
Chapter 6
NSTT for Linear and Piecewise-Linear
Systems

The tool of nonsmooth argument substitutions was introduced first to describe
strongly nonlinear vibrations whose temporal mode shapes are asymptotically close
to nonsmooth ones. Such cases are known to be most difficult for analyses because
different quasi-harmonic methods are already ineffective, whereas the nonsmooth
mapping is still inapplicable. It is quite clear however that the nonsmooth arguments
can be introduced regardless of the strength of nonlinearity or the form of dynamical
systems in general. For instance, it is shown in this chapter that the nonsmooth
temporal substitutions can facilitate the analyses of different linear models with
nonsmooth or discontinuous inputs.

6.1 Free Harmonic Oscillator: Temporal Quantization of
Solutions

Introducing the triangle wave temporal argument into the differential equations
of motion may bring some specific features into the corresponding solutions. For
illustrating purposes, let us consider the harmonic oscillator

.ẍ + Ω2
0x = 0 (6.1)

First, let us obtain exact general solution of the oscillator (6.1) in terms of the
triangle wave temporal argument by using the substitution

.x = X (τ) + Y (τ) e (6.2)

where .τ = τ (t/a) and .e = e (t/a) are the standard triangle and square wave
functions, respectively.
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Substituting (6.2) in (6.1) gives the boundary value problem

.a−2X′′ (τ ) + Ω2
0X (τ) = 0. (6.3)

a−2Y ′′ (τ ) + Ω2
0Y (τ) = 0 (6.4)

.X′ (±1) = 0, Y (±1) = 0 (6.5)

By considering the parameter a as an eigen-value of the problem, one obtains the
set of eigen-values and the corresponding solutions as, respectively,

.aj = jπ

2Ω0
(6.6)

and

.Xj = sin

(
jπτ

2
+ ϕj

)
, Yj = cos

(
jπτ

2
− ϕj

)
(6.7)

where .ϕj = (π/4) [1 + (−1)j ], .τ = τ(t/aj ), and j is any positive real integer.
Therefore, introducing the triangle wave oscillating time produced the discrete

family of solutions for harmonic oscillator (6.1). The nature of such kind of
quantization is due to the temporal symmetry of periodic motions. In other words,
the quantization is associated with a multiple choice for the period

.Tj = 4aj = jT (6.8)

where .T = 2π/Ω0 is the natural period of oscillator (6.1).
In terms of the original temporal variable t , the number j plays no role for the

temporal mode shape, given by

.x (t) = A sin

[
jπ

2
τ

(
2Ω0t

jπ

)
+ ϕj

]
(6.9)

+B cos

[
jπ

2
τ

(
2Ω0t

jπ

)
− ϕj

]
e

(
2Ω0t

jπ

)

where A and B are arbitrary constants, and .x(t) is the same harmonic wave
regardless of the number j .

In this section, the free linear oscillator was considered for illustrating purposes.
There is no other pragmatic reason for introducing the triangle wave time into
Eq. (6.1). The situation drastically changes however in non-autonomous cases of
nonsmooth or discontinuous inputs. It is shown below that, in such cases, the
triangle wave time variable facilitates determining particular solutions. The above-
noticed effect of temporal quantization, which is just an identical transformation in
the autonomous case, becomes helpful at the presence of external excitations. For
instance, according to (6.9), the so-called combination resonances appear to be an
inherent property of oscillators.
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6.2 Non-autonomous Case

6.2.1 Unipotent Basis

Consider the linear harmonic oscillator under the external forcing described by the
linear combination of triangle and square wave functions

.ẍ + Ω2
0x = Fτ

(
t

a

)
+ Ge

(
t

a

)
(6.10)

where F and G are constant amplitudes and a is a quarter of the period.
Substituting (6.2) in (6.10) leads to the boundary value problem

.a−2X′′ (τ ) + Ω2
0X (τ) = Fτ . (6.11)

a−2Y ′′ (τ ) + Ω2
0Y (τ) = G (6.12)

under the boundary conditions (6.5).
In contrast to autonomous case (6.1), the parameter a is known. Equations (6.11)

and (6.12), are non-homogeneous, and their non-zero solution exists for any a and
can be found in few elementary steps. The particular periodic solution of the original
Eq. (6.10) takes the form

.xp (t) = X (τ) + Y (τ) e = F

Ω2
0

{
τ

(
t

a

)
− sin [aΩ0τ (t/a)]

aΩ0 cos(aΩ0)

}

+ G

Ω2
0

{
1 − cos [aΩ0τ (t/a)]

cos(aΩ0)

}
e

(
t

a

)
(6.13)

The corresponding general solution is .x (t) = A cos (Ω0t − ϕ) + xp (t), where
A and .ϕ are arbitrary amplitude and phase parameters. Note that solution (6.13)
immediately shows all possible resonance combinations .aΩ0 = (2k + 1) π/2 or

.
Ω0

Ω
= 2k + 1 (6.14)

where .k = 1, 2, 3 . . . and .Ω = 2π/T = π/(2a) is the fundamental frequency of
the external forcing.

Let us compare solution (6.13) to solution obtained by using Fourier series

.τ

(
t

a

)
= 8

π2

∞∑
k=0

(−1)k

(2k + 1)2
sin[(2k + 1) Ωt] (6.15)

e

(
t

a

)
= 4

π

∞∑
k=0

(−1)k

(2k + 1)
cos[(2k + 1) Ωt]
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These lead to the particular solution of Eq. (6.10) in the form

.xp (t) =
∞∑

k=0

(−1)k

Ω2
0 − (2k + 1)2 Ω2

×

×
[

8F

π2 (2k + 1)2
sin[(2k + 1) Ωt] + 4G

π (2k + 1)
cos[(2k + 1) Ωt]

]

(6.16)

Solution (6.16) reveals the same resonance conditions, (6.14). However, the
infinite trigonometric series are less convenient for calculations, especially when
dealing with derivatives of solutions since differentiation slows down convergence
of the series.

6.2.2 Idempotent Basis

Consider the linear oscillator including viscous damping under the square wave
external loading

.ẍ + 2ζΩ0ẋ + Ω2
0x = pe

(
t

a

)
(6.17)

The purpose is to obtain periodic steady-state solution with the period of external
loading, .T = 4a. Recall that the idempotent basis is introduced by means of the
linear transformation

.{1, e} −→ {e+, e−} : e± = 1

2
(1 ± e) (6.18)

or, inversely, .1 = e+ + e− and .e = e+ − e−, where .e2± = e± and .e+e− = 0; see
Chaps. 1 and 4.

Now, the periodic solution and external loading are represented in the new basis
as

.x(t) = U(τ)e+ + V (τ)e− (6.19)

pe = p(e+ − e−)

where .e± = e±(t/a) and .U(τ) and .V (τ) are unknown functions of the triangle
wave, .τ = τ(t/a).

Substituting (6.19) in (6.17) and sequentially eliminating derivatives of the
square wave, as described in Chap. 4, give equations

.U ′′ + 2ζΩ0aU ′ + (Ω0a)2U = pa2

V ′′ − 2ζΩ0aV ′ + (Ω0a)2V = −pa2 (6.20)
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with boundary conditions

.(U − V )|τ=±1 = 0

(U ′ + V ′)|τ=±1 = 0 (6.21)

All the coefficients and right-hand sides of both equations in (6.20) are con-
stant, and the equations are decoupled. As a result, solution of boundary value
problem, (6.20) and (6.21), is obtained in the closed form

.U(τ) = p

Ω2
0

− 2p exp(−ατ)

βΩ2
0 (cos 2β + cosh 2α)

(6.22)

×[cosβ coshα(β cosβτ + α sinβτ) + sinβ sinhα(α cosβτ − β sinβτ)]

.V (τ) = − p

Ω2
0

+ 2p exp(ατ)

βΩ2
0 (cos 2β + cosh 2α)

(6.23)

×[cosβ coshα(β cosβτ − α sinβτ) + sinβ sinhα(α cosβτ + β sinβτ)]

where .α = aζΩ0 and .β = aΩ0

√
1 − ζ 2.

Substituting (6.22) and (6.23) in (6.19) gives the closed form particular solution
of original Eq. (6.17). Transition to the original temporal variable is given by the
functions .τ(ϕ) = .(2/π) arcsin[sin(πϕ/2)] and .e(ϕ) = sgn.[cos(πϕ/2)]. Since the
system under consideration is linear, the general solution of Eq. (6.17) can be
obtained by adding general solution of the corresponding equation with zero right-
hand side.

6.3 Systems Under Periodic Pulsed Excitation

Instantaneous impulses acting on a mechanical system can be modeled either by
imposing specific matching conditions on the system state vector at pulse times or
by introducing Dirac functions into the differential equations of motion. The first
approach deals with the differential equations of a free system separately between
the impulses; therefore, a sequence of systems under the matching conditions are
considered. The second method gives a single set of equations over the whole time
interval without any conditions of matching. In latter case, the analysis can be
carried out correctly in terms of distributions that requires additional mathematical
justifications in nonlinear cases. Both of the above approaches are used for different
quantitative and qualitative analyses. The analytical tool, which is described below,
eliminates the singular terms from the equations. As a result, solutions are obtained
in a closed form of a single analytical expression for the whole time interval.
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6.3.1 Regular Periodic Impulses

Introducing the triangle wave temporal argument may significantly simplify solu-
tions whenever loading functions are combined of the triangular wave and its
derivatives. For instance, let us seek a particular solution of the first-order differ-
ential equation1

.v̇ + λv = μ

∞∑
k=−∞

[δ (t + 1 − 4k) − δ (t − 1 − 4k)] (6.24)

where .λ and .μ are constant parameters.
For positive .λ, Eq. (6.24) describes the velocity of a particle moving in a viscous

media under the periodic impulsive force. The corresponding physical model is
shown in Fig. 6.1, where the freely moving massive tank experiences perfectly
elastic reflections from the stiff obstacles. By scaling the variables, one can bring the
differential equation of motion of the particle to the form (6.24), where .v (t) = ẋ (t).

First, note that the right-hand side of Eq. (6.24) can be expressed through the
generalized derivative of the square wave as follows:

.v̇ + λv = μ

2
ė (t) (6.25)

Now let us represent the particular solution in the form

.v (t) = X (τ (t)) + Y (τ (t)) e (t) (6.26)

Substituting (6.26) in (6.25) gives

.Y ′ + λX + (X′ + λY
)
e (t) +

(
Y − μ

2

)
ė (t) = 0 (6.27)

Apparently, the elements .{1, e} and .ė on the left-hand side of Eq. (6.27) are
linearly independent as functions of different classes of smoothness. Therefore,

.Y ′ + λX = 0, X′ + λY = 0, Y |τ=±1 = μ

2
(6.28)

Fig. 6.1 If mass of the
particle is very small
compared to the total mass of
the tank, then the inertia force
applied to the particle inside
the tank has a periodic
pulse-wise character

viscous media

( )x t

1 The case of Dirac comb input was considered in Chap. 1.
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Fig. 6.2 The family of discontinuous periodic solutions for different viscosity parameter of the
media inside the tank (Fig. 6.1)

In contrast to Eq. (6.24), this boundary value problem includes no discontinuities,
whereas the new independent variable belongs to the standard interval, .−1 ≤
τ ≤ 1. Solving the boundary value problem (6.28) and taking into account
substitution (6.26) give the periodic solution of Eq. (6.24) as

.v = X + Ye = μ

2 cosh λ
(− sinh λτ + e cosh λτ)

or

.v = μ

2 cosh λ
exp [−λτ (t) e (t)] e (t) (6.29)

Figure 6.2 illustrates solution (6.29) for .μ = 0.2 and different magnitudes of .λ.
Note that the discontinuous solution .v (t) is described by the closed form

expression (6.29) through the two elementary functions .τ (t) and .e (t).

6.3.2 Harmonic Oscillators Under the Periodic Impulsive
Loading

Resonances in Zero Damping Case

Let us consider the harmonic oscillator subjected to periodic pulses

.ẍ + Ω2
0x = 2p

∞∑
k=−∞

[δ (ωt + 1 − 4k) − δ (ωt − 1 − 4k)] (6.30)

where .p,Ω0 and .ω are constant parameters.
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The right-hand side of Eq. (6.30) can be expressed through the first derivative of
the square wave as follows:

.ẍ + Ω2
0x = p

de (ωt)

d (ωt)
(6.31)

Let us seek a periodic solution of the period .T = 4/ω in the form

.x (t) = X (τ (ωt)) + Y (τ (ωt)) e (ωt) (6.32)

Substituting (6.32) in (6.31) under the necessary condition of continuity for the
coordinate, .x (t), gives

.ω2X′′ + Ω2
0X +

(
ω2Y ′′ + Ω2

0Y
)

e +
(
ω2X′ − p

) de (ωt)

d (ωt)
= 0 (6.33)

Analogously to the previous subsection, Eq. (6.33) gives the boundary value
problem

.X′′ +
(

Ω0

ω

)2
X = 0, Y ′′ +

(
Ω0

ω

)2
Y = 0 (6.34)

X′|τ=±1 = p

ω2
, Y |τ=±1 = 0

Solving problem (6.34) and taking into account (6.32) give the periodic solution
of the original Eq. (6.30) in the form

.x = X (τ (ωt)) = p

ωΩ0

sin [(Ω0/ω) τ (ωt)]

cos (Ω0/ω)
(6.35)

where .Y ≡ 0.
Solution (6.35) is continuous although nonsmooth at those times t where

.τ (ωt) = ±1. All possible resonances are given by

.ω = 2

π

Ω0

k
; k = 1, 3, 5, . . . (6.36)

where the factor .2/π is due to different normalization of the periods for sine and
triangle waves.

Viscous Damping Case

Now let us consider the case of standard harmonic oscillator described by the
differential equation of motion
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.ẍ + 2ζΩ0ẋ + Ω2
0x = p

de (ωt)

d (ωt)
(6.37)

where .ζ is the damping ratio.
In this case, the boundary value problem becomes coupled

.X′|τ=±1 = p

ω2
, Y |τ=±1 = 0

.X′′ + 2ζ rY ′ + r2X = 0 (6.38)

Y ′′ + 2ζ rX′ + r2Y = 0

where .r = Ω0/ω is the adjusted natural over loading frequency ratio. Recall that
the sine wave frequency is given by .Ω = (π/2)ω. The principal resonance ratio is
therefore .r = π/2, which is obviously equivalent to .Ω0 = Ω .

As a result, the periodic solution has both X and Y components and is given by

.x = X + Ye = p

βω2
(
cos2 β cosh2 α + sin2 β sinh2 α

)
×[coshα cosβ coshατ sinβτ − sinhα sinβ sinhατ cosβτ (6.39)

+ (sinhα cosβτ coshατ sinβ − sinhατ sinβτ coshα cosβ) e]

where .τ = τ (ωt), .e = e (ωt); .α = rζ and .β = r
√
1 − ζ 2.

Figure 6.3 illustrates qualitatively different responses of the system when varying
the input frequency. In different proportions, the responses combine properties of the
harmonic damped motion and the nonsmooth motion due to the impulsive loading.
For instance, when .ω >> Ω0 and .ω >> ζΩ0, the system is near the limit of a free
particle under the periodic impulsive force. In this case, the boundary value problem
is reduced to

.X′′ = 0, Y ′′ = 0; X′ |τ=±1= p

ω2 , Y |τ=±1= 0 (6.40)

This gives the triangle wave temporal shape, .x = pτ (ωt) /ω2, which is close to
the shape in Fig. 6.3d.

Multiple Degrees-of-Freedom Case

Finally, let us consider N -degrees-of-freedom system

.M ÿ + Ky = p
de (ωt)

d (ωt)
(6.41)
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Fig. 6.3 Evolution of the response of the damped harmonic oscillator under the periodic impulsive
excitation for .p = 0.1, .ζ = 0.125, .Ω0 = 4.0, and different impulse frequencies .Ω = (π/2)ω: (a)
.Ω = 0.2—low-frequency Impulses, (b) .Ω = 2.0, (c) .Ω = Ω0, and (d) .Ω = 8.0

where .y (t) is N -dimensional vector-function, .p is a constant vector, and M and K

are constant .N × N mass and stiffness matrixes, respectively.
Let .{e1, . . . , eN } and .Ω1,. . . ,.ΩN be the normal mode basis vectors and the

corresponding natural frequencies, respectively, such that

.Kej = Ω2
j Mej , eT

k Mej = δkj

for any .k = 1, . . . , N and .j = 1, . . . , N .
Introducing the principal coordinates .xj (t),

.y =
N∑

j=1

xj (t) ej (6.42)

gives a decoupled set of impulsively forced harmonic oscillators of the form (6.31),

.ẍj + Ω2
j xj = pj de (ωt)

d (ωt)
(6.43)

where .pj = eT
j p.

Therefore, using solution (6.35) for each of the oscillators (6.43) and taking into
account (6.42) give

.y =
N∑

j=1

(eT
j p)ej

ωΩj

sin
[(

Ωj/ω
)
τ (ωt)

]
cos
(
Ωj/ω

) (6.44)



6.3 Systems Under Periodic Pulsed Excitation 209

1 2 430

1

1�

Fig. 6.4 Basic NSTT asymmetric wave functions

The corresponding resonances are determined by the condition

.ω = 2

π

Ωj

k

where .k = 1, 3, 5, . . . and .j = 1, . . . , N .

6.3.3 Periodic Impulses with a Temporal Dipole Shift

Let us consider the impulsive excitation with a dipole wise shift of pulse times. In
this case, the right-hand side of Eq. (6.25) can be expressed by second derivative of
the asymmetric triangle wave with some incline2 characterized by the parameter .γ

as shown in Fig. 6.4

.v̇ + λv = p
∂2τ (ωt, γ )

∂ (ωt)2
= p

∂e (ωt, γ )

∂ (ωt)
(6.45)

= 2p

1 − γ 2

∞∑
k=−∞

[δ (ωt + 1 − γ − 4k) − δ (ωt − 1 + γ − 4k)]

Based on the NSTT identities introduced in Chap. 4, periodic solutions of
Eq. (6.45) still can be represented in the form

.v = X (τ) + Y (τ) e (6.46)

where .τ = τ (ωt, γ ) and .e = e (ωt, γ ); see Fig. 6.4 for graphic illustrations.

2 Can be viewed as a generalized sawtooth function.
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Substituting (6.46) in Eq. (6.45) gives

.ωαY ′ + λX + [ω (X′ + βY ′)+ λY
]
e + (ωY − p)

∂e(ωt, γ )

∂(ωt)
= 0 (6.47)

where .α = 1/
(
1 − γ 2

)
, .β = 2γα, and the identity .e2 = α +βe has been taken into

account.
Equation (6.47) is equivalent to the boundary-value problem

.ω
(
X′ + βY ′) = −λY

ωαY ′ = −λX (6.48)

ωY |τ=±1 = p

The corresponding solution is

.Y = p

ω

[
cosh

(
γ

λ

ω

)
cosh

(
λ
ω
τ
)

cosh λ
ω

− sinh

(
γ

λ

ω

)
sinh

(
λ
ω
τ
)

sinh λ
ω

]
exp

(
γ

λ

ω
τ

)

X = −ωα

λ
Y ′ (6.49)

where the X-component is defined by differentiation due to the second equation
in (6.48).

6.4 Parametric Excitation

In this section, two different cases of parametric excitation are considered based on
relatively simple linear models. Piecewise-constant and impulsive excitations are
described by means of the functions .e(ωt, γ ) and .∂e(ωt, γ )/∂ (ωt), respectively.
There are at two least reasons for using NSTT as a preliminary analytical step.
First, NSTT automatically gives conditions for matching solutions at discontinuity
points. Second, due to the automatic matching through the NSTT functions,
the corresponding solutions appear to be in the closed form that is important
feature when further manipulations with the solutions are required by problem
formulations.

6.4.1 Piecewise-Constant Excitation

Let us consider the linear oscillator under the periodic piecewise-constant paramet-
ric excitation
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.ẍ + Ω2
0 [1 + εe(ωt, γ )]x = 0 (6.50)

where .Ω0, .ω, .γ , and .ε are constant parameters.
We seek periodic solutions with the period of excitation .T = 4/ω in the form

.x = X (τ) + Y (τ) e (6.51)

where .τ = τ(ωt, γ ) and .e = e(ωt, γ ).
As follows from the form of Eq. (6.50), the acceleration .ẍ may have stepwise

discontinuities due to the presence of the function .e(ωt, γ ), whereas the coordinate
.x (t) and the velocity .ẋ (t) must be continuous. Hence neither velocity .ẋ (t) nor
acceleration .ẍ (t) can include Dirac .δ-functions. Taking first derivative of (6.51)
gives

.ẋ (t) =
[
αY ′ + (X′ + βY ′)e + Y

∂e(ωt, γ )

∂ (ωt)

]
ω (6.52)

where the last term that consists of the periodic sequence of .δ-functions must be
excluded by imposing the boundary condition for Y -component

.Y |τ=±1= 0 (6.53)

Under condition (6.53), the second derivative takes the form

.ẍ (t) = ω2[α(X
′′ + βY

′′
)] + ω2[βX

′′ + (α + β2)Y
′′ ]e

+ω2(X′ + βY ′)∂e (ωt, γ )

∂ (ωt)
(6.54)

In this case, the singular term, which is underlined in (6.54), is eliminated by
condition

.
(
X′ + βY ′) |τ=±1= 0 (6.55)

Substituting (6.51) and (6.54) in the differential equation of motion (6.50) and
taking into account the algebraic properties of hyperbolic numbers bring the left-
hand side of the equation to the form .{· · ·} + {· · ·}e. Then, setting separately each
of the two algebraic components to zero gives a set of the differential equations for
.X (τ) and .Y (τ) in the following matrix form:

.

[
α αβ

β α + β2

]
d2

dτ 2

[
X

Y

]
+ r2

[
1 αε

ε 1 + βε

] [
X

Y

]
= 0 (6.56)

where .r = Ω0/ω
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Further, any particular solution of linear differential equations with constant
coefficients (6.56) is represented in the exponential form

.

[
X

Y

]
= B

[
1
μ

]
exp (λτ) (6.57)

where B, .μ, and .λ are constant parameters.
Substituting (6.57) in (6.56) and using the relationships, .α = 1/

(
1 − γ 2

)
and

.β = 2γ α, lead to the characteristic equation with two pairs of roots determined by

.λ2 =
[
− (1 − γ ) ε − (1 − γ )2

]
r2 ≡ ±k2 (6.58)

λ2 =
[
(1 + γ ) ε − (1 + γ )2

]
r2 ≡ ±l2

where signs of the notations .±k2 and .±l2 depend on the parameters .ε and .γ .
Let us consider the case of negative signs on the right-hand side of (6.58), when

the following condition holds:

. − (1 − γ ) < ε < (1 + γ ) (6.59)

Due to condition (6.59), the stiffness coefficient in Eq. (6.50) is always positive,
whereas (6.58) gives .λ = ±ki and .λ = ±li.As a result, the general solution of
Eqs. (6.56) takes the form

.X = B1 sin kτ + B2 cos kτ + B3 sin lτ + B4 cos lτ

Y = μ1 (B1 sin kτ + B2 cos kτ) + μ2 (B3 sin lτ + B4 cos lτ ) (6.60)

where .B1,. . . ,.B4 are arbitrary constants, and

.μ1 = − 1

α

αk2 − r2

βk2 − εr2
and μ2 = − 1

α

αl2 − r2

βl2 − εr2

Substituting (6.60) in boundary conditions (6.53) and (6.55) gives the homoge-
neous set of four linear algebraic equations with respect to the arbitrary constants
whose matrix is

.

⎡
⎢⎢⎣

μ1 sin k μ1 cos k μ2 sin l μ2 cos l

−μ1 sin k μ1 cos k −μ2 sin l μ2 cos l

k (1 + βμ1) cos k −k (1 + βμ1) sin k l (1 + βμ2) cos l −l (1 + βμ2) sin l

k (1 + βμ1) cos k k (1 + βμ1) sin k l (1 + βμ2) cos l l (1 + βμ2) sin l

⎤
⎥⎥⎦
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ε

r r

Fig. 6.5 Instability zones of oscillator (6.50) under the piecewise constant parametric excitation
for (a) .γ = 0.0 and (b) .γ = 0.7, where .r = Ω0/ω

Calculation of the determinant can be eased essentially after a proper summation
and subtraction of its rows. Then setting it to zero gives a condition for non-zero
solutions in the form

.
[
μ1 (1 + βμ2) l cos k sin l − μ2 (1 + βμ1) k cos l sin k

]
× [μ1 (1 + βμ2) l cos l sin k − μ2 (1 + βμ1) k cos k sin l

] = 0 (6.61)

Equation (6.61) describes the family of curves separating stability and instability
zones on the plane (.r, ε) as shown in Fig. 6.5, where the instability zones are
shadowed.

The diagrams in Fig. 6.5 are interpreted in a similar way to Ince-Strutt diagrams
showing the transition curves in the parameters’ plane. The curves divide the plane
into regions corresponding to unbounded/unstable and regions of bounded/stable
solutions.

6.4.2 Parametric Impulsive Excitation

Let us consider the case of parametric impulsive excitation whose temporal shape is
given by first derivative of the generalized square wave, .e (ωt, γ ), [177]

.ẍ + Ω2
0

[
1 + ε

∂e (ϕ, γ )

∂ϕ

]
x = 0 (6.62)
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where .ϕ = ωt , and

.
∂e (ϕ, γ )

∂ϕ
= ∂2τ (ϕ, γ )

∂ϕ2

= 2

1 − γ 2

∞∑
k=−∞

[δ (ϕ + 1 − γ − 4k) − δ (ϕ − 1 + γ − 4k)]

In this case, when substituting (6.51) and (6.54) in Eq. (6.62), the singular term
of second derivative (6.54) must be preserved in order to compensate the singularity
in Eq. (6.62). The result of such a compensation leads to the boundary conditions
(compare to (6.55))

.τ = ±1 : ω2(X′ + βY ′) + εΩ2
0X = 0 (6.63)

Note that substitution of (6.51) in Eq. (6.62) generates the term .(∂e/∂ϕ)eY ,
which is generally undefined in the theory of distributions. This term represents a
periodic series of .δ-functions, .∂e/∂ϕ, “multiplied” by the function e whose stepwise
discontinuities coincide with the times of .δ-functions, .{ϕ : τ (ϕ, γ ) = ±1}. Some
interpretations of such terms are still possible only within specific contents assuming
the common physical nature for both singularities as discussed in the next section.
In the present case, the term .(∂e/∂ϕ)eY is simply removed from the equation since
the point-wise singularities at .{ϕ : τ (ϕ, γ ) = ±1} are suppressed by continuity
condition (6.53) for the coordinate x: .Y |τ=±1= 0. Then combining separately two
group of terms associated with different structural parts of the hyperbolic number
gives

.

[
α αβ

β α + β2

]
d2

dτ 2

[
X

Y

]
+ r2

[
1 0
0 1

] [
X

Y

]
= 0 (6.64)

where .r = Ω0/ω.
Further steps follow the previous section. Substituting (6.57) in (6.64) leads to the

characteristic equation whose two pairs of roots .λ and the corresponding amplitude
ratios .μ are given by

.λ = ±ki = ±r(1 + γ )i, μ1 = −1 + γ

λ = ±li = ±r(1 − γ )i, μ2 = 1 + γ

where the notations .α = 1/
(
1 − γ 2

)
and .β = 2γα were taken into account.

Then, substituting (6.60) in boundary conditions, (6.53) and (6.63), gives a
homogeneous linear algebraic system for the constants .B1, . . . , B4. Setting its
determinant to zero gives the condition of existence of the period, .T = 4/ω, as

.ε2 = 2
(
1 − γ 2

)2
sin2 2r

r2(cos 4r − cos 4γ r)
(6.65)
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The dependence of .ε on r at fixed .γ has a branched zone-like structure on
the plane .(r, ε) which is typical for different cases of parametrically excited
oscillators. Interestingly enough, different subsequences of zones may disappear
as the parameter .γ varies. For instance, the number .γ = 1/2 eliminates every
second zone, whereas the number .γ = 1/5 removes every fifth zone. The effect of
collapsing instability zones can be explained by considering the regions of definition
for condition (6.65), .cos 4r − cos 4γ r > 0. This inequality holds inside the white
regions on the plane .(r, γ ) as shown in Fig. 6.6. It is seen that the bottom horizontal
line, .γ = 1/5, intersects four white regions before it starts crossing two shadowed
areas with no white one in between. It happens because the line intersects the (blue)
point at the corners of two shadowed regions. The corresponding vertical straight
line, which is intersecting the same point, corresponds to one of the roots of the
equation .sin 2r = 0. This root, .r = 5π/2, locates the point on the r-axis, from
which the missing instability zone would branch out if the line .γ = 1/5 were
slightly shifted up or down. Another horizontal line, .γ = 1/5, gives the example,
when every second zone is missing.

�

r

Fig. 6.6 The regions of definition for condition (6.65) are shown in white color; the locations of
blue dots explain why the corresponding zones of Ince-Strutt diagrams collapse; see the main text
for more details
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6.4.3 General Case of Periodic Parametric Excitation

Below, the problem formulation only is discussed for the case of periodic parametric
loading with both regular and singular components. It is assumed that there are two
discontinuities and two singularities on each period at the same time points. The
differential equation of motion is represented in the vector form

.ẍ +
[
Q(τ) + P (τ) e + p

∂e

∂ϕ

]
x = 0 (6.66)

where .x(t) ∈ Rn is the coordinates’ vector-column,.τ = τ (ϕ, γ ), .e = e (ϕ, γ ),
.ϕ = ωt is the phase variable, p is a constant .n × n matrix, and .Q(τ (ϕ, γ )) and
.P (τ (ϕ, γ )) are periodic matrixes of the period .T = 4 with respect to the phase .ϕ.

In Eq. (6.66), the first two terms of the coefficient can represent any periodic
function .q (ϕ) with stepwise discontinuities on .Λ = {t : τ (ϕ, γ ) = ±1}. In case
the original function .q (ϕ) is continuous, one has .P = 0 on .Λ.

Let us represent periodic solutions of the period .T = 4 in the form (6.51).
Substituting (6.51) in Eqs. (6.66), taking into account the equality .e2 = α + βe,
the necessary condition of continuity of the vector function .x (t), (6.53), and using
(6.52) and (6.54) give equations

.ω2 (αX′′ + αβY ′′)+ QX + αPY = 0

ω2
[(

α + β2
)

Y ′′ + βX′′]+ PX + QY + βPY = 0 (6.67)

and the boundary condition

.

[
ω2 (X′ + βY ′)+ pX

]
|τ=±1= 0 (6.68)

In the case of fixed sign of impulses, the matrix p should be provided with the
factor sgn.(τ ). Together with (6.53), relations (6.67) and (6.68) represent a boundary-
value problem for determining the vector functions X and Y and the corresponding
conditions for existence of periodic solutions.

Note that substitution (6.51) in Eq. (6.66) generates the specific term .e∂e/∂ϕ. Let
us show that, within the theory of distributions, these terms can be interpreted as

.e
∂e

∂ϕ
= 1

2
β

∂e

∂ϕ
(6.69)

The relationship (6.69) is the result of a formal differentiation of both sides of
the relation .e2 = α + βe with respect to the phase .ϕ. To justify it in terms of
distributions, let us assume that .ω = 1 so that .ϕ ≡ t and consider expression (6.53)
locally, near the point .t = 1 − γ , which is a typical point for the entire set of
discontinuities at times .Λ = {t : τ (t) = ±1}.
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Generally speaking, the “product” .f (t)δ(t) requires the function .f (t) to be at
least continuous at .t = 0. However, it is possible to provide the left-hand side
of (6.69) with a certain meaning due to the fact that both terms of the product are
generated by the same family of smooth functions. In order to illustrate this remark
and prove equality (6.69), let us consider a family of smooth functions .{δε (t)} such
that

.

ε∫
−ε

δε (t) dt = 1 (6.70)

for all positive .ε, and .δε (t) = 0 outside the interval .−ε < t < ε.
Therefore, in terms of weak limits, .δε (t) → δ (t) as .ε → 0. Now, a family of

smooth functions approximating e and .∂e/∂t in the neighborhood of point .t = 1−γ

within the interval .−1 + γ < t < 3 + γ can be chosen as, respectively,

.eε = 1

1 − γ
− β

γ
θε (t − 1 + γ ) and

∂eε

∂t
= −β

γ
δε (t − 1 + γ ) (6.71)

where .θε (t) =
t∫

−∞
δε (ξ) dξ is a smoothed version of Heaviside unit-step function

associated with .δε (t).
Based on definitions (6.71) for .eε and .∂eε/∂t , one has .eε → e and .∂eε/∂t →

∂e/∂t as .ε → 0 in the interval .−1 + γ < t < 3 + γ .
Substituting (6.71) in equality (6.69) instead of e and .∂e/∂ϕ reduces the problem

to the proof of identity

.θε(t−1+γ )δε(t−1+γ ) = 1

2
δε(t−1+γ ) → 1

2
δ(t−1+γ ) as ε → 0 (6.72)

For simplicity reason, let us shift the origin to the point .t = 1 − γ and show
that the left-hand side of (6.72) gives .δ (t) /2 as .ε → 0 in the sense of a weak limit.
The proof below is based on general properties of the functions .{δε} regardless of
specifics of their shapes. It is important nonetheless to maintain the relationship
.dθε/dt = δε as shown in Fig. 6.7. First, the area bounded by .θεδε is

.

∫ ε

−ε

θεδεdt =
∫ ε

−ε

θε

dθε

dt
dt = 1

2
θ2ε |ε−ε=

1

2

Then, let .φ (t) belong to the class of continuous testing functions, which
is usually considered in the theory of distributions. By definition, in some .ε-
neighborhood of the point .t = 0, one has .| φ (t) − φ (0) |< 2η, where .η is as
small as needed whenever .ε is sufficiently small. Therefore,

. |
∫ ε

−ε

θε (t) δε (t) φ (t) dt − 1

2
φ (0) |≤

∫ ε

−ε

θε (t) δε (t) | φ (t) − φ (0) | dt ≤ η
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Fig. 6.7 Clarification for the
product .δ(t)θ(t) based on the
smooth families of functions
.δε(t) and .θε(t)

–

t

Fig. 6.8 Two mass-spring
model 1x 2x

1m 2m

1k 2k

1c 1F

In other words,

.

∫ ε

−ε

θε (t) δε (t) φ (t) dt → 1

2
φ (0)

as .ε → 0.
This completes the proof.

6.5 Input-Output Systems

The input-output form of dynamical systems may be convenient for different
reasons, for instance, when dealing with control problems. In many linear cases,
input-output systems are represented in the form of a single high order equation

.an

dny

dtn
+ . . . + a1

dy

dt
+ a0y = bm

dmu

dtm
+ . . . + b1

du

dt
+ b0u (6.73)

where .u = u(t) and .y = y(t) are input and output, respectively, and .an, . . . , a1, .a0,
.bm, . . . , b1, .b0 are constant coefficients.

For illustration purposes, a two-degrees-of-freedom model as shown in Fig. 6.8
is considered, although the general case (6.73) can be handled in the same way.
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Eliminating .x2(t) from the system gives a single higher-order equation with
respect to the other coordinate, .x1(t), in the form

. m1
d4x1

dt4
+ c1

d3x1

dt3
+
(

k1 + k2 + m1

m2
k2

)
d2x1

dt2
+ c1

m2
k2

dx1

dt
+ k1k2

m2
x1

= d2F1

dt2
+ k2

m2
F1 (6.74)

System (6.74) is a particular case of (6.73), where .n = 4 and .m = 2. Let us
consider the stepwise discontinuous periodic function .F1(t) = u(t) = e(ωt) and
represent Eq. (6.74) in the form

.a4
d4y

dt4
+ . . . + a1

dy

dt
+ a0y = b2ω

2e′′ + b1ωe′ + b0e (6.75)

where .
′ ≡ d/d(ωt), and all the coefficients and variables are identified by

comparing (6.74)–(6.75).
The right-hand side of Eq. (6.75) contains discontinuous and singular functions;

hence, Eq. (6.75) must be treated in terms of distributions. Nonetheless, on the
manifold of periodic solutions, Eq. (6.75) is equivalent to some classical boundary-
value problem.

To confirm this statement, let us represent the output in the form

.y(t) = X(τ) + Y (τ)e (6.76)

where .τ = τ(ωt) and .e = e(ωt).
When differentiating expression (6.76) step-by-step, one should eliminate the

singular term .e′ in the first two derivatives by sequentially setting boundary
conditions as follows:

.
dy

dt
= (Y ′ + X′e)ω, Y |τ=±1 = 0 (6.77)

d2y

dt2
= (X′′ + Y ′′e)ω2, X′|τ=±1 = 0

Then, it is dictated by the form of the input in (6.75) that the singular terms .e′
and .e′′ must be preserved on the next two steps:

.
d3y

dt3
= (Y ′′′ + X′′′e + Y ′′e′)ω3 (6.78)

d4y

dt4
= (X(4) + Y (4)e + X′′′e′ + Y ′′e′′)ω4
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The fourth-order derivative in (6.78) takes into account the equality .ee′ = 0,
which easily follows from (6.53) in the symmetric case .β = 0. Substituting (6.77)
and (6.78) in (6.75) and considering the elements .{1, e, e′, e′′} as a linearly
independent give equations

.a4ω
4XIV + a3ω

3Y ′′′ + a2ω
2X′′ + a1ωY ′ + a0X = 0 (6.79)

a4ω
4Y IV + a3ω

3X′′′ + a2ω
2Y ′′ + a1ωX′ + a0Y = b0

under the boundary conditions at .τ = ±1:

.Y = 0, X′ = 0 (6.80)

ω2Y ′′ = b2

a4
, ω3X′′′ = 1

a4

(
b1 − a3

a4
b2

)

In contrast to Eq. (6.75), the boundary value problem (6.79) and (6.80) does not
include discontinuous terms any more. Although the number of equations in (6.79)
is doubled as compared to (6.75), such a complication is rather formal due to
the symmetry of the equations. Introducing the new variables, .U = X + Y and
.V = X − Y , decouples system (6.79) in such a way that the corresponding roots
of the characteristic equations differ just by signs. (Besides, this fact reveals the
possibility of using the idempotent basis for decoupling the resultant set of equations
as discussed in Chap. 4 and will be discussed later in this chapter.) In addition, the
type of the symmetry suggests that .X(τ) and .Y (τ) are odd and even functions,
respectively. This enables one of reducing the general form of solution to a family
of solutions with four arbitrary constants

.X =
2∑

j=1

[
Aj cosh

(αj

ω
τ
)
sin

(
βj

ω
τ

)
+ Bj sinh

(αj

ω
τ
)
cos

(
βj

ω
τ

)]
(6.81)

Y =
2∑

j=1

[
Aj sinh

(αj

ω
τ
)
sin

(
βj

ω
τ

)
+ Bj cosh

(αj

ω
τ
)
cos

(
βj

ω
τ

)]
+ b0

a0

where .αj ± βj i are complex conjugate roots of the characteristic equation

.a4p
4 + . . . + a1p + a0 = 0 (6.82)

The assumption that both of the roots are complex reflects the physical meaning
of the example. Finally, substituting (6.81) in (6.80) gives a linear algebraic set
of four independent equations with respect to four constants: .A1, .A2, .B1, and
.B2. Although the corresponding analytical solution is easy to obtain by using
the standard Mathematica® commands, the result is somewhat complicated for
reproduction. Practically, it may be reasonable to determine the constants by setting
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the system parameters to their numerical values moreover that only numerical
solution is often possible for characteristic equations.

6.6 Piecewise-Linear Oscillators with Asymmetric
Characteristics

Piecewise-linear oscillators are often considered as finite degrees-of-freedom mod-
els of cracked elastic structures [3, 41, 243], but may occur also due to specific
design solutions. In many cases, the corresponded periodic solutions can be com-
bined of different pieces of linear solutions valid for two different subspaces of the
configuration space [42, 99, 243]. In this section, it will be shown that the nonsmooth
transformation of time results in a closed form analytical solution matching both
pieces of the solution automatically by means of elementary functions.

6.6.1 Amplitude-Phase Equations

Let us consider a piecewise linear oscillator of the form

.mq̈ + k[1 − εH(q)]q = 0 (6.83)

where .H(q) is Heaviside unit-step function; m and k are mass and stiffness
parameters, respectively; and .|ε| � 1; therefore, .k− = k and .k+ = k(1 − ε) are
elastic stiffness of the oscillator for .q < 0 and .q > 0, respectively.

The exact general solution of oscillator (6.83) can be obtained by satisfying
the continuity conditions for q and .q̇ at the matching point .q = 0, where the
characteristic has a break. The exact closed form solution for a similar oscillator
was obtained in Sect. 4.3.4 in terms of NSTT. Such approaches are often facing quite
challenging algebraic problems, as the number of degrees of freedom increases or
external forces are involved. This is mainly due to the fact that times of crossing
the boundary, .q = 0, are a priori unknown. The problems become even more
complicated in the presence of other types of nonlinearities. In this section, it will
be shown that applying a combination of asymptotic expansions with respect to
.ε and NSTT gives a closed form solution for oscillator (6.83) with a possibility
of generalization on the normal mode motions of multiple degrees-of-freedom
systems. In particular, the nonsmooth temporal transformation:

• Provides an automatic matching of the motions from different subspaces of
constant stiffness, and

• justifies quasi-linear asymptotic solutions for the specific nonsmooth case of
piecewise linear characteristics.
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Let us clarify the above two remarks. Introducing the notation .Ω2 = k/m brings
Eq. (6.83) to the standard form of a weakly nonlinear oscillator

.q̈ + Ω2q = εΩ2H(q)q (6.84)

The nonlinear perturbation on the right-hand side of oscillator (6.84) is a
continuous but nonsmooth function of the coordinate q. Since the major algorithms
of quasi-linear theory assume smoothness of nonlinear perturbations, then such
algorithms are not applicable in this case unless appropriate modifications and
extensions have been made. Even though deriving first-order asymptotic solutions
usually require no differentiation of characteristics, dealing with two pieces of the
solution may complicate any further stages.

Let us show that combining quasi-linear methods of asymptotic integration,
such as Krylov-Bogolyubov averaging,3 with nonsmooth temporal transformations
results in a closed form analytical solution for piecewise linear oscillator (6.83).
Note that oscillator (6.83) plays an illustrative role for the approach developed
below. Then a more complicated case will be considered.

Let us introduce the amplitude-phase coordinates .{A(t), ϕ(t)} on the phase plane
of oscillator (6.83) through relationships

.q = A cosϕ

q̇ = −ΩA sinϕ (6.85)

The following compatibility condition is imposed on transformation (6.85)

.Ȧ cosϕ − A sinϕϕ̇ = −ΩA sinϕ (6.86)

Substituting (6.85) in (6.84) and taking into account (6.86) give

.Ȧ = −1

2
εΩAH(A cosϕ) sin 2ϕ

ϕ̇ = Ω − εΩH(A cosϕ) cos2 ϕ (6.87)

The right-hand sides of Eqs. (6.87) are .2π -periodic with respect to the phase
variable, .ϕ. Therefore, nonsmooth transformation of the phase variable applies
through the couple of functions

.τ = τ

(
2

π
ϕ

)
and e = e

(
2

π
ϕ

)
(6.88)

Assuming that .A ≥ 0 and taking into account identities

3 See Sect. 2.2.2.
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. sinϕ = sin
(π

2
τ
)

cosϕ = cos
(π

2
τ
)

e

H(A cosϕ) = 1

2
(1 + e) (6.89)

e2 = 1

bring (6.87) to the form

.Ȧ = −1

4
εΩ(1 + e)A sinπτ . (6.90)

ϕ̇ = Ω − 1

2
εΩ(1 + e) cos2

πτ

2
(6.91)

Note that the right-hand sides of (6.90) and (6.91) are nonsmooth but continuous
with respect to the phase .ϕ since the stepwise discontinuities of the square wave
.e(2ϕ/π) are suppressed by the factors .sinπτ and .cos2(πτ/2), respectively.

6.6.2 Amplitude Solution

Let us show that Eq. (6.90) has an exact .2π -periodic solution with respect to the
phase variable, .ϕ. According to the algorithm of NSTT, any periodic solution can
be represented in the form

.A = X(τ) + Y (τ)e (6.92)

where .τ and e are defined by (6.88).
Substituting (6.92) in (6.90) and taking into account (6.91) give boundary-value

problem

.(X − Y )′ = 0

(X + Y )′

X + Y
= −επ

4

sinπτ

1 − ε cos2 πτ
2

(6.93)

.Y |τ=±1 = 0 (6.94)

where .
′ ≡ d/dτ .
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Solution of the boundary value problem, (6.93) and (6.94), is obtained by
integration. Then representation (6.92) gives

.A(ϕ) = α[1 + ζ (τ )] − α[1 − ζ (τ )]e (6.95)

ζ (τ ) =
(
1 − ε cos2

πτ

2

)−1/2

where the functions .τ and e of the phase .ϕ are defined in (6.88), and .α is an arbitrary
positive constant.

Note that solution (6.95) exactly captures the amplitude in both subspaces .q < 0
and .q > 0. However, the temporal mode shape and the period essentially depend on
the phase variable .ϕ described by Eq. (6.91). Generally, this equation admits exact
integration, but the result would appear to have implicit form. Alternatively, it is
shown below that solution for the phase variable can be approximated by asymptotic
series in the explicit form

.ϕ = φ − 1

8
ε[πτ + (1 + e) sinπτ ]

− 1

128
ε2{4(2 − cosπτ)(πτ + sinπτ) (6.96)

−[4πτ(1 + cosπτ) − 8 sinπτ + sin 2πτ ]e} + O(ε3)

where the triangle and rectangle waves depend on the new phase variable, .τ =
τ(2φ/π), .e = e(2φ/π), and

.φ = Ω

[
1 − 1

4
ε − 3

32
ε2 + O(ε3)

]
t (6.97)

6.6.3 Phase Solution

In this subsection, a second-order asymptotic procedure for phase equations with
nonsmooth periodic perturbations is introduced. If applied to Eq. (6.91), the devel-
oped algorithm gives solution (6.96).

Let us consider some phase equation of the general form

.ϕ̇ = Ω[1 + εf (ϕ)] (6.98)

where .f (ϕ) is a .2π -periodic, nonsmooth, or even stepwise discontinuous function,
and .ε is a small parameter, .|ε| � 1.

Using the basic NSTT identity for .f (ϕ) brings Eq. (6.98) to the form

.ϕ̇ = Ω + εΩ [G(τ) + M(τ)e] (6.99)
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where the functions .G(τ) and .M(τ) are expressed through .f (ϕ), and the functions
.τ and e of the phase .ϕ are defined in (6.88).

Note that the class of smoothness of the periodic perturbation in Eq. (6.99)
depends on the behavior of functions .G(τ) and .M(τ) and their derivatives at the
boundaries .τ = ±1. If, for instance, .M(±1) 
= 0, then the perturbation is stepwise
discontinuous in .ϕ whenever .τ = ±1.

Let us introduce the asymptotic procedure for Eq. (6.99) by noticing that, in case
.ε = 0, the phase .ϕ has a constant temporal rate, .ϕ̇ = Ω . Hence, following the idea
of asymptotic integration, let us find a phase transformation

.ϕ = φ + εF1(φ) + ε2F2(φ) + . . . (6.100)

where functions .Fi(φ) are such that the new phase variable, .φ, also has a constant
temporal rate even when .ε 
= 0.

In other words, transformation (6.100) should bring Eq. (6.99) to the form

.φ̇ = Ω(1 + εγ 1 + ε2γ 2 + . . .) (6.101)

where .γ i are constant coefficients to be determined together with .Fi(φ) during the
asymptotic procedure.

Note that the procedure, which is described below, has several specific features
due to the presence of nonsmooth periodic functions. In particular, high-order
approximations require a non-conventional interpretation for the power series
expansions as discussed in Remark 6.6.1 at the end of this section. Other modifi-
cations occur already in the leading order approximation.

Substituting (6.100) in Eq. (6.99) and then enforcing Eq. (6.101) and collecting
the terms of order .ε give

.F ′
1(φ) = G(τ) + eM(τ) − γ 1 (6.102)

where the triangle and square waves depend now on the new phase variable .φ as
.τ = τ(2φ/π) and .e = e(2φ/π), respectively.

According to the conventional averaging procedure, the constant .γ 1 is selected
to achieve a zero mean on the right-hand side of Eq. (6.102) and thus provide
periodicity of the solution, .F1(φ). In the algorithm below, the periodicity is due to
the form of representation for periodic solutions, whereas the operator of averaging
occurs automatically from the corresponding conditions of smoothness that is
boundary conditions for the solution components. Following this remark, let us seek
solution of Eq. (6.102) in the form

.F1(φ) = U1(τ ) + eV1(τ ) (6.103)

Substituting (6.103) in (6.102) and applying NSTT procedure give the boundary-
value problem
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.U ′
1(τ ) = π

2
M(τ)

V ′
1(τ ) = π

2
[G(τ) − γ 1] (6.104)

V1(±1) = 0

There are two conditions on the function .V1(τ ) described by the first-order
differential equation in (6.104). There is also a choice for .γ 1, which is to satisfy
one of the two conditions. As a result, solution of boundary-value problem (6.104)
is obtained by integration in the form

.U1(τ ) = π

2

∫ τ

0
M(z)dz

V1(τ ) = π

2

∫ τ

−1
[G(z) − γ 1]dz (6.105)

γ 1 = 1

2

∫ 1

−1
G(τ)dτ

Further, collecting the terms of order .ε2 gives

.F ′
2(φ) = G2(τ ) + eM2(τ ) + P2(τ )e′ − γ 2 (6.106)

where .e′ ≡ de(2φ/π)/d(2φ/π) is a periodic series of .δ-functions, and

.M2(τ ) = 2

π
[U1(τ )G′(τ ) + V1(τ )M ′(τ )] − M(τ)γ 1

G2(τ ) = 2

π
U1(τ )M ′(τ ) − G(τ)γ 1 + γ 2

1 (6.107)

P2(τ ) = 2

π
U1(τ )M(τ)

In contrast to first-order Eq. (6.102), the Eq. (6.106) includes the singular term
.P2(τ )e′ produced by the power series expansion of the perturbation in Eq. (6.99).
If the perturbation is smooth, then .P2(±1) = 0 and such singular term disappears.
Nonetheless, the second-order approximation makes sense even in discontinuous
case, when .P2(±1) 
= 0. To clarify the details, let us represent solution of
Eq. (6.106) in the form

.F2(φ) = U2(τ ) + eV2(τ ) (6.108)

Substituting (6.108) in (6.106) gives boundary-value problem
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.U ′
2(τ ) = π

2
M2(τ )

V ′
2(τ ) = π

2
[G2(τ ) − γ 2] (6.109)

V2(±1) = π

2
P2(±1)

In contrast to (6.104), the current boundary-value problem has generally non-
homogeneous boundary conditions for .V2. These conditions compensate the singu-
lar term .e′ from differential equation (6.106). As a result Eqs. (6.109) are free of any
singularities and admit solution analogously to first-order Eqs. (6.104),

.U2(τ ) = π

2

∫ τ

0
M2(z)dz

V2(τ ) = π

2

∫ τ

−1
[G2(z) − γ 2]dz + π

2
P2(−1) (6.110)

γ 2 = 1

2

∫ 1

−1
G2(τ )dτ + 1

2
[P2(−1) − P2(1)]

Example 6.6.1 Now, let us revisit the illustrating model. In particular case (6.91),
one has

.G(τ) ≡ M(τ) ≡ −1

2
cos2

πτ

2
(6.111)

and

.G(±1) = M(±1) = 0

G′(±1) = M ′(±1) = 0 (6.112)

G′′(±1) = M ′′(±1) = −π2/4

where .
′ ≡ d/dτ . First two of Eqs. (6.112) provide continuity for the right-hand

side of (6.99) and its first derivative at those .ϕ where .τ = ±1. As follows from
(6.107) and (6.111), for this class of smoothness, one has .P2(±1) = 0 and hence no
singular terms occur in the first two steps of asymptotic procedure. Finally, taking
into account (6.111) and (6.112) and conducting integration in (6.105) and (6.110)
bring solution (6.100) to the form (6.96) and (6.97). Figure 6.9 compares analytical
solution (6.85), (6.95), and (6.96) shown by the solid line and numerical solution
shown by the dashed line. As expected, the amplitude shows the perfect match,
whereas some phase shift develops after several cycles.



228 6 NSTT for Linear and Piecewise-Linear Systems

Fig. 6.9 Second-order
asymptotic and numerical
solutions shown by solid and
dashed lines, respectively
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6.6.4 The Amplitude-Phase Problem in Idempotent Basis

Recall that the idempotent basis is given by .e+ = (1 + e)/2 and .e− = (1 − e)/2 so
that .e2+ = e+, .e2− = e−, and .e+e− = 0. Equations (6.90) and (6.91) therefore take
the form

.Ȧ = −1

2
εΩe+A sinπτ . (6.113)

ϕ̇ = Ω − εΩe+ cos2
πτ

2
(6.114)

Let us represent the amplitude as a function of .ϕ in the form

.A(ϕ) = X+(τ )e+ + X−(τ )e− (6.115)

where .e+ = e+(2ϕ/π), .e− = e−(2ϕ/π), and .τ = τ(2ϕ/π).
Substituting (6.115) in (6.113) and taking into account (6.114) give

.
2

π
(X′+e+ − X′−e−)

(
Ω − εΩe+ cos2

πτ

2

)
= −1

2
εΩe+(X+e+ + X−e−) sinπτ

or

.

(
1 − ε cos2

πτ

2

)
X′+ = −π

4
εX+ sinπτ

X′− = 0 (6.116)

under the boundary condition

.(X+ − X−)|τ=±1 = 0 (6.117)
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The boundary-value problem (6.116) and (6.117) admits exact solution so
that (6.115) gives finally

.A(ϕ) = α

[(
1 − ε cos2

πτ

2

)−1/2
e+ + e−

]
(6.118)

where .α is an arbitrary positive constant.

Remark 6.6.1 In the classical analysis, nonsmooth functions cannot be represented
by Taylor series near their singular points. This can be justified however in terms
of distributions as confirmed by the following example. Nonsmoothness of the
triangular sine is similar to that function .|t | has at zero. Let us consider its formal
power series

.|t + ε| = |t | + |t |′ε + 1

2! |t |
′′ε2 + . . . (6.119)

where .ε > 0 and .−∞ < t < ∞, and prime indicates Schwartz derivative.
It is clear that equality (6.119) has no regular point-wise meaning. For instance,
equality (6.119) is obviously not true on the interval .−ε < t < 0. In addition, the
right-hand side of (6.119) is uncertain at .t = 0, whereas the left-hand side gives .ε.
Nevertheless, let us show that equality (6.119) admits a generalized interpretation
and holds in terms of distributions. Let .ψ(t) be a test function in terms of the
distribution theory; more precisely, .ψ(t) is infinitely differentiable with compact
support that is identically zero outside of some bounded interval. Integrating by
parts and then shifting the variable of integration give

.

∫ ∞

−∞

(
|t | + |t |′ε + 1

2! |t |
′′ε2 + . . .

)
ψ(t)dt

=
∫ ∞

−∞
|t |
[
ψ(t) − ψ ′(t)ε + 1

2!ψ
′′(t)ε2 − . . .

]
dt (6.120)

=
∫ ∞

−∞
|t |ψ(t − ε)dt =

∫ ∞

−∞
|t + ε|ψ(t)dt

Therefore, equality (6.119) holds in the integral sense of distributions.

6.7 Multiple Degrees-of-Freedom Case

Let us consider a multiple degrees-of-freedom piecewise-linear system of the form

.Mẍ + Kx = εH(Sx)Bx (6.121)
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where .x(t) ∈ Rn is a vector-function of the system coordinates, M is a mass matrix,
H denotes the Heaviside unit-step function, and S is a normal vector to the plane
splitting the configuration space into two parts with different elastic properties, so
that the stiffness matrix is K when .Sx < 0 and .K − εB when .Sx > 0. It is assumed
that the stiffness jump is small, .|ε| � 1.

The number of possible iterations of the classical perturbation tools usually
depends on a class of smoothness of the perturbation. The perturbation term on
the right-hand side of (6.121) is continuous but nonsmooth. Therefore, only first-
order asymptotic solution can be obtained within the classic theory of differential
equations. Also, the piecewise character of the perturbation complicates the form of
the solution due to the necessity of matching the different pieces of the solution.

Let us show that NSTT gives a closed-form solution by automatically matching
the pieces of solution in two different configuration subspaces of different stiffness
properties. We seek a .2π -periodic, with respect to the phase .ϕ, solution of
system (6.121) in the form of the following asymptotic expansions:

.x(ϕ) = Aj cosϕ + εx(1)(ϕ) + O(ε2)

ϕ = Ωj

√
1 + εγ (1) + O(ε2)t (6.122)

where .Ωj and .Aj are arbitrary eigen-frequency and eigen vector (normal mode) of
the linearized system:

.

(
−Ω2

j M + K
)

Aj = 0 (j = 1, . . . ,n) (6.123)

Substituting (6.122) in (6.121), taking into account identities (6.89), assuming
that algebraic equation (6.123) holds, and collecting terms in the first order of .ε

give

.Ω2
j M

d2x(1)

dϕ2
+ Kx(1) =

[
1

2
BAj +

(
1

2
BAj + γ (1)KAj

)
e

]
cos

πτ

2
(6.124)

where .τ = τ(2ϕ/π), .e = e(2ϕ/π), and the relationship .(1 + εγ (1))−1 = 1 −
εγ (1) + O(ε2) was enforced.

Since the function .x(1)(ϕ) is sought to be .2π -periodic with respect to .ϕ, it should
admit NSTT representation

.x(1) = X(τ) + Y (τ)e (6.125)

Substituting (6.125) in (6.124) and conducting NSTT procedure give the
boundary-value problem
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.

(
2Ωj

π

)2
MX′′ + KX = 1

2
BAj cos

πτ

2
, X′|τ=±1 = 0. (6.126)

(
2Ωj

π

)2
MY ′′ + KY =

(
1

2
BAj + γ (1)KAj

)
cos

πτ

2
(6.127)

Y |τ=±1 = 0

Representing the corresponding solution in terms of the normal mode coordinates

.X =
n∑

i=1

AiXi(τ ), Y =
n∑

i=1

AiYi(τ ) (6.128)

and taking into account M-orthogonality of the set of eigen-vectors give

.

(
2Ωj

π

)2
X′′

i + Ω2
i Xi = βij cos

πτ

2
, X′

i |τ=±1 = 0. (6.129)

(
2Ωj

π

)2
Y ′′

i + Ω2
i Yi = (βij + γ (1)�ij ) cos

πτ

2
, Yi |τ=±1 = 0 (6.130)

where

.βij = 1

2

AiBAj

AiMAi

, �ij = AiKAj

AiMAi

(6.131)

are dimensionless coefficients.
Note that, despite the similar representation for solution (6.122), the current

asymptotic procedure differs from the Poincaré-Lindstedt method due to the
specific of representation (6.125). According to the Poincaré-Lindstedt method, the
frequency correction term, .γ (1), is to eliminate the so-called secular terms in the
asymptotic expansions. In the present case, the secular terms appear to be periodic
due to the inherent periodicity of the new temporal argument. Instead solutions are
required to satisfy the boundary-value problems, such as (6.129) and (6.130). If
.i 
= j , the term .γ (1) disappears from (6.130) due to .�ij = 0. Then both boundary-
value problems, (6.129) and (6.130), admit solutions

.Xi = βij

Ω2
i − Ω2

j

(
cos

πτ

2
− Ωj

Ωi

cos
πΩiτ

2Ωj

csc
πΩi

2Ωj

)
. (6.132)

Yi = βij

Ω2
i − Ω2

j

cos
πτ

2
(6.133)

When .i = j , problem (6.129) still has solution, but problem (6.130) generally
does not due to the resonance .Ωi = Ωj . Fortunately, in this case .�jj 
= 0, and hence
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Fig. 6.10 Two degrees-of-freedom piecewise-linear system can be viewed as a model of a rod
with a small crack

the right-hand side of the equation can be set to zero by means of the condition on
yet undetermined as

.γ (1) = −βjj

�jj

(6.134)

Due to this condition, problem (6.130) admits zero solution, and thus

.Xj = πβjj

4Ω2
j

(
τ sin

πτ

2
+ 2

π
cos

πτ

2

)
. (6.135)

Yj = 0 (6.136)

Expressions (6.125), (6.128), and (6.132) through (6.136) completely determine the
first-order approximation .x(1)(ϕ).

Example 6.7.1 Let us consider a two-degrees-of-freedom example of mass-spring
model (Fig. 6.10)

.m1ẍ1 + (k1 + k2)x1 − k2x2 = εk1H(x1)x1 (6.137)

m2ẍ2 − k2x1 + (k2 + k3)x2 = 0

Equations (6.119) can be represented in the form (6.121), where

.M =
[

m1 0
0 m2

]
, K =

[
k1 + k2 −k2

−k2 k2 + k3

]
, B =

[
k1 0
0 0

]

x =
[

x1

x2

]
, S = [ 1 0

]

In this case, the first-order asymptotic solution for the inphase (.j = 1) and out-of-
phase (.j = 2) takes the form, respectively,
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.x1 = e cos
πτ

2
+ επ

16

(
2

π
cos

πτ

2
+ τ sin

πτ

2

)
+ O(ε2)

x2 = e cos
πτ

2
− εk1

8k2

[
e cos

πτ

2
+ cos

πτ

2
(6.138)

−
(
1 + 2

k2

k1

)−1/2

cos

(√
1 + 2

k2

k1

πτ

2

)
/ sin

(√
1 + 2

k2

k1

π

2

)]
+ O(ε2)

.ϕ =
√

k1

m

√
1 − ε

4
+ O(ε2)t

and

.x1 = −e cos
πτ

2
+ εk1

8k2

[
e cos

πτ

2
+ cos

πτ

2
−
(
1 + 2

k2

k1

)

× cos

(
πτ

2
/

√
1 + 2

k2

k1

)
/ sin

(
π

2
/

√
1 + 2

k2

k1

)]
+ O(ε2) (6.139)

x2 = e cos
πτ

2
+ εk1π

16(k1 + 2k2)

(
2

π
cos

πτ

2
+ τ sin

πτ

2

)
+ O(ε2)

.ϕ =
√

k1 + 2k2
m

√
1 − εk1

4(k1 + 2k2)
+ O(ε2)t

where .m = m1 = m2 is assumed. Solutions (6.138) and (6.102) show that the
piecewise linear restoring force may have quite different effect on different modes.
In particular, solution (6.138) reveals the possibility of internal resonances, when

. sin

(
πΩ2

2Ω1

)
= 0,

Ω2

Ω1
=
√
1 + 2

k2

k1
(6.140)

If, for instance, the system is close to the frequency ratio .Ω2/Ω1 = 2, then the
inphase mode may be affected significantly by a crack even under very small
magnitudes of the parameter .ε. In contrary, solution (6.102) has the denominator
.sin[(π/2)Ω1/Ω2], which is never close to zero because .0 < Ω1/Ω2 < 1.
Therefore, in current asymptotic approximation, the influence of crack on the out-
of-phase mode is always of order .ε provided that .k2/k1 = O(1).The influence of
the bilinear stiffness on inphase mode trajectories in the closed to internal resonance
case is seen from Fig. 6.11, where both analytical and numerical solutions are shown
for comparison reasons. The frequency ratio .Ω2/Ω1 = 2.0025 is achieved by
conditioning the spring stiffness parameters as follows .k2 = (3/2)k1 + 0.005.



234 6 NSTT for Linear and Piecewise-Linear Systems

Fig. 6.11 The influence of a
small crack, .ε = 0.01, on the
inphase mode trajectory near
the frequency ratio
.Ω2/Ω1 = 2; the dashed line
shows the numerical solution,
and the thin solid line
corresponds to the linear case,
.ε = 0

00.01

1.0 0.5 0.0 0.5 1.0

1.0

0.5

0.0

0.5

1.0

x1

x2


	6 NSTT for Linear and Piecewise-Linear Systems
	6.1 Free Harmonic Oscillator: Temporal Quantization of Solutions
	6.2 Non-autonomous Case
	6.2.1 Unipotent Basis
	6.2.2 Idempotent Basis

	6.3 Systems Under Periodic Pulsed Excitation
	6.3.1 Regular Periodic Impulses
	6.3.2 Harmonic Oscillators Under the Periodic Impulsive Loading
	Resonances in Zero Damping Case
	Viscous Damping Case
	Multiple Degrees-of-Freedom Case

	6.3.3 Periodic Impulses with a Temporal Dipole Shift

	6.4 Parametric Excitation
	6.4.1 Piecewise-Constant Excitation
	6.4.2 Parametric Impulsive Excitation
	6.4.3 General Case of Periodic Parametric Excitation

	6.5 Input-Output Systems
	6.6 Piecewise-Linear Oscillators with Asymmetric Characteristics
	6.6.1 Amplitude-Phase Equations
	6.6.2 Amplitude Solution
	6.6.3 Phase Solution
	6.6.4 The Amplitude-Phase Problem in Idempotent Basis

	6.7 Multiple Degrees-of-Freedom Case


