
Chapter 3
Nonsmooth Processes as Asymptotic
Limits

The objective of this chapter is to show that nonsmooth processes may naturally
occur as high-energy asymptotics in different oscillatory models with no inten-
tionally introduced stiff constraints or external impacts. In other words, nonsmooth
temporal mode shapes may be as natural as sine waves generated by same oscillators
under low-energy conditions. Essentially nonlinear phenomena, such as nonlinear
beats and energy localization, are also considered. It is shown that energy exchange
between two oscillators may possess hidden nonsmooth behaviors.

3.1 Lyapunov’s Oscillator

Let us consider a family of oscillators described by the differential equation

.ẍ + x2n−1 = 0 (3.1)

where n is a positive integer; see Fig. 1.1.
In the particular case .n = 1, one has the harmonic oscillator whose natural fre-

quency is unity. When .n > 1 the system becomes essentially nonlinear and cannot
be linearized within the class of vibrating systems. Moreover, as the parameter n

increases, the temporal mode shape of oscillator (3.1), while remaining smooth, is
gradually approaching the triangle wave nonsmooth limit. Such transitions usually
represent a challenging problem from both physical and mathematical viewpoints.
Hence it is important to understand some basic cases, such as oscillator (3.1) and
those considered in the next section. These special cases admit exact solutions
showing explicitly how smooth motions are approaching their nonsmooth limits. It
is known regarding oscillator (3.1) that, for an arbitrary positive integer n, its general
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90 3 Nonsmooth Processes as Asymptotic Limits

solution can be expressed in terms of special Lyapunov functions [76, 101, 126],
such as sn.θ and cs.θ defined by expressions1

.θ =
snθ∫

0

(
1 − nz2

) 1−2n
2n

dz, cs2nθ + n sn2θ = 1

These functions possess the properties,

.cs0 = 1, sn0 = 0,
dsnθ

dθ
= cs2n−1θ,

dcsθ

dθ
= −snθ

and their normalized period is given by

.T = 4
√

n

1∫

0

dx√
1 − x2n

= 2

√
π

n

Γ
(

1
2n

)

Γ
(

n+1
2n

)

The general solution of Eq. (3.1) can be written as

.x = Acs
(
An−1t + α

)
(3.2)

where A and .α are arbitrary constants.
Note that the scaling factors A and .An−1 are easily predictable based on the

form of Eq. (3.1) since the equation admits the group of transformations .x = Ax̄(t̄),
where .t̄ = An−1t .

For .n = 1 the functions sn.θ and cs.θ give the standard pair of trigonometric
functions .sin θ and .cos θ , respectively. Interestingly enough, the strongly nonlinear
limit .n → ∞ also gives a quite simple pair of periodic functions. Despite some
mathematical challenges, this case admits interpretation by means of the total energy

.
ẋ2

2
+ x2n

2n
= 1

2
(3.3)

where the number .1/2 on the right-hand side corresponds to the initial conditions
.x (0) = 0 and .ẋ (0) = 1.

Taking into account that the coordinate of the oscillator reaches its amplitude
value at zero kinetic energy gives the estimate .−n1/(2n) ≤ x (t) ≤ n1/(2n) for any
time t . Since .n1/(2n) −→ 1 as .n −→ ∞ then the limiting motion is restricted by
the interval .−1 ≤ x (t) ≤ 1. Inside of this interval, the second term on the left-hand
side of expression (3.3) vanishes and hence, .ẋ = ±1 or .x = ±t + α± , where

1 Another version of special functions for Eq. (3.1) was considered in [209].
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.α± are constants. By manipulating with the signs and constants, one can construct
the triangle wave, .τ (t), since there is no other way to providing the periodicity
condition.

Thus the family of oscillators (3.1) includes the two quite simple complementary
asymptotics associated with the boundaries of the interval .1 ≤ n < ∞ as illustrated
by Fig. 1.1. Respectively, there are two couples of periodic functions

.{x, ẋ} = {sin t, cos t}, if n = 1 (3.4)

and

.{x, ẋ} → {τ(t), e(t)}, if n → ∞ (3.5)

where .e(t) = τ̇ (t) is a generalized derivative of the triangle wave, which is the
square wave.2

Earlier, the power-form characteristics with integer exponents were employed for
phenomenological modeling of the amplitude limiters of vibrating elastic structures
[242] and illustrations of impact asymptotics [172, 176]. It should be noted that
such phenomenological approaches to the modeling of impacts are designed to
capture the integral effect of interaction with physical constraints while bypassing
its local details near constraints. Such details obviously depend upon both the
material properties of interacting bodies and physical conditions of interactions. In
many cases, Hertz model of interaction is used to describe the local dynamics near
constraint surfaces [84]. Note that direct replacement of the characteristic .x2n−1 by
the Hertzian restoring force .kx3/2 in (3.1) gives no oscillator. The equation,

.ẍ + kx3/2 = 0 (3.6)

which is a particular case considered in [84], must be obviously accompanied by the
condition .0 ≤ x, where .x = 0 corresponds to the state at which the moving body
and constraint barely touch each other with still zero interaction force.

The following modification brings system (3.6) into the class of oscillators with
odd characteristics

.ẍ + ksgn(x)|x|3/2 = 0 (3.7)

However, oscillator (3.7) essentially differs from oscillator (3.1) since Eq. (3.7)
cannot describe any gap (clearance) in between the left and right constraint surfaces.
In other words models (3.1) and (3.7) represent physically different situations. The
gap .2Δ with its center at the origin, .x = 0, can be introduced in Eq. (3.7) as follows:

.ẍ + k[H(x − Δ)|x − Δ|3/2 − H(−x − Δ)|x + Δ|3/2] = 0 (3.8)

where H is Heaviside unit-step function.

2 The terms triangular sine and rectangular cosine can be also used to emphasize the choice for
the initial time point, .τ(0) = 0 and .e(0) = 1, and unit amplitudes.
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This is a generalization of model (3.7), which is now derived from (3.8) by setting
.Δ = 0. Equation (3.8) can be viewed as a physical impact oscillator that accounts
for elastic properties of its components. As compared to phenomenological model
(3.1), Eq. (3.8) was obtained on certain physical basis given by the Hertz contact
theory.

Finally, oscillators with power-form characteristics, including their generaliza-
tions, can be found in physical literature [33, 78, 157], [80, 130] and different areas
of applied mathematics and mechanics [5, 8, 9, 18, 45, 61, 67, 83, 113, 141, 142,
146, 207, 244]. In reference [195], the power-form restoring forces were introduced
to simulate the liquid sloshing impacts; regarding this phenomenon, see also review
article [90].

3.2 Nonlinear Oscillators Solvable in Elementary Functions

A class of strongly nonlinear oscillators admitting surprisingly simple exact general
solutions at any level of the total energy is described below. Although the fact
of exact solvability of these oscillators has been known for quite a long time
[103], it did not attract much attention possibly due to the specific form of the
oscillator characteristics with uncertain physical interpretations. It is clear however
that, in a phenomenological way, such characteristics capture sufficiently general
physical situations with hardening and softening behavior of the restoring forces.
For instance, these oscillators were recently used as a phenomenological basis
for describing different practically important physical and mechanical systems
[53, 54, 158]. The hardening characteristic is close to linear for relatively small
amplitudes but becomes infinity growing as the amplitude approaches certain limits.
As a result, the corresponding temporal mode of vibration changes its shape from
smooth quasi harmonic to the nonsmooth triangle wave of the rapidly growing
frequency. In contrast, the softening characteristic behaves in a non-monotonic way
such that the vibration shape is approaching the square wave as the amplitude is
increasing. Earlier, amplitude-phase equations were obtained for a coupled array
of the hardening oscillators [187]. It will be shown below that such oscillators
admit explicit action-angle variables within the class of elementary functions. As
a result, conventional averaging procedures become applicable to a wide range
of nonlinear motions including transitions from high- to low-energy dynamics
under small damping conditions. These solutions are in a good agreement with the
corresponding numerical solutions at any energy level even within the first-order
asymptotic approximation.

Hardening and softening cases of these oscillators are, respectively,

.H = 1

2
(v2 + tan2 x) ⇒ ẍ + tan x

cos2 x
= 0 (3.9)
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and

.H = 1

2
(v2 + tanh2 x) ⇒ ẍ + tanh x

cosh2 x
= 0 (3.10)

where the mass is set to unity and thus .v = ẋ is interpreted as a generalized
momentum of the Hamiltonian H , whereas x is a generalized coordinate.

Further objectives are to investigate the high-energy asymptotics with transitions
to nonsmooth temporal mode shapes to show that both of the above oscillators can
play the role of generating systems for regular perturbation procedures within the
class of elementary functions.

Notice that oscillators (3.9) and (3.10) complement each other as those with stiff
and soft characteristics represented in Fig. 3.1a and b, respectively. These oscillators
can be represented also in the form

.ẍ + tan x + tan3 x = 0 (3.11)

.ẍ + tanh x − tanh3 x = 0 (3.12)

Further analyses of Eqs. (3.11) and (3.12) can be conducted by means of sub-
stitutions .q = tan x and .q = tanh x, respectively. Interestingly enough, oscillators
(3.11) and (3.12) without the cubic terms were considered by Timoshenko and Yang
[232]. But, despite the simplified form, the corresponding solutions are expressed in
terms of special functions.

3.2.1 Hardening Case

Consider first stiff oscillator (3.9), whose solution is

(a)

–100

–50

0

50

100
tan x/ cos2x

(b)

–0.5

0

0.5
tanh x/ cosh2x

Fig. 3.1 Restoring force characteristics of exactly solvable strongly nonlinear oscillators (3.9) and
(3.10): (a) hardening characteristic and (b) softening characteristic
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.x = arcsin

[
sinA sin

(
t

cosA

)]
(3.13)

whereA is an arbitrary constant, and another constant is introduced through the time
shift .t− > t + const., since the equations admit the group of temporal shifts.

Therefore, function (3.13) represents a general periodic solution of the period
.T = 2π cosA, while the total energy is expressed through the amplitude, A, as

.E = 1

2
tan2 A (3.14)

In zero energy limit, when the amplitude is close to zero, the oscillator linearizes,
whereas solution (3.13) gives the corresponding sine-wave temporal shape. On the
other hand, the energy becomes infinitely large as the parameter A approaches the
upper limit .π/2. In this case, the period vanishes while the oscillation takes the
triangle wave shape as follows from expression (3.13). Figure 3.2a illustrates the
evolution of the vibration shape as a function of phase, .ϕ = t/ cosA, where .α =
sinA.

Action-Angle Variables

Below, the action-angle variables are introduced in terms of elementary functions.
This enables one of considering non-periodic motions by using exact solution (3.13)
as a starting point of the averaging procedure. For a single degree-of-freedom
conservative oscillator, the action coordinate I is known to be the area bounded by
the system path on the phase plane divided by .2π , whereas the angle .ϕ coordinate
is simply phase angle [16, 161, 164]. In the case of hardening restoring force
characteristic (3.9), one obtains

.I = 1

2π

∮
vdx = 1

cosA
− 1 (3.15)

Fig. 3.2 Normalized temporal mode shapes of the oscillators with stiffening and softening
restoring force characteristics in the displacement versus phase coordinates: (a) .x = arcsin(α sinϕ)

and (b) .x = arc.sinh(α sinϕ)
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and

.ϕ = t

cosA
(3.16)

respectively.
The original coordinate and the velocity are expressed through the action-angle

variables as follows:3 [188]

.x = arcsin

(√
2I + I 2

1 + I
sinϕ

)
, v = (1 + I )

√
2I + I 2 cosϕ√

1 + (
2I + I 2

)
cos2 ϕ

(3.17)

To observe the convenience of action-angle coordinates, let us choose the
Hamiltonian description of the oscillator. Taking into account expressions (3.14) and
(3.15), and eliminating the amplitude A, gives the total energy and thus Hamiltonian

.H = I + 1

2
I 2 (3.18)

The corresponding differential equations of motion are derived as follows:

.ϕ̇ = ∂H

∂I
= 1 + I, İ = −∂H

∂ϕ
= 0 (3.19)

As it is seen, the oscillator is linearized with respect to the action-angle
coordinates and hence possesses the exact general solution

.I = I0, ϕ = (1 + I0) t + ϕ0 (3.20)

where .I0 > 0 and .ϕ0 are arbitrary constants. By substituting (3.20) in (3.17), one
can express the solution via the original coordinates. The meaning of the initial
action is clear from the energy relationship

.E = I0 + 1

2
I 20 = 1

2
tan2 A (3.21)

Note that the linearity of the Hamiltonian equations is due to the specific strongly
nonlinear form of the coordinate transformation (3.17). In other words, the system
nonlinearity has been “absorbed” in a purely geometric way by the nonlinear
coordinate transformation.

As mentioned at the beginning, simplicity of the transformed system and that
of the corresponding solution can be essentially employed for the purpose of

3 The relationship for x was known earlier [164]. However, the complete set is required for
nonconservative velocity-dependent perturbations.
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perturbation analysis. Let us consider the differential equation of motion in the
Newtonian form

.ẍ + tan x

cos2 x
= εf (x, ẋ) (3.22)

where .ε is a small parameter.
This system is weakly nonconservative and therefore has no Hamiltonian. It is

still possible nonetheless to consider expressions (3.17) as a transformation of state
variables, .{x, v} −→ {I, ϕ}. For that reason, let us represent equation (3.22) as a
system of two first-order equations for the state variables, x and v,

.ẋ = v

v̇ = − tan x

cos2 x
+ εf (x, v) (3.23)

Substituting (3.17) in (3.23) and then solving the system for .ϕ̇ and .İ give

.ϕ̇ = 1 + I − εf (x, v) sinϕ

(1 + I )

√(
2I + I 2

) [
1 + (

2I + I 2
)
cos2 ϕ

]

İ = εf (x, v)
√
2I + I 2 cosϕ√

1 + (
2I + I 2

)
cos2 ϕ

(3.24)

where the function .f (x, v) still must be expressed through the action-angle
coordinates by means of (3.17).

Example of Linear Viscous Damping

In case of the linear damping, .f (x, v) ≡ −v, Eqs. (3.24) take the form

.ϕ̇ = 1 + I + ε cosϕ sinϕ

1 + (
2I + I 2

)
cos2 ϕ

(3.25)

İ = −ε (1 + I )
(
2I + I 2

)
cos2 ϕ

1 + (
2I + I 2

)
cos2 ϕ

Let us implement just one step of the averaging procedure and evaluate its
effectiveness. Applying the operator of averaging with respect to the phase, .ϕ, in
(3.25) gives the corresponding first-order averaged system in the linear form

.ϕ̇ = 1 + I, İ = −εI (3.26)
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Substituting the general solution of system (3.26) in (3.17) finally gives

.x = arcsin

⎧⎨
⎩

√
2I0 exp (−εt) + I 20 exp (−2εt)

1 + I0 exp (−εt)
(3.27)

× sin

[
t + I0

1 − exp (−εt)

ε
+ ϕ0

]}

where .I0 and .ϕ0 are arbitrary constants. The corresponding time history records and
phase plane diagrams for different damping coefficients are shown in Fig. 3.3. Even
the leading order approximation appears to be in a good agreement with numerical
solution for all the range of amplitudes. The analytical and numerical curves can be
distinguished only at relatively large magnitudes of the damping parameter .ε. Also,
the graphs show that the temporal mode is gradually changing its shape from the
triangular to harmonic as time increases and the amplitude decays.

Nonlinear Localized Damping

Let us consider the case of nonlinear damping

.ẍ + tan x

cos2 x
= −2εẋ tan2 x (3.28)
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Fig. 3.3 The response of hardening oscillator (3.22) in case of the linear viscous damping,
.f (x, v) ≡ −v, under the initial conditions .I0 = 10 and .ϕ0 = 0, and two different damping
parameters: .ε = 0.2 (a, c) and .ε = 0.8 (b, d); the numerical solution of the differential equation is
represented for the time history (a, b) and phase plane diagrams (c, d) by the dashed curves
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In this case, the perturbation is given by .f (x, v) ≡ −2v tan2 x. Such a damping
is rapidly growing near the boundaries of the interval .−π/2 ≤ x ≤ π/2, but it
becomes negligible when the amplitude is small, .|x| .<< 1.

In the action-angle coordinates, first-order averaging gives

.ϕ̇ = 1 + I, İ = −εI 2

and thus

.ϕ = t + 1

ε
ln (1 + εI0t) + ϕ0, I = I0

1 + εI0t

Using the coordinate transformation (3.17) gives solution

.x = arcsin

{√
I0(2 + I0 + 2εI0t)

1 + I0 + εI0t
sin

[
t + ln(1 + εI0t)

ε
+ ϕ0

]}
(3.29)

where .I0 and .ϕ0 are arbitrary constants.
Note that the amplitude decay of solutions (3.27) and (3.29) is qualitatively

different. For instance, the amplitude of vibration (3.29) originally decays in a fast
rate and then becomes very slow. In contrast, the amplitude of vibration (3.27) first
decays slowly, and then the decay rate abruptly increases and then slows down again.

3.2.2 Softening Case

Let us consider now softening oscillator (3.10), whose exact solution is

.x = arc sinh

[
sinhA sin

(
t

coshA

)]
(3.30)

Figure 3.2b shows that the temporal shape of high-energy vibrations approaches
the square wave and thus essentially differs of that observed in the stiff case. To
compare the shapes for different periods, the dependencies are given with respect to
the phase variable .ϕ = t/ coshA using the parameter .α = sinhA. Based on solution
(3.30), the action-angle coordinates are introduced as

.x = arc sinh

(√
2I − I 2

1 − I
sinϕ

)
, v = (1 − I )

√
2I − I 2 cosϕ√

1 − (
2I − I 2

)
cos2 ϕ

(3.31)

where the action is expressed through the parameter A as
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.I = 1 − 1

coshA
(3.32)

All the analytical manipulations are analogous to those conducted for the stiff
case. Taking into account (3.32) gives the total energy as a function of the action I

.E = 1

2
tanh2 A = I − 1

2
I 2 (3.33)

In the presence of the linear viscous damping,

.ẍ + tanh x

cosh2 x
= −εẋ (3.34)

the averaging procedure gives the linear system

.ϕ̇ = 1 − I, İ = −εI (3.35)

which differs by sign in the first equation compared to system (3.26).
Integrating system (3.35) and substituting the result in (3.31) give general

solution of the original equation

.x = arc sinh

⎧⎨
⎩

√
2I0 exp (−εt) − I 20 exp (−2εt)

1 − I0 exp (−εt)
(3.36)

× sin

[
t − I0

1 − exp (−εt)

ε
+ ϕ0

]}

The corresponding time history graphs and phase plane diagrams are shown in
Fig. 3.4 for different damping coefficients. The leading order approximation appears
to match the corresponding numerical solution for all range of amplitudes, unless
the initial action .I0 approaches the magnitude 1. As follows from expressions
(3.33), this magnitude corresponds to the maximum value of the total energy of
the oscillator. Note that the energy of the hardening oscillator has no maximum.

3.3 Nonsmoothness Hidden in Smooth Processes

In this section, nonlinear beats phenomena are considered as another source of
nonsmooth behavior that brings a certain physical meaning to oscillator (3.22). Note
that nonlinear beats became of growing interest few decades ago from different
viewpoints of physics and nonlinear dynamics [79, 112, 119, 131, 238]. Interestingly
enough, phase variables of interacting oscillators with close natural frequencies may
show nonsmoothness of temporal behavior during the beating [79], for instance,



100 3 Nonsmooth Processes as Asymptotic Limits
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Fig. 3.4 The dynamics of the linearly damped softening oscillator under the initial conditions
.I0 = 0.5, .ϕ0 = 0, and two different damping parameters: .ε = 0.2 (a, c) and .ε = 0.8 (b, d);
numerical solution of the differential equation is represented for the time history (a, b) and phase
plane diagrams (c, d) by the dashed curves

similar to that of a vibroimpact process [132, 133]. Such limiting dynamics were
defined as a complementary nonstationary alternative to the normal mode motions.
Below a new set of descriptive functions is introduced to analyze the beating effects
directly in energy variables.

3.3.1 Descriptive Functions for Interaction of Identical
Oscillators

Let us consider an ensemble of two identical harmonic oscillators with the natural
frequency .Ω:

.q̈k + Ω2qk = 0 (k = 1, 2) (3.37)

Although there is no interaction between oscillators (3.37) in terms of forces, there
is still certain coupling through the time variable t . Namely, both oscillators have the
same natural temporal scale .δ = Ωt with the same initial point. In other words two
independent oscillators (3.37) still represent a system. Now let us denote .vk = q̇k

(.k = 1, 2) and then introduce symmetric .2 × 2 matrix

.Ekj = 1

2
(vkvj + Ω2qkqj ) (3.38)
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and the following combinations of its elements [190]

.E11 + E22 = E

E11 − E22

E
= P , − 1 ≤ P ≤ 1 (3.39)

E12√
E11E22

= Q, − 1 ≤ Q ≤ 1

where E is the total energy of both oscillators per unit mass and P is a unitless index
characterizing the distribution of energy between the oscillators as

.E11 = 1

2
E(1 + P), E22 = 1

2
E(1 − P) (3.40)

Relationships (3.40) are derived by solving the first two equations in (3.39) for
.E11 and .E22. To clarify the meaning of quantity Q and express the original state
variables through E, P , and .Q, let us assume that the oscillators are described by

.q1 = A1 cos δ, q2 = A2 cos(δ + Δ) (3.41)

where .δ = Ωt , .A1 and .A2 are constant amplitudes, and .Δ is a phase shift. Then,
substituting (3.41) in (3.38) gives

.E12 = 1

2
Ω2A1A2 [sin δ sin(δ + Δ) + cos δ cos(δ + Δ)]

= 1

2
Ω2A1A2 cosΔ (3.42)

E11E22 = 1

4
Ω4A2

1A
2
2

Substituting (3.42) in (3.39) shows that the quantity .Q represents the phase shift
of oscillations as

.Q = E12√
E11E22

= cosΔ (3.43)

Now, substituting (3.41) in (3.40) and taking into account (3.38) give .Ω2A2
1 =

E(1 + P) and .Ω2A2
2 = E(1 − P). Solving these equations for the amplitudes and

taking into account (3.41) finally give the transformation from E, P , .Δ, and .δ back
to the original state variables of both oscillators

.q1 = 1

Ω

√
E(1 + P) cos δ

v1 = −√
E(1 + P) sin δ
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q2 = 1

Ω

√
E(1 − P) cos(δ + Δ) (3.44)

v2 = −√
E(1 − P) sin(δ + Δ)

Note that, in case of non-interacting linear oscillators (3.37), the quantities E,
P , and .Δ are constant. Therefore, in line with the idea of parameter variations
and averaging, these can be assumed to be slowly varying functions under the
presence of relatively small perturbations, such as coupling and nonlinearities. The
advantage of such descriptive variables is due to their physical meaning given by
(3.38) and (3.39). Also, in contrast to other types of characteristics, quantities (3.38)
and (3.39) can be evaluated directly from numerical or experimental signals for
state variables. However, the convenience of these variables becomes most obvious
whenever the problem formulation deals with the effects of energy transfer or
with the modal content of oscillations. In such cases, variables (3.39) reveal the
necessary information in a straightforward way. For instance, as follows from (3.39)
and confirmed by (3.44), the number .P = 0 indicates the energy equipartition,
.E11 = E22, whereas at .P = 1 or .P = −1 all the energy belongs to the first or to the
second oscillator, respectively. Regarding the modal content, the numbers .Q = 1
and .Q = −1 correspond to the inphase (.Δ = 0) and antiphase (.Δ = π ) vibration
modes, respectively. In these cases, transformation (3.44) gives the corresponding
couple of straight lines on configuration plane .q1 − q2:

.q2 = ±
√
1 − P

1 + P
q1 (3.45)

If .Q = 0 (.Δ = π/2), then, according to (3.44), the system follows the elliptic
path in either clockwise or counterclockwise direction:

.
q2
1

1 + P
+ q2

2

1 − P
= E

Ω2 (3.46)

Geometrical meaning of the coherency index Q is explained in Fig. 3.5. As
already mentioned, in case of system (3.37), the numbers P and Q are fixed and
can be determined from the initial conditions by means of relationships (3.38) and

Fig. 3.5 Geometrical
interpretation of the
coherency index Q on the
configuration plane

1q

2q

1
(1 )E P�

�

1
(1 )E P�

�

1 (in-phase)Q �

0 (rotational)Q �

1 (anti-phase)Q � �
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(3.39). In the general transient case, the temporal behavior of numbers P and Q

reveals which of the above three modes is dominant during a certain time interval.
As noticed in Sect. 2.2.4, in physical literature, harmonic oscillations are often

represented by rotating vectors on the complex plane. For that reason, let us express
quantities (3.39) through the complex coordinates [120] .ψj = vj + iΩqj , or
inversely,

.vj = 1

2

(
ψj + ψ̄j

)
, qj = 1

2iΩ

(
ψj − ψ̄j

)
(3.47)

Substituting (3.47) in (3.38) gives

.Ekj = 1

2
(vkvj + Ω2qkqj ) = 1

4
(ψ̄kψj + ψkψ̄j ) (3.48)

Hence the total energy of two oscillators excluding coupling, E, the energy
distribution, P , and the index of coherency, Q, are calculated through the complex
coordinates as:

.E = E11 + E22 = 1

2

(∣∣ψ1

∣∣2 + ∣∣ψ2

∣∣2) (3.49)

.P = E11 − E22

E11 + E22
=

∣∣ψ1

∣∣2 − ∣∣ψ2

∣∣2
∣∣ψ1

∣∣2 + ∣∣ψ2

∣∣2 , −1 ≤ P ≤ 1 (3.50)

.Q = E12√
E11E22

= ψ̄1ψ2 + ψ1ψ̄2

2
∣∣ψ1

∣∣ ∣∣ψ2

∣∣ , −1 ≤ Q ≤ 1 (3.51)

The example of analysis using these descriptive variables is considered in the
next subsection.

3.3.2 Systems with 1:1 Resonance

Let us derive equations describing temporal behaviors of the new variables by
considering a system of two interacting oscillators

.q̈1 + Ω2q1 + f1(q1, q̇1, q2, q̇2) = 0

q̈2 + Ω2q2 + f2(q1, q̇1, q2, q̇2) = 0 (3.52)

where the terms .f1 and .f2 are small enough to be viewed as perturbations.
In the state space, system (3.52) is represented in the form of four first-order

differential equations



104 3 Nonsmooth Processes as Asymptotic Limits

.q̇1 = v1

v̇1 = −Ω2q1 − f1

q̇2 = v2 (3.53)

v̇2 = −Ω2q2 − f2

where .fk = fk(q1, v1, q2, v2) (.k = 1, 2).
Due to the presence of perturbations, quantities (3.39) become time varying in

a temporal rate dictated by the magnitude of perturbations, .fk , as follows from the
derivative of the energy matrix

.
d

dt

[
E11 E12

E21 E22

]
= −1

2

[
2f1v1 f1v2 + f2v1

f1v2 + f2v1 2f2v2

]
(3.54)

which is obtained from (3.38) by enforcing equations (3.53).
As noticed above, relationships (3.44) can be considered as a coordinate trans-

formation in the system state space using the idea of parameter variations as

.{q1, v1, q2, v2} −→ {E(t), P (t),Δ(t), δ(t)} (3.55)

where E, P , and .Δ are now slowly varying quantities, whose temporal rates
are determined by the magnitude of terms .f1 and .f2 according to (3.54); recall
expressions (3.39).

Note that, in the presence of perturbation, the time-dependent quantityE is losing
its meaning of the system’s total energy due to both possible nonconservative terms
and the ignored energy of coupling. Nonetheless, under the assumption of small
perturbation, the quantity E still can serve as a convenient estimate for the total
excitation level of the system in line with the idea of Lyapunov functions.

Substituting (3.44) in (3.53) and solving the resultant equations for the deriva-
tives of new state variables give

.
dE

dt
= √

E
[√

1 − Pf2 sin(δ + Δ) + √
1 + Pf1 sin δ

]

dP

dt
= − P√

E

[√
1 − Pf2 sin(δ + Δ) + √

1 + Pf1 sin δ
]

− 1√
E

[√
1 − Pf2 sin(δ + Δ) − √

1 + Pf1 sin δ
]

(3.56)

dΔ

dt
= 1√

E

[
f2 cos(δ + Δ)√

1 − P
− f1 cos δ√

1 + P

]

and
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.
dδ

dt
= Ω + f1 cos δ√

E(1 + P)
(3.57)

where both functions .f1 and .f2 must be expressed through E, P , .Δ and .δ by means
of (3.44).

At this point, Eqs. (3.56) and (3.57) still represent the exact equivalent of original
system (3.53). Further, assuming that .fk ∼ ε (.0 < ε << 1, .k = 1, 2), different
procedures of asymptotic integration can be applied to system (3.56) and (3.57).
Practically acceptable approximate solutions can be often obtained by the direct
one-step averaging of the right-hand side of system (3.56) and (3.57) with respect
to the fast phase .δ over the period .2π by means of the integral operator

. < · · · >δ= 1

2π

∫ 2π

0
· · · dδ (3.58)

Energy Localization in Coupled Identical Duffing Oscillators

Let us consider the example of two coupled Duffing oscillators by assuming

.f1 = 2ζΩv1 + β(q1 − q2) + αq3
1

f2 = 2ζΩv2 + β(q2 − q1) + αq3
2 (3.59)

Substituting (3.59) in (3.56) and (3.57), taking into account (3.44), and applying
averaging (3.58) to the right-hand side of the resultant system give

.
dE

dt
= −2ζΩE

dP

dt
= β

Ω

√
1 − P 2 sinΔ (3.60)

dΔ

dt
= − 3α

4Ω3
EP − β cosΔ

Ω
√
1 − P 2

P

and

.
dδ

dt
= Ω + 3α

8Ω3
E(1 + P) + β

2Ω

(
1 −

√
1 − P

1 + P
cosΔ

)
(3.61)

Let us introduce new temporal argument .t̄ and the total excitation level .κ(t̄) as

.t = Ω

β
t̄ , E(t) = 4βΩ2

3α
κ(t̄) (3.62)



106 3 Nonsmooth Processes as Asymptotic Limits

Substituting (3.62) in (3.60) and solving the first equation for .κ bring the
averaged system to the form

.κ = κ0 exp

(
−2

ζ

β
Ω2 t̄

)

dP

dt̄
= −∂H

∂Δ
=
√
1 − P 2 sinΔ (3.63)

dΔ

dt̄
= ∂H

∂P
= −P

(
κ + cosΔ√

1 − P 2

)

where .κ0 = κ(0) and

.H = H(P,Δ, t̄) = −1

2
κ(t̄)P 2 +

√
1 − P 2 cosΔ (3.64)

It is seen that P and .Δ can play the role of Hamiltonian generalized momentum
and generalized coordinate, respectively. Note that the Hamiltonian structure occurs
despite the presence of dissipation in the original system. Obviously, Hamiltonian
(3.64) is not conserved, unless .ζ = 0, and thus, enforcing system (3.63) gives

.
dH

dt̄
= ζ

β
Ω2P 2κ (3.65)

Thus it is found that the resonance energy flow between the two interacting
oscillators is described with an effective Hamiltonian oscillator. In order to consider
the oscillatory dynamics, the damping ratio .ζ will be assumed to be small enough to
have the adiabatic effect on system (3.63). This system therefore can be viewed as
a dynamical system on the phase plane .Δ − P whose phase flow depends upon the
total excitation level, .κ . Since the right-hand side of system (3.63) is .2π -periodic
with respect to .Δ, it is sufficient to investigate two cells of the phase portrait
including the stationary points .(Δ, P ) = .(0, 0) and .(Δ, P ) = .(π, 0), corresponding
to the inphase and antiphase modes, respectively. As follows from the right-hand
side of (3.63), the inphase mode is unique at any positive .κ , whereas the antiphase
mode can bifurcate to give rise for two new modes, when the total excitation level .κ
exceeds the critical level

.κ∗ = 1 
⇒ E∗ = 4βΩ2

3α
(3.66)

The corresponding stationary points are given by

.(Δ, P ) = (0,±
√
1 − κ−2), 1 ≤ κ (3.67)

Both critical and supercritical phase portraits are shown in Fig. 3.6a and b,
respectively. These illustrate the bifurcation of the antiphase stationary point from
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P

Fig. 3.6 Phase portraits of system (3.63) at fixed excitation levels: (a) .κ = 1—critical, (b) .κ =
1.5—supercritical
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Fig. 3.7 Transition from local to antiphase mode due to the adiabatic energy loss: (a) time history
response and (b) configuration plane under the following parameters and initial conditions: .Ω =
1.0, .ζ = 0.001, .α = 0.08, .β = 0.03, .E(0) = 1.5 ( .κ(0) = 3.0 ), .P(0) = 0.72, .Δ(0) = π − 0.001

center to saddle and two centers, creating two local modes. Such effects are usually
referred to as the symmetry breaking bifurcation in a perfectly symmetric system
leading to the possibility of energy localization. As follows from (3.67), the energy
localization/trapping effect can occur on a high-energy level. Assuming that the
model remains adequate as the energy is increasing, one can reach the limit in which
all the energy becomes localized at just one of the two oscillators

.(Δ, P ) ∼ (0,±1), 1 � κ (3.68)

Practically however, if no energy inflow is maintained, the dissipation effect
will cause a gradual decrease of the quantity .κ . As a result, the local modes will
eventually disappear followed by the reciprocal beatwise oscillations as seen from
Figs. 3.7 and 3.8.

Let us consider the conservative system, .ζ = 0, when .κ is a fixed number. In this
case, as follows from (3.65), system (3.63) admits the following integral:
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Fig. 3.8 Illustration of the delocalization process (Fig. 3.7) in terms of the variables .{E, P , .Q}
obtained from numerical solutions of the original and averaged systems in comparison: (a) total
excitation level, (b) .P − Q diagram, (c) the evolution of energy distribution, and (d) coherency
index

.H(P,Δ) = H0 = H(P,Δ)|t̄=0 (3.69)

Substituting .P = sinφ (.−π/2 ≤ φ ≤ π/2) in (3.63) and (3.69) and then
eliminating the phase shift .Δ give a strongly nonlinear conservative oscillator for
the new variable .φ describing the resonance beatwise energy flow

.
d2φ

dt̄2
+
(

H0 + 1

2
κ

)2 tanφ

cos2 φ
− 1

8
κ2 sin 2φ = 0 (3.70)

where .H0 is expressed through the parameter .κ and initial angles .φ0 and .Δ0 as

.H0 = −1

2
κ sin2 φ0 + cosφ0 cosΔ0, κ = 3αE

4βΩ2 (3.71)

Oscillator (3.70) has the effective potential energy described by

.V (φ) = 1

2

(
H0 + 1

2
κ

)2

tan2 φ − 1

8
κ2 sin2 φ (3.72)

Note that using oscillator (3.70) is complicated by the fact that the number .H0
depends upon the initial conditions given by
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. sinφ0 = P0,
dφ

dt̄

∣∣∣∣
t̄=0

= sinΔ0 (3.73)

where the second relationships follow from (3.63).

Hidden Nonsmooth Effects in Weakly Coupled Harmonic Oscillators

It follows from (3.62) that the parameter .κ takes zero value if the original system
(3.52) and (3.59) is linear, .α = 0. In this case oscillator (3.70) has exact analytical
solution in terms of elementary functions

.φ = arcsin
[
sinφ0 sin

(
| cosΔ0|t̄ + π

2

)]
(3.74)

In this case, the energy distribution, .P = sinφ, behaves as a harmonic oscillator
according to the sine wave law

.P = P0 sin
(
| cosΔ0|t̄ + π

2

)
(3.75)

where .P0 = sinφ0 is the initial energy distribution.
The phase .φ behaves in a quite different way. As discussed briefly in Sect. 1.2.4,

solution (3.74) admits two simple limits, such as the sine wave

.φ ∼ φ0 sin
(
| cosΔ0|t̄ + π

2

)
, |P0| � 1 (3.76)

and the triangle wave

.φ ∼ π

2
τ

(
2

π
| cosΔ0|t̄ + 1

)
, |P0| ∼ 1 (3.77)

Figure 3.9 illustrates temporal mode shapes of the phase variables .φ and .Δ at
different parameter of total excitation values .κ . The initial distribution is close to
predominantly one of the two oscillators, .P(0) ∼ 1. It is seen that such an uneven
initial distribution results in oscillations of the angle .φ within almost its entire
interval .(−π/2, π/2) with a close to the triangle wave shape described by (3.77).

As mentioned in the preamble to this section, the most intensive energy exchange
between subsystems can be viewed as a logical alternative to the stationary case with
no energy exchange at all. Since the latter case associates with the normal mode
motions, such alternative provides an adequate asymptotic limit for interpretations
of different physical effects that cannot be described with conventional normal mode
expansions.
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Fig. 3.9 Temporal shapes of the phase variables at .P(0) ∼ 1 (.φ0 = .π/2 − 0.01): (a) .κ = 0, .Δ =
−0.001, (b) .κ = 0, .Δ = π − 0.001, (c) .κ = 1.5, .Δ = −0.001, and (d) .κ = 1.5, .Δ = π − 0.001

3.3.3 Energy Exchange Oscillator

As shown in Sect. 3.3.1, the energy exchange strongly nonlinear oscillator (3.70)
admits the exact solution in terms of elementary functions, if the original system is
linear, .κ = 0. Now let us apply the methodology of Sect. 3.2 to the case .κ �= 0,
when exact analytical solution cannot be expressed through elementary functions.
First, let us represent the oscillator (3.70) in the following form:

.
d2φ

dp2 + tanφ

cos2 φ
= μ sin 2φ (3.78)

where .p = |H0 + κ/2| t̄ is a new temporal argument, whose parameters .H0 and .κ

are defined in (3.71), and

.μ = 1

2

κ2

(2H0 + κ)2
= 1

2

κ2

(κ cos2 φ0 + 2 cosφ0 cosΔ0)2
(3.79)

The corresponding initial conditions can be obtained from (3.73) by taking into
account the temporal substitution .p → t̄ . There are two possible ways to asymptotic
simplifications of the essentially nonlinear equation (3.78).

Asymptotic of Equipartition

The first way is using the assumption that the initial energy is distributed almost
equally between the oscillators of the ensemble (3.52), namely .|P0| << 1 or
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.|φ0| << 1. In this case, Eq. (3.78) can be reduced to the following Duffing equation:

.
d2φ

dp2 + (1 − 2μ)φ + 4

3
(1 + μ)φ3 = 0 (3.80)

When .μ < 1/2, Eq. (3.80) describes periodic energy exchange. The period of the
energy exchange process is given by the corresponding solution of Duffing equation
(3.80). However, the point .(φ, dφ/dp) = (0, 0) on the phase plane of oscillator
(3.80) is changing its type from center to saddle when

.μ >
1

2
= μ∗ (3.81)

Note that the critical number .μ = μ∗ makes sense only for the neighborhood
of antiphase mode (see Fig. 3.6b) as follows from relationship (3.79) after the
following substitutions:

.μ|{Δ0=π,φ0=0} = 1

2

κ2

(κ − 2)2
. (3.82)

μ|{Δ0=0,φ0=0} = 1

2

κ2

(κ + 2)2
(3.83)

It is seen that formula (3.82) gives .μ∗ at .κ = κ∗, whereas (3.83) gives .μ, which
is below .μ∗ at any positive .κ .

Phase trajectories of oscillator (3.78) are shown in Fig. 3.10 for both critical and
supercritical numbers .μ. In order to keep .μ fixed on the entire family of trajectories,
we have to admit different .κ on different trajectories. In particular, the numbers .κ in
Fig. 3.10 are obtained by substituting the fixed initial phase .Δ0 = π and different
initial .φ0 in the inverse of (3.79)

.κ = 8(
√
2μ cosφ0 − 2μ cos3 φ0) cosΔ0

4μ cos 2φ0 + μ cos 4φ0 + 3μ − 4
(3.84)

The transition in phase diagrams of Fig. 3.10 is similar to that in Fig. 3.6 near the
antiphase mode, except for different meaning and orientation of axes.

Low-Energy-Intensive Beats

The second way of asymptotic simplification of Eq. (3.78) is less conventional. We
skip the condition .|φ0| << 1 by allowing the energy to be distributed in any
proportion while assuming that .μ is sufficiently small. As follows from (3.79) and
(3.71), the condition of small .μ requires the quantity .κ = 3αE/(4βΩ2) to be
small. When .μ → 0, the equation of energy exchange oscillator (3.78) still remains



112 3 Nonsmooth Processes as Asymptotic Limits

κ1

κ2

κ3

(a)

–0.5 0.0 0.5

–0.5

0.0

0.5
d

/d
p

κ1

κ2

κ3

(b)

–0.5 0.0 0.5
–0.6

–0.4

–0.2

0.0

0.2

0.4

0.6

d
/d
p

Fig. 3.10 Phase trajectories of the energy exchange oscillator: (a) .μ = 1/2—critical, .κ1 =
0.999797, .κ2 = 0.991534, .κ3 = 0.938073, and (b) .μ = 0.8—supercritical, .κ1 = 1.11696,
.κ2 = 1.12299, .κ3 = 1.09204

strongly nonlinear but becomes exactly solvable in elementary functions. To employ
this fact, let us introduce action-angle variables as described in Sect. 3.2

.φ = arcsin

(√
2I + I 2

1 + I
sinϕ

)

v = (1 + I )
√
2I + I 2 cosϕ√

1 + (
2I + I 2

)
cos2 ϕ

(3.85)

Following the procedure of Sect. 3.2 gives still exact equivalent of oscillator
(3.78) in action-angle variables

.
dI

dp
= μ

I (2 + I )

(1 + I )2
sin 2ϕ

dϕ

dp
= 1 + I − 2μ

(1 + I )3
sin2 ϕ (3.86)

A direct averaging with respect to the phase .ϕ can be applied to the right-
hand side of system (3.86) to obtain the averaged system in the leading order
approximation

.
dI

dp
= 0,

dϕ

dp
= 1 + I − μ

(1 + I )3
(3.87)

and its solution as

.I = I0 = const., ϕ =
[
1 + I0 − μ

(1 + I0)3

]
p (3.88)
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Substituting (3.88) in (3.85) gives the corresponding relationships in terms of the
original variables.

High-order approximations can be obtained with canonical transformations of
the Hamiltonian of oscillator (3.78). Such Hamiltonian can be expressed through
the action-angle variables (3.85) as

.Hφ(I, ϕ, μ) = 1

2
I (I + 2) + μ

1 + I (I + 2) cos 2ϕ

2(I + 1)2
(3.89)

Obviously, Eqs. (3.86) now follow from the Hamiltonian equations

.
dI

dp
= −∂Hφ

∂ϕ
,

dϕ

dp
= ∂Hφ

∂I
(3.90)

Recall that .{I, ϕ} represent the action-angle variables of oscillator (3.78) only
for the unperturbed case, .μ = 0. This is why the angle .ϕ is still present in
Hamiltonian (3.89) although through the term of order .μ. A high-order averaging
can be implemented as a canonical transformation .{I, ϕ} → {J,ψ} eliminating
the fast phase from Hamiltonian (3.89). The main advantage of the Hamiltonian
approach is that, instead of manipulating differential equations (3.90), the procedure
deals with just one descriptive function .Hφ(I, ϕ, μ). In the leading order, the
corresponding variable transformation must be identical since Hamiltonian (3.89)
already has no fast phase at .μ = 0. Using the automatic system of symbolic
manipulationsMathematica.(R) gives the transformation in the first asymptotic order
as

.I = J − μ
J(2 + J )

2(1 + J )3
cos 2ψ + O(μ2)

ϕ = ψ − μ
J 2 + 2J − 2

4(1 + J )4
sin 2ψ + O(μ2) (3.91)

This transformation brings Hamiltonian (3.89) to the form with no fast phase in
the first-order of .μ

.Hφ → Hψ = 1

2
J (J + 2) + μ

2(1 + J )2
+ O(μ2) (3.92)

As a result, the new system takes the form, which is similar to (3.87) with the
error of order .O(μ2)

.
dJ

dp
= −∂Hψ

∂ψ
= O(μ2),

dψ

dp
= ∂Hψ

∂J
= 1+J − μ

(1 + J )3
+O(μ2) (3.93)

Also, the form of solution for the fast phase is similar to (3.88)
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.J = J0, ψ =
[
1 + J0 − μ

(1 + J0)3

]
p (3.94)

where .J0 = const . The inverse transformation to the original variables .{φ, v}
becomes more complicated than (3.85) due to the extra step according to (3.91).

3.3.4 Interaction of Liquid Sloshing Modes

The terminology of liquid sloshing covers both the physics of sloshing dynamics
and the related mathematical methods [1, 57, 87, 90]. Many finite degrees-of-
freedom sloshing models are obtained by representing the free liquid surface, say
.η = .η(t, x, y) (see Fig. 3.11), as a linear combination of some modal functions
.{Uk(x, y)} with unknown time-dependent amplitudes

.η(t, x, y) =
∑

k

qk(t)Uk(x, y) (3.95)

Then applying Galerkin or similar method gives a set of ordinary differential
equations for the amplitudes .{qk(t)}. The modal functions often represent a
mathematically convenient orthogonal basis obtained as eigen functions of the
corresponding linearized model of zero-viscosity fluid. Although such modal
functions are conventionally called (linear) sloshing modes, in reality, physical
sloshing modes may appear to be quite different due to viscous and nonlinear
coupling effects. The sloshing waves observed in experiments usually associate with
some stationary solutions of the entire nonlinear system for the modal amplitudes
.{qk(t)} and thus may combine two or even more predominant linear sloshing modes
(LSMs). Since nonlinearity is essential for determining such combinations, the term
nonlinear sloshing modes (NSMs) is meant in the present text. Below we follow
reference [190], where the equations for modal amplitudes derived in [93] are used.
Note that details of such derivations from the fluid dynamic equations are technically
complicated and somewhat irrelevant to the present content. The model assumes
irrotational flows of incompressible and originally inviscid fluid inside the tank
with perfectly stiff walls. The tank has a square base whose side length is unity,
.w = l = 1, so that the fluid depth h is measured in the units of side wall length
as shown in Fig. 3.11. On one hand, the assumption of square base brings formal
simplifications to the governing differential equations of motion. On the other hand,
the symmetry-induced 1:1 resonance coupling between the first two dominating
modes essentially complicates the system dynamics, since the linear superposition
principle does not hold in nonlinear cases.

A reasonable modal reduction therefore must include couples of symmetric
modes, for instance,
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Fig. 3.11 Liquid sloshing in
square tank

.η(t, x, y) = q1(t) sinπx + q2(t) sinπy (3.96)

Due to the perfect symmetry of square base, the first two modes satisfy exactly
the 1:1 resonance condition .Ω1 = Ω2 ≡ .Ω , and the corresponding differential
equations of motion take the symmetric form

.q̈1 + 2ζΩq̇1 + Ω2q1 + f (q1, q2, q̇1, q̇2) = 0

q̈2 + 2ζΩq̇2 + Ω2q2 + f (q2, q1, q̇2, q̇1) = 0 (3.97)

where the phenomenological damping ratios are assumed to be the same, .ζ =
0.0005, and the nonlinear terms are given by the polynomial derived in [92]

.f (q1, q2, q̇1, q̇2) ≡ S3q1q̇1
2 + S4q1q̇2

2 + S5q2q̇1q̇2 + S8q1
3 + S9q1q2

2 (3.98)

The quantities .Si(i = 3, 4, 5, 8, 9) depend upon the tank depth h assuming that
other dimensions are unity as shown in Fig. 3.11. In particular, .S3 = 2.46654, .S4 =
4.9348, .S5 = −1.94182, .S8 = −2.53216, and .S9 = −1.05117, when .h = 0.45.
Note also that, in references [92] and [190], the equations are scaled in such a way
that .Ω = 1.

To bridge (3.97) with the standard form (3.53) of Sect. 3.3.1, let us set

.f1 = 2ζΩv1 + f (q1, q2, v1, v2), f2 = 2ζΩv2 + f (q2, q1, v2, v1) (3.99)

Then applying the averaging procedure of Sect. 3.3.1 gives equations4

4 Note that, in reference [190], the origin .Δ = 0 corresponds to the antiphase mode. Therefore,
transformation (3.44) must be adapted with the phase shift .Δ → Δ + π in order to match the
version used in [190]; Eqs. (3.100) and (3.101) still remain the same.
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.
dE

dt
= −2ζΩE

dP

dt
= A

(
1 − P 2

)
sin 2Δ (3.100)

dΔ

dt
= P(B − A cos 2Δ)

and

.
dδ

dt
= Ω + 1

2
[C − BP − A(1 − P) cos 2Δ] (3.101)

where A, B, and C are time-dependent quantities proportional to the total excitation
level .E = E(t):

.A = A(t) = E(t)

4Ω3 [Ω2 (S4 − S5) − S9]

B = B(t) = E(t)

4Ω3
[Ω2(−S3 + 2S4) − 3S8 + 2S9] (3.102)

C = C(t) = E(t)

4Ω3 [Ω2(S3 + 2S4) + 3S8 + 2S9]

The first equation in (3.100) describes the exponential energy decay of the first
two modes combined:

.E(t) = E(0) exp(−2ζΩt) (3.103)

The fast phase .δ, described by the last equation in (3.100), determines the
principal temporal scale, which is usually of little interest. Any way, Eq. (3.101)
is solved for .δ(t) by the direct integration as soon as the functions .P(t) and .Δ(t)

are known. As follows from (3.102), all the coefficients of the second and third
equations in (3.100) decay with the same time rate according to (3.103). As a result,
one can introduce a variable temporal scale, say . s(t), associated with the rate of
energy dissipation. The corresponding function is given by the differential equation
.ds(t) = A(t)dt under the initial condition .s(0) = 0 as follows

.s = A(0)
∫ t

0
exp(−2ζΩt)dt = A(0)

2ζΩ
[1 − exp(−2ζΩt)] (3.104)

Now assuming that .P = P(s) and .Δ = Δ(s) and applying the substitution
.t → s as .d/dt = A d/ds brings system (3.100) to the effective Hamiltonian form
for the couple of conjugate variables .{Δ,P }

.
dP

ds
= −∂H

∂Δ
≡
(
1 − P 2

)
sin 2Δ
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Fig. 3.12 The dependence of
parameter .κ versus fluid
depth for the square tank,
.w = l = 1, based on the data
of reference [91]: (a)
minimum; (b) critical value;
and (d) asymptotic maximum
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dΔ

ds
= ∂H

∂P
≡ (κ − cos 2Δ)P (3.105)

with Hamiltonian,

.H = H(P,Δ) ≡ 1

2
κP 2 + 1

2

(
1 − P 2

)
cos 2Δ (3.106)

where .κ = B/A is a constant parameter linked to the tank geometry namely the
fluid depth as shown in Fig. 3.12.

The physical meaning of this result is that the energy level of sloshing has no
effect on the resonance dynamics except for the slowing down of their temporal
scale. From the mathematical standpoint, this is explained by the form of nonlin-
earity in (3.98). Since the polynomial f is homogeneous, .f (λq1, λq2, λq̇1, λq̇2) =
.λ3f (q1, q2, q̇1, q̇2), all the proportions between different terms of such polynomials
remain fixed regardless of the amplitude levels .λ. As follows from (3.105), .κ is a
single parameter of the effective oscillator.

The phase plane diagrams of system (3.105) represent level lines of the Hamil-
tonian .H = H(P,Δ) versus the parameter .κ and are shown in Fig. 3.13. The major
qualitative transition takes place when .κ = 1. Namely, the two cells I and A,
surrounding the stationary Points (centers), collapse into vertical lines by giving rise
two saddle points. This transition is accompanied by developing phase channels near
the upper and lower cell boundaries .P = ±1. In terms of NSMs, both inphase and
antiphase NSMs become unstable, while only circular/rotational modes remain; see
Fig. 3.5 for interpretation on the configuration plane .q1 − q2. Compared to the case
of linear elastic coupling of identical oscillators, which is represented by Fig. 3.6,
the period of phase portrait along the coordinate .Δ is shorter as many as twice. This
follows also from the comparison of effective Hamiltonians (3.64) and (3.106). The
reason is that the inphase and antiphase sloshing modes are physically equivalent
due to the symmetry of square tank with respect to both its diagonals. As a result,
system (3.97) admits either of the two replacements .q1 → −q1 or .q2 → −q2. In
case of a mass-spring system with elastic coupling, the antiphase mode is carrying
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Fig. 3.13 Phase plane .Δ − P diagrams of the effective Hamiltonian system at different .κ: (a)
.κ = 0.5753—minimum reached at .h = 0.20156, C—cells of circular modes, I—cells of inphase
mode, and A—cells of antiphase mode; (b) .κ = 1.0—critical value reached at .h = 0.3666; (c)
.κ = 1.1—slightly supercritical value reached at .h = 0.3992; (d) .κ = 1.6754—asymptotic limit at
.h → ∞; see Fig. 3.12
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Fig. 3.14 Sample behavior of the phase angles .φ and .Δ at critical fluid height, .h = 0.3666, and
the initial conditions: .P(0) = 0.9999, .Δ(0) = π/2, .E(0) = 0.25: (a) variable time scale and (b)
the original time

more energy of elastic deformations than the inphase mode, and this makes both
modes physically different.

Figure 3.14 illustrates the behavior of excitation distribution between the modes
in terms of the angle .φ = arcsinP and the phase shift .Δ corresponding to the
case (b) of Fig. 3.13. The initial conditions correspond to the rotating mode on the
configuration plane .q1 − q2. It is seen that the excitation exchange happens in a
nonsmooth way due to the fact that only one of the two NSMs was predominantly
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excited at .t = 0. In this case almost all the energy will drift from one mode to
another.

3.3.5 Model of Weakly Coupled Autogenerators

Following [114] consider an ensemble of two linearly coupled generalized van
der Pol-Duffing autogenerators that differ from each other by only one coefficient
including the so-called frequency detuning parameter .σ :

.ü1 + u1 + 8αεq1
3 + 2βε(u1 − u2)

. + 2ε(γ − 4bu1
2 + 8du1

4)u̇1= 0

.ü2 + (1 + 4εσ )u2 + 8αεu2
3 + 2βε(u2 − u1) (3.107)

.+2ε(γ − 4bu2
2 + 8du2

4)u̇2= 0

In this case, setting .Ω = 1 and applying the averaging operator (3.58) to system
(3.56) and (3.57) give, respectively,

.Ė = −2εE[γ − bE + dE
2−(b − 3dE)EP 2] (3.108)

.Ṗ = 2ε
[
E(b − 2dE)P (1 − P 2) + β

√
1 − P 2 sinΔ

]
(3.109)

.Δ̇ = 2ε

[
σ − 3αEP − β

P√
1 − P 2

cosΔ

]
(3.110)

and

.δ̇ = 1 + ε

[
3αE(1 + P) + β

(
1 −

√
1 − P

1 + P
cosΔ

)]
(3.111)

In the conservative case, when no dissipative terms are present in the original
system (3.107), equation of (3.108) takes the form .Ė = 0, and thus the averaged
total energy of both oscillators remains constant during the vibrating process.
Otherwise, this energy is varying unless the right-hand side of Eq. (3.108) is zero:

.γ − bE + dE2 − (b − 3dE)EP 2 = 0 (3.112)

It is easy to see the particular case, .E = b/(3d) and .γ = 2b2/(9d), in which
condition (3.112) takes place. Substituting these values of E and .γ in (3.109) and
(3.110) give the reduced system on the phase plane .Δ − P as
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.
dP

dt̄
= b2

9βd
P (1 − P 2) +

√
1 − P 2 sinΔ

.
dΔ

dt̄
= σ

β
− αb

βd
P − P√

1 − P 2
cosΔ (3.113)

where .t̄ = 2εβt .
The result of numerical integration at the stationary excitation level .E = b/(3d)

is illustrated in Fig. 3.15. In particular, fragment (a) shows that the temporal mode
shapes of phase angles .φ and .Δ tend to stabilize close to the triangle and square
waves, respectively. Fragment (b) explains what happens in terms of the excitation
distribution index P and the phase shift .Δ. As follows from the coherency index
Q, which is obtained by the direct integration of the original system, the generators
oscillate coherently in the dynamic regime close to the elliptic rotational mode as
seen from the fragment (c). During this rotational mode, the excitation is transmitted
from one generator to another. The corresponding trajectory in the configuration
plane of original variables is shown in fragment (d). Phase transitions happen
quickly in a stepwise manner, when only one of the two generators is excited.
A fixed phase shift means that oscillators are synchronized. In the case under
consideration, the phase shift is practically fixed except for relatively short intervals
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Fig. 3.15 The dynamics of weakly coupled autogenerators in different variables obtained by
numerical integration of the original and averaged equations under the stationary total excitation
level given by .E(0) = b/(3d) and the following values of parameters and initial conditions:
.ε = 0.01, .β = 1.0, .α = 0.268, .d = 0.8, .b = 1.2, .σ = 0, .γ = 2b2/(9d), .Δ(0) = π − 0.001,
.P(0) = 0.128844
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of stepwise switches. Such type of synchronization was noticed and defined as
nonconventional synchronization in [135] and then documented in [115].

3.3.6 Localization of Friction-Induced Vibrations

The variables.{E,P,Δ, δ} can be used for investigation of different dynamic effects
in a coupled set of two coupled oscillators with equal or close to each other natural
frequencies regardless of physical meaning of the problem. Following [193], let us
consider a chain of n linearly coupled nonlinear oscillators of the mass m driven
by friction forces due to the interaction with a continuous stiff surface moving with
a constant speed .Vb as shown in Figs. 3.16–3.17. The restoring force characteristic
of oscillators corresponds to Duffing model, where .kg and .k3 are linear and cubic
stiffness coefficients, respectively. In addition to the friction force, each oscillator
is subjected to the linear viscous damping with the coefficient of viscosity c. The
oscillators are coupled by linear springs of stiffness k. Each mass is under the
constant normal load, p. The friction force acting on the j th mass is expressed
through its relative velocity as

.Fj = pμ(Vb − q̇j ) (3.114)

where .μ is the so-called friction coefficient, which is usually introduced in a
phenomenological way as, for instance [59],

Fig. 3.16 Friction coefficient
versus relative velocity
(3.115) for the following
numerical values:
.αf = βf = 15, .μσ = 0.7,
.μd = 0.3, and .Vb = 0.23
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Fig. 3.17 Finite element model of friction interphase
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.μ(Vrel) =
[
μd + μσ − μd

cosh(αf Vrel)

]
tanh(βf Vrel) (3.115)

Let us introduce the natural frequency of a linearized individual oscillator,
.Ω = √

kg/m, and scale the parameter of normal load as .ε = pΩ/kg , assuming
that the load is relatively weak. Also, let us introduce two parameters, .α and .β,
characterizing the level of nonlinearity and the strength of coupling, as .k3/kg = εα

and .k/kg = 2εβ, respectively. The corresponding differential equations of motion
are represented in the form

.
d2qj

dt̄2
+ qj + εαq3

j − 2εβ
(
qj−1 − 2qj + qj+1

)
(3.116)

= −ε

[
a
dqj

dt̄
+ b

(
dqj

dt̄

)3

+ d

(
dqj

dt̄

)5
]

where .t̄ = Ωt is a natural temporal scale associated with individual linearized
oscillators, and a polynomial expansion of the dependence (3.115) was applied
to give the following coefficients: .a = μ′ (Vb) + c/p, .b =.Ω.

2μ(3) (Vb) /6, and
.d =.Ω.

4μ(5) (Vb) /120.
Below a two mass-spring case is considered by assuming that only one coupling

spring is present. As a result, system (3.116) gives the system of two coupled non-
conservative oscillators

.
dqj

dt̄
= vj ,

dvj

dt̄
= −qj − fj ; j = 1, 2 (3.117)

where

.f1 = εαq3
1 + 2εβ (q1 − q2) + ε

[
a
dq1

dt̄
+ b

(
dq1

dt̄

)3

+ d

(
dq1

dt̄

)5
]

f2 = εαq3
2 + 2εβ (q2 − q1) + ε

[
a
dq2

dt̄
+ b

(
dq2

dt̄

)3

+ d

(
dq2

dt̄

)5
]

(3.118)

+4εσq2

Following Sect. 3.3.2 let us substitute (3.118) in Eqs. (3.56) and (3.57) by setting
.Ω = 1. Then applying the operator of averaging (3.58) with respect to the fast phase
.δ gives

.
dE

dt̄
= −1

8
εE

[
8a + 6bE + 5dE2 +

(
6bE + 15dE2

)
P 2

]

dP

dt̄
= 1

4
ε
[(

3bE + 5dE2
)

P
(
P 2 − 1

)
+ 8β

√
1 − P 2 sinΔ

]
(3.119)
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dΔ

dt̄
= 1

4
ε

(
8σ − 3αEP − 8βP√

1 − P 2
cosΔ

)

.
dδ

dt̄
= 1 + 3

8
εαE(1 + P) + εβ

(
1 −

√
1 − P

1 + P
cosΔ

)
(3.120)

Analyzing the right-hand side of the first equation in (3.119) reveals the
stationary excitation level, .E = Estat = −(2/5)b/d , which is possible under
the condition .d = (1/5)b2/a. Taking into account these two relationships brings
another two equations of system (3.119) to the form

.
dP

ds
= a

4β
P (1 − P 2) +

√
1 − P 2 sinΔ

dΔ

ds
= σ

β
+ 3a

4b

α

β
P − P√

1 − P 2
cosΔ (3.121)

where .s = 2εβt̄ is a slow time scale associated with the strength of coupling.
System (3.121) represents an autonomous planar case; hence, using phase plane

diagrams for its parametric study becomes possible. For instance, analyzing the
equilibrium points of system (3.121) versus the cubic nonlinearity, .α, shows that
the antiphase mode, .(Δ, P ) = .(π, 0) experiences center to saddle bifurcation at
.α∗ = −4βb/(3a) by giving rise to the local modes as illustrated in Fig. 3.18.

Fig. 3.18 Developed nonlinear mode localization at supercritical nonlinearity according to (3.121)
under parameter values [193]: .Vb = 0.23, .a = 0.1406, .β = 1.0, .b = −10.43, .d = 154.72, and
thus .α∗ = 98.9015
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3.4 Transition from Normal to Local Modes

The transient mode localization phenomenon is considered below in a mechanical
model combined of a simply supported beam with two localized mass attach-
ments enforced by nonlinear springs with hardening characteristics. Two different
approaches to the model reduction, such as normal and local mode representations
for the beam’s center line, are discussed. It is concluded that the local mode
discretization brings advantages for the transient localization analysis. Based on
the specific coordinate transformations and the idea of averaging, explicit equations
describing the energy exchange between the local modes and the corresponding
localization conditions are obtained. It was shown that, when the energy is slowly
pumped into the system then, at some point, the energy equipartition around the
system suddenly breaks and one of the two local modes becomes the dominant
energy receiver. The phenomenon is interpreted in terms of the related phase plane
diagram. The diagram shows qualitative changes near the image of antiphase mode
as the total energy of the system has reached its critical level. A simple closed form
expression is obtained for the corresponding critical time estimate. The material
below is an update of reference [189].

3.4.1 Model Description

The model under investigation represents a simply supported elastic beam of length
l with two masses attached to the beam and connected to the base by nonlinear
springs as shown in Fig. 3.19. The corresponding differential equation of motion
and boundary conditions are, respectively,

.ρA
∂2w

∂t2
+ EI

∂4w

∂y4 = f1(t)δ(y − y1) + f2(t)δ(y − y2) (3.122)

Fig. 3.19 The mechanical
model admitting both normal
and local mode motions; all
the springs have hardening
restoring force characteristics
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and

.w(t, y)|y=0,l = 0,
∂2w(t, y)

∂y2
|y=0,l = 0 (3.123)

where

.fi(t) = −f [w(t, yi)] − c
∂w(t, yi)

∂t
− m

∂2w(t, yi)

∂t2
; i = 1, 2 (3.124)

are transverse forces applied to the beam from masses attached at the points .y =
y1,2.

It will be assumed that the structure is symmetric with respect to the middle of
the beam, .y = l/2, such that

.y1 = l/3 and y2 = 2l/3 (3.125)

Below we consider the case of the hardening restoring force characteristics of the
springs and show that, under appropriate conditions, a slow energy inflow leads to
the localization of vibration modes. As a result, the system energy is spontaneously
shifted to either the left or the right side of the beam due to the so-called symmetry
breaking effect. The adiabatic (slow) energy increase means that the energy source
has a minor or no direct effect on the mode shapes. For simulation purposes, such
energy inflow is provided by the assumption that the viscous damping coefficient
c is sufficiently small and negative; the physical basis for such an assumption
was discussed in [187, 188]. This remark, which is substantiated below by the
corresponding numerical values of the parameters, is important to follow; otherwise,
the phenomenon, which is the focus of this paper, may not be developed. In contrast,
the dissipation (.c > 0) can lead to a spontaneous dynamic transition from local to
normal modes, when the total energy reaches its sub-critical level.

Recall that the presence of Dirac .δ-functions in Eq. (3.122) requires a generalized
interpretation of the differential equation of motion in terms of distributions [208].
The corresponding compliance is provided by further model reduction based on
the Bubnov-Galerkin approach, which actually switches from the point-wise to the
integral interpretation of equations.

3.4.2 Normal and Local Mode Coordinates

Normal Mode Coordinates

Let us evaluate two possible ways to discretizing the model (3.122). The minimum
number of modes (two) will be maintained to capture the effect of interest. The
conventional normal mode representation for the boundary value problem (3.122)–
(3.123) is
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.w(t, y) = w1(t) sin
πy

l
+ w2(t) sin

2πy

l
(3.126)

Substituting (3.126) in (3.122) and applying the standard Bubnov-Galerkin
procedure give

.ẅ1 + 3

3m + Alρ

(
cẇ1 + π4EI

3l3
w1

)
+ F1(w1, w2) = 0 (3.127)

ẅ2 + 3

3m + Alρ

(
cẇ2 + 16

π4EI

3l3
w2

)
+ F2(w1, w2) = 0

where .Fi(w1, w2) = F(w1 + w2) + (−1)i+1F(w1 − w2), and

.F(z) =
√
3

3m + Alρ
f

(√
3

2
z

)
(3.128)

Equations (3.127) are decoupled in the linear terms related to the elastic
beam center line, whereas the modal coupling is due to the spring nonlinearities
participating in .F(z).

Local Mode Coordinates

Alternatively, the model can be discretized by introducing the local mode coordi-
nates determined by the spring locations

.ui(t) = w(t, yi); i = 1, 2 (3.129)

Substituting (3.125) in (3.126) and taking into account (3.129) reveal simple links
between the normal and local coordinates as

.u1 =
√
3

2
(w1 + w2), u2 =

√
3

2
(w1 − w2) (3.130)

or, inversely,

.w1 =
√
3

3
(u1 + u2), w2 =

√
3

3
(u1 − u2) (3.131)

Substituting (3.131) in (3.126) gives the local mode representation for the beam
center line

.w(t, y) = u1(t)ψ1

(πy

l

)
+ u2(t)ψ2

(πy

l

)
(3.132)
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Fig. 3.20 Two types of spatial basis for simply supported beams: (a) normal modes and (b) local
mode shape functions

where the local mode shape functions are defined as

.

[
ψ1 (x)

ψ2 (x)

]
=

√
3

3

[
1 1
1 −1

] [
sin x

sin 2x

]
(3.133)

Both normal and local mode shape functions are shown in Fig. 3.20a and b,
respectively. Transformation (3.133) can be generalized for a greater number of
modes. Note that functions (3.133) satisfy the following orthogonality condition

.

∫ π

0
ψi (x) ψj (x) dx = π

3
δij (3.134)

where .δij is the Kronecker symbol.
The differential equations for the local mode amplitudes, .u1(t) and .u2(t), can

be derived by substituting (3.132) in the partial differential equation (3.122) and
then applying Bubnov-Galerkin procedure with orthogonality condition (3.134).
Alternatively the equations can be obtained by substituting (3.131) in (3.127)
and conducting straightforward algebraic manipulations. Finally the local mode
equations take the form

.ü1 + 3

3m + Alρ

[
cu̇1 + π4EI

6l3
(17u1 − 15u2) + f (u1)

]
= 0 (3.135)

ü2 + 3

3m + Alρ

[
cu̇2 + π4EI

6l3
(17u2 − 15u1) + f (u2)

]
= 0

Further consider Duffing’s type polynomial approximation for the springs restor-
ing force characteristic, .f (z) = kz + az3.
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Symmetry Breaking with Energy Localization

Let us represent equations (3.135) as a set of four first-order equations for the system
state variables

.u̇1 = v1

u̇2 = v2

v̇1 = −Ω2u1 − f1 (3.136)

v̇2 = −Ω2u2 − f2

where

.f1 = ε(−Ω2u2 + ζv1 + αu31)

f2 = ε(−Ω2u1 + ζv2 + αu32) (3.137)

and the following set of parameters and assumptions are introduced:

.Ω =
√
6kl3 + 17π4EI

2l3(3m + Alρ)
= O(1), ε = 15π4EI

6kl3 + 17π4EI
<< 1 (3.138)

ζ = 3c

(3m + Alρ)ε
= O(1), α = 3a

(3m + Alρ)ε
= O(1)

From the physical standpoint, relationships (3.138) mean that the beam is flexible
enough compared to the linear stiffness of springs, whereas both the viscosity
effect and nonlinearity are relatively weak as compared to the beam bending
rigidity. Note that localized spring forces may practically trigger high modes of
the flexible beam and thus invalidate the two modes’ approximation represented
by relationship (3.126). Nonetheless, in the current illustrating model, a role of
the beam is secondary. As follows from system (3.136), the beam just provides a
weak coupling between the oscillators. Therefore a more detailed modeling could
incorporate the high modes as a perturbation to the coupling effect.

Following Sect. 3.3.1, substituting (3.137) in (3.56) and (3.57), and conducting
the averaging give

.Ė = −εζE

Ṗ = εΩ
√
1 − P 2 sinΔ (3.139)

Δ̇ = −εΩ

(
3α

4Ω4E + cosΔ√
1 − P 2

)
P

and
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.δ̇ = Ω + 3εα

8Ω3E(1 + P) − 1

2
εΩ

√
1 − P

1 + P
cosΔ (3.140)

If the viscosity is negative,5 .ζ < 0, then Eqs. (3.139) describe transition to the
local mode as the system energy increases; see Fig. 3.21 for illustration. The energy
partitioning parameter P is varying within the interval .−1 ≤ P ≤ 1. The ends
of the interval obviously correspond to the local modes, whereas its center .P = 0
corresponds to the normal modes: .Δ = 0-inphase, and .Δ = π -antiphase; recall
transformation (3.44). Linearizing system (3.139) in the vicinity of stationary points
.(Δ, P ) = (0, 0) and .(Δ, P ) = (π, 0), assuming the variable E is “frozen,” and
eliminating the phase variable give

.P̈ + ε2Ω2
(
1 ± 3α

4Ω4E

)
P = 0 (3.141)

where plus or minus sign in the parenthesis corresponds to the inphase or antiphase
mode, respectively.

It follows from the form of Eq. (3.141) that a localized mode can branch out of
the antiphase mode, when .E = E∗ = 4Ω4/(3α). In the case of negative viscosity,
the first equation in (3.139) gives .E = E0 exp(ε|ζ |t). Therefore, the critical system
excitation level .E∗ will be reached regardless of the initial number .E0, when .t = t∗:

.t∗ = 1

ε|ζ | ln
4Ω4

3αE0
(3.142)

The data of Fig. 3.21 gives .E0 = 1.36585 × 10−5, .E∗ = 1.42116 × 10−2, and
expression (3.142) generates the number .t∗ = 3580.42, in a reasonable agreement
with Fig. 3.21.

3.5 Autolocalized Modes in Nonlinear Coupled Oscillators

Below, the term autolocalized means that the system itself may come into the
nonlinear local mode regime and stay there regardless of initial energy distribution
among its particles. As follows from Poincaré recurrence theorem, such phenomena
are rather impossible within the class of conservative systems [16]. Nonetheless,
interactions between the system particles can be designed in specific ways in order
to achieve desired phenomena. It is assumed that such a design can be implemented
practically by using specific electric circuits and possibly mechanical actuators. On
macro-levels, the autolocalization may help to optimize vibration suppression.

5 Possible physical mechanisms of the negative viscosity are not discussed here since the negative
damping is used only for simulation of a slow energy inflow into the system.
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Fig. 3.21 Symmetry breaking followed by sudden transition from normal to local mode vibration
as the system energy has reached its critical value: (a) energy distribution and (b) local mode
amplitudes; the following parameters were taken for numerical simulations: .ε = 0.009, .ζ =
−0.2156, .Ω = 1.4217, .α = 383.29, and the initial normal mode amplitudes at zero velocities
are .w1(0) = 0.0001 and .w2(0) = −0.003

Some results from the previous publication [179] are reproduced below after
some notation modifications for a better coherency with the current text. Let us
consider an array of N harmonic oscillators, such that each of the oscillators
interacts with only the nearest neighbors. The corresponding differential equations
of motion are of the form

.ẍj + Ω2xj = β(xj−1 − 2xj + xj+1)+

. + α[(Ej − Ej−1)Ej−1 − (Ej+1 − Ej)Ej+1]ẋj (3.143)

.Ej = 1

2
(ẋ2

j + Ω2x2
j ); j = 1, ..., N (3.144)

where .Ej = Ej(t) is the total energy6 of the j th oscillator under the boundary
conditions of fixed ends, .E0(t) ≡ EN+1(t) ≡ 0; and .Ω , .β, and .α are constant
parameters of the model.

On the right-hand side of Eq. (3.143), two groups of terms describe the coupling
between the oscillators. If .α = 0 then the only linear coupling remains. In this
case, under special initial conditions, N different coherent periodic motions, i.e.,
linear normal modes, can exist. Any other motion is combined of the linear normal
mode motions, whereas the energy is conserved on each of the modes the way it
was initially distributed between the modes. In other words, no energy localization
is possible on individual particles if .α = 0.

Another group of terms, including the common factor .α, has the opposite
to the linear elastic interaction effect. These nonlinear terms are to simulate a

6 Note that the concept of energy for individual oscillators becomes somewhat ambiguous in the
presence of coupling and nonconservative terms. Hence expression (3.144) should rather be viewed
as Lyapunov function.
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possible competition between the oscillators leading to a one-way energy flow to
the neighbor whose energy is greater. Such kind of interaction dominates when the
total system energy is large enough to involve high degrees of the coordinates and
velocities.

Let us introduce the complex conjugate variables .{Aj (t) , Āj (t)} into
Eqs. (3.143) according to relationships

.xj = 1

2
[Aj exp(iΩt) + Āj exp(−iΩt)]

ẋj = 1

2
iΩ[Aj exp(iΩt) − Āj exp(−iΩt)] (3.145)

where the following compatibility condition is imposed

.
dAj

dt
exp(iΩt) + dĀj

dt
exp(−iΩt) (3.146)

In terms of the complex amplitudes, the total energy of individual oscillator (3.144)
takes the form

.Ej = 1

2
Ω2AjĀj = 1

2
Ω2

∣∣Aj

∣∣2 (3.147)

When .β = α = 0, the system is decomposed into N uncoupled oscillators
leading to a constant solution in the new variables. In general case, substituting
(3.145) in (3.143), taking into account (3.146), and applying the averaging with
respect to the phase .z = Ωt , give the set of equations

.Ȧj = − iβ

2Ω
(Aj−1 − 2Aj + Aj+1)+

. + αΩ4

8

[(∣∣Aj

∣∣2 − ∣∣Aj−1
∣∣2) ∣∣Aj−1

∣∣2 −
(∣∣Aj+1

∣∣2 − ∣∣Aj

∣∣2) ∣∣Aj+1
∣∣2]Aj

(3.148)
.(j = 1, ..., N)

where the conjugate equations are omitted.
Let us consider first the case of two coupled oscillators (.N = 2), when system

(3.148) is reduced to

.Ȧ1 = − iβ

2Ω
(A2 − 2A1) + αΩ4

8

(
|A1|2 − |A2|2

)
|A2|2 A1 (3.149)

Ȧ2 = − iβ

2Ω
(A1 − 2A2) + αΩ4

8

(
|A2|2 − |A1|2

)
|A1|2 A2
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This system has the integral

.K = |A1|2 + |A2|2 = 2(E1 + E2)/Ω
2 = const.

As a result, the dimension of phase space is reduced by introducing the phases
.ϕ1(t), .ϕ2(t) and .ψ(t) as

.A1 = √
K cosψ exp(iϕ1), A2 = √

K sinψ exp(iϕ2) (3.150)

where .ψ determines the energy distribution between the oscillators as

. tanψ = |A2|
|A1| =

√
E2

E1
(0 ≤ ψ < π/2) (3.151)

Substituting (3.150) in system (3.149) and then considering separately its real
and imaginary parts give

.ϕ̇1 = β

Ω
− β

2Ω
tanψ cos (ϕ2 − ϕ1)

ϕ̇2 = β

Ω
− β

2Ω
cotψ cos (ϕ2 − ϕ1) (3.152)

ψ̇ = − β

2Ω
sin (ϕ2 − ϕ1) − 1

32
αK2Ω4 sin 4ψ

Introducing the phase shift .Δ = ϕ2 − ϕ1 and new temporal variable .p = Ωt/β

give

.
dΔ

dp
= − cot 2ψ cosΔ (3.153)

dψ

dp
= −1

2
(sinΔ + λ sin 4ψ)

where .λ is a dimensionless parameter related to the total energy of both oscillators
as

.λ = αK2Ω5

16β
= Ωα

4β
(E1 + E2)

2 (3.154)

System (3.153) is periodic with respect to both phases, .Δ and .ψ . As a result, its
phase plane has the periodic cell-wise structure. Let us consider just one cell,

.R0 =
{
−π

2
< Δ <

π

2
, 0 < Ψ <

π

2

}
(3.155)
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including the stationary point

.(Δ,ψ) = (0, π/4) (3.156)

As follows from (3.150) and (3.151), point (3.156) represents the inphase
vibration with .E1 = E2. Linearizing system (3.153) near this stationary and then
solving the corresponding characteristic equation give the following couple of roots:

.r1,2 = λ ± i
√
1 − λ2 (3.157)

Expression (3.157) determines the low excitation interval .0 < λ < 1 of
a qualitatively similar system behavior. Point (3.156) is unstable by Lyapunov
for positive .λ, while no other stationary points exist within the rectangular cell
(3.155). As a result, the system trajectory is eventually attracted to the boundary
of rectangular .R0 (3.155) as shown in Fig. 3.22a and b. This is a periodic limit cycle
whose period is found in a closed form,

.T = 2

π/2∫

0

dψ

1 − λ sin 4ψ
− 2

0∫

π/2

dψ

1 + λ sin 4ψ
= 2π√

1 − λ2
(3.158)

where the horizontal pieces of the boundary .∂R0 have zero contribution as those
passed momentarily by the system (3.153). This is confirmed also by the diagrams
in Fig. 3.23a, c and b, d showing stepwise jumps of the variable .Δ(p) in steady-
state limits.

Fig. 3.22 (a) Low-energy transition to the nonsmooth limit cycle; numerical solution obtained for
the following system parameter and initial conditions: .λ = 0.2; .Δ(0) = 0.0, .Ψ (0) = π/4 + 0.1.
(b) Transition to the nonsmooth limit cycle under the energy level approaching its critical value;
the numerical solution obtained for the following system parameter and initial conditions: .λ = 0.6;
.Δ(0) = 0.0, .Ψ (0) = π/4 + 0.1
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Fig. 3.23 (a) and (c): Low-energy transition to the “impact” limit cycle of phase variables at
.λ = 0.2; (b) and (d) Transition to the “impact” limit cycle of phase variables at .λ = 0.6

Expression (3.158) shows that .T → ∞ as .λ → 1. The infinity long period
means that there is only one-way energy flow in the system. As a result, the energy
is eventually localized on one of the oscillators. The corresponding total critical
energy value is determined by substituting .λ = 1 in (3.154). This gives

.E1 + E2 = 2

√
β

Ωα
= E∗ (3.159)

If .E1 + E2 < E∗ then periodic energy exchange with the period .T = βP/Ω

takes place, but no localization is possible. Therefore, in order to be localized on
one of the oscillators, the total system energy must be large enough. Note that the
transition to localized mode of this model happens through nonsmooth limit cycle
along which the dynamics of phase variables, .Ψ and .Δ, resembles the behavior of
coordinate and velocity of impact oscillator;7 see Fig. 3.23. It was found later that
such types of trajectories represent quite a general situation that may occur in the
dynamics of interacting oscillators in terms of the specific phase coordinates. As a
result the concept of limiting phase trajectories (LPT) was introduced in [133] as
complementary nonstationary alternative to (stationary) normal mode motions.

7 As already mentioned, the possibility of “vibro-impact dynamics” of phase variables was noticed
later in [133] when considering another model of nonlinear beats.
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