
Chapter 12
NSTT and Shooting Method for Periodic
Motions

In this chapter, two-dimensional shooting diagrams are introduced for visualization
of manifolds of periodic solutions and their bifurcations. A general class of non-
linear oscillators under smooth, nonsmooth, and impulsive loadings is considered.
The corresponding boundary value problems are formulated by introducing the
triangular wave temporal argument. Duffing oscillator with no linear stiffness (Ueda
circuit) is considered for illustration. It is shown that the temporal mode shape of
the loading is responsible for qualitative features of the dynamics, such as transitions
from regular and random motions. The important role of unstable periodic orbits is
discussed.

12.1 Introductory Remarks

Periodic solutions and their bifurcation diagrams often reveal important qualitative
features of the dynamics even though the system motion is not expected to be
periodic. In particular, the number of periodic orbits and their distribution and
properties reveal the structure of chaotic orbits; see, for instance, works [19, 72, 160]
and references therein. Direct numerical tools for detection and construction of
periodic orbits based on the mapping approach can be found in the book [162] and
paper [74]. Different formulations in terms of boundary value problems for ordinary
differential equations are described in [17]. Theoretical and applied results regarding
periodic motions, bifurcations, and chaos are reported in [21] and [247].

In this chapter, a special two-dimensional visualization of the shooting method
is introduced in order to incorporate the general two-component NSTT as a
preliminary analytical stage [185]. Note that the same approach using the one-
component NSTT was suggested earlier in [201] and implemented inMathematica®

interface [25]. In particular, subharmonic orbits of the forced pendulum and
bifurcation diagrams were obtained by examining the shooting curves and their
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zeros. Subharmonic orbits of a strongly nonlinear oscillator forced by closely spaced
harmonics were investigated in [217]. The NSTT followed by shooting method was
applied to study the resonance capture dynamics.

Let us consider a multi-dimensional oscillator described be the differential
equation

.F(ẍ, ẋ, x, t) = 0 (12.1)

where .x (t) ∈ Rn and the vector-function .F ∈ Rn is periodic with respect to time t

with the period .T = 4a.
In this work, different kinds of temporal discontinuity in the differential equa-

tions of motion will be considered. In order to satisfy the related mathematical
requirements, the left-hand side of Eq. (12.1) must be interpreted in term distribu-
tions [225]

.

∞∫

−∞
F(ẍ, ẋ, x, t)ϕ (t) dt = 0 (12.2)

where .ϕ (t) is any sufficiently smooth testing function.
However, at this point, let us assume that the function .F(ẍ, ẋ, x, t) is regular

with no singular terms involved.
Let us consider periodic solutions of the period T by means of the coordinate

complexification (NSTT)

.x → {X, Y } : x = X (τ) + Y (τ) τ ′ (12.3)

where .τ = τ (t/a) the triangular sine wave of the period .T = 4a and .τ ′ =
dτ (t/a) /d (t/a) is its first generalized derivative, which is a stepwise discontin-
uous function at the time instances

.Λ = {t : τ (t/a) = ±1} (12.4)

As discussed in this book, the above discontinuities can be suppressed by the
condition .Y (±1) = 0, which is the necessary condition of continuity of the original
coordinates .x(t). Then, assuming for a while no infinite discontinuities in F ,
substituting (12.3) in (12.1), using the algebraic properties of representation (12.3)
as well as other NSTT rules, gives the boundary value problem

.F

(
X′′ + Y ′′

a2
,
X′ + Y ′

a
,
X + Y

a
, aτ

)
= 0. (12.5)

F

(
X′′ − Y ′′

a2
,−X′ − Y ′

a
,
X − Y

a
, 2a − aτ

)
= 0 (12.6)
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.Y |τ=±1 = 0, X′|τ=±1 = 0 (12.7)

where the prime used with X and Y means differentiation with respect to .τ .
Both Eqs. (12.5) and (12.6) are easily derived by the corresponding algebraic

manipulations, whereas boundary conditions (12.7) represent the result of elimina-
tion of the singular term .τ ′′ (t/a) when substituting (12.3) in (12.1). In some cases,
such a singular term can be employed though in order to eliminate singularities from
original equations; see below.

Despite of a relatively complicated form of Eqs. (12.5) and (12.6), the new
formulation brings some advantages due to the fact that the new temporal variable .τ

is bounded and automatically accounts for periodicity of solutions regardless their
temporal shapes. This property appears to be important in those cases when the
solutions do not represent a final stage of investigation but must be used for further
analyses. The dimension increase is often compensated by an effective decrease
of the temporal interval of the problem, since the range .−1 � τ � 1 is covered
by the original time domain .−a � t � a, which is twice shorter than the whole
period .T = 4a. Moreover, there are many cases when the number of equations
can be reduced to that of the original system due to the symmetry of equations. If,
for instance, the vector-function .F(ẍ, ẋ, x, t) is even with respect to the velocity .ẋ

or includes no velocity at all, and the explicit dependence on time t produces zero
“imaginary component,” then boundary value problem (12.5) through (12.7) admits
a family of solutions on which

.Y ≡ 0, F

(
X′′

a2
,
X′

a
,
X

a
, aτ

)
= 0 (12.8)

.X′|τ=±1 = 0 (12.9)

The particular case (12.8) and (12.9) was investigated numerically by the
shooting method in [201] and [224] based on a single- and multiple-degrees-of
freedom systems, respectively. It should be noted that no special requirements are
imposed on numerical methods or packages for solving the above boundary-value
problems. However, the shooting algorithm in theMathematica® interface provides
a physically meaningful way of visualization of periodic solutions due to the specific
combination analytical and numerical commands.

12.2 Problem Formulation

Let assume now that the system loading may include a periodic series of Dirac
.δ-functions acting at times .Λ(12.4). As is known [63], Dirac .δ-functions can
participate in nonlinear differential equations only as summands because nonlinear
manipulations with .δ-functions are physically meaningless, except special concepts
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[138]. Therefore, the original equation (12.1) must be concretized as

.ẍ + f (x, ẋ, t) = q (t) (12.10)

where

.q (t) = Q(τ (t/a)) + P (τ (t/a)) τ ′ (t/a) + p (τ (t/a)) τ ′′ (t/a) (12.11)

and

.τ ′′ (t/a) = d2τ (t/a) /d (t/a)2 (12.12)

= 2
∞∑

k=−∞

[
δ

(
t

a
+ 1 − 4k

)
− δ

(
t

a
− 1 − 4k

)]

In Eq. (12.10), the function .f (x, ẋ, t) may still include parametric terms of the
period .T = 4a with possible stepwise discontinuities on .Λ. The acceleration .ẍ

also participates as a summand, since it must have the same kind of singularities
as the external forcing function, .q (t). According to the distribution theory [208],
.p (τ (t/a)) must be at least continuous on .Λ; otherwise the “product” .p (τ) τ ′′
cannot be treated as a distribution. Note that behavior of the function .p(τ (t/a))

between the times .Λ is arbitrary, since only values .p (−1) and .p (1) contribute into
the expression

. p (τ (t/a)) τ ′′ (t/a) (12.13)

= 2
∞∑

k=−∞

[
p (−1) δ

(
t

a
+ 1 − 4k

)
− p (1) δ

(
t

a
− 1 − 4k

)]

The numbers .p (−1) and .p (1) control the “amplitudes” and directions of the
.δ-functions. For example, all the pulses can be positively co-directed by setting
.p (τ) = − sign. τ .

Remark 12.2.1 Expressions (12.3) and (12.11) represent particular cases of the
truncated series

.q (t) =
N∑

k=0

Pk (τ (t/a)) dkτ (t/a) /d (t/a)k (12.14)

where .Pk(τ (t/a)) must be at least .k − 2 times continuously differentiable in
the neighborhood of points .t = ±a. Although physical interpretation of the
higher-order terms in (12.14) is not straightforward, such terms still can occur
after reducing the number of equations from the entire system. In cases (12.10)
and (12.11), one has .N = 2, and therefore the velocity vector .ẋ must be stepwise
discontinuous. Further, if .N = 3, then the velocity .ẋ includes singular terms, and the
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function .f (x, ẋ, t) in Eq. (12.10) must be linear with respect to .ẋ. If .N = 4, then the
function .f (x, ẋ, t) must be linear also with respect to the position vector x provided
that any parametric terms are sufficiently smooth functions of time. Therefore, only
linear systems can be considered if .N ≥ 4.

Since the basis elements .
{
1, τ ′, τ ′′} represent functions of different classes of

smoothness, then substituting (12.3) and (12.11) in (12.10) gives separately

.a−2X′′ + Rf

(
X, Y,X′, Y ′, τ

) = Q(τ) . (12.15)

a−2Y ′′ + If

(
X, Y,X′, Y ′, τ

) = P (τ) (12.16)

and

.a−2X′ |τ=±1 = p (±1) (12.17)

where

.

{
Rf

If

}
= 1

2

[
f

(
X + Y,

X′ + Y ′

a
, aτ

)
± f

(
X − Y, − X′ − Y ′

a
, 2a − aτ

)]

(12.18)

Note that the singular term .a−1Yτ ′′ is eliminated from the velocity vector .ẋ (t)

by imposing another boundary condition

.Y |τ=±1 = 0 (12.19)

The boundary value problem (12.15) through (12.19) includes no singular or
discontinuous functions; therefore standard numerical codes and packages can be
applied with no specific constraints on their choice.

In general, Eqs. (12.15) and (12.16) are coupled. Although the equations can be
decoupled by introducing the new unknown functions, .X(τ) + Y (τ) and .X(τ) −
Y (τ), the boundary conditions will become coupled. There are two special cases,
however, when the entire problem can be reduced. If, for instance, .f (x, ẋ, t) =
.f (x,−ẋ, 2a − t) and .P (τ) ≡ 0, then the problem admits a family of solutions
such that

.Y ≡ 0, a−2X′′ + f
(
X, X′/a, aτ

) = Q(τ) (12.20)

under the boundary condition (12.17).
In case .f (x, ẋ, t) = .−f (−x, ẋ, 2a − t), .Q(τ) ≡ 0 and .p (τ) ≡ 0, then one can

consider another family of solutions on which

.X ≡ 0, a−2Y ′′ + f
(
Y, Y ′/a, aτ

) = P (τ) (12.21)

under the boundary condition (12.19).
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This chapter nevertheless focuses on the general two-component problem (12.15)
through (12.19).

12.3 Sample Problems and Discussion

12.3.1 Smooth Loading

The Duffing-Ueda oscillator [236] under the periodic loading of different temporal
shapes will be considered below.

Let us start with the standard case of sine wave voltage

.ẍ + ζ ẋ + x3 = B sinΩt (12.22)

where .ζ , B, and .Ω are constant parameters.
In this case, the differential equations (12.15) and (12.16) take the form

.a−2X′′ + ζa−1Y ′ + X3 + 3XY 2 = B sin
πτ

2
. (12.23)

a−2Y ′′ + ζa−1X′ + Y 3 + 3X2Y = 0 (12.24)

where .a = π/(2Ω) is a quarter of the loading period, and the boundary conditions
are

.Y |τ=±1 = 0, X′ |τ=±1 = 0 (12.25)

The shooting method can be applied now as follows. First, the differential
equations (12.23) and (12.24) are solved under the initial conditions

.X(−1) = g, X′ (−1) = 0. (12.26)

Y (−1) = 0, Y ′ (−1) = h (12.27)

where g and h are numbers to be determined in order to satisfy boundary
conditions (12.25).

Let us represent solution of the initial value problem (12.23), (12.24), (12.26),
and (12.27) in the following general form

.X = X(τ ; g, h), Y = Y (τ ; g, h) (12.28)

By the idea of shooting method, the initial value problem (12.23), (12.24), (12.26),
and (12.27) must be iteratively solved multiple times at different g and .h until
sufficient precision has been reached for boundary conditions (12.25) at right end
.τ = 1,
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.
∂X(τ ; g, h)

∂τ
|τ=1 ≡ G(g, h) = 0 (12.29)

Y (τ ; g, h)|τ=1 ≡ H(g, h) = 0

When dealing with the particular cases (12.20) or (12.21), such a procedure is
not difficult since one has only one equation with a single unknown, .G(g) = 0 or
.H(h) = 0. Multidimensional cases, such as (12.29), appear to be more difficult and
time-consuming. From this point of view, the important feature of Mathematica is
that it is possible to program the functions .G(g, h) and .H(g, h) explicitly in such a
way that the arguments g and h are included into the numerical solver of differential
equations. This can be done as follows.1 First, the numerical solution is defined as
a function of the arguments g and h according to the command

.sol[g_, h_]:=NDSolve[{eqX, eqY,

.X[-1]==g, X′[-1] == 0, Y[-1] == 0, Y′[-1] == h}, {X,Y}, {τ ,-1,1}];

where eqX and eqY are Eqs. (12.23) and (12.24), respectively.
Then, the functions .G(g, h) and .H(g, h) are defined as follows

.G[g_, h_]:=X′[1]/.sol[g, h][[1]];

.H[g_, h_]:=Y[1]/.sol[g, h][[1]];

As a result, the functions .G(g, h) and .H(g, h) can be considered as usual
functions of two arguments. In particular, intersections of two manifolds (12.29)
can be located and determined by using the commands ContourPlot and FindRoot,
respectively. Each of the determined roots of Eq. (12.29) represents a periodic
solution of the original equation. If the loading amplitude B is a control parameter,
then the evolution of diagrams .G(g, h;B) = 0 and .H(g, h;B) = 0 represents the
corresponding structural changes in the set of periodic solutions.

Figure 12.1 gives an example of such a diagram. The parameters were chosen
in order to provide conditions for the “randomly transitional” process in terms of
work [236]. The diagram clearly shows five intersections between the two different
families of curves. The corresponding solutions of the input period .T = 4a = 2π
are shown in Figs. 12.2 and 12.3.

Direct numerical solutions of the corresponding estimates for Floquet multipliers
show that first four periodic solutions, (a) through (d), are unstable and only
one solution (e) is stable. Solution (e) was detected by direct analog and digital
computer simulations reported in [236], whereas solutions (a) through (d) were
unlisted. Instead, a “non-reproducible trajectory” as a realization of the “randomly
transitional” process was represented in the xv-plane. Such a trajectory can be

1 See Appendix 4 for the related algorithms.
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Fig. 12.1 The curves .G(g, h) = 0 (continuous) and .H(g, h) = 0 (dashed) and their intersections
for the Ueda oscillator under the sine wave input and the following parameters: .ζ = 0.1, .B = 12,
and .ω = 1 (0.1592Hz)
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Fig. 12.2 The temporal mode shapes of periodic solutions
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Fig. 12.3 The projections of periodic trajectories on xv-planes

treated as a chaotic drift around the first three unstable motions (a), (b), and (c).
However, high-order periodic solutions may also affect the dynamics of chaotic drift
[19].

Figure 12.3 shows what actually happens when trying to numerically reproduce
an unstable periodic orbit, say (a). Neither the shooting algorithm nor computer
codes allow to perfectly introduce the initial conditions; therefore it is unlikely that
the oscillator will remain on the unstable orbit. After few cycles, the system leaves
the orbit (a) for the “randomly transitional” drift around the all three unstable orbits
(a), (b), and (c) with “no certain choice” between them. The long-term time history
and the corresponding spectrogram of this motion, represented in Fig. 12.4, confirm
its random character during quite a long period of time.

Although preliminary qualitative information about stability or instability of
periodic solutions can be obtained by direct numerical tests, one can quantify
stability properties based on the well-known Floquet theory in terms of the
characteristic multipliers [76, 145]. In order to remind the principals, let us consider
periodic solution .x(t) of the Eq. (12.10),where .f (x, ẋ, t) = f (x, ẋ, t + T ), .q (t) =
q (t + T ), and the period is .T = 4a.

A variation of the solution .x(t), say .u(t), is described by the linear differential
equation with periodic coefficients

.ü + q1(t)u̇ + q2(t)u = 0

where .q1(t) = ∂f (x, ẋ, t)/∂ẋ is assumed to be independent on .ẋ and .q2(t) =
∂f (x, ẋ, t)/∂x.
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Fig. 12.4 The time history record and its spectrogram (in Hz) for Ueda oscillator after the direct
numerical integration. The parameters are .ζ = 0.1, .ω = 1.0, and .B = 12.0

Then substitution

.u = y(t) exp

⎛
⎝−1

2

t∫

0

q1(z)dz

⎞
⎠

gives

.ÿ + p(t)y = 0 (12.30)

where

.p(t) = q2(t) − 1

4
[q1(t)]2 − 1

2
q̇1(t)

As known from the Floquet theory, stability of solution is determined by the
Floquet multipliers

.μ1,2 = A ±
√

A2 − 1 (12.31)

where .A = [y1(T ) + ẏ2(T )]/2 and .y1(t) and .y2(t) are two fundamental solutions
of Eq. (12.30) given by the initial conditions

.y1(0) = 1, ẏ1(0) = 0
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y2(0) = 0, ẏ2(0) = 1

Based on the number A, the solution .x(t) is unstable if .A2 > 1, and it is stable if
.A2 < 1. In case .A2 = 1, there exists a periodic solution of Eq. (12.30).

Now, let .x(t) be a periodic solution of Eq. (12.22). The corresponding variational
equation is

.ü + ζ u̇ + 3x2u = 0 (12.32)

where .u = u(t) is a small variation of the solution .x = x(t).
After the standard substitution .u(t) = y(t) exp(−ζ t/2) Eq. (12.32) takes the

form

.ÿ +
(
3x2 − ζ 2

4

)
y = 0

Taking into account the form of solution (12.3) gives the variational equation
with periodic coefficient

.ÿ + [U(τ(t/a)) + V (τ(t/a))τ ′(t/a)]y = 0 (12.33)

where .U(τ) = 3X2(τ ) + 3Y 2(τ ) − ζ 2/4 and .V (τ) = 6X(τ)Y (τ).
Note that the periodic coefficient in Eq. (12.33) is continuous with respect to time

t since .V (±1) = 0 due to the boundary conditions (12.25). By using the numerical
solutions of Eq. (12.33), one obtains the number A for every solution

.Aa = 10.5155, Ab = −2.63747, Ac = −2.63749

.Ad = 1.70201, and Ae = 0.143507 (12.34)

where the index corresponds to the type of periodic solution of the original equation;
see Figs. 12.1, 12.2, and 12.3. These numbers confirm that only solution (e) is stable.

12.3.2 Stepwise Discontinuous Input

Let us consider now the case of discontinuous periodic input of the square wave
temporal shape

.ẍ + ζ ẋ + x3 = B
dτ (t/a)

d (t/a)
(12.35)

where a is a quarter of the input period.
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Fig. 12.5 The curves .G(g, h) = 0 (continuous) and .H(g, h) = 0 (dashed) for the Ueda oscillator
under the stepwise input and the following parameters: .ζ = 0.05, .B = 7.4, and .ω = 1

In this case, the right-hand side of Eqs. (12.23) and (12.24) are modified so that
the equations take the form

.a−2X′′ + ζa−1Y ′ + X3 + 3XY 2 = 0. (12.36)

a−2Y ′′ + ζa−1X′ + Y 3 + 3X2Y = B (12.37)

under the homogeneous boundary conditions (12.25).
Figure 12.5 shows the shooting diagram under the fixed parameters .Ω =

π/(2a) = 1 (0.1592 Hz), .B = 7.4, and .ζ = 0.05. In this case, there are
seven intersections between the two families of curves and therefore seven periodic
solutions of the period .T = 4a as shown in Figs. 12.6 and 12.7.

Note that, under the same parameters, the system response on the square wave
input shows new features compared to those under the sine wave input [185]. For
example, after few cycles along the orbit (a), the system starts its drift around the
first three solutions, (a), (b), and (c). At this stage, the dynamics resembles that
under the sine wave input. Further, however, after several random “jumps” between
the orbits (a), (b), and (c), the system becomes eventually attracted by the stable
orbit (e). The direct numerical solution, represented in Fig. 12.8, clearly shows all
three stages of the time and spectral histories of the dynamics.

To clarify stability properties, Floquet theory can be applied analogously to the
case of the sine wave input.
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Fig. 12.6 The temporal mode shapes of periodic solutions of Ueda circuit under the stepwise input
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Fig. 12.7 The projections of periodic trajectories on xv-planes
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Fig. 12.8 The time history record and its spectrogram (in Hz) for evolution of the solution (a)
under the stepwise voltage of the amplitude .B = 7.4

12.3.3 Impulsive Loading

Let us consider the same oscillator loaded by the periodic series of pulses

.ẍ + ζ ẋ + x3 = pτ ′′ (12.38)

= 2p
∞∑

k=−∞

[
δ

(
t

a
+ 1 − 4k

)
− δ

(
t

a
− 1 − 4k

)]

where .p = p (±1) = B = const.

In this case, both Eqs. (12.36) and (12.37) should have zero right-hand side;
however, the non-homogeneous version of the boundary condition (12.17) must
be imposed in order to eliminate the pulses. The second expression in (12.26)
and the first one in (12.29) must be modified as .X′ (−1) =.a2B=.[π/(2Ω)]2B
and .G(g, h)=.a2B=.[π/(2Ω)]2B, respectively. Therefore, the singular terms are
eliminated from the system due to the triangle wave time, and the shooting
procedure can be applied in the same fashion as that under the smooth input.
The shooting diagram and the corresponding periodic solutions are shown in
Figs. 12.9, 12.10, and 12.11, respectively.

The projections of the phase trajectories show discontinuities of the velocity on
the xv-plane caused by the external pulses. The last four projections, (h) through (k),
can be qualified as “quasi free” vibrations sustained by the pulses. In the shooting
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Fig. 12.9 The curves .G(g, h) = 0 (continuous) and .H(g, h) = 0 (dashed) for Ueda circuit under
the impulsive input and parameters: .ζ = 0.05, .B = 1.4, and .Ω = 1
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Fig. 12.10 The temporal mode shapes of periodic solutions of Ueda circuit under the impulsive
input
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Fig. 12.11 The projections of periodic trajectories on xv-planes

diagram represented in Fig. 12.9, the related intersections are difficult to determine
due to a very small angle between the intersecting curves.

12.4 Other Applications

12.4.1 Periodic Solutions of the Period—n

The above sections deal with periodic solutions with the input period .T = 4a.
In order to capture “subharmonic” solutions of the period nT , the components of
representation (12.3) must be taken in the form

.X (τ) = 1

2
[x (naτ) + x (2na − naτ)]

Y (τ) = 1

2
[x (naτ) − x (2na − naτ)] (12.39)

where .τ = τ(t/(na)).
For instance, applying (12.39) to the sine wave .sinΩt gives

. sinΩt = 1

2

[
sin

nπτ

2
+ sin

(
nπ − nπτ

2

)]

+1

2

[
sin

nπτ

2
− sin

(
nπ − nπτ

2

)]
τ ′ (12.40)
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= 1

2
sin

nπτ

2

{[
1 + (−1)n+1

]
+

[
1 − (−1)n+1

]
τ ′}

where .τ ′ = dτ(t/(na))/d(t/(na)) and .a = π/(2Ω).
According to representation (12.40), Eqs. (12.23) and (12.24) must be modified

as follows

. (na)−2X′′ + ζ (na)−1Y ′ + X3 + 3XY 2

= B

2

[
1 + (−1)n+1

]
sin

nπτ

2

(na)−2Y ′′ + ζ (na)−1X′ + Y 3 + 3X2Y (12.41)

= B

2

[
1 − (−1)n+1

]
sin

nπτ

2

The right-hand side of these equations shows that direct replacement .a → na

in (12.23) and (12.24) would not work.
If .n = 1, then Eqs. (12.41) takes the form (12.23) and (12.24), but if .n > 1,

Eqs. (12.41) can give new solutions in addition to those described by Eqs. (12.23)
and (12.24). The corresponding calculations however become time-consuming and
give complicated diagrams as the number n increases.

12.4.2 Two-Degrees-of-Freedom Systems

Using the above two-dimensional geometrization of shooting diagrams enables
one of considering special cases of two-degrees-of-freedom systems based on
Eqs. (12.20) or (12.21). For example, Eq. (12.20) can be treated as an equation
with respect to the two-component vector-function .X = {X1(τ ),X2(τ )}. Such an
interpretation leads to two scalar equations

.a−2X′′
1 + f1(X1, X2, X

′
1/a,X′

2/a, aτ) = Q1(τ )

a−2X′′
2 + f2(X1, X2, X

′
1/a,X′

2/a, aτ) = Q2(τ ) (12.42)

In this case, the shooting procedure should be based on the initial conditions at
.τ = −1,

.X1(−1) = g, X′
1 (−1) = 0

X2(−1) = h, X′
2 (−1) = 0 (12.43)

where the numbers g and h are determined to satisfy the boundary conditions on the
right end of the interval .−1 ≤ τ ≤ 1,
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.
∂X1(τ ; g, h)

∂τ
|τ=1 ≡ G(g, h) = 0

∂X2(τ ; g, h)

∂τ
|τ=1 ≡ H(g, h) = 0 (12.44)

In this case, every solution g and h of system (12.44) gives the initial position
on the configuration plane .X1X2 at which the system starts with zero velocity its
periodic motion of the period .T = 4a.

12.4.3 Autonomous Case

The nonlinear normal modes represent an important class of periodic motions. The
related references and description of analytical methods can be found in [136] and
[241]. Analogously to the linear theory, the basic nonlinear normal mode solutions
are given by the class of autonomous conservative systems. In this case, Eq. (12.42)
takes the form

.a−2X′′
1 + f1 (X1, X2) = 0

a−2X′′
2 + f2 (X1, X2) = 0 (12.45)

The form of Eqs. (12.45) is easier than (12.42), but the parameter a becomes
unknown. It is possible to avoid determining the parameter a by considering it as a
control parameter for tracking the evolution of shooting diagrams. Alternatively, the
parameter a can be considered as a shooting parameter by imposing one constraint
on the parameters g or h. Let us consider, for instance, the system trajectories in
the configuration plane .X1X2. Introducing the amplitude .A = √

g2 + h2 in (12.43)
gives

.X1 (−1) = A cosϕ

X2 (−1) = A sinϕ

where the angle .ϕ (.0 ≤ ϕ < 2π ) together with the parameter a can play the role of a
new unknowns to be determined by shooting whereas the amplitude A is considered
as a control parameter.
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