pi

i

(12)

and its logarithm is a generalization of Shannon entropy, which is recovered when
Z is the identity matrix.

Inspired by this, we consider the following entropic functional:

H(A, p, φ) := −
∑

a∈ObA

p(a) ln

(
∑

b∈ObA

p(b)φ(a, b)

)
= −

N∑

i=1

pi ln((Zφp)i). (13)

As we required φ(a, a) > 0 for any a ∈ Ob(A), we have that
∑

b∈ObA p(b)φ(a, b)
≥ p(a)φ(a, a) > 0 whenever p(a) 
= 0. In order to preserve continuity (see Propo-
sition 5 below) while making H well defined, we take the convention that

p(a) ln

⎛

⎝
∑

b∈Ob(A)

p(b)φ(a, b)

⎞

⎠ = 0

whenever p(a) = 0.
The rest of this section establishes certain properties of the functional H.

These properties only depend on the operations ⊕ and ⊗, as well as the topology
on the resulting semiring (a.k.a. rig) of categorical probabilistic triples. The
morphisms in ProbFinCat only appear in the next section, in connection with
an algebraic characterization of H.

The functional H generalizes Shannon entropy in the following sense.
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Proposition 1. If φ = δ, the Kronecker delta, then H(A, p, φ) = H(p) =
−∑

pi ln pi.

We now consider properties of H that are analogous to those used to char-
acterize Shannon entropy, see [6].

Proposition 2. H((A, p, φ) ⊗ (B, q, θ)) = H(A, p, φ) + H(B, q, θ).

Proof. For simplicity, we write A0 := Ob(A), etc. Recall that (A × B)0 =
A0 × B0. By a direct computation,

H((A, p, φ) ⊗ (B, q, θ))

= −
∑

(a,b)∈A0×B0

p(a)q(b) ln

⎛

⎝
∑

(a′,b′)∈A0×B0

p(a′)q(b′)φ(a, a′)θ(b, b′)

⎞

⎠

= −
∑

(a,b)∈A0×B0

p(a)q(b) ln

((
∑

a′∈A0

p(a′)φ(a, a′)

) (
∑

b′∈B0

q(b′)θ(b, b′)

))
,

from which the result follows. More concisely, one might remark that Zφ⊗θ equals
Zφ ⊗Zθ, the Kronecker product of matrices, and that (Zφ ⊗Zθ)(p ⊗ q) = Zφp ⊗
Zθq.

Proposition 3. Given any λ ∈ [0, 1], let (2, Λ, δ) be the categorical probability
triple where 2 denotes the discrete category with exactly two objects, Ob(2) =
{x1, x2}, Λ is such that Λ(x1) = λ,Λ(x2) = 1 − λ, and δ denotes the Kronecker
delta. Then,

H((A, p, φ) ⊕λ (B, q, θ)) = λH(A, p, φ) + (1 − λ)H(B, q, θ) + H(2, Λ, δ).

Proof. By a direct computation: H((A, p, φ) ⊕λ (B, q, θ)) equals

−
∑

a∈Ob(A)

λp(a) ln

⎛

⎝
∑

b∈Ob(A)

λp(b)φ(a, b)

⎞

⎠

−
∑

x∈Ob(B)

(1 − λ)q(x) ln

⎛

⎝
∑

y∈Ob(B)

(1 − λ)q(y)θ(x, y)

⎞

⎠

from which the result follows, because H(2, Λ, δ) = −λ ln(λ) − (1 − λ) ln(1 − λ).
Similar to the product case, one might remark that Zφ⊕θ = Zφ ⊕ Zθ and (Zφ ⊕
Zθ)(p ⊕λ q) = Zφ(λp) ⊕ Zθ((1 − λ)q).

More generally, given a finite collection (A1, p1, φ1), . . . , (Am, pm, φm) of cat-
egorical probabilistic triples and a probability vector (λ1, ..., λm), we can define

m⊕

i=1

λi(Ai, pi, φi) =

(
m∐

i=1

Ai,

m⊕

i=1

λipi,

m⊕

i=1

φi

)
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where (
⊕m

i=1 λipi)(x) = λipi(x) for x ∈ Ob(Ai), and
(

m⊕

i=1

φi

)
(x, y) =

{
φi(x, y) if x, y ∈ Ob(Ai)
0 otherwise

. (14)

Proposition 4. Take notation as in the preceding paragraph. Let (m, Λ, δ) be
the categorical probability triple where m is the finite discrete category of cardi-
nality m, with objects {x1, . . . , xm}, Λ(xi) = λi, and δ is again the Kronecker
delta. Then,

H
(

m⊕

i=1

λi(Ai, pi, φi)

)
=

m∑

i=1

λiH(Ai, pi, φi) + H(m, Λ, δ).

Proof. Similar to the proof of Proposition 3, observe that Z⊕m
i=1 φi

=
⊕m

i=1 Zφi

and (
⊕m

i=1 Zφi
)(

⊕m
i=1 λipi) =

⊕m
i=1 Zφi

(λipi).

Proposition 5. The entropy functional H is continuous.

Proof. Let {(Ak, pk, φk)}k∈N be a sequence of categorical probabilistic triples
converging to the triple (A∞, p∞, φ∞). It follows that, for any a ∈ ObA, the
sequence fk(a) :=

∑
b∈Ob(A) pk(b)φk(a, b) converges pointwise to f∞ as k → ∞.

Since we may rewrite

H(Ak, pk, φk) = −
∑

a∈Ob(A)

pk(a) ln(fk(a))

for k = 0, 1, 2, 3, ...,∞, it suffices to show that {pk(a) ln(fk(a))}k∈N converges to
p∞(a) ln(f∞(a)) for each a ∈ Ob(A).

Fix a ∈ Ob(A). Assume first that p∞(a) > 0. Then for sufficiently large k,
pk(a) > 0, and hence fk(a) ≥ pk(a)φk(a, a) > 0 and f∞(a) ≥ p∞(a)φ∞(a, a) >
0. By the continuity of ln(x), we then have that ln(fk(a)) converges to ln(f∞(a)),
hence limk→∞ pk(a) ln(fk(a)) = p∞(a) ln(f∞(a)).

Assume now that p∞(a) = 0. If f∞(a) > 0, then fk(a) > 0 for sufficiently
large k, so we may again use the continuity of ln(x). If f∞(a) = 0, pick 1 >
ε, ε0 > 0 so that there exists N ∈ N such that fk(a) < ε and φk(a, a) > ε0 for all
k > N . Then,

1 > ε > fk(a) ≥ pk(a)φk(a, a) ≥ pk(a)ε0.

We deduce from this that

0 ≥ pk(a) ln(fk(a)) ≥ pk(a) ln(pk(a)) + pk(a) ln(ε0).

Using that limx→0+ x ln(x) = 0, we conclude that limk→∞ pk(a) ln(fk(a)) = 0 =
p∞(a) ln(f∞(a)). We thus have that H is continuous.

We take a brief detour to recall a definition of magnitude for a matrix.
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Definition 2. Let M be a matrix in Matn×n(R). Denote by 1n ∈ Matn×1(R)
the column vector of ones. A matricial weighting of M is a (column) vector
w ∈ Matn×1(R) such that Mw = 1n Similarly, a matricial coweighting of M is
a vector w̄ ∈ Matn×1(R) such that w̄T M = 1n.

If M has both a weighting w and a coweighting w̄, then we say that M has
magnitude, with the magnitude of M given by

‖M‖ :=
n∑

i=1

wi =
n∑

i=1

w̄i. (15)

In fact, it follows easily from the definitions that if M has both a weighting
and a coweighting the sums in (15) are equal.

Proposition 6. Let (A, p, φ) be a probabilistic category. Suppose Zφ has magni-
tude (i.e. has a weighting and a coweighting). If Zφ has a nonnegative weighting
w, then u = w/‖Zφ‖ is a probability distribution and H(A, u, φ) = ln ‖Zφ‖.

Proof. Remark that if the weighting is nonnegative then necessarily ‖Zφ‖ > 0.
Additionally,

H(A, u, φ) = −
∑

i

wi

‖Zφ‖ ln
(

1
‖Zφ‖

)
. (16)

Specialized to the case φ = ζ, Proposition 6 tells us that if A has magni-
tude, and the category (equivalently: the matrix Z representing ζ) has a posi-
tive weighting w, then u = w/χ(A) satisfies H(A, u, ζ) = lnχ(A). Therefore the
categorical entropy generalizes both Shannon entropy and the logarithm of the
categorical magnitude, as we wanted.

Remark 2. A known result on the maximization of diversity [7, Thm. 2] can be
restated as follows: the supremum of H(A, p, φ) over all probability distributions
p on Ob(A) equals ln(maxB ‖ZB‖), where the maximum is taken over all sub-
sets B of {1, ..., n} such that the submatrix ZB := ((Zφ)i,j)i,j∈B of Zφ has a
nonnegative weighting.

Remark 3. One might generalize the definitions, allowing p to be a signed prob-
ability : a function p : Ob(A) → R such that

∑
a∈Ob(A) p(a) = 1. In this case, we

define H(A, p, φ) as −∑N
i=1 pi ln |(Zφp)i|. Then the previous proposition gener-

alizes as follows: if ‖Zφ‖ 
= 0 and w is any weighting, the vector u = w/‖Zφ‖ is
a signed probability and H(A, u, φ) = ln |‖Zφ‖|.

4 Towards a Characterization of the Categorical Entropy

Let R+ be the additive semigroup of non-negative real numbers seen as a one-
object category, that is, Ob(R+) = {∗} and Hom(∗, ∗) = [0,∞), with + as
composition of arrows. A functor F : ProbFinCat → R+ is:
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– convex-linear if for all morphisms f , g and all scalars λ ∈ [0, 1],

F (λf ⊕ (1 − λ)q) = λF (f) + (1 − λ)F (g).

– continuous if F (fn) → F (f) whenever fn is a sequence of morphisms con-
verging to f (see Sect. 2).

Via the embedding described at the end of Sect. 2, we obtain similar defini-
tions for functors F : FinProb → R+, which correspond to those introduced
by Baez, Fritz, and Leinster in [3, p. 4]. They showed there that if a func-
tor F : FinProb → R+ is convex linear and continuous, then there exists
a constant c ≥ 0 such that each arrow f : (A, p) → (B, q) is mapped to
F (f) = c(H(p)−H(q)). This is an algebraic characterization of the information
loss H(p) − H(q) given by Shannon entropy.

In our setting, the “loss” functor L : ProbFinCat → R+ that maps f :
(A, p, θ) → (B, q, ψ) to L(f) = H(A, p, θ)−H(B, q, ψ) is continuous and convex
linear: this can be easily seen from Propositions 4 and 5 above. However, are all
the convex-linear continuous functors G : ProbFinCat → R+ positive multiples
of L?

Baez, Fritz, and Leinster’s proof uses crucially that FinProb has a terminal
object. ProbFinCat has no terminal object: even a category with a unique
object ∗ accepts an arbitrary value of θ(∗, ∗). To fix this, we introduce the full
subcategory TransFinCat of ProbFinCat given by triples (A, p, φ) such that φ
is a transition kernel; this means that for all a ∈ Ob(A), the function b �→ φ(b, a)
is a probability measure. It is easy to verify that if F : (A, p, φ) → (B, q, θ) is
a morphism in ProbFinCat and φ is a transition kernel, then θ is a transition
kernel too.

Note that the embedding of FinProb into ProbFinCat described previ-
ously induces a fully faithful embedding of FinProb into TransFinCat; more-
over, when A is a discrete category, the only choice of transition kernel is given
by the Kronecker delta δ.

If p represents the probability of each object at an initial time, we can regard
p̂ : Ob(A) → [0, 1], a �→ ∑

b∈Ob(A) φ(a, b)p(b) as the probability of each object
after one transition has happened. Quite remarkably, there is a compatibility
between the push-forward of probabilities (5) and the push-forward of transition
kernels (6) in the following sense: if F : (A, p, φ) → (B, q, θ) is a morphism in
TransFinCat, then q̂ = F∗p̂, because

q̂(b) :=
∑

b′∈Ob(B)

θ(b, b′)q(b′) (17)

=
∑

b′∈Ob(B)

(∑
a′∈F −1(b′) p(a′)

∑
a∈F −1(b) φ(a, a′)

q(b′)

)
q(b′) (18)

=
∑

a∈F −1(b)

∑

a′∈Ob(A)

φ(a, a′)p(a′) =
∑

a∈F −1(b)

p̂(a). (19)
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In turn, the entropy (13) can be rewritten as

H(A, p, φ) = −
∑

a∈ObA

p(a) ln p̂(a) = H(p) − D(p̂|p), (20)

where H(p) is Shannon entropy (1), and D(p̂|p) =
∑

a∈ObA p(a) ln(p̂(a)/p(a))
is the Kullback-Leibler divergence

Let us return to the characterization problem described above. Let G :
TransFinCat → R+ be a functor that is convex linear, continuous, and pos-
sibly subject to other constraints. Let � be the triple (one-point discrete cate-
gory, trivial probability, trivial transition kernel), which is the terminal object
of TransFinCat. Denote by IG(A, p, φ) the image under G of the unique mor-
phism (A, p, φ) → �. The functoriality of G implies that, for any morphism
f : (A, p, φ) → (B, q, θ), one has G(f) + IG(B, q, θ) = IG(A, p, φ). In partic-
ular, G(id(A,p,φ)) = 0 for any triple (A, p, φ) and IG(�) = 0. Moreover, if f
is invertible, then G(f) + G(f−1) = 0, so G(f) = 0 and IG is invariant under
isomorphisms. In turn, convex linearity implies that

IG

(
m⊕

i=1

λi(Ai, pi, φi)

)
= IG(m, (λ1, ..., λm), δ) +

m∑

i=1

λiIG(Ai, pi, φi), (21)

for any vector of probabilities (λ1, ..., λm) and any (Ai, pi, φi) ∈
Ob(TransFinCat), i = 1, ..,m. This is a system of functional equations rem-
iniscent of those used by Shannon, Khinchin, Fadeev, etc. to characterize the
entropy [1,6], see in particular [3, Thm. 6]. It is not clear if a similar result
holds for H in our categorical setting. A fundamental difference is that every
finite probability space (A, p) can be expressed nontrivially in many ways as
convex combinations

⊕m
i=1 λi(Ai, pi) in FinProb, but this is not true for

categorical probabilistic triples. Remark also that the function IG(A, p, φ) =
−∑

a∈Ob(A) p(a) ln(
∑

b∈A φ(b, a)p(b)) defines a continuous, convex-linear func-
tor G. Hence G needs to satisfy some additional properties in order to recover
L up to a positive multiple.
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Abstract. This paper presents a tutorial overview of so-called Pinsker
inequalities which establish a precise relationship between information
and statistics, and whose use have become ubiquitous in many informa-
tion theoretic applications. According to Stigler’s law of eponymy, no sci-
entific discovery is named after its original discoverer. Pinsker’s inequal-
ity is no exception: Years before the publication of Pinsker’s book in 1960,
the French medical doctor, geneticist, epidemiologist, and mathemati-
cian Marcel-Paul (Marco) Schützenberger, in his 1953 doctoral thesis,
not only proved what is now called Pinsker’s inequality (with the opti-
mal constant that Pinsker himself did not establish) but also the optimal
second-order improvement, more than a decade before Kullback’s deriva-
tion of the same inequality. We review Schûtzenberger and Pinsker con-
tributions as well as those of Volkonskii & Rozanov, Sakaguchi, McKean,
Csiszár, Kullback, Kemperman, Vajda, Bretagnolle & Huber, Krafft &
Schmitz, Toussaint, Reid & Williamson, Gilardoni, as well as the optimal
derivation of Fedotov, Harremoës, & Topsøe.

Keywords: Pinsker inequality · Total variation · Kullback-Leibler
divergence · Statistical Distance · Mutual Information · Data
processing inequality

1 Introduction

How far is one probability distribution from another? This question finds many
different answers in information geometry, statistics, coding and information
theory, cryptography, game theory, learning theory, and even biology or social
sciences. The common viewpoint is to define a “distance” Δ(p, q) between prob-
ability distributions p and q, which should at least satisfy the basic property
that it is nonnegative and vanishes only when the two probability distributions
coincide: p = q in the given statistical manifold [1].

Strictly speaking, distances Δ(p, q) should also satisfy the two usual require-
ments of symmetry Δ(p, q) = Δ(q, p) and triangle inequality Δ(p, q) + Δ(q, r) ≥
Δ(p, r). In this case the probability distribution space becomes a metric space.
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Examples include the Lévy-Prokhorov and the Fortet-Mourier (a.k.a. “Wasser-
stein” or Kantorovich-Rubinstein) distances (which metrize the weak conver-
gence or convergence in distribution), the (stronger) Kolmogorov-Smirnov dis-
tance (which metrizes the uniform convergence in distribution), the Radon dis-
tance (which metrizes the strong convergence), the Jeffreys (a.k.a. Hellinger1)
distance, and many others2.

In this paper, we focus on the total variation distance, which is one of the
strongest among the preceding examples. Arguably, it is also the simplest—as
a L1-norm distance—and the most frequently used in applications, particularly
those related to Bayesian inference.

In many information theoretic applications, however, other types of “dis-
tances,” that do not necessarily satisfy the triangle inequality, are often pre-
ferred. Such “distances” are called divergences D(p, q). They may not even satisfy
the symmetry property: In general, D(p, q) is the divergence of q from p, and
not “between p and q”3. Examples include the Rényi α-divergence, the Bhat-
tacharyya divergence (a variation of the Jeffreys (Hellinger) distance), Lin’s
“Jensen-Shannon” divergence, the triangular divergence, Pearson’s χ2 diver-
gence, the “Cauchy-Schwarz” divergence, the (more general) Sundaresan diver-
gence, the Itakura-Saito divergence, and many more.

In this paper, we focus on the Kullback-Leibler divergence4, historically the
most popular type of divergence which has become ubiquitous in information
theory. Two of the reasons of its popularity are its relation to Shannon’s entropy
(the Kullback-Leibler divergence is also known as the relative entropy); and the
fact that it tensorizes nicely for products of probability distributions, expressed
in terms of the sum of the individual divergences5 (which give rise to useful chain
rule properties).

1 What is generally known as the “Hellinger distance” was in fact introduced by Jeffreys
in 1946. The Hellinger integral (1909) is just a general method of integration that
can be used to define the Jeffreys distance. The Jeffreys (“Hellinger”) distance should
not be confused with the “Jeffreys divergence”, which was studied by Kullback as a
symmetrized Kullback-Leibler divergence (see below).

2 Some stronger types of convergence can also be metrized, but by distances between
random variables rather than between distributions. For example, the Ky Fan dis-
tance metrizes the convergence in probability.

3 Evidently, such divergences can always be symmetrized by considering
(
D(p, q) +

D(q, p)
)
/2 instead of D(p, q).

4 Two fairly general classes of divergences are Rényi’s f -divergences and the Bregman
divergences. Some (square root of) f -divergences also yield genuine distances, like
the Jeffreys (Hellinger) distance or the square root of the Jensen-Shannon divergence.
It was recently shown that the Kullback-Leibler divergence is the only divergence
that is both a f -divergence and a Bregman divergence [13].

5 Incidentally, this tensorization property implies that the corresponding divergence
is unbounded, while, by contrast, most of the above examples of distances (like the
total variation distance) are bounded and can always be normalized to assume values
between 0 and 1.
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A Pinsker-type inequality can be thought of as a general inequality of the
form

D ≥ ϕ(Δ) (1)

relating divergence D = D(p, q) to distance Δ = Δ(p, q) and holding for any
probability distributions p and q. Here ϕ(x) should assume positive values for
x > 0 with ϕ(0) = 0 in accordance with the property that both D(p, q) and
Δ(p, q) vanish only when p = q. Typically ϕ is also increasing, differentiable,
and often convex. Any such Pinsker inequality implies that the topology induced
by D is finer6 than that induced by Δ. Many Pinsker-type inequalities have been
established, notably between f -divergences.

In this paper, we present historical considerations of the classical Pinsker
inequality where D is the Kullback-Leibler divergence and Δ is the total variation
distance. This inequality is by far the most renowned inequality of its kind, and
finds many applications, e.g., in statistics, information theory, and computer
science. Many considerations in this paper, however, equally apply to other types
of distances and divergences.

2 Preliminaries

Notations. We assume that all considered probability distributions over a given
measurable space (Ω,A) admit a σ-finite dominating measure μ, with respect
to which they are absolutely continuous. This can always be assumed when
considering finitely many distributions. For example, p and q admit μ = (p+q)/2
as a dominating measure since p � μ and q � μ. By the the Radon-Nikodym
theorem, they admit densities with respect to μ, which we again denote by p
and q, respectively. Thus for any event7 A ∈ A, p(A) =

∫
A

p dμ =
∫

A
p(x) dμ(x),

and similarly for q. Two distributions p, q are equal if p(A) = q(A) for all A ∈ A,
that is, p = q μ-a.e. in terms of densities.

If μ is a counting measure, then p is a discrete probability distribution with∫
A

p dμ =
∑

x∈A p(x); if μ is a Lebesgue measure, then p is a continuous prob-
ability distribution with

∫
A

p dμ =
∫

A
p(x) dx. We also consider the important

case where p and q are binary (Bernoulli) distributions with parameters again
denoted p and q, respectively. Thus for p ∼ B(p) we have p(x) = p or 1− p. This
ambiguity in notation should be easily resolved from the context.

Distance. The total variation distance Δ(p, q) can be defined in two different
ways. The simplest is to set

Δ(p, q) � 1
2

∫
|p − q|dμ, (2)

6 If, in addition, a reverse Pinsker inequality Δ ≥ ψ(D) holds, then the associated
topologies are equivalent.

7 This is an overload in notations and one should not confuse p({x}) with p(x).
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that is, half the L1(μ)-norm of the difference of densities. It is important to note
that this definition does not depend on the choice of the dominating measure
μ. Indeed, if μ � μ′, with density dμ

dμ′ = f , then the densities w.r.t. μ′ become
p′ = pf and q′ = qf so that

∫ |p′ − q′|dμ′ =
∫ |p − q|dμ.

That Δ is a distance (metric) is obvious from this definition. Since
∫

(p −
q) dμ = 0, we can also write Δ(p, q) =

∫
(p − q)+ dμ =

∫
(p − q)− dμ (positive

and negative parts) or Δ(p, q) =
∫

p ∨ q dμ − 1 = 1 − ∫
p ∧ q dμ in terms of

the maximum and minimum. The normalization factor 1/2 ensures that 0 ≤
Δ(p, q) ≤ 1, with maximum value Δ(p, q) = 1 − ∫

p ∧ q dμ = 1 if and only if
p ∧ q = 0 μ-a.e., that is, p and q have “non-overlapping” supports. Note that the
total variation distance between binary distributions B(p) and B(q) is simply

δ(p, q) = |p − q|. (3)

The alternate definition of the total variation distance is to proceed from the
discrete case to the general case as follows. One can define

Δ(p, q) � 1
2

sup
∑

i

|p(Ai) − q(Ai)|, (4)

where the supremum is taken all partitions of Ω into a countable number of (dis-
joint) Ai ∈ A. When Ω ⊂ R, this supremum can simply be taken over partitions
of intervals Ai, and (apart from the factor 1/2) this exactly corresponds to the
usual notion of total variation of the corresponding cumulative distribution f of
the signed measure p − q. This is a well-known measure of the one-dimensional
arclength of the curve y = f(x), introduced by Jordan in the 19th century, and
justifies the name “total variation” given to Δ.

That the two definitions (2) and (4) coincide can easily be seen as follows.
First, by the triangular inequality, the sum

∑
i |p(Ai) − q(Ai)| in (4) can only

increase by subpartitioning, hence (4) can be seen as a limit for finer and finer
partitions. Second, consider the subpartition A+

i = Ai ∩ A+, A−
i = Ai ∩ A−,

where, say, A+ = {p > q} and A− = {p ≤ q}. Then the corresponding sum
already equals

∑
i(p−q)(A+

i )+(q−p)(A−
i ) = (p−q)(

∑
i A+

i )+(q−p)(
∑

i A−
i ) =

(p − q)(A+) + (q − p)(A−) =
∫

(p − q)+ + (p − q)− dμ =
∫ |p − q|dμ.

As a side result, the supremum in (4) is attained for binary partitions
{A+, A−} of the form {A,A�}, so that Δ(p, q) = 1

2 sup
(|p(A)− q(A)|+ |p(A�)−

q(A�)|), that is,
Δ(p, q) = sup

A
|p(A) − q(A)| (5)

(without the 1/2 factor). This important property ensures that a sufficiently
small value of Δ(p, q) implies that no statistical test can effectively distinguish
between the two distributions p and q. In fact, given some observation X follow-
ing either p (null hypothesis H0) or q (alternate hypothesis H1), such a statistical
test takes the form “is X ∈ A?” (then accept H0, otherwise reject it). Then since
|p(X ∈ A)−q(X ∈ A)| ≤ Δ is small, type-I or type-II errors have total probabil-
ity p(X �∈ A)+q(X ∈ A) ≥ 1−Δ. Thus in this sense the two hypotheses p and q
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are Δ-undistinguishable. For the case of independent observations we are faced
with the evaluation of the total variation distance for products of distributions.
In this situation, Pinsker’s inequality is particularly useful since it relates it to
the Kullback-Leibler divergence which nicely tensorizes, thus allowing a simple
evaluation.

Divergence. The Kullback-Leibler divergence [19], also known as statistical
divergence, or simply divergence, can similarly be defined in two different ways.
One can define

D(p‖q) �
∫

p log
p

q
dμ, (6)

where since x log x ≥ −(log e)/e, the negative part of the integral is finite8.
Therefore, this integral is always meaningful and can be finite, or infinite = +∞.
Again note that this definition does not depend on the choice of the dominating
measure μ. Indeed, if μ � μ′, with density dμ

dμ′ = f , then the densities w.r.t. μ′

become p′ = pf and q′ = qf so that
∫

p′ log p′

q′ dμ′ =
∫

p log p
q dμ.

By Jensen’s inequality applied to the convex function x log x, D(p‖q) is non-
negative and vanishes if only if the two distributions p and q coincide. For prod-
ucts of distributions p =

⊗
i pi, q =

⊗
i qi, it is easy to establish the useful

tensorization property D(p‖q) =
∑

i D(pi‖qi). The divergence between binary
distributions B(p) and B(q) is simply

d(p‖q) = p log
p

q
+ (1 − p) log

1 − p

1 − q
. (7)

The double bar notation ‘‖’ (instead of a comma) is universally used but may
look exotic. Kullback and Leibler did not originate this notation in their seminal
paper [19]. They rather used I(1 : 2) for alternatives p1, p2 with a semi colon
to indicate non commutativity. Later the notation I(P |Q) was used but this
collides with the notation ‘|’ for conditional distributions. The first occurence of
the double bar notation I could find was by Rényi in the form I(P‖Q) in the
same paper that introduced Rényi entropies and divergences [27]. This notation
was soon adopted by researchers of the Hungarian school of information theory,
notably Csiszár (see, e.g., [5–7]).

The alternate definition of divergence is again to proceed from the discrete
case to the general case as follows. One can define

D(p‖q) � sup
∑

i

p(Ai) log
p(Ai)
q(Ai)

(8)

where the supremum is again taken all partitions of Ω into a countable number
of (disjoint) Ai ∈ A. By the log-sum inequality, the sum

∑
i p(Ai) log p(Ai)

q(Ai)
in (8)

can only increase by subpartitioning, hence (8) can be seen as a limit for finer and
finer partitions. Also, when Ω ⊂ R or Rd, this supremum can simply be taken
8 The logarithm (log) is considered throughout this paper in any base.
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over partitions of intervals Ai (this is the content of Dobrushin’s theorem [24,
§ 2]). That the two definitions (6) and (8) coincide (in particular when (8) is
finite, which implies p � q) is the content of a theorem by Gel’fand & Yaglom [10]
and Perez [23].

Statistical Distance and Mutual Information. How does some observation
Y affect the probability distribution of some random variable X? This can be
measured as the distance or divergence of X from X given Y , averaged over
the observation Y . Using the total variation distance, one obtains the notion of
statistical distance between the two random variables:

Δ(X;Y ) = Ey Δ(pX|y, pX) = Δ(pXY , pX ⊗ pY ), (9)

and using the statistical divergence, one obtains the celebrated mutual informa-
tion9:

I(X;Y ) = Ey D(pX|y‖pX) = D(pXY , ‖pX ⊗ pY ) (10)

introduced by Fano [8], based on Shannon’s works. From these definitions, it
follows that any Pinsker inequality (1) can also be interpreted as an inequality
relating statistical distance Δ = Δ(X;Y ) to mutual information I = I(X;Y ):

I ≥ ϕ(Δ) (11)

for any two random variables X and Y , with the same ϕ as in (1). In particular, in
terms of sequences of random variables, I(Xn;Yn) → 0 implies Δ(Xn;Yn) → 0,
a fact first proved by Pinsker [24, §2.3].

Binary Reduction of Pinsker’s Inequality. A straightforward observation,
that greatly simplifies the derivation of Pinsker inequalities, follows from the
alternative definitions (4) and (8). We have seen that the supremum in (4) is
attained for binary partitions of the form {A,A�}. On the other hand, the supre-
mum in (8) is obviously greater then that for such binary partitions. Therefore,
any Pinsker inequality (1) is equivalent to the inequality expressed in term of
binary distributions (3), (7):

d ≥ ϕ(δ) (12)

relating binary divergence d = d(p‖q) to binary distance δ = |p − q| and holding
for any parameters p, q ∈ [0, 1]. Thus, the binary case, which writes

p log
p

q
+ (1 − p) log

1 − p

1 − q
≥ ϕ(|p − q|) (13)

is equivalent to the general case, but is naturally easier to prove. This binary
reduction principle was first used by Csiszár [6] but as a consequence of a more
general data processing inequality for any transition probability kernel (whose
full generality is not needed here).
9 Here, the semicolon “;” is often used to separate the variables. The comma “,” rather

denotes joint variables and has higher precedence than “;” as in I(X;Y, Z) which
denotes the mutual information between X and (Y, Z).
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Comparison of Pinsker Inequalities. The following is sometimes useful to
compare two different Pinsker inequalities (1) of the form D ≥ ϕ1(Δ) and
D ≥ ϕ2(Δ) where both ϕ1 and ϕ2 are nonnegative differentiable functions such
that ϕ1(0) = ϕ2(0) = 0. By comparison of derivatives, ϕ′

1 ≥ ϕ′
2 implies that

D ≥ ϕ1(Δ) ≥ ϕ2(Δ). This comparison principle can be stated as follows: lower
derivative ϕ′ implies weaker Pinsker inequality.

3 Pinsker and Other Authors in the 1960s

It is generally said that Pinsker, in his 1960 book [24], proved the classical Pinsker
inequality in the form

D ≥ c · log e · Δ2 (14)

with a suboptimal constant c, and that the optimal (maximal) constant c = 2
was later found independently by Kullback [20], Csiszár [6] and Kemperman [16],
hence the alternative name Kullback-Csiszár-Kemperman inequality.

In fact, Pinsker did not explicitly state Pinsker’s inequality in this form,
not even in the general form (1) for some other function ϕ. First of all, he
only investigated mutual information vs. statistical distance with p = pX,Y and
q = pX ⊗pY —yet his results do easily carry over to the general case of arbitrary
distributions p and q. More important, he actually showed two separate inequal-
ities10 Δ ≤ ∫

p| log p
q |dμ ≤ D+10

√
D with a quite involved proof for the second

inequality11 [24, pp. 14–15]. As noticed by Verdú [34], since one can always
assume Δ ≤ D + 10

√
D ≤ 1 (otherwise the inequality is vacuous), then two

Pinsker inequalities imply Δ2 ≤ (D +10
√

D)2 = D(D +20
√

D)+100D ≤ 102D
which indeed gives (14) with the suboptimal constant c = 1

102 . But this was
nowhere mentioned in Pinsker’s book [24].

The first explicit occurrence of a Pinsker inequality of the general form (1)
occurs even before the publication of Pinsker’s book, by Volkonskii and
Rozanov [35, Eq. (V)] in 1959. They gave a simple proof of the following inequal-
ity:

D ≥ 2 log e · Δ − log(1 + 2Δ). (15)

It is easily checked, from the second-order Taylor expansion of ϕ(x) = 2 log e ·
x − log(1 + 2x), that this inequality is strictly weaker than the classical Pinsker
inequality (14) with the optimal constant c = 2, although both are asymptoti-
cally optimal near D = Δ = 0.

The first explicit occurrence of a Pinsker inequality of the classical form (14)
appeared as an exercise in Sakaguchi’s 1964 book [28, pp. 32–33]. He proved
D ≥ H2 log e ≥ Δ2 log e where H is the Hellinger distance, which gives (14)
with the suboptimal constant c = 1. Unfortunately, Sakaguchi’s book remained
unpublished.
10 In nats (natural units), that is, when the logarithm is taken to base e.
11 Decades later, Barron [2, Cor. p. 339] proved this second inequality (with the better

constant
√
2 instead of 10) as an easy consequence of Pinsker’s inequality itself with

the optimal constant c = 2.
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The first published occurence of a Pinsker inequality of the classical form (14)
was by McKean [22, § 9a)] in 1966, who was motivated by a problem in physics
related to Boltzmann’s H-theorem. He proved (14) with the suboptimal constant
c = 1

e (worse than Sakaguchi’s) under the (unnecessary) assumption that q is
Gaussian.

The first mention of the classical Pinsker inequality (14) with the optimal
constant c = 2 was by Csiszár [5], in a 1966 manuscript received just one month
after McKean’s. In his 1966 paper, however, Csiszár only proved (14) with the
suboptimal constant c = 1

4 [5, Eq. 13], which is worse than McKean’s. But he also
acknowledged the preceding result of Sakaguchi (with the better constant c = 1)
and stated (without proof) that the best constant is c = 2. He also mentioned
the possible generalization to f -divergences. On this occasion he credited Pinsker
for having found an inequality of the type (14) (which as we have seen was only
implicit).

The first published proof of the classical Pinsker inequality (14) with the opti-
mal constant c = 2 was again by Csiszár one year later [6, Thm. 4.1] using binary
reduction. His proof can be written as a one-line proof as follows:

d(p‖q) = d(p‖p)
︸ ︷︷ ︸

=0

+
∫ q

p

∂d(p‖r)
∂r

dr =
∫ q

p

r − p

r(1 − r)
dr ≥ 4

∫ q

p

(r − p) dr = 2(p − q)2,

(16)
where we used natural logarithms and the inequality r(1 − r) ≤ 1

4 for r ∈ [0, 1].
That c = 2 is not improvable follows from the expansion d(p‖q) = 2(p − q)2 +
o((p − q)2), which also shows that this inequality (like the Volkonskii-Rozanov
inequality (15)) is asymptotically optimal near D = Δ = 0.

In a note added in proof, however, Csiszár mentions an earlier independent
derivation of Kullback, published in the same year 1967 in [20], with an improved
inequality of the form D ≥ 2 log e · Δ2 + 4

3 log e · Δ4. In his correspondance,
Kullback acknowledged the preceding result of Volkonskii and Rozanov. Unfor-
tunately, as Vajda noticed [33] in 1970, the constant 4

3 is wrong and should be
corrected as 4

9 [21] (see explanation in the next section).
Finally, in an 1968 Canadian symposium presentation [15]—later published

as a journal paper [16] in 1969, Kemperman, apparently unaware of the 1967
papers by Csiszár and Kullback, again derived the classical Pinsker inequality
with optimal constant c = 2. His ad-hoc proof (repeated in the renowned text-
book [32]) is based in the inequality 4+2x

3 (x log x − x + 1) ≥ (x − 1)2, which is
much less satisfying than the one-line proof (16).

To acknowledge all the above contributions, it is perhaps permissible
to rename Pinsker’s inequality as the Volkonskii-Rozanov-Sakaguchi-McKean-
Csiszár-Kullback-Kemperman inequality. However, this would unfairly obliterate
the pioneer contribution of Schützenberger, as we now show.

4 Schützenberger’s Contribution (1953)

Seven years before the publication of Pinsker’s book, the French medical doctor,
geneticist, epidemiologist, and mathematician Marcel-Paul (Marco) Schützen-
berger, in his 1953 doctoral thesis [29] (see Fig. 3), proved:
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D ≥ 2 log e · Δ2 +
4
9

log e · Δ4 (17)

Not only does this contain the classical Pinsker inequality (14) with the opti-
mal constant c = 2, but also the second-order improvement, with the (correct)
optimal constant 4

9 for the second-order term, seventeen years before Kullback!
Admittedly, Schützenberger only considered the binary case, but due to the
binary reduction principle, this does not entail any loss of generality.

Fig. 1. Left: Pinsker before Pinsker: In Schützenberger’s notation, W is for Wald’s
information, which is Kullback-Leibler divergence, and D = p − q. There is a typo at
the end: minimizing x2 + 2xy + 3y2 for fixed 2D = y − x is said to give D2

3
instead of

the correct 4D2

3
. Right: Marcel-Paul (Marco) Schützenberger at his first marriage, in

London, Aug. 30th, 1948.

In fact, leaving aside the use of binary reduction, Kullback’s derivation [20] is
just a mention of Schützenberger’s inequality with the wrong constant 4

3 instead
of 4

9 . However, Vajda [33] asserts that the wrong constant comes from Schützen-
berger’s manuscript itself, and that it was corrected in 1969 by Krafft [17]. In
fact, Krafft does not refer to Schützenberger’s thesis but rather to a 1966 paper
by Kambo and Kotz [14] which contains a verbatim copy of Schützenberger’s
derivation (with the wrong constant and without citing the initial reference).
While the correct constant 4

9 does appear in the publicly available manuscript
of Schützenberger (Fig. 3), it is apparent from the zooming in of Fig. 2 that the
denominator was in fact carefully corrected by hand from a “3” to a “9”. It is
likely that the correction in Schützenberger’s manuscript was made after 1970,
when the error was discovered.



300 O. Rioul

Fig. 2. Schützenberger’s correction from “3” to “9”: the correction clearly follows the
shape of a “3” in the original manuscript.

Nevertheless, Schützenberger’s derivation is correct and gives the best con-
stants 2 and 4/9 in (17) as an easy consequence of his identity

d =
∑

k≥1

x2k − 2kxy2k−1 + (2k − 1)y2k

2k(2k − 1)
= 2δ2

∑

k≥1

x2k−2 + 2x2k−3y + · · ·+ (2k − 1)y2k−2

k(2k − 1)

(18)

where x = 1 − 2p and y = 1 − 2q (see Fig. 1). In 1969, Krafft and Schmitz [18]
extended Schützenberger’s derivation by one additional term in 2

9 log e·Δ6, which
was converted into a Pinsker inequality in 1975 by Toussaint [31]. But, in fact,
the constant 2

9 is not optimal; the optimal constant 32
135 was found in 2001 by

Topsøe [30]. Topsøe also derived the optimal constant for the additional term
7072
42525 log e ·Δ8, whose proof is given in [9]. It is quite remarkable that all of such
derivations are crucially based on the original Schützenberger’s identity (18).

5 More Recent Improvements (1970s to 2000s)

So far, all derived Schützenberger-Pinsker inequalities are only useful when D
and Δ are small, and become uninteresting as D or Δ increases. For example,
the classical Pinsker inequality (14) with optimal constant c = 2 become vacuous
as soon as D > 2 log e (since Δ ≤ 1). Any improved Pinsker inequality of the
form (1) should be such that ϕ(1) = +∞ because Δ(p, q) = 1 (non overlapping
supports) implies D(p‖q) = +∞.

The first Pinsker inequality of this kind is due to Vajda in his 1970 paper [33].
He explicitly stated the problem of finding the optimal Pinsker inequality and
proved

D ≥ log
1 + Δ

1 − Δ
− 2 log e · Δ

1 + Δ
. (19)

where the lower bound becomes infinite as Δ approaches 1, as it should. This
inequality is asymptotically optimal near D = Δ = 0 since log 1+Δ

1−Δ − 2 log e ·
Δ

1+Δ = 2 log e · Δ2 + o(Δ2).
In a 1978 French seminar, Bretagnolle and Huber [3,4] derived yet another

Pinsker inequality similar to Vajda’s (where the lower bound becomes infinite
for Δ = 1) but with a simpler expression:

D ≥ log
1

1 − Δ2
. (20)
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By the comparison principle, for natural logarithms and 0 < Δ < 1,
d

dΔ log 1
1−Δ2 = 2Δ

1−Δ2 < 4Δ
(1+Δ)(1−Δ2) = d

dΔ

(
log 1+Δ

1−Δ − 2Δ
1+Δ

)
always, since

1 + Δ < 2. Therefore, the Bretagnolle-Huber inequality (20) is strictly weaker
than Vajda’s inequality (19). Moreover, it is not asymptotically optimal near
D = Δ = 0 since log 1

1−Δ2 ∼ log e · Δ2 is worse than the asymptotically opti-
mal 2 log e · Δ2. However, a nice property of the Bretagnolle-Huber inequality
is that it can be inverted in closed form. In fact the authors expressed it as12
Δ ≤ √

1 − exp(−D).
The Bretagnolle-Huber inequality was popularized by Tsybakov in his 2009

book on nonparametric estimation [32, Eq. (2.25)], but with a different form
Δ ≤ 1 − 1

2 exp(−D), or D ≥ log 1
2(1−Δ) , which is strictly weaker than the

original, since 1 − Δ2 = (1 − Δ)(1 + Δ) < 2(1 − Δ) for 0 < Δ < 1.
Today and to my knowledge, the best known explicit Pinsker inequality of

this kind is
D ≥ log

1
1 − Δ

− (1 − Δ) log(1 + Δ). (21)

derived by Gilardoni in 2008 [11] (see also [12]). Gilardoni’s proof is based on
considerations on symmetrized f -divergences. A simple proof is as follows:

Proof. One can always assume that δ = p − q > 0, where δ ≤ p ≤ 1 and 0 ≤ q ≤
1− δ. Then d(p‖q) = (q + δ) log q+δ

q +(1−q−δ) log 1−q−δ
1−q =

[−q log q+δ
q − (1−q−

δ) log 1−q
1−q−δ

]
+ (2q + δ) log q+δ

q . Since q + (1−q−δ) = 1−δ and − log is convex,
the first term inside brackets is ≥ −(1 − δ) log( q+δ

1−δ + 1−q
1−δ ) = (1 − δ) log 1−δ

1+δ .
The second term writes δ (2+x) log(1+x)

x where x = δ
q . Now (2 + x) log(1 + x)

is convex for x ≥ 0 and vanishes for x = 0, hence the slope (2+x) log(1+x)
x is

minimal for minimal x, that is, for maximal q = 1 − δ. Therefore, the second
term is ≥ (2−2δ+δ) log 1

1−δ = (2−δ) log 1
1−δ . Summing the two lower bounds

gives the inequality. ��
Note that Gilardoni’s inequality adds the term Δ log(1 + Δ) to the

Bretagnolle-Huber lower bound. In fact it uniformly improves Vajda’s inequal-
ity [11]. In particular, it is also asymptotically optimal near D = Δ = 0, which
can easily be checked directly: log 1

1−Δ − (1 − Δ) log(1 + Δ) = 2 log e · Δ2 +
o(Δ2). Also by the comparison principle, for natural logarithms and Δ > 0,
d

dΔ

(
log 1

1−Δ − (1 − Δ) log(1 + Δ)
)

= Δ 3−Δ
1−Δ2 + log(1 + Δ) < 3Δ + Δ = 4Δ =

d
dΔ (2Δ2) as soon as Δ ≥ 3Δ2, i.e., Δ ≤ 1

3 . Therefore, Gilardoni’s inequality (21)
is strictly weaker than the classical Pinsker inequality at least for 0 < Δ < 1/3
(in fact for 0 < Δ < 0.569 . . .). For Δ close to 1, however, Gilardoni’s inequality
is better (see below).

12 Here the exponential is relative to the base considered, e.g., Δ ≤ √
1 − e−D when

D is expressed in nats (with natural logarithms) and Δ ≤ √
1 − 2−D when D is

expressed in bits (with logarithms to base 2).
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6 The Optimal Pinsker Inequality

The problem of finding the optimal Pinsker inequality (best possible lower bound
in (1)) was opened by Vajda [33] in 1970. It was found in 2003 in implicit form,
using the Legendre-Fenchel transformation, by Fedotov, Harremoës, and Topsøe
in [9], as a curve parametrized by hyperbolic trigonometric functions. We give
the following equivalent but simpler parametrization with the following proof
that is arguably simpler as it only relies of the well-known Lagrange multiplier
method.

Theorem 1 (Optimal Pinsker Inequality). The optimal Pinsker inequality
D ≥ ϕ∗(Δ) is given in parametric form as

{
Δ = λ(1 − q)q
D = log(1 − λq) + λq(1 + λ(1 − q)) log e

(22)

where λ ≥ 0 is the parameter and q = q(λ) � 1
λ − 1

eλ−1
∈ [0, 1

2 ]..

Proof. Using binary reduction, d(p‖q) = p log p
q + (1 − p) log 1−p

1−q is to be min-
imized under the linear constraint p − q = δ ∈ [−1, 1]. It is well known that
divergence d(p‖q) is strictly convex in (p, q). Given that the objective function
is convex and the constraint is linear, the solution can be given by the Lagrange
multiplier method. The Lagrangian is L(p, q) = d(p‖q)−λ(p−q) and the solution
is obtained as global minimum of L, which by convexity is obtained by setting
the gradient w.r.t. p and q to zero. Assuming nats (natural logarithms), this
gives

{
∂L
∂p = log p

q − log 1−p
1−q − λ = 0

∂L
∂q = −p

q + 1−p
1−q + λ = 0

or

{
λ = p

q − 1−p
1−q

eλ = p
q

/
1−p
1−q

. (23)

Therefore, p
q = λ + 1−p

1−q = eλ 1−p
1−q , and we have 1−p

1−q = λ
eλ−1

and p
q = λeλ

eλ−1
.

Solving for q, then for p, one obtains 1 = 1 − p + p = (1 − q) λ
eλ−1

+ q λeλ

eλ−1
,

which gives q = q(λ) = 1
λ − 1

eλ−1
as announced above and p = qλ(1 + 1

eλ−1
) =

qλ(1+ 1
λ −q) = q(1+λ(1−q)). Therefore, we obtain the desired parametrization

δ = p−q = λ(1−q)q and d(p‖q) = log 1−p
1−q +pλ = log(1−λq)+λq(1+λ(1−q)).

Finally, observe that the transformation (p, q) �→ (1 − p, 1 − q) leaves d = d(p‖q)
unchanged but changes δ �→ −δ. In the parametrization, this changes λ �→ −λ
and q(λ) �→ q(−λ) = 1 − q(λ). Accordingly, this change of parametrization
changes (δ, d) �→ (−δ, d) as can be easily checked. Therefore, the resulting optimal
ϕ∗ is even. Restricting to δ = |p − q| = p − q ≥ 0 amounts to p ≥ q ⇐⇒ λ ≥
0 ⇐⇒ q ∈ [0, 1/2]. ��

In 2009, Reid and Williamson [25,26], using a particularly lengthy proof
mixing learning theory, 0-1 Bayesian risks, and integral representations of f -
divergences, claimed the following “explicit form” of the optimal Pinsker inequal-
ity: D ≥ min|β|≤1−Δ

1+Δ−β
2 log 1+Δ−β

1−Δ−β + 1−Δ+β
2 log 1−Δ+β

1+Δ−β . This formula, how-
ever, is just a tautological definition of the optimal Pinsker lower bound: Indeed,
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by binary reduction, d(p‖q) = p log p
q + (1 − p) log 1−p

1−q is to be minimized under
the constraint δ = p − q, hence δ ≤ p ≤ 1 and q ≤ 1 − δ. Letting β = 1 − p − q,
this amounts to minimizing over β in the interval [δ−1, 1−δ] for fixed δ = p−q.
Since p = 1+δ−β

2 and q = p − v = 1−δ−β
2 , this minimization boils down to the

above expression for the lower bound.

P

S
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Fig. 3. Pinsker lower bounds of divergence D vs. total variation Δ. Red: Optimal (The-
orem 1). Blue: Pinsker (P, Eq. 14 with c = 2) with optimal constant and Schützenberger
(S, Eq. 17). Black: Bretagnolle-Huber (BH, Eq. 20), Vajda (V, Eq. 19) and Gilardoni
(G, Eq. 21). (Color figure online)

7 Conclusion

Figure 3 illustrates the main Pinsker inequalities seen in this paper. As a tem-
porary conclusion, from the implicit form using the exact parametrization of
Theorem 1, it is likely that the optimal Pinsker inequality cannot be written
as a closed-form expression with standard operations and functions. Also, the
problem of finding an explicit Pinsker inequality which uniformly improve all
the preceding ones (in particular, the classical Pinsker inequality with optimal
constant and Gilardoni’s inequality) is still open.
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Interestingly, asymptotic optimality near the two extremes (V = D = 0
as λ → 0 or V = 1, D = +∞ as λ → ∞) can easily be obtained from the
parametrization of Theorem 1:

– As λ → 0, by Taylor expansion one obtains q = 1
2 − λ

12 + o(λ), Δ = λ
4 +

o(λ), and (in nats) D = λ2

8 + o(λ2). Thus, one recovers that D ∼ 2Δ2 near
D = Δ = 0. In particular, the classical Pinsker inequality (with optimal
constant) and its improvements, as well as Vajda’s and Gilardoni’s inequality,
are asymptotically optimal near D = Δ = 0.

– As λ → +∞, q = 1
λ + o( 1

λ ), exp d = λ
eλ−1

eλ+o(1) ∼ λ ∼ 1
1−Δ . Thus it follows

that exp D ∼ 1
1−Δ near Δ = 1 and D = +∞. Vajda’s and the Bretagnolle-

Huber inequalities are such that expD ∼ c
1−Δ there, with suboptimal con-

stants c = 2
e = 0.7357 . . . < 1 and c = 1

2 < 1, respectively. Only Gilardoni’s
inequality is optimal in this region with c = 1.

As a perspective, one may envision that the exact parametrization of Theo-
rem 1 can be exploited to find new explicit bounds. Indeed, since λ = ϕ∗′(Δ) in
the parametrization of Theorem 1, from the comparison principle, any inequal-
ity of the form ϕ′(Δ) ≤ λ = ϕ∗′(Δ) is equivalent to a corresponding Pinsker
inequality (1) associated to ϕ. For example, since 4Δ = 4λ(1 − q)q ≤ λ always
in the parametrization, one recovers the classical Pinsker inequality (14) with
optimal constant c = 2. Thus, the search of new Pinsker inequality amounts to
solving the inequality in λ > 0: ϕ′(λ

(
1 − q(λ)

)
q(λ)

) ≤ λ for ϕ.
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Abstract. The Fisher information matrix is used to evaluate the minimum
variance-covariance of unbiased parameter estimation. It is also used, in natu-
ral gradient descent algorithms, to improve learning of modern neural networks.
We investigate the Fisher information matrix related to the reception of a signal
wave on a sensor array. The signal belongs to a parametric family. The objective
of the receiver is to estimate the time of arrival, the direction of arrival and the
other parameters describing the signal. Based on the parametric model, Fisher
information matrix, array manifold and time delay variances are calculated. With
an appropriate choice of parameters, the Fisher matrix is block diagonal and easily
invertible. It is possible to estimate the direction of arrival on an array of sensors
and the time of arrival whatever the signal parameters are. However, some signal
characteristics may have an influence on the asymptotic estimation of the time
delay. We give examples with a simple parametric family from the literature.

Keywords: Fisher Information Matrix · Array Manifold · Time Delay
Estimation

1 Introduction

Time delay estimation (TDE) has been an active area of signal processing research
and development for a large number of applications, including telecommunications,
passive and active sonar, radar, electronicwarfare,music, speech analysis, fault diagnosis
and medical imaging. Many contributions involve techniques for estimating the time
delays of a signal in receiving channels [1–3]. Some publications consider parametric
expressions of the signal [4, 5], when others express the signal as wide-band, random
and stationary [6, 7].

When an array of sensors receives an incident wave, the different time delays on
each sensor give some information about the source direction. Array of sensors are used
for signal detection and for the estimation of source direction parameters, as elevation
and azimuth bearings. Manikas and al. Have developed models of arrays using the
application of differential geometry in complex space [8–11]. They use the models to
evaluate the resolution and the detection capabilities of the array [8].

A common statistical method to evaluate the performance of an estimator is to com-
pute bias and variance [12]. For unbiased estimators, the minimal variance is given by
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the Cramer-Rao lower bound (CRLB) [12, 13]. The Fisher information matrix is used
to compute the CRLB.

In the domain of geometric science of information and Riemannian geometry, a
statistical distance between two populations can defined by integrating infinitesimal
element lengths along the geodesics, and the Fisher information matrix can be used to
evaluate the Rao distance between two populations [13].

Inmodern deep learning, the natural gradient or Riemannian gradientmethod ismore
effective for learning [14]. It needs the inversion of the Fisher information matrix. When
the Fisher matrix is quasi-diagonal, the inversion is made easier and learning speed is
improved [15].

Considering the estimation of array parameters and time delays, Friedlander and
Kopp showed in separate works that the Fisher matrix associated with a Gaussian noise
model can be computed and exhibits a block diagonal structure [16–18].

We look at the reception on a sensor array of an incoming wave with a finite
energy.We examine the geometric structure of the statistical information in this situation,
assuming that the receiver may not know much about the transmitted signal.

The objective is to understand if the form of the signal parametric family and the
array manifold structure may have an influence on the accuracy of the estimation of the
time of arrival of the signal. We limit the approach to the one source problem.

Taking into account the model and results of [16–18], we extend the model to an
unknown deterministic signal. The parametric family of the signal is explained and
characterised. The Fisher information matrix is computed in order to examine the
interdependencies of the various parameters.

Section 2 gives a description of the measurements acquired by the receiver and
the general expression of the Fisher information matrix associated with the parameter
estimation.

Section 3 details the hypotheses leading to a block diagonal structure of the Fisher
information matrix.

Section 4 gives some examples of the CRLB calculations. These examples show the
influence of the signal parameters on the CRLB for TDE.

2 Fisher Matrix General Expression

2.1 Receiving a Plane Wave on an Array of Sensors

A signal propagates from a transmitter to a receiver. The transmitted signal s(t) is a
function of time t and is known from the transmitter. For the receiver, the knowledge
about the signal is not perfect. The power of transmission and the time of transmission
are unknown, which leads to uncertainties about signal attenuation and time delay. In
addition, we assume that, for the receiver, the signal belongs to a parametric family{
sθ (t)θ ∈ R

P
}
. The receiver objective is to recover the signal parameters, expressed

in its own time frame, and to estimate the time τ at which the signal is received. As
an example, a sonar receiving marine mammal whistles or vocalisations may detect the
signal and estimate the type of mammal. Estimating τ is a detection problem. Estimating
the vector θ is a classification or a regression problem.
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At the receiver level, the signal is time delayed and attenuated. We assume there is
no Doppler shift due to sources, medium, or receiver speed, and no phase shift due to
reflection. In addition, the noise, which represents some uncertainty due to the imperfect
knowledge of the measurement conditions as sensors perturbations or uncertainties,
and variations in environmental conditions, is assumed additive and Gaussian noise.
Furthermore, the noise does not depend on the signal itself, as it would be the case in
the presence of reverberation phenomena.

Thus, the observation at the receiver level is expressed as a function of time x(t),
which takes the form:

x(t) = α · sθ (t − τ) + n(t) (1)

where:

• α is an attenuation coefficient, time independent,
• n(t) is the noise, function of time,
• τ is the time delay characterising reception at a reference location, time independent

as no Doppler effect is assumed.

When the signal is received by several sensors at different positions −→rk , the passive
observations can be addressed with a multichannel perspective. The simplest and most
common situation, as illustrated on Fig. 1, assumes that, at long range from the source,
the signal propagates as a plane wave and that it is received on an antenna array made
of K omnidirectional sensors. The wave plane is described by a normal unit vector �u.

Source
Sensor 1

Sensor 2

Sensor K

Plane wave

1

2

( )

Fig. 1. Time delayed transmission received on an antenna array.

Each sensor k is described by its position −→rk (3D vector) and its gain coefficient ak .
As the signal is received on the K different sensors, the observation is expressed on

each sensor k in the same way as previously:

xk(t) = ak · α · sθ (t − τ − τk) + nk(t), k = 1, . . .K (2)

where, for each sensor k:

• ak is a gain coefficient, time independent.
• nk(t) is the noise, function of time.
• τk is the time delay at sensor k, time independent:

τk = 1

c
�u,−→rk (3)

• c is the speed of the waves (the travelling speed of the signal).
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• �u,−→rk is the 3D scalar product between the vectors �u and −→rk .
We assume that:

• The plane wave direction �u = �u(η) is parametrized by a vector η representing
the knowledge available about the source direction (typically the η components are
bearing and elevation).

• The τk are functions of η and of the sensors positions −→rk .
• The ak are related to the omnidirectional sensors characteristics and do not depend

on η.
• The signal sθ (t) does not depend on η, because the wave direction at reception does

not affect the transmitted signal.

The question raised in the following is related to the dependencies between the
performances of the estimations of the wave direction parameter η, the time delay τ , the
attenuation α and the signal unknown characteristics θ .

2.2 Expression of the Array Manifold

The Fourier transform offers a way to write the Eqs. (2) in the spectral domain in such
a way that they are expressed as a set of complex column vector relations:

X(ν) = α · Sθ (ν) · e−2iπντ · Aη(ν) + N(ν), (4a)

where, for each frequency ν in the observation bandwidth B (ν ∈ B):
• The bold quantities are vectors.
• X(ν) is the K × 1 observation vector.
• α · Sθ (ν) · e+iντ is the Fourier transform of the unknown signal with attenuation α

and time delay τ .
• N(ν) is the K × 1 noise vector.
• Aη(ν) is the K × 1 array manifold vector, representing the sensors gains and phase

shifts referred to the array phase center and expressed as:

Aη(ν) =
⎛

⎜
⎝

a1e−2iπντ1(η)

...

aKe−2iπντK (η)

⎞

⎟
⎠ (4b)

• The knowledge about the signal does not suppose any prior statistical distribution
of the signal parameters themselves. The parameters θ are deterministic. They are
unknown but deterministic.

2.3 Prior Knowledge About the Noise

The noise is a stationary centred complex circular Gaussian variable, independent from
one sensor to the other and from one frequency to the other. The noise covariance matrix
is known and we can write:

E
(
N(ν)N(ν)H

)
= γo(ν) · IdK (5a)
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E
(
N(ν)N(ν)T

)
= 0 · IdK (5b)

where, for each frequency ν in the observation bandwidth B:
• IdK is the K × K identity matrix.
• γo(ν) is the noise spectral density at frequency ν.
• Upper H denotes the transpose conjugate.
• Upper T denotes the transpose.
• E() is the statistical expectation.

The spectral densities are supposed all the same on the different sensors. This condi-
tion imposes that the noise spectral densities can be deduced from one sensor to another
by a homothetic transformation. If a receiver produces a noise power γo, for instance
lower than the others, the output of the sensor can be multiplied by a factor to correct it.
This is possible because the noise spectral densities are known.

2.4 Prior Knowledge About the Signal

In the general case, the signal Sθ (ν) belongs to a set H = {
Sθ (ν)θ ∈ R

P, ν ∈ B}
. This

set contains all the signals that the receiver expects to receive. For the receiver, the
signal is only considered for the frequency bandwidth B accepted by the sensors. As the
observation bandwidth B is always limited, the received signal is only an approximation
of the real transmitted signal. For instance, if the transmitted signal is a radar pulse with a
finite duration, its theoretical bandwidth is infinite. So the observation through a limited
bandwidth can only approximate the exact transmitted signal.

In practice, the set H varies with the application. As an example, for some fault
diagnostic applications, the parametric familymaybe aGaussian-modulated linear group
delay model [19]. The set H must reflect the dependence with the frequency ν.

2.5 Law of Probability and Log-Likelihood

Because of the modelling hypotheses, the observations are:

X = {X(ν)|ν ∈ B} (6a)

The parametric law of probability of the observations is expressed as:

p(X /α, τ, θ , η) = ∏

ν

1
πKγo(ν)K

exp
(
−‖X(ν)−M(ν,α, τ,θ ,η)‖2

γo(ν)

)
(6b)

where, for each frequency ν in B, the observation mean is:

M (ν, α, τ, θ , η) = α · Sθ (ν) · e−2iπντ · Aη(ν) (6c)

The log-likelihood is:

l(X /α, τ, θ , η) = −∑

ν

K ln π − ∑

ν

K ln(γo(ν)) − ∑

ν

1
γo(ν)

X(ν) − M(ν, α, τ, θ , η)2

(7)
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Thus maximising l(X /α, τ , θ , η) as a function of α, τ, θ, η is the same as
minimising:

J (α, τ, θ, η) = ∑

ν

1
γo(ν)

‖X(ν) − M(ν, α, τ, θ , η)‖2 (8)

2.6 Fischer Matrix Expression

By rearrangement of the parameters in one vector ζT = (
ηT , α, τ, θT

)
, the Fisher matrix

F of the parameters estimation problem is the matrix whose generic term at line l and
column j is given by:

Flk = E
(

∂l(X /ζ)
∂ζl

· ∂l(X /ζ)
∂ζj

)
(9a)

Considering the complex nature of the vectors, the generic term of the Fisher matrix
can be expressed as:

Flj = ∑

ν

2
γo(ν)

Re
{

∂(M(ν,α,τ,θ ,η))
∂ζl

H ∂(M(ν,α,τ,θ ,η))
∂ζj

}
(9b)

3 Fisher Matrix Structure

3.1 Separation of Array Manifold and Signal Parameters

Equation (9b) can be rewritten with ζl among α, τ, θ on one side and ζj among η on the
other side. For example, with θl and ηj the generic term Flj becomes:

Fθlηj = ∑

ν

2
γo(ν)

Re

{
∂
(
α·Sθ (ν)·e−2iπντ

)

∂θl
· α · Sθ (ν) · e−2iπντ · Aη(ν)H

∂(Aη(ν))
∂ηj

}

(10)

where Z is the complex conjugate of Z .
In addition, from Eqs. (3) and (4b), for any ηj, we get:

Aη(ν)H
∂(Aη(ν))

∂ηj
= −2iπ ν

c

K∑

k=1
α2
k

∂�u(η)
∂ηj

,
−→rk = −2iπ ν

c
∂�u(η)
∂ηj

,
K∑

k=1
α2
k
−→rk (11)

When the sensors positions are referenced to the phase centre of the array, we have,
by definition of the phase centre:

K∑

k=1
α2
k
−→rk = �0 (12)

And so, using (11) and (12), we get:

Aη(ν)H
∂(Aη(ν))

∂ηj
= 0 (13)
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Equation (13) induces a block structure of the Fisher matrix with:
⎧
⎪⎨

⎪⎩

Fθlηj = 0
Fαηj = 0
Fτηj = 0

(14)

These equations show that the Fisher information matrix F has a block diagonal
structure as:

F =
(
Fη 0
0 FS

)
(15)

• Fη = (
Fηlηj

)
is a block describing the estimation of the array manifold parameters.

• FS is a block describing the estimation of the received signal parameters α, τ, θ .

We can compute the block related to the array manifold:

Fηlηj = ∑

ν

2α2‖Sθ (ν)‖2
γo(ν)

Re

{
∂(Aη(ν))

∂ηl

H ∂(Aη(ν))
∂ηj

}

= ∑

ν

8π2 ν2

c2
α2‖Sθ (ν)‖2

γo(ν)

K∑

k=1
a2k 〈 ∂ �u(η)

∂ηl
,
−→rk 〉〈 ∂ �u(η)

∂ηj
,
−→rk 〉

(16)

The separation of the two blocks and the expression of Fη show that the estimation
of the array manifold parameters depends on the signal-to-noise ratio (SNR) and on the
array manifold structure (Eq. (16)).

3.2 Separating the Signal Fisher Matrix Block FS into Two Blocks

The signal Sθ (ν) is a complex number, which can be written with module and phase
quantities. With the hypothesis that the parameters can be separated into two vectors,
one for the parameters describing the module (φ) and one for the parameters describing
the phase (ϕ), we can write:

θT = (
φT ,ϕT

)
(17a)

Sθ (ν) = ρ(ν,φ) · eiψ(ν,ϕ) (17b)

From the Paley-Wiener second theorem, a necessary and sufficient condition for
Sθ (ν) to be the Fourier transform of a causal signal with finite energy is that [20]:

+∞∫
0

|ln ρ(ν,φ)|
1+ν2

dν < ∞ (18)

In addition, if the signal is phase-minimum, its phase ψ(ν,ϕ) can be deduced from
its module ρ(ν, φ) [20, 21]. In such a case, the phase parameters ϕ are related to the
module parameters φ by a functional relation. However, in the general case, we may
estimate separately the parameters describing module and phase.
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As φ and ϕ are separated parameters, the generic terms for the module and phase
parameters show a block matrix structure and become:

Fφlϕj = ∑

ν

2‖Aη(ν)‖2
(α·ρ(ν,φ))

γo(ν)
Re

{
∂(α·ρ(ν,φ))

∂φl
i ∂(ψ(ν,ϕ)−2πντ)

∂ϕj

}
= 0 (19a)

Fφlφj = ∑

ν

2‖Aη(ν)‖2

γo(ν)
∂(α·ρ(ν,φ))

∂φl

∂(α·ρ(ν,φ))
∂φj

(19b)

Fϕlϕj = ∑

ν

2‖Aη(ν)‖2 |α·ρ(ν,φ)|2
γo(ν)

∂(ψ(ν,ϕ)−2πντ)
∂ϕl

∂(ψ(ν,ϕ)−2πντ)
∂ϕj

(19c)

These equations show that the Fisher information matrix block regarding the signal
parameters has also a block diagonal structure:

FS =
(
Fαφ 0
0 Fτϕ

)
(20)

The first block Fαφ is related to the parameters describing the signal module and the
block Fτϕ is related to the parameters describing the signal phase.

4 Examples

4.1 Simplifying Hypothesis

In the various examples, we consider that most of the signal energy is concentrated in
the bandwidth

[
ν0 − B

2 , ν0 + B
2

] ⊂ B. We define the SNR at frequency ν:

γSNR(ν)def 2‖Aη(ν)‖2 |α·ρ(ν)|2
γo(ν)

(21a)

And the total SNR:

γ def
∑

ν

γSNR(ν) (21b)

As the Fisher matrix is block diagonal (Eq. (20)), we only look at the block Fτϕ . As
in [19], we assume a polynomial dependence of the phase with the frequency.

4.2 TDE with no Phase Parameter

Assuming there is no phase parameter ϕ means that the phase is exactly known (except
for the time delay τ ):

ψ(ν,ϕ) = ψ0(ν) (22)

This hypothesis leads to:

Fττ = ∑

ν

8π2ν2

γo(ν)

K∑

k=1
α2
k |α · ρo(ν)|2 = ∑

ν
(2πν)2γSNR(ν) ∼= γ 4π2

(
ν20 + B2

12

)
(23)

By definition, the CRLB on the TDE is given by the first diagonal coefficient of the
inverse of the Fisher matrix. Due to the diagonal structure of the Fisher matrix, with (22)
and (23), we get:

σ 2
τ = 1

Fττ

∼= 1
γ

· 1

4π2
(
ν20+ B2

12

) (24)
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4.3 TDE with One Phase Parameter

The phase is assumed constant within the bandwidth (except for the time delay τ):

ϕT = (ϕ1) (25a)

ψ(ν,ϕ) = ϕ1 (25b)

With these values, we get the following expressions:

Fττ = ∑

ν
(2πν)2γSNR(ν) def γ ω2

τ
∼= γ 4π2

(
ν20 + B2

12

)
(26a)

Fτϕ1 = ∑

ν
(2πν)γSNR(ν) def γ ω1 ∼= γ 2π(ν0) (26b)

Fϕ1ϕ1 = ∑

ν

γSNR(ν) def γ (26c)

Fτϕ =
(
Fττ Fτϕ1

Fτϕ1 Fϕ1ϕ1

)
def γ

(
ω2

τ ω1

ω1 1

)
(27)

The first diagonal term of the inverse matrix of Fτϕ is:

σ 2
τ = 1

γ
· 1

ω2
τ −ω2

1

∼= 1
γ

· 3
π2B2 (28)

4.4 TDE with Two Phase Parameters

We consider the Gaussian-modulated linear group delay model as expressed in [19]:

ϕT = (ϕ1, ϕ2) (29a)

ψ(ν,ϕ) = ϕ1 + 4π2ϕ2ν
2 (29b)

With these values, in addition to Eqs. (26), we get the following expressions:

Fτϕ2 = ∑

ν
(2πν)3γSNR(ν) def γω3

2
∼= γ 8π3

(
ν30 + ν0

B2

4

)
(30a)

Fϕ1ϕ2 = ∑

ν
(2πν)2γSNR(ν) = Fττ def γω2

τ
∼= γ 4π2

(
ν20 + B2

12

)
(30b)

Fϕ2ϕ2 = ∑

ν
(2πν)4γSNR(ν) def γω4

3
∼= γ 16π4

(
ν40 + 1

2ν
2
0B

2 + B4

80

)
(30c)

Fτϕ =
⎛

⎝
Fττ Fτϕ1 Fτϕ2

Fτϕ1 Fϕ1ϕ1 Fϕ1ϕ2

Fτϕ2 Fϕ1ϕ2 Fϕ2ϕ2

⎞

⎠ def γ

⎛

⎝
ω2

τ ω1 ω3
2

ω1 1 ω2
τ

ω3
2 ω2

τ ω4
3

⎞

⎠ (31)

The first diagonal term of the inverse matrix of Fτϕ becomes:

σ 2
τ = 1

γ
· ω4

3−ω4
τ

ω2
τ ω4

3−ω6
τ −ω2

1ω
4
3+2ω1ω

3
2ω

2
τ −ω6

2

∼= 1
γ

· 3
(
60ν20+B2

)

π2B4 (32)
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5 Conclusion

The prior knowledge about the signal has a significant influence on the TDE. How-
ever, TDE is only affected by the parameters characterising the phase of the signal in
the spectral domain. The estimation of the parameters describing the source direction
and the signal amplitude in the spectral domain does not affect the TDE performance.
Future work could investigate the impact of the parametric description fitting with vari-
ous impulse signals (e.g. sonar signals, marine mammal whistles or vocalisations), and
estimate some Rao distance between different signals.
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2 L2S, CentraleSupélec, Université Paris-Saclay, Gif-sur-Yvette, France
henrique.miyamoto@centralesupelec.fr

3 FEEC, University of Campinas, Campinas SP, Brazil

max@fee.unicamp.br

Abstract. A lattice tiling decomposition induces dual operations: quan-
tisation and wrapping, which map the Euclidean space to the lattice and
to one of its fundamental domains, respectively. Applying such decompo-
sition to random variables over the Euclidean space produces quantised
and wrapped random variables. In studying the characteristic function
of those, we show a ‘frequency domain’ characterisation for deterministic
quantisation, which is dual to the known ‘frequency domain’ characteri-
sation of uniform wrapping. In a second part, we apply the tiling decom-
position to describe dithered quantisation, which consists in adding noise
during quantisation to improve its perceived quality. We propose a non-
collaborative type of dithering and show that, in this case, a wrapped
dither minimises the Kullback-Leibler divergence to the original distri-
bution. Numerical experiments illustrate this result.

Keywords: Characteristic function · Dithering · Lattice ·
Quantisation · Wrapping

1 Introduction

Lattices are discrete sets of points in R
n formed by all integer linear combinations

of independent vectors [5,7], and have applications that include information
theory (e.g., coding, quantisation) [6,18] and cryptography [4]. Translations of
a fundamental domain by lattice points tile the entire Euclidean space, and this
construction induces two operations: quantisation and wrapping, which consist
in decomposing a point into its lattice and fundamental domain components,
respectively. Accordingly, a random variable defined on the Euclidean space can
produce two new random variables by applying these operations: a quantised
and a wrapped one. These notions are recalled in Sect. 2.

Supported by the Brazilian National Council for Scientific and Technological Develop-
ment (CNPq) grants 141407/2020-4 and 32441/2021-2.

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
F. Nielsen and F. Barbaresco (Eds.): GSI 2023, LNCS 14071, pp. 318–327, 2023.
https://doi.org/10.1007/978-3-031-38271-0_31

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-38271-0_31&domain=pdf
http://orcid.org/0000-0001-8323-1282
http://orcid.org/0000-0003-1131-2790
http://orcid.org/0000-0002-8837-9291
http://orcid.org/0000-0002-8789-6238
https://doi.org/10.1007/978-3-031-38271-0_31


Revisiting Lattice Tiling Decomposition and Dithered Quantisation 319

In this paper, we extend a previous work [14] by further investigating proper-
ties of this dual decomposition. Specifically, in Sect. 3, we study relations between
the characteristic function of the involved random variables, and characterise
deterministic quantisation in the ‘frequency domain’, in an analogous way to
the ‘frequency domain’ characterisation of uniform wrapping [9,18].

In Sect. 4, we use the language of lattice tiling decomposition to describe
dithered quantisation [8], a technique that consists in adding controlled random
noise (dither) to improve the quality of the quantised signals, e.g., images [9],
audio [11,12]. In commonly used subtractive dithering, encoder and decoder
have to collaborate: the former adds a random noise and the later subtracts the
same realisation of the noise. While this scheme provides analytical convenience
and has been extensively studied (see, e.g., [18]), we propose a non-collaborative
scheme that could be of practical interest: the decoder receives a quantised signal
and can only add random noise to improve its perceptual quality. Following [11,
12], we assess the perceptual quality by a similarity measure between original
and quantised random variables, and show that the dither that minimises the
Kullback-Leibler (KL) divergence between these distributions is precisely the
one that has the same distribution of the wrapped random variable.

2 Lattices and Tiling

A lattice Λ is a discrete additive subgroup of R
n, which can be described as

the set of all integer linear combinations of linearly independent vectors β =
{b1, . . . , bk}, i.e., Λ := {x1b1 + · · · + xkbk : x1, . . . , xk ∈ Z}. The set β is called a
basis and the matrix B whose columns are the vectors of β is called a generator
matrix for this lattice. Another matrix B′ is also a generator matrix for the same
lattice if, and only if, B′ = BU , for U an integer matrix with detU = ±1. We
consider here only full-rank lattices, that is, k = n. The determinant of a lattice
is independent of the basis and defined as detΛ := |det B|. The dual lattice of Λ
is defined as Λ∗ := {ω ∈ R

n : 〈ω, λ〉 ∈ Z, ∀λ ∈ Λ}. If B is a generator matrix
of Λ, then B−T is a generator matrix of Λ∗.

We say that a measurable set D ⊂ R
n tiles R

k by Λ, or that D is
a fundamental domain of Λ, if (1)

⋃
λ∈Λ(λ + D) = R

k, and (2) (λ +
D) ∩ (λ′ + D) = ∅, for λ 	= λ′. A pair (D, Λ) such that D tiles R

n

by Λ is called a tiling pair. The fundamental parallelotope of a basis
P(β) :=

{
α1b1 + · · · + αnbn : α1, . . . , αn ∈ [0, 1)

}
is a fundamental domain.

The set of points that are closer to the origin than to any other lat-
tice point is called the Voronoi region of a lattice and denoted V(Λ) :={
x ∈ R

n : ‖x‖ ≤ ‖x − λ‖ , ∀λ ∈ Λ
}
. It becomes a fundamental domain after

parts of its boundary are excluded in such a way ties are broken in a systematic
manner. Any fundamental domain has the same volume volD = det Λ.

Given a tiling pair (D, Λ), we have that R
n =

⊔
λ∈Λ(λ + D), which means

that any x ∈ R
n can be written in a unique way as x = y + λ, with y ∈

D and λ ∈ Λ. This partitioning induces two important functions: wrapping
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and quantisation [14]. Wrapping1 is the map π : Rn → D, π(y + λ) = y, while
quantisation is defined as Q : Rn → Λ, Q(y + λ) = λ, for y ∈ D and λ ∈ Λ.

Given a continuous random variable X over Rn, we can define the associated
wrapped and quantised random variables as Xπ := π(X) and XQ := Q(X),
respectively. Since π + Q = id, we have X = Xπ + XQ, and the joint random
variable (Xπ,XQ) is defined over the tiling pair (D, Λ). If X admits a probability
density function (pdf) p, then the wrapped and quantised densities can be respec-
tively obtained as pπ(y) =

∑
λ∈Λ p(y + λ), y ∈ D, and pQ(λ) =

∫
D p(y + λ)dy,

λ ∈ Λ [14]. The marginal random variables Xπ and XQ are not necessarily inde-
pendent; if that is the case, i.e., p(y+λ) = pπ(y)pQ(λ), we call X a tiled random
variable. Lattice staircase is a straightforward way to construct tiled random
variables: if U is uniform over D, and L is any random variable over Λ, chosen
independently of U , then X := U + L is a tiled random variable.

3 Characteristic Function and Fourier Transform

Let X be a continuous random variable over R
n with pdf p, and XQ and Xπ

the corresponding quantised and wrapped random variables. The characteristic
function2 of X is the function ΦX : Rn → C given by

ΦX(ω) := EX

[
e−2πi〈ω,X〉

]
=

∫

Rn

p(x)e−2πi〈ω,x〉dx, (1)

which is equal to the Fourier transform of the density p, i.e., ΦX(ω) = p̂(ω).
Analogously, the characteristic function of Xπ is ΦXπ

: Λ∗ → C, defined as
ΦXπ

(ω) := EXπ

[
e−2πi〈ω,Xπ〉

]
=

∫
D pπ(y)e−2πi〈ω,y〉dy, and the characteristic

function of XQ is ΦXQ : D∗ → C, for a given fundamental domain D∗ of Λ∗,

defined as ΦXQ(z) = EXQ

[
e−2πi〈z,XQ〉

]
=

∑
λ∈Λ pQ(λ)e−2πi〈z,λ〉.

By the generalization of the Fourier transform to locally compact Abelian
(LCA) groups [16], it is possible to define the Fourier transform of the densities
pπ and pQ. Since pπ is Λ-periodic, it can be decomposed in a Fourier series with
Fourier coefficients p̂π : Λ∗ → C given by [2,7]

p̂π(ω) =
1

det Λ

∫

D
pπ(y)e−2πi〈ω,y〉dy. (2)

On the other hand, pQ has discrete support and can be seen as the Fourier
coefficients of the Λ∗-periodic function p̂Q : D∗ → C, whose Fourier series is [2,7]

p̂Q(z) =
∑

λ∈Λ

pQ(λ)e2πi〈z,λ〉. (3)

1 Wrapping can be thought of as the canonical projection R
n → R

n/Λ to the quotient
space (isomorphic to an n-torus), composed with a choice of representatives.

2 The classical definition of characteristic function in statistics books does not include
the factor −2π in the exponent, e.g. [13, § 3.3]. Here, we follow [18, § 4.2] and define
the characteristic function as in (1) to simplify relations. There are slightly different
definitions for the Fourier transform too: the form we adopt (as in [18]) has the
advantage of simplifying the expression for the inverse Fourier transform [10, § 6.2].
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We remark that these definitions of Fourier transforms in lattices have been
used in the context of lattice-based cryptography, e.g., [2]. With these definitions,
the characteristic functions for the wrapped and quantised random variables
can be written as ΦXπ

(ω) = (det Λ) p̂π(ω) and ΦXQ(z) = p̂Q(−z), respectively.
These concepts are illustrated in Fig. 1 for Gaussian distributions on R.

Fig. 1. Examples of zero-mean Gaussian distributions: densities (top) and characteris-
tic functions (bottom), with Λ = Λ∗ = Z and D = D∗ = [− 1

2
, 1
2
[, for different variances:

σ2 = 0.4 (blue), σ2 = 0.9 (orange) and σ2 = 1 (green). (Color figure online)

Theorem 1 ([18, Eq. (4.21)]). ΦXπ
= ΦX |Λ∗

Proof. For any ω ∈ Λ∗ and λ ∈ Λ, we have e−2πi〈ω,λ〉 = 1. Then

ΦXπ
(ω) =

∫

D
pπ(y)e−2πi〈ω,y〉dy =

∑

λ∈Λ

∫

λ+D
p(y)e−2πi〈ω,y−λ〉dy

=
∫

Rn

p(x)e−2πi〈ω,x〉dx = ΦX(ω).

The previous result, that relates the characteristic functions of the wrapped
and original random variables, can be used to readily prove the classical Poisson
summation formula for probability density functions [7, Thm. 2.3],[17, p. 252]:

Theorem 2 (Poisson summation formula). Let Λ be a lattice in R
n and X

a random variable in R
n with density p. If p and ΦX have fast decay of order

O(x−(n+ε)) and O(ω−(n+ε)), respectively, then
∑

λ∈Λ

p(λ) =
1

det Λ

∑

ω∈Λ∗
ΦX(ω). (4)

Proof. Writing the Fourier series of the wrapped distribution pπ, we have pπ(y) =
1

detΛ

∑
ω∈Λ∗ ΦXπ

(ω)e2πi〈ω,y〉. Evaluating it at y = 0 and using Theorem 1 yields
the desired result.
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A random variable X is said to be modulo-uniform if its wrapping Xπ has
uniform distribution over D, i.e., pπ ≡ 1/(det Λ) [18, Def. 4.2.2]. Interestingly,
modulo-uniformity has a ‘frequency domain’ characterisation [9,18]:

Theorem 3 ([9, Thm. 1],[18, Lem. 4.2.4]). A random variable X is modulo-
uniform if, and only if, ΦXπ

(ω) = δ0(ω), where δ0 is the Dirac delta function of
the origin, which takes value 1 when ω = 0, and 0 otherwise.

Proof. If pπ ≡ 1/(det Λ), then ΦXπ
(ω) = 1

detΛ

∫
D e−2πi〈ω,y〉dy, which is 1 for

ω = 0, and 0 for ω 	= 0, thus ΦXπ
= δ0. Now suppose that ΦXπ

= δ0. Write
the Fourier series pπ(y) =

∑
ω∈Λ∗ p̂π(ω)e2πi〈ω,y〉 = 1

detΛ

∑
ω∈Λ∗ δ0(ω)e2πi〈ω,y〉 =

1
detΛ .

The quantised distribution has an analogous expression to Theorem 1:

ΦXQ(z) =
∑

λ∈Λ

(∫

D
p(x + λ)dx

)

e2πi〈z,λ〉 =
∫

Rn

p(x)e2πi〈z,Q(x)〉dx. (5)

The fact that e2πi〈ω,Q(x)〉 = 1 for ω ∈ Λ∗ implies that ΦXQ is a Λ∗-periodic
function, in a similar behaviour to that of a wrapped distribution of the dual
lattice. This similarity is emphasised by the following result, which is dual to
Theorem 3.

Theorem 4. A random variable X has deterministic quantisation pQ = δ0 if,
and only if, ΦXQ is constant.

Proof. If pQ = δ0, then ΦXQ(z) =
∑

λ∈Λ δ0(λ)e2πi〈z,λ〉 = δ0(0) = 1. On the other
hand, if ΦXQ(z) is constant, by evaluating at z = 0, we see that its value must
necessarily be 1, and hence p̂Q ≡ 1/(det Λ∗). The inverse Fourier transform
of p̂Q is pQ(λ) =

∫
D∗ p̂Q(z)e−2πi〈z,λ〉dz = 1

detΛ∗
∫

D∗ e2πi〈z,λ〉dz. Since pQ is a
probability distribution and pQ(0) = 1, we conclude that pQ = δ0.

Remark 1. It should be noted that, while the previous results recover, in dimen-
sion one, classical results from signal processing literature, they are presented
here in the more general form for multi-dimensional lattices. In particular, the
‘frequency domain’ characterisation in Theorem 4 is analogous to the Nyquist’s
criterion for inter-symbol interference from digital communications [10, § 11.3],
in dimension one, with Λ = Z. This correspondence been remarked in [9,18] for
Theorem 3, which is somewhat analogous too, in the dual form.

4 Dithered Quantisation

4.1 Subtractive and Non-subtractive Dithering

Dithering is a technique that consists in adding noise in the quantisation process
in order to improve the perceptual quality of the quantised signal [8], and has
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been studied also in the context of lattice quantisation [18, Ch. 4]. In subtrac-
tive dithering, a random variable N ∈ R

n called dither is added to the source
signal X ∈ R

n before quantisation, and then subtracted after it, resulting in the
reconstructed signal

X̂ = Q(X + N) − N. (6)

In this case, the quantisation error can be conveniently written as a wrapping:
X̂ − X = Q(X + N) − (X + N) = −π(X + N).

The following result is a straightforward generalisation of [18, Lem. 4.2.1] to
non-uniform dithering and shows that, without loss of generality, we can limit
ourselves to dither defined over the fundamental domain D.

Theorem 5. Subtractive dithered quantisation with dither N over R
n is equiv-

alent to subtractive dithered quantisation by its wrapping Nπ.

Proof. We show that the reconstruction is the same with dither N or its wrap-
ping Nπ. Denoting NQ := Q(N) and noting that Q(X + NQ) = Q(X) + NQ,
we have Q(X + Nπ) − Nπ = Q(X + N − NQ) − Nπ = Q(X + N) − NQ − Nπ =
Q(X + N) − N .

It can be shown that if N is modulo-uniform dither, then the quantisation
error is independent of the source and is uniformly distributed over D [9, Thm. 4].
This explains the interest in modulo-uniform dither, even if other forms of dither
have been considered in the early literature (e.g., sinusoidal, Gaussian) [3].

In another type of dithering, called non-subtractive [8], the dither random
variable N is not subtracted after the quantisation. As compared to (6), in this
case, the reconstructed signal is simply X̂ = Q(X + N).

4.2 Non-collaborative Dithering

The application of subtractive dithering schemes requires collaboration between
encoder and decoder, as they have to agree on the dither random variable that
is added and then subtracted during the quantisation—this can be done by gen-
erating pseudo-random variables with the same seed. We propose to consider a
case in which such collaboration is not possible: the decoder receives a quan-
tised signal and, nonetheless, wishes to improve its perceptual quality by adding
random noise. In this case, the reconstructed signal is3

X̂ = Q(X) + N = XQ + N. (7)

We are interested in finding the best independent dither N to improve the
reconstructed signal. Despite being a common distortion measure for quantised
signals, the mean squared error (MSE) fails to quantify the perceptual quality
of such signals, especially at low rates. Some works have proposed instead to
compare the similarity between the original and quantised distributions as to
3 A uniform ‘dither’ N of this form has been used to find discrete entropy upper

bounds in Massey-type inequalities [15].
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assess perceptual quality, particularly for audio coding [11,12]. Following these,
we measure the distortion incurred by quantisation with the KL-divergence. The
next result shows that the choice that minimises DKL[pX‖pXQ+N ] is precisely
to let N have the same distribution as the wrapped random variable Xπ. The
minimising value I(Xπ,XQ) achieved in this case has been studied in [14].

Theorem 6. Let X be a random variable, XQ its quantisation, and N a random
variable over D, independent of XQ. Then

DKL[pX‖pXQ+N ] ≥ I(Xπ;XQ), (8)

with equality if, and only if, N is distributed according to pπ.

Proof. Denote pX and pN the pdf’s of X and N , respectively; the pdf of XQ +N
is pXQ+N (x) = pQ(Q(x))pN (π(x)). The result readily follows from the non-
negativity of the Kullback-Leibler divergence:

DKL[pX‖pXQ+N ] − I(Xπ;XQ) = DKL[pX‖pXQ+N ] − DKL[pX‖pXQ+Xπ
]

= EX

[

log
pπ(π(X))
pN (π(X))

]

= EXπ

[

log
pπ(π(X))
pN (π(X))

]

= DKL[pπ‖pN ] ≥ 0,

with equality if, and only if, pπ = pN almost everywhere.

This result is illustrated with a simple experiment: we quantise samples
from the set A := {0, 1, . . . , 255} within k levels, using uniform, Gaussian4 and
wrapped dithered one-dimensional quantisers. First, we consider samples gen-
erated approximately according to a Gaussian and a Beta distribution; then
we quantise the 8-bit greyscale ‘Fishing Boat’ image from the SIPI image
database [1]. In practice, quantisation is done with a finite subset of the lattice
and the quantised values are limited to some bounded range. We use a shifted
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Fig. 2. Performance of different dithered quantisers.

4 We note that the Gaussian dither is not confined to the fundamental region. Its
variance was optimised by grid search.



Revisiting Lattice Tiling Decomposition and Dithered Quantisation 325

(a) Original (b) Quantised (c) Uniform

(d) Gaussian (e) Wrapped

Fig. 3. Histograms of ‘Fishing Boat’ image before and after 2-bit quantisation.

Fig. 4. ‘Fishing Boat’ image before and after 2-bit quantisation.

version of the
(
255
k

)
Z lattice (affine lattice). Shifting the lattice is equivalent to

shifting the distribution, and this operation preserves Theorem 6.
We assess the KL-divergence from the original distribution to the quantised

one for different number of levels k. To ensure this computation is possible and
avoid numerical issues, the probability pi of symbol i ∈ A is estimated from its
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absolute frequency ni as pi = ni+0.5∑255
j=0(ni+0.5)

, the Krichevsky-Trofimov estimator,

which is a Bayesian estimation with Dirichlet prior with parameter (0.5, · · · , 0.5).
We observe on Fig. 2 that, at extreme low rates, dithering with the wrapped dis-
tribution produces the smallest KL-divergence, suggesting improved perceptual
quality. Figure 3 and 4 show the histograms and corresponding images before and
after quantisation of the ‘Fishing Boat’ image with a two-bit quantiser. Gaussian
dither uses σ2 = 500, resulting from grid search.

5 Conclusion

In this work, we have first studied the characteristic functions of lattice tiling
decomposition of random variables; then, we used this decomposition to describe
dithered quantisation, showing that, in the non-collaborative setup, wrapped
dither minimises the KL-divergence from the original distribution. Future direc-
tions include further studying the duality of wrapping and quantisation, par-
ticularly in connection to the flatness factor, and performing experiments with
high-dimensional lattices, other types of signals and dithering schemes.

Acknowledgements. The authors thank the anonymous reviewers for their careful
reading and valuable comments, which have improved the original manuscript.
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Abstract. We consider the problem of testing the identity of a reversible
Markov chain against a reference from a single trajectory of observa-
tions. Employing the recently introduced notion of a lumping-congruent
Markov embedding, we show that, at least in a mildly restricted setting,
testing identity to a reversible chain reduces to testing to a symmet-
ric chain over a larger state space and recover state-of-the-art sample
complexity for the problem.

Keywords: Irreducible Markov chains · Information geometry ·
Identity testing · Markov embedding · Congruent embedding ·
Lumpability

1 Introduction

Uniformity testing is the flagship problem of the modern distribution testing [1]
research program. From n independent observations sampled from an unknown
distribution μ on a finite space X , the goal is to distinguish between the two
cases where μ is uniform and μ is ε-far from being uniform with respect to
some notion of distance. The complexity of this problem in total variation is
known to be [12] of the order1 of Θ̃(

√|X |/ε2), which compares favorably with
the linear dependency in |X | required for estimating the distribution to precision
ε [17]. Interestingly, the uniform distribution can be replaced by any arbitrary
reference at same statistical cost. In fact, Goldreich [7] proved that the latter
problem formally reduces to the former. Inspired by his approach, we seek and
obtain a reduction result in the much less understood and more challenging
Markovian setting.

1 As is customary in the property testing literature, we respectively write Θ, O and
Ω for tight, upper and lower bounds, and the tilda notation suppresses lower-order
logarithmic factors in any parameter.

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
F. Nielsen and F. Barbaresco (Eds.): GSI 2023, LNCS 14071, pp. 328–337, 2023.
https://doi.org/10.1007/978-3-031-38271-0_32

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-38271-0_32&domain=pdf
http://orcid.org/0000-0002-5388-7640
http://orcid.org/0000-0002-1121-8633
https://doi.org/10.1007/978-3-031-38271-0_32


Geometric Reduction for Identity Testing of Reversible Markov Chains 329

Informal Markovian Problem Statement — The scientist is given the full descrip-
tion of a reference transition matrix P and a single Markov chain Xn

1 sampled
with respect to some unknown transition operator P and arbitrary initial distri-
bution. For fixed proximity parameter ε > 0, the goal is to design an algorithm
that distinguishes between the two cases P = P and K(P, P ) > ε, with high
probability, where K is a contrast function2 between stochastic matrices.

Related Work — Under the contrast function (1) described in Sect. 2, and the
hypothesis that P and P are both irreducible and symmetric over a finite space
X , a first tester with sample complexity Õ(|X | /ε + h), where h [4, Definition 3]
is the hitting time of the reference chain, and a lower bound in Ω(|X | /ε), were
obtained in [4]. In [3], a graph partitioning algorithm delivers, under the same
symmetry assumption, a testing procedure with sample complexity O(|X | /ε4),
i.e. independent of hitting properties. More recently, [6] relaxed the symmetry
requirement, replacing it with a more natural reversibility assumption. The algo-
rithm therein has a sample complexity of O(1/(π�ε

4)), where π� is the minimum
stationary probability of the reference P , gracefully recovering [3] under sym-
metry. In parallel, [18] started and [2] complemented the research program of
inspecting the problem under the infinity norm for matrices, and derived nearly
minimax-optimal bounds.

Contribution — We show how to mostly recover [6] from [3] under additional
assumptions (see Sect. 3), with a technique based on a geometry preserving
embedding. We obtain a more economical proof than [6], which went through
the process of re-deriving a graph partitioning algorithm for the reversible case.
Furthermore, the impact of our approach, by its generality, stretches beyond the
task at hand and is also applicable to related inference problems (see Remark 2).

2 Preliminaries

We let X ,Y be finite sets, and denote P(X ) the set of all probability distributions
over X . All vectors are written as row vectors. For matrices A,B, ρ(A) is the
spectral radius of A, A ◦ B is the Hadamard product of A and B defined by
(A ◦ B)(x, x′) = A(x)B(x′) and A◦1/2(x, x′) =

√
A(x, x′). For n ∈ N, we use

the compact notation xn
1 = (x1, . . . , xn). W(X ) is the set of all row-stochastic

matrices over the state space X , and π is called a stationary distribution for
P ∈ W(X ) when πP = π.

Irreducibility and Reversibility — Let (X ,D) be a digraph with vertex set X
and edge-set D ⊂ X 2. When (X ,D) is strongly connected, a Markov chain with
connection graph (X ,D) is said to be irreducible. We write W(X ,D) for the set

2 General contrast functions under consideration satisfy identity of indiscernibles and
non-negativity (e.g. proper metrics induced from matrix norms), and need not sat-
isfy symmetry or the triangle inequality (e.g. information divergence rate between
Markov processes).
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of irreducible stochastic matrices over (X ,D). When P ∈ W(X ,D), π is unique
and we denote π�

.= minx∈X π(x) > 0 the minimum stationary probability.
When P satisfies the detailed-balance equation π(x)P (x, x′) = π(x′)P (x′, x) for
any (x, x′) ∈ D, we say that P is reversible.

Lumpability — In contradistinction with the distribution setting, merging sym-
bols in a Markov chain may break the Markov property, resulting in a hidden
Markov model. For P ∈ W(Y, E) and a surjective map κ : Y → X merging ele-
ments of Y together, we say that P is κ-lumpable [10] when the output process
still defines a Markov chain. Introducing Sx = κ−1({x}) for the collection of
symbols that merge into x ∈ X , lumpability was characterized by [10, Theo-
rem 6.3.2] as follows. P is κ-lumpable, when for any x, x′ ∈ X , and y1, y2 ∈ Sx,
it holds that

P (y1,Sx′) = P (y2,Sx′).

The lumped transition matrix κ�P ∈ W(X , κ2(E)), with connected edge set

κ2(E) .=
{
(x, x′) ∈ X 2 : ∃(y, y′) ∈ E , (κ(y), κ(y′)) = (x, x′)

}
,

is then given by

κ�P (x, x′) = P (y,Sx′), for some y ∈ Sx.

Contrast Function — We consider the following notion of discrepancy between
two stochastic matrices P, P ′ ∈ W(X ),

K(P, P ′) .= 1 − ρ
(
P ◦1/2 ◦ P ′◦1/2

)
. (1)

Although K made its first appearance in [4] in the context of Markov chain iden-
tity testing, its inception can be traced back to Kazakos [9]. K is directly related
to the Rényi entropy of order 1/2, and asymptotically connected to the Bhat-
tacharyya/Hellinger distance between trajectories (see e.g. proof of Lemma 2).
It is instructive to observe that K vanishes on chains that share an identical
strongly connected component and does not satisfy the triangle inequality for
reducible matrices, hence is not a proper metric on W(X ) [4, p.10, footnote 13].
Some additional properties of K of possible interest are listed in [6, Section 7].

Reduction Approach for Identity Testing of Distributions — Problem reduction
is ubiquitous in the property testing literature. Our work takes inspiration from
[7], who introduced two so-called “stochastic filters” in order to show how in the
distribution setting, identity testing was reducible to uniformity testing, thereby
recovering the known complexity of O(

√|X |/ε2) obtained more directly by [14].
Notable works also include [5], who reduced a collection of distribution testing
problems to �2-identity testing.



Geometric Reduction for Identity Testing of Reversible Markov Chains 331

3 The Restricted Identity Testing Problem

Let Vtest ⊂ W(X ) be a class of stochastic matrices of interest, and let P ∈ Vtest

be a fixed reference. The identity testing problem consists in determining, with
high probability, from a single stream of observations Xn

1 = X1, . . . , Xn drawn
according to a transition matrix P ∈ Vtest, whether

P ∈ H0
.=

{
P

}
, or P ∈ H1(ε)

.=
{
P ∈ Vtest : K(P, P ) > ε

}
.

We note the presence of an exclusion region, and regard the problem as a
Bayesian testing problem with a prior which is uniform over the two hypotheses
classes H0 and H1(ε) and vanishes on the exclusion region. Casting our problem
in the minimax framework, the worst-case error probability en(φ, ε) of a given
test φ : X n → {0, 1} is defined as

2en(φ, ε) .= PXn
1 ∼π,P (φ(Xn

1 ) = 1) + sup
P∈H1(ε)

PXn
1 ∼π,P (φ(Xn

1 ) = 0) .

We subsequently define the minimax risk Rn(ε) as,

Rn(ε) .= min
φ : X n→{0,1}

en(φ, ε),

where the minimum is taken over all —possibly randomized— testing proce-
dures. For a confidence parameter δ, the sample complexity is

n�(ε, δ)
.= min {n ∈ N : Rn(ε) < δ} .

We briefly recall the assumptions made in [6]. For (P, P ) ∈ (Vtest,H0),

(A.1) P and P are irreducible and reversible.
(A.2) P and P share the same3 stationary distribution π = π.

The following additional assumptions will make our approach readily applicable.

(B.1) P,P and share the same connection graph, P, P ∈ W(X ,D).
(B.2) The common stationary distribution is rational, π ∈ Q

X .

Remark 1. A sufficient condition for π ∈ Q
X is P (x, x′) ∈ Q for any x, x′ ∈ X .

Without loss of generality, we express π =
(
p1, p2, . . . , p|X |

)
/Δ, for some Δ ∈ N,

and p ∈ N
|X | where 0 < p1 ≤ p2 ≤ · · · ≤ p|X | < Δ. We henceforth denote by Vtest

the subset of stochastic matrices that verify assumptions (A.1), (A.2), (B.1) and
(B.2) with respect to the fixed π ∈ P(X ). Our below-stated theorem provides
an upper bound on the sample complexity n�(ε, δ) in Õ(1/(π�ε)).

3 We note that [6] also slightly loosen the requirement of having a matching stationary
distributions to being close in the sense where ‖π/π − 1‖∞ < ε.



332 G. Wolfer and S. Watanabe

Theorem 1. Let ε, δ ∈ (0, 1) and let P ∈ Vtest ⊂ W(X ,D). There exists a ran-
domized testing procedure φ : X n → {0, 1}, with n = Õ(1/(π�ε

4)), such that the
following holds. For any P ∈ Vtest and Xn

1 sampled according to P , φ distin-
guishes between the cases P = P and K(P, P ) > ε with error probability less
than δ.

Proof (sketch). Our strategy can be broken down into two steps. First, we employ
a transformation on Markov chains, termed Markov embedding [20], in order to
symmetrize both the reference chain (algebraically, by computing the new transi-
tion matrix) and the unknown chain (operationally, by simulating an embedded
trajectory). Crucially, our transformation preserves the contrast between two
chains and their embedded version (Lemma 2). Second, we invoke the known
tester [3] for symmetric chains as a black box and report its output. The proof
is deferred to Sect. 6.

Remark 2. Our reduction approach has applicability beyond recovery of the sam-
ple complexity of [6], for instance in the tolerant testing setting, where the two
competing hypotheses are

K(P, P ) < ε/2 and K(P, P ) > ε.

Even in the symmetric setting, this problem remains open. Our technique shows
that future work can focus on solving the problem under a symmetry assumption,
as we provide a natural extension to the reversible class.

4 Symmetrization of Reversible Markov Chains

Information geometry — Our construction and notation follow [11], who estab-
lished a dually-flat structure

(W(X ,D), g,∇(e),∇(m))

on the space of irreducible stochastic matrices, where g is a Riemannian metric,
and ∇(e),∇(m) are dual affine (exponential and mixture) connections. Intro-
ducing a model V =

{
Pθ : θ ∈ Θ ⊂ R

d
} ⊂ W(X ,D), we write Pθ ∈ V for the

transition matrix at coordinates θ = (θ1, . . . , θd), and where d is the manifold
dimension of V. Using the shorthand ∂i· .= ∂ ·/∂θi, the Fisher metric is expressed
[11, (9)] in the chart induced basis (∂i)i∈[d] as

gij(θ) =
∑

(x,x′)∈D
πθ(x)Pθ(x, x′)∂i log Pθ(x, x′)∂j log Pθ(x, x′), for i, j ∈ [d]. (2)

Following this formalism, it is possible to define mixture families (m-families)
and exponential families (e-families) of stochastic matrices [8,11].

Example 1. The class Wrev(X ,D) of reversible Markov chains irreducible over a
connection graph (X ,D) forms both an e-family and an m-family of dimension

dim Wrev(X ,D) =
|D| + |�(D)|

2
− 1,

where �(D) ⊂ D is the set of loops present in the connection graph [19, Theo-
rem 3,5].
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Embeddings — The operation converse to lumping is embedding into a larger
space of symbols. In the distribution setting, Markov morphisms were introduced
by Čencov [16] as the natural operations on distributions. In the Markovian set-
ting, [20] proposed the following notion of an embedding for stochastic matrices.

Definition 1 (Markov embedding for Markov chains [20]). We call
Markov embedding, a map Λ� : W(X ,D) → W(Y, E), P 	→ Λ�P , such that for
any (y, y′) ∈ E,

Λ�P (y, y′) = P (κ(y), κ(y′))Λ(y, y′),

and where κ and Λ satisfy the following requirements

(i) κ : Y → X is a lumping function for which κ2(E) = D.
(ii) Λ is a positive function over the edge set, Λ : E → R+.

(iii) Writing
⋃

x∈X Sx = Y for the partition defined by κ, Λ is such that for any
y ∈ Y and x′ ∈ X ,

(κ(y), x′) ∈ D =⇒ (Λ(y, y′))y′∈Sx′ ∈ P(Sx′).

The above embeddings are characterized as the linear maps over the space of
lumpable matrices that satisfy a set of monotonicity requirements and are con-
gruent with respect to the lumping operation [20, Theorem 3.1]. When for any
y, y′ ∈ Y, it additionally holds that Λ(y, y′) = Λ(y′)δ [(κ(y), κ(y′)) ∈ D], the
embedding Λ� is called memoryless [20, Section 3.4.2] and is e/m-geodesic affine
[20, Th. 3.2, Lemma 3.6], preserving both e-families and m-families of stochastic
matrices.

Given π and Δ as defined in Sect. 3, from [20, Corollary 3.3], there exists a
lumping function κ : [Δ] → X , and a memoryless embedding σπ

� : W(X ,D) →
W([Δ], E) with E =

{
(y, y′) ∈ [Δ]2 : (κ(y), κ(y′)) ∈ D}

, such that σπ
� P is sym-

metric. Furthermore, identifying X ∼= {1, 2, . . . , |X |}, its existence is construc-
tively given by

κ(j) = arg min
1≤i≤|X|

{
i∑

k=1

pk ≥ j

}

, with σπ(j) = p−1
κ(j), for any 1 ≤ j ≤ Δ.

As a consequence, we obtain 1. and 2. below.

1. The expression of σπ
� P following algebraic manipulations in Definition 1.

2. A randomized algorithm to memorylessly simulate trajectories from σπ
� P out

of trajectories from P (see [20, Section 3.1]). Namely, there exists a stochastic
mapping Ψπ : X → Δ such that,

X1, . . . , Xn ∼ P =⇒ Ψπ(Xn
1 ) = Ψπ(X1), . . . , Ψπ(Xn) ∼ σπ

� P.

5 Contrast Preservation

It was established in [20, Lemma 3.1] that similar to their distribution counter-
parts, Markov embeddings in Definition 1 preserve the Fisher information met-
ric g in (2), the affine connections ∇(e),∇(m) and the informational (Kullback-
Leibler) divergence between points. In this section, we show that memoryless
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embeddings, such as the symmetrizer σπ
� introduced in Sect. 4, also preserve the

contrast function K. Our proof will rely on first showing that the memoryless
embeddings of [20, Section 3.4.2] induce natural Markov morphisms [15] from
distributions over X n to Yn.

Lemma 1. Let a lumping function κ : Y → X , and

L� : W(X ,D) → W(Y, E)

be a κ-congruent memoryless Markov embedding. For P ∈ W(X ,D), let Qn ∈
P(X n) (resp. Q̃n ∈ P(Yn)) be the unique distribution over stationary paths of
length n induced from P (resp. L�P ). Then there exists a Markov morphism
M� : P(X n) → P(Yn) such that M�Q

n = Q̃n.

Proof. Let κn : Yn → X n be the lumping function on blocks induced from κ,

∀yn
1 ∈ Yn, κn(yn

1 ) = (κ(yt))1≤t≤n ∈ X n,

and introduce

Yn =
⋃

xn
1 ∈X n

Sxn
1
, with Sxn

1
= {yn

1 ∈ Yn : κn(yn
1 ) = xn

1} ,

the partition associated to κn. For any realizable path xn
1 , Qn(xn

1 ) > 0, we define
a distribution Mxn

1 ∈ P(Yn) concentrated on Sxn
1
, and such that for any yn

1 ∈
Sxn

1
, Mxn

1 (yn
1 ) =

∏n
t=1 L(yt). Non-negativity of Mxn

1 is immediate, and

∑

yn
1 ∈Yn

Mxn
1 (yn

1 ) =
∑

yn
1 ∈Yn : κn(yn

1 )=xn
1

Mxn
1 (yn

1 ) =
n∏

t=1

⎛

⎝
∑

yt∈Sxt

L(yt)

⎞

⎠ = 1,

thus Mxn
1 is well-defined. Furthermore, for yn

1 ∈ Yn, it holds that

˜Qn(yn
1 ) = L�π(y1)

n−1
∏

t=1

L�P (yt, yt+1)
(♠)
= π(κ(y1))L(y1)

n−1
∏

t=1

P (κ(yt), κ(yt+1))L(yt)

= Qn(κ(y1), . . . , κ(yn))

n
∏

t=1

L(yt) = Qn(κn(y
n
1 ))

n
∏

t=1

L(yt)

=
∑

xn
1 ∈Xn

Qn(κn(y
n
1 ))M

xn
1 (yn

1 ) = M�Qn(yn
1 ),

where (♠) stems from [20, Lemma 3.5], whence our claim holds.

Lemma 1 essentially states that the following diagram commutes

W(X ,D) L�W(X ,D)

Qn
W(X ,D) Qn

L�W(X ,D),

L�

M�
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for the Markov morphism M� induced by L�, and where we denoted Qn
W(X ,D) ⊂

P(X n) for the set of all distributions over paths of length n induced from the fam-
ily W(X ,D). As a consequence, we can unambiguously write L�Q

n ∈ Qn
L�W(X ,D)

for the distribution over stationary paths of length n that pertains to L�P .

Lemma 2. Let L� : W(X ,D) → W(Y, E) be a memoryless embedding,

K(L�P,L�P ) = K(P, P ).

Proof. We recall for two distributions μ, ν ∈ P(X ) the definition of R1/2 the
Rényi entropy of order 1/2,

R1/2(μ‖ν) .= −2 log

(
∑

x∈X

√
μ(x)ν(x)

)

,

and note that R1/2 is closely related to the Hellinger distance between μ and
ν. This definition extends to the notion of a divergence rate between stochastic
processes (Xt)t∈N, (X ′

t)t∈N on X as follows

R1/2 ((Xt)t∈N‖(X ′
t)t∈N) = lim

n→∞
1
n

R1/2 (Xn
1 ‖X ′n

1 ) ,

and in the irreducible time-homogeneous Markovian setting where (Xt)t∈N,
(X ′

t)t∈N evolve according to transition matrices P and P ′, the above reduces
[13] to

R1/2 ((Xt)t∈N‖(X ′
t)t∈N) = −2 log ρ(P ◦1/2 ◦ P ′◦1/2) = −2 log(1 − K(P, P ′)).

Reorganizing terms and plugging for the embedded stochastic matrices,

K(L�P,L�P ) = 1 − exp
(

−1
2

lim
n→∞

1
n

R1/2

(
L�Q

n‖L�Q
n
))

,

where L�Q
n

is the distribution over stationary paths of length n induced by the
embedded L�P . For any n ∈ N, from Lemma 1 and information monotonicity of
the Rényi divergence, R1/2

(
L�Q

n‖L�Q
n
)

= R1/2

(
Qn‖Q

n
)

, hence our claim.

6 Proof of Theorem 1

We assume that P and P are in Vtest. We reduce the problem as follows. We
construct σπ

� , the symmetrizer4 defined in Sect. 4. We proceed to embed both
the reference chain (using Definition 1) and the unknown trajectory (using the
operational definition in [20, Section 3.1]). We invoke the tester of [3] as a black
box, and report its answer.
4 If we wish to test for the identity of multiple chains against the same reference, we
only need to perform this step once.
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Fig. 1. Reduction of the testing problem by isometric embedding.

Completeness case. It is immediate that P = P =⇒ σπ
� P = σπ

� P .

Soundness case. From Lemma 2, K(P, P ) > ε =⇒ K(σπ
� P, σπ

� P ) > ε.
As a consequence of [3, Theorem 10], the sample complexity of testing is

upper bounded by O(Δ/ε4). With π� = p1/Δ and treating p1 as a small constant,
we recover the known sample complexity.
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Abstract. We summarize some results of geometric measure theory con-
cerning rectifiable sets and measures. Combined with the entropic chain
rule for disintegrations (Vigneaux, 2021), they account for some proper-
ties of the entropy of rectifiable measures with respect to the Hausdorff
measure first studied by (Koliander et al., 2016). Then we present some
recent work on stratified measures, which are convex combinations of rec-
tifiable measures. These generalize discrete-continuous mixtures and may
have a singular continuous part. Their entropy obeys a chain rule, whose
“conditional term” is an average of the entropies of the rectifiable mea-
sures involved. We state an asymptotic equipartition property (AEP) for
stratified measures that shows concentration on strata of a few “typical
dimensions” and that links the conditional term of the chain rule to the
volume growth of typical sequences in each stratum.

Keywords: Entropy · stratified measures · rectifiable measures · chain
rule · asymptotic equipartition property

1 Introduction

The starting point of our considerations is the asymptotic equipartition property:

Proposition 1 (AEP). Let (EX ,B, μ) be a σ-finite measure space, and ρ a
probability measure on (EX ,B) such that ρ � μ. Suppose that the entropy

Hμ(ρ) := −
∫

E

ln
dρ

dμ
dρ = Eρ

(
− ln

dρ

dμ

)
(1)

is finite. For every δ > 0, define the set of weakly δ-typical realizations

W
(n)
δ (ρ;μ) =

{
(x1, ..., xn) ∈ En

X :

∣∣∣∣∣−
1
n

ln
n∏

i=1

dρ

dμ
(xi) − Hμ(ρ)

∣∣∣∣∣ < δ

}
. (2)

Then, for every ε > 0, there exists n0 ∈ N such that, for all n ≥ n0,

1. P

(
W

(n)
δ (ρ;μ)

)
> 1 − ε and

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
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2. (1 − ε) exp{n(Hμ(ρ) − δ)} ≤ μ⊗n(W (n)
δ (ρ;μ)) ≤ exp{n(Hμ(ρ) + δ)}.

The proof of this proposition only depends on the weak law of large numbers,
which ensures the convergence in probability of − 1

n

∑n
i=1 ln f(xi) to its mean

Hμ(ρ), see [11, Ch. 12] and [3, Ch. 8].
Shannon’s discrete entropy and differential entropy are particular cases of

(2): the former when μ is the counting measure on a discrete set equipped with
the σ-algebra of all subsets; the latter when EX = R

d, B is generated by the
open sets, and μ is the Lebesgue measure. Up to a sign, the Kullback-Leibler
divergence, also called relative entropy, is another particular case, that arises
when μ is a probability measure.

One can imagine other examples, geometric in nature, that involve measures
μ on R

d that are singular continuous. For instance, EX could be a Riemannian
manifold equipped with the Borel measure given by integration of its Rieman-
nian volume form. The measure-theoretic nature of Proposition 1 makes the
smoothness in this example irrelevant. It is more natural to work with geometric
measure theory.

2 Some Elements of Geometric Measure Theory

Geometric measure theory “could be described as differential geometry, gen-
eralized through measure theory to deal with maps and surfaces that are not
necessarily smooth, and applied to the calculus of variations” [9]. The place of
smooth maps is taken by Lipschitz maps, which are differentiable almost every-
where [2, p. 46]. In turn, manifolds are replaced by rectifiable sets, and the
natural notion of volume for such sets is the Hausdorff measure.

2.1 Hausdorff Measure and Dimension

To define the Hausdorff measure, recall first that the diameter of a subset S of
the Euclidean space (Rd, ‖·‖2) is diam(S) = sup{ ‖x − y‖2 : x, y ∈ S }. For any
m ≥ 0 and any A ⊂ R

n, define

Hm(A) = lim
δ→0

inf
{Si}i∈I

∑
i∈I

wm

(
diam(Si)

2

)m

, (3)

where wm = πm/2/Γ (m/2 + 1) is the volume of the unit ball B(0, 1) ⊂ R
m, and

the infimum is taken over all countable coverings {Si}i∈I of A such that each set
Si has diameter at most δ. This is an outer measure and its restriction to the
Borel σ-algebra is a measure i.e. a σ-additive [0,∞]-valued set-function [2, Thm.
1.49]. Moreover, the measure Hd equals the standard Lebesgue measure Ld [2,
Thm. 2.53] and H0 is the counting measure. More generally, when m is an integer
between 0 and d, Hm gives a natural notion of m-dimensional volume. The 1-
and 2-dimensional volumes coincide, respectively, with the classical notions of
length and area, see Examples 1 and 2 below.
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For a given set A ⊂ R
d, the number Hm(A) is either 0 or ∞, except possibly

for a single value of m, which is then called the Hausdorff dimension dimH A of
A. More precisely [2, Def. 2.51],

dimH A := inf{ k ∈ [0, ∞) : Hk(A) = 0 } = sup{ k ∈ [0, ∞) : Hk(A) = ∞ }. (4)

Finally, we remark here that the Hausdorff measure interacts very naturally
with Lipschitz maps.

Lemma 1 ([2, Prop. 2.49]). If f : Rd → R
d′

is a Lipschitz function,1 with
Lipschitz constant Lip(f), then for all m ≥ 0 and every subset E of R

d,
Hm(f(E)) ≤ Lip(f)kHm(E).

2.2 Rectifiable Sets

Definition 1 ([6, 3.2.14]). A subset S of Rd is called m-rectifiable (for m ≤ d)
if it is the image of a bounded subset of Rm under a Lipschitz map and countably
m-rectifiable if it is a countable union of m-rectifiable sets. The subset S is
countably (Hm,m)-rectifiable if there exist countable m-rectifiable set containing
Hm-almost all of S, this is, if there are bounded sets Ak ⊂ R

m and Lipschitz
functions fk : Ak → R

d, enumerated by k ∈ N, such that Hm(S\⋃
k fk(Ak)) = 0.

By convention, R0 is a point, so that a countably 0-rectifiable set is simply a
countable set. An example of countable m-rectifiable set is an m-dimensional C1-
submanifold E of Rd, see [1, App. A]. A set that differs from an m-dimensional
C1-submanifold by a Hm-null set is countably (Hm,m)-rectifiable.

For every countably (Hm,m)-rectifiable set E ⊂ R
d, there exists (see [13,

pp. 16-17] and the references therein) an Hm-null set E0, compact sets (Ki)i∈N

and injective Lipschitz functions (fi : Ki → R
d)i∈N such that the sets fi(Ki) are

pairwise disjoint and
E ⊂ E0 ∪

⋃
i∈N

fi(Ki). (5)

It follows from Lemma 1 and the boundedness of the sets Ki that every
(Hm,m)-rectifiable set has σ-finite Hm-measure. Because of monotonicity of
Hm, any subset of an (Hm,m)-rectifiable set is (Hm,m)-rectifiable. Also, the
countable union of (Hm,m)-rectifiable subsets is (Hm,m)-rectifiable.

The area and coarea formulas may be used to compute integrals on an m-
rectifiable set with respect to the Hm-measure. As a preliminary, we define the
area and coarea factors. Let V , W be finite-dimensional Hilbert spaces and
1 A function f : X → Y between metric spaces (X, dX) and (Y, dY ) is called Lipschitz

if there exists C > 0 such that

∀x, x′ ∈ X, dY (f(x), f(x′)) ≤ CdX(x, x′).

The Lipschitz constant of f , denoted Lip(f), is the smallest C that satisfies this
condition.
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L : V → W be a linear map. Recall that the inner product gives explicit identi-
fications V ∼= V ∗ and W ∼= W ∗ with their duals.

1. If k := dimV ≤ dim V , the k-dimensional Jacobian or area factor [2, Def.
2.68] is JkL =

√
det(L∗ ◦ L), where L∗ : W ∗ → V ∗ is the transpose of L.

2. If dimV ≥ dim W =: d, then the d-dimensional coarea factor [2, Def. 2.92] is
CdL =

√
det(L ◦ L∗).

Proposition 2 (Area formula, cf. [2, Thm. 2.71] and [6, Thm. 3.2.3]).
Let k, d be integers such that k ≤ d and f : R

k → R
d a Lipschitz function.

For any Lebesgue measurable subset E of Rk and Lk-integrable function u, the
function y 
→ ∑

x∈E∩f−1(y) u(x) on R
d is Hk-measurable, and

∫
E

u(x)Jkf(x) dLk(x) =
∫
Rd

∑
x∈E∩f−1(y)

u(x) dHk(y). (6)

This implies in particular that, if f is injective on E, then f(E) is Hk-
measurable and Hk(f(E)) =

∫
E

Jkf(x) dLk(x).

Example 1 (Curves). Let ϕ : [0, 1] → R
d, t 
→ (ϕ1(t), ..., ϕd(t)) be a C1-

curve; recall that a C1-map defined on a compact set is Lipschitz. Then
dϕ(t) = (ϕ′

1(t), ..., ϕ
′
d(t)), and J1ϕ =

√
(dϕ)∗(dϕ) = ‖dϕ‖2. So we obtain the

standard formula for the length of a curve,

H1(ϕ([0, 1])) =
∫ 1

0

‖dϕ(t)‖2 dt. (7)

Example 2 (Surfaces). Let ϕ = (ϕ1, ϕ2, ϕ3) : V ⊂ R
2 → R

3 be a Lipschitz,
differentiable, and injective map defining a surface. In this case, dϕ(u, v) =(
ϕx(u, v) ϕy(u, v)

)
where ϕx(u, v) is the column vector

(∂xϕ1(u, v), ∂xϕ2(u, v), ∂xϕ3(u, v))

and similarly for ϕy(u, v). Then, if θ denotes the angle between ϕx(u, v) and
ϕy(u, v),

J2ϕ =

√
det

( ‖ϕx‖2 ϕx • ϕy

ϕx • ϕy ‖ϕy‖2
)

= ‖ϕx‖ ‖ϕy‖ √
1 − cos θ = ‖ϕx × ϕy‖ . (8)

Therefore,

H2(ϕ(V )) =
∫

V

‖ϕx × ϕy(u, v)‖ du dv, (9)

which is again the classical formula for the area of a parametric surface.

In many situations, it is useful to compute an integral over a countably
(Hm,m)-rectifiable set E ⊂ R

k as an iterated integral, first over the level sets
E∩{x : f(x) = t } of a Lipschitz function f : Rk → R

d with d ≤ k, and then over
t ∈ R

d. In particular, if E = R
k and f is a projection onto the space generated by

some vectors of the canonical basis of Rk, this procedure corresponds to Fubini’s
theorem. Its generalization to the rectifiable case is the coarea formula.
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Proposition 3 (Coarea formula, [2, Thm. 2.93]). Let f : R
k → R

d be
a Lipschitz function, E a countably (Hm,m)-rectifiable subset of R

k (with
m ≥ d) and g : R

k → [0,∞] a Borel function. Then, the set E ∩ f−1(t) is
countably (Hm−d,m − d)-rectifiable and Hm−d-measurable, the function t 
→∫

E∩f−1(t)
g(y) dHm−d is Ld-measurable on R

d, and

∫
E

g(x)Cdd
Efx dHm(x) =

∫
Rd

(∫
f−1(t)

g(y) dHm−d(y)

)
dt. (10)

Here dEfx is the tangential differential [2, Def. 2.89], the restriction of dfx to
the approximate tangent space to E at x. The precise computation of this
function is not essential here, but rather the fact that CkdEfx > 0 Hm-
almost surely, hence Hm|E has a (f,Ld)-disintegration given by the measures
{(CkdEf)−1Hm−d|E∩f−1(t)}t∈Rk , which are well-defined Ld-almost surely.2

Remark 1 (On disintegrations). Disintegrations are an even broader generaliza-
tion of Fubini’s theorem.

Let T : (E,B) → (ET ,BT ) be a measurable map and let ν and ξ be σ-finite
measures on (E,B) and (ET ,BT ) respectively. The measure ν has a (T, ξ)-
disintegration {νt}t∈ET

if

1. νt is a σ-finite measure on B such that νt(T �= t) = 0 for ξ-almost every t;
2. for each measurable nonnegative function f : E → R, the map t 
→ ∫

E
f dνt

is measurable, and
∫

E
f dν =

∫
ET

(∫
E

f(x) dνt(x)
)

dξ(t).

In case such a disintegration exists, any probability measure ρ = r · ν has a
(T, T∗ρ)-disintegration {ρt}t∈Et

such that each ρt is a probability measure with
density r/

∫
E

r dνt w.r.t. νt, and the following chain rule holds [12, Prop. 3]:

Hν(ρ) = Hξ(T∗ρ) +
∫

ET

Hνt
(ρt) dT∗ρ(t). (11)

3 Rectifiable Measures and Their Entropy

Let ρ be a locally finite measure and s a nonnegative real number. Marstrand
proved that if the limiting density Θs(ρ, x) := limr↓0 ρ(B(x, r))/(wsr

s) exists
and is strictly positive and finite for ρ-almost every x, then s is an integer not
greater than n. Later Preiss proved that such a measure is also s-rectifiable in
the sense of the following definition. For details, see e.g. [5].

Definition 2 ([8, Def. 16.6]). A Radon outer measure ν on R
d is called m-

rectifiable if ν � Hm and there exists a countably (Hm,m)-rectifiable Borel set
E such that ν(Rd \ E) = 0.

2 Given a measure μ on a σ-algebra B and B ∈ B, μ|B denotes the restricted measure
A �→ μ|B(A) := μ(A ∩ B).
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The study of these measures from the viewpoint of information theory, par-
ticularly the properties of the entropy HHm(ρ) of an m-rectifiable probability
measure ρ, was carried out relatively recently by Koliander, Pichler, Riegler,
and Hlawatsch in [7]. We provide here an idiosyncratic summary of some of
their results.

First, remark that in virtue of (5), an m-rectifiable measure ν is absolutely
continuous with respect to the restricted measure Hm|E∗ , where E∗ is count-
ably m-rectifiable and has the form

⋃
i∈N

fi(Ki) with fi injective and Ki Borel
and bounded. (A refinement of this construction gives a similar set such that,
additionally, the density of ρ is strictly positive [7, App. A].) Although the
product of an (Hm1 ,m1)-rectifiable set and an (Hm2 ,m2) rectifiable set is not
(Hm1+m2 ,m1 + m2)-rectifiable—see [6, 3.2.24]—the carriers behave better.

Lemma 2 (See [7, Lem. 27]and [13, Lem. 6]). If Si is a carrier of an mi-
rectifiable measure νi (for i = 1, 2), then S1 ×S2 is a carrier of ν1 ⊗ν2, of Haus-
dorff dimension m1 + m2. Additionally, the Hausdorff measure Hm1+m2 |S1×S2

equals Hm1 |S1 ⊗ Hm2 |S2 .

Let ρ be an m-rectifiable measure, with carrier E (we drop the ∗ hereon).
It holds that ρ � Hm|E and Hm|E is σ-finite. If moreover HHm|E (ρ) < ∞,
Proposition 1 gives estimates for (Hm|E)⊗n(W(n)

δ (ρ;Hm|E)). Lemma 2 tells us
that En is mn-rectifiable and that (Hm|E)⊗n = Hmn|En , which is desirable
because the Hausdorff dimension of En is mn and Hmn is the only nontrivial
measure on it as well as on W (n), which as a subset of En is mn rectifiable too.

To apply the AEP we need to compute HHm|E (ρ). In some cases, one can
use the area formula (Proposition 2) to “change variables” and express HHm|E (·)
in terms of the usual differential entropy. For instance, suppose A is a bounded
Borel subset of Rk of nontrival Lk-measure and f is an injective Lipschitz func-
tion on A. The set f(A) is k-rectifiable. Moreover, if ρ is a probability measure
such that ρ � Lk|A with density r, then the area formula applied to u = r/Jkf
and E = f−1(B), for some Borel subset B of Rd, shows that f∗ρ � Hk|f(A) with
density (r/Jkf) ◦ f−1, which is well-defined (Hk|f(A))-almost surely. A simple
computation yields

HHk|f(A)
(f∗ρ) = HLk(ρ) + Eρ (lnJkf) . (12)

There is a more general formula of this kind when A is a rectifiable subset of Rd.
Finally, we deduce the chain rule for the entropy of rectifiable measures as

a consequence of our general theorem for disintegrations (Remark 1). Let E be
a countably (Hm,m)-rectifiable subset of R

k, f : R
k → R

d a Borel function
(with d ≤ m), and ρ a probability measure such that ρ � Hm|E . Because Hm|E
has an (f,Ld)-disintegration {F−1Hm−d|E∩f−1(t)}t∈Rk , with F = Cdd

Ef , then
f∗ρ � Ld, and

HHm|E (ρ) = HLd(f∗ρ) +
∫
Rk

HF −1Hm−d|E∩f−1(t))
(ρt) df∗ρ. (13)
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The probabilities ρt are described in Remark 1. If one insists in only using the
Hausdorff measures as reference measures, one must rewrite the integrand in
(13) using the chain rule for the Radon-Nikodym derivative:

HF −1Hm−d|E∩f−1(t)
(ρt) = Eρt

(
− ln

dρt

dHm−d|E∩f−1(t)

dHm−d|E∩f−1(t)

dF−1Hm−d|E∩f−1(t)

)

= Eρt

(
− ln

dρt

dHm−d|E∩f−1(t)

)
− Eρt

(lnF ) .

One recovers in this way the formula (50) in [7].

4 Stratified Measures

Definition 3 (k-stratified measure). A measure ν on (Rd,B(Rd)) is k-
stratified, for k ∈ N

∗, if there are integers (mi)k
i=1 such that 0 ≤ m1 < m2 <

... < mk ≤ d and ν can be expressed as a sum
∑k

i=1 νi, where each νi is a
nonzero mi-rectifiable measure.

Thus 1-stratified measures are rectifiable measures. If ν is k-stratified for
some k we simply say that ν is a stratified measure.

A fundamental nontrival example to bear in mind is a discrete-continuous
mixture, which corresponds to k = 2, E1 countable, and E2 = R

d. More gener-
ally, a stratified measure has a Lebesgue decomposition with a singular contin-
uous part provided some mi is strictly between 0 and d.

Let ρ be a probability measure that is stratified in the sense above. We can
always put it in the standard form ρ =

∑k
i=1 qiρi, where each ρi is a rectifiable

probability measure with carrier Ei of dimension mi (so that ρi = ρi|Ei
), the

carriers (Ei)k
i=1 are disjoint, 0 ≤ m1 < · · · < mk ≤ d, and (q1, ..., qk) is a

probability vector with strictly positive entries. The carriers can be taken to be
disjoint because if E has Hausdorff dimension m, then Hk(E) = 0 for k > m,
hence one can prove [13, Sec. IV-B] that Ei \ (

⋃i−1
j=1 Ej) is a carrier for νi, for

i = 2, ..., k.
We can regard ρ as the law of a random variable X valued in EX :=

⋃k
i=1 Ei

and the vector (q1, ..., qk) as the law π∗ρ of the discrete random variable Y
induced by the projection π from EX to EY := {1, ..., k} that maps x ∈ Ei

to i. We denote by D the random variable dimH EY , with expectation E(D) =∑k
i=1 miqi.
The measure ρ is absolutely continuous with respect to μ =

∑k
i=1 μi, where

μi = Hmi |Ei
, so it makes sense to consider the entropy Hμ(ρ); it has a concrete

probabilistic meaning in the sense of Proposition 1. Moreover, one can prove
that dρ

dμ =
∑m

i=1 qi
dρi

dμi
1Ei

[13, Lem. 3] and therefore

Hμ(ρ) = H(q1, ..., qn) +
k∑

i=1

qiHμi
(ρi) (14)
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holds [13, Lem. 4]. This formula also follows form the chain rule for general
disintegrations (Remark 13), because {ρi}i∈EY

is a (π, π∗ρ)-disintegration of ρ.
The powers of ρ are also stratified. In fact, remark that

ρ⊗n =
∑

y=(y1,...,yn)∈En
Y

q
N(1;y)
1 · · · qN(k;y)

k ρy1 ⊗ · · · ⊗ ρyn
(15)

where N(a;y) counts the appearances of the symbol a ∈ EY in the word y.
Each measure ρy := ρy1 ⊗ · · · ⊗ ρyn

is absolutely continuous with respect to
μy := μy1 ⊗· · ·⊗μyn

. It follows from Lemma 2 that for any y ∈ En
Y , the stratum

Σy := Ey1 × · · · × Eyn
is also a carrier, of dimension m(y) :=

∑n
j=1 dimH Eyj

,
and the product measure μy equals Hm(y)|Σy . Therefore each measure ρy is
rectifiable. We can group together the ρy of the same dimension to put ρ⊗n as
in Definition 3.

By Proposition 1, one might approximate ρ⊗n with an arbitrary level of
accuracy by its restriction to the weakly typical realizations of ρ, provided n is
big enough. In order to get additional control on the dimensions appearing in this
approximation, we restrict it further, retaining only the strata that correspond
to strongly typical realizations of the random variable Y .

Let us denote by Q the probability mass function (p.m.f) of π∗ρ. Recall that
y ∈ En

Y induces a probability law τy on EY , known as empirical distribution,
given by τy({a}) = N(a;y)/n. Csiszár and Körner [4, Ch. 2] define y ∈ En

Y to
be strongly (Q, η)-typical if τy, with p.m.f. P , is such that τy � π∗ρ and, for
all a ∈ EY , |P (a) − Q(a)| < η. We denote by A

(n)
δ′

n
the set of these sequences

when ηn = n−1/2+ξ. In virtue of the union bound and Hoeffding’s inequality,
(π∗ρ)⊗n(A(n)

δ′
n

) ≥ 1 − εn, where εn = 2|EY |e−2nη2
n ; the choice of ηn ensures that

εn → 0 as n → ∞. Moreover, the continuity of the discrete entropy in the total-
variation distance implies that A

(n)
δ′

n
is a subset of W

(n)
δ′

n
with δ′

n = −|EY |ηn ln ηn,
which explains our notation. See [13, Sec. III-D]

We introduce the set T
(n)
δ,δ′

n
= (π×n)−1(A(n)

δ′
n

) ∩ W
(n)
δ (ρ) of doubly typical

sequences in En
X , and call T

(n)
δ,δ′

n
(y) = T

(n)
δ,δ′

n
∩ (π×n)−1(y) a doubly typical stratum

for any y ∈ A
(n)
δ′

n
.

The main result of [13] is a refined version of the AEP for stratified measures
that gives an interpretation for the conditional term in the chain rule (14).

Theorem 1 (Setting introduced above). For any ε > 0 there exists an n0 ∈ N

such that for any n ≥ n0 the restriction of ρ to T
(n)
δ,δ′

n
, ρ(n) =

∑
y∈A

(n)
δ′

ρ⊗n|
T

(n)
δ,δ′ (y)

,

satisfies dTV (ρ⊗n, ρ(n)) < ε. Moreover, the measure ρ(n) equals a sum of m-
rectifiable measures for m ∈ [nE(D) − n1/2+ξ, nE(D) + n1/2+ξ]. The conditional
entropy H(X|Y ) :=

∑k
i=1 qiHμi

(ρi) quantifies the volume growth of most doubly
typical fibers in the following sense:

1. For any y ∈ A
(n)
δ′ , one has n−1 ln Hm(y)(T (n)

δ,δ′ (y)) ≤ H(X|Y ) + (δ + δ′
n).
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2. For any ε > 0, the set B
(n)
ε of y ∈⊂ A

(n)
δ′

n
such that

1
n

ln Hm(y)(T (n)
δ,δ′(y)) > H(X|Y ) − ε + (δ + δ′

n),

satisfies

lim sup
||(δ,δ′

n)||→0

lim sup
n→∞

1
n

ln |B(n)
ε | = H(Y ) = lim sup

||(δ,δ′
n)||→0

lim sup
n→∞

1
n

ln |A(n)
δ′

n
|.

This gives a geometric interpretation to the possibly noninteger dimension
E(D) =

∑k
i=1 qimi, which under suitable hypotheses is the information dimen-

sion of ρ [13, Sec. V], thus answering an old question posed by Renyi in [10, p.
209].
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Abstract. It is well known, that Fréchet means on non-Euclidean spaces
may exhibit nonstandard asymptotic rates depending on curvature. Even
for distributions featuring standard asymptotic rates, there are non-
Euclidean effects, altering finite sampling rates up to considerable sample
sizes. These effects can be measured by the variance modulation function
proposed by Pennec (2019). Among others, in view of statistical infer-
ence, it is important to bound this function on intervals of sampling sizes.
In a first step into this direction, for the special case of a K-spider we give
such an interval based only on folded moments and total probabilities of
spider legs and illustrate the method by simulations.

1 Introduction to Stickiness and Finite Sample Stickiness

Data analysis has become an integral part of science due to the growing amount
of data in almost every research field. This includes a plethora of data objects
that do not take values in Euclidean spaces, but rather in a nonmanifold strat-
ified space. For statistical analysis in such spaces, it is therefore necessary to
develop probabilistic concepts. Fréchet (1948) was one of the first to generalize
the concept of an expected value to a random variable X on an arbitrary metric
space (Q,d) as an minimizer of the expected squared distance:

μ = argmin
p∈Q

E[d(X, p)2] , (1)

nowadays called a Fréchet mean in his honor. Accordingly for a sample
X1, . . . , Xn

i.i.d.∼ X, its Fréchet mean is given by

μn = argmin
p∈Q

n∑

j=1

d2(Xj , p) . (2)

While on general space, these means can be empty or set valued, on Hadamard
spaces, i.e. complete spaces of global nonpositive curvature (NPC), due to com-
pleteness, these means exists under very general conditions, and due to simple
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connectedness and nonpositive curvatures, they are unique, e.g. Sturm (2003),
just as their Euclidean kin. They also share a law of strong numbers, i.e. that

μn
a.s.→ μ .

In contrast, however, their asymptotic distribution is often not normal, even
worse, for some random variables their mean may be on a singular point stratum,
and there may be a random sample size N ∈ N such that

μn = μ for all n ≥ N .

This phenomenon has been called stickiness by Hotz et al. (2013). It puts an
end to statistical inference based on asymptotic fluctuation. While nonsticky
means of random variables seem to feature the same asymptotic rate, as the
Euclidean expected value, namely 1/

√
n, it has been noted by Huckemann and

Eltzner (2020) that for rather large sample sizes, the rates appear to be larger.
This contribution is the first to systematically investigate this effect of finite
sample stickiness on stratified spaces and we do this here for the model space of
the K-spider introduced below. This effect is in some sense complementary to
the effect of finite sample smeariness, where finite sample rates are smaller than
1/

√
n. recently discovered by Hundrieser et al. (2020).

Definition 1. With the above notation, assuming an existing Fréchet function
F (x) = E[d(X,x)2] < ∞ for all x ∈ Q, with existing Fréchet mean μ,

mn =
nE

[
d2(μn, μ)

]

E [d2(X,μ)]
, (3)

is the variance modulation for sample size n (see Pennec (2019)), or simply
modulation.

If (Q,d) is Euclidean, then mn = 1 for all n ∈ N, smeariness governs the cases
mn → ∞, see Hotz and Huckemann (2015); Eltzner and Huckemann (2019);
Eltzner (2022), finite sample smeariness the cases 1 < mn, cf. Tran et al. (2021);
Eltzner et al. (2021, 2023), stickiness the case that μn = μ a.s. for n > N with
a finite random sample size N , see Hotz et al. (2013); Huckemann et al. (2015);
Barden et al. (2013, 2018), and finite sample stickiness the case that

0 < mn < 1 for nonsticky μ .

Definition 2. For a nonsticky mean, if there are integers l ∈ N≥2, and N ∈ N
and 0 < ρ < 1 such that

0 < mn < 1 − ρ

for all n ∈ {N,N + 1, ..., N l} then X is called finite sample sticky of level
ρ ∈ (0, 1), with scale l and basis N .
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We note that Pennec (2019) has shown that finite sample stickiness affects
all affine connection manifolds with constant negative sectional curvature. We
conjecture that this is also the case for general Hadamard spaces.

A very prominent example of a nonmanifold Hadamard space is given by
the BHV tree spaces introduced by Billera et al. (2001) modeling phylogenetic
descendance trees. For a fixed number of species or taxa the BHV-space models
all different tree topologies, where within each topology, lengths of internal edges
reflect evolutionary mutation from unknown ancestors. For three taxa, there are
three topologies featuring nonzero internal edges and a fourth one, the star
tree featuring no internal edge. The corresponding BHV space thus carries the
structure of a 3-spider as depicted in Fig. 1. For illustration of argument, in this
contribution we consider K-spiders.

Fig. 1. Four different phylogenetic descendance trees for three taxa featuring one or
none internal edge, modeled on the 3-spider S3.

2 A Model Space: The K-Spider

The following has been taken from Hotz et al. (2013).

Definition 3. For 3 ≤ K ∈ N the K-spider SK is the space

SK = [0,∞) × {1, 2, ...,K}/ ∼
where for i, k ∈ {1, 2, ...,K} and x ≥ 0, (x, i) ∼ (x, k) if k = i or x = 0.
The equivalence class of (0, 1) is identified with the origin 0, so that SK =
{0} ∪ ⋃K

k=1 Lk with the positive half-line Lk := (0,∞) × {k} called the k-th leg.
Further, for any k ∈ {1, 2, ...,K} the map

Fk : SK → R,

(x, i) 
→
{

x if i = k,

−x else
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is called the k-th folding map of SK (Fig. 2).
The first two folded moments on the k-th leg of a random variable X are

mk = E[Fk(X)], σ2
k = E[(Fk(X) − mk)2]

in population version and the first folded moment in sample version for random
variables X1, . . . , Xn is

ηn,k =
1
n

n∑

j=1

Fk(Xj) .

We say the X is nondegenerate if P{X ∈ Lk} > 0 for at least three different
k ∈ {1, . . . , K}.

Fig. 2. The first folding map F1 on the three-spider S3. The leg labelled 1 is mapped
to the positive real line. The second and third leg are folded and then mapped to the
negative half line.

Lemma 4. For a sample of size n of a nondegenerate random variable, we have
for every 1 ≤ k ≤ K that

ηn,k > 0 ⇔ μn ∈ Lk ⇔ Fk(μn) > 0 (4)

whereas
ηn,k = 0 ⇒ μn = 0 ∈ SK ⇒ ηn,k ≤ 0 .

In particular:

ηn,k ≥ 0 ⇔ Fk(μn) = ηn,k (5)

and

ηn,k < 0 ⇔ ηn,k < Fk(μn) . (6)
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Proof. All but the last assertion are from Hotz et al. (2013, Lemma 3.3). The
last is also in the proof of Huckemann and Eltzner (2024, Lemma 4.1.4), we
prove it here for convenience.

Letting hn,i = 1
n

∑
Xj∈Li

Fi(Xj) for i ∈ {1, . . . , K} we have

ηn,k = hn,k −
∑

i�=k
1≤i≤K

hn,i . (7)

If ηn,k < 0 then there must be k 
= k′ ∈ {1, . . . , K} with μn ∈ Lk′ and thus

0 < − Fk(μn) = Fk′(μn) = ηn,k′ = hn,k′ − hn,k −
∑

i�=k,k′
1≤i≤K

hn,i

= −ηn,k − 2
∑

i�=k,k′
1≤i≤K

hn,i < − ηn,k

as asserted, due to nondegeneracy. ��
The case, mk < Fk(μ) for all k ∈ {1, . . . , K} governs stickiness, cf. Hotz et al.

(2013), and the case of ηn,k < Fk(μn) ≤ 0 < Fk(μ) = mk for some k ∈ {1, . . . , K}
governs finite sample stickiness, as detailed below. For this reason, we consider
the following.

Corollary 5. In case of mk > 0, we have |Fk(μn) − mk|2 ≤ |ηn,k − mk|2 and
nE[d2(μn, μ)] = nE[|Fk(μn) − mk|2] ≤ σ2

k .

Proof. If ηn,k ≥ 0 we have by (5) that Fk(μn) = ηn,k so that |Fk(μn) − mk|]
= |Fk(μn) − mk|. If ηn,k < 0 we have by (6) that ηn,k < Fk(μn) and hence
|ηn,k −mk| = mk −ηn,k > mk −Fk(μn) = |mk −Fk(μn)|, where the last equality
is due to (4).

3 Estimating Uniform Finite Sample Stickiness

Denote the standard-normal-cdf by Φ(x) = 1√
2π

∫ x

−∞ exp(−t2/2)dt.

Theorem 6 (Berry-Esseen, Esseen (1945, p. 42 ), Shevtsova (2011)).
Let Z1, Z2, ..., Zn be iid random variables on R with mean zero and finite third
moment E

[|Z1|3
]

< ∞. Denote by σ2 the variance and by F̂n(z) the cumulative
distribution function of the random variable

Z1 + Z2 + ... + Zn√
nσ

.

Then there is a finite positive constant CS ≤ 0.4748 such that

|F̂n(z) − Φ(z)| ≤ E
[|Z1|3

]
√

nσ3
CS . (8)
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For all of the following let X1, . . . , Xn
i.i.d.∼ X be nondegenerate random

variables on SK with Fréchet mean μ ∈ Lk for some k ∈ {1, . . . , K} and
E

[
d3(X,0)

]
< ∞. Let

pn =
K∑

i=1

Φ

(√
nmi

σi

)
+

K∑

i=1

E
[|Fi(X) − mi||3

]
√

nσ3
i

CS ,

pn,k = Φ

(√
nmk

σk

)
− E

[|Fk(X) − mk||3]√
nσ3

k

CS .

For i ∈ {1, . . . , K} set

Ai = {ηn,i = Fi(μn)} , A = A1 ∪ . . . ∪ AK .

Due nondegeneracy, (7) implies that the Ai (i = 1, . . . , K) are disjoint, see also
(Hotz et al., 2013, Theorem 2.9).

Lemma 7. For all n ∈ N, P (Ak) ≥ pn,k and P (A) ≤ pn.

Proof. Fix i ∈ {1, ...,K}. By Lemma 4,

P(Ai) = P {ηn,i ≥ 0} = P

{√
n(−ηn,i + mi)

σi
≤

√
nmi

σi

}
.

Setting Zj = Fi(Xj) − mi (j = 1, . . . , n) and z =
√

nmi

σi
we can apply the

Berry-Esseen theorem, Theorem 6, yielding for i = k

P (Ak) ≥ Φ

(√
nmk

σk

)
− E

[|Fk(X) − mk||3]√
nσ3

k

CS = pn,k

and

P(A) ≤
K∑

i=1

Φ

(√
nmi

σi

)
+

K∑

i=1

E
[|Fi(X) − mi|3

]
√

nσ3
i

CS = pn .

Theorem 8. A nondegenerate random variable on X on SK with mean μ ∈ Lk

and second folded moment σ2
k, k ∈ {1, . . . , K}, is finite sample sticky of level

ρ = min
n∈{N,N+1,...,N l}

1 − pn − nm2
k

σ2
k

(1 − pn,k)

with scale l and basis N , if there is l ∈ N≥2 such that pn < 1 and pn,k ≥ 0, and
if

pn +
nm2

k

σ2
k

(1 − pn,k) < 1

for all n ∈ {N,N + 1, ..., N l}.
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Proof. By the law of total expectation, Corollary 5 and Lemma 7, exploiting
that Ac ⊆ Ac

k, we obtain

mn = E[mn] =
n

σ2
k

E
[
E[d2(μn, μ) | A]P(A) + E[d2(μn, μ) | Ac]P(Ac)

]

=
n

σ2
k

E[d2(μn, μ)]P(A) +
nm2

k

σ2
k

P(Ac)

≤ pn +
nm2

k

σ2
k

(1 − pn,k).

4 Example and Simulations

Example 9. For t > 0 let Xt be a random variable on SK with probabilities

P {Xt = (K − 1 + Kt,K)} =
1
K

= P {Xt = (1, i)} , k = i, ...,K − 1 ,

and first moments

mi =
4 − K(2 + t)

K
, mK = t.

Hence Xt is nonsticky with μ ∈ LK for t > 0 and

E[d3(Xt, 0)] =
K − 1

K
+

(K − 1 + Kt)3

K
< ∞.

We can therefore apply Theorem 8. Figure 3 illustrates intervals of sample sizes
displaying finite sample stickiness for the 3-spider and t ∈ {10−2, 10−3, 10−4}.
The explicit bound for the modulation derived by Theorem 8 is given as an orange
dashed line.

Fig. 3. Bounding the variance modulation function (blue) from above (orange) on
various ranges of sampling sizes (vertical dashed lines). (Color figure online)
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Abstract. It has been observed that the sample mean of certain prob-
ability distributions in Billera-Holmes-Vogtmann (BHV) phylogenetic
spaces is confined to a lower-dimensional subspace for large enough sam-
ple size. This non-standard behavior has been called stickiness and poses
difficulties in statistical applications when comparing samples of sticky
distributions. We extend previous results on stickiness to show the equiv-
alence of this sampling behavior to topological conditions in the special
case of BHV spaces. Furthermore, we propose to alleviate statistical com-
parision of sticky distributions by including the directional derivatives of
the Fréchet function: the degree of stickiness.

Keywords: Fréchet mean · Hadamard spaces · Wasserstein distance ·
statisical discrimination

1 Introduction

The Billera Holmes Vogtmann (BHV) spaces, first introduced in [4], are a class
of metric spaces whose elements are rooted trees with labeled leaves. Classically,
these describe potential evolutionary relations between species. However, there
are many applications beyond the field of biology. For example in linguistics,
the relationships within a language family might be represented by phylogenetic
trees, e.g. [12].

Allowing for statistical analysis of samples of entire phylogenies, the BHV
tree spaces have gained considerable attraction in recent years. They are par-
ticularly attractive from a mathematical point of view as they were shown to
be Hadamard spaces [4, Lemma 4.1], i.e. complete metric spaces of global non-
positive curvature. This results in many convexity properties of the metric guar-
anteeing, e.g. unique (up to reparametrization) geodesics between any two points
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and the existence and uniqueness of Fréchet means (see (1) below) for distribu-
tions with finite first moment [13]. The Fréchet mean is a natural generalization
of the expectation to any metric space (M,d) as the minimizer of the expected
squared distance of a probability distribution P ∈ P1(M). Here P(M) denotes
the family of all Borel probability distributions on M and

P1 (M) =

{
P ∈ P(M)

∣∣∣ ∀x ∈ M :
∫

M

d(x, y) dP(x) < ∞
}

.

For a distribution P ∈ P1 (M), the Fréchet mean b(P) is then the set of mini-
mizers of the Fréchet function

FP(x) =
1
2

∫
M

(
d2(x, y) − d2(z, y)

)
dP(y) x ∈ M, (1)

for arbitrary z ∈ M . In Hadamard spaces, while the Fréchet function is strictly
convex, in certain spaces, sampling from some distributions leads to degenerate
behavior of the sample Fréchet mean, where, after a finite random sample size,
it is restricted to a lower dimensional subsets of the space. This phenomenon
has been called stickiness and was studied for various spaces, including BHV
spaces, see [2,3,8,9]. This absence of asymptotic residual variance or its reduction
incapacitates or aggravates standard statistical methodology.

In [9], a topological notion of stickiness was proposed: given a certain topology
on a set of probability spaces, a distribution sticks to S ⊂ M if all distributions
in a sufficiently small neighborhood have their Fréchet means in S. There, it was
also shown for the so-called kale that sample stickiness is equivalent to topological
stickiness, induced by equipping P1 (M) with the Wasserstein distance

W1(P,Q) = argmin
π∈Π(P,Q)

∫
M×M

d(x, y)dπ(x, y),

where Π(P,Q) denotes the set of all couplings of P,Q ∈ P1 (M).
In this paper, we provide this equivalence of both notions of stickiness for

strata of BHV spaces with positive codimension by using directional derivatives
of the Fréchet function. Furthermore, we propose using these directional deriva-
tives as a tool to discriminate between sticky distributions whose means are
indistinguishable.

2 The Billera-Holmes-Vogtmann Phylogenetic Tree Space

For N ∈ N and N ≥ 3, the BHV tree space TN represents rooted trees with N
labelled leaves via positive lengths of interior edges. Here, an interior edge is a
split of the set of leaves and the root with at least two elements in both parts.
The set of splits of a tree determines its topology. Whenever new internal nodes
appear or existing ones coalesce, the topology changes.
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Definition 1. Trees with common topology form a stratum S ⊂ TN . We say
the stratum is of codimension l ≥ 0 if the topology features N − 2 − l splits.

The highest possible stratum dimension is N − 2, which happen in the topology
of a binary, i.e. of a fully resolved tree.

Taking the Euclidean geometry within closed strata and gluing them together
at their boundaries, [4] arrive at the separable Hadamard space (TN , d)). Thus,
geodesics between two trees in a BHV tree space correspond to changing the
length of splits present in both trees and the addition and removal of the other
splits. Geodesics between two trees can be computed in polynomial time [11].

For x ∈ TN let Bε(x) be the open ball of radius ε > 0 in TN . Then, in direct
consequence of the construction, we have the following.

Lemma 1. Let S ⊂ TN be any stratum l ≥ 1. Then, for any x ∈ S, there is ε > 0
such that Bε(x) ∩ S is closed in S. Furthermore, the topology of any y ∈ Bε(x)
features all splits present in x.

Caldivirga maquilingensis
Pyrobaculum aerophilum

Thermofilum pendens
Hyperthermus butylicus

Staphylothermus marinus
Aeropyrum pernix
Ignicoccus hospitalis

Sulfolobus solfataricus
Nitrosoarchaeum limnia
Nitrosopumilus maritimus
Cenarchaeum symbiosum

Caldiarchaeum subterraneum
Korarchaeum cryptofilum

Pyrococcus furiosus
Phytophthora ramorum

Thalassiosira pseudonana
Giardia lamblia

Homo Sapiens
Trichomonas vaginalis

Saccharomyces cerevisiae
Arabidopsis thaliana

Dictyostelium discoideum
Entamoeba histolytica

Naegleria gruberi
Leishmania major

Thermoplasma acidophilum
Methanococcus jannaschii

Methanothermobacter thermautotrophicus
Archaeoglobus fulgidus

Methanosarcina mazei
0.2

Fig. 1. Placing eukaryotes (homo sapiens) within the archaea: The Fréchet mean of
a data set from [15] is a highly unresolved phylogenetic tree. Lengths of horizontal
lines correspond to evolutionary distance, vertical lines to common nodes, the leftmost
vertical stands for the common root.

3 Properties as Hadamard Spaces

In [4, Lemma 4.1], it was shown that the BHV tree spaces are Hadamard spaces,
or spaces of global non-positive curvature, and as such enjoy many desirable
properties. Notably, any two points in the space TN are joined by a unqiue
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minimizing geodesic. For an extensive overview on Hadamard spaces, we refer
to [5,6,13].

In a Hadamard space (M,d), a function f : M → R is (strictly) convex
if all compositions with geodesics are (strictly) convex. Convex sets are sets
containing all geodesic segments between two points of the set. An example of
a strictly convex function is the Fréchet function. Besides this convexity we will
also require the following results.

Theorem 1 (Theorem 2.1.12 in [1]). Let (M,d) be a Hadamard space and
let S ⊂ M be a closed convex set. Then the following statements hold true for
the metric projection PS : M → S, x 	→ argminy∈S d(x, y).

1. The map x 	→ PS(x) is single-valued for all x ∈ M .
2. It holds for any x, y ∈ M that d (PS(y),PS(x)) ≤ d(x, y).

Remark 1. As the strata of BHV Spaces are locally Euclidean, the metric pro-
jection of a tree to an adjacent stratum of positive codimension corresponds
to simply removing the redundant splits and keeping the splits featured in the
topology of the stratum and their respective lengths.

Theorem 2 (Theorem 6.3 in [13]). Let (M,d) be a separable Hadamard
space. Then d(b(P), b(Q)) ≤ W1(P,Q) for any two P,Q ∈ P1 (M).

4 The Space of Directions

In a Hadamard space (M,d), it is possible to compute an angle between two
(non-constant) geodesics γ, γ′ starting at the same point x ∈ M . This angle is
called the Alexandrov angle ∠x and can be computed as follows [6, Chapter 3]

∠x(γ, γ′) = lim
t,t′↘0

arccos

(
t2 + t′2 − d(γ(t), γ′(t′))

2t · t′

)
.

Two geodesics have an equivalent direction at x if the Alexandrov angle between
them is 0. The set of these equivalence classes is called the space of directions
at x and is denoted by ΣxM . Equipped with the Alexandrov angle, the space
of directions becomes a spherical metric space itself. For an overview, see e.g.
Chapter 9 in [6]. For points x, y, z ∈ M , we write dirx(y) for the direction of the
(unit speed) geodesic from x to y and we write ∠x(y, z) = ∠x(dirx(y),dirx(z)).

Let S ⊂ TN be a stratum with positive codimension l ≥ 1 and set

(ΣxTN )⊥ = {dirx(z)|z �= x, z ∈ P−1

S
({x})},

(ΣxTN )‖ = {dirx(z)|z �= x, z ∈ S}.

The following lemma is concerned with the structure of the space of directions
in BHV tree spaces. It is inspired by the work of the tangent cone of orthant
spaces in [3]. For two metric spaces (M1, d1), (M2, d2), recall their spherical join

M1 ∗ M2 =
[
0,

π

2

]
× M1 × M2/ ∼∼=

{
(cos θ p1, sin θ p2) : 0 ≤ θ ≤ π

2
, pi ∈ Mi, i = 1, 2

}
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with the metric

d
(
(θ, p1, p2), (θ, p1, p2)

)
= arccos (cos θ cos θ′d1(p1, p′

1) + sin θ sin θ′d2(p2, p′
2)) .

In particular, this turns M1 ∗ M2 into a sphere of dimension n1 + n2 + 1 if Mi

is a sphere of dimension ni, i = 1, 2.

Lemma 2. Let S ⊂ TN be a stratum with positive codimension l ≥ 1 and x ∈ S.
Then its space of directions can be given the structure of a spherical join

ΣxTN
∼= (ΣxS)‖ ∗ (ΣSTN )⊥

, (ΣSTN )⊥ ∼= (ΣxTN )⊥

Proof. For sufficiently small ε > 0, with Bε(x) from Lemma 1 for any geodesic
starting at x we have a one-to-one correspondence between its direction σ ∈
ΣxTN and a point yσ ∈ ∂Bε(x) with d(x, yσ) = ε. This gives rise to the angular
part of the join

θ : ΣxTN → [0, π/2], σ 	→ arcsin
(

d(yσ,S)
ε

)
.

Furthermore, as remarked before Lemma 1, the topology of y features all splits
of x and at most l additional splits. With the map y 	→ xy : ∂Bε(x) → Bε(x),
adding to x all splits of y, not present in x, with their lengths from y, set

y⊥ := xy, y‖ := P
S
(xy) ,

where we identify the directions of xy and x′
y at x ∈ S and x′ ∈ S, respectively,

if their split lengths after removing those of x and x′, respectively, agree. In
conjunction with

φ⊥(σ) := dirx(y⊥
σ ), φ‖(σ) := dirx(y‖

σ),

thus obtain, with the second factor independent of the base point,

Φ :ΣxTN → (ΣxS)‖ ∗ (ΣxTN )⊥
, σ 	→

(
θ(σ), φ‖(σ), φ⊥(σ)

)
.

Straightforward computation verifies that Φ is a bijection.
It remains to show that Φ is isometric. For notational simplicity, suppose

ε = 1. Let σ1, σ2 ∈ ΣxTN with yi := yσi
, i = 1, 2 and r⊥

i := d(yi,S), r
‖
i :=√

1 − (r⊥
i )2. Exploiting d2(y1, y2) = d2(y‖

1 , y
‖
2) + d2(y⊥

1 , y⊥
2 ) by definition of the

geodesic distance and that TN is Euclidean in each stratum, we have indeed,

cos(∠x(y1, y2)) =
1 + 1 − d2(y1, y2)

2

=
(r⊥

1 )2 + (r⊥
2 )2 − d2(y⊥

1 , y⊥
2 )

2
+

(r
‖
1)2 + (r

‖
2)2 − d2(y

‖
1 , y

‖
2)

2

= r
‖
1 · r‖

2 · (cos(∠x(y
‖
1 , y

‖
2)) + r⊥

1 · r⊥
2 · (cos(∠x(y⊥

1 , y⊥
2 ))

= cos(θ(σ1)) cos(θ(σ2)) cos
(
∠x(φ‖(σ1), φ

‖(σ2))
)

+ sin(θ(σ1)) sin(θ(σ2)) cos
(
∠x(φ⊥(σ1), φ

⊥(σ2))
)
.
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In light of this fact, we shall henceforth abuse notation and will identify
(ΣxTN )⊥ ∼= (ΣSTN )⊥ and any σ ∈ (ΣSTN )⊥ with natural embedding into
ΣxM for all x ∈ S.

5 Equivalent of Notions of Stickiness in BHV Spaces

For a sequence (Xi)i∈N of i.i.d. random variables following a distribution P, let
Pn = 1

n

∑n
i=1 Xi denote the empirical measure.

Definition 2 (Three Notions of Stickiness). Let P ∈ P1 (TN ) be a proba-
bility distribution in a BHV space and S ⊂ TN be a stratum with codimension
l ≥ 1. Then on S, P is called

Wasserstein sticky if there is ε > 0 such that b(Q) ∈ S for all Q ∈ P1 (TN )
with W1(P,Q) < ε,

perturbation sticky if for any Q ∈ P1 (TN ) there is tQ > 0 such that b((1 −
t)P + tQ) ∈ S for all 0 < t < tQ,

sample sticky if for any sequence of random variables (Xi)i∈N

i.i.d.∼ P there is a
random N ∈ N such that b(Pn) ∈ S for all n ≥ N a.s.

Theorem 3 ([10]). Let (M,d) be a Hadamard space, x ∈ M , and γ : [0, L] →
M be a unit speed geodesic with direction σ at γ(0) = x. Then for any
P ∈ P1 (M), the directional derivative of the Fréchet function ∇σFP(x) =
d
dtFP(γ(t))|t=0 exists, is well-defined and

∇σFP(x) = −
∫

M

cos(∠x(σ,dirx(z))) · d(x, z) dP(z).

In particular, it is

1. Lipschitz continuous as a map ΣxTN → R, σ 	→ ∇σFP(x), and
2. 1-Lipschitz continuous as a map P1 (M) → R,P 	→ ∇σFP(x).

The following result follows directly from Lemma 2 and Theorem 3.

Corollary 1. Let S ⊂ TN be a stratum of positive codimension l ≥ 1, let P ∈
P1 (TN ) and identify σ ∈ (ΣSTN )⊥ for all x ∈ S across all spaces of directions
in S. Then x 	→ ∇σFP(x),S → R is constant.

Assumption 1: For X ∼ P ∈ P1 (TN ) with b(P) = μ ∈ S for a stratum S ⊂ TN

assume that

P{φσ(X) = 0} < 1 for all σ ∈ (ΣSTN )⊥
,

where for z ∈ TN , φσ(z) = −d(z, μ) cos(∠μ(σ,dirμ(z))) .

Theorem 4. Let N ≥ 4 and consider a stratum S ⊂ TN with positive codi-
mension l ≥ 1. Then the following statements are equivalent for a probability
distribution P ∈ P1 (TN ) with μ = b(P) ∈ S.
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1. P is Wasserstein sticky on S.
2. P is perturbation sticky on S.
3. P is sample sticky on S and fulfills Assumption 1.
4. For any direction σ ∈ (ΣSTN )⊥, we have that ∇σFP(μ) > 0.

Proof. “1 =⇒ 2” follows at once from W1(P, (1 − t)P + tQ) = tW1(P,Q) as
verified by direct computation.

“2 =⇒ 4”: Let σ ∈ (ΣSTN )⊥, y ∈ TN such that PS(y) = μ and σ = dirμ(y),
and let Qt = (1− t)P+ tδy, for 0 ≤ t ≤ 1. By hypothesis, we find 0 < ty < 1 such
that b(Qt) ∈ S for all t ≤ ty. Since μ is the Fréchet mean of P and PS(y) = μ, we
have for any x ∈ S \ {μ} that FQt

(x) > FQt
(μ). Thus, μ is be the Fréchet mean

of Qt for all t ≤ ty, and hence for all t ≤ ty,

0 ≤ ∇σFQt
(μ) = (1 − t) · ∇σFP(μ) − t · d(μ, y),

whence ∇σFP(μ) ≥ ty
1−ty

d(μ, y) > 0.

“4 =⇒ 1”: Take arbitrary η > 0 such that Bη(μ) ∩ S is closed in S. As
(ΣSTN )⊥ is compact and the directional derivatives are continuous in directions
(Theorem 3), there is a lower bound

0 < ζ = min
σ∈(ΣSTN )⊥

∇σFP (μ) .

Then, for any Q ∈ P1 (TN ) with W1(P,Q) < ε := min{ζ, η}, due to Theorem
2), it follows that d(μ, b(Q)) < ε ≤ η. By Lemma 1, the topology of ν = b(Q)
must feature all splits in the topology of μ.

It is left to show that b(Q) /∈ S cannot be. Otherwise, with y = P
S
(ν), by

Theorem 1, we have d(μ, y) ≤ d(μ, ν) < η and hence, y ∈ S. Furthermore,
σ = diry(ν) ∈ (ΣSTN )⊥ and thus by Theorem 1 and Corollary 1,

|∇σFP(μ) − ∇σFQ(y)| ≤ W1(P,Q) < ε ≤ ζ.

Hence, ∇σFQ(y) > 0, which implies, following σ, by strict convexity of the
Fréchet function, that FQ(y) < FQ(ν), so that ν is not the Fréchet mean of Q .

“3 =⇒ 4”: Since b(P) = μ, we have ∇σFP(μ) ≥ 0 for all σ ∈ (ΣSTN )⊥.
We now show that ∇σ′FP(μ) = 0 for some σ′ ∈ (ΣSTN )⊥ yields a contradiction.
Indeed, then for (Xi)i∈N

i.i.d.∼ P, there is P-a.s. a random number N ∈ N such that
b(Pn) ∈ S for all n ≥ N . Due to Theorem 3, we also have P-a.s.,

∇σ′FPn
(μ) ≥ 0 ∀n ≥ N. (2)

Using the notation of Assumption 1, consider Sn =
∑n

i=1 φσ′(Xi), so that
∇σ′FPn

(μ) = Sn/n. Recalling that we assumed that ∇σ′FP(μ) = E(φ(Xi)) = 0,
which implies that the random walk Sn is recursive (Theorem 5.4.8 in [7]), and
hence (Exercise 5.4.1 in [7]) either

P{Sn = 0 : for all n ∈ N} = 1 or P

{
−∞ = lim inf

n∈N

Sn < lim sup
n∈N

Sn = ∞
}

= 1 .
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The former violates Assumption 1, the latter contradicts (2), however.
“1 and 4 =⇒ 3”: By [14, Theorem 6.9], Pn converges against P in W1, hence

P is sample sticky. As the directional derivatives of the Fréchet function for any
σ ∈ (ΣSTN )⊥ are non-zero by hypothesis, Assumption 1 holds.

6 Application: The Degrees of Stickiness

Definition 3. Let P ∈ P1 (TN ) be a distribution that is Wasserstein sticky on
a stratum S with positive codimension with μ = b(P). Then, we call DσFP(μ) the
degree of stickiness of P in direction σ.

We propose to use the degrees of stickiness as a way to discriminate between
samples that are sticky on the same stratum. The following example illustrates
such an application with two phylogenetic data sets X,Y from [15] with empirical
distributions PX and P

Y , where each consists of 63 phylogenetic trees that were
inferred from the same genetic data using two different methods. The resulting
two Fréchet mean trees μX , μY (after pruning very small splits) coincide in their
topologies, as displayed in Fig. 1. We test the hypothesis

H0 : DσFPX (μX) = DσFPY (μY ) ∀σ ∈ ΣX,Y ,

where we choose ΣX,Y ⊂ (ΣSTN )⊥ comprising only directions corresponding to
a single split that is present in either X or Y and compatible with the topologies
of μX and μY . As there is a natural pairing, we performed a pairwise t-test
for each of the directions and applied a Holm-correction, leading to a p-value
of 0.0227. This endorses the observation in [15], that the two methods inferring
phylogenetic trees differ significantly on this data set.
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Abstract. Barycentric Subspaces have been defined in the context of manifolds
using the notion of exponential barycenters. In this work, we extend the defini-
tion to quotient spaces which are not necessary manifolds. We define an align-
ment map and an horizontal logarithmic map to introduce Quotient Barycentric
Subspaces (QBS). Due to the discrete group action and the quotient structure, the
characterization of the subspaces and the estimation of the projection of a point
onto the subspace is far from trivial. We propose two algorithms towards the esti-
mation of the QBS and we discussed the results, underling the possible next steps
for a robust estimation and their application to different data types.

Keywords: Discrete Group · Quotient Space · Barycentric Subspaces
Analysis · Graph Space · Object Oriented Data Analysis

1 Introduction

Barycentric Subspace Analysis was introduced in [10]. Given a set of data points, it
aims at estimating a set of subspaces of decreasing (or increasing) dimensions, which
minimizes a loss function between the data and their projection onto the subspaces.
In the specific context of manifold, the author defines barycentric subspaces using the
Riemannian Exponential - referred as Exponential Barycentric Subspace (EBS). The
derived EBS analysis is a promising dimensionality reduction technique for two main
reasons. Firstly, it differs from tangent PCA [1,4] as it goes beyond a 1-dimensional
subspace search, proposing an optimization over a flag of subspaces. Such property is
useful in the context of complex data such as graphs, shapes or images, where dimen-
sionality reduction plays a central role in terms of reducing the data complexity and
interpreting the results [3,5,6]. Secondly, BSA can also be also defined as a “within
data” statistics technique: the barycentric subspaces can be parametrized by data points.
Such a choice allows to visualize and interpret the variability by looking at the data
points which characterize the subspaces.

Complex data such as graphs or images are considered up to symmetries in many
applications, such as node permutation for graphs or reflection for shapes. These type
of data are usually embedded in quotient spaces obtained by applying a discrete group
action, often resulting in a non manifold. In this geometric context, different dimen-
sionality reduction techniques have been proposed [1,6]. To the best of our knowl-
edge the majority of the techniques available are the equivalent of the estimation of a
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one-dimensional subspace at the time. Motivated by both high dimensional subspace
search and interpretability through reference points, we propose a definition of Quo-
tient Barycentric Subspaces (QBS). We underline where the complexity of the problem
resides and we propose two algorithms for the estimation of QBS. We showcase the
performance of the algorithm in a simple example of reflection action applied to R2. To
the best of our knowledge, there are no works in the literature addressing the problem
of barycentric analysis for quotient spaces which are not manifolds. Note that if the
quotient space is a manifold, all the manifold statistic literature is applicable [8,11],
including exponential barycentric subspace analysis [10].

2 Quotient Barycentric Subspaces

Consider X = R
m a Euclidean space and T a discrete group acting on X . The orbit

of a point x ∈ X is the equivalence class [x] = {tx, t ∈ T }. We are interested by
the quotient space X/T , made of the collection of these equivalence classes, when the
action is not free. A group action is free if the only element of the group fixing a point
is the identity [9]. If the action is not free, the resulting quotient space is not a manifold,
but often only a stratified space. These spaces are very common, as non-free actions
appear every time there are symmetries in the data.

Example 1. Consider X = R
2 and the reflection action R, giving the following equiv-

alence relation: (x1, x2) ∼ (−x1,−x2). The resulting quotient space X/R is not a
manifold - the point (0, 0) is fixed by the whole group R.

Example 2. Graph Space [2,7] is a quotient space used to study set of graphs with
unlabelled nodes. It is obtained by applying permutation action to adjacency matri-
ces. Consider a set of n × n undirected graphs represented as adjacency matrices
{x1, . . . , xk}, xi ∈ X = R

n×n. The space of adjacency matrices X is equipped with
a Frobenious norm. If we consider the nodes to not be labelled, we can represent the
unlabelled graphs as equivalence classes of permuted graphs [x] = {px, p ∈ P}, where
P is the set of permutation matrices applied to the nodes, acting onto the matrices as
px = pTxp. Graph Space X/P is a discrete quotient space, equipped with a quotient
metric dX/P([x], [y]) = minp∈Pd(x, py). As detailed in [3], Graph Space is not a
manifold - as there are some permutations leaving the graph unchanged - making the
extension of EBS not trivial.

2.1 Exponential Barycentric Subspaces

We first recall the definition of Exponential Barycentric Subspaces (EBS) introduced in
[10]. Consider a Riemannian manifold M equipped with a Riemannian metric on each
tangent space TxM and a logarithmic map logx : M → TxM.

Definition 1 (Exponential Barycentric Subspaces). The Exponential Barycentric
Subspaces (EBS) generated by the affinely independent reference points (x0, . . . , xk) ∈
Mk+1 is defined as
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EBS(x0, . . . , xk) = {x ∈ M∗(x0, . . . , xk)| ∃w ∈ R
k+1 \ {0} :

k∑

i=0

wilogx(xi) = 0}.

As detailed in [10], the definition is only valid for points x that are outside the
cut locus of the reference points. In other words, EBS are defined in the tangent space
TxM, where x belongs to EBS. This gives an implicit definition.

2.2 Quotient Barycentric Subspaces

To extend EBS to Graph Space and more generally to quotient spaces, we need to define
an analogous to the logarithmic map used in the definition.

Definition 2. The Alignment Map ax : X → X is defined as ax(y) = t∗y where
t∗ = argmint∈T d(x, ty) is the group element which optimally aligns the two points.

The Alignment Map at a point x is only defined on X \ E([x]), where E([x]) is the
(null measure) equidistant set [12], which consists of points which are equidistant to at
least two elements of the orbit [x].

Given the alignment map, we can introduce an equivalent of the horizontal logarith-
mic map in the context of quotient space [6,9]:

Definition 3. The Horizontal Logarithm logHx : X \ E(x) → TxX is the logarithmic
map of the total space X applied to the optimally aligned points:

logHx (y) = logx(ax(y))

where logx : X → TxX is the logarithmic map of the total space.

As X is Euclidean, we can explicitly write the logarithmic map as logHx y =
logx(ax(t)) = ax(y) − x. Notice that due to the alignment map not being defined
on the whole space, logHx does not descend to a proper logarithm on the quotient space.

We can now extend the definition to the quotient space.

Definition 4. Consider a set of reference orbitsX = {[x1], . . . , [xk]} ∈ X/T . An orbit
[y] ∈ X/T belongs to the Quotient Barycentric Subspace [y] ∈ QBS(X ) if ∃wi ∈ R

such that
∑k

i=1 wi = 1 and
k∑

i=1

wilog
H
y (xi) = 0.

The above definition is implicit and corresponds to solving the following system:
⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

k∑

i=1

wiay(xi) = y,

ay(xi) = tixi, ti = argmin
t∈T

d(txi, y).

More explicitly, [y] belongs to QBS(X ) if and only if its representative y can be writ-
ten as a combination of some representatives of {[x1], . . . , [xk]} aligned with respect
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to [y] itself. This results in a system of interlaced equations defining both the alignment
and the barycentric combination. QBS are defined using the alignment map and the
logarithmic map in the total space, which is Euclidean. This strategy allows for a com-
putation of weights wi ∈ R in the Euclidean Space X [10]. In the sequel of this paper,
we focus only on positive weights to simplify the characterization of the subspaces.

The final goal of barycentric subspace analysis is to capture data variability with
subspaces of a given dimension. We define a loss function using QBS Definition 4.
Consider a set Y = {[y1], . . . , [ym]} of orbit in the quotient space X/T and a set X =
{[x1], . . . , [xk]} ⊂ Y of k reference points selected among our data-points. We want to
minimize the following function L(X ) =

∑m
i=1 d2X/T ([ŷi], [yi]) where ŷi ∈ QBS(X )

is a projection on the QBS spanned by X .

Fig. 1.Visualization of the equivalence classes in X/R, the subspaces identified by two reference
points, the quotient barycentric subspaces, where only the valid segments defined in Definition
4 are considered. The equidistant set of the red (resp. blue) point orbit is represented by the red
(resp. blue) dashed line. (Color figue online)

2.3 Characterization of the Subspaces

Given a set of reference points in X , the subspace identified by the orbits of the ref-
erence points results in a set of disjointed subspaces in X/T . In Fig. 1, we show the
characterization of the QBS in X/R described in Example 1. Given a data point, the
resulting orbit in X/R is represented as red dots in Fig. 1 left. Consider two reference
orbits (here the red and blue orbits), the possible positive barycentric subspaces are all
the possible subspaces of dimension 1 (segments) joining two points of the different
orbits - Fig. 1 center. Such segments in the Euclidean space corresponds to barycen-
tric combinations of reference points. Among such subspaces, not all points are valid
according to the QBS Definition 4. In Fig. 1 right, the valid QBS are underlined in dark
black, showing only the parts of the segments whose points are aligned with both ref-
erence points, as stated in Definition 4. Thus, the positive barycentric subspaces are
turned into two disjoint valid segments: the complete segments if containing the refer-
ence orbits and the incomplete segments if not containing the reference orbits. The two
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red and blue dashed lines represent the boundary of the space where the points change
alignments with respect to the reference points. In this example the identification of the
valid – with respect to Definition 4 – parts of the subspaces is possible in close form
due to the low dimension of both the space and the number of reference points. In more
general setting, such close form description of the valid parts is not straightforward.

3 Algorithms for the Estimation of QBS

Consider a set of reference orbits {[x1], . . . , [xk]} and an orbit [y], the estimation of the
projection ŷ of such orbit on the barycentric subspace is far from trivial. The complexity
of the problem resides in the exploration of the search space. Firstly, we need to explore
all the possible subspaces identified by {[x1], . . . , [xk]}: the number of all the possible
subspaces identified by k orbits of cardinality c is ck. Secondly, we need to find for
each subspace the valid part, which has no closed form characterization – as explained
in the previous section. Remember that the validity of such parts depends on [y] which
is itself an orbit of dimension c. We refer to these two aspects as the combinatorial
and the geometrical complexity of the given problem. As a starting point in addressing
such complexity, we opted for two different algorithms: Align to Reference Points -
Algorithm 1 - and Align to Data Point - Algorithm 2.

Algorithm 1. Align to Reference Points
Require: data point y ∈ [y] and reference points {[x1], . . . , [xk]} Return: ŷ
Select the closest reference point [xi] and its representative xi optimally aligned with y
Find xj ∈ [xj ] optimally aligned with xi

Find y ∈ [y] optimally aligned with xi

Find ŷ, the projection of y onto BS(x1, . . . , xk) � Orthogonal Projection
if ŷ is not optimally aligned with x1, . . . , xk then

Set ŷ = xi, where xi is the closest reference point to y � Closest Reference Projection
end if

Algorithm 2. Align to Data Point
Require: data point y ∈ [y] and reference points {[x1], . . . , [xk]} Return: ŷ
Randomly select a representative y ∈ [y]
For all i, Find xi ∈ [xi] optimally aligned with y
Find ŷ, the projection of y onto BS(x1, . . . , xk) � Orthogonal Projection
if ŷ is not optimally aligned with x1, . . . , xk then

Set ŷ = xi, where xi is the closest reference point to y � Closest Reference Projection
end if
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4 Experiments

For the two proposed algorithms, we consider the setting described in Example 1 and
we restrict the analysis to positive weights. We run two experiments:

– Experiment 1: fixing the reference orbits {[x1], . . . , [xk]} and randomly sampling
the data orbit [yi], i = 1, . . . , N to project

– Experiment 2: fixing the data orbit [y] and randomly sampling the reference orbits
{[xi

1], . . . , [x
i
k]}, i = 1, . . . , N onto which project the data orbit

Such experiments aim at grasping when the algorithm is able to project a data orbit
onto a valid QBS, given different configurations of reference orbits and data orbits to
project. In the reflection quotient space X/R, we are able to compute the true projec-
tion as we can parameterize the quotient subspaces of dimension 1. For each algorithm,
we can compute the projection error as the quotient distance between [y] and the esti-
mated [ŷ]. To evaluate the performance, we measure the absolute error ε̂ between the
algorithm projection error and the true projection error. In Experiment 1, we consider
two reference orbits and we sample a set of N = 10000 orbits to project. We run several
Example of Experiment 1 to better characterize the performance of the two algorithms
depending on the relative position of the two reference orbits [x1] and [x2].

Fig. 2. Experiment 1: Example of two reference points resulting in QBS with small incomplete
pieces. We plot the error distribution, the spatial distribution of the error and the spatial distri-
bution of the type of projection. We can see that the error of Algorithm 1 and Algorithm 2 are
similar. Algorithm 2 is better performing in projecting onto the incomplete segments, which are
short in this example.
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Fig. 3. Experiment 1: Example of two reference points close to each others equidistant sets. We
plot the error distribution, the spatial distribution of the error and the spatial distribution of the
type of projection. We can see that the error of Algorithm 1 is much higher than Algorithm 2.
Such error is concentrated around the incomplete segments in Algorithm 1 and the Equidistant
sets in Algorithm 2.

Figure 2 and 3 illustrate two typical situations. In Fig. 3, the reference points lay
close to each other’s equidistant sets. From the two boxplots, Algorithm 2 performs
better than Algorithm 1. By looking at the error distribution in the middle panel, Algo-
rithm 1 is under-performing when [y] is around the incomplete segments. The alignment
to reference point strategy is not able to project onto the incomplete segments - even
when the data point is closer to such segments - causing an high error. On the other
hand, Algorithm 2 is correctly projecting on the incomplete segments when needed.
The error of Algorithm 2. is only concentrated around the equidistant sets, caused by
the natural difficulties in choosing an optimal alignment. Figure 2 showcase a differ-
ent situation when the incomplete pieces have a small length. By always projecting
onto the other two pieces, Algorithm 2 covers most situations quite similarly to Algo-
rithm 1 and therefore becomes comparable in performances. We understand from this
first experiment that the performance of Algorithm 1 strongly depends on the relative
position of the two reference points. However, Algorithm 2 is overall better than Algo-
rithm 1. Experiment 2 focuses on changing reference points (N = 10000 configurations
randomly sampled) fixing the data point [y]. We compare the performance of the two
algorithms using two boxplots of the error distribution (Fig. 4). The performance of
Algorithm 2 is better than for Algorithm 1 even when changing reference points.
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Fig. 4. Experiment 2: Comparison of the performances of Algorithm 1 and Algorithm 2. The
boxplot are obtained by simulating a set of different reference points, keeping the data point fix.
Algorithm 2 is performing better.

5 Discussion

We address the extension of Exponential Barycentric Subspaces frommanifolds to Quo-
tient Spaces obtained by a discrete group action. We define Quotient Barycentric Sub-
spaces (QBS) and we propose two different algorithms for the estimation of the pro-
jection of data-points onto QBS. The detailed analysis that we perform shows that the
complexity of such projection is not only combinatorial, as could be expected, but also
geometrical. The identification of the correct segment onto which project a data point
depends on the reciprocal position of reference orbits, the position of the data point with
respect to the segment and the orientation of the quotient orbit with respect to the sub-
space. As a first approach, we showed how algorithm 2 better addresses the identifica-
tion of the correct subspace for projection. Further developments will include an align-
ment procedure tailored for subspaces rather then data points (e.g. reference points),
which might allow the identification of all valid subspaces, including the incomplete
segments.
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Abstract. Flags are sequences of nested linear subspaces of increasing
dimension. They belong to smooth manifolds generalizing Grassmanni-
ans and bring a richer multi-scale point of view to the traditional sub-
space methods in statistical analysis. Hence, there is an increasing inter-
est in generalizing the formulae and statistical methods already devel-
oped for Grassmannians to flag manifolds. In particular, it is critical to
compute accurately and efficiently the geodesic distance and the loga-
rithm due to their fundamental importance in geometric statistics. How-
ever, there is no explicit expression known in the case of flags. In this
work, we exploit the homogeneous quotient space structure of flag man-
ifolds and rethink the geodesic endpoint problem as an alignment of
orthogonal matrices on their equivalence classes. The relaxed problem
with the Frobenius metric surprisingly enjoys an explicit solution. This
is the key to modify a previously proposed algorithm. We show that our
explicit alignment step brings drastic improvements in accuracy, speed
and radius of convergence, in addition to overcoming the combinatorial
issues raised by the non-connectedness of the equivalence classes.

Keywords: Flag manifolds · Riemannian logarithm · Orthogonal
alignment · Procrustes analysis

1 Introduction

Flags are sequences of nested linear subspaces of increasing dimension. They
are important in statistical analysis [3,9] due to the multi-scale information
they provide, compared to traditional subspace methods involving Grassmann
manifolds [1]. Flags of a given type form a Riemannian manifold that generalizes
Grassmannians. Hence there is a natural interest in generalizing the formulae
and statistical methods already developed on Grassmannians.

The geodesic distance and logarithm are central tools in statistics on Rie-
mannian manifolds, as they allow notably to discriminate, interpolate, and opti-
mize [10]. Their explicit formulae are known for Grassmannians, and are related
to the problem of finding principal vectors and angles between linear subspaces,
which can be solved using Singular Value Decomposition (SVD) [1]. However no
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explicit formula is known for flags. One of the main hurdles seems to be the rel-
atively complex structure of the tangent space, that must carry the information
of nestedness of several subspaces, compared to Grassmannians which account
for only two subspaces, and yield closed-form expressions for the geodesics in
terms of sines and cosines of principal angles, like in [1, Prop. 3.3 ].

The question of the distance on flag manifolds is first addressed in [12,
Prop. 10 ], but the proposition is actually misleading. Indeed, the proof of this
proposition is based on the implicit knowledge of the horizontal tangent vector
allowing to shoot from one flag to the other with minimal distance, that is the
Riemannian logarithm. However, if this vector is known in the geodesic shooting
problem, it is actually unknown in the geodesic endpoint problem, otherwise the
geodesic distance would also be known, as it is the norm of the logarithm. With-
out clearly stating this assumption, the proposition is false. For instance, two
orthogonal matrices representing the same flag would have a positive distance.
Subsequent works rather focus on algorithms to approximate the Riemannian
logarithm and distance, either based on a quotient space point of view and using
alternated projections on the horizontal and vertical tangent spaces [3,4], or
following an optimization approach [6,7].

In this work, we exploit the homogeneous quotient space structure of flag
manifolds and rethink the geodesic endpoint problem (i.e., the search for a
geodesic of minimal length joining two flags) as an alignment problem on the
orthogonal group, that is the search for orthogonal matrices that are the clos-
est among their equivalence classes. As it does not have an explicit solution,
we relax it using the Frobenius metric. Our key result is that this constrained
orthogonal Procrustes problem actually enjoys an explicit solution. We show
that modifying a previously existing algorithm [4, Alg. 1 ] with this new result
drastically improves its accuracy, speed and radius of convergence, in addition
to overcoming the combinatorial issues raised by the non-connectedness of the
stabilizer subgroup.

2 Flag Manifolds

In this section, we briefly define flag manifolds and the important properties for
the next sections. A more complete introduction is given in [12].

Definition 1 (Flag, Signature). Let n ≥ 2 and d1 < d2 < · · · < dr = n be a
sequence of strictly increasing natural numbers. A flag of signature (d1, . . . , dr)
is a sequence of properly nested linear subspaces of Rn, E1 ⊂ · · · ⊂ Er = R

n of
respective dimension d1 < · · · < dr = n. Flags with signatures of length n, i.e.
(1, 2, . . . , n − 1, n) are called complete.

Flags can equivalently be defined as a sequence of incremental orthogonal sub-
spaces V1 ⊥ · · · ⊥ Vr, by taking the orthogonal complement of one nested
subspace into the next one. One then has Ei =

⊕i
j=1 Vj (i = 1 . . r). The asso-

ciated sequence of increments I := (n1, . . . , nr) := (d1, d2 − d1, . . . , dr − dr−1)
is called the type of the flag. We will use this definition of flags in the rest of the
paper.
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⊂⊂

(a) as a sequence of nested subspaces

•
Q1

Q2Q3

(b) as an orthogonal matrix

Fig. 1. Different representations of a flag of type (1, 1, 1).

A flag can be represented as an orthogonal matrix whose columns form an
orthonormal basis that is adapted to the sequence of incremental orthogonal
subspaces. More specifically, for a given sequence of subspaces V1 ⊥ · · · ⊥ Vr

such that
⊕r

i=1 Vi = R
n, one can find an orthonormal basis Qi :=

[
q1i | . . . |qni

i

] ∈
R

n×ni for each Vi, and the concatenation of those bases forms an orthogonal
matrix Q = [Q1| . . . |Qr] ∈ O(n) that is a representative of the flag V1 ⊥ · · · ⊥ Vr.
A flag of type (1, 1, 1) is represented in Fig. 1, both in terms of nested subspaces
and in the orthogonal representation.

Theorem 1 (Flag Manifolds [5]). The set of all flags of type I is a connected
compact smooth manifold. It is noted Flag (n1, . . . , nr), or Flag(I) for short.

There exist several orthonormal bases adapted to a flag, hence flags are actu-
ally equivalence classes of orthogonal matrices. More precisely, let Q ∈ O(n)
be a representative of a given flag and R = diag (R1, . . . , Rr) ∈ O(n), with
Ri ∈ O(ni) (i = 1 . . r). Then Q and QR = [Q1R1| . . . |QrRr] represent the
same flag. Indeed, the right multiplication by the block diagonal orthogonal
matrix R on Q only rotates and reflects the incremental orthonormal bases
within their subspaces, but do not change their span. Therefore, flag manifolds
are homogeneous quotient spaces of O(n) [12, Eq. (8)]

Flag(I) ∼= O(n)/ (O(n1) × · · · × O(nr)) . (1)

For the sake of readability, we will thereafter write O(I) := O(n1)×· · ·×O(nr).
Therefore one has Flag(I) ∼= O(n)/O(I) and R ∈ O(I). Hence, a flag is an
equivalence class of orthogonal matrices

[Q] := {QR, R ∈ O(I)} := Q · O(I) (2)

and one defines the canonical projection Πc : Q ∈ O(n) �→ [Q] ∈ O(n)/O(I).
One can also embed flags in a product of Grassmannians Gr(n1,n) × · · · ×
Gr(nr,n) := Gr(I), representing them as a sequence of orthogonal projection
matrices onto the sequence of incremental orthogonal subspaces of the flag. The
embedding map ΠGr(I) : [Q1| . . . |Qr] ∈ O(n) �→ (

Q1Q
�
1 , . . . , QrQ

�
r

) ∈ Gr(I)
then removes the necessity to work with equivalence classes.
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The theory of Riemannian submersions and quotient spaces [8] tells that the
Riemannian manifold structure of flags can be deduced from the one of O(n) and
O(I) with their canonical metric gQ, given by a multiple of the Frobenius metric:
gQ (A,B) = 1

2 〈A,B〉F := 1
2 tr

(
A�B

)
[2,12]. Their respective tangent spaces at

the identity are o(n) := Skewn, the set of n × n skew-symmetric matrices, and
o(I) := SkewI := diag (Skewn1 , . . . ,Skewnr

). In the fiber bundle vocabulary,
o(I) is referred to as the vertical space (noted Ver(I)), and its orthogonal com-
plement in Skewn as the horizontal space, containing skew-symmetric matrices
with diagonal zero blocks

Hor(I) :=

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

H :=

⎡

⎢
⎢
⎢
⎣

0n1 H1,2 . . . H1,r

−H1,2
� 0n2 . . . H2,r

...
...

. . .
...

−H1,r
� −H2,r

� . . . 0nr

⎤

⎥
⎥
⎥
⎦

, Hij ∈ R
ni×nj

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭

. (3)

The tangent space of flag manifolds is then given by

T[Q] (O(n)/O(I)) = QHor(I). (4)

The geodesics in the base space O(n)/O(I) with the canonical metric are inher-
ited from the horizontal geodesics in the top space O(n) [12]

exp[Q](A) =
[
Q exp(

(
Q�A

)
)
]
.

A common approach for computing the Riemannian logarithm and distance is
through solving the geodesic endpoint problem

argmin
H∈Hor(I),R∈O(I)

1
2
‖H‖2F subject to P exp(H) = QR. (5)

However, it has a priori no solution for flag manifolds. In the literature, the
geodesic endpoint problems are generally optimized using a gradient descent on
the tangent space [6,13]. In the following section, we propose a different approach
based on the previously described quotient space structure, and reformulate the
geodesic endpoint problem as an alignment on the equivalence classes.

3 Alignment on Flag Manifolds

The notion of alignment in Riemannian quotient spaces is mentioned in [2,
Def. 5.1.6 ]. It refers to the problem of finding a pair of points which minimizes
the top space distance within their respective equivalence classes.

Definition 2 (Alignment on Flag Manifolds). Let P,Q ∈ O(n) and
dO(n)(P,Q)2 := 1

2

∥
∥log(P�Q)

∥
∥2

F
, the geodesic distance on O(n). We define the

alignment problem on flag manifolds as

argmin
R∈O(I)

dO(n)(P,QR)2. (6)
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Given two flags [P ], [Q] ∈ O(n)/O(I), finding a point Q∗ := QR∗ which
minimizes the O(n) geodesic distance to P in the orbit [Q] yields both the
geodesic distance between the two flags d([P ], [Q]) = dO(n)(P,Q∗) and the log-
arithm log[P ]([Q]) = P log(P�Q∗), according to [2, Prop. 5.1.3 & Def. 5.1.6 ].
Moreover, [12, Thm. 4 ] ensures that such an alignment always exists on flag
manifolds. Hence we get an approach to the computation of the Riemannian log-
arithm that leverages more information than classical optimization algorithms
solving the geodesic endpoint problem, because it takes into consideration the
homogeneous quotient space structure of flag manifolds, and takes advantage of
the results that already exist on the top space O(n). Notably, even if the pro-
posed algorithm does not converge, one still has a way to interpolate between
two flags using the logarithm in O(n). Just like the geodesic endpoint problem,
the alignment problem (6) does not have either an analytic solution, to the best
of our knowledge. However, the embedding of O(n) in R

n×n raises the natural
idea of relaxing the problem and working with the Frobenius metric.

3.1 Relaxing Orthogonal to Frobenius Distance

Definition 3 (O(I) Procrustes Problem on Flag Manifolds). Let P,Q ∈
O(n). We define the O(I)-constrained Procrustes problem on flag manifolds as

argmin
R∈O(I)

‖P − QR‖2F . (7)

This name refers to the celebrated orthogonal Procrustes problem [11], which
also involves the minimization of a Frobenius distance on an orthogonal group.
Here, our optimization problem is constrained to the isotropy subgroup O(I) of
flag manifolds in O(n). We now give the main result of the paper.

Theorem 2 (O(I) Procrustes Solution on Flag Manifolds).
Let P := [P1| . . . |Pr], Q := [Q1| . . . |Qr] ∈ O(n) and let us write the SVDs
P�

i Qi := UiΣiV
�
i (i = 1 . . r), with Ui, Vi ∈ O(ni) and Σi ∈ diag

(
R

ni

≥0

)
.

A solution R∗ = diag (R∗
1, . . . , R

∗
r) ∈ O(I) to the O(I)-constrained Procrustes

problem on flag manifolds (7) is given by

R∗
i = UiV

�
i (i = 1 . . r) . (8)

The uniqueness is conditioned on the uniqueness of the SVD.

Proof. We can show that this O(I) Procrustes problem is equivalent to the
independent resolution of classical orthogonal Procrustes problem [11], i.e.

min
R∈O(I)

‖P − QR‖2F =
r∑

i=1

min
Ri∈O(ni)

‖Pi − QiRi‖2F .

�
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Fig. 2. The flag alignment Algorithm 1 and a conceptual visualization. The point
Q moves in its equivalence class [Q] at each iteration, with the aim that the O(n)
logarithm PXt becomes horizontal.

3.2 Introducing O(I) Procrustes into an Existing Algorithm

An algorithm to compute the Riemannian logarithm and distance on flag mani-
folds is proposed in [4, Alg. 1 ]. This algorithm takes as inputs two special orthog-
onal matrices P,Q ∈ SO(n). It aims at finding a horizontal vector H ∈ Hor(I)
and a vertical vector V ∈ Ver(I) such that one can write Q = P exp(H) exp(V ).
It is based on iterated alternating projections on the horizontal and vertical
spaces. One important drawback of this method is that it implicitly assumes
that the endpoint Q is in the same connected component in O(I) as the hor-
izontally aligned point Qaligned = P exp(H), which is generally not the case.
The authors highlight this drawback and explain that the algorithm is actually
working on fully oriented flag manifolds SO(n)/ (SO(n1) × · · · × SO(nr)). To
overcome this issue, they first create 2r−1 “equivalents” of the endpoint Q in all
the connected components, then run 2r−1 times their algorithm, and finally take
the best outcome among the different runs.

In this work, we take advantage of our new result (Theorem 2), which gives
a global minimum on the whole isotropy group O(I), to overcome this draw-
back. We reinterpret [4, Alg. 1 ] as an alignment problem on flag manifolds and
introduce O(I) Procrustes alignment both in the initialization and as a substi-
tute for the vertical projection step onto o(I). The algorithm and a conceptual
visualization of it are given in Fig. 2.

4 Numerical Experiments

We now evaluate and compare Algorithm 1 to the alternating projections algo-
rithm proposed in [4], run on all the connected components of O(I). The general
evaluation process is as follows. First we generate an orthogonal matrix P drawn
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Table 1. Evaluation of Algorithm 1 and [4] on Flag(1, 2, 2, 15, 80) averaged over 10
experiments, for different geodesic distances (from top to bottom: π

5
, π

2
, π).

π
5
/ π

2
/π endpoint error distance error horizontal error # iter time

Alg. 1 (4.0±.55) × 10−7 (6.7±1.6) × 10−14 (2.9±.40) × 10−7 (1.0±0.0) (5.4±.22) × 10−2

[4] (2.2±2.2) × 10−6 (7.8±14.) × 10−12 (2.6±2.2) × 10−6 (6.1±1.4) (2.8±.14) × 10+1

Alg. 1 (5.8±3.5) × 10−6 (7.8±6.2) × 10−12 (4.5±2.7) × 10−6 (2.4±.49) (1.0±.17) × 10−1

[4] (9.0±12.) × 10−1 (1.9±2.4) × 10−01 (1.0±1.4) × 10+0 (10.±0.0) (3.1±.12) × 10+1

Alg. 1 (9.8±2.9) × 10−6 (1.5±.90) × 10−11 (1.3±.41) × 10−5 (9.9±.30) (3.4±.22) × 10−1

[4] (7.6±3.2) × 10+0 (1.3±.56) × 10+00 (7.1±2.2) × 10+0 (10.±0.0) (3.0±.04) × 10+1

from a uniform distribution on O(n). Second we generate H ∈ Hor(I) drawn
from a uniform distribution (with a specified norm 1

2‖H‖F ∈ {
π
5 , π

2 , π
}
) and get

the aligned endpoint Qaligned = P exp(H). Third we generate R ∈ O(I) drawn
from a uniform distribution and get the endpoint Q = P exp(H)R. We run both
algorithms with a maximal number of iterations of 10, and repeat the experiment
10 times independently, each time outputting an optimal horizontal vector H∗.
The evaluation metrics are: endpoint error (‖ΠGr(I)(P exp(H∗))−ΠGr(I)(Q)‖F ),
distance error ( 12 |‖H∗‖F − ‖H‖F |), horizontal error (12 ‖H∗ − H‖F ), number of
iterations and computing time. The results are reported in Table 1 and the asso-
ciated learning curves are illustrated in Fig. 3.

It is clear that the introduction of O(I) Procrustes alignment as an initializa-
tion and a substitute for the vertical projection drastically improves [4, Alg. 1 ],
in terms of accuracy, speed and radius of convergence, on all the evaluation met-
rics, as well as overcomes the difficulty of non-connectedness of the orbits. The
difference of computing time is particularly important, because Algorithm 1 does
not require to try all the connected components of O(I) and converges faster.

Fig. 3. Evolution of the endpoint errors along the iterations for different shooting
vector lengths 1

2
‖H‖F ∈ {

π
5
, π
2
, π

}
. Solid: Algorithm 1, Dashed: [4].
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5 Conclusion and Perspectives

In this work, we first gave a quick overview on the state of research in flag mani-
folds logarithm and distance. Then, rethinking the geodesic endpoint problem as
an alignment problem, we proposed a relaxed solution involving orthogonal Pro-
crustes analysis. Finally, we showed how introducing it into [4, Alg. 1 ] drastically
improves its accuracy, speed and radius of convergence, as well as overcomes the
combinatorial drawback of working on fully oriented flag manifolds. The code is
available on GitHub1.

In future work, we could first improve the computational efficiency of the
algorithm, by using linear algebra tricks like the 2k Embedding of [3, Thm. 1 ].
Second we could investigate the convergence properties of our algorithm, by
understanding the link between the alignment of the target point on the target
orbit and the gradient of the geodesic endpoint problem.
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Abstract. In several situations in differential geometry, one can be
interested in determining all inner products on a vector space that are
invariant under a given group action. For example, bi-invariant Rieman-
nian metrics on a Lie group G are characterized by Ad(G)-invariant
inner products on the Lie algebra g. Analogously, G-invariant Rieman-
nian metrics on a homogeneous space M = G/H are characterized by
Ad(H)-invariant inner products on the tangent space THM. In addi-
tion, given a G-equivariant diffeomorphism between a manifold M and a
Euclidean space V , G-invariant log-Euclidean metrics can be defined on
M by pullback of G-invariant inner products on V . There exists a gen-
eral procedure based on representation theory to find all invariant inner
products on a completely reducible Hermitian space. It consists in chang-
ing the viewpoint from invariant inner products to equivariant automor-
phisms. The goal of this work is to diffuse this method to communities of
applied mathematics which use differential geometry. Therefore, in this
work, we recall this general method that we did not find elsewhere, along
with an elementary presentation of the basics of representation theory.

Keywords: Invariant inner product · Invariant Riemannian metric ·
Group action · Representation theory

1 Introduction

When one looks for appropriate metrics on a given space representing some
data, it is natural to require them to be invariant under a certain group action.
For example, when data are represented by Symmetric Positive Definite (SPD)
matrices, one can use Riemannian metrics that are invariant under the congru-
ence action of the general linear group (affine-invariant metrics [3,8,9,12,13,15]),
the orthogonal group [18] (e.g. log-Euclidean [1], Bures-Wasserstein [4,7,10,16],
Bogoliubov-Kubo-Mori metrics [11,14]), the group of positive diagonal matrices
[5,6,17], the permutation group. In several situations, the question of finding all
G-invariant Riemannian metrics on a manifold reduces to finding all H-invariant
inner products on a vector space where H is a Lie subgroup of G. For example,
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bi-invariant metrics (or pseudo-metrics) on a Lie group G are characterized by
Ad(G)-invariant inner products (or non-degenerate symmetric bilinear forms)
on its Lie algebra g. On a homogeneous space M = G/H, G-invariant met-
rics are characterized by Ad(H)-invariant inner products on the tangent space
m = THM at the equivalence class H ∈ G/H.

Another frequent case is when the manifold M is diffeomorphic to a vec-
tor space V . For example, the cone of SPD matrices is diffeomorphic to the
vector space of symmetric matrices by the symmetric matrix logarithm log :
Sym+(n) −→ Sym(n). Similarly, the elliptope of full-rank correlation matrices
Cor+(n) is diffeomorphic to a vector space of dimension n(n−1)

2 . Hence, given a G-
equivariant diffeomorphism φ : M −→ V between the manifold M and a vector
space V , the G-invariant inner products on V provide natural flat G-invariant
Riemannian metrics on M by pullback. These three examples of bi-invariant
metrics on Lie groups, Riemannian homogeneous manifolds and “Euclideanized”
manifolds motivate to find all G-invariant inner products on a vector space V .
Indeed, if one wants to impose an invariance on a space, this requirement defines
a family of metrics in general, rarely a unique metric. Therefore, there is no rea-
son a priori to distinguish between all the metrics that satisfy this requirement.
Then, it is possible to reduce the choice by requiring other invariance or con-
straints, or to optimize within the family in function of the data for example.

To answer this question, the central notion is the reducibility or irreducibility
of a vector space under a group action. We say that V is G-irreducible when
there is no other subvector space than {0} and V that is stable under the action
of G. It can easily be proved that inner products on an irreducible space are
positive scalings of one another. Hence, when V is completely reducible, i.e. V
can be expressed into a direct sum of irreducible subspaces, then any positive
linear combination of inner products on each irreducible subspace is an invariant
inner product. For example, if G = {−1, 1} × {−1, 1} acts on V = R

2 = R ⊕ R

component by component, then one can easily check that all G-invariant inner
products are given by ϕ((x, y), (x, y)) = αx2 + βy2 with α, β > 0.

However, there are other invariant inner products in general. Take another
example where G = {−1, 1} acts on V = R

2 = R⊕R globally. It is clear that all
the G-invariant inner products are given by ϕ((x, y), (x, y)) = αx2 +2γxy +βx2

with α, β > 0 and αβ > γ2. In the first example, G acts differently on each
copy of R: for example (1,−1) · (x, y) = (x,−y). In the second example, G acts
identically on each copy of R, they are indistinguishable with respect to the
action. This is why another coefficient is allowed between the two components.
Therefore, in the irreducible decomposition, one has to group all the irreducible
spaces on which G acts the same way to find all G-invariant inner products.
That is what we is summarized in Theorem 1.

In this work, we assume that V is a complex vector space. We also assume that
we know a G-invariant inner product on V and that V is completely reducible,
i.e. there exists an irreducible decomposition of V . This is the case when G is
finite [2, Maschke’s Theorem 10.2.10] and also when the group action is unitary
and continuous [2, Corollary 10.3.5]. In particular, when G is finite or compact,
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it is well known that one can find one G-invariant inner product by taking any
inner product and averaging over G with the counting measure or the Haar
measure μ: 〈x|y〉 := 1

|G|
∑

a∈G ax ·ay or
∫

G
(ax ·ay)μ(da). So the two hypotheses

are automatically satisfied when G is finite or when G is compact and the action
is continuous.

Our method relies on basic representation theory. Indeed, any G-invariant
inner product on V is characterized, via the given inner product 〈·|·〉, by a G-
invariant automorphism of V . Then, representation theory allows to find the
general form of this automorphism, hence the general form of G-invariant inner
products on V . Note that this characterization of invariant inner products is
well known in algebra although we could not find it explicitly in the references
we read. Yet, it seems to be much less known in the communities of applied
mathematics which use differential geometry, although it seems quite useful.
That is why we present it with the fewest details on representation theory.

2 Preliminaries on Representation Theory

2.1 Vocabulary of Representation Theory

The following terminology is neither unique in representation theory nor exclu-
sive to this branch of mathematics. We use the term “module” for simplicity, in
reference to “G-module” which is frequent.

Definition 1 (Vocabulary of representation theory). Let G be a group
with neutral element e, and V be a complex vector space of finite dimension.

• A representation of G on V is a group homomorphism ρ : G −→ GL(V ). It
is equivalent to a linear group action of G on V , i.e. a map ρ : G × V −→ V
such that for all a, b ∈ G and all x ∈ V , ρ(a, ρ(b, x)) = ρ(ab, x), ρ(e, x) = x
and ρa : x ∈ V �−→ ρ(a, x) ∈ V is linear.

• In this work, a (G-)module will designate a vector space V on which G acts
linearly and continuously via ρ : G × V −→ V .

• A submodule of V is a ρ-stable subvector space of V .
• A module homomorphism (resp. endomorphism, isomorphism, automorphism)
is a ρ-equivariant linear map (resp. endormorphism, isomorphism, automor-
phism) between modules. Given modules V, V ′, we denote V � V ′ when there
exists a module isomorphism from V to V ′ and we say that V and V ′ are
isomorphic modules.

• A module V is irreducible if it has no other submodules than {0} and V .
Otherwise, it is reducible.

• A module V is completely reducible if it is the direct sum of irreducible modules.

From now on, let (V, 〈·|·〉) be a Hermitian space (i.e. a complex vector space
of finite dimension endowed with an inner product), V 	= {0}. We denote ‖ · ‖
the associated norm. The set U(V ) = {f ∈ GL(V )|∀x ∈ V, ‖f(x)‖ = ‖x‖} is the
subgroup of isometries of GL(V ). Let ρ : G −→ U(V ) be a representation of a
group G acting isometrically on V .
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We assume that V is completely reducible. For example, this is the case when
G is finite [2, Maschke’s Theorem 10.2.10] or when ρ is unitary and continuous
[2, Corollary 10.3.5].

Note that if W is a submodule of V , then W⊥ (where orthogonality refers
to the inner product 〈·|·〉) is also a submodule of V . Indeed, if x ∈ W⊥ and
a ∈ G, then for all y ∈ W , ρ(a−1)(y) ∈ W because W is a module so
〈ρ(a)(x)|y〉 = 〈x|ρ(a−1)(y)〉 = 0, so ρ(a)(x) ∈ W⊥. Therefore, we can assume
that the decomposition of V into irreducible submodules is orthogonal.

2.2 The Big Picture

We split the method into three steps:

1. Transform the problem of finding all ρ-invariant inner products on V into
finding all ρ-equivariant automorphisms of V .

Let ϕ be an inner product on V . We recall the musical isomorphisms of ϕ:
• “Flat” �ϕ : x ∈ V �−→ ϕ(x, ·) ∈ V ∗ which is a linear isomorphism by the

Riesz representation theorem,
• “Sharp” #ϕ = �−1

ϕ : V ∗ −→ V the inverse linear isomorphism.
We denote � = �〈·|·〉 and # = #〈·|·〉. Then ϕ is a ρ-invariant inner product on
V if and only if fϕ := # ◦ �ϕ : V −→ V is a ρ-equivariant automorphism of
V . We retrieve ϕ from f := fϕ by ϕ(x, y) = 〈f(x)|y〉 for all x, y ∈ V .

The core of the method is to determine the general form of f .

2. Find all ρ-equivariant automorphisms of V using representation theory.
3. Go back to the initial problem.

Before the general case (V completely reducible), it is natural to start with
the particular case where V is irreducible (Sect. 3.1). Then, we explain why the
general case does not reduce to the irreducible case but only to an intermediate
case (Sect. 3.2). Therefore, we treat this intermediate case (Sect. 3.3) and we
conclude with the general case (Sect. 3.4).

3 Find All Equivariant Automorphisms

3.1 The Particular Case: V Irreducible

We start with the simplest case where V is irreducible. The key result to char-
acterize all ρ-equivariant automorphisms of V is Schur’s lemma.

Lemma 1 [2, Schur’s Lemma 10.7.6]. Let V,W be irreducible modules.

1. A module homomorphism f : V −→ W is either null or a module isomor-
phism.

2. A module endomorphism f : V −→ V is a scaling, i.e. there exists α ∈ C

such that f = α IdV .
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Indeed, the first statement holds because f(V ) is a submodule of W so
f(V ) = {0} or W and ker(f) is a submodule of V so ker(f) = V or {0}.
The second statement holds because if α ∈ C is an eigenvalue of f – it exists
because C is algebraically closed –, then f − α IdV is not a module isomorphism
so it is null by the first statement.

As a consequence, if V is an irreducible module, then:

• Module automorphisms on V are the non null scalings.
• Module isomorphisms between V and an irreducible module W are unique

up to scaling. Indeed, if f, f0 : V −→ W are module isomorphisms, then
f−1
0 ◦ f : V −→ V is a scaling, i.e. there exists α ∈ C

∗ such that f = αf0.
• The ρ-invariant inner products on V are positive multiples of 〈·|·〉.

3.2 The General Case Does Not Reduce to the Previous Case

We continue with the case where V is completely reducible. Therefore, let

V1, ..., Vm be irreducible submodules of V such that V = V1

⊥⊕ · · · ⊥⊕ Vm. From
the previous case, it is clear that the map f : x = x1 + · · · + xm ∈ V �−→
α1x1 + · · · + αmxm ∈ V with α1, ..., αm ∈ C

∗ is a module automorphism of V .
The question is: are they the only ones? The answer is no and the following
consequence of Schur’s lemma allows to explain precisely why.

Lemma 2 (Consequence of Schur’s lemma on the irreducible decom-
position) . We group V1, ..., Vm by classes C1, ..., Cp of isomorphic irreducible

modules. The decomposition becomes V = V1
⊥⊕· · · ⊥⊕Vp with Vk =

⊥⊕
Vi∈CkVi. Let

f : V −→ V be a module automorphism. Then f(Vk) = Vk for all k ∈ {1, ..., p}.
Proof. For i, j ∈ {1, ...,m}, let fij = projVj

◦ f|Vi
: Vi −→ Vj . Let k ∈ {1, ..., p}

and let i ∈ {1, ..., n} such that Vi ∈ Ck. By Schur’s lemma, for all j ∈ {1, ..., n},
fij is null or it is an isomorphism. Since f is an isomorphism, there exists j ∈
{1, ...,m} such that fij is non null, thus an isomorphism. Hence Vj ∈ Ck so
Vj ⊆ Vk. Therefore, f(Vi) = Vj ⊆ Vk. This inclusion is valid for all Vi ∈ Ck so
f(Vk) ⊆ Vk and f(Vk) = Vk by equality of dimensions because f is bijective.

In other words, the study of ρ-invariant automorphisms of V cannot be
reduced to the Vi’s but only to the Vk’s: there is no reason that f(Vi) = Vi

for all i ∈ {1, ...,m} (unless all classes are singletons). So we need to study the
case V = V � mW with W irreducible, where mW is a notation for the direct
sum of m irreducible modules isomorphic to W .

3.3 The Intermediate Case: V � mW with W Irreducible

We assume that V = V1

⊥⊕ · · · ⊥⊕ Vm where V1 � · · · � Vm are isomorphic irre-
ducible modules. Let W be an irreducible module isomorphic to them, endowed
with a G-invariant inner product (·|·). Let ψi : Vi −→ W be the unique module
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isomorphism which is an isometry. Indeed, the module isomorphism is unique
up to scaling and the pullback of the inner product (·|·) onto Vi is necessarily a
scaling of the restriction of 〈·|·〉 to Vi so there is a unique choice of ψi such that
it is an isometry. For example, W can be taken as one of the Vi’s.

Let f be a module automorphism of V . We define the module endomorphisms
fij = ψj ◦projVj

◦f ◦ψ−1
i : W −→ W . By Schur’s lemma, they are scalings: there

exists Sij ∈ C such that fij = SijIdW . This defines a matrix S = (Sij)1�i,j�m ∈
Matm(C). Then, f writes:

f(x) = (IdV ◦ f)(x) =

⎛

⎝
m∑

j=1

projVj

⎞

⎠ ◦ f

(
m∑

i=1

xi

)

=
m∑

i=1

m∑

j=1

(projVj
◦ f)(xi)

=
m∑

i=1

m∑

j=1

(ψ−1
j ◦ fij ◦ ψi)(xi) =

m∑

i=1

m∑

j=1

Sij ψ−1
j ◦ ψi(xi). (1)

When f comes from an inner product ϕ as explained in Sect. 2.2, we have for
all x, y ∈ V :

ϕ(x, y) = 〈f(x)|y〉 =
m∑

i=1

m∑

j=1

Sij〈ψ−1
j ◦ ψi(xi)|yj〉 =

m∑

i=1

m∑

j=1

Sij(ψi(xi)|ψj(yj)),

because the Vi’s are orthogonal and ψj : (Vj , 〈·|·〉) −→ (W, (·|·)) is an isom-
etry. This implies that S is Hermitian Positive Definite (HPD). Indeed, let
w ∈ W\{0}, a ∈ R

m and x =
∑k

i=1 aiψ
−1
i (w). Then:

• if a = (1, ..., 1), then ϕ(xi, xj) = Sij‖w‖2 and by conjugate symmetry of ϕ,
we have ϕ(xi, xj) = ϕ(xj , xi) = Sji‖w‖2 so Sij = Sji,

• we have ϕ(x, x) =
∑

i,j Sijaiaj‖w‖2 so for all a ∈ R
m\{0}, we have∑

i,j Sijaiaj > 0.

Conversely, if S is Hermitian positive definite, then ϕ(x, y) = 〈f(x)|y〉 defines
an inner product. It is clearly conjugate symmetric and if x 	= 0, there exists
w ∈ W\{0} and a ∈ R

m\{0} such that x =
∑k

i=1 aiψ
−1
i (w) so the equality

above proves that ϕ(x, x) > 0 (for the existence of w and a, take i ∈ {1, ..., p}
such that xi 	= 0 and define w = ψi(xi) and aj = ψj(xj)

ψi(xi)
for j ∈ {1, ...,m}).

So f is a module isomorphism of V = V1

⊥⊕· · · ⊥⊕Vm if and only if there exists
a Hermitian positive definite matrix S ∈ Matm(C) such that f writes as in Eq.
(1). Now we have all the ingredients to state the global result.

3.4 The General Case: V Completely Reducible

Theorem 1 (General form of a ρ-invariant inner product on V ). Let
V =

⊕p
k=1 Vk, with Vk =

⊕mk

i=1 V k
i , be an orthogonal decomposition where V k

1 �
· · · � V k

mk
are irreducible modules. For all k ∈ {1, ..., p}, let (W k, (·|·)k) be a

Hermitian space and ψk
i : V k

i −→ W k be the unique module isomorphism which
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is an isometry. Then, an inner product ϕ on V is ρ-invariant if and only if
there exist p HPD matrices Sk ∈ Matmk

(C) for k ∈ {1, ..., p} such that for all
x =

∑p
k=1

∑mk

i=1 xk
i ∈ V and y =

∑p
k=1

∑mk

i=1 yk
i ∈ V :

ϕ(x, y) =
p∑

k=1

∑

1�i,j�mk

Sk
ij(ψ

k
i (xk

i )|ψk
j (yk

j ))k. (2)

The number of parameters is
∑p

k=1 m2
k and the number of positivity constraints

is
∑p

k=1 mk.

Proof. We assemble the pieces of demonstration of the previous sections
together. Let ϕ be a ρ-invariant inner product on V . Then, the map f = #◦ �ϕ :
V −→ V is a module automorphism (Sect. 2.2). Hence for all k ∈ {1, ..., p},
f(Vk) = Vk (Sect. 3.2). Therefore, there exists an HPD matrix Sk ∈ Matmk

(C)
such that for all xk, yk ∈ Vk, 〈f(xk)|yk〉 =

∑mk

i=1

∑mk

j=1 Sk
ij(ψ

k
i (xk

i )|ψk
j (yk

j ))k

(Sect. 3.3). Hence, the inner product ϕ writes:

ϕ(x, y) = 〈f(x)|y〉 =
p∑

k=1

〈f(xk)|yk〉 =
p∑

k=1

mk∑

i=1

mk∑

j=1

Sk
ij(ψ

k
i (xk

i )|ψk
j (yk

j ))k. (3)

Conversely, this bilinear form is an inner product since it is the sum of inner prod-
ucts on the Vk’s (Sect. 3.3) which are supplementary. It is ρ-invariant because
the orthogonal projections are equivariant (because 〈·|·〉 is invariant), the ψi’s
are equivariant and the inner products (·|·)k are invariant. So this bilinear form
is a ρ-invariant inner product on V .

Note that the choice of the inner product (·|·)k on W k instead of λ(·|·)k

with λ > 0 does not affect the general form of the inner product: it suffices
to replace Sk by λSk. Neither does the choice of the isometric parameterization
ψk

i : (V k
i , 〈·|·〉) −→ (W k, (·|·)k) instead of λiψ

k
i with λi > 0 for all i ∈ {1, ...,mk}:

it suffices to replace Sk by ΛSkΛ where Λ = Diag(λ1, ..., λmk
).

4 Conclusion

We formalized a general method to determine all G-invariant inner products on
a completely reducible Hermitian space V . Beyond linear algebra, this charac-
terization is interesting when one wants to characterize invariant Riemannian
metrics on Lie groups and homogeneous spaces. The characterization is also
interesting when there exists a global diffeomorphism from a manifold to a vec-
tor space, such as for symmetric positive definite matrices or full-rank correlation
matrices.

An important challenge is to adapt this method to real vector spaces. More-
over, since this method is based on representation theory, it would be interesting
to investigate non-linear methods to characterize invariant Riemannian metrics
on manifolds when this problem does not reduce to a linear problem.

Acknowledgements. The authors would like to thank the anonymous reviewers for
their careful proofreading of this manuscript.
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Abstract. In estimation theory, the Kushner equation provides the evo-
lution of the probability density of the state of a dynamical system given
continuous-time observations. Building upon our recent work, we pro-
pose a new way to approximate the solution of the Kushner equation
through tractable variational Gaussian approximations of two proximal
losses associated with the propagation and Bayesian update of the prob-
ability density. The first is a proximal loss based on the Wasserstein
metric and the second is a proximal loss based on the Fisher metric.
The solution to this last proximal loss is given by implicit updates on
the mean and covariance that we proposed earlier. These two variational
updates can be fused and shown to satisfy a set of stochastic differential
equations on the Gaussian’s mean and covariance matrix. This Gaussian
flow is consistent with the Kalman-Bucy and Riccati flows in the linear
case and generalize them in the nonlinear one.

Keywords: filtering · variational inference · information geometry ·
optimal transport

1 Introduction

We consider the general filtering problem where we aim to estimate the state xt

of a continuous-time stochastic system given noisy observations yt. If the state
follows a Langevin dynamic f = −∇V with V a potential function and the
observations occur continuously in time, the problem can be described by two
stochastic differential equations (SDE) on xt and zt, where zt is related to the
observation by the equation dzt = ytdt:

dxt = −∇V (xt)dt +
√
2εdβ (1)

dzt = h(xt)dt +
√

Rdη. (2)

β and η are independent Wiener processes and Q = 2εI and R play the role
of covariance matrices of the associated diffusion processes. Many dynamical
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
F. Nielsen and F. Barbaresco (Eds.): GSI 2023, LNCS 14071, pp. 395–404, 2023.
https://doi.org/10.1007/978-3-031-38271-0_39
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systems can be rewritten in the Langevin canonical form (1), see for instance
[6]. In essence (2) means “yt = h(xt) + noise”, but one has to resort to (2) to
avoid problems related to infinitely many observations. The optimal Bayesian
filter corresponds to the conditional probability pt of the state at time t given
all past observations. This probability satisfies the Kushner equations which can
be split into two parts:

dpt = L(pt)dt + dH(pt), (3)

where L is defined by the Fokker-Planck partial differential equation (PDE)

L(pt) = div[∇V pt] + εΔpt, (4)

whereas the second term corresponds to the Kushner stochastic PDE (SPDE):

dH(pt) = (h − Ept
[h])T R−1(dzt − Ept

[h]dt)pt,

where Ept
[h] :=

∫
h(x)pt(x)dx and stochasticity comes from dzt. These equations

cannot be solved in the general case, and we must resort to approximation. In
this paper, we consider variational Gaussian approximation, which consists in
searching for the Gaussian distribution qt closest to the optimal one pt for a
particular variational loss. Two variational losses are well suited for our problem.

Jordan-Kinderlehrer-Otto (JKO) [9] showed that the following proximal
scheme:

argmin Lδt(p) = argmin
[

KL
(
p
∣
∣
∣
∣
∣
∣π

)
+

1
2δt

d2w(pt, p)
]

, (JKO) (5)

is related to the Fokker-Planck (FP) equation associated to (1) where we denote
its stationary distribution π ∝ exp(−V/ε). Indeed, iterating this proximal algo-
rithm yields a curve being solution to FP as δt → 0. It is referred to as varia-
tional since it is an optimization problem over the function p, and it involves the
Kullback-Leibler divergence defined by KL(p||π) =

∫
p log p

π , and the Wasser-
stein (or optimal transport) distance d2w(pt, p) [2].

The variational loss associated to the Kushner PDE is the Laugesen-Mehta-
Meyn-Raginsky (LMMR) proximal scheme [14] defined by:

argmin Hδt(p) = argmin
[

Ep
1
2
||δzt − h(x)δt||2(Rδt)−1 + KL(p||pt)

]

, (LMMR)

(6)

where δzt := zt+δt − zt comes from the Euler-Marayama discretization of the
observation SDE: δzt = h(xt)δt +

√
Rδη such that p(δzt|xt) = N (h(xt)δt, Rδt).

For small δt those schemes generate a sequence of probability distributions
that converge to the solutions of the corresponding PDE in the limit δt → 0. We
see the KLs in both schemes play a different role, though. In (5), the proximal
scheme shows that the solution to the FP equation follows a gradient of the
KL to the stationary distribution π. This gradient is computed with respect to
the Wasserstein metric. In (6), the proximal scheme defines a gradient over the
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state prediction p of the expected prediction error. This gradient is computed in
the sense of the metric defined by the KL around its null value, which may be
related to the Fisher metric.

To approximate the solutions, we propose to constrain them to lie in the space
of Gaussian distributions. That can be done by constraining in the proximal
schemes the general distribution pt to be a Gaussian distribution qt = N (μ, P ).
The proximal problems become finite-dimensional and boil down to minimizing
Lδt and Hδt over (μ, P ). The Gaussian approximation of the JKO scheme yields
in the limit a set of ODEs on μ and P as shown in [13]. In this paper, we extend
these results showing the Gaussian solution to the LMMR scheme corresponds
to the R-VGA solution [11] which yields in the limit a set of SDEs on μ and P .
Moreover, using a two-step approach, we can fuse the two Gaussian solutions to
approximate the Kushner equation (3). As shall be shown presently, we find the
following SDEs for μ and P :

The fully continuous-time variational Kalman filter
dμt = btdt + PtdCt

dPt = AtPtdt + PtA
T
t dt +

1
2
dHtPt +

1
2
PtdHT

t + 2εIdt

where bt = −Eqt
[∇V (x)]; dCt = Eqt

[∇h(xt)T R−1(dzt − h(xt)dt)]

At = −Eqt
[∇2 V (x)]; dHt = Eqt

[(xt − μt)(dzt − h(xt)dt)T R−1∇h(xt)].

(7)

The equation for Pt can be seen as a generalization of the Riccati equation in the
nonlinear case. Indeed, if we replace V and h with linear functions, the ODE on
Pt matches the Riccati equations and we recover the Kalman-Bucy filter, known
to solve exactly the Kushner equations.

This paper is organized as follows: Sect. 2 is dedicated to related works on the
approximation of the optimal nonlinear filter. In Sect. 3 we derive the variational
Gaussian approximation of the LMMR scheme. In Sect. 4 we recall the variational
Gaussian approximation of the JKO scheme proposed in our previous work.
In Sect. 5 we combine these two results to obtain the Continuous Variational
Kalman filter equations and show the equivalence with the Kalman-Bucy filter
in the linear case.

2 Related Works

In 1967, Kushner proposed a Gaussian assumed density filter to solve his PDE
[10]. This filter is derived by keeping only the first two moments of pt in (3) which
can be computed in closed form using the Ito formula. These moments involve
integrals under the unknown distribution pt and the heuristic is to integrate
them rather on the current Gaussian approximation qt leading to a recursive
scheme. A more rigorous way to do this approximation was proposed later [4,8]
with the projected filter. In this approach, the solution of the Kushner PDE is
projected onto the tangent space to Gaussian distributions equipped with the
Fisher information metric. This leads to ODEs that are quite different from
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(7). A third approach is to linearize the stochastic dynamic process to obtain a
McKean Vlasov process that allows for Gaussian propagation [12, Sect. 4.1.1].
The connexion between approximated SDEs and projected filters was analyzed
in detail earlier in [3].

The latter approach is the one explored in the current paper, i.e., consider-
ing proximal schemes associated with the Kushner PDE where we constrain the
solution to be Gaussian. It is equivalent to projecting the exact gradient flow
onto the tangent space of the manifold of Gaussian distributions. This approach
is preferred since it exhibits the problem’s geometric structure and allows conver-
gence guarantees to be proven. Approximation of gradient flows is an active field
and several recent papers have followed this direction: the connexion between the
propagation part of the Gaussian assumed density filter and the variational JKO
scheme [9] was recently studied [13]; the connexion between the update part of
the Gaussian assumed density filter and the variational LMMR scheme [14] was
studied in [7] where a connexion with a gradient flow was first established but
limited to the linear case. To the best of our knowledge, the variational approx-
imation of the LMMR scheme in the nonlinear case has never been addressed.
The various ways to obtain the ODEs (7) lead to nice connexions between geo-
metric projection, constrained optimization, and statistical linearization. These
different approaches are illustrated in Fig. 1 which addresses only the approxi-
mation of dynamics (1) without measurements (i.e., propagation only) for which
all methods prove equivalent.

3 Variational Gaussian Approximation of the LMMR
Proximal

In this section, we compute the closest Gaussian solution to the LMMR prob-
lem (6). The corresponding Gaussian flow is closely related to natural gradient
descent used in information geometry. This flow approximates the Kushner opti-
mal filter when the state is static. In the next sections, we will generalize this
result to a dynamic state.

3.1 The Recursive Variational Gaussian Approximation

The proximal LMMR problem (6) where we constrain the solution q to be a
Gaussian reads (given qt a current Gaussian distribution at time t):

qt+δt = argmin
q∈N (μ,P )

Eq
1
2
||δzt − h(x)δt||2(Rδt)−1 + KL(q||qt) (8)

= argmin
q∈N (μ,P )

−
∫

q(x) log p(δzt|x)dx + KL(q||qt) (9)

= argmin
q∈N (μ,P )

KL

(

q
∣
∣
∣
∣
∣
∣
1
Z

p(δzt|x)qt

)

, (10)

where we have introduced a normalization constant Z which does not change
the problem.
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Fig. 1. Various equivalent approaches for Gaussian approximation of the SDE (1). We
denote π ∝ exp(−V/ε) as the stationary distribution of the associated Fokker-Planck
equation. The left column presents equivalent definitions of p whereas the right column
corresponds to the approximated solution q in the space of Gaussian distributions.
dw denotes the Wasserstein distance whereas dbw denotes the Bures-Wasserstein dis-
tance, which is its restriction to the subset of Gaussian distributions. At the last row,
the tangent vector δp, respectively (resp. δq) and the gradient ∇w (resp. ∇bw) are
defined with respect to the Wasserstein metric space of distribution

(P(Rd), d2
w

)
(resp.

the Bures-Wasserstein metric space of Gaussians
(N (Rd), d2

bw

)
). These geometries are

briefly explained in Sect. 4.2.

Equation (10) falls into the framework of variational Gaussian approximation
(R-VGA) [11]. The solution satisfies the following updates [11, Theorem 1]:

μt+δt = μt + PtEqt+δt
[∇x log p(δzt|x)]

P−1
t+δt = P−1

t − Eqt+δt
[∇2

x log p(δzt|x)],

where the expectations are under the Gaussian qt+δt ∼ N (μt+δt, Pt+δt) making
the updates implict. In the linear case, that is, if we take h(x) = Hx, these
updates are equivalent to the online Newton algorithm [11, Theorem 2]. Com-
puting the Hessian ∇2

x log p can be avoided using integration by part:

P−1
t+δt = P−1

t − P−1
t+δtEqt+δt

[(x − μt+δt)∇x log p(δzt|x)T ]
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By rearranging the terms and using that P is symmetric (see [12, Sect. 4.2]) we
can let appear an update on the covariance:

Pt+δt = Pt+
1

2
Eqt+δt [(x−μt)∇x log p(δzt|x)T ]Pt+

1

2
PtEqt+δt [∇x log p(δzt|x)(x−μt)

T ].

Finally, using that ∇x log p(δzt|x) = ∇h(x)T R−1(δzt − h(x)δt) we obtain:

μt+δt = μt + PtδCt, Pt+δt = Pt +
1
2
δHtPt +

1
2
PtδH

T
t , (11)

where:

δCt = Eqt+δt
[∇h(x)T R−1(δzt − h(x)δt)]

δHt = Eqt+δt
[(x − μt)(δzt − h(x)δt)T R−1∇h(x)].

Letting δt → 0, we obtain the following SDE in the sense of Ito:

dμt = PtdCt, dPt =
1
2
dHtPt +

1
2
PtdHT

t , (12)

where it shall be noted that dHt is non-deterministic owing to dzt. Since the
LMMR scheme has been proven to converge to the solution of the Kushner
SPDE [14], this SDE describes the best Gaussian approximation of the optimal
filter when the state is static.

3.2 Information Geometry Interpretation

We show here how the LMMR proximal scheme is related to the Fisher infor-
mation geometry in the general case. Let’s consider a family of densities: S ={

p(.|θ); θ ∈ Θ;Θ ⊆ R
m

}
and let F (θ) =

∫ ∇θ log p(x|θ)∇θ log p(x|θ)T p(x|θ)dx,
be the Fisher information matrix, where θ regroups all the parameters.

If we consider now the proximal LMMR on S, and if we use the second-order
Taylor expansion of the KL divergence between these two distributions, we have:

KL(p(x|θ)||p(x|θt)) =
1
2
(θ − θt)T F (θt)(θ − θt) + o((θ − θt)2).

Rather than minimizing the proximal LMMR scheme (6) in the infinite space of
distributions, we now search the minimum in the finite space of parameters:

θt+δt = argmin
θ∈Θ

Ep(x|θ)

[
1
2
||δzt − h(x)δt||2(Rδt)−1

]

+
1
2
(θ − θt)T F (θt)(θ − θt).

Considering that the minimum must cancel the gradient of the above proximal
loss, we obtain:

0 = ∇θ

(

Ep(x|θ)

[
1
2
||δzt − h(x)δt||2(Rδt)−1

])
∣
∣
θt+δt

+ F (θt)(θt+δt − θt)

θt+δt = θt − F (θt)−1∇θ

(
1
2
Ep(x|θ)

[
||δzt − h(x)δt||2(Rδt)−1

]) ∣
∣
θt+δt

, (13)
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which corresponds to a gradient descent of the averaged stochastic likelihood:

θt+δt = θt − F (θt)−1∇θEp(x|θ)[− log p(δzt|x)]
∣
∣
θt+δt

. (14)

Remarkably, the optimal filer equations with a static state x are given by an
implicit Bayesian variant of the natural gradient descent [1]. Indeed here x plays
the role of the parameter of the likelihood distribution. The original natural
gradient should be a descent with the gradient ∇x − log p(δzt|x)

∣
∣
xt

.

4 Variational Gaussian Approximation of the JKO
Proximal

The canonical Langevin form (1) assumes that the drift term f = −∇V derives
from a potential V . This potential has a physical meaning in filtering (consider
a gravity field for example). The evolution of the state in the filter mimics the
true evolution of the physical system. It’s not the case in statistical physics,
where the potential is constructed such that V = − log π where π is the asymp-
totic distribution of a variable x which doesn’t correspond to a physical system.
We used this property in our previous work [13] and simulated a dynamic to
approximate the target π with a Gaussian distribution. Here we do not want
to estimate a distribution but to propagate a Gaussian through the nonlinear
physical dynamic (1).

4.1 The Bures-JKO Proximal

The proximal JKO problem (5) where we constrained the solution q to be a
Gaussian distribution writes:

min
q∈N (μ,P )

KL
(
q
∣
∣
∣
∣
∣
∣π

)
+

1
2δt

dbw(q, qt)2,

where dbw(q, qt) is the Bures distance between two Gaussians given by:

dbw(q, qt) = ||μ − μt||2 + B2(P, Pt), (15)

where B2(P, Pt) = Tr(P + Pt − 2(P
1
2 PtP

1
2 )

1
2 ) is the squared Bures metric [5],

which has a derivative available in closed form. After some computation [13,
Appendix A] we can obtain implicit equations that the parameters of the optimal
Gaussian solution q must satisfy:

μt+δt = μt − δt.Eqt+δt
[∇V (x)]

Pt+δt = Pt − δt.Eqt+δt
[∇2 V (x)]Pt − δt.PtEqt+δt

[∇2 V (x)]T + 2εδt.I, (16)

and at the limit δt → 0, we obtain the following ODEs:

μ̇t = −Eqt
[∇V (x)] := bt (17)

Ṗt = AtPt + PtA
T
t + 2εI where At := −Eqt

[∇2 V (x)].
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4.2 Wasserstein Geometry Interpretation

The Wasserstein geometry is defined by the metric space of measure endowed
with the Wasserstein distance

(P(Rd), d2w
)
. The definition of a tangent vector in

this space is tedious because the measure μ must satisfy the conservation of mass∫
μ(x)dx = 1. To handle this constraint we can use the continuity equation. This

equation allows to represent any regular curves of measures with a continuous
flow along a vector field vt ∈ L

2. It is closely related to the Fokker-Planck
equation as we show now (see [2] for more details). The JKO proximal scheme
(5) gives a sequence of distribution that satisfies at the limit the Fokker-Planck
equation (4), this equation rewrites as follows:

ṗt = ∇.(∇V pt) + ε∇.∇pt = ∇.(∇V pt) + ε∇.(pt∇ log pt)
= ∇.(pt(∇V + ε∇ log pt)) = −div(ptvt), (18)

which is a continuity equation where vt ∈ L
2(Rd) plays the role of the tangent

vector δpt along the path pt and satisfies:

vt = −∇V − ε∇ log pt = −∇wKL(pt||π),

with π ∝ exp(−V/ε). The last equality comes from variational calculus in the
measure space: the Wasserstein gradient of a functional F is given by the Euclid-
ian gradient of the first variation ∇wF (ρ) = ∇δF (ρ), see [2, Chapter 10].

Let’s sum up what’s going on: starting from a stochastic state xt following
the Langevin dynamic (1) with drift −∇V , we have rewritten the Fokker-Planck
equation which describes the evolution of the density p(xt) as a continuity equa-
tion (18) where the diffusion term has disappeared. At this continuity equation
correspond a deterministic ODE ẋt = −∇wKL(pt||π). It’s a nice property of
the Wasserstein geometry where PDE can be described by a continuity equation
that corresponds to a simple gradient flow.

Following the same track, the sequence of Gaussian distributions satisfying
the ODE (17) correspond to a Wasserstein gradient flow given by the continuity
equation: q̇t = −div(qtwt), where wt = −∇bwKL(qt||π) is now a gradient with
respect to the Bures-Wasserstein distance (15), see [13, Appendix B3] for the
analytical expression of this gradient.

5 Variational Gaussian Approximation of the Kushner
Optimal Filter

We have tackled the two proximal problems independently but how to solve
them jointly? The simplest method to do so is to alternate between propagation
through dynamics (1) for a small time δt, and Bayesian update through LMMR
in the light of the accumulated observations δzt, and let δt → 0. This is what
we do presently.



Variational Gaussian Approximation of the Kushner Optimal Filter 403

5.1 The Continuous Variational Kalman Filter

Consider one step of the Euler-Maruyama method with length δt of SDEs (1)
and (2). As the Wiener processes β and η are independent, we may write:

p(xt, yt+δt, xt+δt) = p(yt+δt|xt+δt, xt)p(xt+δt, xt) = p(yt+δt|xt+δt)p(xt+δt|xt),

denoting yt+δt = δzt. In other words, we can solve the proximal LMMR update
Eq. (10) using as prior qt(x) = N (μt+δt|t, Pt+δt|t), the solution of the proximal
JKO. The LMMR/R-VGA discrete-time equations (11) then become:

μt+δt = μt+δt|t + Pt+δt|tδCt

Pt+δt = Pt+δt|t +
1
2
δHtPt+δt|t +

1
2
Pt+δt|tδHT

t .

Replacing μt+δt|t and Pt+δt|t by their expressions as the solutions to the JKO
scheme (16) and putting in a residual all the terms in δt2, we obtain:

μt+δt = μt + δtbt + PtδCt

Pt+δt = Pt + δtAtPt + δtPtA
T
t + δt2εI+

1
2
δHtPt +

1
2
PtδH

T
t + O(δt2).

By Ito calculus, we obtain the continuous variational Kalman updates (7).

5.2 The Kalman-Bucy Filter as a Particular Case

Let us consider the linear case where the SDEs (1) and (2) rewrite:

dxt = Fxtdt +
√
2εdβ, dzt = Gxtdt +

√
Rdη.

The various expectations that appear in the proposed filter (7) apply either to
quantities being independent of xt or being linear or quadratic in xt, yielding

dμt = Fμtdt + PtG
T R−1(dzt − Gμtdt)

d

dt
Pt = FPt + PtF

T − PtG
T R−1GPt + 2εI.

We see we exactly recover the celebrated Kalman-Bucy filter.

6 Conclusion

We have approximated the Kushner optimal filter by a Gaussian filter based
on variational approximations related to the JKO and LMMR proximal discrete
schemes related to the Wasserstein and Fisher geometry respectively. As the
dynamic and observation processes are assumed independent, we can mix the
two variational solutions to form a set of SDEs on the Gaussian parameters
generalizing the Riccati equations associated to the linear systems. In the linear
case, the proposed filter boils down to the Kalman-Bucy optimal filter. It is still
unclear, though, which global variational loss is minimized by the optimal filter.
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Abstract. Learning with symmetric positive definite (SPD) matrices
has many applications in machine learning. Consequently, understanding
the Riemannian geometry of SPD matrices has attracted much attention
lately. A particular Riemannian geometry of interest is the recently pro-
posed Bures-Wasserstein (BW) geometry which builds on the Wasser-
stein distance between the Gaussian densities. In this paper, we propose
a novel generalization of the BW geometry, which we call the GBW
geometry. The proposed generalization is parameterized by a symmet-
ric positive definite matrix M such that when M = I, we recover the
BW geometry. We provide a rigorous treatment to study various dif-
ferential geometric notions on the proposed novel generalized geometry
which makes it amenable to various machine learning applications. We
also present experiments that illustrate the efficacy of the proposed GBW
geometry over the BW geometry.

Keywords: Riemannian geometry · SPD matrices · Bures-Wasserstein

1 Introduction

Symmetric positive definite (SPD) matrices play a fundamental role in various
fields of machine learning, such as metric learning [21], signal processing [8],
sparse coding [9,17], computer vision [14,25], and medical imaging [24,29], etc.
The set of SPD matrices, denoted as S

n
++, is a subset of the Euclidean space

R
n(n+1)/2. To measure the (dis)similarity between SPD matrices, one needs to

assign a metric (an inner product structure on the tangent space) on S
n
++, which

yields a Riemannian manifold. Consequently, various Riemannian metrics have
been studied such as the affine-invariant [3,29], Log-Euclidean [2], and Log-
Cholesky [23] metrics, and those induced from symmetric divergences [33,34].
Different metrics lead to different differential structures on the SPD matrices,
and therefore, picking the “right” one depends on the application at hand. Indeed,
the choice of metric has profound effect on the performance of learning algo-
rithms [16,28,32].
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The Bures-Wasserstein (BW) metric and its geometry for SPD matrices have
lately gained popularity, especially in machine learning applications [4,26,36]
such as statistical optimal transport [4], computer graphics [31], neural sci-
ences [13], and evolutionary biology [10], among others. It also connects to
the theory of optimal transport and the L2-Wasserstein distance between zero-
centered Gaussian densities [4]. More recently, [16] analyzes the BW and the
affine-invariant (AI) geometries in SPD learning problems and compare their
advantages/disadvantages in various machine learning applications.

In this paper, we propose a natural generalization of the BW metric by
scaling SPD matrices with a given parameter SPD matrix M. The introduction
of M gives flexibility to the BW metric. Choosing M is equivalent to choosing
a suitable metric for learning tasks on SPD matrices. For example, a proper
choice of M can lead to faster convergence of algorithms for certain class of
optimization problems (see more discussions in Sect. 4). Indeed, when M = I,
the generalized metric reduces to the BW metric for SPD matrices. When M =
X, the proposed metric coincides locally with the AI metric, i.e., around the
neighbourhood of a SPD matrix X. The proposed generalized metric allows
to connect the BW and AI metrics (locally) with different choices of M. The
following are our contributions.

– We propose a novel generalized BW (GBW) metric by generalizing the Lya-
punov operation in the BW metric (Sect. 2). In addition, it can also be viewed
as a generalized Procrustes distance and also as the Wasserstein distance with
Mahalanobis cost metric for Gaussians.

– The GBW metric leads to a Riemannian geometry for SPD matrices. In
Sect. 3.1, we derive various Riemannian operations like geodesics, exponential
and logarithm maps, Levi-Civita connection. We show that they are also nat-
ural generalizations of operations with the BW geometry. Section 3.2 derives
Riemannian optimization ingredients under the proposed geometry.

– In Sect. 4, we show the usefulness of the GBW geometry in the applications
of covariance estimation and Gaussian mixture models.

2 Generalized Bures-Wasserstein Metric

The Bures-Wasserstein (BW) distance is defined as

dbw(X,Y) =
√
tr(X) + tr(Y) − 2tr(XY)1/2, (1)

where X and Y are SPD matrices, tr(X) denotes the matrix trace, and tr(X)1/2

denotes the trace of the matrix square root. It has been shown in [4,26] that the
BW distance (1) induces a Riemannian metric and geometry on the manifold of
SPD matrices. The BW metric that leads to the distance (1) is defined as

gbw(U,V) =
1
2
tr(LX[U]V) =

1
2
vec(U)�(X ⊗ I + I ⊗ X)−1vec(V), (2)
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where U,V on TXS
n
++ are the symmetric matrices and the Lyapunov operator

LX[U] is defined as the solution of the matrix equation XLX[U]+LX[U]X = U
for U ∈ S

n (which is the set of symmetric matrices of size n × n). Here, vec(U)
and vec(V) are the vectorization of matrices U and V, respectively, and ⊗
denotes the Kronecker product. Our proposed GBW metric generalizes (2) and
is parameterized by a given M ∈ S

n
++ as

ggbw(U,V) = 1
2 tr(LX,M[U]V) = 1

2vec(U)�(X ⊗ M + M ⊗ X)−1vec(V), (3)

where LX,M[U] is the generalized Lyapunov operator, defined as the solution to
the linear matrix equation XLX,M[U]M + MLX,M[U]X = U. Similar to the
special Lyapunov operator, the solution is symmetric given that X,M ∈ S

n
++

and U ∈ S
n. As we show later that the Riemannian distance associated with the

GBW metric is derived as

dgbw(X,Y) =
√
tr(M−1X) + tr(M−1Y) − 2tr(XM−1YM−1)1/2, (4)

which can be seen as the BW distance (1) between M−1/2XM−1/2 and M−1/2

YM−1/2. Note that the affine-invariant metric [3] is given by gai(U,V) =
vec(U)�(X ⊗ X)−1vec(V). Clearly, the proposed metric (3) coincides locally
with the affine-invariant (AI) metric when M = X, i.e., around the neighbour-
hood of X. (Implications of this observation are discussed later in experiments.)

Below, we show that the same GBW distance (4) is realized under vari-
ous contexts naturally. In those cases, the Euclidean norm, denoted by ‖ · ‖2
is replaced with the more general Mahalanobis norm defined as ‖X‖M−1 :=√

tr(X�M−1X).

Orthogonal Procrustes Problem: Any SPD matrix X ∈ S
n
++ can be fac-

torized as X = PP� for P ∈ M(n), the set of invertible matrices. Such
a factorization is invariant under the action of the orthogonal group O(n),
the set of orthogonal matrices. That is, for any O ∈ O(n), PO is also a
valid parameterization. In [4], the BW distance is verified as the extreme solu-
tion of the orthogonal Procrustes problem where P is set to be X1/2, i.e.,
dbw(X,Y) = minO∈O(n) ‖X1/2 − Y1/2O‖2. We can show that the GBW dis-
tance is obtained as the solution to the same orthogonal Procrustes problem in
the Mahalanobis norm parameterized by M−1.

Proposition 1. dgbw(X,Y) = minO∈O(n) ‖X1/2 − Y1/2O‖M−1 .

Wasserstein Distance and Optimal Transport: To demonstrate the con-
nection of the GBW distance to the Wasserstein distance, recall that the L2-
Wasserstein distance between two probability measures μ, ν with finite sec-
ond moments is W 2(μ, ν) = infx∼μ,y∼ν E‖x − y‖22 = infγ∼Γ (μ,ν)

∫
Rn×Rn ‖x −

y‖22dγ(x,y), where Γ (μ, ν) is the set of all probability measures with marginals
μ, ν. It is well known that the L2-Wasserstein distance between two zero-centered
Gaussian distributions is equal to the BW distance between their covariance
matrices [4,30,36]. The following proposition shows that the L2-Wasserstein dis-
tance between such measures with respect to a Mahalanobis cost metric (which
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we term as generalized Wasserstein distance) coincides with the GBW distance
in (4).

Proposition 2. Define the generalized Wasserstein distance as W̃ 2(μ, ν) :=
infx∼μ,y∼ν E‖x − y‖2M−1 , for any M−1 ∈ S

n
++. Suppose μ, ν are two Gaussian

measures with zero mean and covariances as X,Y ∈ S
n
++ respectively. Then, we

have W̃ 2(μ, ν) = d2gbw(X,Y).

Alternatively, the same distance is recovered by considering two scaled
random Gaussian vector M−1/2x,M−1/2y under the Euclidean distance, i.e.,
d2(X,Y) = infx∼μ,y∼ν E‖M−1/2x−M−1/2y‖22. For completeness, we also derive
the optimal transport plan corresponding to the GBW distance in our extended
report [15].

3 Generalized Bures-Wasserstein Riemannian Geometry

In this section, the geometry arising from the GBW metric (3) is shown to have a
Riemannian structure for a given M ∈ S

n
++, which we denote as Mgbw. We show

the expressions of the Riemannian distance, geodesic, exponential/logarithm
maps, Levi-Civita connection, sectional curvature as well as the geometric mean
and barycenter. A summary of the results is presented in Table 1. Additionally,
we discuss optimization on the SPD manifold with the proposed GBW geometry.
We defer the detailed derivations in this section to our extended report [15].

3.1 Differential Geometric Properties of GBW

To derive the various expressions in Table 1, we provide two strategies, one is
by a Riemannian submersion from the general linear group and another is by a
Riemannian isometry from the BW Riemannian geometry, Mbw. These claims
are formalized in Propositions 3 and 4 respectively.

Perspective from Riemannian Submersion: A Riemannian submersion
[22] between two manifolds is a smooth surjective map where its differential
restricted to the horizontal space is isometric (formally defined in our extended
report [15]). The general linear group GL(n) is the set of invertible matrices
with the group action of matrix multiplication. When endowed with the stan-
dard Euclidean inner product 〈·, ·〉2, the group becomes a Riemannian manifold,
denoted as Mgl. The proposition below introduces a Riemannian submersion
from Mgl to Mgbw.

Proposition 3. The map π : Mgl −→ Mgbw defined as π(P) = M1/2PP�M1/2

is a Riemannian submersion, for P ∈ GL(n) and Mgbw parameterized by M ∈
S

n
++ as in (3).

Perspective from Riemannian Isometry: A Riemannian isometry between
two manifolds is a diffeomorphism (i.e., bijective, differentiable, and its inverse
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Table 1. Summary of expressions for the proposed generalized Bures-Wasserstein
(GBW) Riemannian geometry, which is parameterized by M ∈ S

d
++.

Metric ggbw(U,V) = 1
2
tr(LX,M[U]V)

Distance d2
gbw(X,Y) = tr(M−1X)+ tr(M−1Y)−2tr(XM−1YM−1)1/2

Geodesic γ(t) = ((1 − t)X1/2 + tY1/2O)((1 − t)X1/2 + tY1/2O)� with
O the
orthogonal polar factor of Y1/2M−1X1/2

Exp ExpX(U) = X+U+MLX,M[U]XLX,M[U]M

Log LogX(Y) = M(M−1XM−1Y)1/2+(YM−1XM−1)1/2M−2X

Connection ∇ξη = Dξη + {XLX,M[η]MLX,M[ξ]M+
XLX,M[ξ]MLX,M[η]M}S − {MLX,M[η]ξ}S − {MLX,M[ξ]η}S,
where {A}S := 1

2
(A+A�)

Min/Max Curvature Kmin(π(P)) = 0, and Kmax(π(P)) = 3
σ2
n+σ2

n−1
, where σi is the

i-th largest
singular value of P, and π(P) = M1/2PP�M1/2

is differentiable) that pulls back the Riemannian metric from one to another [22].
We show in the following proposition that there exists a Riemannian isometry
between the GBW and BW geometries.

Proposition 4. Define a map as τ(D) = M−1/2DM−1/2, for D ∈ S
n. Then,

the GBW metric can be written as ggbw,X(U,V) = gbw,τ(X)(τ(U), τ(V)), where
the subscript X, τ(X) indicates the tangent space. Hence, τ : Mbw −→ Mgbw is
a Riemannian isometry.

The proofs of the results in Table 1 are in our extended report [15] and derived
from the first perspective of Riemannian submersion, taking inspiration from
the analysis in [4,26,27]. In our extended version [15], we also include various
additional developments on the GBW geometry, such as geometric interpolation
and barycenter, connection to robust Wasserstein distance and metric learning.

3.2 Riemannian Optimization with the GBW Geometry

Learning over SPD matrices usually concerns optimizing an objective function
with respect to the parameter, which is constrained to be SPD. Riemannian opti-
mization is an elegant approach that converts the constrained optimization into
an unconstrained problem on manifolds [1,6]. Among the metrics for the SPD
matrices, the affine-invariant (AI) metric is seemingly the most popular choice
for Riemannian optimization due to its efficiency and convergence guarantees.
Recently, however, in [16], the BW metric is shown to be a promising alternative
for various learning problems. Below, we derive the expressions for Riemannian
gradient and Hessian of an objective function for the GBW geometry.
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Riemannian gradient (and Hessian) are generalized gradient (and Hessian)
on the tangent space of Riemannian manifolds. The expressions allow to imple-
ment various Riemannian optimization methods, using toolboxes like Manopt [7],
Pymanopt [35], ROPTLIB [20], etc.

Proposition 5. The Riemannian gradient and Hessian on Mgbw is derived
as gradf(X) = 2X∇f(X)M + 2M∇f(X)X and Hessf(X)[U] =
4{M∇2f(X)[U]X}S + 2{M∇f(X)U}S + 4{X{∇f(X)MLX,M[U]}SM}S −
{MLX,M[U]gradf(X)}S, where ∇f(X),∇2f(X) represent the Euclidean gradi-
ent and Hessian, respectively.

In our extended report [15], we discuss geodesic convexity of functions on the
SPD manifold endowed with the GBW metric, generalizing the results in [16].

4 Experiments

In this section, we perform experiments showing the benefit of the GBW geom-
etry. The algorithms are implemented in Matlab using the Manopt toolbox [7].
The codes are available on https://github.com/andyjm3/GBW.

4.1 Log-Determinant Riemannian Optimization

Problem Formulation: Log-determinant (log-det) optimization is common in
statistical machine learning, such as for estimating the covariance, with an objec-
tive concerning minX∈S

n
++

f(X) = − log det(X). From [16], optimization with
the BW geometry is less well-conditioned compared to the AI geometry. This is
because the Riemannian Hessians at optimality are Hessaif(X∗)[U] = U for the
AI geometry and Hessbwf(X∗)[U] = 4{(X∗)−1U}S for the BW geometry. This
suggests, under the BW geometry, the condition number of Hessian at optimality
depends on the solution X∗, while no dependence on X∗ under the AI geometry.
Thus, this leads to a poor performance on BW geometry [16].

Here, we show how the GBW geometry helps to address this issue. Specifically,
with the GBW geometry, we see from Proposition 5 that by choosing M =
X∗, the Riemannian Hessian is Hessgbwf(X∗)[U] = U, which becomes well-
conditioned (around the optimal solution). This provides the motivation for a
choice of M. As the optimal solution X∗ is unknown in optimization problems,
choice of M is not trivial. In practice, one may choose M = X dynamically at
every or after a few iterations. This strategy corresponds to modifying the GBW
geometry dynamically with iterations.

As an example, we consider the following inverse covariance estimation prob-
lem [12,19] as minX∈S

n
++

f(X) = − log det(X) + tr(CX), where C ∈ S
n
++

is a given SPD matrix. The Euclidean gradient ∇f(X) = −X−1 + C and
the Euclidean Hessian ∇2f(X)[U] = X−1UX−1. From the analysis in our
extended report [15], this problem is geodesic convex and the optimal solution

https://github.com/andyjm3/GBW


Learning with Generalized Bures-Wasserstein Geometry 411

Table 2. Riemannian optimization ingredients for the affine-invariant (AI) and Gen-
eralized Bures-Wasserstein (GBW) with M = X geometries for log-det optimization.

AI GBW (with M = X)

Exp ExpX(U) = X exp(X−1U) ExpX(U) = X+U+ 1
4
UX−1U

Grad gradf(X) = XCX − X gradf(X) = 4XCX − 4X

Hess Hessf(X)[U] = 2U+ {UCX}S Hessf(X)[U] = 2U+ 2{UCX}S

Fig. 1. Figures (a) & (b): convergence for log-det optimization problem via Rieman-
nian trust region algorithm. Figures (c)–(f): Gaussian mixture model via Riemannian
stochastic gradient descent algorithm with optimal initial stepsize. In both the settings,
the GBW algorithm outperforms the BW algorithm and performs similar to the AI
algorithm. This can be attributed to the choice of M, which offers additional flexibility
to the GBW modeling.

is X∗ = C−1, which we seek to estimate as a direct computation is challenging
for ill-conditioned C.

Choosing M = X and following derivations in Sect. 3.2, the expressions for
the exponential map, Riemannian gradient, and Hessian under the GBW geome-
try are shown in Table 2, where we also draw comparisons to the AI geometry. We
see that the choice of M = X allows GBW to locally approximate the AI geom-
etry up to some constants. For example, the AI exponential map X exp(X−1U)
can by approximated by second-order terms as X+U+ 1

2UX−1U. This matches
the GBW expression up to an additional term 1

4UX−1U. Overall, the similarity
of optimization ingredients help GBW (with M = X) perform as similar as the
AI geometry, which helps to resolve the poor performance of BW for log-det
optimization problems observed in [16].
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Experimental Setup and Results: We follow the same settings as in [16] to
create problem instances and consider two instances where the condition num-
ber of X∗ is 10 (well-conditioned) and 1000 (ill-conditioned). C is then obtained
as (X∗)−1. To compare the convergence performance of optimization methods
under the AI, LE, BW, and GBW (with M = X) geometries, we implement
the Riemannian trust region (a second-order solver) with the considered geome-
tries [1,6]. To measure convergence, we use the distance to (theoretical) optimal
solution, i.e., ‖Xt − X∗‖2. We plot this distance against the cumulative inner
iterations that the trust region method takes to solve a particular trust region
sub-problem at every iteration. The inner iterations are a good measure to show
convergence of trust region algorithms [1, Chapter 7].

From Figs. 1(a) and 1(b), we observe the faster convergence with the GBW
geometry compared to other geometries regardless of the condition number. In
contrast, the BW geometry performs poorly in log-determinant optimization
problems as shown in [16]. The GBW geometry effectively resolves the conver-
gence issues with the BW geometry for such settings. Based on our discussion
earlier, we see that GBW with M = X performs similar to the AI geometry.
Empirically, it shows that the GBW geometry effectively bridges the gap between
BW and AI geometries for optimization problems.

4.2 Gaussian Mixture Model (GMM)

Problem Formulation: We now consider Gaussian density estimation and
mixture model problem. Let xi ∈ R

d, i = 1, ..., N, be the given i.i.d. samples.
Following [18], we consider a reformulated GMM problem on augmented sam-
ples y�

i = [x�
i ; 1] ∈ R

d+1. The density of a GMM is parameterized by the aug-
mented covariance matrix Σ ∈ R

d+1. It should be noted that the log-likelihood of
Gaussian is geodesic convex under the AI geometry [18] but not under the GBW
geometry. However, if we define S = Σ−1 [16], the reparameterized log-likelihood
pN (Y;S) =

∑N
i=1 log

(
(2π)1−d/2 exp(1/2) det(S)1/2 exp(− 1

2y
�
i Syi)

)
is geodesic

convex on Mgbw. Similar trick was employed in [16] to obtained geodesic convex
log-likelihood objective for GMM under the BW geometry. Overall, we solve the
GMM problem similar as discussed in [16,18].

Experimental Setup and Results: We consider datasets: iris, kmeansdata,
balance, and phoneme from Matlab database and Keel database [11]. For com-
parisons, we implement the Riemannian stochastic gradient descent method [5]
as it is widely used in GMM problems [18]. The batch size is set to 50 and we
use a decaying stepsize for all the geometries [16]. As discussed in Sect. 4.1, we
set M = X at every iteration for optimizing under the GBW geometry. With-
out access to the optimal solution, the convergence is measured in terms of the
Euclidean gradient norm ‖Σt∇L(Σt)‖2 for comparability across geometries.

Figures 1(c)–1(f) show convergence along with the best selected initial step-
size. We observe that convergence under the GBW geometry is competitive and
clearly outperforms the BW geometry based algorithm.
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Remark 1. For all the experiments in this section, we simply set M = X. In
general, M can be learned according to the applications. We demonstrate several
examples in Appendix.

5 Conclusion

In this paper, we propose a Riemannian geometry that generalizes the recently
introduced Bures-Wasserstein geometry for SPD matrices. This generalized
geometry has natural connections to the orthogonal Procrustes problem as well
as to the optimal transport theory, and still possesses the properties of the Bures-
Wasserstein geometry (which is a special case). The new geometry is shown
to be parameterized by a SPD matrix M. This offers necessary flexibility in
applications. Experiments show that learning of M leads to better modeling in
applications.

References

1. Absil, P.-A., Mahony, R., Sepulchre, R.: Optimization Algorithms on Matrix Man-
ifolds. Princeton University Press (2008)

2. Arsigny, V., Fillard, P., Pennec, X., Ayache, N.: Log-Euclidean metrics for fast and
simple calculus on diffusion tensors. Magn Reson. Med. Official J. Int. Soc. Magn.
Reson. Med. 56(2), 411–421 (2006)

3. Bhatia, R.: Positive Definite Matrices. Princeton University Press (2009)
4. Bhatia, R., Jain, T., Lim, Y.: On the Bures-Wasserstein distance between positive

definite matrices. Expo. Math. 37(2), 165–191 (2019)
5. Bonnabel, S.: Stochastic gradient descent on Riemannian manifolds. IEEE Trans.

Autom. Control 58(9), 2217–2229 (2013)
6. Boumal, N.: An introduction to optimization on smooth manifolds, August 2020
7. Boumal, N., Mishra, B., Absil, P.-A., Sepulchre, R.: Manopt, a Matlab toolbox for

optimization on manifolds. J. Mach. Learn. Res. 15(1), 1455–1459 (2014)
8. Brooks, D.A., Schwander, O., Barbaresco, F., Schneider, J.-Y., Cord, M.: Exploring

complex time-series representations for Riemannian machine learning of radar data.
In: IEEE International Conference on Acoustics, Speech and Signal Processing
(2019)

9. Cherian, A., Sra, S.: Riemannian dictionary learning and sparse coding for positive
definite matrices. IEEE Trans. Neural Networks Learn. Syst. 28(12), 2859–2871
(2016)

10. Demetci, P., Santorella, R., Sandstede, B., Noble, W.S., Singh, R.: Gromov-
Wasserstein optimal transport to align single-cell multi-omics data, BioRxiv (2020)

11. Derrac, J., Garcia, S., Sanchez, L., Herrera, F.: KEEL data-mining software tool:
data set repository, integration of algorithms and experimental analysis framework.
J. Mult-.Valued Logic Soft Comput. 17 (2015)

12. Friedman, J., Hastie, T., Tibshirani, R.: Sparse inverse covariance estimation with
the graphical lasso. Biostatistics 9(3), 432–441 (2008)

13. Gramfort, A., Peyré, G., Cuturi, M.: Fast optimal transport averaging of neu-
roimaging data. In: International Conference on Information Processing in Medical
Imaging (2015)



414 A. Han et al.

14. Guillaumin, M., Verbeek, J., Schmid, C.: Is that you? Metric learning approaches
for face identification. In: International Conference on Computer Vision (2009)

15. Han, A., Mishra, B., Jawanpuria, P., Gao, J.: Learning with symmetric positive defi-
nite matrices via generalized Bures-Wasserstein geometry. arXiv:2110.10464 (2021)

16. Han, A., Mishra, B., Jawanpuria, P., Gao, J.: On Riemannian optimization over
positive definite matrices with the Bures-Wasserstein geometry. In: Advances in
Neural Information Processing Systems (2021)

17. Harandi, M.T., Hartley, R., Lovell, B., Sanderson, C.: Sparse coding on symmet-
ric positive definite manifolds using Bregman divergences. IEEE Trans. Neural
Networks Learn. Syst. 27(6), 1294–1306 (2015)

18. Hosseini, R., Sra, S.: An alternative to EM for Gaussian mixture models: batch
and stochastic Riemannian optimization. Math. Program. 181(1), 187–223 (2020)

19. Hsieh, C.-J., Dhillon, I., Ravikumar, P., Sustik, M.: Sparse inverse covariance
matrix estimation using quadratic approximation. In: Advances in Neural Infor-
mation Processing Systems (2011)

20. Huang, W., Absil, P.-A., Gallivan, K.A., Hand, P.: ROPTLIB: an object-oriented
C++ library for optimization on Riemannian manifolds. ACM Trans. Math. Softw.
(TOMS) 44(4), 1–21 (2018)

21. Huang, Z., Wang, R., Shan, S., Li, X., Chen, X.: Log-Euclidean metric learning on
symmetric positive definite manifold with application to image set classification.
In: International Conference on Machine Learning (2015)

22. Lee, J.M.: Riemannian Manifolds: An Introduction to Curvature, vol. 176. Springer,
Cham (2006). https://doi.org/10.1007/b98852

23. Lin, Z.: Riemannian geometry of symmetric positive definite matrices via Cholesky
decomposition. SIAM J. Matrix Anal. Appl. 40(4), 1353–1370 (2019)

24. Lotte, F., et al.: A review of classification algorithms for EEG-based brain-
computer interfaces: a 10 year update. J. Neural Eng. 15(3), 031005 (2018)

25. Mahadevan, S., Mishra, B., Ghosh, S.: A unified framework for domain adaptation
using metric learning on manifolds. In: European Conference on Machine Learning
and Knowledge Discovery in Databases (2019)

26. Malagò, L., Montrucchio, L., Pistone, G.: Wasserstein Riemannian geometry of
Gaussian densities. Inf. Geom. 1(2), 137–179 (2018). https://doi.org/10.1007/
s41884-018-0014-4

27. Massart, E., Hendrickx, J.M., Absil, P.-A.: Curvature of the manifold of fixed-
rank positive-semidefinite matrices endowed with the Bures-Wasserstein metric.
In: International Conference on Geometric Science of Information (2019)

28. Mishra, B., Sepulchre, R.: Riemannian preconditioning. SIAM J. Optim. 26(1),
635–660 (2016)

29. Pennec, X., Fillard, P., Ayache, N.: A Riemannian framework for tensor computing.
Int. J. Comput. Vision 66(1), 41–66 (2006)

30. Peyré, G., Cuturi, M.: Computational optimal transport. Found. Trends Mach.
Learn. 11(5–6), 355–607 (2019)

31. Rabin, J., Peyré, G., Delon, J., Bernot, M.: Wasserstein Barycenter and its appli-
cation to texture mixing. In: Bruckstein, A.M., ter Haar Romeny, B.M., Bronstein,
A.M., Bronstein, M.M. (eds.) SSVM 2011. LNCS, vol. 6667, pp. 435–446. Springer,
Heidelberg (2012). https://doi.org/10.1007/978-3-642-24785-9_37

32. Shustin, B., Avron, B.: Preconditioned Riemannian optimization on the generalized
Stiefel manifold. arXiv:1902.01635 (2019)

33. Sra, S.: A new metric on the manifold of kernel matrices with application to matrix
geometric means. In: Advances in Neural Information Processing Systems (2012)

http://arxiv.org/abs/2110.10464
https://doi.org/10.1007/b98852
https://doi.org/10.1007/s41884-018-0014-4
https://doi.org/10.1007/s41884-018-0014-4
https://doi.org/10.1007/978-3-642-24785-9_37
http://arxiv.org/abs/1902.01635


Learning with Generalized Bures-Wasserstein Geometry 415

34. Sra, S.: Positive definite matrices and the S-divergence. Proc. Am. Math. Soc.
144(7), 2787–2797 (2016)

35. Townsend, J., Koep, N., Weichwald, S.: Pymanopt: a Python toolbox for optimiza-
tion on manifolds using automatic differentiation. J. Mach. Learn. Res. 17(137),
1–5 (2016)

36. van Oostrum, J.: Bures-Wasserstein geometry. arXiv:2001.08056 (2020)

http://arxiv.org/abs/2001.08056


Fisher-Rao Riemannian Geometry
of Equivalent Gaussian Measures

on Hilbert Space

Hà Quang Minh(B)

RIKEN Center for Advanced Intelligence Project, Tokyo, Japan
minh.haquang@riken.jp

Abstract. This work presents an explicit description of the Fisher-Rao
Riemannian metric on the Hilbert manifold of equivalent centered Gaus-
sian measures on an infinite-dimensional Hilbert space. We show that the
corresponding quantities from the finite-dimensional setting of Gaussian
densities on Euclidean space, including the Riemannian metric, Levi-
Civita connection, curvature, geodesic curve, and Riemannian distance,
when properly formulated, directly generalize to this setting. Further-
more, we discuss the connection with the Riemannian geometry of posi-
tive definite unitized Hilbert-Schmidt operators on Hilbert space, which
can be viewed as a regularized version of the current setting.

Keywords: Fisher-Rao geometry · Gaussian measures · Hilbert
space · positive Hilbert-Schmidt operators

1 Introduction

We first briefly review the Fisher-Rao metric, which is an object of central impor-
tance in information geometry, for more detail we refer to e.g. [1]. Let S be a
family of probability density functions Pθ on X = R

n, parametrized by a param-
eter θ = (θ1, . . . , θk) ∈ Θ, where Θ is an open subset in R

k, for some k ∈ N,
that is S = {Pθ = P (x; θ) | θ = (θ1, . . . , θk) ∈ Θ ⊂ R

k}, where the mapping
θ → Pθ is assumed to be injective. Such an S is called a k-dimensional statistical
model or a parametric model on X . Assume further that for each fixed x ∈ X ,
the mapping θ → P (x; θ) is C∞, so that all partial derivatives, such as ∂P (x;θ)

∂θi ,
1 ≤ i ≤ k, are well-defined and continuous.

A k-dimensional statistical model S can be considered as a smooth manifold.
At each point θ ∈ Θ, the Fisher information matrix [11] of S at θ is the k × k
matrix G(θ) = [gij(θ)], 1 ≤ i, j ≤ k, with the (i, j)th entry given by

gij(θ) =
∫
Rn

∂ lnP (x; θ)
∂θi

∂ lnP (x; θ)
∂θj

P (x; θ)dx. (1)

Assume that G(θ) is strictly positive definite ∀θ ∈ Θ, then it defines an inner
product on the tangent space TPθ

(S), via the inner product on the basis { ∂
∂θj }k

j=1
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of TPθ
(S), by

〈
∂

∂θi ,
∂

∂θj

〉
Pθ

= gij(θ). This inner product defines a Riemannian
metric on S, the so-called Fisher-Rao metric, or Fisher information metric [25],
turning S into a Riemannian manifold.

Gaussian Density Setting. Let Sym++(n) denote the set of n×n symmetric,
positive definite matrices. Consider the family S of multivariate Gaussian density
functions on R

n with mean zero

S =

{
P (x; θ) =

1√
(2π)n det(Σ(θ))

exp

(
−1

2
xT Σ(θ)−1x

)
, Σ(θ) ∈ Sym++(n), θ ∈ R

k

}
.

(2)

Here k = n(n+1)
2 and θ = [θ1, . . . , θk], with the θj ’s corresponding to the

upper triangular entries in Σ(θ) according to the following order: Σ(θ)11 = θ1,
Σ(θ)12 = θ2, . . . , Σ(θ)22 = θn+1, . . . , Σ(θ)nn = θ

n(n+1)
2 . Thus each Pθ in S is

completely characterized by the positive definite covariance matrix Σ(θ). In this
case, the Fisher information matrix is given by the following (see e.g [10,17,28])

gij(θ) = gij(Σ(θ)) =
1
2
tr[Σ−1(∂θiΣ)Σ−1(∂θj Σ)], 1 ≤ i, j ≤ k, (3)

where ∂θi = ∂
∂θi , ∂θj = ∂

∂θj . With the one-to-one correspondence Pθ ↔ Σ(θ),
we can identify the statistical manifold S with the manifold Sym++(n) and the
corresponding tangent space TPθ

(S) with the tangent space TΣ(θ)(Sym
++(n)) ∼=

Sym(n). The corresponding Riemannian metric on Sym++(n) is given by

〈A,B〉Σ =
1
2
tr(Σ−1AΣ−1B), A,B ∈ Sym(n), Σ ∈ Sym++(n) (4)

=
1
2
tr[(Σ−1/2AΣ−1/2)(Σ−1/2BΣ−1/2)]. (5)

This is 1/2 the widely used affine-invariant Riemannian metric, see e.g. [5,21].

Infinite-Dimensional Gaussian Setting. In this work, we generalize the
Fisher-Rao metric for the Gaussian density in R

n to the setting of Gaussian
measures on an infinite-dimensional separable Hilbert space H. In the general
Gaussian setting, this is not possible since no Lebesgue measure exists on H,
hence density functions are not well-defined. Instead, we show the generalization
of the Fisher-Rao metric to the set of Gaussian measures equivalent to a fixed
Gaussian measure, which is a Hilbert manifold, along with the corresponding
Riemannian connection, curvature tensor, geodesic, and Riemannian distance,
all in closed form expressions. Furthermore, we show that this setting is closely
related to the geometric framework of positive definite unitized Hilbert-Schmidt
operators in [16], which can be viewed as a regularized version of the equivalent
Gaussian measure setting. This work thus provides a link between the framework
in [16] with the information geometry of Gaussian measures on Hilbert space.
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Related Work in the Infinite-Dimensional Setting. While most work in
information geometry is concerned with the finite-dimensional setting, many
authors have also considered the infinite-dimensional setting. In [24] and sub-
sequent work [7,12,23], the authors constructed an infinite-dimensional Banach
manifold, modeled on Orlicz spaces, for the set of all probability measures equiv-
alent to a given one. In [20], the author constructed a Hilbert manifold of all
probability measures equivalent to a given one, with finite entropy, along with
the definition of the Fisher-Rao metric, which is generally a pseudo-Riemannian
metric. In [2–4], the authors constructed general parametrized measure models
and statistical models on a given sample space by utilizing the natural immersion
of the set of probability measures into the Banach space of all finite signed mea-
sures under the total variation norm. This framework is independent of the refer-
ence measure and encompasses that proposed in [24]. The previously mentioned
work all deal with highly general settings. Instead, the current work focuses
exclusively on the concrete setting of equivalent Gaussian measures on Hilbert
space, where a concrete Hilbert manifold structure exists and many quantities
of interest can be computed explicitly.

2 Background: Gaussian Measures and Positive
Hilbert-Schmidt Operators on Hilbert Space

Throughout the following, let (H, 〈, 〉) be a real, separable Hilbert space, with
dim(H) = ∞ unless explicitly stated otherwise. For two separable Hilbert spaces
(Hi, 〈, 〉i), i = 1, 2, let L(H1,H2) denote the Banach space of bounded linear
operators from H1 to H2, with operator norm ||A|| = sup||x||1≤1 ||Ax||2. For
H1 = H2 = H, we use the notation L(H). Let Sym(H) ⊂ L(H) be the set of
bounded, self-adjoint linear operators on H. Let Sym+(H) ⊂ Sym(H) be the
set of self-adjoint, positive operators on H, i.e. A ∈ Sym+(H) ⇐⇒ A∗ =
A, 〈Ax, x〉 ≥ 0∀x ∈ H. Let Sym++(H) ⊂ Sym+(H) be the set of self-adjoint,
strictly positive operators on H, i.e. A ∈ Sym++(H) ⇐⇒ A∗ = A, 〈x,Ax〉 > 0
∀x ∈ H, x �= 0. We write A ≥ 0 for A ∈ Sym+(H) and A > 0 for A ∈ Sym++(H).
If γI +A > 0, where I is the identity operator,γ ∈ R, γ > 0, then γI +A is also
invertible, in which case it is called positive definite. In general, A ∈ Sym(H) is
said to be positive definite if ∃MA > 0 such that 〈x,Ax〉 ≥ MA||x||2 ∀x ∈ H -
this is equivalent to A being both strictly positive and invertible, see e.g. [22].

The Banach space Tr(H) of trace class operators on H is defined by (see
e.g. [26]) Tr(H) = {A ∈ L(H) : ||A||tr =

∑∞
k=1〈ek, (A∗A)1/2ek〉 < ∞}, for any

orthonormal basis {ek}k∈N ⊂ H. For A ∈ Tr(H), its trace is defined by tr(A) =∑∞
k=1〈ek, Aek〉, which is independent of choice of basis {ek}k∈N. The Hilbert

space HS(H1,H2) of Hilbert-Schmidt operators from H1 to H2 is defined by (see
e.g. [14]) HS(H1,H2) = {A ∈ L(H1,H2) : ||A||2HS = tr(A∗A) =

∑∞
k=1 ||Aek||22 <

∞}, for any orthonormal basis {ek}k∈N in H1, with inner product 〈A,B〉HS =
tr(A∗B). For H1 = H2 = H, we write HS(H).

Equivalence of Gaussian Measures. On R
n, any two Gaussian densities are

equivalent, that is they have the same support, which is all of Rn. The situation
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is drastically different in the infinite-dimensional setting. Let Q,R be two self-
adjoint, positive trace class operators on H such that ker(Q) = ker(R) = {0}.
Let m1,m2 ∈ H. A fundamental result in the theory of Gaussian measures is
the Feldman-Hajek Theorem [9,13], which states that two Gaussian measures
μ = N (m1, Q) and ν = N (m2, R) are either mutually singular or equivalent,
that is either μ ⊥ ν or μ ∼ ν. The necessary and sufficient conditions for the
equivalence of the two Gaussian measures ν and μ are given by the following.

Theorem 1 ([6], Corollary 6.4.11, [8], Theorems 1.3.9 and 1.3.10). Let
H be a separable Hilbert space. Consider two Gaussian measures μ = N (m1, Q),
ν = N (m2, R) on H. Then μ and ν are equivalent if and only if the following
conditions both hold

1. m2 − m1 ∈ range(Q1/2).
2. There exists S ∈ Sym(H) ∩ HS(H), without the eigenvalue 1, such that R =

Q1/2(I − S)Q1/2.

Riemannian Geometry of Positive Definite Hilbert-Schmidt Opera-
tors. Each zero-mean Gaussian measure μ = N (0, C) corresponds to an opera-
tor C ∈ Sym+(H)∩Tr(H) and vice versa. The set Sym+(H)∩Tr(H) of positive
trace class operators is a subset of the set Sym+(H)∩HS(H) of positive Hilbert-
Schmidt operators. The affine-invariant Riemannian metric on Sym++(n) is gen-
eralized to this set via extended (unitized) Hilbert-Schmidt operators, as follows.
Extended Hilbert-Schmidt Operators. In [16], the author considered the
following set of extended, or unitized, Hilbert-Schmidt operators

HSX(H) = {A + γI : A ∈ HS(H), γ ∈ R}. (6)

This set is a Hilbert space under the extended Hilbert-Schmidt inner product and
norm, under which the Hilbert-Schmidt and scalar operators are orthogonal,

〈A + γI,B + μI〉HSX
= 〈A,B〉HS + γμ, ||A + γI||2HSX

= ||A||2HS + γ2. (7)

Manifold of Positive Definite Hilbert-Schmidt Operators. Consider the
following subset of (unitized) positive definite Hilbert-Schmidt operators

PC 2(H) = {A + γI > 0 : A ∈ Sym(H) ∩ HS(H), γ ∈ R} ⊂ HSX(H). (8)

The set PC 2(H) is an open subset in the Hilbert space Sym(H)∩HSX(H) and
is thus a Hilbert manifold. It can be equipped with the following Riemannian
metric, generalizing the finite-dimensional affine-invariant metric,

〈A + γI,B + μI〉P = 〈P−1/2(A + γI)P−1/2, P−1/2(B + μI)P−1/2〉HSX
, (9)

for P ∈ PC 2(H), A+γI,B+μI ∈ TP (PC 2(H)) ∼= Sym(H)∩HSX(H)). Under
this metric, PC 2(H) becomes a Cartan-Hadamard manifold. There is a unique
geodesic joining every pair (A + γI), (B + μI), given by

γAB(t) =(A + γI)1/2 exp[t log((A + γI)−1/2(B + μI)(A + γI)−1/2)](A + γI)1/2.
(10)
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The Riemannian distance between (A + γI), (B + μI) ∈ PC 2(H) is the length
of this geodesic and is given by

daiHS[(A + γI), (B + μI)] = || log[(A + γI)−1/2(B + μI)(A + γI)−1/2]||HSX
.

(11)

The definition of the extended Hilbert-Schmidt norm || ||HSX
guarantees that

the distance daiHS is always well-defined and finite on PC 2(H). We show below
that, when restricted to the subset Sym+(H) ∩ Tr(H), this can be viewed as
a regularized version of the exact Fisher-Rao distance between two equivalent
centered Gaussian measures on H. In the next section, we show that the set
of equivalent Gaussian measures on a separable Hilbert space forms a Hilbert
manifold, modeled on the Hilbert space of extended Hilbert-Schmidt operators.

3 Fisher-Rao Metric for Equivalent Gaussian Measures

Throughout the following, let C0 ∈ Sym+(H) ∩ Tr(H) be fixed, with ker(C0) =
0. Let μ0 = N (0, C0) be the corresponding nondegenerate Gaussian measure.
Consider the set of all zero-mean Gaussian measures on H equivalent to μ0,
which, by Theorem 1, is given by

Gauss(H, μ0) = {μ = N (0, C), C = C
1/2
0 (I − S)C1/2

0 ,

S ∈ Sym(H) ∩ HS(H), I − S > 0}. (12)

Motivated by Theorem 1, we define the following set

SymHS(H)<I = {S : S ∈ Sym(H) ∩ HS(H), I − S > 0}. (13)

This is an open subset in the Hilbert space Sym(H) ∩ HS(H) and hence is a
Hilbert manifold (for Banach manifolds in general, see e.g. [15]).

Lemma 1. The set S ∈ SymHS(H)<I is a Hilbert manifold with tangent space
TS(SymHS(H)<I) ∼= Sym(H) ∩ HS(H) ∀S ∈ SymHS(H)<I .

The set Gauss(H, μ0) corresponds to the following subset of Sym+(H) ∩ Tr(H)

Tr(H, C0) = {C ∈ Sym+(H) ∩ Tr(H) : C = C
1/2
0 (I − S)C1/2

0

for some S ∈ SymHS(H)<I}. (14)

The set Tr(H, C0), equivalently Gauss(H, μ0), is a Hilbert manifold modeled
on Sym(H) ∩ HS(H) via the following bijection

ϕ : Tr(H, C0) → SymHS(H)<I , ϕ(C) = I − C
−1/2
0 CC

−1/2
0 . (15)

We show that Tr(H, C0) can also be embedded as an open subset in a larger
Hilbert space, as follows. Define the following set

HSX(H, C0) = {C
1/2
0 (A + γI)C1/2

0 : A ∈ HS(H), γ ∈ R} ⊂ Tr(H). (16)



Fisher-Rao Riemannian Geometry of Gaussian Measures on Hilbert Space 421

This is a Hilbert space under the following inner product and norm

〈C1/2
0 (A + γI)C1/2

0 , C
1/2
0 (B + μI)C1/2

0 〉HSX(H,C0) = 〈A,B〉HS + γμ, (17)

||C1/2
0 (A + γI)C1/2

0 ||2HSX(H,C0)
= ||A||2HS + γ2. (18)

Tr(H, C0) is a subset of the following subspace of self-adjoint operators in
HSX(H, C0)

SymHSX(H, C0) = {C
1/2
0 (A + γI)C1/2

0 : A ∈ Sym(H) ∩ HS(H), γ ∈ R}. (19)

Since the set {S : S ∈ Sym(H) ∩ HS(H), I − S > 0} is an open subset in the
Hilbert space Sym(H)∩HS(H) under the || ||HS norm, it follows that Tr(H, C0)
is an open subset in the Hilbert space SymHSX(H, C0) under the || ||HSX(H,C0)

norm. Thus Tr(H, C0) is a Hilbert manifold modeled on SymHSX(H, C0). By
the correspondence N (0, C) ∈ Gauss(H, μ0) ⇐⇒ C ∈ Tr(H, C0), the corre-
sponding set of zero-mean Gaussian measures Gauss(H, μ0) is a Hilbert manifold
modeled on SymHSX(H, C0). Subsequently, we focus on this manifold structure.

Tangent Space. Let Σ ∈ Tr(H, C0) be fixed, with Σ = C
1/2
0 (I − S)C1/2

0 ,
S ∈ SymHS(H)<I . We first specify the tangent space to Tr(H, C0) at Σ. Let

SymHS(H, C0) = {V = C
1/2
0 XC

1/2
0 ,X ∈ Sym(H) ∩ HS(H)}. (20)

Proposition 1. Let Σ ∈ Tr(H, C0) be fixed. The tangent space of the Hilbert
manifold Tr(H, C0) at Σ is the following Hilbert subspace of SymHSX(H, C0)

TΣ(Tr(H, C0)) ∼= SymHS(H, C0) = SymHS(H, Σ). (21)

We now give the formula for the Fisher metric on Gauss(H, μ0), using the
abstract framework in [2–4]. Let μ = N (0, Σ) ∈ Gauss(H, μ0), with Σ =
C

1/2
0 (I − S)C1/2

0 . Let dμ
dμ0

denote its Radon-Nikodym derivative with respect to
μ0, which has an explicit form, see e.g. [19]. We consider the set Gauss(H, μ0) to
be parametrized by S ∈ SymHS(H)<I . For a fixed S ∈ SymHS(H)<I , the Fisher
metric at S is defined to be, for V1, V2 ∈ TS(SymHS(H)<I) ∼= Sym(H)∩HS(H),

gS(V1, V2) =
∫

H
D log

{
dμ

dμ0
(x)

}
(S)(V1)D log

{
dμ

dμ0
(x)

}
(S)(V2)dμ(x). (22)

Here D denotes the Fréchet derivative and the quantity gS(V1, V2) is finite when-
ever D log

{
dμ
dμ0

}
(S)(Vj) ∈ L2(H, μ), j = 1, 2. In the current setting, it can be

shown that this is always the case.
Equivalently, the Fisher metric can be obtained by taking the second deriva-

tive of the Kullback-Leibler (KL) divergence between two equivalent Gaussian
measures on H. Let μ = N (m1, Q) and ν = N (m2, R) on H. If μ ⊥ ν, then
KL(ν||μ) = ∞. If μ ∼ ν, then we have the following result.



422 H. Q. Minh

Theorem 2 ([19]). Let μ = N (m1, Q), ν = N (m2, R), with ker(Q) = kerR =
{0}, and μ ∼ ν. Let S ∈ HS(H) ∩ Sym(H), I − S > 0, be such that R =
Q1/2(I − S)Q1/2, then

KL(ν||μ) = 1
2
||Q−1/2(m2 − m1)||2 − 1

2
log det2(I − S). (23)

Here det2 is the Hilbert-Carleman determinant, see e.g. [27], with det2(I +
A) = det[(I + A) exp(−A)] for A ∈ HS(H), where det is the Fredholm determi-
nant, given by det(I + A) =

∏∞
j=1(1 + λk(A)), A ∈ Tr(H), {λk(A)}∞

k=1 being
the eigenvalues of A. The following gives the explicit expression for the Fisher
metric.

Theorem 3 (Riemannian metric). The Fisher metric on Gauss(H, μ0) is
given as follows. Let S ∈ SymHS(H)<I be fixed. Then

gS(V1, V2) =
1
2
tr[(I − S)−1V1(I − S)−1V2], V1, V2 ∈ Sym(H) ∩ HS(H). (24)

Let Σ ∈ Tr(H, C0) be fixed. The corresponding Riemannian metric on Tr(H, C0)
is given by, for A1, A2 ∈ TΣ(Tr(H, C0)) ∼= SymHS(H, C0) = SymHS(H, Σ),

〈A1, A2〉Σ =
1
2
〈Σ−1/2A1Σ

−1/2, Σ−1/2A2Σ
−1/2〉HS (25)

=
1
2
tr(Σ−1/2A1Σ

−1A2Σ
−1/2). (26)

Remark 1. In the finite-dimensional setting, if we characterize the Gaussian den-
sity Pθ by S = S(θ), instead of Σ = Σ(θ), with S(θ)11 = θ1, S(θ)12 = θ2,
. . . , S(θ)22 = θn+1, . . . , S(θ)nn = θ

n(n+1)
2 , then we have the following expression

for the Fisher metric

gij(θ) = gij(S(θ)) =
1
2
tr[(I − S)−1∂θi

S(I − S)−1∂θj
S]. (27)

By identifying the basis {∂θi
} of TPθ

(S) with a basis for Sym(n), we obtain
Eq. (24) for V1, V2 ∈ Sym(n).

We note that Eq. (5) in the finite-dimensional setting directly generalizes to
Eqs. (25) and (26) in the current setting of equivalent Gaussian measures on
Hilbert space. However, Eq. (4) is generally not well-defined in this setting, since
for A ∈ SymHS(H, Σ), Σ−1A is not necessarily bounded.

Theorem 4 (Riemannian structures on Tr(H, C0)). Under the Rieman-
nian metric in Eq. (26), Tr(H, C0) is an infinite-dimensional Cartan-Hadamard
manifold. Let P ∈ Tr(H, C0), let X,Y,Z be smooth vector fields on Tr(H, C0),
with XP , YP , ZP ∈ TP (Tr(H, C0)) ∼= SymHS(H, C0) = SymHS(H, P ).

1. The Levi-Civita connection is given by

(∇XY )P = D(Y )(P )[XP ] − 1
2
[XP P−1YP + YP P−1XP ]. (28)

Here D(Y )(P ) denotes the Fréchet derivative of Y at P in the open subset
Tr(H, C0) of the Hilbert space SymHSX(H, C0).
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2. Let XP = P 1/2X̃P P 1/2, YP = P 1/2ỸP P 1/2, ZP = P 1/2Z̃P P 1/2, for
X̃P ,ỸP ,Z̃P ∈ Sym(H) ∩ HS(H). The Riemannian curvature tensor is given
by

[R(X,Y )Z](P ) = −1
4
P 1/2[[X̃P , ỸP ], Z̃P ]P 1/2. (29)

Here [, ] denotes the operator commutator [A,B] = AB − BA.
3. The sectional curvature is everywhere nonpositive

SP (XP , YP ) = − tr[(X̃P )2(ỸP )2 − (X̃P ỸP )2]
tr(X̃P )2tr(ỸP )2 − tr(X̃P ỸP )2

≤ 0, (30)

where XP , YP are any two linearly independent operators in SymHS(H, P ).
4. There is a unique geodesic connecting any pair A ∈ Tr(H, C0), B = A1/2(I −

S)A1/2 ∈ Tr(H, C0), given by

γAB(t) = A1/2 exp[t log(I − S)]A1/2. (31)

The length of this geodesic is the Riemannian distance between A and B, or
equivalently, the Fisher-Rao distance between N (0, A) and N (0, B),

d(A,B) =
1
2
|| log(A−1/2BA−1/2)||HS =

1
2
|| log(I − S)||HS. (32)

Remark 2. The Levi-Civita connection in Eq. (28) is formulated using the fact
that Tr(H, C0) is an open subset in the Hilbert space SymHSX(H, C0) under the
inner product and norm defined in Eqs. (17) and (18).

Remark 3. In the finite-dimensional setting, the Riemannian curvature tensor
in Eq. (29) is equivalent to

[R(X,Y )Z](P ) = −1
4
P [[P−1XP , P−1YP ], P−1ZP ]. (33)

In [15] (Theorem 3.9), this formula was given in the case P = I, the identity
operator, but without the factor 1

4 . This formula is also valid on the mani-
fold PC 2(H) under the affine-invariant Riemannian metric defined in Eq. (9)
(see [16], Eq. (5)). It is generally not valid in the setting of equivalent infinite-
dimensional Gaussian measures, however, since P−1XP = P−1/2X̃P P 1/2, X̃P ∈
Sym(H) ∩ HS(H), is not necessarily bounded.

Connection with the Riemannian Geometry of Positive Definite Uni-
tized Hilbert-Schmidt Operators. The following shows that the Fisher-Rao
distance in Eq. (32) can be obtained from the Riemannian distance between
positive definite unitized Hilbert-Schmidt operators in Eq. (11) as γ = μ → 0.

Theorem 5. Let A,B ∈ Tr(H, C0) with B = A1/2(I − S)B1/2. Then

lim
γ→0+

|| log[(A + γI)−1/2(B + γI)(A + γI)−1/2]||HS = || log(I − S)||HS. (34)
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Thus, for A,B ∈ Sym+(H) ∩ Tr(H) and γ ∈ R, γ > 0, Eq. (11) can be con-
sidered as a regularized version of Eq. (32), up to the multiplicative factor 1

2 .
The advantage of the distance in Eq. (11) is that it is always finite for all pairs
A,B ∈ Sym+(H) ∩ Tr(H) and all γ ∈ R, γ > 0. Furthermore, Eq. (11) can
be applied for estimating the distance between the infinite-dimensional Gaus-
sian measures corresponding to measurable Gaussian processes with squared
integrable paths, using distances between the corresponding finite-dimensional
Gaussian measures, with explicit finite sample complexity, see [18].

Remark 4. The proofs of all results stated above will be presented in the full
version of the current work.
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Abstract. On Euclidean spaces, the Gaussian kernel is one of the most
widely used kernels in applications. It has also been used on non-Euclidean
spaces, where it is known that there may be (and often are) scale param-
eters for which it is not positive definite. Hope remains that this kernel
is positive definite for many choices of parameter. However, we show that
the Gaussian kernel is not positive definite on the circle for any choice of
parameter. This implies that on metric spaces in which the circle can be
isometrically embedded, such as spheres, projective spaces and Grassman-
nians, the Gaussian kernel is not positive definite for any parameter.

Keywords: kernel methods · Gaussian kernel · positive definite
kernels · geodesic exponential kernel · metric spaces · Riemannian
manifolds

1 Introduction

In many applications, it is useful to capture the geometry of the data and view
it as lying in a non-Euclidean space, such as a metric space or a Riemannian
manifold. Examples of such applications include computer vision [15], robot
learning [5] and brain-computer interfaces [1]. We are interested in the problem
of applying kernel methods on such non-Euclidean spaces.

Kernel methods are prominent in machine learning, with some examples of
algorithms including support vector machines [7], kernel principal component
analysis [18], solvers for controlled and stochastic differential equations [16],
and reservoir computing [11,12]. These algorithms rely on the existence of a
reproducing kernel Hilbert space into which the kernel maps the data. This in
turn requires the chosen kernel to be positive definite (PD).

One of the most common types of kernel used in applications is the Gaus-
sian kernel. Defined on a Euclidean space, this kernel is PD for any choice of
parameter. Moreover, [17] shows that the Gaussian kernel defined on a metric
space is PD for all parameters if and only if the metric space can be isometri-
cally embedded into an inner product space. This implies that Euclidean spaces
are the only complete Riemannian manifolds for which the Gaussian kernel is
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PD for all parameters [9,14]. However, the problem of determining for which
parameters the Gaussian kernel is PD on a given metric space is not solved. [19]
shows that the Gaussian kernel may be PD for a wide range of parameters even
when it is not PD for every parameter. However, we rule out such a possibility
for a large class of spaces of interest.

We start by defining positive definite kernels. Then we give a brief review of
the literature on the positive definiteness of the Gaussian kernel, and introduce
some new notation to study this problem. Finally, we show that the Gaussian
kernel is not PD for any choice of parameter on the circle, and consequently for
any metric space admitting an isometrically embedded circle.

We should note that since producing the results of this paper, we have dis-
covered that certain general characterisations of positive definite functions on
the circle exist in the literature. Using Bochner’s theorem, sufficient conditions
for non-positive definiteness have been provided, which encompass our result
on the circle [10,20]. Our proof, however, is specific to the Gaussian kernel,
relies only on elementary analysis, and provides further insight into the extent
to which the Gaussian kernel fails to be PD, which may have practical relevance
for applications of kernel methods to non-Euclidean data processing.

2 Kernels

Definition 1. A kernel on a set X is a symmetric map k : X × X → R.
k is said to be positive definite (PD) if for all N ∈ N, x1, . . . , xN ∈ X and
all c1, . . . , cN ∈ R,

∑N
i=1

∑N
j=1 cicjk(xi, xj) ≥ 0, i.e. the matrix

(
k(xi, xj)

)
i,j
,

which we call the Gram matrix of x1, . . . , xN , is positive semidefinite.

Proposition 1. Suppose the (kn)n≥1 are PD kernels on X.

(i) a1k1 + a2k2 is a PD kernel on X for all a1, a2 ≥ 0.
(ii) The Hadamard (pointwise) product k1 · k2 is a PD kernel on X.
(iii) If kn → k pointwise as n → ∞, then k is a PD kernel on X.
(iv) If Y ⊂ X then k1|Y is a PD kernel on Y .

Proof. The N × N symmetric positive semidefinite matrices Sym0+(N) form a
closed convex cone in the space of symmetric matrices Sym(N), which implies
(i) and (iii). Sym0+(N) is also closed under pointwise multiplication, as shown in
[2, Chapter 3 Theorem 1.12.], which implies (ii). Finally, proving (iv) is trivial.

��
Proposition 1 (i), (ii), and (iii) say that PD kernels on X form a convex cone,

closed under pointwise convergence and pointwise multiplication.

3 The Gaussian Kernel

In this section, X is a metric space equipped with the metric d. A common type
of kernel on such a space is the Gaussian kernel k( · , · ) := exp(−λd( · , · )2)
where λ > 0. Write

Λ+(X) := {λ > 0 : the Gaussian kernel with parameter λis PD}.
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We would like to characterise Λ+(X) in terms of X. In what follows, Propositions
2 and 3 are analogous to Proposition 1 for Gaussian kernels.

Proposition 2. (i) Λ+(X) is closed under addition.
(ii) Λ+(X) is topologically closed in (0,∞).

Proof. (i) and (ii) follow from Proposition 1 (ii) and (iii) respectively. ��
Corollary 1. (i) If there is ε > 0 s.t. (0, ε) ⊂ Λ+(X) then Λ+(X) = (0,∞).
(ii) If there is ε > 0 s.t. Λ+(X) ⊂ (0, ε) then Λ+(X) = ∅.

Proof. These both follow from Proposition 2 (i). ��
Definition 2. Let Y be another metric space with metric d′. We say Y isomet-
rically embeds into X, written Y ↪→ X if there is a function ι : Y → X such
that d(ι( · ), ι( · )) = d′( · , · ).

Note that, while the notion of ‘isometry’ in the context of Riemannian manifolds
and in the context of metric spaces correspond (Myers-Steenrod theorem), the
notion of ‘isometric embedding’ is stronger in the context of metric spaces than
in the context of Riemannian manifolds. For example, the unit 2-sphere S2 can
be isometrically embedded in R

3 in the sense of Riemannian manifolds, but not
in our sense.

Proposition 3. Let Y be another metric space with metric d′. If Y ↪→ X, then
Λ+(X) ⊂ Λ+(Y ).

Proof. Follows from Proposition 1 (iv). ��
As of now, we have only made rather elementary observations about Λ+(X),

but now we state the first major result, without proof.

Theorem 1 (due to I.J. Schoenberg [17]). The following are equivalent:

1. Λ+(X) = (0,∞).
2. X ↪→ V for some inner product space V.
Note that, if it exists, the isometric embedding X ↪→ V is not in general related
to the reproducing kernel Hilbert space (RKHS) map for the Gaussian kernel.
Given a positive definite kernel k on X, the RKHS map is a set-theoretic map
K : X → H where H is a Hilbert space such that k( · , · ) = 〈K( · ),K( · )〉.
These are different objects.

Theorem 1 is already very powerful, and guarantees that Λ+(X) = (0,∞)
for many spaces.

Corollary 2. Λ+(X) = (0,∞) for the following spaces X:

1. R
n with the Euclidean metric, for n ≥ 1.

2. L2
R
(Ω,μ) for any measure space (Ω,μ).

3. Sym++(n) the space of symmetric n × n positive definite matrices, with the
Frobenius metric, for n ≥ 1.
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4. Sym++(n) with the log-Euclidean metric d(A,B) = ‖ log(A) − log(B)‖F , for
n ≥ 1, where ‖ · ‖F denotes the Frobenius norm.

5. GrR(k, n) the real Grassmanian with the projection metric d([A], [B]) =
‖AAT − BBT ‖F , where A,B are the n × k matrices representing the sub-
spaces [A], [B], respectively, for 1 ≤ k < n.

Proof. Follows directly from Theorem 1. ��
Moreover, [9] and [14] deduce from Theorem 1 the following result, which we
state without proof.

Theorem 2. If X is a complete Riemannian manifold, Λ+(X) = (0,∞) if and
only if X is isometric to a Euclidean space.

While Theorem 1 is powerful, the full characterisation of Λ+(X) is far from
solved. Λ+(X) can be non-empty and different from (0,∞); it is easy to construct
finite metric spaces with more complicated Λ+(X). This can also be the case
for more complex metric spaces: [19, Theorem 3.10] shows that on the space of
symmetric positive definite matrices X = Sym++(n) equipped with the metric
of Stein divergence, we have Λ+(X) =

{
1
2 , 2

2 , . . . , n−2
2

} ∪ [
n−1
2 ,∞)

. While this
result gives hope that the Gaussian kernel may be PD for many parameters on
many interesting spaces, we show that this is often not the case.

4 The Gaussian Kernel on the Circle

Theorem 3. Λ+(S1) = ∅ where S1 is the unit circle with its classical intrinsic
metric.

Proof. Let N ∈ N. Define xk = 2πk/N for 0 ≤ k ≤ N − 1. So

d(xk, xl) =
2π

N
min{|k − l + mN | : m ∈ Z}

for all 0 ≤ k, l ≤ N − 1 (Fig. 1).
So the Gram matrix of x0, . . . , xN−1 is

K =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1 exp(−λ( 2π
N )2) exp(−λ( 4π

N )2) . . . exp(−λ( 2π
N )2)

exp(−λ(2π
N )2) 1 . . . exp(−λ( 4π

N )2)

...
...

. . .
...

exp(−λ(2π
N )2) exp(−λ( 4π

N )2) exp(−λ( 6π
N )2) . . . 1

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

.

To show that the Gaussian kernel with parameter λ is not PD, all we need to
do is to show that we can choose N such that K has a negative eigenvalue.
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Fig. 1. Points xk on S1 for N = 8.

K is a circulant matrix, so its eigenvalues are given by the discrete Fourier
transform of the first row. Explicitly, these eigenvalues are

wj =
�N/2�∑

k=0

exp
(

−μ
k2

N2

)

ei 2π
N kj +

N−1∑

k=�N/2�+1

exp
(

−μ
(N − k)2

N2

)

ei 2π
N kj

for 0 ≤ j ≤ N − 1, where μ = λ(2π)2. Taking N ≡ 0 mod 2, this gives

wj = 1 +
N/2−1∑

k=1

exp
(

−μ
k2

N2

)

(ei 2π
N kj + ei 2π

N (N−k)j) + exp(−μ/4)eiπj

= −1 + 2
N/2−1∑

k=0

exp
(

−μ
k2

N2

)

cos
(

2π

N
kj

)

+ (−1)j exp(−μ/4).

Restricting further to N ≡ 0 mod 4 and j = N/2, the sum conveniently becomes
alternating:

wN/2 = −1 + 2
N/2−1∑

k=0

(−1)k exp
(

−μ
k2

N2

)

︸ ︷︷ ︸
(∗)

+ exp(−μ/4). (1)

We will show that wN/2 is negative for N large enough. For this, we need to
estimate the second term of (1). The difficulty lies in the fact that the variable
N appears in both the terms and the indices of the sum. To remedy this we
define

Sr(N) :=
∞∑

k=0

(−1)k exp
(

−μ
k2

N2
− r

k

N

)

for r ≥ 0. These series are instances of partial theta functions, and below we
leverage two facts about them from the literature. But first, let us express wN/2
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in terms of such series. We have

S0(N) =
∞∑

k=0

(−1)k exp
(

−μ
k2

N2

)

=
N/2−1∑

k=0

(−1)k exp
(

−μ
k2

N2

)

︸ ︷︷ ︸
(∗)

+ exp(−μ/4) − exp(−μ/4) exp
(

−μ
1

N2
− μ

1
N

)

+
∞∑

k=N/2+2

(−1)k exp
(

−μ
k2

N2

)

︸ ︷︷ ︸
(∗∗)

.

(2)
We remove the dependency on N from the indices of (∗∗):

∞∑

k=N/2+2

(−1)k exp
(

−μ
k2

N2

)

=
∞∑

k=0

(−1)k+N/2 exp
(

−μ
(k + N/2 + 2)2

N2

)

= exp
(

−μ
(N/2 + 2)2

N2

) ∞∑

k=0

(−1)k exp
(

−μ
k2

N2
− μ

(

1 +
4
N

)
k

N

)

= exp(−μ/4) exp
(

−μ
4

N2
− μ

2
N

)

Sμ(1+4/N)(N).

(3)
Substituting (3) into (2), and in turn substituting (2) into (1) we get

wN/2 = −1 + 2S0(N) + exp(−μ/4)
(

− 1 + 2 exp
(

−μ
1

N2
− μ

1
N

)

− 2 exp
(

−μ
4

N2
− μ

2
N

)

Sμ(1+4/N)(N)
)

.

Now we use the following lemma.

Lemma 1. Sr(N) ≥ S0(N) for all r ≥ 0 and for all N ∈ N.

Proof. This follows from [6, Proposition 14 Eq. 5.8], which makes use of the
maximum principle for the heat equation. �

So

wN/2 ≤ −1 + 2S0(N) + exp(−μ/4)
(

− 1 + 2 exp
(

−μ
1

N2
− μ

1
N

)

− 2 exp
(

−μ
4

N2
− μ

2
N

)

S0(N)
)

.

(4)

The limit of the RHS of (4) as N → ∞ is 0, so it is not enough just to take
the limit. Instead, we will need to take an asymptotic expansion with respect to
1/N to the second order. For this, we need a second lemma.
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Lemma 2.
S0(N) =

1
2

+ O(1/Nn) as N → ∞
for all n ≥ 1.

Proof. [4, Theorem 1.1 (i)] says that for n ≥ 1,

S0(N) =
n∑

a=0

(
1

2πi

∂

∂z

)2a[
1

1 − e2πiz

]

z=1/2

(−μ)a

a!
1

N2a
+O(1/N2n+1) as N → ∞.

Now observe
f(z) :=

1
1 − e2πi(z−1/2)

− 1
2

=
i

2
tan(πz)

is odd, so the even terms in the Taylor series of f vanish, and hence
(

1
2πi

∂

∂z

)2a[
1

1 − e2πiz

]

z=1/2

=

{
1
2 if a = 0
0 if a ≥ 1

which yields the result. �
So taking the asymptotic expansion with respect to 1/N to second order, (4)

simplifies to

wN/2 ≤ exp(−μ/4)
2μ − μ2

N2
+ O(1/N3) as N → ∞.

If λ > 1
2π2 then μ > 2 so 2μ − μ2 < 0 and hence wN/2 is negative for N large

enough, with N ≡ 0 mod 4. It is possible to improve these inequalities to obtain
the result for all λ, although this is unnecessary: Corollary 1 (ii) is enough to
conclude the proof. ��

Thanks to Proposition 3, Theorem 3 gives us much more than one may
suspect at first.

Corollary 3. If S1 ↪→ X then Λ+(X) = ∅. So Λ+(X) = ∅ for the following
spaces, equipped with their classical intrinsic Riemannian metrics:

1. Sn the sphere, for n ≥ 1.
2. R P

n the real projective space, for n ≥ 1.
3. GrR(k, n) the real Grassmannian, for 1 ≤ k < n, viewed as the homogeneous

space O(n)/(O(k) × O(n − k)).
4. T

n the n-dimensional torus, for n ≥ 1.

Proof Sketch. This follows from Theorem 3 and Proposition 3. Now we briefly
argue for the specific examples. For 1., S1 ↪→ Sn (e.g., a ‘great circle’). For 2.,
1/2 · S1 ∼= R P

1 ↪→ R P
n where ‘∼=’ means isometric and ‘1/2 · S1’ means S1

rescaled by a factor of 1/2. This factor does not affect the conclusion. For 3., the
metric in question is

d([A], [B]) =
( k∑

i=1

θ2i

)1/2
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where θi is the i-th principal angle between [A] and [B] (see [21] and [22]),
[A], [B] ∈ GrR(k, n). Fixing any [A] ∈ GrR(k, n), travelling on GrR(k, n) while
keeping θi = 0 for i > 1 and varying θ1 only, we get an isometric embedding of
1/2 · S1 into GrR(k, n). For 4., T

n := S1 × · · · × S1

︸ ︷︷ ︸
n

equipped with the product

metric, so S1 ↪→ T
n by embedding into one component. ��

It is conceivable that S1 can be isometrically embedded (in the metric sense
from Definition 2) into any compact Riemannian manifold (up to rescaling). We
have yet to think of a counterexample. If this is true, then Theorem 3 would
solve the problem of characterising Λ+(X) for all compact Riemannian man-
ifolds. However, while the Lyusternik-Fet theorem tells us that any compact
Riemannian manifold has a closed geodesic, it appears to be an open question
whether any such manifold admits an isometric embedding of S1.

Fig. 2. Examples of Riemannian manifolds that admit isometric embeddings of S1.
From left to right: a sphere, a torus, a hyperbolic hyperboloid.

Note that non-compact manifolds may also admit isometric embeddings of
S1: consider a hyperbolic hyperboloid. There is precisely one (scaled) isomet-
ric embedding of S1 into it. This example is particularly interesting since, as
opposed to the examples above with positive curvature, it has everywhere neg-
ative curvature. See Fig. 2.

5 Discussion

In machine learning, most kernel methods rely on the existence of an RKHS
embedding. This, in turn, requires the chosen kernel to be positive definite. The-
orem 3 shows that the Gaussian kernel defined in this work cannot provide such
RKHS embeddings of the circle, spheres, and Grassmannians. It reinforces the
conclusion from Theorem 2 that one should be careful when using the Gaussian
kernel in the sense defined in this work on non-Euclidean Riemannian manifolds.
The authors in [3] propose a different way to generalise the Gaussian kernel from
Euclidean spaces to Riemannian manifolds by viewing it as a solution to the heat
equation. This produces positive definite kernels by construction.

Nevertheless, perhaps we should not be so fast to altogether reject our version
of the Gaussian kernel, which has the advantage of being of particularly simple
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form. It is worth noting that the proof of Theorem 3 relies on taking N → ∞,
where N is the number of data points. [8] lists three open problems regarding
the positive definiteness of the Gaussian kernels on metric spaces. It suggests
that we should not only look at whether the Gaussian kernel is PD on the whole
space but whether there are conditions on the spread of the data such that
the Gram matrix of this data is PD. Our proof of Theorem 3 relying on the
assumption of infinite data suggests that this may be the case. In general, fixing
N data points, the Gram matrix with components exp(−λd( · , · )2) tends to
the identity as λ → ∞, so will be PD for λ large enough. This observation has
supported the use of the Gaussian kernel on non-Euclidean spaces, for example,
in [13] where it is used on spheres. However, it is important to keep Theorem 3
in mind in applications where the data is not fixed, and we need to be able to
deal with new and incoming data, which is often the case.
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Abstract. The integral of a function f defined on a symmetric space
M � G/K may be expressed in the form of a determinant (or Pfaffian),
when f is K-invariant and, in a certain sense, a tensor power of a positive
function of a single variable. The paper presents a few examples of this
idea and discusses future extensions. Specifically, the examples involve
symmetric cones, Grassmann manifolds, and classical domains.

Keywords: symmetric space · matrix factorisation · random matrices

1 Introduction

Riemannian symmetric spaces were classified by É. Cartan, back in the 1920 s. A
comprehensive account of this classification may be found in the monograph [1].
In the 1960 s, a classification of quantum symmetries led Dyson to introduce
three kinds of random matrix ensembles, orthogonal, unitary, and symplectic [2].
These three kinds of ensembles are closely related to the symmetric spaces known
as symmetric cones, and also to their compact duals, which provide for so-called
circular ensembles. More recently, Dyson’s classification of quantum symmetries
has been extended to free fermionic systems. It turned out that this extended
classification is in on-to-one correspondance with Cartan’s old classification of
symmetric spaces [3]. This correspondance has motivated the notion that the
relationship between random matrices and symmetric spaces extends well beyond
symmetric cones, and is of a general nature (for example [4] or [5,6]).

The present submission has a modest objective. It is to show how the integral
of a function f , defined on a symmetric space M � G/K, can be expressed
in the form of a determinant or Pfaffan, when f is K-invariant and satisfies
an additional hypothesis, formulated in Sect. 4 below. This is not carried out
in a general setting, but through a non-exhaustive set of examples, including
symmetric cones, Grassmann manifolds, classical domains, and their duals (for
the case of compact Lie groups, yet another example of symmetric spaces, see [7]).

The determinantal expressions obtained here, although elementary, are an
analytic pre-requisite to developing the random matrix theory of Riemannian
symmetric spaces. This long-term goal is the motivation behind the present work.
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
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Unfortunately, due to limited space, no proofs are provided for statements
made in the following. These will be given in an upcoming extended version.

2 Integral Formulas

Let M be a Riemannian symmetric space, given by the symmetric pair (G,K).
Write g = k+p the corresponding Cartan decomposition, and let a be a maximal
abelian subspace of p. Then, denote by Δ a set of positive reduced roots on a [1].

Assume that g = z(g)+gss where z(g) is the centre of g and gss is semisimple
and non-compact (gss is a real Lie algebra). The Riemannian exponential Exp
maps a isometrically onto a totally flat submanifold of M , and any x ∈ M is of
the form x = k · Exp(a) where k ∈ K and a ∈ a.

Let f : M → R be a K-invariant function, f(k · x) = f(x) for k ∈ K and
x ∈ M . There is no ambiguity in writing f(x) = f(a) where x = k · Exp(a).
With this notation, there exists a constant CM such that [1]

∫
M

f(x)vol(dx) = CM

∫
a

f(a)
∏
λ∈Δ

sinhmλ |λ(a)| da (1)

where da is the Lebesgue measure on a.
The dual M̂ of M is a symmetric space given by the symmetric pair (U,K),

where U is a compact Lie group, with the Cartan decomposition u = k + ip
(i =

√−1). Now, Exp maps ia onto a torus T which is totally flat in M̂ , and
any point x ∈ M̂ is of the form x = k · Exp(ia) where k ∈ K and a ∈ a.

If f : M̂ → R is K-invariant, there is no ambiguity in writing f(x) = f(t)
where x = k · t, t = Exp(ia). In this notation [1],

∫
M̂

f(x)vol(dx) = CM

∫
T

f(t)
∏
λ∈Δ

sinmλ |λ(t)| dt (2)

where dt is the Haar measure on T . Here, sin|λ(t)| = sin|λ(a)| where t = Exp(ia),
and this does not depend on the choice of a.

3 Determinantal Expressions

Let μ be a positive measure on a real interval I. Consider the multiple integrals,

zβ(μ) =
1

N !

∫
I

. . .

∫
I

|V (u1 , . . . , uN)|β μ(du1) . . . μ(duN) (3)

where V denotes the Vandermonde determinant and β = 1, 2 or 4. Consider also
the following bilinear forms,

(h, g)(μ,1) =
∫

I

∫
I

(h(u)ε(u − v)g(v))μ(du)μ(dv) (4)
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(h, g)(μ,2) =
∫

I

h(u)g(u)μ(du) (5)

(h, g)(μ,4) =
∫

I

(h(u)g′(u) − g(u)h′(u))μ(du) (6)

Here, ε denotes the unit step function and the prime denotes the derivative.
In the following proposition, det denotes the determinant and pf the Pfaffian.

Proposition 1. The following hold for any probability measure μ as above.
(a) if N is even,

z1(μ) = pf
{(

uk, u�
)
(μ,1)

}N−1

k,�=0
(7)

(b) on the other hand, if N is odd,

z1(μ) = pf

{ (
uk, u�

)
(μ,1)

(
1, uk

)
(μ,2)

− (
u� , 1

)
(μ,2)

0

}N−1

k,�=0

(8)

(c) moreover,

z2(μ) = det
{(

uk, u�
)
(μ,2)

}N−1

k,�=0
(9)

(d) and, finally,

z4(μ) = pf
{(

uk, u�
)
(μ,4)

}2N−1

k,�=0
(10)

On the other hand, if μ is a probability measure on the unit circle S1, and

zβ(μ) =
1

N !

∫
S1

. . .

∫
S1

|V (u1 , . . . , uN)|β μ(du1) . . . μ(duN) (11)

consider the bilinear form

(h, g)(μ,1) =
∫ 2π

0

∫ 2π

0

(h(eix)ε(x − y)g(eiy)) μ̃(dx)μ̃(dy) (12)

where μ̃ is the pullback of the measure μ through the map that takes x to eix,
and let (h, g)(μ,2) and (h, g)(μ,4) be given as in (5) and (6), with integrals over
S1 instead of I.

Proposition 2. The following hold for any probability measure μ on S1.
(a) if N is even,

z1(μ) = (−i)N(N−1)/2 × pf
{

(gk, g�)(μ,1)

}N−1

k,�=0
(13)

where gk(u) = uk−(N−1)/2 .
(b) on the other hand, if N is odd,

z1(μ) = (−i)N(N−1)/2 × pf

{
(gk, g�)(μ,1) (1, gk )(μ,2)

− (g� , 1)(μ,2) 0

}N−1

k,�=0

(14)

with the same definition of gk(u).



Determinantal Expressions of Certain Integrals on Symmetric Spaces 439

(c) moreover,

z2(μ) = det
{(

uk, u−�
)
(μ,2)

}N−1

k,�=0
(15)

(d) and, finally,

z4(μ) = pf
{

(hk, h�)(μ,4)

}2N−1

k,�=0
(16)

where hk(u) = uk−(N−1).

Both of the above Propositions 1 and 2 are directly based on [8].

4 Main Idea

An additional hypothesis is made on the function f(a) (in (1)) or f(t) (in (2)) :
that there exists a natural orthonormal basis (ej ; j = 1, . . . , r) of a, such that

f(a) =
r∏

j=1

w(aj) f(t) =
r∏

j=1

w(tj) (17)

where w is a positive function of a single variable, and aj are the components of
a in the basis (ej ; j = 1, . . . , r), while tj = Exp(iajej). In this sense, it may be
said that f is the r-th tensor power of w.

What is meant by natural is that (17) will imply that the integral (1) or (2)
can be transformed into a multiple integral of the form (3) or (11), respectively.
Thus, in the case of (1), there exists a measure μ on an interval I, which satisfies

∫
M

f(x)vol(dx) = C̃M × zβ(μ) (C̃M is a new constant)

and, in the case of (2), there is a measure μ on S1, which yields a similar identity.
It should be noted that this measure μ will depend on the function w from (17).

Then, Propositions 1 and 2 provide a determinantal (or Pfaffian) expression
of the initial integral on the symmetric space M or M̂ .

At present, this is not a theorem, but a mere idea or observation, supported
by the examples in the following section.

5 Examples

5.1 Symmetric Cones

Consider the following Lie groups (in the usual notation, as found in [1]).

β Gβ Uβ Kβ

1 GLN (R) U(N) O(N)

2 GLN (C) U(N) × U(N) U(N)

4 GLN (H) U(2N) Sp(N)
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Then, Mβ � Gβ/Kβ is a Riemannian symmetric space, with dual M̂β = Uβ/Kβ .
In fact, Mβ is realised as a so-called symmetric cone : the cone of positive-definite
real, complex, or quaternion matrices (according to the value of β = 1, 2 or 4).

Each x ∈ Mβ is of the form kλ k† where k ∈ Kβ and λ is a positive diagonal
matrix († denotes the transpose, conjugate-transpose, or quaternion conjugate-
transpose). If f : Mβ → R is Kβ-invariant, and can be written f(x) =

∏
w(λj),

∫
Mβ

f(x)vol(dx) = C̃β × zβ(μ) (18)

where μ(du) = (w(u)u−Nβ )du, with Nβ = (β/2)(N − 1) + 1, on the interval
I = (0,∞). The constant C̃β is known explicitly, but this is irrelevant at present.

The dual M̂β can be realised as the space of symmetric unitary matrices
(β = 1), of unitary matrices (β = 2), or of antisymmetric unitary matrices with
double dimension 2N , (β = 4).

If β = 1, 2, then x ∈ M̂β is of the form keiθ k† where k ∈ Kβ and θ is real
diagonal. However, if β = 4, there is a somewhat different matrix factorisation,

x = k

(
−eiθ

eiθ

)
ktr (tr denotes the transpose) (19)

where k ∈ Sp(N) is considered as a 2N × 2N complex matrix (rather than a
N × N quaternion matrix). If f : M̂β → R is Kβ-invariant, f(x) =

∏
w(eiθj ),

∫
M̂β

f(x)vol(dx) = C̃β × zβ(μ) (20)

where μ(du) = w(u)|du| on the unit circle S1 (|du| = dϕ if u = eiϕ).
Remark : in many textbooks, M̂1 is realised as the space of real structures
on C

N , and M̂4 as the space of quaternion structures on C
2N . The alternative

realisations proposed here seem less well-known, but more concrete, so to speak.

5.2 Grassmann Manifolds

Consider the following Lie groups (again, for the notation, see [1]).

β Gβ Uβ Kβ

1 O(p, q) O(p + q) O(p) × O(q)

2 U(p, q) U(p + q) U(p) × U(q)

4 Sp(p, q) Sp(p + q) Sp(p) × Sp(q)

Then, Mβ � Gβ/Kβ is a Riemannian symmetric space, with dual M̂β = Uβ/Kβ .
The Mβ may be realised as follows [9] (K = R,C or H, according to β),

Mβ = {x : x is a p-dimensional and space-like subspace of Kp+q} (21)
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Here, x is space-like if |ξp|2 − |ξq|2 > 0 for all ξ ∈ x with ξ = (ξp , ξq), where | · |
denotes the standard Euclidean norm on K

p or K
q. Moreover, for each x ∈ Mβ ,

x = k(xτ ) where k ∈ Kβ and xτ ∈ Mβ is spanned by the vectors

cosh(τj)ξj + sinh(τj)ξp+j j = 1, . . . , p

with (ξk; k = 1, . . . , p+ q) the canonical basis of Kp+q, and (τj ; j = 1, . . . , p) real
(p ≤ q throughout this paragraph).

If f : Mβ → R is Kβ-invariant, f(x) = f(τ), the right-hand side of (1) reads
(the positive reduced roots can be found in [10])

Cβ

∫
Rp

f(τ)
p∏

j=1

sinhβ(q−p) |τj | sinhβ−1 |2τj |
∏
i<j

|cosh(2τi) − cosh(2τj)|β dτ (22)

and this can be transformed into the form (3), by introducing uj = cosh(2τj).
This will reappear, with β = 2 and p = q, in the following paragraph.

Now, the duals M̂β are real, complex, or quaternion Grassmann manifolds,

M̂β = {x : x is a p-dimensional subspace of Kp+q} (23)

For each x ∈ M̂β , x = k(xθ) where k ∈ Kβ and xθ is spanned by the vectors

cos(θj)ξj + sin(θj)ξp+j j = 1, . . . , p

with (θj ; j = 1, . . . , p) real.
If f : M̂β → R is Kβ-invariant, f(x) = f(θ), the right-hand side of (2) reads

Cβ

∫
(0,π)p

f(θ)
p∏

j=1

sinβ(q−p) |θj | sinβ−1 |2θj |
∏
i<j

|cos(2θi) − cos(2θj)|β dθ (24)

which can be transformed into the form (11), by introducing uj = cos(2θj).
In [4], this is used to recover the Jacobi ensembles of random matrix theory.
Remark : the angles θj may be taken in the interval (−π/2, π/2) instead of
(0, π). In this case, |θj | are the principal angles between xθ and the subspace
xo spanned by (ξj ; j = 1, . . . , p). By analogy, it is natural to think of |τj | as the
‘principal boosts’ (using the language of special relativity) between xτ and xo .

5.3 Classical Domains

Consider, finally, the following Lie groups (again, for the notation, see [1]).

β Gβ Uβ Kβ

1 Sp(N,R) Sp(N) U(N)

2 U(N,N) U(2N) U(N) × U(N)

4 O∗(4N) O(4N) U(2N)
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Then, Mβ � Gβ/Kβ is a Riemannian symmetric space, with dual M̂β = Uβ/Kβ .
The Mβ are realised as classical domains, whose elements are N × N complex
matrices (if β = 1, 2) or 2N×2N complex matrices (if β = 4), with operator norm
< 1, and which are in addition symmetric (β = 1) or antisymmetric (β = 4).

If β = 1, 2, then any x ∈ Mβ may be written

x = k1(tanh(λ))k2 (25)

where k1 and k2 are unitary (k2 = ktr
1 , in case β = 1), and λ is real diagonal.

However, if β = 4,

x = k

(
− tanh(λ)

tanh(λ)

)
ktr (26)

where k is 2N ×2N unitary. If f : Mβ → R is Kβ-invariant, and f(x) =
∏

w(λj),

∫
Mβ

f(x)vol(dx) = C̃β

∫
RN

N∏
j=1

w(λj) sinh |2λj |
∏
i<j

|cosh(2λi) − cosh(2λj)|β dλ

After introducing uj = cosh(2λj), this immediately becomes
∫

Mβ

f(x)vol(dx) = C̃β × zβ(μ) (27)

where μ(du) = w(acosh(u)/2)du on the interval I = (1,∞).
Remark : the domain M2 is sometimes called the Siegel disk. As an application
of (27), consider a random x ∈ M2 with a Gaussian probability density function

p(x|x̄, σ) = (Z(σ))−1 exp
[
−d2(x, x̄)

2σ2

]
(28)

with respect to vol(dx), where d(x, x̄) denotes Riemannian distance and σ > 0.
Then, following the arguments in [6], (27) can be used to obtain

Z(σ) = C̃2 × det {mk+�(σ)}N−1
k,�=0 mj(σ) =

∫ ∞

1

exp
(−acosh2(u)/8σ2

)
uj du

The integrals mj(σ) are quite easy to compute, and one is then left with
a determinantal expression of Z(σ). The starting point to the study of the
random matrix x is the following observation. If x is written as in (25) and
uj = cosh(2λj), then the random subset {uj ; j = 1, . . . , N} of I = (1,∞) is a
determinantal point process (see [11]). By writing down its kernel function, one
may begin to investigate in detail many of its statistical properties, including
asymptotic ones, such as the asymptotic density of the (uj), or the asymptotic
distribution of their maximum, in the limit where N → ∞ (of course, with
suitable re-scaling).
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6 Future Directions

The present submission developed determinantal expressions for integrals on
symmetric spaces on a case-by-case basis, only through a non-exhaustive set of
examples. Future work should develop these expressions in a fully general way,
by transforming (1) and (2) into (3) or (11), for any system of reduced roots.

The long-term goal is to understand the random matrix theory of symmetric
spaces. One aspect of this is to understand the asymptotic properties of a joint
probability density (in the notation of (1))

f(a)
∏
λ∈Δ

sinhmλ |λ(a)| da

and analyse how these depend on the set of positive reduced roots Δ. It is worth
mentioning that, in previous work [6], it was seen that a kind of universality
holds, where different root systems lead to the same asymptotic properties.

Random matrix theory (in its classical realm of orthogonal, unitary, and
symplectic ensembles) has so many connections to physics, combinatorics, and
complex systems in general. A further important direction is to develop such
connections for the random matrix theory of symmetric spaces.
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Abstract. We are interested in the distribution of Wishart samples
after forgetting their scaling factors. We call such a distribution a projec-
tive Wishart distribution. We show that projective Wishart distributions
have strong links with the affine-invariant geometry of symmetric positive
definite matrices in the real case or Hermitian positive definite matrices
in the complex case. First, the Fréchet mean of a projective Wishart
distribution is the covariance parameter, up to a scaling factor, of the
corresponding Wishart distribution. Second, in the case of 2 × 2 matri-
ces, the densities have simple expressions in term of the affine-invariant
distance.

Keywords: Wishart distributions · positive definite matrices ·
hyperbolic spaces · Fréchet means

1 Introduction

A Wishart distribution is the law of the empirical second order moment of a set
of i.i.d. Gaussian random vectors, see [7] for the original paper of Wishart, or
[1,2] for a more modern presentation. These distributions are parametrized by
the covariance Σ of the Gaussian and the number n of i.i.d. random vectors. It
is well known that when a linear map A acts on the random vectors, a Wishart
distribution of parameter Σ is turned into a Wishart distribution of parameter
AΣA∗.

This equivariance property draws a link between Wishart distributions and
the affine-invariant geometry of symmetric positive definite and Hermitian pos-
itive definite matrices. We are interested here in explicit links between Wishart
distributions and affine invariant distance functions.

The link with affine-invariant geometry plays a role in analysis on symmetric
cones, see [4,5]. In [4], the author shows how the Wishart distribution and its
normalizing constant relates to certain integrals on symmetric positive definite
matrices. These results rely mostly on the equivariance property itself and the
relation between Wishart distributions and the distance function is indirect.

Authors of [6] have build an estimator of the parameter Σ based on empirical
Fréchet means, defined using an affine-invariant distance. In order to obtain a
consistent estimator, they need to introduce a multiplicative correcting factor.
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The underlying reason is that the Euclidean mean nΣ and the Fréchet mean of
a Wishart distribution do not coincide.

The link between affine-invariant distances and Wishart distributions appears
more clearly when we consider second order moments up to a scaling factor. To
do so, we renormalize the second order moments by their determinant and call
the corresponding distribution a projective Wishart distribution. These distri-
butions are formally introduced in Sect. 2. In Sect. 3, we describe the action of
invertible linear maps of second order moments and the associated distance func-
tion. Section 4 contains the main results. First, the Fréchet mean of a projective
Wishart distribution is the covariance parameter, up to a scaling factor, of the
corresponding Wishart distribution. Second, in the case of 2 × 2 matrices, the
densities have simple expressions in term of the affine-invariant distance.

2 Wishart Distributions

Let Nd(0, Σ) denote the Gaussian distribution on column vectors of Kd with
K = R or K = C, whose mean is 0 and covariance is Σ. Note Pd(K) the set of
d×d symmetric positive definite matrices when K = R and the set of Hermitian
positive definite matrices when K = C. In the rest of the paper, Σ ∈ Pd(K).
Let (Yi)i∈N be a sequence of i.i.d. random variables with

Yi ∼ Nd(0, Σ).

For n ∈ N, consider the random variable

Xn =
i=n∑

i=1

YiY
T
i

The Wishart distribution with parameters Σ and n, noted W(Σ,n), is defined
as the law of the random variable Xn. When n ≥ d, Xn ∈ Pd(K) almost surely
and the distribution W(Σ,n) is supported on Pd(K).

Our aim is to study covariance matrices up to a scaling factor. Hence, for
X ∈ Pd(K), consider the equivalence classes

X̄ = {αX,α ∈ R>0},

and denote S = Pd(K)/R>0 the set of equivalence classes. In the rest of the
paper X denotes an element of Pd(K) and x an element of S. There exists
several standard parametrizations of S, such as matrices of Pd(K) of fixed trace
or matrices of fixed determinant. In the rest of the paper, we identify S with
matrices of determinant 1,

S ∼ {X ∈ Pd(K),det(X) = 1}.

Note π the canonical projection

π(X) =
1

det(X)d
X.
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We are interested in the law PW(Σ,n) of π(X) when X follows a Wishart
distribution W(Σ,n). Distributions PW will be called projective Wishart dis-
tributions.

In the next sections, we will study properties of such distributions. In par-
ticular, we will show that π(Σ) is the Frechet mean of PW(Σ,n) for the affine-
invariant metric on S. We will also show that when d = 2, the density of
PW(Σ,n) evaluated in x has a simple expression depending on the distance
between x and Σ̄.

3 The Geometry of S
The space Pd(K) is an open cone of the vector space of (Hermitian-)symmetric
matrices. This cone is invariant by the following action of invertible matrices

G · X = GXG∗,

where G ∈ GLd(K), X ∈ Pd(K), and where A∗ refers to the transpose or the
conjugate transpose of A.

Let denote SLd(K) the subset of GLd(K) of matrices with determinant 1.
The action of G ∈ SLd(K) preserves the determinant:

det(G · X) = det(X).

Hence SLd(K) preserves S. The so called affine-invariant on S is defined up to
a multiplicative constant by

d(x, y) ∝ ‖ log(x− 1
2 yx− 1

2 )‖, (1)

see [3,8,9].
This distance d(., .) will be used to define the Fréchet mean. In the particular

case d = 2, Pd(K) endowed with the distance d(., .) becomes a hyperbolic space
of dimension 2 when K = R or 3 when K = C. The property of isotropy
of hyperbolic spaces enable to express the density of PW(Σ,n) as a function
of d(., .).

4 Properties of Projective Wishart Distributions

In order to prove the results on Fréchet mean and on densities, we need to state
two lemmas. The first lemma states that the projective Wishart distribution
PW(Σ,n) is invariant by a certain subgroup, noted HΣ , of isometries of d(., .)
which fix Σ. The second lemma states that Σ̄ is the only fixed point of HΣ in S.

Note H the subset of matrices R ∈ SLd(K) with RR∗ = I. When K = R, H
is the special orthogonal group SOd and when K = C, H is the special unitary
group SUd. Define HΣ ⊂ SLd(K) as the set of matrices

RΣ = Σ
1
2 RΣ− 1

2
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with R ∈ H. Matrices of HΣ leave Σ stable. Note RΣ · PW(Σ,n) the action
of RΣ on the distribution PW(Σ,n):

RΣ · PW(Σ,n)(RΣ · A) = PW(Σ,n)(A)

for all measurable subset A of S. As RΣ leaves S stable, RΣ · PW(Σ,n) is still
a distribution on S. State the first lemma.

Lemma 1. ∀RΣ ∈ HΣ,

RΣ · PW(Σ,n) = PW(Σ,n).

Proof. The invariance for Wishart distributions, namely RΣ · W(Σ,n) =
W(Σ,n), is well known and can easily be checked from their definition, see
[1,2]. Projective Wishart distributions are images of Wishart distributions by
the projection π. Since the projection π commutes the action of Gld(K), the
invariance also holds for projective Wishart distributions.

Lemma 2. Σ̄ = π(Σ) is the only fixed point of HΣ in S.
Proof. Consider first a matrix X ∈ Pd(K) fixed by H. Since

RXR∗ = X ⇔ RX = XR,

the matrix X preserves the set of fixed points of all matrices R ∈ H. Furthermore,
for all u ∈ Kd, there exist R1 and R2 ∈ H such that if R1(v) = R2(v) = v then
v ∈ Ku (if K = R and if d is even, there is no R ∈ H such that Ku is the set of
fixed points). Now Ri(X(u)) = X(Ri(u)) = X(u), i = 1, 2, hence X(u) ∈ Ku.
It follows that X leaves all lines stable, which in turn implies that X = cI for
some c ∈ R>0.

If X is fixed by HΣ then Σ− 1
2 · X if fixed by H. Hence there is c ∈ R>0 such

that Σ− 1
2 · X = cI, and X = cΣ. This proves that Σ̄ is the only fixed point in

S.

4.1 Fréchet Means

The Fréchet mean of a probability distribution μ on S can be defined as

F (μ) = argminx

∫

S
d(x, y)2dμ(y)

[10,11].

Theorem 1. Let Σ ∈ Pd(K). The Fréchet mean of PW(Σ,n) is unique and
equals to Σ̄:

F (PW(Σ,n)) =
1

det Σd
Σ
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Proof. Prove first the equivariance of the Fréchet mean with respect to isome-
tries. Let ϕ be an isometry of d(., .). Let μ be any probability measure on S.
Note ϕ∗μ the pushforward of μ, defined as ϕ∗μ(A) = μ(ϕ−1(A)). Since

∫

S
d(x, y)2dμ(y) =

∫

S
d(x, ϕ−1(y))2dϕ∗μ(y) =

∫

S
d(ϕ(x), y)2dϕ∗μ(y),

it can be checked that ϕ(F (μ)) = F (ϕ∗μ). Using Lemma 1, the equivariance of
the mean, and that SLd(K) is acting by isometries, we see that

∀RΣ ∈ HΣ , RΣ · F (PW(Σ,n)) = F (RΣ · PW(Σ,n)) = F (PW(Σ,n))

from which we deduce with Lemma 2 that F (PW(Σ,n)) ⊂ {Σ̄}: if the mean
exists, it is Σ̄. In order to show that a Fréchet mean exists, we need to show that

a(x) =
∫

S
d(x, y)2dν(y)

is finite for at least one x ∈ S. Consider the distribution PW(I, n) and show
that a(I) is finite. An equivariance argument can then transfer the reasoning to
PW(Σ,n) and a(Σ̄). Note λi ∈ R+ the eigenvalues of X ∈ Pd(K). A calculation
shows that using the distance of Eq. (1),

d2(X̄, I) ∝
∑

i

log2

⎛

⎝ λi
∏

j λ
1
d
j

⎞

⎠ =

(
∑

i

log2(λi) − 1
d

log2
(

∏

i

λi

))
.

From the marginal distribution of the λi when X ∼ W(I, n), see [1,12], we
deduce that

a(I) ∝
∫

R
d
+

(
∑

i

log2(λi) − log2
(

∏

i

λi

)) (
∏

i

λk1
i

)
e− 1

2

∑
i λi

∏

i>j

|λi−λj |k2dλ,

where k1, k2 are positive constants depending on the case K = R or K = C.
Since the λi are positive, the exponential terms dominate the other terms and
the integral converges.

4.2 Densities in the 2 × 2 Case

Let us start by defining densities on S. It can be proved that up to a multi-
plicative factor, there exists a unique volume measure S invariant by the action
of SLd(K). Note ν such a measure. The density of the probability distribution
PW(Σ,n) is defined as a function fPW(.;Σ,n) : S → R such that for any
measurable subset A of S

PW(Σ,n)(A) =
∫

A

fPW(x;Σ,n)dν(x).
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To simplify notations, we will only write the parameters Σ and n when it is
necessary. Since both PW(Σ,n) and ν are invariant by the action of HΣ , it can
be checked that the density f is also invariant:

for ν-almost all x ∈ S, fPW(RΣ · x) = f(x).

It is easy to prove that the density fPW can be chosen continuous. In that
case, the equality holds for all x.

Hence the density fPW is constant on the orbits of the action of HΣ . Since
HΣ is acting by isometries which fix Σ̄, the orbits are contained in balls of
center Σ̄ of fixed radius. When d = 2, orbits of HΣ are the full balls. Indeed, as
mentioned in Sect. 3, in that case, S is an hyperbolic space of dimension 2 when
K = R and an hyperbolic space of dimension 3 when K = C. In these cases, S is
not only a symmetric space but also an isotorpic space. We have the additional
property that

d(x, Σ̄) = d(y, Σ̄) =⇒ ∃RΣ ∈ HΣ , RΣ · x = y.

Hence, we have the following theorem.

Theorem 2. The density fPW(x;Σ,n) can be factored through a function hΣ,n :
R+ → R+,

fPW(x;Σ,n) = hΣ,n(d(x, Σ̄)),

where Σ̄ = 1
det(Σ)d Σ.

As we will see later in the explicit calculation of fPW , hΣ,n does not depend
on Σ. This follows from the transitivity of the action of GLd(K) on Pd(K) and
the commutation relations G · W(Σ,n) = W(G · Σ,n) and G · π(X) = π(G · X).

To compute the density fPW of PW(Σ,n), we will integrate the density of
W(Σ,n) along fibers π−1(x) of the projection π. Although we introduced the
measure ν on S, we shall need a reference measure on the entire set Pd(K)
to define the density of W(Σ,n). Note first that the determinant of a matrix
in X ∈ Pd(K) is always a positive real number since the eigenvalues of X are
real and positive. Consider the following identification between Pd(K) and the
cartesian product S × R,

θ : Pd(K) → S × R

X 
→
(

1
det(X)d X, log(det(X))

)
,

and define the measure νtot on Pd(K) as the product measure between ν and the
Lebesgue measure on R. It can be checked that νtot is invariant by the action of
GLd(K).

Let fW denote the density of the Wishart distribution with parameters Σ and
n, with respect to νtot. From the definition of the projective Wishart distribution
and the definition of the reference measure νtot, we have
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∫

A⊂S
fPWdν =

∫

π−1(A)

fW dνtot =
∫

x∈A

∫

α∈R

fW (e
α
d x)dαdν,

where dα refers to the Lebesgue measure on R. The factor 1
d arise from the

d-linearity of the determinant. Hence, with the change of variable β = e
α
d ,

fPW(x) =
∫

R

fW (e
α
d x)dα =

∫

R>0

fW (βx)
d

β
dβ.

Now, the Wishart density with respect to νtot is given up to a multiplicative
constant by

fW(X) ∝ (det X)
kn
2 e− 1

2 tr(Σ-1 X),

where k = 1 when K = R and k = 2 when K = C. The calculation in the real
case can be found in [4], and the complex case is obtained by the same reasoning.
Hence

fPW(x) ∝
∫ (

βd
) kn

2 e− β
2 tr(Σ-1 x) d

β
dβ.

Set γ = β
2 tr(Σ-1 x). The integral becomes

fPW(x) ∝
(

2
tr(Σ-1 x)

) dkn
2

∫
γ

dkn
2 e−γd

dγ

γ
∝

(
2

tr(Σ-1 x)

) dkn
2

. (2)

Note that the formula (2) is valid in for any dimension d. We have tr(Σ−1x) =

det(Σ)− 1
d tr(Σ̄− 1

2xΣ̄−1
2 ) and since the matrix Σ̄− 1

2 xΣ̄−1
2 is in S, there exists

R ∈ H such that

RΣ̄−1
2 xΣ̄−1

2 R∗ =
(

λ 0
0 1

λ

)
.

We have then tr(Σ̄−1x) = λ + 1
λ . By Eq. (1) in Sect. 3,

d(x, Σ̄) ∝ ‖ log(Σ̄− 1
2xΣ̄− 1

2 )‖ = ‖ log(RΣ̄−1
2xΣ̄− 1

2R∗)‖ =
√

2| log λ|.
Since we can choose the multiplicative factor in Eq. (1), suppose that

d(x, Σ̄) = | log λ|. We have then

(
2

tr( Σ-1 x)

) dkn
2

=

(
2(det Σ)

1
2

λ + 1
λ

)kn

∝
(

ed(x,Σ̄) + e−d(x,Σ̄)

2

)−kn

,

which leads to the following theorem.

Theorem 3. The distance d(., .) can be normalized such that for all x ∈ S,
Σ ∈ P2(K) and n ∈ N, n > 2,

fPW(x;Σ,n) ∝ cosh(d(x, Σ̄))−kn.

As announced, the function hΣ,n = cosh−kn does not depends on Σ.
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5 Conclusion

We exhibited simple links between projective Wishart distributions and the
affine invariant distance of positive definite matrices of constant determinant.
Our future researches will focus on two aspects. Firstly, we will investigate the
convergence of the estimation of the parameters of projective Wishart distribu-
tions. Secondly, we will investigate the use of the geometric properties of these
distributions in signal processing applications.
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Abstract. Taking the convex hull of a curve is a natural construction in
computational geometry. On the other hand, path signatures, central in
stochastic analysis, capture geometric properties of curves, although their
exact interpretation for levels larger than two is not well understood. In
this paper, we study the use of path signatures to compute the volume of
the convex hull of a curve. We present sufficient conditions for a curve so
that the volume of its convex hull can be computed by such formulae. The
canonical example is the classical moment curve, and our class of curves,
which we call cyclic, includes other known classes such as d-order curves
and curves with totally positive torsion. We also conjecture a necessary
and sufficient condition on curves for the signature volume formula to
hold. Finally, we give a concrete geometric interpretation of the volume
formula in terms of lengths and signed areas.

Keywords: Convex hull · Path signature · Volume · Cyclic polytope

1 Introduction

Taking the convex hull of a curve is a classical geometric construction. Under-
standing both its computation and properties is important for non-linear compu-
tational geometry, with the case of space curves particularly relevant for appli-
cations such as geometric modeling [13,16,17]. On the other hand, volumes are
a fundamental geometric invariant. Computing volumes of convex hulls leads to
interesting isoperimetric problems in optimization [11], and has applications in
areas like ecology [3] and spectral imaging [12].
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In the recent article [5], the authors show that for curves with totally positive
torsion, one can compute the volume of their convex hull using a certain integral
formula. An example of such a path is the moment curve

x(t) = (t, t2, . . . , td) : [0, 1] → R
d.

From the perspective of discrete geometry, the moment curve is also a canonical
example of a larger class of curves called d-order curves [18]. Our main contri-
bution is Theorem 3, which extends the integral formulae of [5], for volumes of
convex hulls, to the class of cyclic curves, which are uniform limits of d-order
curves. The motivation behind this name arises from the connection to cyclic
polytopes, which play a central role in our proof of this generalization.

Our method uses the notion of the path signature [2], a powerful tool which
is widely used in both stochastic analysis [6] and machine learning [10]. Certain
orthogonal invariants of the path signature can be understood as a notion of
signed volume [4]. In particular, they show that this orthogonal invariant com-
putes the volume of the convex hull in the specific case of the moment curve.
This result inspires our extension to the setting of cyclic curves, which forms a
connection between the convex hull formulae of [5] and the path signature.

2 Classes of Curves

Throughout this article, we consider Lipschitz-continuous paths x : [0, 1] → R
d

and we write x ∈ Lip([0, 1],Rd). The following definition appears in [5].

Definition 1 (Totally positive torsion (Td)). A path x ∈ Cd((0, 1),Rd) ∩
C([0, 1],Rd) has totally positive torsion if all the leading principal minors of the
matrix of derivatives (x′(t), . . . ,x(d)(t)) are positive for all t ∈ (0, 1). The space
of totally positive torsion paths is denoted by Td.

Note that this definition depends on the parametrization, is not invariant under
the action of the orthogonal group, and requires a high regularity of x. On
the other hand, the following class of curves is purely geometric and therefore
independent of the parametrization.

Definition 2 (d-order path (Ordd)). A path x ∈ Lip([0, 1],Rd) is d-order if
any affine hyperplane in R

d intersects the image of x in at most d points. This
occurs exactly when

det
(

1 1 . . . 1
x(t0) x(t1) . . . x(td)

)
> 0 for all 0 ≤ t0 < . . . < td ≤ 1. (1)

The space of d-order paths is denoted Ordd.

These curves have special properties and have been studied in the literature
intensively under many different names, for instance as strictly convex curves. We
mention here [9], where the authors compute volume and Caratheodory number
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x1

x2

x3

Fig. 1. A curve in Cycd \ Ordd, containing two line segments and an arc which lies in
the plane {x3 = 1

2}.

of convex curves and [15], where a volume formula for their convex hull appears,
in the case of closed even dimensional such curves. One of the peculiarities of
d-order curves that we will exploit is that the convex hull of every n-tuple of
points on the curve is a cyclic polytope [20] with those n points as vertices.

By [5, Corollary 2.5], the totally positive torsion property implies that x
is a d-order path, hence Td ⊆ Ordd. It is easy to construct examples proving
that this inclusion is strict. We can interpret the condition for Td to be a local
condition, in the sense that it is checked simply at individual points on the curve.
In contrast, the condition for Ordd is a global condition, in the sense that the
condition simultaneously takes any d + 1 points of the curve into consideration.
We can further extend the class of Ordd.

Definition 3 (Cyclic paths (Cycd)). A path x ∈ Lip([0, 1],Rd) is cyclic if it
is a limit, in the Lipschitz (or equivalently, uniform) topology, of d-order curves.
The space of cyclic paths is denoted by Cycd.

In particular, cyclic curves include some piecewise linear curves, which are not
contained in any of the previous classes. It also allows subsets of the curve to lie
in a lower dimensional space. See Fig. 1 for an example. We point out that for
a curve x that spans the whole R

d, cyclicity is the same as the relaxed version
of condition (1), where the determinants are required to be non-negative. In the
case that x is contained in some lower dimensional subspace, the determinants
in (1) are all zero and thus the relaxed version of (1) puts no condition on the
curve, whereas cyclicity does. In conclusion, we obtain the following sequence of
strict inclusions, transitioning from local to global properties of curves:

Td ⊂ Ordd ⊂ Cycd.
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3 Path Signatures and Volume

In this section, we introduce the connection between volume formulae for convex
hulls of curves and the path signature, a characterization of curves based on
iterated integrals [2]. In particular, we show that the volume of the convex hull
of a cyclic curve can be written in terms of an antisymmetrization of the path
signature. This connection was first considered in [4] for the moment curve.

Definition 4. Suppose x = (x1, . . . , xd) ∈ Lip([0, 1],Rd). The level k path
signature of x is a tensor σ(k)(x) ∈ (Rd)⊗k, defined by

σ(k)(x) :=
∫

Δk

x′(t1) ⊗ · · · ⊗ x′(tk) dt1 · · · dtk ∈ (Rd)⊗k (2)

where the integration is over the k-simplex Δk := {0 ≤ t1 < · · · < tk ≤ 1}. Given
a multi-index I = (i1, . . . , ik) ∈ [d]k, the path signature of x with respect to I is

σI(x) :=
∫

Δk

x′
i1(t1) · · · x′

ik
(tk) dt1 · · · dtk ∈ R. (3)

The path signature σ(x) of a path x is the formal power series obtained by
summing up all levels σ(k)(x). It is well known that the path signature char-
acterizes paths up to tree-like equivalence [2,8]; however, the individual entries
of the signature σI(x) are often difficult to understand geometrically. We aim
to provide a geometric interpretation of signature terms via antisymmetrization
into the exterior algebra Λ(Rd) :=

⊕d
k=0 Λk

R
d, where Λk

R
d is the vector space

of alternating tensors of Rd of degree k. These tensors are indexed using order
preserving injections P : [k] → [d], denoted here by Ok,d.

Definition 5. Suppose x = (x1, . . . , xd) ∈ Lip([0, 1],Rd). The level k alternat-
ing signature of x is a tensor α(k)(x) ∈ Λk

R
d, defined by

α(k)(x) :=
∫

Δk

x′(t1) ∧ · · · ∧ x′(tk) dt1 · · · dtk ∈ Λk
R

d. (4)

Given P ∈ Ok,d, the alternating signature of x with respect to P is

αP (x) :=
1
k!

∫
Δk

det(x′
P (1)(t1), . . . , x

′
P (k)(tk)) dt1 · · · dtk ∈ R. (5)

We will primarily be interested in the level k = 2 and level k = d alter-
nating signature. Let x ∈ Lip([0, 1],Rd) and consider the level k = 2. At
this level, α(2)(x) is a d × d antisymmetric matrix whose (i, j)-th entry is
αi,j(x) = 1

2 (σi,j(x) − σj,i(x)), which is exactly the signed area of the path
x projected to the (ei, ej)-plane. In the case of level k = d, the exterior power
Λd

R
d is one-dimensional, and we can express the level d alternating signature as

α(d)(x) =
1
d!

∫
Δd

det(x′(t1), . . . ,x′(td))dt1 . . . dtd.

In fact, this expression is rotation invariant.
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Theorem 1. ([4]). The level d alternating signature for paths x ∈
Lip([0, 1],Rd) is invariant under the special orthogonal group SO(d) (where the
action acts pointwise over [0, 1]), i.e., given V ∈ SO(d), we have α(d)(V x) =
α(d)(x).

3.1 Convex Hull Formulae for Cyclic Curves

In [4], the authors interpret the alternating signature α(d) as the signed-volume
of a curve, and show that α(d) is the volume of the convex-hull of the moment
curve. The first part of our generalization extends this to d-order curves. This
was initially proved using other methods in [9, Theorem 6.1].

Theorem 2. If x : [0, 1] → R
d is a d-order curve, then vol(conv(x)) = α(d)(x).

Proof. Consider the n+1 points p0 = x(t0), . . . , pn = x(tn) on the d-order curve,
with 0 ≤ t0 < . . . < tn ≤ 1. Denote by Cn their convex hull conv(p0, . . . , pn),
which is a cyclic polytope. We can realize a triangulation of Cn by pulling one
vertex, as in [4, Lemma 3.29]. Indeed, by Gale evenness criterion, a triangulation
of a cyclic polytope is given by simplices with vertices pi0 , . . . , pid satisfying

– for even d: i0 = 0 and i2�+1 + 1 = i2�+2 for any 1 ≤ � ≤ d;
– for odd d: i0 = 0, id = n, and i2�+1 + 1 = i2�+2 for any 1 ≤ � ≤ d − 1.

Let us denote by I the set of all d-tuples of indices that satisfy these conditions.
Therefore, the volume of Cn is the sum of the volumes of all these simplices.
Because x is a d-order curve, condition (1) holds. Hence,

vol(Cn) =
1
d!

∑
{i0,...,id}∈I

det
(

1 1 . . . 1
pi0 pi1 . . . pid

)
. (6)

Since x has bounded variation, we can take the limit of 3.1 for n → ∞, as in
[4, Lemma 3.29]. In particular, we use the continuity of convex hulls from [14,
Section 1.8] and the continuity of truncated signatures from [7, Proposition 7.63].
This gives the formula vol(conv(x)) = α(d)(x).

Furthermore, the volume formula still holds for limits of d-order curves.

Theorem 3. Let x : [0, 1]→ R
d be a cyclic curve. Then vol(conv(x))=α(d)(x).

Proof. By cyclicity, let {xk} be a sequence of d-order curves such that x =
limk→∞ xk . Because conv is a continuous operation [14, Section 1.8], it holds
that conv(x) = lim conv(xk). Hence we have

vol(conv(x)) = lim
k→∞

vol(conv(xk)) = lim
k→∞

α(d)(xk) = α(d)(x), (7)

where the first equality is due to the continuity of volume, the second due to
Theorem 2 and the last one due to the stability property of the signature [7,
Proposition 7.63].
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Example 1. Fix d distinct non-negative real numbers a1, a2, . . . , ad and con-
sider the associated logarithmic curve x in R

d, or log-curve, parameterized by

x : [0, 1] → R
d, t �→

⎛
⎜⎜⎜⎝

log(1 + a1t)
log(1 + a2t)

...
log(1 + adt)

⎞
⎟⎟⎟⎠ . (8)

One can prove that log-curves are d-order, and therefore they are cyclic. There-
fore, we can compute the volume of their convex hull using the signature formula.
Let G(z1, . . . , zd; 1) be a multiple polylogarithm, as defined in [19, Section 8.1].
Then, the volume of the convex hull of the log-curve x is a combination of
multiple polylogarithms:

vol(conv(x)) =
∑

τ∈Σd

sgn(τ)G
(

− 1
aτ(1)

,− 1
aτ(2)

, . . . ,− 1
aτ(d)

; 1
)

, (9)

where Σd denotes the symmetric group on d elements.

3.2 Towards a Necessary Condition

At this point, a natural question is whether the sufficient condition of being
cyclic is also a necessary condition for the volume formula to hold. In other
words, we would like for the converse of Theorem 3 to hold. Unfortunately, this
is not the case, as the following example shows.

Fig. 2. Non-cyclic curve for which the convex hull volume formula holds.

Example 2. The path x in Fig. 2 starts (and ends) on the bottom left, traces
the small cycle and then goes around the outer loop. Note that the convex hull
conv(x) is a solid rectangle, whose area will equal the sum of the areas enclosed
by each of the two loops. The latter is precisely the alternating signature and
thus

vol(conv(x)) = α(2)(x).
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However, the curve x is not cyclic. Indeed, it can be proved that a cyclic curve
x′ satisfies x′ ⊂ ∂ conv(x′), which is not true for x.

Notice that any subpath of a cyclic curve is also cyclic, and thus the volume
formula holds for all subpaths of a cyclic curve. We conjecture that cyclic curves
are the largest class of curves for which the volume formula holds for all subpaths.

Conjecture 1. Let x : [0, 1] → R
d be a Lipschitz path. Then, x is cyclic if and

only if vol(conv(x̃)) = α(d)(x̃) holds for all restrictions x̃ : [a, b] → R
d of x to a

subinterval [a, b] ⊂ [0, 1].

4 Volumes in Terms of Signed Areas

The individual terms of the path signature are equipped with the shuffle product,
and when we transfer this to the alternating signature, we obtain the following
decomposition of the alternating signature into first and second level terms.

Lemma 1 ([4], Lemma 3.17). Let x ∈ Lip([0, 1],Rd) and P ∈ Ok,d. If k is
even, then

αP (x) =
1

k!
(

k
2

)
!

∑
τ∈Σk

sgn(τ)
k/2∏
r=1

αP (τ(2r−1)),P (τ(2r))(x), (10)

and if k is odd, then

αP (x) =
1

k!
(

k−1
2

)
!

∑
τ∈Σk

sgn(τ)σP (τ(1))(x)
(k−1)/2∏

r=1

αPi(τ(2r)),Pi(τ(2r+1))(x).

(11)

We can use this decomposition to rewrite the volume formula based on pro-
jected signed areas. Suppose x = (x1, . . . , xd) : [0, 1] → R

d, where d = 2n + 1
and x(1) �= x(0). Without loss of generality (due to the SO(d) invariance of the
alternating signature), we suppose that x(1) − x(0) is restricted to the n + 1
coordinate. Then, the odd decomposition in the above lemma is

α(d)(x) =
1
d!

(xd(1) − xd(0)) · α(2n)(x),

where x = (x1, . . . , x2n) : [0, 1] → R
2n. Thus, it remains to interpret the top-level

alternating signature of even-dimensional paths.
Consider the even case d = 2n. Because α(2)(x) is a antisymmetric matrix,

it has conjugate pairs of purely imaginary eigenvalues. We can block-diagonalize
the matrix α(2) as follows (see, e.g., [1,21]):

α(2)(x) = QΛQT ,
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where

Λ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 λ1 0 0 · · · 0 0
−λ1 0 0 0 · · · 0 0
0 0 0 λ2 · · · 0 0
0 0 −λ2 0 · · · 0 0
...

...
...

...
...

...
0 0 0 0 · · · 0 λn

0 0 0 0 · · · −λn 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(12)

and Q is the orthogonal matrix of eigenvectors

Q = (v1,v2, . . . ,v2n−1,v2n).

Here, v2k−1 and v2k are the real and imaginary parts of the conjugate pair of
eigenvectors for iλk and −iλk. Moreover, we can choose Q ∈ SO(d) and by
equivariance of the path signature, we have

α(2)(QTx) = Λ.

By the SO(d)-invariance of the top-level alternating signature (Theorem 1), the
decomposition can be written as

α(2n)(x) =
(−1)n

(2n)! · n!

n∏
k=1

λk.

Theorem 4. Let d = 2n and x = (x1, . . . , xd) : [0, 1] → R
d a cyclic curve. Then

vol(conv(x)) =
(−1)n

(2n)! · n!

n∏
k=1

λk, (13)

where λk are the entries of Λ in (12). If d = 2n + 1 and the displacement
x(1)−x(0) is restricted to the xd coordinate (xk(1)−xk(0) = 0 for k ∈ [2n] and
xd(1) − xd(0) > 0), then

vol(conv(x)) =
(−1)n

(2n + 1)! · n!
(xd(1) − xd(0))

n∏
k=1

λk, (14)

where λk are the entries of Λ in the decomposition (12) of α(2)(x), corresponding
to x = (x1, . . . , x2n) : [0, 1] → R

2n.

With the above decomposition, we obtain a geometric interpretation of the
volume formula for the convex hull of the curve x. More precisely, up to rotation,
the volume of the convex hull of a cyclic curve is the product of the distance
between the start point and end point of x, if x ∈ R

d with d odd, and 
d/2�
signed areas of the projections of x onto respective 2-planes.
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Fig. 3. The projection of the moment curve onto the plane orthogonal to (1, 1, 1).

Example 3. Let x ⊂ R
3 be the moment curve parametrized by (t, t2, t3). We

can apply the rotation

Q =
1√
6

⎛
⎝ 2 −1 −1

0
√

3 −√
3√

2
√

2
√

2

⎞
⎠ , (15)

which sends the vector x(1) = (1, 1, 1) to (0, 0, 1). Then, the off-diagonal entry
λ1 of the associated matrix Λ is given by

1
2

∫ 1

0

∫ t2

0

2 − 2t1 − 3t21√
6

(2 − 3t2)t2√
2

− 2 − 2t2 − 3t22√
6

(2 − 3t1)t1√
2

dt1dt2 =
1

30
√

3
.

(16)
This value is the signed area of the projection of x onto the plane orthogonal to
(1, 1, 1), the curve shown in Fig. 3. Applying the odd version of Theorem 4 we
get that

vol(conv(x)) =
1
3!

·
√

3 · 1
30

√
3

=
1

180
.
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Abstract. The problem of computing the topology of curves has
received special attention from both Computer Aided Geometric Design
and Symbolic Computation. It is well known that the general position
condition simplifies the computation of the topology of a real algebraic
plane curve defined implicitly since, under this assumption, singular
points can be presented in a very convenient way for that purpose. Here
we will show how the topology of cubic, quartic and quintic plane curves
can be computed in the same manner even if the curve is not in gen-
eral position, avoiding thus coordinate changes. This will be possible
by applying new formulae, derived from subresultants, which describe
multiple roots of univariate polynomials as rational functions of the con-
sidered polynomial coefficients. We will also characterize those higher
degree curves where this approach can be used and use this technique to
describe the curve arising when intersecting two ellipsoids.

Keywords: Topology of curves · Subresultants · Singular points

1 Introduction

The problem of computing the topology of an implicitly defined real algebraic
plane curve has received special attention from both Computer Aided Geomet-
ric Design and Symbolic Computation, independently. For the Computer Aided
Geometric Design community, this problem is a basic subproblem appearing
often in practice when dealing with intersection problems. For the Symbolic
Computation community, on the other hand, this problem has been the moti-
vation for many achievements in the study of subresultants, symbolic real root
counting, infinitesimal computations, etc. By a comparison between the semi-
nal papers and the more renewed works, one can see how the theoretical and
practical complexities of the algorithms dealing with this problem have been
dramatically improved (see, for example, [4] and [7]).
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Sweeping algorithms to compute the topology of a real algebraic plane curve
are greatly simplified if there are no more than one critical point in each vertical
line, which is part of the so called general position condition. When this condi-
tion is not satisfied, there exists a suitable change of coordinates that moves the
initial curve to one in general position. However, this step might be inconvenient
in most cases transforming a sparse defined curve into a dense ones, so increasing
the complexity of some steps of the algorithm. In [3], the authors introduce an
algorithm that does not require the general position condition, mainly by enclos-
ing the potentially irrational critical points inside boxes. In this paper, we deal
with some particular cases where the topology of the considered curve around
a critical point is easy to compute even if the curve is not in general position
(but this requires also such critical point to be represented in an easy way, ques-
tion we will deal with here too) with ad hoc approaches, taking advantage of a
manageable presentation of the critical points, that do not require the general
method in [3].

The paper is distributed as follows: after a section devoted to the well known
features and issues of sweeping algorithms, Sect. 3 introduces a proposal to man-
age the connection of branches when two critical points of a low degree curve
appear in the same vertical line. The following section provides an application
and the final one states some conclusions.

2 Sweeping Algorithms for Topology Computation

The characterization of the topology of a curve CP presented by the equation
P (x, y) = 0 follows a sweeping strategy, usually based on the location of the
critical points of P with respect to y (i.e. those singular points or points with
a vertical tangent), and, on the study of the half-branches of CP around these
points since, for any other point of CP , there will be only one half-branch to the
left and one half-branch to the right.

Definition 1. Let P (x, y) ∈ R[x, y] and CP = {(α, β) ∈ R
2 : P (α, β) = 0} the

real algebraic plane curve defined by P . Let Px and Py the partial derivatives of
P . We say that a point (α, β) ∈ CP is

– a critical point of CP if Py(α, β) = 0.
– a singular point of CP if it is critical and Px(α, β) = 0.
– a regular point of CP if it is not critical.

Non singular critical points are called ramification points. Vertical lines through
critical points will be referred as critical lines.

The usual strategy to compute the topology of a real algebraic plane curve
C defined implicitly by a polynomial P (x, y) ∈ R[x, y] proceeds in the following
way (for details see [1,5]):

1. Find all the real critical lines x = αi with α1 < α2 < . . . < αr.
2. For every αi, compute the real roots of P (αi, y), βi,1 < . . . < βi,si and

determining those βi,j regular points and those βi,j critical points.
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3. For every αi and every βi,j , compute the number of half-branches to the right
and to the left of each point (αi, βi,j). Joining them in an appropriate way
finishes the topology computation.

First two steps provide the vertices of a graph that will represent the topology
of the considered curve (see [5] and [6]). The last step provides the edges. This
paper is focused on that last step, which usually requieres general position of
the curve (i.e. no real vertical asymptotes and just one critical point in each
critical line), attainable through a coordinate change. In this paper, we address
the possibility of ignoring the coverticality condition for low degree curves.

3 Avoiding General Position: Branch Computations
Around a Critical Point

In order to analyse the topology of CP , when there is only one critical point in a
critical line, it is easy to determine how many half-branches there are to the left
and to the right of the considered critical point: each non-critical point gets one
half-brach per side and all the remaining correspond to the critical one. Dealing
with a critical line with more than one critical point is more complicated but
having an explicit description of the considered critical points allows to determine
the required information about the half-branches.

Namely, given a critical line defined by x = α, with P (α, β) = 0, (α, β)
critical point, there are many cases where an explicit description for β in terms
of α, β = Ψ(α) can be computed. Probably, the most efficient way to calculate Ψ
is by using subresultants. In [2], these explicit expressions are found for degrees
3, 4, and 5 and the cases where this can be achieved are fully characterised. In
addition, the multiplicity of β is determined too.

Remark 1. Vertical asymptotes are those lines x = α where α is a root of the
leading coefficient of P with respect to y. Simple vertical asymptotes (related to
simple roots of the leading coefficient) can be worked, as in [3], by checking the
sign of the second coefficient at the critical line. More complicated asymptotes
imply that the curve either has a cusp or an inflection point in its vertical infinity
point in the difficult cases or it is an arrangement of lines. This paper is devoted
to the management of affine critical points, however, so we refer to [3, Subsection
4.5] for vertical asymptotes.

3.1 Ramification Points of CP

The method here is not far from what one can see in [3]. However, since the
authors of this paper could not find a proof or reference to the correctness of the
method in [3], a motivation is written here. Recall that (α, β) ∈ R

2 is a critical
and non singular point of CP when P (α, β) = Py(α, β) = 0 and Px(α, β) �= 0.
Applying the Implicit Function Theorem this means that around (α, β) the curve
CP can be described as a function x = Φ(y) such that α = Φ(β). Since

Φ′(β) = −Py(α, β)
Px(α, β)

= 0
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we have three possibilities, since y = β can be:

– a local minimun of Φ: 2 half-branches to the right of (α, β), 0 to the left; or
– a local maximun of Φ: 0 half-branches to the right of (α, β), 2 to the left; or
– an inflection point of Φ: 1 half-branch to the right of (α, β) and 1 to the left.

Characterising the behaviour of the function x = Φ(y) at y = β requires to eval-
uate the derivatives Pyy(α, β), Pyyy(α, β), Pyyyy(α, β), . . . until one of them does
not vanishes since: if Φ(1)(β) = Φ(2)(β) = · · · = Φ(k−1)(β) = 0, Φ(k)(β) �= 0,
then (applying recursively implicit differentiation to P (Φ(y), y) = 0), we have
that Φ(k)(β)Px(α, β) = −P

y
k···y(α, β) and we can apply the higher order deriva-

tive test to determine whether the point is a local maximum, a local minimum,
or a flex.

3.2 Singular Points of CP When degy (P ) = 4

Due to the low degree of the curve, the only ambiguity that can arise happens
when there are two double roots β1 < β2 of the polynomial P (α, y). Otherwise
it is locally general position for the critical line x = α. Since we work with a
quartic, we have, at most 4 branches to each of the sides of our critical line.
Since we have found two double roots for P (α, y), we know that the coefficient
of y4 must be nonzero. We suppose it is 1 for simplicity. Moreover, since P is
defined over the reals, the number of real branches to each side of the critical
line must be even.

If we have four branches to join with the singular points to one of the sides,
then it must be two for each due to multiplicity. If there are no real branches to
one of the sides, we have no work to do for such branch.

Finally, the remaining case is when we have just two branches to join. These
two branches must go to the same point, since the other critical point must
attract two conjugate complex branches. First of all, we consider Qi(s, t) =
P (s + α, t + βi). Then the behaviour of (0, 0) as a point for Qi is the same as
the behaviour of (α, βi) for P . Factoring the lowest homogeneous component of
Qi we have the slopes of the (at most two) tangent lines to CP at (α, βi). Then:

– If one of the points has all slopes to be complex and non real, then it is an
isolated point, so the other one takes the branches.

– If one of the points has two different real slopes, then it takes the two arcs
since it is a real node.

In the case that there is just one slope for the tangent lines to the curve at
the critical points, we will consider the cubic curve given by Py(x, y) = 0. The
polynomial Py(α, y) vanishes in β1, β2 and an intermediate point γ ∈ (β1, β2)
since it is the derivative of P (α, y). This means that there are three real branches
of CPy

through the vertical line x = α. Due to the low degree, the only possibility
is what happens in Fig. 1 or the symmetric case, and the relative position of the
branches of CP and CPy

determines how to join the half branches.
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CP

CPy

Fig. 1. To the left, the real branches of CP go to the critical point below because two
branches of CPy are above both of them. To the right, we have the complementary
situation.

3.3 Singular Points of CP When degy (P ) = 5

We now consider degyP = 5. The nontrivial cases here are:

– P (α, y) has two double roots.
– P (α, y) has a triple root (β) and a double root (γ).

Formulae in [2] allow to represent easily these roots of P (α, y). For example, in
the second case, we have

β = −sres1,0(τ1(y))
sres1(τ1(y))

, γ = − sres3,0(P (α, y))
sres3(P (α, y))β2

where τ1(y) = Sres3(P (α, y)) and Sresk denotes the polynomial subresultant
and sresk the subresultant coefficients of a polynomial and its derivative (with
respecto to y in this case) of index k.

We will address each case separately, but first we consider, as before, that P is
monic on y (and degy(P ) = 5, otherwise, we proceed as in lower degree). Then,
reasoning in a similar way, we see that the number of real branches between
critical lines must be 1, 3 or 5.

P (α, y) has Two Double Roots. This case can be treated as before (degree
4). We have two critical points that take either two or no branches each, and
one single point that will take one.

If we have 5 branches to distribute, then each critical point takes two branches
and the non-critical point takes one. We distribute the branches to avoid cross-
ings outside the critical line. If we have just one branch, then the non-critical
point takes it.
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If we have three branches, one goes to the noncritical point and the other
two are assigned either checking whether the tangent lines are real and different
at the singularities, or considering the curve CPy

and reasoning as in the degree
4 case:

– If there are at least two branches of CPy
above at least two of the three

branches of CP , then the critical point below takes two branches.
– Otherwise, the critical point above takes two branches.

P (α, y) has a Triple Root and a Double Root. Here, the triple critical
point takes one or three branches, and the double one takes two or none.

If there are five branches to distribute, then three branches go to the critical
point corresponding to the triple root, and two branches go to the critical point
corresponding to the double root. If there is just one branch, then the critical
point corresponding to the triple root takes it.

If there are three branches, we again check the slopes of the tangent lines:

– If one of the critical points has two complex non-real slopes, then the other
one takes the until now unassigned branches.

– If one of the critical points has (at least) two real slopes, then it takes the
until now unassigned branches.

If we do not have enough data, then we consider again CPy
. It has one real branch

through the double point, one real branch passing between the critical points
and two possibly non-real branches passing through the triple point.

– If CPy
has just two real branches, then the double point takes the until now

unassigned branches.
– If two of the four real branches of CPy

lie above the three branches of CP ,
then the below critical point takes the until now unassigned branches.

– Otherwise, the above critical point takes the until now unassigned branches.

It is impossible that the three branches of CP lie between the four branches of
CPy

with this configuration at the critical line.

3.4 Examples

This section is devoted to testing the ideas introduced in the previous sections
with some examples, which serve as an argument against imposing general posi-
tion when treating with low degree curves.

Example 1. Consider the quartic CP given by P (x, y) = x4+2x2y2+y4+x3−3xy2

(see Fig. 2). If we apply the sweeping algorithm to P , then we find the critical
line x = 9/16 with two double critical points:

(
9/16,±3

√
15/16

)
. To the left,

there are four half branches, so each critical point takes two. To the right, there
are no critical branches, so there’s no need to join anything. We can make this
decision even without considering whether the critical points are singular. While
the change x �→ y, y �→ x gives general position, the general coordinate change
transforms this sparse represented curve into a dense one.
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Example 2. Consider the quintic CP given by P (x, y) = x5 − y5 − 4x4 + 6y4 +
x3 − 12y3 + 10x2 + 8y2 − 4x − 8 (see Fig. 2). The restriction of P to the critical
line x = −1 gives a double root y = 0 and a triple root y = 2. There are three
half-branches on each sides. Since the localization at the critical point (−1, 0),
P (x − 1, y), has the lowest homogeneous component equal to 8y2 − 27x2, the
curve has two tangent lines at such point. This means, as mentioned in the
previous section, that the point (−1, 0) must take two half-branches from each
side, which means that the remaining one goes to the point (−1, 2).

Fig. 2. To the left, the curve in Example 1 with the mentioned critical line. To the
right, the curve in Example 2 with the mentioned critical line.

4 Application: Computing the Intersection Curve
Between Two Ellipsoids

Given two ellipsoids A : XAXT = 0 and B : XBXT = 0, X = (x, y, z, 1), their
characteristic equation is defined as f(λ) = det(λA + B) = det(A)λ4 + . . . +
det(B) which is a quartic polynomial in λ with real coefficients. The character-
ization of the relative position of two ellipsoids (separation, externally touching
and overlapping) in terms of the sign of the real roots of their characteristic
equation was introduced by [9]. However, the root pattern of the characteristic
polynomial is not enough to characterize the arrangement of two ellipsoids.

A more in-depth algebraic characterization using the so-called index sequence
was introduced in [8] to classify the morphology of the intersection curve of two
quadratic surfaces in the the 3D real projective space. The index sequence of a
quadric pencil not only includes the root pattern of the characteristic polynomial,
but also involves the Jordan form associated to each root and the information
between two consecutive roots.

The behaviour of the index function for a pencil of ellipsoids is captured by
the eigenvalue curve S defined by the equation S(λ, μ) = det(λA+B−μI4) = 0 .
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This curve has degree four in both λ and μ. Because λA+B is a real symmetric
matrix for each λ ∈ R, there are in total four real roots for S(λ, μ) = 0, counting
multiplicities. For each value λ0, the index function Id(λ0) equals to the number
of positive real roots of S(λ0, μ) = 0.

Since S(λ, μ) = 0 is a very special quartic curve (there are always four real
branches (taking into account multiplicities), its analysis is extremely simple. If
λ = α is a critical line, then S(α, μ) factorises in the following way:

1. S(α, μ) = τ4(y − β)4.
2. S(α, μ) = τ4(y − β)3(y − γ) with γ ∈ R.
3. S(α, μ) = τ4(y − β)2(y − γ)2 with γ ∈ R.
4. S(α, μ) = τ4(y − β)2(y − γ1)(y − γ2) with γ1 �= γ2.

In [2], we can find formulae showing, for each case and in terms of α, the
values of β, γ, γ1 and γ2 allowing to determine easily Id(α). Computing Id(λ) for
λ not giving a critical line reduce to apply Descartes’ law of signs (see Remark
2.38 in [1]) to the polynomial S(λ, μ) as polynomial in μ. And finally the way
the four branches touch every critical line is easily determined by using the
techniques described in Sect. 3.2.

5 Conclusions

In this paper (together with the formulae in [2]), we have shown how to avoid
the use of the “general position condition” when computing the topology of a
real algebraic plane curve defined implicitly. A concrete application has been
also described and our next step will be to design a new algorithm computing
the topology of an arrangement of quartics and quintics by using the formulae
and strategy introduced here.
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Abstract. The question of whether the underlying geometry of a dynam-
ical point cloud is invariant is considered from the perspective of the
algebra of trajectories of the points as opposed to their point-set topol-
ogy. We sketch two approaches to identifying when the geometry remains
invariant, one that accounts for a model of stochastic effects as well, and
a second that is based on a persistence K-theory. Additional geometric
structure in both approaches is made apparent by viewing them as finite
noncommutative spaces (spectral triples) embedded inside the Hodge-de
Rham spectral triple. A general reconstruction problem for such spaces is
posed. The ideas are illustrated in the setting of understanding the depen-
dence of grid cell population activity on environmental input.

Keywords: Grid cell modules · K-theory · Persistence homology ·
Noncommutative geometry · Stochastic differential geometry · Discrete
differential geometry

1 Introduction

A dynamical point cloud is a family of point clouds (Dθ) parameterized by time
or other environmental input, θ ∈ Θ. For each θ, the data, Dθ, are assumed to be
sampled from a compact Riemannian manifold, Mθ. Characterizing the change
in geometry and topology defined by the point cloud has important applica-
tions in many fields. Towards this, we study the geometry of a dynamic point
cloud through discrete differential geometry and the persistence of the K0 func-
tor. This algebraic approach naturally connects with viewing the point clouds as
finite spectral triples embedded inside the Hodge-de Rham spectral triple for M .
The connection is provided by the results from [2] on the convergence of point
cloud Laplacians to the Laplace-Beltrami operator and a Hodge theory on metric
spaces developed by [1]. The point cloud Laplacians also allow for considering
a stochastic version of the question with the Laplacian as the generator for the
noise process. We begin by putting forward a model describing the case where
the geometry is invariant over Θ up to stochastic effects and statistical testing
in such a setup. Then we establish a stability theorem for an algebraic persis-
tence theory to complement the topological persistence homology by capturing
the dynamics of individual points without the complexity of multidimensional
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persistence. Finally, we consider the convergence of discrete Dirac operators for
point clouds to the Dirac operator for the ambient Hodge-de Rham spectral
triple. This is needed to be able to argue that the discretely sampled trajectories
are sufficient to understand the geometry. A general reconstruction question is
posed for such embedded finite spectral triples. The underlying motivation is
understanding the modulation of grid cell firing by the environment. We start
by introducing this illustrative example.

1.1 Modulation of Grid Cell Firing by Environmental Input

In the entorhinal cortex grid cells are cells with spatial firing fields organized on
regular grids that form a part of the neural system responsible for navigation
and mapping. Grid cells are organized in modules with structured correlations
between different cells in the module. The neural code used by grid cell net-
works can be probed using persistence homology. In [10], Gardner et al, find
that the activity of grid cell modules lies on a toroidal manifold that persists
across brain states and offers support for continuous attractor models of grid cell
activity. They also show evidence for environmental input-driven deformation of
the geometry of population activity1. This can be thought of as an example
of homeostatic plasticity. The question of the degree of stability of population
dynamics is interesting, and one would like to relate this deformation to mech-
anistic models. A first step in this direction is putting forward a statistical test
for the simplest case where the geometry is invariant and the point clouds evolve
under a diffusion process on this fixed geometry.

We set this question up as follows: suppose that the spike train data from N
neurons measured at K spatial locations x0

k, k ∈ [K], xk ∈ R
N in environmental

conditions E0 at time t0. The environmental conditions are then updated to E1

with firing data (x1
k)k∈[K]. The point cloud M̂ t

K := {xt
k : k ∈ [K]} ⊂ R

N changes
with t ∈ T . The question now is of testing if the geometry M t

K from which the
point cloud M̂ t

K is invariant with respect to environmental input over t ∈ T , that
is, M t

K = M0
K := M , where the sample path of individual points, xk

t , follows
Brownian motion process on the invariant geometry M , that is, the diffusion
generated by the Laplace-Beltrami operator, �M . While K is fixed, data from
multiple runs of the experiment can be pooled to consider large size limit of the
point cloud.

The choice of the process provides a natural null model for testing the pres-
ence of non-Markovian dynamics, as well as for testing synchronization in the
point cloud. The hypothesis being tested is not just that the point cloud lives
on an invariant geometry, that is, it’s sampled from M × [0, T ], but also that the
time evolution follows Brownian motion on M . One can consider more general
diffusion processes for such model testing, with the parameters learned from the
time-series data, however, if the geometry is relevant then the Laplace-Beltrami
operator is expected to play a role.

1 [10, Tori persist despite grid distortions].



476 S. Gakkhar and M. Marcolli

1.2 A Diffusive Model and Random Matrices

As a prelude to introducing L2 Hodge theory [1], we consider the question of
testing the hypothesis that the point cloud M t

K = M for all t. The Riemannian
manifold (M, g), with dimM = d and metric g, is assumed to be embedded
smoothly and isometrically in an ambient space, φ : M ↪→ R

N , and for each
k ∈ K, xt

k is evolving by �M/2 diffusion on M .
Recalling that on a filtered probability space (Ω,F∗,P) a M -valued, F∗-

adapted, stochastic process (Xt) is a (local-, semi-)-martingale on [0, τ) if f(Xt)
is a real-valued (local-, semi-)-martingale for all f ∈ C∞(M) where τ is a F∗
stopping time (see, for instance, [12]). Brownian motion, X := (Xt), on M is the
�M/2 generated diffusion process, that is, a F∗-adapted process X : Ω → W (M)
(where W (M) is the path space on M) such that for all f ∈ C2(M), ω ∈ W (M),
Mf as defined below is a local martingale:

Mf (ω)t := f(ωt) − f(ω0) − 1
2

∫ t

0

�Mf(Xs)ds (1)

By the results of Belkin-Niyogi [2], the convergence of empirical estimates of
Laplacians on finite metric space to �M is known. This is formulated as follows:
data Xn = (xi)i∈[n] is n samples form M sampled with respect to uniform mea-
sure, μM , dim M = d, giving an increasing sequence of metric spaces X1 ⊂ X2 ⊂
. . . Xi ⊂ Xi+1 · · · ⊂ M . To each Xn is the associated empirical Laplacian, �tn,n,
defined for p ∈ M by �tn,nf(p) :=

∑
i∈[n] Ktn

(p−xi)(f(xi)− f(p))ntd+2
n where

Ktn
(u) = exp(−‖u‖2 /4tn) and tn an appropriate sequence decreasing to 0, ‖·‖ =

‖·‖
RN , c, then we have limn→∞ �tn,nf(x)/tn(4πtn)d/2 = �Mf(x)/Vol(M).
An analogous result holds for any probability measure μM on M . Now

the local-martingale characterization of �M/2-diffusion (Eq. 1) applied to
fi = πi ◦ ψ, the coordinate functions of the smooth embedding ψ to easily
test the question that M t

K = M for all t and Xt
k follows �M/2 diffusion. This

is further simplified by noting that fi(Xs) is uniformly bounded and therefore a
martingale, so the mean at each t is constant. The needed statistical test is just
the test for constancy of the mean estimated by averaging data from l repeated
experiments and using the control on �Mf(x) from [11] which gives a quanti-
tative version of the convergence of the point cloud Laplacian. This is stronger
than testing for stationary, e.g. using the unit root tests, as it’s additionally
required that the generator is the Laplacian.

Simplicial homology of random configurations and dynamical models for ran-
dom simplicial complexes have been studied (for example, [6,8]), the simple
example here suggests that (co)homology, both with rational coefficients and
the α-scale theory of [1] for randomly evolving configurations is also meaningful
from an applications perspective as well.

1.3 Discrete Differential Operators with Heat Kernel Weights

On a finite metric space, (Xn, d), with a probability measure μ, the point cloud
Laplacian can be realized as Hodge Laplacian of a (co)chain complex [1]. Note
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that for a finitely supported measure ν on M , the point cloud Laplacian on M is
an empirical estimate (via concentration bounds) for the functional approxima-
tion to the Laplace-Beltrami operator �tf(x) =

∫
X

(f(x) − f(y))Kt(x, y)dν(y).
We work in the picture that n point metric space X is n samples from M , d is
the distance in ambient euclidean space, dM the geodesic distance on M , and as
n increases we have inclusions in : Xn → Xn+1, |Xn| = n and Xn+1 \ Xn is the
one additional sample from M .

Fix Xn = X. Barthodi et al. [1] consider (co)chain complexes on L2(X l)
using the coboundary map δl−1 : L2(X l) → L2(X l+1), [δf ](z0, z1 . . . zl) =∑l

i=0(−1)i
∏

i�=j

√
K(zi, zj) f(z0, . . . ẑi . . . zl) where X l =

∏
i∈[l] X, L∞(X2) �

K : X2 → R is symmetric, nonnegative and measurable; K := Kt(·, ·)
is taken the tn scaled heat kernel. The boundary map ∂l : L2(X l+1) →
L2(X l) is defined by [∂g](z0 . . . zl−1) =

∑l
i=0(−1)i

∫
X

∏l−1
j=0

√
K(s, zj)

g(z0 . . . zj−1, s, zj+1 . . . zl−1) dμ(s) and satisfies δ∗
l−1 = ∂l, and the laplacian,

�l = (δ∗
l δl+δl−1δ

∗
l−1) can be defined. The constructions and results also hold for

L2
a(X l) = {f ∈ L2(X l) : f(x0, . . . xl) = (−1)sgn(σ)f(σ(x0), . . . σ(xl)), σ ∈ Sl+1}.

In [1], they also establish that for a Riemannian manifold, (X, g, μ), on restricting
this construction to a suitable neighborhood of the diagonal, de Rham cohomol-
ogy of X can be recovered and a Hodge decomposition exists for each L2(X l).

Observing that �t
0(f(x)) =

∫
X

(f(x) − f(y))Kt(x, y)dμ(y), i.e., �0|L2(X) is
exactly the functional approximation to the Laplace-Beltrami operator which in
the large sample-small t limit approaches the Laplace-Beltrami operator, and
since on restricting to functions, Hodge-de Rham Laplacian agrees with the
Laplace-Beltrami operator up to a sign suggests that in this limit δ(n) associated
to the sequence of n-point metric spaces (Xn) must approach the usual exterior
derivative d acting on Ω0(X). We give a quick proof using covariant Taylor series
with respect to the canonical Riemannian connection ∇.

Theorem 1. Suppose U ⊂ R
N is such that M ∩ U is a normal neighborhood of

x ∈ M , and for any y ∈ M∩U , y �= x, x(t) is the unique unit speed geodesic join-
ing x, y, v := ẋ(0). Then for s = dM (x, y) and Kt(x, y) = exp(−‖x − y‖2N /4t),
s = t + O(t2) implies |δf(x, y)/t − dfx(v)| = O(t).

Proof. Since x(t) is unit speed geodesic with x(0) = x, so x(s) = y. Expanding in
a covariant Taylor series about x(0), f(x(t)) =

∑∞
n=0 tn/n!dn/dτnf(x(τ))|τ=0,

with d/dτ = ẋi(τ)∇i, gives f(y)−f(x) = s·df(v)+O(s2) since first order term is
ẋi(τ)∇if |τ=0 = s·g(v,∇f(x)) = s·dfx(v). We have δf(x, y) =

√
Kt(x, y)(f(y)−

f(x)) =
√

Kt(x, y)sḋfx(v)+
√

Kt(x, y)O(s2). For fixed x, using that there exists
η ≥ 0, such that dM (x, y)2 − ‖x − y‖2N = η(y) with |η(y)| ≤ CdM (x, y)4 for a
constant C on the normal neighborhood U , so ‖x − y‖2N = dM (x, y)−η(y). Using
eα = 1 + O(αeα) for α > 0, 1/(1 + α) ≤ 1 + O(α) yields the following estimate
from which the result follows for s = t + O(t2)∣∣∣√Kt(x, y)

s

t
df(v) − df(v)

∣∣∣ =
∣∣∣
(
eη(y)e−dM (x,y)2/8t s

t
− 1

)
df(v)

∣∣∣
≤

∣∣∣
(s

t
(1 + O(s2/t))(1 + O(s4/t)) − 1

)
df(v)

∣∣∣
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In the large sample limit as the sampled points get closer s/t approaches
identity while sk/t, k > 1 terms vanish, and the exterior derivative is recovered.
This observation is the basis for the attempt in Sect. 3 to formalize how sample
paths, xt

k, (from Sect. 1.1) encode the underlying geometry using Hodge-de Rham
spectral triples. To warm up to the idea of replacing topological spaces (Xn) by
the algebras C(Xn), we consider the persistence theory K0 functor and use it
towards analyzing dynamical geometry in point clouds.

2 Q ⊗ K0-Persistence

Dynamical point clouds have been studied through persistent homology theories
that use multiple persistence parameters for the incomparable space and time
dimensions [13]. However, theories that use independent persistence parame-
ters introduce complexity that intuitively is not necessary. Consider the ques-
tion of detecting synchronization. Suppose in the extreme case, the point cloud
completely synchronizes to evolve by rotation, so that the distance matrices
[Dij ]i,j∈[K], are invariant in time, and persistence homology is constant for every
value of space and time persistence parameters. One can detect this synchro-
nization by analyzing the time persistence, but one now needs to test ranges
of multiple independently varying persistence parameters to assign statistical
confidence.

Since in the setup of the basic question, we are not exploring the development
of new structures in relationships between points in time and are only interested
in the sample paths of the points themselves, one expects that persistence in
time is unnecessary. This intuition can be verified by showing that a persistence
theory with only spatial parameters is sufficient in this setting. Furthermore,
this theory is shown to be equivalent to a topological persistence theory.

2.1 A Category-Theoretic Formulation of Persistence

In [3] Bubenik and Scott formulate persistence homology abstractly in terms of
functor F from a small poset category C into a category D called C-indexed
diagram in D. The space of such functors with natural transformations is the
category DC . Composing a diagram in the category of topological spaces Top
indexed by (R,≥), F ∈ Top(R,≥), F : (R,≥) → Top with the k-th homology
functor Hk into the category of finite dimensional vector spaces Vec gives a
diagram HkF ∈ Vec(R,≥). For a topological space X, a map f : X → R defines
a functor F ∈ Top(R,≥) by F (a) = f−1((−∞, a]), and from this data the p-
persistent k-th homology group for the topological space X is defined as the
image of map HkF (a ≤ a+p) induced on homology by the inclusion HkF (a) ↪→
HkF (a+p). The construction of a persistence K-theory is analogous. We first use
the functor C : Top → C∗

1 , where C∗
1 is the category of unital C∗ algebras, that

associates to compact Hausdorff topological spaces X,Y , the unital C∗-algebras
C(X), C(Y ) and to continuous map φ : X → Y , the pullback, φ∗ : C(Y ) →
C(X), φ∗(h) = h ◦ φ. Note that C reverse the direction of the arrows: for ε > 0,
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the inclusion i : F (a) ↪→ F (a + ε) induces i∗ : C(F (a + ε)) → C(F (A)), we
adjust this by using the opposite category to index, equivalently the diagram
F : (R,≥) → Top the associated diagram is CF : (R,≥) → C∗

1 , −a → C(F (a)).

2.2 The Q ⊗ K0-Functor: Stability and Computation

On diagrams F1, F2 ∈ DC , there exists an extended pseudo-metric, dIL, defined
as dIL(F1, F2) = min{ε : ε > 0, F1, F2 are ε interleaved} where F1, F2 are ε-
interleaved if there exists natural transformations φ12 : F1 ⇒ F2, φ21 : F2 ⇒ F1

such that the following diagrams commute for i, j ∈ {1, 2}, i �= j, the horizontal
arrows being the inclusions of the diagram:

Fi(a) Fi(b) Fi(a) Fi(a + 2ε)

Fj(a + ε) Fj(b + ε) Fj(a + ε)

φji(a+ε)φij(a)φij(a) φij(b)

The K0-functor is the functor from C∗
1 to the category of abelian groups

AbGrp that associates to an unital C∗-algebra its Grothendieck group. We con-
sider the diagrams in AbGrp(R,≥), K0CF . The p K0-persistence is now defined
for the diagram CF as the image of map K0FC(a ≥ a + p) induced on K0-group
by the map K0CF (a) → K0CF (a + p). As for topological persistence, a stabil-
ity theorem is needed that ensures that similar topological spaces have similar
K0 persistence for their continuous function algebras. We have that C is con-
tractive with respect to the interleaving distance even though it reverses the
arrows. And since by [3, Prop 3.6], for any functor H : C∗

1 → E to any category
dIL(HCF1,HCF2) ≤ dIL(CF1, CF2). This yields the needed stability theorem
analogous to [3, Thm 5.1] as a corollary.

Lemma 1. For F1, F2 ∈ Top(R,≥), dIL(CF1, CF2) ≤ dIL(F1, F2)

Proof. This follows since if F1, F2 are ε-interleaved then CF1, CF2 are as well:
the associated natural transformation obtained by composing φij ◦ C and the as
C simply reverse the arrows the interleaving relations still hold.

Corollary 1. If F1, F2 ∈ Top(R,≥) are such that Fi(a) = f−1
i ((−∞, a]), then

dIL(K0CF1,K0CF2) ≤ dIL(CF1, CF2) ≤ ‖f1 − f2‖∞

Proof. From the proof of [3, Thm 5.1], dIL(F1, F2) ≤ ‖f1 − f2‖∞, and the rest
follows.

For increasing finite metric spaces arising by sampling from a manifold M ,
X1 ↪→ X2 . . . ↪→ M , the inclusions Xn ↪→ Xn+1 induce maps C(Xn+1) → C(Xn).
Recovering the algebra C(M) in large n limit of such systems is difficult as
projective limits of C∗-algebras are more general pro C∗-algebras. Even K0 may
not be continuous under the projective limits. Keeping in mind that the goal is
simply a statistical test for the invariance of the underlying geometry, one can
use the following observation to derive the test.
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Lemma 2. Q ⊗ K0(C(X))⊗ ∼= Heven(X,Q)

Proof. This is obvious from results in topological K-theory [16] : K0(X) ⊗ Q ∼=
Heven(X,Q) for any topological space X where K0(X) is topological K0 group
associated to isomorphism classes of vector bundles over X. When X is compact
Hausdorff space, as abelian groups K0(C(X)) ∼= K0(X), and on taking the tensor
product with Q, they are isomorphic as Q-vector spaces.

This reduces the algebraic K-theoretic persistence to the persistence of the
even rational cohomology of the topological space X for which the sample paths
approximate C(X). We offer a candidate space next such that the a topological
persistence parameter can be obtained from K-persistence parameter.

Notice that if the time evolution is constrained to be by a possibly random
isometry, then the hypothesis that the geometry of the point cloud is invariant
translates to the null model being that the time evolution of the topological Rips
simplicial complex at persistence parameter ε is simply the mapping cylinder M1,
formed by gluing (xt

k, t) ∼ (xt+1
k , t+1). Since the evolution is isometric, the maps

are simplicial under the null hypothesis, and l-cells in complexes, Xt
ε ,X

t+1
ε , at

times t, t + 1, can be glued. Confidence in how well the true data conforms to
the hypothesis can be quantified by testing the cohomology of the time-evolved
complex XT for actual data against the expected.

If the evolution is not isometric, then picking a single persistence parameter is
difficult as distances in various parts of the geometry will change differently. This
can be accounted for by using that as in the Brownian motion diffusive model,
the generator is the Laplace-Beltrami operator, �, which is being approximated
by the point cloud Laplacian, �PC, the evolution will be isometric in expectation
after adjusting for the eigenvalues of �PC; we will work with this rescaled metric.
The rescaling does not affect the cohomology and allows for using a uniform
spatial persistence parameter for the time-evolved complex. The actual data can
now be tested against the simulated data or against the expectation to see if the
null hypothesis of a diffusive model can be accepted.

The presence of stochastic effects is measured by the distribution of lifetimes
of the simplices in this process since if the data is not evolving by a process
generated by the Laplacian, then rescaling by the eigenvalues of the point cloud
Laplacian will not yield isometric evolution, leading to simplices splitting and
merging. At the same time, longer than expected lifetimes for simplices for the
unscaled metric indicate likely synchronized sub-populations and possible home-
ostatic plasticity in the population response to input, which is of interest.

3 Embedded Finite and Hodge-de Rham Spectral Triples

For T large, the data of Brownian motion sample paths γ : [0, T ] → M on a finite
point cloud, composing with coordinate functions of the embedding ψ : M ↪→ R

N

gives a discretized version of the algebra C(M) because of the asymptotics of
the time taken to get within r of each point, the r-covering time [7]. If this
is enough to recover the geometry of M is central to the program we have
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outlined. This is best viewed as a question in noncommutative geometry: we
recall how commutative geometry is encoded in the noncommutative language.
The Hodge-de Rham spectral triple, AM , for Riemannian manifold (M, g) is the
data (C∞(M), Ω•(M), d+d†) where d+d† is the Hodge-de Rham Dirac operator,
d the exterior derivative on differential forms Ω•(X), d† the Hodge dual. By
Connes’ spectral characterization of manifolds [4], (M, g) can be recovered from
AM . A finite spectral triple is the triple, AF := (AF ,HF ,DF ), where AF is an
unital ∗-algebra represented faithfully on a Hilbert space HF ,dim HF finite, and
D a symmetric operator on HF subject to some additional requirements. There’s
a standard representation of a finite metric space as a finite spectral triple.

We instead define an alternative representation using theorem 1 to obtain
a finite Dirac operator. Suppose . . . Xi ⊂ Xi+1 . . . is an increasing sequence of
metric space sampled from M , with Xn = {xi : i ∈ [n]}. Then using the L2-
Hodge theory, with a uniform measure on Xn (except weighed multiply if xi =
xj , i �= j), we associate to it the restriction of the algebra C∞(M) and Ω•(M).
Ω•(M) is permissible as the space of co-chains is alternating, that is, La(X•

n).
Similar to theorem 1 it’s possible to show that for the operator δ

(n)
l−1 on L2(X l),

δf(x0 . . . xl) converges to dfx0(v1 . . . vl) where vi is the tangent at x0 to the unit
speed geodesic to xi, the idea being to fix l − 1 of xi’s to get back to 1-cochain
setting, although it needs to be checked that this is well defined regardless of
order and number of fixed xi’s. This can be achieved using continuity of f as in
the limit we restrict to infinitesimal neighborhoods of x0. From this, the result
below follows which for transparency can be roughly stated as –

Theorem 2. The finite Dirac operators, Dn := δ(n) +(δ(n))∗, for Xn converges
to the Hodge-de Rham Dirac operator d + d† for M .

To reconstruct the full Hodge-de Rham spectral triple from finite spectral
triples (and (M, g) by [4]) the knowledge of C∞(M) and Ω•(M) cannot be
assumed. For recovering the algebra of the spectral triple, instead of taking
the projective limit of C(Xn), we use a classical result in PL-topology [14]: M
being smooth implies there exists a homeomorphism φ : K → M , where K is a
polyhedron with triangulation {σi} and φ is a piecewise diffeomorphism on σi,
and therefore, C(M) ∼= C(K).

For the polyhedron K, viewed as the geometric realization |Σ| of an abstract
simplicial complex Σ on the finite vertex set VΣ = i ∈ [N ] for {σi}, define Cab

Σ

as the abelianization of the universal C∗-algebra generated by positive gener-
ators hi, i ∈ VΣ , hi1hi2 . . . hik

= 0 whenever {ij : j ∈ [k]} ⊂ Σ and for all
m ∈ VΣ ,

∑
k∈VΣ

imik = im with the dense subalgebra generated algebraically
on the same generators and relations. Then from [5], Cab

Σ
∼= C0(|Σ|) where |Σ|

is the geometric realization of Σ. As M,K are compact, Cab
Σ

∼= C(M). The last
ingredient needed to recover the Hodge-de Rham spectral triple is how the Dirac
operator acts on C(K), but this is given by the homeomorphism φ, although some
care is required as φ is only a piece-wise diffeomorphism (so the action of Dirac
operator is not everywhere defined and we need to restrict to a differentiable
subalgebra).
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Finally, from d and C∞(M), Ω•(M) can be constructed. The Dirac operators
for the finite spectral triples we have used are weighed by the Euclidean heat
kernel of the ambient space and are not standard finite spectral triples. This
spectral triple with the Dirac operator coming from the L2 Hodge theory is
defined as an embedded finite spectral triple. The details of convergence to the
Hodge-de Rham spectral triple2 are developed in forthcoming work [9].

We end this article by posing the question of computationally reconstructing
the Hodge-de Rham spectral triple, that is, recovering K and φ from the point
cloud data, (Xn), in the large n limit. In particular, one does not expect to have
access to the Euclidean embedding ψ : M → R

N , but can only construct the
simplicial complex from sampled points, and the discrepancy of the action of
Dirac operator on constructed simplex and M needs to be bound in terms of the
geometry (e.g. M ’s maximum sectional curvature).
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Abstract. An approximate projection onto the tangent cone to the vari-
ety of third-order tensors of bounded tensor-train rank is proposed and
proven to satisfy a better angle condition than the one proposed by
Kutschan (2019). Such an approximate projection enables, e.g., to com-
pute gradient-related directions in the tangent cone, as required by algo-
rithms aiming at minimizing a continuously differentiable function on the
variety, a problem appearing notably in tensor completion. A numerical
experiment is presented which indicates that, in practice, the angle condi-
tion satisfied by the proposed approximate projection is better than both
the one satisfied by the approximate projection introduced by Kutschan
and the proven theoretical bound.

Keywords: Projection · Tangent cone · Angle condition ·
Tensor-train decomposition

1 Introduction

Tangent cones play an important role in constrained optimization to describe
admissible search directions and to formulate optimality conditions [9, Chap. 6].
In this paper, we focus on the set

R
n1×n2×n3
≤(k1,k2)

:= {X ∈ R
n1×n2×n3 | rankTT(X) ≤ (k1, k2)}, (1)

where rankTT(X) denotes the tensor-train rank of X (see Sect. 2.2), which is a
real algebraic variety [4], and, given X ∈ R

n1×n2×n3
≤(k1,k2)

, we propose an approxi-
mate projection onto the tangent cone TXR

n1×n2×n3
≤(k1,k2)

, i.e., a set-valued mapping
P̃
TXR

n1×n2×n3
≤(k1,k2)

: Rn1×n2×n3 � TXR
n1×n2×n3
≤(k1,k2)

such that there exists ω ∈ (0, 1]

such that, for all Y ∈ R
n1×n2×n3 and all Ỹ ∈ P̃

TXR
n1×n2×n3
≤(k1,k2)

Y ,

〈Y, Ỹ 〉 ≥ ω‖P
TXR

n1×n2×n3
≤(k1,k2)

Y ‖‖Ỹ ‖, (2)
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where 〈·, ·〉 is the inner product on R
n1×n2×n3 given in [1, Example 4.149], ‖ · ‖

is the induced norm, and the set

P
TXR

n1×n2×n3
≤(k1,k2)

Y := argmin
Z∈TXR

n1×n2×n3
≤(k1,k2)

‖Z − Y ‖2 (3)

is the projection of Y onto TXR
n1×n2×n3
≤(k1,k2)

. By [10, Definition 2.5], inequality (2)
is called an angle condition; it is well defined since, as TXR

n1×n2×n3
≤(k1,k2)

is a closed
cone, all elements of P

TXR
n1×n2×n3
≤(k1,k2)

Y have the same norm (see Sect. 3). Such an

approximate projection enables, e.g., to compute a gradient-related direction in
TXR

n1×n2×n3
≤(k1,k2)

, as required in the second step of [10, Algorithm 1] if the latter is
used to minimize a continuously differentiable function f : Rn1×n2×n3 → R on
R

n1×n2×n3
≤(k1,k2)

, a problem appearing notably in tensor completion; see [11] and the
references therein.

An approximate projection onto TXR
n1×n2×n3
≤(k1,k2)

satisfying the angle condition
(2) with ω = 1

6
√
n1n2n3

was proposed in [5, §5.4]. If X is a singular point of
the variety, i.e., (r1, r2) := rankTT(X) 	= (k1, k2), the approximate projection
proposed in this paper ensures (see Theorem 1)

ω =

√
max

{
k1 − r1
n1 − r1

,
k2 − r2
n3 − r2

}
, (4)

which is better, and can be computed via SVDs (see Algorithm 1). We point out
that no general formula to project onto the closed cone TXR

n1×n2×n3
≤(k1,k2)

, which is
neither linear nor convex (see Sect. 2.3), is known in the literature.

This paper is organized as follows. Preliminaries are introduced in Sect. 2.
Then, in Sect. 3, we introduce the proposed approximate projection and prove
that it satisfies (2) with ω as in (4) (Theorem 1). Finally, in Sect. 4, we present a
numerical experiment where the proposed approximate projection preserves the
direction better than the one from [5, §5.4].

2 Preliminaries

In this section, we introduce the preliminaries needed for Sect. 3. In Sect. 2.1, we
recall basic facts about orthogonal projections. Then, in Sect. 2.2, we review the
tensor-train decomposition. Finally, in Sect. 2.3, we review the description of the
tangent to R

n1×n2×n3
≤(k1,k2)

given in [4, Theorem 2.6].

2.1 Orthogonal Projections

Given n, p ∈ N with n ≥ p, we let St(p, n) := {U ∈ R
n×p | U�U = Ip}

denote the Stiefel manifold. For every U ∈ St(p, n), we let PU := UU� and
P⊥
U := In − PU denote the orthogonal projections onto the range of U and

its orthogonal complement, respectively. The proof of Theorem 1 relies on the
following basic result.
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Lemma 1. Let A ∈ R
n×m have rank r. If Â = Û ŜV̂ � is a truncated SVD of

rank s of A, with s < r, then, for all U ∈ St(s, n) and all V ∈ St(s,m),

‖PÛA‖ ≥ ‖PUA‖, ‖PÛA‖2 ≥ s

r
‖A‖2, (5)

‖APV̂ ‖ ≥ ‖APV ‖, ‖APV̂ ‖2 ≥ s

r
‖A‖2. (6)

Proof. By the Eckart–Young theorem, Â is a projection of A onto

R
n×m
≤s := {X ∈ R

n×m | rank(X) ≤ s}.

Thus, since Rn×m
≤s is a closed cone, the same conditions as in (14) hold. Moreover,

since ŜV̂ � = Û�A and thus Â = Û Û�A = PÛA, it holds that

‖PÛA‖2 = max
{

‖A1‖2 | A1 ∈ R
n×m
≤s , 〈A1, A〉 = ‖A1‖2

}
.

Furthermore, for all U ∈ St(s, n), 〈PUA,A〉 = 〈
PUA,PUA + P⊥

U A
〉
= ‖PUA‖2 .

Hence,
{PUA | U ∈ St(s, n)} ⊆ {A1 ∈ R

n×m
≤s | 〈A1, A〉 = ‖A1‖2}.

Thus, ‖PÛA‖2 = maxU∈St(s,n)‖PUA‖2. The left inequality in (5) follows, and
the one in (6) can be obtained similarly.

By orthogonal invariance of the Frobenius norm and by definition of Â,

‖A‖2 =
r∑

i=1

σ2
i , ‖Â‖2 =

s∑
i=1

σ2
i ,

where σ1, . . . , σr are the singular values of A in decreasing order. Moreover,
either σ2

s ≥ 1
r

∑r
i=1 σ2

i or σ2
s < 1

r

∑r
i=1 σ2

i . In the first case, we have

‖Â‖2 =
s∑

i=1

σ2
i ≥ sσ2

s ≥ s

∑r
i=1 σ2

i

r
=

s

r
‖A‖2.

In the second case, we have

‖Â‖2 =
r∑

i=1

σ2
i −

r∑
i=s+1

σ2
i ≥ ‖A‖2−(r−s)σ2

s > ‖A‖2−(r−s)
∑r

i=1 σ2
i

r
=

s

r
‖A‖2.

Thus, in both cases, the second inequality in (5) holds. The second inequality in
(6) can be obtained in a similar way. ��

2.2 The Tensor-Train Decomposition

In this section, we review basic facts about the tensor-train decomposition (TTD)
that are used in Sect. 3; we refer to the original paper [8] and the subsequent
works [3,11,12] for more details.
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A tensor-train decomposition of X ∈ R
n1×n2×n3 is a factorization

X = X1 · X2 · X3, (7)

where X1 ∈ R
n1×r1 , X2 ∈ R

r1×n2×r2 , X3 ∈ R
r2×n3 , and ‘·’ denotes the con-

traction between a matrix and a tensor. The minimal (r1, r2) for which a TTD
of X exists is called the TT-rank of X and is denoted by rankTT(X). By [2,
Lemma 4], the set

R
n1×n2×n3
(k1,k2)

:= {X ∈ R
n1×n2×n3 | rankTT(X) = (k1, k2)} (8)

is a smooth embedded submanifold of Rn1×n2×n3 .
Let XL := [X]n1×n2n3 := reshape(X,n1 × n2n3) and XR = [X]n1n2×n3 :=

reshape(X,n1n2 × n3) denote respectively the left and right unfoldings of X.
Then, rankTT(X) = (rank(XL), rank(XR)) and the minimal rank decomposi-
tion can be obtained by computing two successive SVDs of unfoldings; see [8,
Algorithm 1]. The contraction interacts with the unfoldings according to the
following rules:

X1 · X2 · X3 =
[
X1(X2 · X3)L

]n1×n2×n3
, X2 · X3 =

[
XR

2 X3

]r1×n2×n3
.

For every i ∈ {1, 2, 3}, if Ui ∈ St(ri, ni), then the mode-i vectors of [PU1X
L

(PU3 ⊗PU2)]
n1×n2×n3 are the orthogonal projections onto the range of Ui of those

of X. A similar property holds for XR. The tensor X is said to be left-orthogonal
if n1 ≤ n2n3 and (XL)� ∈ St(n1, n2n3), and right-orthogonal if n3 ≤ n1n2 and
XR ∈ St(n3, n1n2).

As a TTD is not unique, certain orthogonality conditions can be enforced,
which can improve the numerical stability of algorithms working with TTDs.
Those used in this work are given in Lemma 2.

2.3 The Tangent Cone to the Low-Rank Variety

In [4, Theorem 2.6], a parametrization of the tangent cone to R
n1×n2×n3
≤(k1,k2)

is given
and, because this parametrization is not unique, corresponding orthogonality
conditions are added. The following lemma recalls this parametrization however
with slightly different orthogonality conditions which make the proofs in the rest
of the paper easier, and the numerical computations more stable because they
enable to avoid matrix inversion in Algorithm 1.

Lemma 2. Let X ∈ R
n1×n2×n3
(r1,r2)

have X = X1 · X ′′
2 · X ′′

3 = X ′
1 · X ′

2 · X3 as
TTDs, where (X ′′L

2 )� ∈ St(r1, n2r2), X ′′�
3 ∈ St(r2, n3), X ′

1 ∈ St(r1, n1), and
X ′R

2 ∈ St(r2, r1n2). Then, TXR
n1×n2×n3
≤(k1,k2)

is the set of all G such that

G =
[
X ′

1 U1 W1

] ·
⎡
⎣X ′

2 U2 W2

0 Z2 V2

0 0 X ′′
2

⎤
⎦ ·

⎡
⎣W3

V3

X ′′
3

⎤
⎦ (9)
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with U1 ∈ St(s1, n1), W1 ∈ R
n1×r1 , U2 ∈ R

r1×n2×s2 , W2 ∈ R
r1×n2×r2 , Z2 ∈

R
s1×n2×s2 , V2 ∈ R

s1×n2×r2 , W3 ∈ R
r2×n3 , V �

3 ∈ St(s2, n3), si = ki − ri for all
i ∈ {1, 2}, and

U�
1 X ′

1 = 0, W�
1 X ′

1 = 0, (UR
2 )�X ′R

2 = 0,

W3X
′′�
3 = 0, V3X

′′�
3 = 0, V L

2 (X ′′L
2 )� = 0.

(10)

Proof. By [4, Theorem 2.6], TXR
n1×n2×n3
≤(k1,k2)

is the set of all G ∈ R
n1×n2×n3 that

can be decomposed as

G =
[
X ′

1 U̇1 Ẇ1

] ·
⎡
⎣X ′

2 U̇2 Ẇ2

0 Ż2 V̇2

0 0 X ′
2

⎤
⎦ ·

⎡
⎣Ẇ3

V̇3

X3

⎤
⎦ ,

with the orthogonality conditions

U̇�
1 X ′

1 = 0,
(
V̇2 · X3

)L (
(X ′

2 · X3)
L
)�

= 0, V̇3X
�
3 = 0, (11)

Ẇ�
1 X ′

1 = 0,
(
ẆR

2

)�
X ′R

2 = 0,
(
U̇R
2

)�
X ′R

2 = 0.

The following invariances hold for all B ∈ R
s2×s2 , C ∈ R

r2×r2 , Q ∈ R
s1×s1 , and

R ∈ R
r1×r1 :

G =
[
X ′

1 U̇1Q
−1 Ẇ1R

−1
] ·

⎡
⎣X ′

2 U̇2 · B Ẇ2 · C

0 Q · Ż2 · B Q · V̇2 · C
0 0 R · X ′

2 · C

⎤
⎦ ·

⎡
⎣ Ẇ3

B−1V̇3

C−1X ′
3

⎤
⎦ .

Then, if we define U1 := U̇1Q
−1, W1 := Ẇ1R

−1, U2 := U̇2 · B, Z2 := Q · Ż2 · B,
V2 := Q · V̇2 ·C, X ′′

2 := R ·X ′
2 ·C, V3 := B−1V̇3, and X ′′

3 := C−1X ′
3, the matrices

B, C, Q, and R can be chosen such that X ′′
2 is left-orthogonal, X ′′�

3 ∈ St(r2, n3),
V �
3 ∈ St(s2, n3), and U1 ∈ St(s1, n1), e.g., using SVDs. Additionally, Ẇ3 can be

decomposed as Ẇ3 = Ẇ3X
′′�
3 X ′′

3 +W3. The two terms involving Ẇ3 and Ẇ2 ·C
can then be regrouped as

X ′
1 · X ′

2 · Ẇ3 + X ′
1 · Ẇ2 · CX ′′

3 = X ′
1 · W2 · X ′′

3 + X ′
1 · X ′

2 · W3,

where we have defined W2 := X ′
2 ·Ẇ3X

′′�
3 +Ẇ2 ·C, obtaining the parametrization

(9) satisfying (10). ��
Expanding (9) yields, by (10), a sum of six mutually orthogonal TTDs:

G = W1 · X ′′
2 · X ′′

3 + X ′
1 · X ′

2 · W3 + X ′
1 · W2 · X ′′

3

+ U1 · V2 · X ′′
3 + X ′

1 · U2 · V3 + U1 · Z2 · V3.
(12)

Thus, the following holds:

W1 = GL
(
(X ′′

2 · X ′′
3 )

L
)�

, W2 = X ′�
1 · G · X ′′�

3 , W3 =
(
(X ′′

1 · X ′′
2 )

R
)�

GR,

U2 = X ′�
1 · G · V �

3 , V2 = U�
1 · G · X ′′�

3 , Z2 = U�
1 · G · V �

3 . (13)

The first three terms in (12) form the tangent space TXR
n1×n2×n3
(r1,r2)

, the projection
onto which is described in [7, Theorem 3.1 and Corollary 3.2].
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3 The Proposed Approximate Projection

In this section, we prove Proposition 1 and then use it to prove Theorem 1.
Both results rely on the following observation. By [6, Proposition A.6], since
TXR

n1×n2×n3
≤(k1,k2)

is a closed cone, for all Y ∈ R
n1×n2×n3 and Ŷ ∈ P

TXR
n1×n2×n3
≤(k1,k2)

Y ,

it holds that 〈Y − Ŷ , Ŷ 〉 = 0 or, equivalently, 〈Y, Ŷ 〉 = ‖Ŷ ‖2. Thus, all elements
of P

TXR
n1×n2×n3
≤(k1,k2)

Y have the same norm and (3) can be rewritten as

P
TXR

n1×n2×n3
≤(k1,k2)

Y = argmax
Z∈TXR

n1×n2×n3
≤(k1,k2)

〈Y,Z〉=‖Z‖2

‖Z‖ = argmax
Z∈TXR

n1×n2×n3
≤(k1,k2)

〈Y,Z〉=‖Z‖2

〈
Y,

Z

‖Z‖
〉

. (14)

Proposition 1. Let X be as in Lemma 2. For every Y ∈ R
n1×n2×n3 and every

Ŷ ∈ P
TXR

n1×n2×n3
≤(k1,k2)

Y , if U1 and V3 are the parameters of Ŷ in (12), then the

parameters W1, W2, W3, U2, V2, and Z2 of Ŷ can be written as

W1 = P⊥
X′

1

(
Y · X ′′�

3

)L (
X ′′L

2

)�
, W3 = X ′R

2

(
X ′�

1 · Y
)R

P⊥
X′′�

3
,

U2 =
[
P⊥
X′R

2

(
X ′�

1 · Y
)R]r1×n2×n3 · V �

3 , W2 = X ′�
1 · Y · X ′′�

3 , (15)

V2 = U�
1 ·

[(
Y · X ′′�

3

)L
P⊥
(X′′L

2 )�

]n1×n2×r2

, Z2 = U�
1 · Y · V �

3 .

Furthermore, Y‖(U1, V3) defined as in (12) with the parameters from (15) is a
feasible point of (14) for all U1 and all V3.

Proof. Straightforward computations show that 〈Y, Ŷ 〉 = 〈Y‖(U1, V3), Ŷ 〉 and〈
Y‖(U1, V3), Y − Y‖(U1, V3)

〉
= 0. Thus, Y‖(U1, V3) is a feasible point of (14).

Since Ŷ is a solution to (14), ‖Y‖(U1, V3)‖ ≤ ‖Ŷ ‖. Therefore, if Ŷ = 0, then
Y‖(U1, V3) = 0 and consequently all parameters in (15) are zero because of (13).
Otherwise, by using the Cauchy–Schwarz inequality, we have

‖Ŷ ‖2 = 〈Y, Ŷ 〉 = 〈Y‖(U1, V3), Ŷ 〉 ≤ ‖Y‖(U1, V3)‖‖Ŷ ‖ ≤ ‖Ŷ ‖2, (16)

where the last inequality holds because Ŷ is a solution to (14). It follows that the
Cauchy–Schwarz inequality is an equality and hence there exists λ ∈ (0,∞) such
that Y‖(U1, V3) = λŶ . By (16), λ = 1. Thus, because of (13), the parameters in
(15) are those of Ŷ . ��
Theorem 1. Let X be as in Lemma 2 with (r1, r2) 	= (k1, k2). The approximate
projection that computes the parameters U1 and V3 of Ỹ ∈ P̃

TXR
n1×n2×n3
≤(k1,k2)

Y in

(12) with Algorithm 1 and the parameters W1, W2, W3, U2, V2, and Z2 with
(15) satisfies (2) with ω as in (4) for all ε and all imax in Algorithm 1.
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Proof. Let (s1, s2) := (k1 − r1, k2 − r2) and Ŷ ∈ P
TXR

n1×n2×n3
≤(k1,k2)

Y . Thus, s1 +

s2 > 0. Because W1, W2, W3, U2, V2, and Z2 are as in (15), it holds that
Ỹ = Y‖(U1, V3), thus Ỹ is a feasible point of (14), and hence (2) is equivalent
to ‖Ỹ ‖ ≥ ω‖Ŷ ‖. To compare the norm of Ỹ with the norm of Ŷ , Û1 and V̂3 are
defined as the parameters of Ŷ . From (15), and because all terms are mutually
orthogonal, we have that

∥∥Ỹ
∥∥2 =

∥∥∥P
TXR

n1×n2×n3
(r1,r2)

Y
∥∥∥2

+
∥∥∥PU1

(
Y · X ′′�

3

)L
P⊥
(X′′L

2 )� (X ′′
3 ⊗ In2)

∥∥∥2

+
∥∥∥(

(PU1 · Y )R + (In2 ⊗ X ′
1)P⊥

X′R
2
(X ′�

1 · Y )R
)
PV �

3

∥∥∥2

.

Now, assume that s2/(n3 − r2) > s1/(n1 − r1) and consider the first iteration of
Algorithm 1. Because in the second step V3 is obtained by a truncated SVD of(
(PU1 · Y )R + (In2 ⊗ X ′

1)P⊥
X′R

2
(X ′�

1 · Y )R
)
P⊥
X′′�

3
and, by using (6),

∥∥Ỹ
∥∥2 ≥

∥∥∥P
TXR

n1×n2×n3
(r1,r2)

Y
∥∥∥2

+
∥∥∥PU1

(
Y · X ′′�

3

)L
P⊥
(X′′L

2 )� (X ′′
3 ⊗ In2)

∥∥∥2

+
s2

n3 − r2

∥∥∥(
(PU1 · Y )R + (In2 ⊗ X ′

1)P⊥
X′R

2
(X ′�

1 · Y )R
)

P⊥
X′′�

3

∥∥∥2

.

Furthermore, because in the first step U1 is obtained from the truncated SVD
of P⊥

X′
1

(
(Y · P⊥

X′′�
3

)L + (Y · X ′′�
3 )LP⊥

X′′L�
2

(X ′′
3 ⊗ In2)

)
and by using (5),

∥∥Ỹ
∥∥2 ≥

∥∥∥P
TXR

n1×n2×n3
(r1,r2)

Y
∥∥∥2

+
s2

n3 − r2

∥∥∥PÛ1

(
Y · X ′′�

3

)L
P⊥
(X′′L

2 )� (X ′′
3 ⊗ In2)

∥∥∥2

+
s2

n3 − r2

∥∥∥(
(PÛ1

· Y )R + (In2 ⊗ X ′
1)P⊥

X′R
2
(X ′�

1 · Y )R
)

P⊥
X′′�

3

∥∥∥2

,

where we have used that a multiplication with s2
n3−r2

can only decrease the norm.
The same is true for a multiplication with PV̂ �

3
and thus

∥∥Ỹ
∥∥2 ≥ s2

n3 − r2

(∥∥P
TXR

n1×n2×n3
(r1,r2)

Y
∥∥2 +

∥∥PÛ1

(
Y · X ′′�

3

)L
P⊥
(X′′L

2 )� (X ′′
3 ⊗ In2)

∥∥2

+
∥∥∥(

(PÛ1
· Y )R + (In2 ⊗ X ′

1)P⊥
X′R

2
(X ′�

1 · Y )R
)

PV̂ �
3

∥∥∥2 )
=

s2
n3 − r2

∥∥Ŷ
∥∥2

.

In Algorithm 1, the norm of the approximate projection increases monotonously.
Thus, this lower bound is satisfied for any ε and imax. A similar derivation can
be made if s2/(n3 − r2) ≤ s1/(n1 − r1). ��

This section ends with three remarks on Algorithm 1. First, the instruction
“ [U, S, V ] ← SVDs(A)” means that USV � is a truncated SVD of rank s of A.
Since those SVDs are not necessarily unique, Algorithm 1 can output several
(U1, V3) for a given input, and hence the approximate projection is set-valued.

Second, the most computationally expensive operation in Algorithm 1 is the
truncated SVD. The first step of the first iteration requires to compute either
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s1 singular vectors of a matrix of size n1 × n2n3 or s2 singular vectors of a
matrix of size n1n2×n3. All subsequent steps are computationally less expensive
since each of them merely requires to compute either s1 singular vectors of
A := P⊥

X′
1

[(
Y · V �

3

)L
,
(
Y · X ′′�

3

)L
P⊥
X′′L�

2

]
∈ R

n1×n2(r2+s2) or s2 singular vectors

of B :=
[(

U�
1 · Y

)R;P⊥
X′R

2

(
X ′�

1 · Y
)R]

P⊥
X′′�

3
∈ R

(r1+s1)n2×n3 , and, in general,
s1 + r1 � n1 and s2 + r2 � n3. This is because

P⊥
X′

1

((
Y · PV �

3

)L +
(
Y · X ′′�

3

)L
P⊥
X′′L�

2
(X ′′

3 ⊗ In2)
)
= A

[
V3 ⊗ In2

X ′′
3 ⊗ In2

]
,

and the rightmost matrix, being in St(n2(s2 + r2), n2n3) by Lemma 2, does not
change the left singular vectors (and values). The argument for B is similar. The
Matlab implementation of Algorithm 1 that is used to perform the numerical
experiment in Sect. 4 computes a subset of singular vectors (and singular values)
using the svd function with ‘econ’ flag.

Third, studying the numerical stability of Algorithm 1 would require a detailed
error analysis, which is out of the scope of the paper. Nevertheless, the modified
orthogonality conditions improve the stability compared to the approximate pro-
jection described in [5, §5.4.4] because Algorithm 1 uses only orthogonal matrices
to project onto vector spaces (it uses no Moore–Penrose inverse).

Algorithm 1. Iterative method to obtain U1 and V3 of P̃
TXR

n1×n2×n3
≤(k1,k2)

Y

Input: Y ∈ R
n1×n2×n3 , X = X ′

1 · X ′
2 · X3 = X1 · X ′′

2 · X ′′
3 ∈ R

n1×n2×n3
(r1,r2)

, ε > 0,
imax, s1, s2 ∈ N \ {0}
Initialize: i ← 0, V3 ← P⊥

X′′�
3

, U1 ← P⊥
X′

1
, η1 ← 0, ηnew ← ∞

if s2/(n3 − r2) > s1/(n1 − r1) then
while i < imax and |ηnew − η1| ≤ ε do

η1 ← ηnew, i ← i + 1
[U1,∼,∼] ← SVDs1

(
P⊥
X′

1

((
Y ·PV �

3

)L+ (
Y ·X ′′�

3

)L
P⊥
X′′L�

2
(X ′′

3 ⊗ In2)
))

[∼, S, V �
3

] ← SVDs2

(((
PU1 · Y )R + (In2 ⊗ X ′

1)P⊥
X′R

2

(
X ′�

1 · Y )R)
P⊥
X′′�

3

)
ηnew ← ‖S‖2 + ‖PU1

(
Y · X ′′�

3

)L
P⊥
X′′L�

2
(X ′′

3 ⊗ In2)‖2
else
while i < imax and |ηnew − η1| ≤ ε do

η1 ← ηnew, i ← i + 1[∼,∼, V �
3

] ← SVDs2

(((
PU1 ·Y )R+(In2 ⊗ X ′

1)P⊥
X′R

2

(
X ′�

1 ·Y )R)
P⊥
X′′�

3

)
[U1, S,∼] ← SVDs1

(
P⊥
X′

1

((
Y · PV �

3

)L +
(
Y · X ′′�

3

)L
P⊥
X′′L�

2
(X ′′

3 ⊗ In2)
))

ηnew ← ‖S‖2 + ‖(In2 ⊗ X ′
1)P⊥

X′R
2

(
X ′�

1 · Y
)R

PV �
3

‖2
Output: U1, V3.
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4 A Numerical Experiment

To compute gradient-related directions in the tangent cone, the input tensor for
Algorithm 1 would be the gradient of the continuously differentiable function
that is considered. Since, in general, such tensors are dense, we consider in this
section randomly generated pairs of dense tensors (X,Y ) with X ∈ R

n1×n2×n3
≤(k1,k2)

and Y ∈ R
n1×n2×n3 , and compare the values of

〈
Ỹ

‖Ỹ ‖ , Y
‖Y ‖

〉
obtained by com-

puting the approximate projection Ỹ of Y onto TXR
n1×n2×n3
≤(k1,k2)

using Theorem 1,
the tensor diagrams from [5, §5.4.4], which we have implemented in Matlab,
and the point output by the built-in Matlab function fmincon applied to (3).
The latter can be considered as a benchmark for the exact projection. Since
‖Y ‖ ≥ ‖P

TXR
n1×n2×n3
≤(k1,k2)

Y ‖, (2) is satisfied if
〈

Ỹ
‖Ỹ ‖ , Y

‖Y ‖
〉

≥ ω.

For this experiment, we set (k1, k2) := (3, 3) and generate fifty random pairs
(X,Y ), where X ∈ R

5×5×5
(2,2) and Y ∈ R

5×5×5, using the built-in Matlab function
randn. For such pairs, the ω from (4) equals 1

3 . We use Algorithm 1 with ε :=
10−16, which implies that imax is used as stopping criterion. In the left subfigure
of Fig. 1, the box plots for this experiment are shown for two values of imax. As
can be seen, for both values of imax, the values of

〈
Ỹ

‖Ỹ ‖ , Y
‖Y ‖

〉
obtained by the

proposed approximate projection are close to those obtained by fmincon and
are larger than those obtained by the approximate projection from [5, §5.4]. We
observe that

〈
Ỹ

‖Ỹ ‖ , Y
‖Y ‖

〉
is always larger than 1

3 , which suggests that (4) is a
pessimistic estimate. The middle subfigure compares ten of the fifty pairs. For one
of these pairs, the proposed method obtains a better result than fmincon. This
is possible since the fmincon solver does not necessarily output a global solution
because of the nonconvexity of (3). An advantage of the proposed approximate
projection is that it requires less computation time than the fmincon solver (a
fraction of a second for the former and up to ten seconds for the latter). In

Fig. 1. A comparison of
〈

Ỹ

‖Ỹ ‖ , Y
‖Y ‖

〉
for fifty randomly generated pairs (X, Y ), with

X ∈ R
5×5×5
(2,2) , Y ∈ R

5×5×5, and (k1, k2) := (3, 3), for the approximate projection defined
in Theorem 1, the one from [5, §5.4], and the one output by fmincon. On the rightmost
figure, the evolution of ηnew − η1 is shown for one of the fifty pairs.
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the rightmost subfigure, the evolution of ηnew − η1 is shown for one of the fifty
pairs. This experiment was run on a laptop with a AMD Ryzen 7 PRO 3700U
processor (4 cores, 8 threads) having 13.7 GiB of RAM under Kubuntu 20.04.
The Matlab version is R2020a. The code is publicly available.1
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2 Centro de Matemática, Universidade do Porto, Porto, Portugal
eliana.gelvez@fc.up.pt

Abstract. An important challenge in Geometric Modeling is to clas-
sify polytopes with rational linear precision. Equivalently, in Algebraic
Statistics one is interested in classifying scaled toric varieties, also known
as discrete exponential families, for which the maximum likelihood esti-
mator can be written in closed form as a rational function of the data
(rational MLE). The toric fiber product (TFP) of statistical models is an
operation to iteratively construct new models with rational MLE from
lower dimensional ones. In this paper we introduce TFPs to the Geomet-
ric Modeling setting to construct polytopes with rational linear precision
and give explicit formulae for their blending functions. A special case of
the TFP is taking the Cartesian product of two polytopes and their
blending functions.

Keywords: Toric variety · Exponential family · Blending function

1 Introduction

A discrete statistical model with m outcomes is a subset M of the open prob-
ability simplex Δ◦

m−1 = {(p1, . . . , pm) : pi > 0,
∑

pi = 1}. Each point in
Δ◦

m−1 specifies a probability distribution for a random variable X with out-
come space [m] := {1, . . . ,m} by setting pi = P (X = i). Given an i.i.d. sample
D = {X1, . . . , XN} of X, let ui be the number of times the outcome i appears in
D and set u = (u1, . . . , um). The maximum likelihood estimator of the model M
is the function Φ : Nm → M that assigns to u the point in M that maximizes
the log-likelihood function �(u|p) :=

∑
i ui log(pi). For discrete regular exponen-

tial families, the log-likelihood function is concave, and under certain genericity
conditions on u ∈ N

m, existence and uniqueness of the maximum likelihood esti-
mate Φ(u) is guaranteed [9]. This does not mean that the MLE is given in closed
form but rather that it can be computed using iterative proportional scaling [5].

In Algebraic Statistics, discrete exponential families are studied from an
algebro-geometric perspective using the fact that the Zariski closure of any such
family is a scaled projective toric variety, we refer to these as toric varieties from
this point forward. In this setting, the complexity of maximum likelihood esti-
mation for a model M, or more generally any algebraic variety, is measured in
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
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terms of its maximum likelihood degree (ML degree). The ML degree of M is
the number of critical points of the likelihood function over the complex num-
bers for generic u and it is an invariant of M [11]. If a model has ML degree
one it means that the coordinate functions of Φ are rational functions in u, thus
the MLE has a closed form expression which is in fact determined completely in
terms of a Horn matrix as explained in [6,10]. It is an open problem in Algebraic
Statistics to characterize the class of toric varieties with ML degree one and their
respective Horn matrices.

The toric fiber product (TFP), introduced by Sullivant [14], is an opera-
tion that takes two toric varieties M1,M2 and, using compatibility criteria
determined by a multigrading A, creates a higher dimensional toric variety
M1 ×A M2. This operation is used to construct a Markov basis for M1 ×A M2

by using Markov bases of M1 and M2. Interestingly, the ML degree of a TFP
is the product of the ML degrees of its factors, therefore the TFP of two models
with ML degree one yields again a model with ML degree one [2]. The Cartesian
product of two statistical models is an instance of a TFP. Another example is
the class of decomposable graphical models, each of these models has ML degree
one and can be constructed iteratively from lower dimensional ones using TFPs
[13,14].

In Geometric Modeling, it is an open problem to classify polytopes in dimen-
sion d ≥ 3 having rational linear precision [3]. Remarkably, a polytope has
rational linear precision if and only if its corresponding toric variety has ML
degree one [8]. Inspired by Algebraic Statistics, it is our goal in this article to
introduce the toric fiber product construction to Geometric Modeling. In statis-
tics, the interest is in the closed form expression for the MLE; in Geometric
Modeling, the interest is in explicitly writing blending functions defined on the
polytope that satisfy the property of linear precision. Our main Theorem 2 gives
an explicit formula for the blending functions defined on the toric fiber product
of two polytopes that have rational linear precision.

2 Preliminaries

In this section we provide background on blending functions, rational linear
precision, scaled projective toric varieties and toric fiber products. For a friendly
introduction to Algebraic Statistics, we refer the reader to the book by Sullivant
[15], in particular to Chapter 7 on maximum likelihood estimation. To the readers
looking for more background on toric geometry we recommend the book by Cox,
Little and Schenck [4].

2.1 Blending Functions

Let P ⊂ R
d be a lattice polytope with facet representation P = {p ∈ R

d :
〈p, ni〉 ≥ ai,∀i ∈ [R]}, where ni is a primitive inward facing normal vector to
the facet Fi. Without loss of generality, we will always assume that P is full-
dimensional inside R

d. The lattice distance of a point p ∈ R
d to Fi is hi(p) :=
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〈p, ni〉 + ai, i ∈ [R]. Set B := P ∩ Z
d, so B is the set of lattice points in P and

let w = (wb)b∈B be a vector of positive weights. To each b ∈ B we associate the
rational functions βb, βw, βw,b : P → R defined by

βb(p) :=
R∏

i=1

hi(p)hi(b), βw(p) :=
∑

b∈B
wbβb(p), and βw,b := wbβb/βw. (1)

The functions βw,b, b ∈ B, are the toric blending functions of the pair (P,w),
introduced by Krasauskas [12] as generalizations of Bézier curves and sur-
faces to more general polytopes. Blending functions usually satisfy additional
properties that make them amenable for computation, see for instance [12].
Given a set of control points {Qb}b∈B, a toric patch is defined by the rule
F (p) :=

∑
b∈B βb(p)Qb.

The scaled projective toric variety XB,w is the Zariski closure of the image
of the map (C∗)d → P

|B|−1 defined by t 
→ [wbtb]b∈B. Here t = (t1, . . . , td),b =
(b1, . . . , bd) and tb =

∏
i∈[d] t

bi
i . The image of XB,w under the map P

|B|−1 →
C

|B|, [x1 : · · · : x|B|] 
→ 1
x1+···+x|B|

(x1, · · · , x|B|) intersected with the positive
orthant defines a discrete regular exponential family MB,w inside Δ◦

|B|−1. In the
literature these are also called log-linear models. In this construction we require
that the vector of ones is in the rowspan of the matrix whose columns are the
points in B. If this is not the case, we add the vector of ones to this matrix.

Definition 1. The pair (P,w) has rational linear precision if there is a set of
rational functions {β̂b}b∈B on C

d satisfying:

1.
∑

b∈B β̂b = 1.
2. The functions {β̂b}b∈B define a rational parametrization

β̂ : Cd ��� XB,w ⊂ P
|B|−1, β̂(t) = (β̂b(t))b∈B.

3. For every p ∈ Relint(P ) ⊂ C
d, β̂b(p) is defined and is a nonnegative real

number.
4. Linear precision:

∑
b∈B β̂b(p)b = p for all p ∈ P .

The property of rational linear precision does not hold for arbitrary toric patches
but it is desirable because the blending functions “provide barycentric coordi-
nates for general control point schemes” [8]. A deep relation to Algebraic Statis-
tics is provided by the following statement.

Theorem 1 ([8]). The pair (P,w) has rational linear precision if and only if
XB,w has ML degree one.

Remark 1. Henceforth, to ease notation, we drop the usage of a vector of weights
w for the blending functions βw,b and the scaled projective toric variety XB,w.
Although we will not in general write them explicitly in the proofs, the weights
play an important role in determining whether the toric variety has ML degree
one or, equivalently, if the polytope has rational linear precision. A deep dive into
the study of these scalings for toric varieties by using principal A-determinants
is presented in [1].
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Fig. 1. Toric fiber product of the point configurations B and C in Example 2.
Each point configuration is displayed as a matrix with its corresponding convex hull
below. The blue vertices in each polytope have degree e1 while the red vertices in
each polytope have degree e2 in the associated multigrading A. The degree map is
deg(bi

j) = deg(cik) = ai. (Color figure online)

Example 1. Consider the point configurations B = {(0, 0), (1, 0), (0, 1), (1, 1)},
C = {(0, 0), (1, 0), (2, 0), (1, 1), (0, 1)} and set P = Conv(B), Q = Conv(C); these
are displayed in Fig. 1. The facet presentation of P is

P = {(x1, x2) ∈ R
2 : x1 ≥ 0, x2 ≥ 0, 1 − x1 ≥ 0, 1 − x2 ≥ 0}.

The lattice distance functions of a point (x1, x2) ∈ R
2 to the facets of P are

h1 = x1, h2 = x2, h3 = 1 − x1, h4 = 1 − x2.

Therefore the toric blending functions of P with weights w = (1, 1, 1, 1) are:

β(
0
0

) = (1−x1)(1−x2), β(
1
0

) = x2(1−x1), β(
0
1

) = x1(1−x2), β(
1
1

) = x1x2. (2)

These toric blending functions satisfy the conditions in Definition 1; when this
is the case, P is said to have strict linear precision. The polytope Q has rational
linear precision for the vector of weights w = (1, 2, 1, 1, 1). In this case, the
toric blending functions do not satisfy condition 4 in Definition 1, however, as
explained in [3], the following functions do:

β̃(
0
0

) =
(1−y2)(2−y1−y2)2

(2−y2)2
, β̃(

1
0

) =
2y1(1−y2)(2−y1−y2)

(2−y2)2
, β̃(

2
0

) =
y2
1(1−y2)
(2−y2)2

,

β̃(
0
1

) =
y2(2−y1−y2)

2−y2
, β̃(

1
1

) =
y1y2
2−y2

.

2.2 Toric Fiber Products of Point Configurations

Let r ∈ N and si, ti ∈ N for 1 ≤ i ≤ r. Fix integral point configurations
A = {ai : i ∈ [r]} ⊆ Z

d, B = {bi
j : i ∈ [r] , j ∈ [si]} ⊆ Z

d1 and C = {ci
k : i ∈
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[r] , k ∈ [ti]} ⊆ Z
d2 . For any point configuration P, we use P interchangeably

to denote a set of points or the matrix whose columns are the points in P; the
symbol |P| will be used to denote the indexing set of P. For each i ∈ |A|, set
Bi := {bi

j : j ∈ [si]} and Ci = {ci
k : k ∈ [ti]}. The indices i, j, k are reserved for

elements in |A|, |Bi| and |Ci|, respectively.
Throughout this paper, we assume linear independence of A and the existence

of a ω ∈ Q
d such that ωai = 1 for all i; the latter condition ensures that if an

ideal is homogeneous with respect to a multigrading in A it is also homogeneous
in the usual sense. Sullivant introduces the TFP as an operation on toric ideals
which are multigraded by A; such condition, as explained in [7], is equivalent
to the existence of linear maps π1 : Z

d1 → Z
r and π2 : Z

d2 → Z
r such that

π1(bi
j) = ai for all i and j, and π2(ci

k) = ai for all i and k. We use deg to denote
the projections π1, π2.

The toric fiber product of B and C is the point configuration B ×A C given by

B ×A C = {(bi
j , c

i
k) : i ∈ |A|, j ∈ |Bi|, k ∈ |Ci|}.

In terms of toric varieties, introduced in Sect. 2.1, the toric fiber product of XB
and XC is the toric variety XB×AC associated to B ×A C which is given in the
following way. Let XB and XC have coordinates xi

j and yi
k respectively. Then

XB ×A C = φ(XB × XC) where φ is the monomial map

φ : C
|B| × C

|C| → C
|B×AC|

(xi
j , y

i
k) 
→ xi

jy
i
k = zi

jk.

Furthermore, if w, w̃ are weights for B, C, respectively, then the vector of weights
for B×A C is wB×AC := (wi

jw̃
i
k)i∈|A|

(j,k)∈|Bi×Ci|. We end this section with an example
illustrating this operation.

Example 2. Consider the point configurations B and C in Example 1 and let
A = {e1, e2} consist of two standard basis vectors. The construction of a degree
map and the corresponding toric fiber product B×A C is explained in Fig. 1. The
convex hull of the polytope B×AC is not full-dimensional in R

4, it has dimension
three. The 3D polytope in Fig. 1 is unimodularly equivalent to Conv(B ×A C).

3 Blending Functions of Toric Fiber Products

In this section we show that the blending functions of the toric fiber product of
two polytopes with rational linear precision can be constructed from the blend-
ing functions of the original polytopes and give an explicit formula for them.
Throughout this section we use the setup for the toric fiber product introduced
in Sect. 2.2. We let P = Conv(B) and Q = Conv(C) be polytopes with rational
linear precision and denote their blending functions satisfying Definition 1 by
{βi

j}i∈|A|
j∈|Bi| and {βi

k}i∈|A|
k∈|Ci|, respectively.
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Theorem 2. If P and Q are polytopes with rational linear precision for weights
w, w̃, respectively, then the toric fiber product P×AQ has rational linear precision
with vector of weights wB×AC. Moreover, blending functions with rational linear
precision for P ×A Q are given by

βi
j,k(p,q) =

βi
j(p)βi

k(q)
∑

j′∈|Bi| β
i
j′(p)

=
βi

j(p)βi
k(q)

∑
k′∈|Ci| β

i
k′(q)

(3)

where (p,q) ∈ P ×A Q.

Remark 2. The two expressions on the right hand side of Eq. (3) are well defined
on Relint(P×AQ). The morphism βi

j,k extends to a rational function βi
j,k : Cd ���

C where d = dim(P ×A Q). By abuse of notation, we will sometimes write
βi

j,k(t) = 1
Ni(t)β

i
j(t)β

i
k(t) where t ∈ C

d and N i(t) denotes the denominator as
in (3).

The following example illustrates the construction in Theorem 2.

Example 3. Consider the polytopes P and Q from Example 1, with their vectors

of weights. By Theorem 2, the blending functions for P ×A Q are βi
j β̃i

k∑
j βi

j
= βi

j β̃i
k∑

k β̃i
k

.

For example, the blending function corresponding to the point
(
b1
2 c13

)T is

β1
2,3 =

β1
2 β̃

1
3

β1
1 + β2

1

=
x1(1−x2)y2

1(1−y2)
(1−x2)(2 − y2)2

=
β1
2 β̃

1
3

β̃1
1 + β̃1

2 + β̃1
3

=
x1(1−x2)y2

1(1−y2)
(1−y2)(2 − y2)2

.

Note that while the denominators are not the same, the two expressions above
are equal at all points in Relint(P ×A Q).

Before proving Theorem 2 we will prove two lemmas which will be used in the
final proof. Our first lemma demonstrates how the blending functions behave on
certain faces of P and Q. The second lemma shows that the two parametrizations
in Eq. (3) yield the same MLE for a generic data point u.

Lemma 1. Let P i be the subpolytope defined by P i = Conv{bi
j : j ∈ |Bi|}.

Then, for p ∈ P i, we have ∑

j∈|Bi|
βi

j(p) = 1.

Proof. By assumption, β : Cd1 ��� XB, β(t) =
(
βi

j(t)
)i∈|A|
j∈|Bi| is a rational

parametrization of XB. Let Xi
B be the toric variety associated to P i; we claim

that Xi
B is parametrized by

(
βi

j(t)
)

j∈|Bi| and setting all other coordinates of β

to zero. Indeed, consider the linear map

deg : P → Conv(A), bi
j 
→ ai.

As A is linearly independent, ai is a vertex of Conv(A). Note that P i =
deg−1(ai); as preimages of faces under linear maps are again faces, P i is a
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face of P . The claim then follows from the Orbit-Cone Correspondence [4, The-
orem 3.2.6]. We know that

∑
(i,j)∈|B| β

i
j = 1. On P i, all βi′

j for i′ 
= i vanish, so
we must have

∑
j∈|Bi| β

i
j(p) = 1 for p ∈ P i. ��

We record the following fact as a consequence from the proof above.

Corollary 1. Let P be a polytope equipped with a linearly independent multi-
grading A. Then P i = Conv(bi

j | j ∈ |Bi|) is a face of P .

Example 4. For the polytope Q in Fig. 1, we have Q1 = Conv(c11, c
1
2, c

1
3) and

Q2 = Conv(c21, c
2
2). The projection deg is illustrated in Fig. 1. To illustrate the

result of Lemma 1, note that the sum of the blending functions associated to the
lattice points in Q1 is equal to 1 − y2.

Lemma 2. Let P and Q be polytopes with rational linear precision and β1, β2

be two rational functions defined by

β1(t) =

(
βi

j(t)β
i
k(t)

∑
j′∈|Bi| β

i
j′(t)

)i∈|A|

(j,k)∈|Bi×Ci|
, β2(t) =

(
βi

j(t)β
i
k(t)

∑
k′∈|Ci| β

i
k′(t)

)i∈|A|

(j,k)∈|Bi×Ci|
.

For u =
(
ui

j,k

)i∈|A|

(j,k)∈|Bi×Ci|
, set p =

∑
(i,j,k)∈|B×AC|

ui
j,k

u+
+,+

mi
j,k ∈ C

d. Then the

maximum likelihood estimate for XB×AC is

β1(p) = β2(p) =
(
p̂i

j,k

)i∈|A|
(j,k)∈|Bi×Ci| .

Proof. As P and Q have rational linear precision, by [3, Proposition 8.4] we
have βi

j(p) = (p̂B)i
j and βi

k(p) = (p̂C)i
k. Furthermore, by [2, Theorem 5.5], the

MLE of the toric fiber product is given by p̂i
j,k =

(p̂B)ij(p̂C)ik
(p̂A)i

. From the proof of

[2, Lemma 5.10], as a consequence of Birch’s Theorem, it follows that (p̂B)i
+ =

ui
+,+

u+
+,+

= (p̂A)i, and analogously (p̂C)i
+ = (p̂A)i. Therefore,

∑

j′∈|Bi|
βi

j′(p) = (p̂B)i
+ =

∑

k′∈|Ci|
βi

k′(p) = (p̂C)i
+ = (p̂A)i

and the desired statement follows. ��
We are now ready to prove Theorem 2.

Proof. Having rational linear precision is equivalent to having ML degree one by
Theorem 1. Then the first statement is a direct consequence of the multiplica-
tivity of the ML degree under toric fiber products [2, Theorem 5.5].

We first show that both expressions in (3) define rational parametrizations

β1(t) =

(
βi

j(t)β
i
k(t)

∑
j′∈|Bi| β

i
j′(t)

)i∈|A|

(j,k)∈|Bi×Ci|
, β2(t) =

(
βi

j(t)β
i
k(t)

∑
k′∈|Ci| β

i
k′(t)

)i∈|A|

(j,k)∈|Bi×Ci|
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of XB×AC . To do this, we first show that the products βi
jβ

i
k parametrize XB×AC

and the result then follows since β1 and β2 are equivalent to βi
jβ

i
k under the

torus action associated to the multigrading A. Let φ : C|B| ×C
|C| → C

|B×AC| be
the map given by

φ(x,y) = (xi
jy

i
k)i∈|A|

(j,k)∈|Bi×Ci| .

Then the toric fiber product XB×AC is precisely given by φ(XB × XC). Since
the blending functions βi

j and βi
k parametrize XB and XC , respectively, and

βi
jβ

i
k = φ ◦ (βi

j , β
i
k), we immediately get that the βi

jβ
i
k parametrize XB×AC . Now

observe that the multigrading A induces an action of the torus TA = (C∗)|A| via

TA × XB×AC → XB×AC , (t1, . . . , t|A|).
(
xi

j,k

)i∈|A|
(j,k)∈|Bi×Ci| =

(
tixi

j,k

)i∈|A|
(j,k)∈|Bi×Ci| .

Define τ : Cd1 → TA by

τ = (τ1, . . . , τ |A|), τ i(t) =

{(∑
j∈|Bi| β

i
j(t)

)−1

if
∑

j∈|Bi| β
i
j(t) 
= 0

1 else.

Note that τ(t) ∈ TA and τ(x).(βi
j(x)βi

k(x)i∈|A|
j∈|Bi|,k∈|Ci| = β1(x) for all x ∈ P×AQ,

showing that βi
j(x)βi

k(x) and β1(x) lie in the same TA-orbit. A similar argument
shows the same for β2(x), thus both β1 and β2 parametrize XB×AC .

We will now show the two expressions in Eq. 3 are equal. Let us define a new
τ : Cd1+d2 → TA by

τ = (τ1, . . . , τ |A|), τ i(t) =

{ ∑
j∈|Bi| βi

j(t)∑
k∈|Ci| βi

k(t)
if

∑
j∈|Bi| β

i
j(t) 
= 0 
= ∑

k∈|Ci| β
i
k(t)

1 else.

Clearly, τ(t) ∈ TA; we claim that τ(x).β1(x) = β2(x) for x ∈ P ×A Q. First
consider the case x ∈ P i × Qi, with P i and Qi defined as in Lemma 1. By the
Orbit-Cone Correspondence applied to the TA-action, all coordinates in β1(x)
and β2(x) vanish except for those graded by ai. By Lemma 1,

∑
j∈|Bi| β

i
j(x) =

∑
k∈|Ci| β

i
k(x) = 1, so in particular the claim holds. Now consider the case where

x /∈ ⋃
i∈|A| P

i × Qi. Then, again by the Orbit-Cone Correspondence applied
to the TA-action, for each i ∈ |A| there exist j ∈ |Bi| and k ∈ |Ci| such that
βi

j(x), βi
k(x) 
= 0. Thus, by definition, τ(x).β1(x) = β2(x). We conclude that for

all x ∈ P ×A Q, β1(x) and β2(x) lie in the same TA-orbit. Equality of β1 and
β2 then follows once there exists at least one point in each orbit where the two
parametrizations agree. This is indeed the case: for the maximal orbit this is the
point given in Lemma 2, for smaller orbits corresponding to faces of P i × Qi we
can pick a point as in Lemma 1. It now remains to show that the βi

j,k sum to one
and satisfy condition 4. in Definition 1; these are straightforward computations
using the two different forms of βi

j,k. Firstly, we have

∑

(i,j,k)∈|B×AC|
βi

j,k =
∑

i∈|A|,k∈|Ci|
βi

k

∑

j∈|Bi|

βi
j∑

j′∈|Bi| β
i
j′

=
∑

i∈|A|,k∈|Ci|
βi

k = 1.
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Finally, we compute

∑

(i,j,k)∈|B×AC|
βi

j,k(p)mi
j,k =

∑

i∈|A|,j∈|Bi|
βi

j(p)
∑

k∈|Ci|

βi
k(p)

∑
k′∈|Ci| β

i
k′(p)

(bi
j , 0)

+
∑

i∈|A|,k∈|Ci|
βi

k(p)
∑

j∈|Bi|

βi
j(p)

∑
j′∈|Bi| β

i
j′(p)

(0, ci
k)

=

⎛

⎝
∑

i∈|A|,j∈|Bi|
βi

j(p)bi
j ,

∑

i∈|A|,k∈|Ci|
βi

k(p)ci
k

⎞

⎠ = p.

Therefore, the βi
j,k constitute blending functions with rational linear precision.
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Abstract. A quantum stochastic product is a binary operation on the
convex set of states (density operators) of a quantum system preserving
the convex structure. We review the notion of twirled product of quantum
states, a group-theoretical construction yielding a remarkable class of
group-covariant associative stochastic products. In the case where the
relevant group is abelian, we then realize the twirled product in terms
of the covariant symbols associated with the quantum states involved in
the product. Finally, the special case of the twirled product associated
with the group of phase-space translations is considered.

Keywords: Quantum state · Twirled product · Group-covariant
symbol · Square integrable representation

1 Introduction

In classical statistical mechanics, physical states are realized as probability mea-
sures on phase space — usually, as probability distributions w.r.t. the Liouville
measure — and the experimentally observable quantities (as well as other phys-
ically relevant quantities like, say, the entropy) are associated with suitably reg-
ular real functions on phase space [1,2]. In the quantum setting, both classes of
fundamental objects — states and observables — are realized by means of (suit-
able classes of) linear operators on a separable complex Hilbert space H [3]. In an
alternative approach to quantum mechanics [2,4–6], states and observables are
realized, instead, as phase-space functions — that, in the case of physical states,
are often called quasi-probability distributions [7] — so obtaining a mathemati-
cal formalism sharing several common features and intriguing analogies with the
classical case. From a technical point of view, this formalism relies on the peculiar
properties of a class of irreducible projective representations of the group of trans-
lations on phase space, i.e., the Weyl systems [8]. These group representations are
square integrable [6,9,10], hence, they generate ‘resolutions of the identity’ in the
carrier Hilbert space and canonical maps transforming Hilbert space operators
into phase-space functions [6,11–14]. Such a map is called the Wigner trans-
form and admits a remarkable generalization where phase-space translations are
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replaced with an abstract locally compact group G — typically, a Lie group —
admitting square integrable representations [6,13–15]. In this generalization, the
(real-valued) Wigner quasi-probability distribution (more precisely, its Fourier
transform, the quantum characteristic function [16,17]) is replaced with a com-
plex function on G, the generalized Wigner transform or group-covariant sym-
bol [6,13–18]. In a recent series of papers [19–21], we have introduced a notion
of stochastic product of quantum states, a binary operation on the convex set
D(H) of quantum states (the density operators on the Hilbert space H) that
preserves the convex structure of D(H). We have also shown that a class of
associative stochastic products — the twirled products — can be obtained via a
group-theoretical construction. Extending a twirled product from D(H) to the
full Banach space T (H) of trace class operators, one gets a Banach algebra. This
structure may be regarded as a quantum counterpart of the ‘classical’ convolu-
tion algebra on a locally compact group [22], and, in the case where the group
of phase-space translations is involved, it has been called the quantum convolu-
tion [21]. In a forthcoming paper [23], we express the twirled products in terms
of the covariant symbols associated with some square integrable representation.
Here, we anticipate the result in the case where the relevant group is abelian
(e.g., the group of phase-space translations). Specifically, in Sect. 2, we intro-
duce the notion of stochastic product and review the construction of the twirled
products. In Sect. 3, we study the problem of expressing the twirled products via
group-covariant symbols. In Sect. 4, a few conclusions are drawn.

2 The Twirled Products as Covariant Stochastic Products

Using the notations introduced in the previous section, a convex-linear applica-
tion S : D(H) → D(H) is called a quantum stochastic map. Such a map admits
a unique (trace-preserving, positive) linear extension Sext : T (H) → T (H) [19],
a linear stochastic map on T (H). Accordingly, a quantum stochastic product is
a binary operation ( ·)� ( ·) : D(H)× D(H) → D(H), that is convex-linear w.r.t.
both its arguments; namely, for all ρ, σ, τ, υ ∈ D(H) and all α, ε ∈ [0, 1], we
assume that

(αρ + (1 − α)σ) � (ετ + (1 − ε)υ) = αε ρ � τ + α(1 − ε) ρ � υ

+ (1 − α)ε σ � τ + (1 − α)(1 − ε)σ � υ. (1)

A binary operation ( ·) � ( ·) on T (H) is said to be state-preserving if it is
such that D(H) � D(H) ⊂ D(H).

Proposition 1 ([19]). Every quantum stochastic product on D(H) is continu-
ous w.r.t. the topology inherited from T (H); i.e., denoting by ‖ · ‖1 ≡ ‖ · ‖tr the
standard trace norm on T (H), w.r.t. the topology on D(H) and on D(H)×D(H)
induced by the distance functions

d1(ρ, σ) := ‖ρ − σ‖1 and d1,1((ρ, τ), (σ, υ)) := max{‖ρ − σ‖1, ‖τ − υ‖1}. (2)



Twirled Products and Group-Covariant Symbols 509

For every quantum stochastic product ( ·) � ( ·) : D(H) × D(H) → D(H), there
exists a unique bilinear stochastic map ( ·)� ( ·) : T (H)× T (H) → T (H) — i.e.,
a unique state-preserving bilinear map on T (H) — such that ρ � σ = ρ � σ, for
all ρ, σ ∈ D(H).

Definition 1. T (H), endowed with a map ( ·) � ( ·) : T (H) × T (H) → T (H)
which is bilinear, state-preserving and associative, is called a stochastic algebra.

Note that, by Proposition 1, every quantum stochastic product ( ·) � (·) on
D(H) may be thought of as the restriction of a uniquely determined bilinear
stochastic map ( ·) � ( ·) on T (H), that is associative iff ( ·) � ( ·) is associative.
Therefore, a stochastic algebra can also be defined as a Banach space of trace
class operators T (H), together with an associative quantum stochastic product
( ·)� ( ·) : D(H)×D(H) → D(H). Let BL(H) denote the complex vector space of
all bounded bilinear maps on T (H), which becomes a Banach space once endowed
with the norm ‖·‖(1) defined as follows. For every β( · , ·) : T (H)×T (H) → T (H)
in BL(H), we define its norm as

‖β( · , ·)‖(1) := sup{‖β(A,B)‖1 : ‖A‖1, ‖B‖1 ≤ 1}. (3)

Proposition 2 ([19]). Every bilinear stochastic map ( ·)�( ·) : T (H)×T (H) →
T (H) is bounded and its norm is such that ‖( ·)�( ·)‖(1) ≤ 2, while its restriction
( ·) � ( ·) to a bilinear map on the real Banach space T (H)s of all selfadjoint
trace class operators on H is such that ‖( ·) � ( ·)‖(1) = 1. Hence, whenever a
stochastic product ( ·)� ( ·) on T (H) is associative, the pair (T (H)s, ( ·)� ( ·)) is
a real Banach algebra, because, for all A,B ∈ T (H)s, ‖A � B‖1 ≤ ‖A‖1 ‖B‖1.

Here, it is worth observing that

1. The restriction of a stochastic product ( ·) � ( ·) on T (H) to a bilinear map
on T (H)s is well defined, since the fact that the map ( ·)� ( ·) is bilinear and
state-preserving implies that it is also adjoint-preserving.

2. The inequality ‖( ·) � ( ·)‖(1) ≤ 2 may not be saturated. E.g., the algebra
(T (H), ( ·) � ( ·)) may be a Banach algebra too; see Theorem 2 below.

We now outline a group-theoretical construction yielding a class of quantum
stochastic products. Let us first summarize our main notations and assumptions:

– We suppose that G is a unimodular locally compact, second countable, Haus-
dorff topological group (in short, a unimodular l.c.s.c. group), which admits
square integrable representations [10]. Let B(G) denote the Borel σ-algebra
of G, and P(G) the set of all Borel probability measures on G, endowed with
the standard convolution product ( ·)�( ·) : P(G) × P(G) → P(G) [22].

– Next, we pick a square integrable projective representation U : G → U(H),
where U(H) is the unitary group of H; in particular, U is supposed to be
irreducible. The assumption of square-integrability for U cannot be dispensed
with. It ensures the validity (of the subsequent relations (4) and) of the final
claim of Theorem 1 below, a fundamental ingredient of our construction.
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– It is convenient to suppose henceforth that the (both left and right invariant)
Haar measure μG on G is normalized in such a way that the orthogonality
relations [9,10,13] for the representation U are precisely the form

∫
G

dμG(g) 〈η, U(g)φ〉 〈U(g)ψ, χ〉 = 〈η, χ〉〈ψ, φ〉, ∀η, χ, ψ, φ ∈ H, (4)

where 〈 · , · 〉 : H × H → C is the scalar product in H.
– The representation U induces an isometric representation G � g 
→ SU(g) in

the Banach space T (H), namely,

SU(g)A := U(g)AU(g)∗, A ∈ T (H), (5)

and G×D(H) � (g, ρ) 
→ SU(g)ρ ∈ D(H) is the symmetry action [24,25] of G
on D(H). Although U is, in general, projective — U(gh) = γ(g, h)U(g)U(h),
where γ : G×G → T is a Borel function, the multiplier [26] associated with U
— note that SU behaves as a group homomorphism: SU(gh) = SU(g) SU(h).

– We also pick a fiducial state υ ∈ D(H) and a probability measure � ∈ P(G).
E.g., � = δ ∈ P(G) is the Dirac (point mass) measure at the identity e ∈ G.

Theorem 1 ([19]). For every probability measure μ ∈ P(G), the linear map

μ[U ] : T (H) � A 
→
∫

G

dμ(g) (SU(g)A) ∈ T (H) (6)

is positive and trace-preserving. Therefore, one can define the quantum stochastic
map

D(H) � ρ 
→ μ[U ] ρ ∈ D(H). (7)

Moreover, for every density operator ρ ∈ D(H), the mapping

νρ,υ : B(G) � E 
→
∫

E
dμG(g) tr

(
ρ (SU(g)υ)

)
∈ R

+ (8)

belongs to P(G).

We next define a binary operation on D(H), associated with the triple
(U, υ,�):

ρ
υ
�
�

σ :=
(
(νρ,υ ��)[U ]

)
σ =

∫
G

d(νρ,υ ��)(g) (SU(g)σ), ∀ρ, σ ∈ D(H). (9)

Here, we have considered the fact that νρ,υ is a probability measure associated
with ρ and υ (final assertion of Theorem 1). Then, we have taken the convolution
μ ≡ νρ,υ�� ∈ P(G) of νρ,υ with the probability measure �. Eventually, we have
applied the stochastic map μ[U ] = (νρ,υ ��)[U ], see Theorem 1, to the state σ.

We can express this product in a more explicit form:

ρ
υ
�
�

σ =
∫

G

dμG(g)
∫

G

d�(h) tr
(
ρ (SU(g)υ)

)
(SU(gh)σ). (10)
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Definition 2. We call the binary operation defined by (9) the twirled product
generated by the triple (U, υ,�). Here, U is called the inducing representation
of the product; the states ρ, υ and σ are called the input, the probe and the
whirligig, respectively; finally, � ∈ P(G) is called the smearing measure.

In particular, with � = δ (Dirac measure) in (10), we find

ρ
υ
�σ ≡ ρ

υ
�
δ

σ =
∫

G

dμG(g) tr
(
ρ (SU(g)υ)

)
(SU(g)σ), (11)

the un-smeared twirled product generated by the pair (U, υ). The twirled prod-
uct has an interesting interpretation within quantum measurement theory and
information, in terms of quantum channels, observables and instruments [19–21].

Theorem 2 ([19]). The twirled product generated by the triple (U, υ,�) is an
associative quantum stochastic product, which is left-covariant w.r.t. the repre-
sentation U , namely, such that

ρg

υ
�
�

σ =
(
ρ

υ
�
�

σ
)
g
, ∀g ∈ G, ∀ρ, σ ∈ D(H), where ρg ≡ SU(g)ρ. (12)

Extending this product to a state-preserving bilinear map on T (H), one obtains
a Banach algebra — i.e., a stochastic Banach algebra — that, in the case where
the l.c.s.c. group G is abelian, is commutative.

3 Twirled Products via Group-Covariant Symbols

With the same notations and assumptions adopted for our construction of twirled
products (Sect. 2) — and denoting by S(H) ⊃ T (H) the Hilbert space of all
Hilbert-Schmidt operators on H, and by ‖ · ‖HS the associated norm — we
can define a linear isometry D : S(H) → L2(G) ≡ L2(G,μG;C), determined
by putting Ă(g) ≡ (DA)(g) = tr(U(g)∗A), for all A ∈ T (H). Here, we are
using the fact that T (H) is a ‖ · ‖HS-dense subspace of S(H); see [15,18] for the
details. The isometry D may be thought of as a dequantization map, which is
directly related to the Wigner transform in the case where G is the group of
translations on phase space [13–15,18]. We will call the bounded Borel function
Ă = DA ∈ L2(G) the (group-covariant) symbol of the operator A ∈ T (H) asso-
ciated with the representation U . The operator A can be easily re-constructed
from its symbol [15]. In the case where G is the group of phase-space translations
and U is the Weyl system, for A ≡ ρ ∈ D(H) the symbol Ă ≡ ρ̆ is also called
the quantum characteristic function of the state ρ (essentially, the Fourier trans-
form of the Wigner distribution of ρ), in a natural analogy with the ‘classical’
characteristic function of a probability measure on a locally compact abelian
group [13,16,17]. Note that, for every ρ ∈ D(H), ρ̆(e) = tr(ρ) = 1, where e is
the identity in G.

We will henceforth suppose that G is an abelian l.c.s.c. group.
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It will be useful to introduce the following function γ� : G×G → T associated
with the multiplier γ of the projective representation U :

γ�(g, h) := γ(g, h) γ(h, g). (13)

We have that
γ�(g, h) = γ�(h, g), γ�(g, g−1) = 1, (14)

where the second relation descends from a well known property [26] — namely,
γ(g, g−1) = γ(g−1, g) — of a group multiplier. Note that, if the multiplier γ
is trivial [26] — i.e., of the form γ(g, h) = β(g) β(h) β(gh) = γ(h, g) (G being
abelian), for some Borel function β : G → T — then γ� ≡ 1. Accordingly, γ�
depends on the similarity class [26] of γ only. By Lemma 7.1 of [27], we have:

Proposition 3. The function γ� : G×G → T is a (continuous) skew-symmetric
bicharacter; i.e., in addition to the the first of relations (14), we also have that

γ�(gh, g̃) = γ�(g, g̃) γ�(h, g̃), ∀g, h, g̃ ∈ G. (15)

Remark 1. Let Ĝ be the Pontryagin dual of G, and denote by [[ · , · ]] : G×Ĝ → T

the pairing map [22]. Then, hγ : G � g 
→ γ�( · , g) ∈ Ĝ is a continuous homomor-
phism. We say that the multiplier γ is nondegenerate if the homomorphism hγ is
injective; namely, if the closed subgroup Gγ := {g ∈ G : γ�(h, g) = 1, ∀h ∈ G} of
G is trivial, i.e., Gγ = ker(hγ) = {e}. It is easy to check that γ is nondegenerate
iff hγ(G) is a dense subgroup of Ĝ. Indeed, observe that the closure cl(hγ(G))
of the subgroup hγ(G) of Ĝ, is such that

cl(hγ(G))⊥ ≡
{
h ∈ G : [[h, ĝ ]] ≡ ĝ (h) = 1, ∀ ĝ ∈ cl(hγ(G)) ⊂ Ĝ

}
=

{
h ∈ G : [[h, ĝ ]] = 1, ∀ ĝ ∈ hγ(G)

}
=

{
h ∈ G : [[h, hγ(g)]] = γ�(h, g) = 1 = γ�(g, h), ∀g ∈ G

}
= Gγ .

Moreover, by Theorem 4.39 of [22],
(
Ĝ/cl(hγ(G))

)̂
is isomorphic, as a topological

group, to cl(hγ(G))⊥ = Gγ . Thus, Gγ = {e} iff Ĝ = cl(hγ(G)). In particular, in
the case where G is selfdual — i.e., G � Ĝ — the (nondegenerate) multiplier γ

is called regular if hγ(G) = Ĝ; i.e., if hγ is an isomorphism of topological groups.

Now, given a complex (Radon) measure ν on G — let us denote by M(G)
the Banach space of all such measures — we can define its Fourier-Stieltjes
transform [22] ν̂ : Ĝ → C (the classical characteristic function of ν), i.e.,

ν̂(ĝ ) :=
∫

G

dν(h) [[h, ĝ ]], [[h, ĝ ]] ≡ ĝ (h), ĝ ∈ Ĝ, (16)

which is a bounded continuous function. We then define the (classical) symbol
of ν associated with the multiplier γ; namely, the bounded continuous function
ν̆ ≡ ν̆γ : G → C — depending on the similarity class of γ only — defined by

ν̆(g) := ν̂ ◦ hγ(g)

=
∫

G

dν(h) [[h, hγ(g)]] =
∫

G

dν(h) γ�(h, g) =
∫

G

dν(h) γ�(g, h). (17)
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Proposition 4. The mapping M(G) � ν 
→ ν̆ ≡ ν̆γ is injective if the multiplier
γ is nondegenerate.

Proof. The mapping M(G) � ν 
→ ν̂ is injective (‘Fourier uniqueness theorem’;
see Theorem 4.33 of [22]). Moreover, if γ is nondegenerate, then hγ(G) is a dense
subgroup of Ĝ. Therefore, given ν1, ν2 ∈ M(G), if ν̆1 = ν̆2, then ν̂1(ĝ ) = ν̂2(ĝ ),
for all ĝ in the dense subset hγ(G) of Ĝ; hence, actually, for all ĝ ∈ Ĝ, because
ν̂1 and ν̂2 are continuous functions. Thus, the mapping ν 
→ (ν̂ 
→) ν̆ is injective.

Under suitable assumptions, the twirled product can be expressed via the
symbols of the relevant density operators and probability measures [23]:

Theorem 3. Let the abelian group G be selfdual, and let the multiplier γ of
the square integrable representation U be (nodegenerate and) regular. For every
triple of states ρ, υ, σ ∈ D(H) and every probability measure � on G, we have:

(
ρ

υ
�
�

σ
)�
(g) = γ(g, g−1) �̆(g) ρ̆(g) ῠ(g−1) σ̆(g) = �̆(g) ρ̆(g) ῠ(g) σ̆(g). (18)

Let us consider the case of the group of translations on phase space (with, say,
n position variables) — G = R

n×R
n — and of the phase-space stochastic prod-

uct generated by the Weyl system (� ≡ 1), i.e., by the projective representation
(q, p) 
→ U(q, p) = e−iq·p/2 eip·q̂ e−iq·p̂ , where q̂, p̂ are the position and momen-
tum operators. The multiplier of U is of the form γ(q, p ; q̃, p̃) = exp(i(q·p̃−p·q̃)/2)
so that γ(q, p ;−q,−p) ≡ 1 and γ�(q, p ; q̃, p̃) = exp(i(q·p̃−p·q̃)). Thus, the bichar-
acter γ� involves the standard symplectic form on R

n × R
n, and γ is a regular

multiplier since we can identify G with its dual Ĝ via the symplectic pairing

G × Ĝ ≡ G × G � (q, p ; q̃, p̃) 
→ [[q, p ; q̃, p̃ ]] = γ�(q, p ; q̃, p̃) ∈ T. (19)

Moreover, for every probability measure � on G, we can identify its Fourier-
Stieltjes transform �̂ : Ĝ → C, the characteristic function of �, with the function

�̆(q, p) :=
∫
Rn×Rn

d�(q̃, p̃) exp(i(q · p̃ − p · q̃)). (20)

By Theorem 3, the phase-space stochastic product generated by the triple
(U, υ,�) — expressed in terms of the characteristic function �̆ and of the
symbols ρ̆ := tr(U(q, p)∗ρ), ῠ, σ̆ of the states ρ, υ, σ — has the manifestly
commutative form(

ρ
υ
�
�

σ
)�
(q, p) = �̆(q, p) ρ̆(q, p) ῠ(−q,−p) σ̆(q, p)

= �̆(q, p) ρ̆(q, p) ῠ(q, p) σ̆(q, p). (21)

4 Conclusions

We have reviewed the notion of stochastic product, a binary operation on the set
of density operators preserving the convex structure. By a group-theoretical app-
roach, one finds a class of associative stochastic products, the twirled products,
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that exist in every Hilbert space dimension and admit an interesting interpreta-
tion within quantum measurement theory and information science [19–21]. If the
relevant group is abelian, one obtains a commutative stochastic product that can
be expressed via group-covariant symbols. Work is in progress on this topic [23].
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Abstract. Let Hk, k ∈ N, be the Hilbert spaces of geometric quan-
tization on a Kähler manifold M . With two points in M we associate
a Bell-type state bk ∈ Hk ⊗ Hk. When M is compact or when M is
C

n, we provide positive lower bounds for the entanglement entropy of bk
(asymptotic in k, as k → ∞).

Keywords: entanglement · Hilbert spaces · asymptotics

1 Introduction and Main Results

Let Hk, k = 1, 2, 3, ... be the Hilbert spaces of Kähler quantization on a Kähler
manifold M . Let p, q ∈ M and Θ

(k)
p ∈ Hk and Θ

(k)
q ∈ Hk be the coherent states

at p and q respectively. With the pair p, q we associate the Bell-type pure state

wk = wk(p, q) =
1

||Θ(k)
p ||2

Θ(k)
p ⊗ Θ(k)

p +
1

||Θ(k)
q ||2

Θ(k)
q ⊗ Θ(k)

q ∈ Hk ⊗ Hk. (1)

It is entangled. The two theorems below are for the cases when M is compact
and when M is C

n (n ∈ N), respectively. We address the question how the
entanglement entropy Ek [1] of

bk = bk(p, q) =
1

||wk||wk ∈ Hk ⊗ Hk (2)

depends on the quantum parameter k and on the distance between p and q,
dist(p, q). The theorems provide positive lower bounds on Ek(bk). In quantum
information theory, when quantum systems are used for communication, one
interpretation of entanglement entropy is the amount of information that can be
transmitted. Bell states are maximally entangled (e.g.

1√
2
(e0 ⊗ e0 + e1 ⊗ e1) (3)

is one of the standard Bell states).
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Our state (1) is constructed from the coherent vectors Θ
(k)
p and Θ

(k)
q which

are typically not orthogonal to each other (unlike e0 and e1 in the Bell state
(3)), although 〈Θ(k)

p , Θ
(k)
q 〉 → 0 as k → ∞.

To provide some background, in quantum information theory, given a nonzero
vector v in the tensor product of two separable Hilbert spaces V1 and V2, its
entanglement entropy E(v) characterizes "how nondecomposable" (or, in other
words, how entangled) this vector is. It is defined as follows. For the purposes
of this paper we only need the case V1 = V2 = V . Let 〈., .〉 be the inner product
in V . Let {ei} be an orthonormal basis in V . Let Tr2(A) ∈ End(V ) denote the
partial trace of a density matrix A. It is defined by

〈x, Tr2(A)y〉 =
∑

i

〈x ⊗ ei, A(y ⊗ ei)〉

for every x, y ∈ V . The entanglement entropy is

E(v) = −Tr(ρ ln ρ) = −
∑

i

〈(ρ ln ρ)ei, ei〉

where
ρ = Tr2(Pv)

and Pv is the rank 1 orthogonal projection onto the 1-dimensional linear subspace
of V ⊗V spanned by v. The operator ρ ln ρ is defined via the continuous functional
calculus. When V is finite-dimensional, E(v) is a real number in the interval
[0, ln dim(V )]. When V is infinite-dimensional, E(v) is a nonnegative real number
or +∞. The value of E(v) does not depend on the choice of the basis {ei}.

Kähler quantization deals with asymptotic analysis on Kähler manifolds in
the context of classical mechanics and quantum mechanics. Let (M,ω) be an
integral Kähler manifold. Let L → M be a holomorphic line bundle whose first
Chern class is represented by ω. One can consider (M,ω) as a classical phase
space, i.e. a space that parametrizes position and momentum of a classical par-
ticle. Classical mechanics on M is captured in ω and a choice of a Hamiltonian
(a smooth function on M). The symplectic form defines a Poisson bracket on
C∞(M). Dirac’s correspondence principle seeks a linear map from C∞(M) to
linear operators on the Hilbert space of quantum mechanical wave functions that
takes the Poisson bracket of functions to the commutator of operators. In geomet-
ric quantization or Kähler quantization, a standard choice of the Hilbert space V
is the space of holomorphic sections of Lk, where the positive integer k is inter-
preted (philosophically) as 1/�. If M is compact, then V is finite-dimensional.
If M is noncompact, then V is infinite-dimensional.

The motivation to bring techniques from quantum information theory to geo-
metric quantization was to obtain new insights in the interplay between geometry
and analysis on Kähler manifolds. It would be interesting to investigate if there
is a meaningful relationship between the information-theoretic entropy and other
concepts of entropy. In the opposite direction, some geometric intuition may be
useful in information transmission problems.



518 T. Barron and A. Kazachek

1.1 Compact Case

Let L → M be a positive hermitian holomorphic line bundle on a compact
n-dimensional complex manifold M . Denote by ∇ the Chern connection in L.
Equipped with the 2-form ω = i curv(∇), M is a Kähler manifold. Denote by

dμ the measure on M associated with the volume form
ωn

n!
. As before, let k be

a positive integer. For p, q in M , let Θ
(k)
p , Θ

(k)
q ∈ Hk = H0(M,Lk) be Rawnsley

coherent states at p and q (see e.g. [2]).
Let us recall the definition of Θ

(k)
p for p ∈ M and k ∈ N. Choose a unit vector

ξ ∈ L. Then by Riesz representation theorem there is a unique vector Θ
(k)
p in

the Hilbert space H0(M,Lk) with the property

〈s,Θ(k)
p 〉 = 〈s(p), ξ⊗k〉

for every s ∈ H0(M,Lk).
The k → ∞ asymptotics of the norms ||Θ(k)

p ||, ||Θ(k)
q || are determined by

the asymptotics of the Bergman kernels for Lk on the diagonal. We take these
asymptotics from [5]. Asymptotic bounds for the inner products 〈Θ(k)

p , Θ
(k)
q 〉 can

be obtained from the off-diagonal estimates on the Bergman kernels [4].

Theorem 1. Suppose L → M is a positive hermitian holomorphic line bundle
on a compact n-dimensional complex manifold M . Let p, q ∈ M . Let k ∈ N.
Then there is the following (positive) lower bound for the entanglement entropy
of the pure state bk(p, q) (2). There are positive constants C1 and C2 that depend
on M and ω such that as k → ∞

Ek(bk) ≥ 1
2
(1 − C1e

−C2
√

k dist(p,q))4.

1.2 M = C
n

Let M = C
n, n ≥ 1. We will use the notations

zT w̄ = z1w̄1 + ... + znw̄n

or
〈z, w〉 = z1w̄1 + ... + znw̄n

and
|z| =

√
zT z̄

or
||z|| =

√
zT z̄

for z, w ∈ C
n.

For k ∈ N let Hk be the Segal-Bargmann space that consists of holomorphic
functions on M with the inner product

〈f, g〉 =
(

k

π

)n ∫

M

f(z)g(z)e−k|z|2dV (z),
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where dV is the Lebesgue measure on R
2n. It is a reproducing kernel Hilbert

space. For p ∈ C
n the coherent vector at p is Θ

(k)
p ∈ Hk defined by

Θ(k)
p (z) = ekzT p̄. (4)

It is defined by the property

〈f,Θ(k)
p 〉 = f(p) (5)

for every f ∈ Hk. Similarly for q ∈ M the coherent vector at q is

Θ(k)
q (z) = ekzT q̄. (6)

Theorem 2. Let p, q ∈ C
n. Let k ∈ N. Let Θ

(k)
p and Θ

(k)
p be the coherent states

at p and q respectively (4), (6). Then there is the following (positive) lower bound
for the entanglement entropy of the pure state bk(p, q) (2): as k → ∞

Ek(bk) ≥ 1
2
(1 − e−k|p−q|2)4.

Remark 1. The change from e−C
√

k dist(p,q) to e−Ck dist2(p,q) in Theorem 2
reflects the fact that the latter appears in the Bergman asymptotics for real
analytic metrics (see the discussion in [3]). In the proof of Theorem 1 we used
the Bergman kernel expansion for smooth metrics.

2 Proofs

2.1 General Lower Bound

Theorem 3. Let H be a separable Hilbert space, with the inner product 〈., .〉.
Let u and v be nonzero vectors in H, such that u is not a multiple of v. Let

w =
1

||u||2 u ⊗ u +
1

||v||2 v ⊗ v ∈ H ⊗ H.

There is the following (positive) lower bound on the entanglement entropy E(b)
of the vector b = 1

||w||w

E(b) ≥ 2
(||u||2||v||2 − |〈u, v〉|2)2

(2||u||2||v||2 + 〈u, v〉2 + 〈v, u〉2)2 . (7)

Proof. Let e1, e2 be an orthonormal basis of the 2-dimensional complex linear
subspace spanned by u and v, defined as follows:

e1 =
1

||u||u,
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e2 is the unit vector in the direction of v − 〈v, e1〉e1

e2 =
1

||v − 〈v, e1〉e1|| (v − 〈v, e1〉e1) = 1√||v||2 − |〈v, e1〉|2
(v − 〈v, e1〉e1)

We get:

w =
||v||2 + 〈v, e1〉2

||v||2 e1 ⊗ e1 +
〈v, e1〉

√||v||2 − |〈v, e1〉|2
||v||2 (e1 ⊗ e2 + e2 ⊗ e1)

+
||v||2 − |〈v, e1〉|2

||v||2 e2 ⊗ e2

||w|| =
√
2||v||2 + 〈v, e1〉2 + 〈e1, v〉2

||v||
Denote

β =
√
2||v||2 + 〈v, e1〉2 + 〈e1, v〉2.

We get:

b =
1

β||v||
(
(||v||2 + 〈v, e1〉2)e1 ⊗ e1+

〈v, e1〉
√

||v||2 − |〈v, e1〉|2(e1 ⊗ e2 + e2 ⊗ e1) + (||v||2 − |〈v, e1〉|2)e2 ⊗ e2

)

Let

A =
1

β||v||
( ||v||2 + 〈v, e1〉2 〈v, e1〉

√||v||2 − |〈v, e1〉|2
〈v, e1〉

√||v||2 − |〈v, e1〉|2 ||v||2 − |〈v, e1〉|2
)

.

Then A∗A =

1
β2

(||v||2 + 〈v, e1〉2 + 〈e1, v〉2 + |〈v, e1〉|2
√||v||2 − |〈v, e1〉|2(〈v, e1〉 + 〈e1, v〉)√||v||2 − |〈v, e1〉|2(〈v, e1〉 + 〈e1, v〉) ||v||2 − |〈v, e1〉|2

)

The equation for the eigenvalues of A∗A is

λ2 − λ +
(||v||2 − |〈v, e1〉|2)2

β4 = 0.

The eigenvalues of A∗A are

λ1,2 =
1
2

± 1
2
(〈v, e1〉 + 〈e1, v〉)√4||v||2 + (〈v, e1〉 − 〈e1, v〉)2

β2 =

1
2

± 1
2
(〈u, v〉 + 〈v, u〉)√4||u||2||v||2 + (〈u, v〉 − 〈v, u〉)2

2||u||2||v||2 + 〈u, v〉2 + 〈v, u〉2 . (8)

The singular values of A are the square roots of the eigenvalues of A∗A. The
entanglement entropy of b equals

E(b) = −λ1 lnλ1 − λ2 lnλ2. (9)
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Since for 0 < x < 1
− lnx > 1 − x,

we have:
E(b) ≥ λ1(1 − λ1) + λ2(1 − λ2) = 1 − λ2

1 − λ2
2. (10)

Now, (7) is obtained by plugging (8) into (10).

Remark 2. Since u and v in Theorem 3 are linearly independent, it follows that
the vector b is entangled, i.e. E(b) > 0. This follows from the fact that the right
hand side of the inequality (7) is positive. Another way to see it is to refer to
(9) and to observe that in (8)

∣∣∣
(〈u, v〉 + 〈v, u〉)√4||u||2||v||2 + (〈u, v〉 − 〈v, u〉)2

2||u||2||v||2 + 〈u, v〉2 + 〈v, u〉2
∣∣∣ < 1

(it is straightforward to check that this inequality is equivalent to

(||u||2||v||2 − 〈u, v〉〈v, u〉)2 > 0),

hence 0 < λ1 < 1 and 0 < λ2 < 1.

2.2 Proof of Theorem 1

Proof. It follows from [5] that there is a constant A0 > 0 such that as k → ∞,
||Θ(k)

p ||2 and ||Θ(k)
q ||2 are asymptotic to

A0k
n + O(kn−1). (11)

It follows from [4] that there are constants A1 > 0, A2 > 0 such that as k → ∞

|〈Θ(k)
p , Θ(k)

q 〉| ≤ A1k
ne−A2

√
k dist(p,q).

From (7) in Theorem 3 we get:

Ek(bk) ≥ 1
2

(1 − |〈Θ(k)
p ,Θ(k)

q 〉|2
||Θ(k)

p ||2||Θ(k)
q ||2 )

2

(1 + 〈Θ(k)
p ,Θ

(k)
q 〉2+〈Θ(k)

q ,Θ
(k)
p 〉2

2||Θ(k)
p ||2||Θ(k)

q ||2 )2
.

As k → ∞,

Ek(bk) ≥ 1
2
(1 − |〈Θ(k)

p , Θ
(k)
q 〉|2

||Θ(k)
p ||2||Θ(k)

q ||2
)2(1 − 〈Θ(k)

p , Θ
(k)
q 〉2 + 〈Θ(k)

q , Θ
(k)
p 〉2

2||Θ(k)
p ||2||Θ(k)

q ||2
)2 ≥

1
2
(1 − A2

1k
2ne−2A2

√
k dist(p,q)

||Θ(k)
p ||2||Θ(k)

q ||2
)4.

The conclusion now follows from (11).
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2.3 Proof of Theorem 2

Proof. Using (7) in Theorem 3 we get:

Ek(bk) ≥ 2
(||Θ(k)

p ||2||Θ(k)
q ||2 − |〈Θ(k)

p , Θ
(k)
q 〉|2)2

(2||Θ(k)
p ||2||Θ(k)

q ||2 + 〈Θ(k)
p , Θ

(k)
q 〉2 + 〈Θ(k)

q , Θ
(k)
p 〉2)2

.

By the reproducing property (5)

||Θ(k)
p ||2 = Θp(p) = ek|p|2

||Θ(k)
q ||2 = Θq(q) = ek|q|2

〈Θ(k)
p , Θ(k)

q 〉 = Θ(k)
p (q) = ekqT p̄.

Therefore

Ek(bk) ≥ 1
2
(1 − ekqT p̄+kpT q̄−k|p|2−k|q|2)2

(1 + e2kqT p̄+e2kpT q̄

2ek|p|2+k|q|2 )2
.

As k → ∞

Ek(bk) ≥ 1
2
(1 − ekqT p̄+kpT q̄−k|p|2−k|q|2)2(1 − e2kqT p̄ + e2kpT q̄

2ek|p|2+k|q|2 )2.

and the conclusion follows.

3 Example for 1.1

Let M = CP
1 and let L → M be the hyperplane bundle with the standard

hermitian metric. The Kähler form is the Fubini-Study form on M . The Hilbert
space V = H0(M,L) is isomorphic to the space of polynomials in 1 and z, with
the inner product

〈f, g〉 = 2
π

∫

C

f(z)g(z)
(1 + |z|2)3 dx dy.

The monomials e0 = 1 and e1 = z form an orthonormal basis in V . For p ∈ C

(an affine chart of M) let Θp be the unique vector in V defined by the property

〈f,Θp〉 = f(p)

for all f ∈ V . It is immediate that

Θp(z) = 1 + zp̄

and
||Θp|| =

√
1 + |p|2.
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Let us consider two particles at p = x+i0 and q = −x+i0, x > 0. The associated
state (2) is

b1 = b1(p, q) =
1√

1 + x4
e0 ⊗ e0 +

x2
√
1 + x4

e1 ⊗ e1.

The Schmidt coefficients are α0 = 1√
1+x4 and α1 = x2√

1+x4 . The entanglement
entropy of b1 equals

E(x) = −α2
1 ln(α

2
1) − α2

2 ln(α
2
2) =

(1 + x4) ln(1 + x4) − x4 ln(x4)
1 + x4 . (12)

The graph of E is shown in Fig. 1. From (12), we observe that E(x) → 0 as
x → ∞, and the maximum value of E(x) is attained at x = 1.

Fig. 1. The graph of E(x), x > 0.
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Abstract. Don Zagier’s superposition of Rankin-Cohen brackets on the
Lie group SL2(R) defines an associative formal deformation of the alge-
bra of modular forms on the hyperbolic plane [9]. This formal deforma-
tion has been used in [6] to establish strong connections between the
theory of modular forms and that of regular foliations of co-dimension
one. Alain Connes and Henri Moscovici also proved that Rankin-Cohen’s
deformation gives rise to a formal universal deformation formula (UDF)
for actions of the group ax + b. In a joint earlier work [5], the first
author, Xiang Tang and Yijun Yao proved that this UDF is realized as
a truncated Moyal star-product. In the present work, we use a method
to explicitly produce an equivariant intertwiner between the above men-
tioned truncated Moyal star-product (i.e. Rankin-Cohen deformation)
and a non-formal star-product on ax + b defined by the first author in
an earlier work [2]. The specific form of the intertwiner then yields an
oscillatory integral formula for Zagier’s Rankin-Cohen UDF, answering
a question raised by Alain Connes.

In this paper, we will study equivalences between two particular star-products
on the symplectic manifold underlying the group ax + b. We start by recalling
that for a symplectic manifold (M,ω), a star-product on M is a bilinear map �ν :
C∞(M)×C∞(M) → C∞(M)[[ν]] : (f, g) �→ f �ν g :=

∑+∞
k=0 νkCk(f, g), where ν

is a formal parameter called deformation parameter and with C∞(M)[[ν]] :={∑+∞
k=0 νkfk | fk ∈ C∞(M) ∀k ∈ N

}
, such that (i) for each k ∈ N\{0}, the

map Ck : C∞(M) × C∞(M) → C∞(M) defines a bidifferential operator on
M ; (ii) the law �ν , extended C[[ν]]-linearly to the space of formal power series
C∞(M)[[ν]], gives an associative product on C∞(M)[[ν]]; (iii) C0(f, g) = fg
and C1(f, g) − C1(g, f) = c{f, g} for some constant c ∈ C depending on the
chosen normalization and where {·, ·} means the Poisson structure associated
with ω; (iv) 1 �ν f = f �ν 1 = f . In what follows, we will assume that ν ∈ iR0.
Given a star-product �ν on (M,ω), a derivation D of �ν is a linear operator
on C∞(M)[[ν]] of the form D =

∑+∞
k=0 νkDk, where for every k, Dk is a C[[ν]]-

linear differential operator, with D satisfying the following relation for every
f, g ∈ C∞(M)[[ν]]: D (f �ν g) = Df �ν g + f �ν Dg. The space of derivations of
�ν is denoted by Der (�ν). Also, for any ϕ,ψ ∈ C∞(M)[[ν]], their �ν-commutator
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is defined by [ϕ,ψ]�ν
:= ϕ �ν ψ − ψ �ν ϕ. A star-product �ν on a (M,ω) is said

to be invariant under an action of g = Lie(G) on M (that is the data of a
homomorphism g → Γ∞ (TM) : X �→ X�) if each X� is a derivation of �ν . In
that case, we will say that �ν is g-invariant. Suppose now that �ν and �′

ν are
two star-products on the same symplectic manifold (M,ω). There are said to be
equivalent if there exists a linear formal operator T on C∞(M)[[ν]] of the form
T =

∑+∞
k=0 νkTk, such that (i) T0 = Id; (ii) Tk is a C[[ν]]-linear differential oper-

ator for all k ∈ N; (iii) T intertwines �ν and �′
ν , that is, for f, g ∈ C∞(M)[[ν]],

T (f �ν g) = Tf �′
ν Tg (this property will be denoted shortly as: T (�ν) = �′

ν).
For this last reason, such an equivalence is also called an intertwiner. Let us now
introduce the two star-products that we will link in the Sect. 2 by studying their
intertwiners.

1 Rankin-Cohen and Bieliavsky-Gayral Star-Products

1.1 Rankin-Cohen Brackets and Formal Deformation Quantization

The first star-product that we consider is due to Zagier, Connes and Moscovici,
but based on the researches of Rankin and Cohen concerning the modular forms.
Let us consider the Hopf algebra H1 described by Connes and Moscovici in [6]
in the particular case where all the δn are trivial. In this case, H1 reduces to
the universal enveloping algebra U(s) of the Lie algebra s with basis {X,Y }
and bracket [Y,X] = X. Note that s := Lie(S), i.e. the Lie algebra associated
with the ax + b Lie group that we denote S. Authors in [6] then show that the
superposition of (a reduced form of) Rankin-Cohen brackets (denoted as RCred

n

for n a positive integer) gives rise to a formal universal deformation formula
(UDF) �RC

ν :=
∑+∞

n=0 νnRCred
n for actions of the group S. It is worth mentioning

that the Lie group S corresponds to the Iwasawa component of SL2(R). Setting
sl2(R) := Lie(SL2(R)) = span

R
{H,E, F} with brackets [H,E] = 2E, [H,F ] =

−2F and [E,F ] = H, one has s = span
R
{H,E} and thus S = exp (span

R
{H,E})

(it means that X = E and Y = H
2 within notations in [6]). This leads to the

following global coordinate system on S:

s � R
2 → S : (a, �) �→ exp(aH) exp(�E). (1)

We endow this space S with the symplectic form ωS = da ∧ d�. As noticed in
[5], the deformation �RC

ν defines a left invariant star-product on the symplectic
manifold

(
S, ωS

)
, meaning that for all x ∈ S, the left action Lx of S is a symmetry

of �RC
ν , i.e. it satisfies the identity L�

xϕ �RC
ν L�

xψ = L�
x(ϕ �RC

ν ψ), for all ϕ,ψ ∈
C∞(S)[[ν]]. Hereafter, the star-product �RC

ν on the symplectic manifold (S, ωS)
will be called the Rankin-Cohen star-product (or RC star-product in short).
Let us now consider the symplectic vector space

(
R

2 = {(q, p)}, ω := dq ∧ dp
)

and h := span
R
{Q,P} ⊕ RZ the corresponding Heisenberg algebra with brack-

ets given by [Q,P ] = ω(Q,P )Z = Z, [Y,Z] = 0 ∀ Y ∈ span
R
{Q,P}.

We form the semi-direct product gRC := sl2(R) � h. In [5], authors show
that �RC

ν is gRC-invariant, through the action of gRC on
(
S, ωS

)
associated
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with the fundamental vector fields. Note that considering the natural action
through matrix multiplication of S ⊂ SL2(R) on

(
R

2, ω
)
, we can form the orbit

O = S.(0, 1) = {(�ea, e−a) | a, � ∈ R} (within coordinates (1)), corresponding to
the upper half-plane of R

2. As shown in [5], Proposition 3.4, the star-product �RC
ν

realized on O ⊂ R
2 coincides with the restriction to O of the Moyal star-product

on (R2, ω). A last property of �RC
ν is given below.

Proposition 1 ([4], Lemma 5.3). The star-product �RC
ν is (up to a redefini-

tion of the deformation parameter) the only s � h-invariant formal star-product
on

(
S, ωS

)
.

1.2 Bieliavsky-Gayral Star-Product and Non-formal Deformation
Quantization

The second star-product that we consider constitutes a particular example of
a construction presented in [3]. In what follows, the Poincaré algebra RH �

(RE ⊕ RF ), with table given by [H,E] = 2E, [H,F ] = −2F, [E,F ] = 0, will be
denoted as gBG. The method used in [3] consists in twisting the two-dimensional
Moyal star-product �M

ν (in coordinates (1)) by means of an intertwiner T , in such
a way that T

(
�M

ν

)
yields a left invariant star-product on

(
S, ωS

)
. As pointed

out by the authors, there exists a family (indexed by functions ϑ) of operators T
leading to a convergent form of the corresponding star-product (as in the case of
Moyal-Weyl). Indeed, by considering for instance the operator Tν,ϑ0 associated
with ϑ := ϑ0 given by Tν,ϑ0 := F−1 ◦ Mexp(ϑ0) ◦ (

Ψ−1
ν

)� ◦ F , where F is the
partial Fourier transform in the second variable, Mexp(ϑ0) is the multiplication by

exp(ϑ0) whith ϑ0(ξ) := − 1
4 log

(
1 − 4ν2ξ2

)
and where Ψν(a, ξ) =

(
a, sinh(2iνξ)

2iν

)
,

the star-product �BG
ν,ϑ0

:= Tν,ϑ0

(
�M

ν

)
on the space EBG

ν,ϑ0
:= Tν,ϑ0 (S(S)) (where

S(S) is the Euclidean Schwartz space on S � R
2 with respect to (1)) enjoys the

following properties.

Theorem 1 ([3], Theorem 4.5). Within the previous notations,

(i)
(
EBG

ν,ϑ0
, �BG

ν,ϑ0

)
is an associative algebra, endowed with the Fréchet algebra

structure transported from S(S) � S (
R

2
)
under the operator Tν,ϑ0 .

(ii) For all compactly supported functions ϕ,ψ ∈ D(S) ⊂ EBG
ν,ϑ0

, the expression
ϕ �BG

ν,ϑ0
ψ admits an oscillatory integral representation.

(iii) The star-product �BG
ν,ϑ0

is gBG-invariant, through the action of gBG on
(
S, ωS

)
associated with the fundamental vector fields. In particular, �BG

ν,ϑ0

is also left invariant on
(
S, ωS

)
.

The star-product given in Theorem 1 will be called the strongly-closed Bieliavsky-
Gayral star-product and will be denoted as �BG

ν . It is worth mentioning that
the choice ϑ ≡ 0 leading to the associative algebra

(EBG
ν,0 , �BG

ν,0

)
(where �BG

ν,0 =
Tν,0

(
�M

ν

)
) corresponds to that of [2], Theorem 6.13, where �BG

ν,0 is also gBG-
invariant (and in particular left invariant). The star-product �BG

ν := �BG
ν,0 will
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be called the Bieliavsky-Gayral star-product (or BG star-product in short). Note
that we can easily show that T ν

(
�BG

ν

)
= �BG

ν , where T ν := F−1 ◦Mexp(ϑ0) ◦F .
At this point, we can naturally ask whether the RC star-product also admits
a convergent expression like the BG star-product (on a suitable subspace of
C∞(S)). This is precisely the subject of the next section, where we start by
describing a method to obtain the expressions of intertwiners between RC and
BG star-products.

2 Non-formal Rankin-Cohen Star-Product

2.1 Guessing the Intertwiners Between RC and BG Star-Products

Consider the symplectic manifold
(
S, ωS

)
. Thanks to the particular invari-

ances of �BG
ν and �RC

ν mentioned previously, we get the following injections:
gBG ↪→ Der

(
�BG

ν

)
: Y �→ Y � and gRC ↪→ Der

(
�RC

ν

)
: Y �→ Y �, where Y �

denotes the fundamental vector field associated with Y . Note that s is a sub-
algebra of both gBG and gRC . By virtue of [1], Theorem 4.1, one knows that
the set of S-equivalence classes of left invariant star-products on S is canon-
ically parametrized by the set of sequences of elements belonging to the sec-
ond de Rham cohomology space H2

dR(S)S of the S-invariant de Rham com-
plex on S. Thanks to the fact that every Chevalley-Eilenberg 2-cocycle on s
is a coboundary, it turns out that there exists at least one intertwiner T on
C∞(S)[[ν]] between �BG

ν and �RC
ν that is S-equivariant, i.e. such that for all

x ∈ S, L�
xT = TL�

x. At the level of the space D(S) of smooth compactly sup-
ported functions, we can then express T as a (formal) convolution operator by
means of the Schwartz kernel theorem. Consequently, there exists a distribution
u such that for any ϕ ∈ D(S) and x ∈ S, Tϕ(x) =

∫
S
u(x, y)ϕ(y)dL

S
(y), where dL

S

denotes a left invariant Haar measure on S. Using the S-equivariance of T and
setting uT (x) := u

(
e, x−1

)
(for e ∈ S the neutral element), we get the following

particular form: Tϕ(x) =
∫
S
uT

(
y−1x

)
ϕ(y)dL

S
(y). This yields in turn the follow-

ing algebra morphism: D : gRC → Der
(
�BG

ν

)
: Y �→ DY := T−1Y �T , extending

to gRC the injection s ↪→ Der
(
�BG

ν

)
. Since H1

dR(S) = {0} thanks to the Poincaré
lemma, we deduce from [8], Theorem 8.2 that for any Y ∈ gRC , the associated
derivation DY is inner, i.e. DY = 1

2ν [ΦY , ·]�BG
ν

for some ΦY ∈ C∞(S)[[ν]]. For
instance, in the basis {H,E} of s, ΦH(a, �) = � and ΦE(a, �) = 1

2e−2a (within
(1)). Now, remark that the algebra gRC decomposes (as vector space) as s⊕VRC ,
with VRC := span

R
{F,Q, P, Z}. For any element Xk in the basis of s and any

element Yl in the basis of VRC , one has: [Xk, Yl] =
∑

a Ca
klXa +

∑
b Cb

klYb,
with a ∈ {1, 2}, b ∈ {1, . . . , 4} and where Ca

kl, C
b
kl are some real constants.

The fact that D is a Lie algebra morphism then leads to the following ODE:
X�

k (ΦYl
) =

∑
a Ca

klΦXa
+

∑
b Cb

klΦYb
, up to additive formal constants. Once

the solution ΦYl
is obtained for any Yl in the basis of VRC , we can deduce the

expression of DY for any Y ∈ gRC by means of linear extension. Regarding the
convolution kernel, recall first that dL

S
(y) is preserved under Y � for all Y ∈ gRC .

Since the inverse T−1 of T is also a convolution operator with associated kernel
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v, for x, x0 ∈ S and Y ∈ gRC , one has: DY |x0
v

(
x−1x0

)
= − Y �|x v

(
x−1x0

)
,

where |x0
(respectively |x) means that the operator is applied by considering the

function on its right as depending on the x0-variable (resp. x-variable) only. A
straightforward computation then leads to the observation that any intertwiner
T such that T

(
�BG

ν

)
is a gRC-invariant star-product admits as an inverse a con-

volution operator T−1 = v × ·, with v a solution of the following two equations:

DQ|x0
v

(
x−1x0

)
= − Q�|x v

(
x−1x0

)
, DP |x0

v
(
x−1x0

)
= − P �|x v

(
x−1x0

)
,

(2)
for DQ|(a,�) = 1

2ν [K1e
−a, ·]�BG

ν
, DP |(a,�) = 1

2ν [(K2 − K1�) ea, ·]�BG
ν

, Q�|(a,�) =
−e−a∂� and P �|(a,�) = ea (∂a − �∂�) (within the chart (1)), for some parameters
K1,K2 ∈ C[[ν]]. We set K := (K1,K2). Solving the previous equations then
shows that to the corresponding intertwiner Tν,K = v × · is formally given by:

Tν,K ϕ(a0, �0) =
1
2π

∫

R2
e

i
[
ξ(�−K2

1η2
ν(r)�0)− K2

2iνK1
arcsinh(2iνξ)

]
ην(ξ)ϕ (a0 − log(K1ην(ξ)), �) d�dξ,

(3)

where ην : R → R
+
0 : ξ �→

√
2

1+
√

1−4ν2ξ2
and ην := ην exp(2ϑ0). From now on,

we will always assume that K1 is a strictly positive real number and K2 a real
number, satisfying the limit condition limν→0(K1,K2) = (1, 0). The next section
is devoted to an analytical study of the intertwiner Tν,K as well as the formula
�ν,K := Tν,K

(
�BG

ν

)
.

2.2 Towards a Non-formal RC Star-Product

In order to give rise to an oscillatory integral formula for the RC star-product, we
will focus on the intertwiner between �BG

ν (the strongly-closed BG star-product)
and �RC

ν , rather than the one between �BG
ν and �RC

ν . The reason is that Propo-
sition 4.10 in [3] exhibits explicitly a space SBG(S) of Schwartz-type functions
such that, endowed with the multiplication �BG

ν ,
(
SSBG

ν,ϑ0 (S), �BG
ν

)
becomes an

associative Fréchet algebra. It turns out that SBG(S) corresponds to the usual
Schwartz space in coordinates (x, y) = (sinh(2a), �). In what follows, the idea is
then to transport that space under the operator T ν,K := Tν,K ◦ T−1

ν .

Proposition 2. Let ϕ ∈ SBG(S). Then, T ν,K ϕ ∈ S(S).

Proof. Let ϕ ∈ SBG(S). Note first that SBG(S) ⊂ S(S). Also, the element

E := e
i
[
r(z−K2

1η2
ν(r)�0)− K2

2iνK1
arcsinh(2iνr)

]
satisfies 1

1+r2

(
Id − ∂2

z

)
E = E. Thanks

to the self-adjointness of the differential operator D := Id−∂2
z (w.r.t. the L2(R)-

inner product), we get the following expression for T ν,K :

T ν,K ϕ(a0, �0) =
1
2π

∫

R2
E

η̃ν(r)
1 + r2

Dϕ (a0 − log(K1ην(r)), z) drdz, (4)
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where η̃ν : R → R
+
0 : r �→ ην(r) exp(ϑ0(r)). The Lebesgue dominated

convergence theorem and the mean-value theorem then imply that T ν,K ϕ,
∂1T ν,K ϕ and ∂2T ν,K ϕ (where ∂j denotes the partial derivative w.r.t. the
jth-variable) are continuous, which means that T ν,K ϕ ∈ C1(S). Denoting
by fϕ(a0, �0, r, z) the integrand in (4), remark now that for m,n ∈ N,
∂m
1 ∂n

2 fϕ(a0, �0, r, z) =
(−iK2

1rη2
ν(r)

)n E η̃ν(r)
1+r2 ∂m

1 (Dϕ) (a0 − log(K1ην(r)), z). An
induction on the degree of the partial derivatives then shows that T ν,K ϕ ∈
C∞(S). Now, thanks to the Fubini theorem, notice that performing the integral
w.r.t. the z-variable within the expression of T ν,K ϕ leads to

T ν,K ϕ(a, �) =
∫

R

e
i
[
−K2

1rη2
ν(r)�− K2

2iνK1
arcsinh(2iνr)

]
η̃ν(r)ϕ̂ (a − log(K1ην(r)), r) dr

(5)
with ϕ̂ := F−1ϕ. An obvious but important fact about ην , log ην , η̃ν and arcsinh
is that those functions belong to the space OM (R) of Schwartz multipliers on R.
In particular, η̃νϕ̂ (a − log(K1ην(r)), r) is a Schwartz function on R (for fixed a).
That being said, we set μ(r) := rη2

ν(r), E := e−iμ(r)�, Ẽ := e− K2
2νK1

arcsinh(2iνr)

and A := i
(

d
drμ(r)

)−1
∂r. Note that 1

1+�2

[
Id + A2

]
(E) = E. Remark also that

(
d
drμ

)−1
, d2

dr2 μ ∈ OM (R). Denoting by A† the adjoint operator of A w.r.t. the
L2(R)-inner product, notice that the coefficients of the differential operator
Id +

(
A†)2 as well as the element Ẽ belong to OM (R) (w.r.t. the r-variable).

Using now an integration by parts argument (combined with the Lebesgue dom-
inated convergence and the mean-value theorem) leads to the observation that
sup(a,�)∈S

∣
∣ak�p∂m

a ∂n
� (T ν,K ϕ)(a, �)

∣
∣ < +∞, which concludes the proof.

For a given function f , let supp (f) denotes its support. Note that using (1), a
direct computation leads to the following interesting result.

Lemma 1. For any ψ ∈ T ν,K

(SBG(S)
)
, supp (Fψ) ⊂ R ×

[
− K2

1
|iν| ,

K2
1

|iν|
]
.

Following notations due to Gel’fand and Shilov, for a given σ ∈ R
+, we set Sσ :={

f ∈ SBG(S) | supp(f) ⊂ R × [−σ, σ]
}
, Sσ := ∪0≤ε<σSε and Sσ (respectively

Sσ) the space F−1 (Sσ) (resp. F−1 (Sσ)).

Proposition 3. The operator τν,K defined by

τν,K ψ(a0, �0) =

K2
1

2π

∫

R2
e

i
[
r(�0−K2

1η2
ν(r)z)− K2

2iνK1
arcsinh(2iνr)

]
η̃ν(r)ψ (a0 + log(K1ην(r)), z) drdz

(6)

is an inverse for T ν,K . More precisely, the following identities hold:
(
τν,K ◦ T ν,K

)∣
∣
SBG(S)

= IdSBG(S) and
(
T ν,K ◦ τν,K

)∣
∣
SK2

1/|iν| = Id|SK2
1/|iν| .
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Proof. Let γν,K be the smooth map defined by γν,K : R
2 → R

2 : (a, ξ) �→ (a +
log(K1ην(ξ)),K2

1rη2
ν(ξ)) and let Mν,K be the operator defined for any smooth

function f on R
2 by Mν,K (f) :=

[
(a, ξ) �→ K2

1 η̃ν(ξ)e− K2
2νK1

arcsinh(2iνξ)f(a, ξ)
]
.

A direct computation shows that τν,K given by (6) admits the following decom-
postion: τν,K = F−1 ◦Mν,K ◦ γ�

ν,K ◦F . The first identity is then a consequence
of Proposition 2 combined with the decomposition above. For the second iden-
tity, let us choose a function ψ ∈ Sσ, for 0 ≤ σ <

K2
1

|iν| (i.e. ψ ∈ SK2
1/|iν|). It

means that there exists ψ0 ∈ Sσ such that ψ = F−1ψ0. Thanks to the decompo-
sition of τν,K , we have τν,K ψ = F−1

(Mν,K

(
γ�

ν,K ψ0

))
. Note that the function

Mν,K

(
γ�

ν,K ψ0

)
(a, ξ) vanishes identically for ξ outside an interval [−σ̃, σ̃], for

a certain 0 ≤ σ̃ < +∞. Moreover ∂1Mν,K

(
γ�

ν,K ψ0

)
= Mν,K

(
γ�

ν,K ∂1ψ0

)
. It

implies that Mν,K

(
γ�

ν,K ψ0

) ∈ S(R2), which in turn implies that τν,K ψ ∈ S(S).
Plugging the function ϕ := τν,K ψ into the expression (5) then concludes the
proof.

We can now provide an oscillatory integral formula for the Rankin-Cohen defor-
mation by transporting the space SBG(S) under the operator T ν,K .

Theorem 2. Let Eν,K := T ν,K

(SBG(S)
)
.

(i) The following inclusions hold: T ν,K (D(S)) ⊂ SK2
1/|iν| ⊂ Eν,K ⊂ S(S).

(ii) For ϕ,ψ ∈ Eν,K , the formula ϕ�ν,K ψ := T ν,K

(
τν,K ϕ�BG

ν τν,K ψ
)
defines

an associative product on Eν,K . The algebra (Eν,K , �ν,K ) is then endowed
with the Fréchet algebra structure transported under T ν,K from SBG(S).

(iii) The star-product �ν,K is gRC-invariant (and, up to a redefinition of the
deformation parameter, it coincides with �RC

ν ). In particular, �ν,K is left
invariant.

(iv) Denoting by R the right action of S, the star-product �ν,K admits the fol-
lowing integral representation at the level of functions belonging to SK2

1/|iν|:

ϕ�ν,K ψ =

K4
1

(2πiν)2

∫

R4

1
cosh(a1) cosh(a2) cosh(a1 − a2)

e
K2

1
ν [tanh(a2)�1−tanh(a1)�2]

× R�(
a1+log

cosh(a1−a2)
cosh(a2) ,�1

)ϕR�(
a2+log

cosh(a1−a2)
cosh(a1) ,�2

)ψda1d�1da2d�2.

(v) Let K0 := (1, 0). For every ϕ,ψ ∈ T θ
i ,K 0

(D(S)) and for every x ∈ S, the

map R → C : θ �→
(
ϕ� θ

i ,K 0
ψ

)
(x) is smooth. Its Taylor series at 0 defines

an associative star-product on
(
S, ωS

)
which coincides with �RC

θ
i

.

Proof. We start by item (i). For the first inclusion, it comes from the fact that
the range of the map

[
B → R : r �→ K2

1rη2
ν(r)

]
is included in an interval [−ε, ε]

for a certain 0 ≤ ε <
K2

1
|iν| . Choosing ψ = T ν,K ϕ with ϕ ∈ D(S) ⊂ SBG(S), a
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direct computation of F (
T ν,K ϕ

)
shows that ψ ∈ SK2

1/|iν|. The second inclu-
sion is straightforward and the last one is a consequence of Proposition 2. The
item (ii) comes from the associativity of �BG

ν (see Theorem 1). The item (iii)
comes from the construction of �ν,K itself (cf. the method used in Sect. 2.1)
and Proposition 1. Moreover, notice that for ϕ =: T ν,K ϕ0 and ψ =: T ν,K ψ0

belonging to T ν,K

(SBG(S)
)
, we have ϕ�ν,K ψ := T ν,K

(
ϕ0�

BG
ν ψ0

)
. The left

invariance of �ν,K is then a direct consequence of that of �BG
ν (see Theorem 1,

item (ii)) and T ν,K . For the item (iv), we start by choosing σ such that σ <
K2

1
|iν|

and two functions ϕ,ψ ∈ Sσ. Using the expression of �BG
ν given in [3] and

performing the change of variables �1 �→ �1 + � exp
[
−2

(
a1 + log cosh(a1−a2)

cosh(a2)

)]

and �2 �→ �2 + � exp
[
−2

(
a2 + log cosh(a1−a2)

cosh(a1)

)]
into the integral expression

corresponding to (2πiν)2

K4
1

T ν,K

(
τν,K ϕ�BG

ν τν,K ψ
)
(a, �), we get the announced

integral formula in the item (iv), thanks to the fact the right action R on S

reads R(a,�)(a′, �′) =
(
a′ + a, � + �′e−2a

)
. Regarding the item (v), we choose

K0 := (1, 0) without any loss of generality (indeed, formula in item (iv) is
the same for any K1 up to a redefinition of ν and independent from K2). Note
first that using similar arguments to that of the proof of Proposition 2, we can
see that both functions

[
(x, θ) �→ T θ

i ,K ϕ(x)
]

and
[
(x, θ) �→

(
ψ1� θ

i ,K 0
ψ2

)
(x)

]

are elements of C∞(S × R). Theorem 40.1 in [7] then implies that for every
ϕ ∈ D(S), the function of θ ∈ R given by T θ

i ,K 0
ϕ belongs to C∞ (R, C∞(S))

and for every ϕ,ψ ∈ T θ
i ,K 0

(D(S)), the function of θ ∈ R given by ϕ� θ
i ,K 0

ψ

belongs to C∞ (R, C∞(S)). Moreover, by virtue of the associativity of �BG
θ
i

, the

Taylor series at 0 of the map
[
R → C : θ �→

(
ϕ� θ

i ,K 0
ψ

)
(x)

]
yields an associa-

tive star-product which is gRC-invariant by construction. We then deduce from
Proposition 1 that the formal version of �ν,K 0 coincides with �RC

ν .
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1 Introduction

Let M = G/K be a homogeneous space of a Lie group G with closed isotropy
subgroup K. Let us assume that M is equipped with a G-invariant symplectic
structure ω. Assume moreover that there exists a Lie subgroup S of G whose
action on M is simply transitive.

An important example of such a situation is the case where G is a real non-
compact simple Lie group and K its maximal compact subgroup. The symplectic
condition in this case amounts to require that the center of K is non-discrete.
Given an Iwasawa decomposition G = ANK, the solvable Iwasawa factor S :=
AN then simply transitively acts on M = G/K.

Generally, these requirements can be slightly relaxed by letting the G-action
to be only local in the sense that one has a finite dimensional Lie algebra g of
symplectic vector fields on a symplectic manifold (M,ω) which contains a Lie
subalgebra s generated by complete vector fields. A theorem due to Palais then
guarantees that s exponentiates to a Lie group of symplectic transformations of
(M,ω), which we assume to be simply transitive.

This relaxed situation allows to consider examples such as M := {(q, p) ∈
R

2 | p > 0} and ω := dp ∧ dq. The affine group

S :=
{(

ea n
0 e−a

)}
(a,n)∈R2

then simply transitively acts on (M,ω) by linear sympletic transformations.
The full affine symplectic group G = Sp(1, R) � R

2 does not act on M but
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
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its lie algebra does by restricting to M every fundamental vector field X�
x :=

d
dt

∣∣
0
exp(−tX).x with X ∈ g. This is the situation which is consider in [4] in the

context of the modular form algebra.
Within this context, we now consider a formal star-product � on the sym-

plectic manifold (M,ω) which we assume to be S-invariant. The question we
are addressing here is whether it is possible to explicitly describe an intertwiner
between � and a star-product � on (M,ω) that is not only S-invariant but also
g-invariant (or G-invariant in the global case).

2 Star-Products on Symplectic Manifolds

Definition 1. Let (M,ω) be a symplectic manifold with associated symplectic
Poisson bracket denoted by { , }ω. Let us denote by C∞(M)[[ν]] the space of
formal power series with coefficients in C∞(M) in the formal parameter ν.
A star-product on (M,ω) is a C[[ν]]-bilinear associative algebra structure on
C∞(M)[[ν]]:

�ν : C∞(M)[[ν]] × C∞(M)[[ν]] → C∞(M)[[ν]]

such that, viewing C∞(M) embedded in C∞(M)[[ν]] as the zero order coeffi-
cients, and writing for all u, v ∈ C∞(M):

u �ν v =:
∞∑

k=0

νkCk(u, v) ,

one has

(1) C0(u, v) = uv (pointwise multiplication of functions).
(2) C1(u, v) − C1(v, u) = {u, v}ω.
(3) For every k, the coefficient Ck : C∞(M) × C∞(M) → C∞(M) is a bi-

differential operator. These are called the cochains of the star-product.

A star-product is called natural when C2 is a second order bi-differential opera-
tor.

Definition 2. Two such star-products �j
ν (j = 1, 2) are called equivalent if there

exists a formal power series of differential operators of the form

T = id +
∞∑

k=1

νkTk : C∞(M) → C∞(M)[[ν]] (1)

such that for all u, v ∈ C∞(M):

T (u) �2ν T (v) = T (u �1ν v) , (2)

where we denote by T the C[[ν]]-linear extension of (1) to C∞(M)[[ν]].
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Since the zeroth order of such an equivalence operator T is the identity, it admits
an inverse that we denote by

T−1 : C∞(M)[[ν]] → C∞(M)[[ν]] .

We the adopt the following notation.
Definition 3. Let �j

ν (j = 1, 2) be two star-products on (M,ω) that are equiva-
lent to each other under an equivalence operator T as in Definition 2. We encode
equation (2) by the notation

�2ν = T (�1ν) .

Let now G be a group of transformations of M .
Definition 4. A star-product �ν on (M,ω) is called G-invariant if its cochains
are G-invariant bi-differential operators; for every g ∈ G, we write:

g�(u � v) = g�(u) �ν g�(v) (u, v ∈ C∞(M)) .

Two G-invariant star-products �j
ν (j = 1, 2) are called G-equivariantly equivalent

if there exists a G-commuting equivalence T between them:

T (�1ν) = �2ν and T (g�u) = g�T (u)

for all g ∈ G and u ∈ C∞(M).

A slightly more general framework, as explained in the Introduction, is the one
where only a Lie algebra acts on M . This means that one has an injective Lie
algebra homomorphism

g → Γ∞(T (M)) : X �→ X� .

In the case of a Lie group action G with Lie algebra g, this corresponds to the
action by fundamental vector fields

X�
x :=

d
dt

∣∣∣∣
0

exp(−tX)x . (3)

Definition 5. A derivation of a star-product � on (M,ω) is a formal series

D =
∞∑

k=0

νkDk

of differential operators {Dk} on C∞(M) such that for all u, v ∈ C∞(M), one
has

D(u � v) = (Du) � v + u � (Dv) .

The (Lie algebra) of derivations of � is denoted by Der(�).

We end this section with the following statement, which is a straightforward
application of the main result in [1].

Proposition 1. On a simply connected symplectic Lie group S with Lie alge-
bra s, the left-equivariant equivalence classes of left-invariant (symplectic) star-
products are parametrized by the sequences of elements of the second Chevalley
cohomology space H2

Chev(s) associated to the trivial representation of s on R.
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3 Equivariant Equivalences – The “Retract” Method

As explained in the Introduction, we now consider a homogeneous symplectic
space G/K containing S as a Lie subgroup and such that the action of S on
this space is simply transitive. Identifying G/K with S through the action, we
consider a G-invariant star-product on (S, ω) � where ω denotes the transported
G-invariant symplectic structure. We will assume S to be simply connected and
solvable. This hypothesis of solvability is in fact not essential. However, it brings
proofs that are more Lie theoretic.

Proposition 2. [Relevance of the retract method] Let Homs(g,Der(�))1 the
space of Lie algebra homomorphisms from g to the Lie algebra Der(�) of deriva-
tions of (C∞(S)[[ν]], �) that are s-relative in the sense that every element D of
Homs(g,Der(�)) restricts to s as the identity:

DX = X�

for every X in s.
Then, Homs(g,Der(�)) is finite dimensional over the formal field R[[ν]].

We will adopt the following notation in accordance with the distributions that
are defined by locally summable functions:

T−1ϕ(x) :=
∫
S

u(x−1y)ϕ(y) dy =: τu(ϕ)(x)

where dy denotes a left-invariant Haar measure on S.

Proposition 3. Consider such an intertwiner T with distributional kernel u.
Then.

(i) the map
DT : g → Der(�) : X �→ T−1X�T

belongs to Homs(g,Der(�)).
(ii) The kernel u is a (weak) joint solution of the following evolution equations:

−X�
y [u(x−1y)] = DT

X |x[u(x−1y)] (∀X ∈ g) .

Proof. With the notations introduced above and based on the previous propo-
sitions, we have

T−1X�(ϕ)(x) =
∫

u(x−1y)X�
y (ϕ) dy = −

∫
X�

y [u(x−1y)]ϕ(y) dy

= DT
X |x

∫
u(x−1y)ϕ(y) dy =

∫
DT

X |xu(x−1y)ϕ(y) dy

because ϕ is compactly supported and, being symplectic, X� preserves the (Liou-
ville) Haar measure.
1 This space can be interpreted as the space of flat g-invariant connections on a non-

commutative space modelled on the infinite dimensional automorphism group of the
star-product (c.f. Vinberg’s description of invariant affine connections on a homoge-
neous space).
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The above Proposition leads us to the following definition.

Definition 6. Let D be an element in Homs(g,Der(�)).
An element u ∈ D′(S)[[ν]] such that

(a) it is a joint (weak) solution of

DZu = 0 ∀Z ∈ k ,

(b) its singular support is reduced to the unit element:

supp(u) = {e} ,

(c) it satisfies the following semi-classical condition:

u mod ν = δe ,

is called a D-retract based over �.

The following statement is classical.

Proposition 4. The space of left-invariant differential operators on S (canon-
ically isomorphic to U(s)) identifies with the sub-space of distributions in D′(S)
supported at the unit e.

Corollary 1. Let u be a D-retract. Then, the convolution operator τu is differ-
ential and satisfies the semi-classical condition:

τu = Id mod ν .

It therefore extends to an invertible endomorphism

τu : C∞(S)[[ν]] → C∞(S)[[ν]]

called inverse retract operator. Its formal inverse

Tu := τ−1
u

is called direct retract operator.

An argument similar to the one in the proof of Proposition 3 then yields the
following theorem.

Theorem 1. (i) Let u be a D-retract with associated direct retract operator Tu :
C∞(S)[[ν]] → C∞(S)[[ν]]. Then,

Tu(�) =: �u

is a formal star-product on (S, ω) that is g-invariant with respect to the
infinitesimal action (3).

(ii) Given any symplectic action of g on (S, ω) that restricts to s as the regular
one, every g-invariant star-product that is S-equivariantly equivalent to � is
of the form �u for a certain D-retract u.
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4 The Complex Unit Ball

In [5], one finds a generalisation to the complex domain SU(1, n)/U(n) of the
result of [2] obtained in the 2-dimensional case.

We consider the Lie group G := SU(1, n). The Iwasawa factor S has the
following structure. Its Lie algebra s is a semi-direct product between a one
dimensional Lie algebra a := R.H with a Heisenberg Lie algebra N := V ⊕ R.Z
where (V,Ω) is a 2n-dimensional symplectic vector space with Lie bracket given
by [(v, z) , (v′, z′)] := Ω(v, v′)Z. The extension homomorphism ρ : a → Der(N)
is defined as ρ(H)(v, z) := (v, 2z).

The exponential mapping on N is the identity. We consider the following
global coordinate system on S:

a ⊕ V ⊕ R.Z → S : (a, v, z) �→ exp(a ρ(H))(v, z) .

It is a global Darboux chart in the sense that the 2-form ω := da ∧ dz + Ω is
left-invariant and corresponds to the Kähler two-form on G/K where K := U(n)
under the S-equivariant diffeomorphsim S → G/K : x �→ xK.

In [3], the authors define the following S-equivariant non-formal star-product
which will be the source of the retract.

Theorem 2. Set

S(x1, x2) := sinh(2a1)t2 − sinh(2a2)t1 + cosh a1 cosh a2 ω0(v1, v2) ,

where xj = (aj , vj , tj) (j = 1, 2), and

A(x1, x2) :=(
cosh a1 cosh a2 cosh(a1 − a2)

)d( cosh 2a1 cosh 2a2 cosh 2(a1 − a2)
)1/2

.

Let θ be a non-zero real number. Then the following formula

ϕ1 �θ ϕ2(x0) :=
1

θ2n+2

∫
S×S

A(x1, x2) e
i
θ S(x1,x2) ϕ1(x0.x1) ϕ2(x0.x2) dx1 dx2

defines a left-invariant associative product on L2(S). Here x.x′ denotes the group
multiplication on S and the integration is with respect to the left-invariant Haar
measure dx.

Moreover, when ϕ1 and ϕ2 are smooth and compactly supported the map
θ �→ ϕ1 �θ ϕ2(x0) smoothly extends to R. Its Taylor formula around θ = 0
defines a formal star-product on (S, ω). We denote by � this formal star-product.
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Theorem 3. Up to redefining the deformation parameter ν, every D-retract
based over � has the form

uν(a, v, z) :=

ν2

∫ ∞

−∞
dξ sign(ξ) e−2a+iξz

∫ ∞

−∞
dγ

(
1 + γ2

)n−3
2

Γν

[
−4ν2 sign(ξ) e−2a

(
1

γ2 + 1
− cosh2

(
1
2
arcsinh(iνξ)

))]

exp
[
−1

ν
arccotan(γ) +

γ

ν

(
e−2a

γ2 + 1
+ cosh2

(
1
2
arcsinh(iνξ)

)
||v||2

)]

where Γν ∈ D′(R)[[ν]] is an arbitrary formal power series with coefficients in the
distributions D′(R) on R.
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incorporation of physics concepts into deep learning models.

Keywords: Topology optimization · Deep learning · Software library

1 Introduction

We begin by briefly introducing the problem of Topology Optimization (TO)
and the recent development of applying deep learning to it.

1.1 Classical Topology Optimization

The computational discipline of topology optimization (TO) aims to optimize
mechanical structures. Since its development in 1988 [4], TO is a powerful tool
widely adopted by engineers in a variety of fields, e.g., fluid [6] and solid mechan-
ics [15], acoustics [14,29], and heat transfer [10].

The Solid Isotropic Material with Penalization (SIMP) method [5] is widely
regarded as the most significant classical approach used in TO. SIMP involves a
density-based setup where the density takes values between 0 and 1 over a given
design domain. The density represents to which degree material is present in
different places. SIMP first voxelizes the domain and density and then employs
an iterative optimization scheme to improve structural performance by adjust-
ing voxel densities. In the case of linear elasticity, one evaluates the integrity of
the resulting structure via von Mises stresses, whose computation involves the
corresponding partial differential equation (PDE). The specified objective func-
tion and constraints may vary depending on the user’s needs. The most common
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
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setup for mechanical problems is compliance minimization [7], where we mini-
mize a compliance objective subject to volume and possibly stress constraints.
See Algorithm 1 for a pseudo-code representation of our SIMP implementation.
For more details on SIMP see [5].

Algorithm 1. Our implementation of the Solid Isotropic Material with Penal-
ization (SIMP) algorithm for compliance minimization with volume and stress
constraints. We typically initialize θ0 to be 0.5 everywhere, where it is not
enforced otherwise. For the filtering we apply a smoothed Heaviside function
Hβ(θ) := 1 − exp(−βθ) + θ exp(−β) with a smoothing factor β > 0 which we
gradually steepen over the iterations. The SIMP exponent p is commonly chosen
as p = 3 to further discourage non-binary solutions.

Require: F , σys, N , λ, μ � Forces, yield stress, #iterations and loss weights
Initialize: θ0 � Start with an initial density
Set: p = 3 � Set the SIMP exponent to its typical value
for i = 0, . . . , N − 1 do

θi ← project(θi) � Project density values into the unit interval
θi ← smooth(θi) � Avoid checkerboard patterns via smoothing
θi ← filter(θi) � Encourage binary densities via filtering
u, σvM = pde solver(F, θi

p) � Solve PDE for current density and exponent p
loss compl = FTu � Compliance with forces F and displacements u
loss vol = ‖θi‖1 � Compute volume loss term
loss stress = softplus(σvM − σys) � Compute stress constraint loss term
loss = loss compl + λ · loss vol + μ · loss stress � Sum up and weight losses
θi+1 ← gradient step(θi, loss) � Update density via gradient descent

end for

return θN � Return final density distribution

1.2 Neural Networks for Topology Optimization

The iterative nature of density-based methods like SIMP requires repeated solv-
ing of the governing PDE. This becomes computationally prohibitive for high
voxel mesh resolutions, leading to practical limitations [1]. Recent Deep Learning
(DL) research has explored overcoming this challenge. One can broadly classify
the advances into four categories [33]:

1. Reduce SIMP iterations: Neural networks map from intermediate SIMP itera-
tions to the final structure, technically performing a deblurring task [2,3,26,28].

2. Eliminate SIMP iterations: Neural networks directly predict the final density
distribution without performing any SIMP iterations [21,30,32].

3. Substitute for PDE solver: One replaces classical PDE solvers with neural
networks, removing the primary bottleneck [8,20,24].

4. Neural reparameterization: One uses neural networks to reparameterize the
density function [11,17,31,33]. However, one usually still requires computa-
tionally demanding PDE evaluations for the training.
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As advances in computational power and DL have only recently brought the
application of DL to TO in the realm of the possible, the literature on it is
still in its infancy. As a result, the authors are not aware of any public software
framework for TO using DL, requiring every researcher to write their code from
scratch.

We want to address this issue by presenting DL4TO, a flexible and easy-to-use
python library for three-dimensional TO. The library is open source and based
on PyTorch [22], allowing for easy integration of DL and TO methods.

2 The DL4TO Framework

2.1 Motivation

In this section, we give a basic overview of the DL4TO1 library. The primary moti-
vation for developing DL4TO is the need for a flexible and easy-to-use basis to
conduct DL experiments for TO in Python. The library focuses on linear elastic-
ity on structured three-dimensional grids. DL4TO comes with its own PDE solver,
a SIMP implementation, and various objective functions for classical and learned
TO. The PyTorch [22]-based implementation smoothly connects the world of TO
with the world of DL. To our knowledge, only two Python libraries for TO [16,18]
exist, and neither allows for easy integration with neural networks.

2.2 Core Classes

In the following we give an overview of how our framework works. Below, we
introduce the three main classes that form the core of our library.

– Problem: An important novelty of our framework is how TO problems are
defined and processed. This is done via the Problem class, which contains all
information of the underlying TO problem one intends to solve. Since we per-
form optimization on structured grids, all information is either in scalar or in
tensor form. This makes data compatible with DL applications since it allows
for a shape-consistent tensor representation. Let (nx, ny, nz) be the number
of voxels in each spacial direction. We can create a uniquely characterized
problem object via

Here,

• E, and σ ys denote scalar material properties, namely Young’s modulus,
Poisson’s ratio and yield stress.

• h is a three-dimensional vector that defines the voxel sizes in meters in
each direction.

1 The DL4TO library is publicly available at https://github.com/dl4to/dl4to.

https://github.com/dl4to/dl4to
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• F is a (3 × nx × ny × nz)-tensor which encodes external forces given in
N/m3. The three channels correspond to the force magnitudes in each
spacial dimension.

• Ω dirichlet is a binary (3×nx ×ny ×nz)-tensor which we use to encode
the presence of directional homogeneous Dirichlet boundary conditions
for every voxel. 1s indicate the presence, and 0s the absence of homoge-
neous Dirichlet boundary conditions. Currently, we do not support non-
homogeneous Dirichlet boundary conditions since we believe that they
are not required for most TO tasks.

• Ω design is a (1 × nx × ny × nz)-tensor containing values ∈ {0, 1,−1}
that we use to encode design space information. We use 0s and 1s to
constrain voxel densities to be 0 or 1, respectively. Entries of −1 indicate
a lack of density constraints, which signifies that the density in that voxel
can be freely optimized. For voxels that have loads assigned to them we
automatically enforce the corresponding density value to be 1.

– TopoSolver: This parent class provides different methods for solving TO
problems. SIMP, as well as learned methods, are child classes. The initializa-
tion arguments slightly differ, depending on the method used. For instance,
a SIMP solver for compliance minimization with a volume constraint can be
initialized via

criterion = Compliance() + λ * VolumeConstraint(vol fract)
topo solver = SIMP(criterion, p, n iters, lr)

with some arbitrary scalar choice of volume fraction vol_fract and optimiza-
tion weight λ. The other arguments of SIMP denote the SIMP exponent choice
p (by default, p= 3), the number of iterations n_iters and the learning rate
lr.
Alternatively, for volume minimization with a stress constraint we could set
the optimization criterion as follows:

criterion = VolumeFraction() + λ * StressConstraint().

By default, our framework uses a built-in finite differences method (FDM)
solver whenever the PDE for linear elasticity is solved. This is attributed to
the regular grid structure, which makes the FDM a suitable and intuitive
approach. It is however also possible to include custom PDE solvers, e.g.,
learned PDE solvers.
In order to apply a topo_solver to a predefined problem object, we can
simply call it via

solution = topo solver(problem),

which returns a solution object. Note that this also works with a list of
problems, in which case topo_solver likewise returns a list of solutions.
For learned solvers the procedure is similar, with the exception that the ini-
tialization of the topo_solver object additionally requires a preprocessing as



DL4TO: A DL Library for Sample-Efficient TO 547

input. This determines how a problem object should be converted to neural
network compatible input tensors when calling the solver (see Sect. 4). The
topo_solver is trained via the built-in train function:

topo solver.train(dataloader train, dataloader val, epochs),

where dataloader_train and optionally dataloader_val are dataloaders
for the training and validation dataset.

– Solution: Objects of this class define solutions to TO problems. They usually
result from calling a topo_solver with a problem object, but can also be
instantiated manually by passing a problem and a density distribution:

Here, is a (1×nx ×ny ×nz)-tensor that defines a three-dimensional density
distribution that solves problem. The Solution class provides several useful
functionalities like logging and plotting.

3 Datasets

DL4TO is compatible with the SELTO datasets [13] introduced in [12] and publicly
available at https://doi.org/10.5281/zenodo.7034898. We want to give a short
overview of the two SELTO datasets containing samples of mechanical mounting
brackets. Each dataset consists of tuples (problem, solution), where solution
is a ground truth density distribution for problem. The two datasets are called
disc and sphere, referring to the shape of the corresponding design spaces; see
Table 1 for an overview of both datasets and Fig. 1 for example samples.

Table 1. Overview of our datasets, called disc and sphere, with the names referring to
the shape of their design spaces. Both datasets are split into a training and a validation
subset.

dataset shape # samples

disc 39 × 39 × 4 voxels 9246 (8846 train, 400 val)

sphere 39 × 39 × 21 voxels 602 (530 train, 72 val)

Fig. 1. Ground truth examples from the disc and sphere dataset [13]. The densities are
defined on a voxel grid and smoothed for visualization using Taubin smoothing [27].

https://doi.org/10.5281/zenodo.7034898
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4 Model Pipeline

We now present how DL4TO enables efficient setup of data pipelines. DL4TO pro-
vides different models and loss functions, e.g., UNets [25] and the weighted binary
cross-entropy. Due to the integration with PyTorch, optimizers like Adam [19]
can be used plug-and-play.

We begin with two critical components of DL4TO’s model pipeline: physics-
based preprocessing and equivariant architectures, see [12].

– Preprocessing: A suitable input preprocessing strategy is crucial for DL. Fol-
lowing [12], the library provides two preprocessing strategies, easily combined
via channel-wise concatenation.
1. Trivial preprocessing: For each problem object, the input of the neural

network is a 7-channel tensor which results from the channel-wise con-
catenation of Ω dirichlet, Ω design, and normalized loads F.

2. PDE preprocessing [12,32]: We set up a density distribution that is 1
wherever allowed by problem. We compute normalized von Mises stresses
for that density by solving the PDE for linear elasticity. We use the von
Mieses stresses as a 1-channel input to the neural network.

– Equivariance: Equivariance is the property of a function to commute with the
actions of a symmetry group. For a given transformation group G, a function
f : X → Y is (G-)equivariant if

f(TX
g (x)) = TY

g (f(x)) ∀g ∈ G, x ∈ X,

where TX
g and TY

g denote linear group actions in the corresponding spaces X
and Y [9]. As shown by [12], mirror and rotation equivariance can drastically
improve model performance on TO tasks. We implement equivariance via
group averaging [23] by defining an equivariance wrapper F f

G via

F f
G(x) :=

1
|G|

∑

g∈G

TY
g−1

[
f(TX

g (x))
]
.

The plug-and-play nature of F f
G allows effortless applicability to any finite

transformation group G and any model f .

5 Experiments

Generating large datasets is costly; therefore, reducing the required training
samples, e.g., by modifying the DL model design, is highly beneficial. Using
the DL4TO library, [12] investigates the sample efficiency of models, i.e., the
model’s performance when trained on a few training samples. They visualize the
sample efficiency of a model via so-called sample efficiency curves (SE curves).
Each SE curve uses separate instances of a given model setup trained on sub-
sets of the original training dataset of increasing size. One then determines the
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performance of these models on a fixed validation dataset, e.g., via Intersec-
tion over Union (IoU) and fail% (the percentage of failing model predictions).
Figure 2 shows [12]’s results and presents dramatic boosts in the UNet’s per-
formance when incorporating physics via equivariance and trivial+PDE prepro-
cessing. These improvements are especially visible for low numbers of training
samples. For a more in-depth analysis and comparison of the proposed modeling
approaches, we refer to [12].

Fig. 2. Sample efficiency curves from [12], trained and evaluated via DL4TO on the
SELTO datasets disc (left) and sphere (right). The horizontal-axis shows the size of
the training dataset for the different models on a logarithmic scale. The vertical-axis
shows the performance of the criteria IoU and fail%. Each of the plots shows four
different models based on trivial preprocessing (red), trivial+PDE preprocessing (blue),
equivariance (solid line), and no equivariance (dashed line). (Color figure online)

6 Conclusion

We presented the DL4TO library. The Python library enables research in the
intersection of topology optimization and deep learning. Seamlessly integrating
with PyTorch, DL4TO enables a smooth interaction between deep learning mod-
els and established algorithms like SIMP. Further, DL4TO provides concepts like
UNets, SIMP, equivariance, differentiable physics via finite difference analysis,
integration with the SELTO datasets [13], as well as three-dimensional interac-
tive visualization. Our library is especially useful for data scientists who want
to apply deep learning to topology optimization, as it provides a flexible yet
easy-to-use framework. DL4TO will continue to be expanded, and the commu-
nity is welcome to contribute. Documentation and tutorials can be found at
https://dl4to.github.io/dl4to/, providing a guide on how to use the library and
its features.

https://dl4to.github.io/dl4to/
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Abstract. Numerical integrators could be used to form interpolation
conditions when training neural networks to approximate the vector field
of an ordinary differential equation (ODE) from data. When numer-
ical one-step schemes such as the Runge–Kutta methods are used to
approximate the temporal discretization of an ODE with a known vec-
tor field, properties such as symmetry and stability are much studied.
Here, we show that using mono-implicit Runge–Kutta methods of high
order allows for accurate training of Hamiltonian neural networks on
small datasets. This is demonstrated by numerical experiments where the
Hamiltonian of the chaotic double pendulum in addition to the Fermi–
Pasta–Ulam–Tsingou system is learned from data.

Keywords: Inverse problems · Hamiltonian systems · Mono-implicit
Runge–Kutta · Deep neural networks

1 Introduction

In this paper, we apply backward error analysis [11] to motivate the use of numer-
ical integrators of high order when approximating the vector field of ODEs with
neural networks. We particularly consider mono-implicit Runge–Kutta (MIRK)
methods [1,3], a class of one-step methods that are explicit when solving inverse
problems. Such methods can be constructed to have high order with relatively
few stages, compared to explicit Runge–Kutta methods, and attractive proper-
ties such as symmetry. Here, we perform numerical experiments learning two
Hamiltonian systems with MIRK methods up to order p = 6. To the best of our
knowledge, this is the first demonstration of the remarkable capacity of numer-
ical integrators of order p > 4 to facilitate the training of Hamiltonian neural
networks [9] from sparse datasets, to do accurate interpolation and extrapolation
in time.

Recently, there has been a growing interest in studying neural networks
through the lens of dynamical systems. This is of interest both to accelerate
data-driven modeling and for designing effective architectures for neural net-
works [8,10,16]. Considering neural network layers as the flow of a dynamical
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system is the idea driving the study of so-called neural ODEs [4] and its dis-
cretized counter-part, residual neural networks.

Hamiltonian mechanics provide an elegant formalism that allows a wide range
of energy preserving dynamical systems to be described as first order ODEs.
Hamiltonian neural networks [9] aim at learning energy-preserving dynamical
systems from data by approximating the Hamiltonian using neural networks. A
central issue when studying neural networks and dynamical systems is which
method to use when discretizing the continuous time dynamics. Several works
use backward error analysis to argue for the importance of using symplectic
integrators for learning the vector field of Hamiltonian systems [5,14,17]. Using
Taylor expansions to derive the exact form of the inverse modified vector field
allows for the construction of a correction term that cancels the error stemming
from the temporal discretization, up to arbitrary order [6,14].

2 Inverse ODE Problems of Hamiltonian Form

We consider a first-order ODE

d

dt
y(t) = f(y(t)), y(t) : [0, T ] → R

n, (1)

and assume that the vector field f is unknown, whereas samples SN = {y(tn)}N
n=0

of the solution are available, with constant step size h. Then the inverse problem
aims at deriving an approximation fθ ≈ f where θ is a set of parameters to
be chosen. The inverse problem can be formulated as the following optimization
problem:

argmin
θ

N−1∑

n=0

∥∥∥∥y(tn+1) − Φh,fθ
(y(tn))

∥∥∥∥, (2)

where fθ is a neural network approximation of f with parameters θ, and Φh,fθ

is a one-step integration method with step size h such that yn+1 = Φh,f (yn). In
particular, we assume that (1) is a Hamiltonian system, meaning that

f(y) = J∇H(y(t)), J :=
[
0 I

−I 0

]
∈ R

2d×2d. (3)

We follow the idea of Hamiltonian neural networks [9] aiming at approximating
the Hamiltonian, H : R

2d → R, such that Hθ is a neural network and f is
approximated by fθ(y) := J∇Hθ(y). It thus follows that the learned vector field
fθ by construction is Hamiltonian.

3 Mono-Implicit Runge–Kutta for Inverse Problems

Since the solution is known point-wise, SN = {y(tn)}N
n=0, the points yn and yn+1

can be substituted by y(tn) and y(tn+1) when computing the next step of a one-
step integration method. We denote this substitution as the inverse injection,
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and note that this yields an interpolation condition: y(tn+1)− Φh,fθ
(y(tn)) = 0,

for fθ for each n. If we let Φh,fθ
in (2) be the so-called implicit midpoint method,

we get the following expression to be minimized:
∥∥∥∥y(tn+1) −

(
y(tn) + hfθ

(y(tn) + y(tn+1)
2

))∥∥∥∥, n = 0, . . . , N − 1. (4)

For the midpoint method, the inverse injection bypasses the computationally
costly problem of solving a system of equations within each training iteration,
since y(tn+1) is known. More generally, mono-implicit Runge–Kutta (MIRK)
methods constitute the class of all Runge–Kutta methods that form explicit
methods under this substitution. Given vectors b, v ∈ R

s and a strictly lower
triangular matrix D ∈ R

s×s, a MIRK method is a Runge–Kutta method where
A = D + vbT are the stage coefficients aij = [A]ij , and is thus given by

yn+1 = yn + h
s∑

i=1

biki,

ki = f
(
yn + vi(yn+1 − yn) + h

s∑

j=1

dijkj

)
.

(5)

Let us denote ŷn+1 and k̂i as the next time-step and the corresponding stages of
a MIRK method when substituting yn, yn+1 by y(tn), y(tn+1) on the right-hand
side of (5).

Theorem 1. Let yn+1 be given by a MIRK scheme (5) of order p and ŷn+1

be given by the same method under the inverse injection. Assume that only one
integration step is taken from a known initial value yn = y(tn) and that the
vector field f is sufficiently smooth. Then

ŷn+1 = yn+1 + O(hp+2) (6)

and ŷn+1 = y(tn+1) + O(hp+1). (7)

Proof. Since the method (5) is of order p we have that

k̂1 = f
(
y(tn) + v1(y(tn+1) − y(tn))

)

= f
(
yn + v1(yn+1 − yn)

)
+ O(hp+1) = k1 + O(hp+1)

The same approximation could be made for k̂2, . . . , k̂s, since D is strictly lower
triangular, yielding k̂i = ki + O(hp+1) for i = 1, . . . , s. In total, we find that
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ŷn+1 = y(tn) + h

s∑

i=1

bik̂i

= yn + h
s∑

i=1

biki + O(hp+2)

= yn+1 + O(hp+2)

= y(tn+1) + O(hp+1) + O(hp+2)

= y(tn+1) + O(hp+1).

For the numerical experiments, we will consider the optimal MIRK methods
derived in [12]. The minimal number of stages required to obtain order p is
s = p−1 for MIRK methods [1]. In contrast, explicit Runge–Kutta methods need
s = p stages to obtain order p for 1 ≤ p ≤ 4 and s = p+1 stages for p = 5, 6 [2],
meaning that the MIRK methods have significantly lower computational cost for
a given order. As an example, a symmetric, A-stable MIRK method with s = 3
stages and of order p = 4 is given by

k1 = f(yn), k2 = f(yn+1),

k3 = f

(
1
2
(yn + yn+1) +

h

8
(k1 − k2)

)
,

yn+1 = yn +
h

6
(k1 + k2 + 4k3).

4 Backward Error Analysis

Let ϕh,f : Rn → R
n be the h-flow of an ODE such that ϕh,f (y(t0)) := y(t0 + h)

for an initial value y(t0). With this notation, the vector field fh(y) solving the
optimization problem (2) exactly must satisfy

ϕh,f (y(tn)) = Φh,fh
(y(tn)), n = 0, . . . , N − 1. (8)

For a given numerical one-step method Φ, the inverse modified vector field [18]
fh could be computed by Taylor expansions. However, since their convergence
is not guaranteed, truncated approximations are usually considered. This idea
builds on backward error analysis [11, Ch. IX], which is used in the case of
forward problems (f is known and y(t) is approximated) and instead computes
the modified vector field f̃h satisfying ϕh,f̃h

(y(tn)) = Φh,f (y(tn)).
An important result, Theorem 3.2 in [18], which is very similar to Theorem

1.2 in [11, Ch. IX], states that if the method Φh,f is of order p, then the inverse
modified vector field is a truncation of the true vector field, given by

fh(y) = f(y) + hpfp(y) + hp+1fp+1(y) + . . . (9)



556 H. Noren

Furthermore, by the triangle inequality, we can express the objective function of
the optimization problem (2) in a given point y(tn) by

∥∥Φh,fh
(y(tn)) − Φh,fθ

(y(tn))
∥∥ ≤∥∥ϕh,f (y(tn)) − Φh,fh

(y(tn))
∥∥

+
∥∥y(tn+1) − Φh,fθ

(y(tn))
∥∥

In the case of formal analysis where we do not consider convergence issues and
truncated approximations, the first term is zero by the definition of fh in (8).
Thus it is evident that the approximated vector field will approach the inverse
modified vector field as the optimization objective tends to zero. Then, by Equa-
tion (9) it is clear that fθ(y) will learn an approximation of f(y) up to a trun-
cation O(hp), which motivates using an integrator of high order.

5 Numerical Experiments

In this section, MIRK methods of order 2 ≤ p ≤ 6, denoted by MIRKp in
the plots, in addition to the classic fourth-order Runge–Kutta method (RK4),
is utilized for the temporal discretization in the training of Hamiltonian neural
networks. We train on samples y(tn), for tn ∈ [0, 20], from solutions of the double
pendulum (DP) problem with the Hamiltonian

H(y1, y2, y3, y4) =
1
2y2

3 + y2
4 − y3y4 cos(y1 − y2)

1 + sin2(y1 − y2)
− 2 cos(y1) − cos(y2).

In addition, we consider the highly oscillatory Fermi–Pasta–Ulam–Tsingou
(FPUT) problem with m = 1, meaning y(t) ∈ R

4, and ω = 2 as formulated in [11,
Ch. I.5]. For both Hamiltonian systems, the data SN = {y(tn)}N

n=0 is found by
integrating the system using DOP853 [7] with a tolerance of 10−15 for the follow-
ing step sizes and number of steps: (h,N) = (2, 10), (1, 20), (0.5, 40). The initial
values used are yDP

0 = [−0.1, 0.5,−0.3, 0.1]T and yFPUT
0 = [0.2, 0.4,−0.3, 0.5]T .

The results for [y(t)]3 are illustrated in Fig. 1.
After using the specified integrators in training, approximated solutions ỹn

are computed for each learned vector field fθ again using DOP853, but now with
step size and number of steps given by (htest, Ntest) = ( h

20 , 4 ·20N), enabling the
computation of the interpolation and extrapolation error:

el(ỹ) =
1

M + 1

M∑

n=0

‖ỹn − y(tn)‖2, tn ∈ Ql, M = |Ql| − 1. (10)

Here ỹn+1 := Φh,fθ
(ỹn), and l ∈ {i, e} denotes interpolation or extrapolation:

Qi = {hn : 0 ≤ hn ≤ 20, n ∈ Z+} and Qe = {hn : 20 ≤ hn ≤ 80, n ∈ Z+}, with
h = htest. In addition, the error of the learned Hamiltonian is computed along
the true trajectory y(tn) by
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Fig. 1. Result when integrating over the learned vector fields when training on data
from the double pendulum (left, N = 10) and the Fermi–Pasta–Ulam–Tsingou (right,
N = 20) Hamiltonian.

e(Hθ) =
1

M + 1

M∑

n=0

H(y(tn)) − Hθ(y(tn)),

e(Hθ) =
1

M + 1

M∑

n=0

∣∣∣∣H(y(tn)) − Hθ(y(tn)) − e(Hθ)
∣∣∣∣,

(11)

for tn ∈ Qi ∪ Qe. The mean is subtracted since the Hamiltonian is only trained
by its gradient ∇Hθ. The error terms are shown in Fig. 2. For both test problems
the Hamiltonian neural networks have 3 layers with a width of 100 neurons and
tanh(·) as the activation function. Experiments are implemented using PyTorch
[15] and the optimization problem is solved using the quasi-Newton L-BFGS
algorithm [13] for 100 epochs without batching (all samples used simultaneously).

The implementation of the experiments could be found in the following repos-
itory github.com/hakonnoren/learning_hamiltonian_mirk.

https://github.com/hakonnoren/learning_hamiltonian_mirk


558 H. Noren

Fig. 2. Errors in interpolation, extrapolation and the Hamiltonian for the double pen-
dulum (left) and the Fermi–Pasta–Ulam–Tsingou problem (right).

6 Conclusion

The mono-implicit Runge–Kutta methods enable the combination of high order
and computationally efficient training of Hamiltonian neural networks. The
importance of high order is demonstrated by the remarkable capacity of MIRK6
in learning a trajectory of the chaotic double pendulum and the Fermi–Pasta–
Ulam–Tsingou Hamiltonian systems from just 11 and 21 points, see Fig. 1.
In most cases the error, displayed in Fig. 2, is decreasing when increasing the
order. Additionally MIRK4 displays superior performance comparing with the
explicit method RK4 of same order. Even though the numerical experiments
show promising results, the theoretical error analysis in this work is rudimen-
tary at best. Future work should consider this in greater detail, perhaps along
the lines of [18]. Other questions worth investigating are the impact on accu-
racy if there is noise in the data in addition to how properties of the integrators
such as symmetry, symplecticity and stability is transferred to the learned vector
fields.

Acknowledgment. The author wishes to express gratitude to Elena Celledoni and
Sølve Eidnes for constructive discussions and helpful suggestions while working on this
paper.
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Abstract. We investigate the problem of successfully learning from just
a few examples of data points in a binary classification problem, and
present a brief overview of some recent results on the role of nonlinear
feature maps in this challenging task. Our main conclusion is that suc-
cessful learning and generalisation may be expected to occur with high
probability, despite the small training sample, when the nonlinear feature
map induces certain fundamental geometric properties in the mapped
data.

Keywords: Few-shot learning · High dimensional data · Nonlinear
feature maps

1 Introduction

Recent advances in Machine Learning and Artificial Intelligence have undeniably
demonstrated the potential impact of learning algorithms for a sweeping range
of practically relevant tasks. In many ways, the explosion of growth in the field is
due to the onset of the ‘big data era’, and part of the recent success is simply due
to the growing availability of the data and raw computational power required to
train models featuring millions of parameters on vast data sets.

There remain areas, however, where obtaining large data sets is infeasible,
either because of the costs involved, the availability of data, or privacy and ethical
concerns (consider medical data, for instance). Instead, one must undertake the
formidable task of learning from few examples: extracting algorithmic insight
from just a handful of data points from each class in a way which will successfully
generalise to unseen data. Various approaches have been proposed to tackle this
problem, prominent amongst which are Matching Networks [14] and Prototypical
Networks [11], and we refer particularly to the recent review paper by Wang and

The authors are grateful for financial support by the UKRI and EPSRC (UKRI Turing
AI Fellowship ARaISE EP/V025295/1). I.Y.T. is also grateful for support from the
UKRI Trustworthy Autonomous Systems Node in Verifiability EP/V026801/1.

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
F. Nielsen and F. Barbaresco (Eds.): GSI 2023, LNCS 14071, pp. 560–568, 2023.
https://doi.org/10.1007/978-3-031-38271-0_56

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-38271-0_56&domain=pdf
https://doi.org/10.1007/978-3-031-38271-0_56


A Geometric View on the Role of Nonlinear Feature Maps 561

co-authors [15] for a full overview of the algorithms which are commonly deployed
for this task. Despite this, a full theoretical justification of how such algorithms
are able to learn from just a few examples is still largely absent.

Classical results from Statistical Learning Theory on Vapnik-Chervonenkis
(VC) dimensionality suggest that training a neural network with millions of
parameters requires exponentially larger data sets to ensure good generalisa-
tion performance. In these restricted data settings large neural networks may
therefore not be a good choice, as the risk of failing to generalise is simply
too high. Recent developments in the theory of benign [1] and tempered [9]
over-fitting suggest one possible scenario in which the data is well conditioned
for learning: a combination of low dimensional structure and high dimensional
noise, controlled by the spectral properties of the data covariance matrix, can
enable over-parameterised models to successfully generalise despite over-fitting
to under-sampled data.

Here, we offer a complementary, geometric, perspective on the theory of
learning from few examples, broadly summarising our recent results from [12].
The philosophy underlying our results is twofold. Firstly, recent theoretical
work has shown that genuinely high dimensional data possesses traits which
are highly desirable for learning: concentration of measure phenomena [8] and
quasi-orthogonality properties [5–7] ensure that points may be separated from
one another and even arbitrary subsets using simple linear separators with high
probability [4]. Using these blessings of dimensionality, it was shown in recent
work [13] that under certain mild assumptions on the data distribution, such high
dimensional data can be successfully used to train a simple classifier with strong
guarantees on the probability of successfully learning and generalising from just
a few examples. Our second motivation is to understand the interplay between
nonlinearity and dimensionality: specifically, we wish to understand in what sce-
narios nonlinear mappings embedding data into higher dimensional spaces are
capable of providing the same blessings of dimensionality. This is inspired by
the structure of many typical large neural networks, which take the form of
sequences of (learned) nonlinear mappings to high dimensional feature spaces,
where simpler classifiers are then applied.

Our main result (Theorem 2) shows that if the nonlinear feature map used to
embed the data to a surface in a higher dimensional space satisfies certain geo-
metric properties, then a simple linear classifier trained on this mapped data may
be expected to successfully learn and generalise from just a few data samples.
In this sense, the theorem describes exactly the scenario in which nonlinear-
ity can be used to accelerate the onset of the blessing of dimensionality. The
properties of the feature map which we focus on are geometric in nature, and
measure the interplay between the data distribution and the way in which the
nonlinear feature mapping modifies space. We show that, together, they provide
symmetric upper and lower bounds on the probability of successfully learning
and generalising from small data sets. Our results may therefore be interpreted
as a mathematical definition of the properties required from a ‘good’ feature
map, through which the learning problem becomes tractable.
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A core thread of narrative from the review article [15] on few-shot learn-
ing focuses around the injection of ‘a priori knowledge’ into learning schemes,
through which the (limited) training data is augmented using some description
of extrinsic knowledge to guide the learning algorithm towards a generalisable
solution. Although no mathematical definition of this nebulous concept is given
in [15], the authors conclude that it seems to be a pervading trait of a wide class
of algorithms which successfully learn from few examples. Our results can be
interpreted as capturing exactly the essence of this infusion of extra knowledge:
if the nonlinear feature map is selected in such a way that it offers beneficial
geometric properties, then successful few-shot learning can be expected to occur.
Since the (family of the) feature map may be fixed a priori, this provides a
general mechanism for incorporating prior knowledge into the algorithm.

Incorporating prior knowledge like this is, to some degree, a departure from
conventional distribution-agnostic approaches to learning, which fundamentally
assume no knowledge of the data other than the training set. However, it is start-
ing to become apparent in this and other areas [2,3] that assuming no knowledge
of the distribution can be actively harmful to the success and stability of learning
algorithms. In this context, our results show that providing knowledge of only
certain (nonlinear) functionals of the data distribution, encoding geometric prop-
erties, can be beneficial, even if complete knowledge remains unknown. Although
it is motivated by a very different class of problems, this approach may appear
reminiscent of the approach taken by Kernel Mean Embeddings [10], which use
nonlinear kernels to embed families of data distributions into a Hilbert space
structure. Our key focus here, however, is on using just a few targeted properties
to describe the situation of interest.

We mathematically formulate the few-shot learning problem and the setting
in which we study it in Sect. 2. Our main results are summarised in Sect. 3, and
we offer some discussion of them in Sect. 4. Finally, we offer some conclusions in
Sect. 5.

2 Problem Setting

We consider the problem of learning from few examples, in a standard binary
classification framework. We assume that the data are drawn from two data
distributions, one of which has labels in the set Lold and other of which is associ-
ated with the label �new. In particular, we assume that there exists a previously
trained classification function F : Rd → Lold assigning one of the labels in Lold

to each point in R
d. In this setting, F models an existing legacy system which

has been trained, a possibly expensive task, and needs to be updated to also
classify data from the new class �new. The task we consider is to build a simple
and computationally cheap new classifier which retains the performance of F on
the legacy data classes, while also successfully classifying data points from the
new class �new:

Problem 1 (Few-shot learning). Consider a classifier F : Rd → Lold, trained on a
sample Z drawn from some probability distribution PZ on R

d, and let X be a new
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sample that is drawn from the probability distribution PX and whose cardinality
satisfies |X | � d. Let pe, pn ∈ (0, 1] be given positive numbers determining the
desired quality of learning.

Find an algorithm A(X ) producing a new classification map Fnew : Rd →
Lold ∪ {�new}, such that examples of class �new are correctly learned with prob-
ability at least pn, i.e.

P
(
Fnew(x) = �new

) ≥ pn, (1)

for x drawn from PX , while Fnew remembers the previous classifier F elsewhere
with probability at least pe, i.e.

P
(
Fnew(x) = F (x)

) ≥ pe, (2)

for x drawn from the distribution PZ .

3 Theoretical Results

We now present our theoretical results. For further discussion of these results
and their proofs, we refer to [12].

Let φ : Rd → H be a fixed nonlinear feature map, where H denotes a (possibly
infinite-dimensional) Hilbert space. To concisely state our results, we introduce
some functions measuring the probabilities of certain geometric events.

Definition 1 (Geometric probability functions). Let cX and cZ be arbi-
trary but fixed points in the feature space H. We define the following shorthand
notations for probabilities:

– Let p : R≥0 → [0, 1] denote the projection probability function, given by

p(δ) = P (x, y ∼ PX : (φ(x) − cX , φ(y) − cX) ≤ δ),

measuring the probability of sampling two data points from the new data distri-
bution PX which can be separated from one another by a plane which is normal
to either φ(x) or φ(y) with margin which is a function of δ, ‖φ(x) − cX‖ and
‖φ(y) − cX‖.

– Let λX , λX : R → [0, 1] denote the localisation probability functions for PX

and PZ , given by

λX(r) = P (x ∼ PX : ‖φ(x) − cX‖ ≤ r),

and

λZ(r) = P (z ∼ PZ : ‖φ(z) − cZ‖ ≤ r).

These measure the probability of sampling a point which falls within a ball of
radius r of the (arbitrary but fixed) centre point of each distribution.
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– Let sX , sZ : R → [0, 1] denote the class separation probability functions for
PX and PZ , where

sX(δ) = P (x ∼ PX : (φ(x) − cX , cZ − cX) ≤ δ),

and

sZ(δ) = P (z ∼ PZ : (φ(z) − cZ , cX − cZ) ≤ δ),

which measure the probability of separating points from the two data distri-
butions, and provides a measure of the well-posedness of the classification
problem.

Although these probabilities clearly depend on the choice of φ and the points cX

and cZ , we omit this from the notation for brevity.

Our first result shows that these geometric quantities provide upper and lower
bounds on the probability of the empirical mean of the training sample falling
close to the (arbitrary) centre point cX . In particular, if the point cX is such
that (i) points sampled from PX are typically close to cX or (ii) points sampled
from PX are generally orthogonal about cX , then the empirical mean of the
sampled points will be close to cX , even for small data samples. The appearance
of condition (i) is somewhat natural. Condition (ii), however, is due to the role
of the parameter δ in the estimate: the same estimate can be obtained when the
sampled points are less localised around the centre cX if they may be expected
to be highly orthogonal about cX . For the proof of this result we refer to [12].

Theorem 1 (Convergence of the empirical mean [12]). Let s > 0, let
{xi}k

i=1 ⊂ R
d be independent samples from the distribution PX , and define μ =

1
k

∑k
i=1 φ(xi). Then,

P ({xi}k
i=1 : ‖μ − cX‖ ≤ s) ≥ 1 − inf

δ∈R

[
k(1 − λX(r(s, δ))) + k(k − 1)(1 − p(δ))

]
,

(3)

where r(s, δ) = {ks2 − (k − 1)δ}1/2
+ and {t}+ = max{t, 0}. This estimate is

symmetric in the sense that

P ({xi}k
i=1 : ‖μ − cX‖ ≤ s) ≤ inf

δ∈R

[
kλX(r(s, δ)) + k(k − 1)p(δ)

]
. (4)

Our main result builds on this to show that the geometric quantities in
Definition 1 also provide both upper and lower bounds on the probability of
successfully learning and generalising from few examples. Once again, we state
the result in the form of a supremum over various ‘floating’ parameters, which
naturally appear in the analysis and describe the trade-off which is possible by
balancing the various terms. The precise connection between these variables is
given in the definition of η and ξ. The general behaviour which this theorem
describes, however, is that a small data sample is sufficient for successfully learn-
ing and generalising when the problem is well posed (in the sense that the data
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classes may indeed be separated by a linear separator), the data are reasonably
well localised around their central points, and are highly orthogonal around the
central point. For the proof of this result we refer to [12].

Theorem 2 (Few shot learning [12]). Suppose that we are in the setting of
the few-shot learning problem specified in Problem 1, and let {xi}k

i=1 ⊂ R
d be

independent training samples from the new data distribution PX . For θ ∈ R,
construct the classifier

Fnew(x) =

{
�new for (φ(x) − μ, μ − cZ) ≥ θ,

F (x) otherwise,
(5)

where μ = 1
k

∑k
i=1 φ(xi) is the mean of the new class training samples in feature

space. Then,

(i) With respect to samples x and {xi}k
i=1 drawn independently from the distri-

bution PX , the probability P (Fnew(x) = �new) that this classifier has correctly
learned and will generalise well to the new class is at least

P (Fnew(x) = �new) ≥ sup
a,b,γ,ε>0

P (‖μ − cX‖ ≤ a){λX(b) + sX(η) − 1}+, (6)

where {t}+ = max{t, 0} and η = −θ − 1
2γ ‖cX − cZ‖2 − ε+γ+2

2 a2 − b2

2ε , and
this estimate is symmetric in the sense that the same terms provide an upper
bound on the probability, i.e.

P (Fnew(x) = �new) ≤ 1− sup
a,b,γ,ε>0

(1−P (‖μ−cX‖ ≤ a)){1−λX(b)−sX(η)}+.

(7)
(ii) With respect to samples z drawn from PZ and {xi}k

i=1 drawn independently
from PX , the probability P (Fnew(z) = F (z)) that the classifier can correctly
distinguish the original classes and so will retain its previous learning is at
least

P (Fnew(z) = F (z)) ≥ sup
a,β,γ,ε>0

P (‖μ − cX‖ ≤ a){λZ(β) + sZ(ξ) − 1}+, (8)

where ξ = θ +
(
1 − 1

γ

)
‖cX − cZ‖2 − ε+γ−2

2 a2 − β2

2ε , and this estimate is
symmetric in the sense that

P (Fnew(z) = F (z)) ≤ 1− sup
a,β,γ,ε>0

(1−P (‖μ−cX‖ ≤ a)){1−λZ(β)−sZ(ξ)}+.

(9)

4 Behaviour of Common Kernels

We can investigate the behaviour of the quantities from Defintion 1 for certain
common feature maps, derived through standard nonlinear kernels κ : Rd×R

d →
R≥0. In particular, we recall the family of polynomial kernels, of the form

κ(x, y) = (b2 + x · y)p
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for some bias b > 0 and polynomial degree p > 1, and the Gaussian kernels

κ(x, y) = exp(− 1
2σ

‖x − y‖2)

depending on a variance parameter σ > 0. A key property of these kernels is the
existence of a feature map φ : Rd → H, where H denotes some (typically higher
and possibly infinite dimensional) Hilbert space, such that κ(x, y) = (φ(x), φ(y)),
where (·, ·) denotes the inner product in H.

Fig. 1. Empirical demonstration of the effect of the choice of nonlinear kernel on the
degree of (a) orthogonality (reproduced from [12]) and (b) localisation of data points
in the associated feature space. In each case, φ denotes the feature map associated with
the kernel, and ‖ · ‖ denotes the norm induced by (·, ·). The data was computed by
sampling N = 5,000 independent uniformly distributed points {xi}N

i=1 from the unit
ball in R

d, and μ = 1
N

∑N
i=1 φ(xi) denotes the empirical mean in feature space.

For various instances of these kernels, we compute the orthogonality and
localisation properties of the image of a uniform distribution in the unit ball
in R

d under the associated feature maps. The results of this are plotted in
Fig. 1a and Fig. 1b respectively. As a general rule, we observe from Fig. 1a that
either increasing the polynomial degree or the data dimension, or decreasing the
Gaussian variance of the kernel appears to increase the degree of orthogonality
of sampled and mapped points. This implies that the kernels may indeed be
capable of accelerating the onset of one aspect of high dimensionality.

On the other hand, however, we see from Fig. 1b that increasing the data
dimension reduces the proportion of points which are ‘close’ to the centre of
the mapped distribution, as may be expected from classical concentration of
measure results [8], and Gaussian kernels with small variance seem to accelerate
this. The use of polynomial kernels, however, appears to hold off this trend
(which is undesirable in light of Theorem 2) to some degree.
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5 Conclusion

Successfully learning from just a few examples undoubtedly remains a highly
challenging task. We have shown how nonlinear feature maps can be beneficial
in this area, specifically by offering the geometric properties of localising data
sampled from each class, and orthogonalising them about a central point. This
provides a mathematical basis for the notion of prior knowledge which is often
invoked in the literature on few-shot learning [15], and these properties can
therefore be used as a design target when crafting bespoke feature mappings for
individual datasets. It remains an open problem to be able to assess in advance
whether a given feature map will be suitable for future few-shot learning tasks
on unseen data classes.
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3. Bastounis, A., Hansen, A.C., Vlačić, V.: The mathematics of adversarial attacks in
AI - why deep learning is unstable despite the existence of stable neural networks
(2021). https://doi.org/10.48550/ARXIV.2109.06098. https://arxiv.org/abs/2109.
06098

4. Gorban, A.N., Tyukin, I.Y.: Stochastic separation theorems. Neural Netw. 94, 255–
259 (2017)

5. Gorban, A., Tyukin, I., Prokhorov, D., Sofeikov, K.: Approximation with random
bases: pro et contra. Inf. Sci. 364–365, 129–145 (2016)
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Abstract. The article shows how to learn models of dynamical systems
from data which are governed by an unknown variational PDE. Rather
than employing reduction techniques, we learn a discrete field theory
governed by a discrete Lagrangian density Ld that is modelled as a neu-
ral network. Careful regularisation of the loss function for training Ld is
necessary to obtain a field theory that is suitable for numerical computa-
tions: we derive a regularisation term which optimises the solvability of
the discrete Euler–Lagrange equations. Secondly, we develop a method to
find solutions to machine learned discrete field theories which constitute
travelling waves of the underlying continuous PDE.

Keywords: System identification · discrete Lagrangians · travelling
waves

1 Introduction

In data-driven system identification, a model is fitted to observational data of a
dynamical system. The quality of the learned model can greatly be improved
when prior geometric knowledge about the dynamical system is taken into
account such as conservation laws [2,5,9,14,15], symmetries [7,8,10], equilib-
rium points [18], or asymptotic behaviour of its motions.

One of the most fundamental principles in physics is the variational prin-
ciple: it says that motions constitute stationary points of an action functional.
The presence of variational structure is related to many qualitative features of
the dynamics such as the validity of Noether’s theorem: symmetries of the action
functional are in correspondence with conservation laws. To guarantee that these
fundamental laws of physics hold true for learned models, Greydanus et al. pro-
pose to learn the action functional from observational data [5] (Lagrangian neural
network) and base prediction on numerical integrations of Euler–Lagrange equa-
tions. Quin proposes to learn a discrete action instead [17]. An ansatz of a discrete
model has the advantage that it can be trained with position data of motions
only. In contrast, learning a continuous theory typically requires information
about higher derivatives (corresponding to velocity, acceleration, momenta, for
instance) which are typically not observed but only approximated. Moreover, the
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
F. Nielsen and F. Barbaresco (Eds.): GSI 2023, LNCS 14071, pp. 569–579, 2023.
https://doi.org/10.1007/978-3-031-38271-0_57
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discrete action functional (once it is learned) can naturally be used to compute
motions numerically.

However, in [14] the authors demonstrate that care needs to be taken when
learned action functionals are used to compute motions: even if the data-driven
action functional is perfectly consistent with the training data (i.e. the machine
learning part of the job is successfully completed), minimal errors in the ini-
tialisation process of numerical computations get amplified. As a remedy, the
authors develop Lagrangian Shadow Integrators which mitigate these amplified
numerical errors based on a technique called backward error analysis. Moreover,
using backward error analysis they relate the discrete quantities to their con-
tinuous analogues and show how to analyse qualitative aspects of the machine
learned model. Action functionals are not uniquely determined by the motions of
a dynamical system. Therefore, regularisation is needed to avoid learning degen-
erate theories. While in [14] the authors develop a regularisation strategy when
the action functional is modelled as a Gaussian Process, Lishkova et al. develop
a corresponding regularisation technique for artificial neural networks in [10] in
the context of ordinary differential equations (ODEs).

In this article we show how to learn a discrete action functional from dis-
crete data which governs solutions to partial differential equations (PDEs) using
artificial neural networks extending the regularisation strategy which we have
developed in [10]. Our technique to learn (discrete) densities of action function-
als can be contrasted to approaches where a spatial discretisation of the problem
is considered first, followed by structure-preserving model reduction techniques
(data-driven or analytical) [3,4] and then a model for the reduced system of
ODEs is learned from data [1,12,19].

Travelling waves solutions of PDEs are of special interest due to their simple
structure. When a discrete field theory for a continuous process described by
a PDE is learned, they typically "get lost" because the mesh of the discrete
theory is incompatible with certain wave speeds. In this article, we introduce a
technique to find the solutions of data-driven discrete theories that correspond
to travelling waves in the underlying continuous dynamics (shadow travelling
waves). The article contains the following novelties:

– We transfer our Lagrangian ODE regularising strategy [10] to data-driven dis-
crete field theories in a PDE setting and provide a justification using numer-
ical analysis.

– The development of a technique to detect travelling waves in data-driven
discrete field theories.

The article proceeds with a review of variational principles (Sect. 2), an intro-
duction of our machine learning architecture and derivation of the regularisation
strategy (Sect. 3). In Sect. 4, we define the notion of shadow travelling waves
and show how to find them in data-driven models. The article concludes with
numerical examples relating to the wave equation (Sect. 5).
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2 Discrete and Continuous Variational Principles

Continuous Variational Principles. Many differential equations describing
physical phenomena such as waves, the state of a quantum system, or the evo-
lution of a relativistic fields are derived from a variational principle: solutions
are characterised as critical points of a (non-linear) functional S defined on a
suitable space of functions u : X → R

d and has the form

S(u) =
∫

X

L(x, u(x), ux0(x), ux1(x), . . . , uxn
(x))dx, (1)

where x = (x0, x1, . . . , xn) ∈ X and uxj
denote partial derivatives of u. This

variational principle can be referred to as a first-order field theory, since only
derivatives to the first order of u appear. In many applications the free variable
x0 corresponds to time and is denoted by x0 = t. The functional S is stationary
at u with respect to all variations δu : X → R vanishing at the boundary (or with
the correct asymptotic behaviour) if and only if the Euler–Lagrange equations

0 = EL(L) =
∂L

∂u
−

∑n

j=0

d
dxj

∂L

∂uxj

(2)

are fulfilled on X.

Example 1. The wave equation

utt(t, x) − uxx(t, x) + ∇V (u(t, x)) = 0 (3)

is the Euler–Lagrange equation 0 = EL(L) to the Lagrangian

L(u, ut, ux) =
1
2
(u2

t − u2
x) − V (u). (4)

Here ∇V denotes the gradient of a potential V .

Remark 1. Lagrangians are not uniquely determined by the motions of a dynam-
ical system: two first order Lagrangians L and L̃ yield equivalent Euler–Lagrange
equations if sL − L̃ (s ∈ R \ {0}) is a total divergence ∇x · F (x, u(x)) =

∂
∂x1

(F 1(x, u(x))) + . . . + ∂
∂xn

Fn(x, u(x)) for F = (F 1, . . . , Fn) : X × R
d → R

n.

Discrete Variational Principle. For simplicity, we consider the two dimen-
sional compact case: let X = [0, T ]× [0, l]/{0, l} with T, l > 0. Here [0, l]/{0, l} is
the real interval [0, l] with identified endpoints (periodic boundary conditions).
Consider a uniform, rectangular mesh XΔ on X with mesh widths Δt = T

N and
Δx = l

M for N,M ∈ N. A discrete version of the action functional (1) is

Sd : (Rd)(N−1)×M → R
d, Sd(U) = ΔtΔx

N−1∑
i=1

M−1∑
j=0

Ld(ui
j , u

i+1
j , ui

j+1)
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for a discrete Lagrangian density Ld : (Rd)3 → R together with temporal bound-
ary conditions for u0

j ∈ R
d and uN

j ∈ R
d for j = 0, . . . , M − 1. Above U denotes

the values (ui
j)

i=1,...M−1
j=0,...N−1 on inner mesh points. We have ui

M = ui
0 by the period-

icity in space. Solutions of the variational principle are U ∈ (Rd)(N−1)×M such
that U is a critical point of Sd. This is equivalent to the condition that for all
i = 1, . . . , N − 1 and j = 0, . . . , M − 1 the discrete Euler–Lagrange equations

∂

∂ui
j

(
Ld(ui

j , u
i+1
j , ui

j+1) + Ld(ui−1
j , ui

j , u
i−1
j+1) + Ld(ui

j−1, u
i+1
j−1, u

i
j)

)
= 0 (5)

are fulfilled. The expression on the left of (5) is abbreviated as DEL(Ld)ij(U) in
the following.

Remark 2. Instead of periodic boundary conditions in space, Sd can be adapted
to other types of boundary conditions such as Dirichlet- or Neumann conditions.

Example 2. The discretised wave equation

(ui−1
j − 2ui

j + ui+1
j )

Δt2
− (ui

j−1 − 2ui
j + ui

j−1)
Δx2

+ ∇V (ui
j) = 0 (6)

is the discrete Euler–Lagrange equations to the discrete Lagrangian

Ld((ui
j , u

i+1
j , ui

j+1) =
1
2

(
ui+1

j − ui
j

Δt2

)2

− 1
2

(
ui

j+1 − ui
j

Δx2

)2

− V (ui
j).

Remark 3. In analogy to Remark 1, notice that Ld and L̃d yield the same discrete
Euler–Lagrange Eqs. (5) if

Ld(a, b, c) − sL̃d(a, b, c) = χ1(a) − χ1(b) + χ2(a) − χ2(c) + χ3(b) − χ3(c) (7)

for differentiable functions χ1, χ2, χ3 : X → R and s ∈ R \ {0}.

Remark 4. If DEL(Ld)ij(U) = 0 (see (5)) and if ∂2Ld

∂ui
j∂ui+1

j

(ui
j , u

i+1
j , ui

j+1) is of full

rank, then (5) is solvable for ui+1
j as a function of ui

j , ui
j+1, ui−1

j , ui−1
j+1, ui

j−1,
ui+1

j−1 by the implicit function theorem locally around a solution of (5). All of
these points correspond to mesh points that either lie to the left or below the
point with indices (i, j). If u1

j is known for 0 ≤ j ≤ M − 1, then utilising the
boundary conditions u0

j ∈ R
d and ui

0 = ui
M we can compute U by subsequently

solving (5). This corresponds to the computation of a time propagation.

The following Proposition analyses the convergence of Newton-Iterations
when solving (5) for ui+1

j , as is required to compute time propagations. It intro-
duces a quantity ρ∗ that relates to how well the iterations converge. We will
make use of this quantity in the design of our machine learning framework.
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Proposition 1. Let ui
j, ui+1

j , ui
j+1, ui−1

j , ui−1
j+1, ui

j−1, ui+1
j−1 such that (5) holds.

Let O ⊂ R
d be a convex, neighbourhood of u∗ = ui+1

j , ‖·‖ a norm of Rd inducing
an operator norm on R

d×d. Define p(u) := ∂2Ld

∂ui
j∂u

(ui
j , u, ui

j+1) and let θ and θ be
Lipschitz constants on O for p and for inv ◦ p, respectively, where inv denotes
matrix inversion. Let

ρ∗ := ‖inv(p(u∗))‖ =

∥∥∥∥∥∥
(

∂2Ld

∂ui
j∂u∗ (u

i
j , u

∗, ui
j+1)

)−1
∥∥∥∥∥∥ (8)

and let f(u(n)) denote the left hand side of (5) with ui+1
j replaced by u(n). If

‖u(0) −u∗‖ ≤ min
(

ρ∗

θ
, 1

2θρ∗

)
for u(0) ∈ O, then the Newton Iterations u(n+1) :=

u(n) − inv(p(u(n)))f(u(n)) converge quadratically against u∗, i.e.

‖u(n+1) − u∗‖ ≤ ρ∗θ‖u(n) − u∗‖2. (9)

Proof. The statement follows from an adaption of the standard estimates for
Newton’s method (see [6, Sect. 4], for instance) to the considered setting. A
detailed proof of the Proposition is contained in the Appendix (Preprint/ArXiv
version only).

Remark 5. The assumptions formulated in Proposition 1 are sufficient but not
sharp. The main purpose of the proposition is to identify quantities that are
related to the efficiency of our numerical solvers and to use this knowledge in
the design of machine learning architectures.

3 Machine Learning Architecture for Discrete Field
Theories

We model a discrete Lagrangian Ld as a neural network and fit its parameters

– such that the discrete Euler–Lagrange Eqs. (5) for the learned Ld are consis-
tent with observed solutions U = (ui

j) of (5)
– and such that (5) is easily solvable for ui+1

j using iterative numerical methods,
so that we can use the discrete field theory to predict solutions via forward
propagation of initial conditions (see Remark 4).

For given observations U (1), . . . , U (K) with U (k) = (ui
j
(k)) on the interior

mesh XΔ, we consider the loss function � = �DEL + �reg consisting of a data
consistency term �DEL and a regularising term �reg. We have

�DEL =
K∑

k=1

N−1∑
i=1

M−1∑
j=0

DEL(Ld)ij(U
(k))2 (10)

with DEL(Ld)ij from (5). �DEL measures how well Ld fits to the training data.
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Since a discrete Lagrangian Ld is not uniquely determined by the system’s
motions by Remark 3 (indeed, Ld ≡ const is consistent with any observed
dynamics), careful regularisation is required. Indeed, in [14] we demonstrate in
an ode setting that if care is not taken, then machine learned models for Ld can
be unsuitable for numerical purposes and amplify errors of numerical integration
schemes. In view of Proposition 1, we aim to minimize ρ∗ (see (8)) and define
the regularisation term

�reg =
K∑

k=1

N−1∑
i=1

M−1∑
j=0

∥∥∥∥∥∥
(

∂2

∂ui
j∂ui+1

j

Ld

(
ui

j

(k)
, ui+1

j

(k)
, ui

j+1

(k)
))−1

∥∥∥∥∥∥
2

. (11)

In our experiments, we use the spectral norm in (11), which is the oper-
ator norm induced by the standard Eucledian vector norm on R

d. Let
Ai,j,k

reg := ∂2

∂ui
j∂ui+1

j

Ld

(
ui

j
(k)

, ui+1
j

(k)
, ui

j+1
(k)

)
, i.e. the summands of �reg are

‖(Ai,j,k
reg )−1‖2 = 1

λ2
min

, where λmin is the singular value λmin of Ai,j,k
reg with the

smallest absolute norm. If ui
j ∈ R

d with d = 1, then ‖(Ai,j,k
reg )−1‖ can be evalu-

ated without problems. Otherwise, λ2
min is computed as the smallest eigenvalue

of the symmetric matrix (Ai,j,k
reg )�Ai,j,k

reg . The eigenvalue can be approximated by
inverse matrix vector iterations [6, Sect. 5] or computed exactly if the dimension
d is small.

4 Periodic Travelling Waves

For simplicity, we continue within the two-dimensional space time domain X =
[0, T ] × [0, l]/{0, l} with periodic boundary conditions in space introduced in
Sect. 2. A periodic travelling wave (TW) of a pde on X is a solution of the form
u(t, x) = f(x−ct) for c ∈ R and with f : [0, l]/{0, l} → R

d defined on the periodic
spatial domain. Due to their simple structure, TWs are important solutions to
pdes. While the defining feature of a TW is its symmetry u(t+s, x+sc) = u(t, x)
for s ∈ R, evaluated on a mesh XΔ, no such structure is evident unless the
quotient cΔt/Δx is rational and T sufficiently large. However, after a discrete
field theory is learned defined by its discrete Lagrangian Ld, it is of interest,
whether the underlying continuous PDE has TWs. As in [13] we define shadow
travelling waves (TWs) of (5) as solutions to the functional equation

0 = ∂1Ld(f(ξ), f(ξ − cΔt), f(ξ + Δx))
+ ∂2Ld(f(ξ + cΔt), f(ξ), f(ξ + cΔt + Δx))
+ ∂3Ld(f(ξ − Δx), f(ξ − cΔt − Δx), f(ξ))

(12)

where ∂jLd denotes the partial derivative of Ld with respect to its jth slot.

Example 3. A Fourier series ansatz for f reveals that the discrete wave Eq. (6)
with potential V (u) = 1

2u2 away from resonant cases TWs are u(t, x) = f(x−cnt)
with

f(ξ) = α sin(κnξ) + β sin(κnξ), κn =
2πn

l
, n ∈ Z, α, β ∈ R (13)
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and with wave speed cn a real solution of

cos(κncnΔt) = 1 − Δt2

2
+

Δt2

Δx2
(cos(κnΔx)) − 1). (14)

A contour plot for n = 1 is shown to the left of Fig. 2.

Remark 6. The TW Eq. (12) inherits variational structure from the underlying
PDE: an application of Palais’ principle of criticality [16] of the action of (R,+)
on the Sobolev space H1(Xc,R) with Xc = [0, l/c]×[0, l] defined by (s.u)(t, x) :=
u(t+s, x+cs) to the functional S(u) =

∫
Xc

Ld(u(t, x), u(t+Δt, x), u(t, x+Δx))dt

reveals that (12) is governed by a formal 1st order variational principle. This is
investigated more closely in [13].

To identify TWs in a machine learned model of a discrete field theory, we
make an ansatz of a discrete Fourier series f(ξ) =

∑−M
2

m=−M−1
2

f̂m exp(m 2πi
l ξ),

where bounds of the sum are rounded such that we have M summands. To locate
a TW, the loss function �TW(c, f̂) + �regTW(c, f̂) is minimised with

�TW(c, f̂) =
N−1∑
i=1

M−1∑
j=0

‖DELi
j(U)‖2, U =

(
f(iΔt − cjΔx)

)0≤j≤M−1

0≤i≤N
(15)

and regularisation �regTW = exp(−100‖U‖2
l2) with discrete l2-norm ‖ · ‖l2 to avoid

trivial solutions. Here f̂ = (f̂m)m.

5 Experiment

Creation of Training Data. We use the space-time domain X (Sect. 2) with
T = 0.5, l = 1, Δx = 0.05, Δt = 0.025. To obtain training data that behaves
like discretised smooth functions, we compute K = 80 solutions to the discrete
wave equation (Example 2) with potential V (u) = 1

2u on the mesh XΔ from
initial data u0 = (u0

j )0≤j≤M−1 and u1 = (u1
j )0≤j≤M−1. To obtain u0 we sample

r values from a standard normal distribution. Here r is the dimension of the
output of a real discrete Fourier transformation of an M -dimensional vector.
These are weighted by the function m 
→ M exp(−2j4), where m = 0, . . . , r−1 is
the frequency number. The vector u0 is then obtained as the inverse real discrete
Fourier transform of the weighted frequencies. To obtain u1 an initial velocity
field v0 = (v0

j )0≤j≤M−1 is sampled from a standard normal distribution. Then we
proceed as in a variational discretisation scheme [11] applied to the Lagrangian
density L of the continuous wave equation (Example 1): to compute conjugate
momenta we set LΣ(u,v) =

∑M−1
j=0 ΔxL(uj , vj) and compute p0 = ∂LΣ

∂v0 (u0,v0).
Then p0 = −LΣ(u1, (u1 − u0)/Δt) is solved for u1. A plot of an element of the
training data set is displayed in Fig. 1. (TWs are not part of the training data.)
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Fig. 1. Left: Element of training data set. Centre: Predicted solution to unseen initial
values. Right: Continued solution from centre plot outside training domain

Training and Evaluation. A discrete Lagrangian Ld : R×R×R → R is mod-
elled as a three layer feed-forward neural network, where the interior layer has
10 nodes (160 parameters in total). It is trained on the aforementioned training
data set and loss function � = �DEL + �reg using the optimiser adam. We per-
form 1320 epochs of batch training with batch size 10. For the trained model
we have �DEL ≈ 8.6 · 10−8 and �reg ≈ 1.4 · 10−7. To evaluate the performance of
the trained model for Ld, we compute solutions to initial data by forward prop-
agation (Remark 4) and compare with solutions to the discrete wave equation
(Example 2). For initial data u0, u1 not seen during training, the model recovers
the exact solution up to an absolute error ‖U − Uref‖∞ < 0.012 on XΔ and up
to ‖U − Uref‖∞ < 0.043 on an extended grid with Text = 2.5 (Fig. 1).

Fig. 2. Left: Reference TW. Centre and Right: Identified TW in learned model

We have maxi,j ‖DEL(Ld)i,j(UTW
ref )‖2 < 0.004, where UTW

ref is the TW from
Example 3 (n = 1). This shows that the exact TW is a solution of the learned
discrete field theory. This is remarkable since TWs are not part of the training
data. However, Remark 6 hints that the ansatz of an autonomous Ld favours TWs
as it contains the right symmetries. Using the method of Sect. 4, a TW UTW

and speed c can be found numerically: with (c1, U
TW
ref ) as an initial guess with

normally distributed random noise (σ = 0.5) added to the Fourier coefficients
of UTW

ref and to c1 , we find UTW and c for the learned Ld with errors ‖UTW −
UTW

ref ‖∞ < 0.12 and |c − c1| < 0.001 (using 104 epochs of adam) (Fig. 2).
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6 Conclusion and Future Work

We present an approach to learn models of dynamical systems that are governed
by an (a priori unknown) variational PDE from data. This is done by learning
a neural-network model of a discrete Lagrangian such that the discrete Euler–
Lagrange equations (DELs) are fulfilled on the training data. As DELs are local,
the model can be efficiently trained and used in simulations. Even though the
underlying system is infinite dimensional, model order reduction is not required.
It would be interesting to relate the implicit locality assumption of our data-
driven model to the more widely used approach to fit a dynamical system on
a low-dimensional latent space that is identified using model order reduction
techniques [1,3,4,12,19].

Our approach fits in the context of physics-informed machine learning
because the data-driven model has (discrete) variational structure by design.
However, our model is numerical analysis-informed as well: since our model is
discrete by design, it can be used in simulations without an additional discreti-
sation step. Based on an analysis of Newton’s method when used to solve DELs,
we develop a regulariser that rewards numerical regularity of the model. The reg-
ulariser is employed during the training phase. It plays a crucial role to obtain
a non-degenerate discrete Lagrangian.

Our work provides a proof of concept illustrated on the wave equation.
It is partly tailored to the hyperbolic character of the underlying PDE. It is
future work to adapt this approach to dynamical systems of fundamentally dif-
ferent character (such as parabolic or elliptic behaviour) by employing discrete
Lagrangians and regularisers that are adapted to the information flow within
such PDEs.

Finally, we clarify the notion of travelling waves (TWs) in discrete mod-
els and show how to locate TWs in data-driven models numerically. Indeed, in
our numerical experiment the data-driven model contains the correct TWs even
though the training data does not contain any TWs. In future work it would
be interesting to develop techniques to identify more general highly symmetric
solutions in data-driven models and use them to evaluate qualitative aspects of
learned models of dynamical systems.

Source Code. https://github.com/Christian-Offen/LagrangianDensityML
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Abstract. In the framework of the dynamical solution of Schrödinger’s
1931 problem, we compare key aspects of its Lagrangian and Hamilto-
nian formalisms. This theory is regarded as a stochastic regularization of
classical mechanics, in analogy with Feynman’s (informal) path integral
approach to quantum mechanics. The role of our counterpart of quantum
gauge invariance, in the above stochastic framework, will be described. It
establishes, in particular, new dynamical relations between classes of dif-
fusion processes, when the theory is restricted to a natural generalization
of Schrödinger’s original problem, and illustrates differences between the
stochastic Lagrangian and Hamiltonian formulations.

Keywords: Gauge transformations · Canonical transformations ·
Stochastic geometric mechanics

1 Schrödinger’s 1931 Problem in a Nutshell

Let H = −�
2

2 Δ + V be the n-dimensional (self-adjoint) Hamiltonian operator
associated, in classical statistical physics, with the motion of diffusive particles
in the potential field V , where � is a positive constant. At initial time t0, their
probability distribution ρt0(q)dq is known. Assume that, later on (at time t1),
another arbitrary probability ρt1(q)dq is observed. Schrödinger [14] asked what
the most likely (stochastic) evolution ρt(q)dq (or its associated process Xt) is
in-between (t0 ≤ t ≤ t1)? The solution of a (slightly generalized) version of this
problem can be summarized as the following (cf. [1,3,15], [2, Part II]):

Proposition 1. Let V be continuous and bounded below. Then if ρt0 and ρt1

are strictly positive on R
n, there is an unique diffusion X solving Schrödinger’s

problem. It solves two Itô’s stochastic differential equations, t0 ≤ t ≤ t1,

dXt = �∇(log η)(Xt, t)dt +
√

�dWt,

d∗Xt = −�∇(log η∗)(Xt, t)dt +
√

�d∗W ∗
t ,
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where W and W ∗ are (forward and backward) Wiener processes w.r.t. increasing
filtration {Pt : t ≥ t0} and decreasing {Ft : t ≤ t1} respectively, η and η∗ are
positive solutions of

�
∂η

∂t
= Hη, t ≤ t1, (1)

and
− �

∂η∗

∂t
= Hη∗, t ≥ t0, (2)

such that ρt(q)dq = (ηη∗)(q, t)dq is integrable and is the probability distribution
of Xt, for t0 ≤ t ≤ t1.

The “Euclidean” transformation t → −it changes the first parabolic equation
into Schrödinger’s equation and the second into its complex conjugate. Since ηt1 ,
η∗

t0 are unrelated, the density ρt becomes an L2 scalar product. This was the
whole point of Schrödinger in 1931. Notice that he was referring to an unorthodox
stochastic boundary value problem. We are interested in the geometric dynamics
of processes solving such problems.

2 Classical (Local) Gauge Symmetry

Let us start with a reminder of classical mechanical systems. Let M be an n-
dimensional configuration manifold. Poincaré 1-form on the cotangent bundle
T ∗M is ω0 = pidqi, where (qi) are local coordinates on M and (pi) parametrize
the basis (dq1, · · · , dqn) of the fiber T ∗

q M dual to the one ( ∂
∂q1 , · · · , ∂

∂qn ) of the
tangent space TqM .

Consider a Lagrangian L0 on TM . If the Legendre transformation TM →
T ∗M , (q, q̇) �→ (q, p = ∂L0

∂q̇ ) is diffeomorphic (in this case the Lagrangian is called
hyperregular), the actions in phase space and configuration space coincide:

S =
∫

{q(t):t0≤t≤t1}
ω0 − H0dt =

∫ t1

t0

L0(q(t), q̇(t))dt,

where H0(q, p) = pq̇−L0(q, q̇) is the associated Hamiltonian, for q̇ solvable by p =
∂L0
∂q̇ (q, q̇). Then, the following Euler-Lagrange (EL) and Hamilton’s canonical

equations are equivalent:

d

dt

(
∂L0

∂q̇

)
− ∂L0

∂q
= 0,

and
q̇ =

∂H0

∂p
, ṗ = −∂H0

∂q
.

The respective notions of states are such that those equations can be uniquely
solved, but the Lagrangian (Hamilton’s) variational principle for S suggests
boundary value problems more tricky than Hamiltonian Cauchy ones.
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Given a smooth scalar function F on M × R, we define a new Lagrangian:

L̃0(q, q̇, t) = L0(q, q̇) +
d

dt
[F (q, t)] = L0(q, q̇) +

∂F

∂t
+ q̇

∂F

∂q
. (3)

By Hamilton’s principle for fixed boundary conditions q(t0), q(t1), the action S
turns into

S̃ = S + F (q(t1), t1) − F (q(t0), t0).

Namely the transformation (3) leaves the Lagrangian formalism “almost” invari-
ant, by affecting only the boundary conditions of the Euler-Lagrange equation.
Such a transformation is called gauge transformation. On the other hand, the
new conjugate momentum is, by Legendre transform, p̃ = ∂L̃0

∂q̇ = p + ∂F
∂q . The

corresponding new Hamiltonian H̃0 is

H̃0(q, p̃, t) = p̃q̇ − L̃0 = H0(q, p) − ∂F

∂t
.

Clearly, the change of coordinates (q, p) → (q, p̃) can also be induced by the type
two generating function G2(q, p, t) = qp̃+F (q, t) [6]. Thus, gauge transformations
form a subset of canonical transformations.

3 Quantum and Euclidean Quantum Counterparts

The quantization of the above classical system starts with the one of its state,
now ψ, a ray in the complex Hilbert space L2(M), equipped with scalar product
〈·|·〉2. Each classical observable a is associated with a densely defined self-adjoint
operator A. For instance, the quantum counterpart of the classical Hamiltonian
H0(q, p) = 1

2 |p|2 + V (q) becomes

H(Q,P ) =
1
2
P 2 + V (Q) = −�

2

2
Δ + V (q),

with P = −i�∇ the momentum operator. The state dynamics is given by
Schrödinger’s equation

i�
∂ψ

∂t
= Hψ. (4)

By Born’s “probabilistic” interpretation, the modulus squared of the amplitude
of ψ represents a probability density ρ, i.e.,

ρ(q, t) = |ψ(q, t)|2. (5)

What is a local gauge symmetry in this context? Define a (time-dependent)
unitary transformation by [7]

ψ �→ ψ̃ = Utψ, Utψ(q) := e
i
�

F (q,t)ψ(q)
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for a given smooth F : M × R → R. This transformation will give the same
probability, since |ψ(q, t)|2 = |ψ̃(q, t)|2. Now ψ̃ solves

i�
∂ψ̃

∂t
= −�

2

2

(
∇ − i

�
∇F

)2

ψ̃ +
(

V − ∂F

∂t

)
ψ̃,

i.e., the new (quantum) Hamiltonian is H̃(Q, P̃ , t) = 1
2 P̃ 2 + V (Q) − ∂F

∂t (Q)
with new momentum operator P̃ = P − ∇F . The expectation of any quantum
observable A is indeed invariant, since 〈ψ̃|Ãψ̃〉2 = 〈ψ|Aψ〉2, where Ã = UtAU−1

t .
Born and Feynman suggested that the density ρ in (5), for the Hamiltonian

H, should be the probability density of a certain diffusion X, i.e. P(Xt ∈ dq) =
ρ(q, t)dq. A fundamental problem is that X cannot be a diffusion like the one
suggested by Feynman. All rigorous quantum probabilistic results, reasonably
consistent with regular quantum theory as a whole, are “Euclidean”, i.e., follow
from t → ±it in Schrödinger’s Eq. (4) and consider instead two heat equations
(1) or (2). Proposition 1 shows that there exist well-defined diffusion processes,
as solutions of forward and backward Itô’s SDEs, solving Schrödinger’s 1931
“statistical” problem.

The classical but Euclidean Hamiltonian for (1) and (2) has a sign opposite
to the quantum case, namely,

H0(q, p) =
1
2
|p|2 − V (q). (6)

For the two heat equations, we have an Euclidean counterpart of the gauge
invariance:

η �→ η̃ := e
1
�

F η, η∗ �→ η̃∗ := e− 1
�

F η∗, (7)

for a smooth F . This does not change the distribution of Xt since ηη∗ = η̃η̃∗.
Then η̃ solves

�
∂η̃

∂t
= −�

2

2

(
∇ − 1

�
∇F

)2

η̃ +
(

V +
∂F

∂t

)
η̃ = H̃η̃.

and analogously for η̃∗.
For instance, the one-dimensional harmonic oscillators, for classical and

Euclidean cases, have potentials of the quadratic form V (q) = β2

2 q2 with
constant β. The quantum harmonic oscillator bears the Hamiltonian operator
H = −�

2

2
d2

dq2 + β2

2 q2 as the quantization of H0(q, p) = 1
2 |p|2 + β2

2 q2, while the
Euclidean classical counterpart becomes

H0(q, p) =
1
2
|p|2 − β2

2
q2. (8)

4 Stochastic Geometric Mechanics

In contrast with deterministic smooth trajectories describing the evolution of
classical Lagrangian and Hamiltonian systems, diffusion processes, solutions of
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Ito’s SDEs have more degrees of freedom both probabilistically and geometri-
cally. According to Schwartz and Meyer [4], the “second-order” counterparts of
classical geometric structures arise to unveil such probabilistic content.

The second-order extension of the classical phase space T ∗M is denoted by
T S∗M , called the second-order cotangent bundle [4]. In addition to the classical
coordinates (q, p), the new freedoms in T S∗M are represented by coordinates
(oij) which indicate the stochastic deformation. Now the second-order analog of
Poincaré form is ω = pid

2qi + 1
2oijdqi · dqj defined on T S∗M , where (d2qi, dqj ·

dqk : 1 ≤ i ≤ n, 1 ≤ j ≤ k ≤ n) form a basis of T S∗M .
For a second-order Hamiltonian function H(q, p, o) on the extended phase

space T S∗M , the stochastic Hamiltonian equations hold [9]:
⎧⎪⎪⎨
⎪⎪⎩

DiX =
∂H

∂pi
, QijX = 2

∂H

∂oij
,

Dip = −∂H

∂qi
, oij =

∂pi

∂qj
=

∂pj

∂qi
,

(9)

with unknowns X = (Xt) a diffusion process on M , and (p, o) a time-dependent
“section” of T S∗M , i.e., pi = pi(t, q), oij = oij(t, q). Here, D and Q are the so
called mean derivative and quadratic mean derivative, respectively, which eval-
uate the drift and diffusive tensor of a diffusion process via limits of conditional
expectations. Note that the last equation of (9) implies that the second-order
Poincaré form ω is the “differential” of the classical ω0, i.e., ω = d p = dω0,
where d is the differential operator that maps 1-forms to second-order forms [4].
Also observe that Eqs. (9) are invariant under the canonical change of coordi-
nates on T S∗M induced by a change of coordinates on M [9, Section 6.2]. Indeed,
for example, (DiX) does not transfrom as a vector because its transformation
formula involves second-order term, nor does (∂H

∂pi
) since the transformation of

(oij) involves (pi) [9, Lemma 5.2].
When M is equipped with a Riemannian metric g and the associated Levi-

Civita connection ∇, a second-order Hamiltonian can be constructed from the
classical H0 by

H�(q, p, o) = H0(q, p) +
�

2
gij(q)(oij − Γk

ijpk).

In this case, the solution of (9) satisfies

QijX = �gij(X), (10)

i.e., the diffusive tensor coincides with the Riemannian tensor. If the Legendre
transform is diffeomorphic, H0 is associated to the Lagrangian L0(q,D∇q) =
pD∇q − H0(q, p), and the stochastic Hamiltonian Eqs. (9) are equivalent to the
stochastic Euler-Lagrange equation:

D
dt

[(dq̇L0)(Xt,D∇Xt)] = (dqL0)(Xt,D∇Xt), (11)
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where D∇ is the ∇-compensation of the mean derivative D so that D∇ takes
values as vector fields, D

dt is the “damped” mean covariant derivative ∂
∂t+∇D∇X+

�

2ΔLD with ΔLD the Laplace-de Rahm. The stochastic Euler-Lagrange Eq. (11)
also solves the stochastic least action principle under conditional expectation
Et,q = E(·|Xt = q): δ S = 0 with

S = Et,q

∫ t1

t

L0(Xs,D∇Xs)ds

= Et,q

∫ t1

t

p ◦ dXs − H�ds = Et,q

∫
{Xs:t≤s≤t1}

ω − H�ds,

(12)

subject to the constraint (10), where ◦d is Stratonovich’s symmetric stochastic
differential, and the integral of ω along X is understood as the stochastic line
integral [4, Definition 7.3]. These are parts of the framework of stochastic geo-
metric mechanics developed in [9]. Readers may also refer to the proceeding [8]
for a short summary.

Given a smooth scalar function F on M × R, we define a new Lagrangian:

L̃0(q,D∇q, t) = L0(q,D∇q) + Dt[F (q, t)]

= L0(q,D∇q) +
∂F

∂t
+ Di

∇q
∂F

∂qi
+

�

2
gij

(
∂2 F

∂qi∂qj
− Γk

ij

∂F

∂qk

)
.

(13)

By Dynkin’s formula, the stochastic action S turns into S̃ = S+Et,q[F (Xt1 , t1)]−
F (q, t). The new conjugate momentum is

p̃ =
∂L̃0

∂D∇q
= p +

∂F

∂q
(14)

and the new stochastic deformation variable is õij = oij + ∂2F
∂qi∂qj . The corre-

sponding new second-order Hamiltonian H̃ is

H̃(q, p̃, õ, t) = p̃D∇q − L̃0 +
�

2
gij(õij − Γk

ij p̃k) = H(q, p, o) − ∂F

∂t
.

Euclidean Quantum Correspondence

Let us go back to the Hamiltonian H0(q, p) = 1
2 |p|2 − V (q) associated with the

Euclidean quantum case (6). For this case, the optimal drift of (12) is [3]

D∇Xt = �∇(log η)(Xt, t),

where η > 0 solves the “retrograde” heat Eq. (1). Thus, the solution of (9) or (11)
is just Schrödinger’s process of Proposition 1. The Legendre transform indicates
that the momentum of (9) is p = �d(log η), where d is de Rham’s exterior
differential on M . Hence, after the Euclidean quantum gauge transformation
(7), the new momentum

p̃ = �d(log η̃) = p + dF,

coincides with (14).
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In fact, the Cole-Hopf transformation G = −� log η, known in PDE theories,
yields a second-order Hamiltonian-Jacobi-Bellman (HJB) equation, which plays
a central role in the second-order counterpart of the classical Hamiltonian-Jacobi
theory [9]. Moreover, as indicated by Schrödinger’s problem, there is naturally a
time-reversed formulation for the whole stochastic geometric mechanics, where
the optimal (backward) drift is D∗

∇Xt = −�∇ log η∗(Xt, t), with η∗ solving the
heat Eq. (2) and D∗

∇ the backward version of the compensated mean derivative
D∇. This also indicates a time-symmetric discretization in the stochastic action
(12), as follows,

S = Et,q

∫ t1

t

[
p
D∇Xs + D∗

∇Xs

2
− H�

]
ds,

Transformations from Euclidean Harmonic Oscillator to Free
Schrödinger’s Motion

The Euclidean harmonic oscillator on the flat real line R is described by the
Euclidean Hamiltonian (8) with potential V (q) = β2

2 q2. Its second-order Hamil-
tonian is

H�(q, p, o) = H0(q, p) +
�

2
o =

1
2
|p|2 − β2

2
q2 +

�

2
o

and Lagrangian L0(q,D∇q) = 1
2 |D∇q|2 + β2

2 q2. The equations of motion on the
configuration space are DDX = β2X, QX = �. Consider the gauge transforma-
tion with F (q, t) = β

2 (q2 − �t). The new Lagrangian, by (13), becomes

L̃0(q,D∇q) =
1
2
|D∇q + βq|2.

and the new Hamiltonian

H̃�(q, p̃, õ) = H̃0(q, p̃) +
�

2
õ =

1
2
|p̃|2 − βqp̃ +

�

2
õ,

with new conjugate momentum and stochastic deformation variable, respec-
tively,

p̃ = p + βq, õ = o + β.

The gauge transformation does not change the equations of motion on configu-
ration space.

Next, we consider the following time-dependent canonical transformation [9]

q̂ = eβtq, p̂ = e−βtp̃, t̂ =
1
2β

(e2βt − 1). (15)

Clearly, the change of coordinates (q, p̃) �→ (q̂, p̂) is induced by the type three
generating function G3(q̂, p̃, t) = −e−βtq̂p̃ via relations q = −∂G3

∂p̃ and p̂ = −∂G3
∂q̂

[6]. The relation between the latent coordinates o and O is

ô =
∂p̂

∂q̂
= e−βt ∂p̃

∂q

∂q

∂q̂
= e−2βtõ.
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The new 2nd-order Hamiltonian K� is given by the HJB equation K�
dt̂
dt − H̃� =

∂G3
∂t , i.e.,

K�(q̂, p̂, ô) = K0(q̂, p̂) +
�

2
ô =

1
2
|p̂|2 +

�

2
ô.

The equations of motion for K� on the configuration space are DDY = 0,
QY = �.

One can also carry out the above chain of transformations in terms of stochas-
tic actions, denoting f(q, t) = Et,q[F (Xt1 , t1)] − F (q, t):

S =
1
2
Et,x

∫ t1

t

(
|DXs|2 + β2X2

s

)
ds

=
1
2
Et,q

∫ t1

t

[(
|DXs|2 + β2X2

s

)
ds + 2dF (Xs, s)

]
− f(q, t)

=
1
2
Et,q

∫ t1

t

|DXs + βXs|2ds − f(q, t)

=
1
2
Et̂,q̂

∫ t1

t̂

|DYŝ|2dŝ − f(q, t) = Ŝ − f(q, t),

since DYŝ = e−βs(DXs + βXs) and dŝ = e2βsds.
Consequently, after a gauge transformation and a time-dependent canonical

one, the Euclidean harmonic oscillator X is transformed into a free motion of
Schrödinger Y . Note that the retrograde heat Eq. (1) for the Hamiltonians H̃0

and K0 are the Kolmogorov backward equations of Ornstein–Uhlenbeck (OU)
process and free Brownian motion respectively. The relation between X and Y
due to (15),

Xt = e−βtY 1
2β (e2βt−1),

recovers, in particular, Doob’s relation between OU process and Brownian
motion. See also [12, Theorem 4.1.(2)].

5 Epilogue: Is Schrödinger’s Problem Classical Statistical
or Quantum Physics?

Clearly, what guided Schrödinger’s 1931 cryptic observation at the end of [14]
was his scepticism about the foundations of the recently discovered quantum
mechanics. Back then, Brownian motion was already familiar but in Statistical
Physics (mathematically constructed by N. Wiener in 1923–24), without con-
ceptual difficulties regarding its probabilistic role, in contrast with Quantum
theory, its mysterious probabilistic content and interpretation. With the advan-
tage of a retroactive scientific vision, Schrödinger’s problem can be seen as the
first Euclidean approach to quantum probabilities, very influential in 1970s. But
the diffusion solving his problem are also as close as possible to those used by
R. Feynman in his Path Integral approach [5]. Those diffusions, known today
as Bernstein, or reciprocal, processes for historical reasons [11,13], are generally
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time-dependent since the data of ρt1(q) is “arbitrary”. This property makes them
natural candidates for nonequilibrium Statistical Physics, as observed in [10]. It
should be stressed that Schrödinger was interested in probability distribution of
the product form given by Proposition 1, namely Markovian processes. General
Bernstein processes are not Markovian, however, and should be relevant not only
in nonequilibrium Quantum Statistical Physics, but also in Mass Transportation
theory [13].

Acknowledgements. The second author is grateful for the support of FCT, Portugal
project UIDB/00208/2020.
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Abstract. We study couplings of Brownian motions on the subRieman-
nian manifold SU(2,C), that is diffusion processes having the subLapla-
cian operator as infinitesimal generator. Using some interesting geometric
interpretations of the Brownian motion on this space, we present some
basic examples of co-adapted couplings. Inspiring ourselves with works
on the Heisenberg group, we also construct two successful couplings on
SU(2,C): one co-adapted and one not co-adapted but having a good cou-
pling rate. Finally, using the similar structure of SU(2,C) and SL(2,R)
we generalise some of our results for the case of this second subRieman-
nian manifold.

Keywords: SubRiemannian manifolds · Brownian motion · Coupling ·
Successful coupling

1 Introduction

We consider μ and ν two probability laws on M × M . We call coupling of μ and
ν any measure π such that μ is its first marginal distribution and ν its second
one. Coupling two Brownian motions (Bt)t and (B′

t)t consists in coupling their
probability laws. This topic has been studied a lot on Riemannian manifolds in
particular to obtain inequalities involving the heat semi-group just like Poincaré
or Sobolev inequalities [6,11].

In particular, there is a big interest in constructing successful couplings, that
is couplings for which the first meeting time τ := inf{t > 0|Bt = B′

t} of the
Brownian motions is almost surely finite. The classical Liouville theorem says
that every harmonic bounded function on R2 (and even on Rn)is constant. As
seen in [13], this stays true in every Riemannian manifold with Ricci curvature
bounded bellow, if and only if there exists a successful coupling. An other use
of successful couplings is the study of the total variation distance between the
probability laws L(Bt) and L(B′

t) of two Brownian motions Bt and B′
t starting

from different points:

dTV (L(Bt),L(B′
t)) := sup

A measurable
{P(Bt ∈ A) − P(B′

t ∈ A)}.

The Aldous inequality (also called Coupling inequality, see [1], chapter VII) says
that for every coupling of Brownian motions (Bs,B′

s)s and every t > 0:

P(τ > t) ≥ dTV (L(Bt),L(B′
t)).

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
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In particular, couplings that change this inequality into an equality are called
maximal couplings. If it has been proved that such couplings always exist in the
case of continuous processes on Polish spaces, they can be very difficult to study
(simulation, estimation of a coupling rate) as their construction often needs some
knowledge of the future of one of the Brownian motions. To avoid this difficulty
one can try to work with co-adapted couplings. This just means that the two
considered Brownian motions are adapted to the same filtration. Except in some
cases, in Rn for example, co-adapted couplings are not maximal.

In this paper we study successful couplings on subRiemannian manifolds.
In the case of the Heisenberg group H, Kendall has proposed one successful co-
adapted coupling [10] and another has been given by Banerjee, Gordina, Mariano
[2]. This last one is non co-adapted but has a better coupling rate. Our goal is to
use these two previous works to construct successful couplings on SU(2,C) using
the fact that its geometric structure has some similarities with the Heisenberg
group. Note that the complete proofs of these results will appear in [7,8].

2 Geometric Interpretation of Brownian Motion
on SU(2,C)

On the Heisenberg group, the Brownian motion can be seen as a two-dimensional
real Brownian motion together with its swept area. We have a similar interpre-
tation in the case of SU(2,C). We first recall the subRiemannian structure of
this manifold.

The SU(2,C) group is the group of the unitary two-dimensional matrices with
complex coefficients and determinant 1. Its group law is the one induced by the
multiplication of matrices. As this law is smooth for the usual topology, SU(2,C)

is a Lie group. If we denote X = 1
2

(
0 1

−1 0

)
, Y = 1

2

(
0 i
i 0

)
and Z = 1

2

(
i 0
0 −i

)

the Pauli matrices, (X,Y,Z) is a basis of the associated Lie algebra su(2,C)
satisfying

[X,Y ] = Z , [Y,Z] = X and [Z,X] = Y. (1)

We note that every matrice of SU(2,C) can be written on the form:

exp (ϕ(cos(θ)X + sin(θ)Y )) exp(zZ) =

(
cos

(
ϕ
2

)
ei z

2 ei(θ− z
2 ) sin

(
ϕ
2

)
−e−i(θ− z

2 ) sin
(

ϕ
2

)
cos

(
ϕ
2

)
e−i z

2

)

This way, we obtain a system of coordinates (ϕ, θ, z) of SU(2,C) with ϕ ∈ [0, π],
z ∈] − 2π, 2π] and θ ∈ [0, 2π[ called cylindrical coordinates. We denote X̄, Ȳ
and Z̄ the left-invariant vector fields associated to X, Y , Z. The horizontal
plane is defined by H = V ect〈X̄, Ȳ 〉. Because of (1), the Hörmander condition
is satisfied and the induced Carnot-Caratheodory distance is finite. Thus the
subRiemannian structure is well defined. Let us remark that, using the Hopf
fibration, we have a natural projection Π from our Lie group to the sphere S2,
sending (ϕ, θ, z) to the point of the sphere described by the spherical coordinates
(ϕ, θ).



594 M. Bénéfice et al.

We define the subLaplacian operator by L = 1
2

(
X̄2 + Ȳ 2

)
. Using the cylin-

drical coordinates we obtain:

L =
1
2

(
∂2

ϕ,ϕ +
1

sin2(ϕ)
∂2

θ,θ + tan2
(ϕ

2

)
∂2

z,z +
1

cos2
(

ϕ
2

)∂2
θ,z + cot(ϕ)∂ϕ

)
.

We can now define the Brownian motion Bt in SU(2,C) as the diffusion
process with infinitesimal generator L: using cylindrical coordinates, there exists
ϕt, θt and zt three real diffusion processes, such that

Bt = exp(ϕt(cos(θt)X+sin(θt)Y )) exp(ztZ) and

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

〈dϕt, dϕt〉 = dt

〈dθt, dθt〉 = 1
sin2(ϕt)

dt

〈dzt, dzt〉 = tan2
(

ϕt

2

)
dt

〈dθt, dzt〉 = 1

2 cos2(ϕt
2 )

dt

〈dϕt, dθt〉 = 〈dϕt, dzt〉 = 0
Drift(dϕt) = cot(ϕt)dt

Drift(dθt) = 0
Drift(dzt) = 0.

Then, taking B1
t and B2

t two real Brownian motions, we get:
⎧⎪⎨
⎪⎩

dϕt = dB1
t + cot(ϕt)dt

dθt = 1
sin(ϕt)

dB2
t

dzt = tan
(

ϕt

2

)
dB2

t

. (2)

In particular we note that the infinitesimal generator of the diffusion (ϕt, θt) is
the Laplace Beltrami operator on the sphere S2 in spherical coordinates. Study-
ing more in detail the third coordinate zt, we obtain the following geometric
interpretation:

Theorem 1. The Brownian motion Bt on SU(2,C) can be described by Π(Bt)
a Brownian motion on S2 and zt the area swept by Π(Bt) modulo 4π, up to a
sign. Here the swept area is described according to the North pole of the sphere.

Note that Bt is, in fact, described by its projection Π(Bt) on the sphere. Let Ba
t

and Ba′
t two Brownian motions on SU(2,C) starting from a and a′ respectively.

As we want to study couplings, we have to deal with the distance between
these two processes. It has been proven by Baudoin and Bonnefont in [3–5],
that d2cc(0, (ϕ, θ, z)) is equivalent to ϕ2 + |z|, denoting (ϕ, θ, z) an element of
SU(2,C) in cylindrical coordinates. Using calculations on matrices and spherical
trigonometry, we obtain the following result.
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Proposition 1. We consider Rt a continuous signed distance between Π(Ba
t )

and Π(Ba′
t ) and At the signed swept area between these two paths, up to a con-

stant. Note that if the paths (Π(Ba
s))s≤t and (Π(Ba′

s ))s≤t are crossing at time t,
the sign of dAt changes. We denote Ãt ∈]−2π, 2π] such that Ãt ≡ At mod (4π).
Then we have the equivalence:

d2cc(B
a
t ,Ba′

t ) ∼ R2
t + |Ãt|

Remark 1. Introducing cylindrical coordinates on SL(2,R), we also have a simi-
lar geometric interpretation of the Brownian motion: it can be seen as a Brownian
motion on the hyperbolic plane together with its signed swept area.

3 General Construction of Couplings

According to the previous results, to define a coupling on SU(2,C) we just need
to define one on S2. In this section we will use Itô depiction of the Brownian
motions in some well chosen frame. The notion of a moving frame along a semi-
martingale as well as an introduction of the Itô depiction in this frame are taken
from Emery [9].

Remark 2. If the results and examples of this section are obtained in studying
S2, that is for a curvature k = 1, we can generalise them to the case of the
hyperbolic plane, taking k = −1 and also to the case of R2 by passing at the
limit for k = 0. We then have analogous results on SL(2,R) and H (for this last
one, the results has already been described in [6,10]). Thus we will denote k the
curvature of the Riemannian manifold in order to keep generality in our results.

We consider a coupling (Xt, Yt) of Brownian motions on S2 and we define the
corresponding Rt and At as previously. For 0 < |Rt| < π, π being the injectivity
radius of S2, we define:

– eX
1 (t) :=

exp−1
Xt

(Yt)

Rt
, with exp−1

Xt
(Yt) = γ̇(0), γ the unique geodesic such that

γ(0) = Xt and γ(1) = Yt;
– eX

2 (t) such that (eX
1 (t), eX

2 (t)) is a direct orthonormal basis on TXt
S2;

– (eY
1 (t), e

Y
2 (t)) the direct orthonormal basis on TYt

S2 obtained by parallel
transport of (eX

1 (t), eX
2 (t)) along the geodesic γ joining Xt and Yt.

Then we can describe (Xt, Yt) using two dimensional Brownian motions U =(
U1

U2

)
and V =

(
V1

V2

)
with the Itô equation:

d∇Xt = dU1(t)eX
1 (t) + dU2(t)eX

2 (t) and d∇Yt = dV1(t)eY
1 (t) + dV2(t)eY

2 (t).

In particular, this coupling is co-adapted if and only if U and V form a co-
adapted coupling of Brownian motions in R2.

Calculating the differentials and Hessians of the distance ρ and then, of the
signed swept area between two paths, we can use Itô’s formula to obtain general
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stochastic equations for Rt and At. We present here some examples of couplings
that we will use in the construction of our first successful coupling on SU(2,C).
In all these examples, U and V are chosen adapted to the same filtration, that
is co-adapted. In what follows Ct and C̃t will be two independent real Brownian
motions.

Example 1. Synchronous coupling
We take dV1(t) = dU1(t) and dV2(t) = dU2(t). We get Rt deterministic and
decreasing and At a martingale such that:

Rt =
2√
k
arcsin

(
e−

kt
2 sin

(√
kR0

2

))
and At = A0 +

2√
k

∫ t

0
tan

(√
kRs

2

)
dC̃s.

Example 2. Reflection coupling
We take dV1(t) = −dU1(t) and dV2(t) = dU2(t). With this coupling Rt is a
Brownian motion with a negative drift and At is still a martingale:

Rt = R0 + 2Ct −
√
k

∫ t

0
tan

(√
kRs

2

)
ds and At = A0 +

2√
k

∫ t

0
tan

(√
kRs

2

)
dC̃s.

Note that, for k ∈ {0, 1}, Rt hits 0 at an almost surely finite time. The reflec-
tion coupling is a successful coupling on the sphere and on R2. Moreover, the
coupling rate, that is P(T > t) with T the first meeting time of the processes,
is exponentially decreasing for k = 1 and of order 1√

t
for t large for k = 0. That

is not the case for k = −1. In fact, using [13], as the hyperbolic plane doesn’t
satisfy the Liouville Theorem, we can’t construct any successful coupling on it.

Example 3. Perverse coupling
We take dV1(t) = dU1(t) and dV2(t) = −dU2(t). We get Rt deterministic and
increasing satisfying:

Rt =
2√
k
arccos

(
e− kt

2 cos

(√
kR0

2

))
.

For this coupling, At is constant.

We can also add a noise to these couplings in order to remove the drift
part. In particular, this provides a coupling with constant distance between the
Brownian motions.

Example 4. Synchronous coupling with noise/ fixed-distance coupling
Taking W a real Brownian motion independent of U we let:

dV1(t) = dU1(t) and dV2(t) = cos(
√

kRt)dU2(t) + sin(
√

kRt)dW (t).

We get Rt constant and At a Brownian motion up to a multiplicative constant:

At = A0 +
2√
k
sin

(√
kR0

2

)
C̃s.
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Remark 3. In [12], Pascu and Popescu showed that on the sphere, there exists a
co-adapted coupling of Brownian motions of deterministic distance function Rt

if and only if Rt is continuous and satisfies the inequality:

− tan
(

Rt

2

)
dt ≤ dRt ≤ cot

(
Rt

2

)
dt.

The two couplings realizing the extrema of this inequality are the synchronous
coupling and the perverse coupling.

Remark 4. These couplings are co-adapted but also Markovian in the sense that
the couple (Xt, Yt)t is a Markov process.

4 One Co-adapted Successful Coupling

We now lay out a co-adapted successful method on SU(2,C). This method is
based on the idea of Kendall for coupling Brownian motions on the Heisenberg
group [10]. The original idea is to switch between reflection and synchronous cou-
plings, using reflection coupling to make Rt decrease, and synchronous coupling
to keep the swept area comparable to R2

t and deacreasing as well.
Let κ, ε > 0 such that 0 < ε < κ. We denote τ the first time of coupling of

the Brownian motions in S2 together with their swept areas that is

τ = inf{t > 0 | Xt = Yt and At = 0}.

Using perverse or synchronous coupling if needed, we can suppose that 0 < R0 <
π. Using constant fixed-distance coupling if necessary, we can also suppose that
A0 = 0 without changing the value of R0. We construct the coupling as in [10]:

1. We use reflection coupling until the process |At|
R2

t
starting at 0 takes the value κ.

2. While the process |At|
R2

t
starting at κ satisfies |At|

R2
t

> κ−ε, we use fixed-distance

coupling. Note that, as Rt stays constant during this step, |At|
R2

t
is a Brownian

motion, up to a multiplicative constant, and will hit κ− ε in an almost surely
finite time.

3. While the process |At|
R2

t
, starting at κ − ε satisfies |At|

R2
t

< κ, we use reflection
coupling.

We iterate steps 2 and 3 until Rt = 0. Because of this construction, when it
occurs, At = 0. As the distance stays constant during each fixed-distance cou-
pling step, if we omit these times, Rt is moving as in a simple reflection coupling
and so will hit 0 in an almost surely finite time. To prove that this coupling
is successful, we then need to show that we don’t have too many switchings
between the two coupling steps. As the different coupling steps are co-adapted,
our final coupling is co-adapted too.

One difference with the case of Heisenberg is that if Rt is too close to π, it
is possible to switch too fast from reflection coupling to fixed-distance coupling
as the quadratic variation of the swept area will be quite big. To avoid this
possibility, an idea is to interrupt the coupling when Rt is too close of π.
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Theorem 2. Let η > 0, such that π − 2η > R0 > 0. We denote τη = inf{t >
0|Rt ≥ π−η}. Then the co-adapted coupling described below satisfies τ∧τη < +∞
a.s. Moreover, we have P(τ > τη) < 1.

Proof. See [8].

If τη < τ , we can use synchronous coupling to decrease Rt until it takes the
initial value R0 and reiterate the method of theorem (2). These iterations are
independent and P(τ > τη) < 1, thus the coupling is successful.

Note that, to obtain couplings in SU(2,C), we only need to have At ≡ 0(4π)
instead of At = 0. Thus we only need to stop reflection coupling if At enter
intervals of the form[

4nπ + κR2
t , 4(n + 1)π − κR2

t

]
, k ∈ Z.

For a good choice of κ, this doesn’t occur for Rt too close of π. Then we don’t
need to introduce τη to obtain a successful coupling.

Remark 5. Note that this coupling is co-adapted but not Markovian: in fact, if
Wt ∈]κ − ε, κ[ and we don’t know the past of the strategy, we can’t choose if we
need to continue with step 2 or step 3.

5 One Non Co-adapted Successful Coupling

As explained in the introduction, co-adapted couplings are not, in general, max-
imal. Moreover the rate of convergence of the previous coupling is not easy to
estimate. We introduce here another coupling, not co-adapted, but such that
P(τ > t) is at most exponentially decreasing. This coupling is inspired by the
works of Banerjee, Gordina and Mariano [2], using Brownian bridges couplings.
This time we are going to directly couple the cylindrical coordinates of the Brow-
nian motion in SU(2,C):

⎧⎪⎨
⎪⎩

dϕt = dB1
t + cot(ϕt)dt

dθt = 1
sin(ϕt)

dB2
t

dzt = tan
(

ϕt

2

)
dB2

t

and

⎧⎪⎪⎨
⎪⎪⎩

dϕ′
t = dB1′

t + cot(ϕ′
t)dt

dθ′
t =

1
sin(ϕ′

t)
dB2′

t

dz′
t = tan

(
ϕ′

t

2

)
dB2′

t

.

Theorem 3. 1. We denote by ρ0 the distance between (ϕ0, θ0) and (ϕ′
0, θ

′
0).

Supposing that ρ0 = 0, there exists a successful coupling, not co-adapted, such
that P(τ > t) has an exponential decay in t.

2. If ρ �= 0, using first a reflection coupling to obtain ρ = 0 and then the coupling
above, we obtain the same result.

Proof. The details of the proof will be found in [7]. Supposing that (ϕ0, θ0) =
(ϕ′

0, θ
′
0), the main idea of this coupling is to divide the time in intervals of

constant length and to define ((ϕt, θt), (ϕ′
t, θ

′
t)) such that the two processes are

equal at the end of each interval. Let us explain the method on the first interval
[0, T ].
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– We take B1
t = B1′

t , this way ϕt and ϕ′
t will always be equal.

– We can now consider θt and θ′
t as two time-changed Brownian motions Cσ(t)

and C ′
σ(t) with σ(t) =

∫ t

0
1

sin2(ϕs)
ds. We can decompose Ct (resp C ′

t) using a

Brownian bridge Bbr (resp Bbr′
) on [0, σ(T )] and G (resp G′) an independent

Gaussian variable with mean zero and variance σ(T ):

Cσ = Bbr
σ +

σ

σ(T )
G and C ′

σ = Bbr′
σ +

σ

σ(T )
G′.

Choosing G = G′, we obtain Cσ(T ) = C ′
σ(T ) and so (ϕt, θt) and (ϕ′

t, θ
′
t) meet

at time T .

Then we have to choose a good coupling for the Brownian bridges
(
Bbr

σ , Bbr′
σ

)
so that zT = z′

T mod (4π) with a non zero probability. This way, reproducing
this coupling on each interval of time, the Brownian motions on SU(2,C) finally
meet at the end of one of the interval which lead to an exponential decreasing
coupling rate.

We note that we need to know the path of ϕ on all the interval [0, T ] to know
the value of the change of time σ(T ) and to construct the coupling

(
Bbr

σ , Bbr′
σ

)
.

Thus, the obtained coupling is not co-adapted.

Remark 6. The first part of theorem (3) is still true in the case of SL(2,R). How-
ever, as there is no successful coupling of Brownian motions on the hyperbolic
plane, neither on SL(2,R), the second part is false.

Remark 7. Note that the above coupling on SU(2,C) is not a direct general-
isation of the coupling of Banerjee, Gordina and Mariano on the Heisenberg
group [2]: in their work, Brownian bridges are used to couple Cartesian coordi-
nates on R2. Our strategy, which uses spherical coordinates of the sphere, can
also be directly performed on the Heisenberg group using polar coordinates and
leads to a slightly different coupling.
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Abstract. In this article, we study a semi-discrete finite volume scheme
for fractional conservation laws perturbed with Lévy noise. With the help
of bounded variation estimates and Kružkov’s theory we provide a rate
of convergence result.
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1 Introduction

We are interested in analyzing a finite difference scheme for the following Cauchy
problem

du(t, x)−divf(u(t, x)) dt + Lλ[u(t, ·)](x) dt

= σ(u(t, x)) dW (t) +
∫

|z|>0

ψ(u(t, x); z) Ñ(dz, dt), in ΠT , (1)

whose well-posedness was established in [3]. Here u(0, x) = u0(x), u0 : Rd �→ R

is the given initial function, ΠT := (0, T ) × R
d with T > 0 fixed, f : R �→ R

d is
a given flux function. We refer the reader to Sect. 2 for the list of assumptions.
The operator Lλ[u] denotes the fractional Laplacian (−Δ)λ[u] of order λ ∈ (0, 1),
which is defined as Lλ[ϕ](x) := cλ P.V.

∫
|z|>0

ϕ(x)−ϕ(x+z)
|z|d+2λ dz, for some constant

cλ > 0 and a sufficiently regular function ϕ. Here P.V. stands for principal value.
Furthermore, W (t) is a real-valued Brownian noise and Ñ(dz, dt) = N(dz,dt)−
ν(dz)dt , where N is a Poisson random measure on R × (0,∞) with intensity
measure ν(dz) on |z| > 0.

Conservation laws, such as transport type equations or the most celebrated
example of Euler equations play an important role in stochastic geometric
mechanics. They provide fundamental principles that govern the dynamics of
physical systems. It is also important to study the behaviour of systems that
have random fluctuations in energy, momentum and angular momentum. Non-
local integro differential PDEs as the ones considered here are known for their

Supported by FCT project no. UIDB/00208/2020.

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
F. Nielsen and F. Barbaresco (Eds.): GSI 2023, LNCS 14071, pp. 601–609, 2023.
https://doi.org/10.1007/978-3-031-38271-0_60

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-38271-0_60&domain=pdf
http://orcid.org/0000-0001-5317-8484
https://doi.org/10.1007/978-3-031-38271-0_60


602 N. Bhauryal

applications in different areas of research, for e.g., in mathematical finance [5],
where it is necessary to study efficient numerical schemes to approximate prob-
lem (1).

Finite volume schemes (FVSs) for stochastic conservation laws have been
analyzed by many authors see [1,8] and with Lévy noise by [2,7]. Recently, for
fractional conservation laws with Brownian noise, authors in [6] gave a rate of
convergence result for semi-discrete FVS. This article aims to generalize their
result for Lévy noise. We propose a semi-discrete FVS and show that the numer-
ical solution converges to entropy solution of (1) in L1 norm and establish a rate
of convergence result depending on the fractional parameter λ. This matches
with the result in deterministic setup [4]. We first introduce the notions and
scheme in Sect. 2 and prove a priori estimates on numerical solution in Sect. 3
which finally helps use to attain rate of convergence result whose proof can be
found in Sect. 4.

2 Technical Framework and Statement of the Main
Result

The letter C denotes generic constant and for each r > 0, we write Lλ[ϕ] :=
Lλ,r[ϕ] + Lr

λ[ϕ], where Lλ,r[ϕ](x) := cλ P.V.
∫

|z|≤r
ϕ(x)−ϕ(x+z)

|z|d+2λ dz,Lr
λ[ϕ](x) :=

cλ

∫
|z|>r

ϕ(x)−ϕ(x+z)
|z|d+2λ dz. The function η(x) denotes a C2 approximation of |x|

and φ(t, x) denotes a test function. In the rest of the paper, we consider the
following assumptions:

A.1 The initial function u0 is a deterministic function in L2(Rd) ∩ L∞(Rd) ∩
BV (Rd).

A.2 The flux function f = (f1, f2, · · · , fd) : R �→ R
d is a Lipschitz continuous

function with fk(0) = 0, for all 1 ≤ k ≤ d.
A.3 The map σ is Lipschitz and have compact support, i.e. ∃ M > 0 s.t. σ(u) = 0

for |u| > M with σ(0) = 0.
A.4 The map ψ has compact support with ψ(u) = 0 for |u| > M . There exists

κ > 0, s.t., for all u, v,∈ R

|ψ(u; z) − ψ(v; z)| ≤ κ|u − v|(|z| ∧ 1) and ψ(0; z) = 0 for all z ∈ R.

The measure ν is singular at z = 0 and satisfies
∫

|z|>0
(1 ∧ |z|2)ν(dz) < ∞.

Let Δx denote the spatial discretization parameter and set xα = αΔx, for
α ∈ Z

d. Following [4], let us define the spatial grid cells as R0 =
[ −

Δx/2,Δx/2
)d

, Rα = xα + R0, where xj±1/2 = xj ± Δx
2 , for j ∈ Z and

α = (α1, α2, · · · , αd) ∈ Z
d.

For (uα)α∈Zd , set uΔx =
∑

α∈Zd uα1Rα
(1A denotes the characteristic func-

tion of the set A). Furthermore, the BV semi-norm is defined by

|uΔx(t, ·)|BV = (Δx)d−1
∑

α∈Zd

d∑
i=1

|uα+ei
(t) − uα(t)| ,
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where {e1, e2, · · · ed} denotes the standard basis of R
d. Finally, we denote by

D±
k the discrete forward and backward differences in space, i.e., D±

k uΔx =∑
α∈Zd D±

k uα1Rα
=

∑
α∈Zd ±uα±ek

−uα

Δx 1Rα
. We denote by maximum (resp. min-

imum) of two reals a and b by a ∨ b (resp. a ∧ b). Following the techniques in
[4,6], we propose the following FVS

duα(t) +
d∑

k=1

D−
k Fk(uα, uα+ek

)dt + L̂λ[uΔx(t, ·)]αdt

= σ(uα(t)) dW (t) +
∫

|z|>0

ψ(uα(t); z) Ñ(dz, dt), t > 0, α ∈ Z
d, (2)

where uα(0) = 1
(Δx)d

∫
Rα

u0(x)dx, α ∈ Z
d, Fi denotes a monotone numerical flux

corresponding to fi, for i = 1, 2, · · · , d. The discretization of the non-local term
is as follows for any uΔx =

∑
α∈Zd uα1Rα

, L̂λ[uΔx] =
∑

α∈Zd L̂λ[uΔx]α1Rα
:=

1
(Δx)d

∑
α,β∈Zd Gα,βuβ1Rα

, where,

L̂λ[uΔx]α :=
1

(Δx)d

∫
Rα

L
Δx
2

λ [uΔx](x) dx

= cλ
1

(Δx)d

∫
Rα

[ ∫
|z|> Δx

2

uΔx(x) − uΔx(x + z)

|z|d+2λ
dz

]
dx

=
∑

β∈Zd

uβ
1

(Δx)d

[ ∫
Rα

cλ

∫
|z|> Δx

2

1Rβ
(x) − 1Rβ

(x + z)

|z|d+2λ
dzdx

]

︸ ︷︷ ︸
:=Gα,β

=
∑

β∈Zd

1

(Δx)d
Gα,βuβ .

Remark 1. Thanks to the assumptions on the data (A.1)-(A.3), the solvability
of (2) follows from a classical argument of stochastic differential equations with
Lipschitz non-linearities (see [9, Chapter 9]).

Remark 2. (Discrete entropy inequality [3, Definition 1.3])

0 ≤
∫
Rd

η(uΔx(0, x)) φ(0, x) dx +

∫
ΠT

η(uΔx(t, x)) ∂tφ(t, x) dt dx (3)

−
∫

ΠT

η′(uΔx(t, x))
1

Δx

d∑
i=1

[
Fi(uΔx(t, x), uΔx(t, x + Δxei))

− Fi(uΔx(t, x − Δxei), uΔx(t, x))
]
φ(t, x) dt dx

−
∫

ΠT

η(uΔx(t, x))L
Δx
2

λ,r [φ(t, ·)](x) + Lr
λ[uΔx(t, ·)](x)φ(t, x) η′(uΔx(t, x)) dt dx

+

∫
ΠT

σ(uΔx(t, x))η′(uΔx(t, x))φ(t, x)dW (t) dx

+
1

2

∫
ΠT

σ2(uΔx(t, x))η′′(uΔx(t, x))φ(t, x) dt dx

+

∫
ΠT

∫
|z|>0

∫ 1

0

ψ(uΔx(t, x); z)η′(uΔx(t, x) + τψ(uΔx(t, x); z))φ(t, x)dτÑ(dz, dt)dx
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+

∫
ΠT

∫
|z|>0

∫ 1

0

(1−τ)ψ2((uΔx); z)η′′(uΔx(t, x)+τψ(uΔx(t, x); z))φ(t, x)dτν(dz)dtdx

where φ = 1
Δx

∑
α∈Zd

(∫
Rα

ψ(t, x)dx
)
1Rα

(x).

Theorem 1. (Main Theorem) Let u(t, x) be a BV entropy solution to the prob-
lem (1), then there exists a constant C, independent of Δx, s.t. for all t ∈ (0, T ],

E

[∫
Rd

|uΔx(t, x) − u(t, x)| dx

]
≤ C

⎧⎨
⎩

√
Δx, if λ < 1

2√
Δx| log Δx|, if λ = 1

2
(Δx)1−λ, if λ > 1

2

provided the initial error satisfies E‖uΔx(0, x) − u0(x)‖L1(Rd) = O(
√

Δx).

Remark 3. The convergence of approximate solutions uΔx to the entropy solution
u of (1) in the Young measure sense gives an alternate existence proof of solution
for (1).

3 Estimates on Approximating Sequence uΔx

In this section, we derive a priori estimates for uΔx which play an essential role
in establishing the proof of the main theorem.

Definition 1. A pair (η, ζ) is called an entropy-entropy flux pair if η ∈ C2(R),
η ≥ 0 and ζ is a vector field satisfying ζ ′(r) = β′(r)f ′(r) for all r. This entropy-
entropy flux pair (η, ζ) is called convex if η′′ ≥ 0.

3.1 Uniform Moment Estimates

Lemma 1. (Discrete entropy inequality) For a given convex entropy-entropy
flux pair (η, ζ), where η is C2 and even convex function, the approximate solution
uα(t) generated by the finite volume scheme (2) satisfies the following cell entropy
inequality

dη(uα(t)) +
1

Δx

∑
β∈Zd

η′(uα(t))Gα,β uβ(t) dt

+
d∑

i=1

|η′(uα(t) − k)|
Δx

((Fi(uα(t) ∨ k, uα+ei
∨ k) − Fi(uα−ei

(t) ∨ k, uα ∨ k))

− (Fi(uα(t) ∧ k, uα+ei
∧ k) − Fi(uα−ei

(t) ∧ k, uα ∧ k))) dt

≤ σ(uα(t))η′(uα(t)) dW (t) +
1
2
σ2(uα(t))η′′(uα(t)) dt

+
∫

|z|>0

(η(uα(t) + ψ(uα(t); z)) − η(uα(t))) Ñ(dz, dt)

+
∫

|z|>0

∫ 1

τ=0

(1 − τ)ψ2(uα(t); z)η′′(uα(t) + τψ(uα(t); z))dτν(dz)dt,

for all α ∈ Z
d and almost all ω ∈ Ω.
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Proof. This proof follows from an application of Itô-Lévy formula to η(uα(t)−k)
and estimating the flux term as in [6, Lemma 3.1]. ��

We are now in a position to prove uniform moment estimates. In light of
this, we have the following lemma:

Lemma 2. The approximate solutions uΔx(t, x) generated by the finite difference
scheme (2) satisfy the following uniform moment estimates for p ∈ N and t ≥ 0

sup
Δx>0

sup
0≤t≤T

E

[
||uΔx(t, ·)||pp

]
≤ M

p−1
p ‖u0‖1/p

L1(Rd)
,

for p = ∞, we have ‖uΔx‖L∞(Rd) ≤ M .

Proof. We put k = 0 in Lemma 1 and take expectation to write

E[η(uα(t))] − η(uα(0)) +
1

Δx

∫ t

0

∑
β∈Zd

E [η′(uα(s))Gα,β uβ(s)] ds

+
d∑

i=1

|η′(uα(s))|
Δx

∫ t

0

E
([

Fi(u+
α (s), u+

α+ei
(s)) − Fi(u+

α−ei
(s), u+

α (s))
]

− [
Fi(−u−

α (s),−u−
α+ei

(s)) − Fi(−u−
α−ei

(s),−u−
α (s))

])
ds

≤1
2

∫ t

0

E
[
σ2(uα(s))η′′(uα(s))

]
ds

+
∫ t

0

∫
|z|>0

∫ 1

λ=0

E(1 − λ)ψ2(uα(s); z)η′′(uα(s) + λψ(uα(s); z))dλν(dz)ds,

(4)

where the martingale terms vanish due to expectation. We now multiply the
inequality (4) by Δxd and sum over all α ∈ Z

d to write

∑
α∈Zd

(E[η(uα(t))] − η(uα(0))) +
1

Δx

∫ t

0

∑
α∈Zd

∑
β∈Zd

E[η′(uα(s))Gα,β uβ(s)] ds

+
1

Δx

d∑
i=1

∑
α∈Zd

E

[ ∫ t

0
|η′(uα(s))|

((
Fi[u

+
α (s), u+

α+ei
(s)] − Fi[u

+
α−ei

(s), u+
α (s)]

)

−
(
Fi[−u−

α (s), −u−
α+ei

(s)] − Fi[−u−
α−ei

(s), −u−
α (s)]

))
ds

]

≤ 1

2

∫ t

0

∑
α∈Zd

E[σ2(uα(s))η
′′(uα(s))] ds

+

∫ t

0

∫
|z|>0

∫ 1

λ=0

∑
α∈Zd

E(1 − λ)ψ2(uα(s); z)η
′′(uα(s) + λψ(uα(s); z))dλν(dz)ds.
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Recall that η = ηδ is the convex even function satisfying ηδ(0) = 0 and η′
δ(x) =

min(1, x
δ ) for x > 0. We pass to the limit as δ goes to zero, one gets for any t,

∑
α∈Zd

E|uα(t)| +
1

Δx

d∑
i=1

∑
α∈Zd

E

∫ t

0

{(
Fi[u+

α (s), u+
α+ei

(s)] − Fi[u+
α−ei

(s), u+
α (s)]

)

−
(
Fi[−u−

α (s),−u−
α+ei

(s)] − Fi[−u−
α−ei

(s),−u−
α (s)]

)}
ds ≤

∑
α∈Zd

|uα(0)|.

Multiplying this by (Δx)d gives (Δx)d
∑

α∈Zd E|uα(t)| ≤ (Δx)d
∑

α∈Zd |uα(0)|
and thus supΔx>0 sup0≤t≤T E

[
||uΔx(t, ·)||L1(Rd)

]
≤ ||u0||L1(Rd). A similar esti-

mate holds for p ≥ 2 by choosing ηδ converging to |·|p
p instead and the general

case p ≥ 1 then follows from an interpolation argument. Finally, the maximum
principle follows from [6, Lemma 3.2] and [7, Lemma 3.3]. ��

3.2 Spatial Bounded Variation

Lemma 3. The finite volume approximations uΔx(t, x) satisfies
E

[
|uΔx(t, ·)|BV (Rd)

]
≤ C E

[
|u0(·)|BV (Rd)

]
for all t > 0.

Proof. Making use of Eqn. (2) and Itô-Lévy’s formula, we estimate η(uα+ej
−uα)

and write after taking expectation

E
[
η(uα+ej

− uα)(t)
] − E

[
η(uα+ej

− uα)(0)
]

+
1

(Δx)d

∑
β∈Zd

E

[∫ t

0

η′(uα+ej
− uα)(s)Gα,β [uβ+ej

− uβ ](s)ds

]

= −
d∑

i=1

E

[ ∫ t

0

η′(uα+ej
− uα)(s)

Δx
[Fi(uα+ej

, uα+ei+ej
) − Fi(uα−ei+ej

, uα+ej
)

− Fi(uα, uα+ei
) + Fi(uα−ei

, uα)](s) ds

]

+
1
2
E

[∫ t

0

η′′(uα+ej
− uα)(s)[σ(uα+ej

) − σ(uα)](s)ds

]

+ E

[∫ t

0

∫
|z|>0

∫ 1

0

(1 − τ)η′′((uα+ej
− uα)(s) + τ(ψ(uα+ej

) − ψ(uα))(s; z)

× (
ψ(uα+ej

(s); z) − ψ(uα(s); z)
)2 dτν(dz)ds

]

Using Lebesgue’s theorem, the last two terms coming from two noises would
vanish as ηδ → | · |, so one can pass to the limit in ηδ, and the above equality
holds for the limit of ηδ. After summing over α ∈ Z

d one notices (see [6, Lemma
3.3]) that the flux term can be written as a telescopic sum and therefore will



A Finite Volume Scheme for Fractional Conservation Laws 607

vanish. The fractional term will have no contribution as well using the properties
of Gα,β. Finally, after summing over j, we have

E

⎡
⎣ d∑

j=1

∑
α∈Zd

∣∣uα+ej
(t) − uα(t)

∣∣
⎤
⎦ ≤ E

⎡
⎣ d∑

j=1

∑
α∈Zd

∣∣uα+ej
(0) − uα(0)

∣∣
⎤
⎦ .

This allows us to conclude that, E
[
TVx(uΔx(t))

]
≤ E

[
TVx(u0)

]
, for all t > 0.

Along with the L1 estimate from Lemma 2, we conclude the proof. ��

4 Proof of the Theorem

Proof. For ε > 0, we consider the following parabolic perturbation of (1) (for
existence-uniqueness result we refer the reader to [3, Theorem 2.5])

duε(t, x) − εΔuε(t, x) dt + Lλ[A(uε(t, ·))](x) dt − divf(uε(t, x)) dt

= σ(uε(t, x)) dW (t). (5)

Let ρ and � be the standard mollifiers onR andR
d respectively such that supp (ρ) ⊂

[−1, 0] and supp (�) = B1(0). We define ρδ0(r) = 1
δ0

ρ( r
δ0

) and �δ(x) = 1
δd �(x

δ ),
where δ and δ0 are two positive parameters. Given a non-negative test function ψ ∈
C1,2

c ([0,∞) × R
d) and two positive constants δ and δ0, we define

φδ,δ0(t, x, s, y) = ρδ0(t − s) �δ(x − y)φ(t, x). (6)

Define another mollifier ς on R with support in [−1, 1] and ςl(r) = 1
l ς(

r
l ), for

l > 0. Our aim is to estimate the L1 difference between uΔx(t, x) and the entropy
solution u(t, x), and for this we use Kružkov’s doubling argument.

First, we multiply the entropy inequality obtained (with test function (6)) by
applying Itô-Lévy formula to (5) by ς(uΔy(s, y) − k). Next, we multiply (3) by
ς(uε(t, x) − k) and add these two inequalities and integrate the final result wrt
all the variables involved. We then follow the analysis done in [6, Sec. 4] and [7,
Sec. 4] to pass to the limits in δ0, η and l to observe that the contribution from
the noise terms is zero and the other terms contribute the following

0 ≤E

[∫
Rd

∫
Rd

∣∣uΔy(0, y) − u0(x)
∣∣ �δ(x − y)φ(0, x) dy dx

]

+ E

[∫
ΠT

∫
Rd

∣∣u(t, x) − uΔy(t, y)
∣∣ �δ(x − y) ∂tφ(t, x) dy dx dt

]

+ E

[∫
ΠT

∫
Rd

F
(
u(t, x), uΔy(t, y)

) · ∇φ(t, x)�δ(x − y) dy dx dt

]
+ C

Δy

δ

+ E

[∫
ΠT

∫
Rd

|uΔy(t, y) − u(t, x)|LΔy
λ [φ(t, ·)](x)�δ(x − y) dy dx dt

]
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+ C
(Δy)2−2λ

δ
+

Cλ

δ
‖φ‖∞‖u0‖BV

⎧⎪⎨
⎪⎩

Δy, if λ < 1/2
Δy| ln Δy|, if λ = 1/2
Δy2(1−λ), if λ > 1/2

+ ‖u0‖BV

∫ T

0

(
‖∇φ(t, ·)‖∞ +

C

δ
‖φ(t, ·)‖∞

)∫
|z|≤Δy

|z|2 dμλ(z) dt.

With a particular choice of φ = ψt
h(s) (ψR �ρ)(x) for some mollifier ρ and where

ψt
h(s) =

⎧⎪⎪⎨
⎪⎪⎩

1, if s ≤ t,

1 − s−t
h , if t ≤ s ≤ t + h, ψR(x) = min

(
1, Ra

|x|a
)

0, if s ≥ t + h.

we pass to the limits as R goes to infinity and h goes to zero to conclude

E

[ ∫
Rd

∣∣u(t, y) − uΔy(t, y)
∣∣ dy

]
≤ C

⎧⎪⎨
⎪⎩

√
Δy, if λ < 1/2,√
Δy| ln Δy|, if λ = 1/2,

Δy1−λ, if λ > 1/2,

given that the initial error satisfies E‖uΔy(0, y) − u0(y)‖L1(Rd) ≤ √
Δy. ��
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8. Kröker, I., Rohde, C.: Finite volume schemes for hyperbolic balance laws with mul-
tiplicative noise. Appl. Numer. Math. 62(4), 441–456 (2012). https://doi.org/10.
1016/j.apnum.2011.01.011

9. Peszat, S., Zabczyk, J.: Stochastic partial differential equations with Lévy noise,
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Abstract. In this work we analyze the Total Variation-Wasserstein min-
imization problem. We propose an alternative form of deriving optimality
conditions from the approach of [8], and as result obtain further regular-
ity for the quantities involved. In the sequel we propose an algorithm to
solve this problem alongside two numerical experiments.

Keywords: Total variation · Optimal transport · Image analysis

1 Introduction

The Wasserstein gradient flow of the total variation functional has been stud-
ied in a series of recent papers [2,4,8], for applications in image processing. In
the present paper, we revisit the work of Carlier & Poon [8] and derive Euler-
Lagrange equations for the problem: given Ω ⊂ R

d open, bounded and convex,
τ > 0 and an absolutely continuous probability measure ρ0 ∈ P(Ω)

inf
ρ∈P(Ω)

TV(ρ) +
1
2τ

W 2
2 (ρ0, ρ), (TV-W)

where τ is interpreted as a time discretization parameter for an implicit Euler
scheme, as we shall see below.

The total variation functional of a Radon measure ρ ∈ M(Ω) is defined as

TV(ρ) = sup
{∫

Ω

divzdρ : z ∈ C1
c

(
Ω;RN

)
, ‖z‖∞ ≤ 1

}
, (TV)

which is not to be mistaken in this paper with the total variation measure |μ|
of a Radon measure μ or its total variation norm |μ|(Ω). We call BV(Ω) the
subspace of functions u ∈ L1(Ω) whose weak derivative Du is a finite Radon
measure. It can also be characterized as the L1 functions such that TV(u) < ∞,
where TV(u) should be understood as in (TV) with the measure uLd Ω, and it
holds that TV(u) = |Du|(Ω). As BV(Rd) ↪−→ L

d
d−1 (Rd), solutions to (TV-W) are

also absolutely continuous w.r.t. the Lebesgue measure. Therefore, w.l.o.g. we
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can minimize on L
d

d−1 (Ω), which is a reflexive Banach space. In addition, a
function ρ will have finite energy only if ρ ∈ P(Ω).

The data term is given by the Wasserstein distance, defined through the value
of the optimal transportation problem (see [19])

W 2
2 (μ, ν) def.= min

γ∈Π(μ,ν)

∫
Ω×Ω

|x − y|2dγ = sup
ϕ,ψ∈Cb(Ω)

ϕ⊕ψ≤|x−y|2

∫
Ω

ϕdμ +
∫

Ω

ψdν, (1)

where the minimum is taken over all the probability measures on Ω × Ω whose
marginals are μ and ν. An optimal pair (ϕ,ψ) for the dual problem is referred
to as Kantorovitch potentials.

Using total variation as regularization was suggested in [18] with a L2 data
term for the Rudin-Osher-Fatemi problem

inf
u∈L2(Ω)

TV(u) +
1
2λ

‖u − g‖2L2(Ω) , (ROF)

see [6] for an overview. Other data terms were considered to better model the
oscillatory behavior of the noise [15,17]. More recently Wasserstein energies have
shown success in the imaging community [12], the model (TV-W) being used for
image denoising in [2,4].

Existence and uniqueness of solutions for (TV-W) follow from the direct
method in the calculus of variations, and the strict convexity of W 2

2 (ρ0, ·) when-
ever ρ0 is absolutely continuous, see [19, Prop. 7.19]. However, it is not easy
to compute the subdifferential of the sum, which makes the derivation of the
Euler-Lagrange equations not trivial.

In [8], the authors studied the gradient flow scheme defined by the successive
iterations of (TV-W), and following the seminal work [14] they showed that,
in dimension 1 as the parameter τ → 0, the discrete scheme converges to the
solution of a fourth order PDE. They used an entropic regularization approach,
followed by a Γ -convergence argument, to derive an Euler-Lagrange equation,
which states that there exists a Kantorovitch potential ψ1 coinciding with some
div z ∈ ∂ TV(ρ1) in the set {ρ1 > 0}. On {ρ1 = 0}, these quantities are related
through a bounded Lagrange multiplier β associated with the nonnegativity
constraint ρ1 ≥ 0.

In this work we propose an alternative way to derive the Euler-Lagrange
equations which relies on the well established properties of solutions of (ROF)
and shows further regularity of the quantities div z, β.

Theorem 1. For any ρ0 ∈ L1(Ω) ∩ P(Ω), let ρ1 be the unique minimizer
of (TV-W). The following hold.

1. There is a vector field z ∈ L∞(Ω;Rd) with div z ∈ L∞(Ω) and a bounded
Lagrange multiplier β ≥ 0 such that
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⎧⎪⎪⎪⎨
⎪⎪⎪⎩

div z +
ψ1

τ
= β, a.e. in Ω

z · ν = 0, on ∂Ω
βρ1 = 0, a.e. in Ω

z · Dρ1 = |Dρ1|, ‖z‖∞ ≤ 1,

(TVW-EL)

where ψ1 is a Kantorovitch potential associated with ρ1.
2. The Lagrange multiplier β is the unique solution to (ROF) with λ = 1 and

g = ψ1/τ .
3. The functions div z, ψ1 and β are Lipschitz continuous.

2 The Euler-Lagrange Equation

Let X and X	 be duality-paired spaces and f : X → R ∪ {∞} be a convex
function, the subdifferential of f on X is given by

∂Xf(u) def.= {p ∈ X	 : f(v) ≥ f(u) + 〈p, v − u〉 , for all v ∈ X} . (2)

In order to derive optimality conditions for (TV-W) we will need some properties
of the subdifferential of TV and of (ROF).

Proposition 1. [3,6,16] If u ∈ BV(Ω) ∩ L2(Ω), then the subdifferential of TV
in L2(Ω) at u assumes the form

∂L2 TV(u) =
{

p ∈ L2(Ω) :
p = −div z, z ∈ H1

0 (div;Ω),
‖z‖∞ ≤ 1, |Du| = z · Du

}

If in addition u solves (ROF), then

1. u+ solves (ROF) with the constraint u ≥ 0;
2. it holds that

0 ∈ u − g

λ
+ ∂L2 TV(u), (3)

and conversely, if u satisfies (3), u minimizes (ROF);
3. for Ω convex, if g is uniformly continuous with modulus of continuity ω, then

u has the same modulus of continuity.

In the previous proposition, we recall that H1
0 (div;Ω) denotes the closure of

C∞
c (Ω;Rd) with respect to the norm ‖z‖2H1(div) = ‖z‖2L2(Ω) + ‖div z‖2L2(Ω).

Unless otherwise stated, we consider in the sequel X = L
d

d−1 (Ω), X	 = Ld(Ω)
and we drop the index X in the notation ∂X . Under certain regularity conditions,
one can see the Kantorovitch potentials as the first variation of the Wasserstein
distance, [19]. As a consequence, Fermat’s rule 0 ∈ ∂

(
W 2

2 (ρ0, ·) + TV(·)) (ρ1)
assumes the following form.

Lemma 1. Let ρ1 be the unique minimizer of (TV-W), then there exists a Kan-
torovitch potential ψ1 associated to ρ1 such that

− ψ1

τ
∈ ∂

(
TV + χP(Ω)

)
(ρ1). (4)
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Proof. For simplicity, we assume τ = 1. Take ρ ∈ BV(Ω) ∩ P(Ω) and define
ρt

def.= ρ + t(ρ1 − ρ). Since Ω is compact, the sup in (1) admits a maximizer [19,
Prop. 1.11]. Let ϕt, ψt denote a pair of Kantorovitch potentials between ρ0 and
ρt. From the optimality of ρ1 it follows

1

2
W 2

2 (ρ0, ρ1) + TV(ρ1) ≤
∫

Ω
ϕtdρ0 +

∫
Ω

ψtdρt +TV(ρt)

≤
∫

Ω
ϕtdρ0 +

∫
Ω

ψtdρ1 +TV(ρ1) + (1 − t)

(∫
Ω

ψtd(ρ − ρ1) + TV(ρ) − TV(ρ1)

)

≤ 1

2
W 2

2 (ρ0, ρ1) + TV(ρ1) + (1 − t)

(∫
Ω

ψtd(ρ − ρ1) + TV(ρ) − TV(ρ1)

)
.

Hence, −ψt ∈ ∂
(
TV + χP(Ω)

)
(ρ1) for all t ∈ (0, 1). Notice that as the optimal

transport map from ρ0 to ρt is given by Tt = id−∇ψt and assumes values in the
bounded set Ω, the family (ψt)t∈[0,1] is uniformly Lipschitz so that by Arzelà-
Ascoli’s Theorem ψt converges uniformly to ψ1 as t goes to 1 (see also [19,
Thm. 1.52]). Therefore, −ψ1 ∈ ∂

(
TV + χP(Ω)

)
(ρ1). �

With these results we can prove Theorem 1.

Proof (of Theorem 1). Here, to simplify, we still assume τ = 1. The subdifferen-
tial inclusion (4) is conceptually the Euler-Lagrange equation for (TV-W), how-
ever it can be difficult to verify the conditions for direct sum between subdiffer-
entials and give a full characterization. Therefore, for some arbitrary ρ ∈ M+(Ω)
and t > 0, set

ρt =
ρ1 + t(ρ − ρ1)

1 + tα
, where α =

∫
Ω

d(ρ − ρ1).

Now ρt is admissible for the subdifferential inequality and using the positive
homogeneity of TV we can write

TV(ρ1) −
∫

Ω

ψ1d (ρt − ρ1) ≤ TV(ρ1) + t (TV(ρ) − TV(ρ1))
1 + tα

.

After a few computations we arrive at TV(ρ) ≥ TV(ρ1) +
∫

Ω
(C − ψ1)d(ρ − ρ1),

where C = TV(ρ1) +
∫

Ω
ψ1dρ1. Notice that (φ + C,ψ − C) remains an optimal

potential. So we can replace ψ1 by ψ1 − C, and obtain that for all ρ ≥ 0 the
following holds

TV(ρ) ≥ TV(ρ1) +
∫

Ω

−ψ1d(ρ − ρ1), with TV(ρ1) =
∫

Ω

−ψ1dρ1. (5)

In particular, this means −ψ1 ∈ ∂
(
TV + χM+(Ω)

)
(ρ1) and ρ1 is optimal for

inf
ρ≥0

E(ρ) := TV(ρ) +
∫

Ω

ψ1(x)ρ(x)dx. (6)

This suggests a penalization with an L2 term e.g.

inf
u∈L2(Ω)

Et(u) := TV(u) +
∫

Ω

ψ1(x)u(x)dx +
1
2t

∫
Ω

|u − ρ1|2dx (7)
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which is a variation of (ROF) with g = ρ1 − tψ1. In order for (7) to make sense,
we need ρ1 ∈ L2(Ω), which is true if ρ0 is L∞ since then [8, Thm. 4.2] implies
ρ1 ∈ L∞. Suppose for now that ρ0 is a bounded function.

Let ut denote the solution of (7), from Prop. 1 if ut solves (7), then u+
t solves

the same problem with the additional constraint that u ≥ 0, see [5, Lemma A.1].
As ρ1 ≥ 0 we can compare the energies of u+

t and ρ1 and obtain the following
inequalities

E(ρ1) ≤ E(u+
t ) and Et(u+

t ) ≤ Et(ρ1).

Summing both inequalities yields
∫

Ω

|u+
t − ρ1|2dx ≤ 0, therefore u+

t = ρ1 a.e. on Ω. (8)

In particular, we also have that ut ≤ ρ1. But as ut solves a (ROF) problem, the
optimality conditions from Prop. 1 give

βt − ψ1 ∈ ∂L2 TV(ut), where βt
def.=

ρ1 − ut

t
≥ 0. (9)

Notice from the characterization of ∂L2 TV(·) that ∂L2 TV(u) ⊂ ∂L2 TV(u+).
Since u+

t = ρ1, we have that

βt − ψ1 ∈ ∂L2 TV(ρ1), (10)

which proves (TVW-EL).
Now we move on to study the family (βt)t>0. Since ρ1 = u+

t , by definition
βt = u−

t /t and using the fact that ∂L2 TV(u) ⊂ ∂L2 TV(u−) in conjunction with
Eq. (9), it holds that

ψ1 − βt ∈ ∂L2 TV(βt). (11)

But then, from Prop. 1, βt solves (ROF) with g = ψ1 and λ = 1. As this problem
has a unique solution, the family {βt}t>0 = {β} is a singleton.

Since Ω is convex, and we know that the Kantorovitch potentials are Lipschitz
continuous, cf. [19], so β, as a solution of (ROF) with Lipschitz data g = ψ1, is
also Lipschitz continuous with the same constant, following [16, Theo. 3.1].

But from (10) and the characterization of the subdifferential of TV, there is
a vector field z such that z · Dρ1 = |Dρ1| such that

β − ψ1 = div z,

and as a consequence div z is also Lipschitz continuous, with constant at most
twice the constant of ψ1.

In the general case of ρ0 ∈ L1(Ω), define ρ0,N
def.= cN (ρ0 ∧ N) for N ∈ N,

where cN is a renormalizing constant. Then ρ0,N ∈ L∞(Ω) and ρ0,N
L1

−−−−→
N→∞

ρ0.
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Let ρ1,N denote the unique minimizer of (TV-W) with data term ρ0,N , we can
assume that ρ1,N w-� converges to some ρ̃. Then for any ρ ∈ P(Ω) we have

TV(ρ1,N ) +
1
2τ

W 2
2 (ρ0,N , ρ1,N ) ≤ TV(ρ) +

1
2τ

W 2
2 (ρ0,N , ρ).

Passing to the limit on N → ∞ we have that ρ̃ is a minimizer and from unique-
ness it must hold that ρ̃ = ρ1.

Hence, consider the functions zN , ψ1,N , βN that satisfy (TVW-EL) for ρ1,N .
Up to a subsequence, we may assume that zN converges weakly-� to some z ∈
L∞(Ω;Rd). Since ψ1,N , βN and div zN are Lipschitz continuous with the same
Lipschitz constant for all N , by Arzelà-Ascoli, we can assume that ψ1,N , βN

and div zN converge uniformly to Lipschitz functions ψ1, β,div z = β − ψ1. In
addition, passing to the limit in (11), we find that β solves (ROF) for λ = 1 and
g = ψ1.

Since βN converges uniformly and ρ1,N converges w-� we have

0 = lim
N→∞

∫
Ω

βNρ1,Ndx =
∫

Ω

βρ1dx,

and hence βρ1 = 0 a.e. in Ω since both are nonnegative. In addition, ψ1 is a
Kantorovitch potential associated to ρ1 from the stability of optimal transport
(see [19, Thm. 1.52]). From the optimality of ρ1,N it holds that

TV(ρ1,N ) +
1
2τ

W 2
2 (ρ0,N , ρ1,N ) ≤ TV(ρ1) +

1
2τ

W 2
2 (ρ0,N , ρ),

so that limTV(ρ1,N ) ≤ TV(ρ1). Changing the roles of ρ1 and ρ1,N we get an
equality. So it follows that∫

Ω

(β − ψ1)ρ1dx = lim
N→∞

∫
Ω

(βN − ψ1,N )ρ1,Ndx = lim
N→∞

TV(ρ1,N ) = TV(ρ1),

Since TV is 1-homogeneous we conclude that β − ψ1 ∈ ∂ TV(ρ1). �

We say E is a set of finite perimeter if the indicator function 1E is a BV
function, and we set Per(E) = TV(1E). As a byproduct of the previous proof
we conclude that the level sets {ρ1 > s} are all solutions to the same prescribed
curvature problem.

Corollary 1. The following properties of the level sets of ρ1 hold.

1. For s > 0 and ψ1 in (TVW-EL)

{ρ1 > s} ∈ argmin
E⊂Ω

Per(E;Ω) +
1
τ

∫
E

ψ1dx

2. ∂{ρ1 > s} \ ∂∗{ρ1 > s} is a closed set of Hausdorff dimension at most
d − 8, where ∂∗ denotes the reduced boundary of a set, see [1]. In addition,
∂∗{ρ1 > s} is locally the graph of a function of class W 2,q for all q < +∞.
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Proof. For simplicity take τ = 1. Inside the set {ρ1 > s}, for s > 0, we have
−ψ1 = div z, so from the definition of the perimeter we have∫

{ρ1>s}
−ψ1dx =

∫
{ρ1>s}

div zdx ≤ Per ({ρ1 > s}) .

So using the fact that TV(ρ1) =
∫

Ω
−ψ1dx, the coarea formula and Fubini’s

Theorem give
∫ +∞

0

Per(1{ρ1>s})ds =
∫

Ω

−ψ1

∫ ρ1(x)

0

dsdx =
∫ +∞

0

∫
{ρ1>s}

−ψ1dxds.

Hence, Per({ρ1 > s}) = ∫
{ρ1>s} −ψ1dx for a.e. s > 0. But as βψ1 = 0 a.e., we

have −ψ1 = div z in {ρ1 > s}, so that −ψ1 ∈ ∂ TV(1{ρ1>s}) for a.e. s > 0; and
by a continuity argument, for all s > 0. The subdifferential inequality with 1E

gives

{ρ1 > s} ∈ argmin
E⊂Ω

Per(E) +
∫

E

ψ1(x)dx. (12)

Item (2) follows directly from the properties of (ROF), see [6], since ρ1 = u+,
where u solves a problem (ROF).

3 Numerical Experiments

We solve (TV-W) for an image denoising application using a Douglas-Rachford
algorithm [9] with Halpern acceleration [11], see Table 1. For this we need sub-
routines to compute the prox operators defined, for a given λ > 0, as

proxλTV(ρ̄)
def.= argmin

ρ∈L2(Ω)

TV(ρ) +
1
2λ

‖ρ − ρ̄‖2L2(Ω) , (13)

proxλW 2
2
(ρ̄) def.= argmin

ρ∈L2(Ω)

1
2τ

W 2
2 (ρ0, ρ) +

1
2λ

‖ρ − ρ̄‖2L2(Ω) . (14)

We implemented the prox of TV with the algorithm from [10], modified to
account for Dirichlet boundary conditions. From [7, Theo. 2.4] it is consistent
with the continuous total variation. The prox of W 2

2 is computed by expanding
the L2 data term as

proxλW 2
2
(ρ̄) = argmin

ρ∈L2(Ω)

1
2τ

W 2
2 (ρ0, ρ) +

1
2λ

∫
Ω

ρ2dx +
∫

Ω

ρ
(
− ρ̄

λ

)
︸ ︷︷ ︸

=V

dx +
1
2λ

ρ̄2dx︸ ︷︷ ︸
cst

= argmin
ρ∈L2(Ω)

1
2τ

W 2
2 (ρ0, ρ) +

1
2λ

∫
Ω

ρ2dx +
∫

Ω

ρV dx,

which is one step of the Wasserstein gradient flow of the porous medium equation
∂tρt = λ−1Δ(ρ2t ) + div (ρt∇V ), where the potential is V = −ρ̄/λ, see [13,19].
To compute it we have used the back-n-forth algorithm from [13].
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Algorithm 1. Halpern accelerated Douglas-Rachford algorithm
β0 ← 0
x0 ← Initial Image
while n ≥ 0 do

yn ← proxλ TV(xn)
λn ∈ [ε, 2 − ε]

zn ← xn + λn

(
proxλW2

2
(2yn − xn) − yn

)

βn ← 1
2

(
1 + β2

n−1
)

� Optimal constants for Halpern acceleration from [11]
xn+1 ← (1 − βn)x0 + βnzn

end while

3.1 Evolution of Balls

Following [8], in dimension 1, whenever the initial measure is uniformly dis-
tributed over a ball, the solutions remain balls. In R

d, one can prove this remains
true. If ρ0 is uniformly distributed over a ball of radius r0, then the solution
to (TV-W) is uniformly distributed in a ball of radius r1 solving the following
polynomial equation for r1

r21(r1 − r0) = r20(d + 2)τ.

This theoretical predictions are corroborated by the numerical experiments found
in Fig. 1.

Fig. 1. Evolution of circles: from left to right initial condition and solutions for τ =
0.05, 0.1, 0.2. The red circles correspond to the theoretical radius. (Color figure online)

3.2 Reconstruction of Dithered Images

In this experiment we use model (TV-W) to reconstruct dithered images. In
P(R2) the dithered image is a sum of Dirac masses, so the model (TV-W) out-
puts a new image which is close in the Wasserstein topology, but with small
total variation. In Fig. 2 below, we compared the result with the reconstruction
given by (ROF), both with a parameter τ = 0.2. Although the classical (ROF)
model was able to create complex textures, these remain granulated, whereas
the (TV-W) model is able to generate both smooth and complex textures.
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Fig. 2. Dithering reconstruction problem. From left to right: Dithered image, TV-
Wasserstein and ROF results.

4 Conclusion

In this work we revisited the TV-Wasserstein problem. We showed how it can
be related to the classical (ROF) problem and how to exploit this to derive the
Euler-Lagrange equations, obtaining further regularity. We proposed a Douglas-
Rachford algorithm to solve it and presented two numerical experiments: the
first one being coherent with theoretical predictions and the second being an
application to the reconstruction of dithered images.
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