
Chapter 2
Smooth Oscillating Processes

This chapter gives an overview of selected analytical methods for smooth oscillating
processes. Most of such methods are quasi-linear by nature. The corresponding
technical implementations usually employ the harmonic oscillator as a generating
model. The description focuses on such ideas and technical details that are further
combined with nonsmooth methods. The related procedures of the asymptotic
integration usually include the stage of a preliminary transformation of the original
system to the form that admits a straightforward solution. In particular, the averaging
algorithm based on the Hausdorff equation for operators Lie is reproduced.

2.1 Linear and Weakly Nonlinear Approaches

By both practical and theoretical reasons, the quantitative methods of dynamics
were developed first for smooth processes. As a rule, smooth oscillations can
be directly observed under no special conditions. For instance, projection of
any fixed point of a body rotating with constant angular speed makes a perfect
impression about harmonic oscillations. Interestingly, in 1693, Leibniz derived
the differential equation for sine geometrically by considering a circle. Much
later, original analytical ideas of nonlinear vibrations emerged from the celestial
mechanics considering perturbations of circular orbits of rigid-body motions rather
than any mass-spring oscillators. Robert Hooke (1635–1703) was probably first
who suggested the basic elastic mass-spring model, whereas Galileo and Huygens
were investigating the pendulum. Later, d’Alembert, Daniel Bernoulli, and Euler
considered a one-dimensional continual model of a string. It was found that the
vibrating string represents the infinity of harmonic oscillators corresponding to
different mode shapes of the string. It is well-known that a serious discussion
occurred about whether or not the sum of smooth functions, such as sines, can
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66 2 Smooth Oscillating Processes

represent a nonsmooth shape of the string. These discussions were finalized by the
Fourier theorem.

Let us reproduce the result for a periodic function of time .f (t) of the period T

in the complex form

.f (t) =
∞∑

k=−∞
ck exp(ikΩt) (2.1)

.ck = 1

T

∫ T

0
f (t) exp(−ikΩt)dt , Ω = 2π

T

This relation generates a one-to-one mapping between the function .f (t) and its
Fourier coefficients

.f (t) ←→ {. . . c−2, c−1, c1, c2, . . .} (2.2)

Note that mathematical expressions (2.1) do not necessarily imply that the
periodic signal .f (t) must be produced by a linear system even though the right-
hand side of (2.1) combines free vibrations of linear oscillators.1 Therefore, the
Fourier analysis with its associates should be viewed as a linear language for
nonlinear systems regardless of specifics of analytical algorithms. Most quantitative
methods for weakly nonlinear periodic motions, one way or another, recover Fourier
coefficients of the corresponding solutions. On one hand, such tools possess a
high level of generality. On the other hand, even elementary strongly nonlinear
phenomena, as defined in Chap. 1, may become quite difficult to describe in the
linear language. Nevertheless, the quantitative theory of nonlinear vibration has
been advanced by new asymptotic techniques developed originally in a formal
way for solving nonlinear differential equations. Most traditional methods are
essentially based on the ideas of perturbation or averaging [69]. Similar results
can be obtained within the theory of Poincaré normal forms [153], which retains
resonance terms, whereas all non-resonance terms are eliminated by means of a
coordinate transformation. Such a normal form is qualified as the simplest possible
form of the equations of motion.

2.2 A Brief Overview of Smooth Methods

2.2.1 Periodic Motions of Quasi-linear Systems

Consider a weakly nonlinear oscillator of the form

.ẍ + Ω2
0x = εf (x, ẋ) (2.3)

1 Recall rigid-body analogies in Sect. 1.4.3.
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where .ε is a small parameter from the interval .0 < ε � 1, and .f (x, ẋ) is a smooth
enough function of both arguments.

Periodic solutions of Eq. (2.3) can be found by splitting the nonlinear system into
a sequence of linear oscillators by means of the power series of the small parameter
.ε

.x = x0 + εx1 + ε2x2 + . . . (2.4)

The perturbation on the right-hand side of Eq. (2.3) changes the fundamental
frequency of the oscillator as

.Ω2 = Ω2
0 (1 + εγ 1 + ε2γ 2 + . . .) (2.5)

The new frequency, .Ω , is introduced explicitly into the differential equation of
motion by switching to the phase argument

.ϕ = Ωt (2.6)

As a result, series (2.4) appears to be composed of trigonometric functions of
multiple phases .ϕ, .2ϕ, .3ϕ,. . . . The numbers .γ 1, .γ 2,. . . are used for canceling the
so-called secular terms from the solution.

A similar idea was implemented by Lyapunov for systems of first-order equa-
tions, such as

. ẋ1 = a11x1 + a12x2 + f1(x1, x2) (2.7)

ẋ2 = a21x1 + a22x2 + f2(x1, x2)

where .f1 and .f2 are nonlinear functions, it is assumed that system (2.7) admits
first analytical integral, and the corresponding linearized system has only periodic
solutions. Then periodic solutions of (2.7) admit power series expansions with
respect to the amplitude.

There exist at least two extensions of Lyapunov theory, such as local and global
approaches to nonlinear normal modes, see, for instance, [136, 155, 241].

2.2.2 One-Phase Averaging

Averaging with Van der Pol Amplitude-Phase Variables

Let us illustrate different implementations of the averaging by reproducing some
technical details. The description focuses on such tools that remain applicable to
nonconservative systems.
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To illustrate van der Pol’s averaging procedure, let us represent Eq. (2.3) as a
system of two first-order equations by introducing the velocity variable, v, as

.ẋ = v (2.8)

v̇ = −Ω2
0x + εf (x, v)

The next step includes transition to the amplitude-phase variables on the system
phase plane as .{x, v} → {a, ϕ}:

.x = a cosϕ, v = −aΩ0 sinϕ (2.9)

Now substituting (2.9) in (2.8) and considering the result as a system of two
algebraic equations with respect to the derivatives .ȧ and .ϕ̇ give

. ȧ = − ε

Ω0
f (a cosϕ,−aΩ0 sinϕ) sinϕ

ϕ̇ = Ω0 − ε

Ω0a
f (a cosϕ,−aΩ0 sinϕ) cosϕ (2.10)

This system is still an exact equivalent of the original equation (2.3). Despite the
formal complexity, system (2.10) has the essential advantage due to different time
scales of the variables, a and .ϕ. Noticing that the new system is .2π -periodic with
respect to the fast phase .ϕ suggests its elimination from the right-hand side of the
system by applying the operator of averaging

. < · · · >ϕ≡ 1

2π

∫ 2π

0
· · · dϕ

as follows:

. ȧ = − ε

Ω0
< f (a cosϕ,−aΩ0 sinϕ) sinϕ >ϕ . (2.11)

ϕ̇ = Ω0 − ε

Ω0a
< f (a cosϕ,−aΩ0 sinϕ) cosϕ >ϕ (2.12)

Solutions of system (2.12) are considered as approximate leading-order averaged
solutions of the original system (2.10). The main achievement from the above
manipulations is due to independence of the amplitude equation from the phase .ϕ.

Example of Rayleigh-Duffing Oscillator

Very often, amplitude equation (2.11) can be solved exactly by separation of
variables as illustrated below based on Rayleigh-Duffing oscillator:
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.ẍ + Ω2
0x = ε

[(
1 − 1

3
ẋ2

)
ẋ − αx3

]
(2.13)

In this case, substituting (2.9) in .f (x, v) = .
(
1 − v2/3

)
v − αx3 and then

conducting the averaging in (2.12) give

.ȧ = 1

2
ε

(
a − 1

4
Ω2

0a
3
)

ϕ̇ = Ω0 + ε
3α

8Ω0
a2 (2.14)

where the amplitude a is described by a separable equation, which is independent
on the phase variable, .ϕ.

Assuming the initial condition .a(0) = a0 and separating the variables give
explicit solution:

.a = 2a0√
a20Ω

2
0

[
1 − exp(−εt)

] + 4 exp(−εt)

(2.15)

Now the phase .ϕ can be obtained from the second equation in (2.14) by the direct
integration as

.ϕ = Ω0t + 3α

2Ω3
0

ln

{
1 + 1

4
a20Ω

2
0

[
exp(εt) − 1

]} + ϕ0 (2.16)

where .ϕ0 = ϕ(0).
Solution (2.15) and (2.16) should be considered as solutions in the leading

asymptotic order of the averaging procedure. Such types of approximations are
often sufficient for practical estimations as follows from Fig. 2.1. Comparing the
graphs shows a sufficient agreement of the result of direct numerical integration of
Eq. (2.13) with the analytical approximation given by (2.15) and (2.16).

Krylov-Bogolyubov Generalization

This above averaging procedure was essentially generalized in the 1930s of the last
century [34] by combining the Lindstedt-Poincaré and van der Pol’s ideas to obtain
high asymptotic orders of the averaging. Let us outline the corresponding formalism
based on the general one-phase system

.ẋ = εX(x, y)

ẏ = Ω(x) + εY (x, y) (2.17)
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Fig. 2.1 Time history
response of Rayleigh-Duffing
oscillator under the following
parameters and initial
conditions: .ε = 0.1, .α = 0.3,
.Ω0 = 1.0, .A0 = 0.1, .ϕ0 = 0
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where y and x are scalar and vector variables, respectively, and the right-hand side
is assumed to be .2π -periodic with respect to y.

In contrast to (2.10), the frequency .Ω in (2.17) depends on the slow varying
vector-function x, which may represent a set of amplitudes of an .n−degrees-of-
freedom vibrating system, .x = (a1, . . . , an). Sometimes, such kind of systems is
called essentially nonlinear since the condition .ε = 0 does not make the frequency
state independent. Note that, if .ε = 0, the system has no fast phase on the right-hand
side. Thus the problem is to find a close to identical transformation

. x = q + εu1(q, ψ) + ε2u2(q, ψ) + . . .

y = ψ + εv1(q, ψ) + ε2v2(q, ψ) + . . . (2.18)

which eliminates the fast phase entirely from the system and brings it to the form

.q̇ = εA1(q) + ε2A2(q) + . . .

ψ̇ = Ω0(q) + εΩ1(q) + ε2Ω2(q) + . . . (2.19)

This problem is solved by substituting expansions (2.18) in Eqs. (2.17), enforcing
Eqs. (2.19) to eliminate the derivatives .q̇ and .ψ̇ , and then separating different orders
of .ε. Then the resultant system is solved iteratively. In zero-order of .ε, the second
equation in (2.17) gives .Ω0(q) = Ω(q). As a result, the problem of order .ε takes
the form

.Ω(q)
∂u1

∂ψ
= X(q,ψ) − A1(q). (2.20)

Ω(q)
∂v1

∂ψ
= Y (q,ψ) + Ω ′(q)u1 − Ω1(q) (2.21)

These partial differential equations are solved for .u1 and .v1 under the condition
that solutions must be bounded with respect to the fast phase .ψ . For that reason, the
average of the right-hand side of both equations must be zero, which is achieved by
setting
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.A1(q) = < X(q,ψ) >ψ . (2.22)

Ω1(q) = < Y(q,ψ) >ψ +Ω ′(q) < u1 >ψ (2.23)

Then, integration gives

.u1 = 1

Ω(q)

ψ∫

0

[X(q,ψ)− < X(q,ψ) >ψ ]dψ . (2.24)

v1 = 1

Ω(q)

ψ∫

0

[Y (q,ψ)− < Y(q,ψ) >ψ ]dψ (2.25)

. + Ω ′(q)

Ω(q)

ψ∫

0

[u1− < u1 >ψ ]dψ

Strictly speaking, both these solutions should include arbitrary functions of q

as summands. These arbitrary functions are chosen to be zero assuming that both
the old and new variables, .{x, y} and .{q,ψ} in (2.18), satisfy the same initial
conditions. On the next step of asymptotic integration, values (2.22) through (2.25)
are substituted in equations

.Ω(q)
∂u2

∂ψ
= u1

∂

∂q
X(q,ψ) + v1

∂

∂ψ
X(q,ψ) (2.26)

. − A1(q)
∂u1

∂q
− Ω1(q)

∂u1

∂ψ
− A2(q)

and

.Ω(q)
∂v2

∂ψ
= u1

∂

∂q
Y (q, ψ) + v1

∂

∂ψ
Y(q,ψ) (2.27)

. − A1(q)
∂v1

∂q
− Ω1(q)

∂v1

∂ψ
+ Ω ′(q)u2 + 1

2
Ω ′′(q)u21 − Ω2(q)

Despite a more complicated form, these equations have the same structure as
Eqs. (2.20) and (2.21). Moreover, it is easy to see that this structure will be main-
tained for any order with an obvious increase of the technical complexity though.
Practically, high-order approximations can be obtained by means of automatic
systems of symbolic manipulations.
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Example of Rayleigh Equation

Let us represent Rayleigh’s equation, .z̈ + Ω2z = ε
(
1 − ż2/3

)
ż, as a set of two

first-order equations

.ż = v

v̇ = −Ω2z + ε

(
1 − 1

3
v2

)
v (2.28)

The coordinate transformation, .z = x cos y and .v = −xΩ sin y, brings
system (2.28) to the form of system (2.17), where

.X(x, y) = x

(
1 − 1

3
x2Ω2 sin2 y

)
sin2 y. (2.29)

Y (x, y) = 1

6

(
3 − x2Ω2 sin2 y

)
sin 2y (2.30)

and .Ω is constant.
Substituting (2.29) and (2.30) in (2.22) through (2.25), conducting integration,

and substituting the result in (2.19) and (2.18) give, respectively,

.q̇ = 1

2
ε

(
q − 1

4
Ω2q3

)
+ O(ε3). (2.31)

ψ̇ = Ω − 1

256Ω
ε2

(
32 − 24Ω2q2 + 5Ω4q4

)
+ O(ε3) (2.32)

and

.x = q − 1

48Ω
εq[12 − (4 − cos 2ψ)q2Ω2] sin 2ψ + O(ε2). (2.33)

y = ψ + 1

12Ω
ε
(
6 − q2Ω2 sin2 ψ

)
sin2 ψ + O(ε2) (2.34)

The original variable is given by .z = x cos y. Taking into account first-order
approximation and setting the right-hand side of Eqs. (2.26) and (2.27) to zero give
.A2 = 0 whereas .Ω2 �= 0 as seen from Eqs. (2.31) and (2.32).

Solutions of Rayleigh’s equation in first and second asymptotic orders are
compared in Fig. 2.2. Both solutions are in a sufficient agreement with the result
of direct numerical integration even for the parameter .ε, which is not very small as
compared to unity. The effect of improvement in the order .ε2 still can be observed
after multiple cycles of oscillation as follows from Fig. 2.2b.
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Fig. 2.2 Solutions of Rayleigh’s equation in first and second asymptotic orders for the parameters
.ε = 0.5, .Ω = 1.0, and the initial conditions .q(0) = 0.1, .ψ(0) = 0.0: (a) developing steady state
and (b) comparison of temporal mode shapes after multiple cycles

2.2.3 Two-Phase Averaging for Mathew Equation

In a multiple frequency case, the averaging procedure may require an extra step of
the system adaptation. For illustrating purpose, consider Mathew’s equation with
damping

.ẍ + 2ζΩ0ẋ + Ω2
0 (1 + ε cosΩt)x = 0 (2.35)

where the damping ratio .ζ is assumed to be a small parameter of order .ε, and .Ω =
2 as required by the standard form of Mathew’s equation. Therefore, in addition
to the natural frequency .Ω0, there is one more frequency, .Ω , associated with the
parametric loading term.

It will be shown below that the dissipative term .2ζΩ0ẋ can be eliminated from
the equation by means of a substitution as soon as the equation remains linear.
However, keeping in mind possible generalizations on nonlinear cases, this term
will be maintained through the manipulations. Let us introduce the phase variable
.ψ = Ωt and represent Eq. (2.35) in the form of two first-order equations

.ẋ = v

v̇ = −Ω2
0x + F(x, v) (2.36)

where

.F = −2ζΩ0v − εΩ2
0x cosψ ∼ ε (2.37)

Applying transformation (2.9) to (2.36) gives the system with two fast phases, .ϕ
and .ψ , as
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.ȧ = −ζaΩ0(1 − cos 2ϕ) + 1

4
εaΩ0 [sin(2ϕ − ψ) + sin(2ϕ + ψ)]

ϕ̇ = Ω0(1 − ζ sin 2ϕ) + 1

4
εΩ0 [2 cosψ + cos(2ϕ − ψ) + cos(2ϕ + ψ)] (2.38)

ψ̇ = Ω

Averaging the right-hand side of system (2.38) separately over .ϕ and .ψ would
lead to the system .ȧ = −ζaΩ0, .ϕ̇ = Ω0, and .ψ̇ = Ω , in which the effect of
parametric loading is vanished. As seen from the right-hand side of system (2.38),
such an averaging becomes inadequate when .2Ω0 ∼ Ω , and therefore .2ϕ̇ − ψ̇ ∼ ε.
This means that, in addition to the amplitude a, another slow variable, .2ϕ − ψ = θ ,
occurs in the system. As a result, both terms .sin(2ϕ−ψ) = sin θ and .cos(2ϕ−ψ) =
cos θ must be interpreted as frozen when averaging with respect to either .ϕ or .ψ .
The corresponding formalization is conducted by excluding one of the fast phases,
say .ψ by means of relationship

.ψ = 2ϕ − θ (2.39)

Substituting (2.39) in (2.38), taking into account that .Ω = 2, and applying the
averaging with respect to .ϕ give

.ȧ = −ζΩ0a + 1

4
εΩ0a sin θ

θ̇ = 2(Ω0 − 1) + 1

2
εΩ0 cos θ (2.40)

ϕ̇ = Ω0 + 1

4
εΩ0 cos θ

The second equation of this system shows that the phase .θ is a slow varying
quantity if .Ω0 − 1 ∼ ε. In this case, system (2.40) describes the two slow variables,
a and .θ , and one fast phase, .ϕ. In other words, compared to the non-resonance case
of Sect. 2.2.2, the dimension of the so-called slow manifold is increased by one due
to the internal resonance condition.

The original variable is given by the relationship .x = a cosϕ, where the slow
phase .θ does not explicitly show up but affects the amplitude a and phase .ϕ through
system (2.40). The stationary case, .ȧ = θ̇ = 0, determines a family of periodic
solutions whenever the system parameters satisfy condition

.ζ 2 +
(
1 − 1

Ω0

)2

= ε2

16
(2.41)

or
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Fig. 2.3 Comparison of the analytical approximation and numerical solution of equation (2.35) for
parameter values .ζ = 0.01 and .ε = 0.08: (a) .Ω = 1-inside instability zone, (b) .Ω = 1.1-outside
instability zone

.Ω0 =
⎡

⎣1 ±
√

ε2

16
− ζ 2

⎤

⎦
−1

(2.42)

Condition (2.41) is obtained by setting the right-hand side of the first two
equations of system (2.40) to zero and then eliminating the phase angle .θ . From
the geometrical viewpoint, Eq. (2.41) represents boundaries of the main instability
zone in the parameter plane .Ω0 − ε. Figure 2.3 illustrates what happens to the
dynamics when crossing the boundary and confirms that the result of averaging
and numerical solutions remain in a reasonable agreement. When .ζ = 0, Eq. (2.42)
gives .Ω0 = 1±ε/4+O(ε2). Note that a complete set of boundaries is often given for
Mathew’s equation of the form .ÿ+(δ+2ε cos 2t)y = 0, which can be obtained from
Eq. (2.35) by means of the substitution .x(t) = exp(−ζΩ0t)y(t). Such a substitution
leads to the above Mathew’s equation, if .δ = Ω2

0 (1 − ζ ) and .2ε = Ω2
0ε.

2.2.4 Averaging in Complex Variables

In physical literature, vibration problems are usually considered in terms of complex
variables [120]. The idea of averaging can be implemented as follows. If .ε = 0 then
general solution of Eq. (2.3) is represented in the complex form

.x = 1

2
[A exp(iΩ0t) + Ā exp(−iΩ0t)] (2.43)

where A and .Ā are arbitrary complex conjugate constants, and the numerical factor
.1/2 is introduced for further convenience of calculation, although it is not strictly
necessary.

Following the idea of parameter variations, let us assume that A and .Ā are time-
dependent quantities hopefully to satisfy Eq. (2.3) with non-zero right-hand side,
.ε �= 0. Under such an assumption, differentiating (2.43) gives
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.ẋ = 1

2

[
dA

dt
exp(iΩ0t) + dĀ

dt
exp(−iΩ0t)

]
(2.44)

+1

2
iΩ0[A exp(iΩ0t) − Ā exp(−iΩ0t)]

Further, the following condition is imposed on the arbitrary functions, .A(t) and
.Ā(t), with the intent to eliminate the derivatives of amplitudes from (2.44)

.
dA

dt
exp(iΩ0t) + dĀ

dt
exp(−iΩ0t) = 0 (2.45)

This condition brings derivative (2.44) to the form

.ẋ = 1

2
iΩ0[A exp(iΩ0t) − Ā exp(−iΩ0t)] (2.46)

Differentiating (2.46) and taking into account (2.43) give

.ẍ = 1

2
iΩ0

[
dA

dt
exp(iΩ0t) − dĀ

dt
exp(−iΩ0t)

]

−1

2
Ω2

0 [A exp(iΩ0t) + Ā exp(−iΩ0t)] (2.47)

= 1

2
iΩ0

[
dA

dt
exp(iΩ0t) − dĀ

dt
exp(−iΩ0t)

]
− Ω2

0x

Now, substituting (2.47) in the original equation (2.3) gives second equation for
.A(t) and .Ā(t) in the form

.
1

2
iΩ0

[
dA

dt
exp(iΩ0t) − dĀ

dt
exp(−iΩ0t)

]
= εf (2.48)

where the function .f = f (x, ẋ) must be expressed through .A(t) and .Ā(t) by means
of relationships (2.43) and (2.46).

Solving the linear system (2.45) and (2.48) for the derivatives of complex
amplitudes gives

.
dA

dt
= ε

iΩ0
exp(−iΩ0t)f . (2.49)

dĀ

dt
= ε

−iΩ0
exp(iΩ0t)f (2.50)

where .f = f (x, ẋ) must be expressed through (2.43) and (2.46).



2.2 A Brief Overview of Smooth Methods 77

System (2.49) and (2.50) is still exact equivalent of the original equation (2.3)
and represents the result of changing the state variables

.{x, ẋ} → {A, Ā} (2.51)

The advantage of using the complex variables is that it is sufficient to consider
only one amplitude equation, for instance, (2.49) since the other one is simply its
complex conjugate. Besides, solving Eqs. (2.43) and (2.46) for A gives the so-called
complex amplitude, which is often used in both physics and nonlinear mechanics,

.A = 1

iΩ0
exp(−iΩ0t)(ẋ + iΩ0x) (2.52)

Note that similar formal manipulations remain valid in degenerated cases of
multiple degrees of freedom systems. For instance, Eq. (2.3) can be interpreted as a
vector equation with the scalar factor .Ω2

0 .
Finally, if the parameter .ε is small, then the amplitude A is slow; hence the

averaging can be applied as

.
dA

dt
= 1

2πi
ε

2π/Ω0∫

0

exp(−iΩ0t)f dt (2.53)

Complex Form Solution for Van der Pol Oscillator

For example, let us consider oscillator

.ẍ + x = εf (x, ẋ) (2.54)

where

.f (x, ẋ) = −(x2 − 1)ẋ (2.55)

Substituting (2.55) in Eq. (2.53) gives the following equation for the complex
amplitude

.Ȧ = ε

2πi

2π∫

0

exp(−it)(1 − x2)ẋdt (2.56)

where x and .ẋ are given by (2.43) and (2.46), respectively, after setting .Ω0 = 1.
Conducting the corresponding algebraic manipulations and then integration with

respect to time over the period .2π gives
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.Ȧ = 1

8
ε(4 − |A| 2)A (2.57)

To solve this equation, let us switch to the exponential form of the complex
amplitude

.A = ρ exp(iθ) (2.58)

where .ρ = ρ(t) and .θ = θ(t) are the modulus and argument, respectively.
Substituting (2.58) in (2.57) and separating imaginary and real parts give

.θ̇ = 0, ρ̇ = 1

8
ε(4 − ρ2) (2.59)

Therefore, .θ is a constant phase, while .ρ is determined by separating the variables
as

.ρ = 2√
1 + (4ρ−2

0 − 1)exp(−εt)

(2.60)

where .ρ0 = ρ(0).
The reverse transition to the original variable .x(t) through (2.43) and (2.58)

finally gives a general solution of van der Pol’s equation in the leading asymptotic
order

.x = 2 cos(t + θ)√
1 + (4ρ0

−2 − 1)exp(−εt)
(2.61)

In the particular case of zero initial velocity, one can set .θ = 0 and .ρ0 = x(0)
within the same asymptotic order.

2.3 Lie Groups Formalism

The one-parameter Lie2 group approaches are motivated by the idea of matching
the tool and the object of study as explained in references [253] and [256]. Briefly,
it is suggested to seek transformation (2.18) among solutions of some dynamical
systems rather than the class of the arbitrary nonlinear transformations. Original
materials and overviews of the mathematical structure of Lie groups, Lie algebras,
and Lie transforms with applications to nonlinear differential equations can be

2 Marius Sophus Lie ( 1842–1899 ), Norwegian mathematician; different mathematical objects are
named after him, for instance, groups, operators, algebras, and series.
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found in [29, 46, 50, 81, 127]. An essential ingredient of this version of asymptotic
integration is the Hausdorff formula, which relates Lie group operators of the
original and new systems and the operator of coordinate transformation. According
to [254] and [256], most of the averaging techniques just reproduce this formula
every time implicitly, during the transformation process. Hence it is more reasonable
to start with Hausdorff’s relationship rather than recover it during the transformation
procedure. This enables one of optimizing the number of manipulations for high-
order approximations of asymptotic integration [109].

2.3.1 Hausdorff Equation

The theory of Lie groups deals with a set of transformations. In other words, some
dynamical system

.ẋ = f (x) (2.62)

is transformed into another system

.q̇ = g(q, ε), 0 < ε � 1 (2.63)

by means of a near identical coordinate transformation .x → q, which is produced
by a solution of the initial value problem for a third dynamical system

.
dx

dε
= s (x) , x|ε=0 = q (2.64)

Here, the choice for the right-hand side, .s (x), is dictated by the desired
properties of the transformed system. The parameter of group, .ε, is interpreted
as an independent variable. As follows from the initial condition in (2.64), the
transformation is assumed to be identical, .x = q, when .ε = 0, and therefore

.g(q, 0) = f (q) (2.65)

Hausdorff’s formula determines the right-hand side of Eq. (2.63) for nonzero .ε.
For illustrating purpose, consider the one-dimensional case, x, .q ∈ R1 by noticing
that the final relationship can be applied to a multidimensional case too. The idea
is to conduct the transformation, (2.62).→(2.64).→(2.63), in terms of the operators
Lie as

.F = f (x)
∂

∂x
−→ S = s(x)

∂

∂x
−→ G = g(q, ε)

∂

∂q
(2.66)
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Using operators (2.66) opens a formal way to representing the above dynamical
systems in the linear form as

.ẋ = Fx −→
{

dx

dε
= Sx, x|ε=0 = q

}
−→ q̇ = Gq (2.67)

Now the problem is to find the new operator, G, produced by the operator of
transformation, S, from the old operator, F . As follows from (2.67), if the operator
S is known, then the related transformation, .x −→ q, takes the form of Lie series

.x = exp(εS)q = (1 + εS + . . .)q = q + εs(q) + . . . (2.68)

One of the advantages of this approach is that relationship (2.68) easily generates
the inverse transformation, .exp(−εS)x = q, where the variable q is replaced with
x in the operator S.

To derive Hausdorff formula, let us take first time derivative of both sides of
transformation (2.68) and enforce Eqs. (2.62) and (2.63) to exclude .ẋ and .q̇. This
gives

.f (q + εs + . . .) = (1 + ε
∂s

∂q
+ . . .)g(q, ε) (2.69)

Using power series expansions for the functions f and g, taking into account
relationship ( 2.65), and rearranging the terms bring (2.69) to the form

.
∂

∂ε
g = s

∂

∂q
g − g

∂

∂q
s as ε −→ 0 (2.70)

Multiplying both sides of Eq. (2.70) by the differential operator .∂/∂q on the right
on both sides and using notations (2.66) give Hausdorff equation

.
∂

∂ε
G = SG − GS ≡ [S,G] (2.71)

where the operator of transformed system, G, satisfies the initial condition

.G|ε=0 = F = f (q)
∂

∂q
(2.72)

according to the assumption that .x = q when .ε = 0.
A power series solution of the initial value problem (2.71)–(2.72) for operators

Lie is given by Hausdorff formula [29]:

.G = F + ε [S, F ] + 1

2!ε
2 [S, [S, F ]] + . . . (2.73)

This formula relates operators F , S, and G according to (2.66) and can be used
for the asymptotic integration of the original system (2.62) as follows.
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2.3.2 Asymptotic Integration in Terms of Operators Lie

Let the right-hand side of system (2.62) depend upon a small parameter .ε as
.f = f0(x) + εf1(x), assuming that the system .ẋ = f0(x) admits a straightforward
integration. Respectively, let us represent the operator of original system, F , the
operator of transformation, S, and the operator of transformed system, G, in the
power series form

.F = F0 + εF1

S = S0 + εS1 + ε2S2 + . . . (2.74)

G = G0 + εG1 + ε2G2 + . . .

The problem is to iteratively obtain the operator of transformation, such that
operator of transformed system possesses the same useful property as the operator of
original system at .ε = 0. If this problem is solved then the new system, .q̇ = Gq, can
be integrated the same way as the system .ẋ = f0(x). Such an asymptotic procedure
is formalized by substituting (2.74) in Hausdorff formula (2.73) and matching terms
of the same power of .ε as

.G0 = F0. (2.75)

G1 = F1 + [S0, F0] . (2.76)

G2 = F2 + [S0, F1] + [S1, F0] + 1

2! [S0, [S0, F0]] (2.77)

. . .

Note that all the operator relationships remain applicable to multidimensional
cases in the same form.

In order to illustrate the averaging procedure in a two-dimensional case, let us
consider system (2.17) assuming that the frequency .Ω is fixed:

.ẋ = εX(x, y)

ẏ = Ω + εY (x, y) (2.78)

The operator Lie of this system is given by

.F = F0 + εF1 (2.79)

.F0 = Ω
∂

∂y
, F1 = X(x, y)

∂

∂x
+ Y (x, y)

∂

∂y
(2.80)

When .ε = 0, system (2.78) does not have the fast variable .y on the right-hand
side. The problem is to find the transformation .{x, y} −→ {q,ψ}, such that the
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transformed system possesses the same property for nonzero .ε, namely, its right-
hand side does not have the fast variable (phase) .ψ . Thus the problem is formulated
in the same way to Krylov-Bogolyubov, which is formalized by Eqs. (2.17), (2.18),
and (2.19). In contrast, the present approach does not require the substitution (2.18)
in (2.17). The operator of transformed system, G, is given by (2.75) through (2.77)
after the replacement of variables .{x, y} with .{q,ψ}, for instance, as

.G0 = Ω
∂

∂ψ
. (2.81)

G1 = F1 − Ω
∂

∂ψ
S0 (2.82)

Applying the operator .G0 to .{q,ψ} eliminates the fast phase .ψ on the right-hand
side of transformed system

.{q̇, ψ̇} = G0{q,ψ} = {0,Ω}

The same property is assigned to the operator .G1 by averaging the right-hand
side of (2.82) as

.G1 =< F1 >ψ=< X(q,ψ) >ψ

∂

∂q
+ < Y(q,ψ) >ψ

∂

∂ψ
(2.83)

Note that the integration with respect to the variable .ψ does not affect the
differential operator .∂/∂ψ . This relationship should be also viewed as a definition
for averaging of operators Lie. Since condition (2.83) is imposed on the left-
hand side of Eq. (2.82), the equality can be achieved by a proper choice for
the operator .S0, which is still unknown. Thus, substituting (2.83) in (2.82) and
integrating with respect to .ψ give the corresponding approximation for the operator
of transformation:

.S0 = 1

Ω

ψ∫

0

(F1− < F1 >ψ)dψ = 1

Ω

ψ∫

0

(F1 − G1)dψ

= 1

Ω

ψ∫

0

(X− < X >ψ)dψ
∂

∂q
+ 1

Ω

ψ∫

0

(Y− < Y >ψ)dψ
∂

∂ψ
(2.84)

Taking into account that .F2 = 0 and calculating the commutator .[S1, F0] bring
Eq. (2.77) to the form

.G2 = [S0, F1] + 1

2! [S0, [S0, F0]] − Ω
∂

∂ψ
S1 (2.85)
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Now reiterating manipulations of the previous step gives

.G2 =< [S0, F1] >ψ + 1

2! < [S0, [S0, F0]] > ψ (2.86)

and

.S1 = 1

Ω

ψ∫

0

(
[S0, F1] + 1

2! [S0, [S0, F0]] − G2

)
dψ (2.87)

The operators of transformation, .S0 and .S1, and the operators of averaged system,
.G1 and .G2, generate solution of system (2.17) in the second asymptotic order and
the corresponding averaged system as, respectively,

.x = exp(εS)q = (1 + εS0 + ε2S1)q + O(ε3). (2.88)

y = exp(εS)ψ = (1 + εS0 + ε2S1)ψ + O(ε3) (2.89)

and

.q̇ = (G0 + εG1 + ε2G2)q + O(ε3). (2.90)

ψ̇ = (G0 + εG1 + ε2G2)ψ + O(ε3) (2.91)

Solution of Rayleigh Equation in Terms of Operators Lie

For comparison reason, let us consider the example of Rayleigh equation (2.28).
According to (2.29) and (2.30), in terms of van der Pol’s variables, the correspond-
ing operator Lie is

.F0 = Ω
∂

∂ψ
, F1 = X(q,ψ)

∂

∂q
+ Y (q,ψ)

∂

∂ψ

= q

(
1 − 1

3
q2Ω2 sin2 ψ

)
sin2 ψ

∂

∂q
(2.92)

+1

6

(
3 − q2Ω2 sin2 ψ

)
sin 2ψ

∂

∂ψ

where the replacement .{x, y} .−→ .{q,ψ} has been made according to the above-
described algorithm.

Conducting the averaging in (2.83), (2.84), (2.86), and (2.87) and then substitut-
ing the result in (2.88) and (2.89) give
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Fig. 2.4 Comparison of numerical solution of Rayleigh equation (2.28) to the leading order (a)
and second order (b) approximations for .v = ż obtained by means of Lie group operators; .ε = 0.9,
.Ω = 1, .q(0) = 0.1, and .ψ(0) = 0

.x = q − ε

48Ω
q[12 − (4 − cos 2ψ)q2Ω2] sin 2ψ − ε2

192Ω2

×q[48 −
(
12 − q2Ω2

) (
6 − q2Ω2 sin2 ψ

)
] sin2 ψ + O(ε3)

y = ψ + ε

12Ω

(
6 − q2Ω2 sin2 ψ

)
sin2 ψ + ε2

1536Ω2 (2.93)

×[96 − q2Ω2
(
24 − 5q2Ω2

)
(4 − cos 2ψ)] sin 2ψ + O(ε3)

where the functions .q = q(t) and .ψ = ψ(t) are given by the averaged system (2.90)
and (2.91) leading to (2.31) and (2.32). Note that the terms of order .ε coincide with
those in (2.33) and (2.34).

The effectiveness of second-order approximation is illustrated by Fig. 2.4, where
the parameter .ε was intentionally chosen to be close to unity since the terms of
order .ε2 appeared to have quite small numerical factors in solutions (2.93). The
graphs represent temporal shapes of the velocity, .v = ż, in order to better observe
the effect of anharmonicity.

2.3.3 Linearization Near Equilibrium Manifold

Methods considered in the previous sections of this chapter essentially employ
solutions of linearized systems. The linearization procedure assumes the system
to remain near a single (stationary) equilibrium point. This condition cannot be
guaranteed if the total energy of the system is above the potential barrier on the
way to another equilibrium point. As a result, the problem becomes nonlocal and
usually multidimensional since the path connecting both points is not necessarily
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straight. Following reference [170], let us illustrate this situation based on a two-
mode approximation for a simply supported cylindrical panel of thickness h with a
sinusoidal initial imperfection of the amplitude .α

.q̈1 + ε2 (q1 − 1) + 1

4

(
q1

2 + 4q2
2 − 1

)
q1 = 0

q̈2 + 16ε2q2 +
(
q1

2 + 4q2
2 − 1

)
q2 = 0 (2.94)

where .q1 and .q2 are time-dependent amplitudes of the first and second sine wave
modes, respectively, and .ε is a small parameter characterizing the panel flexibility
as

.ε2 = 1

12

(
h

α

)2

� 1

Model (2.94) can be represented by its Lagrangian as

.L = 1

2
(q̇2

1 + q̇2
2 ) − V (q1, q2) (2.95)

with the potential energy of elastic deformations given by

.V (q1, q2) = 1

2
f (q1, q2)

2 + ε2Φ(q1, q2) (2.96)

.f (q1, q2) =
√
2

4

(
q2
1 + 4q2

2 − 1
)

(2.97)

.Φ(q1, q2) = 1

2
[(q1 − 1) 2 + 16q2

2 ] (2.98)

where the functions f and .Φ associate with the tension-compression and bending
deformations, respectively. A typical shape of the potential energy with a sample
trajectory inside the potential well is shown in Fig. 2.5. If .ε = 0, system (2.94)
has one equilibrium point .P0(0, 0) on the plane .q1q2 corresponding to a horizontal
configuration of the panel, which is obviously unstable by Lyapunov due to the
extreme compression. Also, there is a continuous manifold of the elliptic shape,
.q1

2+4q22 = 1, along which the panel can move with zero strain of its center line. If
.ε �= 0, this manifold disappears by generating four equilibrium points, of which two
are located on the straight line .q2 = 0 and correspond to the original and inverted
positions of the panel: .P1(1, 0) and .P2(−(1 + √

1 − 16ε2)/2, 0), respectively. The
other two points are unstable equilibria involving the second (sine wave) spatial
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Fig. 2.5 Top-side qualitative
view of the potential well V
with a sample system
trajectory inside the well
under the flexibility .ε = 0.1,
and other parameters as:
.a1 = 1, .a2 = 0, .q1(0) = 1,
.q2(0) = 0, .q̇1(0) = 1,
.q̇2(0) = 0.25

Fig. 2.6 Planar geometry of the coordinate transformation .{q1, q2} → {ζ , s} with interpretation
of the arclength parametrization .s = s(θ)

mode: .P3,4(−1/3,±√
2 − 36ε2/3). The point .P0 remains on the line .q2 = 0

with some shift from zero: .P0((
√
1 − 16ε2 − 1)/2, 0). All of the above equilibria

exist under the condition .ε <
√
2/6. The minimum potential barrier on the path

between two stable equilibrium points, .P1 and .P2, is calculated by substituting the
coordinates of one of the two symmetric saddle points, .P3,4, in (2.96) as

.V∗ = 8

3
ε2 − 16ε4 (2.99)

The methodology is based on a global linearization of Eqs. (2.94) near the elliptic
manifold of equilibrium positions of the perfectly flexible panel, .ε = 0. In the
present case of just two modes, such a linearization is conducted by means of two
new generalized coordinates, such as the deviation .ζ from the ellipse and the angular
coordinate .θ (Fig. 2.6)

.q1 = y1(θ) + εn1(θ)ζ

q2 = y2(θ) + εn2(θ)ζ (2.100)
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where .{y1, y2} is a projection of the point .P(q1, q2) onto the ellipse

.y1(θ) = cos θ , y2(θ) = 1

2
sin θ (2.101)

and .{n1, n2} is the corresponding unit vector

.n1 = 1

ω

∂f (y1, y2)

∂y1
, n2 = 1

ω

∂f (y1, y2)

∂y2
(2.102)

ω =
√(

∂f

∂y1

)2

+
(

∂f

∂y2

)2

=
√
2

2

√
1 + 3 sin2 θ

The nonlinear coordinate transformation .{q1, q2} −→ {ζ , θ} (2.100) is con-
ducted by means of Routh function combining the Lagrangian and Hamiltonian
formulations for the normal and tangential to the ellipse motion components,
respectively [150]. Another approach was using a local Cartesian frame following
the point P along the ellipse [136]. Although the nonlinear coordinate transforma-
tion technically complicates the differential equations of motion as compared to
system (2.94), the new coordinates become closer to the system physical meaning:
the fast coordinate .ζ associates with the tension-compression of the panel, whereas
the slow coordinate .θ describes the bending deformations. As a result, the system
is reduced based on the idea of separation of motions followed by the averaging
procedure. The leading order asymptotic integration gives finally

.ζ̈ + ω2ζ = O(ε) (2.103)

Fig. 2.7 Three-dimensional
illustration of zero strain
manifold,
.Mf = {q : f (q) = 0}, and
the corresponding generalized
Lagrangian coordinates:
.{ζ , s1, s2}
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and

.
1

2

(
ω

dθ

dt

)2

+ ε2
[
2(1 − cos θ) + 3 sin2 θ

]
= E = const. (2.104)

According to (2.99), the least energy level of system (2.94), at which the global
motion may become possible, is of order .ε2. Analyzing Eqs. (2.103) and (2.104) for
the vanishing .ε recalls the discussion on rigid-body motions from the standpoint
of linearity and nonlinearity concepts. In the present case, Eqs. (2.103) and (2.104)
associate with rotations and translations, respectively, as discussed in Chap. 1.

Figure 2.7 gives an outline for increasing the number of flexural modes of the
panel. Although the dimension of essentially nonlinear component can be reduced
by one, a parametrization of the equilibrium manifold would lead to significant
technical complexities.
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