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Abstract. Recent and past seismic events have emphasized the key role of beam-
column joints on the vulnerability of existing RC frame buildings. Indeed, dam-
ages and unexpected failure modes of these structural components in some cases
resulted the main responsible of a poor seismic response of buildings. The lack of
care bypast standard codes for the designof beam-column joints and,moreover, the
difficulties in modelling and simulating their complex behavior, are clearly high-
lighted by the available studies of literature, where the attention is mainly focused
on the derivation of constitutive laws and numerical modelling approaches. The
present paper concerns the numerical study of exterior RC beam–column joints. In
particular, starting from the models available in literature, laws able to reproduce
the monotonic and cyclic behavior are derived, implemented by using the simple
scissors model and subsequently assessed toward experimental tests.

Keywords: RC beam – column joints · Experimental tests · Numerical analysis

1 Introduction

Severe damages and failures of existing reinforced concrete (RC) buildings observed
during recent and past seismic events frequently involved exterior beam-column joints.
Indeed, their configuration (unconfined joints) and deficiencies in terms of amount and
details of steel reinforcement (lacks of stirrups and longitudinal steel bars without effi-
cient anchorage ends) could make beam-column joints the weakest component of RC
frames.

The literature contains a significant amount of studies concerning the experimental
behavior of RC beam-column joints (De Risi et al. 2016, Realfonzo et al. 2014.

Other studies focus on the numerical modelling of themonotonic and cyclic response
of RC beam-column joints (Alath and Kunnath 1995; Lowes and Altoontash 2003).

Nevertheless, the difficulties in reproducing themain phenomena affecting themono-
tonic and cyclic behavior of these elements and the importance of considering their role
on the seismic response of existing buildings, make this topic of particular relevance and
necessary to be further analysed.
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Aim of this paper is to numerically simulate the monotonic and cyclic response of
typical exterior beam–column joints without transverse reinforcements. To this purpose,
constitutive laws obtained by combining some literature models are proposed. These are
implemented into a simple model for beam-column joints where both the shear behavior
and the possible occurrence of the slippage of longitudinal bars of beam from the joint
are considered. The numerical analyses are carried out by using the open-source finite
element platform OpenSees (McKenna et al. 2010).

The reliability of the obtained laws is assessed in the paper with reference to a
set of seven experimental cases, representative of exterior joints without transverse
reinforcements, collected from literature.

2 Shear Behavior of Exterior Joints: Literature Models

The experimental shear behavior of exterior beam–column joints can be described by
the following main phenomena: a cracking process, the attainment of the peak strength,
a subsequent process of strength degradation until the attainment of a residual shear
strength value. This leads to adopt for itsmodelling amulti-linear shear stress-strain (τ-γ)
constitutive law as that reported in Fig. 1. Then, the multi-linear law can be implemented
into a macro-modelling approach available within the several commercial computer
codes (McKenna et al. 2010) available nowadays, to perform numerical analyses.

Fig. 1. Multilinear stress-strain relationship.

The multi-linear law is completely defined by four characteristic points in terms of
stress (τ1, τ2, τ3, τ4) and strains (γ1, γ2, γ3, γ4).

In particular, regarding the evaluation of the shear strength τ3, (in the following
indicated as τmax) the following five models available in the literature are considered in
the present paper.

The first model (Model 1), proposed by Kim and LaFave (2008), provides the
following expression:

τmax = αtβtηtλt(JI)
0.15(BI)0.3(fc)

0.75 (1)
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where: αt is a coefficient depending on the joint configuration; βt is a coefficient depen-
dent on the level of the exterior joint’s confinement; ηt is a coefficient related to the
beam-column eccentricity; λt is a coefficient assumed equal to 1.31; fc is the concrete
compressive strength; JI represents the “joint transverse reinforcement index”; BI is the
“beam reinforcement index”.

The second model (Model 2) proposed by Vollum and Newman (1999), suggests the
following expression:

τmax = 0.642β

[
1 + 0.555

(
2 − hb

hc

)]√
fc (2)

where: β is a coefficient depending on the configuration of the beam’s longitudinal steel
bar end inside the joint; hb is the beam height; hc is the column height.

The third model (Model 3), proposed by Ortiz (1993), provides:

τmax = σdbcwj cos θ

hcbc
(3)

where: σd is the design compressive concrete strength estimated according to the CEB-
FIP Model Code 90 (1993); bc is the column width; bb is the beam width; wj is the strut
width; θ is the angle between the strut and the longitudinal beam axis.

The fourth model (Model 4) is the one proposed by Hwang and Lee (1999) and
suggests the following formula:

τmax = D cos θ + Fh + Fv cot θ

hcbc
(4)

where: D is the compressive strength of the concrete strut component; Fh and Fv are
respectively the horizontal and the vertical components of the tie member strength.

The last model (Model 5) by Jeon (2013) gives:

τmax = 0.586(TB)0.774(BI)0.495(JP)1.25(fc)
0.941 (5)

where: TB coincides with the coefficient βt of Eq. (1); JP corresponds to the coefficient
αt of Eq. (1).

A more detailed description of the five considered models can be found in Nitiffi
et al. (2019).

Regarding the derivation of the other three values of the shear stresses (i.e. τ1, τ2,
τ4) and of the four shear strains (i.e. γ1, γ2, γ3, γ4), other models are considered in the
present paper.

In particular, for the shear stress τ1, the formula proposed by Uzumeri (1977) gives:

τ1 = 0.29
√
fc

√
1 + 0.29

P

Aj
(6)

where P is the column axial load and Aj is the effective joint area.
For the other parameters, the values proposed by De Risi et al. (2016), Celik and

Ellingwood (2008), Shin and LaFave (2004) and Sharma et al. (2011) are considered
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and summarized in Table 1. Model A indicates the model proposed by De Risi et al.
(2016) and Model D that by Sharma et al. (2011); both these models propose a unique
value for each of the above parameters. On the contrary the other two models propose a
range of values for some of the parameters; Models B1-B2 indicate the model by Celik
and Ellingwood (2008) evaluated respectively for the minimum and maximum values
of the range, and Models C1-C2 indicate the one proposed by Shin and LaFave (2004)
still at the minimum and maximum values of the ranges.

Table 1. Values derived from the accounted literature models

Model τ2/τmax τ4/τmax γ1 γ2 γ3 γ4

A 0.85 0.43 0.0004 0.0017 0.0049 0.0441

B1 0.75 0.3 0.0001 0.002 0.01 0.03

B2 0.75 0.16 0.0013 0.01 0.03 0.1

C1 0.9 0.3 0.0005 0.002 0.01 0.03

C2 0.9 0.3 0.0005 0.01 0.03 0.05

D 0.9 0.24 0.0006 0.002 0.005 0.025

All the above models are combined in order to reproduce the shear response τ-γ of
the panel zone. In particular, the shear strength τ3 given by each of theModels 1, 2, 3, 4,
5 is combined with the other parameters given byModels A, B1, B2, C1, C2, D. A total
of 30 τ-γ relationships are, hence, obtained and summarized in Table 2. These laws are
implemented in the numerical analyses, describing the monotonic shear behavior of RC
beam-column joints, and presented in the following.

Table 2. Schematization of constitutive laws derived by combining the literature models

Model A B1 B2 C1 C2 D

1 1-A 1-B1 1-B2 1-C1 1-C2 1-D

2 2-A 2-B1 2-B2 2-C1 2-C2 2-D

3 3-A 3-B1 3-B2 3-C1 3-C2 3-D

4 4-A 4-B1 4-B2 4-C1 4-C2 4-D

5 5-A 5-B1 5-B2 5-C1 5-C2 5-D
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3 Numerical Analyses

The definition of accurate constitutive laws reproducing the shear behavior of RC beam-
column joints is an important preliminary step for performing numerical analyses based
on macro-modelling approaches.

3.1 The Macro-Modelling Approach for RC Beam-Column Joints

In this study, the so–called “scissors model”, proposed by Alath and Kunnath (1995),
is used. This model is composed of a rotational spring connecting a master node and
a duplicated slave node located at the same position in the middle of the panel zone.
Moreover, these nodes are connected to the beam and column members through rigid
links.

In order to account for the contribution of the fixed-end-rotation due to the slip
phenomenon of the longitudinal bars of the beam, an additional nonlinear rotational
spring is introduced at the interface between the panel zone and the adjacent beam
(Fig. 2).

Fig. 2. Beam-column joint scissors model.

The numerical analyses are carried out by using the open-source finite element
platform OpenSees (McKenna et al. 2010) where both the rotational springs have been
modelled by the “Pinching4 Uniaxial Material” with a multi-linear law in terms of
moment-rotation (M-θ).

For what concern the joint shear spring, the (M-θ) law is defined with the rotation
of the spring θj assumed equal to the joint panel strain γj and the bending moment Mj
given by:

Mj = τjA
1

1−hc/2Lb
jdb

− 1
2Lc

(7)

where: τj is the shear stress of the multilinear law; A is the joint cross-section area; hc
is the column height: Lb is the beam length; jdb is the beam internal lever arm; Lc is the
column length.

Regarding the spring modelling the bond slip behavior of the joint panel, the (M-θ)
law is that reported in Fig. 3 and defined as follows. Starting from the bond stress-slip
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relationship reported in Model Code (2010), (see Fig. 3) the maximum moment M3 is
evaluated through the following formula:

M = fstm,trAsjdb (8)

where As is the longitudinal reinforcement area of the beam and f stm,tr is the maximum
tensile stress developed in the bar and transferred by bond. The latter parameter can be
evaluated according to the Fédération Internationale (2010) as follows:

fstm,tr = fstm + 6

(
lb
φ

)
ptr (9a)

where lb and ∅ are the anchorage length of the longitudinal bar and its diameter,
respectively, while fstm and ptr are given by:

fstm = 54

(
fc
25

)0.25( lb
φ

)0.55(25

φ

)0.2
[(

cmin

φ

)0.25(cmax

cmin

)0.1

+ kmktr

]
(9b)

ptr = N/(bchc) (9c)

In Eqs. (9b) and (9c), cmin and cmax are geometrical parameters related to the concrete
cover and the distance between adjacent bars respectively; km and ktr are parameters
related to eventual transverse reinforcements, evaluated as suggested by the Fédération
Internationale (2010); N is the axial load on the columnwhich is normalized with respect
to the member cross-section area.

According to the mentioned Code, the following relationship should be satisfied:

fstm,tr < 1.75fst,0 + 0.8

(
lb
ptr

)
< 8.0

(
lb
φ

)
f 0.5c (9d)

where: fst,0 is equal to fstm in the particular condition of cmin = ∅ and cmax/cmin = 1.
The moment M2 and M4, instead, are assumed respectively equal to 0.75M3 and

0.40M3, according to De Risi et al. (2016).
The rigid rotation θs of the joint panel due to the slip is obtained from the proposal

by Otani and Sozen (1972) (Eq. 10), neglecting the slip of the bar in compression:

θs = slip

d − d ′ (10)

where (d-d′) is the distance between the longitudinal reinforcements in tension and
compression.

In particular, the slip values are deduced from the Fédération Internationale (2010)
in the case of pull-out failure: s2 is assumed equal to 1.8 mm, corresponding to the
attainment of the bond strength; s3 is assumed equal to 3.6 mm, corresponding to the
beginning of the bond strength degradation; s4 is assumed equal to 12 mm.

Finally, the value of M1 and the corresponding slip s1, have been directly obtained
from the intersection of the first branch (corresponding to the rigid un-cracked phase)
and the third branch of the adopted law. Indeed, since frame elements with a nonlinear



Modelling of RC Beam-Column Exterior Joints 221

Fig. 3. Multilinear moment-rotation relationship for the bond-slip behavior.

behavior are considered in themodelling approach employed by the authors, the cracking
effect is directly introduced at the beam section level.

The aim of the numerical analyses here presented is to assess the reliability of
the obtained law in reproducing the monotonic experimental behavior of beam-column
joints. Then, a set of specimens available in literature, representative of typical exterior
RC beam – column joints and subjected to cyclic load histories have been considered.

In particular, the accounted set of experimental cases concerns the tests carried out
by Realfonzo et al. (2014), Pantelides et al. (2002), Clyde et al. (2000), De Risi et al.
(2016), Del Vecchio et al. (2014).

Table 3 summarizes the main informations on these case studies, where bb and hb are
the width and the depth of the beammember, As,b is the beam longitudinal reinforcement
area, whereas the other symbols were already defined earlier.

For each case, monotonic analyses have been performed by accounting for the 30
τ −γ constitutive laws. The obtained results in terms of applied force vs. drift (the latter
corresponding to the ratio between the displacement at the end of the beam and the beam
length) are compared with the envelope of the experimental hysteretic cycles.

The relative error between the experimental and numerical forces is calculated up
to the conventional value of 75% of the maximum experimental strength (both in the
positive and negative direction of loading) through the following formula:

Err =
∑n

i=1 Ei

n
;Ei =

∣∣Fexp,i − Fnum,i
∣∣

Fexp,i
100 (11)

where: Fexp,i and Fnum,i are the i-th experimental force and the corresponding numerical
force respectively.

Tables 4a and 4b provide the percent error values for the positive branch and negative
branch of the envelope curve, respectively. As noted, the models furnishing the lowest
error vary among the accounted experimental tests. Indeed:

– test J05: the lowest error values, equal to 9% and 6%, are provided by themodel 5C1;
– test J01: the lowest error values, equal to 15% and 14%, are provided by the model

1C1;
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Table 3. Main geometric and mechanical properties of the experimental database.

ID bc[mm] hc[mm] bb[mm] hb[mm] As,b[mm2] Lc[mm] Lb[mm] fc[MPa]

[1] J01 300 300 300 400 1885 2600 1580 14

J05 300 300 300 400 2513 2600 1580 14

[2] TU3 406 406 406 406 4927 3200 1689 34

TU1 406 406 406 406 4927 3200 1689 33.1

[3] #4 457 305 305 406 4927 2570 1498 41

[4] T#1 300 300 300 500 2513 3400 1800 28.8

[5] TC3 300 300 300 500 1608 3400 1800 16.3

[1] Realfonzo et al. (2014); [2] Pantelides et al. (2014); [3] Clyde et al. (2000); [4] De Risi et al.
(2016); [5] Del Vecchio et al. (2014).

– test TU3: the lowest error values, equal to 17% and 12%, are provided by the model
5A;

– test TU1: the lowest error value, equal to 19%, is provided by the model 5A; in this
case, the errors for the negative branch are related to the bond-slip mechanism and
not accounted in this study;

– test #4: the lowest error values equal, to 11% and 7%, are provided by the model 5A;
– test T#1: the lowest error values, equal to 17% and 34%, are provided by the model

1A;
– test T_C3: the lowest error values, equal to 15% and 14%, are provided by the model

4A.

It must be highlighted that the models B2 and C2 are not taken into account in
the assessment of the percentage errors, due to relevant drift excursions for the current
experimental case studies.

The comparison between the numerical curves and experimental monotonic
envelopes considering the models furnishing the lowest error is shown in Figs. 4, 5
and 6.

It is possible to observe a good agreement between numerical and experimental
results, even in terms of failure mode prediction; besides the joints affected by the shear
failure of the panel zone, the anchorage failure of the specimen TU1 (Pantelides et al.
2002) is also captured.
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Table 4a. Mean absolute percentage errors [%] for the monotonic envelopes (positive branch)

model J05 J01 TU3 TU1 #4 T#1 T_C3

1A 10 17 18 24 25 17 18

1B1 14 17 27 34 27 25 26

1B2 n.a n.a n.a n.a n.a n.a n.a

1C1 13 15 28 32 25 28 25

1C2 n.a n.a n.a n.a n.a n.a n.a

1D 19 19 42 41 32 37 35

2A 24 53 29 26 19 42 6

2B1 15 47 27 29 21 43 12

2B2 n.a n.a n.a n.a n.a n.a n.a

2C1 21 51 28 30 19 39 8

2C2 n.a n.a n.a n.a n.a n.a n.a

2D 20 35 35 36 24 47 23

3A 19 55 17 22 28 22 26

3B1 14 48 26 32 29 27 35

3B2 n.a n.a n.a n.a n.a n.a n.a

3C1 15 53 27 30 27 30 37

3C2 n.a n.a n.a n.a n.a n.a n.a

3D 21 36 41 40 33 37 45

4A 19 53 15 21 21 16 15

4B1 14 47 25 30 23 25 22

4B2 n.a n.a n.a n.a n.a n.a n.a

4C1 17 51 26 29 21 29 21

4C2 n.a n.a n.a n.a n.a n.a n.a

4D 20 35 39 39 27 37 33

5A 14 27 17 19 11 25 16

5B1 13 22 25 27 16 28 23

5B2 n.a n.a n.a n.a n.a n.a n.a

5C1 9 23 25 28 14 30 22

5C2 n.a n.a n.a n.a n.a n.a n.a

5D 22 18 37 37 13 37 33

n.a.: value not accounted
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Table 4b. Mean absolute percentage errors [%] for the monotonic envelopes (negative branch)

model J05 J01 TU3 TU1 #4 T#1 T_C3

1A 10 14 19 19* 15 34 22

1B1 14 16 29 19* 19 36 28

1B2 n.a n.a n.a 28* n.a n.a n.a

1C1 11 14 29 19* 15 35 27

1C2 n.a n.a n.a 25* n.a n.a n.a

1D 21 18 39 19* 22 42 36

2A 18 36 21 19* 9 60 25

2B1 10 28 31 19* 14 56 17

2B2 n.a n.a n.a 25* n.a n.a n.a

2C1 15 36 28 19* 10 55 18

2C2 16 n.a n.a 22* n.a n.a n.a

2D 16 23 21 19* 15 47 24

3A 14 37 17 19* 17 41 18

3B1 13 30 26 19* 20 39 27

3B2 n.a n.a n.a 28* n.a n.a n.a

3C1 11 36 27 19* 17 38 27

3C2 n.a n.a n.a 26* n.a n.a n.a

3D 15 24 38 19* 24 42 37

4A 14 36 14 19* 11 32 14

4B1 9 29 24 19* 15 36 15

4B2 n.a n.a n.a 27* n.a n.a n.a

4C1 12 36 26 19* 11 34 16

4C2 n.a n.a n.a 24* n.a n.a n.a

4D 16 23 36 19* 17 43 29

5A 9 18 12 19* 7 43 22

5B1 11 17 23 19* 13 41 28

5B2 n.a n.a n.a 26* n.a n.a n.a

5C1 6 16 24 19* 9 43 31

5C2 n.a n.a n.a 23* n.a n.a n.a

5D 15 17 32 19* 5 42 37

n.a.: value not accounted; *: value related to the bond-slip spring
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Fig. 4. Comparison between numerical curves and experimental envelope: test J05 (a) and J01
(b) by Realfonzo et al. (2014).
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Fig. 5. Comparison between numerical curves and experimental envelope: test TU3 (a) and TU1
(b) by Pantelides et al. (2002).

4 Assessment of the Joint Shear Strength

The monotonic simulations in Figs. 4, 5 and 6 highlight the strong correlation between
the numerical evaluation of the global shear strength of joints and the correct estimate
of the shear stress τmax Preliminary considerations are here carried out by comparing
the values of τmax,num obtained from the analyzed Models 1 to 5 with the experimental
value of shear strength (τmax,exp) obtained from the equilibrium of the forces acting on
the joint panel:

τmax,exp = Tb − Vcol

Aj
(12)

where Tb is the tensile force acting in the longitudinal bars of the beam, Vcol is the
column shear force, Aj the cross-section area of the joint.

The scatter between the numerical and the experimental strength is calculated through
the mean absolute percentage error as follows:

Err =
∑n

i=1 Ei

n
=;Ei =

∣∣τmax,exp,i − τmax,num,i
∣∣

τmax,exp,i
100 (13)
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Fig. 6. Comparison between numerical curves and experimental envelope: specimens tested by
(a) Clyde et al. (2000); (b) De Risi et al. (2016); (c) Del Vecchio et al. (2014).

where τmax,exp,i and τmax,num,i are the i-th experimental and the i-th numerical shear
strength, respectively.

The bar charts in Figs. 7a and b depict the errors for both the positive (“ +”) and
negative (“-”) direction of loading in terms of the maximum shear strength estimated
according to the considered five models. An exception is represented by the specimen
TU1 (Pantelides et al. 2002) for which only the errors in the push (positive) direction
were calculated since an anchorage failure due to loss of bond was experienced in the
pull (negative) direction.

The bar chart in Fig. 8, instead, shows themean error in the estimate of τmax computed
by the models on all the considered tests and considering both the positive and negative
directions together; the errors bars show the positive and negative deviation of the error
from the mean value computed for each model.

From these graphs it can be noted that the accuracy of the all models is rather
variable with the considered test. Overall, Model 1 (Kim and LaFave 2008) and Model
5 (Jeon 2013) seem to provide values of shear strength closer to the those emerged from
experimental tests, since the mean errors amount to 13.6% and 14.6%, respectively (see
Fig. 8).
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Fig. 7. Model errors in terms of τmax by varying the considered experimental test: push direction
(a); pull direction (b).
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Fig. 8. Model errors in terms of τmax on all the tests.

5 Cyclic Response

The modelling of the cyclic behavior represents another key aspect in the study of the
seismic response of the RC beam-column joints with a greater complexity with the
respect to the monotonic behavior.

The constitutive laws obtained in the previous sections represent a valuable basis
for carrying out cyclic analyses. Then, implementing the macro-modelling approach
described in Sect. 2 and picking the laws providing the lowest value of the errors, cyclic
analyses have been performed.

Regarding the shear behavior of the panel joint a calibration procedure has been done
for the material model Pinching 4. To this purpose, for all the analyzed specimens, the
parameters obtained from a calibration procedure carried out by Nitiffi et al. (2019) on
the specimen J05 (Realfonzo et al. 2014) have been considered.

The results of these preliminary analyses in terms of cyclic behavior are compared
with the experimental response in Fig. 9. The graphs show a general good agreement
between experimental and numerical cyclic curves.



228 E. Grande et al.
F

o
rc

e
 (

k
N

)

F
o

rc
e
 (

k
N

)

F
o

rc
e
 (

k
N

)

F
o

rc
e
 (

k
N

)

Drift (%) Drift (%)

Drift (%) Drift (%)

a)

c) d)

b)

Fig. 9. Comparison between numerical and experimental cyclic curves: (a) test J01 by Realfonzo
et al. (2014); (b) test #4 by Clyde et al. (2000); (c) test T#1 by De Risi et al. (2016); (d) test TC3
by Del Vecchio et al. (2014).

6 Conclusions

In this study, a procedure has been presented for the calibration of constitutive laws to
employ into numerical models for the study of the monotonic and cyclic response of
beam-column joints. In particular, 30 laws have been obtained by opportunely combining
some models available in literature.

The 30 laws have been implemented in a simple model where the behavior of joint
is schematized throughout two rotational springs in series: one reproducing the shear
behavior and the other the bond-slip behavior.

Numerical analyses, both monotonic and cyclic, have been then performed by select-
ing seven experimental cases from the literature. The monotonic analyses have allowed
to identify the combinations of models which better simulate the experimental response
of the specimens. Furthermore, the better laws have been subsequently used for perform-
ing preliminary cyclic analyses. The obtained results have underlined a good ability of
the derived laws in reproducing both themonotonic and cyclic response of beam-column
joints.

Further developments are needed to assess the proposed model for a wider
experimental database, also including different joint configurations and structural details.
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