
Chapter 13
Essentially Non-periodic Processes

This chapter describes a possible physical basis for NSTT in case of essentially non-
periodic processes. The physical time is structured to match the one-dimensional
dynamics of rigid-body chain of identical particles. Namely, the continuous “global”
time is associated with the propagation of linear momentum, whereas a sequence of
nonsmooth “local” times describe behaviors of individual physical particles. Such
an idea helps to incorporate temporal symmetries of the dynamics into differential
equations of motion in many other cases of regular or irregular sequences of internal
impacts or external pulses. Since the local times are bounded, a much wider set
of analytical tools becomes possible, whereas matching conditions are generated
automatically by the corresponding time substitution.

13.1 Nonsmooth Time Decomposition and Pulse Propagation
in a Chain of Particles

The periodic version of NSTT employs basis functions generated by the most simple
impact oscillator. This is based on the fact that the triangle and square waves capture
general temporal symmetries of periodic processes regardless specifics of individual
vibrating systems. Below, a non-periodic pair of nonsmooth functions is considered,
such as the ramp function,

.s (t; d) = 1

2
(d + |t | − |t − d|) (13.1)

and its first-order generalized derivative, .ṡ (t; d), with respect to the temporal
argument, t ; see Figs. 13.1 and 13.2, respectively.

Such kind of functions play an important role in signal analyses [98].
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Fig. 13.1 The unit slope ramp function at .d = 1.0
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Fig. 13.2 First derivative of the ramp function
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Fig. 13.3 Physical meaning of the ramp function: .s(t; 1) describes position of the bead struck by
another bead from the left and moving until it strikes the next bead of the same mass

Possible physical interpretation of these functions is represented in Fig. 13.3.
Namely, the function .s (t, d) can be treated as a coordinate of a particle, say a very
small perfectly stiff bead, initially located at the origin .x = 0. At the time instance
.t = 0, this bead is struck by the identical bead with the velocity .v = 1. After the
linear momentum exchange, the reference bead starts moving until it stopped by the
third bead .x = d; in our case .d = 1.

Now, let us consider an infinite chain of the identical perfectly stiff beads located
regularly on a straight line at the points .xi (.i = 0, 1, ...). No energy loss is assumed
so that any currently moving bead has the same velocity. As a result, the linear
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momentum is translated with the constant speed .v = 1, whereas the beads are
interacting at the time instances .ti = xi . Making the temporal shift .t → t − ti
in function (13.1) gives

.si (t) = s (t − ti , di) = 1

2
(di + |t − ti | − |t − ti+1|) (13.2)

where .di = ti+1 − ti .
Due to the unit velocity, function (13.2) can play the role of “local” time for the

bead moving within the interval .xi < x < xi+1 during the “global” time interval
.ti < t < ti+1. The term “local” means that the temporal variable .si starts at zero
when the “global” time, t , has reached the point .t = ti .

In other words, the global temporal variable is associated with the linear
momentum, whereas all the local temporal variables are attached to the physical
bodies.

For any sequence of time instances, .Λ = .{t0, t1, ...}, the global time, .t ∈ (t0,∞),
can be expressed through the sequence of local times, .{si}, as

.t =
∞∑

i=0

(ti + si) ṡi (13.3)

where the derivatives .ṡi satisfy the relationship

. ṡi ṡj = ṡiδij (13.4)

Practically, equality (13.3) is always a finite sum because temporal intervals of
physical processes always have finite upper bounds. This equality can be verified
analytically within an arbitrary interval, .ti < t < ti+1, by means of definitions
(13.1) and (13.2), although its geometrical meaning is quite clear from the graphs of
participating functions. Formally differentiating both sides of equality (13.3) with
respect to t and taking into account (13.4) give

.1 =
∞∑

i=0

ṡi + t0δ (t − t0) (13.5)

Hence,

.

∞∑

i=0

ṡi = 1 (t > t0) (13.6)

Equality (13.6) holds based on the definition for .ṡi as illustrated in Fig. 13.2. Note
that the right-hand side of expansion (13.3) can be viewed as an element of algebra
with the orthogonal basis .{si} and multiplication rule (13.4). This significantly eases
different manipulations with the temporal variable (13.3), for instance,
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.tn =
∞∑

i=0

(ti + si)
n ṡi , n = 1, 2, ... (13.7)

or, generally,

.x (t) =
∞∑

i=0

x (ti + si) ṡi ≡
∞∑

i=0

Xi (si) ṡi (13.8)

Since the right-hand sides of (13.7) and (13.8) have the same structure as the
argument t itself, then the following functional linearity holds for a general function
g

.g

( ∞∑

i=0

Xiṡi

)
=

∞∑

i=0

g (Xi) ṡi (13.9)

Now, differentiating (13.8) with respect to time t , and taking into account that
.si (ti) = 0 and .si−1 (ti) = di−1, gives

.ẋ (t) =
∞∑

i=0

X′
i (si) ṡi +

∞∑

i=0

Xi (si) [δ (t − ti ) − δ (t − ti+1)] (13.10)

=
∞∑

i=0

X′
i (si) ṡi +

∞∑

i=0

[Xi (0) − Xi−1 (di−1)] δ (t − ti )

where .X−1 (d−1) = 0.
Therefore, all the .δ—functions are eliminated from (13.10) under condition,

which can be qualified as a necessary condition of continuity for .x (t)

.Xi (0) − Xi−1 (di−1) = 0 (13.11)

Under condition (13.11), the derivative .ẋ (t) has the same algebraic structure
as the function .x (t) itself. As a result, transformation (13.3) can be applied to a
general class of dynamical systems. Moreover, in the case of impulsively loaded
systems, the sequences of .δ-functions in (13.10) can be utilized for eliminating the
corresponding singularities from dynamical systems.

13.2 Impulsively Loaded Dynamical Systems

Let us consider a dynamical system subjected to an arbitrary sequence of impulses,
applied to the system at time instances .Λ = {t0, t1, . . .},
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.ẋ = f (x, t) +
∞∑

i=0

piδ (t − ti ) , x (t) ∈ Rn
. (13.12)

x ≡ 0, t < t0 (13.13)

where .f (x, t) is a sufficiently smooth vector-function and .pi is vector characterizing
magnitudes and directions of the impulses.

In particular case, when .t0 = 0, and .pi = 0 (.i = 1, . . .), systems (13.12) and
(13.13) become equivalent to the following initial value problem

.ẋ = f (x, t) , x (0) = p0 (13.14)

Below, solution of the initial value problem (13.12) and (13.13) is introduced
in the specific form based on the operator Lie associated with dynamical system
(13.14)

.A = f (x, t)
∂

∂x
+ ∂

∂t
(13.15)

= f1 (x, t)
∂

∂x1
+ .... + fn (x, t)

∂

∂xn

+ ∂

∂t

It is known, for instance, that the exponent of operator (13.15) produces temporal
shifts as follows

.ezAf (x (t) , t) = f (x (t + z) , t + z) (13.16)

= f (x, t) +
[
f (x, t)

∂f (x, t)
∂x

+ ∂ (x, t)
∂t

]
z + O(z2)

Proposition 13.2.1 Solution of the initial value problem (13.12) and (13.13) can
be represented in the form

.x (t) =
∞∑

i=0

[ai−1 + pi + F (ai−1 + pi , ti , si (t))] ṡi (t) (13.17)

where .ai = .x (ti+1) is the sequence of constant vectors determined by the mapping

.a−1 = 0 (13.18)

ai = ai−1 + pi + F (ai−1 + pi , ti , di) ; i = 1, 2, ...

and the function F is defined by

.F (x, t, z) =
∫ z

0
ezAf (x, t) dz (13.19)

where A is the operator Lie (13.15).
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Proof Substituting vector analogs of expressions (13.8), and (13.10) into the
differential equation of motion (13.12) and taking into account (13.9) give

.

∞∑

i=0

{[X′
i (si) − f (Xi (si) , ti + si)]ṡi+

.[Xi (0) − Xi−1 (di−1) − pi]δ (t − ti )} = 0 (13.20)

The left-hand side of expression (13.20) includes both regular and singular terms.
Moreover, the basis elements .ṡi are linearly independent, and all the .δ-functions are
acting at different time instances. Therefore, Eq. (13.20) gives

.X′
i (si) = f (Xi (si) , ti + si) (13.21)

.Xi (0) = Xi−1 (di−1) + pi = ai−1 + pi (13.22)

where .a−1 = 0 and .ai = Xi (di) (.i = 0, 1, 2, ...). Equation (13.21) can be
represented in the integral form

.Xi (si) = Xi (0) +
si∫

0

f (Xi (z) , ti + z) dz (13.23)

Since the variable of integration is limited by the interval .0 ≤ z ≤ si , the integrand
in (13.23) can be approximated by the easy to integrate Maclaurin’s series with
respect to z. Moreover, such a series can be represented in the convenient form of
Lie series based on the fact that .Xi (z) are coordinates of the dynamical system
with the operator Lie (13.15). As a result, all the coefficients of power series are
expressed through the “initial conditions” at .z = 0 (.t = ti) by enforcing the form of
the dynamical system. As a result, no high-order derivatives of the coordinates are
included anymore into the coefficients of the series. Taking into account the notation
.Xi (si) = x (ti + si), and expressions (13.16) and (13.19), brings (13.23) to the form

.Xi (si) = Xi (0) +
si∫

0

ezAf (x (ti) , ti) dz

= Xi (0) + F (x (ti) , ti , si) (13.24)

= Xi (0) + F (Xi (0) , ti , si)

Substituting now .Xi (0) from (13.22) in (13.24) gives

.Xi (si) = ai−1 + pi + F (ai−1 + pi , ti , si) (13.25)
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Finally, substituting (13.25) in expansion (13.8) gives (13.17). Then, substituting
.si = di in (13.25) gives (13.18) and thus completes the proof.

Solutions (13.17) and (13.18) should be viewed as a semi-analytic solution, since
some numerical tool is required for calculating the discrete mapping (13.18). The
central role here belongs to the function .s (t; d) (13.1), which is automatically
matching all the neighboring pieces of the solution. Note that the distances .di

between times .Λ are not necessary small; however, the precision of the solution
can be improved by increasing the number of terms of the Lie series .ezAf (x, t) with
respect to z, rather than reducing the distances .di .

13.2.1 Harmonic Oscillator Under Sequential Impulses

In order to estimate precision of the above procedure, let us consider the particular
case in which function (13.19) can be calculated exactly in the closed form due to
the presence of exact analytical solution in between the pulses .Λ. The differential
equation of motion on the entire time range is

.ẍ + 2ζΩẋ + Ω2x =
∞∑

i=0

piδ (t − ti ) (13.26)

In this case, the function .f (x, t) in Eq. (13.12) becomes

.f (x) =
(

x2

−2ζΩx2 − Ω2x1

)
(13.27)

Using the identity .ezAf (x (t) , t) = f (x (t + z) , t + z) and the exact analytical
solution of the corresponding free oscillator gives both components of the vector-
function (13.19) in the form

.F1 (x; z) =
[
e−z ζ Ω cos

(
z

√
1−ζ 2 Ω

)
+ζe−z ζ Ω

√
1−ζ 2

sin

(
z

√
1 − ζ 2 Ω

)
−1

]
x1

+ e−z ζ Ω

Ω
√

1 − ζ 2
sin

(
z

√
1 − ζ 2 Ω

)
x2

F2 (x; z) = −Ωe−z ζ Ω

√
1 − ζ 2

sin

(
z

√
1 − ζ 2 Ω

)
x1 (13.28)

+
[
e−z ζ Ω cos

(
z

√
1−ζ 2 Ω

)
− ζ e−z ζ Ω

√
1−ζ 2

sin

(
z

√
1−ζ 2 Ω

)
−1

]
x2
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In this particular case, properties of mapping (13.18) depend on the following
determinant

.J =
∣∣∣∣
1 + ∂F1/∂x1 ∂F1/∂x2

∂F2/∂x1 1 + ∂F2/∂x2

∣∣∣∣ = e−2di ζΩ (13.29)

Let us introduce the relative error

.δ = ∣∣J − Jappr

∣∣ /J (13.30)

where .Jappr is an approximate determinant based on the Lie series expansion
(13.16).

Figures 13.4 and 13.5 show diagrams for the relative error .δ versus the distance
d between any two neighboring impulse times when the highest-order terms kept in
Lie series (13.16) are .O(z2) and .O(z3), respectively.

As follows from the diagrams, precision of the discrete mapping essentially
depends on both the distance between pulse times and the number of terms kept
in the Lie series. As a result, the error due to a large distance can be reduced by
increasing the number of terms in the Lie series.

13.2.2 Random Suppression of Chaos

A specific case of the Duffing oscillator with no linear stiffness under sine mod-
ulated random impulses was considered in [183]. The corresponding differential
equation of motion is represented in the form
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Fig. 13.4 Relative error of the determinant based on the truncated Lie series including terms of
order .O(z2)



13.2 Impulsively Loaded Dynamical Systems 377

0.0 0.2 0.4 0.6 0.8

0.0000

0.0002

0.0004

0.0006

0.0008

d

Fig. 13.5 Relative error of the determinant based on the truncated Lie series including terms of
order .O(z3)

.ẍ + ζ ẋ + x3 = B sin t

∞∑

i=0

δ (t − ti ) (13.31)

where .ζ is a constant linear damping coefficient and B is the amplitude of
modulation.

Distances between any two sequential impulse times are given by

.di = ti+1 − ti = π

12

(
1 + βηi

)

where .ηi is random real number homogeneously distributed on the interval .[−1, 1]
and .β is a small positive number, .0 < β � 1.

Introducing the state vector .x = (x, ẋ)T ≡ (x1, x2)
T brings system (13.31) to the

standard form (13.12), where

.f (x) =
(

x2

−ζx2 − x3
1

)
, pi =

(
0
B sin ti

)

Note that oscillator (13.31) represents of course a modified version of the well-
known oscillator, .ẍ + ζ ẋ + x3 = B sin t , considered first by Ueda [236] as a model
of nonlinear inductor in electrical circuits—the Ueda circuit. In particular, the result
of work [236], as well as many further investigations of similar models, reveals
the existence of stochastic attractors often illustrated by the Poincaré diagrams
[147]. Similar diagrams obtained under non-regular snapshots can be qualified as
“stroboscopic” diagrams. The results of the computer simulations described in [183]
show that some irregularity of the pulse times can be used for the purposes of a
more clear observation of the system orbits in the stroboscopic diagrams. When
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repeatedly executing the numerical code, under the same input conditions, such a
small disorder in the input results some times in a less noisy and more organized
stroboscopic diagrams. However, such phenomenon itself was found to be a random
event whose “appearance” depends on the level of pulse randomization as well as
the number of iterations.
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