
Chapter 14
Spatially Oscillating Structures

This chapter illustrates applications of nonsmooth argument substitutions to model-
ing spatially oscillating structures such as one-dimensional elastic rods with periodic
discrete inclusions and two- or three-dimensional acoustic media with periodic
nonsmooth boundary sources of waves. Whenever the corresponding global spatial
domains are infinite or cyclical, the related analytical manipulations are similar to
those conducted with dynamical systems. The idea of structural homogenization
is implemented through the two-variable expansions, where the fast scale is repre-
sented by the triangular periodic wave. As a result, closed-form analytical solutions
are derived despite of the presence of discrete inclusions or external discontinuous
loads. Static and dynamic problems of elasticity dealing with nonsmooth periodic
structures are often considered in the literature due to their practical importance;
see reviews in [10, 11, 100] for introduction and references. Such problems can
also be considered by means of the nonsmooth argument transformations. In this
case though, the transformation must be applied to the spatial independent variable
related to coordinate along which the structure under consideration is periodic. Such
an approach was introduced in [174] for a string on discrete elastic foundation,
although the complete description of the tool was given later for the corresponding
nonlinear case [199, 200, 213].

14.1 Spatial Triangle Wave Argument

14.1.1 Infinite String on a Discrete Elastic Foundation

For illustrating purpose, let us consider the dynamics of an infinite string on a
discrete nonlinearly elastic foundation described by equation
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Fig. 14.1 Linear string on the discrete regular set of nonlinearly elastic springs
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where .ρ is the mass density per unit length; T is a constant tension; .q(y/ε, y, t)

is the body force or external loading, which is assumed to be periodic in the “fast
spatial scale” .y/ε (.0 < ε � 1) with the period normalized to four; and a similar
assumption is made with respect to the transverse displacement of the string .u =
u(y/ε, y, t); see Fig. 14.1 for illustration.

Note that Eq. (14.1) does not allow for a point-wise interpretation due to
the presence of Dirac .δ-function. Both sides of the equation therefore must be
interpreted as distributions producing the same output if applied to the same testing
function. Correctness of such type of modeling was intensively discussed in the
literature; see, for instance, [65]. Omitting details, the series of .δ-functions in
Eq. (14.1) has a certain meaning if the function .f (u(y/ε, y, t)) is at least continuous
in the neighborhoods of points .y = ε(1 + 2k) with respect to the spatial argument,
y, for every k. Note that such a continuity condition is guaranteed by the form
of Eq. (14.1). If, for instance, the displacement u was stepwise discontinuous at
.y = ε(1 + 2k), then the derivative .∂2u/∂y2 would produce uncompensated first
derivatives of the .δ-function. Therefore, the displacement u is at least continuous
function of the coordinate y in a match with the physical meaning of the model.
Moreover, it will be shown below that introducing the space folding spatial
argument, .τ = τ(y/ε), eliminates the singularities from Eq. (14.1) and hence takes
the problem in the frameworks of classical theory of differential equations. First,
the set of localized restoring forces of the elastic foundation are expressed through
second derivative of the triangular wave as

.2f (u)

∞∑

k=−∞
δ
(y

ε
− 1 − 2k

)
= −f (u)sgn(τ )τ ′′ (y

ε

)
(14.2)
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where the derivative .τ ′′ is taken with respect to the entire argument .y/ε and sgn.(τ ) is
introduced to make all the .δ-functions positive, since the foundation reaction forces
must be restoring.

Now both the displacement u and the external loading function q are represented
as elements of the hyperbolic algebra

.u = U(τ, y, t) + V (τ , y, t)e

q = Q(τ, y, t) + P(τ , y, t)e (14.3)

e = e (y/ε) ≡ dτ(y/ε)/d(y/ε)

where the components Q and P are known, whereas X and Y are new unknown
functions.

Finally, substituting (14.2) and (14.3) in Eq. (14.1) and using the differential and
algebraic rules of nonsmooth argument substitutions (Chap. 4) give the differential
equations and boundary conditions as, respectively,

.
∂2U

∂τ 2
= −2ε

∂2V

∂y∂τ
+ ε2

(
ρ

T

∂2U

∂t2
− ∂2U

∂y2 − Q

T

)
. (14.4)

∂2V

∂τ 2
= −2ε

∂2U

∂y∂τ
+ ε2

(
ρ

T

∂2V

∂t2
− ∂2V

∂y2
− P

T

)
(14.5)

and

.τ = ±1 : V = 0. (14.6)

τ = ±1 : ∂U

∂τ
= ∓ε2

T
f (U) (14.7)

where the form of boundary condition (14.7) was eased by enforcing condition
(14.6).

In contrast to Eq. (14.1), the above boundary value problem, (14.4) through
(14.7), is free of the .δ-function singularities. Therefore, conventional methods of
asymptotic integration, such as two-variable expansions, can be applied after a
proper modification to account for the problem specifics. Regardless of the types
of algorithms, solutions are represented in the form of asymptotic series

.U(τ, y, t) =
∞∑

k=0

εkUk(τ , y, t)

V (τ , y, t) =
∞∑

k=0

εkVk(τ , y, t) (14.8)
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As just noticed, problem formulations based on Eqs. (14.4) through (14.7)
possess certain advantages as compared to Eq. (14.1). For instance, the influence
of infinite discontinuities in Eq. (14.1) is captured by the form of substitution
(14.3). Also, the structural discreteness of the nonlinear elastic foundation (14.2) is
associated with the new spatial variable .τ restricted in the range .−1 ≤ τ ≤ 1. As a
result, polynomial expansions with respect to the coordinate .τ will not be affecting
the regularity of asymptotic expansions (14.8) in terms of the original fast scale
.y/ε. In other words, the structural periodicity will be maintained in a wide range of
asymptotic algorithms due to the inherent periodicity of the coordinate .τ = τ(y/ε).

Note that partial differential Eqs. (14.4) and (14.5) are coupled, whereas bound-
ary conditions (14.6) and (14.7) are decoupled with respect to the unknowns U and
V . It is usually more convenient to decouple equations by introducing new unknown
functions, say .X = U + V and .Y = U − V . Then Eqs. (14.4) and (14.5) take the
form

.
∂2X

∂τ 2
= −2ε

∂2X

∂y∂τ
+ ε2

(
ρ

T

∂2X

∂t2
− ∂2X

∂y2
− Q + P

T

)
= 0. (14.9)

∂2Y

∂τ 2
= 2ε

∂2Y

∂y∂τ
+ ε2

(
ρ

T

∂2Y

∂t2
− ∂2Y

∂y2 − Q − P

T

)
= 0 (14.10)

This is obviously transition to the idempotent basis, .{1, e} −→ {e+, e−}, as
described in Sect. 4.2.1

.u = U + V e = U(e+ + e−) + V (e+ − e−)

= (U + V )e+ + (U − V )e− = Xe+ + Ye−

Equations (14.9) and (14.10) have the same structure, except for signs of two
terms. Therefore, it is sufficient to solve just one of the equations. Then, solution of
another equation can be written by analogy.

14.1.2 Doubling the Array of Springs

The mechanical model, which is shown in Fig. 14.2, was considered in [198] based
on the generalized (asymmetric) version of the triangle wave in different notations.
In contrast to the model shown in Fig. 14.1, the support sprigs are linearly elastic
and shifted in a dipole-wise manner, such that the differential equation of motion
with respect to the string deflection .u = u(t, y) has the form

.ρ
∂2u

∂t2
− T

∂2u

∂y2 − k

ε
(1 − γ 2)u sgn[τ(ξ, γ )]∂

2τ(ξ, γ )

∂ξ2
= 0 (14.11)
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Fig. 14.2 Linear string on the discrete periodic set of linearly elastic dipole-wise shifted springs
of the stiffness k

.

(
−∞ < y < ∞, ξ = y

ε

)

where the triangular wave with different positive and negative slopes is given by
(Fig. 14.7)

.τ = τ (ξ, γ ) =
{

ξ/ (1 − γ ) for − 1 + γ ≤ ξ ≤ 1 − γ

(−ξ + 2) / (1 + γ ) for 1 − γ ≤ ξ ≤ 3 + γ
(14.12)

∀ξ : τ (ξ + 4, γ ) = τ (4, γ ) , −1 < γ < 1

Schwartz derivatives of function (14.12), .e = ∂τ(ξ, γ )/∂ξ , satisfy the following
relationships

.e2 = α + βe (14.13)

.e
∂e

∂ξ
= 1

2
β

∂e

∂ξ
(14.14)

.
∂e

∂ξ
= 2α

∞∑

k=−∞
[δ (ξ + 1 − γ − 4k) − δ (ξ − 1 + γ − 4k)] (14.15)

where .α = 1/
(
1 − γ 2

)
and .β = 2γ α.

Let us represent the string deflection in the form

.u = U(τ, y, t) + V (τ , y, t)e (14.16)

where .τ = τ(ξ, γ ) and .e = ∂τ(ξ, γ )/∂ξ .
The components of representation (14.16), U and V , depend on the coordinate

y both explicitly and through the triangular wave function .τ in such a way that the
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complete partial derivative .∂u/∂y, including the dependence .ξ = y/ε, is equivalent
to applying the differential matrix operator

.D = ε−1
[

ε∂/∂y α∂/∂τ

∂/∂τ β∂/∂τ+ε∂/∂y

]
(14.17)

to the vector column of the components U and V

.
∂u

∂y
⇐⇒ D

[
U

V

]
(14.18)

under the condition

.τ = ±1 : V = 0 (14.19)

The regular part of the second derivative can be calculated by means of the
relationship

.
∂2u

∂y2 ⇐⇒ D2
[

U

V

]
(14.20)

However, second derivative of the triangular wave function must be preserved
in order to eliminate the same kind of singularity from Eq. (14.11). So, substituting
(14.16) in (14.11) and collecting separately terms related to different elements of
the basis .{1, e} give

. ρ
∂2U

∂t2
− T

×
[(

α

ε2

∂2

∂τ 2
+ ∂2

∂y2

)
U +

(
αβ

ε2

∂2

∂τ 2
+ 2α

ε

∂2

∂τ∂y

)
V

]
= 0 (14.21)

. ρ
∂2V

∂t2
− T

×
[(

β

ε2

∂2

∂τ 2
+ 2

ε

∂2

∂τ∂y

)
U +

(
α + β2

ε2

∂2

∂τ 2
+ 2β

ε

∂2

∂τ∂y
+ ∂2

∂y2

)
V

]
= 0

(14.22)

under the additional to (14.19) condition

.τ = ±1 : − T

ε2

(
∂U

∂τ
+ β

∂V

∂τ

)
= ±k

ε
(1 − γ 2)U (14.23)
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Note that some terms have been eliminated from condition (14.23) by taking into
account condition (14.19).

Further analysis of the boundary value problems (14.19) and (14.21) through
(14.23) can be implemented by using the asymptotic approach [199] considering .ε

as a small parameter.
Similar version of the transformation was employed for statics of layered

composites in [227].

14.1.3 Elastic Ring Under Periodic Array of Compressive
Loads

The buckling of a circular ring loaded by a discrete regular set of concentrated com-
pressive forces was considered in [239]; see Fig. 14.3. Taking into account identity
(14.2), the differential equation of equilibrium of such ring can be represented in the
form

.
dy

dt
= f (y) − λ

∞∑

k=−∞
δ

(
2

t

ε
− 1 − 2k

)
≡ f (y) + 1

2
λsgn(τ )τ ′′ (14.24)

where .t = s/R (.0 ≤ t ≤ 2π ) is the arc length of the undeformed ring axis per
radius; .y = y(t) is a six-component vector-function characterizing elastic states of
the ring; .f (y) is a vector-function of the elastic states describing both geometrical
and physical properties of the ring; .τ = τ(2t/ε) is the triangular sine wave of the
period .T = 2ε and prime means its Schwartz derivative; .ε is a small parameter,
as compared to unity, characterizing the distance between loads (Fig. 14.3); .λ is

Fig. 14.3 The circular ring,
whose radius is scaled to
unity, under the discrete
regular set of compressive
radial forces, where
.ε = 2π/N � 1 and N is the
number of forces

P

�
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a dimensionless parameter which is proportional to the load P ; and conditions of
periodicity are imposed on the vector-function: .y(t + 2π) = y(t). This periodicity
is associated with the formally infinite limits of summation in Eq. (14.24). Shifting
the arclength t by .2π is equivalent to shifting the summation index as .k −→ k +N .
Obviously, the wave length of buckling is not necessarily equal to the spatial period
of loading.

Further, the unknown vector-function is represented as an element of the
hyperbolic algebra

.y = X(t, τ ) + Y (t, τ )e, e = e(2t/ε) (14.25)

Substituting (14.25) in Eq. (14.24) gives

.
2

ε

∂Y

∂τ
+ ∂X

∂t
− R(X, Y ) +

[
2

ε

∂X

∂τ
+ ∂Y

∂t
− I (X, Y )

]
e

+
[
2

ε
Y − 1

2
λsgn(τ )

]
e′ = 0 (14.26)

or

.
∂Y

∂τ
= 1

2
ε

[
R(X, Y ) − ∂X

∂t

]

∂X

∂τ
= 1

2
ε

[
I (X, Y ) − ∂Y

∂t

]
(14.27)

and

.τ = ±1 : Y = ±1

4
ελ (14.28)

where

.R(X, Y ) = 1

2
[f (X + Y ) + f (X − Y )]

I (X, Y ) = 1

2
[f (X + Y ) − f (X − Y )]

Recall that the role of boundary conditions (14.28) is to eliminate the .δ-function
singularities, .e′ = τ ′′, from Eq. (14.26). The resultant boundary value problem,
(14.27)–(14.28), was analyzed by means of regular asymptotic expansions in [239].
Based on the asymptotic solutions, the load discreteness effects on the critical load
and postbuckling states of the ring were estimated.
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14.2 Homogenization of One-Dimensional Periodic
Structures

Let us consider a one-dimensional .4ε-periodic structure whose static elastic states
are described by the vector-function . z = z(y) ∈ Rn that depends upon the
longitudinal coordinate y attached to the undeformed structure. The number of
vector components n can always be increased in such a way that the differential
equation of equilibrium takes the form of first-order differential equation, for
instance, as follows

.
dz

dy
= f (z, y, ξ) + p(y)e′(ξ), e(ξ) = τ ′(ξ) (14.29)

Here the spatial scale .ξ = y/ε associates with the structural periodicity, the
vector-function .f (z, y, ξ) ∈ Rn is continuous with respect to z and y, but it is
allowed to be stepwise discontinuous with respect to .ξ at the points .{ξ : τ(ξ) = ±1},
and .p(y) ∈ Rn is a continuous vector-function describing the amplitude modulation
of the localized loading.

Example 14.2.1 In terms of the matrixes,

.z =
[

u(y)

v(y)

]
, p(y) =

[
0
q(y)/(2ε)

]
(14.30)

f =
[

v(y)/{EF [1 + αe(ξ)]}
0

]

Equation (14.29) describes an elastic rod whose cross-sectional area is a piecewise
constant periodic function of the longitudinal coordinate as it is shown in Fig. 14.4.
Substituting (14.30) in (14.29) and eliminating then .v(y) give the second-order
differential equation of equilibrium for the rod

.
d

dy

[
EF [1 + αe(ξ)]

du

dy

]
= 1

2ε
q(y)e′(ξ) (14.31)

Now let us consider the vector-form equation in its general form (14.29).
Nonsmooth two-variable expansions will be used by considering the triangular wave

2 2

q
)1( �EF )1( �EF

y

Fig. 14.4 An elastic rod with a periodic nonsmoothly varying cross-sectional area and concen-
trated loading
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oscillating coordinate .τ = τ(ξ) and the original coordinate .η ≡ y as fast and slow
spatial scales, respectively, provided that the following assumption holds

.ε << 1 (14.32)

Let us represent solutions of Eq. (14.29) in the form

.z = X(τ, η) + Y (τ , η)e (14.33)

Substituting (14.33) in Eq. (14.29) gives

.
∂Y

∂τ
+ε

(
∂X

∂η
− Rf

)
+
[
∂X

∂τ
+ ε

(
∂Y

∂η
− If

)]
e + [Y−εp(η)]e′ = 0 (14.34)

where

.
Rf (X, Y, τ , η)

If (X, Y, τ , η)

}
= 1

2
[f (X + Y, τ , η) ± f (X − Y, 2 − τ , η)] (14.35)

Expression (14.34) is equivalent to the following boundary value problem with
no discontinuities

.
∂X

∂τ
+ ε

(
∂Y

∂η
− If

)
= 0 (14.36)

∂Y

∂τ
+ ε

(
∂X

∂η
− Rf

)
= 0

.τ = ±1 : Y = εp(η) (14.37)

Let us represent solutions of the boundary value problem, (14.36) and (14.37), in
the form of asymptotic series with respect to .ε

.X =
∞∑

i=0

εiXi(τ , η) (14.38)

Y =
∞∑

i=0

εiY i(τ , η)

where the functions .Xi and .Y i are to be sequentially determined.
Substituting (14.38) in (14.35) generates power series expansions

.Rf = R0
f + εR1

f + ε2R2
f + ... (14.39)
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If = I 0f + εI 1f + ε2I 2f + ...

where the following notations are used

.Ri
f = 1

i!
∂iRf

∂εi
|ε=0, I i

f = 1

i!
∂iIf

∂εi
|ε=0

Substituting (14.38) in (14.36) and (14.37), then matching the coefficients of the
same powers of .ε, gives the corresponding sequence of equations and boundary
conditions. In particular, zero-order problem takes the form

.
∂X0

∂τ
= 0,

∂Y 0

∂τ
= 0 (14.40)

and

.τ = ±1 : Y 0 = 0 (14.41)

As follows from (14.40), the generating solution is independent on the fast
oscillating scale .τ . Therefore, taking into account (14.41) gives solution

.X0 = A0(η), Y 0 ≡ 0 (14.42)

where .A0 is an arbitrary vector-function of the slow coordinate that will be
determined on the next step of the asymptotic procedure.

So, collecting the terms of order .ε gives the differential equations and boundary
conditions in the form, respectively,

.
∂X1

∂τ
= I 0f − ∂Y 0

∂η
= If (A0, 0, τ , η). (14.43)

∂Y 1

∂τ
= R0

f − ∂X0

∂η
= Rf (A0, 0, τ , η) − dA0

dη
(14.44)

and

.τ = ±1 : Y 1 = p(η) (14.45)

Integrating Eqs. (14.43) and (14.44) gives first-order terms of the asymptotic
solution

.X1 =
τ∫

0

I 0f dτ + A1(η) (14.46)
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Y 1 =
τ∫

−1

R0
f dτ − dA0

dη
(τ + 1) + p(η)

where .A1 is a new arbitrary vector-function of the slow spatial scale .η and the limits
of integration for .Y 1 are chosen in such a manner that boundary condition (14.45)
is satisfied automatically at the point .τ = −1, whereas another point, .τ = 1, gives
equation

.
dA0

dη
= 1

2

1∫

−1

R0
f dτ ≡

〈
R0

f

〉
(14.47)

Note that the “slow scale” Eq. (14.47) was obtained by satisfying the boundary
condition in contrast to the conventional scheme of two-variable expansions in
which such kind of equations are obtained by eliminating the so-called resonance
terms.

Enforcing now Eq. (14.47) brings the component .Y 1 to the final form

.Y 1 =
τ∫

−1

(
R0

f −
〈
R0

f

〉)
dτ + p(y0) (14.48)

At this stage, expressions (14.46) through (14.48) determine the first-order terms
of the asymptotic solution; however, the slow scale vector-function .A1(η) still
remains unknown. The corresponding ordinary differential equation is obtained on
the next stage from the boundary condition for .Y 2 and can be represented in the
form

.
dA1

dη
=
〈

∂R0
f

∂A0

〉
A1 + F 1(A0, η) (14.49)

where .∂R0
f /∂A0 is the Jacobian matrix and the vector-function .F 1 is known.

Note that Eq. (14.49) is linear. Moreover, on the next steps, equations for the
vector-functions .A2, .A3,... will be of the same linear structure, including the same
Jacobian matrix.

14.3 Second-Order Equations

Let us consider now the second-order differential equation with respect to the
vector-function .z(y) ∈ Rn, however, in the linear form



14.3 Second-Order Equations 391

.
d2z

dy2
+ [q(ξ, y) + p(y)e′(ξ)]z = g(ξ, y) + r(y)e′(ξ) (14.50)

.τ = τ(ξ), e = τ ′(ξ), ξ = y/ε

where q and p are .n × n-matrixes, g and r are n-dimensional vector-functions, and
.ξ is the fast spatial scale.

Based on the assumptions of the previous section, the functions q and g and
solutions of Eq. (14.50) can be represented in the form, respectively,

.q(ξ, y) = Q(τ, η) + P(τ , η)e

g(ξ, y) = G(τ, η) + F(τ , η)e (14.51)

η ≡ y

and

.z(y) = X(τ, η) + Y (τ , η)e (14.52)

where .η and .τ represent the slow and fast spatial scales, respectively.
Substituting (14.51) and (14.52) in Eq. (14.50) and conducting differential and

algebraic manipulations of NSTT lead to the boundary value problem

.
∂2X

∂τ 2
= −2ε

∂2Y

∂τ∂η
− ε2

(
∂2X

∂η2
+ QX + PY − G

)
. (14.53)

∂2Y

∂τ 2
= −2ε

∂2X

∂τ∂η
− ε2

(
∂2Y

∂η2
+ PX + QY − F

)
(14.54)

and

.τ = ±1 : ∂X

∂τ
= ε2[r(y) − p(y)X], Y = 0 (14.55)

Further, representing the solution of the boundary value problem (14.53), (14.54),
and (14.55) in the form of asymptotic series (14.38) gives a sequence of boundary
value problems, in which first two steps appear to have quite trivial solutions, such
as

.X0 = B0(η), Y 0 ≡ 0

and

.X1 ≡ 0, Y 1 ≡ 0
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where .B0 is an arbitrary function of the slow argument .η.
As a result, first two non-trivial steps of the averaging procedure give

.z = B0(η) + ε2[X2(τ , η) + Y 2(τ , η)e] + O(ε3) (14.56)

where, in second order of .ε, the solution components are

.X2 =
τ∫

−1

(τ − s)[G(s, η) − 〈G(τ, η)〉. (14.57)

−(Q(s, η) − 〈Q(τ, η)〉)B0]ds + (r − pB0)τ + B2(η)

Y 2 =
τ∫

−1

[(τ − s)(F (s, η) − P(s, η)B0) (14.58)

−〈(1 − τ)(F (τ , η) − P(τ , η)B0)〉]ds

Here, notation .< • > means averaging with respect to .τ as defined in (14.47);
the vector-function .B0 = B0(η) satisfies equation

.
d2B0

dη2
+ 〈Q(τ, η)〉B0 = 〈G(τ, η)〉 (14.59)

The new arbitrary function of the slow coordinate, .B2(η), has to be defined on
the next step of the procedure.

Note that the .δ-function impulses generated by the derivative .e′(ξ) are switching
their directions twice per one period of the triangular wave. In many practical
cases though, the direction of impulses may remain constant. The corresponding
reformulation of the problem can be implemented by introducing the factor -sgn(.τ )
into the differential equation as follows

.
d2z

dy2 + [q(ξ, y) − p(y)sgn(τ )e′(ξ)]z = g(ξ, y) + r(y)sgn(τ )e′(ξ) (14.60)

Now, in Eq. (14.60), the term sgn.(τ )e′(ξ) generates .δ-functions of the same
direction, whereas the boundary condition (14.55) for the X-component takes the
form

.τ = ±1 : ∂X

∂τ
= ∓ε2[r(y) − p(y)X] (14.61)

The form of expressions (14.57) and (14.59) is modified as, respectively,
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.X2 =
τ∫

−1

(τ − s)[G(s, η) − 〈G(τ, η)〉 (14.62)

−(Q(s, η) − 〈Q(τ, η)〉)B0]ds − τ 2

2
(r − pB0) + B2(η)

and,

.
d2B0

dη2
+ (〈Q(τ, η)〉 + p)B0 = 〈G(τ, η)〉 + r (14.63)

where .η ≡ y and the component .Y 2 is still described by (14.58).

Example 14.3.1 Let us consider an infinite beam resting on a discrete foundation
represented by the periodic set of linearly elastic springs of stiffness c. The
corresponding differential equation of equilibrium is

.EI
d4w

dx4 + c

a
w

∞∑

k=−∞
δ
(x

a
− 1 − 2k

)
= f

( x

L

)
(14.64)

.(−∞ < x < ∞)

Let us introduce the following dimensionless values

.y = x

L
, ξ = y

ε
, W = w

a
, γ = cL4

aEI

where .ε = a/L << 1. As a result the above Eq. (14.64) for the beam’s center line
takes the form

.
d4W

dy4 − 1

2
γ sgn[τ (ξ)]e′ (ξ) W = γ

c
f (y) (14.65)

This equation becomes equivalent to (14.60), after the following substitutions

.z =
[

W

W ′′
]
, q =

[
0 −1
0 0

]
, p = γ

2

[
0 0
1 0

]
, g = γ

c
f (y)

[
0
1

]

and .r ≡ 0. Note that q and g do not have “imaginary parts” in hyperbolic elements
(14.51); therefore .G ≡ g, .Q ≡ q, .P ≡ 0, and .F ≡ 0. Inserting these values in
(14.62) and (14.58), one finally obtains
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.z = B0(y) + 1

2
ε2τ 2 (ξ) pB0(y) + O

(
ε3
)

or

.

[
W

W ′′
]

=
{[

1 0
0 1

]
+ 1

4
γ ε2τ 2

(y

ε

) [0 0
1 0

]}[
B0
1

B0
2

]
+ O

(
ε3
)

(14.66)

where the term .ε2B2(y) is ignored compared to the leading-order term .B0(y);
however, the terms of order .ε2 describing the discreteness effects are maintained.
The matrix-column .B0 = [B0

1 , B0
2 ]T is determined from Eq. (14.63). In a

component-wise form, this equation reads

.
d2

dy2

[
B0
1

B0
2

]
+ 1

2

[
0 −2
γ 0

] [
B0
1

B0
2

]
= γ

c

[
0
f (y)

]
(14.67)

This system is equivalent to

.
d4B0

1

dy4 + γ

2
B0
1 = γ

c
f (y) (14.68)

and .B0
2 = d2B0

1/dy2. Note that Eq. (14.68) is the result of a homogenization
of Eq. (14.65) with respect to the fast spatial scale .ξ . In other words, Eq. (14.68)
describes an elastic beam resting on the effectively continuous elastic foundation.
In order to illustrate the asymptotic solution, let us consider the case of sine-wave
loading, .f (x/L) .≡ .q0 sin (πx/L), where .q0 =const. Taking into account only the
leading order “slow” and “fast” components gives the bending moment in terms of
the original variables

.M(x) = EI
d2w

dx2 = −M0

[
1 − γ

( a

2πL

)2
τ 2
(x

a

)]
sin

πx

L
(14.69)

where .M0 = 2q0π2L2/(2π4 + γ ). The bending moment diagram is given in
Fig. 14.5.

Finally, note that the homogenization procedure described in [31] gives the
resultant equation in a slow spatial scale and a so-called cell problem in the fast
scale. In the above approach, the analog of cell problem associates with the fast
oscillating spatial scale given by the triangle wave function .τ(y/ε). As a result,
solution for the cell problem automatically unfolds on the entire structure so that the
fast and slow components of elastic states are eventually expressed though the same
coordinate in a closed form. Every cell of the infinite array of cells is associated
with same standard interval .−1 < τ < 1. Further clarifications are given in the next
section.
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Fig. 14.5 Bending moment of the beam on the discrete elastic foundation; numerical values of the
parameters are as follows: .L = π , . a = 0.2, and .γ = 1948.0

14.4 Wave Propagation in 1D Periodic Layered Composites

Propagation of waves in periodic media has been of significant interest in various
branches of optics, acoustics, and elastodynamics for several decades due to a
widening area of practical applications for composite materials and extensive usage
of periodic structures in civil engineering [12, 13, 31, 47, 118, 154, 159, 215, 216].
Periodicity in material properties can serve for passive control of wave propagation
in different micro- and macro-systems. Basic physical formulations and analytical
methodologies are systemized and documented, for instance, in [35, 36, 56].
Although linear problems may possess exact solutions, different approximate meth-
ods are quite popular by two major reasons. First, typical exact solutions are usually
represented as a combination of local solutions describing separate layers (cells),
while global characterization of propagating waves is of main interest. Second, the
exact approaches are usually difficult to extend on even weakly nonlinear materials.
Note that the wave dynamics of layered structures possess typical properties of
waves in continuous materials and those in discrete lattices, as confirmed by the
presence of so-called pass bands and stop bands in dispersion curves. Despite of
the extra complexity, such specifics widen the set of analytical, numerical, and
experimental tools. This section is based on reference [194].

14.4.1 Governing Equations and Zero-Order Homogenization

Let us consider longitudinal waves propagating along the infinitely periodic com-
posite rod consisting of alternating layers of two elastic materials as shown at the
top of Fig. 14.6. The governing one-dimensional wave equation is
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Fig. 14.6 1D periodic composite media with the corresponding basis functions, .τ and e; see also
Fig. 4.1 of Sect. 4.1.8 for details

.ρ± ∂2u±(t, x)

∂t2
− E± ∂2u±(t, x)

∂x2 = 0 (14.70)

where .E± are Young’s moduli; .ρ± are mass densities; and .u±(t, x) are displace-
ments; the superscript “.+” or “.−” indicates different types of layers. Since both
types of layers are assumed to be linearly elastic, the longitudinal stress is given by
Hooke’s law

.σ±(t, x) = E± ∂u±(t, x)

∂x
(14.71)

In the case of the perfect bonding between the layers, Eq. (14.70) must be
considered under the following continuity conditions at the layer interfaces .x = xn

.u−(t, xn) = u+(t, xn) (14.72)

.σ−(t, xn) = σ+(t, xn) (14.73)

.(n = 0,±1,±2, ...)

Due to linearity of the boundary value problem, (14.70) through (14.73), the
Floquet-Bloch approach [36] gives the exact dispersion relation [13]. However,
when elastic waves are considerably longer than typical cells of the material, the
idea of homogenization can be used for easing estimations of global elastodynamic
properties of composite structures. In such case, a natural small parameter character-
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izing the rate of heterogeneity and the corresponding scales for spatial coordinates
can be introduced as

.ε = l

L
<< 1, η = x, ξ = x

ε
(14.74)

where .ε is a unitless heterogeneity parameter, l is a cell (layer) thickness, L is the
wave length, .η is identical to the original coordinate x associated with the spatial
scale of the propagating wave, and .ξ is another coordinate, associated with the
spatial scale of heterogeneity.

Asymptotic homogenization procedures are usually designed in such way that .ξ
is a local coordinate attached to a typical cell of the material, and the corresponding
“cell problem” is assumed to depend slowly upon the global coordinate .η. As
a result, the effect of structural periodicity becomes somewhat shadowed in the
solution despite the fact that considering a single arbitrary cell is justified by
periodicity.

Note that a quasi static homogenization, corresponding to the limit .ε −→ 0, can
be conducted by calculating the effective Young’s modulus and mass density of a
single elementary cell composed of two different layers. For instance, neglecting the
inertia term in Eq. (14.70) gives general solution in the form .u± = A±x+B±, where
.A± and .B± are arbitrary constants and .x = 0 corresponds to the boundary between
two different layers. Two of the four constants are eliminated from this solution due
to the continuity of displacement and stress at the boundary .x = 0. Then, calculating
the effective strain of the entire cell of two layers, .ε = (

u+|x=l+ − u−|x=l−
)
/l,

gives the effective Young’s modulus

.E0 = σ+

ε
= σ−

ε
= E−E+

E−(1 − s) + E+s
(14.75)

where the parameter .s = l−/l describes the “inner geometry” of cells, .l = l+ + l−.
The effective mass density of the cell is given by

.ρ0 = ρ+l+ + ρ−l−

l
= ρ−s + ρ+(1 − s) (14.76)

Due to the structural periodicity of the composite rod, all the cells must have the
same effective Young’s modus and mass density. This actually means that the rod is
homogenized, and therefore its partial differential equation takes the form

.ρ0
∂2u0(t, x)

∂t2
− E0

∂2u0(t, x)

∂x2 = 0 (14.77)

However, this equation is justified only for very long waves, since it ignores the
dispersion of waves caused by their scattering at the boundaries between different
layers. Also the heterogeneity effect on wave shapes cannot be captured by the
function .u0(t, x).
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14.4.2 Structure Attached Triangle Wave Coordinate

Following publication [194], we introduce the periodic nonsmooth coordinate

.(−∞,∞) � ξ −→ τ ∈ [−1, 1]: τ = τ

(
4ξ

L
, γ

)
(14.78)

where .τ is a triangle wave whose geometry is linked to the structural periodicity of
composite as shown in Fig. 14.6.

The period of function (14.78) with respect to the original coordinate .x is
equal to the length of one cell, l, because .4ξ/L = 4x/l. Such a space folding
coordinate transformation incorporates micro-structural specifics of the material
into the differential equations of elastodynamics on the preliminary phase of
analysis. The shape of function (14.78) is controlled by the parameter

.γ = −1 + 2s, s = l−

l
(14.79)

where the ratio s is defined in (14.76) in such a way that, when the thickness of
different layers is the same, .l− = l+, then .γ = 0, and hence function (14.78)
describes the triangle wave.

Recall that function (14.78) is non-differentiable at points .{ξ : τ = ±1} and non-
invertible on the entire period. Therefore, using .τ as a new independent variable
requires a specific complexification of the unknown displacement function u as

.u(t, x) = U+(t, η, τ )e+ + U−(t, η, τ )e− (14.80)

where the algebraic basis is

.e± = 1

2
[1 ∓ γ ± (1 − γ 2)e] (14.81)

and e is a generalized derivative of the triangle wave function (14.78)

.e = e

(
4ξ

L
, γ

)
= ∂τ

(
4ξ

L
, γ

)
/∂

(
4ξ

L

)
(14.82)

In Eq. (14.81), the parameter of asymmetry .γ normalizes the range of change
for the basis elements to the standard intervals, .0 ≤ e+ ≤ 1 and .0 ≤ e− ≤ 1, as
illustrated in Fig. 14.7.

Differentiating (14.80) with respect to the original coordinate x gives yet again
the element of the same algebraic structure

.
∂u

∂x
= D+U+e+ + D−U−e− (14.83)
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Fig. 14.7 Example of idempotent basis generated by the function .τ(ϕ, γ ) for .γ = 0.6

where .D± are linear differential operators,

.D± ≡ ∂

∂η
± 4

εL(1 ∓ γ )

∂

∂τ

and the following displacement continuity condition is imposed

.(U+ − U−)|τ=±1 = 0 (14.84)

Condition (14.84) eliminates the .δ-function singularities caused by differentia-
tion of the stepwise discontinuous functions .e± in (14.80). In terms of the original
variables, such elimination of singularity is obviously equivalent to the displacement
continuity condition.

In compliance with (14.80), the mass density .ρ and Young’s modulus E are
represented in the same algebraic form

.ρ = ρ+e+ + ρ−e− (14.85)

E = E+e+ + E−e−
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Taking into account (14.83) and (14.85) gives the following expression for stress

.σ = E
∂u

∂x
= E+D+U+e+ + E−D−U−e− ≡ σ+e+ + σ−e− (14.86)

where orthogonality of the basis elements, .e+e− = 0, was used; see Fig. 14.7.
Analogously, combining (14.80) and (14.85) brings the inertia force to the form

.ρ
∂2u

∂t2
= ρ+ ∂2U+

∂t2
e+ + ρ− ∂2U−

∂t2
e− (14.87)

Expressions (14.86) and (14.87) enable one of describing the composite rod by a
“single” partial differential equation in the standard form

.ρ
∂2u

∂t2
− ∂σ

∂x
= 0 (14.88)

Now applying the differentiation rule (14.83)–(14.84) to the stress .σ gives

.

(
ρ+ ∂2U+

∂t2
− E+D2+U+

)
e+ +

(
ρ− ∂2U−

∂t2
− E−D2−U−

)
e− = 0

or

.ρ± ∂2U±

∂t2
− E±D2±U± = 0 (14.89)

under condition

.(σ+ − σ−)|τ=±1 = (E+D+U+ − E−D−U−)|τ=±1 = 0 (14.90)

The boundary condition (14.90) occurs in a similar way to (14.84) as a result
of elimination of singularity caused by differentiation of the stress function (14.86).
From the physical standpoint, this is equivalent to the continuity of stress at bonding
interfaces. Note that, during the procedure of asymptotic integration described
below, it is convenient to deal with the continuity conditions in the form

.(U+ − U−)|τ=1 ± (U+ − U−)|τ=−1 = 0 (14.91)

and

.(E+D+U+ − E−D−U−)|τ=1 ± (E+D+U+ − E−D−U−)|τ=−1 = 0 (14.92)

Equation (14.89) under the boundary conditions (14.91) and (14.92) represents
the final result of transition to the structure-based coordinate .τ . As compared to
the boundary value problem (14.70) through (14.73), the resultant problem still
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has the same dimension. However, representation (14.80) eventually provides a
closed-form description combining both global and local specifics of wave shapes.
In addition, the boundary conditions of continuity for the displacement and stress
occur automatically as a result of elimination singularities of their derivatives.

Remark Note that, due to the “functional linearity” property, the above formulation
remains valid for nonlinear cases as well. For instance, let the stress-strain relation-
ship for every “positive” layer be described by

.σ+(t, x) = F

(
ε+,

∂ε+

∂t

)
(14.93)

where .ε+ = ∂u+/∂x and F is a nonlinear function.
Assuming that every “negative” layer is linearly elastic and conducting the

derivations gives the boundary value problem

.ρ+ ∂2U+

∂t2
− D+

[
F

(
D+U+,D+

∂U+

∂t

)]
= 0

ρ− ∂2U−

∂t2
− E−D2−U− = 0 (14.94)

and

.

[
F

(
D+U+,D+

∂U+

∂t

)
− E−D−U−

]
|τ=±1 = 0 (14.95)

(U+ − U−)|τ=±1 = 0

Note that nonlinearities may lead to inevitable technical complications unrelated
to the key elements of the suggested formulation.

14.4.3 Algorithm of Asymptotic Integration

Let us seek solution of the boundary value problem (14.89), (14.91), and (14.92) in
the form of asymptotic expansions

.U± = u0(t, η) +
4∑

i=1

εiU±
i (t, η, τ ) + O(ε5) (14.96)

where .ε is the heterogeneity parameter defined in (14.74).
Note that the adopted asymptotic order provides sufficient details of the corre-

sponding homogenized equation, whose asymptotics appear to be delayed by two
steps of iterations. The time variable preserves its original scale, and zero-order
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(generating) term .u0(t, η) is assumed to be the same for both components .U± and
hence independent on the coordinate .τ . When substituted in (14.80), this term gives

.u(t, x) = u0(t, η)(e+ + e−) + O(ε) = u0(t, η) + O(ε) (14.97)

due to the property .e+ + e− = 1, as explained by Fig. 14.7.
Further, substituting (14.96) in Eq. (14.89) and the boundary conditions, (14.91)

and (14.92) and then matching terms of the same order of .ε give a sequence of linear
boundary value problems. At every step of iterations, the mathematical structure of
differential equations remains the same and takes the form

.
∂2U±

i (t, η, τ )

∂τ 2
= f ±

i (t, η, τ ) (14.98)

where the dependence .f ±
i (t, η, τ ) on .τ is polynomial, which is known as soon as

all the previous iterations have been processed, and the dependencies on t and .η are
combined of different derivatives of .u0(t, η).

General solution of Eq. (14.98) can be represented in the integral form

.U±
i (t, η, τ ) =

τ∫

0

f ±
i (t, η, s)(τ − s)ds + A±

i (t, η)τ + B±
i (t, η) (14.99)

where .A±
i (t, η) and .B±

i (t, η) are four arbitrary functions of the slow arguments.
On the i-iteration, the boundary conditions are not uniquely solvable for all

the four unknowns, .A±
i (t, η) and .B±

i (t, η). Three of the four boundary conditions
determine .A±

i (t, η) with the following coupling

.B+
i (t, η) = B−

i (t, η) (14.100)

while the fourth boundary condition can be represented in the form

.(E+D+U+ − E−D−U−)|τ=1
τ=−1 = 0 (14.101)

where the typical symbol of double substitution is used.
Due to the property, .e+ + e− = 1, the terms .B±

i (t, η) in (14.99) contribute
some correction into still arbitrary generating term .u0(t, η) (14.96) and thus can be
ignored. Boundary condition (14.101) plays a specific role. It is intentionally kept
unsatisfied as long as the generating term .u0(t, η) is maintained arbitrary. Once
a sufficient number of iterations have been processed, the corresponding truncated
series is substituted in (14.101) that leads to the homogenized equation for .u0(t, η).
Note that no operators of averaging are imposed on the original differential equation
(14.88). Instead, the homogenized model is generated by the boundary condition



14.4 Wave Propagation in 1D Periodic Layered Composites 403

(14.101), which is one of the two continuity conditions for the stress function
(14.90).

14.4.4 Homogenized Equation and Solution

Conducting the first four steps of the asymptotic procedure, as described in the
previous section, gives the asymptotic solution in the form

.u(t, x) = u0(t, x) + εu1(t, x)τ + ε2
[
u+
2 (t, x)e+ + u−

2 (t, x)e−
] τ 2 − 1

2

+ε3
[(

u+
3 (t, x)e+ + u−

3 (t, x)e−
) τ 3

6
+ (

A+
3 (t, x)e+ + A−

3 (t, x)e−
)
τ

]

+O(ε4) (14.102)

where .η ≡ x (.−∞ < x < ∞), .τ = τ (4x/l, γ ), and .e± = e± (4x/l, γ ), and
different functions of the arguments t and x are sequentially expressed through
derivatives of the generating solution .u0(t, x) as

.u1 = L

4

(
1 − γ 2

) (
E− − E+)

(1 − γ )E− + (1 + γ )E+
∂u0

∂x

u±
2 = ∓L(1 ∓ γ )

16E±

[
8E± ∂u1

∂x
∓ L(1 ∓ γ )

(
ρ± ∂2u0

∂t2
− E± ∂2u0

∂x2

)]

u±
3 = ∓L(1 ∓ γ )

16E±

[
8E± ∂u±

2

∂x
∓ L(1 ∓ γ )

(
ρ± ∂2u1

∂t2
− E± ∂2u1

∂x2

)]

A±
3 = −3(1 ± γ )E±u±

3 + (1 ∓ γ )E− (u±
3 + 2u∓

3

)

6
[
(1 − γ )E− + (1 + γ )E+]

The asymptotic order of solution (14.102) is high enough for practical estima-
tions of the heterogeneity effects on wave shapes. One more iteration has to be
processed though in order to see such effects in terms of the homogenized equation,
which is obtained by substituting the components .U± (14.99) into the boundary
condition (14.101)

.ρ0
∂2u0(t, x)

∂t2
= E0

∂2u0(t, x)

∂x2 + (εL)2 E2
∂4u0(t, x)

∂x4 + O(ε4) (14.103)

The effective parameters are determined by collecting terms with different
derivatives and summarized as
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Fig. 14.8 Spatial shape of the propagating wave through the composite rod obtained from third-
order asymptotic solution (14.102) (thick line) and correction to the homogenized solution with the
amplitude zoomed by factor .ε−1 (thin line); .E+ = 7·1010 N/m.2, .E− = 21·1010N/m.2, .ρ− = 7800
kg/m.3, .ρ+ = 2700 kg/m.3, .l = 0.01 m, .L = 0.1 m, (.ε = 0.1), .γ = −0.4

.ρ0 = 1

2

[
(1 + γ )ρ− + (1 − γ )ρ+]

E0 = 2E−E+

(1 − γ )E− + (1 + γ )E+ (14.104)

E2 = 1

6

(
1 − γ 2

)2
E−E+ (E−ρ− − E+ρ+)2

[
(1 − γ )E− + (1 + γ )E+]3 [(1 + γ )ρ− + (1 − γ )ρ+]2

Note that substituting (14.79) in .E0 and .ρ0 gives (14.75) and (14.76), respec-
tively. Therefore, Eq. (14.103) is reduced to Eq. (14.77) as .ε −→ 0. Otherwise, the
term of order .ε2 describes the effect of wave dispersion due to the structural het-
erogeneity of the rod. After substitution (14.79), the effective parameters (14.104)
coincide those obtained in [64] and [12] by different methods. However, the main
target of this section is “closed-form” solution (14.102) describing both local and
global wave shapes within the same expression. As a result, it is possible to visualize
cell to cell transitions over the long wave length as shown in Fig. 14.8. Some
features, such as beating effects in the nonsmooth component of solution, would
be difficult to observe by other means. Besides, Fig. 14.8 validates the asymptotic
property of expansion (14.102) since the maxima of correction terms, .u − u0, even
with magnifying factor .ε−1 = 10 are about 50% below the wave amplitude.

14.5 Acoustic Waves from Nonsmooth Periodic Boundary
Sources

This section deals with two-dimensional acoustic waves propagating from a dis-
continuous periodic source located at the boundary of half-infinite space. It is
shown that introducing the triangular wave function as a specific spatial coordinate
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Fig. 14.9 A half-infinite
acoustic media excited by the
stepwise discontinuous
periodic pressure source at
the upper boundary
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naturally eliminates discontinuities from the boundary condition associated with the
active boundary.

For illustrating purposes, let us consider the case of two-dimensional stationary
waves propagating in the half-infinite media from a piecewise-linear periodic
boundary source as shown in Fig. 14.9.

Let us describe acoustic waves by the linear wave equation in the standard form

.
1

c2f

∂2P

∂t2
= ∂2P

∂x2 + ∂2P

∂y2 + ∂2P

∂z2
(14.105)

where P is a pressure deviation from the static equilibrium pressure; .x, y, z, and t

are spatial coordinates and time, respectively; and .cf is the speed of sound in the
media.

Further, the plane problem is considered when .P = P(t, y, z), and therefore,
.∂2P/∂x2 = 0. Such an assumption can be justified by sufficiently long piezoelectric
rods whose characteristics are constant along the x-coordinate. Suppose that the
pressure generated by the rods near the boundary is .P0 = A sinΩt , where A and .Ω

are constant amplitude and frequency, respectively.
Let the boundary condition at .z = 0 to have the form

.P(t, y, 0) =
{

P0 (t) for (4n − 1) a ≤ y ≤ (4n + 1) a

0 for (4n + 1) a ≤ y ≤ (4n + 3) a
(14.106)

n = 0,±1,±2, ...

Note that, based on what is actually known near the fluid-source interface,
the boundary condition can also be formulated for pressure derivatives. From the
mathematical standpoint, this do not affect much the solution procedure though.

Let us seek the steady-state solution, which is periodic with respect to t and y

and remains bounded as .z → ∞.
Since the boundary condition is periodic along y-coordinate with period .T = 4a,

then, according to the idea of nonsmooth argument transformation, the triangular
wave periodic coordinate is introduced as .y → τ(y/a). As a result, the boundary
condition (14.106) and yet unknown solution are represented as, respectively,

.P(t, y, z)|z=0 = 1

2
P0 (t) + 1

2
P0 (t) τ ′ (y

a

)
(14.107)
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and

.P(t, y, z) = P1(t, τ (y/a), z) + P2(t, τ (y/a), z)τ ′(y/a) (14.108)

where the components .P1 and .P2 are considered as new unknown functions.
Taking into account the expression .[τ ′(y/a)]2 = 1 gives first generalized

derivative of the original unknown function in the form

.
∂P

∂y
= 1

a

∂P2

∂τ
+ 1

a

∂P1

∂τ
τ ′ (y

a

)
+ 1

a
P2τ

′′ (y

a

)
(14.109)

Since the function .P(t, y, z) has to be continuous with respect to y in the
unbounded open region .z > 0, then the periodic singular term .τ ′′ in (14.109) must
be eliminated by imposing condition

.P2|τ=±1 = 0 (14.110)

Analogously, second derivative takes the form

.
∂2P

∂y2 = 1

a2

∂2P1

∂τ 2
+ 1

a2

∂2P2

∂τ 2
τ ′ (y

a

)
(14.111)

under the condition

.
∂P1

∂τ
|τ=±1 = 0 (14.112)

Note that both derivatives, (14.109) and (14.111), as well as the original function
(14.108) appear to have the same algebraic structure of hyperbolic numbers.
Obviously, differentiation with respect to t and z preserves such a structure as well.
As a result, substituting the second derivatives into differential equation (14.105)
and collecting separately terms related to each of the basis elements .{1, τ ′} give two
partial differential equations for the components of representation (14.108)

.
1

c2f

∂2Pi

∂t2
= 1

a2

∂2Pi

∂τ 2
+ ∂2Pi

∂z2
(14.113)

(i = 1, 2)

Substituting then (14.108) in (14.107) gives the corresponding set of boundary
conditions

.Pi (t, τ , z) |z=0 = 1

2
P0 (t) = 1

2
A sinΩt (14.114)
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Now Eqs. (14.113) and boundary conditions (14.110), (14.112), and (14.114)
constitute two independent boundary value problems for the components .P1 and .P2.
However, the result achieved is that no discontinuous functions are present anymore
in the boundary conditions.

Solving the above boundary value problems by the standard method of separation
of variables gives finally

. P(t, y, z) = 1

2
A sinΩ

(
t − z

cf

)

+A

{
m∑

k=1

(−1)k−1

(k − 1/2) π
sinΩ (t − Kkz) cos

[(
k − 1

2

)
πτ
(y

a

)]
(14.115)

+
∞∑

k=m+1

(−1)k−1

(k − 1/2) π
sinΩt exp

(−χkz
)
cos

[(
k − 1

2

)
πτ
(y

a

)]}
τ ′ (y

a

)

where

.Kk =
√(

Ω

cf

)2

−
(

k − 1

2

)2 (π

a

)2
, k = 1, ..., m

χk =
√(

k − 1

2

)2 (π

a

)2 −
(

Ω

cf

)2

, k = m + 1, ...

and m is the maximum number at which the expression under the first square root is
still positive.

A three-dimensional illustration of solution (14.115) is given by Figs. 14.10
and 14.11 for two different magnitudes of the frequency .Ω . Besides, it is seen that
shorter waves are carrying the information about the discreteness of the wave source
for a longer distance from the source.

Note that solution (14.115) could be obtained in terms of the standard trigono-
metric expansions by applying the method of separation of variables directly to
the original problem, (14.105) and (14.106). However, the derivation of solution
(14.115) implies no integration of discontinuous functions, since all the discontinu-
ities have been captured in advance by transformation (14.108).

It is also worth to note that the terms of series (14.115) are calculated on the
standard interval, .−1 ≤ τ ≤ 1, which is covered by one half of the total period,
whereas the standard Fourier expansions must be built over the entire period. This
is due to the fact that representation (14.108) automatically unfolds the half-period
domain on the infinite spatial interval.
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Fig. 14.10 Acoustic wave surface for the set of parameters : .cf = 10.0, .a = 1, .Ω = 172, .t = 3,
and .A = 2

Fig. 14.11 Acoustic wave surface for the set of parameters: .cf .= 10.0, .a = 1, .Ω = 86, .t = 3,
and .A = 2
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14.6 Spatiotemporal Periodicity

As a possible generalization of the approach, let us consider, for instance, the
boundary condition in the form

.P(t, y, z)|z=0 = f (t, y) (14.116)

where the function f is periodic with temporal period .Tt = 2π/Ω and spatial period
.Ty = 4a.

Introducing the triangular wave spatial argument, .τy = τ(y/a), gives

.f (t, y) = F1(t, τ (y/a)) + F2(t, τ (y/a))τ ′(y/a) (14.117)

where

.F1(t, τ y) = 1

2
[f (t, aτy) + f (t, 2a − aτy)]

F2(t, τ y) = 1

2
[f (t, aτy) − f (t, 2a − aτy)] (14.118)

In a similar way, introducing the triangular wave temporal argument, .τ t =
τ(2Ωt/π), into both of the components, .F1 and .F2, gives eventually expression
of the form

.f (t, y) = f0(τ t , τ y)e0 + f1(τ t , τ y)e1 + f2(τ t , τ y)e2 + f3(τ t , τ y)e3 (14.119)

where components .fi(τ t , τ y) are uniquely determined by rule (14.118) applied to
each of the two arguments, and the following basis is introduced

.e0 = 1

e1 = τ ′(2Ωt/π)

e2 = τ ′(y/a) (14.120)

e3 = e1e2

Basis (14.120) obeys the table of products

.

× e0 e1 e2 e3

e0 1 e1 e2 e3

e1 e1 1 e3 e2

e2 e2 e3 1 e1

e3 e3 e2 e1 1

(14.121)
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Now, the acoustic pressure is represented in the similar to (14.119) form

.P(t, y, z) = P0(τ t , τ y, z)e0 + P1(τ t , τ y, z)e1 (14.122)

+P2(τ t , τ y, z)e2 + P3(τ t , τ y, z)e3

Regarding the problem described in the previous section, the components of
representation (14.122) can be obtained as an exercise by introducing the argument
.τ t directly into solution (14.115). However, formulations based on representa-
tion (14.122) become technically reasonable whenever the boundary pressure is
adequately described by the functions .τ t and .τy or their different combinations,
for instance, polynomials. In such cases, polynomial approximations with respect
to the bounded arguments may appear to be more effective as compared to
Fourier expansions. Let us, for instance, .P0 (t) describes the periodic sequence of
rectangular spikes of the amplitude A,

.P0 (t) = 1

2
A

[
1 + τ ′

(
2Ω

π
t

)]
≡ 1

2
A(1 + e1) (14.123)

Then, boundary condition (14.107) takes the form

.P(t, y, z)|z=0 = 1

4
A(1 + e1)(1 + e2)

≡ 1

4
A(e0 + e1 + e2 + e3) (14.124)

where the basis elements .{e0, e1, e2, e3} are given by (14.120) and the table of
products (14.121) is taken into account.

Now, substituting representation (14.122) in (14.124) gives the boundary condi-
tions for its components at .z = 0 as follows

.Pi(τ t , τ y, 0) = 1

4
A; i = 0,...,3

Finally, the three-dimensional case can be considered by adding periodicity
of the source along the x-direction at the boundary .z = 0 and introducing the
corresponding triangular wave argument, say .τx . The corresponding rules for
algebraic manipulations would be analogous to those generated by the arguments
.τ t and .τy . However, necessary details are illustrated below on another model.

14.7 Membrane on a Two-Dimensional Periodic Foundation

Consider an infinite membrane resting on a linearly elastic foundation of the
stiffness .K(x, y) under the transverse load .q(x, y). Assuming that both the stiffness
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Fig. 14.12 Fragment of the
map of periodic elastic
foundation; .a = 1.0 and
.b = 2.0

8

8

8−

8−

x

y

0

K and load q are measured per unit membrane tension .T , the partial differential
equation of equilibrium is represented in the form

.Δu − K(x, y)u = q(x, y) (14.125)

Δ = ∂2

∂x2 + ∂2

∂y2

where .u = u(x, y) is the membrane transverse deflection.
The foundation is assumed to be stepwise discontinuous and periodic along each

of the coordinates as described by the function

.K(x, y) = k

4

[
1 + τ ′ (x

a

)] [
1 + τ ′ (y

b

)]
(14.126)

With reference to Fig. 14.12, function (14.126) is defined on the infinite plane,
such that

.K(x, y) =
{
0 (x, y) ∈ any “dark field”
k (x, y) ∈ any “light field”

(14.127)

In the same way, Fig. 14.13 provides maps for the elements of basis

.e0 = 1

e1 = τ ′(x/a)

e2 = τ ′(y/b) (14.128)
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0e 1e

2e 3e

0 x

y

0 x

y

0 x

y

0 x

y

Fig. 14.13 The standard basis map: each of the elements is equal to unity within light domains
and zero within dark domains; square areas [.−4 < x < 4, .−4 < y < 4] are shown under the
parameters .a = 1 and .b = 2

e3 = e1e2

The above table of products (14.121) is still valid for basis (14.128). As a result,
function (14.126) takes eventually the form

.K(x, y) = k

4
(e0 + e1 + e2 + e3) (14.129)

Now let us represent the membrane deflection in the form

.u(x, y) = X(τx, τ y, x, y)e0 + Y (τx, τ y, x, y)e1 (14.130)

+Z(τx, τ y, x, y)e2 + W(τx, τ y, x, y)e3

where .τx = τ(x/a) and .τy = τ(y/b) are triangular waves whose lengths are
determined by the periods of foundation along .x− and .y− direction, respectively;
scales of the explicitly present variables, x and y, are associated with the scales
of loading .q(x, y), which is assumed to be slow as compared to the spatial rate of
foundation.
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Note that both linear and nonlinear algebraic manipulations with combinations
of type (14.130) are dictated by the table of products (14.121). For example, taking
into account (14.129) and (14.130) gives

.Ku = k

4
(X + Y + Z + W)(e0 + e1 + e2 + e3) (14.131)

High-order derivatives of (14.130) are simplified by using the table of products
(14.121) and introducing specific differential operators as follows.

First, using the chain rule gives

.
dτx

dx
= 1

a
τ ′(x/a) = 1

a
e1. (14.132)

dτy

dy
= 1

b
τ ′(y/a) = 1

b
e2 (14.133)

Then, taking into account (14.121), (14.128), (14.132), and (14.133) gives first
derivatives of (14.130) in the form

.
∂u

∂x
=
(
1

a

∂Y

∂τx

+ ∂X

∂x

)
e0 +

(
1

a

∂X

∂τx

+ ∂Y

∂x

)
e1

+
(
1

a

∂W

∂τx

+ ∂Z

∂x

)
e2 +

(
1

a

∂Z

∂τx

+ ∂W

∂x

)
e3 (14.134)

+1

a
(Y + We2)

de1(x/a)

d(x/a)

.
∂u

∂y
=
(
1

b

∂Z

∂τy

+ ∂X

∂y

)
e0 +

(
1

b

∂W

∂τy

+ ∂Y

∂y

)
e1

+
(
1

b

∂X

∂τy

+ ∂Z

∂y

)
e2 +

(
1

b

∂Y

∂τy

+ ∂W

∂y

)
e3 (14.135)

+1

b
(Z + We1)

de2(y/b)

d(y/b)

Last addends in (14.134) and (14.135) include derivatives of the stepwise dis-
continuous functions .e1(x/a) and .e2(y/b). Such derivatives are expressed through
Dirac .δ-functions and therefore must be excluded from the expressions (14.134)
and (14.135) due to continuity of the original function .u(x, y). The .δ-functions are
eliminated under the boundary conditions

.Y |τx=±1 = 0

W |τx=±1 = 0 (14.136)
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and

.Z|τy=±1 = 0

W |τy=±1 = 0 (14.137)

The rest of terms in (14.134) and (14.135) represent linear combinations of
the basis .{e0, e1, e2, e3}. In order to formalize the differentiation procedure, let us
associate expansion (14.130) with the vector-column

.u =

⎡

⎢⎢⎣

X

Y

Z

W

⎤

⎥⎥⎦ (14.138)

In a similar way, let us introduce the vector-columns .ux and .uy associated
with derivatives (14.134) and (14.135) under conditions (14.136) and (14.137),
respectively,1

.u′
x = Dxu (14.139)

u′
y = Dyu

where

.Dx =

⎡

⎢⎢⎣

∂/∂x a−1∂/∂τx 0 0
a−1∂/∂τx ∂/∂x 0 0
0 0 ∂/∂x a−1∂/∂τx

0 0 a−1∂/∂τx ∂/∂x

⎤

⎥⎥⎦ (14.140)

and

.Dy =

⎡

⎢⎢⎣

∂/∂y 0 b−1∂/∂τy 0
0 ∂/∂y 0 b−1∂/∂τy

b−1∂/∂τy 0 ∂/∂y 0
0 b−1∂/∂τy 0 ∂/∂y

⎤

⎥⎥⎦ (14.141)

These differential matrix operators automatically generate high-order derivatives
of combination (14.130) provided that necessary smoothness (boundary) conditions
hold. For instance, the components of expansion for .Δu are given by the elements
of vector-column .(D2

x + D2
y)u under conditions

1 Note that .u′
x is not .∂u/∂x.
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.

(
1

a

∂X

∂τx

+ ∂Y

∂x

)
|τx=±1 = 0

(
1

a

∂Z

∂τx

+ ∂W

∂x

)
|τx=±1 = 0 (14.142)

.

(
1

b

∂X

∂τy

+ ∂Z

∂y

)
|τy=±1 = 0

(
1

b

∂Y

∂τy

+ ∂W

∂y

)
|τy=±1 = 0 (14.143)

Consider now the particular case .a = b = ε � 1. Following the differentiation
and algebraic manipulation rules as introduced above, and substituting (14.130) in
(14.125), gives

.ΔτX + 2ε

(
∂2Y

∂τx∂x
+ ∂2Z

∂τy∂y

)
+ ε2 (ΔX − F) = ε2q(x, y)

ΔτY + 2ε

(
∂2X

∂τx∂x
+ ∂2W

∂τy∂y

)
+ ε2 (ΔY − F) = 0

ΔτZ + 2ε

(
∂2W

∂τx∂x
+ ∂2X

∂τy∂y

)
+ ε2 (ΔZ − F) = 0 (14.144)

ΔτW + 2ε

(
∂2Z

∂τx∂x
+ ∂2Y

∂τy∂y

)
+ ε2 (ΔW − F) = 0

where .Δτ = ∂2/∂τ 2x + ∂2/∂τ 2y , .Δ = ∂2/∂x2 + ∂2/∂y2, and symbol F denotes the
following group of terms related to the elastic foundation

.F ≡ 1

4
k(X + Y + Z + W) (14.145)

Boundary conditions (14.142) and (14.143) can be simplified due to (14.136) and
(14.137). As a result, the complete set of boundary conditions takes the form

.
∂X

∂τx

|τx=±1 = 0,
∂X

∂τy

|τy=±1 = 0

Y |τx=±1 = 0,
∂Y

∂τy

|τy=±1 = 0

∂Z

∂τx

|τx=±1 = 0, Z|τy=±1 = 0 (14.146)

W |τx=±1 = 0, W |τy=±1 = 0
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Note that Eq. (14.144) has constant coefficients, whereas the stepwise discon-
tinuities of foundation have been absorbed by the triangular wave arguments .τx

and .τy . The corresponding boundary conditions (14.146) generate a so-called “cell
problem” [100] within the rectangular domain .{−1 ≤ τx ≤ 1, .−1 ≤ τy ≤ 1}.
Therefore, the arguments .τx and .τy locally describe the fast varying component of
membrane shape. In contrast, the explicitly present coordinates x and y describe the
slow component in the infinite plane .{−∞ < x < ∞, .−∞ < y < ∞}. Finally,
the increase in number of Eqs. (14.144) of-course complicates solution procedures
from the technical standpoint. However, the obvious symmetry of equations helps to
ease the corresponding derivations. For instance, Eqs. (14.144) can be decoupled by
introducing new unknown functions .Ui = .Ui(τx, τ y, x, y) (.i = 1, .., 4) as follows

.U1 = X + Y + Z + W

U2 = X + Y − Z − W

U3 = X − Y + Z − W (14.147)

U4 = X − Y − Z + W

Linear transformation (14.147) however makes boundary conditions (14.146)
coupled. New boundary conditions are given by the inverse substitution in (14.146)

.X = 1

4
(U1 + U2 + U3 + U4)

Y = 1

4
(U1 + U2 − U3 − U4)

Z = 1

4
(U1 − U2 + U3 − U4) (14.148)

W = 1

4
(U1 − U2 − U3 + U4)

Note that transformation (14.147) can be effectively incorporated at the very
beginning of transformations by using the idempotent basis as described in the next
section.

14.8 The Idempotent Basis for Two-Dimensional Structures

The two-dimensional idempotent basis is introduced as follows

.i1 = e+
1 e+

2 = 1

4
(e0 + e1)(e0 + e2) = 1

4
(e0 + e1 + e2 + e3)
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i2 = e+
1 e−

2 = 1

4
(e0 + e1)(e0 − e2) = 1

4
(e0 + e1 − e2 − e3)

i3 = e−
1 e+

2 = 1

4
(e0 − e1)(e0 + e2) = 1

4
(e0 − e1 + e2 − e3) (14.149)

i4 = e−
1 e−

2 = 1

4
(e0 − e1)(e0 − e2) = 1

4
(e0 − e1 − e2 + e3)

where the standard basis .ei is defined by (14.128) and the table of products (14.121),
and the following notations for one-dimensional idempotent basis are used

.e±
k = 1

2
(e0 ± ek) (14.150)

e+
k e−

k = 0; (k = 1, 2)

The main reason for using basis (14.149) is that its table of products has the
normalized diagonal form

.ikin = δkn (14.151)

where .δkn is the Kronecker symbol.
The geometrical meaning of property (14.151) follows from the maps in

Fig. 14.14.
In this basis, representation (14.130) takes the form

.u(x, y) =
4∑

k=1

Uk(τx, τ y, x, y)ik (14.152)

As a result,

.f

(
4∑

k=1

Ukik

)
=

4∑

k=1

f (Uk)ik (14.153)

where f is practically any function, linear or nonlinear.
First-order partial derivatives of representation (14.153) are obtained as follows

.
∂u(x, y)

∂x
(14.154)

=
4∑

k=1

[
1

a

∂Uk(τx, τ y, x, y)

∂τx

e1ik+∂Uk(τx, τ y, x, y)

∂x
ik+Uk(τx, τ y, x, y)

∂ik

∂x

]

Further, taking into account (14.149) and (14.150), gives
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Fig. 14.14 The map of idempotent basis: each of the elements is equal to unity within light
domains and zero within dark domains; square areas [.−4 < x < 4, .−4 < y < 4] are shown
under the parameters .a = 1 and .b = 2

.e1i1 = (e+
1 − e−

1 )e+
1 e+

2 = i1

e1i2 = (e+
1 − e−

1 )e+
1 e−

2 = i2

e1i3 = (e+
1 − e−

1 )e−
1 e+

2 = −i3

e1i4 = (e+
1 − e−

1 )e−
1 e−

2 = −i4

and

.
∂i1

∂x
= ∂e+

1

∂x
e+
2 = 1

2

∂e1

∂x
e+
2

∂i2

∂x
= ∂e+

1

∂x
e−
2 = 1

2

∂e1

∂x
e−
2

∂i3

∂x
= ∂e−

1

∂x
e+
2 = −1

2

∂e1

∂x
e+
2

∂i4

∂x
= ∂e−

1

∂x
e−
2 = −1

2

∂e1

∂x
e−
2
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As a result, derivative (14.154) takes the form

.
∂u

∂x
=
(
1

a

∂U1

∂τx

+ ∂U1

∂x

)
i1 +

(
1

a

∂U2

∂τx

+ ∂U2

∂x

)
i2

+
(

−1

a

∂U3

∂τx

+ ∂U3

∂x

)
i3 +

(
−1

a

∂U4

∂τx

+ ∂U4

∂x

)
i4 (14.155)

+1

2
(U1 − U3)

∂e1

∂x
e+
2 + 1

2
(U2 − U4)

∂e1

∂x
e−
2

Analogously, one obtains

.
∂u

∂y
=
(
1

b

∂U1

∂τy

+ ∂U1

∂y

)
i1 +

(
−1

b

∂U2

∂τy

+ ∂U2

∂y

)
i2

+
(
1

b

∂U3

∂τy

+ ∂U3

∂y

)
i3 +

(
−1

b

∂U4

∂τy

+ ∂U4

∂y

)
i4 (14.156)

+1

2
(U1 − U2)

∂e2

∂y
e+
1 + 1

2
(U3 − U4)

∂e2

∂y
e−
1

Let us introduce vector, associated with expansion (14.152), and the correspond-
ing differential matrix operators as, respectively,

.u =

⎡

⎢⎢⎣

U1

U2

U3

U4

⎤

⎥⎥⎦ (14.157)

and

.Dx =

⎡

⎢⎢⎢⎣

1
a

∂
∂τx

+ ∂
∂x

0 0 0

0 1
a

∂
∂τx

+ ∂
∂x

0 0

0 0 − 1
a

∂
∂τx

+ ∂
∂x

0

0 0 0 − 1
a

∂
∂τx

+ ∂
∂x

⎤

⎥⎥⎥⎦ (14.158)

.Dy =

⎡

⎢⎢⎢⎢⎣

1
b

∂
∂τy

+ ∂
∂y

0 0 0

0 − 1
b

∂
∂τy

+ ∂
∂y

0 0

0 0 1
b

∂
∂τy

+ ∂
∂y

0

0 0 0 − 1
b

∂
∂τy

+ ∂
∂y

⎤

⎥⎥⎥⎥⎦
(14.159)
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Substituting (14.152) into the original Eq. (14.125), using the differentiation rules
for idempotent basis, and assuming that .a = b = ε, gives

.ΔτU1 + 2ε

(
∂2U1

∂τx∂x
+ ∂2U1

∂τy∂y

)
+ ε2ΔU1 = ε2[q(x, y) + kU1]

ΔτU2 + 2ε

(
∂2U2

∂τx∂x
− ∂2U2

∂τy∂y

)
+ ε2ΔU2 = ε2q(x, y)

ΔτU3 − 2ε

(
∂2U3

∂τx∂x
− ∂2U3

∂τy∂y

)
+ ε2ΔU3 = ε2q(x, y) (14.160)

ΔτU4 − 2ε

(
∂2U4

∂τx∂x
+ ∂2U4

∂τy∂y

)
+ ε2ΔU4 = ε2q(x, y)

where the notations .Δτ and .Δ have the same meaning as those in Eqs. (14.144).
Equations (14.160) are decoupled, at cost of coupling the boundary conditions

though

.
∂(U1 − U3)

∂τx

|τx=±1 = 0,
∂(U1 − U2)

∂τy

|τy=±1 = 0

(U1 − U3)|τx=±1 = 0, (U1 − U2)|τy=±1 = 0

∂(U2 − U4)

∂τx

|τx=±1 = 0,
∂(U3 − U4)

∂τy

|τy=±1 = 0 (14.161)

(U2 − U4)|τx=±1 = 0, (U3 − U4)|τy=±1 = 0

Note that both boundary value problems (14.144) through (14.146) and (14.160)
through (14.161) implement the transition from two to four spatial arguments:
.{x, y} → {τx, τ y, x, y}. The arguments .τx and .τy naturally relate to cell problems
and incorporate the corresponding elastic components within the class of closed-
form solutions.

Finally, let us introduce two-dimensional idempotent basis generated by the
triangular asymmetric wave; see Fig. 14.15. First, following definitions of Chap. 4,
let us introduce one-dimensional idempotents associated with x and y coordinates

.e+
i = 1

2

[
1 − γ i +

(
1 − γ 2

i

)
ei

]

e−
i = 1

2

[
1 + γ i −

(
1 − γ 2

i

)
ei

]
(14.162)

(i = 1, 2)

where .e1 = ∂τ(x/a, γ 1)/∂(x/a) and .e2 = ∂τ(y/b, γ 2)/∂(y/b).
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Fig. 14.15 The map of idempotent basis generated by the asymmetric triangular waves with
parameters: .a = b = 1.0, .γ 1 = 0.2, and .γ 2 = 0.6; each of the elements is equal to unity
within light domains and zero within dark domains; square areas [.−4 < x < 4, .−4 < y < 4] are
shown

Now the two-dimensional idempotent basis is given by .i1 = e+
1 e+

2 , .i2 = e+
1 e−

2 ,
.i3 = e−

1 e+
2 , and .i4 = e−

1 e−
2 , although further expansions shown in (14.149) are not

valid any more.
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