
Chapter 10
Impact Modes and Parameter Variations

In this chapter, new parameter variation and averaging tools are introduced for
impact modes. It is also shown that a specific combination of two impact modes
gives another impact mode. The number of impact modes depends on the number of
constraints and therefore can significantly exceed the number of degrees of freedom.
The corresponding manipulations with impact modes become possible due to the
availability of closed-form exact solutions obtained by means of the triangular sine
temporal substitution for impulsively loaded and vibroimpact systems. In particular,
the idea of van der Pol and averaging tool is adapted for the case of impact oscillator.
For illustrating purposes, a model of coupled harmonic and impact oscillators
is considered. Then, mass-spring systems with multiple impacting particles are
considered in order to illustrate impact localization phenomena on high-energy
levels.

10.1 An Introductory Example

Vibration modes with impacts have been under study for several years [23, 182, 242,
249]. In practical terms, such studies deal with the dynamics of elastic structures
whose amplitudes are limited by stiff constraints. These may be designed intention-
ally or occur due to a deterioration of joints. As a result, such kinds of dynamics are
often accompanied by a rattling noise or dither during operating regimes of vehicles
or machine tools. From the theoretical standpoint, the interest to such problems is
driven by the question what happens to linear normal modes as the energy of elastic
vibrations becomes sufficient for reaching the constraints. Interestingly enough,
some of the analytical approaches developed in the area recently found applications
in molecular dynamics [68]. However, due to strong nonlinearities of the impact
dynamics, most of the results relate to periodic particular solutions according to the
idea of nonlinear normal modes [241]. Let us recall that the importance of linear
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Fig. 10.1 The oscillator with
bilateral rigid barriers (on the
left) is replaced by the
oscillator under the periodic
series of external impulses
(on the right)

m
k

x

�2

p2 p2

(a)

(b)

normal modes is emphasized by the linear superposition principle as well as the
parameter variation and averaging methods for weakly nonlinear cases.

Let us consider a one-degree-of-freedom free harmonic oscillator between
two absolutely rigid barriers. A mechanical model of such an oscillator can be
represented as a mass-spring model with two-sided amplitude limiters as shown
in Fig. 10.1a.

The interaction with the barriers at .x = ±Δ is assumed to be perfectly elastic,
and the system is represented in the form

.ẍ + Ω2
0x = 0, |x| ≤ Δ (10.1)

Since the normal mode regimes are periodic by their definition, then the reaction
of constraints can be treated as a periodic series of external impulses acting on the
masses of the system.

Applying this remark to the one-degree-of-freedom system as it is shown in
Fig. 10.1b, the related differential equation of motion is written in the linear form

.ẍ + Ω2
0x = 2p

∞∑

k=−∞
[δ (ωt + 1 − 4k + α) − δ (ωt − 1 − 4k + α)] (10.2)

= pτ ′′ (ωt + α)

where .δ (ξ) is the Dirac function, .τ (ξ) is the triangular sine wave, and 2p, .ω, and
.α will be interpreted as arbitrary parameters.

For further convenience, the right-hand side of Eq. (10.2) is expressed through
second-order generalized derivative of the triangular sine wave with respect to the



10.1 An Introductory Example 301

entire argument, .ωt + α. The parameter .ω will be called a frequency parameter,
although it differs by the factor .π/2 from the regular trigonometric frequency,
.Ω = (π/2) ω. Further both parameters, .ω and .Ω , may be used. In contrast to
system (10.1), the auxiliary system (10.2) is linear but not completely equivalent
to the original one as follows from the analyses below.

Representing unknown steady-state periodic solution in the form

.x = X (τ) , τ = τ (ωt + α) (10.3)

gives the boundary value problem with no singular terms,

.ω2X′′ (τ ) + Ω2
0X (τ) = 0 (10.4)

X′ (τ ) |τ=±1 = pω−2

and the related solution is represented in the triangle wave time form [178]

.x = p

ω2

sin [γ τ (ωt + α)]

γ cos γ
, γ = Ω0

ω
(10.5)

This solution can be verified by direct substitution of expression (10.5) into the
equation of motion (10.2).

A connection between solution (10.5) and vibration of the original system with
stiff constraints is established by imposing the conditions:

• The impulses on the right-hand side of Eq. (10.2) act when the mass strikes the
limiters

.x = ±Δ if τ = ±1 ⇐⇒ τ ′′ �= 0 (10.6)

• The system cannot penetrate through the limiters; therefore,

. |x| ≤ Δ for all τ ∈ [−1, 1] (10.7)

Substituting solution (10.5) into condition (10.6) determines the parameter p

.p = Δω2γ cot γ (10.8)

Substituting now (10.8) in (10.5) gives solution in the final form

.x(t) = Δ
sin [γ τ (ωt + α)]

sin γ
(10.9)

Obviously, solution (10.9) satisfies condition (10.6) automatically. The related
parameter p (10.8) will further be treated as an eigenvalue of the nonlinear (impact)
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Fig. 10.2 Real (a) and “phantom” (b) solutions corresponding to the first (smallest) and second
roots, respectively, .γ 1 = 1.1502 and .γ 2 = −1.1502 + π . The total energy level is .E = 1.2E∗

problem. Other parameters, .ω and .α, are determined by the initial conditions. Let us
assume that .x (0) = 0 and thus .α = 0. As a result, the total energy of the oscillator
per unit mass is expressed through the initial velocity as .E = .[ẋ (0)]2 /2. Then,
taking into account (10.9) and making some analytical manipulations give

.γ = ±1

2
arccos

(
1 − Ω2

0Δ
2

E

)
+ kπ , k = 0, 1, . . . . (10.10)

The right-hand side of expression (10.10) is a sequence of real numbers if the
total energy is above its critical value, .E ≥ E∗ = Ω2

0Δ
2/2, such that the oscillator

can reach the constraints. However, not all of the real numbers .ω lead to real
motions of the original system. Since the auxiliary system (10.2) has no limiters,
then condition (10.6) does not guarantee that the oscillator will remain inside the
region .|x| ≤ Δ during the period of vibration. Therefore, condition (10.7) must
be verified as well. Such a verification implemented for solution (10.9) shows that
condition (10.7) is satisfied only for the smallest root in set (10.10). Figure 10.2
illustrates the temporal mode shapes corresponding to the first two roots .γ . It is
seen that the second solution (on the right) violates condition (10.7) while satisfies
condition (10.6).

Remark 10.1.1 Note that the above approach can be applied to the case of
unilateral limiters. Let us remove, for instance, the left limiter and consider the
oscillator (10.1) under the condition .x ≤ Δ. In this case, the boundary conditions
in (10.4) should be modified as

.X′ (τ ) |τ=±1 = ±pω−2 (10.11)

Such a periodic change of sign effectively switches the directions of positive .δ-
functions on the right-hand side of Eq. (10.2). As a result, the solution takes the
form
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.x(t) = Δ
cos [γ τ (ωt + α)]

cos γ
(10.12)

where the period and the related fundamental frequency are .T = 2/ω and .Ω = πω,
respectively.

10.2 Parameter Variation and Averaging

In order to illustrate the idea of parameter variations for solution (10.9), let us
include the viscous damping into the model and represent the differential equations
of motion between the constraints in the form

.ẋ = v

v̇ = −2ζΩ0v − Ω2
0x (10.13)

|x| ≤ Δ

where .ζ is the damping ratio.
In this case, the triangle wave frequency, .ω, in solution (10.9) is not constant

any more, although the amplitude of the vibration remains constant as long as
the oscillator is in the impact regime. The corresponding parameter variation is
implemented as a change of the state variables .{x(t), v(t)} → {γ (t), φ(t)}, dictated
by solution (10.9)

.x = Δ
sin(γ τ)

sin γ
, v = Ω0Δ

cos(γ τ)

sin γ
e (10.14)

where .τ = τ(φ) and .e = τ ′(φ) depend upon the fast phase .φ = φ(t) and .γ = γ (t)

determines a relatively slow evolution of the temporal mode shape of the vibration.
Substituting (10.14) in (10.13) satisfies the constraint condition automatically

and the system of two differential equations for new state variables

.γ̇ = 2ζΩ0 cos
2 γ τ tan γ

φ̇ = Ω0

γ
[1 + ζ (sin 2γ τ − 2τ cos2 γ τ tan γ )e] (10.15)

Below, the first-order averaging procedure is applied. Notice that the right-hand
side of Eq. (10.15) is periodic with respect to the phase .φ. As proved in Chap. 4, the
averaging can be conducted with respect to the variable .τ over its interval .−1 ≤
τ ≤ 1. As a result, one obtains
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.γ̇ = ζΩ0

(
1 + sin 2γ

2γ

)
tan γ = 2ζΩ0

(
γ + 4

45
γ 5
)

+ O(γ 6)

φ̇ = Ω0

γ
(10.16)

Ignoring the residual terms .O(γ 6) gives a separable equation with explicit
closed-form solution for the frequency ratio

.γ = exp(2ζΩ0t)

[
45

4

r0

1 − r0 exp(8ζΩ0t)

]1/4
(10.17)

The corresponding phase .φ is obtained by using Mathematica package in terms
of special functions

.φ = Ω0

t∫

0

dt

γ
= 1

2ζ

(
4

45r0

)1/4

×
{
2F1

[
−1

4
,−1

4
; 3
4
; r0

]
− exp(−2ζΩ0t)

×[1 − r0 exp(8ζΩ0t)]5/4 2F1

[
1, 1; 3

4
; r0 exp(8ζΩ0t)

]}
(10.18)

where .2F1 is Hypergeometric function [4] and .r0 is a constant parameter, which is
calculated through the initial frequency ratio .γ 0 = Ω0/φ̇(0) as .r0 = 4/(4+45γ −4

0 ).
Keeping the leading-order term only on the right-hand side of the first equation

in (10.16) gives solution

.γ = γ 0 exp(2ζΩ0t)

φ = 1

2ζγ 0
[1 − exp(−2ζΩ0t)] (10.19)

A simple asymptotic analysis of expressions (10.14) and the remark after
expression (10.10) gives the parameter interval, .0 < γ < π/2, within which the
impact dynamics takes place. The vibration mode shapes close to the triangular
wave near the left edge of the interval, but, as the energy dissipates and the
parameter .γ approaches .π/2, vibrations become close to harmonic. The total energy
is expressed through the parameter .γ in the form

.E = 1

2

(
Ω0Δ

sin γ

)2

(10.20)
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Fig. 10.3 The time history of the impact oscillator according to the numerical solution of “exact
equations” (10.15), averaged Eqs. (10.16) without polynomial expansion, and the analytical closed-
form solution given by (10.14), (10.17), and (10.18); the parameters are .γ 0 = 0.2, .ζ = 0.01,
.ω0 = 1.0, and .Δ = 1.0

The duration of the impact stage of the dynamics is estimated via solution (10.19)
as

.γ (tmax) = π

2
�⇒ tmax = 1

2ζΩ0
ln

π

2γ 0
(10.21)

where .γ 0 = γ (0).
As follows from Fig. 10.3, the above averaging procedure leads to practically

no error of the time history record within the entire interval of validity of the
approach. The analytical solution based on the reduced model gives some deviation
from the exact curve at the end of the impact stage of the dynamics. Notice that
there is no impact interactions with the constraints for .t > tmax, where the model
becomes harmonic oscillator whose amplitude exponentially decays due to the
energy dissipation. At this stage, transformation (10.14) is not valid any more, nor
there is any need in transformations. Still the question occurs about such solutions
that would be capable of describing both impact and non-impact stages within the
same closed-form expressions.

10.3 Two-Degrees-of-Freedom Model

Let us obtain first the impact mode solutions for the model shown in Fig. 10.4 under
no damping condition, .c = 0. For the sake of simplicity, let us also assume that
.k1 = k2 = k. On the impact normal mode motions, the system can be effectively
replaced by



306 10 Impact Modes and Parameter Variations

Fig. 10.4 The
two-degrees-of-freedom
model with viscous damping
in the impact subcomponent

1x 2x
m m1k k 2k

�2
c

.ẍ1 + Ω2
0 (2x1 − x2) = p1τ

′′(ωt + α)

ẍ2 + Ω2
0 (2x2 − x1) = 0 (10.22)

where .Ω2
0 = k/m and the parameters .ω and .p1 must provide the following condition

.|x1| ≤ Δ (10.23)

The impact mode solution is represented in the form

.xn(t) = Xn(τ); τ = τ(ωt), n = 1, 2 (10.24)

Substituting (10.24) in (10.22) and eliminating the singular term .e′(ωt) give the
linear boundary value problem

.ω2X′′
1 + Ω2

0 (2X1 − X2) = 0

ω2X′′
2 + Ω2

0 (2X2 − X1) = 0 (10.25)

.X′
1|τ=±1 = p1ω

−2

X′
2|τ=±1 = 0 (10.26)

The corresponding solution has the form

.X1 = p1

2γω2

[
sin(γ τ)

cos γ
+

√
3

3

sin(
√
3γ τ)

cos(
√
3Ω0/ω)

]

X2 = p1

2γω2

[
sin(γ τ)

cos γ
−

√
3

3

sin(
√
3γ τ)

cos(
√
3γ )

]
(10.27)

where .γ = Ω0/ω and the “eigenvalue” p is determined by substituting .X1 into

.X1|τ=±1 = ±Δ (10.28)
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Fig. 10.5 Constraint reaction parameter .p1 versus the fundamental frequency of vibration .Ω =
(π/2) ω in the case of two mass-spring model with one constrained mass; the model parameters
are: .Ω0 = 1.0, .Δ = 0.2

This gives

.p1 = 2γω2Δ[tan γ + (
√
3/3) tan(

√
3γ )]−1 (10.29)

In order to insure that solutions (10.27) and (10.29) describe real motions,
condition (10.7) must be verified.

As follows from Fig. 10.5, the reaction impulses from amplitude limiters are
positive, e.g., reflecting the mass whenever the fundamental frequency of vibrations,
.Ω = (π/2) ω, is on the right of any of the eigenfrequencies of the linear spectrum,
.Ω1 = Ω0 or .Ω2 = √

3Ω0. Note that, while on the right, .Ω should still be close
enough to .Ω1 in order to stay away from the next frequency, .Ω2. The situation is
quite different on the right of second frequency .Ω2, corresponding to the antiphase
mode. Its right neighborhood extends to the infinity with no “obstacles.” It will be
shown below that the condition .Ω � Ω2 provides the so-called mode localization.
The energy outflow from such a localized mode is prevented by the impossibility of
internal resonance with any of the linear modes. Recall that the damping is ignored
here. In reality, the high frequency .Ω cannot be maintained unless a proper energy
inflow into the system is provided.

For numerical validating purposes, Fig. 10.6a, c illustrates the impact mode
shapes1 (10.27) at two different vibration frequencies .Ω , such that .Ω1 < Ω � Ω2
and .Ω2 � Ω . In different color, the diagrams also show profiles obtained by
numerical solution of a model with “soft” amplitude limiters represented by the
elastic strongly nonlinear restoring force .p(t) = [x1(t)/αΔ]2n−1, where .n = 9 and

1 For a better visualization purpose, here and below, displacements of mass-spring models are
shown as vertical.



308 10 Impact Modes and Parameter Variations

1 2
–1.0

–0.5

0.0

0.5

1.0

0 20 40 60 80 100
–1.0

–0.5

0.0

0.5

1.0

t

p

1 2
–1.0

–0.5

0.0

0.5

1.0

0 5 10 15 20
–30

–20

–10

0

10

20

30

t

p

(a) (b)

(c) (d)

Fig. 10.6 Impact mode profiles (a), (c) and the restoring pulses (b), (d) in the right neighborhoods
of the linear eigenfrequencies of the two mass-spring model with amplitude limiters imposed on
the first mass; the parameters are .Δ = 0.2, .Ω0 = 1.0, (a-b): .ω = (2/π)Ω1 + 0.1, and (c)–(d):
.ω = (2/π)Ω2 + 2.5

.α = 0.968 is a numerical factor compensating the smoothing effect. An optimal
number .α would be obviously different for different energy levels.

10.4 A Double-Pendulum with Amplitude Limiters

The top mass .m1 of a free double-pendulum, as shown in Fig. 10.7, oscillates
between the two absolutely stiff constraints providing small angular amplitudes of
the top pendulum

.
∣∣ϕ1

∣∣ ≤ Δ1 � 1 (10.30)

For comparison reason, we also use a “soft version” of constraints (10.30)
represented by the potential energy, which provides a fast-growing restoring force
near the boundaries .ϕ1 = ±Δ1

.V (ϕ1) = β

2n

(
ϕ1

Δ1

)2n

, n � 1 (10.31)

where .α is a positive constant parameter measured in energy units and n is an integer.
Assuming that the both rods of the double pendulum are massless and have the

same length l gives the system Lagrangian
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Fig. 10.7 Double pendulum
with bilateral constraints

1m

2m

1�

2�

.L = 1

2
l2
[
(m1 + m2)ϕ̇

2
1 + 2m2ϕ̇1ϕ̇2 cos(ϕ1 − ϕ2) + m2ϕ̇

2
2

]

−gl
[
m1(1 − cosϕ1) + m2(2 − cosϕ1 − cosϕ2)

]− V (ϕ1) (10.32)

Due to the constraint condition, the angle .ϕ1 must be small. Assuming that the
angle .ϕ2 is also small, let us approximate Lagrangian (10.32) by its quadratic form
while keeping the term .V (ϕ1) unchanged since the maximum ratio .ϕ1/Δ1 is of
order one. Using .

√
g/lt as a new temporal argument under the original notation t

and rescaling the corresponding Euler-Lagrange equations, respectively, give

.μ2ϕ̈1 + ϕ̈2 + μ2ϕ1 = −β1

(
ϕ1

Δ1

)2n−1

ϕ̈1 + ϕ̈2 + ϕ2 = 0 (10.33)

where .μ2 = 1 + m1/m2 and .β1 = β/(m2glΔ1) are unitless parameters and dots
indicate differentiation with respect to the new temporal argument.

We seek a family of (impact mode) periodic solutions on which the reaction of
constraints represents a periodic sequence of .δ-functions. For that reason, we switch
from system (10.32) to a linear non-autonomous system by replacing the nonlinear
term as

. − β1

(
ϕ1

Δ1

)2n−1

→ p1τ
′′(ωt + α) (10.34)

The linearized system (10.33) has normal mode vectors and natural frequencies

.e1 = 1√
2μ (μ + 1)

(
1
μ

)
, Ω1 =

√
μ

μ + 1
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e2 = 1√
2μ (μ − 1)

(
1
−μ

)
, Ω2 =

√
μ

μ − 1
(10.35)

where the modal vectors satisfy the orthogonality condition, .eT
j Mei = δji , with

respect to the inertia matrix

.M =
(

μ2 1
1 1

)

Transition to the principal coordinates .{q1, q2} is given by

.

(
ϕ1

ϕ2

)
= q1e1 + q2e2 (10.36)

and

.q̈1 + Ω2
1q1 = p1√

2μ (μ + 1)
τ ′′(ωt + α)

q̈2 + Ω2
2q2 = p1√

2μ (μ − 1)
τ ′′(ωt + α) (10.37)

Now two-parameter families of periodic solutions for both independent oscil-
lators (10.37) can be obtained as described in Sect. 10.1 by means of the triangle
wave temporal substitution, .τ = τ(ωt + α). Substituting such solutions in (10.36)
and determining the impulse parameter .p1 from the condition .ϕ1|τ=1 = .Δ1 bring
the solution to its final form (Fig. 10.8)

1 2

0.6 0.8 1.0 1.2 1.4 1.6

–1

–2

0

1

2

p1

Fig. 10.8 The restoring impulse parameter versus the fundamental frequency of the double-
pendulum impact mode vibration, .Ω = (π/2) ω
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.p1 = 2γ 1Δ1μ(μ + 1)ω2 [tan γ 1 + (γ 2/γ 1
)
tan γ 2

]−1 (10.38)

= 2Δ1μ(μ + 1)Ω1ω

[
tan

Ω1

ω
+ Ω2

Ω1
tan

Ω2

ω

]−1

and

.

(
ϕ1

ϕ2

)
= Δ1

[
tan γ 1 + γ 2

γ 1
tan γ 2

]−1

× (10.39)

.

[(
1
μ

)
sin
[
γ 1τ (ωt + α)

]

cos γ 1
+ γ 2

γ 1

(
1
−μ

)
sin
[
γ 2τ (ωt + α)

]

cos γ 2

]

where .γ 1,2 = Ω1,2/ω and the relationships .μ − 1 = μΩ−2
2 and .μ + 1 = μΩ−2

1
have been used in manipulations.

Note that the frequency of first impact mode must be close enough to the first
linear frequency .Ω1 to insure that it is still away from the left neighborhood of the
next frequency, .Ω2. In the current case, .Ω2 is the highest frequency; therefore its
right neighborhood has no upper boundary. As a result, the highest impact mode
becomes spatially localized as its frequency parameter grows. The localization
admits explicit estimation by the asymptotic expansion

.
ϕ2

ϕ1
|τ=1 = μ

(
tan γ 1 − γ 2

γ 1
tan γ 2

)(
tan γ 1 + γ 2

γ 1
tan γ 2

)−1

= −1 − 1

3
ω−2 − O

(
ω−4

)
(10.40)

It follows from (10.40) that .(ϕ2/ϕ1) |τ=1→ −1 as .ω → ∞, so that the amplitude
of the bottom mass becomes negligibly small, whereas the upper mass has the
amplitude determined by the angular limiters. Figures 10.9 and 10.10 illustrate the
impact mode profiles above first and second eigenfrequency of the linear spectrum,
respectively. The results of numerical integration are obtained for the soft amplitude
limiters represented by the high-degree potential energy (10.31) with the parameters
.n = 20 and .β = 0.702145.

10.5 Averaging in the 2DOF System

Let us consider now the model shown in Fig. 10.4. The coefficient of restitution
for the impact interactions is assumed to be unity, while a relatively slow energy
dissipation is possible due to the viscous damping. Also, the base springs have equal
stiffness, and the coupling between the oscillators is weak, such that .k1 = k2 =
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Fig. 10.9 Horizontal displacements of the top (.x1) and bottom (.x2) masses of the double-
pendulum near the lower frequency of the linear spectrum, .ω = (2/π)Ω1 + 0.1; the system
parameters are .l = 1.0, .Δ1 = 0.1, and .μ = 2.0
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Fig. 10.10 Same as Fig. 10.9 for the frequency .ω = (2/π)Ω2 + 1.0; the trend to impact mode
localization is developed

K >> k. In order to introduce the corresponding parameter variation technique, let
us represent the differential equations of motion in the following general form

.ẋ1 = v1

v̇1 = −f1(x1, x2, v1, v2) + pe′(φ)

ẋ2 = v2 (10.41)

v̇2 = −f2(x1, x2, v1, v2)

where .pe′(φ) = .pτ ′′(φ) and

.f1(x1, x2, v1, v2) = 2ζΩ0v1 + Ω2
0x1 + β(x1 − x2)

f2(x1, x2, v1, v2) = Ω2
0x2 − β(x1 − x2) (10.42)

are impact and linear force components per unit mass, .β = k/m is the parameter of
coupling, .ζ = c/(2Ω0m) is the damping ratio, and .Ω0 = √

K/m.
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The idea of parameter variations is implemented below as a change of the state
variables

.{x1(t), v1(t), x2(t), v2(t)} → {γ (t), φ(t), A(t), B(t)}

according to expressions

.x1 = Δ
sin(γ τ)

sin γ

v1 = Ω0Δ
cos(γ τ)

sin γ
e

x2 = A sin
πτ

2
+ B cos

πτ

2
e (10.43)

v2 = Ω0

(
A cos

πτ

2
e − B sin

πτ

2

)

where .τ = τ(φ) and .e = e(φ).
It is assumed in (10.43) that the principal frequency of the vibration, .dφ/dt , is

dictated by the impact subcomponent rather than by a natural frequency of the cor-
responding linearized system. However, the scaling factor .Ω0 is still used in order to
indicate the dominant oscillator of the dynamic process under consideration. Notice
that .x1and .v1 are transformed analogously to (10.14), whereas the transformation
of .x2 are .v2 is based on the standard general solution of the harmonic oscillator
represented however in the nonsmooth temporal transformation form.

Substituting (10.43) in (10.41) gives

.γ̇ = e

Ω0Δ
cos γ τ

(
f1 sin γ − Ω2

0Δ sin γ τ
)
tan γ

φ̇ = 1

γΩ0Δ
[f1 sin γ (sin γ τ − τ cos γ τ tan γ )

+Ω2
0Δ cos γ τ(cos γ τ + τ sin γ τ tan γ )]

Ȧ = −1

2

[
Ω0(1 − cosπτ) − πφ̇

]
B (10.44)

+
(
1

2
Ω0A sinπτ − 1

Ω0
f2 cos

πτ

2

)
e

Ḃ = 1

2

[
Ω0(1 + cosπτ) − πφ̇

]
A + 1

Ω0
f2 sin

πτ

2
− e

1

2
Ω0B sinπτ

where the functions .f1 and .f2 are expressed through the new variables by
substitution (10.43) in (10.42) and the impact term .pe′(φ) has been eliminated by
setting (compare with (10.8))
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.p = p(t) = ΔΩ0φ̇(t) cot γ (t) (10.45)

Further reduction of system (10.44) includes two major steps, such as averaging
with respect to the fast phase .φ and applying the power series expansion with
respect to the parameter .γ . Since the periodic functions in Eq. (10.44) are expressed
through the triangular sine wave .τ(φ), then the averaging can be implemented
by considering .τ as an argument of the averaging as described in Chap. 4. Then,
truncating the power series expansions with respect to .γ gives

.γ̇ = 2ζΩ0γ − 2β

πΩ0

B

Δ
γ 2 + O(γ 3)

φ̇ = Ω0

γ
− 2β

45Ω0

(
1 − 60

12 − π2

π4

A

Δ

)
γ 3 + O(γ 4)

Ȧ = −
(

Ω0 + β

2Ω0
− π

2
φ̇

)
B (10.46)

Ḃ =
(

Ω0 + β

2Ω0
− π

2
φ̇

)
A − 4βΔ

3Ω0

12 − π2

π4 γ 2 − 4βΔ

π2Ω0
+ O(γ 3)

Approximate Eqs. (10.46) describe only one-way interaction between the oscil-
lators so that the first two equations can be easily solved analytically; see the
above one-degree-of-freedom case. Then, substituting the result into the next two
equations gives a linear set of equations with variable coefficients for .A(t) and
.B(t), which can also be considered analytically. Let us skip such kind of analysis
but illustrate the final result in Fig. 10.11. The diagrams show the energy versus
time of the second oscillator based on numerical solutions for three different sets
of equations, such as exact Eqs. (10.44), the equations obtained by averaging (not
described here), and the reduced set (10.46). The solutions are in quite a good match
most of the time interval; however, the solution of truncated set (10.46) shows some
error near the end of the interval. This happens because the parameter .γ is slowly
approaching its limit magnitude .π/2, at which the first oscillator stops interacting
with the constraints and the entire system becomes linear. Remind that Eq. (10.46)
was obtained by truncating the polynomial expansions in the neighborhood of
.γ = 0; as a result, the accuracy of the equations is low near the point .γ = π/2. The
precision can be significantly improved by keeping few more terms of the power
series with respect to .γ .

10.6 Impact Modes in Multiple Degrees of Freedom Systems

Let us consider the N -degrees-of-freedom conservative system described by the
coordinate vector .x = .(x1, . . . , xN)T ∈ RN . The corresponding mass-spring model
is shown in Fig. 10.12. It is assumed that displacements of the ath mass are limited



10.6 Impact Modes in Multiple Degrees of Freedom Systems 315

0 20 40 60 80
- 1.5

- 1.0

- 0.5

0.0

0.5

1.0

1.5

t

x1

1

2

3

4

0 20 40 60 80
- 0.06

- 0.04

- 0.02

0.00

0.02

0.04

0.06

t

x2

0 20 40 60 80

- 6

- 4

- 2

0

2

4

6

t

v1

1

2

3

4

0 20 40 60 80

- 0.06

- 0.04

- 0.02

0.00

0.02

0.04

0.06

t

v2

(a) (b)

(c) (d)

Fig. 10.11 Numerical validation of the transformed and averaged equations: (a)–(b)—mass1
and (d)–(c)—mass2. Curves: 1, averaged Eqs. (10.44); 2, the averaged equations followed by
polynomial expansions (10.46); 3, Eqs. (10.44) without averaging; and 4, soft-wall approximation.
The initial conditions and model parameters are as follows: .γ (0) = 0.2, .φ(0) = 0.0, .A(0) =
−0.003, .B(0) = 0, .ζ = 0.01, .Ω0 = 1.0, .Δ = 1.0

Fig. 10.12 The mass-spring model of a discrete elastic system with displacement limiters

by perfectly stiff elastic constraints, such that .|xa| ≤ Δa or, in the matrix form,

.

∣∣∣ITa x
∣∣∣ ≤ Δa (10.47)

where .Ia = .

(
0, . . . , 1

a
, . . . , 0

)T

.

Inside the domain (10.47), the differential equations of motion are assumed to be
linear

.M ẍ + Kx = 0 (10.48)

where M and K are constant mass and stiffness .N × N -matrixes, respectively.
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The form of matrix equation (10.48) is general enough to describe different
models, not necessarily mass-spring chains; see the first example below. In order
to obtain impact mode solutions, the systems (10.47) and (10.48) are replaced by
the following impulsively forced linear system under no constraints condition

.M ẍ + Kx = pIaτ ′′ (ωt + α) (10.49)

where p is a priori unknown “eigenvalue” and .ω and .α are arbitrary constant
parameters.

A family of periodic solutions of the period .T = 4/ω can be found as a linear
superposition of solutions (10.5) for each of the N linear modes of system (10.48)
with appropriate replacement of the parameters

.x(t) = p

ω2

N∑

j=1

(
eT
j Ia
)
ej

sin[γ j τ (ωt + α)]
γ j cos γ j

; γ j = Ωj

ω
(10.50)

where .ej and .Ωj are the j th normal mode and the natural frequency of linear
system (10.48); it is assumed that .Ωi < Ωj when .i < j , and the linear normal
modes are normalized as

.eT
j Mei = δji (10.51)

where .δji is the Kronecker symbol.
The impulses act at those time instances when the ath mass interacts with the

constraints; in other terms,

.ITa x = ±Δa when τ = ±1 (10.52)

Substituting (10.50) into (10.52), one obtains the related “eigenvalue”

.p = Δaω
2

⎡

⎣
N∑

j=1

(eT
j Ia)

2 tan γ j

γ j

⎤

⎦
−1

(10.53)

where .eT
j Ia is the ath component of the j th linear mode vector.

Substituting (10.53) into (10.50) gives a two-parameter family of the periodic
solutions for the impact modes. The parameter .α is an arbitrary phase shift, whereas
the frequency parameter .ω is subjected to some restrictions due to condition (10.47).
As shown in [182], condition (10.47) is satisfied when the principal frequency of
vibration, .Ω = (π/2) ω, exceeds the highest frequency of the linear spectrum, .Ω >

ΩN . The corresponding impact mode represents an extension of the highest linear
normal mode, in which any two neighboring masses vibrate out of phase. Such an
impact mode becomes spatially localized as .Ω → ∞. This result was obtained also
by qualitative methods in [249]. Condition (10.47) may be satisfied also when the
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frequency .Ω is located in a small enough right neighborhood of any frequency .Ωj

and, in addition, .Ωi/Ωj is not an odd number for all .i �= j . The idea of the proof is
to find such cases when .ITa x is a monotonic function of .τ on the interval .−1 ≤ τ ≤
1, and hence condition (10.52) at the boundaries guarantees that inequality (10.47)
holds inside the entire interval.

Generally, the impact modes appear to have quite a complicated spectral
structure. Therefore, a detailed investigation may be required in order to formulate
necessary and sufficient conditions of impact mode existence. However, a sufficient
condition of non-existence can be formulated by using the physical meaning of the
parameter p. Namely, if an impact mode exists, then the inequality .p (ω) > 0 holds.
Indeed, the parameter p (10.53) cannot be negative for any real impact vibrating
regime as a reaction of constraint, because it cannot be directed toward the barrier.
Thus impact modes cannot exist when .p (ω) < 0.

Note that investigation of stability properties of the impact modes is rather a
separate subject. Later we discuss it based on a mass-spring chain model in a semi-
qualitative way.

10.7 Systems with Multiple Impacting Particles

Let us consider the case of two particles, say the ath and bth, under the constraint
conditions. These conditions are .|xa| ≤ Δa and .|xb| ≤ Δb or, in the vector
notations,

.

∣∣∣ITa x
∣∣∣ ≤ Δa and

∣∣∣ITb x
∣∣∣ ≤ Δb (10.54)

In this case, the impulsive excitation on the right-hand side of the auxiliary
equation must act on both ath and bth particles, so that the equation takes the form

.M ẍ + Kx = (paIa + pbIb)τ ′′ (ωt + α) (10.55)

where .pa and .pb are parameters to be determined.
The related solution includes terms related to .pa and .pb and can be represented

in the form

.x(t) = 1

ω2

N∑

j=1

[
pa

(
eT
j Ia
)
ej + pb

(
eT
j Ib
)
ej

] sin[γ j τ (ωt + α)]
γ j cos γ j

(10.56)

Following the idea of normal modes, let us assume that the impact mode
periodic motion is accompanied by synchronous impacts of both particles with the
constraints according to conditions

.ITa x = ±Δa and ITb x = ±Δb when τ = ±1 (10.57)
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Substituting (10.56) in (10.57) gives linear algebraic equations with respect to
.pa and .pb in the form

.kaapa + kabpb = Δa

kbapa + kbbpb = Δb (10.58)

where

.kab = 1

ω2

N∑

j=1

(
eT
j Ia
) (

eT
j Ib
) tan γ j

γ j

(10.59)

Expressions (10.56) and (10.58) give a formal impact mode solution, which
indeed describes an impact mode when the determinant of system (10.58) is non-
zero and condition (10.54) holds. Solution (10.56) can be viewed as a strongly
nonlinear superposition of the two basic impact modes with a single impacting mass.

10.7.1 Mass-Spring Chain

One Impact Particle

Let us consider a mass-spring chain of N identical particles under the constraint
condition

.mẍn + k (−xn−1 + 2xn − xn+1) = 0; n = 1, . . . , N (10.60)

.x0 = xN+1 = 0; |xa| ≤ Δa ; 1 < a < N (10.61)

where k and m are the stiffness of each spring and the mass of each particle,
respectively.

The corresponding impulsively loaded linear system is represented as

.ẍn + Ω2
0 (−xn−1 + 2xn − xn+1) = pδanτ

′′ (ωt + α) (10.62)

where .Ω0 = √
k/m is a common physical factor for all the eigenfrequencies and

the parameter of impulses p is measured per unit mass.
In this case, the corresponding linear modes and their frequencies are described

exactly by expressions

.ej =
√

2

N + 1

(
sin

πj

N + 1
, . . . , sin

Nπj

N + 1

)T

(10.63)
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Ωj = 2Ω0 sin
πj

2 (N + 1)

where .j = 1, . . . , N .
Note that .j = 1+N formally gives the relationship2 .ΩN+1 = 2Ω0, which is used

below for convenience of analytical manipulations. The basis vectors of principal
coordinates are normalized as .eT

j ei = δji since the inertia matrix of system (10.62)
is an identity matrix. The ath component of the j th normal mode vector is therefore

.eT
j Ia =

√
2

N + 1
sin

aπj

N + 1
(10.64)

where the matrix column .Ia = .

(
0, . . . , 1

a
, . . . , 0

)T

was used first in (10.47).

Now adaptation of solution (10.50) and (10.53) gives in component-wise form

.xn = 2pa

(N + 1)ω2

N∑

j=1

sin
πnj

N + 1
sin

πaj

N + 1

sin[γ j τ (ωt + α)]
γ j cos γ j

(10.65)

(n = 1, . . . , N)

and

.pa = Δaω
2

⎡

⎣ 2

(N + 1)

N∑

j=1

sin2
πaj

N + 1

tan γ j

γ j

⎤

⎦
−1

(10.66)

where .γ j = Ωj/ω = (π/2)Ωj/Ω; recall that the period of triangle wave .τ of is
normalized to four.

For numerical illustrations below, we always set .Ω0 = √
k/m = 1.0. As follows

from Eq. (10.62), the factor .Ω0 can be removed from the system by rescaling the
time argument and the parameter .ω. A numerical illustration of the dependence
.pa(ω) and an example of the impact mode amplitude profile are given in Fig. 10.13a
and b, respectively (see also Fig. 10.14). Recall that the frequency parameter .ω value
must provide the condition .pa(ω) > 0 for the assumed restoring impulses of the
amplitude limiters.

Internal Resonances

Let us discuss physical specifics in a qualitative way based on a typical temporal
mode shape of an uncoupled impact oscillator

2 Note that this is just a suitable notation since the .(N + 1)th frequency does not physically exist.
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Fig. 10.13 Numerical verification of the existence of impact mode: (a) restoring pulses .p6 versus
the fundamental frequency of vibration, .Ω , for the case of one vibroimpact particle .a = 6 (.Δ6 =
0.2) of the chain of .n = 13 particles, where the dots represent natural frequencies of the linear
chain, .Ωi (.i = 3, . . . , 13); (b) the corresponding mode shape profiles for .ω = (2/π)Ω5 + 0.02
obtained from the analytical solution (blue) and numerical solution (red) for the soften restoring
pulses represented by the force .∼ 2.18747(x6/Δ6)
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Fig. 10.14 Same as Fig. 10.13b for the case .ω = (2/π)Ω6 + 0.02

.x(t) = Δ
sin[γ τ(ωt)]

sin γ
; 0 < γ ≤ π

2
(10.67)

where .γ is the parameter characterizing the energy level as shown in (10.20).
Recall that the upper boundary .γ = π/2 corresponds to the grazing regime

with the sine wave temporal shape. When .γ → 0, we have the triangle wave of
an infinitely large frequency, since .ω = O(γ −1) as follows from (10.5): .ω and
.γ in (10.67) are coupled such that .ωγ is equal to the fixed natural frequency of
the oscillator without the effect of constraints. Obviously the intensive vibroimpact
oscillation makes the effect of the linear part of restoring force on the time history
of vibration negligible.

Let us consider the Fourier expansion of function (10.67)



10.7 Systems with Multiple Impacting Particles 321

.x(t) = Δ

∞∑

s=1

bs sin[(2s − 1)Ωt], Ω = π

2
ω (10.68)

where .Ω is the fundamental trigonometric frequency of vibration and

.bs = 8(−1)s+1γ cot γ

(2s − 1)2π2 − 4γ 2 (10.69)

The amplitude .bs is defined for any .γ despite of the uncertainty at .γ = (2s −
1)π/2, where the corresponding limit must be calculated. For illustrating purposes,
let us consider the chain model described by Eq. (10.62) by imposing the temporal
mode shape (10.68) on the vibroimpact particle .n = a as .xa(t) = x(t). From
the physical standpoint, such an assumption ignores the feedback from the rest of
the chain to the particle .n = a. The feedback vanishes in the asymptotic limit of
intensive impacts, .ω → ∞, which can be seen explicitly after switching to the
phase variable .ωt in Eq. (10.62). The kinematic constraint on the displacement .xa(t)

effectively splits the chain into two shorter chains with .N1 = a − 1 and .N2 =
N −a particles. Each of the two chains has one end fixed and another one oscillating
according to dependence (10.68). Both chains obey the differential equations of the
same form with either .N = N1 or .N = N2

.ẍn + Ω2
0 (−xn−1 + 2xn − xn+1) = δNnΩ

2
0Δ

∞∑

s=1

bs sin[(2s − 1)Ωt] (10.70)

where .δNn is Kronecker’s symbol, .n = 1, . . . , N , and .N = Nα (.α = 1, 2).
System (10.70) is solved by taking into account (10.63) and switching to the

principal coordinates q as

.x =
N∑

j=1

qj (t)ej (10.71)

gives the differential equation for the j th mode

.q̈j + Ω2
j qj = Ω2

0

(
eT
j IN

)
Δ

∞∑

s=1

bs sin[(2s − 1)Ωt] (10.72)

The corresponding steady-state (particular) solution is

.qj = Ω2
0 (e

T
j IN)Δ

∞∑

s=1

bs sin[(2s − 1)Ωt]
Ω2

j − (2s − 1)2Ω2
(10.73)

where
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.eT
j IN =

√
2

Nα + 1
sin

Nαπj

Nα + 1

Ωj = 2Ω0 sin
πj

2 (Nα + 1)
; α = 1, 2 (10.74)

Taking into account (10.74) and the numbers .N1 = a − 1 and .N2 = N − a gives

.Ω = π

2
ω = 2Ω0

2s − 1
sin

πj

2a
; j = 1, . . . , N1. (10.75)

Ω = π

2
ω = 2Ω0

2s − 1
sin

πj

2 (N − a + 1)
; j = 1, . . . , N2 (10.76)

where .1 < a < N and .s = 1, 2, . . ..
Since resonance frequencies (10.75) and (10.76) are obtained by splitting the

chain in two separate pieces by inserting the vibroimpact oscillator in between
two subsystems and ignoring possible feedback, then let us clarify how “exact
solution” (10.65) does behave under the input frequencies estimated by (10.75)
and (10.76). Note that, in contrast to solution (10.73), solution (10.65) does not
have singularities at frequencies (10.75) and (10.76). Still Fig. 10.15 depicts sharp
increases of the corresponding amplitudes confirmed also by the results of numerical
integration under soften constraint conditions. Further, Fig. 10.16 illustrates the
trend to impact mode localization as the input frequency .ω exceeds the highest
resonance frequency by about 6%. The fragment (a) shows a match of mode profiles
obtained from different solutions and represented by different colors on the same
graph. Recall that solution (10.73) is applied separately to the left and right parts
of the chain by using (10.74) with .α = 1 and .α = 2, respectively. Also, modal
vectors (10.63) must be calculated separately for the numbers of particles .N1 and
.N2, respectively. Finally, when switching back to the coordinates .x by means of
expansion (10.71), the particles of the right part of the chain, which is after the
inserted vibroimpact particle, .n = a, must be taken in the reverse way: .n =
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Fig. 10.15 Impact mode profiles associated with resonance frequencies: (a) (10.75) for .ω =
1.22985 .(j = N1) and (b) (10.76) for .ω = 1.24877 .(j = N2); both shapes are obtained for
the chain parameters: .n = 13, .a = 6, .Δ6 = 0.2, and .Ω0 = 1.0, using analytical solution (10.65)
and numerical integration with constraints replaced by the restoring force .1.73828(x6/Δ6)
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Fig. 10.16 Validation of analytical solutions for the frequency, .ω = 1.34877 .(j = N2): (a) impact
mode profiles obtained from solutions (10.65), (10.71)–(10.73), and numerical solution for the
chain with soft amplitude limiters described by the restoring force replaced by the restoring force
.1.73828(x6/Δ6)

17, and (b) initial phase of the restoring pulses from the soft amplitude limiters

N2,. . . ,1. The fragment (b) of Fig. 10.16 illustrates the temporal profile of restoring
pulses produced by the soften amplitude limiters. Obviously such pulses are not
perfectly localized, and their timing cannot perfectly match the collision times
dictated by the auxiliary system (10.62) through the frequency .ω. As a result, the
smoothed pulses (Fig. 10.16b) may eventually desynchronize and corrupt the spatial
mode profile as compared to the analytical predictions. A long-term simulation
nonetheless confirms that the localization of amplitude envelope is maintained. This
happens because, for the given frequency .ω, the spectrum of vibroimpact oscillator
has no intersections with the natural spectra of both left and right parts of the chain.
As a result, no more or less significant energy exchange between the vibroimpact
oscillator and the rest of the chain can occur.

Two Impact Particles

Since the auxiliary system (10.62) is linear, then adding more impulsive terms to
its right-hand side will result in a linear combination of solutions similar to (10.65).
For instance, if two masses, .n = a and .n = b, are interacting with their amplitude
limiters, then solution (10.65) is generalized as

.xn = 2

(N + 1)ω2 (10.77)

×
N∑

j=1

(
pa sin

πaj

N + 1
+ pb sin

πbj

N + 1

)
sin

πnj

N + 1

sin[γ j τ (ωt + α)]
γ j cos γ j

(n = 1, . . . , N)

Recall that the original system is strongly nonlinear due to its inherent impacts.
Therefore any conventional linear modal superposition is impossible. In the present
case, it follows from the fact that the parameters of restoring pulses, .pa and .pb, are
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not independent but coupled by algebraic system (10.58). This system is fortunately
linear and thus admits solution

.pa = Δakbb − Δbkab

kaakbb − kabkba

pb = Δbkaa − Δakba

kaakbb − kabkba

(10.78)

where

.kab = 2

(N + 1)ω2

N∑

j=1

sin
πaj

N + 1
sin

πbj

N + 1

tan γ j

γ j

, γ j = Ωj/ω (10.79)

and .{Ωj } is the (linear) natural spectrum of the chain.
Furthermore, for the impulses to be restoring, both numbers, .pa and .pb, must

be positive. This imposes certain conditions on the range of frequencies .ω as seen
from the illustrating example in Fig. 10.17. For instance, both restoring pulses are
positive near frequency .Ω9 which is indicated by the fifth red dot from the left. Then,
Fig. 10.18 illustrates the spatial mode shape profile of the corresponding impact
vibration given by solution (10.77).

High-Frequency Limits and Impact Localization

Let us show that the impact mode periodic solution (10.65) becomes localized as
.ω → ∞ or .γ j → 0. First, replacing the trigonometric functions by their asymptotic
estimates .sin(γ j τ ) .∼ γ j τ , cos.γ j .∼ 1, and .tan γ j ∼ γ j and using the standard
trigonometric sums [71] give
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Fig. 10.17 Restoring pulses .pa and .pb versus the fundamental frequency of vibration, .Ω , for the
case of two vibroimpact particles .a = 5 and .b = 9 of the chain of .N = 12 particles; the dots
represent natural frequencies of the linear chain, .Ωi (.i = 5, . . . , 12)
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Fig. 10.18 Spatial impact mode shapes for the frequency parameter .ω = (2/π)Ω9 + 0.02
obtained from both analytical (black) and numerical (red) solutions after one cycle of vibration;
the numerical integration is using the soften constraints represented by the restoring force .∼
(xa,b/Δa,b)

17

.xn ∼ 2pa

(N + 1)ω2

N∑

j=1

sin
πnj

N + 1
sin

πaj

N + 1
τ (ωt + α) (10.80)

= pa

ω2 δanτ (ωt + α)

where .δan is Kronecker’s symbol, and

.pa ∼ Δaω
2

⎡

⎣ 2

(N + 1)

N∑

j=1

sin2
πaj

N + 1

⎤

⎦
−1

= Δaω
2 (10.81)

Substituting then (10.81) in (10.80) gives

.xn ∼ Δaδanτ (ωt + α) as ω → ∞ (10.82)

Expression (10.82) shows that the ath particle of the chain vibrates according to
the triangle wave temporal mode shape with the infinitely large frequency, whereas
all the other particles are at rest. Therefore, the impact mode becomes spatially
localized as .ω → ∞.

Let us consider the higher-frequency domain, .(π/2) ω >> ΩN , for the above
example of mass-spring system with two impact particles, (10.77) through (10.79).
In this case, .tan(Ωj/ω) > 0 for all .j = 1, . . . , N , and therefore, the coefficients
.kab (10.79) create the so-called Gram matrix with a non-zero determinant [30],
.kaakbb − kabkba �= 0. Besides, the asymptotic estimation below confirms this
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conclusion. First, the above assumption gives .γ j = Ωj/ω � π/2 and the following
asymptotic estimate

.
sin(γ j τ )

γ j cos γ j

= τ + 1

2
γ 2

j

(
τ − τ 3

3

)
+ O

(
γ 4

j

)
(10.83)

Then substituting (10.83) in (10.77) and using the trigonometric sum [71]

.
2

(N + 1)

N∑

j=1

sin
πnj

N + 1
sin

πaj

N + 1
γ 2

j

= 1

4
γ 2

N+1(−δa,n−1 + 2δa,n − δa,n+1)

give

.xn = ω−2 (paδan + pbδbn) τ − 1

8
ω−2γ 2

N+1

(
τ − τ 3

3

)
× (10.84)

× [pa

(
δa,n−1 − 2δan + δa,n+1

)+ pb

(
δb,n−1 − 2δbn + δb,n+1

)]+ O
(
ω−6

)

The parameters of restoring pulses, .{pa, pb}, are determined from (10.79), where

.kab = ω−2δab − 1

12
ω−2γ 2

N+1

(
δa,b−1 − 2δab + δa,b+1

)+ O
(
ω−6

)
(10.85)

Since .ω−2γ 2
N+1 = O(ω−4), we have .kab = ω−2δab in the leading order

approximation. Therefore, .{pa, pb} = ω2{Δa,Δb}as .ω → ∞. In this limit, the
vibration energy becomes localized on the two particles vibrating between the
barriers with the triangle wave temporal shape

.xn ∼ (Δaδan + Δbδbn) τ (ωt + α) as ω → ∞ (10.86)

According to (10.86), the particles with numbers .n �= a and .n �= b are at
rest. However, they oscillate with amplitudes of different orders of .ω−2 when the
parameter .ω takes a large but finite value. Expansion (10.84) also shows that the
temporal mode shapes of particles .n = a and .n = b are nonsmooth and getting
closer to the triangle wave as the frequency .ω increases. The temporal mode shapes
of the nearest particles, .n = a ±1 and .n = b ±1, have amplitudes of order .ω−2 and
appear to be twice continuously differentiable with respect to time, t . In particular,
calculating directly first two derivatives and taking into account that .τ ′2 = 1 give
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.
d

dt

(
τ − τ 3

3

)
= ω

(
1 − τ 2

)
τ ′ ∈ C1 (R)

d2

dt2

(
τ − τ 3

3

)
= ω2

[
−2ττ ′2 +

(
1 − τ 2

)
τ ′′
]

= −2ω2τ ∈ C (R)

where prime denotes differentiation with respect to the whole argument of the
triangle wave, .τ ′ ≡ dτ/d (ωt + α); recall that the underlined terms are zero3

because .1 − τ 2 = 0 on the set of points .{t : τ (ωt + α) = ±1}, where .τ ′′
.�= 0.

The Case of Multiple Impact Particles

A formal extension of relationships (10.56) through (10.59) on the case of multiple
vibroimpact particles is quite straightforward. For instance, solution (10.56) is
generalized as

.xn(t) = 1

ω2

N∑

j=1

∑

i∈σ

pi(eT
j Ii )(ej In)

sin[γ j τ (ωt + α)]
γ j cos γ j

= 2

(N + 1)ω2 ×

×
N∑

j=1

∑

i∈σ

pi sin
πij

N + 1
sin

πnj

N + 1

sin[γ j τ (ωt + α)]
γ j cos γ j

(10.87)

(n = 1, . . . , N)

where the inner summation index covers locations of the vibroimpact particles, .σ ⊂
{1, . . . , N}.

As a result, system (10.58) takes the form

.

∑

i∈σ

kinpi = Δn, n ∈ σ (10.88)

where

.kin = 1

ω2

N∑

j=1

(eT
j Ii )(e

T
j In)

tan γ j

γ j

(10.89)

= 2

(N + 1)ω2

N∑

j=1

sin
πij

N + 1
sin

πnj

N + 1

tan γ j

γ j

are the elements of .nσ × nσ square matrix, where .nσ is length of the list .σ .

3 It gives a zero contribution into the related integrals of the theory of distributions.
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10.8 Modeling the Energy Loss at Perfectly Stiff Barriers

In this section, we follow reference [191], where the methodology of the present
chapter was generalized on the case of inelastic interactions with amplitude limiters.
The present modeling is based on the assumption that both the moving mass and
barriers (walls) are perfectly stiff. An illustrating one degree-of-freedom model
is shown in Fig. 10.1. In other words, (elastoplastic) collision deformations are
assumed to be negligible as compared to rigid-body displacements, while each
collision event happens momentarily. Nevertheless, even under such assumptions,
terms elastic and inelastic (plastic) collisions are typically used in the literature
in order to characterize reversible and irreversible parts of the kinetic energy,
respectively. A one-dimensional collision of a moving mass with stiff obstacles is
described in a phenomenological way as a discontinuity of the velocity changing its
direction and magnitude as

.ẋ(ti + 0) = −kẋ(ti − 0), 0 ≤ k ≤ 1 (10.90)

where .ti is the collision time and k is the so-called coefficient of restitution, which
is further represented in the form

.k = 1 − ε (10.91)

According to (10.91), .ε = 0 means an elastic collision with no energy loss,
whereas .ε = 1 is a perfectly plastic limit, when all the kinetic energy momentarily
dissipates as the particle strikes an obstacle. In this section, the energy loss due to
collisions is assumed to be small so that

.0 < ε � 1 (10.92)

Note that condition (10.90) fixes the time arrow of the dynamics by breaking the
time symmetry .t −→ −t similarly to the viscous term .2ζΩẋ of the linear oscillator
.ẍ + 2ζΩẋ + Ω2x = 0. On first look, such temporal asymmetry creates an obstacle
for describing the vibroimpact dynamics in terms of the new time argument .τ , which
is viewed as an oscillating time periodically changing its direction in a reversible
way. In other words, when dealing with the time argument .τ , it is difficult to specify
the before and after subdomains. Nonetheless, as a first step, let us show that the
representation .x = X (τ)+Y (τ)e with .τ = τ (ωt) and .e = e (ωt) can geometrically
comply with condition (10.90) assuming that a system, which is described with the
coordinate .x(t), can maintain its periodicity due to some energy inflows. Using the
differentiation rules for a continuous coordinate x gives the velocity .ẋ = [Y ′(τ ) +
X′ (τ ) e]ω. Let us assume that collisions take place whenever .τ = ±1, and, for
certainty reason, consider a collision time .ti , such that .τ (ωti) = −1. When passing
through such time point .ti , the function e switches its value from .e = −1 to .e =
+1 as seen from the diagrams for the basis functions in Fig. 1.8. Therefore, after
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cancelling the common factor .ω on both sides, condition (10.90) takes the form

.τ = −1: Y ′ + X′ = −k
(
Y ′ − X′) (10.93)

Now, taking into account that the function e switches its value from .e = +1 to
.e = −1 when passing through the amplitude points, at which .τ (ωti) = +1, gives

.τ = +1: Y ′ − X′ = −k
(
Y ′ + X′) (10.94)

Boundary conditions (10.93) and (10.94) represent an analog of the collision
model (10.90) brought by the replacement of temporal argument, .t −→ τ . It is
shown in the next section that Eqs. (10.93) and (10.94) adequately describe the
vibroimpact dynamics with energy losses caused by collisions with the barriers.

10.8.1 Free Vibrations with Impact Energy Losses

Let us consider the free vibroimpact model as shown in Fig. 10.1a. The differential
equation of motion with the constraint condition is represented in the form

.ẍ + Ω2x = 0, |x| ≤ Δ (10.95)

where .Ω2 = k/m, and it is now assumed that the impact energy loss condi-
tion (10.90) is taking place whenever .x = ±Δ.

The corresponding effective model (Fig. 10.1b) is described by

.ẍ + Ω2x = pe′(ϕ) (10.96)

In the present case of free vibrations, the frequency .ω = ϕ̇(t) is not fixed by the
external load any more. Attributed to the bead’s velocity, the quantity .ω determines
the temporal scale of vibrating process. Generally speaking, in the present relatively
simple case, when no external forces are acting, the frequency .ω can be assumed
to be constant in between any two interactions with the constraints in order to
find an exact piecewise solution. This can be done directly with no transition to
the oscillating temporal argument .τ . However, our goal is to obtain a closed-form
solution using the idea of separation of motions. For that reason, the function
.ω(t) must be interpreted as a continuously decaying quantity during the entire
time range of the process. The decay rate is associated with the energy loss due
to collisions with the barriers and assumed to be relatively slow by imposing the
condition (10.92). Since the mass velocity is gradually decreasing, the quantity .p in
Eq. (10.96) characterizing the intensity of interaction with the amplitude limiters,
is considered as time dependent too. Based on the above remarks, a frequency
modulated solution of Eq. (10.96) can be represented as
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.x = X (τ) + Y (τ)e, τ = τ (ϕ) , e = e (ϕ) (10.97)

where .ϕ = ϕ(t) is a phase function to be determined.
First time derivative of (10.97) is

.ẋ = [Y ′
(τ ) + X

′
(τ ) e + Y (τ)e′(ϕ)]ω (10.98)

where the notation .ϕ̇ = ω is used.
Eliminating the formal singularity of differentiation .e

′
(ϕ) by imposing the

boundary condition

.τ = ±1: Y = 0 (10.99)

and then substituting (10.97) and (10.98) in (10.96) gives the relationship

.(ω2X′′ + Ω2X + Y ′ω̇) + (ω2Y ′′ + Ω2Y + X′ω̇)e + (X′ω2 − p)e′(ϕ) = 0

leading to the boundary condition

.τ = ±1: X′ω2 = p (10.100)

and two equations

.ω2X′′ + Ω2X + Y ′ω̇ = 0 (10.101)

ω2Y ′′ + Ω2Y + X′ω̇ = 0

Note that the boundary value problem, (10.99), (10.100), and (10.101), for X

and Y has two more unknown functions, .ω(t) and .p(t). In order to complete the
formulation, the energy loss conditions, (10.93) and (10.94), must be added as

.τ = ±1: Y ′ ∓ X′ = −(1 − ε)
(
Y ′ ± X′) , ε = 1 − k (10.102)

The present class of solutions is such that the amplitude limiters are reached
when .τ = ±1; then taking into account (10.99) gives

.τ = ±1: x = X = ±Δ (10.103)

Finally, the problem formulation includes two second-order differential equa-
tions (10.101) and a set of conditions (10.99), (10.100), (10.102), and (10.103) with
no discontinuities. Note that condition (10.100) includes two equations determining
just one unknown quantity p. However, it is sufficient to satisfy just one equation
in (10.100) and one equation in (10.103) as soon as the X-component of solution is
odd with respect to .τ .
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Further, let us assume that the energy of the oscillator is sufficient for reaching
the amplitude limiters during the time interval of interest. The evolution of such a
vibrating process is assumed to have the slow temporal scale .η = εt . This phase
of the process will end up with the so-called grazing state of harmonic oscillations
with no energy loss since model (10.95) has no explicit damping terms. During this
second phase, the frequency parameter .ω becomes constant, whereas the intensity
of interactions with the limiters is vanishing, .p = 0. Since the amplitude remains
fixed, let us represent the temporal shape of vibrations in the form of asymptotic
expansions without explicitly present slow scale .η as

.X(τ) = X0(τ ) + X1(τ )ε + X2(τ )ε2 + O
(
ε3
)

Y (τ) = Y0(τ ) + Y1(τ )ε + Y2(τ )ε2 + O
(
ε3
)

(10.104)

where .τ = τ(ϕ) and

.ω = ϕ̇(t) = ω0(η) + ω1(η)ε + ω2(η)ε2 + O
(
ε3
)

. (10.105)

p = p(t) = p0(η) + p1(η)ε + p2(η)ε2 + O
(
ε3
)

(10.106)

η = εt

Expansions (10.104), (10.105), and (10.106) produce the leading order boundary
value problem given by equations

.X′′
0 + λ2X0 = 0, Y ′′

0 + λ2Y0 = 0 (10.107)

under the boundary conditions

.τ = ±1: X0 = ±Δ, X′
0ω

2
0 = p0, Y0 = 0, Y ′

0 = 0 (10.108)

Solution of this linear boundary value problem can be represented in the form

.X0 = Δ
sin λτ

sin λ
, Y0 ≡ 0, p0 = Ω2Δ

λ tan λ
(10.109)

where the time-dependent “frequency ratio” .λ = λ(η) is introduced as

.λ = Ω

ω0
(10.110)

with yet unknown function .ω0 = ω0(η).
Recall that the period of triangle wave is normalized to .T = 4. Therefore, the

“real” frequency ratio is .(2/π)λ with the numerical factor .2/π , which is somewhat
inconvenient to carry through manipulations. The physical meaning of quantity .λ
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will be discussed later. Further, once the function .λ = λ(η) is determined, the
dependence .ω0 = ω0(η) becomes known from (10.110). Now taking into account
solution (10.109) leads to the differential equations of the first-order approximation
in the form

.X′′
1 + λ2X1 = 2ω1λ

3 Δ

Ω

sin λτ

sin λ

Y ′′
1 + λ2Y1 = −λ

dλ

dη

Δ

Ω

cos λτ

sin λ
(10.111)

under the boundary conditions at .τ = ±1:

.Y1 = 0

Y ′
1 = ±1

2
X′
0 +

(
1

2
− λ

ω1

Ω

)
Y ′
0 = ±1

2
λΔ cot λ (10.112)

X1 = 0

X′
1 =

(
λ

Ω

)2

− 2λ
ω1

Ω
X′
0 = p1

(
λ

Ω

)2

− 2ω1λ
2 Δ

Ω
cot λ

where .ω1(η), .λ(η), and .p1(η) are yet unknown functions.
Solution of the boundary value problem (10.111) and (10.112) is

.X1 = 0, Y1 = − Δ

2Ω

dλ

dη

(
cos λτ

cos λ
− τ

sin λτ

sin λ

)
(10.113)

provided that .ω1(η) ≡ 0 and .p1(η) ≡ 0.
Substituting .Y1 in the second equation of the set (10.112) leads to the following

first-order differential equation

.
dλ

dη
= Ω

2
(1 + cos 2λ)

(
1 + sin 2λ

2λ

)−1

(10.114)

Assuming that .λ(η) is determined from (10.114) and taking into account (10.110)
give the fast phase

.ϕ = Ω

t∫

0

dt

λ(εt)
(10.115)

Substituting zero- and first-order solutions, (10.109) and (10.113), in (10.104)
and then (10.97) and (10.98) gives solution in the first asymptotic order as



10.8 Modeling the Energy Loss at Perfectly Stiff Barriers 333

analytical

numerical

(a)

0 5 10 15 20

–1.5

–1.0

–0.5

0.0

0.5

1.0

1.5

t

x

analytical

numerical

(b)

0 5 10 15 20

–4

–2

0

2

4

t

v

Fig. 10.19 The result of direct numerical integration and analytical approximation in first
asymptotic order of .ε under parameters: .Ω = 1.0, .Δ = 1.0, .ε = 0.05, and .ω0(0) = 5.0

.x(t) = Δ

[
sin λτ

sin λ
− ε

2Ω

dλ

dη

(
cos λτ

cos λ
− τ

sin λτ

sin λ

)
e

]
(10.116)

.v(t) = ΩΔ

{
e
cos λτ

sin λ
+ ε

2Ω

dλ

dη

[
τ
cos λτ

sin λ
+
(
sin λτ

λ sin λ
+ sin λτ

cos λ

)]}

where .τ = τ(ϕ) and .e = e(ϕ) are the triangle and square waves, respectively.
Although the differential equation (10.114) is separable, the corresponding

quadrature is hardly possible to find within the class of elementary functions.
However, it is still well suited for a numerical solution due to the slow temporal
scale .η = εt .

Solution (10.116) is illustrated in Fig. 10.19 in comparison with the result of
direct numerical integration using the Mathematica.(R) solver:

.NDSolve

⎡

⎢⎢⎣

⎧
⎨

⎩

x′′(t) + Ω2x(t) = 0, x(0) = x0, x
′(0) = v0,

WhenEvent
[
x(t) = Δ, x′(t) → −kx′(t)

]
,

WhenEvent
[
x(t) = −Δ, x′(t) → −kx′(t)

]

⎫
⎬

⎭ , {x, t}, {t, 0, 15},

MaxSteps → ∞,PrecisionGoal → 20

⎤

⎥⎥⎦

The initial conditions were calculated from (10.116) at .t = 0. The analytical
solution appeared to be in sufficient match with the numerical solution. There is
some gradually developing phase shift, which is a typical effect of asymptotic
approximations of frequencies in nonlinear vibrations. Let us recall that the temporal
dependence for phase .ϕ is derived from the boundary conditions, which is an
essentially different way as compared to the perturbation methods in nonlinear
vibrations of smooth systems [104, 151]. For that reason, note the presence of
the so-called secular term with respect to .τ in solution (10.116), which is still
periodic with respect to the phase .ϕ. As seen in Fig. 10.20, the intensity of strikes
against the amplitude limiters, characterized by the quantity p, is diminishing with
time, whereas the period of oscillations .Timp approaches the natural period of
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Fig. 10.20 The natural
period of oscillator without
impacts .Tnat = 2π/Ω , the
period of vibroimpact cycle
.Timp = 4/ω, and the
parameter of intensity of
strikes against the amplitude
limiters, p
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unconstrained oscillator, .Tnat . As already mentioned above, the reason is that no
energy loss is assumed in between the limiters, and the system should eventually
reach some “grazing” regime with near-zero impact pulses but still the same
amplitude [43]. Let us support the above remarks by considering two different
asymptotic cases, corresponding to high and low energy limits.

Case 1 Consider the limit .λ = Ω/ω0 → 0 corresponding to either a very high
initial kinetic energy or a very weak spring of the oscillator. In this case, Eq. (10.114)
takes the form .dλ/dη = Ω/2 and gives the solution .λ = Ωη/2 + λ(0) leading to

.ω0 = ω0(0)

[
1 + 1

2
ω0(0)η

]−1

, η = εt (10.117)

and, finally,

.ϕ = 2

ε
ln

[
1 + 1

2
ω0(0)εt

]
(10.118)

Then solution (10.116) of the first asymptotic order is reduced to

.x(t) = Δ

[
τ − 1

4
ε
(
1 − τ 2

)
e

]
, τ = τ(ϕ), e = e(ϕ) (10.119)

where the role of “imaginary” term of order .ε is to compensate deviations from
straight lines between reflections against the barriers. Such deviations are due to
the continuous representation for the phase .ϕ(t).

Solution (10.119) is close to the triangle wave of the gradually increasing period

.T = 4

ω0(0)

[
1 + 1

2
ω0(0)εt

]
(10.120)

Note that, according to relationship (10.117), the frequency should eventually
drop to zero. This cannot happen, however, because the frequency has its lower
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boundary, which is the natural frequency of harmonic oscillator itself with no
interaction with amplitude limiters. For that reason, let us consider the dynamics
near its low energy limit.

Case 2 The “grazing” dynamics is reached when the frequency of vibration
becomes equal to the natural frequency of the oscillator, .λ = Ω/ω0 → π/2,
while the amplitude is still equal to .Δ. In this case, solution (10.116) describes
the harmonic temporal shape with respect the phase .ϕ:

.x(t) → Δ sin
[π
2

τ(ϕ)
]

≡ Δ sin
(π

2
ϕ
)

as λ → π/2 (10.121)

Therefore, in this limit, the term of order .ε disappears from solution (10.116)
due to Eq. (10.114). Now, introducing the detuning .ρ = π/2 − λ and considering a
small neighborhood of .λ = π/2 bring Eq. (10.114) to the form

.
dρ

dη
= −Ωρ2 + O(ρ3) (10.122)

with general solution .ρ = (Ωη + C)−1, where C is an arbitrary constant, which
is expressed through .ω0(0) by means of the equation .λ = Ω/ω0 = π/2 −
(Ωεt + C)−1. Then substituting .λ(εt) in (10.115) and conducting integration give
the phase of asymptotic solution (10.121) as

.
π

2
ϕ = Ωt + 2

επ
ln

{
1 + π2

4
εt

[
ω0(0) − 2

π
Ω

]}
(10.123)

Solution (10.123) obviously holds under the condition .ω0(0) > (2/π)Ω , which
means that initially the system must be within the impact domain. In this case, the
leading term of phase is estimated by .(π/2)ϕ ∼ Ωt as .t → ∞, and therefore
.x ∼ Δ sinΩt .

10.8.2 Bouncing Ball

Let .z = z(t) be the vertical upward directed coordinate of a perfectly stiff small
bead, which is falling down from its initial position .z(0) = H > 0 with zero initial
velocity (Fig. 10.21). At .z = 0, the bead reflects against the perfectly stiff floor with
the coefficient of restitution .k = 1 − ε, where .0 < ε � 1. Then the bead continues
to bounce until all of its energy is lost. The differential equation of motion between
reflections and collision conditions is, respectively,

.z̈ = −g, z ≥ 0 (10.124)
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Fig. 10.21 Bouncing ball

(0)z H�

z

k

0

and

.z = 0: ż(ti + 0) = −(1 − ε)ż(ti − 0) (10.125)

where g is acceleration due to gravity.
A presence of the linear viscosity in Eq. (10.124) would technically complicate

the process of asymptotic integration although with no major effect on the analytical
procedure, which is described below.

This problem has an exact piecewise parabolic solution, which is used at the
end of this section for comparison reason. We use this exactly solvable problem
for illustration of NSTT formalism leading to an asymptotic closed-form solution.
Although the present model seems to be easier than (10.95)–(10.90), the asymptotic
expansions must be generalized due to both amplitude and frequency modulation
effects. The “equivalent” model, in which the reaction of constraint is represented
by external pulses, takes the form

.z̈ = −g − psgn(τ )e′ (10.126)

where .τ = τ(ϕ), .e′ = de(ϕ)/dϕ, and the factor sgn.(τ ) is to maintain the upward
direction of the impulsive reaction from the stiff ground at .z = 0.

In order to describe the combined amplitude-frequency modulation, representa-
tion (10.97) is generalized by showing the slow temporal scale, .η = εt , explicitly
as

.z = X(τ, η) + Y (τ , η)e (10.127)

Further manipulations resemble the formalism of two variable expansions
with an essential difference though. In particular, the differential equations of
evolutionary component emerge from the boundary conditions whose role is in
cancellation of .δ-functions rather than eliminating resonance terms. Differentiating
function (10.127) with respect to time t gives
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.ż = ∂Y

∂τ
ω + ε

∂X

∂η
+
(

∂X

∂τ
ω + ε

∂Y

∂η

)
e. (10.128)

τ = ±1: Y = 0 (10.129)

Now substituting (10.128) in (10.126) and equating separately continuous,
stepwise discontinuous, and impulsive groups of terms to zero in a similar to the
previous section way give

.
∂2X

∂τ 2
ω2 + ∂Y

∂τ
ω̇ = −2ε

∂2Y

∂τ∂η
ω − ε2

∂2X

∂η2
− g

∂2Y

∂τ 2
ω2 + ∂X

∂τ
ω̇ = −2ε

∂2X

∂τ∂η
ω − ε2

∂2Y

∂η2
(10.130)

.τ = ±1:
∂X

∂τ
ω2 = ∓p

where .ω = ϕ̇, condition (10.129) has been taken into account, and solvability of the
third equation for p can be provided by imposing oddness on the derivative .∂X/∂τ

with respect to the argument .τ as

.
∂X

∂τ
|τ=1 = −∂X

∂τ
|τ=−1 (10.131)

It is natural to assume that the ball strikes the ground .z = 0 whenever .τ = ±1.
Then taking into account condition (10.129) gives

.τ = ±1: z = X + Ye = X = 0 (10.132)

Finally, using velocity (10.128) in (10.125) and following justifications of
relationships (10.93) and (10.94) give

.τ = ±1: ω

(
∂Y

∂τ
∓ ∂X

∂τ

)
+ ε

∂X

∂η
(10.133)

= −(1 − ε)

[
ω

(
∂Y

∂τ
± ∂X

∂τ

)
+ ε

∂X

∂η

]

where the term .∂Y/∂η has been excluded due to condition (10.129).
Let us seek solution of the boundary value problem (10.130), (10.129), (10.133),

and (10.132) in the form of asymptotic series

.X(τ, η) = X0(τ , η) + X1(τ , η)ε + X2(τ , η)ε2 + O
(
ε3
)

Y (τ , η) = Y0(τ , η) + Y1(τ , η)ε + Y2(τ , η)ε2 + O
(
ε3
)

(10.134)

ω = ϕ̇(t) = ω0(η) + ω1(η)ε + ω2(η)ε2 + O
(
ε3
)
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In the leading order approximation, the boundary value problem

.
∂2X0

∂τ 2
= − g

ω2
0

,
∂2Y0

∂τ 2
= 0 (10.135)

.τ = ±1: X0 = 0, Y0 = 0,
∂Y0

∂τ
= 0 (10.136)

has solution

.X0 = g(1 − τ 2)

2ω2
0

, Y0 = 0 (10.137)

where condition (10.131) was taken into account.
Note that, in zero-order approximation, .ε = 0, the physical assumption on

energy loss, which is described by the boundary conditions (10.133), produced the
equality .∂Y0/∂τ = 0 at .τ = ±1in (10.136), which is satisfied automatically by the
trivial solution for .Y0. Since the parameter .ε itself characterizes the velocity drop at
impact times, then the zero-order approximation .ε = 0 cannot depict the effect of
energy decay. This is why the dependence .ω0(η) still remains unknown and will be
determined at the next step of asymptotic procedure.

Now taking into account (10.137) leads to the first-order boundary value problem

.
∂2X1

∂τ 2
= − 1

ω2
0

(
dω0

dη

∂Y0

∂τ
+ 2ω0

∂2Y0

∂τ∂η
+ 2ω0ω1

∂2X0

∂τ 2

)

≡ 2gω1

ω3
0

∂2Y1

∂τ 2
= − 1

ω2
0

(
dω0

dη

∂X0

∂τ
+ 2ω0

∂2X0

∂τ∂η
+ 2ω0ω1

∂2Y0

∂τ 2

)
(10.138)

≡ −3gτ

ω4
0

dω0

dη

.τ = ±1: X1 = 0, Y1 = 0 (10.139)

whose solution is obtained by the direct integration as

.X1 = gω1

ω3
0

(τ 2 − 1), Y1 = g

2ω4
0

dω0

dη
(τ − τ 3) (10.140)

Conditions of the velocity drop (10.133) combine now both zero- and first-order
terms as
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.τ = +1: ω0

(
∂X0

∂τ
+ ∂Y0

∂τ
− 2

∂Y1

∂τ

)
− 2

(
∂X0

∂η
+ ω1

∂Y0

∂τ

)

≡ − g

ω3
0

(
ω2
0 − 2

dω0

dη

)
= 0. (10.141)

τ = −1: ω0

(
∂X0

∂τ
− ∂Y0

∂τ
+ 2

∂Y1

∂τ

)
+ 2

(
∂X0

∂η
+ ω1

∂Y0

∂τ

)

≡ g

ω3
0

(
ω2
0 − 2

dω0

dη

)
= 0 (10.142)

It is seen that the quantity .ω1(η) disappears from these conditions, and both
equalities are satisfied by just one separable differential equation

.
dω0

dη
= 1

2
ω2
0 (10.143)

This gives zero-order approximation for the frequency function as

.ω0 = ω0(0)

[
1 − 1

2
ω0(0)η

]−1

, η = εt (10.144)

Recall that the first-order term .ω1(η) has disappeared from the condition
of velocity drop (10.141)–(10.142) and still remains arbitrary. As follows
from (10.140), the term .ω1(η) determines the amplitude of approximation .X1.
However, the parabolic shape described by the function .X1(τ ) is already captured by
zero-order approximation .X0(τ ). Let us therefore take .X1 ≡ 0 by setting .ω1(η) ≡ 0
as soon as no more steps of the asymptotic procedure will be conducted in present
illustrating example. Note the discrete energy loss is described by function (10.144)
in a continuous way by “corrupting” the temporal mode shape of the process .z(t)

in between impact times. As a result, the Y -component of solution comes into play
in order to correct such a side effect. This is clearly seen from solution (10.140) for
.Y1, which would be zero if the quantity .ω0(η) was constant.

Now substituting both zero- and first-order approximations in (10.134) gives

.z = g

2ω2
0

(1 − τ 2)

(
1 + 1

2
ετe

)
; τ = τ(ϕ), e = e(ϕ) (10.145)

where .ω0 = ω0(εt) is given by (10.144) and phase .ϕ is determined by integration
from the differential equation .ϕ̇(t) = ω0(εt).

Solution (10.145) links the initial height H to yet arbitrary .ω0(0) as

.z(0) = g

2[ω0(0)]2 = H or ω0(0) =
√

g

2H
(10.146)
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Finally, substituting .ω0 from (10.144) in solution (10.145) and taking into
account (10.146) give

.z(t) = H

(
1 − 1

2

√
g

2H
εt

)2 (
1 − τ 2

)(
1 + 1

2
ετe

)
(10.147)

where .τ = τ(ϕ) and .e = e(ϕ) and the phase .ϕ = ϕ(t) is obtained from (10.144) by
integration under the initial condition .ϕ(0) = 0 in the form

.ϕ = −2

ε
ln

(
1 − 1

2

√
g

2H
εt

)
(10.148)

As follows from solution (10.147) and (10.148), the bouncing process ends at

.tmax =
√
2H

g

2

ε
(10.149)

Note that same result (10.149) was obtained in the reference [256] however,
by using a different analytical tool based on the space unfolding coordinate trans-
formation with averaging with respect the fast phase. Considering exact piecewise
parabolic solution gives the duration of the bouncing process [73], which is in match
with (10.149) when .0 < ε << 1:

.tmax =
√
2H

g

1 + k

1 − k
=
√
2H

g

2 + ε

ε
∼
√
2H

g

2

ε

However, temporal shapes of the above three solutions are somewhat different as
it is seen from Fig. 10.22.

Fig. 10.22 Bouncing ball
vertical coordinate versus
time obtained by three
different methods: nonsmooth
temporal transformations
(NSTT), nonsmooth
coordinate transformation
(NSCT), and exact solution
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