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Abstract. Industry 4.0 is directly related to the digital transformation of orga-
nizations. One of the main characteristics of this transformation is the ability to
analyze and manage data to obtain relevant and previously unknown information
from it. Specifically, in the context of operational risk management, an efficient
analysis of the data that typically come from occurrence records, can support
decision-making. This paper presents a new algorithm to identify dependencies
between events in productive environments, such as equipment failures, defects,
or safety and environmental incidents, supporting the decision-making process
in the context of analyzing and managing operational risks. The algorithm was
developed based on association rule mining algorithms, then tested with data from
a Portuguese metalworking company, and finally validated. The test results show
that the developed algorithm is capable of identifying dependencies, which have
to be confirmed by specialized staff to conclude if they are causal relationships.

Keywords: Association Rule Mining · Data Analysis · Frequent Pattern
Mining · Risk Management

1 Introduction

The fourth industrial revolution or Industry 4.0 is characterized by the ability of orga-
nizations to take advantage of technological development for industrial applications
[1]. The integration of information and communication technologies with the various
components of production systems results in a huge amount of data. Therefore, new tech-
nologies need to be used in the best way to process data efficiently and thereby improve
the management of processes, including the process of operational risk analysis and
management [2].

Operational risk analysis and management focus on the uncertainty inherent to the
execution of activities that an organization needs to carry out to achieve its goals [3].
In most companies, operational risk is the most common form of risk and should be
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seen as the most dangerous and the most difficult to understand because it results from
losses related to failed or inadequate internal processes [4]. Thus, inefficient operational
risk analysis and management can lead to the loss of customers, limitation of productive
efficiency, and inefficient resource allocation [5].

One way to improve operational risk analysis and management is to discover pre-
viously unknown information to improve decision-making. For this purpose, the appli-
cation of association algorithms can be a useful tool, because they are based on a tech-
nique called Frequent Pattern Mining, which is characterized by the ability to locate the
repeating relationships between different items in a data set and represent them in the
form of association rules. As an example of its usefulness, Wang et al. [6] presented a
data-focused approach based on association algorithms and frequent pattern mining that
allows the extraction of relevant information from historical records, such as association
rules between keywords of each record and their conditional probability. As shown in a
literature review carried out by Chee et al. [7], several algorithms have been developed
over time to find frequent patterns, however, they assume that the data set must be explic-
itly in the form of transactions, restricting its application variability and increasing the
possibility of losing potentially relevant relationships in certain scenarios. Antomarioni
et al. [8] propose an approach to support the analysis of failures in production processes,
using an association rule mining algorithm, but which presents the limitation of not
considering the temporal dimension to extract association rules.

This paper presents a newalgorithm that aims to relate disruptive events in production
systems related to different areas such as quality (i.e., defects), safety (i.e., work acci-
dent), environment (i.e., gas leak), production (i.e., production stoppage) or maintenance
(i.e., machine failure). This algorithm was developed based on existing association rule
mining algorithms to achieve the intended results and overcome the aforementioned lim-
itations, calculating similar metrics. The methodology used was CRISP-DM, explained
in detail by Huber et al. [10]. The need to relate events from different areas arises
since sometimes these events have a common root cause and therefore must be treated
collaboratively by the various departments [9]. For instance, if the occurrence of a non-
compliant product ends up being related to work accidents may indicate that there is a
common and potentially unknown root cause for these events. Thus, realizing that two
events are related makes it possible to approach them more effectively.

This paper is organized as follows: Sect. 2 presents the proposed algorithm to identify
relationships between events, Sect. 3 includes the testing and validation of the algorithm
using real data from a Portuguese metalworking company and Sect. 4 refers to the
conclusion and future work.

2 The Association Rule Mining Algorithm

The proposed algorithmwas developed fromexisting association rulemining algorithms.
To overcome the fact that the dataset is not in the form of transactions, time windows
are considered to search for possible dependency relationships.

The algorithm is triggered by the introduction of a dataset, containing the records
of events and their times of occurrence (t_oco), combined with a user input regarding
the analysis window (u_input) that he considers appropriate for the algorithm to find
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possible dependency relationships (e.g., 5 days or 100 000 units). That is, for each
instance (event) of a given dataset, the algorithm will try to find “who” (previous events)
has the potential to have caused it considering the window defined by the user.

With this purpose, the algorithm was designed to perform a set of steps to identify
possible relations between two events, an antecedent and a consequent event, and count
their number of occurrences to identify an association rule depending on the value of
the calculated metrics, as shown in Fig. 1.

Fig. 1. Algorithm flowchart

For a given row of the dataset (event occurrence), the associated event is considered
as the event under analysis (i) and its count is incremented by one (count(i) += 1),
representing the number of times the event was registered in the dataset.

The calculation of the deadline (t_lim) for the event under analysis is then performed,
representing the moment when a given event can no longer produce effects on others.

t_lim = t_oco + u_input (1)
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In the next step, it is checked which of the previous events (j) has the potential to
have triggered the event under analysis (i).

To this end, a reverse search is started, testing the previous events based on three
main conditions, where all of themmust be satisfied for the pair count to be incremented.

1. The previous recorded event must have a deadline (t_lim) greater or equal to the
time of occurrence (t_occ) of the event under analysis, ensuring that the former has
the potential to have triggered the latter, being potentially considered the antecedent
event.

t_lim(j) ≥ t_oco(i) (2)

If the result of this condition is false, the test for the event under analysis (i) is
stopped, advancing to a new event (i += 1) if it exists.

2. To be considered an antecedent event, the previous event must be different from the
event under analysis.

event(j) �= event(i) (3)

If this condition is not checked, the test for the event under analysis (i) is stopped,
advancing to a new event (i+= 1) if it exists. Additionally, this previous event record
is put into inactive mode by using a binary variable “flag” that by default presents the
value of 0 and assumes, in these cases the value of 1 (Flag (j) = 1). Its usefulness is
explained in condition 3.

3. The previous event record must be active at the time of the test to be potentially
considered the antecedent event.

Flag(j) = 0 (4)

As indicated in the second condition an event record may become inactive, causing
it not to be considered thereafter. The goal is to avoid counting the same pair of events
more than once based on the same previous event record. If this condition is not checked,
the testing proceeds with the same event (i) as the possible consequent event.

With the three main conditions tested and checked the count of the pair (j → i)
is incremented by one, representing the number of times that two given events were
recorded in a time interval less than or equal to the analysis window.

However, a fourth condition has been defined indicating that a particular pair will
also be counted in the opposite direction (i → j) in the case when both events occur at
the same time since it is impossible to know which of the events is the antecedent.

4. That is, if the previous recorded event has a time of occurrence (t_occ[j]) equal to the
time of occurrence (t_occ[i]) of the event under analysis.

t_oco(j) = t_oco(i) (5)

In the last step for each of the pairs, metrics are calculated to provide the end user
with greater knowledge about them.
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• Confidence: Two metrics are considered: C1 and C2. Both are conditional probabil-
ities.

C1 = Count(j → i)

Count(j)
(6)

C2 = Count(j → i)

Count(i)
(7)

C1 means how likely event i occurs after event j (within the time window), given
that event j has occurred. C2 means how likely event j occurs before event i (within
the time window), given that event i has occurred. They indicate the level of certainty
that the pair presents.

• Average time:Displays to the end user the average time that normally occurs between
the two events of a given pair, indicating the time hemay have at his disposal to prevent
the consequential event from occurring.

T j→i =
∑

(toco(i) − toco(j))

Count(j → i)
(8)

3 Testing and Validation

To test and validate the developed algorithm, data from a Portuguese metalworking
company were used, specifically the history of corrective maintenance actions related
to a machine tool from a progressive stamping process, whose main components are
punches and die inserts. The data were collected through forms filled in by machine
operators and maintenance technicians, during a period of approximately a year and
a half. The records are related to failure occurrences, where each failure is a specific
damaged component through wear. Thus, in this case, each event is identified by the
name of the damaged component.

Analyzing the data associated with the machine tool, 109 occurrences were recorded
during the production of 6 191 466 parts. The data were then prepared to serve as input
to the algorithm and an analysis window (user input) of 100 000 production parts was
defined. Additionally, to form association rules and increase the probability of a given
pair representing a dependency relationship between two events a filtering condition was
defined.

(Count ≥ 10 ∩ (C1 > 90% ∪ C2 > 90%)) (9)

Subsequently, the algorithm was executed, and the results presented in Table 1 were
obtained.

The evaluation from a computational and algorithmic perspective was positive since
the algorithm can identify possible dependency relationships between events of a given
data set.

As an example, through the output of the algorithm, the user can obtain the following
information about the pair (4H → 20D):

• 4H can be the cause of 20D.
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Table 1. Testing Output

Pair Count T j→i C1 C2

20D → 4H 18 5490 40.9 100

4H → 20D 17 84 94.4 38.6

20C2 → 20C1 10 8647 90.9 66.7

20D → 20C2 10 21897 22.7 90.9

• The occurrence of this pair, considering an analysis window of 100 000 production
parts, was checked 17 times.

• On average, 20D occurs 84 production parts after 4H has occurred.
• 94.4% of the time 4H was registered, 20D was recorded during the production of the

next 100 000 production parts.
• 38.6% of the times 20D was recorded, it was after the 4H registration, based on a

100 000 production parts analysis window.

The results presented were also analyzed and evaluated by the company’s technical
managers. The objective was to understand whether the pairs of events proposed by the
algorithm are somehow representative of what happens daily in production regarding
machine wear and failure.

In this sense, the following conclusions were drawn over the pairs suggested by the
algorithm:

• (20D→ 4H/4H→ 20D) – This combination of events has been suggested both ways
by the algorithm. This is because they occur or at least are recorded at the same time,
leaving the question of which of them will be the trigger of the other. However, from
a procedural and mechanical perspective, the pairs presented for this tool should be
in the direction of “4 → 20”, therefore the pair considered as correct and that makes
sense in practice is the (4H → 20D), whereas 4 is a die insert and 20 is a punch, and
it will make more sense to be a damaged matrix to damage the puncture and not the
other way around.

• (20C2 → 20C1) – They are two components that work in parallel and perform the
same function under identical conditions, when one of them fails is common the
other also fails. Thus, it was deduced that this pair of events presents an association
relationship, but not causality.

• (20D→ 20C2) – Initially, no physical justificationwas found for the pair, so it seemed
to make no sense. Since these are two punctures that perform apparently unrelated
operations at different stations. Itmay eventually be reevaluated in the future regarding
a temporal relationship (time between failures) if the algorithm continues to suggest
it. However, the low confidence value reinforces the pair’s lack of logical sense.

With the test performed it was noticed that the result of the algorithm can be condi-
tioned by the user’s choice regarding the time window of analysis, which can be seen as
a limitation.
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Also, the pairs presented by the algorithm have a suggestive character since they
always require final validation by the user and the relationship between two events of
a given pair may come from a causality (4H → 20D), an association based on work
conditions (20C2 → 20C1), or merely temporal (20D → 20C2).

4 Conclusions

The ability to use data to support decision-making should be seen as the new standard
for the future of organizations. In operational risk analysis and management obtaining
previously unknown information regarding how events relate to each other can improve
resource allocation and increase productivity.

Thus, in this article, an association algorithm was developed capable of suggesting
dependency relationships between two events, introducing a new way to apply associa-
tion algorithms, where it is not necessary to have transactional databases as input thus
allowing the inclusion of the temporal dimension in the discovery of frequent patterns.
More specifically, with the application of the proposed algorithm, the end-user is pre-
sented with a set of pairs of events, which should be analyzed to understand whether they
make sense and, based on this conclusion, make it possible to make decisions efficiently.

The test performed with the data from the Portuguese metalworking company
allowed an understanding of the limitations and the algorithm validation since it was able
to find some relationships between the recorded events. Later, the algorithm is intended
to be implemented in collaborative software to be used in the most diverse industrial
scenarios.

For future work, the objective is to mitigate some of the limitations of this algorithm
as its subjective adjacent to human intervention in the choice of the analysis window
and the suggestive character of the pairs presented.
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