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Preface

This book represents an updated and enhanced edition of Nonlinear Dynamics:
Between Linear and Impact Limits originally published as Springer lecture notes
12 years ago. Now it includes an overview of the relevant applications found
in the literature after the first edition, and a series of new examples illustrating
theoretical statements and analytical tools. The present version still follows the
so-called complementarity principle by emphasizing rudimentary spatiotemporal
and algebraic roots of linearity and nonlinearity as physical concepts. Although
their mathematical definitions are quite clear and straightforward, formalization of
a real system is never unique. It may appear to be either linear or nonlinear for
the same physical system. A simple thought experiment can clarify this point by
imagining an empty Galilean space. How the space should by filled with material
objects in the least possible way to observe linearity or nonlinearity? The reason
for such a virtual experiment is in revealing the related elementary functions and
algebraic relationships that may serve as a general basis for complementary linear
and nonlinear tools. Hence, the main purpose of this book is to show that, on one
hand, the subgroup of rotations and the regular complex analysis generate linear
and weakly nonlinear approaches. On the other hand, translations and reflections
with hyperbolic complex numbers point to the essentially nonlinear methodology
based on the idea of nonsmooth temporal transformations. In elementary algebraic
terms, the two complementary groups of methods appear to associate with two
different signs of the equation .j2 = ±1. It will be shown that, in contrast
to the regular imaginary unit, the “nonlinear gene” j is not a fixed algebraic
element anymore. It is a piecewise constant discontinuous function, such as the
square wave, representing subgroups of translations and reflections. These types
of temporal behaviors are inherent physical properties of impact oscillators, and
other mechanical systems with discontinuities of dynamic states. In this book, such
type of the most severe nonlinearity is postulated as a complementary limiting
case to the harmonic and quasi-harmonic cases. It should be noted that the
generality of the suggested nonsmooth methodology is rather narrow compared to
the universal quasi-linear approach, although the term general in nonlinear cases
has no unique meaning. Regarding mathematical formalisms, it should be noted
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that most methods of dynamics were originally developed within the paradigm of
low energy smooth motions based on the classical theory of differential equations.
Although the impact dynamics has also quite a long prehistory, any kind of a
nonsmooth behavior is still viewed as an exemption rather than a rule since
the classical theory of differential equations avoids non-differentiable functions.
From such a standpoint, the current practical demands have reached the area of
exemptions, namely high-energy phenomena with strongly nonlinear and nons-
mooth spatiotemporal behaviors. Recall that such phenomena occur when dealing
with dynamical systems under constraint conditions, friction-induced vibrations,
structural damages due to cracks, liquid sloshing impacts, and numerous problems
of nonlinear physics. In electrical engineering and control, some electronic devices
include the so-called Schmitt trigger circuit generating nonsmooth signals whose
temporal shapes resemble mechanical vibroimpact processes. In many such cases,
smooth methods are adapted by splitting the system phase space in multiple domains
and matching different pieces of solutions with discrete mapping. This approach
resembles analytical manipulations with spatial cells in material sciences dealing
with composite structures and mechanical metamaterials. The goal is to derive
homogenized equations with effective moduli of elasticity and/or other global
physical characteristics. Local effects are considered separately based on other
equations and matching conditions incorporating structural discontinuities. It is
shown in final sections of this book that alternative approaches can be developed
on a cell-wise discontinuous basis to describe both local and global specifics in a
closed analytical form.

The present material was prepared during different years of work for the
National University and Technological University (Dnipro, Ukraine), Wayne State
University, and Research and Development of General Motors (Michigan, USA).
The author greatly appreciates discussions on different subjects and applications
related to this book with Professors I.V. Andrianov (Aachen University) who kindly
offered his help and useful comments on the text, R.A. Ibrahim (Wayne State
University), A.A. Martynyuk (National Academy of Science of Ukraine), Yu.V.
Mikhlin (Kharkov Polytechnic Institute), A.F. Vakakis (University of Illinois at
Urbana-Champaign) for his collaboration and enthusiastic view on nonsmooth
temporal transformations, A.A. Zevin (National Academy of Science of Ukraine),
and V.F. Zhuravlev (Russian Academy of Science). The research style was inherited
from Professor Leonid I. Manevitch, who is unfortunately no longer with us but
continues his spiritual life through the work of his numerous students.

Detroit, MI, USA Valery N. Pilipchuk
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Chapter 1
Introduction

This chapter contains physical and mathematical preliminaries with different intro-
ductory remarks. Although some of the statements are informal and rather intuitive,
they nevertheless provide hints on selecting complementary generating models and
the corresponding analytical tools. The core concept is in the assumption that a
technical simplicity of mathematical formalisms is due to their hidden links with
subgroups of rigid-body motions representing a primary spatiotemporal base of
Euclidean geometry followed by the classical dynamics. Such motions may be
qualified as rudimentary macro-dynamic phenomena developed in the physical
Galilean space. For instance, since rigid-body rotations are associated with sine
waves and therefore (smooth) harmonic analyses, then translations and mirror-wise
reflections must reveal some adequate tools for strongly anharmonic and nonsmooth
approaches. In the most explicit way, such a complementarity is revealed through
the related algebraic structures. The harmonic analyses associate with the regular
complex numbers, whereas the suggested set of nonsmooth tools generates the so-
called hyperbolic Clifford’s algebra, which is essentially enriched by the specific
temporal dependence of its imaginary unit. This viewpoint is illustrated by physical
examples, problem formulations, and solutions in different sections of this chapter,
which is somewhat longer than usual to represent a short snapshot of the entire texts.

1.1 Brief Literature Overview

Linear and weakly nonlinear dynamic theories are covered quite completely in
many monographs and textbooks. Analytical methods of conventional nonlinear
dynamics are based on the classical theory of differential equations dealing with
smooth coordinate transformations, asymptotic integrations, and averaging [16, 34,
69, 69, 82, 101, 104, 117, 120, 126, 129, 148, 149, 151, 152, 156, 161, 203, 204, 256].
The corresponding solutions often include quasi harmonic expansions as a generic
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2 1 Introduction

feature that explicitly points to the physical basis of these methods, namely, the
harmonic oscillator. Generally some of the perturbation methods are also applicable
to dynamical systems close to nonlinear integrable, but unfortunately nonlinear
generating solutions are seldom available in closed form [16]. As a result, strongly
nonlinear methods usually target specific situations and are rather difficult to use in
other cases. Generating models for strongly nonlinear analytical tools with a wide
range of applicability must obviously:

• Capture the most common features of oscillating processes regardless of their
nonlinear specifics;

• Possess simple enough solutions to provide efficiency of perturbation schemes;
• Describe essentially nonlinear phenomena out of the scope of the weakly

nonlinear methods.

The main goal of the present work is to suggest possible recipes for selecting
such models within the set of nonsmooth systems while keeping the smoothmotions
still within the range of applicability. Note that different nonsmooth cases have
been also considered for several decades by practical and theoretical reasons
[2, 22, 24, 32, 37, 38, 49, 52, 60, 62, 63, 70, 75, 86, 88, 89, 96, 110, 111, 116,
124, 125, 128, 165–168, 205, 211, 214, 218, 228, 229, 231, 235, 247, 256, 257].
On the physical point of view, this kind of modeling essentially employs the idea of
perfect spatiotemporal localization of strong nonlinearities or impulsive loadings.
For instance, sudden jumps of restoring force characteristics are represented by
absolutely stiff constraints under the assumption that the dynamics in between
the constraints is smooth and simple enough to describe. As a result, the system
dynamics is discretized in terms of mappings matching different pieces of solutions.

The present direction is rather close to another group of methods dealing with
the differential equations of motion on the entire time interval despite singularity
points. Such methods are developed to satisfy the matching conditions automatically
by means of specific coordinate transformations on preliminary stages of study. To
some extent, these can be qualified as adaptations of the differential equations of
motion for further studies by another method. Among such kind of transformations,
the Caratheodory substitution [63] can be mentioned first. This linear substitution,
which includes the unit-step Heaviside function, eliminates Dirac delta-functions
participating as summands in differential equations. Much later, nonsmooth nonlin-
ear coordinate transformations were suggested in [251, 256] for the class of impact
systems. This strongly nonlinear transformation effectively eliminates stiff barriers
by unfolding the system configuration space in a mirror-wise manner with respect
to the barriers. A similar idea was implemented later regarding the system phase
space [96] to resolve certain problems related to non-elastic impacts. Some technical
details and discussions on these methods are included below in Sects. 1.5.2 and 1.5.3
for comparison reason. In contrast, the current approach employs time histories
of impact systems as new time arguments. Originally such a nonsmooth temporal
transformation (NSTT), or a new temporal argument oscillating by the triangle
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wave law,1 was introduced for strongly nonlinear but smooth periodic motions with
certain temporal symmetries [172]. Then, it was shown that such an approach still
works for general cases by generating specific algebraic structures in terms of the
coordinates [173, 185]. The occurrence of such algebraic structures seems to be
an essential feature of the approach since it justifies and simplifies most analytical
manipulations with non-invertible temporal substitutions, such as NSTT. Further,
the technique was applied to different problems of theoretical and applied mechanics
[23, 66, 87, 122, 123, 132–134, 143, 212, 213, 220, 224, 227, 230, 239, 241].
However, much of the material presented in this book is either new or significantly
updated. A noticeable area of NSTT applications dealing with nonlinear beating
effects emerged in recent years after publications [132] and [133]. During the
beating dynamics, two interacting oscillators can exchange the energy in a more or
less intensive way dictated by their initial states. On the plane of energy distribution
versus phase shift, the phase portrait has a cell-wise structure, where stationary
points mean the absence of energy flow, whereas cell boundaries represent the most
intensive energy exchange. In physical terms, the stationary points associate with
the normal mode motions. Then, as noticed in [133], the cell boundaries should be
viewed as a natural alternative to the normal modes in compliance with the principle
of asymptotic complementarity [6, 14, 20]: “If a system has meaningful asymptotics
when some parameter tends to zero, then there exists meaningful asymptotics when
this parameter tends to infinity as well.” A system path along the cell boundary was
defined as the limiting phase trajectory (LPT). Since the LPTs’ simplicity develops
in their temporal shapes at cost of the loss of smoothness, the corresponding
solutions for different physical models were approximated analytically with NSTT
in further publications [107, 108, 222]. Resonance interactions are of a great
importance for the area of mechanical engineering dealing with the idea of targeted
energy transfer (TET) [66, 240]. (Recent publications are reviewed in [55].) In these
studies, the NSTT was used in combination with shooting method for analyses of
periodic motions of the related Hamiltonian systems [122]. In material sciences,
periodic temporal patterns of nonlinear normal mode types in granular media
were investigated in [226]. Also, NSTT was applied to modeling spatially periodic
composites to conduct their homogenization preserving cell scale specifics within
closed form solutions [194]; further details are given in Chap. 14. Finally, a rigorous
mathematical analysis of differential equations with generalized periodic right-hand
side was conducted in [58].

The entire text is organized as follows. As mentioned in the preamble, Chap. 1
contains physical and mathematical preliminaries and different introductory
remarks. Then Chap. 2 gives a brief overview of selected analytical methods for
smooth oscillating processes. The description focuses on the ideas and technical
details that are used further in combinations with nonsmooth approaches. In
particular, the method of asymptotic integration of the differential equations

1 In older publications, the term “sawtooth” was also used for periodic piecewise-linear functions
regardless of slopes of their teeth.
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of motion based on the Hausdorff equation for Lie operators is reproduced.
Chapter 3 includes different examples of smooth vibrating systems that, under some
conditions, show close to nonsmooth or even nonsmooth time histories. Such cases
are usually most difficult for conventional analyses. Much of the content focuses
on nonlinear beat and localization phenomena. Recent interest to this area is driven
by the idea of nonlinear energy absorption. Chapter 4 provides a new description
of NSTT with proofs of the basic identities and rules for algebraic, differential,
and integral manipulations. In particular, final subsections show how to introduce
nonsmooth arguments into the differential equations. Such manipulation imposes
two main features on the dynamical systems, namely, generates specific algebraic
structures for unknown functions and switches formulations to boundary-value
problems. Notice that the transformation itself imposes no constraints on dynamical
systems and easily applies to both smooth and nonsmooth systems. Any further
steps, however, should account for physical properties of the related systems.
Chapter 5 preliminary illustrates the NSTT’s advantages by introducing power
series expansions for general periodic processes. This becomes possible because the
new temporal argument—the triangular sine wave—is itself periodic in the original
time. Therefore, such expansions can be viewed as some alternative to Fourier
series for processing periodic signals especially with stepwise discontinuities.
Then a periodic version of the Lie series is introduced. As a result, formal
analytical solutions for normal mode motions of dynamical systems are obtained.
Chapters 6, 7, and 8 describe NSTT-based analytical tools for linear, weakly
nonlinear, and strongly nonlinear vibrating systems, respectively. In particular,
applying NSTT to linear and weakly nonlinear systems may be very effective in
those cases when nonsmooth loadings are present, and thus harmonic or quasi
harmonic approaches require multiple term expansions for capturing essential
features of the dynamics. Chapters 9–11 deal with the concept of nonlinear normal
modes. In particular, it is shown that NSTT leads to adequate formulations of
the normal mode problem for impact systems. Also the idea of nonlinear normal
modes for the case of forced vibration is formulated in terms of NSTT. Chapter 12
presents a semi-analytical approach combining NSTT with the shooting method
that essentially extends the area of applications. Chapter 13 describes a possible
physical basis for NSTT in case of essentially non-periodic processes. Finally, as
mentioned above, Chap. 14 illustrates different applications to spatially oscillating
structures such as one-dimensional elastic rods with periodic discrete inclusions
and two-dimensional media with a periodic nonsmooth boundary source of waves.

1.2 Asymptotic Meaning of the Approach

1.2.1 Two Simple Limits of Lyapunov’s Oscillator

This section is to illustrate the main principle on which the whole content of this
book is built. For that reason, let us consider first a one-degree-of-freedom model



1.2 Asymptotic Meaning of the Approach 5

2( ) ( ) , 1x X Y� � � �� � �

012 �� �nxx

2, 1z x ix i� � � �

Sine and cosine waves Triangle and square waves

�

�
0

sincos
k

kk ktBktA ���
�

�
0

)()( )0(
!

1
)0(

!

1

k

kkkk Y
k

X
k

Elliptic (ordinary) complex numbers Hyperbolic complex numbers

Fourier series, quasi - harmonic methods Power series, strongly nonlinear tools

Impact Oscillator

)(t�

)(t�

t

1�

1

2 40

tsin

tcos
� �2

t

1

1�

0

1:n Harmonic Oscillator�

Elliptic complex plane Hyperbolic complex plane

Rotation group: Translation - reflection:

x

ix
z

t X

eY

1x
2x

3x

4x
| | 1z �

| | 1Hx �
| | 0Hx �

Fig. 1.1 Two complementary asymptotic limits described by elementary functions associated with
subgroups of rigid-body motions: regular complex and hyperbolic planes are shown on the left and
right, respectively; in contrast to the circle, each of the hyperbola branches is covered exactly once
as the hyperbolic angle is varying in the infinite interval

whose differential equation of motion is shown at the top of Fig. 1.1.2 Such a
relatively simple model depicts a gradual evolution from the linear to extremely
nonlinear dynamics as the exponent n varies from unity to infinity. Notably, all
the temporal mode shapes of the oscillator are described by special functions
except for the two boundaries of the interval .1 ≤ n < ∞. Both boundaries
represent asymptotic limits within the class of elementary functions. The physical
cause of such simplifications is explained by the behavior of the potential well
.V (x) = x2n/(2n), which takes parabolic and square shapes at the boundaries .n = 1
and .n → ∞, respectively. In the latter case, the bottom of the potential well is flat,
.V = 0, within the interval .−1 < x < 1. As a result, the particle moves with a
constant speed in between the vertical potential walls at .x = ±1.

2 Note that oscillators with power-form characteristics were considered for quite a long time since
possibly Lyapunov who obtained such oscillators while investigating degenerated cases in dynamic
stability problems; see Chap. 3 for details.
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Consider first the limit of harmonic oscillator, .n = 1, that generates the sine
and cosine waves as illustrated on the left column of Fig. 1.1. From the very
general geometrical standpoint, a widely known convenience of using this couple of
functions can be explained by their certain link to the group of rigid-body motions,
namely, the subgroup of rotations. The standard complex plane representation and
Euler formula can be mentioned here as related tools. Further, taking the linear
combination of harmonic waves with different frequencies and keeping in mind
the idea of parameter variations invoke the area of harmonic and quasi harmonic
analyses for both signal processing and dynamical systems. Such tools therefore
represent more or less complicated dynamic processes as a combination of very
simple rigid-body rotations with different angular speeds.

Let us consider now another limit .n = ∞, when the restoring force vanishes
inside the interval .−1 < x < 1 but becomes infinitely growing as the system
reaches the potential barriers at .x = ±1. The physical meaning of this limit
is introduced at the top of the right column of the diagram. Despite the strong
nonlinearity caused by impact interactions with the potential walls, the limiting
case is also described by quite simple elementary functions, such as triangle and
square waves, say .τ(t) and .τ̇ (t), respectively.3 These two are associated with
another subgroup of the rigid-body motions, namely, translation and reflection.4

Therefore, analogously to the above case .n = 1, the upper limit .n = ∞ can
play the same fundamental role by generating a hierarchy of alternative to quasi
harmonic tools. On first look, such alternative tools can still be developed within the
paradigm of Fourier expansions using appropriate multiple frequency combinations
of .τ(t) and .τ̇ (t) instead of trigonometric functions. Although such approaches
may work for signal processing, it is unclear how to deal with a large number
of singularities if substituting the related expansions in differential equations of
motion. Indeed nonsmoothness of such Fourier basis seems to contradict the
typical formalism of continuous dynamical systems involving time derivatives.5

In addition, the Fourier expansions are closely linked to the linear superposition
principle.

Finally, as follows from Figs. 1.1–1.2, both functions, .τ(t) and .τ̇ (t), should not
be viewed just as a formal periodic combination of straight lines.6 It is seen that

3 The term square wave will be maintained through the text as more common, although the wave
shapes are rather rectangular in many cases.
4 As mentioned in Preface, there are also electric circuits generating qualitatively similar temporal
shapes [219].
5 Generally speaking, it is possible to start with an expansion for high-order derivatives and then
come backward to coordinates by integrations. However, technical complexities of such approaches
may overshadow any advantages as compared to the regular Fourier expansions.
6 It is quite clear that harmonic waves can also be interpreted as those combined of the same pieces
of curves, but such a viewpoint would eliminate much of the vibration theory and many physical
effects.
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these couple of periodic nonsmooth functions emerge on a real physical basis.
Therefore, appropriate mathematical formalism should follow.

Remark on Normalization of Periods

The period of sine wave is normalized to .2π obviously to comply with the geometry
of circle, which is a clear representative of rotations. As a result, this normalization
principle becomes somewhat baseless if applied to the triangle wave. Instead, as
follows from the right part of Fig. 1.1, the unit slope of triangle wave, .τ̇ 2 = 1,
represents a convenient algebraic property. Assuming that the amplitude is one,
the unit slope is provided by the period equal to four. Thus the period-frequency
relationships as well as the meaning of frequency for the trigonometric sine wave,
.sinΩt , and the triangle wave, .τ(ωt), will be different. In order to match the periods
for both functions, the following condition must be imposed

.T = 2π

Ω
= 4

ω
(1.1)

Below in this text, we usually use the upper case .Ω for the conventional (trigono-
metric) sine wave frequency, whereas the low case .ω will denote the triangle wave
frequency. According to (1.1), such frequencies differ by the standard factor as

.Ω = π

2
ω (1.2)

Using both notations helps to avoid a frequent presence of factor .π/2 in dif-
ferential and algebraic manipulations, although the above relationship may have
a dipper (geometrical) sense indicating the complementarity of two asymptotic
limits revealed by Fig. 1.1. Finally, introducing notation for a quarter of the period,
.a = T/4, gives
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.ω = 1

a
(1.3)

and therefore temporal scale of the triangle wave can be adjusted in either way as
.τ(ωt) ≡ .τ(t/a).

1.2.2 Smoothing the Triangle Wave

The oscillator .ẍ + x2n−1 = 0, which is carrying the complementary asymptotics
of sine and triangle waves (Fig. 1.1), represents just one of possibly several other
physical and mathematical examples with similar properties. A well-known physical
example of brachistochrone is analyzed in the next subsection. As a related formal
example, let us consider here the example of one-parameter family of two periodic
functions of the period .T = 4 with a positive parameter .α

.τα(t) = 2

π
arcsin

(
α sin

πt

2

)
, 0 < α < 1 (1.4)

.eα(t) = dτα(t)

dt
= α√

1 − α2 sin2(πt/2)
cos

πt

2
(1.5)

In contrast to solutions of the oscillator .ẍ+x2n−1 = 0, the function .τα(t) belongs
to the class of elementary functions for any .α ∈ (0, 1) while still describing the sine
wave and triangle wave at the boundaries .α = 0 and .α = 1 as, respectively,

.τα(t) ∼ 2α

π
sin

πt

2
, α → 0 (1.6)

and

.τα(t) ∼ τ(t), α → 1 (1.7)

Therefore, function (1.4) provides a continuous transition from harmonic (1.6) to
the triangular (1.7) temporal shape while including both limits into the same family
of elementary functions. In a similar manner, we obtain

.eα(t) ∼ α cos
πt

2
, α → 0

eα(t) ∼ cos
πt

2
/

∣∣∣∣cos πt

2

∣∣∣∣ = e(t), α → 1 (1.8)
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Transition to nonsmooth limits (1.7) and (1.8) is illustrated in Fig. 1.3. As
mentioned above, the example clarifying physical and geometrical meaning of
function (1.4) as well as its asymptotic limits (1.6) and (1.7) is considered in the
next subsection.

1.2.3 Complementary Asymptotics in Brachistochrone
Dynamics

Figure 1.4 represents the so-called brachistochrone problem of finding the curve
down which a bead sliding from the rest and accelerated by gravity will slip without
friction from one point to another in the least time. Solution of this problem, which is
usually considered as introductory example in calculus of variations, is given by the
second-order differential equation for the vertical coordinate of the bead, .y = y(x):

.1 + y′2 + 2yy′′ = 0

Using the substitution .y′ = z(y) brings this equation to the separable form .1 +
z2 + 2yzz′(y) = 0 that admits general integral
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.y(1 + z2) = y(1 + y′2) = −k2 (1.9)

where k is an arbitrary constant.
It can be verified by direct substitution that Eq. (1.9) describes cycloid in the

parametric form

.x = 1

2
k2(2θ + sin 2θ)

y = −1

2
k2(1 + cos 2θ) (1.10)

Let us derive the differential equation of motion of the bead by using .θ = θ(t) as
a generalized coordinate within the bounded interval .−π/2 < θ < .π/2. The related
one cycle of brachistochrone is shown in Fig. 1.4. Considering (1.10) as a constraint
eliminating transformation to the generalized coordinate .θ brings Lagrangian of the
bead to the form

.L = 1

2
m(ẋ2 + ẏ2) − mgy = k2m(2k2θ̇

2 + g) cos2 θ

The corresponding Euler-Lagrange equation

.
d

dt
(θ̇ cos θ) + g

2k2
sin θ = 0 (1.11)

admits first integral

.(θ̇ cos θ)2 = g

2k2
(α2 − sin2 θ) (1.12)

where .α2 is an arbitrary constant determined by the initial conditions for .θ and .θ̇ .
Separating variables in (1.12) and integrating give periodic solution in terms of

elementary functions

.θ = arcsin(α sinΩt) ≡ Aτα (ωt) (1.13)

with parameters

.0 < α < 1, A = π

2
, ω = 2

π
Ω (1.14)

where the function .τα is defined in (1.4), .Ω = √
g/2/k is the regular trigonometric

frequency, and an arbitrary phase shift can always be added since the system admits
the group of time translations. Note also that the system admits the replacement
.θ → −θ .
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As follows from (1.12), .α = 0 represents the equilibrium state, .θ = 0 and .θ̇ = 0,
whereas the upper boundary, .α = 1, corresponds to oscillations with a maximum
possible amplitude .π/2. The corresponding asymptotic estimates are given by

.θ(t) →
{

α sinΩt if α << 1
Aτ (ωt) if α → 1

(1.15)

Obviously, the nonsmooth limit .α → 1 in (1.15) associates with singularities of
cycloid (1.10) since the derivative .dy/dx = cot θ does not exist at .θ = ±π/2.

1.2.4 Hidden Vibroimpact Dynamics in Weakly Coupled
Harmonic Oscillators

As emphasized in Preface, the choice for coordinates is essential from the standpoint
of formal mathematical definitions of linearity and nonlinearity. The following
example shows how a perfectly linear vibrating system can reveal severely nonlinear
and still physically reasonable effects. Moreover, such effects appear to have a
surprisingly direct relation to the complementary sine and triangle wave asymptotics
discussed already in the previous subsections. So, let us consider the process of
energy exchange between two weakly coupled identical harmonic oscillators

.mẍ1 + kx1 = −γ (x1 − x2)

mẍ2 + kx2 = −γ (x2 − x1) (1.16)

where m and k mass and base spring stiffness of each oscillator, and .γ is a positive
parameter characterizing the strength of coupling.

The corresponding mass-spring model is shown at the middle of Fig. 1.2. In
order to describe specifics of the energy exchange, it is convenient to switch from
the coordinate-velocity state variables to energy-phase variables. Details of the
corresponding transformations are described in [190, 192] and will be reproduced in
Sect. 3.3.1. The original coordinates are expressed through the new state variables
.E0(t), .P(t), .Δ(t), and .δ(t) as

.x1 = √
E0(1 + P) cos δ

x2 = √
E0(1 − P) cos (δ + Δ) (1.17)

where .E0 = E1 + E2 is the total energy of two independent oscillators excluding
the energy of coupling, .P = (E1 − E2)/E0 is a quantity characterizing the energy
distribution between the oscillators, .Δ is the phase shift between the oscillators, and
.δ is the fast phase, which is identical to time t in the leading order.
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As shown in [190, 192], .Δ and P represent, respectively, a generalized coordinate
and a generalized momentum of the effective energy exchange oscillator of the
Hamiltonian form

.
dΔ

dt̄
= − P√

1 − P 2
cosΔ = ∂H

∂P

dP

dt̄
=

√
1 − P 2 sinΔ = −∂H

∂Δ
(1.18)

where .t̄ = (γ /
√

km)t is a slow time whose scale is due to the strength of coupling,
and the Hamiltonian is given by

.H(Δ,P ) =
√
1 − P 2 cosΔ (1.19)

Now using the integral .H(Δ,P ) = H0 and conducting the substitution .P =
sinφ(t) give a strongly nonlinear oscillator of the form

.
d2φ

dt̄2
+ H 2

0
tanφ

cos2 φ
= 0 (1.20)

where .H0 = cosφ0 cosΔ0 is a constant determined by the initial angles .φ0 and .Δ0,
assuming that .−π/2 ≤ φ0 ≤ π/2.

It can be verified by the direct substitution7 that oscillator (1.20) has exact
analytical solution in terms of elementary functions

.φ = arcsin
[
sinφ0 sin

(
Ωt̄ + π

2

)]
(1.21)

where .Ω = |H0/ cosφ0| = .| cosΔ0|.
Comparing solution (1.21) to function (1.4) gives

.φ = Aτα

(
ωt̄ + 1

)
; α = sinφ0, A = π

2
, ω = 2

π
Ω (1.22)

where notations (1.14) are adapted.
Therefore, the complementary sine and triangle wave asymptotics noticed in

Sect. 1.2.2 apply to the present case as well. Note that the nonsmooth triangle wave
limit, .α → 1, associates with the rectangular boundary of the phase cell, which is
shown at the middle of Fig. 1.2, whereas all the trajectories inside the phase cell
are described with integral (1.19). The boundary equation .H(Δ,P ) = H0 = 0
describes a family of straight lines. In contrast, near the origin, one has .H0 ∼ 1, and
hence phase trajectories take almost circular shapes: .(Δ2 +P 2)/2 ∼ 1−H0 << 1.

7 See also Sect. 3.2 for further details.
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Now recall that the quantity .P = sinφ characterizes the energy distribution
between the oscillators. The condition .|φ(t)| << 1 means that a relatively
small portion of the total energy is cyclically moving back and forth between
the oscillators, and thus .P ∼ φ. In this case, Eq. (1.20) admits the following
linearization

.m
d2P

dt2
+ keP = 0, ke = γ 2

k
cos2 Δ0 (1.23)

where .ke is an equivalent stiffness of the energy partitioning oscillator, and the time
variable t is switched back to its original meaning. Note that the equivalent stiffness
of this oscillator depends upon the fixed stiffness parameters of the original system
as well as its initial conditions through the phase shift .Δ0.

1.2.5 Oscillating Time and Hyperbolic Numbers

The above series of examples are to provide a theoretical legitimacy for the triangle
and square waves similar to their trigonometric counterparts. It was shown that
both types of functions can emerge as complementary asymptotics from the same
physical systems. It can be assumed therefore that some alternative to the harmonic
analyses can be developed based on the triangle and square waves. Recall that
trigonometric (Fourier) expansions approximate periodic signals by combining sine
and cosine waves of different frequencies. As follows from Fig. 1.1, the suggested
complementary formalism follows different principle. The fundamental frequency is
fixed, while the temporal shape of a signal is approximated by polynomials (power
series) or some other functions of the triangle wave .τ . Since the periodicity is
attributed to the triangle wave, the set of approximating functions is not restricted
by the periodicity condition any more. Such formalism is based on the following:

Proposition 1.2.1 Pilipchuk [173] Any periodic process .x (t) of the period nor-
malized to .T = 4 can be expressed through the dynamic state of impact oscillator,
.{τ(t), τ̇ (t)}, in the form of hyperbolic complex number as

.x = X (τ) + Y (τ) τ̇ (1.24)

where .τ̇ 2 = 1 holds for almost any t .

All the details regarding identity (1.24) are given in Chap. 4, where the functions
X and Y are expressed through .x(t) as

.X (τ) = 1

2
[x (τ) + x (2 − τ)] , Y (τ) = 1

2
[x (τ) − x (2 − τ)] (1.25)
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Further algorithms that can be applied to components (1.24) for signal processing
are introduced in Chap. 5. If .x(t) represents an unknown periodic motion of
some dynamical system, then equations for X and .Y components are obtained by
substituting (1.24) into the corresponding differential equation of motion. Then
either analytical or numerical procedures can be applied. For instance, the power
series method with respect to powers of the “oscillating time” .τ can be applied
since the periodicity is built into the new argument .τ . Therefore expression (1.24)
can be viewed as nonsmooth temporal transformation, .t → τ , on the manifold of
periodic motions. The extension on a general period, .T = 4a, is straightforward.
For that reason, expressions (1.25) and the temporal scale of the triangle wave must
be modified as

.X (τ) = 1

2
[x (aτ) + x (2a − aτ)] , Y (τ) = 1

2
[x (aτ) − x (2a − aτ)]

(1.26)

and .τ = τ(t/a), respectively. Also, the derivative of the triangle wave, .τ̇ , in
identity (1.24) must be taken with respect to its entire argument as .e(t/a) =
dτ(t/a)/d(t/a) in order to preserve the unit slope, .e2 = 1.

Remark 1.2.1 Below, the terms triangle wave and square wave will be used for the
functions .τ(ϕ) and .e(ϕ), respectively. The square wave is always first derivative of
the triangle wave with respect to its entire argument. The initial phase is fixed as
.τ(0) = 0 and .e(0) = 1 to relate the temporal symmetry of the triangle and square
waves with trigonometric sine and cosine functions, respectively. For that reason
the terms triangular sine and rectangular cosine may emphasize the above specifics,
although the terms triangle and square wave are more common in the literature.

Abstract Hyperbolic Structures in Algebra

A unique property of the hyperbolic number generated by relationship (1.24) is that
its imaginary unit is not a fixed element any more. It is the square wave, which is a
periodic stepwise discontinuous function of time. On one hand, this bridges the gap
between the formal (hyperbolic) algebra and nonlinear dynamics. On the other hand,
using such types of hyperbolic numbers as substitutions for the differential equations
of motion requires proper extensions of the algebraic set of rules. The extensions
are introduced later in this introductory chapter on a series of examples. Then
further details and mathematical justifications will be given in Chap. 4. The rest
of this section focuses on the complementarity of ordinary (elliptic) and hyperbolic
complex algebras to further clarify the content of Fig. 1.1.



1.2 Asymptotic Meaning of the Approach 15

Note that the algebraic structure of hyperbolic numbers has been known for
quite a long time under very different names8 mostly as a formal extension of
the regular elliptic complex numbers with no relation to dynamics and nonsmooth
functions. In the mathematical literature, such an extension is often regarded to as
a particular case of Clifford’s algebras9 and introduced as follows. Whereas the
algebraic equation .e2 = 1 has the real number solutions .e = ±1, the existence of
a unipotent e is assumed such that .e 
= +1 and .e 
= −1 but still .e2 = 1. Then by
considering the elements .{1, e} as a standard basis, any hyperbolic number .z ∈ H

is written in the form .z = x + ye, where x and y are real numbers. The hyperbolic
conjugate of z is defined by .z− = x − ye so that .|z|H = √

zz− is the norm of z.
The middle of Fig. 1.1 illustrates the difference between complex and hyperbolic
planes. More details and some, rather abstract, applications of this algebraic theory
can be found in references [15, 121, 223, 237]. Geometrical interpretations of
hyperbolic and other algebraic structures were considered in [102, 106, 248]. As to
applied areas, the same kind of algebraic structures occurred in hydrodynamics in
connection with characteristics of partial differential equations [121]. Links to non-
Euclidean geometry by Lobachevskii and special relativity were noticed in [248],
where three different types of complex numbers were associated with three cases
for the roots of quadratic equation, .x2 +px +q = 0. For that reason, the roots were
represented as

.x1,2 = −p

2
± 1

2

√
Δ = −p

2
± 1

2

√|Δ|E ≡ a ± bE (1.27)

where .Δ = p2 − 4q is the discriminant, .a = −p/2 and .b = √|Δ|/2 are real
numbers, and E is a specific element whose role is to make solution (1.27) always,
regardless of the sign of .Δ, “valid.” In such a way, the quadratic equation imposes
three different interpretations for the element E:

.Δ < 0 �⇒ E = i (i2 = −1)

Δ = 0 �⇒ E = ε (ε2 = 0) (1.28)

Δ > 0 �⇒ E = e (e2 = 1)

These relationships seem to provide some algebraic completeness. In terms
of reference [248], the element i associates with ordinary complex numbers, .ε

generates the algebra of dual numbers, and the element e moves the combination
.a + be into the algebra of double numbers. In the present text, the terms elliptic,
parabolic, and hyperbolic are used, respectively, as more close to the complemen-

8 Real tessarines (J. Cockle, 1848), Algebraic motors (W. Clifford, 1882), Hyperbolic numbers
(J. Vignaux, 1935), Perplex numbers (Poodiack and LeClair, 2009), Double numbers (I. Yaglom
[248]).
9 William Kingdon Clifford (1845–1879), English mathematician who, in particular, developed the
idea that space may not be independent of time.
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tary asymptotics represented by Fig. 1.1. Note that .e2 = 1 but neither only .e = 1
nor only .e = −1 but both together as dictated by two roots (1.27). Also, recall that
the term algebra assumes that a product of two elements is another element from
the same set. For instance, taking .a + bE squared and enforcing table (1.28) give:

.(a + bi)2 = a2 − b2 + 2abi

(a + bε)2 = a2 + 2abε (1.29)

(a + be)2 = a2 + b2 + 2abe

The imaginary units of table (1.28) admit extension on the matrix space through
the following real .2 × 2 matrixes

.i =
[
0 −1
1 0

]
, ε =

[
0 0
1 0

]
, e =

[
1 0
0 −1

]
(1.30)

Taking these matrixes squared gives .i2 = −I, .ε2 = 0, and .e2 = I, where .I and .0
are .2 × 2 identity and zero matrixes, respectively.

In a more general Abelian complex number system, the role of imaginary unit can
be assigned to some element E, whose squared is not necessarily listed in (1.28) but
still obeys rules (1.29) as

.E2 = c + 2Ed (1.31)

where c and d are real.
Then multiplications of elements from the corresponding algebra simply enforce

quadratic Eq. (1.31) without solving it for E.
As follows from Fig. 1.1, the elliptic and hyperbolic algebraic structures can be

associated with different types of dynamics described with smooth and nonsmooth
functions of time, respectively. Furthermore, the related functions point to the
link with two different subgroups of rigid body motions. Let us recall now that,
as conic sections, ellipse and hyperbola describe, respectively, low- and high-
energy trajectories of a satellite in the two-body problem of celestial mechanics,
whereas parabola gives a natural boundary separating the low- and high-energy
levels. Also, in classical dynamics, the low-energy structural vibrations with smooth
temporal shapes are typically described with either linear or quasi linear differential
equations. Increasing the energy may lead to the so-called essentially nonlinear
effects described with qualitatively different and highly individual mathematical
tools. These still superficial remarks may justify the intent to associate the general
concepts of linearity and nonlinearity with the elliptic and hyperbolic algebraic
structures, respectively.
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Square Wave as Imaginary Unit of Hyperbolic Algebra

As already noticed above, identity (1.24) reveals the unipotent in the essentially dif-
ferent way as compared to the formal mathematical definition. It is neither a number
nor an element any more but the discontinuous function of a certain physical nature
describing the velocity of a small particle freely oscillating between two amplitude
limiters. In order to emphasize the algebraic meaning of the corresponding square
wave as a unipotent, we also use the notation .e(t) = τ̇ (t). Since t is varying,
then there is no unique choice for the value of e, whereas always10 .e2 = 1. In
addition, identity (1.24) links the hyperbolic structure to the temporal symmetry
of periodic processes. Both terms on the right-hand side of (1.24) are essential as
those responsible for components with different temporal symmetries. Figure 1.5
illustrates geometrical meaning of the particular case of zero Y -component, when
.x(t) ≡ x[aτ(t/a)] = X(τ).

It is important to note that, under some conditions on X and Y , combina-
tion (1.24) can be of any class of smoothness even though the couple .{τ , τ̇ } ≡ {τ , e}
has singularities at such time instances t where .τ = ±1. As a result, differentiation
of hyperbolic “numbers” (1.24) is conducted in a different way as compared to
the case of fixed imaginary units. Let us take a formal derivative keeping in mind
that the couple .{τ(t), e(t)} does not possess classical derivatives at points .Λ =
.{t : τ(t) = ±1}. Taking into account the notation .e = τ̇ and enforcing the property
of the imaginary unit, .e2 = 1, give

.
dx

dt
= d

dt
[X (τ) + Y (τ) e] = X′ (τ ) e + Y ′ (τ ) e2 + Y (τ) ė

= Y ′ (τ ) + X′ (τ ) e + Y (τ) ė (′≡ d/dτ) (1.32)

In terms of distributions, the derivative .ė represents a periodic sequence of .δ-
functions as shown in Fig. 1.8. Since the pulses are localized at points .Λ, the term
.Y (τ) ė can be removed from (1.32) by imposing condition

Fig. 1.5 Geometrical
interpretation of the particular
case with a sine-wave
temporal symmetry:
observing the coordinate x

does not allow to conclude
which of the two temporal
variables, .τ or t , is actually
“running”

ta-a
ta�

x

“oscillating time” range

( ) ( )x t X ��

10 More precisely, for almost any t .
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.τ = ±1 : Y = 0 (1.33)

which is obviously a necessary condition for continuity of .x(t). Taking into
account (1.33) gives

.
d

dt
[X (τ) + Y (τ) e] = Y ′ (τ ) + X′ (τ ) e (1.34)

The result of differentiation therefore still belongs to the algebra of hyperbolic
numbers although the real and imaginary parts of the derivative .dx/dt are produced
by the imaginary and real parts of the function x, respectively. Further details on
both differential and integral operations are described in Chap. 4 and illustrated on
different examples dealing with applications.

Nonsmooth Idempotent Basis

Let us note that the hyperbolic plane has another natural basis associated with the
two isotropic lines separating the hyperbolic quadrants as shown in Fig. 1.1. The
transition from one basis to another is given by .e± = (1 ± e)/2 or, inversely, .1 =
e+ + e− and .e = e+ − e−. Therefore,

.x = X + Ye = X(e+ + e−) + Y (e+ − e−)

= (X + Y )e+ + (X − Y )e−
≡ X+(τ )e+ + X−(τ )e−

where .x = x(t) is any periodic function, as defined in (1.24), whose period is
normalized to .T = 4.

On one hand, the advantage is that the elements .e+ and .e− are mutually
annihilating (idempotents), .e+e− = 0, whereas .e2− = e− and .e2+ = e+. It is
clear also that .ee+ = e+ and .ee− = −e−. Due to the annihilation property, the
idempotent basis significantly eases different algebraic manipulations, for instance,

.(X+e+ + X−e−)2 = X2+e+ + X2−e−

On the other hand, this basis usually makes coupled the corresponding smoothness
(boundary) conditions for .X− and .Y−components; see Chap. 4 for further details
and examples.
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Fig. 1.6 Shifting the peaks of the triangle wave .τ is equivalent to transition from hyperbolic to
Abelian complex number system in terms of the imaginary unit .e = τ̇

Links to Abelian Complex Number Systems

Shifting peaks of the triangle wave will change its positive and negative slopes as
shown in Fig. 1.6. The corresponding first derivative is determined on the period in
graphical way as

.e (t, γ ) = ∂τ (t, γ )

∂t
=

{
(1 − γ )−1 for − 1 + γ ≤ t ≤ 1 − γ

− (1 + γ )−1 for 1 − γ ≤ t ≤ 3 + γ
(1.35)

.∀t : e (t + 4, γ ) = e (t, γ )

Taking (1.35) squared gives another piecewise constant function .[e (t, γ )]2,
which can be expressed through the function .e (t, γ ) by adjusting its amplitude and
shifting the outcome along the vertical as

.[e (t, γ )]2 = 1

1 − γ 2 + 2γ

1 − γ 2 e (t, γ ) (1.36)

Introducing the notations .E = e (t, γ ), .c = (
1 − γ 2

)−1
, and .d = γ c

brings (1.36) to the form of multiplication rule of Abelian complex number
system (1.31). Further details with extensions on differential and integral operations
are given in Sect. 4.1.8. From the physical standpoint, the peak shifts can be
explained by modifying the oscillator with the power characteristic as

.ẍ + (1 + μẋ) x2n−1 = 0 (1.37)

where the constant coefficient .μ may depend upon the number n. If .n � 1, the
term .μẋ absorbs the energy near the maximum value .x ≈ 1 and pumps the energy
back into the oscillator near the minimum at .x ≈ −1. Inside the interval .−1 <
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Fig. 1.7 Comparison of the temporal behavior of oscillator (1.37) in terms of the state variables q

and .q̇ = v (1.38) for the initial conditions .q(0) = .τ(0, γ ) and .v(0) = .e(0, γ ) = .1/(1 − γ ), and a
sample set of parameters: .γ = 0.3 , .μ = 0.8, .n = 40

x < 1, the dynamics of system (1.37) is approximated by the equation .ẍ = 0,
which is generating families of straight lines. Note that the power function .x2n−1

can produce a significant enough restoring force slightly above the unity .|x| = 1. As
follows from the energy conservation law in the conservative case, .μ = 0, the actual
amplitude is of order .∼ n1/(2n) > 1. For that reason, let us scale the coordinate x by
means of substitution

.x(t) = Aq(t), A =
[
n/(1 − γ )2

] 1
2n

(1.38)

where the term .(1 − γ )2 is inserted to account for the effect of specific initial
condition dictated by the graphs of .τ = τ(t, γ ) and .e = e(t, γ ) and explained
by Fig. 1.7.

When .γ 
= 0, representing the function .τ (t, γ ) in the closed form within the
class of elementary functions may be possible although with predictable technical
complexities. Alternatively, the functions .τ (t, γ ) and .e (t, γ ) can be viewed as a
standard couple of functions with their clear algebraic and physical basis. Further
applications of this case are discussed in Chaps. 4, 6, and 14. The following
examples are devoted mainly to the hyperbolic case, .γ = 0.

1.3 Examples

1.3.1 Remarks on the NSTT Basis Functions

As a basis functions, the triangle and square waves, .τ(t) and .τ̇ (t), can be expressed
through the standard elementary functions in the closed form as, respectively,
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Fig. 1.8 NSTT basis
functions of the normalized
period .T = 4: .τ(t)-the
triangle wave, .e(t)-square
wave, and its generalized
derivative, .ė(t)
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(1.39)

and

.τ̇ (t) = cos
πt

2

∣∣∣∣cos πt

2

∣∣∣∣
−1

= e(t) (1.40)

Obviously the amplitudes of both these waves are unity, and the period is .T = 4
as shown at the upper right of Fig. 1.1 and detailed in Fig. 1.8. Expression (1.40)
holds almost everywhere and can be replaced with .e(t) = sgn [.cos(πt/2)] for
calculation purposes. Note that trigonometric formulas (1.39) and (1.40) do not
participate in further analytical manipulations nor they have to be involved in
numerical calculation. These relationships are given here to confirm that both
functions, .τ(t) and .e(t), belong to the class of elementary functions. Practically,
for a given t , one can calculate the functions .τ(t) and .e(t) based on their piecewise-
linear graphs even with no tables nor calculators involved. From that standpoint
one must admit that sine and cosine waves represent a more complicated although
smooth case.

One of the further goals is to show how to deal with insulated singularities of
these functions when conducting operations with differential equations. A necessary
mathematical background is discussed in reference [185] and will be reproduced
in Chap. 4 in more details. At this stage, solutions can be compared with exact
solutions obtained in a different, either analytical or numerical, way to validate
the technique. Furthermore, during the derivations, there is no need in using
expressions (1.39) and (1.40). All the technical manipulations are based on:
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• linear independence of the elements 1, e, and .ė, as those from different classes of
smoothness, and

• the following properties

.τ̇ = e

ė = 2
∞∑

k=−∞
[δ (t + 1 − 4k) − δ (t − 1 − 4k)] (1.41)

e2 = 1

Generally, equalities (1.41) should be interpreted in terms of the distributions
due to the presence of singularities that occur whenever .τ = ±1. However, all the
singularities that are either inherently present in the model or occur in derivations
are eventually eliminated through the specific boundary conditions. The resultant
set of equations represent a classical boundary value problem with no singularities.
A series of examples illustrating the technique and outlining those cases when the
NSTT may be reasonable to apply is given below.

1.3.2 Overdamped Dynamics Under the Triangle Wave Forcing

Consider first a simple one-dimensional case. A light particle in a viscous fluid is
subjected to the triangle wave forcing such that the differential equation of motion
is reduced to

.ẋ(t) = qτ(t) (1.42)

where q is the loading amplitude per unit coefficient of viscosity, and the inertia
term is ignored.

The general solution of Eq. (1.42) is given by

.x(t) = x(0) + q

∫ t

0
τ(ϕ)dϕ (1.43)

where .x(0) is an arbitrary initial position, and the main part of this problem, which
is integrating the triangle wave, still persists.

Alternatively, let us represent the periodic solution in the form of hyperbolic
number

.x = X(τ) + Y (τ)e (1.44)

where .τ = τ(t) and .e = e(t).
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Substituting (1.44) in (1.42) and taking into account properties (1.41) give

.(Y ′ − qτ) + X′e + Y ė = 0 (1.45)

where .
′ ≡ d/dτ .

Due to the linear independence of 1, e, and .ė, Eq. (1.45) is equivalent to the
boundary value problem

.Y ′ = qτ , X′ = 0, Y |τ=±1 = 0 (1.46)

where the boundary condition provides zero factor for all .δ−functions of the
derivative .ė.

Note that problem (1.46) has no singularities. Although the function .τ is
nonsmooth in the original time variable t , it does no matter since the function .τ

plays the role of a new temporal argument. In contrast to (1.42), the integration of
Eq. (1.46) is straightforward since the variable of integration is .τ

.Y = q

τ∫
−1

τdτ = q

2
(τ 2 − 1), X = C (1.47)

where the lower limit of integration for Y is chosen to satisfy the boundary condition
in (1.46).

Substituting solution (1.47) back in (1.44) gives general solution of the original
Eq. (1.42)

.x = C + q

2
(τ 2 − 1)e (1.48)

where C is an arbitrary constant of integration. Then taking into account that .τ(0) =
0 and .e(0) = 1 gives .x(0) = C − q/2, and therefore solution (1.48) takes the final
form

.x = x(0) + q

2
+ q

2
(τ 2 − 1)e (1.49)

Compared to the direct approach (1.43), the NSTT allowed for integration of the
differential equation of motion without dealing with the piecewise structure of the
integrand. Besides, comparing solutions (1.43) and (1.49) gives relationship

.

∫ t

0
τ(ϕ)dϕ = 1

2
[1 + (τ 2 − 1)e], τ = τ(t), e = e(t) (1.50)

which can be verified by differentiating both sides with respect to t .
Note that there are two boundary conditions for Y in (1.46). Since the .Y−

component of the solution appeared to be an even function of the argument .τ , then
both of the conditions are satisfied although just one arbitrary constant, which is
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available for Y . If the forcing function in (1.42) were of even degree with respect
to .τ , for instance, .qτ 2, then the corresponding boundary-value problem would have
no solution. This fact is explained by the absence of periodic solutions under the
loading .qτ 2, which has a non-zero mean, whereas representation (1.44) imposes
periodicity on the function .x(t). Note that the NSTT is also applicable in case of
any odd degree polynomial of .τ on the right-hand side of Eq. (1.42),

.ẋ(t) =
n∑

k=1

qkτ
2k−1, τ = τ(t) (1.51)

where and .qk are constant coefficients of the polynomial.
Analogously to the above particular case, considering the modified equation,

.Y ′(τ ) =
n∑

k=1

qkτ
2k−1

gives periodic solution

.x = x(0) +
n∑

k=1

qk

2k
+

[
n∑

k=1

qk

2k
(τ 2k − 1)

]
e (1.52)

This solution can be verified by the direct substitution of (1.52) in (1.51).

1.3.3 The Square Wave Input

Let us consider now the case of stepwise discontinuous periodic loading

.ẋ(t) = pe(t) (1.53)

Substituting (1.44) in (1.53) gives11

.Y ′ + (X′ − p)e + Y ė = 0

The boundary value problem therefore takes the form

.Y ′(τ ) = 0, X′(τ ) = p, Y |τ=±1 = 0 (1.54)

In this case, .Y ≡ 0, and the solution of Eq. (1.53) is

11 Compare to (1.45).
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.x = x(0) + pτ(t) (1.55)

In this illustrating case, the above solution also follows directly from the
definition of .e(t) (1.40). As a generalization, let us consider equation

.ẋ(t) = e

m∑
k=0

pkτ
k , τ = τ(t), e = e(t) (1.56)

where .pk are constant coefficients.
In this case, the following periodic solution does exist for both odd and even

degrees of the polynomial in (1.56)

.x = x(0) +
m∑

k=0

pk

k + 1
τ k+1 (1.57)

Finally, combining the right-hand sides of Eqs. (1.51) and (1.56), and considering
the corresponding infinite series, gives function

.f (t) =
∞∑

k=1

qkτ
2k−1 + e

∞∑
k=0

pkτ
k ≡ Q(τ) + P(τ)e (1.58)

It will be shown later that expansion (1.58) represents a very general class
of zero mean periodic functions with the period normalized to .T = 4. The
corresponding periodic solution of the equation .ẋ(t) = f (t) is obtained by
combining solutions (1.52) and (1.57).

A Particle in Viscous Media Under the Square Wave Loading

Now, let us modify Eq. (1.53) as

.v̇ + λv = pe(t) (1.59)

where .λ > 0 is a constant parameter, and v can be interpreted as a velocity of the
particle subjected to the external square wave loading and linear viscous force.

In this case, the substitution .v = X(τ) + Y (τ)e brings Eq. (1.59) to the form

.Y ′ + λX + (X′ + λY − p)e + Y ė = 0

which is equivalent to the boundary value problem

.Y ′ + λX = 0, X′ + λY = p, Y |τ=±1 = 0 (1.60)
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Eliminating the X-component from the second equation gives the differential
equation .Y ′′ − λ2Y = −λp with the general solution

.Y = C1 sinh λτ + C2 sinh λτ + p/λ

Then satisfying the boundary conditions in (1.60), determining .X = −Y ′/λ, and
substituting both X and Y back in (1.44) give the periodic solution of Eq. (1.59)

.x(t) = p

λ

[
sinh λτ

cosh λ
+

(
1 − cosh λτ

cosh λ

)
e

]
, τ = τ(t), e = e(t) (1.61)

Let us emphasize that the current solution procedure, (1.59) through (1.61),
avoids typical approaches based on Fourier series expansions, Laplace transforms,
or mapping separate pieces of solutions at discontinuity times. These tools would
obviously require additional technical efforts in analytical manipulations. Also
note that the so-called Wilbraham-Gibbs phenomenon generates quite significant
errors of the Fourier expansions near the discontinuity times whose neighborhoods
may appear to be of the main interest in dynamics. Instead exact solution (1.61)
represents a combination of elementary functions in a closed form.

1.3.4 Oscillatory Pipe Flow Model

As a possible application, let us consider a simplified model of pipe flow driven by
the square pressure wave [233]. The pipe flow .Q(t) is described by the first-order
nonlinear differential equation

.LQ̇ + KQ2 = P0 + P1e(t/a) (1.62)

where L is a lumped inertness of the flow, K is a constant coefficient of quadratic
resistance, .P0 and .P1 are constant parameters characterizing the pressure drop, and
.T = 4a is the period of the square pressure wave.

Scaling the parameters as .k = K/L, .p0 = P0/L, and .p1 = P1/L brings
Eq. (1.62) to the form

.Q̇ + kQ2 = p0 + p1e(t/a) (1.63)

The temporal behavior of the flow essentially depends on the model parameters
and initial conditions. Let us assume that the flow becomes eventually periodic with
the period of square pressure wave. The objective is to determine the average steady-
state flow. For that reason, the corresponding periodic solution can be represented
in the form

.Q(t) = X(τ) + Y (τ)e (1.64)
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where .τ = τ(t/a) and .e = e(t/a) are triangle and square waves, respectively, of
the period .T = 4a.

Substituting (1.64) in (1.63), and taking into account the relationship .e2 = 1,
gives

.a−1(Y ′ + X′e + Ye′) + k(X2 + Y 2 + 2XYe) = p0 + p1e (1.65)

where .e′ = de(t/a)/d(t/a).
Then, using the linear independence of the elements 1, e, and .ė and collecting

separately the related coefficients in Eq. (1.65) give

.Y ′ + ak(X2 + Y 2) = ap0

X′ + 2akXY = ap1 (1.66)

Y |τ=±1 = 0

where the boundary condition for Y provides zero factor for all .δ− functions of the
derivative .ė and hence eliminates it completely from the equation.

Introducing the new unknowns .U = X +Y and .V = X −Y brings the boundary
value problem (1.66) to the form

.U ′ + akU2 = aF

V ′ − akV 2 = −aG (1.67)

(U − V )|τ=±1 = 0

where .F = p0 + p1 and .G = p0 − p1 are constant, and the differential equations
are decoupled at cost of coupling the boundary conditions.

Both equations in (1.67) admit separation of variables with general solutions

.U(τ, C1) =
√

F

k

[
1 − 2 exp(−2a

√
kFτ)

C1 + exp(−2a
√

kFτ)

]

V (τ , C2) = −
√

G

k

[
1 − 2 exp(−2a

√
kGτ)

C2 + exp(−2a
√

kGτ)

]
(1.68)

where .C1 and .C2 are arbitrary constants of integration to be determined from the
boundary conditions

.U(1, C1) − V (1, C2) = 0

U(−1, C1) − V (−1, C2) = 0 (1.69)
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Each real solution of Eqs. (1.69) for the constants .C1 and .C2 gives a periodic
solution of differential equation (1.63). Also, numerical tests show that some of the
periodic solutions may appear to be unstable. Finally the pipe flow function Q can
be represented in either standard or idempotent basis as

.Q(t) = X + Ye = 1

2
(U + V ) + 1

2
(U − V )e

= U(τ, C1)e+ + V (τ , C2)e− (1.70)

where .τ = τ(t/a) and .e±(t/a) = [1 ± e(t/a)]/2 are the elements of idempotent
basis.

It will be shown in Chap. 4 that the temporal mean value of a periodic function
is determined by averaging its .X(τ)-component with respect to .τ . For instance,
solution (1.70) gives the average steady-state flow as

.〈Q〉 ≡ 1

T

T∫
0

Q(t)dt = 1

2

1∫
−1

X(τ)dτ = 1

2

(√
G

k
−

√
F

k

)

+ 1

4ak
ln

[1 + C1exp(2a
√

kF )][1 + C2exp(−2a
√

kG)]
[1 + C1exp(−2a

√
kF ][1 + C2exp(2a

√
kG)] (1.71)

Figure 1.9 shows what happens to the steady-state flow profile as the period of
pressure wave becomes twice longer. Note that the average flow for the period .T = 4
is somewhat smaller compared to the case of longer period .T = 8.

T 8

T 4

0.0 0.5 1.0 1.5 2.0

6

7

8

9

10

t T

Q

Fig. 1.9 Profiles of steady-state pipe flows obtained for two different periods T of the square
pressure wave under the model parameters .k = 0.03, .p0 = 2.0, and .p1 = 1.5; case .T = 4 :
.C1 = 8.2248, .C2 = −0.3125 and .< Q >= 8.12292; case .T = 8: .C1 = 11.7200, .C2 = −0.2651,
and .< Q >= 8.02996
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1.3.5 Periodic Impulsive Loading

Let us consider the one-dimensional motion of a material point under the periodic
impulsive loading inside the linearly viscous fluid. The corresponding differential
equation of the particle velocity of motion is

.v̇ + λv = 2p
∞∑

k=−∞
[δ (t + 1 − 4k) − δ (t − 1 − 4k)] = pė (1.72)

where .λ and p are a coefficient of viscosity and a half of the pulse amplitude per
unit mass, respectively, and the infinite sequence of Dirac functions is represented
by the generalized derivative of the square wave .e(t) of the period .T = 4 according
to (1.41).

Equation (1.72) contains generalized functions/distributions, and therefore equal-
ity must be interpreted in terms of integral identities. Such kind of problem is usually
solved by applying either Fourier series or Laplace transform or by considering
the equation between the pulses by matching different pieces of the solution at the
pulse times. Alternatively, the solution can be obtained in few quick steps by using
identity (1.44).

Indeed, substituting (1.44) in (1.72) and taking into account (1.41) give

.
(
Y ′ + λX

) + (
X′ + λY

)
e + (Y − p)ė = 0

or

.Y ′ + λX = 0, X′ + λY = 0, Y |τ=±1 = p (1.73)

Solving boundary value problem (1.73) in similar way to (1.60) gives the closed
form particular solution

.v = − p

cosh λ
(sinh λτ − e cosh λτ) , τ = τ(t/a), e = e(t/a) (1.74)

Due to linearity of Eq. (1.72), the entire general solution is obtained by adding
the term with an arbitrary constant, .C exp(−λt).

1.3.6 Dirac Comb Loading

Let us consider the case of the one-directional Dirac’s pulse loading (Dirac comb)
of the period .T = 2
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.v̇ + λv = 2p
∞∑

k=−∞
δ (t + 1 − 2k) = −p sgn(τ )ė (1.75)

where .τ = τ(t) and .e = e(t) are the triangle and square waves, respectively, with
the period .T = 4.

As follows from Fig. 1.8, the term sgn.(τ ) near the derivative .ė on the right-
hand side of Eq. (1.75) makes all the .δ-functions of the loading one-directional and
positive. As a result, the loading period is as many as twice shorter. Comparing
Eq. (1.75) to (1.72) leads to the boundary value problem, which is similar to (1.73)
except for the boundary condition

.Y ′ + λX = 0, X′ + λY = 0, Y |τ=±1 = −p sgn(τ ) (1.76)

Solution of this boundary value problem is obtained analogously to (1.61)
and (1.74) as

.v = p

sinh λ
(cosh λτ − e sinh λτ) (1.77)

Solution (1.77) is illustrated in Fig. 1.10. The mean value of the velocity over
one period is calculated by using the formula derived in Chap. 4 and already applied
above in (1.71):

.〈v〉 = 1

2

1∫
−1

X(τ)dτ = p

2 sinh λ

1∫
−1

cosh λτdτ = p

λ
(1.78)

As follows from (1.78), the particle’s drift of displacement due to one-directional
Dirac comb loading is estimated as .∼ (p/λ)t .

Fig. 1.10 Steady-state
periodic velocity response of
a particle in the viscous
media under Dirac comb
loading with parameters:
.a = 1 and .p = 1
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1.3.7 Combined Loading

Consider now the case of combined nonsmooth input described with equation

.ẋ + (1 + λe)x = pe′ (1.79)

where .α and p are constant parameters, .τ = τ(t/a), .e = e(t/a), and .e′ is the
periodic series of .δ-functions,12

.e′ = de(t/a)

d(t/a)
= 2

∞∑
k=−∞

[
δ

(
t

a
+ 1 − 4k

)
− δ

(
t

a
− 1 − 4k

)]

= 2a
∞∑

k=−∞
[δ (t + a − 4ak) − δ (t − a − 4ak)] (1.80)

Equation (1.79) therefore includes the periodic stepwise discontinuous para-
metric term e and the external periodic impulsive term .e′ with two-directional
Dirac .δ-functions. Following the previous examples and conducting the substitution
.x = X(τ) + Y (τ)e in Eq. (1.79) give the following boundary value problem

.
1

a
X′ + λX + Y = 0

1

a
Y ′ + X + λY = 0 (1.81)

Y |τ=±1 = p

The general solution of linear system (1.81) can be obtained by eliminating X

and switching to a single second-order equation for Y . This leads to the following
form of solution with two arbitrary constants

.X = exp(−λaτ) (C1 cosh aτ − C2 sinh aτ)

Y = exp(−λaτ) (C2 cosh aτ − C1 sinh aτ) (1.82)

Then, determining .C1 and .C2 from the boundary conditions in (1.81) gives the
periodic solution of Eq. (1.79) as

.x = X + Ye = −ap exp(−λaτ) (1.83)

×
[
cosh λa

cosh a
(sinh aτ − e cosh aτ) + sinh λa

sinh a
(cosh aτ − e sinh aτ)

]

12 Using the property .δ(γ t) = |γ |−1δ(t).
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Remark 1.3.1 Taking into account that .e2j = 1 and .e2j+1 = e for .j = 0, 1, 2, . . .
and almost all .t ∈ (−∞,∞) gives the hyperbolic version of Euler formula, where
the stepwise discontinuous function e plays the role of imaginary unity,

. exp(ϕe) =
∞∑

j=0

(ϕe)j

j ! =
∞∑

j=0

ϕ2j

(2j)! + e

∞∑
j=0

ϕ2j+1

(2j + 1)!
= coshϕ + e sinhϕ (1.84)

Replacing .ϕ → .−aτ in (1.84) and using the relationship .e2 = 1 give

. exp(−aτe) = cosh aτ − e sinh aτ

−e exp(−aτe) = sinh aτ − e cosh aτ

Using this remark brings solution (1.83) to the form

.x = −ap exp[−(λ + e)aτ ]
(
sinh λa

sinh a
− cosh λa

cosh a
e

)
(1.85)

Figure 1.11 illustrates solution (1.85) for two different amplitudes of the
parametric loading, .λ. It is seen that the parametric loading has a global effect on
the system response with no influence on the stepwise discontinuities produced by
the external pulses. This happens because every delta pulse of the series .pe′ on the
right-hand side of Eq. (1.79) is balanced only by the derivative .ẋ on the left. The
term .(1 + λe)x cannot generate .δ-type singularities and hence works only within
intervals between the pulses. It is quite easy to prove. If this term had .δ-functions,
then the derivative .ẋ would produce unbalanced generalized derivatives of the .δ-
functions. In addition, the product ex would become questionable since .δ-functions
with discontinuous multipliers are not uniquely defined in the theory of distributions
[63, 65].

Fig. 1.11 Steady-state
periodic velocity response of
a particle in the viscous
media under the external
Dirac’s two-directional pulses
and parametric stepwise loads
with parameters: .a = 1 and
.p = 1
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2

mx( )V t

Fig. 1.12 Mass m, whose position inside the moving container is described by the relative
coordinate .x(t), is subjected to a periodic stepwise loading and reaction impulses from the vertical
walls as the container’s velocity is varying according to the triangle wave law, .V (t) = V0τ(ωt)

1.3.8 Vibroimpact Oscillator Under the Stepwise Loading

Consider the dynamic behavior of a small particle of mass m inside the container
whose velocity is changing according to the triangle wave law, .V (t) = V0τ(ωt), as
shown in Fig. 1.12. Using the d’Alembert principle leads to the differential equation
of motion .ẍ = V̇ (t), where .x(t) is the container-based (relative) coordinate of
the mass. Then, assuming that the particle can strike the container’s vertical walls
gives the vibroimpact oscillator under the periodic stepwise loading and constraint
condition as

.ẍ = αe(ϕ), |x| ≤ Δ (1.86)

where .α = V0ω and .ϕ = ωt are the loading amplitude and phase, respectively, and
the condition of impact interactions with the walls, .x = ±Δ, is given by

.ẋ(ti + 0) = −kẋ(ti − 0) (1.87)

where .ti is the collision time, and k is the so-called coefficient of restitution, .0 ≤
k ≤ 1.

Recall that the period of function .e(ϕ) with respect to the phase .ϕ is normalized
to four; hence, the loading period is .T = 4/ω. Let us show that, for certain
frequencies .ω, the problem (1.86) and (1.87) admits an exact closed-form periodic
solution. First, let us replace (1.86) by an auxiliary model with no constraints

.ẍ = αe(ϕ) + pe′(ϕ) (1.88)

where the reaction of constraints is represented by the periodic series of .δ-functions
of the amplitude .2p/ω with yet unknown parameter p. Note that systems (1.86)
and (1.88) are not completely equivalent. It will be discussed in Chap. 10 that
solutions of Eq. (1.88) may violate the constraint condition .|x| ≤ Δ away from
the assumed impact times. This does not happen though under proper conditions
imposed on the system parameters.

Let us seek solution of Eq. (1.88) in the form .x = X(τ)+Y (τ)e, where .τ = τ(ϕ)

and .e = e(ϕ). Following the procedure described in the previous sections gives
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.X′′ω2 + (Y ′′ω2 − α)e + (X′ω2 − p)e′ = 0 (1.89)

Then setting separately both components of the hyperbolic number to zero
and eliminating the singular term give equations and the boundary condition as,
respectively,

.ω2X′′ = 0, ω2Y ′′ = α (1.90)

and

.τ = ±1: Y = 0, ω2X′ = p (1.91)

General solution of system (1.90) is

.X = Aτ + B, Y = Cτ + D + ατ 2

2ω2 (1.92)

where A, B, C, and D are arbitrary constants.
Let us assume that the constraints .x = ±Δ are reached at the amplitude points

.τ = ±1. Then taking into account the boundary conditions for Y -component (1.91)
gives

.X(±1) + Y (±1)e = X(±1) = ±Δ (1.93)

Boundary conditions (1.91) and (1.93) allow us to determine A, B, C, and D and
express the reaction of constraint p through the yet arbitrary frequency parameter
.ω. This brings general solution (1.92) to the form

.X = Δτ , Y = α

2ω2
(τ 2 − 1), ω2Δ = p (1.94)

Note that condition (1.87) still remains unsatisfied; thus, the coefficient of
restitution k did not show up in the solution. Satisfying condition (1.87), which
is formulated in the original time variable t , represents the main issue in the present
problem. To switch to the periodic time variable .τ , let us maintain the assumption
that collisions take place whenever .τ = ±1. If, for instance, the collision time .ti
corresponds to some amplitude point at which .τ = −1, then the function e switches
its value from .e = −1 to .e = +1 when the system is passing through the collision
time .ti . At those collision times, at which .τ = 1, the function e switches its value
from .e = 1 to .e = −1. As a result, condition (1.87) can be replaced by the two
relationships [191]

.τ = −1: Y ′ + X′ = −k
(
Y ′ − X′)

τ = +1: Y ′ − X′ = −k
(
Y ′ + X′) (1.95)
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Since the components X and Y are odd and even functions of .τ , respectively,
both of these conditions are satisfied with (1.94) if

.ω =
√
1 + k

1 − k

α

Δ
(1.96)

Taking into account the notation .α = V0ω and solving (1.96) for .ω give also

.ω = 1 + k

1 − k

V0

Δ
(1.97)

This should be viewed as a necessary condition under which the assumed
periodic solution of the period .T = 4/ω does exist. Then substituting (1.96)
in (1.94) gives the corresponding temporal mode shape and the constraint response
p as

.x(t) = X + Ye = Δ

[
τ − 1

2

(
1 − k

1 + k

)
(1 − τ 2)e

]

p = ω2Δ =
(
1 + k

1 − k

)2 V 2
0

Δ
(1.98)

where .τ = τ(ωt) and .e = e(ωt).
The temporal shapes of the coordinate and the velocity are illustrated by

Fig. 1.13.
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Fig. 1.13 Steady-state response of the basic vibroimpact model to the periodic stepwise loading
with energy loss at the barriers: .α = 0.5, .Δ = 1.0, .k = 0.5, and .ω = 1.2247
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Fig. 1.14 Physical interpretation of the triangle wave support motion of harmonic oscillator,
where v is the platform velocity, .2Δ is a clearance to be passed twice per one cycle, and hence
a quarter of the period is .a = Δ/v

1.3.9 Harmonic Oscillator Under the Triangle Wave Forcing

In order to compare two alternative approaches based on a physical example, let
us consider the case of triangle wave support motion for the undamped harmonic
oscillator of the massm represented by Fig. 1.14. Amassive platform of the massM ,
carrying the oscillator, is moving in the clearance .2Δ between two absolutely stiff
walls without energy loss. Assuming that .M >> m and thus ignoring the feedback
effect of oscillator on the dynamics of platform lead to the following differential
equation of motion for the oscillator’s absolute displacement y in the form .mÿ =
k(u − y).

Fourier Series Solution

First, let us obtain steady-state solution by using the Fourier expansion for the
support motion

.u = Δτ (ωt) = Δ
8

π2

∞∑
j=1

(−1)j+1

(2j − 1)2
sinΩj t . (1.99)

Ωj = (2j − 1)
π

2
ω

(
ω = 1

a
= v

Δ

)
(1.100)

Introducing the notations .Ω0 = √
k/m and .F0 = (k/m)Δ brings its differential

equation of motion to the form

.ÿ + Ω2
0y = F0τ (ωt) = F0

8

π2

∞∑
j=1

(−1)j+1

(2j − 1)2
sinΩj t (1.101)

Assuming no resonance and using the method of undetermined coefficients give
the steady-state response of oscillator (1.101)



1.3 Examples 37

.y = F0
8

π2

∞∑
j=1

(−1)j+1

(2j − 1)2
sinΩj t

Ω2
0 − Ω

2
j

(1.102)

Taking into account notations (1.100) and the condition of possible resonance,

.Ω2
0 = Ω

2
j
, from (1.102) gives the corresponding resonance velocities

.v = 2Δ

(2j − 1)π
Ω0 (j = 1, 2, . . .) (1.103)

Triangle Wave Solution

Now let us apply the triangle wave temporal substitution to find the steady- state
response in the form .y = X(τ), where .τ = τ(ωt) is the new time argument.
Implementing this substitution in Eq. (1.101) gives the equation,

.ω2(X′′ + X′e′) + Ω2
0X = F0τ (ωt)

which is equivalent to the boundary value problem

.X′′ + r2X = ω−2F0τ , X′|τ=1 = 0 (′≡ d/dτ) (1.104)

where .r = Ω0/ω is the adjusted frequency ratio, such that the principal resonance,
.Ω0 = Ω = (π/2)ω, is given by .r = π/2.

The general solution of differential equation in (1.104) is

.X = A sin rτ + B cos rτ + F0

Ω2
0

τ (1.105)

The arbitrary constants A and B are determined from the boundary conditions

.τ = 1 : r(A cos r − B sin r) + F0

Ω2
0

= 0

τ = −1 : r(A cos r + B sin r) + F0

Ω2
0

= 0

as .A = − .F0/(r.Ω.
2
0 cos r) and .B = 0. Then solution (1.105) takes the form

.y = X = F0

Ω2
0

(
τ − sin rτ

r cos r

)
, τ = τ(ωt) (1.106)

In contrast to (1.102), solution (1.106) was derived in a closed form, which is
more convenient for calculations and different analytical manipulations. As follows
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from the form of solution (1.106), the resonance condition follows from the roots of
equation .cos r = 0 and appears to be equivalent to (1.103):

.r = π

2
(2j − 1) =Ω0

ω
= Ω0

v
Δ (j = 1, 2, . . .)

More importantly, differentiation of the series in solution (1.102) essentially
affects its convergence, whereas solution (1.106) gives both velocity and acceler-
ation still in a closed form in two steps as

.ẏ = F0

rΩ0

(
1 − cos rτ

cos r

)
e, e = dτ(ωt)

d(ωt)

ÿ = F0

r2

(
1 − cos rτ

cos r

) de(ωt)

d(ωt)
+ F0

r

sin rτ

cos r
e2 = F0

r

sin rτ

cos r

where the relationship .e2 = 1 was used and the term including periodic series
of .δ-functions, .de(ωt)/d(ωt), removed based on properties (1.41). Note that the
acceleration, .ÿ, is still a continuous however nonsmooth function.

1.3.10 Strongly Nonlinear Oscillator

As a strongly nonlinear case, let us consider the nonlinear oscillator with reference
to Fig. 1.1,

.ẍ + x2n−1 = 0 (1.107)

where n is an arbitrary positive integer.
Note that this example gave the asymptotic basis for introducing the triangle

wave .τ as a new temporal argument [172]. In this case, the argument .τ itself
becomes solution as .n → ∞. The problem here is that the limit is nonsmooth,
whereas finite numbers n still lead to smooth oscillations. Let us show that changing
the temporal variable, .t → τ , facilitates a natural transition to the limit .n → ∞. The
temporal symmetry of the oscillator justifies the assumptions, .X(−τ) ≡ −X(τ) and
.Y ≡ 0, and hence the following representation for periodic solution

.x = X(τ), τ = τ(t/a) (1.108)

where .a = T/4 is an unknown quarter of the period.
Substituting (1.108) in (1.107) and taking into account (1.41) give

.
1

a2
(X′′ + X′e′) + X2n−1 = 0 (1.109)
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Due to the oddness of .X(τ), Eq. (1.109) is equivalent to a one-point boundary
value problem

.X′′ = −a2X2n−1, X′|τ=1 = 0 (1.110)

where the boundary condition eliminates the singular term .e′ in Eq. (1.109).
The idea is to take advantage of the fact that the new temporal argument is

periodic and bounded, .−1 ≤ τ ≤ 1. For that reason, successive iterations can
be applied as a complementary analytical tool to the quasi harmonic methods. This
tool requires no small parameter to be present explicitly. On one hand, it provides
a much broader applicability. On the other hand, one must rely on the convergence
of algorithm. Although the convergence is usually slow,13 the physical basis of the
convergence can always be determined whenever the problem has some physical
content. Note that the harmonic balance method does not require any explicit small
parameter either by assuming the temporal mode shapes to be close to harmonic.
In other words, all the high frequency terms of quasi harmonic expansions just
correct but not exceed the fundamental harmonic of the solution. In the present
case, the solution is approximated by the triangle wave, which is corrected by higher
powers of the same triangle wave. On the physical point of view, the model under
consideration must be close to the vibroimpact rather than the harmonic oscillator.
In terms of the new time variable .τ , such an assumption simply means that the right-
hand side of the differential equation of motion (1.110) is small enough to justify
the following generating system

.X′′
0 = 0 (1.111)

This equation describes a family of impact oscillators with the triangular sine
wave time histories

.X0 = Aτ(t/a) (1.112)

where A is an arbitrary constant and another (additive) constant is zero due to the
symmetry .X(−τ) ≡ −X(τ).

The entire iteration algorithm can be designed in different ways. For instance,
next approximation can be obtained by substituting (1.112) in the right-hand side of
Eq. (1.110) and then integrating it twice as

.X1 = Aτ − a2A2n−1 τ 2n+1

2n(2n + 1)
(1.113)

Note that the linear term .Aτ occurred again as a result of integration in (1.110).
Keeping the same notation for the arbitrary constant, A, automatically incorporates

13 This is rather a side effect of the generality of successive approximation techniques.
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generating solution (1.112) into the current approximation. Now ignoring (1.112)
and satisfying the boundary condition for .X1 in (1.110) give

.a2 = 2n

A2n−2 (1.114)

and therefore

.X1 = A

(
τ − τ 2n+1

2n + 1

)
(1.115)

High-order algorithms of successive approximations are described in Chap. 8. It
is shown that expression (1.114) is sequentially improved as follows:

.a2 = 2n

A2n−2

(
1 + 2n − 1

4n + 2

)
, T = 4a

As mentioned above, successive approximation algorithms can be applied to
Eq. (1.110) with more general right-hand sides. In the above considered case, the
number n relates directly to the idea of algorithm. As a result, solution (1.115)
is working better as the exponent n increases. A physically meaningful transition
to the limit .n → ∞ can be implemented by considering the initial velocity
.v0 = A/a instead of the parameter A. The algorithm for next steps of iteration is
given in Appendix 1, and further details on the current example under the notation
.m = 2n − 1 are presented in Sect. 8.3.2. Finally, despite the manipulations with
nonsmooth and discontinuous functions, solution (1.115) is twice continuously
differentiable with respect to the argument t . This can be verified directly by taking
first two formal derivatives of (1.115). Generally, the boundary value problem, such
as (1.110), may appear to be complicated for any analytical method. In such cases,
a combination of NSTT with the shooting method can be effectively used as a semi-
analytical approach [185, 201].

1.4 Geometrical Views on Nonlinearity

1.4.1 Geometrical Example

As shown in the previous sections, the asymptotic of linearity has a strongly
nonlinear but simple enough counterpart such that both may complement each
other as possible approaches to vibration problems. In other words, two couples of
basic functions, .{sin t, cos t} and .{τ(t), e(t)}, naturally associate with the opposite
parametric boundaries of different physical systems. Recall that oscillator (1.107)
is not a unique example of systems with such properties. Another case is repre-
sented by Eq. (1.20) of Sect. 1.2.4 dealing with the energy exchange between two
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Fig. 1.15 Rigid-body
rotation that generates both
sine and triangular waves
within the same class of
elementary functions

P

C O

Y
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resonating weakly coupled identical oscillators. Below, a geometrical (kinematic)
interpretation for this case is introduced.14

Let us consider a purely geometrical model generating both sine and triangle
waves as two asymptotic limits of the same family of periodic functions. With
reference to Fig. 1.15, the distance between two fixed points C and O is equal to
unity. A disc of the radius .CP = α is rotating around its geometrical center C with
some angular speed .Ω so that the angle between CO and CP is .ϕ = Ωt . The
edge point P of the rotating disc has its image Q on the co-centered circle of the
unit radius. The image is obtained under the condition that, during the rotation, PQ

remains parallel to CO. Then position of the image Q is given by either Cartesian
coordinate Y or by the arc length y as follows:

.Y = α sinϕ (1.116)

.y = arcsin(α sinϕ) ≡ π

2
τα

(
2

π
ϕ

)
(1.117)

where .τα is defined earlier in (1.4).
Expression (1.117) is obtained by equating projections of CP and CQ on the

vertical and taking into account that the angle QCO is equal to the corresponding
arc length y. Obviously, (1.117) becomes equivalent to (1.116) and thus describes
the harmonic sine wave as .α → 0. Suppose now that .α → 1−0. In this case, (1.117)
takes the shape of triangle wave

.y → π

2
τ

(
2

π
ϕ

)
(1.118)

Interestingly enough, both types of observation of the above rigid-body rotation
are associated with different elastic oscillators. On one hand, as a function of time,
expression (1.116) satisfies equation

14 This geometrical interpretation is unrelated to the broadly used term “geometrical nonlinearity”.
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.Ÿ + Ω2Y = 0 (1.119)

On the other hand, the function .y(t) (1.117) satisfies the differential equation of
motion of the conservative oscillator

.ÿ + tan y

cos2 y
= 0 (1.120)

under condition

.α2 + Ω−2 = 1 (1.121)

Condition (1.121) implies that the frequency .Ω depends upon the disc radius
monotonically in such a way that .1 ≤ Ω < ∞ as .0 ≤ α < 1. Therefore, the
nonsmooth limit (1.118) is reached under the infinitely large frequency .Ω , when the
total energy of oscillator (1.120) becomes infinitely large,

.H = ẏ2

2
+ tan2 y

2
→ ∞ (1.122)

The reasons for considering oscillator (1.120) as a generating model in nonlinear
dynamics will be explained later. At this stage, let us bring attention to the fact that
both Eqs. (1.119) and (1.120) actually describe the same rigid-body rotation but in
different coordinate systems.

1.4.2 Nonlinear Equations and Nonlinear Phenomena

The purpose of next few subsections is to find a physical support for using
elementary nonsmooth systems as a basis for analytical algorithms in nonlinear
dynamics. Defining the nonlinearity regardless of mathematical formalizations
appears to be a challenging task. It is difficult to find appropriate physical principles
that would qualify nonlinearity as a natural phenomenon rather than a specific form
of mathematical expressions. Intuitively it is clear though that nonlinear phenomena
may occur at high energy levels. The following scenario is described in the book
[163]: “. . . once the power or violence of a system is increased, it leaves the familiar
linear region and enters the more complex world of nonlinear effects: rivers become
turbulent, amplifiers overload and distort, chemicals explode, machines go into
uncontrollable oscillations, plates buckle, metals fracture, and structures collapse.”
The author goes even further by saying that “within such an approach, mind may
no longer appear as an alien stuff in a mechanical universe; rather the operation of
mind will have resonances to the transformations of matter, and indeed, the two will
be found to emerge from a deeper ground.” Mathematical approaches can still be
helpful based on the following logical identity
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.Nonlinear systems = All systems − Linear systems (1.123)

Although this relationship brings little physical contents, it shows that a physical
understanding of the nonlinearity can possibly be achieved based on the idea of
complementarity. In other words, it may be easier to clarify first what kind of physics
is behind the well-known linear simplicity. The standard mathematical definition for
linear systems is usually introduced through the superposition principle. Generally,
it can be defined in terms of operators. Let L be an operator acting on the system
states or may be positional coordinates .{q}. Then the operator L is linear, if for
any two states, say .q1 and .q2 , and any two constants, .C1 and .C2 , the following
relationship holds:

.L(C1 q1 + C2 q2 ) = C1 Lq1 + C2 Lq2 (1.124)

According to (1.123), a system is nonlinear if it is not linear. This mathematical
definition appears to be questionable from physical viewpoints. For instance, system

.ρ̈ − ρ ϕ̇2 = ρ (sin 2ϕ − 2)

ρϕ̈ + 2ρ̇ ϕ̇ = ρ cos 2ϕ (1.125)

does not satisfy condition (1.124) and must be called nonlinear, whereas system

.ẍ1 + 2x1 − x2 = 0

ẍ2 − x1 + 2x2 = 0 (1.126)

is linear, whose linear differential operator L is acting on the position (vector)
matrix .q = [x1, x1]T as

.Lq =
[

d2/dt2 + 2 −1
−1 d2/dt2 + 2

] [
x1

x2

]
=

[
0
0

]
(1.127)

The linear superposition principle (1.124) is therefore applicable to sys-
tem (1.126) and obviously inapplicable to system (1.125). Still both sets of
Eqs. (1.125) and (1.126), describe the same two mass-spring system in polar
and Cartesian coordinates, respectively. On the plane of configurations, the
corresponding coordinate transformation is given by

.x1 = ρ cos ϕ, x2 = ρ sin ϕ (1.128)

It is clear that the system is linear from the physical point of view, since
the nonlinearity of Eqs. (1.125) is due to the specific choice for the system
coordinates. Therefore, a physical definition for linear systems must also specify
the type of coordinates, for instance: A mechanical system is linear if its differential
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equations of motions in the inertial Cartesian frame are linear.15 On one hand, this
definition involves some physical principles since the Cartesian frame is uniquely
associated with general properties of the physical space. On the other hand, the
mathematical concept of coordinate systems is still present. Nonetheless, as known
from observations and expressed by the above quotation [163], some dynamic
phenomena are perceived as nonlinear without any explicit coordinates. Since all the
theories are developed by people, then all the basic theoretical concepts and notions
should inevitably inherit our spatiotemporal perceptions. The importance of human
sensoring for formulations of physical laws was noticed by H. Poincaré. Since then it
is discussed in the literature from different viewpoints [7, 140]. Next two subsections
make yet another attempt to figure out why a nonlinear feel is actually possible and
what kind of constructive conclusion may follow.

1.4.3 Rigid-Body Motions and Linear Systems

As mentioned at the beginning of this introduction, both sine and cosine waves are
associated with the subgroup of rigid-body rotations. The same temporal shapes
describe vibrations of deformable linearly elastic bodies such as harmonic oscilla-
tors. Therefore, one-dimensional dynamics generated by linearly elastic restoring
forces can be represented as free rigid-body rotations in the two-dimensional space.
In other words, the linearly elastic forces are effectively eliminated by expanding
the dimension of space. In such a way, structural vibrations of linearly elastic
systems can be viewed as kinematics of freely spinning discs, where the number
of discs represents the number of normal modes. Any asymmetries, interactions,
or dissipation must be ignored as effects beyond elementary rigid-body motions.
A mathematical formalization of the above analogies can be introduced as follows.
Let z be a complex vector frozen in a rigid body (disc), whose position is observed
inside the empty space. The concept of position becomes quite vague, if there is
only one body. Hence the observer represents another physical body, which is a
single point. A straight line connecting this point and the center of the disc plays the
role of a reference line for determining direction of the vector z. Since the disc is
assumed to be rigid then

.z′z̄′ = zz̄ (1.129)

where the bar means complex conjugate and the prime denotes any new position of
the body.

Expression (1.129) associates with the Galilean rotation, whose complex opera-
tor G is acting as

15 Suggested by V.Ph. Zhuravlev during a private discussion at International Conference “Nonlin-
ear Phenomena,” Moscow, 1989.
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.z′ = Gz (1.130)

where G must depend on some parameter, say .ϕ, characterizing the angular shift,
.z → z′.

Substituting (1.130) in (1.129) gives

.GḠ = |G|2 = 1 �⇒ G = exp(iϕ), i2 = −1 (1.131)

As follows from (1.131), the conjugate operator .Ḡ reverses the angular shift
produced by G. Since .ϕ is the only parameter of the only one process that can
be observed from a free disc, then .ϕ must be qualified as time with possibly some
scaling factor. Introducing an arbitrary scaling factor, say .Ω , gives then

.G = exp (iΩt) = cosΩt + i sinΩt (1.132)

Now a direct calculation shows that

.

(
d

dt
− iΩ

)
G = 0 and

(
d

dt
+ iΩ

)
Ḡ = 0

Therefore both operators, G and .Ḡ, satisfy the differential equation of harmonic
oscillator associated with the operator

.

(
d

dt
− iΩ

) (
d

dt
+ iΩ

)
= d2

dt2
+ Ω2 (1.133)

Consider now n rotating discs with different angular velocities, .Ω1,. . . ,.Ωn, by
generalizing product (1.133) as

.

(
d

dt
− iΩ1

) (
d

dt
+ iΩ1

)
. . .

(
d

dt
− iΩn

) (
d

dt
+ iΩn

)
(1.134)

=
n∏

j=1

(
d2

dt2
+ Ω2

j

)

Operator (1.134) represents an arbitrary n-degrees-of-freedom linear elastic
system. Replacing .d/dt → λi gives the corresponding characteristic equation in
the form

.

n∏
j=1

(
λ2 − Ω2

j

)
= 0 (1.135)

Finally, let us consider the limit .n → ∞. In order to calculate the limit, the
frequency dependence on its index j must be specified. If, for instance, .Ωj .= ja
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with some constant a, then Eq. (1.135) gives

.

n∏
j=1

(
λ2 − j2a2

)
= n!

n∏
j=1

(
λ2

j2a2
− 1

)
= 0 (1.136)

Skipping the nonzero factor .n! and considering the limit .n → ∞ bring
Eq. (1.136) to its equivalent form

. sin
πλ

a
= 0 (λ 
= 0) (1.137)

Equation (1.137) associates with the boundary value problem for a linearly elastic
string of the length .l = π with two fixed ends

.
∂2u (t, x)

∂t2
− a2

∂2u (t, x)

∂x2 = 0; u (t, 0) = u (t, π) = 0 (1.138)

Therefore, it is shown that the basic linearly elastic vibrating systems can be
logically derived from the kinematics of freely rotating discs or even from a more
fundamental concept given by expression (1.129), which is the so-called rigid
transformation preserving the lengths (isometry). To some extent, this may explain
why nonlinearity is perceptible as a physical phenomenon. Indeed it was shown
that the linear dynamics associate with the usual perception of the space through
the rigid body rotations. All the other spatiotemporal events except for the simple
translation alone should therefore relate to nonlinear phenomena. The Galilean
translation has no dynamic effect and hence is meaningless unless combined with
reflections; see Sect. 1.4.5.

1.4.4 Remarks on the Multidimensional Case

The multidimensional example below gives another (purely geometrical) viewpoint
on the link between rigid-body motions and the concept of linearity. First, recall that
by definition, the mapping .f : Rn −→ Rn is an isometry if relation

. ‖f (v) − f (w)‖ = ‖v − w‖ (1.139)

holds for all .v, .w ∈ Rn.
This definition requires distances between any two images and their pre-images

to be same; this is a generalization of relationship (1.129). Let us consider such
isometries with a fixed point .O in .Rn that is symbolically .f (O) = O. Let us show
that an isometry that fixes the origin is a linear mapping

.f (av + bw) = af (v) + bf (w) (1.140)
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where a and b are arbitrary scalars.
First, note that the relations

. ‖f (v)‖ = ‖v‖ = ‖−v‖ = ‖f (−v)‖

and

. ‖f (v) − f (−v)‖ = ‖v− (−v)‖ = 2 ‖v‖

hold due to (1.139), and thus .f (v) and .f (−v) are antipodal: .f (−v) = −f (v).
Second, taking into account the latter result and definition (1.139) transforms the

polarization identity as follows:

.v · w = 1

2

(
‖v + w‖2 − ‖v‖2 − ‖w‖2

)

= 1

2

(
‖f (v) − f (−w)‖2 − ‖f (v)‖2 − ‖f (−w)‖2

)

= 1

2

(
‖f (v) + f (w)‖2 − ‖f (v)‖2 − ‖f (w)‖2

)

= f (v) · f (w)

Therefore, the inner product is preserved. Now, if .{ui} is the orthogonal basis in
.Rn, then .{f (ui )} is another orthogonal basis. Taking the dot product of the both
sides of identity (1.140) with the arbitrary basis vector .f (ui ) gives

.f (av + bw) · f (ui ) = af (v) · f (ui ) + bf (w) · f (ui )

or

. (av + bw) · ui ≡ av · ui + bw · ui

The above relation proves identity (1.140) in terms of the coordinates associated
with the basis .{f (ui )}.

All linear isometries of .Rn are denoted by the symbol .O (n). By choosing a basis
for .Rn, one can represent every element of .O (n) as a matrix. It can be shown that
.O (n) consists of all .n × n matrixes such that .A−1 = AT :

.1 = det I = det
(
AA−1

)
= det

(
AAT

)

= detA detAT = (detA)2 (1.141)

Relationship (1.141) is therefore a multidimensional orthogonal matrix analogy
of the relationship (1.131). In the present content, the dimension is set to be .n = 3.
Generally, orthogonal matrixes with determinant .+1 are rotations, and those with
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determinant .−1 are reflections. Since rotations were linked with linearity, then
reflections represent a complementary to the linearity side, which is nonlinearity.
Let us summarize it as

.
detA = +1 �⇒ rotations �⇒ linearity

detA = −1 �⇒ ref lections �⇒ nonlinearity
(1.142)

Hence the singular matrix, .detA = 0, is a formal boundary between the linearity
and nonlinearity. Figure 1.1 of this Introduction and the above series of examples
give already a preview on the constructive outcome of the present discussion.
Namely, the natural base for a complementary nonlinear methodology can be found
within the class of elementary nonsmooth functions associated with reflections. Note
that the idea of using nonsmooth functions for dynamic problems is not new. Space
unfolding nonsmooth transformations have been applied in a geometrical way to
straighten trajectories in the theory of billiards. Similar approach was suggested
to derive the differential equations of motion for impact systems in a closed
form without mapping; see Sects. 1.5.2 and 1.5.3 for illustrations with a detailed
comparison to NSTT. Briefly, the NSTT absorbs the reflections by switching the
direction of time. As a result, both reflections and smooth U-turns can be processed
in the same way.

1.4.5 Natural Time of Rudimentary Nonlinearities

Let us consider now the temporal coordinate of Galilean spatiotemporal continuum.
The idea of a “perfectly rigid time” is expressed by relationship

.dt ′2 = dt2 ⇐⇒
(

dt ′

dt

)2

= 1 (1.143)

which is a temporal analogy of condition (1.129).
Considering (1.143) as a differential equation with respect to .t ′ = s (t) gives two

solutions

.t ′ = ± (t − a) (1.144)

where a is an arbitrary temporal shift.
Now, combining different branches of (1.144) for .t < a and .t > a gives

.t ′ = s (t) = |t − a| (1.145)

Function (1.145) also satisfies Eq. (1.143), for all t except maybe single point .t =
a, where the classical derivative of .s (t) has no certain value, and equality (1.143)
holds for almost all t except maybe .t = a. Solution (1.145) admits an obvious
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physical interpretation since it describes a free material point moving in the space
split into two subspaces by a stiff plane assuming that the velocity is scaled by
condition

.ṡ2 = 1 (1.146)

Since the perception of empty space rejects any built-in stiff planes, then a sudden
V-turn of the particle will represent unusual, in other words, strongly nonlinear
event. This is obviously the most elementary nonlinear event whose simplicity
nevertheless will be employed further in less trivial cases.

1.4.6 Example of Simplification in Nonsmooth Limits

The idea that transition to the most severe nonlinearity may actually simplify a
system response finds its support in very different examples. Consider, for instance,
the differential equation of motion

.ẍ = exp

(
−2x

ε2

)
(1.147)

where .ε is a small parameter compared to unity. The nonlinear force on the right-
hand side gives the “rigid body” limit as the parameter .ε approaches zero. Let us
assume that .ẋ = −1 and .x → ∞ as .t → −∞. In this case, Eq. (1.147) has exact
solution

.x(t) = ε2 ln

(
ε cosh

t − a

ε2

)
(1.148)

where a is an arbitrary parameter such that .ẋ(a) = 0; see Fig. 1.16, where .a = 1.
Now let us consider the asymptotic limit .ε → 0. Taking into account the evenness

of .cosh-function brings solution (1.148) to the form

.x = ε2 ln

(
ε cosh

|t − a|
ε2

)
= ε2 ln

(
ε cosh

s

ε2

)
(1.149)

This manipulation represents a useful preliminary step for asymptotic estimates,
because the new temporal argument, s, remains always positive as the original
time runs in the interval .−∞ < t < ∞. Further algebraic manipulations bring
solution (1.149) to the form

.x = s + ε2 ln

[
ε

2

(
1 + exp

(
−2s

ε2

))]
(1.150)
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Fig. 1.16 Time histories of the particle when the barrier approaches rigid-body limit, .ε → 0

Taking into account that .0 < exp
(−2s/ε2

)
< 1 gives the “rigid-body” limit

.x → s = |t − a| (1.151)

as .ε → 0.
This example shows that (1.145) can be viewed as a natural time associated

with the temporal symmetry of a V-turn. Note that the new temporal argument is
both nonsmooth and non-invertible with respect to the original time. As a result,
using (1.145) for temporal substitutions in the differential equations of motion has
certain specifics as discussed below.

1.4.7 Preliminaries on Nonsmooth Time Arguments

The goal of this subsection is to show why the inversion of nonsmooth time
arguments generates hyperbolic algebraic structures. As mentioned above, the
piecewise linear function, .s(t), (1.145) can play the role of a natural temporal
argument associated with the elementary nonlinear events such as dynamic V-turns.
The temporal symmetry of V-turns is captured by the function .s(t) regardless of
possible shapes of the potential barriers. Therefore, using the function .s(t) as a
temporal argument should ease further analyses since the information about V-
turns is built into the new argument. The corresponding time substitution is not
straightforward since its inverse version does not exist in the form .t = t (s). A
correct version requires the following generalization .t = t (s, ṡ). Below, this case
is discussed first. Then the periodic version is introduced that reveals a structural
similarity of expressions since periodic motions can be viewed as regular sequences
of U-turns. More details are given in Chap. 4.
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Nonperiodic Case

Let us start with the inverse version of (1.145), which includes both the image s and
its time derivative .ṡ as follows:

.t = t (s, ṡ) = a + sṡ (1.152)

As follows from (1.146), combination (1.152) represents an element of hyper-
bolic structure with the basis .{1, ṡ}. In other words, time belongs to the algebra of
hyperbolic complex numbers with the table of products generated by (1.146). For
instance, taking (1.152) squared gives another hyperbolic number

.t2 = a2 + s2 + 2asṡ (1.153)

Hyperbolic numbers are known to be isomorphic to symmetric .2 × 2-matrixes.
For instance, relationship (1.153) can be represented as

.t2 = (a + sṡ)2 ←→
(

a s

s a

)2

=
(

a2 + s2 2as

2as a2 + s2

)
(1.154)

Moreover, it is easy to prove for any function .x(t) that16

.x (t) = X (s) + Y (s) ṡ (1.155)

where

.X (s) = 1

2
[x (a + s) + x (a − s)]

Y (s) = 1

2
[x (a + s) − x (a − s)]

For instance, setting .a = 0 in the case .x(t) = exp t gives

. exp (ṡs) = cosh s + ṡ sinh s (1.156)

In contrast to the conventional complex algebra, division is not always possible.
For instance, the following relationship is meaningless for .|a| = s or .t = 0:

.
1

t
= 1

a + sṡ
= (a − sṡ)

(a + sṡ) (a − sṡ)
= a

a2 − s2
− s

a2 − s2
ṡ

16 See Sect. 4.1.2.
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In the particular case of even function .x (t), with respect to .t = a, one can set
.Y (s) ≡ 0 in (1.155).

Periodic Case

The periodic version of nonsmooth time transformations, which is introduced in
Sect. 1.2.5, involves triangle and square waves described by the periodic piecewise-
linear function

.τ (t) = 2

π
arcsin sin

πt

2
=

{
t for − 1 ≤ t ≤ 1
−t + 2 for 1 ≤ t ≤ 3

, τ (t)
∀t= τ (4 + t)

and its Schwartz derivative .e(t) = τ̇ (t); see Figs. 1.1 and 1.8.
Recall that, from the physical point of view, the functions .τ (t) and .e (t) describe

dynamic states of a particle oscillating between two rigid walls with no energy loss
as shown in Fig. 1.17. The spatiotemporal coordinates are normalized as

.dt2 = dτ 2 ⇐⇒ e2 = τ̇ 2 = 1 (1.157)

Note that relationship (1.157) is a periodic version of (1.146) whereas, for any
periodic function of the period .T = 4, representation (1.24) is a periodic version
of (1.155). In other words, any periodic motion uniquely associates with the standard
impact vibration, for instance, as follows:

.x (t) = A sin
πt

2
+ B cos

πt

2
= A sin

πτ

2
+ B cos

πτ

2
e (1.158)

where .τ = τ (t), .e = τ̇ (t), and A and B are arbitrary constants.

Exercise 1.4.1 By taking formal derivatives of .x(t) = X(τ) + Y (τ)e, show that
differentiation keeps the result within the set of hyperbolic numbers provided that
the signal .x(t) is smooth enough. For instance,

.d2n−1
(
A sin

πτ

2
+ B cos

πτ

2
e
)

/dt2n−1 =
(π

2

)2n−1 (
−B sin

πτ

2
+ A cos

πτ

2
e
)

d2n
(
A sin

πτ

2
+ B cos

πτ

2
e
)

/dt2n =
(π

2

)2n (
A sin

πτ

2
+ B cos

πτ

2
e
)

Fig. 1.17 Mechanical model
whose dynamic states are
described with the triangular
and square wave functions,
.τ (t) and .τ̇ (t), respectively

v =1

2
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(n = 1, 2, . . .)

1.4.8 Examples of NSTT for Periodic Signals

The Fourier analysis is based on the standard trigonometric functions .{sinΩt, cosΩt}
or .{exp (iΩt) , exp (−iΩt)} so that periodic signals are described by linear
combinations of these functions with appropriate sets of frequencies .{Ωk}. For
instance, the dynamic states of the impact oscillators are represented as

.τ (t) = 8

π2

(
sin

πt

2
− 1

32
sin

3πt

2
+ 1

52
sin

5πt

2
− . . .

)

= 4i

π2

∞∑
k=−∞

(−1)k

(2k − 1)2
exp(iΩkt)

e (t) = 4

π

(
cos

πt

2
− 1

3
cos

3πt

2
+ 1

5
cos

5πt

2
− . . .

)
(1.159)

= 2

π

∞∑
k=−∞

(−1)k+1

(2k − 1)2
exp(iΩkt)

where .Ωk = (2k − 1)π/2.
The well-known convenience of Fourier series for handling partial and ordinary

differential equations is due to the fact that .exp(iΩt) is an eigen function of the time
derivative, in other words, .d exp(iΩt)/dt = .iΩ exp(iΩt). This important advantage
is unfortunately missing when using a generalized nonsmooth basis for Fourier
expansions.

The proposed alternative is based on power series expansions since, in terms of
the oscillating time .τ , the power series remain periodic, for instance:

. sin
πt

2
= sin

πτ

2
= πτ

2
− 1

3!
(πτ

2

)3 + 1

5!
(πτ

2

)5 − . . .

cos
πt

2
= cos

πτ

2
e =

[
1 − 1

2!
(πτ

2

)2 + 1

4!
(πτ

2

)4 − . . .

]
e (1.160)

These truncated series preserve periodicity at cost of smoothness loss though; see
Fig. 1.18 for explanation. Fortunately, the nonsmoothness times .Λ = {t : τ (t) =
±1} are same for every term of the series, and this enables one of smoothing the
series by re-ordering their terms as follows (Chap. 5):

. sin
πt

2
= sin

πτ

2
= π

2

(
τ − τ 3

3

)
+

(
π

2
+ π3

16

) (
τ 3

3
− τ 5

5

)
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Fig. 1.18 Truncated
Maclaurin’s NSTT
expansions with respect to .τ

for (a) .sin(πt/2) and (b)
.cos(πt/2) including (1) one,
(2) two, and (3) three first
terms of the expansions
shown by the curves of
increasing thickness
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+
(

π

2
+ π3

16
+ π5

768

) (
τ 5

5
− τ 7

7

)
+ . . . (1.161)

. cos
πt

2
= cos

πτ

2
e =

[
1 − τ 2 +

(
1 − π2

8

) (
τ 2 − τ 4

)

+
(
1 − π2

8
+ π4

384

) (
τ 4 − τ 6

)
+ . . .

]
e

Figure 1.19 illustrates both convergence and smoothness of the transformed
series as compared with the diagrams in Fig. 1.18. Moreover, it will be shown in
Chap. 5 that the power series of .τ can be re-ordered in such a manner that their
particular sums become as smooth as necessary whenever the signal .x(t) is smooth.
Still the convenience of such kind of series is that they can accurately approximate
nonsmooth or close to them processes just by first few terms.

Finally, there are many physical processes easily described by very simple
combinations of the triangle and square waves, which otherwise would require quite
long Fourier sums; see Fig. 1.20, for examples.

1.4.9 Differential Equations of Motion and Distributions

Any nonsmooth substitution in the differential equations of motion must be
examined since the differentiation is involved. In many physically meaningful
cases, mathematical justifications can be achieved by understanding the equalities as
integral identities. For illustration purposes, let us consider conservative oscillator
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Fig. 1.19 First term of the
modified NSTT series with
respect to .τ for (a) .sin(πt/2)
and (b) .cos(πt/2);
0—original functions,
1—first term of the series
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Fig. 1.20 Sample temporal
shapes of periodic signals
described by combinations of
the triangle and square waves 1 2 3 4
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.ẍ + V ′ (x) = 0 (1.162)

where .V (x) is the potential energy.
Classical pointwise interpretations of the differential equations require no dis-

continuities to occur on the left-hand side of (1.162). Therefore, real motions must
be described by at least twice continuously differentiable functions of time, .x (t) ∈
C2 (R). Practically, however, physical systems cannot be observed at every time
instance. In other words, the point-wise interpretation of equality (1.162) appears to
be restrictive from the physical standpoint. As an extension of classical approaches,
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the left-hand side of Eq. (1.162) can be considered as some force producing zero
work on arbitrary path variations .δx during the observation interval, .t1 < t < t2:

.

t2∫
t1

[
ẍ + V ′ (x)

]
δxdt = 0 (1.163)

or

. − δ

t2∫
t1

[
1

2
ẋ2 − V (x)

]
dt = −δS = 0 (1.164)

where S is the action by Hamilton.
Expression (1.164) represents Hamiltonian principle, where the integral can be

calculated for less smooth functions, say .x (t) ∈ C (R). Therefore, it is possible to
essentially extend the class of solutions based on interpretation (1.163) rather than
Eq. (1.162). Note that Eq. (1.162) may be strongly nonlinear; however, the highest
derivative must participate in a linear way as a summand; otherwise, transition
from (1.163) to (1.164) may become impossible.

1.5 Nonsmooth Coordinate Transformations

1.5.1 Caratheodory Substitution

Including Dirac’s .δ-functions in nonlinear differential equations complicates math-
ematical justifications of the modeling. It is important how .δ-functions participate in
equations [63, 65]. Let, for instance, the differential equation to include .δ-function
as a summand

.ẋ = kx3 + qδ (t − t1) (1.165)

where k, q, and .t1 are constant parameters.
In this case, the .δ-function input generates a stepwise discontinuity of the

response .x(t) at .t = t1. Still the nonlinear operation in (1.165) is meaningful.
Moreover, the .δ-function is easily excluded from Eq. (1.165) by substitution

.x (t) = y (t) + qH (t − t1) (1.166)

where .y (t) is a new unknown function and .H (t − t1) is the unit-step Heaviside
function.
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Substituting (1.166) in (1.165) and taking into account that .Ḣ (t − t1) =
δ (t − t1), .H 2 (t − t1) = H (t − t1), and .H 3 (t − t1) = H (t − t1) give

.ẏ = k[y3 + (q3 + 3yq2 + 3y2q)H (t − t1)] (1.167)

where .y (t) is now continuous on the entire time interval, including the point .t1.

1.5.2 Transformation of Positional Variables

One-Dimensional Case

Now let us discuss the method of nonsmooth coordinate transformation (NSCT)
for mechanical systems with perfectly stiff constraints [252]. According to this
approach, the new coordinates are introduced in order to automatically satisfy the
constraint conditions. Let us reproduce the idea based on the one-degree-of-freedom
Lagrangian system

.L = 1

2
ẋ2 − V (x) (1.168)

whose motion is limited by interval

. − 1 ≤ x ≤ 1 (1.169)

It is assumed that the particle collides with the obstacles .x = ±1 with no energy
loss.

Note that relationships (1.168) and (1.169) give no unique differential equation
of motion on the entire time domain since every collision with constraints indicates
transition from one system to another. Even though the form of Lagrangian (1.168)
remains the same, one must deal with different solutions before and after every col-
lision, say .x−(t) and .x+(t). Matching such solutions is usually not straightforward
since collision times are a priori unknown.

The main reason for applying NSCT is that it gives a single differential equation
of motion for the entire time interval with no constraint conditions. As a result,
the mapping procedure becomes unnecessary. In addition, as a result of the
transformation, a new system appears to be well suited for averaging since no impact
forces are involved any more.

Regarding Eqs. (1.168) and (1.169), the NSCT is introduced as follows:17

.x = τ(s) (1.170)

17 Note that both notations and normalization for the period for the triangle wave function differ
from the original work [252].
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where .s(t) is a new positional coordinate.
Substituting (1.170) into (1.168) gives

.L = 1

2
[τ ′(s)ṡ]2 − V (τ(s)) = 1

2
ṡ2 − V (τ(s)) (1.171)

where the prime indicates differentiation with respect to s, and the relationship
.[τ ′(s)]2 = [e(s)]2 = 1 has been taken into account.

Now, condition (1.169) is satisfied automatically since .−1 ≤ τ(s) ≤ 1,
whereas the Hamiltonian principle gives the differential equation of motion with
no constraints

.s̈ + dV

dτ
e(s) = 0 (1.172)

On geometrical point of view, transformation (1.170) unfolds the configuration
space by switching the coordinate direction on opposite whenever the particle
collides with an obstacle. As a result, the new configuration space acquires a cell-
wise non-local structure as illustrated in [242] and [196]. This usually makes the
differential equation essentially nonlinear even when the system in between the
constraints is linear. Let, for instance, the potential energy function represent the
harmonic oscillator, .V (x) = Ω2x2/2. Then the coordinate transformation (1.170)
brings system

.ẍ + Ω2x = 0, − 1 ≤ x ≤ 1 (1.173)

to the form

.s̈ + Ω2τ(s)e(s) = 0, − ∞ < s < ∞ (1.174)

Note that, as a side effect of the elimination of constraints, the differential
equation has lost its linearity. The original system is strongly nonlinear as well
because linear differential equation (1.173) alone does not describe the entire
system. The nonlinearity is hidden in condition (1.169).

The comparison between NSCT and NSTT can be summarized as follows [184]:

Coordinate transformation Time transformation

Unfolds the space with no effect on the time
variable

Folds the time, and generates the hyperbolic
algebraic structures in space

Targets rigid barriers (constraints) Barriers do no matter

Dynamic regime independent Assumes certain temporal symmetries of
motion

Applies to a function (image) Transforms an argument (pre-image)

Essentially changes the ODE structure, for
instance, linear on strongly nonlinear

Preserves most structural properties of
ODEs
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As follows from this comparison, NSCT is quite the opposite to NSTT from both
physical and mathematical viewpoints.

Multidimensional Case

For illustrating purposes, consider also the following N -degrees-of-freedom
Lagrangian system

.L = 1

2

N∑
i=1

ẋ2
i − 1

2

N∑
i=0

ki(xi+1 − xi)
2
. (1.175)

|xi(t)| ≤ 1. (1.176)

x0(t) ≡ xN+1(t) ≡ 0 (1.177)

This is a chain of unit-mass particles connected by linearly elastic springs of
stiffness .ki . Stiff constraints are imposed on each of the coordinates according
to (1.176). Although Lagrangian (1.175) generates linear differential equations,
these equations alone do not completely describe the system. Due to the presence
of constraints (1.176), the system is strongly nonlinear, and this becomes obvious in
the adequately chosen coordinates. Transition to such coordinates is given by space
unfolding transformation

.xi = τ(si) (1.178)

where .τ is the triangle wave of spatial coordinates .si (.i = 1, . . . , N ).
The coordinate transformation (1.178) brings system (1.175) through (1.177) to

the form

.L = 1

2

N∑
i=1

ṡ2i − 1

2

N∑
i=0

ki[τ(si+1) − τ(si)]2. (1.179)

s0(t) ≡ sN+1(t) ≡ 0. (1.180)

It is seen from (1.179) that transformation (1.178) preserves the quadratic form of
the kinetic energy while constraint conditions (1.176) are satisfied automatically due
to the property .|τ(si)| ≤ 1. In contrast to (1.175), Lagrangian (1.179) completely
describes the model on the entire time interval .0 ≤ t < ∞. Instead, in terms of the
new coordinates, the potential energy acquired a non-local cell-wise structure so that
the corresponding differential equations of motion are essentially nonlinear as seen
from Eqs. (1.181) below. After the transformation, every impact interaction with
constraints is interpreted as a transition from one cell to another as illustrated below
on the case .N = 2. In this case, Lagrangian (1.179) gives the differential equations
of motion on the infinite plane .−∞ < si < ∞ (.i = 1, 2) with no constraints
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Fig. 1.21 Potential energy levels and a sample trajectory of the system obtained under the initial
conditions at .t = 0: .x1 = 0.5, .x2 = 0.0, .ẋ1 = 1.0, and .ẋ2 = 0.0: (a) system configuration plane in
the original coordinates, and (b) unfolded configuration plane

.s̈1 + [(k0 + k1)τ (s1) − k1τ(s2)]τ ′(s1) = 0

s̈2 + [(k1 + k2)τ (s2) − k1τ(s1)]τ ′(s2) = 0 (1.181)

Figure 1.21b shows the corresponding equipotential energy levels and a sample
trajectory of the beat-wise dynamics. It is seen that the system is trapped in different
cells sometimes for the energy exchange process. After one of the two masses
accumulated the energy, which is sufficient to reach the barrier, the impact event
happens with a transition to another cell. The fact of energy exchange inside a
trapping cell is confirmed by the transversality of incoming and outcoming pieces of
the trajectory. As long as the mass remains in impact regime, its trajectory is passing
through one cell to another until the system is trapped again in another cell for a
new energy exchange process. A similar geometrical interpretation but for impact
normal mode dynamics was introduced earlier in [242], where the impact modes
were associated with originally hidden geometrical symmetries of the periodic
patterns of equipotential lines as shown in Fig. 1.21b. Compared to just two axes of
symmetry (.x2 = ±x1), associated with the elliptic curves in Fig. 1.21a, the unfolded
configuration plane has four axes of symmetry (.s2 = ±s1, .s2 = 0, and .s1 = 0).
Obviously the axes, .s2 = 0 and .s1 = 0, admit parallel shifts due to the periodicity
of the potential field.

Whereas the axes .s2 = ±s1 dictate exact solutions, the additional symmetries,
.s2 = 0 and .s1 = 0, represent the dynamic regimes in asymptotic high-energy limits
with extremely intensive strikes against the amplitude limiters.

1.5.3 Transformation of State Variables

Under some restrictions, the NSCT can still be adapted to the case of non-
elastic interactions with constraints in a purely geometrical way [256]. However,
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generalized approaches to such cases should involve both coordinates and velocities
[96, 97] as illustrated below based on two different examples.

Bouncing Ball Problem

Let us consider a small ball of massm, which is dropped from some height, .z = h >

0, onto a level floor, .z = 0, in a viscous environment with the coefficient of linear
viscosity c. When the ball hits the floor, the velocity u reverses with the coefficient
of restitution k. Components of the state vector, .{z, u}, are therefore described as

.ż = u

u̇ = −g − c

m
u. (1.182)

u+ = −ku− if z = 0 (1.183)

where .u+ and .u− are velocities of the ball immediately after and before the contact
with the floor, respectively.

Despite the linearity of the differential equations, the entire system is obvi-
ously strongly nonlinear due to condition (1.183). This is why eliminating condi-
tion (1.183) makes the nonlinearity explicit. The corresponding transformation of
state variables .{z, u} → {s, v} is introduced in reference [97] as

.z = s sgn(s)

u = sgn(s)[1 − κ sgn(sv)]v (1.184)

κ = 1 − k

1 + k

Applying (1.184) to (1.182) gives18

.ṡ = [1 − κsgn(sv)]v (1.185)

v̇ = − c

m
v − g

1 − κ2 [sgn(s) + κsgn(v)]

As compared to (1.182), system (1.185) automatically accounts for condi-
tion (1.183) at cost of strong nonlinearity of the resultant differential equations.
Nonetheless, the advantage of new system (1.185) is that it represents the dynamic
process over the entire time interval, .0 ≤ t < ∞, with no conditioning at .z = 0.

18 Note that differentiation of sgn-functions will produce Dirac delta-functions with effectively
zero factors however.
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Harmonic Oscillator with One-Sided Barrier

As another example, let us consider the case of harmonic oscillator under the
constraint condition

.ẋ = Ax, x1 > 0 (1.186)

where .x = [x1(t), x2(t)]T is the state vector such that .x2 = ẋ1, and

.A =
[
0 1
−Ω2 0

]
(1.187)

It is assumed that every collision with the barrier .x1 = 0 results in a momentary
energy loss characterized by the restitution coefficient k. The idea is to unfold the
phase space in such way that the energy loss would automatically occur whenever
the system crosses a preimage of the line .x1 = 0. The corresponding transformation
is given in the matrix form as

.x = Sy (1.188)

where .y = [s(t), v(t)]T is a new state matrix/vector, and

.S =
[
1 0
0 1 − κsgn(sv)

]
sgn(s) (1.189)

where .κ = (1 − k)/(1 + k).
Transformation (1.188) is strongly nonlinear due to nonsmooth depen-

dence (1.189). Substituting (1.188) in (1.186) gives equation

.ẏ = (S−1AS)y (1.190)

In the component-wise form, expressions (1.188) and (1.190) are written as,
respectively,

.x1 = x1(s, v) ≡ s sgn(s)

x2 = x2(s, v) ≡ sgn(s)[1 − κsgn(sv)]v (1.191)

and

.ṡ = [1 − κsgn(sv)]v
v̇ = −Ω2s[1 + κsgn(sv)]/(1 − κ2) (1.192)

where both unknown components of the state vector are continuous, while the
specific of non-elastic collisions is captured by transformation (1.191).
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General Case of Nonlinear Oscillator

Finally, consider the general case of one-degree-of-freedom nonlinear oscillator

.ẋ1 = x2

ẋ2 = −f (x1, x2, t) (1.193)

whose motion is restricted to the positive half plane by the barrier .x1 = 0 with the
restitution coefficient k.

Applying transformation (1.191) to system (1.193) gives

.ṡ = [1 − κsgn(sv)]v
v̇ = −f (x1(s, v), x2(s, v), t)sgn(s)[1 + κsgn(sv)]/(1 − κ2) (1.194)

Although the above illustrations are one-dimensional, similar coordinate trans-
formations can be introduced also for multiple degree-of-freedom systems in which
one of the coordinates is normal to the constraint. The corresponding analytical
manipulations can be conducted in terms of Routh functions such that the normal to
the constraint coordinate is Lagrangian whereas other generalized coordinates and
associated momenta are Hamiltonian.

Figure 1.22 illustrates a sample trajectory of the harmonic oscillator in its original
(a) and transformed (b) phase planes, respectively. It is seen from the fragment
(b) that both unknown components of the transformed state vector are continuous,
whereas effects of non-elastic collisions with the amplitude limiter are incorporated
geometrically in transformation (1.191)
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Fig. 1.22 Phase plane of the harmonic oscillator with a one-sided stiff but inelastic amplitude
limiter: (a) the original coordinates and (b) auxiliary coordinates; .Ω = 1.0 and .κ = 0.25



Chapter 2
Smooth Oscillating Processes

This chapter gives an overview of selected analytical methods for smooth oscillating
processes. Most of such methods are quasi-linear by nature. The corresponding
technical implementations usually employ the harmonic oscillator as a generating
model. The description focuses on such ideas and technical details that are further
combined with nonsmooth methods. The related procedures of the asymptotic
integration usually include the stage of a preliminary transformation of the original
system to the form that admits a straightforward solution. In particular, the averaging
algorithm based on the Hausdorff equation for operators Lie is reproduced.

2.1 Linear and Weakly Nonlinear Approaches

By both practical and theoretical reasons, the quantitative methods of dynamics
were developed first for smooth processes. As a rule, smooth oscillations can
be directly observed under no special conditions. For instance, projection of
any fixed point of a body rotating with constant angular speed makes a perfect
impression about harmonic oscillations. Interestingly, in 1693, Leibniz derived
the differential equation for sine geometrically by considering a circle. Much
later, original analytical ideas of nonlinear vibrations emerged from the celestial
mechanics considering perturbations of circular orbits of rigid-body motions rather
than any mass-spring oscillators. Robert Hooke (1635–1703) was probably first
who suggested the basic elastic mass-spring model, whereas Galileo and Huygens
were investigating the pendulum. Later, d’Alembert, Daniel Bernoulli, and Euler
considered a one-dimensional continual model of a string. It was found that the
vibrating string represents the infinity of harmonic oscillators corresponding to
different mode shapes of the string. It is well-known that a serious discussion
occurred about whether or not the sum of smooth functions, such as sines, can
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represent a nonsmooth shape of the string. These discussions were finalized by the
Fourier theorem.

Let us reproduce the result for a periodic function of time .f (t) of the period T

in the complex form

.f (t) =
∞∑

k=−∞
ck exp(ikΩt) (2.1)

.ck = 1

T

∫ T

0
f (t) exp(−ikΩt)dt , Ω = 2π

T

This relation generates a one-to-one mapping between the function .f (t) and its
Fourier coefficients

.f (t) ←→ {. . . c−2, c−1, c1, c2, . . .} (2.2)

Note that mathematical expressions (2.1) do not necessarily imply that the
periodic signal .f (t) must be produced by a linear system even though the right-
hand side of (2.1) combines free vibrations of linear oscillators.1 Therefore, the
Fourier analysis with its associates should be viewed as a linear language for
nonlinear systems regardless of specifics of analytical algorithms. Most quantitative
methods for weakly nonlinear periodic motions, one way or another, recover Fourier
coefficients of the corresponding solutions. On one hand, such tools possess a
high level of generality. On the other hand, even elementary strongly nonlinear
phenomena, as defined in Chap. 1, may become quite difficult to describe in the
linear language. Nevertheless, the quantitative theory of nonlinear vibration has
been advanced by new asymptotic techniques developed originally in a formal
way for solving nonlinear differential equations. Most traditional methods are
essentially based on the ideas of perturbation or averaging [69]. Similar results
can be obtained within the theory of Poincaré normal forms [153], which retains
resonance terms, whereas all non-resonance terms are eliminated by means of a
coordinate transformation. Such a normal form is qualified as the simplest possible
form of the equations of motion.

2.2 A Brief Overview of Smooth Methods

2.2.1 Periodic Motions of Quasi-linear Systems

Consider a weakly nonlinear oscillator of the form

.ẍ + Ω2
0x = εf (x, ẋ) (2.3)

1 Recall rigid-body analogies in Sect. 1.4.3.
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where .ε is a small parameter from the interval .0 < ε � 1, and .f (x, ẋ) is a smooth
enough function of both arguments.

Periodic solutions of Eq. (2.3) can be found by splitting the nonlinear system into
a sequence of linear oscillators by means of the power series of the small parameter
.ε

.x = x0 + εx1 + ε2x2 + . . . (2.4)

The perturbation on the right-hand side of Eq. (2.3) changes the fundamental
frequency of the oscillator as

.Ω2 = Ω2
0 (1 + εγ 1 + ε2γ 2 + . . .) (2.5)

The new frequency, .Ω , is introduced explicitly into the differential equation of
motion by switching to the phase argument

.ϕ = Ωt (2.6)

As a result, series (2.4) appears to be composed of trigonometric functions of
multiple phases .ϕ, .2ϕ, .3ϕ,. . . . The numbers .γ 1, .γ 2,. . . are used for canceling the
so-called secular terms from the solution.

A similar idea was implemented by Lyapunov for systems of first-order equa-
tions, such as

. ẋ1 = a11x1 + a12x2 + f1(x1, x2) (2.7)

ẋ2 = a21x1 + a22x2 + f2(x1, x2)

where .f1 and .f2 are nonlinear functions, it is assumed that system (2.7) admits
first analytical integral, and the corresponding linearized system has only periodic
solutions. Then periodic solutions of (2.7) admit power series expansions with
respect to the amplitude.

There exist at least two extensions of Lyapunov theory, such as local and global
approaches to nonlinear normal modes, see, for instance, [136, 155, 241].

2.2.2 One-Phase Averaging

Averaging with Van der Pol Amplitude-Phase Variables

Let us illustrate different implementations of the averaging by reproducing some
technical details. The description focuses on such tools that remain applicable to
nonconservative systems.
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To illustrate van der Pol’s averaging procedure, let us represent Eq. (2.3) as a
system of two first-order equations by introducing the velocity variable, v, as

.ẋ = v (2.8)

v̇ = −Ω2
0x + εf (x, v)

The next step includes transition to the amplitude-phase variables on the system
phase plane as .{x, v} → {a, ϕ}:

.x = a cosϕ, v = −aΩ0 sinϕ (2.9)

Now substituting (2.9) in (2.8) and considering the result as a system of two
algebraic equations with respect to the derivatives .ȧ and .ϕ̇ give

. ȧ = − ε

Ω0
f (a cosϕ,−aΩ0 sinϕ) sinϕ

ϕ̇ = Ω0 − ε

Ω0a
f (a cosϕ,−aΩ0 sinϕ) cosϕ (2.10)

This system is still an exact equivalent of the original equation (2.3). Despite the
formal complexity, system (2.10) has the essential advantage due to different time
scales of the variables, a and .ϕ. Noticing that the new system is .2π -periodic with
respect to the fast phase .ϕ suggests its elimination from the right-hand side of the
system by applying the operator of averaging

. < · · · >ϕ≡ 1

2π

∫ 2π

0
· · · dϕ

as follows:

. ȧ = − ε

Ω0
< f (a cosϕ,−aΩ0 sinϕ) sinϕ >ϕ . (2.11)

ϕ̇ = Ω0 − ε

Ω0a
< f (a cosϕ,−aΩ0 sinϕ) cosϕ >ϕ (2.12)

Solutions of system (2.12) are considered as approximate leading-order averaged
solutions of the original system (2.10). The main achievement from the above
manipulations is due to independence of the amplitude equation from the phase .ϕ.

Example of Rayleigh-Duffing Oscillator

Very often, amplitude equation (2.11) can be solved exactly by separation of
variables as illustrated below based on Rayleigh-Duffing oscillator:
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.ẍ + Ω2
0x = ε

[(
1 − 1

3
ẋ2

)
ẋ − αx3

]
(2.13)

In this case, substituting (2.9) in .f (x, v) = .
(
1 − v2/3

)
v − αx3 and then

conducting the averaging in (2.12) give

.ȧ = 1

2
ε

(
a − 1

4
Ω2

0a
3
)

ϕ̇ = Ω0 + ε
3α

8Ω0
a2 (2.14)

where the amplitude a is described by a separable equation, which is independent
on the phase variable, .ϕ.

Assuming the initial condition .a(0) = a0 and separating the variables give
explicit solution:

.a = 2a0√
a20Ω

2
0

[
1 − exp(−εt)

] + 4 exp(−εt)

(2.15)

Now the phase .ϕ can be obtained from the second equation in (2.14) by the direct
integration as

.ϕ = Ω0t + 3α

2Ω3
0

ln

{
1 + 1

4
a20Ω

2
0

[
exp(εt) − 1

]} + ϕ0 (2.16)

where .ϕ0 = ϕ(0).
Solution (2.15) and (2.16) should be considered as solutions in the leading

asymptotic order of the averaging procedure. Such types of approximations are
often sufficient for practical estimations as follows from Fig. 2.1. Comparing the
graphs shows a sufficient agreement of the result of direct numerical integration of
Eq. (2.13) with the analytical approximation given by (2.15) and (2.16).

Krylov-Bogolyubov Generalization

This above averaging procedure was essentially generalized in the 1930s of the last
century [34] by combining the Lindstedt-Poincaré and van der Pol’s ideas to obtain
high asymptotic orders of the averaging. Let us outline the corresponding formalism
based on the general one-phase system

.ẋ = εX(x, y)

ẏ = Ω(x) + εY (x, y) (2.17)
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Fig. 2.1 Time history
response of Rayleigh-Duffing
oscillator under the following
parameters and initial
conditions: .ε = 0.1, .α = 0.3,
.Ω0 = 1.0, .A0 = 0.1, .ϕ0 = 0
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where y and x are scalar and vector variables, respectively, and the right-hand side
is assumed to be .2π -periodic with respect to y.

In contrast to (2.10), the frequency .Ω in (2.17) depends on the slow varying
vector-function x, which may represent a set of amplitudes of an .n−degrees-of-
freedom vibrating system, .x = (a1, . . . , an). Sometimes, such kind of systems is
called essentially nonlinear since the condition .ε = 0 does not make the frequency
state independent. Note that, if .ε = 0, the system has no fast phase on the right-hand
side. Thus the problem is to find a close to identical transformation

. x = q + εu1(q, ψ) + ε2u2(q, ψ) + . . .

y = ψ + εv1(q, ψ) + ε2v2(q, ψ) + . . . (2.18)

which eliminates the fast phase entirely from the system and brings it to the form

.q̇ = εA1(q) + ε2A2(q) + . . .

ψ̇ = Ω0(q) + εΩ1(q) + ε2Ω2(q) + . . . (2.19)

This problem is solved by substituting expansions (2.18) in Eqs. (2.17), enforcing
Eqs. (2.19) to eliminate the derivatives .q̇ and .ψ̇ , and then separating different orders
of .ε. Then the resultant system is solved iteratively. In zero-order of .ε, the second
equation in (2.17) gives .Ω0(q) = Ω(q). As a result, the problem of order .ε takes
the form

.Ω(q)
∂u1

∂ψ
= X(q,ψ) − A1(q). (2.20)

Ω(q)
∂v1

∂ψ
= Y (q,ψ) + Ω ′(q)u1 − Ω1(q) (2.21)

These partial differential equations are solved for .u1 and .v1 under the condition
that solutions must be bounded with respect to the fast phase .ψ . For that reason, the
average of the right-hand side of both equations must be zero, which is achieved by
setting
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.A1(q) = < X(q,ψ) >ψ . (2.22)

Ω1(q) = < Y(q,ψ) >ψ +Ω ′(q) < u1 >ψ (2.23)

Then, integration gives

.u1 = 1

Ω(q)

ψ∫
0

[X(q,ψ)− < X(q,ψ) >ψ ]dψ . (2.24)

v1 = 1

Ω(q)

ψ∫
0

[Y (q,ψ)− < Y(q,ψ) >ψ ]dψ (2.25)

. + Ω ′(q)

Ω(q)

ψ∫
0

[u1− < u1 >ψ ]dψ

Strictly speaking, both these solutions should include arbitrary functions of q

as summands. These arbitrary functions are chosen to be zero assuming that both
the old and new variables, .{x, y} and .{q,ψ} in (2.18), satisfy the same initial
conditions. On the next step of asymptotic integration, values (2.22) through (2.25)
are substituted in equations

.Ω(q)
∂u2

∂ψ
= u1

∂

∂q
X(q,ψ) + v1

∂

∂ψ
X(q,ψ) (2.26)

. − A1(q)
∂u1

∂q
− Ω1(q)

∂u1

∂ψ
− A2(q)

and

.Ω(q)
∂v2

∂ψ
= u1

∂

∂q
Y (q, ψ) + v1

∂

∂ψ
Y(q,ψ) (2.27)

. − A1(q)
∂v1

∂q
− Ω1(q)

∂v1

∂ψ
+ Ω ′(q)u2 + 1

2
Ω ′′(q)u21 − Ω2(q)

Despite a more complicated form, these equations have the same structure as
Eqs. (2.20) and (2.21). Moreover, it is easy to see that this structure will be main-
tained for any order with an obvious increase of the technical complexity though.
Practically, high-order approximations can be obtained by means of automatic
systems of symbolic manipulations.
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Example of Rayleigh Equation

Let us represent Rayleigh’s equation, .z̈ + Ω2z = ε
(
1 − ż2/3

)
ż, as a set of two

first-order equations

.ż = v

v̇ = −Ω2z + ε

(
1 − 1

3
v2

)
v (2.28)

The coordinate transformation, .z = x cos y and .v = −xΩ sin y, brings
system (2.28) to the form of system (2.17), where

.X(x, y) = x

(
1 − 1

3
x2Ω2 sin2 y

)
sin2 y. (2.29)

Y (x, y) = 1

6

(
3 − x2Ω2 sin2 y

)
sin 2y (2.30)

and .Ω is constant.
Substituting (2.29) and (2.30) in (2.22) through (2.25), conducting integration,

and substituting the result in (2.19) and (2.18) give, respectively,

.q̇ = 1

2
ε

(
q − 1

4
Ω2q3

)
+ O(ε3). (2.31)

ψ̇ = Ω − 1

256Ω
ε2

(
32 − 24Ω2q2 + 5Ω4q4

)
+ O(ε3) (2.32)

and

.x = q − 1

48Ω
εq[12 − (4 − cos 2ψ)q2Ω2] sin 2ψ + O(ε2). (2.33)

y = ψ + 1

12Ω
ε
(
6 − q2Ω2 sin2 ψ

)
sin2 ψ + O(ε2) (2.34)

The original variable is given by .z = x cos y. Taking into account first-order
approximation and setting the right-hand side of Eqs. (2.26) and (2.27) to zero give
.A2 = 0 whereas .Ω2 �= 0 as seen from Eqs. (2.31) and (2.32).

Solutions of Rayleigh’s equation in first and second asymptotic orders are
compared in Fig. 2.2. Both solutions are in a sufficient agreement with the result
of direct numerical integration even for the parameter .ε, which is not very small as
compared to unity. The effect of improvement in the order .ε2 still can be observed
after multiple cycles of oscillation as follows from Fig. 2.2b.
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Fig. 2.2 Solutions of Rayleigh’s equation in first and second asymptotic orders for the parameters
.ε = 0.5, .Ω = 1.0, and the initial conditions .q(0) = 0.1, .ψ(0) = 0.0: (a) developing steady state
and (b) comparison of temporal mode shapes after multiple cycles

2.2.3 Two-Phase Averaging for Mathew Equation

In a multiple frequency case, the averaging procedure may require an extra step of
the system adaptation. For illustrating purpose, consider Mathew’s equation with
damping

.ẍ + 2ζΩ0ẋ + Ω2
0 (1 + ε cosΩt)x = 0 (2.35)

where the damping ratio .ζ is assumed to be a small parameter of order .ε, and .Ω =
2 as required by the standard form of Mathew’s equation. Therefore, in addition
to the natural frequency .Ω0, there is one more frequency, .Ω , associated with the
parametric loading term.

It will be shown below that the dissipative term .2ζΩ0ẋ can be eliminated from
the equation by means of a substitution as soon as the equation remains linear.
However, keeping in mind possible generalizations on nonlinear cases, this term
will be maintained through the manipulations. Let us introduce the phase variable
.ψ = Ωt and represent Eq. (2.35) in the form of two first-order equations

.ẋ = v

v̇ = −Ω2
0x + F(x, v) (2.36)

where

.F = −2ζΩ0v − εΩ2
0x cosψ ∼ ε (2.37)

Applying transformation (2.9) to (2.36) gives the system with two fast phases, .ϕ
and .ψ , as
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.ȧ = −ζaΩ0(1 − cos 2ϕ) + 1

4
εaΩ0 [sin(2ϕ − ψ) + sin(2ϕ + ψ)]

ϕ̇ = Ω0(1 − ζ sin 2ϕ) + 1

4
εΩ0 [2 cosψ + cos(2ϕ − ψ) + cos(2ϕ + ψ)] (2.38)

ψ̇ = Ω

Averaging the right-hand side of system (2.38) separately over .ϕ and .ψ would
lead to the system .ȧ = −ζaΩ0, .ϕ̇ = Ω0, and .ψ̇ = Ω , in which the effect of
parametric loading is vanished. As seen from the right-hand side of system (2.38),
such an averaging becomes inadequate when .2Ω0 ∼ Ω , and therefore .2ϕ̇ − ψ̇ ∼ ε.
This means that, in addition to the amplitude a, another slow variable, .2ϕ − ψ = θ ,
occurs in the system. As a result, both terms .sin(2ϕ−ψ) = sin θ and .cos(2ϕ−ψ) =
cos θ must be interpreted as frozen when averaging with respect to either .ϕ or .ψ .
The corresponding formalization is conducted by excluding one of the fast phases,
say .ψ by means of relationship

.ψ = 2ϕ − θ (2.39)

Substituting (2.39) in (2.38), taking into account that .Ω = 2, and applying the
averaging with respect to .ϕ give

.ȧ = −ζΩ0a + 1

4
εΩ0a sin θ

θ̇ = 2(Ω0 − 1) + 1

2
εΩ0 cos θ (2.40)

ϕ̇ = Ω0 + 1

4
εΩ0 cos θ

The second equation of this system shows that the phase .θ is a slow varying
quantity if .Ω0 − 1 ∼ ε. In this case, system (2.40) describes the two slow variables,
a and .θ , and one fast phase, .ϕ. In other words, compared to the non-resonance case
of Sect. 2.2.2, the dimension of the so-called slow manifold is increased by one due
to the internal resonance condition.

The original variable is given by the relationship .x = a cosϕ, where the slow
phase .θ does not explicitly show up but affects the amplitude a and phase .ϕ through
system (2.40). The stationary case, .ȧ = θ̇ = 0, determines a family of periodic
solutions whenever the system parameters satisfy condition

.ζ 2 +
(
1 − 1

Ω0

)2

= ε2

16
(2.41)

or
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Fig. 2.3 Comparison of the analytical approximation and numerical solution of equation (2.35) for
parameter values .ζ = 0.01 and .ε = 0.08: (a) .Ω = 1-inside instability zone, (b) .Ω = 1.1-outside
instability zone

.Ω0 =
⎡
⎣1 ±

√
ε2

16
− ζ 2

⎤
⎦

−1

(2.42)

Condition (2.41) is obtained by setting the right-hand side of the first two
equations of system (2.40) to zero and then eliminating the phase angle .θ . From
the geometrical viewpoint, Eq. (2.41) represents boundaries of the main instability
zone in the parameter plane .Ω0 − ε. Figure 2.3 illustrates what happens to the
dynamics when crossing the boundary and confirms that the result of averaging
and numerical solutions remain in a reasonable agreement. When .ζ = 0, Eq. (2.42)
gives .Ω0 = 1±ε/4+O(ε2). Note that a complete set of boundaries is often given for
Mathew’s equation of the form .ÿ+(δ+2ε cos 2t)y = 0, which can be obtained from
Eq. (2.35) by means of the substitution .x(t) = exp(−ζΩ0t)y(t). Such a substitution
leads to the above Mathew’s equation, if .δ = Ω2

0 (1 − ζ ) and .2ε = Ω2
0ε.

2.2.4 Averaging in Complex Variables

In physical literature, vibration problems are usually considered in terms of complex
variables [120]. The idea of averaging can be implemented as follows. If .ε = 0 then
general solution of Eq. (2.3) is represented in the complex form

.x = 1

2
[A exp(iΩ0t) + Ā exp(−iΩ0t)] (2.43)

where A and .Ā are arbitrary complex conjugate constants, and the numerical factor
.1/2 is introduced for further convenience of calculation, although it is not strictly
necessary.

Following the idea of parameter variations, let us assume that A and .Ā are time-
dependent quantities hopefully to satisfy Eq. (2.3) with non-zero right-hand side,
.ε �= 0. Under such an assumption, differentiating (2.43) gives
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.ẋ = 1

2

[
dA

dt
exp(iΩ0t) + dĀ

dt
exp(−iΩ0t)

]
(2.44)

+1

2
iΩ0[A exp(iΩ0t) − Ā exp(−iΩ0t)]

Further, the following condition is imposed on the arbitrary functions, .A(t) and
.Ā(t), with the intent to eliminate the derivatives of amplitudes from (2.44)

.
dA

dt
exp(iΩ0t) + dĀ

dt
exp(−iΩ0t) = 0 (2.45)

This condition brings derivative (2.44) to the form

.ẋ = 1

2
iΩ0[A exp(iΩ0t) − Ā exp(−iΩ0t)] (2.46)

Differentiating (2.46) and taking into account (2.43) give

.ẍ = 1

2
iΩ0

[
dA

dt
exp(iΩ0t) − dĀ

dt
exp(−iΩ0t)

]

−1

2
Ω2

0 [A exp(iΩ0t) + Ā exp(−iΩ0t)] (2.47)

= 1

2
iΩ0

[
dA

dt
exp(iΩ0t) − dĀ

dt
exp(−iΩ0t)

]
− Ω2

0x

Now, substituting (2.47) in the original equation (2.3) gives second equation for
.A(t) and .Ā(t) in the form

.
1

2
iΩ0

[
dA

dt
exp(iΩ0t) − dĀ

dt
exp(−iΩ0t)

]
= εf (2.48)

where the function .f = f (x, ẋ) must be expressed through .A(t) and .Ā(t) by means
of relationships (2.43) and (2.46).

Solving the linear system (2.45) and (2.48) for the derivatives of complex
amplitudes gives

.
dA

dt
= ε

iΩ0
exp(−iΩ0t)f . (2.49)

dĀ

dt
= ε

−iΩ0
exp(iΩ0t)f (2.50)

where .f = f (x, ẋ) must be expressed through (2.43) and (2.46).
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System (2.49) and (2.50) is still exact equivalent of the original equation (2.3)
and represents the result of changing the state variables

.{x, ẋ} → {A, Ā} (2.51)

The advantage of using the complex variables is that it is sufficient to consider
only one amplitude equation, for instance, (2.49) since the other one is simply its
complex conjugate. Besides, solving Eqs. (2.43) and (2.46) for A gives the so-called
complex amplitude, which is often used in both physics and nonlinear mechanics,

.A = 1

iΩ0
exp(−iΩ0t)(ẋ + iΩ0x) (2.52)

Note that similar formal manipulations remain valid in degenerated cases of
multiple degrees of freedom systems. For instance, Eq. (2.3) can be interpreted as a
vector equation with the scalar factor .Ω2

0 .
Finally, if the parameter .ε is small, then the amplitude A is slow; hence the

averaging can be applied as

.
dA

dt
= 1

2πi
ε

2π/Ω0∫
0

exp(−iΩ0t)f dt (2.53)

Complex Form Solution for Van der Pol Oscillator

For example, let us consider oscillator

.ẍ + x = εf (x, ẋ) (2.54)

where

.f (x, ẋ) = −(x2 − 1)ẋ (2.55)

Substituting (2.55) in Eq. (2.53) gives the following equation for the complex
amplitude

.Ȧ = ε

2πi

2π∫
0

exp(−it)(1 − x2)ẋdt (2.56)

where x and .ẋ are given by (2.43) and (2.46), respectively, after setting .Ω0 = 1.
Conducting the corresponding algebraic manipulations and then integration with

respect to time over the period .2π gives
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.Ȧ = 1

8
ε(4 − |A| 2)A (2.57)

To solve this equation, let us switch to the exponential form of the complex
amplitude

.A = ρ exp(iθ) (2.58)

where .ρ = ρ(t) and .θ = θ(t) are the modulus and argument, respectively.
Substituting (2.58) in (2.57) and separating imaginary and real parts give

.θ̇ = 0, ρ̇ = 1

8
ε(4 − ρ2) (2.59)

Therefore, .θ is a constant phase, while .ρ is determined by separating the variables
as

.ρ = 2√
1 + (4ρ−2

0 − 1)exp(−εt)

(2.60)

where .ρ0 = ρ(0).
The reverse transition to the original variable .x(t) through (2.43) and (2.58)

finally gives a general solution of van der Pol’s equation in the leading asymptotic
order

.x = 2 cos(t + θ)√
1 + (4ρ0

−2 − 1)exp(−εt)
(2.61)

In the particular case of zero initial velocity, one can set .θ = 0 and .ρ0 = x(0)
within the same asymptotic order.

2.3 Lie Groups Formalism

The one-parameter Lie2 group approaches are motivated by the idea of matching
the tool and the object of study as explained in references [253] and [256]. Briefly,
it is suggested to seek transformation (2.18) among solutions of some dynamical
systems rather than the class of the arbitrary nonlinear transformations. Original
materials and overviews of the mathematical structure of Lie groups, Lie algebras,
and Lie transforms with applications to nonlinear differential equations can be

2 Marius Sophus Lie ( 1842–1899 ), Norwegian mathematician; different mathematical objects are
named after him, for instance, groups, operators, algebras, and series.
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found in [29, 46, 50, 81, 127]. An essential ingredient of this version of asymptotic
integration is the Hausdorff formula, which relates Lie group operators of the
original and new systems and the operator of coordinate transformation. According
to [254] and [256], most of the averaging techniques just reproduce this formula
every time implicitly, during the transformation process. Hence it is more reasonable
to start with Hausdorff’s relationship rather than recover it during the transformation
procedure. This enables one of optimizing the number of manipulations for high-
order approximations of asymptotic integration [109].

2.3.1 Hausdorff Equation

The theory of Lie groups deals with a set of transformations. In other words, some
dynamical system

.ẋ = f (x) (2.62)

is transformed into another system

.q̇ = g(q, ε), 0 < ε � 1 (2.63)

by means of a near identical coordinate transformation .x → q, which is produced
by a solution of the initial value problem for a third dynamical system

.
dx

dε
= s (x) , x|ε=0 = q (2.64)

Here, the choice for the right-hand side, .s (x), is dictated by the desired
properties of the transformed system. The parameter of group, .ε, is interpreted
as an independent variable. As follows from the initial condition in (2.64), the
transformation is assumed to be identical, .x = q, when .ε = 0, and therefore

.g(q, 0) = f (q) (2.65)

Hausdorff’s formula determines the right-hand side of Eq. (2.63) for nonzero .ε.
For illustrating purpose, consider the one-dimensional case, x, .q ∈ R1 by noticing
that the final relationship can be applied to a multidimensional case too. The idea
is to conduct the transformation, (2.62).→(2.64).→(2.63), in terms of the operators
Lie as

.F = f (x)
∂

∂x
−→ S = s(x)

∂

∂x
−→ G = g(q, ε)

∂

∂q
(2.66)
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Using operators (2.66) opens a formal way to representing the above dynamical
systems in the linear form as

.ẋ = Fx −→
{

dx

dε
= Sx, x|ε=0 = q

}
−→ q̇ = Gq (2.67)

Now the problem is to find the new operator, G, produced by the operator of
transformation, S, from the old operator, F . As follows from (2.67), if the operator
S is known, then the related transformation, .x −→ q, takes the form of Lie series

.x = exp(εS)q = (1 + εS + . . .)q = q + εs(q) + . . . (2.68)

One of the advantages of this approach is that relationship (2.68) easily generates
the inverse transformation, .exp(−εS)x = q, where the variable q is replaced with
x in the operator S.

To derive Hausdorff formula, let us take first time derivative of both sides of
transformation (2.68) and enforce Eqs. (2.62) and (2.63) to exclude .ẋ and .q̇. This
gives

.f (q + εs + . . .) = (1 + ε
∂s

∂q
+ . . .)g(q, ε) (2.69)

Using power series expansions for the functions f and g, taking into account
relationship ( 2.65), and rearranging the terms bring (2.69) to the form

.
∂

∂ε
g = s

∂

∂q
g − g

∂

∂q
s as ε −→ 0 (2.70)

Multiplying both sides of Eq. (2.70) by the differential operator .∂/∂q on the right
on both sides and using notations (2.66) give Hausdorff equation

.
∂

∂ε
G = SG − GS ≡ [S,G] (2.71)

where the operator of transformed system, G, satisfies the initial condition

.G|ε=0 = F = f (q)
∂

∂q
(2.72)

according to the assumption that .x = q when .ε = 0.
A power series solution of the initial value problem (2.71)–(2.72) for operators

Lie is given by Hausdorff formula [29]:

.G = F + ε [S, F ] + 1

2!ε
2 [S, [S, F ]] + . . . (2.73)

This formula relates operators F , S, and G according to (2.66) and can be used
for the asymptotic integration of the original system (2.62) as follows.
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2.3.2 Asymptotic Integration in Terms of Operators Lie

Let the right-hand side of system (2.62) depend upon a small parameter .ε as
.f = f0(x) + εf1(x), assuming that the system .ẋ = f0(x) admits a straightforward
integration. Respectively, let us represent the operator of original system, F , the
operator of transformation, S, and the operator of transformed system, G, in the
power series form

.F = F0 + εF1

S = S0 + εS1 + ε2S2 + . . . (2.74)

G = G0 + εG1 + ε2G2 + . . .

The problem is to iteratively obtain the operator of transformation, such that
operator of transformed system possesses the same useful property as the operator of
original system at .ε = 0. If this problem is solved then the new system, .q̇ = Gq, can
be integrated the same way as the system .ẋ = f0(x). Such an asymptotic procedure
is formalized by substituting (2.74) in Hausdorff formula (2.73) and matching terms
of the same power of .ε as

.G0 = F0. (2.75)

G1 = F1 + [S0, F0] . (2.76)

G2 = F2 + [S0, F1] + [S1, F0] + 1

2! [S0, [S0, F0]] (2.77)

. . .

Note that all the operator relationships remain applicable to multidimensional
cases in the same form.

In order to illustrate the averaging procedure in a two-dimensional case, let us
consider system (2.17) assuming that the frequency .Ω is fixed:

.ẋ = εX(x, y)

ẏ = Ω + εY (x, y) (2.78)

The operator Lie of this system is given by

.F = F0 + εF1 (2.79)

.F0 = Ω
∂

∂y
, F1 = X(x, y)

∂

∂x
+ Y (x, y)

∂

∂y
(2.80)

When .ε = 0, system (2.78) does not have the fast variable .y on the right-hand
side. The problem is to find the transformation .{x, y} −→ {q,ψ}, such that the
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transformed system possesses the same property for nonzero .ε, namely, its right-
hand side does not have the fast variable (phase) .ψ . Thus the problem is formulated
in the same way to Krylov-Bogolyubov, which is formalized by Eqs. (2.17), (2.18),
and (2.19). In contrast, the present approach does not require the substitution (2.18)
in (2.17). The operator of transformed system, G, is given by (2.75) through (2.77)
after the replacement of variables .{x, y} with .{q,ψ}, for instance, as

.G0 = Ω
∂

∂ψ
. (2.81)

G1 = F1 − Ω
∂

∂ψ
S0 (2.82)

Applying the operator .G0 to .{q,ψ} eliminates the fast phase .ψ on the right-hand
side of transformed system

.{q̇, ψ̇} = G0{q,ψ} = {0,Ω}

The same property is assigned to the operator .G1 by averaging the right-hand
side of (2.82) as

.G1 =< F1 >ψ=< X(q,ψ) >ψ

∂

∂q
+ < Y(q,ψ) >ψ

∂

∂ψ
(2.83)

Note that the integration with respect to the variable .ψ does not affect the
differential operator .∂/∂ψ . This relationship should be also viewed as a definition
for averaging of operators Lie. Since condition (2.83) is imposed on the left-
hand side of Eq. (2.82), the equality can be achieved by a proper choice for
the operator .S0, which is still unknown. Thus, substituting (2.83) in (2.82) and
integrating with respect to .ψ give the corresponding approximation for the operator
of transformation:

.S0 = 1

Ω

ψ∫
0

(F1− < F1 >ψ)dψ = 1

Ω

ψ∫
0

(F1 − G1)dψ

= 1

Ω

ψ∫
0

(X− < X >ψ)dψ
∂

∂q
+ 1

Ω

ψ∫
0

(Y− < Y >ψ)dψ
∂

∂ψ
(2.84)

Taking into account that .F2 = 0 and calculating the commutator .[S1, F0] bring
Eq. (2.77) to the form

.G2 = [S0, F1] + 1

2! [S0, [S0, F0]] − Ω
∂

∂ψ
S1 (2.85)
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Now reiterating manipulations of the previous step gives

.G2 =< [S0, F1] >ψ + 1

2! < [S0, [S0, F0]] > ψ (2.86)

and

.S1 = 1

Ω

ψ∫
0

(
[S0, F1] + 1

2! [S0, [S0, F0]] − G2

)
dψ (2.87)

The operators of transformation, .S0 and .S1, and the operators of averaged system,
.G1 and .G2, generate solution of system (2.17) in the second asymptotic order and
the corresponding averaged system as, respectively,

.x = exp(εS)q = (1 + εS0 + ε2S1)q + O(ε3). (2.88)

y = exp(εS)ψ = (1 + εS0 + ε2S1)ψ + O(ε3) (2.89)

and

.q̇ = (G0 + εG1 + ε2G2)q + O(ε3). (2.90)

ψ̇ = (G0 + εG1 + ε2G2)ψ + O(ε3) (2.91)

Solution of Rayleigh Equation in Terms of Operators Lie

For comparison reason, let us consider the example of Rayleigh equation (2.28).
According to (2.29) and (2.30), in terms of van der Pol’s variables, the correspond-
ing operator Lie is

.F0 = Ω
∂

∂ψ
, F1 = X(q,ψ)

∂

∂q
+ Y (q,ψ)

∂

∂ψ

= q

(
1 − 1

3
q2Ω2 sin2 ψ

)
sin2 ψ

∂

∂q
(2.92)

+1

6

(
3 − q2Ω2 sin2 ψ

)
sin 2ψ

∂

∂ψ

where the replacement .{x, y} .−→ .{q,ψ} has been made according to the above-
described algorithm.

Conducting the averaging in (2.83), (2.84), (2.86), and (2.87) and then substitut-
ing the result in (2.88) and (2.89) give
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Fig. 2.4 Comparison of numerical solution of Rayleigh equation (2.28) to the leading order (a)
and second order (b) approximations for .v = ż obtained by means of Lie group operators; .ε = 0.9,
.Ω = 1, .q(0) = 0.1, and .ψ(0) = 0

.x = q − ε

48Ω
q[12 − (4 − cos 2ψ)q2Ω2] sin 2ψ − ε2

192Ω2

×q[48 −
(
12 − q2Ω2

) (
6 − q2Ω2 sin2 ψ

)
] sin2 ψ + O(ε3)

y = ψ + ε

12Ω

(
6 − q2Ω2 sin2 ψ

)
sin2 ψ + ε2

1536Ω2 (2.93)

×[96 − q2Ω2
(
24 − 5q2Ω2

)
(4 − cos 2ψ)] sin 2ψ + O(ε3)

where the functions .q = q(t) and .ψ = ψ(t) are given by the averaged system (2.90)
and (2.91) leading to (2.31) and (2.32). Note that the terms of order .ε coincide with
those in (2.33) and (2.34).

The effectiveness of second-order approximation is illustrated by Fig. 2.4, where
the parameter .ε was intentionally chosen to be close to unity since the terms of
order .ε2 appeared to have quite small numerical factors in solutions (2.93). The
graphs represent temporal shapes of the velocity, .v = ż, in order to better observe
the effect of anharmonicity.

2.3.3 Linearization Near Equilibrium Manifold

Methods considered in the previous sections of this chapter essentially employ
solutions of linearized systems. The linearization procedure assumes the system
to remain near a single (stationary) equilibrium point. This condition cannot be
guaranteed if the total energy of the system is above the potential barrier on the
way to another equilibrium point. As a result, the problem becomes nonlocal and
usually multidimensional since the path connecting both points is not necessarily
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straight. Following reference [170], let us illustrate this situation based on a two-
mode approximation for a simply supported cylindrical panel of thickness h with a
sinusoidal initial imperfection of the amplitude .α

.q̈1 + ε2 (q1 − 1) + 1

4

(
q1

2 + 4q2
2 − 1

)
q1 = 0

q̈2 + 16ε2q2 +
(
q1

2 + 4q2
2 − 1

)
q2 = 0 (2.94)

where .q1 and .q2 are time-dependent amplitudes of the first and second sine wave
modes, respectively, and .ε is a small parameter characterizing the panel flexibility
as

.ε2 = 1

12

(
h

α

)2

� 1

Model (2.94) can be represented by its Lagrangian as

.L = 1

2
(q̇2

1 + q̇2
2 ) − V (q1, q2) (2.95)

with the potential energy of elastic deformations given by

.V (q1, q2) = 1

2
f (q1, q2)

2 + ε2Φ(q1, q2) (2.96)

.f (q1, q2) =
√
2

4

(
q2
1 + 4q2

2 − 1
)

(2.97)

.Φ(q1, q2) = 1

2
[(q1 − 1) 2 + 16q2

2 ] (2.98)

where the functions f and .Φ associate with the tension-compression and bending
deformations, respectively. A typical shape of the potential energy with a sample
trajectory inside the potential well is shown in Fig. 2.5. If .ε = 0, system (2.94)
has one equilibrium point .P0(0, 0) on the plane .q1q2 corresponding to a horizontal
configuration of the panel, which is obviously unstable by Lyapunov due to the
extreme compression. Also, there is a continuous manifold of the elliptic shape,
.q1

2+4q22 = 1, along which the panel can move with zero strain of its center line. If
.ε �= 0, this manifold disappears by generating four equilibrium points, of which two
are located on the straight line .q2 = 0 and correspond to the original and inverted
positions of the panel: .P1(1, 0) and .P2(−(1 + √

1 − 16ε2)/2, 0), respectively. The
other two points are unstable equilibria involving the second (sine wave) spatial
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Fig. 2.5 Top-side qualitative
view of the potential well V
with a sample system
trajectory inside the well
under the flexibility .ε = 0.1,
and other parameters as:
.a1 = 1, .a2 = 0, .q1(0) = 1,
.q2(0) = 0, .q̇1(0) = 1,
.q̇2(0) = 0.25

Fig. 2.6 Planar geometry of the coordinate transformation .{q1, q2} → {ζ , s} with interpretation
of the arclength parametrization .s = s(θ)

mode: .P3,4(−1/3,±√
2 − 36ε2/3). The point .P0 remains on the line .q2 = 0

with some shift from zero: .P0((
√
1 − 16ε2 − 1)/2, 0). All of the above equilibria

exist under the condition .ε <
√
2/6. The minimum potential barrier on the path

between two stable equilibrium points, .P1 and .P2, is calculated by substituting the
coordinates of one of the two symmetric saddle points, .P3,4, in (2.96) as

.V∗ = 8

3
ε2 − 16ε4 (2.99)

The methodology is based on a global linearization of Eqs. (2.94) near the elliptic
manifold of equilibrium positions of the perfectly flexible panel, .ε = 0. In the
present case of just two modes, such a linearization is conducted by means of two
new generalized coordinates, such as the deviation .ζ from the ellipse and the angular
coordinate .θ (Fig. 2.6)

.q1 = y1(θ) + εn1(θ)ζ

q2 = y2(θ) + εn2(θ)ζ (2.100)
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where .{y1, y2} is a projection of the point .P(q1, q2) onto the ellipse

.y1(θ) = cos θ , y2(θ) = 1

2
sin θ (2.101)

and .{n1, n2} is the corresponding unit vector

.n1 = 1

ω

∂f (y1, y2)

∂y1
, n2 = 1

ω

∂f (y1, y2)

∂y2
(2.102)

ω =
√(

∂f

∂y1

)2

+
(

∂f

∂y2

)2

=
√
2

2

√
1 + 3 sin2 θ

The nonlinear coordinate transformation .{q1, q2} −→ {ζ , θ} (2.100) is con-
ducted by means of Routh function combining the Lagrangian and Hamiltonian
formulations for the normal and tangential to the ellipse motion components,
respectively [150]. Another approach was using a local Cartesian frame following
the point P along the ellipse [136]. Although the nonlinear coordinate transforma-
tion technically complicates the differential equations of motion as compared to
system (2.94), the new coordinates become closer to the system physical meaning:
the fast coordinate .ζ associates with the tension-compression of the panel, whereas
the slow coordinate .θ describes the bending deformations. As a result, the system
is reduced based on the idea of separation of motions followed by the averaging
procedure. The leading order asymptotic integration gives finally

.ζ̈ + ω2ζ = O(ε) (2.103)

Fig. 2.7 Three-dimensional
illustration of zero strain
manifold,
.Mf = {q : f (q) = 0}, and
the corresponding generalized
Lagrangian coordinates:
.{ζ , s1, s2}
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and

.
1

2

(
ω

dθ

dt

)2

+ ε2
[
2(1 − cos θ) + 3 sin2 θ

]
= E = const. (2.104)

According to (2.99), the least energy level of system (2.94), at which the global
motion may become possible, is of order .ε2. Analyzing Eqs. (2.103) and (2.104) for
the vanishing .ε recalls the discussion on rigid-body motions from the standpoint
of linearity and nonlinearity concepts. In the present case, Eqs. (2.103) and (2.104)
associate with rotations and translations, respectively, as discussed in Chap. 1.

Figure 2.7 gives an outline for increasing the number of flexural modes of the
panel. Although the dimension of essentially nonlinear component can be reduced
by one, a parametrization of the equilibrium manifold would lead to significant
technical complexities.



Chapter 3
Nonsmooth Processes as Asymptotic
Limits

The objective of this chapter is to show that nonsmooth processes may naturally
occur as high-energy asymptotics in different oscillatory models with no inten-
tionally introduced stiff constraints or external impacts. In other words, nonsmooth
temporal mode shapes may be as natural as sine waves generated by same oscillators
under low-energy conditions. Essentially nonlinear phenomena, such as nonlinear
beats and energy localization, are also considered. It is shown that energy exchange
between two oscillators may possess hidden nonsmooth behaviors.

3.1 Lyapunov’s Oscillator

Let us consider a family of oscillators described by the differential equation

.ẍ + x2n−1 = 0 (3.1)

where n is a positive integer; see Fig. 1.1.
In the particular case .n = 1, one has the harmonic oscillator whose natural fre-

quency is unity. When .n > 1 the system becomes essentially nonlinear and cannot
be linearized within the class of vibrating systems. Moreover, as the parameter n

increases, the temporal mode shape of oscillator (3.1), while remaining smooth, is
gradually approaching the triangle wave nonsmooth limit. Such transitions usually
represent a challenging problem from both physical and mathematical viewpoints.
Hence it is important to understand some basic cases, such as oscillator (3.1) and
those considered in the next section. These special cases admit exact solutions
showing explicitly how smooth motions are approaching their nonsmooth limits. It
is known regarding oscillator (3.1) that, for an arbitrary positive integer n, its general
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V. N. Pilipchuk, Oscillators and Oscillatory Signals from Smooth to Discontinuous,
https://doi.org/10.1007/978-3-031-37788-4_3

89

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-37788-4protect T1	extunderscore 3&domain=pdf
https://doi.org/10.1007/978-3-031-37788-4_3
https://doi.org/10.1007/978-3-031-37788-4_3
https://doi.org/10.1007/978-3-031-37788-4_3
https://doi.org/10.1007/978-3-031-37788-4_3
https://doi.org/10.1007/978-3-031-37788-4_3
https://doi.org/10.1007/978-3-031-37788-4_3
https://doi.org/10.1007/978-3-031-37788-4_3
https://doi.org/10.1007/978-3-031-37788-4_3
https://doi.org/10.1007/978-3-031-37788-4_3
https://doi.org/10.1007/978-3-031-37788-4_3
https://doi.org/10.1007/978-3-031-37788-4_3


90 3 Nonsmooth Processes as Asymptotic Limits

solution can be expressed in terms of special Lyapunov functions [76, 101, 126],
such as sn.θ and cs.θ defined by expressions1

.θ =
snθ∫
0

(
1 − nz2

) 1−2n
2n

dz, cs2nθ + n sn2θ = 1

These functions possess the properties,

.cs0 = 1, sn0 = 0,
dsnθ

dθ
= cs2n−1θ,

dcsθ

dθ
= −snθ

and their normalized period is given by

.T = 4
√

n

1∫
0

dx√
1 − x2n

= 2

√
π

n

Γ
(

1
2n

)

Γ
(

n+1
2n

)

The general solution of Eq. (3.1) can be written as

.x = Acs
(
An−1t + α

)
(3.2)

where A and .α are arbitrary constants.
Note that the scaling factors A and .An−1 are easily predictable based on the

form of Eq. (3.1) since the equation admits the group of transformations .x = Ax̄(t̄),
where .t̄ = An−1t .

For .n = 1 the functions sn.θ and cs.θ give the standard pair of trigonometric
functions .sin θ and .cos θ , respectively. Interestingly enough, the strongly nonlinear
limit .n → ∞ also gives a quite simple pair of periodic functions. Despite some
mathematical challenges, this case admits interpretation by means of the total energy

.
ẋ2

2
+ x2n

2n
= 1

2
(3.3)

where the number .1/2 on the right-hand side corresponds to the initial conditions
.x (0) = 0 and .ẋ (0) = 1.

Taking into account that the coordinate of the oscillator reaches its amplitude
value at zero kinetic energy gives the estimate .−n1/(2n) ≤ x (t) ≤ n1/(2n) for any
time t . Since .n1/(2n) −→ 1 as .n −→ ∞ then the limiting motion is restricted by
the interval .−1 ≤ x (t) ≤ 1. Inside of this interval, the second term on the left-hand
side of expression (3.3) vanishes and hence, .ẋ = ±1 or .x = ±t + α± , where

1 Another version of special functions for Eq. (3.1) was considered in [209].
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.α± are constants. By manipulating with the signs and constants, one can construct
the triangle wave, .τ (t), since there is no other way to providing the periodicity
condition.

Thus the family of oscillators (3.1) includes the two quite simple complementary
asymptotics associated with the boundaries of the interval .1 ≤ n < ∞ as illustrated
by Fig. 1.1. Respectively, there are two couples of periodic functions

.{x, ẋ} = {sin t, cos t}, if n = 1 (3.4)

and

.{x, ẋ} → {τ(t), e(t)}, if n → ∞ (3.5)

where .e(t) = τ̇ (t) is a generalized derivative of the triangle wave, which is the
square wave.2

Earlier, the power-form characteristics with integer exponents were employed for
phenomenological modeling of the amplitude limiters of vibrating elastic structures
[242] and illustrations of impact asymptotics [172, 176]. It should be noted that
such phenomenological approaches to the modeling of impacts are designed to
capture the integral effect of interaction with physical constraints while bypassing
its local details near constraints. Such details obviously depend upon both the
material properties of interacting bodies and physical conditions of interactions. In
many cases, Hertz model of interaction is used to describe the local dynamics near
constraint surfaces [84]. Note that direct replacement of the characteristic .x2n−1 by
the Hertzian restoring force .kx3/2 in (3.1) gives no oscillator. The equation,

.ẍ + kx3/2 = 0 (3.6)

which is a particular case considered in [84], must be obviously accompanied by the
condition .0 ≤ x, where .x = 0 corresponds to the state at which the moving body
and constraint barely touch each other with still zero interaction force.

The following modification brings system (3.6) into the class of oscillators with
odd characteristics

.ẍ + ksgn(x)|x|3/2 = 0 (3.7)

However, oscillator (3.7) essentially differs from oscillator (3.1) since Eq. (3.7)
cannot describe any gap (clearance) in between the left and right constraint surfaces.
In other words models (3.1) and (3.7) represent physically different situations. The
gap .2Δ with its center at the origin, .x = 0, can be introduced in Eq. (3.7) as follows:

.ẍ + k[H(x − Δ)|x − Δ|3/2 − H(−x − Δ)|x + Δ|3/2] = 0 (3.8)

where H is Heaviside unit-step function.

2 The terms triangular sine and rectangular cosine can be also used to emphasize the choice for
the initial time point, .τ(0) = 0 and .e(0) = 1, and unit amplitudes.
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This is a generalization of model (3.7), which is now derived from (3.8) by setting
.Δ = 0. Equation (3.8) can be viewed as a physical impact oscillator that accounts
for elastic properties of its components. As compared to phenomenological model
(3.1), Eq. (3.8) was obtained on certain physical basis given by the Hertz contact
theory.

Finally, oscillators with power-form characteristics, including their generaliza-
tions, can be found in physical literature [33, 78, 157], [80, 130] and different areas
of applied mathematics and mechanics [5, 8, 9, 18, 45, 61, 67, 83, 113, 141, 142,
146, 207, 244]. In reference [195], the power-form restoring forces were introduced
to simulate the liquid sloshing impacts; regarding this phenomenon, see also review
article [90].

3.2 Nonlinear Oscillators Solvable in Elementary Functions

A class of strongly nonlinear oscillators admitting surprisingly simple exact general
solutions at any level of the total energy is described below. Although the fact
of exact solvability of these oscillators has been known for quite a long time
[103], it did not attract much attention possibly due to the specific form of the
oscillator characteristics with uncertain physical interpretations. It is clear however
that, in a phenomenological way, such characteristics capture sufficiently general
physical situations with hardening and softening behavior of the restoring forces.
For instance, these oscillators were recently used as a phenomenological basis
for describing different practically important physical and mechanical systems
[53, 54, 158]. The hardening characteristic is close to linear for relatively small
amplitudes but becomes infinity growing as the amplitude approaches certain limits.
As a result, the corresponding temporal mode of vibration changes its shape from
smooth quasi harmonic to the nonsmooth triangle wave of the rapidly growing
frequency. In contrast, the softening characteristic behaves in a non-monotonic way
such that the vibration shape is approaching the square wave as the amplitude is
increasing. Earlier, amplitude-phase equations were obtained for a coupled array
of the hardening oscillators [187]. It will be shown below that such oscillators
admit explicit action-angle variables within the class of elementary functions. As
a result, conventional averaging procedures become applicable to a wide range
of nonlinear motions including transitions from high- to low-energy dynamics
under small damping conditions. These solutions are in a good agreement with the
corresponding numerical solutions at any energy level even within the first-order
asymptotic approximation.

Hardening and softening cases of these oscillators are, respectively,

.H = 1

2
(v2 + tan2 x) ⇒ ẍ + tan x

cos2 x
= 0 (3.9)
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and

.H = 1

2
(v2 + tanh2 x) ⇒ ẍ + tanh x

cosh2 x
= 0 (3.10)

where the mass is set to unity and thus .v = ẋ is interpreted as a generalized
momentum of the Hamiltonian H , whereas x is a generalized coordinate.

Further objectives are to investigate the high-energy asymptotics with transitions
to nonsmooth temporal mode shapes to show that both of the above oscillators can
play the role of generating systems for regular perturbation procedures within the
class of elementary functions.

Notice that oscillators (3.9) and (3.10) complement each other as those with stiff
and soft characteristics represented in Fig. 3.1a and b, respectively. These oscillators
can be represented also in the form

.ẍ + tan x + tan3 x = 0 (3.11)

.ẍ + tanh x − tanh3 x = 0 (3.12)

Further analyses of Eqs. (3.11) and (3.12) can be conducted by means of sub-
stitutions .q = tan x and .q = tanh x, respectively. Interestingly enough, oscillators
(3.11) and (3.12) without the cubic terms were considered by Timoshenko and Yang
[232]. But, despite the simplified form, the corresponding solutions are expressed in
terms of special functions.

3.2.1 Hardening Case

Consider first stiff oscillator (3.9), whose solution is

(a)

–100

–50

0

50

100
tan x/ cos2x

(b)

–0.5

0

0.5
tanh x/ cosh2x

Fig. 3.1 Restoring force characteristics of exactly solvable strongly nonlinear oscillators (3.9) and
(3.10): (a) hardening characteristic and (b) softening characteristic
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.x = arcsin

[
sinA sin

(
t

cosA

)]
(3.13)

whereA is an arbitrary constant, and another constant is introduced through the time
shift .t− > t + const., since the equations admit the group of temporal shifts.

Therefore, function (3.13) represents a general periodic solution of the period
.T = 2π cosA, while the total energy is expressed through the amplitude, A, as

.E = 1

2
tan2 A (3.14)

In zero energy limit, when the amplitude is close to zero, the oscillator linearizes,
whereas solution (3.13) gives the corresponding sine-wave temporal shape. On the
other hand, the energy becomes infinitely large as the parameter A approaches the
upper limit .π/2. In this case, the period vanishes while the oscillation takes the
triangle wave shape as follows from expression (3.13). Figure 3.2a illustrates the
evolution of the vibration shape as a function of phase, .ϕ = t/ cosA, where .α =
sinA.

Action-Angle Variables

Below, the action-angle variables are introduced in terms of elementary functions.
This enables one of considering non-periodic motions by using exact solution (3.13)
as a starting point of the averaging procedure. For a single degree-of-freedom
conservative oscillator, the action coordinate I is known to be the area bounded by
the system path on the phase plane divided by .2π , whereas the angle .ϕ coordinate
is simply phase angle [16, 161, 164]. In the case of hardening restoring force
characteristic (3.9), one obtains

.I = 1

2π

∮
vdx = 1

cosA
− 1 (3.15)

Fig. 3.2 Normalized temporal mode shapes of the oscillators with stiffening and softening
restoring force characteristics in the displacement versus phase coordinates: (a) .x = arcsin(α sinϕ)

and (b) .x = arc.sinh(α sinϕ)
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and

.ϕ = t

cosA
(3.16)

respectively.
The original coordinate and the velocity are expressed through the action-angle

variables as follows:3 [188]

.x = arcsin

(√
2I + I 2

1 + I
sinϕ

)
, v = (1 + I )

√
2I + I 2 cosϕ√

1 + (
2I + I 2

)
cos2 ϕ

(3.17)

To observe the convenience of action-angle coordinates, let us choose the
Hamiltonian description of the oscillator. Taking into account expressions (3.14) and
(3.15), and eliminating the amplitude A, gives the total energy and thus Hamiltonian

.H = I + 1

2
I 2 (3.18)

The corresponding differential equations of motion are derived as follows:

.ϕ̇ = ∂H

∂I
= 1 + I, İ = −∂H

∂ϕ
= 0 (3.19)

As it is seen, the oscillator is linearized with respect to the action-angle
coordinates and hence possesses the exact general solution

.I = I0, ϕ = (1 + I0) t + ϕ0 (3.20)

where .I0 > 0 and .ϕ0 are arbitrary constants. By substituting (3.20) in (3.17), one
can express the solution via the original coordinates. The meaning of the initial
action is clear from the energy relationship

.E = I0 + 1

2
I 20 = 1

2
tan2 A (3.21)

Note that the linearity of the Hamiltonian equations is due to the specific strongly
nonlinear form of the coordinate transformation (3.17). In other words, the system
nonlinearity has been “absorbed” in a purely geometric way by the nonlinear
coordinate transformation.

As mentioned at the beginning, simplicity of the transformed system and that
of the corresponding solution can be essentially employed for the purpose of

3 The relationship for x was known earlier [164]. However, the complete set is required for
nonconservative velocity-dependent perturbations.
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perturbation analysis. Let us consider the differential equation of motion in the
Newtonian form

.ẍ + tan x

cos2 x
= εf (x, ẋ) (3.22)

where .ε is a small parameter.
This system is weakly nonconservative and therefore has no Hamiltonian. It is

still possible nonetheless to consider expressions (3.17) as a transformation of state
variables, .{x, v} −→ {I, ϕ}. For that reason, let us represent equation (3.22) as a
system of two first-order equations for the state variables, x and v,

.ẋ = v

v̇ = − tan x

cos2 x
+ εf (x, v) (3.23)

Substituting (3.17) in (3.23) and then solving the system for .ϕ̇ and .İ give

.ϕ̇ = 1 + I − εf (x, v) sinϕ

(1 + I )

√(
2I + I 2

) [
1 + (

2I + I 2
)
cos2 ϕ

]

İ = εf (x, v)
√
2I + I 2 cosϕ√

1 + (
2I + I 2

)
cos2 ϕ

(3.24)

where the function .f (x, v) still must be expressed through the action-angle
coordinates by means of (3.17).

Example of Linear Viscous Damping

In case of the linear damping, .f (x, v) ≡ −v, Eqs. (3.24) take the form

.ϕ̇ = 1 + I + ε cosϕ sinϕ

1 + (
2I + I 2

)
cos2 ϕ

(3.25)

İ = −ε (1 + I )
(
2I + I 2

)
cos2 ϕ

1 + (
2I + I 2

)
cos2 ϕ

Let us implement just one step of the averaging procedure and evaluate its
effectiveness. Applying the operator of averaging with respect to the phase, .ϕ, in
(3.25) gives the corresponding first-order averaged system in the linear form

.ϕ̇ = 1 + I, İ = −εI (3.26)
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Substituting the general solution of system (3.26) in (3.17) finally gives

.x = arcsin

⎧⎨
⎩
√
2I0 exp (−εt) + I 20 exp (−2εt)

1 + I0 exp (−εt)
(3.27)

× sin

[
t + I0

1 − exp (−εt)

ε
+ ϕ0

]}

where .I0 and .ϕ0 are arbitrary constants. The corresponding time history records and
phase plane diagrams for different damping coefficients are shown in Fig. 3.3. Even
the leading order approximation appears to be in a good agreement with numerical
solution for all the range of amplitudes. The analytical and numerical curves can be
distinguished only at relatively large magnitudes of the damping parameter .ε. Also,
the graphs show that the temporal mode is gradually changing its shape from the
triangular to harmonic as time increases and the amplitude decays.

Nonlinear Localized Damping

Let us consider the case of nonlinear damping

.ẍ + tan x

cos2 x
= −2εẋ tan2 x (3.28)
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Fig. 3.3 The response of hardening oscillator (3.22) in case of the linear viscous damping,
.f (x, v) ≡ −v, under the initial conditions .I0 = 10 and .ϕ0 = 0, and two different damping
parameters: .ε = 0.2 (a, c) and .ε = 0.8 (b, d); the numerical solution of the differential equation is
represented for the time history (a, b) and phase plane diagrams (c, d) by the dashed curves
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In this case, the perturbation is given by .f (x, v) ≡ −2v tan2 x. Such a damping
is rapidly growing near the boundaries of the interval .−π/2 ≤ x ≤ π/2, but it
becomes negligible when the amplitude is small, .|x| .<< 1.

In the action-angle coordinates, first-order averaging gives

.ϕ̇ = 1 + I, İ = −εI 2

and thus

.ϕ = t + 1

ε
ln (1 + εI0t) + ϕ0, I = I0

1 + εI0t

Using the coordinate transformation (3.17) gives solution

.x = arcsin

{√
I0(2 + I0 + 2εI0t)

1 + I0 + εI0t
sin

[
t + ln(1 + εI0t)

ε
+ ϕ0

]}
(3.29)

where .I0 and .ϕ0 are arbitrary constants.
Note that the amplitude decay of solutions (3.27) and (3.29) is qualitatively

different. For instance, the amplitude of vibration (3.29) originally decays in a fast
rate and then becomes very slow. In contrast, the amplitude of vibration (3.27) first
decays slowly, and then the decay rate abruptly increases and then slows down again.

3.2.2 Softening Case

Let us consider now softening oscillator (3.10), whose exact solution is

.x = arc sinh

[
sinhA sin

(
t

coshA

)]
(3.30)

Figure 3.2b shows that the temporal shape of high-energy vibrations approaches
the square wave and thus essentially differs of that observed in the stiff case. To
compare the shapes for different periods, the dependencies are given with respect to
the phase variable .ϕ = t/ coshA using the parameter .α = sinhA. Based on solution
(3.30), the action-angle coordinates are introduced as

.x = arc sinh

(√
2I − I 2

1 − I
sinϕ

)
, v = (1 − I )

√
2I − I 2 cosϕ√

1 − (
2I − I 2

)
cos2 ϕ

(3.31)

where the action is expressed through the parameter A as
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.I = 1 − 1

coshA
(3.32)

All the analytical manipulations are analogous to those conducted for the stiff
case. Taking into account (3.32) gives the total energy as a function of the action I

.E = 1

2
tanh2 A = I − 1

2
I 2 (3.33)

In the presence of the linear viscous damping,

.ẍ + tanh x

cosh2 x
= −εẋ (3.34)

the averaging procedure gives the linear system

.ϕ̇ = 1 − I, İ = −εI (3.35)

which differs by sign in the first equation compared to system (3.26).
Integrating system (3.35) and substituting the result in (3.31) give general

solution of the original equation

.x = arc sinh

⎧⎨
⎩
√
2I0 exp (−εt) − I 20 exp (−2εt)

1 − I0 exp (−εt)
(3.36)

× sin

[
t − I0

1 − exp (−εt)

ε
+ ϕ0

]}

The corresponding time history graphs and phase plane diagrams are shown in
Fig. 3.4 for different damping coefficients. The leading order approximation appears
to match the corresponding numerical solution for all range of amplitudes, unless
the initial action .I0 approaches the magnitude 1. As follows from expressions
(3.33), this magnitude corresponds to the maximum value of the total energy of
the oscillator. Note that the energy of the hardening oscillator has no maximum.

3.3 Nonsmoothness Hidden in Smooth Processes

In this section, nonlinear beats phenomena are considered as another source of
nonsmooth behavior that brings a certain physical meaning to oscillator (3.22). Note
that nonlinear beats became of growing interest few decades ago from different
viewpoints of physics and nonlinear dynamics [79, 112, 119, 131, 238]. Interestingly
enough, phase variables of interacting oscillators with close natural frequencies may
show nonsmoothness of temporal behavior during the beating [79], for instance,
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Fig. 3.4 The dynamics of the linearly damped softening oscillator under the initial conditions
.I0 = 0.5, .ϕ0 = 0, and two different damping parameters: .ε = 0.2 (a, c) and .ε = 0.8 (b, d);
numerical solution of the differential equation is represented for the time history (a, b) and phase
plane diagrams (c, d) by the dashed curves

similar to that of a vibroimpact process [132, 133]. Such limiting dynamics were
defined as a complementary nonstationary alternative to the normal mode motions.
Below a new set of descriptive functions is introduced to analyze the beating effects
directly in energy variables.

3.3.1 Descriptive Functions for Interaction of Identical
Oscillators

Let us consider an ensemble of two identical harmonic oscillators with the natural
frequency .Ω:

.q̈k + Ω2qk = 0 (k = 1, 2) (3.37)

Although there is no interaction between oscillators (3.37) in terms of forces, there
is still certain coupling through the time variable t . Namely, both oscillators have the
same natural temporal scale .δ = Ωt with the same initial point. In other words two
independent oscillators (3.37) still represent a system. Now let us denote .vk = q̇k

(.k = 1, 2) and then introduce symmetric .2 × 2 matrix

.Ekj = 1

2
(vkvj + Ω2qkqj ) (3.38)
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and the following combinations of its elements [190]

.E11 + E22 = E

E11 − E22

E
= P , − 1 ≤ P ≤ 1 (3.39)

E12√
E11E22

= Q, − 1 ≤ Q ≤ 1

where E is the total energy of both oscillators per unit mass and P is a unitless index
characterizing the distribution of energy between the oscillators as

.E11 = 1

2
E(1 + P), E22 = 1

2
E(1 − P) (3.40)

Relationships (3.40) are derived by solving the first two equations in (3.39) for
.E11 and .E22. To clarify the meaning of quantity Q and express the original state
variables through E, P , and .Q, let us assume that the oscillators are described by

.q1 = A1 cos δ, q2 = A2 cos(δ + Δ) (3.41)

where .δ = Ωt , .A1 and .A2 are constant amplitudes, and .Δ is a phase shift. Then,
substituting (3.41) in (3.38) gives

.E12 = 1

2
Ω2A1A2 [sin δ sin(δ + Δ) + cos δ cos(δ + Δ)]

= 1

2
Ω2A1A2 cosΔ (3.42)

E11E22 = 1

4
Ω4A2

1A
2
2

Substituting (3.42) in (3.39) shows that the quantity .Q represents the phase shift
of oscillations as

.Q = E12√
E11E22

= cosΔ (3.43)

Now, substituting (3.41) in (3.40) and taking into account (3.38) give .Ω2A2
1 =

E(1 + P) and .Ω2A2
2 = E(1 − P). Solving these equations for the amplitudes and

taking into account (3.41) finally give the transformation from E, P , .Δ, and .δ back
to the original state variables of both oscillators

.q1 = 1

Ω

√
E(1 + P) cos δ

v1 = −√
E(1 + P) sin δ
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q2 = 1

Ω

√
E(1 − P) cos(δ + Δ) (3.44)

v2 = −√
E(1 − P) sin(δ + Δ)

Note that, in case of non-interacting linear oscillators (3.37), the quantities E,
P , and .Δ are constant. Therefore, in line with the idea of parameter variations
and averaging, these can be assumed to be slowly varying functions under the
presence of relatively small perturbations, such as coupling and nonlinearities. The
advantage of such descriptive variables is due to their physical meaning given by
(3.38) and (3.39). Also, in contrast to other types of characteristics, quantities (3.38)
and (3.39) can be evaluated directly from numerical or experimental signals for
state variables. However, the convenience of these variables becomes most obvious
whenever the problem formulation deals with the effects of energy transfer or
with the modal content of oscillations. In such cases, variables (3.39) reveal the
necessary information in a straightforward way. For instance, as follows from (3.39)
and confirmed by (3.44), the number .P = 0 indicates the energy equipartition,
.E11 = E22, whereas at .P = 1 or .P = −1 all the energy belongs to the first or to the
second oscillator, respectively. Regarding the modal content, the numbers .Q = 1
and .Q = −1 correspond to the inphase (.Δ = 0) and antiphase (.Δ = π ) vibration
modes, respectively. In these cases, transformation (3.44) gives the corresponding
couple of straight lines on configuration plane .q1 − q2:

.q2 = ±
√
1 − P

1 + P
q1 (3.45)

If .Q = 0 (.Δ = π/2), then, according to (3.44), the system follows the elliptic
path in either clockwise or counterclockwise direction:

.
q2
1

1 + P
+ q2

2

1 − P
= E

Ω2 (3.46)

Geometrical meaning of the coherency index Q is explained in Fig. 3.5. As
already mentioned, in case of system (3.37), the numbers P and Q are fixed and
can be determined from the initial conditions by means of relationships (3.38) and

Fig. 3.5 Geometrical
interpretation of the
coherency index Q on the
configuration plane
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(3.39). In the general transient case, the temporal behavior of numbers P and Q

reveals which of the above three modes is dominant during a certain time interval.
As noticed in Sect. 2.2.4, in physical literature, harmonic oscillations are often

represented by rotating vectors on the complex plane. For that reason, let us express
quantities (3.39) through the complex coordinates [120] .ψj = vj + iΩqj , or
inversely,

.vj = 1

2

(
ψj + ψ̄j

)
, qj = 1

2iΩ

(
ψj − ψ̄j

)
(3.47)

Substituting (3.47) in (3.38) gives

.Ekj = 1

2
(vkvj + Ω2qkqj ) = 1

4
(ψ̄kψj + ψkψ̄j ) (3.48)

Hence the total energy of two oscillators excluding coupling, E, the energy
distribution, P , and the index of coherency, Q, are calculated through the complex
coordinates as:

.E = E11 + E22 = 1

2

(∣∣ψ1

∣∣2 + ∣∣ψ2

∣∣2) (3.49)

.P = E11 − E22

E11 + E22
=

∣∣ψ1

∣∣2 − ∣∣ψ2

∣∣2∣∣ψ1

∣∣2 + ∣∣ψ2

∣∣2 , −1 ≤ P ≤ 1 (3.50)

.Q = E12√
E11E22

= ψ̄1ψ2 + ψ1ψ̄2

2
∣∣ψ1

∣∣ ∣∣ψ2

∣∣ , −1 ≤ Q ≤ 1 (3.51)

The example of analysis using these descriptive variables is considered in the
next subsection.

3.3.2 Systems with 1:1 Resonance

Let us derive equations describing temporal behaviors of the new variables by
considering a system of two interacting oscillators

.q̈1 + Ω2q1 + f1(q1, q̇1, q2, q̇2) = 0

q̈2 + Ω2q2 + f2(q1, q̇1, q2, q̇2) = 0 (3.52)

where the terms .f1 and .f2 are small enough to be viewed as perturbations.
In the state space, system (3.52) is represented in the form of four first-order

differential equations
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.q̇1 = v1

v̇1 = −Ω2q1 − f1

q̇2 = v2 (3.53)

v̇2 = −Ω2q2 − f2

where .fk = fk(q1, v1, q2, v2) (.k = 1, 2).
Due to the presence of perturbations, quantities (3.39) become time varying in

a temporal rate dictated by the magnitude of perturbations, .fk , as follows from the
derivative of the energy matrix

.
d

dt

[
E11 E12

E21 E22

]
= −1

2

[
2f1v1 f1v2 + f2v1

f1v2 + f2v1 2f2v2

]
(3.54)

which is obtained from (3.38) by enforcing equations (3.53).
As noticed above, relationships (3.44) can be considered as a coordinate trans-

formation in the system state space using the idea of parameter variations as

.{q1, v1, q2, v2} −→ {E(t), P (t),Δ(t), δ(t)} (3.55)

where E, P , and .Δ are now slowly varying quantities, whose temporal rates
are determined by the magnitude of terms .f1 and .f2 according to (3.54); recall
expressions (3.39).

Note that, in the presence of perturbation, the time-dependent quantityE is losing
its meaning of the system’s total energy due to both possible nonconservative terms
and the ignored energy of coupling. Nonetheless, under the assumption of small
perturbation, the quantity E still can serve as a convenient estimate for the total
excitation level of the system in line with the idea of Lyapunov functions.

Substituting (3.44) in (3.53) and solving the resultant equations for the deriva-
tives of new state variables give

.
dE

dt
= √

E
[√

1 − Pf2 sin(δ + Δ) + √
1 + Pf1 sin δ

]

dP

dt
= − P√

E

[√
1 − Pf2 sin(δ + Δ) + √

1 + Pf1 sin δ
]

− 1√
E

[√
1 − Pf2 sin(δ + Δ) − √

1 + Pf1 sin δ
]

(3.56)

dΔ

dt
= 1√

E

[
f2 cos(δ + Δ)√

1 − P
− f1 cos δ√

1 + P

]

and
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.
dδ

dt
= Ω + f1 cos δ√

E(1 + P)
(3.57)

where both functions .f1 and .f2 must be expressed through E, P , .Δ and .δ by means
of (3.44).

At this point, Eqs. (3.56) and (3.57) still represent the exact equivalent of original
system (3.53). Further, assuming that .fk ∼ ε (.0 < ε << 1, .k = 1, 2), different
procedures of asymptotic integration can be applied to system (3.56) and (3.57).
Practically acceptable approximate solutions can be often obtained by the direct
one-step averaging of the right-hand side of system (3.56) and (3.57) with respect
to the fast phase .δ over the period .2π by means of the integral operator

. < · · · >δ= 1

2π

∫ 2π

0
· · · dδ (3.58)

Energy Localization in Coupled Identical Duffing Oscillators

Let us consider the example of two coupled Duffing oscillators by assuming

.f1 = 2ζΩv1 + β(q1 − q2) + αq3
1

f2 = 2ζΩv2 + β(q2 − q1) + αq3
2 (3.59)

Substituting (3.59) in (3.56) and (3.57), taking into account (3.44), and applying
averaging (3.58) to the right-hand side of the resultant system give

.
dE

dt
= −2ζΩE

dP

dt
= β

Ω

√
1 − P 2 sinΔ (3.60)

dΔ

dt
= − 3α

4Ω3
EP − β cosΔ

Ω
√
1 − P 2

P

and

.
dδ

dt
= Ω + 3α

8Ω3
E(1 + P) + β

2Ω

(
1 −

√
1 − P

1 + P
cosΔ

)
(3.61)

Let us introduce new temporal argument .t̄ and the total excitation level .κ(t̄) as

.t = Ω

β
t̄ , E(t) = 4βΩ2

3α
κ(t̄) (3.62)
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Substituting (3.62) in (3.60) and solving the first equation for .κ bring the
averaged system to the form

.κ = κ0 exp

(
−2

ζ

β
Ω2 t̄

)

dP

dt̄
= −∂H

∂Δ
=
√
1 − P 2 sinΔ (3.63)

dΔ

dt̄
= ∂H

∂P
= −P

(
κ + cosΔ√

1 − P 2

)

where .κ0 = κ(0) and

.H = H(P,Δ, t̄) = −1

2
κ(t̄)P 2 +

√
1 − P 2 cosΔ (3.64)

It is seen that P and .Δ can play the role of Hamiltonian generalized momentum
and generalized coordinate, respectively. Note that the Hamiltonian structure occurs
despite the presence of dissipation in the original system. Obviously, Hamiltonian
(3.64) is not conserved, unless .ζ = 0, and thus, enforcing system (3.63) gives

.
dH

dt̄
= ζ

β
Ω2P 2κ (3.65)

Thus it is found that the resonance energy flow between the two interacting
oscillators is described with an effective Hamiltonian oscillator. In order to consider
the oscillatory dynamics, the damping ratio .ζ will be assumed to be small enough to
have the adiabatic effect on system (3.63). This system therefore can be viewed as
a dynamical system on the phase plane .Δ − P whose phase flow depends upon the
total excitation level, .κ . Since the right-hand side of system (3.63) is .2π -periodic
with respect to .Δ, it is sufficient to investigate two cells of the phase portrait
including the stationary points .(Δ, P ) = .(0, 0) and .(Δ, P ) = .(π, 0), corresponding
to the inphase and antiphase modes, respectively. As follows from the right-hand
side of (3.63), the inphase mode is unique at any positive .κ , whereas the antiphase
mode can bifurcate to give rise for two new modes, when the total excitation level .κ
exceeds the critical level

.κ∗ = 1 
⇒ E∗ = 4βΩ2

3α
(3.66)

The corresponding stationary points are given by

.(Δ, P ) = (0,±
√
1 − κ−2), 1 ≤ κ (3.67)

Both critical and supercritical phase portraits are shown in Fig. 3.6a and b,
respectively. These illustrate the bifurcation of the antiphase stationary point from
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Fig. 3.6 Phase portraits of system (3.63) at fixed excitation levels: (a) .κ = 1—critical, (b) .κ =
1.5—supercritical
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Fig. 3.7 Transition from local to antiphase mode due to the adiabatic energy loss: (a) time history
response and (b) configuration plane under the following parameters and initial conditions: .Ω =
1.0, .ζ = 0.001, .α = 0.08, .β = 0.03, .E(0) = 1.5 ( .κ(0) = 3.0 ), .P(0) = 0.72, .Δ(0) = π − 0.001

center to saddle and two centers, creating two local modes. Such effects are usually
referred to as the symmetry breaking bifurcation in a perfectly symmetric system
leading to the possibility of energy localization. As follows from (3.67), the energy
localization/trapping effect can occur on a high-energy level. Assuming that the
model remains adequate as the energy is increasing, one can reach the limit in which
all the energy becomes localized at just one of the two oscillators

.(Δ, P ) ∼ (0,±1), 1 � κ (3.68)

Practically however, if no energy inflow is maintained, the dissipation effect
will cause a gradual decrease of the quantity .κ . As a result, the local modes will
eventually disappear followed by the reciprocal beatwise oscillations as seen from
Figs. 3.7 and 3.8.

Let us consider the conservative system, .ζ = 0, when .κ is a fixed number. In this
case, as follows from (3.65), system (3.63) admits the following integral:
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Fig. 3.8 Illustration of the delocalization process (Fig. 3.7) in terms of the variables .{E, P , .Q}
obtained from numerical solutions of the original and averaged systems in comparison: (a) total
excitation level, (b) .P − Q diagram, (c) the evolution of energy distribution, and (d) coherency
index

.H(P,Δ) = H0 = H(P,Δ)|t̄=0 (3.69)

Substituting .P = sinφ (.−π/2 ≤ φ ≤ π/2) in (3.63) and (3.69) and then
eliminating the phase shift .Δ give a strongly nonlinear conservative oscillator for
the new variable .φ describing the resonance beatwise energy flow

.
d2φ

dt̄2
+
(

H0 + 1

2
κ

)2 tanφ

cos2 φ
− 1

8
κ2 sin 2φ = 0 (3.70)

where .H0 is expressed through the parameter .κ and initial angles .φ0 and .Δ0 as

.H0 = −1

2
κ sin2 φ0 + cosφ0 cosΔ0, κ = 3αE

4βΩ2 (3.71)

Oscillator (3.70) has the effective potential energy described by

.V (φ) = 1

2

(
H0 + 1

2
κ

)2

tan2 φ − 1

8
κ2 sin2 φ (3.72)

Note that using oscillator (3.70) is complicated by the fact that the number .H0
depends upon the initial conditions given by
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. sinφ0 = P0,
dφ

dt̄

∣∣∣∣
t̄=0

= sinΔ0 (3.73)

where the second relationships follow from (3.63).

Hidden Nonsmooth Effects in Weakly Coupled Harmonic Oscillators

It follows from (3.62) that the parameter .κ takes zero value if the original system
(3.52) and (3.59) is linear, .α = 0. In this case oscillator (3.70) has exact analytical
solution in terms of elementary functions

.φ = arcsin
[
sinφ0 sin

(
| cosΔ0|t̄ + π

2

)]
(3.74)

In this case, the energy distribution, .P = sinφ, behaves as a harmonic oscillator
according to the sine wave law

.P = P0 sin
(
| cosΔ0|t̄ + π

2

)
(3.75)

where .P0 = sinφ0 is the initial energy distribution.
The phase .φ behaves in a quite different way. As discussed briefly in Sect. 1.2.4,

solution (3.74) admits two simple limits, such as the sine wave

.φ ∼ φ0 sin
(
| cosΔ0|t̄ + π

2

)
, |P0| � 1 (3.76)

and the triangle wave

.φ ∼ π

2
τ

(
2

π
| cosΔ0|t̄ + 1

)
, |P0| ∼ 1 (3.77)

Figure 3.9 illustrates temporal mode shapes of the phase variables .φ and .Δ at
different parameter of total excitation values .κ . The initial distribution is close to
predominantly one of the two oscillators, .P(0) ∼ 1. It is seen that such an uneven
initial distribution results in oscillations of the angle .φ within almost its entire
interval .(−π/2, π/2) with a close to the triangle wave shape described by (3.77).

As mentioned in the preamble to this section, the most intensive energy exchange
between subsystems can be viewed as a logical alternative to the stationary case with
no energy exchange at all. Since the latter case associates with the normal mode
motions, such alternative provides an adequate asymptotic limit for interpretations
of different physical effects that cannot be described with conventional normal mode
expansions.
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Fig. 3.9 Temporal shapes of the phase variables at .P(0) ∼ 1 (.φ0 = .π/2 − 0.01): (a) .κ = 0, .Δ =
−0.001, (b) .κ = 0, .Δ = π − 0.001, (c) .κ = 1.5, .Δ = −0.001, and (d) .κ = 1.5, .Δ = π − 0.001

3.3.3 Energy Exchange Oscillator

As shown in Sect. 3.3.1, the energy exchange strongly nonlinear oscillator (3.70)
admits the exact solution in terms of elementary functions, if the original system is
linear, .κ = 0. Now let us apply the methodology of Sect. 3.2 to the case .κ �= 0,
when exact analytical solution cannot be expressed through elementary functions.
First, let us represent the oscillator (3.70) in the following form:

.
d2φ

dp2 + tanφ

cos2 φ
= μ sin 2φ (3.78)

where .p = |H0 + κ/2| t̄ is a new temporal argument, whose parameters .H0 and .κ

are defined in (3.71), and

.μ = 1

2

κ2

(2H0 + κ)2
= 1

2

κ2

(κ cos2 φ0 + 2 cosφ0 cosΔ0)2
(3.79)

The corresponding initial conditions can be obtained from (3.73) by taking into
account the temporal substitution .p → t̄ . There are two possible ways to asymptotic
simplifications of the essentially nonlinear equation (3.78).

Asymptotic of Equipartition

The first way is using the assumption that the initial energy is distributed almost
equally between the oscillators of the ensemble (3.52), namely .|P0| << 1 or
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.|φ0| << 1. In this case, Eq. (3.78) can be reduced to the following Duffing equation:

.
d2φ

dp2 + (1 − 2μ)φ + 4

3
(1 + μ)φ3 = 0 (3.80)

When .μ < 1/2, Eq. (3.80) describes periodic energy exchange. The period of the
energy exchange process is given by the corresponding solution of Duffing equation
(3.80). However, the point .(φ, dφ/dp) = (0, 0) on the phase plane of oscillator
(3.80) is changing its type from center to saddle when

.μ >
1

2
= μ∗ (3.81)

Note that the critical number .μ = μ∗ makes sense only for the neighborhood
of antiphase mode (see Fig. 3.6b) as follows from relationship (3.79) after the
following substitutions:

.μ|{Δ0=π,φ0=0} = 1

2

κ2

(κ − 2)2
. (3.82)

μ|{Δ0=0,φ0=0} = 1

2

κ2

(κ + 2)2
(3.83)

It is seen that formula (3.82) gives .μ∗ at .κ = κ∗, whereas (3.83) gives .μ, which
is below .μ∗ at any positive .κ .

Phase trajectories of oscillator (3.78) are shown in Fig. 3.10 for both critical and
supercritical numbers .μ. In order to keep .μ fixed on the entire family of trajectories,
we have to admit different .κ on different trajectories. In particular, the numbers .κ in
Fig. 3.10 are obtained by substituting the fixed initial phase .Δ0 = π and different
initial .φ0 in the inverse of (3.79)

.κ = 8(
√
2μ cosφ0 − 2μ cos3 φ0) cosΔ0

4μ cos 2φ0 + μ cos 4φ0 + 3μ − 4
(3.84)

The transition in phase diagrams of Fig. 3.10 is similar to that in Fig. 3.6 near the
antiphase mode, except for different meaning and orientation of axes.

Low-Energy-Intensive Beats

The second way of asymptotic simplification of Eq. (3.78) is less conventional. We
skip the condition .|φ0| << 1 by allowing the energy to be distributed in any
proportion while assuming that .μ is sufficiently small. As follows from (3.79) and
(3.71), the condition of small .μ requires the quantity .κ = 3αE/(4βΩ2) to be
small. When .μ → 0, the equation of energy exchange oscillator (3.78) still remains
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Fig. 3.10 Phase trajectories of the energy exchange oscillator: (a) .μ = 1/2—critical, .κ1 =
0.999797, .κ2 = 0.991534, .κ3 = 0.938073, and (b) .μ = 0.8—supercritical, .κ1 = 1.11696,
.κ2 = 1.12299, .κ3 = 1.09204

strongly nonlinear but becomes exactly solvable in elementary functions. To employ
this fact, let us introduce action-angle variables as described in Sect. 3.2

.φ = arcsin

(√
2I + I 2

1 + I
sinϕ

)

v = (1 + I )
√
2I + I 2 cosϕ√

1 + (
2I + I 2

)
cos2 ϕ

(3.85)

Following the procedure of Sect. 3.2 gives still exact equivalent of oscillator
(3.78) in action-angle variables

.
dI

dp
= μ

I (2 + I )

(1 + I )2
sin 2ϕ

dϕ

dp
= 1 + I − 2μ

(1 + I )3
sin2 ϕ (3.86)

A direct averaging with respect to the phase .ϕ can be applied to the right-
hand side of system (3.86) to obtain the averaged system in the leading order
approximation

.
dI

dp
= 0,

dϕ

dp
= 1 + I − μ

(1 + I )3
(3.87)

and its solution as

.I = I0 = const., ϕ =
[
1 + I0 − μ

(1 + I0)3

]
p (3.88)
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Substituting (3.88) in (3.85) gives the corresponding relationships in terms of the
original variables.

High-order approximations can be obtained with canonical transformations of
the Hamiltonian of oscillator (3.78). Such Hamiltonian can be expressed through
the action-angle variables (3.85) as

.Hφ(I, ϕ, μ) = 1

2
I (I + 2) + μ

1 + I (I + 2) cos 2ϕ

2(I + 1)2
(3.89)

Obviously, Eqs. (3.86) now follow from the Hamiltonian equations

.
dI

dp
= −∂Hφ

∂ϕ
,

dϕ

dp
= ∂Hφ

∂I
(3.90)

Recall that .{I, ϕ} represent the action-angle variables of oscillator (3.78) only
for the unperturbed case, .μ = 0. This is why the angle .ϕ is still present in
Hamiltonian (3.89) although through the term of order .μ. A high-order averaging
can be implemented as a canonical transformation .{I, ϕ} → {J,ψ} eliminating
the fast phase from Hamiltonian (3.89). The main advantage of the Hamiltonian
approach is that, instead of manipulating differential equations (3.90), the procedure
deals with just one descriptive function .Hφ(I, ϕ, μ). In the leading order, the
corresponding variable transformation must be identical since Hamiltonian (3.89)
already has no fast phase at .μ = 0. Using the automatic system of symbolic
manipulationsMathematica.(R) gives the transformation in the first asymptotic order
as

.I = J − μ
J(2 + J )

2(1 + J )3
cos 2ψ + O(μ2)

ϕ = ψ − μ
J 2 + 2J − 2

4(1 + J )4
sin 2ψ + O(μ2) (3.91)

This transformation brings Hamiltonian (3.89) to the form with no fast phase in
the first-order of .μ

.Hφ → Hψ = 1

2
J (J + 2) + μ

2(1 + J )2
+ O(μ2) (3.92)

As a result, the new system takes the form, which is similar to (3.87) with the
error of order .O(μ2)

.
dJ

dp
= −∂Hψ

∂ψ
= O(μ2),

dψ

dp
= ∂Hψ

∂J
= 1+J − μ

(1 + J )3
+O(μ2) (3.93)

Also, the form of solution for the fast phase is similar to (3.88)
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.J = J0, ψ =
[
1 + J0 − μ

(1 + J0)3

]
p (3.94)

where .J0 = const . The inverse transformation to the original variables .{φ, v}
becomes more complicated than (3.85) due to the extra step according to (3.91).

3.3.4 Interaction of Liquid Sloshing Modes

The terminology of liquid sloshing covers both the physics of sloshing dynamics
and the related mathematical methods [1, 57, 87, 90]. Many finite degrees-of-
freedom sloshing models are obtained by representing the free liquid surface, say
.η = .η(t, x, y) (see Fig. 3.11), as a linear combination of some modal functions
.{Uk(x, y)} with unknown time-dependent amplitudes

.η(t, x, y) =
∑

k

qk(t)Uk(x, y) (3.95)

Then applying Galerkin or similar method gives a set of ordinary differential
equations for the amplitudes .{qk(t)}. The modal functions often represent a
mathematically convenient orthogonal basis obtained as eigen functions of the
corresponding linearized model of zero-viscosity fluid. Although such modal
functions are conventionally called (linear) sloshing modes, in reality, physical
sloshing modes may appear to be quite different due to viscous and nonlinear
coupling effects. The sloshing waves observed in experiments usually associate with
some stationary solutions of the entire nonlinear system for the modal amplitudes
.{qk(t)} and thus may combine two or even more predominant linear sloshing modes
(LSMs). Since nonlinearity is essential for determining such combinations, the term
nonlinear sloshing modes (NSMs) is meant in the present text. Below we follow
reference [190], where the equations for modal amplitudes derived in [93] are used.
Note that details of such derivations from the fluid dynamic equations are technically
complicated and somewhat irrelevant to the present content. The model assumes
irrotational flows of incompressible and originally inviscid fluid inside the tank
with perfectly stiff walls. The tank has a square base whose side length is unity,
.w = l = 1, so that the fluid depth h is measured in the units of side wall length
as shown in Fig. 3.11. On one hand, the assumption of square base brings formal
simplifications to the governing differential equations of motion. On the other hand,
the symmetry-induced 1:1 resonance coupling between the first two dominating
modes essentially complicates the system dynamics, since the linear superposition
principle does not hold in nonlinear cases.

A reasonable modal reduction therefore must include couples of symmetric
modes, for instance,



3.3 Nonsmoothness Hidden in Smooth Processes 115

Fig. 3.11 Liquid sloshing in
square tank

.η(t, x, y) = q1(t) sinπx + q2(t) sinπy (3.96)

Due to the perfect symmetry of square base, the first two modes satisfy exactly
the 1:1 resonance condition .Ω1 = Ω2 ≡ .Ω , and the corresponding differential
equations of motion take the symmetric form

.q̈1 + 2ζΩq̇1 + Ω2q1 + f (q1, q2, q̇1, q̇2) = 0

q̈2 + 2ζΩq̇2 + Ω2q2 + f (q2, q1, q̇2, q̇1) = 0 (3.97)

where the phenomenological damping ratios are assumed to be the same, .ζ =
0.0005, and the nonlinear terms are given by the polynomial derived in [92]

.f (q1, q2, q̇1, q̇2) ≡ S3q1q̇1
2 + S4q1q̇2

2 + S5q2q̇1q̇2 + S8q1
3 + S9q1q2

2 (3.98)

The quantities .Si(i = 3, 4, 5, 8, 9) depend upon the tank depth h assuming that
other dimensions are unity as shown in Fig. 3.11. In particular, .S3 = 2.46654, .S4 =
4.9348, .S5 = −1.94182, .S8 = −2.53216, and .S9 = −1.05117, when .h = 0.45.
Note also that, in references [92] and [190], the equations are scaled in such a way
that .Ω = 1.

To bridge (3.97) with the standard form (3.53) of Sect. 3.3.1, let us set

.f1 = 2ζΩv1 + f (q1, q2, v1, v2), f2 = 2ζΩv2 + f (q2, q1, v2, v1) (3.99)

Then applying the averaging procedure of Sect. 3.3.1 gives equations4

4 Note that, in reference [190], the origin .Δ = 0 corresponds to the antiphase mode. Therefore,
transformation (3.44) must be adapted with the phase shift .Δ → Δ + π in order to match the
version used in [190]; Eqs. (3.100) and (3.101) still remain the same.
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.
dE

dt
= −2ζΩE

dP

dt
= A

(
1 − P 2

)
sin 2Δ (3.100)

dΔ

dt
= P(B − A cos 2Δ)

and

.
dδ

dt
= Ω + 1

2
[C − BP − A(1 − P) cos 2Δ] (3.101)

where A, B, and C are time-dependent quantities proportional to the total excitation
level .E = E(t):

.A = A(t) = E(t)

4Ω3 [Ω2 (S4 − S5) − S9]

B = B(t) = E(t)

4Ω3
[Ω2(−S3 + 2S4) − 3S8 + 2S9] (3.102)

C = C(t) = E(t)

4Ω3 [Ω2(S3 + 2S4) + 3S8 + 2S9]

The first equation in (3.100) describes the exponential energy decay of the first
two modes combined:

.E(t) = E(0) exp(−2ζΩt) (3.103)

The fast phase .δ, described by the last equation in (3.100), determines the
principal temporal scale, which is usually of little interest. Any way, Eq. (3.101)
is solved for .δ(t) by the direct integration as soon as the functions .P(t) and .Δ(t)

are known. As follows from (3.102), all the coefficients of the second and third
equations in (3.100) decay with the same time rate according to (3.103). As a result,
one can introduce a variable temporal scale, say . s(t), associated with the rate of
energy dissipation. The corresponding function is given by the differential equation
.ds(t) = A(t)dt under the initial condition .s(0) = 0 as follows

.s = A(0)
∫ t

0
exp(−2ζΩt)dt = A(0)

2ζΩ
[1 − exp(−2ζΩt)] (3.104)

Now assuming that .P = P(s) and .Δ = Δ(s) and applying the substitution
.t → s as .d/dt = A d/ds brings system (3.100) to the effective Hamiltonian form
for the couple of conjugate variables .{Δ,P }

.
dP

ds
= −∂H

∂Δ
≡
(
1 − P 2

)
sin 2Δ
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Fig. 3.12 The dependence of
parameter .κ versus fluid
depth for the square tank,
.w = l = 1, based on the data
of reference [91]: (a)
minimum; (b) critical value;
and (d) asymptotic maximum
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dΔ

ds
= ∂H

∂P
≡ (κ − cos 2Δ)P (3.105)

with Hamiltonian,

.H = H(P,Δ) ≡ 1

2
κP 2 + 1

2

(
1 − P 2

)
cos 2Δ (3.106)

where .κ = B/A is a constant parameter linked to the tank geometry namely the
fluid depth as shown in Fig. 3.12.

The physical meaning of this result is that the energy level of sloshing has no
effect on the resonance dynamics except for the slowing down of their temporal
scale. From the mathematical standpoint, this is explained by the form of nonlin-
earity in (3.98). Since the polynomial f is homogeneous, .f (λq1, λq2, λq̇1, λq̇2) =
.λ3f (q1, q2, q̇1, q̇2), all the proportions between different terms of such polynomials
remain fixed regardless of the amplitude levels .λ. As follows from (3.105), .κ is a
single parameter of the effective oscillator.

The phase plane diagrams of system (3.105) represent level lines of the Hamil-
tonian .H = H(P,Δ) versus the parameter .κ and are shown in Fig. 3.13. The major
qualitative transition takes place when .κ = 1. Namely, the two cells I and A,
surrounding the stationary Points (centers), collapse into vertical lines by giving rise
two saddle points. This transition is accompanied by developing phase channels near
the upper and lower cell boundaries .P = ±1. In terms of NSMs, both inphase and
antiphase NSMs become unstable, while only circular/rotational modes remain; see
Fig. 3.5 for interpretation on the configuration plane .q1 − q2. Compared to the case
of linear elastic coupling of identical oscillators, which is represented by Fig. 3.6,
the period of phase portrait along the coordinate .Δ is shorter as many as twice. This
follows also from the comparison of effective Hamiltonians (3.64) and (3.106). The
reason is that the inphase and antiphase sloshing modes are physically equivalent
due to the symmetry of square tank with respect to both its diagonals. As a result,
system (3.97) admits either of the two replacements .q1 → −q1 or .q2 → −q2. In
case of a mass-spring system with elastic coupling, the antiphase mode is carrying
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mode, and A—cells of antiphase mode; (b) .κ = 1.0—critical value reached at .h = 0.3666; (c)
.κ = 1.1—slightly supercritical value reached at .h = 0.3992; (d) .κ = 1.6754—asymptotic limit at
.h → ∞; see Fig. 3.12
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Fig. 3.14 Sample behavior of the phase angles .φ and .Δ at critical fluid height, .h = 0.3666, and
the initial conditions: .P(0) = 0.9999, .Δ(0) = π/2, .E(0) = 0.25: (a) variable time scale and (b)
the original time

more energy of elastic deformations than the inphase mode, and this makes both
modes physically different.

Figure 3.14 illustrates the behavior of excitation distribution between the modes
in terms of the angle .φ = arcsinP and the phase shift .Δ corresponding to the
case (b) of Fig. 3.13. The initial conditions correspond to the rotating mode on the
configuration plane .q1 − q2. It is seen that the excitation exchange happens in a
nonsmooth way due to the fact that only one of the two NSMs was predominantly
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excited at .t = 0. In this case almost all the energy will drift from one mode to
another.

3.3.5 Model of Weakly Coupled Autogenerators

Following [114] consider an ensemble of two linearly coupled generalized van
der Pol-Duffing autogenerators that differ from each other by only one coefficient
including the so-called frequency detuning parameter .σ :

.ü1 + u1 + 8αεq1
3 + 2βε(u1 − u2)

. + 2ε(γ − 4bu1
2 + 8du1

4)u̇1= 0

.ü2 + (1 + 4εσ )u2 + 8αεu2
3 + 2βε(u2 − u1) (3.107)

.+2ε(γ − 4bu2
2 + 8du2

4)u̇2= 0

In this case, setting .Ω = 1 and applying the averaging operator (3.58) to system
(3.56) and (3.57) give, respectively,

.Ė = −2εE[γ − bE + dE
2−(b − 3dE)EP 2] (3.108)

.Ṗ = 2ε
[
E(b − 2dE)P (1 − P 2) + β

√
1 − P 2 sinΔ

]
(3.109)

.Δ̇ = 2ε

[
σ − 3αEP − β

P√
1 − P 2

cosΔ

]
(3.110)

and

.δ̇ = 1 + ε

[
3αE(1 + P) + β

(
1 −

√
1 − P

1 + P
cosΔ

)]
(3.111)

In the conservative case, when no dissipative terms are present in the original
system (3.107), equation of (3.108) takes the form .Ė = 0, and thus the averaged
total energy of both oscillators remains constant during the vibrating process.
Otherwise, this energy is varying unless the right-hand side of Eq. (3.108) is zero:

.γ − bE + dE2 − (b − 3dE)EP 2 = 0 (3.112)

It is easy to see the particular case, .E = b/(3d) and .γ = 2b2/(9d), in which
condition (3.112) takes place. Substituting these values of E and .γ in (3.109) and
(3.110) give the reduced system on the phase plane .Δ − P as
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.
dP

dt̄
= b2

9βd
P (1 − P 2) +

√
1 − P 2 sinΔ

.
dΔ

dt̄
= σ

β
− αb

βd
P − P√

1 − P 2
cosΔ (3.113)

where .t̄ = 2εβt .
The result of numerical integration at the stationary excitation level .E = b/(3d)

is illustrated in Fig. 3.15. In particular, fragment (a) shows that the temporal mode
shapes of phase angles .φ and .Δ tend to stabilize close to the triangle and square
waves, respectively. Fragment (b) explains what happens in terms of the excitation
distribution index P and the phase shift .Δ. As follows from the coherency index
Q, which is obtained by the direct integration of the original system, the generators
oscillate coherently in the dynamic regime close to the elliptic rotational mode as
seen from the fragment (c). During this rotational mode, the excitation is transmitted
from one generator to another. The corresponding trajectory in the configuration
plane of original variables is shown in fragment (d). Phase transitions happen
quickly in a stepwise manner, when only one of the two generators is excited.
A fixed phase shift means that oscillators are synchronized. In the case under
consideration, the phase shift is practically fixed except for relatively short intervals
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Fig. 3.15 The dynamics of weakly coupled autogenerators in different variables obtained by
numerical integration of the original and averaged equations under the stationary total excitation
level given by .E(0) = b/(3d) and the following values of parameters and initial conditions:
.ε = 0.01, .β = 1.0, .α = 0.268, .d = 0.8, .b = 1.2, .σ = 0, .γ = 2b2/(9d), .Δ(0) = π − 0.001,
.P(0) = 0.128844
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of stepwise switches. Such type of synchronization was noticed and defined as
nonconventional synchronization in [135] and then documented in [115].

3.3.6 Localization of Friction-Induced Vibrations

The variables.{E,P,Δ, δ} can be used for investigation of different dynamic effects
in a coupled set of two coupled oscillators with equal or close to each other natural
frequencies regardless of physical meaning of the problem. Following [193], let us
consider a chain of n linearly coupled nonlinear oscillators of the mass m driven
by friction forces due to the interaction with a continuous stiff surface moving with
a constant speed .Vb as shown in Figs. 3.16–3.17. The restoring force characteristic
of oscillators corresponds to Duffing model, where .kg and .k3 are linear and cubic
stiffness coefficients, respectively. In addition to the friction force, each oscillator
is subjected to the linear viscous damping with the coefficient of viscosity c. The
oscillators are coupled by linear springs of stiffness k. Each mass is under the
constant normal load, p. The friction force acting on the j th mass is expressed
through its relative velocity as

.Fj = pμ(Vb − q̇j ) (3.114)

where .μ is the so-called friction coefficient, which is usually introduced in a
phenomenological way as, for instance [59],

Fig. 3.16 Friction coefficient
versus relative velocity
(3.115) for the following
numerical values:
.αf = βf = 15, .μσ = 0.7,
.μd = 0.3, and .Vb = 0.23
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Fig. 3.17 Finite element model of friction interphase
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.μ(Vrel) =
[
μd + μσ − μd

cosh(αf Vrel)

]
tanh(βf Vrel) (3.115)

Let us introduce the natural frequency of a linearized individual oscillator,
.Ω = √

kg/m, and scale the parameter of normal load as .ε = pΩ/kg , assuming
that the load is relatively weak. Also, let us introduce two parameters, .α and .β,
characterizing the level of nonlinearity and the strength of coupling, as .k3/kg = εα

and .k/kg = 2εβ, respectively. The corresponding differential equations of motion
are represented in the form

.
d2qj

dt̄2
+ qj + εαq3

j − 2εβ
(
qj−1 − 2qj + qj+1

)
(3.116)

= −ε

[
a
dqj

dt̄
+ b

(
dqj

dt̄

)3

+ d

(
dqj

dt̄

)5
]

where .t̄ = Ωt is a natural temporal scale associated with individual linearized
oscillators, and a polynomial expansion of the dependence (3.115) was applied
to give the following coefficients: .a = μ′ (Vb) + c/p, .b =.Ω.

2μ(3) (Vb) /6, and
.d =.Ω.

4μ(5) (Vb) /120.
Below a two mass-spring case is considered by assuming that only one coupling

spring is present. As a result, system (3.116) gives the system of two coupled non-
conservative oscillators

.
dqj

dt̄
= vj ,

dvj

dt̄
= −qj − fj ; j = 1, 2 (3.117)

where

.f1 = εαq3
1 + 2εβ (q1 − q2) + ε

[
a
dq1

dt̄
+ b

(
dq1

dt̄

)3

+ d

(
dq1

dt̄

)5
]

f2 = εαq3
2 + 2εβ (q2 − q1) + ε

[
a
dq2

dt̄
+ b

(
dq2

dt̄

)3

+ d

(
dq2

dt̄

)5
]

(3.118)

+4εσq2

Following Sect. 3.3.2 let us substitute (3.118) in Eqs. (3.56) and (3.57) by setting
.Ω = 1. Then applying the operator of averaging (3.58) with respect to the fast phase
.δ gives

.
dE

dt̄
= −1

8
εE

[
8a + 6bE + 5dE2 +

(
6bE + 15dE2

)
P 2

]

dP

dt̄
= 1

4
ε
[(

3bE + 5dE2
)

P
(
P 2 − 1

)
+ 8β

√
1 − P 2 sinΔ

]
(3.119)
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dΔ

dt̄
= 1

4
ε

(
8σ − 3αEP − 8βP√

1 − P 2
cosΔ

)

.
dδ

dt̄
= 1 + 3

8
εαE(1 + P) + εβ

(
1 −

√
1 − P

1 + P
cosΔ

)
(3.120)

Analyzing the right-hand side of the first equation in (3.119) reveals the
stationary excitation level, .E = Estat = −(2/5)b/d , which is possible under
the condition .d = (1/5)b2/a. Taking into account these two relationships brings
another two equations of system (3.119) to the form

.
dP

ds
= a

4β
P (1 − P 2) +

√
1 − P 2 sinΔ

dΔ

ds
= σ

β
+ 3a

4b

α

β
P − P√

1 − P 2
cosΔ (3.121)

where .s = 2εβt̄ is a slow time scale associated with the strength of coupling.
System (3.121) represents an autonomous planar case; hence, using phase plane

diagrams for its parametric study becomes possible. For instance, analyzing the
equilibrium points of system (3.121) versus the cubic nonlinearity, .α, shows that
the antiphase mode, .(Δ, P ) = .(π, 0) experiences center to saddle bifurcation at
.α∗ = −4βb/(3a) by giving rise to the local modes as illustrated in Fig. 3.18.

Fig. 3.18 Developed nonlinear mode localization at supercritical nonlinearity according to (3.121)
under parameter values [193]: .Vb = 0.23, .a = 0.1406, .β = 1.0, .b = −10.43, .d = 154.72, and
thus .α∗ = 98.9015
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3.4 Transition from Normal to Local Modes

The transient mode localization phenomenon is considered below in a mechanical
model combined of a simply supported beam with two localized mass attach-
ments enforced by nonlinear springs with hardening characteristics. Two different
approaches to the model reduction, such as normal and local mode representations
for the beam’s center line, are discussed. It is concluded that the local mode
discretization brings advantages for the transient localization analysis. Based on
the specific coordinate transformations and the idea of averaging, explicit equations
describing the energy exchange between the local modes and the corresponding
localization conditions are obtained. It was shown that, when the energy is slowly
pumped into the system then, at some point, the energy equipartition around the
system suddenly breaks and one of the two local modes becomes the dominant
energy receiver. The phenomenon is interpreted in terms of the related phase plane
diagram. The diagram shows qualitative changes near the image of antiphase mode
as the total energy of the system has reached its critical level. A simple closed form
expression is obtained for the corresponding critical time estimate. The material
below is an update of reference [189].

3.4.1 Model Description

The model under investigation represents a simply supported elastic beam of length
l with two masses attached to the beam and connected to the base by nonlinear
springs as shown in Fig. 3.19. The corresponding differential equation of motion
and boundary conditions are, respectively,

.ρA
∂2w

∂t2
+ EI

∂4w

∂y4 = f1(t)δ(y − y1) + f2(t)δ(y − y2) (3.122)

Fig. 3.19 The mechanical
model admitting both normal
and local mode motions; all
the springs have hardening
restoring force characteristics
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and

.w(t, y)|y=0,l = 0,
∂2w(t, y)

∂y2
|y=0,l = 0 (3.123)

where

.fi(t) = −f [w(t, yi)] − c
∂w(t, yi)

∂t
− m

∂2w(t, yi)

∂t2
; i = 1, 2 (3.124)

are transverse forces applied to the beam from masses attached at the points .y =
y1,2.

It will be assumed that the structure is symmetric with respect to the middle of
the beam, .y = l/2, such that

.y1 = l/3 and y2 = 2l/3 (3.125)

Below we consider the case of the hardening restoring force characteristics of the
springs and show that, under appropriate conditions, a slow energy inflow leads to
the localization of vibration modes. As a result, the system energy is spontaneously
shifted to either the left or the right side of the beam due to the so-called symmetry
breaking effect. The adiabatic (slow) energy increase means that the energy source
has a minor or no direct effect on the mode shapes. For simulation purposes, such
energy inflow is provided by the assumption that the viscous damping coefficient
c is sufficiently small and negative; the physical basis for such an assumption
was discussed in [187, 188]. This remark, which is substantiated below by the
corresponding numerical values of the parameters, is important to follow; otherwise,
the phenomenon, which is the focus of this paper, may not be developed. In contrast,
the dissipation (.c > 0) can lead to a spontaneous dynamic transition from local to
normal modes, when the total energy reaches its sub-critical level.

Recall that the presence of Dirac .δ-functions in Eq. (3.122) requires a generalized
interpretation of the differential equation of motion in terms of distributions [208].
The corresponding compliance is provided by further model reduction based on
the Bubnov-Galerkin approach, which actually switches from the point-wise to the
integral interpretation of equations.

3.4.2 Normal and Local Mode Coordinates

Normal Mode Coordinates

Let us evaluate two possible ways to discretizing the model (3.122). The minimum
number of modes (two) will be maintained to capture the effect of interest. The
conventional normal mode representation for the boundary value problem (3.122)–
(3.123) is



126 3 Nonsmooth Processes as Asymptotic Limits

.w(t, y) = w1(t) sin
πy

l
+ w2(t) sin

2πy

l
(3.126)

Substituting (3.126) in (3.122) and applying the standard Bubnov-Galerkin
procedure give

.ẅ1 + 3

3m + Alρ

(
cẇ1 + π4EI

3l3
w1

)
+ F1(w1, w2) = 0 (3.127)

ẅ2 + 3

3m + Alρ

(
cẇ2 + 16

π4EI

3l3
w2

)
+ F2(w1, w2) = 0

where .Fi(w1, w2) = F(w1 + w2) + (−1)i+1F(w1 − w2), and

.F(z) =
√
3

3m + Alρ
f

(√
3

2
z

)
(3.128)

Equations (3.127) are decoupled in the linear terms related to the elastic
beam center line, whereas the modal coupling is due to the spring nonlinearities
participating in .F(z).

Local Mode Coordinates

Alternatively, the model can be discretized by introducing the local mode coordi-
nates determined by the spring locations

.ui(t) = w(t, yi); i = 1, 2 (3.129)

Substituting (3.125) in (3.126) and taking into account (3.129) reveal simple links
between the normal and local coordinates as

.u1 =
√
3

2
(w1 + w2), u2 =

√
3

2
(w1 − w2) (3.130)

or, inversely,

.w1 =
√
3

3
(u1 + u2), w2 =

√
3

3
(u1 − u2) (3.131)

Substituting (3.131) in (3.126) gives the local mode representation for the beam
center line

.w(t, y) = u1(t)ψ1

(πy

l

)
+ u2(t)ψ2

(πy

l

)
(3.132)
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Fig. 3.20 Two types of spatial basis for simply supported beams: (a) normal modes and (b) local
mode shape functions

where the local mode shape functions are defined as

.

[
ψ1 (x)

ψ2 (x)

]
=

√
3

3

[
1 1
1 −1

] [
sin x

sin 2x

]
(3.133)

Both normal and local mode shape functions are shown in Fig. 3.20a and b,
respectively. Transformation (3.133) can be generalized for a greater number of
modes. Note that functions (3.133) satisfy the following orthogonality condition

.

∫ π

0
ψi (x) ψj (x) dx = π

3
δij (3.134)

where .δij is the Kronecker symbol.
The differential equations for the local mode amplitudes, .u1(t) and .u2(t), can

be derived by substituting (3.132) in the partial differential equation (3.122) and
then applying Bubnov-Galerkin procedure with orthogonality condition (3.134).
Alternatively the equations can be obtained by substituting (3.131) in (3.127)
and conducting straightforward algebraic manipulations. Finally the local mode
equations take the form

.ü1 + 3

3m + Alρ

[
cu̇1 + π4EI

6l3
(17u1 − 15u2) + f (u1)

]
= 0 (3.135)

ü2 + 3

3m + Alρ

[
cu̇2 + π4EI

6l3
(17u2 − 15u1) + f (u2)

]
= 0

Further consider Duffing’s type polynomial approximation for the springs restor-
ing force characteristic, .f (z) = kz + az3.
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Symmetry Breaking with Energy Localization

Let us represent equations (3.135) as a set of four first-order equations for the system
state variables

.u̇1 = v1

u̇2 = v2

v̇1 = −Ω2u1 − f1 (3.136)

v̇2 = −Ω2u2 − f2

where

.f1 = ε(−Ω2u2 + ζv1 + αu31)

f2 = ε(−Ω2u1 + ζv2 + αu32) (3.137)

and the following set of parameters and assumptions are introduced:

.Ω =
√
6kl3 + 17π4EI

2l3(3m + Alρ)
= O(1), ε = 15π4EI

6kl3 + 17π4EI
<< 1 (3.138)

ζ = 3c

(3m + Alρ)ε
= O(1), α = 3a

(3m + Alρ)ε
= O(1)

From the physical standpoint, relationships (3.138) mean that the beam is flexible
enough compared to the linear stiffness of springs, whereas both the viscosity
effect and nonlinearity are relatively weak as compared to the beam bending
rigidity. Note that localized spring forces may practically trigger high modes of
the flexible beam and thus invalidate the two modes’ approximation represented
by relationship (3.126). Nonetheless, in the current illustrating model, a role of
the beam is secondary. As follows from system (3.136), the beam just provides a
weak coupling between the oscillators. Therefore a more detailed modeling could
incorporate the high modes as a perturbation to the coupling effect.

Following Sect. 3.3.1, substituting (3.137) in (3.56) and (3.57), and conducting
the averaging give

.Ė = −εζE

Ṗ = εΩ
√
1 − P 2 sinΔ (3.139)

Δ̇ = −εΩ

(
3α

4Ω4E + cosΔ√
1 − P 2

)
P

and
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.δ̇ = Ω + 3εα

8Ω3E(1 + P) − 1

2
εΩ

√
1 − P

1 + P
cosΔ (3.140)

If the viscosity is negative,5 .ζ < 0, then Eqs. (3.139) describe transition to the
local mode as the system energy increases; see Fig. 3.21 for illustration. The energy
partitioning parameter P is varying within the interval .−1 ≤ P ≤ 1. The ends
of the interval obviously correspond to the local modes, whereas its center .P = 0
corresponds to the normal modes: .Δ = 0-inphase, and .Δ = π -antiphase; recall
transformation (3.44). Linearizing system (3.139) in the vicinity of stationary points
.(Δ, P ) = (0, 0) and .(Δ, P ) = (π, 0), assuming the variable E is “frozen,” and
eliminating the phase variable give

.P̈ + ε2Ω2
(
1 ± 3α

4Ω4E

)
P = 0 (3.141)

where plus or minus sign in the parenthesis corresponds to the inphase or antiphase
mode, respectively.

It follows from the form of Eq. (3.141) that a localized mode can branch out of
the antiphase mode, when .E = E∗ = 4Ω4/(3α). In the case of negative viscosity,
the first equation in (3.139) gives .E = E0 exp(ε|ζ |t). Therefore, the critical system
excitation level .E∗ will be reached regardless of the initial number .E0, when .t = t∗:

.t∗ = 1

ε|ζ | ln
4Ω4

3αE0
(3.142)

The data of Fig. 3.21 gives .E0 = 1.36585 × 10−5, .E∗ = 1.42116 × 10−2, and
expression (3.142) generates the number .t∗ = 3580.42, in a reasonable agreement
with Fig. 3.21.

3.5 Autolocalized Modes in Nonlinear Coupled Oscillators

Below, the term autolocalized means that the system itself may come into the
nonlinear local mode regime and stay there regardless of initial energy distribution
among its particles. As follows from Poincaré recurrence theorem, such phenomena
are rather impossible within the class of conservative systems [16]. Nonetheless,
interactions between the system particles can be designed in specific ways in order
to achieve desired phenomena. It is assumed that such a design can be implemented
practically by using specific electric circuits and possibly mechanical actuators. On
macro-levels, the autolocalization may help to optimize vibration suppression.

5 Possible physical mechanisms of the negative viscosity are not discussed here since the negative
damping is used only for simulation of a slow energy inflow into the system.
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Fig. 3.21 Symmetry breaking followed by sudden transition from normal to local mode vibration
as the system energy has reached its critical value: (a) energy distribution and (b) local mode
amplitudes; the following parameters were taken for numerical simulations: .ε = 0.009, .ζ =
−0.2156, .Ω = 1.4217, .α = 383.29, and the initial normal mode amplitudes at zero velocities
are .w1(0) = 0.0001 and .w2(0) = −0.003

Some results from the previous publication [179] are reproduced below after
some notation modifications for a better coherency with the current text. Let us
consider an array of N harmonic oscillators, such that each of the oscillators
interacts with only the nearest neighbors. The corresponding differential equations
of motion are of the form

.ẍj + Ω2xj = β(xj−1 − 2xj + xj+1)+

. + α[(Ej − Ej−1)Ej−1 − (Ej+1 − Ej)Ej+1]ẋj (3.143)

.Ej = 1

2
(ẋ2

j + Ω2x2
j ); j = 1, ..., N (3.144)

where .Ej = Ej(t) is the total energy6 of the j th oscillator under the boundary
conditions of fixed ends, .E0(t) ≡ EN+1(t) ≡ 0; and .Ω , .β, and .α are constant
parameters of the model.

On the right-hand side of Eq. (3.143), two groups of terms describe the coupling
between the oscillators. If .α = 0 then the only linear coupling remains. In this
case, under special initial conditions, N different coherent periodic motions, i.e.,
linear normal modes, can exist. Any other motion is combined of the linear normal
mode motions, whereas the energy is conserved on each of the modes the way it
was initially distributed between the modes. In other words, no energy localization
is possible on individual particles if .α = 0.

Another group of terms, including the common factor .α, has the opposite
to the linear elastic interaction effect. These nonlinear terms are to simulate a

6 Note that the concept of energy for individual oscillators becomes somewhat ambiguous in the
presence of coupling and nonconservative terms. Hence expression (3.144) should rather be viewed
as Lyapunov function.
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possible competition between the oscillators leading to a one-way energy flow to
the neighbor whose energy is greater. Such kind of interaction dominates when the
total system energy is large enough to involve high degrees of the coordinates and
velocities.

Let us introduce the complex conjugate variables .{Aj (t) , Āj (t)} into
Eqs. (3.143) according to relationships

.xj = 1

2
[Aj exp(iΩt) + Āj exp(−iΩt)]

ẋj = 1

2
iΩ[Aj exp(iΩt) − Āj exp(−iΩt)] (3.145)

where the following compatibility condition is imposed

.
dAj

dt
exp(iΩt) + dĀj

dt
exp(−iΩt) (3.146)

In terms of the complex amplitudes, the total energy of individual oscillator (3.144)
takes the form

.Ej = 1

2
Ω2AjĀj = 1

2
Ω2

∣∣Aj

∣∣2 (3.147)

When .β = α = 0, the system is decomposed into N uncoupled oscillators
leading to a constant solution in the new variables. In general case, substituting
(3.145) in (3.143), taking into account (3.146), and applying the averaging with
respect to the phase .z = Ωt , give the set of equations

.Ȧj = − iβ

2Ω
(Aj−1 − 2Aj + Aj+1)+

. + αΩ4

8

[(∣∣Aj

∣∣2 − ∣∣Aj−1
∣∣2) ∣∣Aj−1

∣∣2 −
(∣∣Aj+1

∣∣2 − ∣∣Aj

∣∣2) ∣∣Aj+1
∣∣2]Aj

(3.148)
.(j = 1, ..., N)

where the conjugate equations are omitted.
Let us consider first the case of two coupled oscillators (.N = 2), when system

(3.148) is reduced to

.Ȧ1 = − iβ

2Ω
(A2 − 2A1) + αΩ4

8

(
|A1|2 − |A2|2

)
|A2|2 A1 (3.149)

Ȧ2 = − iβ

2Ω
(A1 − 2A2) + αΩ4

8

(
|A2|2 − |A1|2

)
|A1|2 A2
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This system has the integral

.K = |A1|2 + |A2|2 = 2(E1 + E2)/Ω
2 = const.

As a result, the dimension of phase space is reduced by introducing the phases
.ϕ1(t), .ϕ2(t) and .ψ(t) as

.A1 = √
K cosψ exp(iϕ1), A2 = √

K sinψ exp(iϕ2) (3.150)

where .ψ determines the energy distribution between the oscillators as

. tanψ = |A2|
|A1| =

√
E2

E1
(0 ≤ ψ < π/2) (3.151)

Substituting (3.150) in system (3.149) and then considering separately its real
and imaginary parts give

.ϕ̇1 = β

Ω
− β

2Ω
tanψ cos (ϕ2 − ϕ1)

ϕ̇2 = β

Ω
− β

2Ω
cotψ cos (ϕ2 − ϕ1) (3.152)

ψ̇ = − β

2Ω
sin (ϕ2 − ϕ1) − 1

32
αK2Ω4 sin 4ψ

Introducing the phase shift .Δ = ϕ2 − ϕ1 and new temporal variable .p = Ωt/β

give

.
dΔ

dp
= − cot 2ψ cosΔ (3.153)

dψ

dp
= −1

2
(sinΔ + λ sin 4ψ)

where .λ is a dimensionless parameter related to the total energy of both oscillators
as

.λ = αK2Ω5

16β
= Ωα

4β
(E1 + E2)

2 (3.154)

System (3.153) is periodic with respect to both phases, .Δ and .ψ . As a result, its
phase plane has the periodic cell-wise structure. Let us consider just one cell,

.R0 =
{
−π

2
< Δ <

π

2
, 0 < Ψ <

π

2

}
(3.155)
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including the stationary point

.(Δ,ψ) = (0, π/4) (3.156)

As follows from (3.150) and (3.151), point (3.156) represents the inphase
vibration with .E1 = E2. Linearizing system (3.153) near this stationary and then
solving the corresponding characteristic equation give the following couple of roots:

.r1,2 = λ ± i
√
1 − λ2 (3.157)

Expression (3.157) determines the low excitation interval .0 < λ < 1 of
a qualitatively similar system behavior. Point (3.156) is unstable by Lyapunov
for positive .λ, while no other stationary points exist within the rectangular cell
(3.155). As a result, the system trajectory is eventually attracted to the boundary
of rectangular .R0 (3.155) as shown in Fig. 3.22a and b. This is a periodic limit cycle
whose period is found in a closed form,

.T = 2

π/2∫
0

dψ

1 − λ sin 4ψ
− 2

0∫
π/2

dψ

1 + λ sin 4ψ
= 2π√

1 − λ2
(3.158)

where the horizontal pieces of the boundary .∂R0 have zero contribution as those
passed momentarily by the system (3.153). This is confirmed also by the diagrams
in Fig. 3.23a, c and b, d showing stepwise jumps of the variable .Δ(p) in steady-
state limits.

Fig. 3.22 (a) Low-energy transition to the nonsmooth limit cycle; numerical solution obtained for
the following system parameter and initial conditions: .λ = 0.2; .Δ(0) = 0.0, .Ψ (0) = π/4 + 0.1.
(b) Transition to the nonsmooth limit cycle under the energy level approaching its critical value;
the numerical solution obtained for the following system parameter and initial conditions: .λ = 0.6;
.Δ(0) = 0.0, .Ψ (0) = π/4 + 0.1



134 3 Nonsmooth Processes as Asymptotic Limits

Fig. 3.23 (a) and (c): Low-energy transition to the “impact” limit cycle of phase variables at
.λ = 0.2; (b) and (d) Transition to the “impact” limit cycle of phase variables at .λ = 0.6

Expression (3.158) shows that .T → ∞ as .λ → 1. The infinity long period
means that there is only one-way energy flow in the system. As a result, the energy
is eventually localized on one of the oscillators. The corresponding total critical
energy value is determined by substituting .λ = 1 in (3.154). This gives

.E1 + E2 = 2

√
β

Ωα
= E∗ (3.159)

If .E1 + E2 < E∗ then periodic energy exchange with the period .T = βP/Ω

takes place, but no localization is possible. Therefore, in order to be localized on
one of the oscillators, the total system energy must be large enough. Note that the
transition to localized mode of this model happens through nonsmooth limit cycle
along which the dynamics of phase variables, .Ψ and .Δ, resembles the behavior of
coordinate and velocity of impact oscillator;7 see Fig. 3.23. It was found later that
such types of trajectories represent quite a general situation that may occur in the
dynamics of interacting oscillators in terms of the specific phase coordinates. As a
result the concept of limiting phase trajectories (LPT) was introduced in [133] as
complementary nonstationary alternative to (stationary) normal mode motions.

7 As already mentioned, the possibility of “vibro-impact dynamics” of phase variables was noticed
later in [133] when considering another model of nonlinear beats.



Chapter 4
Nonsmooth Temporal Transformations
(NSTT)

In this chapter, different versions of nonsmooth argument substitutions, specifically
nonsmooth time, are introduced with proofs of the related identities. Basic rules for
algebraic, differential, and integral manipulations are described. Final subsections
show how to implement nonsmooth argument substitutions in the differential equa-
tions. These impose two principal features on the dynamical systems by generating
specific algebraic structures and leading to boundary value problems. Notice that
the transformation itself assumes no constraints on dynamical systems and easily
applies to both smooth and nonsmooth systems. Any further steps should account
for physical properties of the related systems following the principle of compliance
between tools and objects of study. Briefly, linear coordinate transformations can
significantly simplify analyses of the linear dynamic. Weakly nonlinear coordinate
transformations often play the core role in the quasi-linear theory. Hence, the
investigation of dynamical systems with discontinuities can be simplified by means
of appropriate nonsmooth transformations of variables.

4.1 Nonsmooth Time and Induced Algebra

Major features induced by nonsmooth temporal substitutions can be briefly listed as
follows:

• Introducing nonsmooth temporal arguments, in particular triangle wave, takes
the coordinates into the algebra of hyperbolic numbers with a nonsmooth time-
dependent imaginary unit;1

1 Algebra of complex numbers, .X + Ye, where .e2 = 1; see details in the next subsections.
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• Under appropriate conditions, differentiation or integration of the coordinates
keeps the result within the same algebra and therefore eases the corresponding
manipulations with the dynamic systems;

• Explicit time argument can be used together with the nonsmooth time in order to
describe amplitude and/or frequency modulated signals.

Usually NSTT itself is a preliminary stage of analysis finalized by specific
boundary value problems on standard intervals. Then, different methods can be
applied to the boundary value problems according to their physical content and the
purpose of study.

4.1.1 Positive Time

To begin with a simple illustration of the nonsmooth positive time, consider the
series

. ln

(
2 cosh

t

2

)
= t

2
+ exp (−t) − 1

2
exp (−2t) + 1

3
exp (−3t) − ... (4.1)

which is convergent for .t ≥ 0 but obviously becomes divergent if .t < 0; the
convergence is conditional at .t = 0. A simple replacement, .t −→ |t |, makes this
series convergent within the entire interval .−∞ < t < ∞ as follows:

. ln

(
2 cosh

t

2

)
≡ ln

(
2 cosh

|t |
2

)
(4.2)

= |t |
2

+ exp (− |t |) − 1

2
exp (−2 |t |) + 1

3
exp (−3 |t |) − ...

A side effect of such manipulation is that finite sums of the series are losing
differentiability at zero, .t = 0, whereas the original function is smooth everywhere.
However, it will be shown later that the series can be rearranged in such a manner
that any truncated series becomes differentiable at .t = 0 as many times as needed.

Note that the transformation .t −→ |t | is non-invertible. As a result, the
manipulation illustrated by example (4.2) may not work for other cases. In the above
example though, the substitution .t −→ |t | holds for both positive and negative time
t due to the evenness of the original function. To extend the above idea on the general
case, let us represent the time argument in the form

.t = |t | |t |. (4.3)

Now, taking into account the relationship .(|t |.)2 = 1 gives sequentially

.t2n = |t |2n and t2n+1 = |t |2n+1 |t |. , n = 1, 2, ... (4.4)
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Example 4.1.1 Combining identities (4.4) and the power series expansion of the
exponential function gives

. exp (t) ≡ exp (|t | |t |.) = 1 + |t |2
2! + ... +

(
|t | + |t |3

3! + ...

)
|t |.

or

. exp (t) = cosh (|t |) + sinh (|t |) |t |. (4.5)

Expression (4.5) represents the exponential function as a sum of the even and
odd components.

Let us take a general function, .x (t), and assume that

.x (t) = x (|t | |t |.) = X (|t |) + Y (|t |) |t |. (4.6)

This gives the following set of equations for the components, .X (|t |) and .Y (|t |),

.x (|t |) = X (|t |) + Y (|t |) for |t |. = 1

x (− |t |) = X (|t |) − Y (|t |) for |t |. = −1

and, finally,

.X (|t |) = 1

2
[x (|t |) + x (− |t |)] (4.7)

Y (|t |) = 1

2
[x (|t |) − x (− |t |)]

Therefore, identity (4.6) holds under condition (4.7). It is seen that the right-hand
side of expression (4.6) represents an element of the algebra with the basis .{1, |t |.}.
The corresponding table of products is generated by the relationship .(|t |.)2 = 1.
This leads to other useful algebraic relationships, such as

.X + Y |t |. = 0 ⇐⇒ {X = 0, Y = 0}

and

.f (X + Y |t |.) = Rf (X, Y ) + If (X, Y ) |t |. (4.8)

where

.Rf (X, Y ) = 1

2
[f (X + Y ) + f (X − Y )]

If (X, Y ) = 1

2
[f (X + Y ) − f (X − Y )] (4.9)
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Thus, introducing the nonsmooth positive time .|t | imposes the specific complex-
ification on the system coordinate

.x (t) −→ {X (|t |) , Y (|t |)} (4.10)

As shown in different sections of this chapter, the nonsmooth argument substitu-
tions are always accompanied by such type of complexifications.

4.1.2 Single-Tooth Substitution

As a simple generalization of the positive time, .|t |, let us introduce the temporal
shift, say a, as

.s = |t − a| ≡ s (t) (4.11)

Obviously, .ṡ = −1 for .t − a < 0 and .ṡ = 1 for .t − a > 0, and therefore .ṡ2 = 1
for almost all t , at least.

Proposition 4.1.1 A general function .x (t) can be represented in the form

.x (t) = X (s) + Y (s) ṡ (4.12)

where .s = s (t) is given by (4.11).

Proof By analogy to (4.3),

.t = a + sṡ (4.13)

Substituting (4.13) in the left-hand side of (4.12) gives

.x (a − s) = X (s) − Y (s) for ṡ = −1

x (a + s) = X (s) + Y (s) for ṡ = 1

and thus,

.X (s) = 1

2
[x (a + s) + x (a − s)] (4.14)

Y (s) = 1

2
[x (a + s) − x (a − s)]

Therefore, identity (4.12) holds for any .x (t) under condition (4.14).
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4.1.3 Broken Time Substitution

Another generalization of the positive time .|t | is given by the piecewise linear
function

.τ =
{

v1t for t ≤ 0
v2t for t ≥ 0

(4.15)

where .v1 	= v2.
The inverse relationship can be represented in the form

.t = A (τ) + B (τ) τ̇ (4.16)

where

.A =
(

1

v1
+ 1

v2

)
τ and B = − 1

v1v2
τ

and

.τ̇ 2 = −v1v2 + (v1 + v2) τ̇ (4.17)

Further, applying a general function x to both sides of equality (4.16) gives

.x (t) = X (τ) + Y (τ) τ̇ (4.18)

where the components, X and Y , are determined analogously to (4.6) through (4.7)
as

.X (τ) = 1

v2 − v1

[
v2x

(
τ

v1

)
− v1x

(
τ

v2

)]

Y (τ) = − 1

v2 − v1

[
x

(
τ

v1

)
− x

(
τ

v2

)]
(4.19)

Now, assuming that another function f is applied to both sides of (4.18) gives

.f (x) = Rf (X, Y ) + If (X, Y ) τ̇ (4.20)

where

.Rf = 1

v2 − v1
[v2f (X + Yv1) − v1f (X + Yv2)]

If = − 1

v2 − v1
[f (X + Yv1) − f (X + Yv2)] (4.21)
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Comparing the right-hand sides of expressions (4.16), (4.18), and (4.20) shows
that the algebraic structure generated by the nonsmooth time substitution is pre-
served after different functional manipulations with the corresponding elements of
the algebra.2

4.1.4 Triangle Wave Temporal Substitution

Let us consider the periodic version of nonsmooth time (4.11) which is based on the
triangle wave

.τ (t) =
{

t for − 1 ≤ t ≤ 1
−t + 2 for 1 ≤ t ≤ 3

, τ (t)
∀t= τ (4 + t) (4.22)

Recall that function (4.22) describes position of a bead oscillating between two
stiff parallel barriers with no energy loss. In other words, function (4.22) describes
the motion of the standard impact oscillator; see Chap. 1 for illustrations. This
function can be expressed also in the closed form by means of trigonometric
functions as

.τ(t) = (2/π)arcsin[sin(πt/2)] (4.23)

The period is normalized to four while the amplitude is unity to provide the unit
slope,

.τ̇ 2 = 1 (4.24)

Proposition 4.1.2 ([173]) Any periodic process, whose period is normalized to
.T = 4, is expressed through the triangle wave .τ(t) and the square wave .τ̇ (t) as

.x (t) = X (τ) + Y (τ) τ̇ (4.25)

where the X- and Y -component are given by

.X (τ) = 1

2
[x (τ) + x (2 − τ)]

Y (τ) = 1

2
[x (τ) − x (2 − τ)] (4.26)

2 Abelian complex algebraic structure, which becomes hyperbolic when .v1+v2 = 0 and .v1v2 < 0;
see Sect. 1.2.5 for terminology and details.
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In other words, any periodic signal is uniquely expressed through the state
variables, such as the coordinate .τ and velocity .τ̇ , of the standard impact oscillator.

Proof ([185]) It can be verified by inspection that

.t = 1 + (τ − 1) τ̇ if − 1 < t < 3 (4.27)

Note that the function .τ̇ (t) has a stepwise discontinuity at .t = 1, which is suppressed
however by the continuous factor, .τ(t) − 1, of zero value at .t = 1. Based on this
remark, property (4.24) will be considered as true everywhere on the interval .−1 <

t < 3, since .τ̇ is either explicitly or implicitly accompanied by the factor .τ(t) − 1
whenever it appears in algebraic manipulations. For instance, identity

.t2 = 1 + (τ − 1)2 + 2 (τ − 1) τ̇

holds everywhere on the interval .−1 < t < 3. Further, applying the method of
mathematical induction gives

.tn = An(τ) + Bn(τ)τ̇ (4.28)

where n is any positive integer and .An and .Bn are polynomials of the degree n or
.n−1. Expression (4.28) shows that any analytic function .x(t) that admits the power
series expansion on the interval .−1 < t < 3 can be represented in the form

.x(t) = x [1 + (τ − 1) τ̇ ] = X (τ) + Y (τ) τ̇ (4.29)

where .X (τ) and .Y (τ) are power series of .τ . Now, let us assume that expression
(4.29) holds even though the function .x(t) is not analytic. In this case, one must
show that the X- and Y -component can be determined with no power series
expansions. Indeed, since either .τ̇ = 1 or .τ̇ = −1 on the entire interval .−1 < t < 3,
except may be the point .t = 1, then expression (4.29) gives two equations,
.x (τ) = X (τ) + Y (τ) and .x (2 − τ) = X (τ) − Y (τ). Solving these equations
for X and Y and substituting the solution in (4.29) give the identity,

.x(t) = 1

2
[x (τ) + x (2 − τ)] + 1

2
[x (τ) − x (2 − τ)] τ̇ (4.30)

which obviously holds on the interval .−1 < t < 3, except may be .t = 1. If the
function .x(t) is continuous at .t = 1, then identity (4.30) is also true at .t = 1
because the stepwise discontinuity of the square wave .τ̇ (t) at .t = 1 is suppressed
by the factor

.2Y (τ) = x (τ) − x (2 − τ) → x (1 − 0) − x (1 + 0) → 0 (4.31)
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as .t → 1±0; see Definition (4.22). Now if the function .x(t) is periodic of the period
.T = 4, then identity (4.30) holds almost everywhere on the interval .−∞ < t < ∞,
because the right-hand side of (4.30) depends on the time argument t through the
pair of periodic functions .τ(t) and .τ̇ (t) of the same period .T = 4. Finally, if the
function .x(t) is continuous also at .t = −1, and thus .t = 3 due to the periodicity,
then identity (4.30) is true for every t . Hence let us consider the point .t = −1
at which the function .τ̇ (t) has the stepwise discontinuity. Taking into account that
.τ(−1 ± 0) = −1 + 0 and the periodicity condition .x(t) = x(t − 4) gives

.2Y (τ) = x[τ(−1 ± 0)] − x[2 − τ(−1 ± 0)] (4.32)

= x (−1 + 0) − x (3 − 0) = x (−1 + 0) − x (−1 − 0) → 0

as .t → −1 ± 0 due to the continuity of the function .x(t) at .t = −1. Hence, the
stepwise discontinuity of the function .τ̇ (t) at the point .t = −1 is suppressed as
well due to (4.32). Thus, it is proved that if .x(t) is continuous then identity (4.30)
or (4.25) holds everywhere on the interval .−∞ < t < ∞. The periodic version of
conditions (4.31) and (4.32) is

.Y |τ=±1 = 0 (4.33)

As noticed in Chap. 1, the extension on any period .T = 4a is implemented by
scaling the argument of the triangle wave as .τ = τ(t/a) followed by expressions
(1.26).

Remark 4.1.1 If the function .x(t) is stepwise discontinuous at the instances
.Λ=.{t : τ (t) = ±1}, then limits (4.31) and (4.32) are nonzero. In this case, the
discontinuities of the function .τ̇ (t) are not suppressed to represent the behavior of
the original function .x(t).

Proposition 4.1.3 Elements (4.25) belong to the algebra of hyperbolic numbers
due to (4.24); see Sect. 1.2.5. As a result,

.f (X + Y τ̇ ) = Rf + If τ̇ (4.34)

.Rf = 1

2
[f (X + Y ) + f (X − Y )]

If = 1

2
[f (X + Y ) − f (X − Y )]

provided that both values .f (X ± Y ) are defined.

Relationship (4.34) is verified by setting sequentially .τ̇ = 1 and .τ̇ = −1. The
right-hand side of expression (4.25) therefore admits interpretation as a hyperbolic
complex number with real, .X, and imaginary, Y , components. The corresponding
imaginary unit .τ̇ creates a cyclical group, such as: .τ̇ 2 = 1, .τ̇ 3 = τ̇ , .τ̇ 4 =
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1,. . . . This remark significantly simplifies all the mathematical manipulations with
representation (4.25). For example,

. (X + Y τ̇ )2 = X2 + Y 2 + 2XY τ̇

(X + Y τ̇ )3 = X3 + 3XY 2 +
(
Y 3 + 3YX2

)
τ̇

The right-hand sides of these expressions appear to belong to the same hyperbolic
structure as the element .X + Y τ̇ itself.

Another example resembles Euler formula in the algebra of ordinary complex
numbers; however, hyperbolic functions replace trigonometric ones as

. exp (X + Y τ̇ ) = exp (X) [cosh (Y ) + sinh (Y ) τ̇ ] (4.35)

Further, by taking into account that .τ̇ 2 = 1, one obtains

.
1

X + Y τ̇
= X

X2 − Y 2 − Y

X2 − Y 2 τ̇ if X 	= ±Y

This example explains why division is not always possible, which is the essential
difference as compared to the conventional complex analysis.

Remark 4.1.2 Very often, the triangle wave function is assumed to depend on some
phase variable, say .ϕ(t). In all such cases, the imaginary element is given by the
derivative with respect to the phase variable, .e(ϕ) = τ ′(ϕ) as defined in Chap. 1.
Now the relation

.e2 = 1 (4.36)

holds regardless of the argument of the triangle wave.

Example 4.1.2 Introduce the triangle wave time into the functions .sin t and .cos t .
Solution. In order to deal with the period normalized to four, let us introduce new

argument .ϕ = 2t/π as

. sin t = sin

(
π

2

2t

π

)
= sin

(π

2
ϕ
)

Now, applying representation (4.25) to the new argument .ϕ gives

.X (τ) = 1

2

{
sin
(π

2
τ
)

+ sin
[π
2

(2 − τ)
]}

= sin
(π

2
τ
)

Y (τ) = 1

2

{
sin
(π

2
τ
)

− sin
[π
2

(2 − τ)
]}

= 0
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and therefore

. sin t ≡ sin

[
π

2
τ

(
2t

π

)]

Analogously,

. cos t = cos

[
π

2
τ

(
2t

π

)]
e

(
2t

π

)

Example 4.1.3 Combining the results from previous example with the Euler
formula for complex exponential functions gives

. exp (ikt) = sin

(
kπ

2
τ

)
i + cos

(
kπ

2
τ

)
e for k = 1, 3, 5, ...

exp (ikt) = cos

(
kπ

2
τ

)
+ sin

(
kπ

2
τ

)
ie for k = 0, 2, 4, ...

where .τ and e still depend on the same argument .2t/π . The right-hand sides of
these equalities can be viewed as elements of a more complicated algebra, .z =
α + βe + γ i + δei, with the basis elements .{1, e, i, ei}. The corresponding table of
products is given by

.

× 1 e i ei

1 1 e i ei

e e 1 ei i

i i ei −1 −e

ei ei i −e −1

4.1.5 NSTT and Matrix Algebras

As discussed in Chap. 1, hyperbolic numbers represent a simple example of so-
called Clifford geometric algebras with isomorphism to the matrix algebra. It is
known [137] that complex numbers associate with skew-symmetric .2 × 2 matrixes
with equal diagonal entries, whereas the hyperbolic numbers correspond to the
symmetric matrixes as follows:

.a + ib ←→
[

a b

−b a

]

X + eY ←→
[

X Y

Y X

]
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The above correspondences are isomorphisms because both summations and
multiplications with the numbers associate with the corresponding matrix opera-
tions, for instance,

.(X1 + eY1)(X2 + eY2) = (X1X2 + Y1Y2) + (X1Y2 + Y1X2)e. (4.37)[
X1 Y1

Y1 X1

] [
X2 Y2

Y2 X2

]
=
[

X1X2 + Y1Y2 X1Y2 + Y1X2

X1Y2 + Y1X2 X1X2 + Y1Y2

]
(4.38)

As was already mentioned, the algebra of hyperbolic numbers and Clifford
algebras were developed in an abstract way as manipulations with specific elements
with no relation to any nonsmooth transformations. However, the uncovered links
may appear to be useful for conducting automatic symbolic manipulations with
NSTT. Indeed, most of the corresponding packages have built-in tools to handling
the matrix operations, whereas defining the operations with hyperbolic numbers
may require some programming work.

4.1.6 Differentiation and Integration Rules

Regarding applications to differential equations, it is essential that, under some
conditions, the differential operations also preserve the hyperbolic structure of
elements [173]. For example,

.ẋ = Y ′ + X′τ̇ + Y τ̈ (4.39)

where primes mean derivatives with respect to .τ .
The derivative .τ̈ represents the periodic series of .δ-functions

.τ̈ = 2
∞∑

k=−∞
[δ(t + 1 − 4k) − δ(t − 1 − 4k)] (4.40)

This derivative is active exactly at those points .Λ where the factor Y is equal to zero
due to (4.33). Hence, the last (underlined) term in (4.39) must be ignored whenever
the function .x(t) is continuous.

In a similar manner, one can sequentially consider high-order derivatives. For
example, the second derivative is given by

.ẍ = X′′ + Y ′′τ̇ (4.41)

under the boundary condition

.X′|τ=±1 = 0 (4.42)
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Further, an arbitrary odd derivative is given by

.x(2k−1) (t) = Y (2k−1) (τ ) + X(2k−1) (τ ) e (4.43)

provided that

.Y (τ) |τ=±1 = 0

X′ (τ ) |τ=±1 = 0

... (4.44)

Y (2k−2) (τ ) |τ=±1 = 0

Also an arbitrary even derivative is

.x(2k) (t) = X(2k) (τ ) + Y (2k) (τ ) e (4.45)

if

.Y (τ) |τ=±1 = 0

X′ (τ ) |τ=±1 = 0

... (4.46)

X(2k−1) (τ ) |τ=±1 = 0

Finally, integration also gives the hyperbolic number

.

∫
(X + Y τ̇ )dt = Q + P τ̇ (4.47)

whose components are

.Q(τ) =
∫ τ

0
Ydτ + C and P(τ) =

∫ τ

−1
Xdτ

where C is an arbitrary constant, and the following condition must be satisfied:

.

1∫
−1

X(τ)dτ = 0 (4.48)

Relationship (4.47) is verified by the differentiation with respect to t . The role of
condition (4.48) is to provide a zero mean value of the integrand in (4.47).
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4.1.7 NSTT Averaging

Lemma 4.1.1 Let x(t) be a general periodic function of the period T = 4a so that
presentation (4.25) holds

.x(t) = X(τ(φ)) + Y (τ(φ))e(φ) (4.49)

where φ = t/a, e(φ) = τ ′(φ) and

.X (τ) = 1

2
[x (aτ) + x (2a − aτ)] (4.50)

Y (τ) = 1

2
[x (aτ) − x (2a − aτ)]

Then the mean value of x(t) over its period is

.
1

T

∫ T

0
x(t)dt = 1

2

∫ 1

−1
X(τ)dτ (4.51)

In other words, the imaginary component Ye of the hyperbolic number (4.49) makes
zero contribution into the mean value.

Proof With no loss of generality, let us assume that a = 1; thus T = 4 and φ ≡ t .
Then, during one period −1 < t < 3,

.τ ′(t) = e(t) = 1 and dt = dτ for − 1 < t < 1

τ ′(t) = e(t) = −1 and dt = −dτ for 1 < t < 3

Taking into account (4.49) gives

.
1

T

∫ T

0
x(t)dt = 1

4

[∫ 1

−1
x(t)dt +

∫ 3

1
x(t)dt

]

. = 1

4

∫ 1

−1
[X(τ) + Y (τ)]dτ − 1

4

∫ −1

1
[X(τ) − Y (τ)]dτ = 1

2

∫ 1

−1
X(τ)dτ

Example 4.1.4 Let x(t) be a periodic function of the period T = 4a. Taking into
account (4.49) gives

.x2 = (X + Ye)2 = X2 + Y 2 + 2XYe
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Fig. 4.1 Asymmetric
triangle wave and square
(rectangle) wave obtained for
the number .γ = 0.5

Then, applying the above Lemma leads to

. < x2 >≡ 1

T

∫ T

0
x2dt = 1

2

∫ 1

−1
(X2 + Y 2)dτ (4.52)

Example 4.1.5 Consider the case x(t) = A sin t + B cos t , where T = 2π and
a = π/2. In this case, relationships (4.50) give X(τ) = A sin(πτ/2) and Y (τ) =
B cos(πτ/2). Therefore, < x2 >= (A2 + B2)/2.

4.1.8 Generalizations on Asymmetrical Triangle Wave

It has been shown in [177] and [197] that an arbitrary periodic function .x (t) whose
period is normalized to four can still be represented in the form (4.25), even though
the triangular wave, .τ , has asymmetrical slopes such that3

.τ (t, γ ) =
{

t/ (1 − γ ) for − 1 + γ ≤ t ≤ 1 − γ

(−t + 2) / (1 + γ ) for 1 − γ ≤ t ≤ 3 + γ
. (4.53)

τ̇ (t, γ ) = ∂τ (t, γ )

∂t
= e (t, γ ) (4.54)

where .γ ∈ (−1, 1) is a parameter characterizing the inclination of the saw as shown
in Fig. 4.1.

3 The function .τ (t, γ ) can be viewed as a generalized sawtooth (sine) wave.
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In this case, the inverse transformation of time on the period, .−1+γ ≤ t ≤ 3+γ ,
has the form

.t = 1 − γ 2

2
(4.55)

×
{
[(1 − γ ) τ ]

(
1

1 + γ
+ e

)
+ [2 − (1 + γ ) τ ]

(
1

1 − γ
− e

)}

By using this expression, one can show that

.x (t) = X [τ (t, γ )] + Y [τ (t, γ )] e (t, γ ) (4.56)

.X = 1

2α

{
1

1 + γ
x [(1 − γ ) τ ] + 1

1 − γ
x [2 − (1 + γ ) τ ]

}

Y = 1

2α
{x [(1 − γ ) τ ] − x [2 − (1 + γ ) τ ]} (4.57)

.e2 = α + βe (4.58)

where .α = 1/
(
1 − γ 2

)
and .β = 2γ α.

As compared to (4.36), relationship (4.58) complicates algebraic and differential
operations as, respectively,

.f (X + Ye) = Rf (X, Y ) + If (X, Y ) e (4.59)

.Rf (X, Y ) = 1

2α

[
1

1 + γ
f (Z+) + 1

1 − γ
f (Z−)

]

If (X, Y ) = 1

2α
[f (Z+) − f (Z−)]

.Z± = X ± Y

1 ∓ γ

and

.ẋ = αY ′ + (X′ + βY ′) e + Y
∂e

∂t
(4.60)

where .f (Z+) and .f (Z−) must be defined, primes indicate differentiation with
respect to .τ , and

.
∂e

∂t
= 2α

∞∑
k=−∞

[δ (t + 1 − γ − 4k) − δ (t − 1 + γ − 4k)] (4.61)
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If the function .x (t) is continuous at time instances .Λ = {t : τ (t, γ ) = ±1}, then
the singular term .∂e/∂t is suppressed by the boundary condition .Y |t∈Λ= Y |τ=±1=
0 analogously to the symmetric case. Otherwise, the periodic singular term remains
in expression (4.60).

It is convenient to calculate high-order derivatives by means of the matrix-
operator D acting on the vector-column .[X, .Y ]T sequentially as

.D =
[
0 α

1 β

]
d

dτ

D

[
X

Y

]
=
[

αY ′
X′ + βY ′

]
(4.62)

D2
[

X

Y

]
=
[

αX′′ + αβY ′′
βX′′ + (α + β2)Y ′′

]

Therefore, applying D and .D2 gives

.ẋ = αY ′ + (X′ + βY ′)e

ẍ = αX′′ + αβY ′′ + [βX′′ + (α + β2)Y ′′]e
under the boundary conditions

.Y |τ=±1 = 0

(X′ + βY ′)|τ=±1 = 0

Note that rules (4.62) are still valid in the symmetric case .γ = 0, when the
differential matrix operator takes the form

.D =
[
0 1
1 0

]
d

dτ

Finally, the result of integration (4.47) has the components

.Q =
∫ [

Y (τ) − β

α
X (τ)

]
dτ and P = 1

α

τ∫
−1

X (ξ) dξ

under condition (4.48).

4.1.9 Multiple Frequency Case

Practical applications of NSTT to the class of multiple frequency motions face
problems similar to those caused by small denominators in quasi-linear approaches.
Formal generalizations of the basic relationships are illustrated below.
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Let .Pϕ and .Nϕ be operators acting on some periodic function .x(ϕ) of the period
.T = 4 as follows:

.Pϕx (ϕ) = 1

2
{x[τ (ϕ)] + x[2 − τ (ϕ)]} ≡ X[τ (ϕ)] (4.63)

Nϕx (ϕ) = 1

2
{x[τ (ϕ)] − x[2 − τ (ϕ)]} ≡ Y [τ (ϕ)]

where functions .X (τ) and .Y (τ) are defined according to (4.26).
In such notations, representation (4.25) takes the form

.x(ϕ) = (Pϕ + eNϕ)x(ϕ), e = τ ′ (ϕ) (4.64)

Let us consider now a function of multiple arguments .x = x
(
ϕ1, ..., ϕn

)
of the

period .T = 4 with respect to each of its n arguments. This function describes a
multiple frequency quasi-periodic process if .ϕ1 = Ω1t ,..., .ϕn = Ωnt with a set
of positive incommensurable frequencies, .Ω1,..., .Ωn. In this case, transformation
(4.64) is independently applicable to each of the n arguments as follows:

.x
(
ϕ1, ..., ϕn

) =
n∏

j=1

(Pϕj
+ ejNϕj

)x
(
ϕ1, ..., ϕn

)
(4.65)

where the new notations, .τ j = τ(ϕj ) and .ej = τ ′(ϕj ), are introduced.
Note that all the operators included in this product are commutating as those

applied to different arguments of the function. Moreover, the number of cofactors
of the product can differ from one to n.

Let us consider the case of two arguments. Introducing the notations .e0 ≡ 1 and
.e3 = e1e2, and expanding the product in (4.65) give

.x (ϕ1, ϕ2) = X (τ 1, τ 2) e0+Y (τ 1, τ 2) e1+Z (τ 1, τ 2) e2+W (τ 1, τ 2) e3 (4.66)

where

.X = Pϕ1Pϕ2x (ϕ1, ϕ2) , Y = Nϕ1Pϕ2x (ϕ1, ϕ2)

Z = Pϕ1Nϕ2x (ϕ1, ϕ2) , W = Nϕ1Nϕ2x (ϕ1, ϕ2)

The basis elements of (4.66) obey the table of products

.

× e0 e1 e2 e3

e0 e0 e1 e2 e3

e1 e1 e0 e3 e2

e2 e2 e3 e0 e1

e3 e3 e2 e1 e0

(4.67)
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Further, applying some function f to the element (4.66) gives

.f (Xe0 + Ye1 + Ze2 + We3) = Rf e0 + I 1f e1 + I 2f e2 + I 3f e3 (4.68)

where the coefficients at the right-hand side are defined by the system of linear
equations

.Rf + I 1f + I 2f + I 3f = f (X + Y + Z + W)

Rf + I 1f − I 2f − I 3f = f (X + Y − Z − W)

Rf − I 1f + I 2f − I 3f = f (X − Y + Z − W) (4.69)

Rf − I 1f − I 2f + I 3f = f (X − Y − Z + W)

Equations (4.69) are obtained by substituting different combinations of .e1 = ±1
and .e3 = ±1 in (4.68). Some application of the multiple frequency case will be
illustrated at the end of Chap. 5 and also in Chap. 14.

4.2 Idempotent Basis Generated by the Triangle Wave

4.2.1 Definitions and Algebraic Rules

In addition to the standard basis .{1, e}, the hyperbolic plane has another natural basis
.{e+, e−} associated with the two isotropic lines separating the hyperbolic quadrants
as described in Chap. 1. The transition from one basis to another is given by (see
Fig. 4.2)

.e+ = 1

2
(1 + e)

e− = 1

2
(1 − e) (4.70)

or, inversely,

.1 = e+ + e− (4.71)

e = e+ − e−

Therefore,

.x = X + Ye = X(e+ + e−) + Y (e+ − e−)

= (X + Y )e+ + (X − Y )e−
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Fig. 4.2 The standard basis and idempotent basis shown on the left and right, respectively

where .x = x(t) is any periodic function whose period is normalized to .T = 4, and
therefore .e = e(t).

Taking into account (4.26) gives

.x = X+(τ )e+ + X−(τ )e− (4.72)

where .τ = τ(t), .e+ = e+(t), .e− = e−(t), and

.X+ = X + Y = x(τ)

X− = X − Y = x(2 − τ) (4.73)

The elements .e+ and .e− are mutually annihilating. They are called idempotents
due to their properties

.e+e− = 0

e2− = e− (4.74)

e2+ = e+

As follows from (4.71), .ee+ = e+ and .ee− = −e−. Obviously, the matrix
representation of (4.72) is

.X+e+ + X−e− ←→
[

X+ 0
0 X−

]

Properties (4.74) make the idempotent basis very convenient to use in different
analytical manipulations. For instance, for any real number .α,

.(X+e+ + X−e−)α = Xα+e+ + Xα−e− (4.75)
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One can extend relationship (4.75) on a general function f as4

.f (X+e+ + X−e−) = f (X+)e+ + f (X−)e− (4.76)

provided that .f (X+) and .f (X−) are defined.
As a result, the major advantage of using the idempotent basis is that the

differential equations of motion in terms of the components .X+(τ ) and .X−(τ )

appear to be decoupled regardless of nonlinearity. Instead, the corresponding
boundary conditions become coupled. The nature of this fact is explained in the
next subsection.

The time variable t can be represented in the idempotent basis during one period,
.T = 4, of a periodic signal. This can be shown by substituting (4.71) in (4.27),
where .τ̇ (t) = e(t), and then conducting the following manipulations

.t = 1 + (τ − 1) e = (e+ + e−) + (τ − 1) (e+ − e−)

= τe+ + (2 − τ)e− (−1 < t < 3) (4.77)

Further, using properties (4.74) gives, for instance,

.t2 = τ 2e+ + (2 − τ)2e−
tα = ταe+ + (2 − τ)αe− (4.78)

(α > 0)

Note that expressions (4.78) provide the direct proof of representation (4.72), at
least for the class of analytical periodic functions .x(t).

4.2.2 Time Derivatives in the Idempotent Basis

Taking into account definitions (4.70) and (4.71) gives time derivatives of the basis
elements

.ė+ = −ė− = 1

2
ė (4.79)

where .ė+ is a periodic series of .δ-functions

.ė+ =
∞∑

k=−∞
[δ(t + 1 − 4k) − δ(t − 1 − 4k)]

4 The so-called functional linearity property.
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Thus, differentiating (4.72) gives

.ẋ = X′+ee+ + X′−ee− + X+ė+ + X−ė−

= X′+e+ − X′−e− + 1

2
(X+ − X−)ė

Assuming the continuity condition

.(X+ − X−)|τ=±1 = 0 (4.80)

leads to

.ẋ = X′+e+ − X′−e− (4.81)

Analogously, assuming the continuity condition for .ẋ(t),

.(X′+ + X′−)|τ=±1 = 0 (4.82)

gives then

.ẍ = X′′+e+ + X′′−e−

It is seen that the algebraic structure with the idempotent basis is maintained
when taking derivatives.

Example 4.2.1 Suppose the equation .ẋ = f (x), where .x(t) ∈ Rn, has a family
of periodic solutions of the period .T = 4a. Introducing the triangle wave time,
.τ = τ(t/a), and using the idempotent basis bring the equation to the form

.(X′+e+ − X′−e−)
1

a
= f (X+e+ + X−e−) = f (X+)e+ + f (X−)e−

Then collecting separately terms with different basis elements gives

.X′+ = af (X+)

X′− = −af (X−) (4.83)

under condition (4.80). As mentioned above, the triangle wave time substitution
implemented in the idempotent basis leads to the decoupled set of equations such as
(4.83), whereas boundary condition (4.80) is coupled. It is practically sufficient to
solve only first equation of system (4.83). Then solution of the second equation is
obtained by the replacement .τ → −τ in the first solution.
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4.3 Idempotent Basis Generated by Asymmetric Triangle
Wave

4.3.1 Definition and Algebraic Properties

Let us introduce basic rules for algebraic manipulations with the idempotent basis
generated by the asymmetric triangle wave (4.53). The standard basis is given by the
set .{1, e} and shown on the left in Fig. 4.3, where .e = e(t, γ ) is defined by (4.54)
as a generalized square wave with stepwise discontinuities at the points .Λγ = {t :
τ(t, γ ) = ±1}.

In this case, the idempotent basis is introduced as

.e+ = 1

2
[1 − γ + (1 − γ 2)e]

e− = 1

2
[1 + γ − (1 − γ 2)e] (4.84)

or, inversely,

.1 = e+ + e− (4.85)

e = 1

1 − γ
e+ − 1

1 + γ
e−

where .e+ = e+(t, γ ) and .e− = e−(t, γ ), and the parameter of asymmetry .γ is
included in order to normalize the range of change for the basis elements as .0 ≤
e+ ≤ 1 and .0 ≤ e− ≤ 1; see the diagrams on the right in Fig. 4.3.
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Fig. 4.3 The standard basis and idempotent basis (on the left and right, respectively) generated by
the asymmetric triangle wave with .γ = 0.3
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Definition (4.84) brings (4.55) to the form

.t = (1 − γ ) τe+ + [2 − (1 + γ ) τ ] e− (4.86)

If .γ = 0, then definition (4.84) becomes equivalent to (4.70). The new elements,
.e+ and .e−, are still mutually annihilating and create idempotents even though .γ 	= 0.
Hence, the table of products (4.74) still holds for any .γ ∈ (−1, 1). Also, it follows
from (4.74) and (4.85) that

.ee+ = 1

1 − γ
e+

ee− = − 1

1 + γ
e− (4.87)

Now, substituting (4.85) into identity (4.56) gives

.x = X + Ye = X(e+ + e−) + Y

(
1

1 − γ
e+ − 1

1 + γ
e−
)

=
(

X + 1

1 − γ
Y

)
e+ +

(
X − 1

1 + γ
Y

)
e− (4.88)

where .x = x(t) is any periodic function whose period is normalized to .T = 4.
Substituting (4.57) in (4.88) and conducting algebraic manipulations give

.x = X+(τ , γ )e+ + X−(τ , γ )e− (4.89)

where .τ = τ(t, γ ) is defined above by (4.53), and the components are given by

.X+(τ , γ ) = x((1 − γ )τ) and X−(τ , γ ) = x(2 − (1 + γ )τ) (4.90)

Obviously, the basic algebraic properties, (4.75) and (4.76), remain valid.

4.3.2 Differentiation Rules

Taking into account definitions (4.84) and (4.85) gives time derivatives of the
idempotent basis, produced by the asymmetric triangle wave, as

.
∂e+
∂t

= −∂e−
∂t

= 1

2
(1 − γ 2)

∂e

∂t
(4.91)

where .∂e/∂t is a periodic sequence of Dirac .δ-functions acting whenever .t ∈ Λγ .
In this section, the symbol of partial derivative .∂ is used due to the dependence of
basis upon two arguments, t and .γ , although .γ is just a fixed parameter here.
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Taking into account that .∂τ/∂t = e and differentiating (4.89) give

.ẋ = ∂X+
∂τ

ee+ + ∂X−
∂τ

ee− + X+
∂e+
∂t

+ X−
∂e−
∂t

(4.92)

Substituting (4.87) and (4.91) in (4.92) brings (4.92) to the form

.ẋ = 1

1 − γ

∂X+
∂τ

e+ − 1

1 + γ

∂X−
∂τ

e− + 1

2
(1 − γ 2)(X+ − X−)

∂e

∂t
(4.93)

Assuming the continuity of .x(t) leads to boundary conditions

.(X+ − X−)|τ=±1 = 0 (4.94)

These conditions eliminate the singular term .∂e/∂t from expression (4.93),
which takes the form

.ẋ = 1

1 − γ

∂X+
∂τ

e+ − 1

1 + γ

∂X−
∂τ

e− (4.95)

As seen from (4.95), the algebraic structure of representation (4.89) is preserved
after the differentiation. Thus, under the continuity condition, the result of differen-
tiation is obtained by the following replacements in (4.89):

.X+ → 1

1 − γ

∂X+
∂τ

and X− → − 1

1 + γ

∂X−
∂τ

(4.96)

Due to property (4.96), high-order derivatives can be obtained iteratively by
making substitutions (4.96) in (4.93). For instance, second derivative is given by

.ẍ = 1

(1 − γ )2

∂2X+
∂τ 2

e+ + 1

(1 + γ )2

∂2X−
∂τ 2

e−

+1

2
(1 − γ 2)

(
1

1 − γ

∂X+
∂τ

+ 1

1 + γ

∂X−
∂τ

)
∂e

∂t
(4.97)

The singular term .∂e/∂t in (4.97) is eliminated by condition

.

(
1

1 − γ

∂X+
∂τ

+ 1

1 + γ

∂X−
∂τ

)
|τ=±1 = 0 (4.98)

As a result, the second derivative .ẍ takes the form of expansion with the basis
.{e+, e−}. Such differentiation can be continued step-by-step as soon as derivatives
remain continuous in .Λγ .
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4.3.3 Oscillators in the Idempotent Basis

To illustrate the application of idempotent basis to vibration problems, let us
consider oscillator

.ẍ + f (x) = F+e+(ωt, γ ) + F−e−(ωt, γ ) (4.99)

where .ω is triangle wave frequency,5 .F± = F±(τ , γ ) are components of the external
loading represented in the idempotent basis with the period .T = 4a = 4/ω, and
.τ = τ(ωt, γ ).

No specific conditions are imposed on the characteristic .f (x), but it is assumed
that oscillator (4.99) possesses periodic solution with the period of external loading,
T . Such a solution admits representation (4.89). Due to the presence of time scaling
factor, expressions for the time derivatives from the previous subsection must be
modified by the replacement .∂τ → a∂τ = ω−1∂τ . Now, substituting (4.89) in
(4.99), taking into account (4.94) through (4.98) and the property of functional
linearity, .f (X+e+ + X−e−) = .f (X+)e+ + .f (X−)e−, gives equations

.
ω2

(1 − γ )2

d2X+
dτ 2

+ f (X+) = F+(τ , γ ). (4.100)

ω2

(1 + γ )2

d2X−
dτ 2

+ f (X−) = F−(τ , γ ) (4.101)

under the boundary conditions (4.94) and (4.98).
The obvious advantage of using the idempotent basis is that Eqs. (4.100) and

(4.101) are in a better match with the form of original equation (4.99). The equations
are decoupled and hence solvable in a similar way. Although the entire boundary
value problem is still coupled through the boundary conditions, the problem caused
by the coupling is eased.

4.3.4 Exact Closed Form Solution for Piecewise Linear
Oscillator

For a practical example of manipulations with the idempotent basis, let us consider
the oscillator with a piecewise linear restoring force characteristic described by
equation

.ẍ + Ω2
0 [1 + μH(x)]x = 0, − 1 < μ < ∞ (4.102)

where .Ω0 and .μ are constant parameters, and .H(x) is Heaviside unit step function.

5 As defined in Sect. 1.2.1.
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Let us seek periodic solution in the form .x = X+e+ + X−e− (4.89) assuming
that .X+ and .X− associate with positive (.x > 0) and negative (.x < 0) branches of
the solution, respectively. Therefore,

.X+ ≥ 0 and X− ≤ 0 (4.103)

Such a separation is dictated by the temporal shapes of the idempotent basis,
.e+(t, γ ) and .e−(t), in Fig. 4.3. Oscillator (4.102) spends a shorter time in the region
.x > 0 and a longer time in the region .x < 0 since its characteristic is stiffer when
.x > 0 and softer when .x < 0, respectively. Assumptions (4.103) therefore are based
on the fact that the rectangle pulses of functions, .e+(t) and .e−(t), are acting shorter
and longer time intervals, respectively.

Substituting (4.89) in Eq. (4.102) and following differential and algebraic manip-
ulations, as outlined above in this section, give Eqs. (4.100) and (4.101), where the
right-hand sides must be set to zero, .F± ≡ 0, since no external loading is applied
in the present case. Compared to Eq. (4.99), the restoring force characteristic is
transformed in somewhat specific way due to the presence of stepwise Heaviside
function. The goal is to absorb its discontinuity by the basis functions, .e±(t), and
hence eliminate the discontinuity from the resultant equations. Taking into account
(4.103), the functional linearity property, and the definition for Heaviside function
gives the relationship

.H(X+e+ + X−e−) = H(X+)e+ + H(X−)e− = H(X+)e+ = e+

The restoring force characteristic of oscillator (4.102) is therefore transformed as

.Ω2
0 [1 + μH(x)]x = Ω2

0 (1 + μe+)(X+e+ + X−e−)

. = Ω2
0 (1 + μ)X+e+ + Ω2

0X−e−

Finally, the component-wise equations are

.
d2X+
dτ 2

+ Ω2+X+ = 0,
d2X−
dτ 2

+ Ω2−X− = 0 (4.104)

where .r = Ω0/ω is the adjusted frequency ratio, .Ω+ = r(1 − γ )
√
1 + μ and

.Ω− = r(1 + γ ); note that the triangle wave frequency, .ω, and the slope, .γ , are yet
unknown.

In the present case, the boundary condition of continuity (4.94) for the coordinate
x is satisfied automatically by a stronger continuity condition at zero, .x = 0, where
the restoring force changes its slope,

.τ = ±1 : X+ = X− = 0 (4.105)

Therefore, in contrast to condition (4.94), setting both components, .X+ and
.X−, individually to zero is required by the physical specific of the system under
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consideration. Condition (4.98) for continuity of the velocity .ẋ is still the same and
can be represented as

.τ = ±1 : dX−
dτ

= −1 + γ

1 − γ

dX+
dτ

(4.106)

The above boundary value problem, (4.104) through (4.106), is solved in two
steps. First, boundary conditions (4.105) are applied to the general solution of
system (4.104)

.X+ = A+ cosΩ+τ + B+ sinΩ+τ

X− = A− cosΩ−τ + B− sinΩ−τ

This gives .B+ = B− = 0 with two equations, .cosΩ± = 0, under which a
non-trivial solution with .A± 	= 0 is possible. Choosing the same principal root for
both quantities, .Ω± = π/2, gives .X± = A± cos(πτ/2). Substituting this couple of
functions in (4.106) determines the ratio .A−/A+ = −(1+ γ )/(1− γ ). As a result,
solution of Eq. (4.102) takes the form

.x = X+e+ + X−e− = A

(
e+ − 1 + γ

1 − γ
e−
)
cos

πτ

2
(4.107)

where .A = A+ is an arbitrary amplitude parameter, while another arbitrary constant
can be introduced as a phase shift, .t −→ t + t0, since Eq. (4.102) admits the group
of time translations.

Substituting (4.84) in (4.107) brings solution to its final form

.x(t) = A

[
(1 + γ ) e(ωt, γ ) − 2γ

1 − γ

]
cos

[
1

2
πτ(ωt, γ )

]
(4.108)

where the triangle wave frequency, .ω, and the parameter of slope, .γ , are determined
from the two equations .Ω± = π/2 as

.ω = 2

π
(1 + γ )Ω0 and γ =

√
1 + μ − 1√
1 + μ + 1

(4.109)

Solution (4.108) is validated by comparing it to the result of numerical inte-
gration of differential equation (4.102). The result of comparison is represented in
Fig. 4.4, where the graphs for .τ = τ(ωt, γ ) and .e = e(ωt, γ ) reveal how two
different pieces of solution are combined by means of the standard functions .τ and e.

Finally, Fig. 4.5 shows how the idempotent basis functions, .e+(t, γ ) and
.e−(t, γ ), are picking and matching the proper pieces from the components .X+(t, γ )

and .X−(t, γ ).
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Fig. 4.4 Numerical validation of analytical solution (4.108) for the following parameters: .A =
1.0, .Ω0 = 1.0, .μ = 3, and .γ = 1/3

Fig. 4.5 Components of solution (4.107) in the idempotent basis and the basis functions for the
parameters used in Fig. 4.4

4.3.5 Integration in the Idempotent Basis

Let .x(t) be a periodic function of the period normalized to .T = 4 with zero mean
value on the period T . Then, integrating the right-hand side of (4.89) gives

.

∫
[X+(τ , γ )e+ + X−(τ , γ )e−]dt = P+(τ , γ )e+ + P−(τ , γ )e− (4.110)

where

.P+(τ , γ ) = (1 − γ )

τ∫
−1

X+(z, γ )dz + C

P−(τ , γ ) = −(1 + γ )

τ∫
−1

X−(z, γ )dz + C (4.111)
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Note that both expressions in (4.111) have the same arbitrary constant of
integration C. As a result, substituting (4.111) in (4.110) and taking into account
(4.85) give a single constant of integration as follows: .Ce++Ce− = .C(e++e−) .= C.

Proof of relationships (4.111) is obtained by taking time derivative of both sides
of equality (4.110). Under the condition of continuity of the right-hand side of
(4.110), the differentiation leads to the boundary value problem

.
1

1 − γ

∂P+(τ , γ )

∂τ
= X+(τ , γ )

− 1

1 + γ

∂P−(τ , γ )

∂τ
= X−(τ , γ ) (4.112)

(P+ − P−)|τ=±1 = 0

This boundary value problem has solution (4.111) under the following condition
though

.(1 − γ )

1∫
−1

X+(τ , γ )dτ + (1 + γ )

1∫
−1

X−(τ , γ )dτ = 0 (4.113)

The meaning of this condition is clarified by substituting (4.90) in (4.113) and
taking into account the standard properties of definite integrals as follows:

.

1∫
−1

x[(1 − γ )τ ]d[(1 − γ )τ ] +
1∫

−1

x[2 − (1 + γ )τ ]d[(1 + γ )τ ]

=
(1−γ )∫

−(1−γ )

x(z)dz −
(1−γ )∫

2+(1+γ )

x(z)dz =
3+γ∫

−1+γ

x(z)dz =
T∫
0

x(t)dt = 0

In other words, condition (4.113) requires zero mean value for .x(t) on the period.
Otherwise, the result of integration would appear to be out of the class of periodic
functions by invalidating the algebraic structure of right-hand side of (4.110).

4.4 Discussions, Remarks, and Justifications

4.4.1 Group Properties of Conservative Oscillators and the
Triangle Wave

Let us show that the triangle wave temporal argument .τ (t) associates with the very
general group properties of the conservative oscillator
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.
d2x

dt2
+ f (x) = 0 (4.114)

Suppose that another oscillating time parameter, say g, is introduced as .x(t) =
X[g (t)], where .g (t) is a periodic function, which is not necessarily triangle wave.
This kind of substitution brings the differential equation of motion to the form

.

(
dg

dt

)2
d2X

dg2
+ d2g

dt2

dX

dg
+ f (X) = 0 (4.115)

A general side effect of such substitution is that the system has lost its original
Newtonian form. In order to keep the differential equation of motion in Newtonian
form, the following conditions must be imposed on Eq. (4.115)

.

(
dg

dt

)2

= 1 and
d2g

dt2

dX

dg
= 0 (4.116)

Conditions (4.116) are satisfied by

.g = α + t or g = β − t (4.117)

where .α and .β are arbitrary constants.
Relationships (4.117) simply represent the group of time transformations which

is admitted by the original system (4.114). Let us recall however that the function
.g (t) was assumed to be periodic. Therefore, according to (4.117), .g (t) must be a
piecewise linear periodic function. The simplest one-frequency case is given by the
triangular wave, .g (t) ≡ τ (t). In this case the first equality of (4.116) is equivalent
to the basic algebraic relationship (4.24), whereas the second equality holds for all
t under the condition (4.42). As a result, the new equation (4.115) takes the same
form as (4.114).

Therefore, the triangular wave time substitution .τ (t) possesses the unique
property among all periodic time substitutions as it preserves the form of differential
equations of conservative oscillators.

4.4.2 Remarks on Nonsmooth Solutions in the Classical
Dynamics

Problems of classical dynamics are usually formulated in terms of second- order dif-
ferential equations of motion for the system coordinates. Hence the corresponding
solutions must be at least twice continuously differentiable functions of time. The
existence and uniqueness theorem imposes also special conditions on the system
characteristics and external forcing functions. As a result, using discontinuities or
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distributions for modeling dynamical systems takes the corresponding differential
equations out of frames of the classic theory of differential equations. This requires
additional examination of such formulations in order to insure that solutions actually
exist. One of the NSTT roles is to bring models back into the area of classic theory.
However, some preliminary analyses of correctness of original models are still
required especially in nonlinear cases. In this and next subsections, some details
and examples are introduced on nonlinear formulations with discontinuities and .δ-
functions.

For illustration purposes, let us consider a one-dimensional forced oscillator

.ẍ + f (x, ẋ) = q (t) (4.118)

where the functions .q (t), .f (x, ẋ) and .∂f (x, ẋ) /∂ẋ must be continuous according
to the Cauchy theorem.

Let the system be subjected to an impulsive external loading applied at .t = t0. In
this case, the external forcing function can be expressed by Dirac .δ-function6

.ẍ + f (x, ẋ) = Iδ (t − t0) (4.119)

where I is a constant linear momentum per unit mass.
The differential equation of motion (4.119) cannot be treated within the classic

theory of differential equations. It is also impossible to find a solution in the class
of twice differentiable functions. However, a physically meaningful interpretation
of Eq. (4.119) is suggested by the theory of distributions. For example, in terms of
function-theoretic approaches, the distributions are not classical functions any more
but linear functionals acting on manifolds of appropriate differentiable functions,
.{ϕ (t)}. Further, equalities are thought to be integral identities rather then point-wise
relationships. Therefore, a “real meaning” of Eq. (4.119) is given by the identity

.

∞∫
−∞

[ẍ + f (x, ẋ)]ϕ (t) dt = I

∞∫
−∞

δ (t − t0) ϕ (t) dt (4.120)

which is supposed to be true for any “testing function” .ϕ (t).
Taking into account the definition of .δ-function and integrating by parts give

.

∞∫
−∞

[−ẋϕ̇ (t) + f (x, ẋ) ϕ (t)] dt = Iϕ (t0) (4.121)

6 The Dirac .δ-function belongs to the class of so-called generalized Functions introduced by Sergei
Sobolev in 1935 and re-introduced by Laurent Schwartz in the late 1940s, who developed a theory
of distributions.
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On one hand, this expression allows to weaken the smoothness condition on the
class of solutions. On the other hand, the integral identity (4.120) appears to have
quite clear physical meaning since its both sides represent the work done on arbitrary
virtual displacements, .ϕ (t). Note that the solution .x (t) itself is not considered as
a functional unless the function f is linear. For example, let us consider the case
.f (x, ẋ) .= .2λẋ .+Ω2x, where .λ and .Ω are constant parameters. In this case, by
proceeding with integration by parts in Eq. (4.121), one obtains

.

∞∫
−∞

[
ϕ̈ (t) − 2λϕ̇ (t) + Ω2ϕ (t)

]
x (t) dt = Iϕ (t0)

Therefore, .x (t) generates a linear functional of the form .

∞∫
−∞

(...) x (t) dt and thus

can be qualified as a generalized solution.7

In nonlinear cases, the concept of generalized solution does not work, but
Eq. (4.121) still holds and enables one to use the concept of the so-called “weak
solution” [65]. This concept is involved to justify manipulations with the nonsmooth
functions at intermediate steps of the approach.

4.4.3 Caratheodory Equation

Since .δ-function is defined as a linear functional, then nonlinear operations with
.δ-functions are generally illegal. Nonetheless Dirac .δ-function still can participate
in nonlinear differential equations in a linear way as a summand. Such cases were
examined in details by Caratheodory [63]. Let us consider the differential equation
.ẋ = f (t, x), where the right-hand side satisfies the Caratheodory conditions as
follows. In the domain D of the .(t, x) space: the function .f (t, x) is defined and
continuous with respect x for almost all t ; the function .f (t, x) is measurable in t

for each x; and .|f (t, x)| ≤ m (t), where function .m (t) is summable.
The above conditions are less restrictive than those required by the classical exis-

tence theorem, namely, the function .f (t, x) is allowed to be stepwise discontinuous
in t . Such an extension becomes possible if the right-hand side of the equivalent
integral equation is calculated by Lebesgue,

.x (t) − x (t0) =
∫ t

t0

f (ξ, x (ξ)) dξ

7 Sometimes the very presence of .δ-functions in any nonlinear equation is rejected by the reason
that nonlinearity is incompatible with the notion of linear functionals. In differential equations
of motion, however, singular forces and the corresponding accelerations usually participate as
summands, whereas velocities and coordinates include no .δ-type singularities and thus can be
subjected to nonlinear operations.
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Now, let the right-hand side of the equation to include the .δ-function as a
summand

.ẋ = f (t, x) + νδ (t − a) (4.122)

where a and v are constant parameters. In this case, the right-hand side does not
satisfy any more the Caratheodory conditions. However, changing the variable

.x (t) −→ y (t) : x (t) = y (t) + vH (t − a) (4.123)

where H is Heaviside unit-step brings the differential equation to the form

.ẏ = f [t, y + vH (t − a)] ≡ F(t, y) (4.124)

where Dirac function has been eliminated due to the equality .Ḣ (t − a) = δ (t − a);
as a result the right-hand side, .F(t, y), satisfies the Caratheodory conditions.

Note that, due to the presence of discontinuous function .H (t − a), the right-
hand side of the transformed equation, .F(t, y), is generally piecewise continuous in
t , even though the function .f (t, x) may be continuous.

Relationships (4.122) through (4.124) admit direct extensions on the vector space
so that many mechanical and physical models can be represented in the form
(4.122).

Example 4.4.1 Parametrically excited Duffing’s oscillator subjected to the external
impact at .t = a is described by equation

.ü + Ω2
0 (1 + ε cos 2t) u − βu3 = 2pδ (t − a) (4.125)

Equation (4.125) is transformed to (4.122) by introducing the following vector-
functions:

.x =
[

u

u̇

]
=
[

x1

x2

]
, ν =

[
0
2p

]

f (t, x) =
[

x2

βx3
1 − Ω2

0 (1 + ε cos 2t) x1

]

Example 4.4.2 Center lines of linearly elastic beams resting on elastic foundations
can be described by the dimensionless differential equation

.
d4W

dξ4
+ γ (ξ) W = qδ (ξ − a) (4.126)

where .W = W (ξ) is the center line coordinate, .γ (ξ) is a variable stiffness of
the foundation, and q is a transverse force localized at .ξ = a. Equation (4.126)
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is brought to the form (4.122) by considering t as a spatial coordinate .ξ and
introducing the matrixes

.x =

⎡
⎢⎢⎣

W

dW/dξ

d2W/dξ2

d3W/dξ3

⎤
⎥⎥⎦ , f (ξ, x) =

⎡
⎢⎢⎣
0 1 0 0
0 0 1 0
0 0 0 1
−γ (ξ) 0 0 0

⎤
⎥⎥⎦ x, ν =

⎡
⎢⎢⎣
0
0
0
q

⎤
⎥⎥⎦

In order to completely formulate the problem, the corresponding boundary condi-
tions must be added.

Let us show now that introducing the nonsmooth argument (4.11) eliminates the
.δ-function in Eq. (4.122) in such a way that no stepwise discontinuity occurs in the
new equation. Substituting (4.12) and (4.13) into Eq. (4.122) and taking into account
expression .s̈ = 2δ (t − a) give

.Y ′ + Rf (s,X, Y ) + [X′ + If (s,X, Y )
]
ṡ + (2Y − v) δ (t − a) = 0 (4.127)

where expressions

.Rf = 1

2
[f (a + s,X + Y ) + f (a − s,X − Y )]

If = 1

2
[f (a + s,X + Y ) − f (a − s,X − Y )]

are obtained analogously to (4.34).
Eliminating the .δ-function in (4.127) and equating separately both components

of the remaining hyperbolic element to zero give the boundary value problem

.X′ + If (s,X, Y ) = 0 (4.128)

Y ′ + Rf (s,X, Y ) = 0

Y |
s=0 = 1

2
v

Although Eqs. (4.128) have a more complicated form as compared to (4.122), the
stepwise discontinuous function, .H (t − a), is not involved any more; also it may
become important that the new argument s is half-limited: .0 ≤ s < ∞.

4.4.4 Other Versions of Periodic Time Substitutions

Following Sect. 4.4.1, it will be shown here that the symmetric triangle wave
generates the most simple algebraic structure among other possible versions of
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non-invertible time substitutions. Note that periodic temporal arguments have been
considered in the literature for a long time. The main idea of these approaches is
to make a new temporal argument limited and therefore expand the class of usable
algorithms. For example, the harmonic transformation of time in combination with
the power series method was used by Ince [94] for investigation of periodic motions.
In particular, by introducing the new variables

.τ = sin t and x (t) = X[τ (t)] (4.129)

in the Mathieu equation,

.ẍ + (a + b cos 2t) x = 0

one obtains the equation

.

(
1 − τ 2

)
X′′

τ 2
− τX′

τ +
(
a + b − 2bτ 2

)
X = 0

which admits periodic solutions in terms of the power series with respect to the new
temporal argument .|τ | ≤ 1 [246].

Transformation (4.129) with the power series methods was employed for nonlin-
ear vibrating systems as well [144, 206, 250]. Non-harmonic time transformations
dealing with Jacobian functions can be also found in the literature [28]. As it is
known that such time substitutions are restricted by special cases and cannot be
applied to any periodic motion. From the mathematical point of view, it is caused
by the fact that an inverse transformation does not exist on the whole period.

In this section, different versions of the periodic time are introduced in such a
way that the corresponding transformations are valid for any periodic motion. This
is reached through a special complexification of the coordinates.

Let us start with a generalization of substitution (4.129). For the sake of
compactness, notations

.τ = τ (ϕ) ≡ sinϕ and e = e (ϕ) ≡ cosϕ (4.130)

will be used below, where .e (ϕ) = τ ′ (ϕ).

Proposition 4.4.1 Any sufficiently smooth periodic function .x (ϕ) of the period
.T = 2π can be represented in the form

.x (ϕ) = X[τ (ϕ)] + Y [τ (ϕ)]e (ϕ) (4.131)

where X and Y are of the power series form with respect to .τ .

Proof By collecting separately terms with odd and even wave numbers in the
corresponding Fourier series, one obtains
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.x (ϕ) = A0

2
+

∞∑
n=1

[A2n cos 2nϕ + A2n−1 cos (2n − 1) ϕ]

+
∞∑

n=1

[B2n sin 2nϕ + B2n−1 sin (2n − 1) ϕ] (4.132)

Then, introducing notations (4.130) into the tabulated expressions [71] (Formulas
No. 1.332) gives

. cos 2nϕ =
n∑

i=0

a2iτ
2i , cos[(2n − 1) ϕ] =

(
n∑

i=1

a2i−1τ
2i−2

)
e

sin 2nϕ =
(

n∑
i=1

b2i−2τ
2i−1

)
e, sin[(2n − 1) ϕ] =

n∑
i=1

b2i−1τ
2i−1 (4.133)

where the coefficients are listed in [71]. Substituting (4.133) in (4.132) and
reordering the terms complete the proof.

As it is seen from identities (4.133), the second component in representation
(4.131) is due to the odd cosine-terms and even sine-terms of the Fourier expansion.

Note that combination (4.131) possesses algebraic properties similar to those
generated by the triangle wave time substitution. Namely, differentiation, integra-
tion, or any sufficiently smooth function of representation (4.131) gives an element
of the same two-component structure as (4.131). This is due to the fact that none of
the listed above operations destroys periodicity of the function, and hence, identity
(4.131) can be applied to the result of the operations as well. Practically, results of
the operations are obtained by taking into account the trigonometric identities

.τ ′ (ϕ) = e (ϕ) , e′ (ϕ) = −τ (ϕ) (4.134)

and

.e2 = 1 − τ 2 (4.135)

Note also that the components of representation (4.131) apparently are linearly
independent and thus the whole combination is zero if and only if its both
components are zero.

In order to illustrate manipulations with (4.131), let us introduce the temporal
argument .τ = sinΩt into the Duffing oscillator with no linear stiffness term [236]

.ẍ + ζ ẋ + x3 = F sinΩt (4.136)
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Considering periodic solutions and taking into account (4.134) and (4.135) on
every step of the transformation give

.

[(
1 − τ 2

)
X′′ − τX′]Ω2 + ζ

[(
1 − τ 2

)
Y ′ − τY

]
Ω (4.137)

. + 3
(
1 − τ 2

)
XY 2 + X3 = Fτ

.

[(
1 − τ 2

)
Y ′′ − 3τY ′ − Y

]
Ω2 + ζX′Ω (4.138)

. + 3X2Y +
(
1 − τ 2

)
Y 3 = 0

The unknown functions, X and Y , must satisfy conditions of analytical continu-
ation on the boundaries of the interval .−1 ≤ τ ≤ 1. These conditions are obtained
by substituting .τ = ±1 in Eqs. (4.137) and (4.138) as follows:

.

[
−τX′Ω2 − τζYΩ + X3 − Fτ

]
|τ=±1 = 0 (4.139)

.

[
− (3τY ′ + Y

)
Ω2 + ζX′Ω + 3X2Y

]
|τ=±1 = 0 (4.140)

The above system does not admit a family of solutions on which .Y (τ) ≡ 0 due
to the damping; therefore, transformation (4.129) is not valid in this case.

Interestingly enough, the form of representation (4.131) remains the same in the
case of triangular wave, although the basic algebraic operation (4.135) is different.

For the comparison reason, let us consider equation (4.136) with the forcing
function .Fτ (t/a), where .τ is the triangle wave of the period 4a. Let us represent
periodic solutions in the form (4.131), where the new temporal argument is the
triangle wave (4.22) of the phase variable .ϕ = t/a. Then, substituting (4.131) in
Eq. (4.136) and considering the result as a two-component element of the algebra,
one obtains the boundary value problem

.X′′a−2 + ζY ′a−1 + XY 2 + X3 = Fτ (4.141)

.Y ′′a−2 + ζX′a−1 + 3YX2 + Y 3 = 0 (4.142)

.Y |τ=±1 = 0, X′|τ=±1 = 0 (4.143)

where the boundary conditions (4.143) are to eliminate the periodic series of Dirac
functions from the first and second derivatives of the coordinate.
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4.4.5 General Case of Non-invertible Time and Its Physical
Meaning

Let us consider now a general class of functions .{τ (ϕ) , e (ϕ)} produced by the
conservative oscillator .ẍ + V ′ (x) = 0, where .V (x) is the potential energy of the
oscillator. To normalize the amplitude to unity, let us scale the potential energy and
the phase variable as .P (x) = V (x) /V (1) and .ϕ = √

2V (1)t , respectively. As a
result, the differential equation of motion and the energy integral are represented as,
respectively,

.
d2x

dϕ2 + 1

2
P ′ (x) = 0 and

(
dx

dϕ

)2

= 1 − P (x) (4.144)

Let .x = τ (ϕ) be the system coordinate determined implicitly from the energy
integral

.

τ(ϕ)∫
0

ds√
1 − P (s)

= ϕ (4.145)

Then second expression from (4.144) gives

.e2 = 1 − P (τ) (4.146)

where

.e (ϕ) = τ ′ (ϕ) and e′ (ϕ) = −1

2
P ′ (τ ) (4.147)

Now let us formulate without proof

Proposition 4.4.2 Any periodic function .x (ϕ) whose period is normalized to

.T = 4

1∫
0

ds√
1 − P (s)

can be represented in the form (4.131), where the functions .τ (ϕ) and .e (ϕ) are given
by (4.145) and (4.147).

For example, one can transform equation (4.136) based on the potential energy
function .P (x) = x2n. Then the boundary value problems (4.137) through (4.140)
and (4.141) through (4.143) can be derived as particular cases .n = 1 and .n −→ ∞,
respectively.
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Fig. 4.6 Transition from
quasi-harmonic (.m = 0.3) to
cnoidal (.m = 0.9) wave

m = 0.30

m = 0.99

0.0 0.5 1.0 1.5 2.0

- 0.2
0.0
0.2
0.4
0.6
0.8
1.0
1.2

t

x

4.4.6 NSTT and Cnoidal Waves

There are other methodological sources of approximate solutions in terms of power
series with respect to different type of periodic functions. In case of oscillators with
even nonlinearities, it was suggested to approximate solutions by power series of
the elliptic Jacobi cn-function [48]

.x(t) = A +
N∑

n=1

Bncn
2n(Ωt + αn, k

2) (4.148)

where A and .Bn are constants, .Ω is the frequency parameter, and k is the modulus.
The reason for using series (4.148) is that Jacobi function effectively captures

strongly anharmonic temporal shapes of periodic motions near separatrix loops.
However, mathematical properties of Jacobi functions may require certain efforts
while manipulating with solutions especially when the solutions are involved into
further perturbation procedures.

Note the particular case of expression (4.148) .N = 1, which resembles the well-
known case of cnoidal wave [234].

.x(t) = − E(m)

K(m)
+ dn2[2K(m)t] (4.149)

where .K(m) and .E(m) are compete elliptic integrals of first kind and second kind,
respectively, .m = k2 is the parameter (Jacobi), and the period is normalized to unity.

If the parameter m is small enough, function (4.149) takes almost harmonic
shapes. When m is getting larger, then .x(t) describes so-called cnoidal waves as
shown in Fig. 4.6.

From the physical point of view, function (4.149) with specific scaling factors
exactly describes temporal behavior of the interaction force between particles of
Toda lattice

.f = a[exp(−br) − 1], ab > 0 (4.150)

where r is the distance between adjacent particles and a and b are arbitrary
parameters.
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Periodic function (4.149) admits the exact Fourier expansion

.x(t) = π2

[K(m)]2
∞∑
l=1

l cos(2πlt)

sinh[πlK(1 − m)/K(m)] (4.151)

Interestingly enough, function (4.149) can be also represented as a sum of
localized waves (solitons) shifted one with respect to other by the same interval
as

.x(t) = − π

2K(m)K(1 − m)
(4.152)

+ π2

[2K(1 − m)]2
∞∑

l=−∞
cosh−2[π(t − l)K(m)/K(1 − m)]

Practical reasons for using either of series (4.151) or (4.152) are that terms
of both series consist of elementary functions8 of time while executing different
principles of approximation. Namely, each term of the Fourier series is carrying
global information about the periodic process, whereas each term of series (4.152)
provides just local description in some interval near the time point determined by
the number l. Although both series describe the process exactly from the theoretical
standpoint, the only limited number of terms is possible to keep in calculations. As
a result, the abovementioned difference in principles of approximation may become
essential as discussed further in this subsection.

Now, adapting transformation (4.72) to the case .T = 1 and then applying the
result to periodic function (4.152) give

.xn,p(t) = − π(e+ + e−)

2K(m)K(1 − m)
+ π2

[2K(1 − m)]2 (4.153)

. ×
⎧⎨
⎩

n∑
l=−n

cosh−2[λ(m)(τ − 4l)]e+ +
p+1∑
l=−p

cosh−2[λ(m)(τ − 2 + 4l)]e−

⎫⎬
⎭

.λ(m) = πK(m)

4K(1 − m)

where the infinite limits of summation have been replaced by the integers .n > 0
and .p > 0; the triangle wave time, .τ = τ(4t), and the idempotent basis, .e+ =
[1+ e(4t)]/2 and .e− = [1− e(4t)]/2, are introduced; the substitution .1 = e+ + e−
is used to emphasize that the entire expression (4.153) has the form of hyperbolic
number represented in the idempotent basis.

8 Exponential functions with real and imaginary exponents.
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Fig. 4.7 NSTT of the periodic cnoidal wave for different number of terms in series (4.153) and
two different values of Jacobi parameter: (a) .m = 0.2 and (b) .m = 0.9

Obviously, .x∞,∞(t) = x(t), and hence (4.153) becomes the exact equivalent to
(4.152). Still convergence properties of series (4.153) are significantly improved as
compared to (4.152). As time t is growing in (4.152), one must switch from one
term to another to keep a sufficient precision of approximation. In other words, in
the infinite time interval, .−∞ < t < ∞, the entire series (4.152) is needed. In
contrast, the temporal argument of series (4.153) is always bounded by the standard
interval .−1 ≤ τ ≤ 1, whereas the periodicity of wave is captured by the basis
functions rather than multiple terms of the series. As a result, terms of series (4.153)
are exponentially decaying as the summation index increases. As follows from the
graphs in Fig. 4.7, for the range of Jacobi parameter .m > 0.2, just five terms in
(4.153) are sufficient to capture both quasi-harmonic and cnoidal wave shapes with
a good precision. For a greater m, when the wave becomes essentially cnoidal, only
three terms provide a good agreement with the exact shape. As seen from the upper
fragment in Fig. 4.7, the three-term approximation gives essential discontinuous
error for very small Jacobi parameter .m = 0.08. However, in this almost harmonic
range, it is more effective to use few or even one-term Fourier series (4.151) rather
than series (4.152). Another essential advantage of series (4.153) is that, in the
range of cnoidal shapes, different algebraic manipulations with truncated series are
essentially eased due to the property of idempotents.



Chapter 5
Periodic Power Series

In this chapter, we introduce polynomials and power series expansions with respect
to the triangular sine-wave. These can be used for approximations of periodic signals
and unknown periodic solutions of dynamical systems. Such approximations may
appear to be effective in those cases when trigonometric series converge slowly
due to stepwise discontinuities or spikes. Another reason for using polynomial
expansions is that they are usually more convenient for algebraic manipulations.
In contrast to Fourier series, determining Taylor coefficients does not require
integration procedures. If the process under consideration is smooth, then sufficient
class of smoothness of approximations is achieved by imposing specific constraints
on the coefficients of triangle wave polynomials. Other equations for the coefficients
may appear either as a result of optimization procedures minimizing the error of
approximation or as an outcome of iterative procedures dictated by the differential
equations of motion. It is also shown that using operators Lie associated with
dynamical systems essentially facilitates construction of the periodic power series.

5.1 Power Series of Triangle Wave

5.1.1 Smoothing Procedures

Consider a smooth periodic function .x (t) of the period .T = 4 represented in the
form .x (t) = X (τ) + Y (τ) τ̇ , where .τ = τ(t). Obviously, both components, X

and Y , admit power series expansions with respect to the argument .τ with no loss
of periodicity in the original time t . As a side effect, note that keeping the finite
number of terms in such series may violate the smoothness conditions at .τ = ±1
since functions and their truncated series may behave differently near the boundaries
.τ = ±1. For that reason, let us introduce formal algorithms that can be applied to
the truncated series in order to improve their smoothness properties. First, consider
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the expansion

.X (τ) =
2N∑
i=0

X(i) (0)

i! τ i + O
(
τ 2N+1

)
(5.1)

Obviously, finite sums in (5.1) are generally non-differentiable on the set of
points .Λ = {t : τ(t) = ±1}. In contrast, the binomials

.φi (τ ) = τ i

i
− τ i+2

i + 2
; i = 1, 2, . . . (5.2)

are twice differentiable with respect to t on .Λ that can be verified by taking
derivatives with respect to t . For instance, first two generalized derivatives are

.
dφi(τ )

dt
= τ i−1(1 − τ 2)τ̇ (t)

d2φi(τ )

dt2
= (i − 1) τ i−2 − (i + 1) τ i

where the term .τ i−1(1 − τ 2)τ̈ has been removed from the second derivative
due to the presence of factor .1 − τ 2 that takes zero value whenever .τ̈ �= 0.
Thus functions (5.2) are twice continuously differentiable with respect to t even
though each of the functions is combination of two non-differentiable terms. This is
achieved by the specific choice for the coefficients and signs in (5.2) such that the
power terms have same jumps of slopes but with the opposite signs.

Now, considering (5.2) as equations with respect to different powers of .τ gives,
respectively, odd and even powers, as

.τ = φ1 (τ ) + . . . + φ2N+1 (τ ) + τ 2N+3

2N + 3

τ 3 = 3

[
φ3 (τ ) + . . . + φ2N+1 (τ ) + τ 2N+3

2N + 3

]
(5.3)

τ 2N+1 = (2N + 1)

[
φ2N+1 (τ ) + τ 2N+3

2N + 3

]

and

.τ 2 = 2

[
φ2 (τ ) + . . . + φ2N+2 (τ ) + τ 2N+2

2N + 2

]

τ 4 = 4

[
φ4 (τ ) + . . . + φ2N+2 (τ ) + τ 2N+2

2N + 2

]
(5.4)
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τ 2N = 2N

[
φ2N (τ) + τ 2N+3

2N + 2

]

where N is an arbitrary positive integer.
Substituting (5.3) and (5.4) in (5.1) and setting .N → ∞ give

.X (τ) = X (0) +
∞∑
i=1

i∑
k=1

[
X(2k−1) (0)

(2k − 2)! φ2i−1 (τ ) + X(2k) (0)

(2k − 1)!φ2i (τ )

]
(5.5)

In contrast to (5.1), particular sums of series (5.5) are twice continuously
differentiable functions of t . Since the Y -component usually appears with the
stepwise discontinuous multiplier, .τ̇ (t), the related series must be re-organized
in a somewhat different way by taking into account the corresponding necessary
condition of continuity: .Y (±1) = 0. In this case, appropriate polynomials are
designed as

.ψi (τ) = τ i − τ i+2; i = 0, 1, 2, . . . (5.6)

These polynomials provide the continuity for the term .ψi[τ (t)]τ̇ (t) as well as
its first derivative

.
d[ψi(τ)τ̇ ]

dt
= ψ ′

i (τ ) τ̇ 2 = iτ i−1 − (i + 2) τ i+1

where the term .ψi (τ) τ̈ has been eliminated due to the boundary conditions
.ψi (±1) = 0.

Second derivative still appears to be a stepwise discontinuous function at times
.Λ,

.
d2[ψi(τ)τ̇ ]

dt2
=

[
i (i − 1) τ i−2 − (i + 2) (i + 1) τ i

]
τ̇

Therefore, particular sums of the new series

.Y (τ) τ̇ =
∞∑
i=0

i∑
k=0

[
Y (2k−1) (0)

(2k − 1)! ψ2i−1 (τ ) + Y (2k) (0)

(2k)! ψ2i (τ )

]
τ̇ (5.7)

are less smooth than those obtained for the X-component (5.5).
Combining (5.5) and (5.7) and considering an arbitrary period, .T = 4a, give

.x (t) = X (0) +
∞∑
i=1

KX (i)

(
τ i

i
− τ i+2

i + 2

)
+ e

∞∑
i=0

KY (i)
(
τ i − τ i+2

)
(5.8)
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where .τ = .τ (t/a) and .e = .τ ′ (t/a) and the coefficients are calculated as follows:

.KX (2i − s) =
i∑

k=1

X(2k−s) (0)

(2k − 1 − s)!

KY (2i − s) =
i∑

k=0

Y (2k−s) (0)

(2k − s)! (5.9)

(s = 0, 1)

Series (5.8) may represent periodic solutions of dynamical systems. Formal
solutions are obtained by considering the differential equations of motion when
calculating the derivatives in coefficients (5.9). It can be done by means of the
operator Lie as discussed in the next section. Examples of the power series including
smoothing algorithms are introduced below with the corresponding algorithms
given in Appendix 2.

Example 5.1.1 For illustration of expansion (5.8), we introduce first the triangle
wave argument according to relationships (1.26) and then apply expansion (5.8) to
the components X and Y as

.f (t) = ln (2 + cos t) = X(τ) + Y (τ)e

. = 1

2
ln

(
4 − cos2

πτ

2

)
+ 1

2
ln

[
2 + cos(πτ/2)

2 − cos(πτ/2)

]
e

= ln 3

2
+ π2

12

(
τ 2

2
− τ 4

4

)
+

(
π2

12
− π4

48

)(
τ 4

4
− τ 6

6

)
+ . . .

. +
[
ln 3

2

(
1 − τ 2

)
+

(
ln 3

2
− π2

12

)(
τ 2 − τ 4

)
(5.10)

+
(
ln 3

2
− π2

12
+ π4

192

) (
τ 4 − τ 6

)
+ . . .

]
e

where .τ = τ (2t/π) and .e = e (2t/π). The effectiveness of this truncated series is
illustrated in Fig. 5.1.

Example 5.1.2 To compare Taylor truncated .τ -series to the smoothed expansions,
consider the following example:

.f (t) = sin3
πt

2
= sin3

πτ

2
, a = 1 (5.11)



5.1 Power Series of Triangle Wave 181

Fig. 5.1 Comparison of the
function .f (t) to its smoothed
expansion (5.10), where the
number m defines the highest
degree of .τ in the truncated
series as .2m + 2
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Fig. 5.2 First m terms of the direct polynomial expansion for the function .f (t) = sin3(πt/2) with
respect to the triangle wave .τ (on the left) and the effect of one-step smoothing algorithm (on the
right)

Calculating Taylor coefficients and then applying smoothing algorithm (5.8) give

.f (t) = 3

8
π3

(
τ 3

3
− τ 5

5

)
+

(
3π3

8
− 5π5

64

)(
τ 5

5
− τ 7

7

)
(5.12)

+
(
3π3

8
− 5π5

64
+ 91π7

15360

) (
τ 7

7
− τ 9

9

)
+ . . .

where .τ = τ(t). A smoothing effect is illustrated in Fig. 5.2 by comparing graphs for
different number of terms in both types of expansions. It seen that the direct Taylor’s
expansion develops some “tailing effect” near the boundaries .τ(t) = ±1. As the
number of terms is increasing, the error, while still considerable, becomes localized
near the points .{t : τ(t) = ±1}. As follows from the graphs, the discontinuity
of slope will be rather maintained regardless of the number of terms in Taylor’s
expansion. This situation resembles the well-knownWilbraham-Gibbs phenomenon
in approximations of stepwise discontinuous periodic functions with Fourier series.
There is no such phenomenon in the present case of smooth function (5.11), whose
Fourier series has just two terms. Instead, the polynomial tailing occurs as a side
effect of approximation of the smooth function with the nonsmooth triangle wave.
Fortunately, combining a polynomial .τ -expansion with the suggested smoothing
algorithm helps to suppress the tailing effect as follows from the right fragment of
Fig. 5.2.
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Remark 5.1.1 Finally, the above smoothing algorithms can be reiterated as many
times as needed until necessary smoothness of the particular sums is achieved. For
instance, the expressions (5.2) and (5.6) reveal next steps of the smoothing as

.φi (τ ) = τ i(
τ i

)′ |τ=1
− τ i+2(

τ i+2
)′ |τ=1

∈ C2

ϕi (τ ) = φi (τ )

φ
(3)
i (τ ) |τ=1

− φi+2 (τ )

φ
(3)
i+2 (τ ) |τ=1

∈ C4 (5.13)

and

.ψi (τ) τ̇ =
(
τ i − τ i+2

)
τ̇ ∈ C1

χi (τ ) τ̇ =
(

ψi (τ )

ψ
(2)
i (τ ) |τ=1

− ψi+2 (τ )

ψ
(2)
i+2 (τ ) |τ=1

)
τ̇ ∈ C3 (5.14)

respectively, where the symbol C indicates the class of smoothness in the interval
.−∞ < t < ∞. Second sets of equations in (5.13) and (5.14) have to be
inverted for .φi (τ ) and .ψi (τ) in a similar way to (5.3) and (5.4). Then, by using
the corresponding expressions, one can introduce functions .ϕi (τ ) and .χi (τ ) into
series (5.5) and (5.7), respectively.

There are multiple ways to designing .τ -polynomial approximations with a
prescribed class of smoothness. The choice is determined by specific needs for such
approximations. Below, we consider two functions, .τα(t) and .eα(t), whose nature
and asymptotic properties were discussed in Sect. 1.2.1.

Example 5.1.3 First, let us consider the function .τα(t) after scaling its amplitude
as

.f (t) = 1

α
τα(t) = 2

απ
arcsin

(
α sin

πt

2

)
, 0 < α < 1 (5.15)

Taking into account the period .T = 4 and applying relationships (1.26) lead to the
representation of function .τα(t) through its nonsmooth limit, .α → 1,

.f (t) = 2

απ
arcsin

(
α sin

πτ

2

)
≡ X(τ), τ = τ(t) (5.16)

Let us consider now a polynomial approximation of this function combining
different powers of smooth binomials as

.X (τ) =
m∑

i=0

Ai

(
τ − τ 2k+1

2k + 1

)i

(5.17)
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where the coefficients .{Ai} can be determined by matching different degrees of .τ

with the corresponding degrees in (5.1). For instance, setting .k = 2 and .m = 5 gives

.A1 = X′(0), A2 = 1

2!X
′′(0), A3 = 1

3!X
(3)(0)

A4 = 1

4!X
(4)(0), A5 = 1

5! [X
(5)(0) + 24X′(0)], . . . (5.18)

As a result, polynomial approximation (5.17) for function (5.16) takes the form

.X(τ) = τ − τ 5

5
− 1

24
π2

(
1 − α2

) (
τ − τ 5

5

)3

(5.19)

+384 + π4
(
1 − 10α2 + 9α4

)
1920

(
τ − τ 5

5

)5

Note the specific structure of the list of coefficients (5.18), which is linked to
the number k. In the present case, .k = 2, the degree .τ 5 occurs twice in
summation (5.17): first time when .i = 1 and, the next time, when .i = 5. This leads
to a coupling between the coefficients, .A1 and .A5, and Taylor coefficient .X(5)(0)/5!
in the set of algebraic equations for .{Ai}. This is why .A5 is the first coefficient
to appear in solution (5.18), which is combining two terms. The effectiveness of
periodic polynomial approximation (5.19) is illustrated in Fig. 5.3 for two different
values of the parameter .α.

Example 5.1.4 Now let us consider the smoothed version of square wave function,
.eα(t), which is discussed in Sect. 1.2.1. Scaling its amplitude and switching to the
triangle wave argument gives, respectively,
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Fig. 5.3 Comparison of function (5.16) to its periodic polynomial approximation (5.19), shown
by red dashed lines, for .k = 2, .m = 5, and two different values of .α
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.f (t) = 1

α
eα(t) = cos(πt/2)√

1 − α2 sin2(πt/2)
(5.20)

and

.f (t) =
√
2 cos(πτ/2)√

2 − α2(1 − cosπτ)
e ≡ Y (τ)e (5.21)

where .τ = τ(t) and .e = e(t). Let us assume a polynomial approximation for the
function .Y (τ) as

.Y (τ) =
(
1 − τ 2k

) m∑
i=0

Biτ
i (5.22)

where the multiplier .
(
1 − τ 2k

)
is to eliminate possible stepwise discontinuities of

the term .Y (τ) e at points .{t : τ(t) = ±1}, and the coefficients .{Bi} are determined
by matching different degrees of .τ with the corresponding degrees of the Taylor’s
expansion for .Y (τ). For instance, setting .k = 2 and .m = 4 and solving the
corresponding set of linear algebraic equations give

.B0 = Y (0), B1 = Y ′(0), B2 = 1

2!Y
′′(0)

B3 = 1

3!Y
(3)(0), B4 = 1

4! [Y
(4)(0) + 24Y (0)], . . . (5.23)

and finally the following polynomial approximation for the component Y in (5.21)

.Y (τ) =
(
1 − τ 4

) [
1 − 1

8

(
1 − α2

)
π2τ 2 (5.24)

+
(
1 + 1 − 10α2 + 9α4

384

)
π4τ 4

]

In Fig. 5.4, graphs of function (5.21) are shown in comparison with its polynomial
approximations for two different values of the parameter .α. It is seen that the
periodic polynomial works better for the temporal shape, which is closer to the
square wave. Analyzing a broader range of the parameter .α for different values of
k and m reveals that different .α may require different sets of numbers k and m for
achieving the best result.
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Fig. 5.4 Comparison of function (5.21) to its periodic polynomial approximation, shown by red
dashed lines, for .k = 2, .m = 4, and two different values of .α

5.1.2 Discussion

Regarding the periodic power series, the complementarity principle (Chap. 1) works
as usual. In some cases, when the entire Fourier expansion consists of a couple
of terms, the periodic power series would require a significant number of terms
to achieve a reasonable result. It usually happens when a periodic signal under
consideration is strongly non-monotonic on one half of the period. To explain the
situation, let us consider function (5.11), whose periodic power series is given
by (5.12). Fourier series of this function is obtained by means of the trigonometric
identity and has just two terms

.f (t) = sin3
πt

2
= 3

4
sin

πt

2
− 1

4
sin

3πt

2
(5.25)

Introducing the triangle wave time argument gives

.f (t) = 3

4
sin

πτ(t)

2
− 1

4
sin

3πτ(t)

2
(5.26)

The period of first term of function (5.25) is three times longer as many compared
to the period of its second term. The triangle wave, .τ(t), has the longest of the two
periods to cover both terms in (5.26). Hence Taylor series for the second terms must
include multiple powers to approximate all its halfwaves on the interval .−1 ≤ τ ≤
1. This can be avoided by introducing two triangle waves of different periods for
different sine waves in (5.25) as

.f (t) = 3

4
sin

πτ(t)

2
− 1

4
sin

πτ(3t)

2
(5.27)
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Now the interval .−1 ≤ τ ≤ 1 covers one halfwave of both terms in (5.27), and
thus no extra terms of polynomial for the second term are required. In such a way,
one can adapt any number of trigonometric terms by means of the following general
formulas:

. sinΩt = sin
[π

2
τ(ωt)

]
, cosΩt = cos

[π

2
τ(ωt)

]
e(ωt), (5.28)

where .ω = (2/π)Ω according to (1.2). For instance,

.F(t) = A0

2
+

∞∑
k=1

{
Ak cos

[π

2
τ(ωkt)

]
e(ωkt) + Bk sin

[π

2
τ(ωkt)

]}
(5.29)

.ωk = 2

π
Ωk (k = 1, . . . , n)

If the function .F(t) is periodic of the period .T = 2π , then .Ωk = k, and (5.29) is
its standard Fourier series. Otherwise (5.29) can represent a general quasi periodic
signal. The reason for such a manipulation with trigonometric sums is that both
sine and cosine waves can now be approximated with smooth binomials as (5.2)
and (5.6), respectively. For instance, using the lowest degree binomials, .φ1 (τ ) and
.ψ0 (τ ), gives

.F(t) ≈ A0

2
+

n∑
k=1

{
Ak

[
1 − τ (ωkt)

2
]
e (ωkt) + Bk

3

2

[
τ (ωkt) − 1

3
τ (ωkt)

3
]}

(5.30)

where the factor .3/2 is inserted to adjust the amplitude of .φ1 (τ ) to unity.
All the coefficients .Ak and .Bk are assumed to be known. Algorithms for

determining these coefficients based on representation (5.30) can involve different
optimization procedures. Note that, in contrast to the sine and cosine waves, some
subsets of the approximating binomials, .φ and .ψe, are not orthogonal. Their
completeness is not analyzed here.

Finally, complex form of Fourier series for a periodic function .F (t) of the period
.T = 2π is modified as

.F (t) =
∞∑

k=−∞
ck exp(ikt) (5.31)

. =
∞∑

k=−∞

{
cke (ωkt) exp

[
ie (ωkt)

πτ (ωkt)

2

]}
, ωk = 2k

π

This transformation can be verified by means of Euler formula. Note that,
compared to Example 4.1.3, the elements .e = e (ωkt) depend upon different
arguments and hence cannot create the four-dimensional basis .{1, e, i, ei}.
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5.2 Nonlinear Normal Modes with Lie Series

5.2.1 Periodic Version of Lie Series

Lie series with respect to the physical time parameter are considered below. Note
that the corresponding procedure essentially differs of those used for asymptotic
integration of the differential equations of motion, where Lie series associate with a
small parameter of perturbation [82, 256].

Let us consider the differential equation of motion for the position vector-
function .x (t) ∈ Rn

.ẍ + f (x, ẋ, t) = 0 (5.32)

under the initial conditions

.x0 = x|t=0 and ẋ0 = ẋ|t=0 = v0

where the vector-function f is differentiable with respect to its arguments as many
times as needed.

The standard Cauchy form of dynamical system (5.32) for the coordinate and
velocity vectors is

.ẋ = v

v̇ = −f (x, v, t) (5.33)

ṫ = 1

The dynamics of system (5.33) can be locally described by the Lie series [94]

.x = exp[(t − t0)G]x0 ≡
[
1 + (t − t0)G + 1

2! (t − t0)
2G2 + · · ·

]
x0 (5.34)

.G = v0 · ∂

∂x0
− f (x0, v0, t0) · ∂

∂v0
+ ∂

∂t0
(5.35)

whereG is Lie operator associated with system (5.33), and .{x0, v0, t0} is some initial
point in the phase space of the system; the dot between two quantities indicates dot
products as

.v0 · ∂

∂x0
≡ v01

∂

∂x01
+ · · · + v0n

∂

∂x0n

Series (5.34) are simply Taylor series whose coefficients are calculated by
enforcing equations (5.33). Unfortunately, this general idea is still of little use
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for oscillatory processes probably due to locality of expansion (5.34). Even entire
expansion (5.34) cannot explicitly reveal such global characteristics of oscillations
as their amplitude and period. Moreover, the corresponding truncated series produce
increasingly growing errors as the time t runs away from the selected initial point
.t0. In order to overcome these disadvantages, it is suggested to adapt the Lie series
solution for the class of periodic motions as follows.

Theorem 5.2.1 ([186]) Assume that system (5.33) admits a periodic solution .x(t)

of the period .T = 4a such that .x(t+4a) = x(t) for any t , and some point .{x0, v0, t0}
belongs to this solution. Then solution can be expressed in the form

.x = exp(aG){cosh[a(τ − 1)G] + e sinh[a(τ − 1)G]}x0 (5.36)

where .τ and e are triangle and square waves, whose periods are normalized to four
and amplitudes are unity as

.τ(ϕ) = (2/π) arcsin sin(πϕ/2) (5.37)

and

.e(ϕ) = sgn[cos(πϕ/2)], (5.38)

respectively, and .ϕ = (t − t0)/a is a scaled time. If, in addition, the solution is odd
with respect to one half of the period, .x(t + 2a) = −x(t), then expression (5.36)
simplifies to

.x = [sinh(aτG) + e cosh(aτG)]x0
≡

[
aτG + 1

3! (aτG)3 + · · ·
]

x0 + e

[
1 + 1

2! (aτG)2 + · · ·
]

x0 (5.39)

Proof Expression (5.36) is obtained by substituting the identity [185]

.ϕ = 1 + [τ(ϕ) − 1]e(ϕ), (−1 < ϕ < 3) (5.40)

in (5.34) and taking into account that

.e2 = 1 (5.41)

at almost every time instance.1 In order to prove the particular case (5.39), one
should keep in mind that .exp(2aG)x0 = x(t0+2a) = −x0, as it follows from (5.34),
and the oddness condition assumed.

1 The set of isolated points .{ϕ : τ(ϕ) = ±1} appears to have no effect on the results [185].
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Recall that .τ and e are quite simple piecewise linear functions; the above
analytical expressions (5.37) and (5.38) just define them in the unit-form which
enables one to avoid conditioning of computation in the original temporal scale,
.t0 ≤ t < ∞. This possibility becomes essential when the dynamics includes some
evolutionary component.

Physical meaning of relationship (5.40) is that, during the whole period, the
time variable .ϕ is expressed through the coordinate .τ and velocity e of a classical
particle, which is freely oscillating between the two absolutely stiff barriers with
no energy loss. Due to (5.41), this relationship possesses the algebraic structure of
hyperbolic complex numbers as revealed by (5.36).

Let us outline possible applications of expressions (5.36) and (5.39). For the
sake of simplicity, consider the particular case (5.39). Formal expression (5.39)
does not guarantee the existence of periodic solutions. In case some periodic
solution does exist, one should be able to find the corresponding vectors .x0 and
.v0 from appropriate conditions. In autonomous case, the period, .T = 4a, is also
unknown and must be determined. The related conditions are formulated as a
requirement of smoothness of expression (5.39), which is generally nonsmooth or
even discontinuous due to the presence of nonsmooth and discontinuous functions
.τ and e, respectively. The smoothing conditions are obtained by eliminating
the stepwise discontinuities of the coordinate and velocity vectors imposing the
constraints

. cosh(aG)x0 = 0, cosh(aG)v0 = 0 (5.42)

In the autonomous case, algebraic equations (5.42) represent a nonlinear eigen-
value problem, where a is an eigen-value, and .{x0, v0} is a combined (state)
eigen-vector. By narrowing the class of periodic motions to those on which the
system passes its trajectory twice in the configurations space during the same period,
one obtains a subclass of normal mode motions. For further physically meaningful
definitions and discussions, see reference [241]. Let us formulate the corresponding
problem based on the periodic Lie series solutions.

Consider the vibrating system

.ẍ + f (x) = 0, x ∈ Rn (5.43)

where .f (−x) = −f (x), and the initial conditions are .x|t=0 = x0 = 0 and .ẋ|t=0 =
v0.

The normal mode solutions of system (5.43) are obtained as a particular case
of (5.39) and (5.42)

.x = sinh(aτG)x0|x0=0 (5.44)

. cosh(aG)v0|x0=0 (5.45)
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where the initial vector, .x0 = 0, is substituted into the expressions only after all
degrees of the differential operator

.G = v0 · ∂

∂x0
− f (x0) · ∂

∂v0

have been applied.
Relationship (5.44) can be interpreted as a parametric equation of normal mode

trajectories of the system with the parameter interval .−1 ≤ τ ≤ 1.
Let us illustrate relationships (5.44) and (5.45) based on the linear system so that

the result could be compared with the well-known solution.

Example 5.2.1 Suppose that .f (x) = Kx, where K is a positively defined
symmetric .n × n-matrix with the eigen-system .{v0,Ω2} such that .Kv0 = Ω2v0.
In this case, by applying the operator G twice, one obtains that .v0 is also an
eigen-vector of the operator .G2, namely, .G2v0 = −Ω2v0. Then, keeping in mind
the power series form of expressions (5.44) and (5.45) as those in (5.39) and
sequentially applying the operator .G2 give .x = (v0/Ω) sin(aΩτ) and .cos(aΩ) =
0, respectively. Notably, the last equation shows that there exist an infinite number
of roots .{a} related to the same eigen-frequency .Ω! However, it is easy to find
that all the roots produce the same solution in terms of the original time .t . The
minimal quarter of the period is .a = π/(2Ω); therefore .x = (v0/Ω) sin(πτ/2),
and .τ = (2/π) arcsin sinΩt .

5.3 Lie Series of Transformed Systems

5.3.1 Second-Order Non-autonomous Systems

In the previous section, the triangle wave temporal argument was introduced into Lie
series solutions. Alternatively, it can be introduced first in the differential equations
of motion before the Lie series procedure is applied. Let the dynamical system be
described by the set of second-order equations (5.32), where the vector-function f

is periodic with respect to .t with the period .T = 4a. Thus periodic motions of
the period T are considered below. In the autonomous case, the period is a priori
unknown. Following the differential and algebraic rules introduced in Chap. 4 and
conducting the substitutions .t → τ(t/a) and .x (t) = X(τ) + Y (τ)e in (5.32) lead
to the boundary value problem2

.X′′ + a2Rf

(
X, Y,X′, Y ′, τ

) = 0 (5.46)

Y ′′ + a2If

(
X, Y,X′, Y ′, τ

) = 0

2 See Appendix 3 for automatic algorithms.
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.Y |τ=±1 = 0, X′|τ=±1 = 0 (5.47)

where .
′ ≡ d/dτ and

.

{
Rf

If

}
= 1

2

{
f

(
X + Y,

Y ′ + X′

a
, aτ

)
± f

(
X − Y,

Y ′ − X′

a
, 2a − aτ

)}

(5.48)

Let us represent system (5.46) as a system of five first-order equations by
introducing two more unknown vector-functions, .V (τ) and .U(τ), as

.X′ = V

Y ′ = U

V ′ = −a2Rf (X, Y, V,U, τ ) (5.49)

U ′ = −a2If (X, Y, V,U, τ )

τ ′ = 1

This system is formally autonomous. Analogously to (5.35), its operator Lie
acting at some initial point of the phase space, .P0 = .{X0, Y0, V0, U0, τ 0}, is defined
as

.G = V0 · ∂

∂X0
+ U0 · ∂

∂Y0
− a2R0

f · ∂

∂V0
− a2I 0f · ∂

∂U0
+ ∂

∂τ 0
(5.50)

where .R0
f = Rf (P0) and .I 0f = If (P0).

The idea of Lie series enables one of representing solution of system (5.49) in the
power series form with respect to the triangle wave argument, .τ , under the initial
conditions at .P0, where .τ 0 is eventually set to zero, .τ 0 = 0. After completing
calculations with Lie series, the quantities .X0, .Y0, .V0, and .U0, corresponding to
a periodic solution of the period .T = 4a, can be determined from the smoothing
boundary conditions (5.47)

.Y (X0, Y0, V0, U0, τ )|τ=±1 = 0, V (X0, Y0, V0, U0, τ )|τ=±1 = 0 (5.51)

Recall that boundary conditions (5.51) guarantee smoothness of the coordinate,
x, and therefore continuity of the velocity, .ẋ, at points .{t : τ = ±1}. In nonlinear
cases, equations (5.51) can be solved numerically by assigning different values for
the period T or frequency .Ω = 2π/T = π/(2a). Alternatively, instead of solving
equations (5.51), the smoothing procedure of Sect. 5.1.1 can be applied. In this case,
conditions (5.51) are satisfied automatically, whereas quantities .X0, .Y0, .V0, and .U0
remain undetermined. This enables one of extending the smoothness conditions on
the acceleration, .ẍ, as
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.
∂U(X0, Y0, V0, U0, τ )

∂τ
|τ=±1 = 0,

∂2V (X0, Y0, V0, U0, τ )

∂τ 2
|τ=±1 = 0 (5.52)

Equations (5.51) or (5.52) for .X0, .Y0, .V0, and .U0 are generally quite complicated.
In different particular cases, the problem can be simplified by taking into account
possible symmetries of the system. For instance, let us consider equation

.ẍ + f (x, t) = 0 (5.53)

where the vector-function .f (x, t) is odd with respect to the positional vector x and
even with respect to the quarter of the period, .t = a. In this case, the boundary-value
problem, (5.46) and (5.47), admits a family of solutions with zero Y -component,
such that the boundary value problem takes the form

.X′ = V

V ′ = −a2f (X, aτ) (5.54)

τ ′ = 1

and

.V |τ=1 = 0 (5.55)

The operator Lie associated with dynamic system (5.54) is

.G = V · ∂

∂X
− a2f (X, aτ) · ∂

∂V
+ ∂

∂τ
(5.56)

Let us adapt now smooth polynomial expansion (5.5) by keeping only odd
powers of .τ as

.X (τ) =
∞∑
i=1

i∑
k=1

X(2k−1) (0)

(2k − 2)!
(

τ 2i−1

2i − 1
− τ 2i+1

2i + 1

)
(5.57)

Condition (5.55) is satisfied automatically. The idea of Lie series is in the sequen-
tial calculation of the derivatives .X(2k−1) (0) by enforcing the related dynamical
system (5.54) in terms of its operator Lie (5.56). First two derivatives are

.X′ = V ≡ GX

X′′ = V ′ = G(GX) ≡ G2X

Then,
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.X′′′ = d

dτ
G2X = dX

dτ
· ∂

∂X
(G2X) + dV

dτ
· ∂

∂V
(G2X) + ∂

∂τ
(G2X)

= V · ∂

∂X
(G2X) − a2f (X, aτ) · ∂

∂V
(G2X) + ∂

∂τ
(G2X)

≡ G3X

A sequential extension of the above process on high-order derivatives shows that
.X(2k−1) = G2k−1X, and hence expansion (5.57) takes the form

.x (t) = X(V0, τ ) =
∞∑
i=1

i∑
k=1

G2k−1X|τ=0

(2k − 2)!
(

τ 2i−1

2i − 1
− τ 2i+1

2i + 1

)
(5.58)

where .τ = τ (t/a), and the initial position is zero, .X0 = 0, due to the assumption
of oddness with respect to .τ .

The constant vector .V0 is determined from equation

.
∂3X(V0, τ )

∂τ 3
|τ=1 = 0 (5.59)

Example 5.3.1 To illustrate the above approach in component-wise form, let us
consider now a two-degree-of-freedom oscillating system

.
d2

dt2

[
x1

x2

]
+

[
ζ (2x1 − x2) + x3

1 − P sinΩt

ζ (2x2 − x1) + x3
2

]
=

[
0
0

]

In this case, the parameter .a = π/(2Ω) is the quarter of the period of the external
forcing function. Introducing the triangle wave temporal argument, .τ = τ(t/a),
and representing the system as a system of first-order equations in the phase space
.{X1, X2, V1, V2, τ } generate the following operator Lie:

.G = V1
∂

∂X1
+ V2

∂

∂X2
− a2

[
ζ (2X1 − X2) + X3

1 − P sin
πτ

2

] ∂

∂V1

−a2[ζ (2X2 − X1) + X3
2]

∂

∂V2
+ ∂

∂τ
(5.60)

Let the initial point be

. [X1, X2, V1, V2, τ ] |τ=0 = [0, 0, A1, A2, 0] (5.61)

where .A1 and .A2 are constants to be determined from the smoothing condi-
tions (5.59). Using (5.60) and (5.61) to calculate the first three terms of series (5.58)
gives
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.X1 =
(

τ − τ 3

3

)
A1 +

(
τ 3

3
− τ 5

5

) [
A1 + 1

4
(a2 P π − 4 a2 ζ A1 + 2a2 ζ A2)

]

+
(

τ 5

5
− τ 7

7

) {
A1+1

4
(a2 P π − 4 a2 ζ A1 + 2a2 ζ A2)

− 1

192

[
a2 P π3 + 8a4 P π ζ − 8A1

(
5 a4 ζ 2 − 6 a2 A1

2
)

+ 32 a4 ζ 2 A2

]}

and

.X2 =
(

τ − τ 3

3

)
A2 +

(
τ 3

3
− τ 5

5

) [
A2 + 1

2
(a2 ζ A1 − 2 a2 ζ A2)

+
(

τ 5

5
− τ 7

7

) {
A2 + 1

2
(a2 ζ A1 − 2 a2 ζ A2)

+ 1

48

[
a4 P π ζ − 8 a4 ζ 2 A1 + 2A2

(
5 a4 ζ 2 − 6 a2 A2

2
)]}

In this case, the vector-form equation (5.59) gives two algebraic equations for .A1
and .A2 as

.
∂3X1 (A1, A2, τ )

∂τ 3
|τ=1 = 0,

∂3X2 (A1, A2, τ )

∂τ 3
|τ=1 = 0 (5.62)

where the first and the second equations guarantee smoothness of the accelerations
.ẍ1 (t) and .ẍ2 (t), respectively. Intersections of curves (5.62) on Cartesian plane
.A1A2 visualize the roots of system (5.62), as shown in Fig. 5.5. For instance, setting
.ζ = 1.0, .P = 0.2, and .Ω = √

0.99 gives .(A1, A2) = (0.74915, 0.644886).
This solution corresponds to a weakly nonlinear perturbation of the inphase linear
mode. Similarly, in the neighborhood of the second frequency, .Ω = √

3.01,
one finds the solution .(A1, A2) = (0.5971,−0.8181), which is close to the
antiphase linear mode. The corresponding temporal mode shapes are shown in
Fig. 5.6 in comparison with numerical solutions. Interestingly enough, the right
fragment of Fig. 5.5 shows also two other roots indicated by the pair of blue
dots, .(2.33145, 2.28638) and .(−2.2065,−2.2548). Both these roots represent the
inphase vibrations (Fig. 5.7) even though the frequency of the external forcing
function is close to that of the antiphase linear mode. This effect may take place
due to large amplitudes such that the inphase nonlinear frequency becomes close to
the antiphase linear frequency.

Since the initial conditions, corresponding to the periodic regimes, are known,
one can integrate the differential equations of motion numerically in order to check
the analytical solutions. In the latter example, one would obtain that both results are
in a good agreement. It must be noted that some of the periodic solutions may appear
to be unstable. As a result, even a very small imperfection in the initial conditions
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Fig. 5.5 The curves of smoothness for the accelerations .ẍ1 (t) and .ẍ2 (t) shown by thin and solid
lines, respectively: for .Ω = √

0.99 on the left, and .Ω = √
3.01 on the right; the intersections

correspond to solutions of system (5.62)
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Fig. 5.6 The system response curves for: (a) .Ω = √
0.99—close to the first natural frequency of

a linearized system and (b) .Ω = √
3.01—close to the second natural frequency; in both cases, thin

red lines represent numerical solutions obtained under the initial conditions corresponding to the
analytical solutions
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Fig. 5.7 Large amplitude inphase vibrations associated with the blue dots in the right fragment of
Fig. 5.5 and corresponding to the frequency .Ω = √

3.01, which is close to the antiphase natural
frequency of linear vibrations
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will lead to a significant divergence of the results. Moreover, the tails of polynomial
expansions may give roots representing no real solution. Nonetheless, the above
approaches seems to make sense as compared to those based on the direct Fourier
expansions since the number of algebraic equations in (5.42), (5.51), or (5.62) is
independent on the number of terms in the series.

5.3.2 NSTT of Lagrangian and Hamiltonian Equations

In different theoretical areas, describing systems in terms of the analytical dynamics
brings some advantages because, until certain stage, it is sufficient to deal with a
single scalar function such as Lagrangian or Hamiltonian rather than manipulate
with a set of differential equations. Suppose the triangle wave temporal argument
is introduced in Lagrangian or Hamiltonian. Let us show that the corresponding
differential equations of motion are still derivable from the transformed descriptive
functions in the standard way of the analytical dynamics.

Consider first Lagrangian that depends on time t periodically with the period
.T = 4a,

.L = L(x, ẋ, t) (5.63)

On the manifold of smooth periodic motions of the same period T , the vector-
function .x(t) is represented as .x (t) = X (τ) + Y (τ) e, where .τ = τ(t/a) and
.e = e(t/a). As a result, Lagrangian (5.63) takes the form

.L(x, ẋ, t) = RL

(
X, Y,X′, Y ′, τ

) + IL

(
X, Y,X′, Y ′, τ

)
e (5.64)

where both components on the right-hand side are determined analogously to
expressions (5.48).

It can be verified by inspection that the differential equations of periodic motions
can be represented now in either of the two equivalent Euler-Lagrange forms

.
d

dτ

∂RL

∂X′ − ∂RL

∂X
= 0,

d

dτ

∂RL

∂Y ′ − ∂RL

∂Y
= 0

or

.
d

dτ

∂IL

∂Y ′ − ∂IL

∂Y
= 0,

d

dτ

∂IL

∂X′ − ∂IL

∂X
= 0

Now let us consider the Hamiltonian

.H = H(p, q, t) (5.65)

which may be periodic with respect to time with the period .T = 4a.
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On the manifold of periodic motions of the period T , the generalized coordinates
and momenta are represented as

.q = X (τ) + Y (τ) e and p = U (τ) + V (τ) e

respectively, where .τ = τ (t/a) and .e = e (t/a).
Let us transform the Hamiltonian (5.65) as

.H −→ aH(p, q, t) = RaH (U, V,X, Y, τ ) + IaH (U, V,X, Y, τ ) e

where

.

{
RaH

IaH

}
= a

2
[H (U + V,X + Y, aτ) ± H (U − V,X − Y, 2a − aτ)]

The corresponding differential equations of periodic motions are

.
dX

dτ
= ∂RaH

∂U
,

dY

dτ
= ∂RaH

∂V
,

dU

dτ
= −∂RaH

∂X
,

dV

dτ
= −∂RaH

∂Y

or

.
dX

dτ
= ∂IaH

∂V
,

dY

dτ
= ∂IaH

∂U
,

dU

dτ
= −∂IaH

∂Y
,

dV

dτ
= −∂IaH

∂X

Besides, in autonomous cases, the operator Lie associates with the Poisson
bracket, for instance,

.GX = {X,RaH }

Thus introducing the triangle wave temporal argument for periodic motions
preserves both Lagrangian and Hamiltonian structures of the differential equations
of motion.

5.3.3 Remark on Multiple Argument Cases

In multiple frequency cases, the smoothing procedures can be applied sequentially
to each of the arguments. For instance, in the case of two arguments, .τ 1 = τ(t/a1)

and .τ 2 = τ(t/a2), the X-component would take the form

.X (τ 1, τ 2) = X (0, 0) +
N1∑
i=1

N2∑
i=1

KX(i, j)

(
τ i
1

i
− τ i+2

1

i + 2

) (
τ

j

2

j
− τ

j+2
2

j + 2

)

(5.66)
where .KX(i, j) are constant coefficients.
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Analytical manipulations with 2D polynomials (5.66) are quite complicated
because algebraic and differential operations affect the structure of participating
binomials. Still expansions of type (5.66) can be used as approximations for solu-
tions in different two-period cases. In static of 2D cell-wise composite structures,
the parameters .a1 and .a2 are usually given by design, whereas the coefficients can
be obtained by means of variational principles with automatic systems of symbolic
manipulations followed by numerical algorithms.



Chapter 6
NSTT for Linear and Piecewise-Linear
Systems

The tool of nonsmooth argument substitutions was introduced first to describe
strongly nonlinear vibrations whose temporal mode shapes are asymptotically close
to nonsmooth ones. Such cases are known to be most difficult for analyses because
different quasi-harmonic methods are already ineffective, whereas the nonsmooth
mapping is still inapplicable. It is quite clear however that the nonsmooth arguments
can be introduced regardless of the strength of nonlinearity or the form of dynamical
systems in general. For instance, it is shown in this chapter that the nonsmooth
temporal substitutions can facilitate the analyses of different linear models with
nonsmooth or discontinuous inputs.

6.1 Free Harmonic Oscillator: Temporal Quantization of
Solutions

Introducing the triangle wave temporal argument into the differential equations
of motion may bring some specific features into the corresponding solutions. For
illustrating purposes, let us consider the harmonic oscillator

.ẍ + Ω2
0x = 0 (6.1)

First, let us obtain exact general solution of the oscillator (6.1) in terms of the
triangle wave temporal argument by using the substitution

.x = X (τ) + Y (τ) e (6.2)

where .τ = τ (t/a) and .e = e (t/a) are the standard triangle and square wave
functions, respectively.
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Substituting (6.2) in (6.1) gives the boundary value problem

.a−2X′′ (τ ) + Ω2
0X (τ) = 0. (6.3)

a−2Y ′′ (τ ) + Ω2
0Y (τ) = 0 (6.4)

.X′ (±1) = 0, Y (±1) = 0 (6.5)

By considering the parameter a as an eigen-value of the problem, one obtains the
set of eigen-values and the corresponding solutions as, respectively,

.aj = jπ

2Ω0
(6.6)

and

.Xj = sin

(
jπτ

2
+ ϕj

)
, Yj = cos

(
jπτ

2
− ϕj

)
(6.7)

where .ϕj = (π/4) [1 + (−1)j ], .τ = τ(t/aj ), and j is any positive real integer.
Therefore, introducing the triangle wave oscillating time produced the discrete

family of solutions for harmonic oscillator (6.1). The nature of such kind of
quantization is due to the temporal symmetry of periodic motions. In other words,
the quantization is associated with a multiple choice for the period

.Tj = 4aj = jT (6.8)

where .T = 2π/Ω0 is the natural period of oscillator (6.1).
In terms of the original temporal variable t , the number j plays no role for the

temporal mode shape, given by

.x (t) = A sin

[
jπ

2
τ

(
2Ω0t

jπ

)
+ ϕj

]
(6.9)

+B cos

[
jπ

2
τ

(
2Ω0t

jπ

)
− ϕj

]
e

(
2Ω0t

jπ

)

where A and B are arbitrary constants, and .x(t) is the same harmonic wave
regardless of the number j .

In this section, the free linear oscillator was considered for illustrating purposes.
There is no other pragmatic reason for introducing the triangle wave time into
Eq. (6.1). The situation drastically changes however in non-autonomous cases of
nonsmooth or discontinuous inputs. It is shown below that, in such cases, the
triangle wave time variable facilitates determining particular solutions. The above-
noticed effect of temporal quantization, which is just an identical transformation in
the autonomous case, becomes helpful at the presence of external excitations. For
instance, according to (6.9), the so-called combination resonances appear to be an
inherent property of oscillators.
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6.2 Non-autonomous Case

6.2.1 Unipotent Basis

Consider the linear harmonic oscillator under the external forcing described by the
linear combination of triangle and square wave functions

.ẍ + Ω2
0x = Fτ

(
t

a

)
+ Ge

(
t

a

)
(6.10)

where F and G are constant amplitudes and a is a quarter of the period.
Substituting (6.2) in (6.10) leads to the boundary value problem

.a−2X′′ (τ ) + Ω2
0X (τ) = Fτ . (6.11)

a−2Y ′′ (τ ) + Ω2
0Y (τ) = G (6.12)

under the boundary conditions (6.5).
In contrast to autonomous case (6.1), the parameter a is known. Equations (6.11)

and (6.12), are non-homogeneous, and their non-zero solution exists for any a and
can be found in few elementary steps. The particular periodic solution of the original
Eq. (6.10) takes the form

.xp (t) = X (τ) + Y (τ) e = F

Ω2
0

{
τ

(
t

a

)
− sin [aΩ0τ (t/a)]

aΩ0 cos(aΩ0)

}

+ G

Ω2
0

{
1 − cos [aΩ0τ (t/a)]

cos(aΩ0)

}
e

(
t

a

)
(6.13)

The corresponding general solution is .x (t) = A cos (Ω0t − ϕ) + xp (t), where
A and .ϕ are arbitrary amplitude and phase parameters. Note that solution (6.13)
immediately shows all possible resonance combinations .aΩ0 = (2k + 1) π/2 or

.
Ω0

Ω
= 2k + 1 (6.14)

where .k = 1, 2, 3 . . . and .Ω = 2π/T = π/(2a) is the fundamental frequency of
the external forcing.

Let us compare solution (6.13) to solution obtained by using Fourier series

.τ

(
t

a

)
= 8

π2

∞∑
k=0

(−1)k

(2k + 1)2
sin[(2k + 1) Ωt] (6.15)

e

(
t

a

)
= 4

π

∞∑
k=0

(−1)k

(2k + 1)
cos[(2k + 1) Ωt]
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These lead to the particular solution of Eq. (6.10) in the form

.xp (t) =
∞∑

k=0

(−1)k

Ω2
0 − (2k + 1)2 Ω2

×

×
[

8F

π2 (2k + 1)2
sin[(2k + 1) Ωt] + 4G

π (2k + 1)
cos[(2k + 1) Ωt]

]

(6.16)

Solution (6.16) reveals the same resonance conditions, (6.14). However, the
infinite trigonometric series are less convenient for calculations, especially when
dealing with derivatives of solutions since differentiation slows down convergence
of the series.

6.2.2 Idempotent Basis

Consider the linear oscillator including viscous damping under the square wave
external loading

.ẍ + 2ζΩ0ẋ + Ω2
0x = pe

(
t

a

)
(6.17)

The purpose is to obtain periodic steady-state solution with the period of external
loading, .T = 4a. Recall that the idempotent basis is introduced by means of the
linear transformation

.{1, e} −→ {e+, e−} : e± = 1

2
(1 ± e) (6.18)

or, inversely, .1 = e+ + e− and .e = e+ − e−, where .e2± = e± and .e+e− = 0; see
Chaps. 1 and 4.

Now, the periodic solution and external loading are represented in the new basis
as

.x(t) = U(τ)e+ + V (τ)e− (6.19)

pe = p(e+ − e−)

where .e± = e±(t/a) and .U(τ) and .V (τ) are unknown functions of the triangle
wave, .τ = τ(t/a).

Substituting (6.19) in (6.17) and sequentially eliminating derivatives of the
square wave, as described in Chap. 4, give equations

.U ′′ + 2ζΩ0aU ′ + (Ω0a)2U = pa2

V ′′ − 2ζΩ0aV ′ + (Ω0a)2V = −pa2 (6.20)
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with boundary conditions

.(U − V )|τ=±1 = 0

(U ′ + V ′)|τ=±1 = 0 (6.21)

All the coefficients and right-hand sides of both equations in (6.20) are con-
stant, and the equations are decoupled. As a result, solution of boundary value
problem, (6.20) and (6.21), is obtained in the closed form

.U(τ) = p

Ω2
0

− 2p exp(−ατ)

βΩ2
0 (cos 2β + cosh 2α)

(6.22)

×[cosβ coshα(β cosβτ + α sinβτ) + sinβ sinhα(α cosβτ − β sinβτ)]

.V (τ) = − p

Ω2
0

+ 2p exp(ατ)

βΩ2
0 (cos 2β + cosh 2α)

(6.23)

×[cosβ coshα(β cosβτ − α sinβτ) + sinβ sinhα(α cosβτ + β sinβτ)]

where .α = aζΩ0 and .β = aΩ0

√
1 − ζ 2.

Substituting (6.22) and (6.23) in (6.19) gives the closed form particular solution
of original Eq. (6.17). Transition to the original temporal variable is given by the
functions .τ(ϕ) = .(2/π) arcsin[sin(πϕ/2)] and .e(ϕ) = sgn.[cos(πϕ/2)]. Since the
system under consideration is linear, the general solution of Eq. (6.17) can be
obtained by adding general solution of the corresponding equation with zero right-
hand side.

6.3 Systems Under Periodic Pulsed Excitation

Instantaneous impulses acting on a mechanical system can be modeled either by
imposing specific matching conditions on the system state vector at pulse times or
by introducing Dirac functions into the differential equations of motion. The first
approach deals with the differential equations of a free system separately between
the impulses; therefore, a sequence of systems under the matching conditions are
considered. The second method gives a single set of equations over the whole time
interval without any conditions of matching. In latter case, the analysis can be
carried out correctly in terms of distributions that requires additional mathematical
justifications in nonlinear cases. Both of the above approaches are used for different
quantitative and qualitative analyses. The analytical tool, which is described below,
eliminates the singular terms from the equations. As a result, solutions are obtained
in a closed form of a single analytical expression for the whole time interval.
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6.3.1 Regular Periodic Impulses

Introducing the triangle wave temporal argument may significantly simplify solu-
tions whenever loading functions are combined of the triangular wave and its
derivatives. For instance, let us seek a particular solution of the first-order differ-
ential equation1

.v̇ + λv = μ

∞∑
k=−∞

[δ (t + 1 − 4k) − δ (t − 1 − 4k)] (6.24)

where .λ and .μ are constant parameters.
For positive .λ, Eq. (6.24) describes the velocity of a particle moving in a viscous

media under the periodic impulsive force. The corresponding physical model is
shown in Fig. 6.1, where the freely moving massive tank experiences perfectly
elastic reflections from the stiff obstacles. By scaling the variables, one can bring the
differential equation of motion of the particle to the form (6.24), where .v (t) = ẋ (t).

First, note that the right-hand side of Eq. (6.24) can be expressed through the
generalized derivative of the square wave as follows:

.v̇ + λv = μ

2
ė (t) (6.25)

Now let us represent the particular solution in the form

.v (t) = X (τ (t)) + Y (τ (t)) e (t) (6.26)

Substituting (6.26) in (6.25) gives

.Y ′ + λX + (X′ + λY
)
e (t) +

(
Y − μ

2

)
ė (t) = 0 (6.27)

Apparently, the elements .{1, e} and .ė on the left-hand side of Eq. (6.27) are
linearly independent as functions of different classes of smoothness. Therefore,

.Y ′ + λX = 0, X′ + λY = 0, Y |τ=±1 = μ

2
(6.28)

Fig. 6.1 If mass of the
particle is very small
compared to the total mass of
the tank, then the inertia force
applied to the particle inside
the tank has a periodic
pulse-wise character

viscous media

( )x t

1 The case of Dirac comb input was considered in Chap. 1.
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Fig. 6.2 The family of discontinuous periodic solutions for different viscosity parameter of the
media inside the tank (Fig. 6.1)

In contrast to Eq. (6.24), this boundary value problem includes no discontinuities,
whereas the new independent variable belongs to the standard interval, .−1 ≤
τ ≤ 1. Solving the boundary value problem (6.28) and taking into account
substitution (6.26) give the periodic solution of Eq. (6.24) as

.v = X + Ye = μ

2 cosh λ
(− sinh λτ + e cosh λτ)

or

.v = μ

2 cosh λ
exp [−λτ (t) e (t)] e (t) (6.29)

Figure 6.2 illustrates solution (6.29) for .μ = 0.2 and different magnitudes of .λ.
Note that the discontinuous solution .v (t) is described by the closed form

expression (6.29) through the two elementary functions .τ (t) and .e (t).

6.3.2 Harmonic Oscillators Under the Periodic Impulsive
Loading

Resonances in Zero Damping Case

Let us consider the harmonic oscillator subjected to periodic pulses

.ẍ + Ω2
0x = 2p

∞∑
k=−∞

[δ (ωt + 1 − 4k) − δ (ωt − 1 − 4k)] (6.30)

where .p,Ω0 and .ω are constant parameters.
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The right-hand side of Eq. (6.30) can be expressed through the first derivative of
the square wave as follows:

.ẍ + Ω2
0x = p

de (ωt)

d (ωt)
(6.31)

Let us seek a periodic solution of the period .T = 4/ω in the form

.x (t) = X (τ (ωt)) + Y (τ (ωt)) e (ωt) (6.32)

Substituting (6.32) in (6.31) under the necessary condition of continuity for the
coordinate, .x (t), gives

.ω2X′′ + Ω2
0X +

(
ω2Y ′′ + Ω2

0Y
)

e +
(
ω2X′ − p

) de (ωt)

d (ωt)
= 0 (6.33)

Analogously to the previous subsection, Eq. (6.33) gives the boundary value
problem

.X′′ +
(

Ω0

ω

)2
X = 0, Y ′′ +

(
Ω0

ω

)2
Y = 0 (6.34)

X′|τ=±1 = p

ω2
, Y |τ=±1 = 0

Solving problem (6.34) and taking into account (6.32) give the periodic solution
of the original Eq. (6.30) in the form

.x = X (τ (ωt)) = p

ωΩ0

sin [(Ω0/ω) τ (ωt)]

cos (Ω0/ω)
(6.35)

where .Y ≡ 0.
Solution (6.35) is continuous although nonsmooth at those times t where

.τ (ωt) = ±1. All possible resonances are given by

.ω = 2

π

Ω0

k
; k = 1, 3, 5, . . . (6.36)

where the factor .2/π is due to different normalization of the periods for sine and
triangle waves.

Viscous Damping Case

Now let us consider the case of standard harmonic oscillator described by the
differential equation of motion
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.ẍ + 2ζΩ0ẋ + Ω2
0x = p

de (ωt)

d (ωt)
(6.37)

where .ζ is the damping ratio.
In this case, the boundary value problem becomes coupled

.X′|τ=±1 = p

ω2
, Y |τ=±1 = 0

.X′′ + 2ζ rY ′ + r2X = 0 (6.38)

Y ′′ + 2ζ rX′ + r2Y = 0

where .r = Ω0/ω is the adjusted natural over loading frequency ratio. Recall that
the sine wave frequency is given by .Ω = (π/2)ω. The principal resonance ratio is
therefore .r = π/2, which is obviously equivalent to .Ω0 = Ω .

As a result, the periodic solution has both X and Y components and is given by

.x = X + Ye = p

βω2
(
cos2 β cosh2 α + sin2 β sinh2 α

)
×[coshα cosβ coshατ sinβτ − sinhα sinβ sinhατ cosβτ (6.39)

+ (sinhα cosβτ coshατ sinβ − sinhατ sinβτ coshα cosβ) e]

where .τ = τ (ωt), .e = e (ωt); .α = rζ and .β = r
√
1 − ζ 2.

Figure 6.3 illustrates qualitatively different responses of the system when varying
the input frequency. In different proportions, the responses combine properties of the
harmonic damped motion and the nonsmooth motion due to the impulsive loading.
For instance, when .ω >> Ω0 and .ω >> ζΩ0, the system is near the limit of a free
particle under the periodic impulsive force. In this case, the boundary value problem
is reduced to

.X′′ = 0, Y ′′ = 0; X′ |τ=±1= p

ω2 , Y |τ=±1= 0 (6.40)

This gives the triangle wave temporal shape, .x = pτ (ωt) /ω2, which is close to
the shape in Fig. 6.3d.

Multiple Degrees-of-Freedom Case

Finally, let us consider N -degrees-of-freedom system

.M ÿ + Ky = p
de (ωt)

d (ωt)
(6.41)
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Fig. 6.3 Evolution of the response of the damped harmonic oscillator under the periodic impulsive
excitation for .p = 0.1, .ζ = 0.125, .Ω0 = 4.0, and different impulse frequencies .Ω = (π/2)ω: (a)
.Ω = 0.2—low-frequency Impulses, (b) .Ω = 2.0, (c) .Ω = Ω0, and (d) .Ω = 8.0

where .y (t) is N -dimensional vector-function, .p is a constant vector, and M and K

are constant .N × N mass and stiffness matrixes, respectively.
Let .{e1, . . . , eN } and .Ω1,. . . ,.ΩN be the normal mode basis vectors and the

corresponding natural frequencies, respectively, such that

.Kej = Ω2
j Mej , eT

k Mej = δkj

for any .k = 1, . . . , N and .j = 1, . . . , N .
Introducing the principal coordinates .xj (t),

.y =
N∑

j=1

xj (t) ej (6.42)

gives a decoupled set of impulsively forced harmonic oscillators of the form (6.31),

.ẍj + Ω2
j xj = pj de (ωt)

d (ωt)
(6.43)

where .pj = eT
j p.

Therefore, using solution (6.35) for each of the oscillators (6.43) and taking into
account (6.42) give

.y =
N∑

j=1

(eT
j p)ej

ωΩj

sin
[(

Ωj/ω
)
τ (ωt)

]
cos
(
Ωj/ω

) (6.44)
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Fig. 6.4 Basic NSTT asymmetric wave functions

The corresponding resonances are determined by the condition

.ω = 2

π

Ωj

k

where .k = 1, 3, 5, . . . and .j = 1, . . . , N .

6.3.3 Periodic Impulses with a Temporal Dipole Shift

Let us consider the impulsive excitation with a dipole wise shift of pulse times. In
this case, the right-hand side of Eq. (6.25) can be expressed by second derivative of
the asymmetric triangle wave with some incline2 characterized by the parameter .γ

as shown in Fig. 6.4

.v̇ + λv = p
∂2τ (ωt, γ )

∂ (ωt)2
= p

∂e (ωt, γ )

∂ (ωt)
(6.45)

= 2p

1 − γ 2

∞∑
k=−∞

[δ (ωt + 1 − γ − 4k) − δ (ωt − 1 + γ − 4k)]

Based on the NSTT identities introduced in Chap. 4, periodic solutions of
Eq. (6.45) still can be represented in the form

.v = X (τ) + Y (τ) e (6.46)

where .τ = τ (ωt, γ ) and .e = e (ωt, γ ); see Fig. 6.4 for graphic illustrations.

2 Can be viewed as a generalized sawtooth function.
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Substituting (6.46) in Eq. (6.45) gives

.ωαY ′ + λX + [ω (X′ + βY ′)+ λY
]
e + (ωY − p)

∂e(ωt, γ )

∂(ωt)
= 0 (6.47)

where .α = 1/
(
1 − γ 2

)
, .β = 2γα, and the identity .e2 = α +βe has been taken into

account.
Equation (6.47) is equivalent to the boundary-value problem

.ω
(
X′ + βY ′) = −λY

ωαY ′ = −λX (6.48)

ωY |τ=±1 = p

The corresponding solution is

.Y = p

ω

[
cosh

(
γ

λ

ω

)
cosh

(
λ
ω
τ
)

cosh λ
ω

− sinh

(
γ

λ

ω

)
sinh

(
λ
ω
τ
)

sinh λ
ω

]
exp

(
γ

λ

ω
τ

)

X = −ωα

λ
Y ′ (6.49)

where the X-component is defined by differentiation due to the second equation
in (6.48).

6.4 Parametric Excitation

In this section, two different cases of parametric excitation are considered based on
relatively simple linear models. Piecewise-constant and impulsive excitations are
described by means of the functions .e(ωt, γ ) and .∂e(ωt, γ )/∂ (ωt), respectively.
There are at two least reasons for using NSTT as a preliminary analytical step.
First, NSTT automatically gives conditions for matching solutions at discontinuity
points. Second, due to the automatic matching through the NSTT functions,
the corresponding solutions appear to be in the closed form that is important
feature when further manipulations with the solutions are required by problem
formulations.

6.4.1 Piecewise-Constant Excitation

Let us consider the linear oscillator under the periodic piecewise-constant paramet-
ric excitation
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.ẍ + Ω2
0 [1 + εe(ωt, γ )]x = 0 (6.50)

where .Ω0, .ω, .γ , and .ε are constant parameters.
We seek periodic solutions with the period of excitation .T = 4/ω in the form

.x = X (τ) + Y (τ) e (6.51)

where .τ = τ(ωt, γ ) and .e = e(ωt, γ ).
As follows from the form of Eq. (6.50), the acceleration .ẍ may have stepwise

discontinuities due to the presence of the function .e(ωt, γ ), whereas the coordinate
.x (t) and the velocity .ẋ (t) must be continuous. Hence neither velocity .ẋ (t) nor
acceleration .ẍ (t) can include Dirac .δ-functions. Taking first derivative of (6.51)
gives

.ẋ (t) =
[
αY ′ + (X′ + βY ′)e + Y

∂e(ωt, γ )

∂ (ωt)

]
ω (6.52)

where the last term that consists of the periodic sequence of .δ-functions must be
excluded by imposing the boundary condition for Y -component

.Y |τ=±1= 0 (6.53)

Under condition (6.53), the second derivative takes the form

.ẍ (t) = ω2[α(X
′′ + βY

′′
)] + ω2[βX

′′ + (α + β2)Y
′′ ]e

+ω2(X′ + βY ′)∂e (ωt, γ )

∂ (ωt)
(6.54)

In this case, the singular term, which is underlined in (6.54), is eliminated by
condition

.
(
X′ + βY ′) |τ=±1= 0 (6.55)

Substituting (6.51) and (6.54) in the differential equation of motion (6.50) and
taking into account the algebraic properties of hyperbolic numbers bring the left-
hand side of the equation to the form .{· · ·} + {· · ·}e. Then, setting separately each
of the two algebraic components to zero gives a set of the differential equations for
.X (τ) and .Y (τ) in the following matrix form:

.

[
α αβ

β α + β2

]
d2

dτ 2

[
X

Y

]
+ r2

[
1 αε

ε 1 + βε

] [
X

Y

]
= 0 (6.56)

where .r = Ω0/ω
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Further, any particular solution of linear differential equations with constant
coefficients (6.56) is represented in the exponential form

.

[
X

Y

]
= B

[
1
μ

]
exp (λτ) (6.57)

where B, .μ, and .λ are constant parameters.
Substituting (6.57) in (6.56) and using the relationships, .α = 1/

(
1 − γ 2

)
and

.β = 2γ α, lead to the characteristic equation with two pairs of roots determined by

.λ2 =
[
− (1 − γ ) ε − (1 − γ )2

]
r2 ≡ ±k2 (6.58)

λ2 =
[
(1 + γ ) ε − (1 + γ )2

]
r2 ≡ ±l2

where signs of the notations .±k2 and .±l2 depend on the parameters .ε and .γ .
Let us consider the case of negative signs on the right-hand side of (6.58), when

the following condition holds:

. − (1 − γ ) < ε < (1 + γ ) (6.59)

Due to condition (6.59), the stiffness coefficient in Eq. (6.50) is always positive,
whereas (6.58) gives .λ = ±ki and .λ = ±li.As a result, the general solution of
Eqs. (6.56) takes the form

.X = B1 sin kτ + B2 cos kτ + B3 sin lτ + B4 cos lτ

Y = μ1 (B1 sin kτ + B2 cos kτ) + μ2 (B3 sin lτ + B4 cos lτ ) (6.60)

where .B1,. . . ,.B4 are arbitrary constants, and

.μ1 = − 1

α

αk2 − r2

βk2 − εr2
and μ2 = − 1

α

αl2 − r2

βl2 − εr2

Substituting (6.60) in boundary conditions (6.53) and (6.55) gives the homoge-
neous set of four linear algebraic equations with respect to the arbitrary constants
whose matrix is

.

⎡
⎢⎢⎣

μ1 sin k μ1 cos k μ2 sin l μ2 cos l

−μ1 sin k μ1 cos k −μ2 sin l μ2 cos l

k (1 + βμ1) cos k −k (1 + βμ1) sin k l (1 + βμ2) cos l −l (1 + βμ2) sin l

k (1 + βμ1) cos k k (1 + βμ1) sin k l (1 + βμ2) cos l l (1 + βμ2) sin l

⎤
⎥⎥⎦
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ε

r r

Fig. 6.5 Instability zones of oscillator (6.50) under the piecewise constant parametric excitation
for (a) .γ = 0.0 and (b) .γ = 0.7, where .r = Ω0/ω

Calculation of the determinant can be eased essentially after a proper summation
and subtraction of its rows. Then setting it to zero gives a condition for non-zero
solutions in the form

.
[
μ1 (1 + βμ2) l cos k sin l − μ2 (1 + βμ1) k cos l sin k

]
× [μ1 (1 + βμ2) l cos l sin k − μ2 (1 + βμ1) k cos k sin l

] = 0 (6.61)

Equation (6.61) describes the family of curves separating stability and instability
zones on the plane (.r, ε) as shown in Fig. 6.5, where the instability zones are
shadowed.

The diagrams in Fig. 6.5 are interpreted in a similar way to Ince-Strutt diagrams
showing the transition curves in the parameters’ plane. The curves divide the plane
into regions corresponding to unbounded/unstable and regions of bounded/stable
solutions.

6.4.2 Parametric Impulsive Excitation

Let us consider the case of parametric impulsive excitation whose temporal shape is
given by first derivative of the generalized square wave, .e (ωt, γ ), [177]

.ẍ + Ω2
0

[
1 + ε

∂e (ϕ, γ )

∂ϕ

]
x = 0 (6.62)
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where .ϕ = ωt , and

.
∂e (ϕ, γ )

∂ϕ
= ∂2τ (ϕ, γ )

∂ϕ2

= 2

1 − γ 2

∞∑
k=−∞

[δ (ϕ + 1 − γ − 4k) − δ (ϕ − 1 + γ − 4k)]

In this case, when substituting (6.51) and (6.54) in Eq. (6.62), the singular term
of second derivative (6.54) must be preserved in order to compensate the singularity
in Eq. (6.62). The result of such a compensation leads to the boundary conditions
(compare to (6.55))

.τ = ±1 : ω2(X′ + βY ′) + εΩ2
0X = 0 (6.63)

Note that substitution of (6.51) in Eq. (6.62) generates the term .(∂e/∂ϕ)eY ,
which is generally undefined in the theory of distributions. This term represents a
periodic series of .δ-functions, .∂e/∂ϕ, “multiplied” by the function e whose stepwise
discontinuities coincide with the times of .δ-functions, .{ϕ : τ (ϕ, γ ) = ±1}. Some
interpretations of such terms are still possible only within specific contents assuming
the common physical nature for both singularities as discussed in the next section.
In the present case, the term .(∂e/∂ϕ)eY is simply removed from the equation since
the point-wise singularities at .{ϕ : τ (ϕ, γ ) = ±1} are suppressed by continuity
condition (6.53) for the coordinate x: .Y |τ=±1= 0. Then combining separately two
group of terms associated with different structural parts of the hyperbolic number
gives

.

[
α αβ

β α + β2

]
d2

dτ 2

[
X

Y

]
+ r2

[
1 0
0 1

] [
X

Y

]
= 0 (6.64)

where .r = Ω0/ω.
Further steps follow the previous section. Substituting (6.57) in (6.64) leads to the

characteristic equation whose two pairs of roots .λ and the corresponding amplitude
ratios .μ are given by

.λ = ±ki = ±r(1 + γ )i, μ1 = −1 + γ

λ = ±li = ±r(1 − γ )i, μ2 = 1 + γ

where the notations .α = 1/
(
1 − γ 2

)
and .β = 2γα were taken into account.

Then, substituting (6.60) in boundary conditions, (6.53) and (6.63), gives a
homogeneous linear algebraic system for the constants .B1, . . . , B4. Setting its
determinant to zero gives the condition of existence of the period, .T = 4/ω, as

.ε2 = 2
(
1 − γ 2

)2
sin2 2r

r2(cos 4r − cos 4γ r)
(6.65)
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The dependence of .ε on r at fixed .γ has a branched zone-like structure on
the plane .(r, ε) which is typical for different cases of parametrically excited
oscillators. Interestingly enough, different subsequences of zones may disappear
as the parameter .γ varies. For instance, the number .γ = 1/2 eliminates every
second zone, whereas the number .γ = 1/5 removes every fifth zone. The effect of
collapsing instability zones can be explained by considering the regions of definition
for condition (6.65), .cos 4r − cos 4γ r > 0. This inequality holds inside the white
regions on the plane .(r, γ ) as shown in Fig. 6.6. It is seen that the bottom horizontal
line, .γ = 1/5, intersects four white regions before it starts crossing two shadowed
areas with no white one in between. It happens because the line intersects the (blue)
point at the corners of two shadowed regions. The corresponding vertical straight
line, which is intersecting the same point, corresponds to one of the roots of the
equation .sin 2r = 0. This root, .r = 5π/2, locates the point on the r-axis, from
which the missing instability zone would branch out if the line .γ = 1/5 were
slightly shifted up or down. Another horizontal line, .γ = 1/5, gives the example,
when every second zone is missing.

�

r

Fig. 6.6 The regions of definition for condition (6.65) are shown in white color; the locations of
blue dots explain why the corresponding zones of Ince-Strutt diagrams collapse; see the main text
for more details
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6.4.3 General Case of Periodic Parametric Excitation

Below, the problem formulation only is discussed for the case of periodic parametric
loading with both regular and singular components. It is assumed that there are two
discontinuities and two singularities on each period at the same time points. The
differential equation of motion is represented in the vector form

.ẍ +
[
Q(τ) + P (τ) e + p

∂e

∂ϕ

]
x = 0 (6.66)

where .x(t) ∈ Rn is the coordinates’ vector-column,.τ = τ (ϕ, γ ), .e = e (ϕ, γ ),
.ϕ = ωt is the phase variable, p is a constant .n × n matrix, and .Q(τ (ϕ, γ )) and
.P (τ (ϕ, γ )) are periodic matrixes of the period .T = 4 with respect to the phase .ϕ.

In Eq. (6.66), the first two terms of the coefficient can represent any periodic
function .q (ϕ) with stepwise discontinuities on .Λ = {t : τ (ϕ, γ ) = ±1}. In case
the original function .q (ϕ) is continuous, one has .P = 0 on .Λ.

Let us represent periodic solutions of the period .T = 4 in the form (6.51).
Substituting (6.51) in Eqs. (6.66), taking into account the equality .e2 = α + βe,
the necessary condition of continuity of the vector function .x (t), (6.53), and using
(6.52) and (6.54) give equations

.ω2 (αX′′ + αβY ′′)+ QX + αPY = 0

ω2
[(

α + β2
)

Y ′′ + βX′′]+ PX + QY + βPY = 0 (6.67)

and the boundary condition

.

[
ω2 (X′ + βY ′)+ pX

]
|τ=±1= 0 (6.68)

In the case of fixed sign of impulses, the matrix p should be provided with the
factor sgn.(τ ). Together with (6.53), relations (6.67) and (6.68) represent a boundary-
value problem for determining the vector functions X and Y and the corresponding
conditions for existence of periodic solutions.

Note that substitution (6.51) in Eq. (6.66) generates the specific term .e∂e/∂ϕ. Let
us show that, within the theory of distributions, these terms can be interpreted as

.e
∂e

∂ϕ
= 1

2
β

∂e

∂ϕ
(6.69)

The relationship (6.69) is the result of a formal differentiation of both sides of
the relation .e2 = α + βe with respect to the phase .ϕ. To justify it in terms of
distributions, let us assume that .ω = 1 so that .ϕ ≡ t and consider expression (6.53)
locally, near the point .t = 1 − γ , which is a typical point for the entire set of
discontinuities at times .Λ = {t : τ (t) = ±1}.
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Generally speaking, the “product” .f (t)δ(t) requires the function .f (t) to be at
least continuous at .t = 0. However, it is possible to provide the left-hand side
of (6.69) with a certain meaning due to the fact that both terms of the product are
generated by the same family of smooth functions. In order to illustrate this remark
and prove equality (6.69), let us consider a family of smooth functions .{δε (t)} such
that

.

ε∫
−ε

δε (t) dt = 1 (6.70)

for all positive .ε, and .δε (t) = 0 outside the interval .−ε < t < ε.
Therefore, in terms of weak limits, .δε (t) → δ (t) as .ε → 0. Now, a family of

smooth functions approximating e and .∂e/∂t in the neighborhood of point .t = 1−γ

within the interval .−1 + γ < t < 3 + γ can be chosen as, respectively,

.eε = 1

1 − γ
− β

γ
θε (t − 1 + γ ) and

∂eε

∂t
= −β

γ
δε (t − 1 + γ ) (6.71)

where .θε (t) =
t∫

−∞
δε (ξ) dξ is a smoothed version of Heaviside unit-step function

associated with .δε (t).
Based on definitions (6.71) for .eε and .∂eε/∂t , one has .eε → e and .∂eε/∂t →

∂e/∂t as .ε → 0 in the interval .−1 + γ < t < 3 + γ .
Substituting (6.71) in equality (6.69) instead of e and .∂e/∂ϕ reduces the problem

to the proof of identity

.θε(t−1+γ )δε(t−1+γ ) = 1

2
δε(t−1+γ ) → 1

2
δ(t−1+γ ) as ε → 0 (6.72)

For simplicity reason, let us shift the origin to the point .t = 1 − γ and show
that the left-hand side of (6.72) gives .δ (t) /2 as .ε → 0 in the sense of a weak limit.
The proof below is based on general properties of the functions .{δε} regardless of
specifics of their shapes. It is important nonetheless to maintain the relationship
.dθε/dt = δε as shown in Fig. 6.7. First, the area bounded by .θεδε is

.

∫ ε

−ε

θεδεdt =
∫ ε

−ε

θε

dθε

dt
dt = 1

2
θ2ε |ε−ε=

1

2

Then, let .φ (t) belong to the class of continuous testing functions, which
is usually considered in the theory of distributions. By definition, in some .ε-
neighborhood of the point .t = 0, one has .| φ (t) − φ (0) |< 2η, where .η is as
small as needed whenever .ε is sufficiently small. Therefore,

. |
∫ ε

−ε

θε (t) δε (t) φ (t) dt − 1

2
φ (0) |≤

∫ ε

−ε

θε (t) δε (t) | φ (t) − φ (0) | dt ≤ η
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Fig. 6.7 Clarification for the
product .δ(t)θ(t) based on the
smooth families of functions
.δε(t) and .θε(t)

–

t

Fig. 6.8 Two mass-spring
model 1x 2x

1m 2m

1k 2k

1c 1F

In other words,

.

∫ ε

−ε

θε (t) δε (t) φ (t) dt → 1

2
φ (0)

as .ε → 0.
This completes the proof.

6.5 Input-Output Systems

The input-output form of dynamical systems may be convenient for different
reasons, for instance, when dealing with control problems. In many linear cases,
input-output systems are represented in the form of a single high order equation

.an

dny

dtn
+ . . . + a1

dy

dt
+ a0y = bm

dmu

dtm
+ . . . + b1

du

dt
+ b0u (6.73)

where .u = u(t) and .y = y(t) are input and output, respectively, and .an, . . . , a1, .a0,
.bm, . . . , b1, .b0 are constant coefficients.

For illustration purposes, a two-degrees-of-freedom model as shown in Fig. 6.8
is considered, although the general case (6.73) can be handled in the same way.
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Eliminating .x2(t) from the system gives a single higher-order equation with
respect to the other coordinate, .x1(t), in the form

. m1
d4x1

dt4
+ c1

d3x1

dt3
+
(

k1 + k2 + m1

m2
k2

)
d2x1

dt2
+ c1

m2
k2

dx1

dt
+ k1k2

m2
x1

= d2F1

dt2
+ k2

m2
F1 (6.74)

System (6.74) is a particular case of (6.73), where .n = 4 and .m = 2. Let us
consider the stepwise discontinuous periodic function .F1(t) = u(t) = e(ωt) and
represent Eq. (6.74) in the form

.a4
d4y

dt4
+ . . . + a1

dy

dt
+ a0y = b2ω

2e′′ + b1ωe′ + b0e (6.75)

where .
′ ≡ d/d(ωt), and all the coefficients and variables are identified by

comparing (6.74)–(6.75).
The right-hand side of Eq. (6.75) contains discontinuous and singular functions;

hence, Eq. (6.75) must be treated in terms of distributions. Nonetheless, on the
manifold of periodic solutions, Eq. (6.75) is equivalent to some classical boundary-
value problem.

To confirm this statement, let us represent the output in the form

.y(t) = X(τ) + Y (τ)e (6.76)

where .τ = τ(ωt) and .e = e(ωt).
When differentiating expression (6.76) step-by-step, one should eliminate the

singular term .e′ in the first two derivatives by sequentially setting boundary
conditions as follows:

.
dy

dt
= (Y ′ + X′e)ω, Y |τ=±1 = 0 (6.77)

d2y

dt2
= (X′′ + Y ′′e)ω2, X′|τ=±1 = 0

Then, it is dictated by the form of the input in (6.75) that the singular terms .e′
and .e′′ must be preserved on the next two steps:

.
d3y

dt3
= (Y ′′′ + X′′′e + Y ′′e′)ω3 (6.78)

d4y

dt4
= (X(4) + Y (4)e + X′′′e′ + Y ′′e′′)ω4
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The fourth-order derivative in (6.78) takes into account the equality .ee′ = 0,
which easily follows from (6.53) in the symmetric case .β = 0. Substituting (6.77)
and (6.78) in (6.75) and considering the elements .{1, e, e′, e′′} as a linearly
independent give equations

.a4ω
4XIV + a3ω

3Y ′′′ + a2ω
2X′′ + a1ωY ′ + a0X = 0 (6.79)

a4ω
4Y IV + a3ω

3X′′′ + a2ω
2Y ′′ + a1ωX′ + a0Y = b0

under the boundary conditions at .τ = ±1:

.Y = 0, X′ = 0 (6.80)

ω2Y ′′ = b2

a4
, ω3X′′′ = 1

a4

(
b1 − a3

a4
b2

)

In contrast to Eq. (6.75), the boundary value problem (6.79) and (6.80) does not
include discontinuous terms any more. Although the number of equations in (6.79)
is doubled as compared to (6.75), such a complication is rather formal due to
the symmetry of the equations. Introducing the new variables, .U = X + Y and
.V = X − Y , decouples system (6.79) in such a way that the corresponding roots
of the characteristic equations differ just by signs. (Besides, this fact reveals the
possibility of using the idempotent basis for decoupling the resultant set of equations
as discussed in Chap. 4 and will be discussed later in this chapter.) In addition, the
type of the symmetry suggests that .X(τ) and .Y (τ) are odd and even functions,
respectively. This enables one of reducing the general form of solution to a family
of solutions with four arbitrary constants

.X =
2∑

j=1

[
Aj cosh

(αj

ω
τ
)
sin

(
βj

ω
τ

)
+ Bj sinh

(αj

ω
τ
)
cos

(
βj

ω
τ

)]
(6.81)

Y =
2∑

j=1

[
Aj sinh

(αj

ω
τ
)
sin

(
βj

ω
τ

)
+ Bj cosh

(αj

ω
τ
)
cos

(
βj

ω
τ

)]
+ b0

a0

where .αj ± βj i are complex conjugate roots of the characteristic equation

.a4p
4 + . . . + a1p + a0 = 0 (6.82)

The assumption that both of the roots are complex reflects the physical meaning
of the example. Finally, substituting (6.81) in (6.80) gives a linear algebraic set
of four independent equations with respect to four constants: .A1, .A2, .B1, and
.B2. Although the corresponding analytical solution is easy to obtain by using
the standard Mathematica® commands, the result is somewhat complicated for
reproduction. Practically, it may be reasonable to determine the constants by setting
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the system parameters to their numerical values moreover that only numerical
solution is often possible for characteristic equations.

6.6 Piecewise-Linear Oscillators with Asymmetric
Characteristics

Piecewise-linear oscillators are often considered as finite degrees-of-freedom mod-
els of cracked elastic structures [3, 41, 243], but may occur also due to specific
design solutions. In many cases, the corresponded periodic solutions can be com-
bined of different pieces of linear solutions valid for two different subspaces of the
configuration space [42, 99, 243]. In this section, it will be shown that the nonsmooth
transformation of time results in a closed form analytical solution matching both
pieces of the solution automatically by means of elementary functions.

6.6.1 Amplitude-Phase Equations

Let us consider a piecewise linear oscillator of the form

.mq̈ + k[1 − εH(q)]q = 0 (6.83)

where .H(q) is Heaviside unit-step function; m and k are mass and stiffness
parameters, respectively; and .|ε| � 1; therefore, .k− = k and .k+ = k(1 − ε) are
elastic stiffness of the oscillator for .q < 0 and .q > 0, respectively.

The exact general solution of oscillator (6.83) can be obtained by satisfying
the continuity conditions for q and .q̇ at the matching point .q = 0, where the
characteristic has a break. The exact closed form solution for a similar oscillator
was obtained in Sect. 4.3.4 in terms of NSTT. Such approaches are often facing quite
challenging algebraic problems, as the number of degrees of freedom increases or
external forces are involved. This is mainly due to the fact that times of crossing
the boundary, .q = 0, are a priori unknown. The problems become even more
complicated in the presence of other types of nonlinearities. In this section, it will
be shown that applying a combination of asymptotic expansions with respect to
.ε and NSTT gives a closed form solution for oscillator (6.83) with a possibility
of generalization on the normal mode motions of multiple degrees-of-freedom
systems. In particular, the nonsmooth temporal transformation:

• Provides an automatic matching of the motions from different subspaces of
constant stiffness, and

• justifies quasi-linear asymptotic solutions for the specific nonsmooth case of
piecewise linear characteristics.
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Let us clarify the above two remarks. Introducing the notation .Ω2 = k/m brings
Eq. (6.83) to the standard form of a weakly nonlinear oscillator

.q̈ + Ω2q = εΩ2H(q)q (6.84)

The nonlinear perturbation on the right-hand side of oscillator (6.84) is a
continuous but nonsmooth function of the coordinate q. Since the major algorithms
of quasi-linear theory assume smoothness of nonlinear perturbations, then such
algorithms are not applicable in this case unless appropriate modifications and
extensions have been made. Even though deriving first-order asymptotic solutions
usually require no differentiation of characteristics, dealing with two pieces of the
solution may complicate any further stages.

Let us show that combining quasi-linear methods of asymptotic integration,
such as Krylov-Bogolyubov averaging,3 with nonsmooth temporal transformations
results in a closed form analytical solution for piecewise linear oscillator (6.83).
Note that oscillator (6.83) plays an illustrative role for the approach developed
below. Then a more complicated case will be considered.

Let us introduce the amplitude-phase coordinates .{A(t), ϕ(t)} on the phase plane
of oscillator (6.83) through relationships

.q = A cosϕ

q̇ = −ΩA sinϕ (6.85)

The following compatibility condition is imposed on transformation (6.85)

.Ȧ cosϕ − A sinϕϕ̇ = −ΩA sinϕ (6.86)

Substituting (6.85) in (6.84) and taking into account (6.86) give

.Ȧ = −1

2
εΩAH(A cosϕ) sin 2ϕ

ϕ̇ = Ω − εΩH(A cosϕ) cos2 ϕ (6.87)

The right-hand sides of Eqs. (6.87) are .2π -periodic with respect to the phase
variable, .ϕ. Therefore, nonsmooth transformation of the phase variable applies
through the couple of functions

.τ = τ

(
2

π
ϕ

)
and e = e

(
2

π
ϕ

)
(6.88)

Assuming that .A ≥ 0 and taking into account identities

3 See Sect. 2.2.2.
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. sinϕ = sin
(π

2
τ
)

cosϕ = cos
(π

2
τ
)

e

H(A cosϕ) = 1

2
(1 + e) (6.89)

e2 = 1

bring (6.87) to the form

.Ȧ = −1

4
εΩ(1 + e)A sinπτ . (6.90)

ϕ̇ = Ω − 1

2
εΩ(1 + e) cos2

πτ

2
(6.91)

Note that the right-hand sides of (6.90) and (6.91) are nonsmooth but continuous
with respect to the phase .ϕ since the stepwise discontinuities of the square wave
.e(2ϕ/π) are suppressed by the factors .sinπτ and .cos2(πτ/2), respectively.

6.6.2 Amplitude Solution

Let us show that Eq. (6.90) has an exact .2π -periodic solution with respect to the
phase variable, .ϕ. According to the algorithm of NSTT, any periodic solution can
be represented in the form

.A = X(τ) + Y (τ)e (6.92)

where .τ and e are defined by (6.88).
Substituting (6.92) in (6.90) and taking into account (6.91) give boundary-value

problem

.(X − Y )′ = 0

(X + Y )′

X + Y
= −επ

4

sinπτ

1 − ε cos2 πτ
2

(6.93)

.Y |τ=±1 = 0 (6.94)

where .
′ ≡ d/dτ .
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Solution of the boundary value problem, (6.93) and (6.94), is obtained by
integration. Then representation (6.92) gives

.A(ϕ) = α[1 + ζ (τ )] − α[1 − ζ (τ )]e (6.95)

ζ (τ ) =
(
1 − ε cos2

πτ

2

)−1/2

where the functions .τ and e of the phase .ϕ are defined in (6.88), and .α is an arbitrary
positive constant.

Note that solution (6.95) exactly captures the amplitude in both subspaces .q < 0
and .q > 0. However, the temporal mode shape and the period essentially depend on
the phase variable .ϕ described by Eq. (6.91). Generally, this equation admits exact
integration, but the result would appear to have implicit form. Alternatively, it is
shown below that solution for the phase variable can be approximated by asymptotic
series in the explicit form

.ϕ = φ − 1

8
ε[πτ + (1 + e) sinπτ ]

− 1

128
ε2{4(2 − cosπτ)(πτ + sinπτ) (6.96)

−[4πτ(1 + cosπτ) − 8 sinπτ + sin 2πτ ]e} + O(ε3)

where the triangle and rectangle waves depend on the new phase variable, .τ =
τ(2φ/π), .e = e(2φ/π), and

.φ = Ω

[
1 − 1

4
ε − 3

32
ε2 + O(ε3)

]
t (6.97)

6.6.3 Phase Solution

In this subsection, a second-order asymptotic procedure for phase equations with
nonsmooth periodic perturbations is introduced. If applied to Eq. (6.91), the devel-
oped algorithm gives solution (6.96).

Let us consider some phase equation of the general form

.ϕ̇ = Ω[1 + εf (ϕ)] (6.98)

where .f (ϕ) is a .2π -periodic, nonsmooth, or even stepwise discontinuous function,
and .ε is a small parameter, .|ε| � 1.

Using the basic NSTT identity for .f (ϕ) brings Eq. (6.98) to the form

.ϕ̇ = Ω + εΩ [G(τ) + M(τ)e] (6.99)
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where the functions .G(τ) and .M(τ) are expressed through .f (ϕ), and the functions
.τ and e of the phase .ϕ are defined in (6.88).

Note that the class of smoothness of the periodic perturbation in Eq. (6.99)
depends on the behavior of functions .G(τ) and .M(τ) and their derivatives at the
boundaries .τ = ±1. If, for instance, .M(±1) 
= 0, then the perturbation is stepwise
discontinuous in .ϕ whenever .τ = ±1.

Let us introduce the asymptotic procedure for Eq. (6.99) by noticing that, in case
.ε = 0, the phase .ϕ has a constant temporal rate, .ϕ̇ = Ω . Hence, following the idea
of asymptotic integration, let us find a phase transformation

.ϕ = φ + εF1(φ) + ε2F2(φ) + . . . (6.100)

where functions .Fi(φ) are such that the new phase variable, .φ, also has a constant
temporal rate even when .ε 
= 0.

In other words, transformation (6.100) should bring Eq. (6.99) to the form

.φ̇ = Ω(1 + εγ 1 + ε2γ 2 + . . .) (6.101)

where .γ i are constant coefficients to be determined together with .Fi(φ) during the
asymptotic procedure.

Note that the procedure, which is described below, has several specific features
due to the presence of nonsmooth periodic functions. In particular, high-order
approximations require a non-conventional interpretation for the power series
expansions as discussed in Remark 6.6.1 at the end of this section. Other modifi-
cations occur already in the leading order approximation.

Substituting (6.100) in Eq. (6.99) and then enforcing Eq. (6.101) and collecting
the terms of order .ε give

.F ′
1(φ) = G(τ) + eM(τ) − γ 1 (6.102)

where the triangle and square waves depend now on the new phase variable .φ as
.τ = τ(2φ/π) and .e = e(2φ/π), respectively.

According to the conventional averaging procedure, the constant .γ 1 is selected
to achieve a zero mean on the right-hand side of Eq. (6.102) and thus provide
periodicity of the solution, .F1(φ). In the algorithm below, the periodicity is due to
the form of representation for periodic solutions, whereas the operator of averaging
occurs automatically from the corresponding conditions of smoothness that is
boundary conditions for the solution components. Following this remark, let us seek
solution of Eq. (6.102) in the form

.F1(φ) = U1(τ ) + eV1(τ ) (6.103)

Substituting (6.103) in (6.102) and applying NSTT procedure give the boundary-
value problem
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.U ′
1(τ ) = π

2
M(τ)

V ′
1(τ ) = π

2
[G(τ) − γ 1] (6.104)

V1(±1) = 0

There are two conditions on the function .V1(τ ) described by the first-order
differential equation in (6.104). There is also a choice for .γ 1, which is to satisfy
one of the two conditions. As a result, solution of boundary-value problem (6.104)
is obtained by integration in the form

.U1(τ ) = π

2

∫ τ

0
M(z)dz

V1(τ ) = π

2

∫ τ

−1
[G(z) − γ 1]dz (6.105)

γ 1 = 1

2

∫ 1

−1
G(τ)dτ

Further, collecting the terms of order .ε2 gives

.F ′
2(φ) = G2(τ ) + eM2(τ ) + P2(τ )e′ − γ 2 (6.106)

where .e′ ≡ de(2φ/π)/d(2φ/π) is a periodic series of .δ-functions, and

.M2(τ ) = 2

π
[U1(τ )G′(τ ) + V1(τ )M ′(τ )] − M(τ)γ 1

G2(τ ) = 2

π
U1(τ )M ′(τ ) − G(τ)γ 1 + γ 2

1 (6.107)

P2(τ ) = 2

π
U1(τ )M(τ)

In contrast to first-order Eq. (6.102), the Eq. (6.106) includes the singular term
.P2(τ )e′ produced by the power series expansion of the perturbation in Eq. (6.99).
If the perturbation is smooth, then .P2(±1) = 0 and such singular term disappears.
Nonetheless, the second-order approximation makes sense even in discontinuous
case, when .P2(±1) 
= 0. To clarify the details, let us represent solution of
Eq. (6.106) in the form

.F2(φ) = U2(τ ) + eV2(τ ) (6.108)

Substituting (6.108) in (6.106) gives boundary-value problem
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.U ′
2(τ ) = π

2
M2(τ )

V ′
2(τ ) = π

2
[G2(τ ) − γ 2] (6.109)

V2(±1) = π

2
P2(±1)

In contrast to (6.104), the current boundary-value problem has generally non-
homogeneous boundary conditions for .V2. These conditions compensate the singu-
lar term .e′ from differential equation (6.106). As a result Eqs. (6.109) are free of any
singularities and admit solution analogously to first-order Eqs. (6.104),

.U2(τ ) = π

2

∫ τ

0
M2(z)dz

V2(τ ) = π

2

∫ τ

−1
[G2(z) − γ 2]dz + π

2
P2(−1) (6.110)

γ 2 = 1

2

∫ 1

−1
G2(τ )dτ + 1

2
[P2(−1) − P2(1)]

Example 6.6.1 Now, let us revisit the illustrating model. In particular case (6.91),
one has

.G(τ) ≡ M(τ) ≡ −1

2
cos2

πτ

2
(6.111)

and

.G(±1) = M(±1) = 0

G′(±1) = M ′(±1) = 0 (6.112)

G′′(±1) = M ′′(±1) = −π2/4

where .
′ ≡ d/dτ . First two of Eqs. (6.112) provide continuity for the right-hand

side of (6.99) and its first derivative at those .ϕ where .τ = ±1. As follows from
(6.107) and (6.111), for this class of smoothness, one has .P2(±1) = 0 and hence no
singular terms occur in the first two steps of asymptotic procedure. Finally, taking
into account (6.111) and (6.112) and conducting integration in (6.105) and (6.110)
bring solution (6.100) to the form (6.96) and (6.97). Figure 6.9 compares analytical
solution (6.85), (6.95), and (6.96) shown by the solid line and numerical solution
shown by the dashed line. As expected, the amplitude shows the perfect match,
whereas some phase shift develops after several cycles.
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Fig. 6.9 Second-order
asymptotic and numerical
solutions shown by solid and
dashed lines, respectively
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6.6.4 The Amplitude-Phase Problem in Idempotent Basis

Recall that the idempotent basis is given by .e+ = (1 + e)/2 and .e− = (1 − e)/2 so
that .e2+ = e+, .e2− = e−, and .e+e− = 0. Equations (6.90) and (6.91) therefore take
the form

.Ȧ = −1

2
εΩe+A sinπτ . (6.113)

ϕ̇ = Ω − εΩe+ cos2
πτ

2
(6.114)

Let us represent the amplitude as a function of .ϕ in the form

.A(ϕ) = X+(τ )e+ + X−(τ )e− (6.115)

where .e+ = e+(2ϕ/π), .e− = e−(2ϕ/π), and .τ = τ(2ϕ/π).
Substituting (6.115) in (6.113) and taking into account (6.114) give

.
2

π
(X′+e+ − X′−e−)

(
Ω − εΩe+ cos2

πτ

2

)
= −1

2
εΩe+(X+e+ + X−e−) sinπτ

or

.

(
1 − ε cos2

πτ

2

)
X′+ = −π

4
εX+ sinπτ

X′− = 0 (6.116)

under the boundary condition

.(X+ − X−)|τ=±1 = 0 (6.117)
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The boundary-value problem (6.116) and (6.117) admits exact solution so
that (6.115) gives finally

.A(ϕ) = α

[(
1 − ε cos2

πτ

2

)−1/2
e+ + e−

]
(6.118)

where .α is an arbitrary positive constant.

Remark 6.6.1 In the classical analysis, nonsmooth functions cannot be represented
by Taylor series near their singular points. This can be justified however in terms
of distributions as confirmed by the following example. Nonsmoothness of the
triangular sine is similar to that function .|t | has at zero. Let us consider its formal
power series

.|t + ε| = |t | + |t |′ε + 1

2! |t |
′′ε2 + . . . (6.119)

where .ε > 0 and .−∞ < t < ∞, and prime indicates Schwartz derivative.
It is clear that equality (6.119) has no regular point-wise meaning. For instance,
equality (6.119) is obviously not true on the interval .−ε < t < 0. In addition, the
right-hand side of (6.119) is uncertain at .t = 0, whereas the left-hand side gives .ε.
Nevertheless, let us show that equality (6.119) admits a generalized interpretation
and holds in terms of distributions. Let .ψ(t) be a test function in terms of the
distribution theory; more precisely, .ψ(t) is infinitely differentiable with compact
support that is identically zero outside of some bounded interval. Integrating by
parts and then shifting the variable of integration give

.

∫ ∞

−∞

(
|t | + |t |′ε + 1

2! |t |
′′ε2 + . . .

)
ψ(t)dt

=
∫ ∞

−∞
|t |
[
ψ(t) − ψ ′(t)ε + 1

2!ψ
′′(t)ε2 − . . .

]
dt (6.120)

=
∫ ∞

−∞
|t |ψ(t − ε)dt =

∫ ∞

−∞
|t + ε|ψ(t)dt

Therefore, equality (6.119) holds in the integral sense of distributions.

6.7 Multiple Degrees-of-Freedom Case

Let us consider a multiple degrees-of-freedom piecewise-linear system of the form

.Mẍ + Kx = εH(Sx)Bx (6.121)
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where .x(t) ∈ Rn is a vector-function of the system coordinates, M is a mass matrix,
H denotes the Heaviside unit-step function, and S is a normal vector to the plane
splitting the configuration space into two parts with different elastic properties, so
that the stiffness matrix is K when .Sx < 0 and .K − εB when .Sx > 0. It is assumed
that the stiffness jump is small, .|ε| � 1.

The number of possible iterations of the classical perturbation tools usually
depends on a class of smoothness of the perturbation. The perturbation term on
the right-hand side of (6.121) is continuous but nonsmooth. Therefore, only first-
order asymptotic solution can be obtained within the classic theory of differential
equations. Also, the piecewise character of the perturbation complicates the form of
the solution due to the necessity of matching the different pieces of the solution.

Let us show that NSTT gives a closed-form solution by automatically matching
the pieces of solution in two different configuration subspaces of different stiffness
properties. We seek a .2π -periodic, with respect to the phase .ϕ, solution of
system (6.121) in the form of the following asymptotic expansions:

.x(ϕ) = Aj cosϕ + εx(1)(ϕ) + O(ε2)

ϕ = Ωj

√
1 + εγ (1) + O(ε2)t (6.122)

where .Ωj and .Aj are arbitrary eigen-frequency and eigen vector (normal mode) of
the linearized system:

.

(
−Ω2

j M + K
)

Aj = 0 (j = 1, . . . ,n) (6.123)

Substituting (6.122) in (6.121), taking into account identities (6.89), assuming
that algebraic equation (6.123) holds, and collecting terms in the first order of .ε

give

.Ω2
j M

d2x(1)

dϕ2
+ Kx(1) =

[
1

2
BAj +

(
1

2
BAj + γ (1)KAj

)
e

]
cos

πτ

2
(6.124)

where .τ = τ(2ϕ/π), .e = e(2ϕ/π), and the relationship .(1 + εγ (1))−1 = 1 −
εγ (1) + O(ε2) was enforced.

Since the function .x(1)(ϕ) is sought to be .2π -periodic with respect to .ϕ, it should
admit NSTT representation

.x(1) = X(τ) + Y (τ)e (6.125)

Substituting (6.125) in (6.124) and conducting NSTT procedure give the
boundary-value problem
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.

(
2Ωj

π

)2
MX′′ + KX = 1

2
BAj cos

πτ

2
, X′|τ=±1 = 0. (6.126)

(
2Ωj

π

)2
MY ′′ + KY =

(
1

2
BAj + γ (1)KAj

)
cos

πτ

2
(6.127)

Y |τ=±1 = 0

Representing the corresponding solution in terms of the normal mode coordinates

.X =
n∑

i=1

AiXi(τ ), Y =
n∑

i=1

AiYi(τ ) (6.128)

and taking into account M-orthogonality of the set of eigen-vectors give

.

(
2Ωj

π

)2
X′′

i + Ω2
i Xi = βij cos

πτ

2
, X′

i |τ=±1 = 0. (6.129)

(
2Ωj

π

)2
Y ′′

i + Ω2
i Yi = (βij + γ (1)�ij ) cos

πτ

2
, Yi |τ=±1 = 0 (6.130)

where

.βij = 1

2

AiBAj

AiMAi

, �ij = AiKAj

AiMAi

(6.131)

are dimensionless coefficients.
Note that, despite the similar representation for solution (6.122), the current

asymptotic procedure differs from the Poincaré-Lindstedt method due to the
specific of representation (6.125). According to the Poincaré-Lindstedt method, the
frequency correction term, .γ (1), is to eliminate the so-called secular terms in the
asymptotic expansions. In the present case, the secular terms appear to be periodic
due to the inherent periodicity of the new temporal argument. Instead solutions are
required to satisfy the boundary-value problems, such as (6.129) and (6.130). If
.i 
= j , the term .γ (1) disappears from (6.130) due to .�ij = 0. Then both boundary-
value problems, (6.129) and (6.130), admit solutions

.Xi = βij

Ω2
i − Ω2

j

(
cos

πτ

2
− Ωj

Ωi

cos
πΩiτ

2Ωj

csc
πΩi

2Ωj

)
. (6.132)

Yi = βij

Ω2
i − Ω2

j

cos
πτ

2
(6.133)

When .i = j , problem (6.129) still has solution, but problem (6.130) generally
does not due to the resonance .Ωi = Ωj . Fortunately, in this case .�jj 
= 0, and hence
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Fig. 6.10 Two degrees-of-freedom piecewise-linear system can be viewed as a model of a rod
with a small crack

the right-hand side of the equation can be set to zero by means of the condition on
yet undetermined as

.γ (1) = −βjj

�jj

(6.134)

Due to this condition, problem (6.130) admits zero solution, and thus

.Xj = πβjj

4Ω2
j

(
τ sin

πτ

2
+ 2

π
cos

πτ

2

)
. (6.135)

Yj = 0 (6.136)

Expressions (6.125), (6.128), and (6.132) through (6.136) completely determine the
first-order approximation .x(1)(ϕ).

Example 6.7.1 Let us consider a two-degrees-of-freedom example of mass-spring
model (Fig. 6.10)

.m1ẍ1 + (k1 + k2)x1 − k2x2 = εk1H(x1)x1 (6.137)

m2ẍ2 − k2x1 + (k2 + k3)x2 = 0

Equations (6.119) can be represented in the form (6.121), where

.M =
[

m1 0
0 m2

]
, K =

[
k1 + k2 −k2

−k2 k2 + k3

]
, B =

[
k1 0
0 0

]

x =
[

x1

x2

]
, S = [ 1 0

]

In this case, the first-order asymptotic solution for the inphase (.j = 1) and out-of-
phase (.j = 2) takes the form, respectively,
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.x1 = e cos
πτ

2
+ επ

16

(
2

π
cos

πτ

2
+ τ sin

πτ

2

)
+ O(ε2)

x2 = e cos
πτ

2
− εk1

8k2

[
e cos

πτ

2
+ cos

πτ

2
(6.138)

−
(
1 + 2

k2

k1

)−1/2

cos

(√
1 + 2

k2

k1

πτ

2

)
/ sin

(√
1 + 2

k2

k1

π

2

)]
+ O(ε2)

.ϕ =
√

k1

m

√
1 − ε

4
+ O(ε2)t

and

.x1 = −e cos
πτ

2
+ εk1

8k2

[
e cos

πτ

2
+ cos

πτ

2
−
(
1 + 2

k2

k1

)

× cos

(
πτ

2
/

√
1 + 2

k2

k1

)
/ sin

(
π

2
/

√
1 + 2

k2

k1

)]
+ O(ε2) (6.139)

x2 = e cos
πτ

2
+ εk1π

16(k1 + 2k2)

(
2

π
cos

πτ

2
+ τ sin

πτ

2

)
+ O(ε2)

.ϕ =
√

k1 + 2k2
m

√
1 − εk1

4(k1 + 2k2)
+ O(ε2)t

where .m = m1 = m2 is assumed. Solutions (6.138) and (6.102) show that the
piecewise linear restoring force may have quite different effect on different modes.
In particular, solution (6.138) reveals the possibility of internal resonances, when

. sin

(
πΩ2

2Ω1

)
= 0,

Ω2

Ω1
=
√
1 + 2

k2

k1
(6.140)

If, for instance, the system is close to the frequency ratio .Ω2/Ω1 = 2, then the
inphase mode may be affected significantly by a crack even under very small
magnitudes of the parameter .ε. In contrary, solution (6.102) has the denominator
.sin[(π/2)Ω1/Ω2], which is never close to zero because .0 < Ω1/Ω2 < 1.
Therefore, in current asymptotic approximation, the influence of crack on the out-
of-phase mode is always of order .ε provided that .k2/k1 = O(1).The influence of
the bilinear stiffness on inphase mode trajectories in the closed to internal resonance
case is seen from Fig. 6.11, where both analytical and numerical solutions are shown
for comparison reasons. The frequency ratio .Ω2/Ω1 = 2.0025 is achieved by
conditioning the spring stiffness parameters as follows .k2 = (3/2)k1 + 0.005.
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Fig. 6.11 The influence of a
small crack, .ε = 0.01, on the
inphase mode trajectory near
the frequency ratio
.Ω2/Ω1 = 2; the dashed line
shows the numerical solution,
and the thin solid line
corresponds to the linear case,
.ε = 0

00.01

1.0 0.5 0.0 0.5 1.0

1.0

0.5

0.0

0.5

1.0

x1

x2



Chapter 7
Periodic and Transient Nonlinear
Dynamics Under Discontinuous Loading

In this chapter, two-variable expansions are introduced, where the fast temporal
scale is represented by the triangle wave. In contrast to the well-known two-
variable procedure, the differential equations for the slow dynamics emerge from
the boundary conditions eliminating discontinuities instead of resonance terms.
For illustrating purposes, an impulsively loaded one degree-of-freedom model
with cubic damping and no elastic force is considered. Further, the method is
applied to Duffing’s oscillator under the periodic impulsive excitation whose
fundamental frequency is close to the linear resonance frequency. Note that the
selected illustrating models are weakly nonlinear. Nonetheless, the triangle wave
temporal argument adequately captures the main specific of the impulsive loading
and provides closed-form asymptotic solutions.

7.1 Nonsmooth Two-Variable Method

Solutions of Cauchy problems under arbitrary initial conditions are generally
aperiodic. In the case of amplitude or frequency modulated motions, the averaging
may help to obtain the corresponding solutions. A proper formalization can be
developed by introducing slow temporal variables in addition to the fast oscillating
time .τ . Consider, for instance, first-order impulsively loaded system

.v̇ + εv3 = p
de (t)

dt
(7.1)

under the initial condition

.v |t=0= v0 (7.2)
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where .ε is a small enough positive parameter and p is a constant parameter
characterizing the strength of impulses.

The Cauchy problem, (7.1) and (7.2), describes one-dimensional motions of a
material point under the periodic series of impulses and nonlinear damping forces.
Note that any standard formulation of the idea of averaging is difficult to apply
directly to Eq. (7.1) since its right-hand side is neither smooth nor even continues
function of time. Analyzing both sides of Eq. (7.1) shows that solutions should
have stepwise discontinuities at times .Λ = {t : τ (t) = ±1}. Let us represent such
solutions in the form

.v = X
(
τ , t0

)
+ Y

(
τ , t0

)
e (7.3)

where .τ = τ (t), .e = e (t) and .t0 = εt ; therefore, the solution is assumed to depend
upon the two time scales, such as the fast oscillating time .τ and the slow time .t0.

Substituting now (7.3) in (7.1) gives

.
∂Y

∂τ
+ ε

(
∂X

∂t0
+ X3 + 3XY 2

)

. +
[
∂X

∂τ
+ ε

(
∂Y

∂t0
+ 3YX2 + Y 3

)]
e + (Y − p)ė = 0

Following NSTT formalism leads to the set of partial differential equations

.
∂X

∂τ
= −ε

(
∂Y

∂t0
+ 3YX2 + Y 3

)
(7.4)

∂Y

∂τ
= −ε

(
∂X

∂t0
+ X3 + 3XY 2

)

under boundary conditions

.Y |τ=±1= p (7.5)

According to the procedure of the two-variable expansions, solution of the
boundary value problem (7.4) and (7.5) is represented in the form of asymptotic
series

.X =
∞∑
i=0

εiXi

(
τ , t0

)
, Y =

∞∑
i=0

εiYi

(
τ , t0

)
(7.6)

Substituting (7.6) into (7.4) and (7.5) and matching coefficients of the same
powers of .ε gives a sequence of simplified boundary value problems. In particular,
zero-order problem is given by
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.
∂X0

∂τ
= 0,

∂Y0

∂τ
= 0

Y0|τ=±1 = p

Both these equations and the boundary condition are satisfied by solution

.X0 = A0

(
t0

)
, Y0 = p (7.7)

where .A0 is an arbitrary function of the slow time.
Taking into account (7.7) gives the first-order problem

.
∂X1

∂τ
= −

(
3pA2

0 + p3
)

∂Y1

∂τ
= −

(
dA0

dt0
+ A3

0 + 3A0p
2
)

(7.8)

Y1 |τ=±1= 0

Integrating Eq. (7.8) gives general solution

.X1 = −
(
3pA2

0 + p3
)

τ + A1

(
t0

)
(7.9)

Y1 = −
(

dA0

dt0
+ A3

0 + 3A0p
2
)

τ + C1

(
t0

)

where .A1
(
t0

)
and .C1

(
t0

)
are arbitrary functions.

The boundary condition for .Y1 in (7.8) dictates .C1
(
t0

) ≡ 0 and

.
dA0

dt0
+ A3

0 + 3A0p
2 = 0 (7.10)

Therefore .Y1 ≡ 0, whereas function .A1
(
t0

)
in the expression for .X1 remains

unknown. Equation (7.10) admits exact solution

.A0 =
[
− 1

3p2
+ α0 exp

(
6p2t0

)]−1/2

where .α0 is a constant of integration to be determined from the initial condition.
Finally, the leading order asymptotic solution of the Caushy problem is written

as

.v(t) = ±
{
− 1

3p2
+

[
1

3p2
+

(
v0 − p

)−2
]
exp

(
6p2εt

)}−1/2

(7.11)
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Fig. 7.1 Velocity of the
nonlinearly damped material
point under the periodic
impulsive excitation
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where plus or minus sign is taken if .v0 − p > 0 or .v0 − p < 0, respectively.
Substituting asymptotic solution (7.11) in Eq. (7.1) satisfies the equation with

the error .∼εR(εt)e (t), where .R(εt) is a function of the slow time scale. Although
the error is of the same order of magnitude as the perturbation, it relates only
to the singular component of the equation with a scaling factor of order one.
In other words, for such kind of systems, regular and singular error components
should be considered separately. Note that the first term in expression (7.11) is a
transient response of the system that vanishes with time; see Fig. 7.1. It is seen
from solution (7.11) that the amplitude of impulses may have a strong effect on
the time scale of transient response of the system. Note also that the amplitude of
steps in the response is maintained. It already follows directly from the structure of
Eq. (7.1). It reveals that the series of .δ-functions, .pe (t) /dt , can be balanced only
by the derivative, .v̇, whereas the term .εv3 does not have any effect on the steps of
the response, v. This observation hints at the possibility of substitution

.v = y(t) + pe(t) (7.12)

which is a periodic version of substitution (1.166).
Substituting (7.12) in Eq. (7.1) eliminates the series of .δ-functions on its right-

hand side to give the equation with only stepwise discontinuities

.ẏ + ε
[
y3 + 3yp2 +

(
p3 + 3py2

)
e(t)

]
= 0 (7.13)

where the basic property of the hyperbolic imaginary unit, .e2 = 1, was enforced.
Furthermore, on the manifold of periodic solutions, even the stepwise discontinuity
can be effectively removed by means of NSTT substitution in the form of hyperbolic
number, y = .X(τ) + .Y (τ)e. This would replace Eq. (7.13) by a boundary value
problem for X and Y according to NSTT procedure.
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7.2 Resonances in Duffing’s Oscillator Under Impulsive
Loading

Let us consider the Duffing’s oscillator under the periodic impulsive excitation

.ẍ + Ω2
0x = −ε

[
x3 − p

de (ωt)

d (ωt)

]
(7.14)

Introducing the detuning parameter .σ into the differential equation (7.14) as

.Ω2
0 =

(nπ

2
ω

)2 + εσ (7.15)

gives

.ẍ +
(nπ

2
ω

)2
x = −ε

[
σx + x3 − p

de (ωt)

d (ωt)

]
(7.16)

where n is an odd positive integer.
Recall that, in the near resonance condition (7.15), the factor .π/2 occurs due to

the specific normalization of the triangle wave period, .T = 4.
Let us represent solutions of Eq. (7.16) in the form

.x(t) = X
(
τ (ωt) , t0

)
+ Y

(
τ (ωt) , t0

)
e (ωt) (7.17)

where .t0 = εt is the slow time used in the previous section.
Based on the continuity condition for .x (t),

.Y |τ=±1= 0 (7.18)

one obtains

.ẋ = ω
∂Y

∂τ
+ ε

∂X

∂t0
+

(
ω

∂X

∂τ
+ ε

∂Y

∂t0

)
e (7.19)

Then, substituting (7.17) and (7.19) in (7.16) eventually gives the boundary value
problem (7.18),

.ω2 ∂X

∂τ
|τ=±1 = εp (7.20)

and

. ω2 ∂2X

∂τ 2
+ 2εω

∂2Y

∂τ∂t0
+ ε2

∂2X

∂t02
+

(nπ

2
ω

)2
X
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= −ε
(
σX + X3 + 3Y 2X

)

ω2 ∂2Y

∂τ 2
+ 2εω

∂2X

∂τ∂t0
+ ε2

∂2Y

∂t02
+

(nπ

2
ω

)2
Y (7.21)

= −ε
(
σY + Y 3 + 3X2Y

)

Due to substitution (7.17), the boundary value problem, (7.18), (7.20) and (7.21),
includes no singular functions. Therefore, further averaging procedures can be
correctly applied. Following the formalism of two-variable expansions, we seek
asymptotic solutions in the form of power series

.X = X0

(
τ , t0

)
+ εX1

(
τ , t0

)
+ ε2X2

(
τ , t0

)
+ . . .

Y = Y0

(
τ , t0

)
+ εY1

(
τ , t0

)
+ ε2Y2

(
τ , t0

)
+ . . . (7.22)

Substituting (7.22) in (7.18), (7.20), and (7.21), and matching coefficients of the
same degrees of .ε, gives a series of boundary value problems, where the leading
order problem is

.
∂2X0

∂τ 2
+

(nπ

2

)2
X0 = 0,

∂X0

∂τ
|τ=±1 = 0

∂2Y0

∂τ 2
+

(nπ

2

)2
Y0 = 0, Y0|τ=±1 = 0 (7.23)

These equations and the boundary conditions are satisfied by solution

.X0 = A0

(
t0

)
sin

nπτ

2
, Y0 = D0

(
t0

)
cos

nπτ

2
(7.24)

where .A0
(
t0

)
and .D0

(
t0

)
are arbitrary functions of the slow time scale to be

determined on the next step of iteration.
Collecting all terms of order .ε gives the boundary value problem of the next

asymptotic order as

.ω2
[
∂2X1

∂τ 2
+

(nπ

2

)2
X1

]
= −

(
2ω

∂2Y0

∂τ∂t0
+ σX0 + X3

0 + 3Y 2
0 X0

)

ω2 ∂X1

∂τ
|τ=±1 = p (7.25)

.ω2
[
∂2Y1

∂τ 2
+

(nπ

2

)2
Y1

]
= −

(
2ω

∂2X0

∂τ∂t0
+ σY0 + Y 3

0 + 3X2
0Y0

)
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Y1|τ=±1 = 0

The right-hand sides of Eqs. (7.25) implicitly depend on the slow time .t0 through
still unknown functions .A0

(
t0

)
and .D0

(
t0

)
and their derivatives .A

′
0

(
t0

)
and

.D
′
0

(
t0

)
. Taking into account (7.24) leads to the following general solution of the

differential equations (7.25):

.X1 = A1

(
t0

)
sin

nπτ

2
+ B1

(
t0

)
cos

nπτ

2

+ 1

ω

[
A0

nπω

(
σ + 3

4
A2
0 + 3

4
D2

0

)
− D′

0

]
τ cos

nπτ

2

− 1

nπω

[
A0

nπω

(
σ + 7

8
A2
0 + 3

8
D2

0

)
− D′

0

]
sin

nπτ

2
(7.26)

− A0

8n2π2ω2

(
A2
0 − 3D2

0

)
sin

3nπτ

2

and

.Y1 = C1

(
t0

)
sin

nπτ

2
+ D1

(
t0

)
cos

nπτ

2

− 1

ω

[
D0

nπω

(
σ + 3

4
A2
0 + 3

4
D2

0

)
+ A′

0

]
τ sin

nπτ

2

− 1

nπω

[
D0

nπω

(
σ + 3

8
A2
0 + 7

8
D2

0

)
+ A′

0

]
cos

nπτ

2
(7.27)

− D0

8n2π2ω2

(
3A2

0 − D2
0

)
cos

3nπτ

2

Now the boundary condition for .X1 gives

.B1

(
t0

)
≡ 0

and

.D
′
0 = A0

nπω

[
σ + 3

4

(
A2
0 + D2

0

)]
+ 2p

nπω
sin

nπ

2
(7.28)

Then, the boundary condition for .Y1 gives

.C1

(
t0

)
≡ 0

and
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Fig. 7.2 The amplitudes
.A0(t

0) and .D0(t
0) in the slow

time scale, .t0 = εt , shown by
the gray and black lines,
respectively
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(7.29)

In current approximation, another two arbitrary functions of the slow time scale
can be chosen as .A1

(
t0

) ≡ 0 and .D1
(
t0

) ≡ 0. The same type of terms are
included already into the generating solution (7.24). Substituting derivatives from
(7.28) and (7.29) in (7.26) and (7.27) and taking into account (7.24) gives

.X = A0 sin
nπτ

2

[
1 − ε

2n2π2ω2

(
A2
0 − 3D2

0

)
cos2

nπτ

2

]

− 2εp

n2π2ω2 sin
nπ

2

(
nπτ cos

nπτ

2
− sin

nπτ

2

)
+ O(ε2) (7.30)

.Y = D0 cos
nπτ

2

[
1 + ε

2n2π2ω2

(
3A2

0 − D2
0

)
sin2

nπτ

2

]
+ O(ε2) (7.31)

Substituting (7.30) and (7.31) in (7.17) finally gives the closed form approximate
solution .x(t), despite of the discontinuous impulsive loading.

Figures 7.2, 7.3, and 7.4 illustrate the results of calculations under the following
parameters and initial conditions: .n = 1, .ω = 1.0, .σ = 0.1, .p = 1.0, .ε = 0.1,
.A0(0) = 0.1, .D0(0) = 0.0. The coordinate-velocity diagram shows two velocity
jumps per one cycle due to the periodic impulsive excitation.

7.3 Strongly Nonlinear Oscillator Under Periodic Pulses

Let us consider the case of strongly nonlinear exactly solvable oscillator described
in Chap. 3 by adding periodic impulsive loading on the right-hand side as follows:
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Fig. 7.4 The coordinate-velocity plane with the oscillator trajectory during the interval .0 < t <
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.ẍ + tan x + tan3 x = F

a

de (t/a)

d (t/a)

= 2F
∞∑

n=−∞
(−1)nδ[t − (2n − 1)a] (7.32)
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Here the parameter values .2F > 0 and .4a = T > 0 characterize the amplitude
and period of the impulsive loading.

Making substitutions .x = X(τ) and .τ = τ(t/a) in Eq. (7.32) gives

.a−2 d2X

dτ 2
+ tanX + tan3 X = a−2

(
aF − dX

dτ

)
de (t/a)

d (t/a)

or

.a−2 d2X

dτ 2
+ tanX + tan3 X = 0 (7.33)

under the following continuity condition for .x(t),

.
dX

dτ
|τ=±1= aF (7.34)

Boundary value problems (7.33) and (7.34) describe the class of steady-state
periodic motions of the period T . With reference to Chap. 3, Eq. (7.33) has exact
solution of the form

.X(τ) = arcsin[sinA sin(aτ/ cosA)] (7.35)

where A is an arbitrary constant, which is sufficient to satisfy both conditions
in (7.34) due to the oddness of solution (7.35) with respect to .τ .

Substituting (7.35) in (7.34) gives a trigonometric equation for a quarter of the
period, .a = T/4. The corresponding solution has four different branches of solution
that can be combined as

.a0 = cosA

(
arccos

F cos2 A

| sinA|√1 − F 2 cos2 A

)
. (7.36)

ak = kπ cosA ± a0, (k = 1, 2, 3, . . .) (7.37)

Note that solution (7.35) represents a one-parameter set of particular solutions
imposing the initial conditions on the original variables as .x(0) = 0 and .ẋ(0) > 0.
In (7.36) and (7.37), such type of the initial conditions associates with even k,
whereas the odd numbers reveal another subset of the periodic solutions with
the negative initial velocities. Both of the subsets are covered by the following
modification of solution (7.35) in terms of the original variables

.xk(t) = (−1)k arcsin

{
sinA sin

[
ak

cosA
τ

(
t

ak

)]}
(7.38)

where .ak is a quarter of the period given by (7.36) and (7.37) and A is an arbitrary
parameter restricted by interval whose meaning is discussed below
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Fig. 7.5 First seven amplitude-period curves, .T = 4ak (.k = 0, 1, . . . , 6) according to (7.36)
and (7.37) of the oscillator (7.32) at .F = 2.0

. arccos
1√

1 + F 2
= Amin < A < Amax = π

2
(7.39)

Figure 7.5 illustrates the sequence of branches of solutions (7.36) and (7.37)
at different numbers k and the parameter .F = 2.0. The diagram gives such
combinations of the period and amplitude at which oscillator (7.32) can have the
periodic response with the period of external impulses, .T = 4a. The upper and
lower branches of each loop correspond to plus and minus signs in expression (7.37),
respectively. Solution (7.36) corresponds to the number .k = 0 and has the only
upper branch. For the selected magnitude of .F = 2, the minimal parameter of
amplitude is found to be .Amin = 1.10715, which corresponds to the left edges of
the amplitude-period loops in Fig. 7.5. As a result, further slight increase of the
amplitude is accompanied by a bifurcation of solutions for every k as shown in
Fig. 7.6 in time domain. Only first three couples of solutions (.k = 1, 2, 3) from
the infinite set are shown. Graphs of the left and right columns converge to each
other in such a way that impulses are acting twice per one period exactly at .x = 0
as .A → Amin. This is seen from the sharp peaks moving toward the axis .x = 0
along the vertical as .A → Amin. The influence of external pulses on the temporal
shapes is decreasing as the amplitude grows. When the parameter A is approaching
its maximum .Amax = π/2, the oscillator itself generates high-frequency impacts as
discussed in Chap. 3. The effect of external pulses eventually becomes negligible,
and their times coincide with some of the pulses produced by the restoring force.
Note that the oscillator moves freely every .k − 1 cycles before the next pulse is
applied (Fig. 7.6).
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Fig. 7.6 Temporal shapes of the oscillator response near the minimum amplitude .A = 1.12 and
the loading impulse parameter .F = 2.0, where the left and right columns correspond to the lower
and upper branches of loops shown in Fig. 7.5 with gray and black curves, respectively

7.4 Impact Oscillators Under Impulsive Loading

Consider nonlinear oscillator under the periodic impulsive excitation of the follow-
ing general form

.ẍ + 2ζ ẋ + f (x, ωt) = p
de (ωt)

d (ωt)
(7.40)

where .ζ , .ω and p are constant parameters and the function .f (x, ωt) is periodic with
respect to the argument .ωt with the period .T = 4.

It is assumed that the coordinate x is subjected to either the constraint condition

.0 ≤ x (t) (7.41)

or

. − 1 ≤ x (t) ≤ 1 (7.42)
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According to the idea of nonsmooth transformation of positional coordinates1

[251, 256], the constraints (7.41) and (7.42) are eliminated by unfolding the space
as

.x (t) −→ l (t) : x = S (l) (7.43)

where .S (l) ≡ |l| in case (7.41) or .S (l) ≡ τ(l) in case (7.42). As a result, the new
coordinate l belongs to the entire infinite interval, .l (t) ∈ (−∞,∞), in contrast
to (7.41) or (7.42).

Taking into account the identity .[S′ (l)]2 = 1 gives the final result of transforma-
tion (7.43) in the form

.
d2l

dt2
+ 2ζ

dl

dt
+ S′ (l) f [S (l) , ωt] = pS′ (l)

de (ωt)

d (ωt)
(7.44)

where the new coordinate .l (t) is free of any constraints.
Note that the right-hand side of Eq. (7.44) makes sense within the distribution

theory under the condition that times of interaction with constraints (7.41) or (7.42)
never coincide with the external pulse times.

Consider now the class of periodic motions of the period of external loading,
.T = 4/ω. As follows from Chap. 6 and the previous sections of this chapter, within
such class of motions, the external pulses are eliminated by introducing the new
time argument

.t −→ τ : τ = τ (ωt) , l = X (τ) + Y (τ) e (7.45)

Substituting (7.45) into Eq. (7.44) gives

. ω2X′′ (τ ) + 2ζωY ′ (τ ) + R (X, Y, τ )

+
[
ω2Y ′′ (τ ) + 2ζωX′ (τ ) + I (X, Y, τ )

]
e (7.46)

=
[
pRS (X, Y ) + pIS (X, Y ) e − ω2X′ (τ )

] de (ωt)

d (ωt)

where

.

{
R

I

}
= 1

2

{
S′ (X + Y ) f [S (X + Y ) , τ ] ± S′ (X − Y ) f [S (X − Y ) , 2 − τ ]

}

and

1 See Sect. 1.5.2.
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.

{
RS

IS

}
= 1

2

{
S′ (X + Y ) ± S′ (X − Y )

}

under the necessary condition of continuity for .l (t),

.Y (±1) = 0 (7.47)

Equation (7.46) is equivalent to the following boundary value problem

.ω2X′′ (τ ) + 2ζωY ′ (τ ) + R (X, Y, τ ) = 0

ω2Y ′′ (τ ) + 2ζωX′ (τ ) + I (X, Y, τ ) = 0 (7.48)

.[X′ (τ ) − ω−2pS′ (X)]|τ=±1 = 0 (7.49)

where boundary condition (7.49) is simplified by enforcing condition (7.47).
After solution of the boundary value problem (7.47) through (7.49) has been

obtained, the original coordinate is given by the composition of transforma-
tions (7.43) and (7.45) as

.x (t) = S (X (τ) + Y (τ) e) (7.50)

where .τ = τ (ωt) and .e = e (ωt).
The advantage of such a boundary value problem formulation is that the effect

of both internal and external impulses is captured by the composition of two
transformations (7.50). As a result, the final system is free of any singular terms.
Some particular cases and examples were considered earlier in [180].



Chapter 8
Strongly Nonlinear Vibrations

This chapter presents analytical successive approximations algorithms for different
oscillators with strongly nonlinear characteristics. In general terms, such algorithms
approximate temporal mode shapes of vibrations by polynomials and other simple
functions of the triangle wave. In order to develop the algorithms, the triangle
wave is introduced into dynamical systems as a new temporal argument. The
corresponding manipulations with dynamical systems are described in the next
three sections. Then the description focuses on the algorithm implementations for
different essentially anharmonic cases including oscillators whose characteristics
may approach nonsmooth or even discontinuous limits.

8.1 Periodic Solutions for First-Order Dynamical Systems

Let us consider a dynamical system described by first-order differential equation
with respect to the vector-function .x(t) ∈ Rn,

.ẋ = f (x) (8.1)

where .f (x) is a continuous vector-function and the over dot indicates time
derivative.

Consider the class of periodic motions of the period .T = 4a, which is
unknown in the autonomous case. Periodic solutions usually require specific initial
conditions. Practically, such kind of the specific initial conditions is determined
in a backward way, after some periodic family of solutions is obtained under the
assumption of periodicity. In the present case, the assumption of periodicity is
imposed automatically by the form of representation for periodic solutions

.x = X(τ) + Y (τ)e (8.2)

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
V. N. Pilipchuk, Oscillators and Oscillatory Signals from Smooth to Discontinuous,
https://doi.org/10.1007/978-3-031-37788-4_8

249

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-37788-4protect T1	extunderscore 8&domain=pdf
https://doi.org/10.1007/978-3-031-37788-4_8
https://doi.org/10.1007/978-3-031-37788-4_8
https://doi.org/10.1007/978-3-031-37788-4_8
https://doi.org/10.1007/978-3-031-37788-4_8
https://doi.org/10.1007/978-3-031-37788-4_8
https://doi.org/10.1007/978-3-031-37788-4_8
https://doi.org/10.1007/978-3-031-37788-4_8
https://doi.org/10.1007/978-3-031-37788-4_8
https://doi.org/10.1007/978-3-031-37788-4_8
https://doi.org/10.1007/978-3-031-37788-4_8
https://doi.org/10.1007/978-3-031-37788-4_8


250 8 Strongly Nonlinear Vibrations

where .τ = τ(t/a) and. e = e(t/a) are the standard triangle and square waves,
respectively, and .X(τ) and .Y (τ) are unknown components of the solution.

Substituting (8.2) in (8.1) gives

.(Y ′ − aRf ) + (X′ − aIf )e + Ye′ = 0

where

.Rf = Rf (X, Y ) = 1

2
[f (X + Y ) + f (X − Y )]

If = If (X, Y ) = 1

2
[f (X + Y ) − f (X − Y )]

Eliminating the periodic singular term .e′ = de(t/a)/d(t/a) by means of the
boundary condition for .Y (τ) gives the nonlinear boundary value problem on the
standard interval, .−1 ≤ τ ≤ 1,

.Y ′ = aRf (X, Y )

X′ = aIf (X, Y ) (8.3)

Y |τ=±1 = 0

Note that the entire interval .−1 ≤ τ ≤ 1 is completely covered by a half of the
period, .−a ≤ t ≤ a, while representation (8.2) unfolds the corresponding fragment
on the entire time interval .−∞ < t < ∞.

8.2 Second-Order Dynamical Systems

Consider now the differential equation of motion in the standard Newtonian form

.ẍ + f (x, ẋ, t) = 0 (8.4)

where .x(t) ∈ Rn is a positional vector-function and the vector-function f is
assumed to be sufficiently smooth and periodic with respect to the explicit time t

with the period .T = 4a, which is unknown the autonomous case.
Substituting (8.2) into (8.4), using the differential and algebraic properties of

substitution (8.2), and imposing the boundary (smoothness) conditions give

.(X′′ + a2Rf ) + (Y ′′ + a2If )e = 0

where
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.Rf = 1

2

[
f

(
X+Y,

X′+Y ′

a
, aτ

)
+f

(
X − Y, − X′−Y ′

a
, 2a − aτ

)]

(8.5)

.If = 1

2

[
f

(
X+Y,

X′+Y ′

a
, aτ

)
−f

(
X−Y, − X′−Y ′

a
, 2a−aτ

)]
(8.6)

This leads to the boundary value problem

.X′′ + a2Rf (X, Y,X′, Y ′, τ ) = 0, X′|τ=±1 = 0 (8.7)

.Y ′′ + a2If (X, Y,X′, Y ′, τ ) = 0, Y |τ=±1 = 0 (8.8)

Let us discuss the form of Eqs. (8.7) and (8.8). Firstly, despite of the obvious
formal complication, Eqs. (8.7) and (8.8) possess certain symmetries dictated by
substitution (8.2). For instance, introducing the new unknown variables

.U(τ) = X(τ) + Y (τ)

V (τ) = X(τ) − Y (τ)

brings the boundary value problem, (8.7) and (8.8), to the form

.U ′′ + a2f
(
U, U ′/a, 2a − aτ

) = 0

V ′′ + a2f
(
V, − V ′/a, 2a − aτ

) = 0 (8.9)

U ′ + V ′|τ=±1 = 0

U − V |τ=±1 = 0

where the differential equations are decoupled at cost of coupling the boundary
conditions though.

In case when analytical methods are applied, the differential equations (8.9) for
.U(τ) and .V (τ) can be usually solved in a similar way. The previous boundary value
problem, (8.7) and (8.8), may appear to have some advantages for analyses. In some
particular cases, the problem admits families of solutions with either .Y (τ) ≡ 0 or
.X(τ) ≡ 0.

Secondly, due to substitution (8.2), the major qualitative property of solutions,
such as periodicity, is captured in advance by the new argument, .τ . As a result, the
following simplified system can be employed as a generating model for analytical
algorithms of successive approximations

.X′′ = 0 (8.10)

Y ′′ = 0
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Indeed, substituting obvious solutions of Eqs. (8.10) in (8.2) gives a family of
nonsmooth periodic motions with respect to the original time parameter, t ,

.x(t) = X(0) + X′(0)τ (t/a) + [
Y (0) + Y ′(0)τ (t/a)

]
e(t/a) (8.11)

Thirdly, from the physical standpoint, linear equations (8.10) describe a strongly
nonlinear (nonsmooth) generating model. In particular, if .Y (0) = 0 and .Y ′(0) = 0,
then vector-function (8.11) describes vibrations of basic vibroimpact models.

The analytical algorithms developed below are based on the idea of approxima-
tion of smooth vibrating systems by the basic vibroimpact models. In other words,
the triangle wave is assumed to be a dominant component of temporal mode shapes
of vibrations. Such an idea indeed follows the analogy with the quasi-harmonic
approaches. In particular, the harmonic balance method approximates vibrating
systems by effective harmonic oscillators regardless types or powers of the system
nonlinearities. This is justified by the fact that Fourier coefficients usually decay
in a fast enough rate, such that, for instance, the second term can be considered
as a small correction to the first term. The corresponding “small parameter” is
therefore hidden in the iterative procedure itself rather than explicitly present in
the differential equations of motion. Finally note that Eqs. (8.10) make sense due
to the temporal substitution .t −→ τ(t/a). In terms of the original variables, the
corresponding equation, .ẍ = 0, contains too little information about the original
system (8.4) and captures no global properties of the dynamics.

8.3 Periodic Solutions of Conservative Systems

8.3.1 The Vibroimpact Approximation

Let us consider the case of n-degrees-of-freedom conservative system

.ẍ + f (x) = 0 (8.12)

where .f (x) is an odd analytical vector-function of the positional vector-column
.x(t) ∈ Rn.

A one-parameter family of periodic solutions will be built such that .X(−τ) ≡
−X(τ). Since Eq. (8.12) admits the group of time translations, then another arbitrary
parameter can be always added to the time variable. Taking into account the
symmetry of system (8.12) enables one of considering the particular case of
substitution (8.2)

.x(t) = X(τ(t/a)), Y ≡ 0 (8.13)
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Based on the conditions assumed, the boundary value problem (8.7) and (8.8) is
reduced to the following one

.X′′ + a2f (X) = 0, X′|τ=1 = 0 (8.14)

We seek solutions of the boundary value problem (8.14) in the form of series of
successive approximations

.X = X0(τ ) + X1(τ ) + X2(τ ) + . . . (8.15)

.a2 = h0(1 + γ 1 + γ 2 + . . .) (8.16)

To organize the corresponding iterative procedure, it is assumed that

.O(‖Xi‖) 	 O(‖Xi+1‖)
O(γ i+1) 	 O(γ i+2) (8.17)

(i = 0, 1, 2, . . .)

where the norm of vector-functions is defined by .‖X‖ = max
τ

‖X‖Rn .

Based on assumptions (8.17), series (8.15) and (8.16) generate the sequences of
equations and boundary conditions as, respectively,

.X0′′ = 0 (8.18)

.X1′′ = −h0f (X0) (8.19)

.X2′′ = −h0[γ 1f (X0) + f ′
x(X

0)X1] (8.20)

. · · ·

and

.(X0′ + X1′)|τ=1 = 0 (8.21)

.X2′|τ=1 = 0 (8.22)

. · · ·

Note that condition (8.21) includes first two approximations as the only way to
proceed with a non-zero generating solution. In particular, the generating solution
is found from Eq. (8.18) in the form

.X0 = A0τ (8.23)
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where .A0 ∈ Rn is an arbitrary constant vector and the oddness condition has been
enforced in order to set to zero another constant vector.

In line with the discussion at the end of the previous section, solution (8.23)
describes a multi-dimensional vibroimpact oscillator between two absolutely stiff
and perfectly elastic barriers such that .A0 is the normal vector to both barriers.
Direction of the vector .A0 will be defined on the next step of successive approxima-
tions, whereas its length will appear to be coupled with the parameter .h0 by some
relationship due to boundary condition (8.21). So substituting (8.23) in (8.19) and
integrating give solution

.X1 = A1τ − h0

τ∫
0

(τ − ξ)f (A0ξ)dξ (8.24)

where .A1 is another arbitrary constant vector.
Note that the first term in expression (8.24) is similar to generating solution (8.23)

and hence contributes nothing new into the entire solution within the first two steps
of the procedure. Therefore, let us take .A1 = 0 and then substitute the combination
.X0+X1 in the boundary condition (8.21). This gives a nonlinear eigenvalue problem
with respect to the vector .A0 in the form

.

1∫
0

f (A0τ)dτ = 1

h0
A0 (8.25)

Equation (8.25) represents a set of n scalar equations relating the components of
vector .A0 and the parameter .h0. The combination .A0 and .1/h0 will be interpreted as
an eigenvector and eigenvalue of the nonlinear eigenvector problem (8.25). Taking
scalar product of both sides of Eq. (8.25) with .A0T gives

.h0 = A0T A0

A0T
1∫
0

f (A0τ)dτ

(8.26)

where the upper index T stays for transpose operation.
To clarify the meaning of expressions (8.25) and (8.26), let us consider the

linear case .f (x) ≡ Kx, where K is an .n × n stiffness matrix. The corresponding
relationships will differ from those of the exact linear theory by specific constant
factors because the temporal mode shape of vibrations is not exact but approximated
by the triangular sine wave. Nevertheless, in nonlinear cases, expression (8.26)
can provide estimates for amplitude-frequency response characteristics. Further,
integrating Eq. (8.20) gives
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.X2 = A2τ − h0

τ∫
0

(τ − ξ)[γ 1f (A0ξ) + f ′
x(A

0ξ)X1(ξ)]dξ (8.27)

where .A2 is an arbitrary constant vector and .f ′
x( A0ξ ) is the .n × n-Jacobian matrix

of first partial derivatives.
Then boundary condition (8.22) gives

.A2 = h0

1∫
0

[γ 1f (A0τ) + f ′
x(A

0τ)X1(τ )]dτ (8.28)

where the coefficient .γ 1 is yet unknown.
In order to determine the coefficient .γ 1, some additional condition for the vector

.A2 can be imposed, for instance, as follows

.A0T A2 = 0 (8.29)

This condition means that the vector .A2 must be orthogonal to the corresponding
vector of the generating solution .A0 in order to keep the amplitude fixed. Substitut-
ing (8.28) in (8.29) gives

.γ 1 = −
A0T

1∫
0

f ′
x(A

0τ)X1dτ

A0T
1∫
0

f (A0τ)dτ

(8.30)

This completes the second step of successive approximations. All the further
steps can be passed in the same way. In general terms, convergence properties of the
above procedure are due to the following integral operator

.F [X] ≡ a2

⎧⎨
⎩τ

1∫
τ

f (X(ξ))dξ +
τ∫

0

ξf (X(ξ))dξ

⎫⎬
⎭ (8.31)

where

.a2 = h0

A0T
1∫
0

f (A0τ)dτ

A0T
1∫
0

f (X)dτ

(8.32)
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Based on definition (8.31), the original boundary value problem (8.14) admits
representation in the form .X = F [X]. Therefore, the convergence condition is

.
‖F ′

X[X0]δX‖
‖δX‖ < 1 (8.33)

where .δX is an arbitrary vector-function from a small enough neighborhood of .X0.
In the case of linearized system, condition (8.33) leads to the set of inequalities

.Ωi/Ωj < 1 for all .i 
= j , where .Ωj is the eigenfrequency of the linear normal
mode, which is chosen to be a generating solution.

Remark 8.3.1 Note that convergence of series (8.16) for .a2 can be improved
significantly by means of Padè transform [26] as shown in Sect. 8.3.5 and Appendix
1.

8.3.2 One Degree-of-Freedom General Conservative Oscillator

In the one-degree-of-freedom case with odd characteristic, the boundary condition
at .τ = 1 is reduced to a single equation, which is sequentially satisfied by the
factor .h0 and terms .γ 1, .γ 2,.. . . of series (8.16). As a result, the process of successive
approximations eases by setting .A0 = A and .Ai = 0 for .i = 1, 2,.. . . . Let us
introduce notations .hi = h0γ i and represent series (8.15) and (8.16) in the form

.X = X0(τ ) + X1(τ ) + X2(τ ) + . . .

a2 = h0 + h1 + h2 + . . . (8.34)

where .Xi(τ) is a scalar function of the triangular sine wave .τ = τ(t/a).

Due to the reduction of one-dimensional case, all terms of the expansions are
iteratively determined by the explicit relationships. First two steps of the iterative
procedure are coupled by the smoothing boundary condition (8.21) that provides
the leading order smooth estimate for the temporal mode shape by coupling the
parameters, .h0 = h0(A), as follows

.X0 = Aτ (8.35)

.X1 = −h0

τ∫
0

(τ − ξ)f (Aξ)dξ

h0 = A/

1∫
0

f (Aξ)dξ (8.36)
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All the next steps of the procedure are passed then in a similar way based on
relationships

.Xi = −
i∑

j=1

hj−1

τ∫
0

(τ − ξ)Ri−j dξ

hi−1 = −
i−1∑
j=1

αi−j hj−1 (8.37)

(i = 2, 3, . . .)

where the coefficients and integrands are generated by means of the formal auxiliary
parameter, .ε, as follows

.αi =
1∫

0

Ridξ/

1∫
0

R0dξ (8.38)

Ri = 1

i!
dif (X0 + εX1 + ε2X2 + · · · )

dεi
|ε=0

(i = 0, 1, 2, . . .)

The way of using the parameter .ε is in compliance with assumptions (8.17).
Respectively, such parameter splits the restoring force according to (8.38) and
then disappears from expressions. The convergence of suggested iterative series of
successive approximations is illustrated by the example below. As noticed at the end
of the previous subsection, applying Padè transform to the series for .a2 improves the
convergence and hence gives a better estimate for the period (see Appendix 1 for the
corresponding algorithm and graphical illustration)

.T = 4
√

h0

(
1 − h1

h0
+ h21 − h0h2

h20

− h31 − 2h0h2h1 + h20h3

h30

+ · · ·
)−1/2

(8.39)

Example 8.3.1 Let us consider the oscillator

.ẍ + xm = 0

where m is an odd positive integer. This oscillator was already discussed in Chap. 3
under the notation .m = 2n−1. Now, applying two iterations according to the above
scheme, (8.36) and (8.37), gives solution



258 8 Strongly Nonlinear Vibrations

.X = A

[
τ − τm+2

m + 2
+ m

2(m + 2)

(
τ 2m+3

2m + 3
− τm+2

m + 2

)
− R3 − R4 − · · ·

]

(8.40)

.a2 = m + 1

Am−1

{
1 + m

2(m + 2)

[
1 + (m + 1)2

(m + 2)(2m + 3)

]
+ r3 + r4 + · · ·

}

(8.41)
where expressions

.0 < Ri(m, τ) <
m |τ |m+2

2i−1(m + 2)2
(8.42)

0 < ri(m) <
m

2i (m + 2)

provide estimates for high-order terms of the successive approximations. In par-
ticular, expressions (8.42) indicate that series (8.40) and (8.41) may converge
quite slowly. However, the asymptotic of large exponents m essentially improves
precision of the truncated series even though first few terms of the series are
included. The temporal mode shapes of different iterations are shown in Fig. 8.1,
whereas Fig. 8.2 illustrates the period as a function of the number m for the fixed
initial velocity, in one and three iterations followed by Padè transform (8.44) in
comparison to the exact solution. Figure 8.1 shows that high-order iterations are
localized near the amplitude points. For instance, the first iteration, .X1, compensates
the discontinuities of slope of the generating solution .X0 with a minor effect on the
rest of the triangular wave. Further, Fig. 8.2 confirms that expansion (8.41) gives a
better estimate for the period than the harmonic balance as the exponentm increases.
Note that the entire series (8.40) and (8.41) are not asymptotic with respect to m

or .1/m in the sense of Poincaré; however the suggested iterative expansions still
capture the asymptotic of impact oscillator as .m → ∞ quite effectively. Taking into
account the number of iterations in (8.41) and using Padè transform (8.39) give the
period

Fig. 8.1 The first three terms
of iteration (thin lines) and
their sum (solid line) for the
temporal mode shape of the
oscillator .ẍ + x5 = 0

x
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X1

X2
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Fig. 8.2 The period of the oscillator with power characteristic at different exponents m obtained
by three different methods for the initial velocity .v0 = 2

.T = 4
√

h0

(
1 − h1

h0
+ h21 − h0h2

h20

− · · ·
)−1/2

(8.43)

= 8

√
m + 1

Am−1

√
(m + 2)(2m + 3)

m(4m + 21) + 24

Differentiating (8.40) with respect to time t at .t = 0 gives .A = v0a = v0T/4,
where .v0 is the initial velocity. Substituting this in (8.43) leads to the dependence of
period T on the initial velocity

.T =
(

4

v0

)m−1
m+1

[
64(m + 1)(m + 2)(2m + 3)

m(4m + 21) + 24

] 1
m+1

(8.44)

As follows from this relationship, .T −→ 4/v0 as .m −→ ∞, which corresponds
to the vibroimpact limit of a freely oscillating particle with the constant speed .v0
within the interval .−1 ≤ x ≤ 1.

8.3.3 Energy Absorbers Based on Analogies with Soft-Wall
Billiards

Analytical solution (8.40) was applied to the analysis of energy absorbing devices
and mechanical metamaterials based on stochastic soft-wall billiards [169], [171].
The suggested basic model is illustrated in Fig. 8.3, where the mass M of harmonic
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Fig. 8.3 A massive potential
container oscillating with a
small particle(s) interacting
with potential walls of
different “stiffness” and
shapes represented by
function (8.45)

y
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�
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( , )V x y
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x

oscillator represents a two-dimensional container including one or few light parti-
cles such that the interaction of particles with the container walls is described by the
potential energy

.V (x, y) = γ

2n

[(
x

α + β(y2 − 1)

)2n

+ y2n

]
(8.45)

This phenomenological expression provides a convenient way to modeling qualita-
tively different shapes of two-dimensional containers with “soft walls,” where .β is
the main geometrical parameter linked to the contour’s, .V (x, y) = const., curvature
as

.κ = 2β

(1 + 4β2y2)3/2
(8.46)

for .x > 0, .−1 < y < 1, as .n −→ ∞. Therefore .β is a one half of the
curvature at .y = 0. Figure 8.4 illustrates the effect of .β on the container shape
by a typical contour of the potential energy in the non-inertial Cartesian frame xy.
The container includes k relatively light non-interacting particles driven by their
interactions with the potential walls as the container is given some initial energy.
The total mass of particles, .m << M , is fixed, while their number k can be
different; thus .μ = m/k is a mass of each particle. A practical macro-level design
for such model may include k parallel containers in order to exclude interactions
between the particles. As follows from (8.46), model (8.45) gives soft analogs
of two different types of stiff boundaries: a soft-walled version of billiards with
scattering boundaries [221] for .β > 0 and a soft approximation for the so-called
Bunimovich stadiums [39] for .β < 0. The wall effective stiffness is controlled by
the number .n 	 1, such that walls become asymptotically stiff as .n −→ ∞. The
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role of softening the cell walls is twofold. On one hand, it makes the container
model closer to a real cell. On the other hand, in contrast to the conventional theory
of billiards, the model can be described within the classical theory of differential
equations without geometrically complicated nonsmooth mappings. For instance,
it was shown in reference [169] that conditions of chaoticity can be linked to
instabilities of nonlinear normal modes [241] rather than the repelling properties of
mappings. Further, no phenomenological dissipation in the system is intentionally
assumed; hence the total energy of the oscillator with inclusions is conserved. Note
that elastic collisions of the light inclusions with the container’s walls affect also
the dynamics of container however in a less dramatic way. The presence of such a
feedback, which is usually ignored in statistical studies, is a key assumption whose
purpose is to observe the recurrence effect versus contour shapes of the container.
Another difference with the typical statistical studies of non-interacting gas models
is that the number of particles, .1 ≤ k ≤ 5, is rather insufficient to provide the
statistics of large numbers.

Ignoring the effect of gravity, the model dynamics is described by Lagrangian

.L = 1

2
Ẋ2 − 1

2
X2 +

k∑
j=1

{μ

2

[(
Ẋ + ẋj

)2 + ẏ2
j

]
− V (xj , yj )

}
(8.47)

where .X(t) is the displacement of the container with respect to the fixed base and
.{xj , yj } are the coordinates of the jth particle in the container-based noninertial
frame xy (Fig. 8.3).

As follows from Fig. 8.4, the dynamics of system (8.47) may essentially depend
upon the value .β, which is responsible for the curvature of the contour boundaries.

When contours possess convexities toward the inside area (.β > 0), the presence
of irregularities comes of no surprise due to the scattering segments of boundaries.
The case .β < 0 appears to be more complicated since both chaotic and regular
motions are possible in different intervals of the curvature. A geometrical nature of
such phenomena is likely similar to that was revealed in the case of Bunimovich
stadia [39].

As mentioned, the container walls are softened to apply the nonlinear normal
modes stability concept with regular analytical tools of Floquet theory. In the case
of a single particle, .k = 1, there is a normal mode whose trajectory is described
by the equation .y1 = 0 as dictated by the symmetry of potential well. Although
such trajectory can be observed under specific initial conditions, its local stability
properties appear to have a global effect on the dynamics of particles inside the
well. In order to investigate stability of the trajectory .y1 = 0, let us linearize the
differential equations of motion given by Lanrangian (8.47) with respect to the
coordinate .y1 and then re-scale the coordinates and time as

.{x̄, ȳ, X̄, t̄} = 1

α − β

{
x1, y1, X, t

√
γ

μ

}
(8.48)
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Fig. 8.4 Contour shapes with sample trajectories of a single particle, .k = 1, inside the potential
container during the “short-term” interval, .0 ≤ t ≤ 100, obtained for .α = 1/2, .γ = 1, .n = 10,
and different contour shapes: (a) .β = −0.5, (b) .β = −0.3, (c) .β = −0.2, (d) .β = −0.14, (e) .β =
0.009, and (f) .β = 0.3; in all these cases, the initial position of the particle is .(x, y) = (0.0, 0.01)
with zero velocity

where the number .α − β becomes the least distance from the origin to the potential
wall along the horizontal axis in the rigid-body limit .n → ∞.

Skipping the overbars in notations (8.48) brings the differential equations of
motion for the particle inside the potential well to the form

.ẍ + x2n−1 = O(μ). (8.49)

ÿ + λx2ny = 0 (8.50)

where .λ = −2β(α − β), and the right-hand side of Eq. (8.49) is ignored due to the
assumption .μ � 1.
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Fig. 8.5 Stability diagram of
the nonlinear normal mode
.y = 0 for softer (.n = 2 ) and
stiffer (.n = 5) walls, where
the range of stability is
bounded by the dashed
horizontal lines, .φ2 = 1
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Equation (8.49) possesses periodic solution (8.40) of the period .Tn = 4a
under the notation .m = 2n − 1; hence Eq. (8.50) represents Hill’s equation. The
corresponding Floquet multipliers, .ρ1,2 = φ ±

√
φ2 − 1, are calculated through

the number .φ = [y1(Tn) + ẏ2(Tn)]/2, where .y1(t) and .y2(t) are two fundamental
solutions of Eq. (8.50), such that .y1(0) = 1, .ẏ1(0) = 0 and .y2(0) = 0,
.ẏ2(0) = 1, respectively. Based on the number .φ, the solution .y(t) is unstable if
.φ2 > 1 and stable if .φ2 < 1. If .φ2 = 1, there exists a periodic solution of Eq. (8.50).
Figure 8.5 illustrates the dependence .φ = φ(β), where the number .β determines the
curvature .κ (8.46). Note that the Floquet stability analysis is justified locally, near
the axis of symmetry .y = 0. In addition, ignoring the right-hand side of Eq. (8.49) is
equivalent to a fixed potential container. Nonetheless, a series of simulations reveals
that the local stability properties of the trajectory .y = 0 determine qualitative
features of the global dynamics of the entire system (8.47) [169]. Comparing the
graphs of Fig. 8.6 to the corresponding graphs of Fig. 8.4 points to the link between
the chaoticity of trajectories inside containers with the energy-absorbing properties
of the inclusion. For instance, comparing same fragments, (a), (c), (f), of Fig. 8.4
and Fig. 8.6 points to a clear link between the chaoticity of trajectories on the x-
y plane and the effect of energy transfer between the donor (D) and receiver (R).
The roles of donor and receiver are played by the potential container and its light
inclusion (particle), respectively. Further, the trajectories in fragments (e) and (b) of
Fig. 8.4 are quite regular. As a result, fragments (e) and (b) of Fig. 8.6 reveal no
one-directional trend in energy outflow from the donor to receiver. Finally, a barely
seen onset of chaoticity in Fig. 8.4d caused a beat wise exchange by some portion
of the energy between the donor and receiver with a relatively slow trend.

As a possible transition to design of mechanical metamaterials [51, 85, 139]
using the above effect of energy absorption, a one-dimensional chain of S

three-dimensional soft-wall billiards (Fig. 8.7) was analyzed in [171]. The model
Lagrangian is represented in the form
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Fig. 8.6 Short-term time histories of the energy of main oscillator (donor—D, black line) and
the particle (receiver—R, blue line) corresponding to different contour shapes shown in Fig. 8.4;
.< E > is the mean value over the ensemble of .N = 50 runs with randomly chosen initial positions
of the particle in a small neighborhood of zero; .k = 1, .α = 1/2, .n = 10
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Fig. 8.7 Mass-spring chain model of 3D soft-wall billiards with inclusions; billiard shapes
represented by one half of the potential level surface to show the inner side
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.L = 1

2

S∑
j=1

{(
dXj

dt

)2

+ μ

[(
dxj

dt
+ dXj

dt

)2

+
(

dyj

dt

)2

+
(

dzj

dt

)2
]}

−
S∑

j=1

[
1

2
KX2

j + 1

2

(
Xj − Xj−1

)2 + V
(
xj , yj , zj

)]

where the mass of every potential container and its inclusion are .M = 1 and .μ,
respectively; the strength coupling and the stiffness ground springs, are unity and
K , respectively; .Xj is a longitudinal displacement of the jth container; .{xj , yj , zj }
are container-based noninertial coordinates of the inclusion inside the jth container
with the origin at geometrical center of the container, and the 3D potential well is
described by

.V (x, y, z) = γ

2n

⎡
⎣
(

x

β
(
y2 + z2 − 1

)+ 1

)2n

+
(

y

β
(
x2 + z2 − 1

)+ 1

)2n

+
(

z

β
(
x2 + y2 − 1

)+ 1

)2n
⎤
⎦

where .β determines container shapes, .γ is a fixed parameter, and .n 	 1.
Note that the cell walls become stiff as .n −→ ∞. Initially inclusions are in rest

with respect to the absolute space, whereas a sine wave propagates through the chain
of cells. Then the light inclusions are gradually involved in the dynamics due to the
interaction with container walls. The inclusions start moving chaotically inside the
cells by gradually absorbing the energy from the massive cells leading to the wave
attenuation with chaotization of its spatial shape.

8.3.4 A Nonlinear Mass-Spring Model That Becomes Linear at
High Amplitudes

As another example of conservative oscillator, let us consider a single mass vibrating
system, which is illustrated in Fig. 8.8 and described by the Lagrangian

.L = mẇ2

2
− kl2

⎛
⎝
√
1 + w2

l2
− 1

⎞
⎠

2

Here, m is mass, k is the linear stiffness of each spring, l is the length of each
spring at the equilibrium position at which the springs are horizontal, and w is the
particle vertical coordinate.
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Fig. 8.8 The system, which is strongly nonlinear at small amplitudes and weakly nonlinear at
large amplitudes

In terms of the dimensionless coordinate .x = w/l and phase .ϕ = (2k/m)1/2t ,
the corresponding differential equation of motion takes the form

.
d2x

dϕ2 + x − x√
1 + x2

= 0 (8.51)

Then, applying substitution (8.13) as .x = X(τ) and. τ = τ(ϕ/a) leads to the
boundary problem

.X′′ = −h

(
X − X√

1 + X2

)
≡ −hf (X)

X′|τ=1 = 0 (8.52)

where .h = a2.
First two steps of the successive approximation procedure give

.X0 = Aτ

h0 =
(
1

2
−

√
1 + A2 − 1

A2

)−1

and

.X1(τ ) = − h0

2A2

[
1

3
(Aτ)3 + 2Aτ − Aτ

√
1 + (Aτ)2 − arcsinh(Aτ)

]
(8.53)

γ 1 = h0

A3

[
6A + A3

12
+ 9A − A3

6
√
1 + A2

−
(
1 + 1√

1 + A2

)
arcsinh(A)

]

Interestingly enough, this model is essentially nonlinear at small amplitudes
but becomes linear as the amplitudes are infinitely large. Indeed, taking the
corresponding limits shows that
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.
X1

A
→ −1

5
τ 5, h0A

2 → 8, γ 1 → 3

10
as A → 0 (8.54)

and

.
X1

A
→ −1

3
τ 3, h0 → 2, γ 1 → 1

6
as A → ∞ (8.55)

The asymptotic (8.54) obviously corresponds the nonlinear oscillator, whereas
the limit case (8.55) associates with the harmonic oscillator. Still solution (8.53) is
valid for both large and small amplitudes. Both limit cases follow from Eq. (8.51).
In the case of small amplitudes, .|x| � 1, enforcing the estimate .(1 + x2)−1/2 ∼
1 − x2/2 in Eq. (8.51) gives

.d2x/dϕ2 + x3/2 = 0 (8.56)

In the case of large amplitudes, it follows even from Fig. 8.8 that the distance
between the spring fixed ends becomes negligible if as compared to l. As a result,
the mechanical model becomes effectively close to a mass-spring oscillator of mass
m with a single spring of stiffness 2k. In terms of the differential equations of
motion, we also obtain the corresponding limit from exact Eq. (8.51) by assuming
that, during most of the time of vibration cycle, the condition .|x| 	 1 and hence
.
√
1 + x2 ∼ |x| holds. As a result, Eq. (8.51) is replaced by

.d2x/dϕ2 + x − sgn(x) = 0 (8.57)

where the term sgn.(x) has to be neglected due to the same condition .|x| 	 1 that
gives the standard linear oscillator.

Alternatively, the discontinuous term in Eq. (8.57) can be saved and then
considered as a perturbation of the harmonic oscillator. Note that Eq. (8.57) admits
another form as follows

.d2x/dϕ2 + sgn(x)(|x| − 1) = 0 (8.58)

The restoring force characteristic of oscillator (8.58) represents a particular case
of the characteristic, .p(x) = sgn.(x)f (|x|), which is considered later in this chapter.

8.3.5 Strongly Nonlinear Characteristic with a Stepwise
Discontinuity at Zero

Let us consider the case of symmetric exponentially growing restoring force
characteristic with a stepwise discontinuity at zero such that

.f (x) =
{
exp(x) for x > 0
− exp(−x) for x < 0

(8.59)
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Although force (8.59) has no certain value at the point .x = 0, this still can play
the role of equilibrium position. From the physical standpoint, this is equilibrium
of a small bead at the bottom of V -shaped potential well. The local dynamics in
a small neighborhood of such type of equilibria is considered later in this chapter;
see the text in Fig. 8.16. It follows from (8.59) that .f (−x) = −f (x). Therefore,
periodic motions of the corresponding oscillator can be described by the function
.x = X(τ), where .X(−τ) = −X(τ) and .τ = τ(t/a). In terms of these NSTT
variables, the oscillator of a unit mass is described by the boundary value problem

.
X′′ + h exp(X) = 0, X′|τ=1 = 0 for τ ∈ (0, 1]
X′′ − h exp(−X) = 0, X′|τ=−1 = 0 for τ ∈ [−1, 0)

(8.60)

where .h = a2.
This problem is exactly solvable, and the solution that satisfies the continuity of

state condition at .τ = 0 has the form

.X±(τ ) ≡ Aτ ± 2 ln[1 + exp(−A)] (8.61)

∓2 ln

[
1 + h

2h0
exp(±Aτ − A)

]

where .X+ and .X− are taken for positive and negative subintervals of .τ , respectively,
and

.h = 2h0 = 2A2

exp(A)[1 + exp(−A)]2 (8.62)

Note that both the differential equation of oscillator and its solution admit closed
form representations as, respectively,

.ẍ + sgn(x) exp(|x|) = 0 (8.63)

and

.X = sgn(τ )

[
A|τ | + 2 ln

1 + exp(−A)

1 + h
2h0

exp(A|τ | − A)

]
(8.64)

The parameter h is obtained from equation

.X′|τ=1 = 0 (8.65)

or

.1 − h

h0

(
1 + h

2h0

)−1

= 0 (8.66)
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This exactly solvable case can play the role of a majorant for evaluation of
convergence properties of successive approximations. For that reason, we introduce
a formal small parameter, .ε = 1, and represent solution of Eq. (8.66) in the form

.h = 2h0 = εh0

(
1 − ε

2

)−1
(8.67)

Taking into account (8.67) brings (8.64) to the form

.X = sgn(τ )

{
A|τ | + 2 ln

1 − ε[1 − exp(−A)]/2
1 − ε[1 − exp(A|τ | − A)]/2

}
(8.68)

It can be shown by direct calculations that the power series expansions of (8.67)
and (8.68) with respect to .ε lead to the same series as those obtained by means of the
iterative procedure introduced in this section for a general one-degree-of-freedom
oscillator. Moreover, the structure of expression (8.67) suggests that considering the
modified series,

.h = εh0

1 − ελ1 − ε2λ2 − . . .
(8.69)

leads to the exact value h already on the second step of the procedure. This fact
can be employed for other cases in order to improve efficiency of the successive
approximation series (8.16). For instance, according to the idea of Padè transform
[26], the following equality must hold in every order of .ε

.
εh0

1 − ελ1 − ε2λ2 − . . .
= εh0(1 + εγ 1 + ε2γ 2 − . . .) (8.70)

This is equivalent to

.(1 + εγ 1 + ε2γ 2 − . . .)(1 − ελ1 − ε2λ2 − . . .) = 1 (8.71)

Taking the product of series on the left-hand side of (8.71) and considering
different orders of .ε generate a sequence of equations for the coefficients .λ1, .λ2,
.. . . . Then, substituting the corresponding solutions in (8.69) gives a particular case
of Padè transform of (8.16) in the form

.h = εh0

1 − εγ 1 − ε2(γ 2 − γ 2
1) − . . .

(8.72)

In many cases, expansion (8.72) appears to be more effective than (8.16). Note
that it is also possible to organize the successive approximations procedure by using
expansion (8.69) instead of (8.16).
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8.3.6 A Generalized Case of Odd Characteristics

This subsection deals with some generalization of the standard one-degree-of-
freedom conservative oscillator

.ẍ + f (x) = 0 (8.73)

where .f (x) is a smooth odd characteristic,

.f (−x) = −f (x) (8.74)

It was shown in this chapter that periodic solutions of the oscillator (8.73) admit
the form .x = X(τ), where

.X(−τ) = −X(τ) (8.75)

and, in addition, .X(τ)τ ≥ 0 for .−1 ≤ τ ≤ 1.
Consider now the following type of oscillators

.ẍ + sgn(x)f (|x|) = 0 (8.76)

In the case of odd characteristic, .f (x), oscillator (8.76) is equivalent to the
original one (8.73). The extension is due to the fact that the oscillator (8.76) always
has an odd characteristic regardless whether or not the function .f (x) itself is odd. In
general case, the characteristic, sgn.(x)f (|x|), may be nonsmooth at the equilibrium
point, .x = 0. As a result, the direct implementation of iterative procedures
with high-order derivatives of the oscillator characteristics becomes quite limited.
As illustrated below, the group properties of Eq. (8.76) can help to effectively
build solution of Eq. (8.76) based on the solution of Equation .ẍ + f (x) = 0
for .x > 0 by ignoring the point .x = 0. Obviously, if .V (x) is the potential
energy of oscillator (8.73), then .V (|x|) is the potential energy corresponding to
oscillator (8.76). The following example explains why Eq. (8.76) covers a broader
class of oscillators than (8.73).

Example 8.3.2 .ẍ+sgn.(x)|x|3/2 = 0 is an oscillator, but .ẍ + x3/2 = 0 is not; see
also Chap. 3 for the related discussion.

Based on the transition from Eqs. (8.73)–(8.76) and the general symmetry
properties (8.74) and (8.75), we introduce the following representation for periodic
solutions of Eq. (8.76)

.x = sgn(τ )X(|τ |) (8.77)
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Fig. 8.9 Analytical and numerical solutions of the modified oscillator shown by continuous and
dashed lines, respectively: (a) .α = 2/3 and (b) .α = √

2023

Such an extension enables one to obtain “closed form” analytical solutions for
a large number of oscillators by a simple adaptation of already known solutions,
.X(τ), for different cases of smooth characteristics.

Example 8.3.3 Applying transformation (8.77) to solution (8.40), which was
derived for the power form characteristic .xα with an odd positive exponent .α = m,
gives

.X = Asgn(τ )

[
|τ | − |τ |α+2

α + 2
+ α

2(α + 2)

( |τ |2α+3

2α + 3
− |τ |α+2

α + 2

)]
(8.78)

where .τ = τ(t/a) and the expansion (8.41) for .a2 requires only the replacement
.m → α. Expansion (8.78) represents an approximate solution of the equation

.ẍ + sgn(x)|x|α = 0 (8.79)

where the notation .α substitutes m in order to emphasize that the new exponent can
take any positive real value, such as even, odd, rational, or irrational. Figure 8.9a
and b illustrates solution (8.78) compared to numerical solution for two different
exponents .α and the same parameter .A = 1. As both figures show, the analytical
and numerical solutions are in a better match under the large exponent .α due to the
influence of vibroimpact asymptotic, .α → ∞.

A common feature of the algorithms and examples of this section is that
generating solutions for successive approximations are represented by triangle
waves of proper amplitudes and periods. Such generating solutions belong to the
real component of the hyperbolic complex number, .x = X + Ye. In contrast,
the next section introduces algorithms of successive approximations based on the
imaginary component. It will be seen that these two approaches have different
physical contents.
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8.4 Periodic Motions Close to Separatrix Loop

In this section, the classic mathematical pendulum is considered as an example,
although the developed algorithmmay be applicable to other cases of one-degree-of-
freedom systems with multiple equilibrium positions. Let us illustrate the algorithm
based on the differential equation of motion

.ẍ + sin x = 0 (8.80)

It is assumed that the pendulum oscillates inside the separatrix loop around the
stable equilibrium .(x, ẋ) = (0, 0) in between two physically identical unstable
saddle points .(x, ẋ) = (±π, 0). The separatrix loop also represents a trajectory
of the system with the total energy

.Es ≡
π∫

0

sin xdx = 2 (8.81)

The pendulum remains close to the separatrix loop in the area of periodic motions
if the total energy, E, belongs to the range

.0 < 1 − E

Es

<< 1 (8.82)

Let us show that, under condition (8.82), a successive approximation solution
can be derived from the particular case of boundary value problem (8.7) and (8.8).
Such particular case is given by setting .X ≡ 0 so that

.x(t) = Y (τ(t/a))e(t/a) (8.83)

Substituting (8.83) in Eq. (8.80) and following NSTT procedure yield

.Y ′′ = −a2 sinY (8.84)

and

.Y |τ=1 = 0, Y (−τ) ≡ Y (τ) (8.85)

Let us seek solution of the boundary value problem, (8.84) and (8.85), in the form
of series of successive approximations

.Y = π + εY1 (τ ) + ε3Y3 (τ ) + ε5Y5 (τ ) + . . . (8.86)

.a2 = p2/
(
1 − ε2λ2 − ε4λ4 − . . .

)
(8.87)

where .ε = 1 is an auxiliary parameter that helps to organize the iterative process.
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According to the formal expansion (8.86), the generating solution is represented
by the square wave of the amplitude .π , .x(t) = πe(t/a), which is a stepwise
discontinuous function. Such temporal mode shapes occur near the separatrix loop
in the natural time scale of the pendulum because the system spends most of the
time during one period near the unstable equilibrium position .x = π and its
physically identical position .x = −π . Therefore, expansion (8.86) is designed to
be a high-energy expansion near the unstable equilibrium, rather than around the
stable equilibrium position, .x = 0.

Substituting expansions (8.86) and (8.87) into Eq. (8.84) and collecting terms
with the same power of .ε lead to the sequence of equations

.
d2Y1

dτ 2
− p2Y1 = 0 (8.88)

.
d2Y3

dτ 2
− p2Y3 = p2

(
λ2Y1 − 1

6
Y 3
1

)
(8.89)

.
d2Y5

dτ 2
− p2Y5 = p2

[(
λ22 + λ4

)
Y1 − λ2

6
Y 3
1 + 1

120
Y 5
1 + λ2Y3 − 1

2
Y 2
1 Y3

]

(8.90)
. . . .

Further, the family of even solutions of Eq. (8.88) can be represented in the form

.Y1 = −A
coshpτ

coshp
(8.91)

where A is an arbitrary constant accompanied by the factor .− cosh−1 p, which is
convenient for further calculations due to the relationship .Y1(1) = −A. In particular,
this provides the same order of magnitude for the arbitrary constant A as both the
parameter p and period .T = 4a tend to infinity.

Further procedure is formally similar to the standard Poincaré-Lindstedt algo-
rithm for nonlinear conservative oscillators with positive linear stiffness. For
example, substituting (8.91) into the right part of Eq. (8.89) gives a “resonance
term” on the right-hand side of the equation, which is proportional to .coshpτ . This
generates “hyperbolic secular terms” of the form .τ coshpτ and .τ coshpτ in the
particular solution of Eq. (8.89). The occurrence of such terms can be prevented
analogously to the Poincaré-Lindstedt method by setting

.λ2 = A2

8 cosh2 p
(8.92)

As a result, the particular solution of Eq. (8.89) takes the form

.Y3 = A3 cosh 3pτ

192 cosh3 p
(8.93)
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At the next step, Eq. (8.90) gives solution

.Y5 = A5

4096 cosh5 p

(
cosh 3pτ − 1

5
cosh 5pτ

)
(8.94)

under the condition

.λ4 = − 3A4

512 cosh4 p
(8.95)

Substituting (8.91) through (8.92) in (8.86) and (8.87), and setting .ε = 1, gives
approximate solution

.Y = π − A coshpτ

coshp
+ A3 cosh 3pτ

192 cosh3 p
(8.96)

. + A5

4096 cosh5 p

(
cosh 3pτ − 1

5
cosh 5pτ

)

and

.h = p2
(
1 − A2

8 cosh2 p
+ 3A4

512 cosh4 p

)−1

(8.97)

where .τ = τ (t/a) and .a = √
h.

The truncated series of successive approximations (8.96) and (8.97) depend upon
two parameters, A and p, coupled by the boundary (continuity) condition (8.85) as
follows

.A = π + A3 cosh 3p

192 cosh3 p
+ A5

4096 cosh5 p

(
cosh 3p − 1

5
cosh 5p

)
(8.98)

Equation (8.98) should be interpreted as implicit function .A = A(p) near the
point .A = π . Therefore, expansions (8.96) and (8.97) represent a one-parameter
family of periodic solutions with the parameter p.

Figure 8.10a and b shows that the analytical and numerical solutions are in
better agreement for larger periods as the system trajectory becomes closer to the
separatrix loop.

Note that Eq. (8.80) admits the group of time translations. As a result, another
arbitrary parameter, say .t0, is introduced by substitution .t → t + t0.
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Fig. 8.10 Analytical (solid line) and numerical (dashed) solutions for two different periods: (a) T

= 8.5 (.p = 2) and (b) T = 24.5 (.p = 6)

8.5 Self-Excited Oscillator

This section illustrates the case when both X and Y components of solutions
participate in the iterative process.

In particular, we consider periodic self-sustained vibrations described in the
differential equation of motion

.ẍ + g(x)ẋ + f (x) = 0 (8.99)

where .f (x) and .g(x) are analytic functions, such that ( Lienard’s conditions )

(a) .G(x) =
x∫
0

g(u)du is an odd function such that .G(0) = G(±μ) = 0 for some

.μ > 0
(b) .G(x) → ∞ if. x → ∞, and. G(x) is a monotonously increasing function for

.x > μ

(c) . f (x) is an odd function such that .f (x) > 0 for .x > 0

The above conditions guarantee that system (8.99) has a single stable limit cycle.
In this case, the boundary-value problem (8.7) and (8.8) takes the form

.X′′ = −a2Rf − a
(
RgY

′ + IgX
′) ≡ −εFX, X′|τ=±1 = 0 (8.100)

Y ′′ = −a2If − a
(
IgY

′ + RgX
′) ≡ −εFY , Y |τ=±1 = 0

where the period of limit cycle .T = 4a is unknown, expressions .Rf and .If as well
as .Rg and .Ig are obtained by applying (8.5) and (8.6) to each of the functions .f (x)

and .g(x), and notations .εFX and .εFY are introduced with the formal factor .ε = 1
for further convenience.

Let us seek solution of the boundary value problem (8.100) in the form of series
of successive approximations

.X = X0(τ ) + εX1(τ ) + ε2X2(τ ) + · · · (8.101)

Y = Y0(τ ) + εY1(τ ) + ε2Y2(τ ) + · · ·
.a = q0 + εq1 + ε2q2 + · · · (8.102)
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Further solution procedure can be simplified by taking into account the symmetry
properties .X(−τ) ≡ −X(τ) and .Y (−τ) ≡ Y (τ) due to the above conditions
(a) through (c). Substituting (8.101) and (8.102) into (8.100) and matching the
coefficients of the respective powers of .ε give the following sequence of boundary
value problems

.X′′
0 = 0 (8.103)

Y ′′
0 = 0, Y0|τ=1 = 0

.X′′
1 = −FX,0, (X0 + X1)

′|τ=1 = 0

Y ′′
1 = −FY,0, Y1|τ=1 = 0 (8.104)

.X′′
i+1 = −FX,i , X′

i+1|τ=1 = 0

Y ′′
i+1 = −FY,i , Yi+1|τ=1 = 0 (8.105)

(i = 1, 2, . . .)

where

.FX,i = 1

i!
diFX

dεi
|ε=0, FY,i = 1

i!
diFY

dεi
|ε=0 (8.106)

Note that zero-order and first-order approximations are coupled through the
boundary condition for X-component in (8.104), whereas no boundary condition
is imposed on .X0 in (8.103). This specific represents a formalization of the physical
assumption regarding the dominating component in the temporal mode shape of
vibration, which is assumed to be close to the triangle wave rather than square wave.
As a result, the generating system (8.103) gives solution

. X0 = Aτ , Y0 ≡ 0 (8.107)

where. A is an arbitrary constant.
Substituting (8.107) in the right-hand side of Eq. (8.104) and integrating yield

. X1 = −q2
0

τ∫
0

(τ − ξ)f (Aξ)dξ , Y1 = −Aq0

τ∫
0

(τ − ξ)g(Aξ)dξ (8.108)

Then, substituting (8.108) in the boundary conditions in (8.104) gives the
following two equations for parameters .q0 and A
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.q2
0

1∫
0

f (Aξ)dξ = A,

1∫
0

(1 − ξ)g(Aξ)dξ = 0 (8.109)

Relationships (8.107) through (8.109) complete first basic steps of the iterative
procedure. Further iterations are organized then in a similar way as follows

. Xi+1 = −
τ∫

0

(τ − ξ)FX,i(ξ)dξ , Yi+1 = −
τ∫

1

dζ

ζ∫
0

FY,i(ξ)dξ (8.110)

.

1∫
0

FX,i(ξ)dξ = 0; i = 1, 2, . . . . (8.111)

Note that the boundary conditions for .Yi+1 are satisfied automatically due to
the lower limit of the outer integral in (8.110), whereas the boundary conditions
for .Xi+1 generate Eq. (8.111) for determining the coefficients of series (8.102).
Practically, high-order approximations can be obtained by using computer systems
of symbolic manipulations.

Example 8.5.1 Consider a self-excited oscillator with the power form stiffness of
the degree .m = 3,

. ẍ + (bx2 − 1)ẋ + x3 = 0

In this case, .g(x) = bx2 − 1 and .f (x) = x3. Conducting elementary integrations
in (8.109) gives the algebraic system

.
1

4
q2
0A

3 = A,
1

12
q0A

(
6 − bA2

)
= 0

with non-trivial solution

.q0 =
√
2b

3
, A =

√
6

b

As a result, integrating (8.108) yields

.X1 = −
√
6

b

τ 5

5
, Y1 = τ 2 − τ 4

All further steps of the procedure are conducted according to the same
scheme (8.110) and (8.111). For instance, first two steps of the procedure give
approximate solution
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.x =
√
6

b
{τ − τ 5

5
+ 1

3150
[105τ 9 + 900τ 7b − 21τ 5(70b + 9) + 350τ 3b]}

+(1 − τ 2){τ 2 − 1

420
[20 − 43τ 2 + 20τ 4 + 216τ 6]}e

and the period

.T = 4a = 8

√
b

6

(
1 + 3

20

)

Two more steps of the procedure correct the above expression for the period as
follows

.T = 4a = 8

√
b

6

(
1+ 3

20
+2960b + 2121

50400
+7367360b2 + 4554992b + 8659035

605404800

)

Figures 8.11 and 8.12 show limit cycle trajectories described by the analytical
solutions in one and two iterations, respectively. For comparison reason, the
numerical solution for transition to the limit cycle is also presented. Then, Fig. 8.13
illustrates the dependence of the quarter of period, .a = T/4, versus the quantity
.b−1/2, which can be viewed as an estimate for the amplitude of limit cycle.

numerical

b  1.0

m  3

analytical, 1 iteration
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Fig. 8.11 Trajectories of numerical solution and the analytical limit cycle solution in one iteration
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Fig. 8.12 Trajectories of numerical solution and approximate (two iterations) analytical limit
cycle solution
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Fig. 8.13 Illustration of convergence of the iterative procedure on the parameter plane
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8.6 Strongly Nonlinear Oscillator with Viscous Damping

This section describes the successive approximation procedure combined with the
asymptotic of small energy dissipation that leads to a slow amplitude decay. The
scheme of the algorithm is closed to that was introduced earlier in [176].

Consider a strongly nonlinear oscillator under the viscous damping

.ẍ + 2μẋ + f (x) = 0 (8.112)

where .f (x) is an odd function such that .xf (x) ≥ 0 and .0 < μ << 1.
The idea of two-variable expansions will be employed below in combination

with the triangle wave time substitution. Let us assume that .τ(ϕ) is a fast time scale,
whose phase, .ϕ, depends on the slow time scale, .t0 = μt , according to the following
differential equation

.ϕ̇ = ω(t0) (8.113)

where the right-hand side is a priori unknown.
Let us represent the unknown solution of Eq. (8.112) in the form

.x = x(ϕ, t0) = X(τ(ϕ), t0) + Y (τ(ϕ), t0)e(ϕ) (8.114)

Substituting (8.114) in Eq. (8.112) and imposing the smoothness conditions as

.Y |τ=±1 = 0,
∂X

∂τ
|τ=±1 = 0 (8.115)

give two partial differential equations

.ω2 ∂2X

∂τ 2
= −Rf − μH

∂Y

∂τ
− μ2LX

ω2 ∂2Y

∂τ 2
= −If − μH

∂X

∂τ
− μ2LY (8.116)

where, as follows from (8.5) and (8.6),

.Rf = Rf (X, Y ) = 1

2
[f (X + Y ) + f (X − Y )]

If = If (X, Y ) = 1

2
[f (X + Y ) − f (X − Y )]

and two linear differential operators are introduced
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.H ≡ 2ω

(
1 + ∂

∂t0

)
+ dω

dt0
(8.117)

L ≡ ∂2

∂t02
+ 2

∂

∂t0

Note that the fast and slow temporal scales are associated with different
physical processes developed in the system. The slow energy dissipation process
is represented by the explicit small parameter .μ, but there is no explicit parameter
associated with perturbations of the triangle wave, which is supposed to be a
generating solution of the iterative process. However, as discussed earlier in
this section, introducing the triangle wave temporal argument implies that the
entire right-hand side of system (8.116) is small. Otherwise, the triangle wave
cannot be considered as a dominating component of the temporal mode shape
of oscillations. Recall that, in a similar way, selecting the harmonic wave as a
dominating solution in quasi-harmonic approaches implies that nonlinearities are
small regardless the system parameters. Therefore, iterative procedure for boundary
value problem (8.115) and (8.116) should incorporate two different procedures, as
those described above in this section, and a proper asymptotic procedure related
to the dissipation process. Let us emphasize that the quasi-harmonic methods face
similar situation when dealing with weakly nonlinear systems under small damping
conditions. For instance, if being applied to such cases, the method of multiple
scales accounts for both anharmonicity and dissipation, after appropriate assumption
regarding the relation between nonlinearity and damping parameters has been made.
Very often, such parameters are assumed to be of the same order of magnitude.
As to the boundary value problem (8.115) and (8.116), similar assumption can be
introduced by providing the terms .Rf and .If and the parameter .μ with the same
formal “small factor” .ε = 1. Then, the multiple scales or two-variable expansions
can be organized by using the auxiliary parameter .ε [176]. In the case of linear
oscillator, such an algorithm recovers the exact solution of the linear differential
equation of motion however in the specific form

.x = X(τ, t0) = C
ω exp(−t0)√
ε(1 − εμ2)

sin

[√
ε(1 − εμ2)

ω
τ(ωt)

]
(8.118)

and

.ω2 = ε(1 − εμ2)

4 arcsin2
√

ε/2

where C is an arbitrary constant and another arbitrary constant can be introduced
through the arbitrary time shift.

Note that solution (8.118) includes no Y -component because, at every stage of
the iterative process, it appears to be possible to satisfy condition

.H(∂X/∂τ) = 0 (8.119)
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Thus, the second equation of system (8.116) is satisfied by setting .Y ≡
0. Practically, condition (8.119) generates the common factor .exp(−t0) for all
successive approximations. In general nonlinear case, it is rather impossible to
satisfy condition (8.119) at every stage of the process, but it still works for the
leading order approximate solutions.

Example 8.6.1 Consider the weakly damped oscillator of the m degree power form
restoring force characteristic

. ẍ + 2μẋ + xm = 0 (8.120)

At this stage, the exponent m is an odd positive number. It will be shown later that a
broader class of power characteristics can also be considered. Note that, for this kind
of oscillators, whether or not the damping is small depends on the level of amplitude
and the exponent, m. This is due to the fact that, for small enough amplitudes, the
elastic force becomes negligible regardless the magnitude of damping. By assuming
that the influence of damping is negligible during one cycle of vibration, one can use
expressions (8.41) for estimations of magnitudes of damping and elastic forces. As
a result, the condition of small damping derives in the form

.μ2 � 1

4
(m + 1)Am−1 (8.121)

One step of the procedure gives approximate solution [176]

.x = Cexp

(−4μt

m + 3

)(
τ − τm+2

m + 2

)
(8.122)

where .τ = τ(ϕ) and the phase variable is approximated by

.ϕ = ϕ∞
[
1 − exp

(
−2μ

m − 1

m + 3
t

)]
(8.123)

ϕ∞ = 1

2μ

m + 3

m − 1

C(m−1)/2

√
2(m + 1)

Interestingly enough, the above approximate solution predicts that the oscillator
makes only a finite number of waves as .m > 1 and .t → ∞. Figures 8.14 and
8.15 illustrate damped responses of the oscillator with two different degrees of
nonlinearity, .m = 3 and .m = 7, respectively. As follows from the diagrams, the
approximate analytical solution and numerical one are matching relatively well,
especially at higher exponent, .m = 7. In particular, this justifies the idea of using
the triangle wave in strongly nonlinear cases, when the oscillator becomes close to
the standard vibroimpact model.
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Fig. 8.14 Approximate analytical and numerical solutions of the damped oscillator with cubic
power form characteristic; .C = 1.5, .μ = 0.05
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Fig. 8.15 Approximate analytical and numerical solutions of the damped oscillator with the
seventh degree power form characteristic; .C = 1.5, .μ = 0.05

8.6.1 Remark on NSTT Combined with Two-Variable
Expansion

In general, the iterative process of triangle wave expansions and the averaging
procedure can be separated. Moreover, the stage of triangle wave time substitution
does not impose any specific method of analyses. Let us apply the method of
two-variable expansions directly to the nonlinear boundary value problem (8.115)
and (8.116) by means of the asymptotic series

.X = X0(τ , t0) + μX1(τ , t0) + μ2X2(τ , t0) + · · ·
Y = Y0(τ , t0) + μY1(τ , t0) + μ2Y2(τ , t0) + · · · (8.124)
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and

.ω = ω0(t
0) + μω1(t

0) + μ2ω2(t
0) + · · ·

H = H0 + μH1 + μ2H2 + . . . (8.125)

where .Hi = 2ωi

(
1 + ∂/∂t0

)+ dωi/dt0.
Substituting (8.124) and (8.125) into (8.115) and (8.116), and matching coeffi-

cients of like powers of .μ, gives, in particular,

.ω2
0
∂2X0

∂τ 2
= −R

(0)
f (X0, Y0),

∂X0

∂τ
|τ=±1 = 0

ω2
0
∂2Y0

∂τ 2
= −I

(0)
f (X0, Y0), Y0|τ=±1 = 0 (8.126)

and

.ω2
0
∂2X1

∂τ 2
= −R

(1)
f (X0, Y0, X1, Y1) − 2ω0ω1

∂2X0

∂τ 2
− H0

∂Y0

∂τ

∂X1

∂τ
|τ=±1 = 0

ω2
0
∂2Y1

∂τ 2
= −I

(1)
f (X0, Y0, X1, Y1) − 2ω0ω1

∂2Y0

∂τ 2
− H0

∂X0

∂τ
(8.127)

Y1|τ=±1 = 0

where .R
(0)
f , .R(1)

f , .. . . and .I
(0)
f ,.I (1)

f , .. . . are determined by the expansions

.R = R
(0)
f + μR

(1)
f + μ2R

(2)
f + . . .

I = I
(0)
f + μI

(1)
f + μ2I

(2)
f + . . .

By taking into account the assumptions on .f (x) in Eq. (8.112), one can represent
solution of problem (8.126) in the following general form

.X0 = X0(τ , A, ω0), Y0 ≡ 0 (8.128)

where .A = A(t0) is an arbitrary function of the slow time scale, which is coupled
with the frequency .ω0 through the boundary condition

.
∂X0(τ , A, ω0)

∂τ
|τ=1 = 0 (8.129)
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In general, this relationship determines the implicit function .ω0 = ω0(t
0). Now

substituting solution (8.128) in (8.127) gives equations

.ω2
0
∂2X1

∂τ 2
+ f ′(X0)X1 = −2ω0ω1

∂2X0

∂τ 2
(8.130)

and

.ω2
0
∂2Y1

∂τ 2
+ f ′(X0)Y1 = −H0

∂X0

∂τ
(8.131)

Let us consider Eq. (8.131). The best choice would be achieved by setting the
right-hand side to zero and therefore making possible the solution .Y1 ≡ 0, which
is consistent with zero-order solution (8.128) and provides a better smoothness
property of the corresponding solution at this stage; see condition (8.119). Note
that the right-hand side cannot be always made zero for any .τ unless the zero-order
solution admits separation of the variables .t0 and .τ . However, it is still possible to
minimize the right-hand side of Eq. (8.131) by making it orthogonal to solution of
the corresponding homogeneous equation, .∂X0/∂τ , according to condition

.
1

2

1∫
−1

∂X0

∂τ
H0

∂X0

∂τ
dτ ≡

〈
∂X0

∂τ
H0

∂X0

∂τ

〉
= 0 (8.132)

Taking into account the expression .H0 = 2ω0
(
1 + ∂/∂t0

) + dω0/dt0 and
condition (8.132) gives

.ω0

〈(
∂X0

∂τ

)2
〉

= C exp(−2t0) (8.133)

where C is an arbitrary constant.
It can be shown that the condition (8.132) occurs also in a rigorous mathematical

way based on the boundary conditions for .Y1. At least, this can be easily verified in
the linear case, .f (x) ≡ x.

8.6.2 Oscillator with Two Nonsmooth Limits

Consider the following generalization of Eq. (8.120)

.ẍ + 2μẋ + sgn(x)|x|α = 0 (8.134)

where .α is a non-negative real number; see comments to Eq. (8.79).
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In this case, zero-order solution (8.128) can be obtained in the form (8.78),

.x(t) = A(t0)sgn(τ (ϕ)) (8.135)

×
[
|τ(ϕ)| − |τ(ϕ)|α+2

α + 2
+ α

2(α + 2)

( |τ(ϕ)|2α+3

2α + 3
− |τ(ϕ)|α+2

α + 2

)]

ϕ̇(t) = ω0(t
0), t0 = μt

where the functions .A(t0) and .ω0(t
0) are coupled by relation (8.41) as

.ω0 = 1

a
= A(α−1)/2

√
α + 1

{
1 + α

2(α + 2)

[
1 + (α + 1)2

(α + 2)(2α + 3)

]}−1/2

(8.136)

Equations (8.136) and (8.133) admit exact solution

.A = C exp

(
− 4μt

3 + α

)
, ϕ = ϕ∞

[
1 − exp

(
−2μ

α − 1

α + 3
t

)]
(8.137)

where C is a new arbitrary constant and

.ϕ∞ = 1

2μ

α + 3

α − 1

C(α−1)/2(2 + α)
√
2(3 + 2α)√

(α + 1)
(
7α3 + 31α2 + 47α + 24

) (8.138)

It follows from expressions (8.137) and (8.138) that the linear system, .α = 1,
plays the role of a boundary between the two strongly nonlinear areas

.N0 = {α : 0 ≤ α << 1} and N∞ = {α : 1 << α < ∞} (8.139)

In other words, we show that the number .α = 1 separates two qualitatively dif-
ferent regions of the dynamics determined by the influence of different nonsmooth
limits of the potential well; see Fig. 8.16 for illustration. In particular, if .α > 1, then
the phase variable .ϕ has the finite limit .ϕ∞ as .t → ∞. In contrast, if .α < 1, then
the phase with its temporal rate is exponentially growing, as the amplitude decays
and the system approaches the bottom of the potential well. The physical meaning
of this effect is most clear from the limit case .α → 0, which is discussed below.

Figures 8.17, 8.18, and 8.19, 8.20 illustrate solution (8.135) through (8.138)
for large and small exponents .α, respectively. The diagrams suggest quite a good
agreement with numerical solution in both branches of the exponent (8.139). The
numerical solutions shown by dashed lines were obtained by the standard solver
NDSolve built in Mathematica®. Figure 8.17 also shows that some divergence
between the curves occurs when the amplitude is decreased to the level about .A =
0.6. Below this level, the condition of small damping (8.121) is not guaranteed any
more. In contrast, the curves are in a better match for smaller amplitudes if .α < 1;
see Fig. 8.19. In this case, the amplitude decay just strengthens condition (8.121).
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Fig. 8.16 Potential energy
representation for the two
limit oscillators
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Fig. 8.17 Temporal mode shape of the vibration for .α ∈ N∞, .C = 1.5, and .μ = 0.04; here and
below, the dashed line represents numerical solutions
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Fig. 8.18 Phase plane diagram for .α ∈ N∞



288 8 Strongly Nonlinear Vibrations

1 14

analytical, numerical

0 20 40 60 80 100 120 140

1.0

0.5

0.0

0.5

1.0

t

x

a

Fig. 8.19 Temporal mode shape of the vibration for .α ∈ N0, .C = 2.5, and .μ = 0.04
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Fig. 8.20 Phase plane diagram for .α ∈ N0

The phase plane diagrams shown in Figs. 8.18 and 8.20 have qualitatively different
shapes as dictated by the influence of different nonsmooth limits of the potential
well; see Fig. 8.16. Let us show now that solution (8.135) captures both nonsmooth
limits .α → 0 and .α → ∞.

For a physically meaningful transition to the limits, let us express the arbitrary
parameter C through the initial velocity .v0 = ẋ|t=0,

.C =
[

v20 (α + 1)
(
7α3 + 31α2 + 47α + 24

)
2(α + 2)2(2α + 3)

]1/(α+1)

and consider the two different cases.
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1) As .α → ∞, the solution (8.135) through (8.138) gives

.x = τ(ϕ) (8.140)

ϕ = v0

2μ

[
1 − exp (−2μt)

]

Solution (8.140) exactly describes the system motion in the square potential well.
2) When .α → 0, expressions (8.135) through (8.138) are reduced to

.x = v20 exp

(
−4

3
μt

)
τ(ϕ)

(
1 − |τ(ϕ)|

2

)
(8.141)

ϕ = 3

2μv0

[
exp

(
2

3
μt

)
− 1

]

where the identity sgn[.τ(ϕ)].|τ(ϕ)| ≡ τ(ϕ) has been taken into account.
If, in addition .μ = 0, then solution (8.141) also exactly describes the system

dynamics with another nonsmooth limit of the potential energy, .|x|, as shown in
Fig. 8.16. If .μ 
= 0, then substituting solution (8.141) into the differential equation
of motion gives an error .O(μ2). In terms of first-order asymptotic solutions, the
error of order .μ occurs on the time period of order .1/μ. Therefore, solution (8.141)
exactly captures the carrying shape of the vibration but gives only asymptotic
estimate for the exponential decay.

Note that the error of solution (8.135) is due to the error of the iterative procedure
for elastic vibrations and the error of asymptotic for energy dissipation. As shown
above, the error of successive approximations vanishes as either .α → ∞ or .α → 0,
but the error of asymptotic vanishes only as .α → ∞.

Finally, let us discuss the qualitative difference of the dynamics in the parameter
intervals .N0 and .N∞. As follows from Eq. (8.137), for .α ∈ N0, the phase of
vibration and the corresponding frequency are exponentially increasing in the slow
time scale .μt . The physical meaning of this phenomenon becomes most clear in
the limit case .α = 0. In this case, according to solution (8.141), the amplitude and
frequency are, respectively,

.A(μt) = v20

2
exp

(
−4

3
μt

)
and ϕ̇ = 1

v0
exp

(
2

3
μt

)
= 1√

2A(μt)
(8.142)

Expressions (8.142) describe increasingly rapid vibrations—“dither”—near the
corner of the potential energy .|x| as the amplitude approaches zero. This result is
confirmed by the much earlier analysis of the corresponding conservative case [103].
In contrast, when .α ∈ N∞, the oscillator makes a limited number of cycles such that
the phase .ϕ remains bounded for any time t . Again, the most clear interpretation is
obtained in the limit case .α → ∞, when, as follows from (8.140), the phase variable
.ϕ(t) represents the total distance passed by the particle by time t , and .ϕ̇ = v is the
absolute value of the velocity. Since the barriers are perfectly elastic, the particle
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reflects with no energy loss, and the velocity .v (t) remains continuous function of
time described by the linear differential equation .v̇ + 2μv = 0 or .ϕ̈ + 2μϕ̇ = 0.
Under the initial conditions .ϕ(0) = 0 and .ϕ̇(0) = v0, one obtains exactly solution
(8.140).

In conclusion, the explicit analytical solution for a class of strongly nonlinear
oscillators with viscous damping is introduced. Two different nonsmooth functions
involved into the solution are associated with two different nonsmooth limits of the
oscillator. As a result, the solution is drastically simplified to give the best match
with numerical tests if approaching any of the two limits.

8.7 Bouncing Ball in Viscous Media

In this section, we consider a small ball of mass m falling under the gravity force
onto a horizontal plane. In addition to the gravity, the ball is subjected to the
linear damping with the coefficient c. Impacts with the plane are inelastic with the
restitution coefficient k. The vertical coordinate .z(t) therefore is described by the
following equations of motion

.mz̈ = −mg − cż (z 
= 0) (8.143)

ż+ = −kż− (z = 0)

where .ż− and .ż+ are velocities right before and immediately after the impact,
respectively.

Let h be a natural spatial scale of the system. This can be, for instance, the
maximal height that has been reached by the ball during the first cycle. Introducing
the coordinate transformation .z = h|x| and scaling the time as .t = √

h/gp bring
Eq. (8.143) to the form [256]

.
d2x

dp2
+ 2μ

dx

dp
+ sgnx = 0 (8.144)

(
dx

dp

)
+

−
(

dx

dp

)
−

= (1 − k)

(
dx

dp

)
−

where

.μ = 1

2

c

m

√
h

g

In the particular case .k = 1, solution (8.141) becomes applicable to Eq. (8.144).
Then, returning back to the original notations of Eq. (8.143) gives
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Fig. 8.21 NSTT analytical and direct numerical solutions for the height of bouncing ball under
the linear dissipation condition; .m = 1.0, .c = 0.5, .z(0) = 0, and .ż(0) = 1.0

.z(t) = C exp

(
− 2c

3m
t

)[
|τ(ϕ)| − 1

2
τ 2(ϕ)

]
(8.145)

ϕ(t) =
√

g

C

3m

c

[
exp

( c

3m
t
)

− 1
]

where C is a new arbitrary constant.
If .C = ż20/g, then solution (8.145) satisfies the specific initial conditions .z(0) =

0 and .ż(0) = ż0. One more arbitrary constant can be introduced by shifting the time,
.t− > t + t0, that would allow to consider non-zero initial height of the ball. The
effectiveness of solution (8.145) is illustrated by its comparison to the corresponding
numerical solution in Fig. 8.21.

8.8 The Kicked Rotor Model

The so-called kicked rotor model is introduced in physics as a relatively simple
essentially nonlinear model for chaotic behavior of systems, where one variable
may be either bounded or unbounded in phase space [27, 95, 127]. The kicked rotor
is described, in some units, by Hamiltonian

.H = 1

2
I 2 + K cos θ

∞∑
n=−∞

δ (t − n) (8.146)

where I is the angular momentum, .θ is the conjugate angle, and K is the
stochasticity parameter that determines qualitative features of the dynamics.
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The sequence of impulses in (8.146) can be expressed through the triangle wave
.τ = τ (2t − 1) in the form

.

∞∑
n=−∞

δ (t − n) = −1

2
τ (2t − 1) τ ′′ (2t − 1) (8.147)

where primes denote differentiation with respect to the entire argument of a
function, .2t − 1.

Note that the only role of the first multiplier, .τ (2t − 1), on the right-hand side is
to provide pulses with the same sign. Hence (8.146) takes the form

.H = 1

2
I 2 − 1

2
Kτ (2t − 1) τ ′′ (2t − 1) cos θ (8.148)

The corresponding differential equation of motion is

.θ̈ = −1

2
Kττ ′′ sin θ (8.149)

A family of solutions of the period .T = 2 admits NSTT representation by
introducing the triangle wave time argument, .τ ,

.θ = θ(τ ) (8.150)

Substituting (8.150) in (8.149) gives

.
d2θ

dτ 2
= −

(
1

8
Kτ sin θ + dθ

dτ

)
τ ′′

Eliminating the singular term .τ ′′ leads to the boundary condition

.τ = ±1:
dθ

dτ
= −1

8
Kτ sin θ (8.151)

and the differential equation

.
d2θ

dτ 2
= 0 (8.152)

The boundary-value problem (8.151) and (8.152) admits solution

.θ = Aτ (2t − 1) + B (8.153)
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where A and B appear to be coupled by the set of equations

.A = −1

8
K sin(A ± B) (8.154)

or

.A = −1

8
K sinA cosB (8.155)

and

. cosA sinB = 0 (8.156)

In particular, Eq. (8.155) shows that the number of periodic solutions of the
period .T = 2 is growing as the parameter K increases.



Chapter 9
Strongly Nonlinear Waves

This short chapter deals with modulated waves described by strongly nonlinear
Klein-Gordon equation. A mechanical equivalent for this model can be represented
by the infinite linear string on elastic foundation. In this case, the carrying wave can
be approximated by polynomials or other elementary functions of the triangle wave
based on the algorithms of the previous chapter. Then the differential equations for
slow varying modulations are derived by using the Whitham assumptions and the
specific boundary conditions associated with nonsmooth argument substitutions.

9.1 Wave Processes in One-Dimensional Systems

A one-dimensional wave can be described by the function

.u = u(θ, x, t) (9.1)

where .θ = θ(x, t) is a phase variable and x and t are the coordinate and time,
respectively.

In the stationary case, the phase variable is usually the only argument of the
wave shape function .u = u(θ), where .θ = ωt − kx with temporal and spatial wave
numbers, .ω and k, respectively, so that

.
∂θ

∂t
= ω and

∂θ

∂x
= −k (9.2)

Function (9.1) includes also the variables x and t explicitly in order to describe
wave modulation effects. Therefore, we assume that the dependence upon explicit
x and t is slow. Such an assumption can be formalized by means of the formal
auxiliary parameter .ε [151, 245]
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.u = u(θ, x0, t0) (9.3)

where .x0 = εx, .t0 = εt , and relationships (9.2) take now the form

.
∂θ

∂t
= ω(x0, t0) and

∂θ

∂x
= −k(x0, t0) (9.4)

Let the wave shape function u be periodic with respect to .θ with the period
.T = 4. In this case, the triangle wave phase argument can be introduced as follows
.τ = τ(θ):

.u = U(τ, x0, t0) + V (τ , x0, t0)e (9.5)

where .e = e(θ) = τ ′(θ) is the square wave of the phase variable.

9.2 Klein-Gordon Equation

For illustration purposes, we consider the Klein-Gordon equation

.
∂2u

∂t2
− ∂2u

∂x2 + f (u) = 0 (9.6)

where .f (u) is an odd function.
Substituting (9.5) in (9.6) and taking into account (9.4) give

.

(
ω2 − k2

) ∂2U

∂τ 2
= −Rf (U, V ) − εH

∂V

∂τ
− ε2LU

(
ω2 − k2

) ∂2V

∂τ 2
= −If (U, V ) − εH

∂U

∂τ
− ε2LV (9.7)

.

∂U

∂τ
|τ=±1 = 0

V |τ=±1 = 0
(9.8)

where

.H ≡ 2

(
ω

∂

∂t0
+ k

∂

∂x0

)
+ ∂ω

∂t0
+ ∂k

∂x0

L ≡ ∂2

∂t02
− ∂2

∂x02
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and

.Rf = 1

2
[f (U + V ) + f (U − V )]

If = 1

2
[f (U + V ) − f (U − V )]

Analogously to the case of strongly nonlinear damped oscillator considered in
the previous chapter, we represent solution in the form of series

.U(τ, x0, t0) = U0(τ , x0, t0) + εU1(τ , x0, t0) + . . .

V (τ , x0, t0) = V0(τ , x0, t0) + εV1(τ , x0, t0) + . . . (9.9)

Substituting (9.9) into (9.7) and (9.9), and equating coefficients of like powers of
.ε, gives in first two steps

.

(
ω2 − k2

) ∂2U0

∂τ 2
= −f (U0)

V0 ≡ 0 (9.10)

.
∂U0

∂τ
|τ=1 = 0 (9.11)

where .U0(−τ) = −U0(τ ) due to oddness of the function .f (U0), and

.

(
ω2 − k2

) ∂2U1

∂τ 2
= −f ′(U0)U1

(
ω2 − k2

) ∂2V1

∂τ 2
= −f ′(U0)V1 − H

∂U0

∂τ
(9.12)

.
∂U1

∂τ
|τ=±1 = 0

V1|τ=±1 = 0 (9.13)

The generating solution is obtained from (9.10) in the following general form

.U0 = U0(τ , A, ω2 − k2) (9.14)

where A, .ω, and k are functions of the slow variables .x0 and .t0.
The functions .A(x0, t0), .ω(x0, t0), and .k(x0, t0) are coupled by the boundary

condition (9.11)

.
∂U0(τ , A, ω2 − k2)

∂τ
|τ=1 = 0 (9.15)
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and by the condition of solvability of the boundary value problem (9.12) for .V1,

.

1∫
−1

∂U0

∂τ
H

∂U0

∂τ
dτ = 2

〈
∂U0

∂τ
H

∂U0

∂τ

〉
= 0

or

.
∂

∂t0

[
ω

〈(
∂U0

∂τ

)2
〉]

+ ∂

∂x0

[
k

〈(
∂U0

∂τ

)2
〉]

= 0 (9.16)

Example 9.2.1 Consider the equation

.
∂2u

∂t2
− ∂2u

∂x2
+ sgn(u)|u|α = 0 (9.17)

where .α is a real positive number. In this case, the generating solution is obtained
analogously to the case of oscillator with two nonsmooth limits, considered in
Chap. 8, by replacing .ω2

0 with .ω2 − k2. In particular,

.ω2 − k2 = Aα−1

α + 1

{
1 + α

2(α + 2)

[
1 + (α + 1)2

(α + 2)(2α + 3)

]}−1

(9.18)

whereas Eq. (9.16) gives

.
∂(ωA2)

∂t
+ ∂(kA2)

∂x
= 0 (9.19)

Equations (9.18) and (9.19) have been written in terms of the original time and
coordinate by setting the auxiliary parameter to unity, .ε = 1. However, according
to the basic assumption, .A = A (t, x), .ω = ω (t, x), and .k = k (t, x) still should be
treated as slow functions as compared to .τ(θ).



Chapter 10
Impact Modes and Parameter Variations

In this chapter, new parameter variation and averaging tools are introduced for
impact modes. It is also shown that a specific combination of two impact modes
gives another impact mode. The number of impact modes depends on the number of
constraints and therefore can significantly exceed the number of degrees of freedom.
The corresponding manipulations with impact modes become possible due to the
availability of closed-form exact solutions obtained by means of the triangular sine
temporal substitution for impulsively loaded and vibroimpact systems. In particular,
the idea of van der Pol and averaging tool is adapted for the case of impact oscillator.
For illustrating purposes, a model of coupled harmonic and impact oscillators
is considered. Then, mass-spring systems with multiple impacting particles are
considered in order to illustrate impact localization phenomena on high-energy
levels.

10.1 An Introductory Example

Vibration modes with impacts have been under study for several years [23, 182, 242,
249]. In practical terms, such studies deal with the dynamics of elastic structures
whose amplitudes are limited by stiff constraints. These may be designed intention-
ally or occur due to a deterioration of joints. As a result, such kinds of dynamics are
often accompanied by a rattling noise or dither during operating regimes of vehicles
or machine tools. From the theoretical standpoint, the interest to such problems is
driven by the question what happens to linear normal modes as the energy of elastic
vibrations becomes sufficient for reaching the constraints. Interestingly enough,
some of the analytical approaches developed in the area recently found applications
in molecular dynamics [68]. However, due to strong nonlinearities of the impact
dynamics, most of the results relate to periodic particular solutions according to the
idea of nonlinear normal modes [241]. Let us recall that the importance of linear
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Fig. 10.1 The oscillator with
bilateral rigid barriers (on the
left) is replaced by the
oscillator under the periodic
series of external impulses
(on the right)

m
k

x

�2

p2 p2

(a)

(b)

normal modes is emphasized by the linear superposition principle as well as the
parameter variation and averaging methods for weakly nonlinear cases.

Let us consider a one-degree-of-freedom free harmonic oscillator between
two absolutely rigid barriers. A mechanical model of such an oscillator can be
represented as a mass-spring model with two-sided amplitude limiters as shown
in Fig. 10.1a.

The interaction with the barriers at .x = ±Δ is assumed to be perfectly elastic,
and the system is represented in the form

.ẍ + Ω2
0x = 0, |x| ≤ Δ (10.1)

Since the normal mode regimes are periodic by their definition, then the reaction
of constraints can be treated as a periodic series of external impulses acting on the
masses of the system.

Applying this remark to the one-degree-of-freedom system as it is shown in
Fig. 10.1b, the related differential equation of motion is written in the linear form

.ẍ + Ω2
0x = 2p

∞∑
k=−∞

[δ (ωt + 1 − 4k + α) − δ (ωt − 1 − 4k + α)] (10.2)

= pτ ′′ (ωt + α)

where .δ (ξ) is the Dirac function, .τ (ξ) is the triangular sine wave, and 2p, .ω, and
.α will be interpreted as arbitrary parameters.

For further convenience, the right-hand side of Eq. (10.2) is expressed through
second-order generalized derivative of the triangular sine wave with respect to the
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entire argument, .ωt + α. The parameter .ω will be called a frequency parameter,
although it differs by the factor .π/2 from the regular trigonometric frequency,
.Ω = (π/2) ω. Further both parameters, .ω and .Ω , may be used. In contrast to
system (10.1), the auxiliary system (10.2) is linear but not completely equivalent
to the original one as follows from the analyses below.

Representing unknown steady-state periodic solution in the form

.x = X (τ) , τ = τ (ωt + α) (10.3)

gives the boundary value problem with no singular terms,

.ω2X′′ (τ ) + Ω2
0X (τ) = 0 (10.4)

X′ (τ ) |τ=±1 = pω−2

and the related solution is represented in the triangle wave time form [178]

.x = p

ω2

sin [γ τ (ωt + α)]

γ cos γ
, γ = Ω0

ω
(10.5)

This solution can be verified by direct substitution of expression (10.5) into the
equation of motion (10.2).

A connection between solution (10.5) and vibration of the original system with
stiff constraints is established by imposing the conditions:

• The impulses on the right-hand side of Eq. (10.2) act when the mass strikes the
limiters

.x = ±Δ if τ = ±1 ⇐⇒ τ ′′ �= 0 (10.6)

• The system cannot penetrate through the limiters; therefore,

. |x| ≤ Δ for all τ ∈ [−1, 1] (10.7)

Substituting solution (10.5) into condition (10.6) determines the parameter p

.p = Δω2γ cot γ (10.8)

Substituting now (10.8) in (10.5) gives solution in the final form

.x(t) = Δ
sin [γ τ (ωt + α)]

sin γ
(10.9)

Obviously, solution (10.9) satisfies condition (10.6) automatically. The related
parameter p (10.8) will further be treated as an eigenvalue of the nonlinear (impact)
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Fig. 10.2 Real (a) and “phantom” (b) solutions corresponding to the first (smallest) and second
roots, respectively, .γ 1 = 1.1502 and .γ 2 = −1.1502 + π . The total energy level is .E = 1.2E∗

problem. Other parameters, .ω and .α, are determined by the initial conditions. Let us
assume that .x (0) = 0 and thus .α = 0. As a result, the total energy of the oscillator
per unit mass is expressed through the initial velocity as .E = .[ẋ (0)]2 /2. Then,
taking into account (10.9) and making some analytical manipulations give

.γ = ±1

2
arccos

(
1 − Ω2

0Δ
2

E

)
+ kπ , k = 0, 1, . . . . (10.10)

The right-hand side of expression (10.10) is a sequence of real numbers if the
total energy is above its critical value, .E ≥ E∗ = Ω2

0Δ
2/2, such that the oscillator

can reach the constraints. However, not all of the real numbers .ω lead to real
motions of the original system. Since the auxiliary system (10.2) has no limiters,
then condition (10.6) does not guarantee that the oscillator will remain inside the
region .|x| ≤ Δ during the period of vibration. Therefore, condition (10.7) must
be verified as well. Such a verification implemented for solution (10.9) shows that
condition (10.7) is satisfied only for the smallest root in set (10.10). Figure 10.2
illustrates the temporal mode shapes corresponding to the first two roots .γ . It is
seen that the second solution (on the right) violates condition (10.7) while satisfies
condition (10.6).

Remark 10.1.1 Note that the above approach can be applied to the case of
unilateral limiters. Let us remove, for instance, the left limiter and consider the
oscillator (10.1) under the condition .x ≤ Δ. In this case, the boundary conditions
in (10.4) should be modified as

.X′ (τ ) |τ=±1 = ±pω−2 (10.11)

Such a periodic change of sign effectively switches the directions of positive .δ-
functions on the right-hand side of Eq. (10.2). As a result, the solution takes the
form
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.x(t) = Δ
cos [γ τ (ωt + α)]

cos γ
(10.12)

where the period and the related fundamental frequency are .T = 2/ω and .Ω = πω,
respectively.

10.2 Parameter Variation and Averaging

In order to illustrate the idea of parameter variations for solution (10.9), let us
include the viscous damping into the model and represent the differential equations
of motion between the constraints in the form

.ẋ = v

v̇ = −2ζΩ0v − Ω2
0x (10.13)

|x| ≤ Δ

where .ζ is the damping ratio.
In this case, the triangle wave frequency, .ω, in solution (10.9) is not constant

any more, although the amplitude of the vibration remains constant as long as
the oscillator is in the impact regime. The corresponding parameter variation is
implemented as a change of the state variables .{x(t), v(t)} → {γ (t), φ(t)}, dictated
by solution (10.9)

.x = Δ
sin(γ τ)

sin γ
, v = Ω0Δ

cos(γ τ)

sin γ
e (10.14)

where .τ = τ(φ) and .e = τ ′(φ) depend upon the fast phase .φ = φ(t) and .γ = γ (t)

determines a relatively slow evolution of the temporal mode shape of the vibration.
Substituting (10.14) in (10.13) satisfies the constraint condition automatically

and the system of two differential equations for new state variables

.γ̇ = 2ζΩ0 cos
2 γ τ tan γ

φ̇ = Ω0

γ
[1 + ζ (sin 2γ τ − 2τ cos2 γ τ tan γ )e] (10.15)

Below, the first-order averaging procedure is applied. Notice that the right-hand
side of Eq. (10.15) is periodic with respect to the phase .φ. As proved in Chap. 4, the
averaging can be conducted with respect to the variable .τ over its interval .−1 ≤
τ ≤ 1. As a result, one obtains
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.γ̇ = ζΩ0

(
1 + sin 2γ

2γ

)
tan γ = 2ζΩ0

(
γ + 4

45
γ 5
)

+ O(γ 6)

φ̇ = Ω0

γ
(10.16)

Ignoring the residual terms .O(γ 6) gives a separable equation with explicit
closed-form solution for the frequency ratio

.γ = exp(2ζΩ0t)

[
45

4

r0

1 − r0 exp(8ζΩ0t)

]1/4
(10.17)

The corresponding phase .φ is obtained by using Mathematica package in terms
of special functions

.φ = Ω0

t∫
0

dt

γ
= 1

2ζ

(
4

45r0

)1/4

×
{
2F1

[
−1

4
,−1

4
; 3
4
; r0

]
− exp(−2ζΩ0t)

×[1 − r0 exp(8ζΩ0t)]5/4 2F1

[
1, 1; 3

4
; r0 exp(8ζΩ0t)

]}
(10.18)

where .2F1 is Hypergeometric function [4] and .r0 is a constant parameter, which is
calculated through the initial frequency ratio .γ 0 = Ω0/φ̇(0) as .r0 = 4/(4+45γ −4

0 ).
Keeping the leading-order term only on the right-hand side of the first equation

in (10.16) gives solution

.γ = γ 0 exp(2ζΩ0t)

φ = 1

2ζγ 0
[1 − exp(−2ζΩ0t)] (10.19)

A simple asymptotic analysis of expressions (10.14) and the remark after
expression (10.10) gives the parameter interval, .0 < γ < π/2, within which the
impact dynamics takes place. The vibration mode shapes close to the triangular
wave near the left edge of the interval, but, as the energy dissipates and the
parameter .γ approaches .π/2, vibrations become close to harmonic. The total energy
is expressed through the parameter .γ in the form

.E = 1

2

(
Ω0Δ

sin γ

)2

(10.20)
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Fig. 10.3 The time history of the impact oscillator according to the numerical solution of “exact
equations” (10.15), averaged Eqs. (10.16) without polynomial expansion, and the analytical closed-
form solution given by (10.14), (10.17), and (10.18); the parameters are .γ 0 = 0.2, .ζ = 0.01,
.ω0 = 1.0, and .Δ = 1.0

The duration of the impact stage of the dynamics is estimated via solution (10.19)
as

.γ (tmax) = π

2
�⇒ tmax = 1

2ζΩ0
ln

π

2γ 0
(10.21)

where .γ 0 = γ (0).
As follows from Fig. 10.3, the above averaging procedure leads to practically

no error of the time history record within the entire interval of validity of the
approach. The analytical solution based on the reduced model gives some deviation
from the exact curve at the end of the impact stage of the dynamics. Notice that
there is no impact interactions with the constraints for .t > tmax, where the model
becomes harmonic oscillator whose amplitude exponentially decays due to the
energy dissipation. At this stage, transformation (10.14) is not valid any more, nor
there is any need in transformations. Still the question occurs about such solutions
that would be capable of describing both impact and non-impact stages within the
same closed-form expressions.

10.3 Two-Degrees-of-Freedom Model

Let us obtain first the impact mode solutions for the model shown in Fig. 10.4 under
no damping condition, .c = 0. For the sake of simplicity, let us also assume that
.k1 = k2 = k. On the impact normal mode motions, the system can be effectively
replaced by
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Fig. 10.4 The
two-degrees-of-freedom
model with viscous damping
in the impact subcomponent

1x 2x
m m1k k 2k

�2
c

.ẍ1 + Ω2
0 (2x1 − x2) = p1τ

′′(ωt + α)

ẍ2 + Ω2
0 (2x2 − x1) = 0 (10.22)

where .Ω2
0 = k/m and the parameters .ω and .p1 must provide the following condition

.|x1| ≤ Δ (10.23)

The impact mode solution is represented in the form

.xn(t) = Xn(τ); τ = τ(ωt), n = 1, 2 (10.24)

Substituting (10.24) in (10.22) and eliminating the singular term .e′(ωt) give the
linear boundary value problem

.ω2X′′
1 + Ω2

0 (2X1 − X2) = 0

ω2X′′
2 + Ω2

0 (2X2 − X1) = 0 (10.25)

.X′
1|τ=±1 = p1ω

−2

X′
2|τ=±1 = 0 (10.26)

The corresponding solution has the form

.X1 = p1

2γω2

[
sin(γ τ)

cos γ
+

√
3

3

sin(
√
3γ τ)

cos(
√
3Ω0/ω)

]

X2 = p1

2γω2

[
sin(γ τ)

cos γ
−

√
3

3

sin(
√
3γ τ)

cos(
√
3γ )

]
(10.27)

where .γ = Ω0/ω and the “eigenvalue” p is determined by substituting .X1 into

.X1|τ=±1 = ±Δ (10.28)
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Fig. 10.5 Constraint reaction parameter .p1 versus the fundamental frequency of vibration .Ω =
(π/2) ω in the case of two mass-spring model with one constrained mass; the model parameters
are: .Ω0 = 1.0, .Δ = 0.2

This gives

.p1 = 2γω2Δ[tan γ + (
√
3/3) tan(

√
3γ )]−1 (10.29)

In order to insure that solutions (10.27) and (10.29) describe real motions,
condition (10.7) must be verified.

As follows from Fig. 10.5, the reaction impulses from amplitude limiters are
positive, e.g., reflecting the mass whenever the fundamental frequency of vibrations,
.Ω = (π/2) ω, is on the right of any of the eigenfrequencies of the linear spectrum,
.Ω1 = Ω0 or .Ω2 = √

3Ω0. Note that, while on the right, .Ω should still be close
enough to .Ω1 in order to stay away from the next frequency, .Ω2. The situation is
quite different on the right of second frequency .Ω2, corresponding to the antiphase
mode. Its right neighborhood extends to the infinity with no “obstacles.” It will be
shown below that the condition .Ω � Ω2 provides the so-called mode localization.
The energy outflow from such a localized mode is prevented by the impossibility of
internal resonance with any of the linear modes. Recall that the damping is ignored
here. In reality, the high frequency .Ω cannot be maintained unless a proper energy
inflow into the system is provided.

For numerical validating purposes, Fig. 10.6a, c illustrates the impact mode
shapes1 (10.27) at two different vibration frequencies .Ω , such that .Ω1 < Ω � Ω2
and .Ω2 � Ω . In different color, the diagrams also show profiles obtained by
numerical solution of a model with “soft” amplitude limiters represented by the
elastic strongly nonlinear restoring force .p(t) = [x1(t)/αΔ]2n−1, where .n = 9 and

1 For a better visualization purpose, here and below, displacements of mass-spring models are
shown as vertical.
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Fig. 10.6 Impact mode profiles (a), (c) and the restoring pulses (b), (d) in the right neighborhoods
of the linear eigenfrequencies of the two mass-spring model with amplitude limiters imposed on
the first mass; the parameters are .Δ = 0.2, .Ω0 = 1.0, (a-b): .ω = (2/π)Ω1 + 0.1, and (c)–(d):
.ω = (2/π)Ω2 + 2.5

.α = 0.968 is a numerical factor compensating the smoothing effect. An optimal
number .α would be obviously different for different energy levels.

10.4 A Double-Pendulum with Amplitude Limiters

The top mass .m1 of a free double-pendulum, as shown in Fig. 10.7, oscillates
between the two absolutely stiff constraints providing small angular amplitudes of
the top pendulum

.
∣∣ϕ1

∣∣ ≤ Δ1 � 1 (10.30)

For comparison reason, we also use a “soft version” of constraints (10.30)
represented by the potential energy, which provides a fast-growing restoring force
near the boundaries .ϕ1 = ±Δ1

.V (ϕ1) = β

2n

(
ϕ1

Δ1

)2n

, n � 1 (10.31)

where .α is a positive constant parameter measured in energy units and n is an integer.
Assuming that the both rods of the double pendulum are massless and have the

same length l gives the system Lagrangian
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Fig. 10.7 Double pendulum
with bilateral constraints

1m

2m

1�

2�

.L = 1

2
l2
[
(m1 + m2)ϕ̇

2
1 + 2m2ϕ̇1ϕ̇2 cos(ϕ1 − ϕ2) + m2ϕ̇

2
2

]

−gl
[
m1(1 − cosϕ1) + m2(2 − cosϕ1 − cosϕ2)

]− V (ϕ1) (10.32)

Due to the constraint condition, the angle .ϕ1 must be small. Assuming that the
angle .ϕ2 is also small, let us approximate Lagrangian (10.32) by its quadratic form
while keeping the term .V (ϕ1) unchanged since the maximum ratio .ϕ1/Δ1 is of
order one. Using .

√
g/lt as a new temporal argument under the original notation t

and rescaling the corresponding Euler-Lagrange equations, respectively, give

.μ2ϕ̈1 + ϕ̈2 + μ2ϕ1 = −β1

(
ϕ1

Δ1

)2n−1

ϕ̈1 + ϕ̈2 + ϕ2 = 0 (10.33)

where .μ2 = 1 + m1/m2 and .β1 = β/(m2glΔ1) are unitless parameters and dots
indicate differentiation with respect to the new temporal argument.

We seek a family of (impact mode) periodic solutions on which the reaction of
constraints represents a periodic sequence of .δ-functions. For that reason, we switch
from system (10.32) to a linear non-autonomous system by replacing the nonlinear
term as

. − β1

(
ϕ1

Δ1

)2n−1

→ p1τ
′′(ωt + α) (10.34)

The linearized system (10.33) has normal mode vectors and natural frequencies

.e1 = 1√
2μ (μ + 1)

(
1
μ

)
, Ω1 =

√
μ

μ + 1
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e2 = 1√
2μ (μ − 1)

(
1
−μ

)
, Ω2 =

√
μ

μ − 1
(10.35)

where the modal vectors satisfy the orthogonality condition, .eT
j Mei = δji , with

respect to the inertia matrix

.M =
(

μ2 1
1 1

)

Transition to the principal coordinates .{q1, q2} is given by

.

(
ϕ1

ϕ2

)
= q1e1 + q2e2 (10.36)

and

.q̈1 + Ω2
1q1 = p1√

2μ (μ + 1)
τ ′′(ωt + α)

q̈2 + Ω2
2q2 = p1√

2μ (μ − 1)
τ ′′(ωt + α) (10.37)

Now two-parameter families of periodic solutions for both independent oscil-
lators (10.37) can be obtained as described in Sect. 10.1 by means of the triangle
wave temporal substitution, .τ = τ(ωt + α). Substituting such solutions in (10.36)
and determining the impulse parameter .p1 from the condition .ϕ1|τ=1 = .Δ1 bring
the solution to its final form (Fig. 10.8)

1 2

0.6 0.8 1.0 1.2 1.4 1.6

–1

–2

0

1

2

p1

Fig. 10.8 The restoring impulse parameter versus the fundamental frequency of the double-
pendulum impact mode vibration, .Ω = (π/2) ω
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.p1 = 2γ 1Δ1μ(μ + 1)ω2 [tan γ 1 + (γ 2/γ 1
)
tan γ 2

]−1 (10.38)

= 2Δ1μ(μ + 1)Ω1ω

[
tan

Ω1

ω
+ Ω2

Ω1
tan

Ω2

ω

]−1

and

.

(
ϕ1

ϕ2

)
= Δ1

[
tan γ 1 + γ 2

γ 1
tan γ 2

]−1

× (10.39)

.

[(
1
μ

)
sin
[
γ 1τ (ωt + α)

]
cos γ 1

+ γ 2

γ 1

(
1
−μ

)
sin
[
γ 2τ (ωt + α)

]
cos γ 2

]

where .γ 1,2 = Ω1,2/ω and the relationships .μ − 1 = μΩ−2
2 and .μ + 1 = μΩ−2

1
have been used in manipulations.

Note that the frequency of first impact mode must be close enough to the first
linear frequency .Ω1 to insure that it is still away from the left neighborhood of the
next frequency, .Ω2. In the current case, .Ω2 is the highest frequency; therefore its
right neighborhood has no upper boundary. As a result, the highest impact mode
becomes spatially localized as its frequency parameter grows. The localization
admits explicit estimation by the asymptotic expansion

.
ϕ2

ϕ1
|τ=1 = μ

(
tan γ 1 − γ 2

γ 1
tan γ 2

)(
tan γ 1 + γ 2

γ 1
tan γ 2

)−1

= −1 − 1

3
ω−2 − O

(
ω−4

)
(10.40)

It follows from (10.40) that .(ϕ2/ϕ1) |τ=1→ −1 as .ω → ∞, so that the amplitude
of the bottom mass becomes negligibly small, whereas the upper mass has the
amplitude determined by the angular limiters. Figures 10.9 and 10.10 illustrate the
impact mode profiles above first and second eigenfrequency of the linear spectrum,
respectively. The results of numerical integration are obtained for the soft amplitude
limiters represented by the high-degree potential energy (10.31) with the parameters
.n = 20 and .β = 0.702145.

10.5 Averaging in the 2DOF System

Let us consider now the model shown in Fig. 10.4. The coefficient of restitution
for the impact interactions is assumed to be unity, while a relatively slow energy
dissipation is possible due to the viscous damping. Also, the base springs have equal
stiffness, and the coupling between the oscillators is weak, such that .k1 = k2 =
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Fig. 10.9 Horizontal displacements of the top (.x1) and bottom (.x2) masses of the double-
pendulum near the lower frequency of the linear spectrum, .ω = (2/π)Ω1 + 0.1; the system
parameters are .l = 1.0, .Δ1 = 0.1, and .μ = 2.0
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Fig. 10.10 Same as Fig. 10.9 for the frequency .ω = (2/π)Ω2 + 1.0; the trend to impact mode
localization is developed

K >> k. In order to introduce the corresponding parameter variation technique, let
us represent the differential equations of motion in the following general form

.ẋ1 = v1

v̇1 = −f1(x1, x2, v1, v2) + pe′(φ)

ẋ2 = v2 (10.41)

v̇2 = −f2(x1, x2, v1, v2)

where .pe′(φ) = .pτ ′′(φ) and

.f1(x1, x2, v1, v2) = 2ζΩ0v1 + Ω2
0x1 + β(x1 − x2)

f2(x1, x2, v1, v2) = Ω2
0x2 − β(x1 − x2) (10.42)

are impact and linear force components per unit mass, .β = k/m is the parameter of
coupling, .ζ = c/(2Ω0m) is the damping ratio, and .Ω0 = √

K/m.
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The idea of parameter variations is implemented below as a change of the state
variables

.{x1(t), v1(t), x2(t), v2(t)} → {γ (t), φ(t), A(t), B(t)}

according to expressions

.x1 = Δ
sin(γ τ)

sin γ

v1 = Ω0Δ
cos(γ τ)

sin γ
e

x2 = A sin
πτ

2
+ B cos

πτ

2
e (10.43)

v2 = Ω0

(
A cos

πτ

2
e − B sin

πτ

2

)

where .τ = τ(φ) and .e = e(φ).
It is assumed in (10.43) that the principal frequency of the vibration, .dφ/dt , is

dictated by the impact subcomponent rather than by a natural frequency of the cor-
responding linearized system. However, the scaling factor .Ω0 is still used in order to
indicate the dominant oscillator of the dynamic process under consideration. Notice
that .x1and .v1 are transformed analogously to (10.14), whereas the transformation
of .x2 are .v2 is based on the standard general solution of the harmonic oscillator
represented however in the nonsmooth temporal transformation form.

Substituting (10.43) in (10.41) gives

.γ̇ = e

Ω0Δ
cos γ τ

(
f1 sin γ − Ω2

0Δ sin γ τ
)
tan γ

φ̇ = 1

γΩ0Δ
[f1 sin γ (sin γ τ − τ cos γ τ tan γ )

+Ω2
0Δ cos γ τ(cos γ τ + τ sin γ τ tan γ )]

Ȧ = −1

2

[
Ω0(1 − cosπτ) − πφ̇

]
B (10.44)

+
(
1

2
Ω0A sinπτ − 1

Ω0
f2 cos

πτ

2

)
e

Ḃ = 1

2

[
Ω0(1 + cosπτ) − πφ̇

]
A + 1

Ω0
f2 sin

πτ

2
− e

1

2
Ω0B sinπτ

where the functions .f1 and .f2 are expressed through the new variables by
substitution (10.43) in (10.42) and the impact term .pe′(φ) has been eliminated by
setting (compare with (10.8))
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.p = p(t) = ΔΩ0φ̇(t) cot γ (t) (10.45)

Further reduction of system (10.44) includes two major steps, such as averaging
with respect to the fast phase .φ and applying the power series expansion with
respect to the parameter .γ . Since the periodic functions in Eq. (10.44) are expressed
through the triangular sine wave .τ(φ), then the averaging can be implemented
by considering .τ as an argument of the averaging as described in Chap. 4. Then,
truncating the power series expansions with respect to .γ gives

.γ̇ = 2ζΩ0γ − 2β

πΩ0

B

Δ
γ 2 + O(γ 3)

φ̇ = Ω0

γ
− 2β

45Ω0

(
1 − 60

12 − π2

π4

A

Δ

)
γ 3 + O(γ 4)

Ȧ = −
(

Ω0 + β

2Ω0
− π

2
φ̇

)
B (10.46)

Ḃ =
(

Ω0 + β

2Ω0
− π

2
φ̇

)
A − 4βΔ

3Ω0

12 − π2

π4 γ 2 − 4βΔ

π2Ω0
+ O(γ 3)

Approximate Eqs. (10.46) describe only one-way interaction between the oscil-
lators so that the first two equations can be easily solved analytically; see the
above one-degree-of-freedom case. Then, substituting the result into the next two
equations gives a linear set of equations with variable coefficients for .A(t) and
.B(t), which can also be considered analytically. Let us skip such kind of analysis
but illustrate the final result in Fig. 10.11. The diagrams show the energy versus
time of the second oscillator based on numerical solutions for three different sets
of equations, such as exact Eqs. (10.44), the equations obtained by averaging (not
described here), and the reduced set (10.46). The solutions are in quite a good match
most of the time interval; however, the solution of truncated set (10.46) shows some
error near the end of the interval. This happens because the parameter .γ is slowly
approaching its limit magnitude .π/2, at which the first oscillator stops interacting
with the constraints and the entire system becomes linear. Remind that Eq. (10.46)
was obtained by truncating the polynomial expansions in the neighborhood of
.γ = 0; as a result, the accuracy of the equations is low near the point .γ = π/2. The
precision can be significantly improved by keeping few more terms of the power
series with respect to .γ .

10.6 Impact Modes in Multiple Degrees of Freedom Systems

Let us consider the N -degrees-of-freedom conservative system described by the
coordinate vector .x = .(x1, . . . , xN)T ∈ RN . The corresponding mass-spring model
is shown in Fig. 10.12. It is assumed that displacements of the ath mass are limited
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Fig. 10.11 Numerical validation of the transformed and averaged equations: (a)–(b)—mass1
and (d)–(c)—mass2. Curves: 1, averaged Eqs. (10.44); 2, the averaged equations followed by
polynomial expansions (10.46); 3, Eqs. (10.44) without averaging; and 4, soft-wall approximation.
The initial conditions and model parameters are as follows: .γ (0) = 0.2, .φ(0) = 0.0, .A(0) =
−0.003, .B(0) = 0, .ζ = 0.01, .Ω0 = 1.0, .Δ = 1.0

Fig. 10.12 The mass-spring model of a discrete elastic system with displacement limiters

by perfectly stiff elastic constraints, such that .|xa| ≤ Δa or, in the matrix form,

.

∣∣∣ITa x
∣∣∣ ≤ Δa (10.47)

where .Ia = .

(
0, . . . , 1

a
, . . . , 0

)T

.

Inside the domain (10.47), the differential equations of motion are assumed to be
linear

.M ẍ + Kx = 0 (10.48)

where M and K are constant mass and stiffness .N × N -matrixes, respectively.
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The form of matrix equation (10.48) is general enough to describe different
models, not necessarily mass-spring chains; see the first example below. In order
to obtain impact mode solutions, the systems (10.47) and (10.48) are replaced by
the following impulsively forced linear system under no constraints condition

.M ẍ + Kx = pIaτ ′′ (ωt + α) (10.49)

where p is a priori unknown “eigenvalue” and .ω and .α are arbitrary constant
parameters.

A family of periodic solutions of the period .T = 4/ω can be found as a linear
superposition of solutions (10.5) for each of the N linear modes of system (10.48)
with appropriate replacement of the parameters

.x(t) = p

ω2

N∑
j=1

(
eT
j Ia
)
ej

sin[γ j τ (ωt + α)]
γ j cos γ j

; γ j = Ωj

ω
(10.50)

where .ej and .Ωj are the j th normal mode and the natural frequency of linear
system (10.48); it is assumed that .Ωi < Ωj when .i < j , and the linear normal
modes are normalized as

.eT
j Mei = δji (10.51)

where .δji is the Kronecker symbol.
The impulses act at those time instances when the ath mass interacts with the

constraints; in other terms,

.ITa x = ±Δa when τ = ±1 (10.52)

Substituting (10.50) into (10.52), one obtains the related “eigenvalue”

.p = Δaω
2

⎡
⎣ N∑

j=1

(eT
j Ia)

2 tan γ j

γ j

⎤
⎦

−1

(10.53)

where .eT
j Ia is the ath component of the j th linear mode vector.

Substituting (10.53) into (10.50) gives a two-parameter family of the periodic
solutions for the impact modes. The parameter .α is an arbitrary phase shift, whereas
the frequency parameter .ω is subjected to some restrictions due to condition (10.47).
As shown in [182], condition (10.47) is satisfied when the principal frequency of
vibration, .Ω = (π/2) ω, exceeds the highest frequency of the linear spectrum, .Ω >

ΩN . The corresponding impact mode represents an extension of the highest linear
normal mode, in which any two neighboring masses vibrate out of phase. Such an
impact mode becomes spatially localized as .Ω → ∞. This result was obtained also
by qualitative methods in [249]. Condition (10.47) may be satisfied also when the
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frequency .Ω is located in a small enough right neighborhood of any frequency .Ωj

and, in addition, .Ωi/Ωj is not an odd number for all .i �= j . The idea of the proof is
to find such cases when .ITa x is a monotonic function of .τ on the interval .−1 ≤ τ ≤
1, and hence condition (10.52) at the boundaries guarantees that inequality (10.47)
holds inside the entire interval.

Generally, the impact modes appear to have quite a complicated spectral
structure. Therefore, a detailed investigation may be required in order to formulate
necessary and sufficient conditions of impact mode existence. However, a sufficient
condition of non-existence can be formulated by using the physical meaning of the
parameter p. Namely, if an impact mode exists, then the inequality .p (ω) > 0 holds.
Indeed, the parameter p (10.53) cannot be negative for any real impact vibrating
regime as a reaction of constraint, because it cannot be directed toward the barrier.
Thus impact modes cannot exist when .p (ω) < 0.

Note that investigation of stability properties of the impact modes is rather a
separate subject. Later we discuss it based on a mass-spring chain model in a semi-
qualitative way.

10.7 Systems with Multiple Impacting Particles

Let us consider the case of two particles, say the ath and bth, under the constraint
conditions. These conditions are .|xa| ≤ Δa and .|xb| ≤ Δb or, in the vector
notations,

.

∣∣∣ITa x
∣∣∣ ≤ Δa and

∣∣∣ITb x
∣∣∣ ≤ Δb (10.54)

In this case, the impulsive excitation on the right-hand side of the auxiliary
equation must act on both ath and bth particles, so that the equation takes the form

.M ẍ + Kx = (paIa + pbIb)τ ′′ (ωt + α) (10.55)

where .pa and .pb are parameters to be determined.
The related solution includes terms related to .pa and .pb and can be represented

in the form

.x(t) = 1

ω2

N∑
j=1

[
pa

(
eT
j Ia
)
ej + pb

(
eT
j Ib
)
ej

] sin[γ j τ (ωt + α)]
γ j cos γ j

(10.56)

Following the idea of normal modes, let us assume that the impact mode
periodic motion is accompanied by synchronous impacts of both particles with the
constraints according to conditions

.ITa x = ±Δa and ITb x = ±Δb when τ = ±1 (10.57)
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Substituting (10.56) in (10.57) gives linear algebraic equations with respect to
.pa and .pb in the form

.kaapa + kabpb = Δa

kbapa + kbbpb = Δb (10.58)

where

.kab = 1

ω2

N∑
j=1

(
eT
j Ia
) (

eT
j Ib
) tan γ j

γ j

(10.59)

Expressions (10.56) and (10.58) give a formal impact mode solution, which
indeed describes an impact mode when the determinant of system (10.58) is non-
zero and condition (10.54) holds. Solution (10.56) can be viewed as a strongly
nonlinear superposition of the two basic impact modes with a single impacting mass.

10.7.1 Mass-Spring Chain

One Impact Particle

Let us consider a mass-spring chain of N identical particles under the constraint
condition

.mẍn + k (−xn−1 + 2xn − xn+1) = 0; n = 1, . . . , N (10.60)

.x0 = xN+1 = 0; |xa| ≤ Δa ; 1 < a < N (10.61)

where k and m are the stiffness of each spring and the mass of each particle,
respectively.

The corresponding impulsively loaded linear system is represented as

.ẍn + Ω2
0 (−xn−1 + 2xn − xn+1) = pδanτ

′′ (ωt + α) (10.62)

where .Ω0 = √
k/m is a common physical factor for all the eigenfrequencies and

the parameter of impulses p is measured per unit mass.
In this case, the corresponding linear modes and their frequencies are described

exactly by expressions

.ej =
√

2

N + 1

(
sin

πj

N + 1
, . . . , sin

Nπj

N + 1

)T

(10.63)
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Ωj = 2Ω0 sin
πj

2 (N + 1)

where .j = 1, . . . , N .
Note that .j = 1+N formally gives the relationship2 .ΩN+1 = 2Ω0, which is used

below for convenience of analytical manipulations. The basis vectors of principal
coordinates are normalized as .eT

j ei = δji since the inertia matrix of system (10.62)
is an identity matrix. The ath component of the j th normal mode vector is therefore

.eT
j Ia =

√
2

N + 1
sin

aπj

N + 1
(10.64)

where the matrix column .Ia = .

(
0, . . . , 1

a
, . . . , 0

)T

was used first in (10.47).

Now adaptation of solution (10.50) and (10.53) gives in component-wise form

.xn = 2pa

(N + 1)ω2

N∑
j=1

sin
πnj

N + 1
sin

πaj

N + 1

sin[γ j τ (ωt + α)]
γ j cos γ j

(10.65)

(n = 1, . . . , N)

and

.pa = Δaω
2

⎡
⎣ 2

(N + 1)

N∑
j=1

sin2
πaj

N + 1

tan γ j

γ j

⎤
⎦

−1

(10.66)

where .γ j = Ωj/ω = (π/2)Ωj/Ω; recall that the period of triangle wave .τ of is
normalized to four.

For numerical illustrations below, we always set .Ω0 = √
k/m = 1.0. As follows

from Eq. (10.62), the factor .Ω0 can be removed from the system by rescaling the
time argument and the parameter .ω. A numerical illustration of the dependence
.pa(ω) and an example of the impact mode amplitude profile are given in Fig. 10.13a
and b, respectively (see also Fig. 10.14). Recall that the frequency parameter .ω value
must provide the condition .pa(ω) > 0 for the assumed restoring impulses of the
amplitude limiters.

Internal Resonances

Let us discuss physical specifics in a qualitative way based on a typical temporal
mode shape of an uncoupled impact oscillator

2 Note that this is just a suitable notation since the .(N + 1)th frequency does not physically exist.
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Fig. 10.13 Numerical verification of the existence of impact mode: (a) restoring pulses .p6 versus
the fundamental frequency of vibration, .Ω , for the case of one vibroimpact particle .a = 6 (.Δ6 =
0.2) of the chain of .n = 13 particles, where the dots represent natural frequencies of the linear
chain, .Ωi (.i = 3, . . . , 13); (b) the corresponding mode shape profiles for .ω = (2/π)Ω5 + 0.02
obtained from the analytical solution (blue) and numerical solution (red) for the soften restoring
pulses represented by the force .∼ 2.18747(x6/Δ6)
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Fig. 10.14 Same as Fig. 10.13b for the case .ω = (2/π)Ω6 + 0.02

.x(t) = Δ
sin[γ τ(ωt)]

sin γ
; 0 < γ ≤ π

2
(10.67)

where .γ is the parameter characterizing the energy level as shown in (10.20).
Recall that the upper boundary .γ = π/2 corresponds to the grazing regime

with the sine wave temporal shape. When .γ → 0, we have the triangle wave of
an infinitely large frequency, since .ω = O(γ −1) as follows from (10.5): .ω and
.γ in (10.67) are coupled such that .ωγ is equal to the fixed natural frequency of
the oscillator without the effect of constraints. Obviously the intensive vibroimpact
oscillation makes the effect of the linear part of restoring force on the time history
of vibration negligible.

Let us consider the Fourier expansion of function (10.67)
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.x(t) = Δ

∞∑
s=1

bs sin[(2s − 1)Ωt], Ω = π

2
ω (10.68)

where .Ω is the fundamental trigonometric frequency of vibration and

.bs = 8(−1)s+1γ cot γ

(2s − 1)2π2 − 4γ 2 (10.69)

The amplitude .bs is defined for any .γ despite of the uncertainty at .γ = (2s −
1)π/2, where the corresponding limit must be calculated. For illustrating purposes,
let us consider the chain model described by Eq. (10.62) by imposing the temporal
mode shape (10.68) on the vibroimpact particle .n = a as .xa(t) = x(t). From
the physical standpoint, such an assumption ignores the feedback from the rest of
the chain to the particle .n = a. The feedback vanishes in the asymptotic limit of
intensive impacts, .ω → ∞, which can be seen explicitly after switching to the
phase variable .ωt in Eq. (10.62). The kinematic constraint on the displacement .xa(t)

effectively splits the chain into two shorter chains with .N1 = a − 1 and .N2 =
N −a particles. Each of the two chains has one end fixed and another one oscillating
according to dependence (10.68). Both chains obey the differential equations of the
same form with either .N = N1 or .N = N2

.ẍn + Ω2
0 (−xn−1 + 2xn − xn+1) = δNnΩ

2
0Δ

∞∑
s=1

bs sin[(2s − 1)Ωt] (10.70)

where .δNn is Kronecker’s symbol, .n = 1, . . . , N , and .N = Nα (.α = 1, 2).
System (10.70) is solved by taking into account (10.63) and switching to the

principal coordinates q as

.x =
N∑

j=1

qj (t)ej (10.71)

gives the differential equation for the j th mode

.q̈j + Ω2
j qj = Ω2

0

(
eT
j IN

)
Δ

∞∑
s=1

bs sin[(2s − 1)Ωt] (10.72)

The corresponding steady-state (particular) solution is

.qj = Ω2
0 (e

T
j IN)Δ

∞∑
s=1

bs sin[(2s − 1)Ωt]
Ω2

j − (2s − 1)2Ω2
(10.73)

where
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.eT
j IN =

√
2

Nα + 1
sin

Nαπj

Nα + 1

Ωj = 2Ω0 sin
πj

2 (Nα + 1)
; α = 1, 2 (10.74)

Taking into account (10.74) and the numbers .N1 = a − 1 and .N2 = N − a gives

.Ω = π

2
ω = 2Ω0

2s − 1
sin

πj

2a
; j = 1, . . . , N1. (10.75)

Ω = π

2
ω = 2Ω0

2s − 1
sin

πj

2 (N − a + 1)
; j = 1, . . . , N2 (10.76)

where .1 < a < N and .s = 1, 2, . . ..
Since resonance frequencies (10.75) and (10.76) are obtained by splitting the

chain in two separate pieces by inserting the vibroimpact oscillator in between
two subsystems and ignoring possible feedback, then let us clarify how “exact
solution” (10.65) does behave under the input frequencies estimated by (10.75)
and (10.76). Note that, in contrast to solution (10.73), solution (10.65) does not
have singularities at frequencies (10.75) and (10.76). Still Fig. 10.15 depicts sharp
increases of the corresponding amplitudes confirmed also by the results of numerical
integration under soften constraint conditions. Further, Fig. 10.16 illustrates the
trend to impact mode localization as the input frequency .ω exceeds the highest
resonance frequency by about 6%. The fragment (a) shows a match of mode profiles
obtained from different solutions and represented by different colors on the same
graph. Recall that solution (10.73) is applied separately to the left and right parts
of the chain by using (10.74) with .α = 1 and .α = 2, respectively. Also, modal
vectors (10.63) must be calculated separately for the numbers of particles .N1 and
.N2, respectively. Finally, when switching back to the coordinates .x by means of
expansion (10.71), the particles of the right part of the chain, which is after the
inserted vibroimpact particle, .n = a, must be taken in the reverse way: .n =

1 2 3 4 5 6 7 8 9 10 11 12 13
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Fig. 10.15 Impact mode profiles associated with resonance frequencies: (a) (10.75) for .ω =
1.22985 .(j = N1) and (b) (10.76) for .ω = 1.24877 .(j = N2); both shapes are obtained for
the chain parameters: .n = 13, .a = 6, .Δ6 = 0.2, and .Ω0 = 1.0, using analytical solution (10.65)
and numerical integration with constraints replaced by the restoring force .1.73828(x6/Δ6)
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Fig. 10.16 Validation of analytical solutions for the frequency, .ω = 1.34877 .(j = N2): (a) impact
mode profiles obtained from solutions (10.65), (10.71)–(10.73), and numerical solution for the
chain with soft amplitude limiters described by the restoring force replaced by the restoring force
.1.73828(x6/Δ6)

17, and (b) initial phase of the restoring pulses from the soft amplitude limiters

N2,. . . ,1. The fragment (b) of Fig. 10.16 illustrates the temporal profile of restoring
pulses produced by the soften amplitude limiters. Obviously such pulses are not
perfectly localized, and their timing cannot perfectly match the collision times
dictated by the auxiliary system (10.62) through the frequency .ω. As a result, the
smoothed pulses (Fig. 10.16b) may eventually desynchronize and corrupt the spatial
mode profile as compared to the analytical predictions. A long-term simulation
nonetheless confirms that the localization of amplitude envelope is maintained. This
happens because, for the given frequency .ω, the spectrum of vibroimpact oscillator
has no intersections with the natural spectra of both left and right parts of the chain.
As a result, no more or less significant energy exchange between the vibroimpact
oscillator and the rest of the chain can occur.

Two Impact Particles

Since the auxiliary system (10.62) is linear, then adding more impulsive terms to
its right-hand side will result in a linear combination of solutions similar to (10.65).
For instance, if two masses, .n = a and .n = b, are interacting with their amplitude
limiters, then solution (10.65) is generalized as

.xn = 2

(N + 1)ω2 (10.77)

×
N∑

j=1

(
pa sin

πaj

N + 1
+ pb sin

πbj

N + 1

)
sin

πnj

N + 1

sin[γ j τ (ωt + α)]
γ j cos γ j

(n = 1, . . . , N)

Recall that the original system is strongly nonlinear due to its inherent impacts.
Therefore any conventional linear modal superposition is impossible. In the present
case, it follows from the fact that the parameters of restoring pulses, .pa and .pb, are
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not independent but coupled by algebraic system (10.58). This system is fortunately
linear and thus admits solution

.pa = Δakbb − Δbkab

kaakbb − kabkba

pb = Δbkaa − Δakba

kaakbb − kabkba

(10.78)

where

.kab = 2

(N + 1)ω2

N∑
j=1

sin
πaj

N + 1
sin

πbj

N + 1

tan γ j

γ j

, γ j = Ωj/ω (10.79)

and .{Ωj } is the (linear) natural spectrum of the chain.
Furthermore, for the impulses to be restoring, both numbers, .pa and .pb, must

be positive. This imposes certain conditions on the range of frequencies .ω as seen
from the illustrating example in Fig. 10.17. For instance, both restoring pulses are
positive near frequency .Ω9 which is indicated by the fifth red dot from the left. Then,
Fig. 10.18 illustrates the spatial mode shape profile of the corresponding impact
vibration given by solution (10.77).

High-Frequency Limits and Impact Localization

Let us show that the impact mode periodic solution (10.65) becomes localized as
.ω → ∞ or .γ j → 0. First, replacing the trigonometric functions by their asymptotic
estimates .sin(γ j τ ) .∼ γ j τ , cos.γ j .∼ 1, and .tan γ j ∼ γ j and using the standard
trigonometric sums [71] give

1.2 1.4 1.6 1.8 2.0 2.2

–0.5

–1.0

0.0

0.5

1.0

p

pa
pb

= ( /2)

Fig. 10.17 Restoring pulses .pa and .pb versus the fundamental frequency of vibration, .Ω , for the
case of two vibroimpact particles .a = 5 and .b = 9 of the chain of .N = 12 particles; the dots
represent natural frequencies of the linear chain, .Ωi (.i = 5, . . . , 12)
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Fig. 10.18 Spatial impact mode shapes for the frequency parameter .ω = (2/π)Ω9 + 0.02
obtained from both analytical (black) and numerical (red) solutions after one cycle of vibration;
the numerical integration is using the soften constraints represented by the restoring force .∼
(xa,b/Δa,b)
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.xn ∼ 2pa

(N + 1)ω2

N∑
j=1

sin
πnj

N + 1
sin

πaj

N + 1
τ (ωt + α) (10.80)

= pa

ω2 δanτ (ωt + α)

where .δan is Kronecker’s symbol, and

.pa ∼ Δaω
2

⎡
⎣ 2

(N + 1)

N∑
j=1

sin2
πaj

N + 1

⎤
⎦

−1

= Δaω
2 (10.81)

Substituting then (10.81) in (10.80) gives

.xn ∼ Δaδanτ (ωt + α) as ω → ∞ (10.82)

Expression (10.82) shows that the ath particle of the chain vibrates according to
the triangle wave temporal mode shape with the infinitely large frequency, whereas
all the other particles are at rest. Therefore, the impact mode becomes spatially
localized as .ω → ∞.

Let us consider the higher-frequency domain, .(π/2) ω >> ΩN , for the above
example of mass-spring system with two impact particles, (10.77) through (10.79).
In this case, .tan(Ωj/ω) > 0 for all .j = 1, . . . , N , and therefore, the coefficients
.kab (10.79) create the so-called Gram matrix with a non-zero determinant [30],
.kaakbb − kabkba �= 0. Besides, the asymptotic estimation below confirms this
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conclusion. First, the above assumption gives .γ j = Ωj/ω � π/2 and the following
asymptotic estimate

.
sin(γ j τ )

γ j cos γ j

= τ + 1

2
γ 2

j

(
τ − τ 3

3

)
+ O

(
γ 4

j

)
(10.83)

Then substituting (10.83) in (10.77) and using the trigonometric sum [71]

.
2

(N + 1)

N∑
j=1

sin
πnj

N + 1
sin

πaj

N + 1
γ 2

j

= 1

4
γ 2

N+1(−δa,n−1 + 2δa,n − δa,n+1)

give

.xn = ω−2 (paδan + pbδbn) τ − 1

8
ω−2γ 2

N+1

(
τ − τ 3

3

)
× (10.84)

× [pa

(
δa,n−1 − 2δan + δa,n+1

)+ pb

(
δb,n−1 − 2δbn + δb,n+1

)]+ O
(
ω−6

)

The parameters of restoring pulses, .{pa, pb}, are determined from (10.79), where

.kab = ω−2δab − 1

12
ω−2γ 2

N+1

(
δa,b−1 − 2δab + δa,b+1

)+ O
(
ω−6

)
(10.85)

Since .ω−2γ 2
N+1 = O(ω−4), we have .kab = ω−2δab in the leading order

approximation. Therefore, .{pa, pb} = ω2{Δa,Δb}as .ω → ∞. In this limit, the
vibration energy becomes localized on the two particles vibrating between the
barriers with the triangle wave temporal shape

.xn ∼ (Δaδan + Δbδbn) τ (ωt + α) as ω → ∞ (10.86)

According to (10.86), the particles with numbers .n �= a and .n �= b are at
rest. However, they oscillate with amplitudes of different orders of .ω−2 when the
parameter .ω takes a large but finite value. Expansion (10.84) also shows that the
temporal mode shapes of particles .n = a and .n = b are nonsmooth and getting
closer to the triangle wave as the frequency .ω increases. The temporal mode shapes
of the nearest particles, .n = a ±1 and .n = b ±1, have amplitudes of order .ω−2 and
appear to be twice continuously differentiable with respect to time, t . In particular,
calculating directly first two derivatives and taking into account that .τ ′2 = 1 give
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.
d

dt

(
τ − τ 3

3

)
= ω

(
1 − τ 2

)
τ ′ ∈ C1 (R)

d2

dt2

(
τ − τ 3

3

)
= ω2

[
−2ττ ′2 +

(
1 − τ 2

)
τ ′′
]

= −2ω2τ ∈ C (R)

where prime denotes differentiation with respect to the whole argument of the
triangle wave, .τ ′ ≡ dτ/d (ωt + α); recall that the underlined terms are zero3

because .1 − τ 2 = 0 on the set of points .{t : τ (ωt + α) = ±1}, where .τ ′′
.�= 0.

The Case of Multiple Impact Particles

A formal extension of relationships (10.56) through (10.59) on the case of multiple
vibroimpact particles is quite straightforward. For instance, solution (10.56) is
generalized as

.xn(t) = 1

ω2

N∑
j=1

∑
i∈σ

pi(eT
j Ii )(ej In)

sin[γ j τ (ωt + α)]
γ j cos γ j

= 2

(N + 1)ω2 ×

×
N∑

j=1

∑
i∈σ

pi sin
πij

N + 1
sin

πnj

N + 1

sin[γ j τ (ωt + α)]
γ j cos γ j

(10.87)

(n = 1, . . . , N)

where the inner summation index covers locations of the vibroimpact particles, .σ ⊂
{1, . . . , N}.

As a result, system (10.58) takes the form

.

∑
i∈σ

kinpi = Δn, n ∈ σ (10.88)

where

.kin = 1

ω2

N∑
j=1

(eT
j Ii )(e

T
j In)

tan γ j

γ j

(10.89)

= 2

(N + 1)ω2

N∑
j=1

sin
πij

N + 1
sin

πnj

N + 1

tan γ j

γ j

are the elements of .nσ × nσ square matrix, where .nσ is length of the list .σ .

3 It gives a zero contribution into the related integrals of the theory of distributions.
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10.8 Modeling the Energy Loss at Perfectly Stiff Barriers

In this section, we follow reference [191], where the methodology of the present
chapter was generalized on the case of inelastic interactions with amplitude limiters.
The present modeling is based on the assumption that both the moving mass and
barriers (walls) are perfectly stiff. An illustrating one degree-of-freedom model
is shown in Fig. 10.1. In other words, (elastoplastic) collision deformations are
assumed to be negligible as compared to rigid-body displacements, while each
collision event happens momentarily. Nevertheless, even under such assumptions,
terms elastic and inelastic (plastic) collisions are typically used in the literature
in order to characterize reversible and irreversible parts of the kinetic energy,
respectively. A one-dimensional collision of a moving mass with stiff obstacles is
described in a phenomenological way as a discontinuity of the velocity changing its
direction and magnitude as

.ẋ(ti + 0) = −kẋ(ti − 0), 0 ≤ k ≤ 1 (10.90)

where .ti is the collision time and k is the so-called coefficient of restitution, which
is further represented in the form

.k = 1 − ε (10.91)

According to (10.91), .ε = 0 means an elastic collision with no energy loss,
whereas .ε = 1 is a perfectly plastic limit, when all the kinetic energy momentarily
dissipates as the particle strikes an obstacle. In this section, the energy loss due to
collisions is assumed to be small so that

.0 < ε � 1 (10.92)

Note that condition (10.90) fixes the time arrow of the dynamics by breaking the
time symmetry .t −→ −t similarly to the viscous term .2ζΩẋ of the linear oscillator
.ẍ + 2ζΩẋ + Ω2x = 0. On first look, such temporal asymmetry creates an obstacle
for describing the vibroimpact dynamics in terms of the new time argument .τ , which
is viewed as an oscillating time periodically changing its direction in a reversible
way. In other words, when dealing with the time argument .τ , it is difficult to specify
the before and after subdomains. Nonetheless, as a first step, let us show that the
representation .x = X (τ)+Y (τ)e with .τ = τ (ωt) and .e = e (ωt) can geometrically
comply with condition (10.90) assuming that a system, which is described with the
coordinate .x(t), can maintain its periodicity due to some energy inflows. Using the
differentiation rules for a continuous coordinate x gives the velocity .ẋ = [Y ′(τ ) +
X′ (τ ) e]ω. Let us assume that collisions take place whenever .τ = ±1, and, for
certainty reason, consider a collision time .ti , such that .τ (ωti) = −1. When passing
through such time point .ti , the function e switches its value from .e = −1 to .e =
+1 as seen from the diagrams for the basis functions in Fig. 1.8. Therefore, after
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cancelling the common factor .ω on both sides, condition (10.90) takes the form

.τ = −1: Y ′ + X′ = −k
(
Y ′ − X′) (10.93)

Now, taking into account that the function e switches its value from .e = +1 to
.e = −1 when passing through the amplitude points, at which .τ (ωti) = +1, gives

.τ = +1: Y ′ − X′ = −k
(
Y ′ + X′) (10.94)

Boundary conditions (10.93) and (10.94) represent an analog of the collision
model (10.90) brought by the replacement of temporal argument, .t −→ τ . It is
shown in the next section that Eqs. (10.93) and (10.94) adequately describe the
vibroimpact dynamics with energy losses caused by collisions with the barriers.

10.8.1 Free Vibrations with Impact Energy Losses

Let us consider the free vibroimpact model as shown in Fig. 10.1a. The differential
equation of motion with the constraint condition is represented in the form

.ẍ + Ω2x = 0, |x| ≤ Δ (10.95)

where .Ω2 = k/m, and it is now assumed that the impact energy loss condi-
tion (10.90) is taking place whenever .x = ±Δ.

The corresponding effective model (Fig. 10.1b) is described by

.ẍ + Ω2x = pe′(ϕ) (10.96)

In the present case of free vibrations, the frequency .ω = ϕ̇(t) is not fixed by the
external load any more. Attributed to the bead’s velocity, the quantity .ω determines
the temporal scale of vibrating process. Generally speaking, in the present relatively
simple case, when no external forces are acting, the frequency .ω can be assumed
to be constant in between any two interactions with the constraints in order to
find an exact piecewise solution. This can be done directly with no transition to
the oscillating temporal argument .τ . However, our goal is to obtain a closed-form
solution using the idea of separation of motions. For that reason, the function
.ω(t) must be interpreted as a continuously decaying quantity during the entire
time range of the process. The decay rate is associated with the energy loss due
to collisions with the barriers and assumed to be relatively slow by imposing the
condition (10.92). Since the mass velocity is gradually decreasing, the quantity .p in
Eq. (10.96) characterizing the intensity of interaction with the amplitude limiters,
is considered as time dependent too. Based on the above remarks, a frequency
modulated solution of Eq. (10.96) can be represented as
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.x = X (τ) + Y (τ)e, τ = τ (ϕ) , e = e (ϕ) (10.97)

where .ϕ = ϕ(t) is a phase function to be determined.
First time derivative of (10.97) is

.ẋ = [Y ′
(τ ) + X

′
(τ ) e + Y (τ)e′(ϕ)]ω (10.98)

where the notation .ϕ̇ = ω is used.
Eliminating the formal singularity of differentiation .e

′
(ϕ) by imposing the

boundary condition

.τ = ±1: Y = 0 (10.99)

and then substituting (10.97) and (10.98) in (10.96) gives the relationship

.(ω2X′′ + Ω2X + Y ′ω̇) + (ω2Y ′′ + Ω2Y + X′ω̇)e + (X′ω2 − p)e′(ϕ) = 0

leading to the boundary condition

.τ = ±1: X′ω2 = p (10.100)

and two equations

.ω2X′′ + Ω2X + Y ′ω̇ = 0 (10.101)

ω2Y ′′ + Ω2Y + X′ω̇ = 0

Note that the boundary value problem, (10.99), (10.100), and (10.101), for X

and Y has two more unknown functions, .ω(t) and .p(t). In order to complete the
formulation, the energy loss conditions, (10.93) and (10.94), must be added as

.τ = ±1: Y ′ ∓ X′ = −(1 − ε)
(
Y ′ ± X′) , ε = 1 − k (10.102)

The present class of solutions is such that the amplitude limiters are reached
when .τ = ±1; then taking into account (10.99) gives

.τ = ±1: x = X = ±Δ (10.103)

Finally, the problem formulation includes two second-order differential equa-
tions (10.101) and a set of conditions (10.99), (10.100), (10.102), and (10.103) with
no discontinuities. Note that condition (10.100) includes two equations determining
just one unknown quantity p. However, it is sufficient to satisfy just one equation
in (10.100) and one equation in (10.103) as soon as the X-component of solution is
odd with respect to .τ .
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Further, let us assume that the energy of the oscillator is sufficient for reaching
the amplitude limiters during the time interval of interest. The evolution of such a
vibrating process is assumed to have the slow temporal scale .η = εt . This phase
of the process will end up with the so-called grazing state of harmonic oscillations
with no energy loss since model (10.95) has no explicit damping terms. During this
second phase, the frequency parameter .ω becomes constant, whereas the intensity
of interactions with the limiters is vanishing, .p = 0. Since the amplitude remains
fixed, let us represent the temporal shape of vibrations in the form of asymptotic
expansions without explicitly present slow scale .η as

.X(τ) = X0(τ ) + X1(τ )ε + X2(τ )ε2 + O
(
ε3
)

Y (τ) = Y0(τ ) + Y1(τ )ε + Y2(τ )ε2 + O
(
ε3
)

(10.104)

where .τ = τ(ϕ) and

.ω = ϕ̇(t) = ω0(η) + ω1(η)ε + ω2(η)ε2 + O
(
ε3
)

. (10.105)

p = p(t) = p0(η) + p1(η)ε + p2(η)ε2 + O
(
ε3
)

(10.106)

η = εt

Expansions (10.104), (10.105), and (10.106) produce the leading order boundary
value problem given by equations

.X′′
0 + λ2X0 = 0, Y ′′

0 + λ2Y0 = 0 (10.107)

under the boundary conditions

.τ = ±1: X0 = ±Δ, X′
0ω

2
0 = p0, Y0 = 0, Y ′

0 = 0 (10.108)

Solution of this linear boundary value problem can be represented in the form

.X0 = Δ
sin λτ

sin λ
, Y0 ≡ 0, p0 = Ω2Δ

λ tan λ
(10.109)

where the time-dependent “frequency ratio” .λ = λ(η) is introduced as

.λ = Ω

ω0
(10.110)

with yet unknown function .ω0 = ω0(η).
Recall that the period of triangle wave is normalized to .T = 4. Therefore, the

“real” frequency ratio is .(2/π)λ with the numerical factor .2/π , which is somewhat
inconvenient to carry through manipulations. The physical meaning of quantity .λ
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will be discussed later. Further, once the function .λ = λ(η) is determined, the
dependence .ω0 = ω0(η) becomes known from (10.110). Now taking into account
solution (10.109) leads to the differential equations of the first-order approximation
in the form

.X′′
1 + λ2X1 = 2ω1λ

3 Δ

Ω

sin λτ

sin λ

Y ′′
1 + λ2Y1 = −λ

dλ

dη

Δ

Ω

cos λτ

sin λ
(10.111)

under the boundary conditions at .τ = ±1:

.Y1 = 0

Y ′
1 = ±1

2
X′
0 +

(
1

2
− λ

ω1

Ω

)
Y ′
0 = ±1

2
λΔ cot λ (10.112)

X1 = 0

X′
1 =

(
λ

Ω

)2

− 2λ
ω1

Ω
X′
0 = p1

(
λ

Ω

)2

− 2ω1λ
2 Δ

Ω
cot λ

where .ω1(η), .λ(η), and .p1(η) are yet unknown functions.
Solution of the boundary value problem (10.111) and (10.112) is

.X1 = 0, Y1 = − Δ

2Ω

dλ

dη

(
cos λτ

cos λ
− τ

sin λτ

sin λ

)
(10.113)

provided that .ω1(η) ≡ 0 and .p1(η) ≡ 0.
Substituting .Y1 in the second equation of the set (10.112) leads to the following

first-order differential equation

.
dλ

dη
= Ω

2
(1 + cos 2λ)

(
1 + sin 2λ

2λ

)−1

(10.114)

Assuming that .λ(η) is determined from (10.114) and taking into account (10.110)
give the fast phase

.ϕ = Ω

t∫
0

dt

λ(εt)
(10.115)

Substituting zero- and first-order solutions, (10.109) and (10.113), in (10.104)
and then (10.97) and (10.98) gives solution in the first asymptotic order as
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Fig. 10.19 The result of direct numerical integration and analytical approximation in first
asymptotic order of .ε under parameters: .Ω = 1.0, .Δ = 1.0, .ε = 0.05, and .ω0(0) = 5.0

.x(t) = Δ

[
sin λτ

sin λ
− ε

2Ω

dλ

dη

(
cos λτ

cos λ
− τ

sin λτ

sin λ

)
e

]
(10.116)

.v(t) = ΩΔ

{
e
cos λτ

sin λ
+ ε

2Ω

dλ

dη

[
τ
cos λτ

sin λ
+
(
sin λτ

λ sin λ
+ sin λτ

cos λ

)]}

where .τ = τ(ϕ) and .e = e(ϕ) are the triangle and square waves, respectively.
Although the differential equation (10.114) is separable, the corresponding

quadrature is hardly possible to find within the class of elementary functions.
However, it is still well suited for a numerical solution due to the slow temporal
scale .η = εt .

Solution (10.116) is illustrated in Fig. 10.19 in comparison with the result of
direct numerical integration using the Mathematica.(R) solver:

.NDSolve

⎡
⎢⎢⎣

⎧⎨
⎩

x′′(t) + Ω2x(t) = 0, x(0) = x0, x
′(0) = v0,

WhenEvent
[
x(t) = Δ, x′(t) → −kx′(t)

]
,

WhenEvent
[
x(t) = −Δ, x′(t) → −kx′(t)

]
⎫⎬
⎭ , {x, t}, {t, 0, 15},

MaxSteps → ∞,PrecisionGoal → 20

⎤
⎥⎥⎦

The initial conditions were calculated from (10.116) at .t = 0. The analytical
solution appeared to be in sufficient match with the numerical solution. There is
some gradually developing phase shift, which is a typical effect of asymptotic
approximations of frequencies in nonlinear vibrations. Let us recall that the temporal
dependence for phase .ϕ is derived from the boundary conditions, which is an
essentially different way as compared to the perturbation methods in nonlinear
vibrations of smooth systems [104, 151]. For that reason, note the presence of
the so-called secular term with respect to .τ in solution (10.116), which is still
periodic with respect to the phase .ϕ. As seen in Fig. 10.20, the intensity of strikes
against the amplitude limiters, characterized by the quantity p, is diminishing with
time, whereas the period of oscillations .Timp approaches the natural period of
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Fig. 10.20 The natural
period of oscillator without
impacts .Tnat = 2π/Ω , the
period of vibroimpact cycle
.Timp = 4/ω, and the
parameter of intensity of
strikes against the amplitude
limiters, p
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unconstrained oscillator, .Tnat . As already mentioned above, the reason is that no
energy loss is assumed in between the limiters, and the system should eventually
reach some “grazing” regime with near-zero impact pulses but still the same
amplitude [43]. Let us support the above remarks by considering two different
asymptotic cases, corresponding to high and low energy limits.

Case 1 Consider the limit .λ = Ω/ω0 → 0 corresponding to either a very high
initial kinetic energy or a very weak spring of the oscillator. In this case, Eq. (10.114)
takes the form .dλ/dη = Ω/2 and gives the solution .λ = Ωη/2 + λ(0) leading to

.ω0 = ω0(0)

[
1 + 1

2
ω0(0)η

]−1

, η = εt (10.117)

and, finally,

.ϕ = 2

ε
ln

[
1 + 1

2
ω0(0)εt

]
(10.118)

Then solution (10.116) of the first asymptotic order is reduced to

.x(t) = Δ

[
τ − 1

4
ε
(
1 − τ 2

)
e

]
, τ = τ(ϕ), e = e(ϕ) (10.119)

where the role of “imaginary” term of order .ε is to compensate deviations from
straight lines between reflections against the barriers. Such deviations are due to
the continuous representation for the phase .ϕ(t).

Solution (10.119) is close to the triangle wave of the gradually increasing period

.T = 4

ω0(0)

[
1 + 1

2
ω0(0)εt

]
(10.120)

Note that, according to relationship (10.117), the frequency should eventually
drop to zero. This cannot happen, however, because the frequency has its lower
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boundary, which is the natural frequency of harmonic oscillator itself with no
interaction with amplitude limiters. For that reason, let us consider the dynamics
near its low energy limit.

Case 2 The “grazing” dynamics is reached when the frequency of vibration
becomes equal to the natural frequency of the oscillator, .λ = Ω/ω0 → π/2,
while the amplitude is still equal to .Δ. In this case, solution (10.116) describes
the harmonic temporal shape with respect the phase .ϕ:

.x(t) → Δ sin
[π
2

τ(ϕ)
]

≡ Δ sin
(π

2
ϕ
)

as λ → π/2 (10.121)

Therefore, in this limit, the term of order .ε disappears from solution (10.116)
due to Eq. (10.114). Now, introducing the detuning .ρ = π/2 − λ and considering a
small neighborhood of .λ = π/2 bring Eq. (10.114) to the form

.
dρ

dη
= −Ωρ2 + O(ρ3) (10.122)

with general solution .ρ = (Ωη + C)−1, where C is an arbitrary constant, which
is expressed through .ω0(0) by means of the equation .λ = Ω/ω0 = π/2 −
(Ωεt + C)−1. Then substituting .λ(εt) in (10.115) and conducting integration give
the phase of asymptotic solution (10.121) as

.
π

2
ϕ = Ωt + 2

επ
ln

{
1 + π2

4
εt

[
ω0(0) − 2

π
Ω

]}
(10.123)

Solution (10.123) obviously holds under the condition .ω0(0) > (2/π)Ω , which
means that initially the system must be within the impact domain. In this case, the
leading term of phase is estimated by .(π/2)ϕ ∼ Ωt as .t → ∞, and therefore
.x ∼ Δ sinΩt .

10.8.2 Bouncing Ball

Let .z = z(t) be the vertical upward directed coordinate of a perfectly stiff small
bead, which is falling down from its initial position .z(0) = H > 0 with zero initial
velocity (Fig. 10.21). At .z = 0, the bead reflects against the perfectly stiff floor with
the coefficient of restitution .k = 1 − ε, where .0 < ε � 1. Then the bead continues
to bounce until all of its energy is lost. The differential equation of motion between
reflections and collision conditions is, respectively,

.z̈ = −g, z ≥ 0 (10.124)
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Fig. 10.21 Bouncing ball

(0)z H�

z

k

0

and

.z = 0: ż(ti + 0) = −(1 − ε)ż(ti − 0) (10.125)

where g is acceleration due to gravity.
A presence of the linear viscosity in Eq. (10.124) would technically complicate

the process of asymptotic integration although with no major effect on the analytical
procedure, which is described below.

This problem has an exact piecewise parabolic solution, which is used at the
end of this section for comparison reason. We use this exactly solvable problem
for illustration of NSTT formalism leading to an asymptotic closed-form solution.
Although the present model seems to be easier than (10.95)–(10.90), the asymptotic
expansions must be generalized due to both amplitude and frequency modulation
effects. The “equivalent” model, in which the reaction of constraint is represented
by external pulses, takes the form

.z̈ = −g − psgn(τ )e′ (10.126)

where .τ = τ(ϕ), .e′ = de(ϕ)/dϕ, and the factor sgn.(τ ) is to maintain the upward
direction of the impulsive reaction from the stiff ground at .z = 0.

In order to describe the combined amplitude-frequency modulation, representa-
tion (10.97) is generalized by showing the slow temporal scale, .η = εt , explicitly
as

.z = X(τ, η) + Y (τ , η)e (10.127)

Further manipulations resemble the formalism of two variable expansions
with an essential difference though. In particular, the differential equations of
evolutionary component emerge from the boundary conditions whose role is in
cancellation of .δ-functions rather than eliminating resonance terms. Differentiating
function (10.127) with respect to time t gives
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.ż = ∂Y

∂τ
ω + ε

∂X

∂η
+
(

∂X

∂τ
ω + ε

∂Y

∂η

)
e. (10.128)

τ = ±1: Y = 0 (10.129)

Now substituting (10.128) in (10.126) and equating separately continuous,
stepwise discontinuous, and impulsive groups of terms to zero in a similar to the
previous section way give

.
∂2X

∂τ 2
ω2 + ∂Y

∂τ
ω̇ = −2ε

∂2Y

∂τ∂η
ω − ε2

∂2X

∂η2
− g

∂2Y

∂τ 2
ω2 + ∂X

∂τ
ω̇ = −2ε

∂2X

∂τ∂η
ω − ε2

∂2Y

∂η2
(10.130)

.τ = ±1:
∂X

∂τ
ω2 = ∓p

where .ω = ϕ̇, condition (10.129) has been taken into account, and solvability of the
third equation for p can be provided by imposing oddness on the derivative .∂X/∂τ

with respect to the argument .τ as

.
∂X

∂τ
|τ=1 = −∂X

∂τ
|τ=−1 (10.131)

It is natural to assume that the ball strikes the ground .z = 0 whenever .τ = ±1.
Then taking into account condition (10.129) gives

.τ = ±1: z = X + Ye = X = 0 (10.132)

Finally, using velocity (10.128) in (10.125) and following justifications of
relationships (10.93) and (10.94) give

.τ = ±1: ω

(
∂Y

∂τ
∓ ∂X

∂τ

)
+ ε

∂X

∂η
(10.133)

= −(1 − ε)

[
ω

(
∂Y

∂τ
± ∂X

∂τ

)
+ ε

∂X

∂η

]

where the term .∂Y/∂η has been excluded due to condition (10.129).
Let us seek solution of the boundary value problem (10.130), (10.129), (10.133),

and (10.132) in the form of asymptotic series

.X(τ, η) = X0(τ , η) + X1(τ , η)ε + X2(τ , η)ε2 + O
(
ε3
)

Y (τ , η) = Y0(τ , η) + Y1(τ , η)ε + Y2(τ , η)ε2 + O
(
ε3
)

(10.134)

ω = ϕ̇(t) = ω0(η) + ω1(η)ε + ω2(η)ε2 + O
(
ε3
)
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In the leading order approximation, the boundary value problem

.
∂2X0

∂τ 2
= − g

ω2
0

,
∂2Y0

∂τ 2
= 0 (10.135)

.τ = ±1: X0 = 0, Y0 = 0,
∂Y0

∂τ
= 0 (10.136)

has solution

.X0 = g(1 − τ 2)

2ω2
0

, Y0 = 0 (10.137)

where condition (10.131) was taken into account.
Note that, in zero-order approximation, .ε = 0, the physical assumption on

energy loss, which is described by the boundary conditions (10.133), produced the
equality .∂Y0/∂τ = 0 at .τ = ±1in (10.136), which is satisfied automatically by the
trivial solution for .Y0. Since the parameter .ε itself characterizes the velocity drop at
impact times, then the zero-order approximation .ε = 0 cannot depict the effect of
energy decay. This is why the dependence .ω0(η) still remains unknown and will be
determined at the next step of asymptotic procedure.

Now taking into account (10.137) leads to the first-order boundary value problem

.
∂2X1

∂τ 2
= − 1

ω2
0

(
dω0

dη

∂Y0

∂τ
+ 2ω0

∂2Y0

∂τ∂η
+ 2ω0ω1

∂2X0

∂τ 2

)

≡ 2gω1

ω3
0

∂2Y1

∂τ 2
= − 1

ω2
0

(
dω0

dη

∂X0

∂τ
+ 2ω0

∂2X0

∂τ∂η
+ 2ω0ω1

∂2Y0

∂τ 2

)
(10.138)

≡ −3gτ

ω4
0

dω0

dη

.τ = ±1: X1 = 0, Y1 = 0 (10.139)

whose solution is obtained by the direct integration as

.X1 = gω1

ω3
0

(τ 2 − 1), Y1 = g

2ω4
0

dω0

dη
(τ − τ 3) (10.140)

Conditions of the velocity drop (10.133) combine now both zero- and first-order
terms as
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.τ = +1: ω0

(
∂X0

∂τ
+ ∂Y0

∂τ
− 2

∂Y1

∂τ

)
− 2

(
∂X0

∂η
+ ω1

∂Y0

∂τ

)

≡ − g

ω3
0

(
ω2
0 − 2

dω0

dη

)
= 0. (10.141)

τ = −1: ω0

(
∂X0

∂τ
− ∂Y0

∂τ
+ 2

∂Y1

∂τ

)
+ 2

(
∂X0

∂η
+ ω1

∂Y0

∂τ

)

≡ g

ω3
0

(
ω2
0 − 2

dω0

dη

)
= 0 (10.142)

It is seen that the quantity .ω1(η) disappears from these conditions, and both
equalities are satisfied by just one separable differential equation

.
dω0

dη
= 1

2
ω2
0 (10.143)

This gives zero-order approximation for the frequency function as

.ω0 = ω0(0)

[
1 − 1

2
ω0(0)η

]−1

, η = εt (10.144)

Recall that the first-order term .ω1(η) has disappeared from the condition
of velocity drop (10.141)–(10.142) and still remains arbitrary. As follows
from (10.140), the term .ω1(η) determines the amplitude of approximation .X1.
However, the parabolic shape described by the function .X1(τ ) is already captured by
zero-order approximation .X0(τ ). Let us therefore take .X1 ≡ 0 by setting .ω1(η) ≡ 0
as soon as no more steps of the asymptotic procedure will be conducted in present
illustrating example. Note the discrete energy loss is described by function (10.144)
in a continuous way by “corrupting” the temporal mode shape of the process .z(t)

in between impact times. As a result, the Y -component of solution comes into play
in order to correct such a side effect. This is clearly seen from solution (10.140) for
.Y1, which would be zero if the quantity .ω0(η) was constant.

Now substituting both zero- and first-order approximations in (10.134) gives

.z = g

2ω2
0

(1 − τ 2)

(
1 + 1

2
ετe

)
; τ = τ(ϕ), e = e(ϕ) (10.145)

where .ω0 = ω0(εt) is given by (10.144) and phase .ϕ is determined by integration
from the differential equation .ϕ̇(t) = ω0(εt).

Solution (10.145) links the initial height H to yet arbitrary .ω0(0) as

.z(0) = g

2[ω0(0)]2 = H or ω0(0) =
√

g

2H
(10.146)
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Finally, substituting .ω0 from (10.144) in solution (10.145) and taking into
account (10.146) give

.z(t) = H

(
1 − 1

2

√
g

2H
εt

)2 (
1 − τ 2

)(
1 + 1

2
ετe

)
(10.147)

where .τ = τ(ϕ) and .e = e(ϕ) and the phase .ϕ = ϕ(t) is obtained from (10.144) by
integration under the initial condition .ϕ(0) = 0 in the form

.ϕ = −2

ε
ln

(
1 − 1

2

√
g

2H
εt

)
(10.148)

As follows from solution (10.147) and (10.148), the bouncing process ends at

.tmax =
√
2H

g

2

ε
(10.149)

Note that same result (10.149) was obtained in the reference [256] however,
by using a different analytical tool based on the space unfolding coordinate trans-
formation with averaging with respect the fast phase. Considering exact piecewise
parabolic solution gives the duration of the bouncing process [73], which is in match
with (10.149) when .0 < ε << 1:

.tmax =
√
2H

g

1 + k

1 − k
=
√
2H

g

2 + ε

ε
∼
√
2H

g

2

ε

However, temporal shapes of the above three solutions are somewhat different as
it is seen from Fig. 10.22.

Fig. 10.22 Bouncing ball
vertical coordinate versus
time obtained by three
different methods: nonsmooth
temporal transformations
(NSTT), nonsmooth
coordinate transformation
(NSCT), and exact solution
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Chapter 11
Singular Trajectories of Forced
Vibrations

As shown earlier by Zhuravlev [255], harmonically loaded linear conservative sys-
tems possess an alternative physically reasonable basis, which is generally different
from that associated with the conventional concept of principal coordinates. Briefly,
such a basis determines directions of harmonic loads along which the system
response is equivalent to a single oscillator. The corresponding definition (singular
directions of forced vibrations) is losing sense in nonlinear case, when the linear
tool of eigenvectors becomes inapplicable. However, it will be shown in this chapter
that nonlinear formulation is still possible in terms of eigenvector-functions of time
given by NSTT boundary value problems. Physical meaning of the corresponding
nonlinear definitions for both discrete and continual models is discussed.

11.1 Introductory Remarks

The theory of linear normal modes defines a natural basis in the configuration space
of linear conservative systems. The corresponding directions are associated with a
set of independent harmonic oscillators. The number of such oscillators is infinite,
if the original system is continuous. In the latter case, the modal analysis provides
reduction of a continuous system to the related discrete set of harmonic oscillators.
As it is known, the normal modes are defined for a class of unforced systems;
therefore only initial conditions select those oscillators that will be excited during
the dynamical process. Practically, a normal mode regime must be supported by
some external loading due to inevitable energy dissipation. However, the theory
does not identify directly such external forces. Let .ψj(y) be, for instance, the j th
mode shape of a beam. Generally speaking, the external loading of the same profile,
.ψj (y), will excite not only the j th mode but also some others, unless the mass per
unit length of the beam is constant. From the mathematical viewpoint, this is due to
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the mass density, say .ρ(y), participating as a weighting factor in the orthogonality
condition

.〈ψi(y)ρ(y)ψj (y)〉 = 0, i �= j (11.1)

The question therefore is what kind of external force must be applied to a
mechanical system in order to generate a normal mode type of motion when all the
system particles coherently vibrate with the same frequency? Following reference
[255], let us consider first the linear case assuming that the linear n-degrees-of-
freedom forced system oscillates as a single harmonic oscillator in such a manner
that the coordinates vector .x (t) and the force vector .p (t) are collinear to the same
constant vector .q with a constant length ratio .μ as follows

.x = q sinΩt , p = μq sinΩt (11.2)

In the case of forced vibration, the frequency .Ω is rather predetermined by the
external loading and therefore should not play the role of eigenvalue. It was shown
in [255] that the coefficient of proportionality .μ can play such a role instead. In
a regular case, the coefficient .μ has exactly n eigenvalues, whereas the vector .q
determines the corresponding “principal directions” according to the definition of
reference [255]. Note that the principal directions are always orthogonal regardless
the mass matrix of the system. Such an approach therefore determines a new natural
basis for external forces from the standpoint of system considered. This, of course,
should not be viewed as a substitute for the theory of normal modes; however,
some non-autonomous problems can be naturally solved by making use of the
above complementary basis. In nonlinear cases, definition (11.2) is inapplicable,
and the above notion of principal directions loses its sense. However, it was shown
in [175] that the basic idea still can be generalized by considering trajectories
instead of directions. Also a mixed spatiotemporal consideration must be applied
since spatial and temporal coordinates are not separable in nonlinear cases and the
related vibration and forcing are generally neither harmonic in time nor similar in
space. There are some practically important formulations of the problem for the case
of nonlinear forced vibration, which could be qualified as inverse or semi-inverse
approaches. The related methods select practically reasonable external forces that
generate simple enough dynamics. For example, Harvey [77] considered “natural
forcing functions” proportional to the nonlinear restoring force of the forced Duffing
oscillator. The notion of “exact steady state” was defined by Rosenberg [210] for a
strongly nonlinear single degree of freedom system as a vibration with the cosine-
wave temporal shape of the period of external force. The corresponding forcing
function is determined under some initial conditions. Kinney and Rosenberg [105]
considered systems with many degrees of freedom.
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11.2 Principal Directions of Linear Forced Systems

Let us illustrate first the basic idea of reference [255] by considering the linear n-
degrees-of-freedom forced system

.M ẍ + Kx = p (Ωt) , x (t) ∈ Rn (11.3)

where M and K are constant mass and stiffness .n×n matrixes, respectively, .p (Ωt)

is a periodic vector force of the period .T = 2π with respect to .Ωt , and the upper
dot means differentiation with respect to time, t .

Substituting (11.2) in (11.3) gives the eigenvalue problem with respect to the
parameter .μ and vector .q in the form

. − Ω2Mq + Kq = μq (11.4)

Let .q = vs and .μ = .μs be the sth eigenvector and eigenvalue, respectively, .s =
1, . . . , n. The eigenvectors .vs are orthogonal and can be normalized by condition

.vT
i vj = δij (11.5)

where .δij is the Kronecker symbol.
Therefore, the set of vectors .vs determine a natural basis for the case of forced

vibrations. Let, for instance, the external force be .p = Q .sinΩt , where .Q ∈ Rn is
an arbitrary constant vector. In this case, the corresponding steady-state (particular)
solution is written as

.x =
∑

s

(
vT
s Q

)
μs

vs sinΩt (11.6)

Now, let .es and .Ωs be conventional linear normal modes and natural frequencies
of the system. (The related eigenvalue problem is obtained from (11.4) by setting
.μ = 0.) As follows from the linear theory, the normal mode vectors are orthogonal
with respect to the mass matrix M so that the normalization condition can be
represented in the form

.eT
i Mej = δij (11.7)

Using the normal mode basis for the above steady state gives

.x =
∑

s

(
eT
s Q

)
Ω2

s − Ω2
es sinΩt (11.8)

Since the uniqueness theorem holds, expansions (11.6) and (11.8) must represent
the same solution, and therefore,
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.

∑
s

(
vT
s Q

)
μs

vs =
∑

s

(
eT
s Q

)
Ω2

s − Ω2
es (11.9)

Let the external force amplitude vector .Q be directed along one of the principal
directions. Then, expansion (11.6) will include only one term, whereas expan-
sion (11.8) still includes all n terms.

Now, let us consider the case, when the mass matrix is equal to the identity
matrix, .M = E. In this particular case, expression (11.4) takes the standard form of
the eigenvalue problem for normal modes with respect to the eigenvalue parameter
.Ω2 + μ

. −
(
Ω2 + μ

)
Eq + Kq = 0 (11.10)

As follows from (11.10), the eigenvalues of free and forced vibration are coupled
by expression

.Ω2 + μs = Ω2
s , s = 1, . . . , n (11.11)

It is seen that each eigenvalue of forced vibration, .μs = Ω2
s − Ω2, is a

monotonically decreasing function of the external frequency .Ω with only one zero
at .Ω = Ωs .

11.3 Definition for Singular Trajectories of Nonlinear
Discrete Systems

Let us consider the nonlinear case

.M ẍ + Kx + εf (x) = p (Ωt) , x (t) ∈ Rn (11.12)

where .f (x) is an analytic nonlinear vector-function such that .f (−x) = .−f (x), .ε is
a small positive parameter, and the forcing function and matrixes are defined in
Eq. (11.3).

If .ε �= 0, then the concept of singular directions of forced vibrations is not
applicable anymore; however it is still possible to consider principal trajectories
instead based on the following:

Definition 11.3.1 Trajectories of periodic motions of the period .T = 2π/Ω on
which mechanical system (11.12) behaves as a Newtonian particle in .Rn, namely,
the external force and acceleration vectors are coupled by the Newton second law,

.mẍ (t) = p (Ωt) (11.13)

will be called singular trajectories of forced vibrations.



11.3 Definition for Singular Trajectories of Nonlinear Discrete Systems 345

In Eq. (11.13), m is a priori unknown effective mass parameter. The effective
mass m and the force .p (Ωt) must be chosen in order to make Eqs. (11.12)
and (11.13) compatible.

Note that, in the linear case, the above definition still gives principal directions
of forced vibrations (11.2) after representing the mass parameter as follows

.m = − μ

Ω2
(11.14)

Indeed, substituting expression .x (t) = q sinΩt in Eq. (11.13) and taking into
account expression (11.14) give definition (11.2) in the form .p =μx. In contrast to
linear case (11.2), definition (11.13) admits non-harmonic temporal shapes.

The current definition itself does not imply that the system is weakly nonlinear.
However, if the parameter .ε is small, then explicit solutions can be obtained in terms
of conventional asymptotic expansions as described in the next section.

As mentioned, the concept of principal trajectories seems to relate to the idea
of “natural forcing functions” introduced in [77] for the Duffing oscillator. Let us
consider now a multidimensional case from that point of view.

Applying definition (11.13) to the general nonlinear system

.M ẍ + F (x) = p (Ωt) (11.15)

and eliminating the acceleration give the external forcing vector-function as a linear
transformation of the restoring force in the form

.p (Ωt) =
(

E − 1

m
M

)−1

F (x) (11.16)

where the matrix of the transformation includes the identity matrix E and the
effective mass parameter m.

Relationship (11.16) can be viewed as a vector version of the concept of natural
forcing functions.

On the other hand, using the definition for principal trajectories and excluding
the external forcing vector .p (Ωt) from the equation of motion give an auxiliary
free system described by the differential equation of motion

. (M − mE) ẍ + F (x) = 0

The idea of transforming the forced problem to a free vibration problem by
imposing the form of excitation was used also in [40] with illustrations on two-
degree-of-freedom systems based on an essentially different methodology though.
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11.4 Asymptotic Expansions for Principal Trajectories

In order to make Eqs. (11.12) and (11.13) compatible, let us eliminate the forcing
vector-function .p (Ωt) and thus consider equation

.M ẍ + Kx + εf (x) = mẍ (t) (11.17)

A family of periodic solutions that give principal directions of linearized system
as .ε → 0 will be considered. Let us represent such solutions (principal trajectories)
in the following parametric form

.x = X (τ ) (11.18)

where .τ = τ(ωt) is the triangular sine wave of the period of external loading,
.T = 2π/Ω = 4/ω.

Substituting (11.18) into (11.17) gives

.LX+εf (X) = ω2mX′′ (11.19)

.L ≡ ω2M
d2

dτ 2
+ K

under the boundary condition

.X′ (τ ) |τ=±1= 0 (11.20)

As mentioned above, the temporal and spatial variables generally are not
separable any more in nonlinear cases; therefore it is impossible to obtain an exact
nonlinear version of the eigenvector problem (11.4). As a result, both temporal and
spatial mode shapes must be corrected on each step of the related asymptotic process
as described below.

Remind that the differential operator L in Eq. (11.19) includes the frequency
parameter .Ω fixed, whereas the mass m is an eigenvalue to be determined.

Let .ma and .ea(τ ) be the eigenvalue and eigenvector of the linearized problem,
.ε = 0, respectively,

.Lea = m2
aω

2e′′
a (11.21)

e′
a | τ=±1 = 0

where the index .a = {s, j} consists of spatial and temporal mode shape numbers,
.s = 1, . . . , n and .j = 1, . . ., respectively.
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The scalar product of any two vector-functions .x = x (τ ) and .y = y (τ ) will be
defined as follows

. 〈x, y〉 = 1

2

∫ 1

−1
xT ydτ

Let us represent solution of the weakly nonlinear eigenvalue problem (11.19)
and (11.20) in the following form of asymptotic expansions

.X(τ ) = Aea(τ ) + εX(1)(τ ) + O
(
ε2

)
(11.22)

m = ma + εη1 + O
(
ε2

)

Then substituting (11.22) in (11.19) and (11.20), and matching the coefficients
of the first order of .ε, gives equation

.LX(1) − ω2maX(1)′′ = −f (Aea) + ω2η1Ae′′
a (11.23)

and boundary condition

.X(1)′ |τ=±1= 0 (11.24)

Following the idea of perturbations for eigenvalue problems [44], let us represent
solution of Eq. (11.23)

.X(1) =
∑
b �=a

a
(1)
b eb(τ ) (11.25)

where .b = {r, i} is a double index, .a
(1)
b is yet unknown constant coefficient, and

boundary condition (11.24) is automatically satisfied.
Let us assume the following normalization condition for the eigenvector-

functions

.
〈
e′
a(τ ), e′

b(τ )
〉 =

{
0, b �= a

1, b = a
(11.26)

Substituting (11.25) in (11.23) and taking into account (11.26) determine the
coefficients .a

(1)
b and .η1. As a result, expansions (11.22) give first-order asymptotic

solution

.X = Aea + ε

ω2

∑
b �=a

〈eb, f (Aea)〉 eb

mb − ma

+ O
(
ε2

)
(11.27)

m = ma − ε

ω2

〈ea, f (Aea)〉
A

+ O
(
ε2

)
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As follows from the form of solution (11.27), all the coefficients are uniquely
determined under the condition that .ma �= mb for .a �= b. The possibility of
degeneration, namely, .ma = mb for .a �= b, depends on the inner properties of
the system and the frequency parameter .ω. The related examples were considered
earlier [175, 181].

11.5 Extension on Continuous Systems

Let us consider a one-dimensional elastic system whose vibration is described by
some function .u = u(t, y). For certainty reason, let us consider a nonlinear string
of the length l under external distributed loading described by the partial differential
equation and boundary conditions

.Lu+εf [u] = p(Ωt, y), 0 < y < l (11.28)

.u(t, 0) = u(t, l) = 0 (11.29)

.L ≡ ρ(y)
∂2

∂t2
− T

∂2

∂y2 (11.30)

where L is the differential self-adjoint operator of linear string, .ρ(y) is a mass per
unit length parameter, T is a constant tensile force, .f [u] is a nonlinear operator
acting in the corresponding function space of configurations, .ε is a small parameter,
and .p(Ωt, y) is the external forcing function, which is assumed to be .2π -periodic
with respect to .Ωt .

Now keeping in mind expressions (11.28) through (11.30), let us introduce

Definition 11.5.1 Periodic forced vibrations of a continuous system, in which the
system motion is equivalent to a particle in the function space of configurations
described by the second Newton law,

.σ
∂2u(t, y)

∂t2
= p(Ωt, y) (11.31)

will be called a principal mode of forced vibration.

In one-dimensional cases, .σ is a priori unknown effective mass per unit length.
Substituting (11.31) in (11.28) gives the following partial differential equation for
principal modes of forced vibrations

.Lu+εf [u] = σ
∂2u

∂t2
(11.32)
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Introducing the triangular wave time substitution as .τ = τ(ωt) and .u(t, y) =
U(τ, y) gives

.LU+εf (U) = ω2σ
∂2U

∂τ 2
(11.33)

.L ≡ ω2ρ(y)
∂2

∂τ 2
− T

∂2

∂y2

The boundary conditions are formulated for both temporal and spatial variables
as

.U (τ, 0) = U (τ, l) = 0 (11.34)

and

.
∂U (τ , l)

∂τ
|τ=±1= 0 (11.35)

respectively.
In this case, the scalar product of two functions .U = U(τ, y) and .V = V (τ , y)

from the configuration space can be defined as

. 〈U,V 〉 = 1

2l

∫ 1

−1

∫ l

0
UV dτdy (11.36)

Further, a weakly nonlinear asymptotic procedure can be developed analogously
to the above discrete case.



Chapter 12
NSTT and Shooting Method for Periodic
Motions

In this chapter, two-dimensional shooting diagrams are introduced for visualization
of manifolds of periodic solutions and their bifurcations. A general class of non-
linear oscillators under smooth, nonsmooth, and impulsive loadings is considered.
The corresponding boundary value problems are formulated by introducing the
triangular wave temporal argument. Duffing oscillator with no linear stiffness (Ueda
circuit) is considered for illustration. It is shown that the temporal mode shape of
the loading is responsible for qualitative features of the dynamics, such as transitions
from regular and random motions. The important role of unstable periodic orbits is
discussed.

12.1 Introductory Remarks

Periodic solutions and their bifurcation diagrams often reveal important qualitative
features of the dynamics even though the system motion is not expected to be
periodic. In particular, the number of periodic orbits and their distribution and
properties reveal the structure of chaotic orbits; see, for instance, works [19, 72, 160]
and references therein. Direct numerical tools for detection and construction of
periodic orbits based on the mapping approach can be found in the book [162] and
paper [74]. Different formulations in terms of boundary value problems for ordinary
differential equations are described in [17]. Theoretical and applied results regarding
periodic motions, bifurcations, and chaos are reported in [21] and [247].

In this chapter, a special two-dimensional visualization of the shooting method
is introduced in order to incorporate the general two-component NSTT as a
preliminary analytical stage [185]. Note that the same approach using the one-
component NSTT was suggested earlier in [201] and implemented inMathematica®

interface [25]. In particular, subharmonic orbits of the forced pendulum and
bifurcation diagrams were obtained by examining the shooting curves and their
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zeros. Subharmonic orbits of a strongly nonlinear oscillator forced by closely spaced
harmonics were investigated in [217]. The NSTT followed by shooting method was
applied to study the resonance capture dynamics.

Let us consider a multi-dimensional oscillator described be the differential
equation

.F(ẍ, ẋ, x, t) = 0 (12.1)

where .x (t) ∈ Rn and the vector-function .F ∈ Rn is periodic with respect to time t

with the period .T = 4a.
In this work, different kinds of temporal discontinuity in the differential equa-

tions of motion will be considered. In order to satisfy the related mathematical
requirements, the left-hand side of Eq. (12.1) must be interpreted in term distribu-
tions [225]

.

∞∫
−∞

F(ẍ, ẋ, x, t)ϕ (t) dt = 0 (12.2)

where .ϕ (t) is any sufficiently smooth testing function.
However, at this point, let us assume that the function .F(ẍ, ẋ, x, t) is regular

with no singular terms involved.
Let us consider periodic solutions of the period T by means of the coordinate

complexification (NSTT)

.x → {X, Y } : x = X (τ) + Y (τ) τ ′ (12.3)

where .τ = τ (t/a) the triangular sine wave of the period .T = 4a and .τ ′ =
dτ (t/a) /d (t/a) is its first generalized derivative, which is a stepwise discontin-
uous function at the time instances

.Λ = {t : τ (t/a) = ±1} (12.4)

As discussed in this book, the above discontinuities can be suppressed by the
condition .Y (±1) = 0, which is the necessary condition of continuity of the original
coordinates .x(t). Then, assuming for a while no infinite discontinuities in F ,
substituting (12.3) in (12.1), using the algebraic properties of representation (12.3)
as well as other NSTT rules, gives the boundary value problem

.F

(
X′′ + Y ′′

a2
,
X′ + Y ′

a
,
X + Y

a
, aτ

)
= 0. (12.5)

F

(
X′′ − Y ′′

a2
,−X′ − Y ′

a
,
X − Y

a
, 2a − aτ

)
= 0 (12.6)
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.Y |τ=±1 = 0, X′|τ=±1 = 0 (12.7)

where the prime used with X and Y means differentiation with respect to .τ .
Both Eqs. (12.5) and (12.6) are easily derived by the corresponding algebraic

manipulations, whereas boundary conditions (12.7) represent the result of elimina-
tion of the singular term .τ ′′ (t/a) when substituting (12.3) in (12.1). In some cases,
such a singular term can be employed though in order to eliminate singularities from
original equations; see below.

Despite of a relatively complicated form of Eqs. (12.5) and (12.6), the new
formulation brings some advantages due to the fact that the new temporal variable .τ

is bounded and automatically accounts for periodicity of solutions regardless their
temporal shapes. This property appears to be important in those cases when the
solutions do not represent a final stage of investigation but must be used for further
analyses. The dimension increase is often compensated by an effective decrease
of the temporal interval of the problem, since the range .−1 � τ � 1 is covered
by the original time domain .−a � t � a, which is twice shorter than the whole
period .T = 4a. Moreover, there are many cases when the number of equations
can be reduced to that of the original system due to the symmetry of equations. If,
for instance, the vector-function .F(ẍ, ẋ, x, t) is even with respect to the velocity .ẋ

or includes no velocity at all, and the explicit dependence on time t produces zero
“imaginary component,” then boundary value problem (12.5) through (12.7) admits
a family of solutions on which

.Y ≡ 0, F

(
X′′

a2
,
X′

a
,
X

a
, aτ

)
= 0 (12.8)

.X′|τ=±1 = 0 (12.9)

The particular case (12.8) and (12.9) was investigated numerically by the
shooting method in [201] and [224] based on a single- and multiple-degrees-of
freedom systems, respectively. It should be noted that no special requirements are
imposed on numerical methods or packages for solving the above boundary-value
problems. However, the shooting algorithm in theMathematica® interface provides
a physically meaningful way of visualization of periodic solutions due to the specific
combination analytical and numerical commands.

12.2 Problem Formulation

Let assume now that the system loading may include a periodic series of Dirac
.δ-functions acting at times .Λ(12.4). As is known [63], Dirac .δ-functions can
participate in nonlinear differential equations only as summands because nonlinear
manipulations with .δ-functions are physically meaningless, except special concepts
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[138]. Therefore, the original equation (12.1) must be concretized as

.ẍ + f (x, ẋ, t) = q (t) (12.10)

where

.q (t) = Q(τ (t/a)) + P (τ (t/a)) τ ′ (t/a) + p (τ (t/a)) τ ′′ (t/a) (12.11)

and

.τ ′′ (t/a) = d2τ (t/a) /d (t/a)2 (12.12)

= 2
∞∑

k=−∞

[
δ

(
t

a
+ 1 − 4k

)
− δ

(
t

a
− 1 − 4k

)]

In Eq. (12.10), the function .f (x, ẋ, t) may still include parametric terms of the
period .T = 4a with possible stepwise discontinuities on .Λ. The acceleration .ẍ

also participates as a summand, since it must have the same kind of singularities
as the external forcing function, .q (t). According to the distribution theory [208],
.p (τ (t/a)) must be at least continuous on .Λ; otherwise the “product” .p (τ) τ ′′
cannot be treated as a distribution. Note that behavior of the function .p(τ (t/a))

between the times .Λ is arbitrary, since only values .p (−1) and .p (1) contribute into
the expression

. p (τ (t/a)) τ ′′ (t/a) (12.13)

= 2
∞∑

k=−∞

[
p (−1) δ

(
t

a
+ 1 − 4k

)
− p (1) δ

(
t

a
− 1 − 4k

)]

The numbers .p (−1) and .p (1) control the “amplitudes” and directions of the
.δ-functions. For example, all the pulses can be positively co-directed by setting
.p (τ) = − sign. τ .

Remark 12.2.1 Expressions (12.3) and (12.11) represent particular cases of the
truncated series

.q (t) =
N∑

k=0

Pk (τ (t/a)) dkτ (t/a) /d (t/a)k (12.14)

where .Pk(τ (t/a)) must be at least .k − 2 times continuously differentiable in
the neighborhood of points .t = ±a. Although physical interpretation of the
higher-order terms in (12.14) is not straightforward, such terms still can occur
after reducing the number of equations from the entire system. In cases (12.10)
and (12.11), one has .N = 2, and therefore the velocity vector .ẋ must be stepwise
discontinuous. Further, if .N = 3, then the velocity .ẋ includes singular terms, and the
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function .f (x, ẋ, t) in Eq. (12.10) must be linear with respect to .ẋ. If .N = 4, then the
function .f (x, ẋ, t) must be linear also with respect to the position vector x provided
that any parametric terms are sufficiently smooth functions of time. Therefore, only
linear systems can be considered if .N ≥ 4.

Since the basis elements .
{
1, τ ′, τ ′′} represent functions of different classes of

smoothness, then substituting (12.3) and (12.11) in (12.10) gives separately

.a−2X′′ + Rf

(
X, Y,X′, Y ′, τ

) = Q(τ) . (12.15)

a−2Y ′′ + If

(
X, Y,X′, Y ′, τ

) = P (τ) (12.16)

and

.a−2X′ |τ=±1 = p (±1) (12.17)

where

.

{
Rf

If

}
= 1

2

[
f

(
X + Y,

X′ + Y ′

a
, aτ

)
± f

(
X − Y, − X′ − Y ′

a
, 2a − aτ

)]

(12.18)

Note that the singular term .a−1Yτ ′′ is eliminated from the velocity vector .ẋ (t)

by imposing another boundary condition

.Y |τ=±1 = 0 (12.19)

The boundary value problem (12.15) through (12.19) includes no singular or
discontinuous functions; therefore standard numerical codes and packages can be
applied with no specific constraints on their choice.

In general, Eqs. (12.15) and (12.16) are coupled. Although the equations can be
decoupled by introducing the new unknown functions, .X(τ) + Y (τ) and .X(τ) −
Y (τ), the boundary conditions will become coupled. There are two special cases,
however, when the entire problem can be reduced. If, for instance, .f (x, ẋ, t) =
.f (x,−ẋ, 2a − t) and .P (τ) ≡ 0, then the problem admits a family of solutions
such that

.Y ≡ 0, a−2X′′ + f
(
X, X′/a, aτ

) = Q(τ) (12.20)

under the boundary condition (12.17).
In case .f (x, ẋ, t) = .−f (−x, ẋ, 2a − t), .Q(τ) ≡ 0 and .p (τ) ≡ 0, then one can

consider another family of solutions on which

.X ≡ 0, a−2Y ′′ + f
(
Y, Y ′/a, aτ

) = P (τ) (12.21)

under the boundary condition (12.19).
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This chapter nevertheless focuses on the general two-component problem (12.15)
through (12.19).

12.3 Sample Problems and Discussion

12.3.1 Smooth Loading

The Duffing-Ueda oscillator [236] under the periodic loading of different temporal
shapes will be considered below.

Let us start with the standard case of sine wave voltage

.ẍ + ζ ẋ + x3 = B sinΩt (12.22)

where .ζ , B, and .Ω are constant parameters.
In this case, the differential equations (12.15) and (12.16) take the form

.a−2X′′ + ζa−1Y ′ + X3 + 3XY 2 = B sin
πτ

2
. (12.23)

a−2Y ′′ + ζa−1X′ + Y 3 + 3X2Y = 0 (12.24)

where .a = π/(2Ω) is a quarter of the loading period, and the boundary conditions
are

.Y |τ=±1 = 0, X′ |τ=±1 = 0 (12.25)

The shooting method can be applied now as follows. First, the differential
equations (12.23) and (12.24) are solved under the initial conditions

.X(−1) = g, X′ (−1) = 0. (12.26)

Y (−1) = 0, Y ′ (−1) = h (12.27)

where g and h are numbers to be determined in order to satisfy boundary
conditions (12.25).

Let us represent solution of the initial value problem (12.23), (12.24), (12.26),
and (12.27) in the following general form

.X = X(τ ; g, h), Y = Y (τ ; g, h) (12.28)

By the idea of shooting method, the initial value problem (12.23), (12.24), (12.26),
and (12.27) must be iteratively solved multiple times at different g and .h until
sufficient precision has been reached for boundary conditions (12.25) at right end
.τ = 1,
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.
∂X(τ ; g, h)

∂τ
|τ=1 ≡ G(g, h) = 0 (12.29)

Y (τ ; g, h)|τ=1 ≡ H(g, h) = 0

When dealing with the particular cases (12.20) or (12.21), such a procedure is
not difficult since one has only one equation with a single unknown, .G(g) = 0 or
.H(h) = 0. Multidimensional cases, such as (12.29), appear to be more difficult and
time-consuming. From this point of view, the important feature of Mathematica is
that it is possible to program the functions .G(g, h) and .H(g, h) explicitly in such a
way that the arguments g and h are included into the numerical solver of differential
equations. This can be done as follows.1 First, the numerical solution is defined as
a function of the arguments g and h according to the command

.sol[g_, h_]:=NDSolve[{eqX, eqY,

.X[-1]==g, X′[-1] == 0, Y[-1] == 0, Y′[-1] == h}, {X,Y}, {τ ,-1,1}];

where eqX and eqY are Eqs. (12.23) and (12.24), respectively.
Then, the functions .G(g, h) and .H(g, h) are defined as follows

.G[g_, h_]:=X′[1]/.sol[g, h][[1]];

.H[g_, h_]:=Y[1]/.sol[g, h][[1]];

As a result, the functions .G(g, h) and .H(g, h) can be considered as usual
functions of two arguments. In particular, intersections of two manifolds (12.29)
can be located and determined by using the commands ContourPlot and FindRoot,
respectively. Each of the determined roots of Eq. (12.29) represents a periodic
solution of the original equation. If the loading amplitude B is a control parameter,
then the evolution of diagrams .G(g, h;B) = 0 and .H(g, h;B) = 0 represents the
corresponding structural changes in the set of periodic solutions.

Figure 12.1 gives an example of such a diagram. The parameters were chosen
in order to provide conditions for the “randomly transitional” process in terms of
work [236]. The diagram clearly shows five intersections between the two different
families of curves. The corresponding solutions of the input period .T = 4a = 2π
are shown in Figs. 12.2 and 12.3.

Direct numerical solutions of the corresponding estimates for Floquet multipliers
show that first four periodic solutions, (a) through (d), are unstable and only
one solution (e) is stable. Solution (e) was detected by direct analog and digital
computer simulations reported in [236], whereas solutions (a) through (d) were
unlisted. Instead, a “non-reproducible trajectory” as a realization of the “randomly
transitional” process was represented in the xv-plane. Such a trajectory can be

1 See Appendix 4 for the related algorithms.
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Fig. 12.1 The curves .G(g, h) = 0 (continuous) and .H(g, h) = 0 (dashed) and their intersections
for the Ueda oscillator under the sine wave input and the following parameters: .ζ = 0.1, .B = 12,
and .ω = 1 (0.1592Hz)
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Fig. 12.2 The temporal mode shapes of periodic solutions
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Fig. 12.3 The projections of periodic trajectories on xv-planes

treated as a chaotic drift around the first three unstable motions (a), (b), and (c).
However, high-order periodic solutions may also affect the dynamics of chaotic drift
[19].

Figure 12.3 shows what actually happens when trying to numerically reproduce
an unstable periodic orbit, say (a). Neither the shooting algorithm nor computer
codes allow to perfectly introduce the initial conditions; therefore it is unlikely that
the oscillator will remain on the unstable orbit. After few cycles, the system leaves
the orbit (a) for the “randomly transitional” drift around the all three unstable orbits
(a), (b), and (c) with “no certain choice” between them. The long-term time history
and the corresponding spectrogram of this motion, represented in Fig. 12.4, confirm
its random character during quite a long period of time.

Although preliminary qualitative information about stability or instability of
periodic solutions can be obtained by direct numerical tests, one can quantify
stability properties based on the well-known Floquet theory in terms of the
characteristic multipliers [76, 145]. In order to remind the principals, let us consider
periodic solution .x(t) of the Eq. (12.10),where .f (x, ẋ, t) = f (x, ẋ, t + T ), .q (t) =
q (t + T ), and the period is .T = 4a.

A variation of the solution .x(t), say .u(t), is described by the linear differential
equation with periodic coefficients

.ü + q1(t)u̇ + q2(t)u = 0

where .q1(t) = ∂f (x, ẋ, t)/∂ẋ is assumed to be independent on .ẋ and .q2(t) =
∂f (x, ẋ, t)/∂x.
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Fig. 12.4 The time history record and its spectrogram (in Hz) for Ueda oscillator after the direct
numerical integration. The parameters are .ζ = 0.1, .ω = 1.0, and .B = 12.0

Then substitution

.u = y(t) exp

⎛
⎝−1

2

t∫
0

q1(z)dz

⎞
⎠

gives

.ÿ + p(t)y = 0 (12.30)

where

.p(t) = q2(t) − 1

4
[q1(t)]2 − 1

2
q̇1(t)

As known from the Floquet theory, stability of solution is determined by the
Floquet multipliers

.μ1,2 = A ±
√

A2 − 1 (12.31)

where .A = [y1(T ) + ẏ2(T )]/2 and .y1(t) and .y2(t) are two fundamental solutions
of Eq. (12.30) given by the initial conditions

.y1(0) = 1, ẏ1(0) = 0
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y2(0) = 0, ẏ2(0) = 1

Based on the number A, the solution .x(t) is unstable if .A2 > 1, and it is stable if
.A2 < 1. In case .A2 = 1, there exists a periodic solution of Eq. (12.30).

Now, let .x(t) be a periodic solution of Eq. (12.22). The corresponding variational
equation is

.ü + ζ u̇ + 3x2u = 0 (12.32)

where .u = u(t) is a small variation of the solution .x = x(t).
After the standard substitution .u(t) = y(t) exp(−ζ t/2) Eq. (12.32) takes the

form

.ÿ +
(
3x2 − ζ 2

4

)
y = 0

Taking into account the form of solution (12.3) gives the variational equation
with periodic coefficient

.ÿ + [U(τ(t/a)) + V (τ(t/a))τ ′(t/a)]y = 0 (12.33)

where .U(τ) = 3X2(τ ) + 3Y 2(τ ) − ζ 2/4 and .V (τ) = 6X(τ)Y (τ).
Note that the periodic coefficient in Eq. (12.33) is continuous with respect to time

t since .V (±1) = 0 due to the boundary conditions (12.25). By using the numerical
solutions of Eq. (12.33), one obtains the number A for every solution

.Aa = 10.5155, Ab = −2.63747, Ac = −2.63749

.Ad = 1.70201, and Ae = 0.143507 (12.34)

where the index corresponds to the type of periodic solution of the original equation;
see Figs. 12.1, 12.2, and 12.3. These numbers confirm that only solution (e) is stable.

12.3.2 Stepwise Discontinuous Input

Let us consider now the case of discontinuous periodic input of the square wave
temporal shape

.ẍ + ζ ẋ + x3 = B
dτ (t/a)

d (t/a)
(12.35)

where a is a quarter of the input period.
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Fig. 12.5 The curves .G(g, h) = 0 (continuous) and .H(g, h) = 0 (dashed) for the Ueda oscillator
under the stepwise input and the following parameters: .ζ = 0.05, .B = 7.4, and .ω = 1

In this case, the right-hand side of Eqs. (12.23) and (12.24) are modified so that
the equations take the form

.a−2X′′ + ζa−1Y ′ + X3 + 3XY 2 = 0. (12.36)

a−2Y ′′ + ζa−1X′ + Y 3 + 3X2Y = B (12.37)

under the homogeneous boundary conditions (12.25).
Figure 12.5 shows the shooting diagram under the fixed parameters .Ω =

π/(2a) = 1 (0.1592 Hz), .B = 7.4, and .ζ = 0.05. In this case, there are
seven intersections between the two families of curves and therefore seven periodic
solutions of the period .T = 4a as shown in Figs. 12.6 and 12.7.

Note that, under the same parameters, the system response on the square wave
input shows new features compared to those under the sine wave input [185]. For
example, after few cycles along the orbit (a), the system starts its drift around the
first three solutions, (a), (b), and (c). At this stage, the dynamics resembles that
under the sine wave input. Further, however, after several random “jumps” between
the orbits (a), (b), and (c), the system becomes eventually attracted by the stable
orbit (e). The direct numerical solution, represented in Fig. 12.8, clearly shows all
three stages of the time and spectral histories of the dynamics.

To clarify stability properties, Floquet theory can be applied analogously to the
case of the sine wave input.
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Fig. 12.6 The temporal mode shapes of periodic solutions of Ueda circuit under the stepwise input
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Fig. 12.7 The projections of periodic trajectories on xv-planes



364 12 NSTT and Shooting Method for Periodic Motions

0 50 100 150 200 250 300
−5

0

5

x

50 100 150 200 250
0

0.5

1

1.5

2

2.5

Time

F
re

qu
en

cy
 (

H
z)

Fig. 12.8 The time history record and its spectrogram (in Hz) for evolution of the solution (a)
under the stepwise voltage of the amplitude .B = 7.4

12.3.3 Impulsive Loading

Let us consider the same oscillator loaded by the periodic series of pulses

.ẍ + ζ ẋ + x3 = pτ ′′ (12.38)

= 2p
∞∑

k=−∞

[
δ

(
t

a
+ 1 − 4k

)
− δ

(
t

a
− 1 − 4k

)]

where .p = p (±1) = B = const.

In this case, both Eqs. (12.36) and (12.37) should have zero right-hand side;
however, the non-homogeneous version of the boundary condition (12.17) must
be imposed in order to eliminate the pulses. The second expression in (12.26)
and the first one in (12.29) must be modified as .X′ (−1) =.a2B=.[π/(2Ω)]2B
and .G(g, h)=.a2B=.[π/(2Ω)]2B, respectively. Therefore, the singular terms are
eliminated from the system due to the triangle wave time, and the shooting
procedure can be applied in the same fashion as that under the smooth input.
The shooting diagram and the corresponding periodic solutions are shown in
Figs. 12.9, 12.10, and 12.11, respectively.

The projections of the phase trajectories show discontinuities of the velocity on
the xv-plane caused by the external pulses. The last four projections, (h) through (k),
can be qualified as “quasi free” vibrations sustained by the pulses. In the shooting
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Fig. 12.9 The curves .G(g, h) = 0 (continuous) and .H(g, h) = 0 (dashed) for Ueda circuit under
the impulsive input and parameters: .ζ = 0.05, .B = 1.4, and .Ω = 1
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Fig. 12.10 The temporal mode shapes of periodic solutions of Ueda circuit under the impulsive
input
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Fig. 12.11 The projections of periodic trajectories on xv-planes

diagram represented in Fig. 12.9, the related intersections are difficult to determine
due to a very small angle between the intersecting curves.

12.4 Other Applications

12.4.1 Periodic Solutions of the Period—n

The above sections deal with periodic solutions with the input period .T = 4a.
In order to capture “subharmonic” solutions of the period nT , the components of
representation (12.3) must be taken in the form

.X (τ) = 1

2
[x (naτ) + x (2na − naτ)]

Y (τ) = 1

2
[x (naτ) − x (2na − naτ)] (12.39)

where .τ = τ(t/(na)).
For instance, applying (12.39) to the sine wave .sinΩt gives

. sinΩt = 1

2

[
sin

nπτ

2
+ sin

(
nπ − nπτ

2

)]

+1

2

[
sin

nπτ

2
− sin

(
nπ − nπτ

2

)]
τ ′ (12.40)
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= 1

2
sin

nπτ

2

{[
1 + (−1)n+1

]
+

[
1 − (−1)n+1

]
τ ′}

where .τ ′ = dτ(t/(na))/d(t/(na)) and .a = π/(2Ω).
According to representation (12.40), Eqs. (12.23) and (12.24) must be modified

as follows

. (na)−2X′′ + ζ (na)−1Y ′ + X3 + 3XY 2

= B

2

[
1 + (−1)n+1

]
sin

nπτ

2

(na)−2Y ′′ + ζ (na)−1X′ + Y 3 + 3X2Y (12.41)

= B

2

[
1 − (−1)n+1

]
sin

nπτ

2

The right-hand side of these equations shows that direct replacement .a → na

in (12.23) and (12.24) would not work.
If .n = 1, then Eqs. (12.41) takes the form (12.23) and (12.24), but if .n > 1,

Eqs. (12.41) can give new solutions in addition to those described by Eqs. (12.23)
and (12.24). The corresponding calculations however become time-consuming and
give complicated diagrams as the number n increases.

12.4.2 Two-Degrees-of-Freedom Systems

Using the above two-dimensional geometrization of shooting diagrams enables
one of considering special cases of two-degrees-of-freedom systems based on
Eqs. (12.20) or (12.21). For example, Eq. (12.20) can be treated as an equation
with respect to the two-component vector-function .X = {X1(τ ),X2(τ )}. Such an
interpretation leads to two scalar equations

.a−2X′′
1 + f1(X1, X2, X

′
1/a,X′

2/a, aτ) = Q1(τ )

a−2X′′
2 + f2(X1, X2, X

′
1/a,X′

2/a, aτ) = Q2(τ ) (12.42)

In this case, the shooting procedure should be based on the initial conditions at
.τ = −1,

.X1(−1) = g, X′
1 (−1) = 0

X2(−1) = h, X′
2 (−1) = 0 (12.43)

where the numbers g and h are determined to satisfy the boundary conditions on the
right end of the interval .−1 ≤ τ ≤ 1,
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.
∂X1(τ ; g, h)

∂τ
|τ=1 ≡ G(g, h) = 0

∂X2(τ ; g, h)

∂τ
|τ=1 ≡ H(g, h) = 0 (12.44)

In this case, every solution g and h of system (12.44) gives the initial position
on the configuration plane .X1X2 at which the system starts with zero velocity its
periodic motion of the period .T = 4a.

12.4.3 Autonomous Case

The nonlinear normal modes represent an important class of periodic motions. The
related references and description of analytical methods can be found in [136] and
[241]. Analogously to the linear theory, the basic nonlinear normal mode solutions
are given by the class of autonomous conservative systems. In this case, Eq. (12.42)
takes the form

.a−2X′′
1 + f1 (X1, X2) = 0

a−2X′′
2 + f2 (X1, X2) = 0 (12.45)

The form of Eqs. (12.45) is easier than (12.42), but the parameter a becomes
unknown. It is possible to avoid determining the parameter a by considering it as a
control parameter for tracking the evolution of shooting diagrams. Alternatively, the
parameter a can be considered as a shooting parameter by imposing one constraint
on the parameters g or h. Let us consider, for instance, the system trajectories in
the configuration plane .X1X2. Introducing the amplitude .A = √

g2 + h2 in (12.43)
gives

.X1 (−1) = A cosϕ

X2 (−1) = A sinϕ

where the angle .ϕ (.0 ≤ ϕ < 2π ) together with the parameter a can play the role of a
new unknowns to be determined by shooting whereas the amplitude A is considered
as a control parameter.



Chapter 13
Essentially Non-periodic Processes

This chapter describes a possible physical basis for NSTT in case of essentially non-
periodic processes. The physical time is structured to match the one-dimensional
dynamics of rigid-body chain of identical particles. Namely, the continuous “global”
time is associated with the propagation of linear momentum, whereas a sequence of
nonsmooth “local” times describe behaviors of individual physical particles. Such
an idea helps to incorporate temporal symmetries of the dynamics into differential
equations of motion in many other cases of regular or irregular sequences of internal
impacts or external pulses. Since the local times are bounded, a much wider set
of analytical tools becomes possible, whereas matching conditions are generated
automatically by the corresponding time substitution.

13.1 Nonsmooth Time Decomposition and Pulse Propagation
in a Chain of Particles

The periodic version of NSTT employs basis functions generated by the most simple
impact oscillator. This is based on the fact that the triangle and square waves capture
general temporal symmetries of periodic processes regardless specifics of individual
vibrating systems. Below, a non-periodic pair of nonsmooth functions is considered,
such as the ramp function,

.s (t; d) = 1

2
(d + |t | − |t − d|) (13.1)

and its first-order generalized derivative, .ṡ (t; d), with respect to the temporal
argument, t ; see Figs. 13.1 and 13.2, respectively.

Such kind of functions play an important role in signal analyses [98].
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Fig. 13.3 Physical meaning of the ramp function: .s(t; 1) describes position of the bead struck by
another bead from the left and moving until it strikes the next bead of the same mass

Possible physical interpretation of these functions is represented in Fig. 13.3.
Namely, the function .s (t, d) can be treated as a coordinate of a particle, say a very
small perfectly stiff bead, initially located at the origin .x = 0. At the time instance
.t = 0, this bead is struck by the identical bead with the velocity .v = 1. After the
linear momentum exchange, the reference bead starts moving until it stopped by the
third bead .x = d; in our case .d = 1.

Now, let us consider an infinite chain of the identical perfectly stiff beads located
regularly on a straight line at the points .xi (.i = 0, 1, ...). No energy loss is assumed
so that any currently moving bead has the same velocity. As a result, the linear
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momentum is translated with the constant speed .v = 1, whereas the beads are
interacting at the time instances .ti = xi . Making the temporal shift .t → t − ti
in function (13.1) gives

.si (t) = s (t − ti , di) = 1

2
(di + |t − ti | − |t − ti+1|) (13.2)

where .di = ti+1 − ti .
Due to the unit velocity, function (13.2) can play the role of “local” time for the

bead moving within the interval .xi < x < xi+1 during the “global” time interval
.ti < t < ti+1. The term “local” means that the temporal variable .si starts at zero
when the “global” time, t , has reached the point .t = ti .

In other words, the global temporal variable is associated with the linear
momentum, whereas all the local temporal variables are attached to the physical
bodies.

For any sequence of time instances, .Λ = .{t0, t1, ...}, the global time, .t ∈ (t0,∞),
can be expressed through the sequence of local times, .{si}, as

.t =
∞∑
i=0

(ti + si) ṡi (13.3)

where the derivatives .ṡi satisfy the relationship

. ṡi ṡj = ṡiδij (13.4)

Practically, equality (13.3) is always a finite sum because temporal intervals of
physical processes always have finite upper bounds. This equality can be verified
analytically within an arbitrary interval, .ti < t < ti+1, by means of definitions
(13.1) and (13.2), although its geometrical meaning is quite clear from the graphs of
participating functions. Formally differentiating both sides of equality (13.3) with
respect to t and taking into account (13.4) give

.1 =
∞∑
i=0

ṡi + t0δ (t − t0) (13.5)

Hence,

.

∞∑
i=0

ṡi = 1 (t > t0) (13.6)

Equality (13.6) holds based on the definition for .ṡi as illustrated in Fig. 13.2. Note
that the right-hand side of expansion (13.3) can be viewed as an element of algebra
with the orthogonal basis .{si} and multiplication rule (13.4). This significantly eases
different manipulations with the temporal variable (13.3), for instance,
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.tn =
∞∑
i=0

(ti + si)
n ṡi , n = 1, 2, ... (13.7)

or, generally,

.x (t) =
∞∑
i=0

x (ti + si) ṡi ≡
∞∑
i=0

Xi (si) ṡi (13.8)

Since the right-hand sides of (13.7) and (13.8) have the same structure as the
argument t itself, then the following functional linearity holds for a general function
g

.g

( ∞∑
i=0

Xiṡi

)
=

∞∑
i=0

g (Xi) ṡi (13.9)

Now, differentiating (13.8) with respect to time t , and taking into account that
.si (ti) = 0 and .si−1 (ti) = di−1, gives

.ẋ (t) =
∞∑
i=0

X′
i (si) ṡi +

∞∑
i=0

Xi (si) [δ (t − ti ) − δ (t − ti+1)] (13.10)

=
∞∑
i=0

X′
i (si) ṡi +

∞∑
i=0

[Xi (0) − Xi−1 (di−1)] δ (t − ti )

where .X−1 (d−1) = 0.
Therefore, all the .δ—functions are eliminated from (13.10) under condition,

which can be qualified as a necessary condition of continuity for .x (t)

.Xi (0) − Xi−1 (di−1) = 0 (13.11)

Under condition (13.11), the derivative .ẋ (t) has the same algebraic structure
as the function .x (t) itself. As a result, transformation (13.3) can be applied to a
general class of dynamical systems. Moreover, in the case of impulsively loaded
systems, the sequences of .δ-functions in (13.10) can be utilized for eliminating the
corresponding singularities from dynamical systems.

13.2 Impulsively Loaded Dynamical Systems

Let us consider a dynamical system subjected to an arbitrary sequence of impulses,
applied to the system at time instances .Λ = {t0, t1, . . .},
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.ẋ = f (x, t) +
∞∑
i=0

piδ (t − ti ) , x (t) ∈ Rn
. (13.12)

x ≡ 0, t < t0 (13.13)

where .f (x, t) is a sufficiently smooth vector-function and .pi is vector characterizing
magnitudes and directions of the impulses.

In particular case, when .t0 = 0, and .pi = 0 (.i = 1, . . .), systems (13.12) and
(13.13) become equivalent to the following initial value problem

.ẋ = f (x, t) , x (0) = p0 (13.14)

Below, solution of the initial value problem (13.12) and (13.13) is introduced
in the specific form based on the operator Lie associated with dynamical system
(13.14)

.A = f (x, t)
∂

∂x
+ ∂

∂t
(13.15)

= f1 (x, t)
∂

∂x1
+ .... + fn (x, t)

∂

∂xn

+ ∂

∂t

It is known, for instance, that the exponent of operator (13.15) produces temporal
shifts as follows

.ezAf (x (t) , t) = f (x (t + z) , t + z) (13.16)

= f (x, t) +
[
f (x, t)

∂f (x, t)
∂x

+ ∂ (x, t)
∂t

]
z + O(z2)

Proposition 13.2.1 Solution of the initial value problem (13.12) and (13.13) can
be represented in the form

.x (t) =
∞∑
i=0

[ai−1 + pi + F (ai−1 + pi , ti , si (t))] ṡi (t) (13.17)

where .ai = .x (ti+1) is the sequence of constant vectors determined by the mapping

.a−1 = 0 (13.18)

ai = ai−1 + pi + F (ai−1 + pi , ti , di) ; i = 1, 2, ...

and the function F is defined by

.F (x, t, z) =
∫ z

0
ezAf (x, t) dz (13.19)

where A is the operator Lie (13.15).
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Proof Substituting vector analogs of expressions (13.8), and (13.10) into the
differential equation of motion (13.12) and taking into account (13.9) give

.

∞∑
i=0

{[X′
i (si) − f (Xi (si) , ti + si)]ṡi+

.[Xi (0) − Xi−1 (di−1) − pi]δ (t − ti )} = 0 (13.20)

The left-hand side of expression (13.20) includes both regular and singular terms.
Moreover, the basis elements .ṡi are linearly independent, and all the .δ-functions are
acting at different time instances. Therefore, Eq. (13.20) gives

.X′
i (si) = f (Xi (si) , ti + si) (13.21)

.Xi (0) = Xi−1 (di−1) + pi = ai−1 + pi (13.22)

where .a−1 = 0 and .ai = Xi (di) (.i = 0, 1, 2, ...). Equation (13.21) can be
represented in the integral form

.Xi (si) = Xi (0) +
si∫

0

f (Xi (z) , ti + z) dz (13.23)

Since the variable of integration is limited by the interval .0 ≤ z ≤ si , the integrand
in (13.23) can be approximated by the easy to integrate Maclaurin’s series with
respect to z. Moreover, such a series can be represented in the convenient form of
Lie series based on the fact that .Xi (z) are coordinates of the dynamical system
with the operator Lie (13.15). As a result, all the coefficients of power series are
expressed through the “initial conditions” at .z = 0 (.t = ti) by enforcing the form of
the dynamical system. As a result, no high-order derivatives of the coordinates are
included anymore into the coefficients of the series. Taking into account the notation
.Xi (si) = x (ti + si), and expressions (13.16) and (13.19), brings (13.23) to the form

.Xi (si) = Xi (0) +
si∫

0

ezAf (x (ti) , ti) dz

= Xi (0) + F (x (ti) , ti , si) (13.24)

= Xi (0) + F (Xi (0) , ti , si)

Substituting now .Xi (0) from (13.22) in (13.24) gives

.Xi (si) = ai−1 + pi + F (ai−1 + pi , ti , si) (13.25)
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Finally, substituting (13.25) in expansion (13.8) gives (13.17). Then, substituting
.si = di in (13.25) gives (13.18) and thus completes the proof.

Solutions (13.17) and (13.18) should be viewed as a semi-analytic solution, since
some numerical tool is required for calculating the discrete mapping (13.18). The
central role here belongs to the function .s (t; d) (13.1), which is automatically
matching all the neighboring pieces of the solution. Note that the distances .di

between times .Λ are not necessary small; however, the precision of the solution
can be improved by increasing the number of terms of the Lie series .ezAf (x, t) with
respect to z, rather than reducing the distances .di .

13.2.1 Harmonic Oscillator Under Sequential Impulses

In order to estimate precision of the above procedure, let us consider the particular
case in which function (13.19) can be calculated exactly in the closed form due to
the presence of exact analytical solution in between the pulses .Λ. The differential
equation of motion on the entire time range is

.ẍ + 2ζΩẋ + Ω2x =
∞∑
i=0

piδ (t − ti ) (13.26)

In this case, the function .f (x, t) in Eq. (13.12) becomes

.f (x) =
(

x2

−2ζΩx2 − Ω2x1

)
(13.27)

Using the identity .ezAf (x (t) , t) = f (x (t + z) , t + z) and the exact analytical
solution of the corresponding free oscillator gives both components of the vector-
function (13.19) in the form

.F1 (x; z) =
[
e−z ζ Ω cos

(
z

√
1−ζ 2 Ω

)
+ζe−z ζ Ω√

1−ζ 2
sin

(
z

√
1 − ζ 2 Ω

)
−1

]
x1

+ e−z ζ Ω

Ω
√

1 − ζ 2
sin

(
z

√
1 − ζ 2 Ω

)
x2

F2 (x; z) = −Ωe−z ζ Ω√
1 − ζ 2

sin

(
z

√
1 − ζ 2 Ω

)
x1 (13.28)

+
[
e−z ζ Ω cos

(
z

√
1−ζ 2 Ω

)
− ζ e−z ζ Ω√

1−ζ 2
sin

(
z

√
1−ζ 2 Ω

)
−1

]
x2
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In this particular case, properties of mapping (13.18) depend on the following
determinant

.J =
∣∣∣∣ 1 + ∂F1/∂x1 ∂F1/∂x2

∂F2/∂x1 1 + ∂F2/∂x2

∣∣∣∣ = e−2di ζΩ (13.29)

Let us introduce the relative error

.δ = ∣∣J − Jappr

∣∣ /J (13.30)

where .Jappr is an approximate determinant based on the Lie series expansion
(13.16).

Figures 13.4 and 13.5 show diagrams for the relative error .δ versus the distance
d between any two neighboring impulse times when the highest-order terms kept in
Lie series (13.16) are .O(z2) and .O(z3), respectively.

As follows from the diagrams, precision of the discrete mapping essentially
depends on both the distance between pulse times and the number of terms kept
in the Lie series. As a result, the error due to a large distance can be reduced by
increasing the number of terms in the Lie series.

13.2.2 Random Suppression of Chaos

A specific case of the Duffing oscillator with no linear stiffness under sine mod-
ulated random impulses was considered in [183]. The corresponding differential
equation of motion is represented in the form

0.0 0.2 0.4 0.6 0.8

0.000

0.005

0.010

0.015

0.020

0.025

0.030

d

Fig. 13.4 Relative error of the determinant based on the truncated Lie series including terms of
order .O(z2)
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Fig. 13.5 Relative error of the determinant based on the truncated Lie series including terms of
order .O(z3)

.ẍ + ζ ẋ + x3 = B sin t

∞∑
i=0

δ (t − ti ) (13.31)

where .ζ is a constant linear damping coefficient and B is the amplitude of
modulation.

Distances between any two sequential impulse times are given by

.di = ti+1 − ti = π

12

(
1 + βηi

)

where .ηi is random real number homogeneously distributed on the interval .[−1, 1]
and .β is a small positive number, .0 < β � 1.

Introducing the state vector .x = (x, ẋ)T ≡ (x1, x2)
T brings system (13.31) to the

standard form (13.12), where

.f (x) =
(

x2

−ζx2 − x3
1

)
, pi =

(
0
B sin ti

)

Note that oscillator (13.31) represents of course a modified version of the well-
known oscillator, .ẍ + ζ ẋ + x3 = B sin t , considered first by Ueda [236] as a model
of nonlinear inductor in electrical circuits—the Ueda circuit. In particular, the result
of work [236], as well as many further investigations of similar models, reveals
the existence of stochastic attractors often illustrated by the Poincaré diagrams
[147]. Similar diagrams obtained under non-regular snapshots can be qualified as
“stroboscopic” diagrams. The results of the computer simulations described in [183]
show that some irregularity of the pulse times can be used for the purposes of a
more clear observation of the system orbits in the stroboscopic diagrams. When



378 13 Essentially Non-periodic Processes

repeatedly executing the numerical code, under the same input conditions, such a
small disorder in the input results some times in a less noisy and more organized
stroboscopic diagrams. However, such phenomenon itself was found to be a random
event whose “appearance” depends on the level of pulse randomization as well as
the number of iterations.



Chapter 14
Spatially Oscillating Structures

This chapter illustrates applications of nonsmooth argument substitutions to model-
ing spatially oscillating structures such as one-dimensional elastic rods with periodic
discrete inclusions and two- or three-dimensional acoustic media with periodic
nonsmooth boundary sources of waves. Whenever the corresponding global spatial
domains are infinite or cyclical, the related analytical manipulations are similar to
those conducted with dynamical systems. The idea of structural homogenization
is implemented through the two-variable expansions, where the fast scale is repre-
sented by the triangular periodic wave. As a result, closed-form analytical solutions
are derived despite of the presence of discrete inclusions or external discontinuous
loads. Static and dynamic problems of elasticity dealing with nonsmooth periodic
structures are often considered in the literature due to their practical importance;
see reviews in [10, 11, 100] for introduction and references. Such problems can
also be considered by means of the nonsmooth argument transformations. In this
case though, the transformation must be applied to the spatial independent variable
related to coordinate along which the structure under consideration is periodic. Such
an approach was introduced in [174] for a string on discrete elastic foundation,
although the complete description of the tool was given later for the corresponding
nonlinear case [199, 200, 213].

14.1 Spatial Triangle Wave Argument

14.1.1 Infinite String on a Discrete Elastic Foundation

For illustrating purpose, let us consider the dynamics of an infinite string on a
discrete nonlinearly elastic foundation described by equation

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
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Fig. 14.1 Linear string on the discrete regular set of nonlinearly elastic springs

.ρ
∂2u

∂t2
− T

∂2u

∂y2 + 2f (u)

∞∑
k=−∞

δ
(y

ε
− 1 − 2k

)
= q

(y

ε
, y, t

)
(14.1)

.(−∞ < y < ∞)

where .ρ is the mass density per unit length; T is a constant tension; .q(y/ε, y, t)

is the body force or external loading, which is assumed to be periodic in the “fast
spatial scale” .y/ε (.0 < ε � 1) with the period normalized to four; and a similar
assumption is made with respect to the transverse displacement of the string .u =
u(y/ε, y, t); see Fig. 14.1 for illustration.

Note that Eq. (14.1) does not allow for a point-wise interpretation due to
the presence of Dirac .δ-function. Both sides of the equation therefore must be
interpreted as distributions producing the same output if applied to the same testing
function. Correctness of such type of modeling was intensively discussed in the
literature; see, for instance, [65]. Omitting details, the series of .δ-functions in
Eq. (14.1) has a certain meaning if the function .f (u(y/ε, y, t)) is at least continuous
in the neighborhoods of points .y = ε(1 + 2k) with respect to the spatial argument,
y, for every k. Note that such a continuity condition is guaranteed by the form
of Eq. (14.1). If, for instance, the displacement u was stepwise discontinuous at
.y = ε(1 + 2k), then the derivative .∂2u/∂y2 would produce uncompensated first
derivatives of the .δ-function. Therefore, the displacement u is at least continuous
function of the coordinate y in a match with the physical meaning of the model.
Moreover, it will be shown below that introducing the space folding spatial
argument, .τ = τ(y/ε), eliminates the singularities from Eq. (14.1) and hence takes
the problem in the frameworks of classical theory of differential equations. First,
the set of localized restoring forces of the elastic foundation are expressed through
second derivative of the triangular wave as

.2f (u)

∞∑
k=−∞

δ
(y

ε
− 1 − 2k

)
= −f (u)sgn(τ )τ ′′ (y

ε

)
(14.2)
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where the derivative .τ ′′ is taken with respect to the entire argument .y/ε and sgn.(τ ) is
introduced to make all the .δ-functions positive, since the foundation reaction forces
must be restoring.

Now both the displacement u and the external loading function q are represented
as elements of the hyperbolic algebra

.u = U(τ, y, t) + V (τ , y, t)e

q = Q(τ, y, t) + P(τ , y, t)e (14.3)

e = e (y/ε) ≡ dτ(y/ε)/d(y/ε)

where the components Q and P are known, whereas X and Y are new unknown
functions.

Finally, substituting (14.2) and (14.3) in Eq. (14.1) and using the differential and
algebraic rules of nonsmooth argument substitutions (Chap. 4) give the differential
equations and boundary conditions as, respectively,

.
∂2U

∂τ 2
= −2ε

∂2V

∂y∂τ
+ ε2

(
ρ

T

∂2U

∂t2
− ∂2U

∂y2 − Q

T

)
. (14.4)

∂2V

∂τ 2
= −2ε

∂2U

∂y∂τ
+ ε2

(
ρ

T

∂2V

∂t2
− ∂2V

∂y2
− P

T

)
(14.5)

and

.τ = ±1 : V = 0. (14.6)

τ = ±1 : ∂U

∂τ
= ∓ε2

T
f (U) (14.7)

where the form of boundary condition (14.7) was eased by enforcing condition
(14.6).

In contrast to Eq. (14.1), the above boundary value problem, (14.4) through
(14.7), is free of the .δ-function singularities. Therefore, conventional methods of
asymptotic integration, such as two-variable expansions, can be applied after a
proper modification to account for the problem specifics. Regardless of the types
of algorithms, solutions are represented in the form of asymptotic series

.U(τ, y, t) =
∞∑

k=0

εkUk(τ , y, t)

V (τ , y, t) =
∞∑

k=0

εkVk(τ , y, t) (14.8)
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As just noticed, problem formulations based on Eqs. (14.4) through (14.7)
possess certain advantages as compared to Eq. (14.1). For instance, the influence
of infinite discontinuities in Eq. (14.1) is captured by the form of substitution
(14.3). Also, the structural discreteness of the nonlinear elastic foundation (14.2) is
associated with the new spatial variable .τ restricted in the range .−1 ≤ τ ≤ 1. As a
result, polynomial expansions with respect to the coordinate .τ will not be affecting
the regularity of asymptotic expansions (14.8) in terms of the original fast scale
.y/ε. In other words, the structural periodicity will be maintained in a wide range of
asymptotic algorithms due to the inherent periodicity of the coordinate .τ = τ(y/ε).

Note that partial differential Eqs. (14.4) and (14.5) are coupled, whereas bound-
ary conditions (14.6) and (14.7) are decoupled with respect to the unknowns U and
V . It is usually more convenient to decouple equations by introducing new unknown
functions, say .X = U + V and .Y = U − V . Then Eqs. (14.4) and (14.5) take the
form

.
∂2X

∂τ 2
= −2ε

∂2X

∂y∂τ
+ ε2

(
ρ

T

∂2X

∂t2
− ∂2X

∂y2
− Q + P

T

)
= 0. (14.9)

∂2Y

∂τ 2
= 2ε

∂2Y

∂y∂τ
+ ε2

(
ρ

T

∂2Y

∂t2
− ∂2Y

∂y2 − Q − P

T

)
= 0 (14.10)

This is obviously transition to the idempotent basis, .{1, e} −→ {e+, e−}, as
described in Sect. 4.2.1

.u = U + V e = U(e+ + e−) + V (e+ − e−)

= (U + V )e+ + (U − V )e− = Xe+ + Ye−

Equations (14.9) and (14.10) have the same structure, except for signs of two
terms. Therefore, it is sufficient to solve just one of the equations. Then, solution of
another equation can be written by analogy.

14.1.2 Doubling the Array of Springs

The mechanical model, which is shown in Fig. 14.2, was considered in [198] based
on the generalized (asymmetric) version of the triangle wave in different notations.
In contrast to the model shown in Fig. 14.1, the support sprigs are linearly elastic
and shifted in a dipole-wise manner, such that the differential equation of motion
with respect to the string deflection .u = u(t, y) has the form

.ρ
∂2u

∂t2
− T

∂2u

∂y2 − k

ε
(1 − γ 2)u sgn[τ(ξ, γ )]∂

2τ(ξ, γ )

∂ξ2
= 0 (14.11)
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Fig. 14.2 Linear string on the discrete periodic set of linearly elastic dipole-wise shifted springs
of the stiffness k

.

(
−∞ < y < ∞, ξ = y

ε

)

where the triangular wave with different positive and negative slopes is given by
(Fig. 14.7)

.τ = τ (ξ, γ ) =
{

ξ/ (1 − γ ) for − 1 + γ ≤ ξ ≤ 1 − γ

(−ξ + 2) / (1 + γ ) for 1 − γ ≤ ξ ≤ 3 + γ
(14.12)

∀ξ : τ (ξ + 4, γ ) = τ (4, γ ) , −1 < γ < 1

Schwartz derivatives of function (14.12), .e = ∂τ(ξ, γ )/∂ξ , satisfy the following
relationships

.e2 = α + βe (14.13)

.e
∂e

∂ξ
= 1

2
β

∂e

∂ξ
(14.14)

.
∂e

∂ξ
= 2α

∞∑
k=−∞

[δ (ξ + 1 − γ − 4k) − δ (ξ − 1 + γ − 4k)] (14.15)

where .α = 1/
(
1 − γ 2

)
and .β = 2γ α.

Let us represent the string deflection in the form

.u = U(τ, y, t) + V (τ , y, t)e (14.16)

where .τ = τ(ξ, γ ) and .e = ∂τ(ξ, γ )/∂ξ .
The components of representation (14.16), U and V , depend on the coordinate

y both explicitly and through the triangular wave function .τ in such a way that the
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complete partial derivative .∂u/∂y, including the dependence .ξ = y/ε, is equivalent
to applying the differential matrix operator

.D = ε−1
[

ε∂/∂y α∂/∂τ

∂/∂τ β∂/∂τ+ε∂/∂y

]
(14.17)

to the vector column of the components U and V

.
∂u

∂y
⇐⇒ D

[
U

V

]
(14.18)

under the condition

.τ = ±1 : V = 0 (14.19)

The regular part of the second derivative can be calculated by means of the
relationship

.
∂2u

∂y2 ⇐⇒ D2
[

U

V

]
(14.20)

However, second derivative of the triangular wave function must be preserved
in order to eliminate the same kind of singularity from Eq. (14.11). So, substituting
(14.16) in (14.11) and collecting separately terms related to different elements of
the basis .{1, e} give

. ρ
∂2U

∂t2
− T

×
[(

α

ε2

∂2

∂τ 2
+ ∂2

∂y2

)
U +

(
αβ

ε2

∂2

∂τ 2
+ 2α

ε

∂2

∂τ∂y

)
V

]
= 0 (14.21)

. ρ
∂2V

∂t2
− T

×
[(

β

ε2

∂2

∂τ 2
+ 2

ε

∂2

∂τ∂y

)
U +

(
α + β2

ε2

∂2

∂τ 2
+ 2β

ε

∂2

∂τ∂y
+ ∂2

∂y2

)
V

]
= 0

(14.22)

under the additional to (14.19) condition

.τ = ±1 : − T

ε2

(
∂U

∂τ
+ β

∂V

∂τ

)
= ±k

ε
(1 − γ 2)U (14.23)
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Note that some terms have been eliminated from condition (14.23) by taking into
account condition (14.19).

Further analysis of the boundary value problems (14.19) and (14.21) through
(14.23) can be implemented by using the asymptotic approach [199] considering .ε

as a small parameter.
Similar version of the transformation was employed for statics of layered

composites in [227].

14.1.3 Elastic Ring Under Periodic Array of Compressive
Loads

The buckling of a circular ring loaded by a discrete regular set of concentrated com-
pressive forces was considered in [239]; see Fig. 14.3. Taking into account identity
(14.2), the differential equation of equilibrium of such ring can be represented in the
form

.
dy

dt
= f (y) − λ

∞∑
k=−∞

δ

(
2

t

ε
− 1 − 2k

)
≡ f (y) + 1

2
λsgn(τ )τ ′′ (14.24)

where .t = s/R (.0 ≤ t ≤ 2π ) is the arc length of the undeformed ring axis per
radius; .y = y(t) is a six-component vector-function characterizing elastic states of
the ring; .f (y) is a vector-function of the elastic states describing both geometrical
and physical properties of the ring; .τ = τ(2t/ε) is the triangular sine wave of the
period .T = 2ε and prime means its Schwartz derivative; .ε is a small parameter,
as compared to unity, characterizing the distance between loads (Fig. 14.3); .λ is

Fig. 14.3 The circular ring,
whose radius is scaled to
unity, under the discrete
regular set of compressive
radial forces, where
.ε = 2π/N � 1 and N is the
number of forces

P

�
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a dimensionless parameter which is proportional to the load P ; and conditions of
periodicity are imposed on the vector-function: .y(t + 2π) = y(t). This periodicity
is associated with the formally infinite limits of summation in Eq. (14.24). Shifting
the arclength t by .2π is equivalent to shifting the summation index as .k −→ k +N .
Obviously, the wave length of buckling is not necessarily equal to the spatial period
of loading.

Further, the unknown vector-function is represented as an element of the
hyperbolic algebra

.y = X(t, τ ) + Y (t, τ )e, e = e(2t/ε) (14.25)

Substituting (14.25) in Eq. (14.24) gives

.
2

ε

∂Y

∂τ
+ ∂X

∂t
− R(X, Y ) +

[
2

ε

∂X

∂τ
+ ∂Y

∂t
− I (X, Y )

]
e

+
[
2

ε
Y − 1

2
λsgn(τ )

]
e′ = 0 (14.26)

or

.
∂Y

∂τ
= 1

2
ε

[
R(X, Y ) − ∂X

∂t

]

∂X

∂τ
= 1

2
ε

[
I (X, Y ) − ∂Y

∂t

]
(14.27)

and

.τ = ±1 : Y = ±1

4
ελ (14.28)

where

.R(X, Y ) = 1

2
[f (X + Y ) + f (X − Y )]

I (X, Y ) = 1

2
[f (X + Y ) − f (X − Y )]

Recall that the role of boundary conditions (14.28) is to eliminate the .δ-function
singularities, .e′ = τ ′′, from Eq. (14.26). The resultant boundary value problem,
(14.27)–(14.28), was analyzed by means of regular asymptotic expansions in [239].
Based on the asymptotic solutions, the load discreteness effects on the critical load
and postbuckling states of the ring were estimated.
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14.2 Homogenization of One-Dimensional Periodic
Structures

Let us consider a one-dimensional .4ε-periodic structure whose static elastic states
are described by the vector-function . z = z(y) ∈ Rn that depends upon the
longitudinal coordinate y attached to the undeformed structure. The number of
vector components n can always be increased in such a way that the differential
equation of equilibrium takes the form of first-order differential equation, for
instance, as follows

.
dz

dy
= f (z, y, ξ) + p(y)e′(ξ), e(ξ) = τ ′(ξ) (14.29)

Here the spatial scale .ξ = y/ε associates with the structural periodicity, the
vector-function .f (z, y, ξ) ∈ Rn is continuous with respect to z and y, but it is
allowed to be stepwise discontinuous with respect to .ξ at the points .{ξ : τ(ξ) = ±1},
and .p(y) ∈ Rn is a continuous vector-function describing the amplitude modulation
of the localized loading.

Example 14.2.1 In terms of the matrixes,

.z =
[

u(y)

v(y)

]
, p(y) =

[
0
q(y)/(2ε)

]
(14.30)

f =
[

v(y)/{EF [1 + αe(ξ)]}
0

]

Equation (14.29) describes an elastic rod whose cross-sectional area is a piecewise
constant periodic function of the longitudinal coordinate as it is shown in Fig. 14.4.
Substituting (14.30) in (14.29) and eliminating then .v(y) give the second-order
differential equation of equilibrium for the rod

.
d

dy

[
EF [1 + αe(ξ)]

du

dy

]
= 1

2ε
q(y)e′(ξ) (14.31)

Now let us consider the vector-form equation in its general form (14.29).
Nonsmooth two-variable expansions will be used by considering the triangular wave

2 2

q
)1( �EF )1( �EF

y

Fig. 14.4 An elastic rod with a periodic nonsmoothly varying cross-sectional area and concen-
trated loading
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oscillating coordinate .τ = τ(ξ) and the original coordinate .η ≡ y as fast and slow
spatial scales, respectively, provided that the following assumption holds

.ε << 1 (14.32)

Let us represent solutions of Eq. (14.29) in the form

.z = X(τ, η) + Y (τ , η)e (14.33)

Substituting (14.33) in Eq. (14.29) gives

.
∂Y

∂τ
+ε

(
∂X

∂η
− Rf

)
+
[
∂X

∂τ
+ ε

(
∂Y

∂η
− If

)]
e + [Y−εp(η)]e′ = 0 (14.34)

where

.
Rf (X, Y, τ , η)

If (X, Y, τ , η)

}
= 1

2
[f (X + Y, τ , η) ± f (X − Y, 2 − τ , η)] (14.35)

Expression (14.34) is equivalent to the following boundary value problem with
no discontinuities

.
∂X

∂τ
+ ε

(
∂Y

∂η
− If

)
= 0 (14.36)

∂Y

∂τ
+ ε

(
∂X

∂η
− Rf

)
= 0

.τ = ±1 : Y = εp(η) (14.37)

Let us represent solutions of the boundary value problem, (14.36) and (14.37), in
the form of asymptotic series with respect to .ε

.X =
∞∑
i=0

εiXi(τ , η) (14.38)

Y =
∞∑
i=0

εiY i(τ , η)

where the functions .Xi and .Y i are to be sequentially determined.
Substituting (14.38) in (14.35) generates power series expansions

.Rf = R0
f + εR1

f + ε2R2
f + ... (14.39)
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If = I 0f + εI 1f + ε2I 2f + ...

where the following notations are used

.Ri
f = 1

i!
∂iRf

∂εi
|ε=0, I i

f = 1

i!
∂iIf

∂εi
|ε=0

Substituting (14.38) in (14.36) and (14.37), then matching the coefficients of the
same powers of .ε, gives the corresponding sequence of equations and boundary
conditions. In particular, zero-order problem takes the form

.
∂X0

∂τ
= 0,

∂Y 0

∂τ
= 0 (14.40)

and

.τ = ±1 : Y 0 = 0 (14.41)

As follows from (14.40), the generating solution is independent on the fast
oscillating scale .τ . Therefore, taking into account (14.41) gives solution

.X0 = A0(η), Y 0 ≡ 0 (14.42)

where .A0 is an arbitrary vector-function of the slow coordinate that will be
determined on the next step of the asymptotic procedure.

So, collecting the terms of order .ε gives the differential equations and boundary
conditions in the form, respectively,

.
∂X1

∂τ
= I 0f − ∂Y 0

∂η
= If (A0, 0, τ , η). (14.43)

∂Y 1

∂τ
= R0

f − ∂X0

∂η
= Rf (A0, 0, τ , η) − dA0

dη
(14.44)

and

.τ = ±1 : Y 1 = p(η) (14.45)

Integrating Eqs. (14.43) and (14.44) gives first-order terms of the asymptotic
solution

.X1 =
τ∫

0

I 0f dτ + A1(η) (14.46)
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Y 1 =
τ∫

−1

R0
f dτ − dA0

dη
(τ + 1) + p(η)

where .A1 is a new arbitrary vector-function of the slow spatial scale .η and the limits
of integration for .Y 1 are chosen in such a manner that boundary condition (14.45)
is satisfied automatically at the point .τ = −1, whereas another point, .τ = 1, gives
equation

.
dA0

dη
= 1

2

1∫
−1

R0
f dτ ≡

〈
R0

f

〉
(14.47)

Note that the “slow scale” Eq. (14.47) was obtained by satisfying the boundary
condition in contrast to the conventional scheme of two-variable expansions in
which such kind of equations are obtained by eliminating the so-called resonance
terms.

Enforcing now Eq. (14.47) brings the component .Y 1 to the final form

.Y 1 =
τ∫

−1

(
R0

f −
〈
R0

f

〉)
dτ + p(y0) (14.48)

At this stage, expressions (14.46) through (14.48) determine the first-order terms
of the asymptotic solution; however, the slow scale vector-function .A1(η) still
remains unknown. The corresponding ordinary differential equation is obtained on
the next stage from the boundary condition for .Y 2 and can be represented in the
form

.
dA1

dη
=
〈

∂R0
f

∂A0

〉
A1 + F 1(A0, η) (14.49)

where .∂R0
f /∂A0 is the Jacobian matrix and the vector-function .F 1 is known.

Note that Eq. (14.49) is linear. Moreover, on the next steps, equations for the
vector-functions .A2, .A3,... will be of the same linear structure, including the same
Jacobian matrix.

14.3 Second-Order Equations

Let us consider now the second-order differential equation with respect to the
vector-function .z(y) ∈ Rn, however, in the linear form
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.
d2z

dy2
+ [q(ξ, y) + p(y)e′(ξ)]z = g(ξ, y) + r(y)e′(ξ) (14.50)

.τ = τ(ξ), e = τ ′(ξ), ξ = y/ε

where q and p are .n × n-matrixes, g and r are n-dimensional vector-functions, and
.ξ is the fast spatial scale.

Based on the assumptions of the previous section, the functions q and g and
solutions of Eq. (14.50) can be represented in the form, respectively,

.q(ξ, y) = Q(τ, η) + P(τ , η)e

g(ξ, y) = G(τ, η) + F(τ , η)e (14.51)

η ≡ y

and

.z(y) = X(τ, η) + Y (τ , η)e (14.52)

where .η and .τ represent the slow and fast spatial scales, respectively.
Substituting (14.51) and (14.52) in Eq. (14.50) and conducting differential and

algebraic manipulations of NSTT lead to the boundary value problem

.
∂2X

∂τ 2
= −2ε

∂2Y

∂τ∂η
− ε2

(
∂2X

∂η2
+ QX + PY − G

)
. (14.53)

∂2Y

∂τ 2
= −2ε

∂2X

∂τ∂η
− ε2

(
∂2Y

∂η2
+ PX + QY − F

)
(14.54)

and

.τ = ±1 : ∂X

∂τ
= ε2[r(y) − p(y)X], Y = 0 (14.55)

Further, representing the solution of the boundary value problem (14.53), (14.54),
and (14.55) in the form of asymptotic series (14.38) gives a sequence of boundary
value problems, in which first two steps appear to have quite trivial solutions, such
as

.X0 = B0(η), Y 0 ≡ 0

and

.X1 ≡ 0, Y 1 ≡ 0
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where .B0 is an arbitrary function of the slow argument .η.
As a result, first two non-trivial steps of the averaging procedure give

.z = B0(η) + ε2[X2(τ , η) + Y 2(τ , η)e] + O(ε3) (14.56)

where, in second order of .ε, the solution components are

.X2 =
τ∫

−1

(τ − s)[G(s, η) − 〈G(τ, η)〉. (14.57)

−(Q(s, η) − 〈Q(τ, η)〉)B0]ds + (r − pB0)τ + B2(η)

Y 2 =
τ∫

−1

[(τ − s)(F (s, η) − P(s, η)B0) (14.58)

−〈(1 − τ)(F (τ , η) − P(τ , η)B0)〉]ds

Here, notation .< • > means averaging with respect to .τ as defined in (14.47);
the vector-function .B0 = B0(η) satisfies equation

.
d2B0

dη2
+ 〈Q(τ, η)〉B0 = 〈G(τ, η)〉 (14.59)

The new arbitrary function of the slow coordinate, .B2(η), has to be defined on
the next step of the procedure.

Note that the .δ-function impulses generated by the derivative .e′(ξ) are switching
their directions twice per one period of the triangular wave. In many practical
cases though, the direction of impulses may remain constant. The corresponding
reformulation of the problem can be implemented by introducing the factor -sgn(.τ )
into the differential equation as follows

.
d2z

dy2 + [q(ξ, y) − p(y)sgn(τ )e′(ξ)]z = g(ξ, y) + r(y)sgn(τ )e′(ξ) (14.60)

Now, in Eq. (14.60), the term sgn.(τ )e′(ξ) generates .δ-functions of the same
direction, whereas the boundary condition (14.55) for the X-component takes the
form

.τ = ±1 : ∂X

∂τ
= ∓ε2[r(y) − p(y)X] (14.61)

The form of expressions (14.57) and (14.59) is modified as, respectively,
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.X2 =
τ∫

−1

(τ − s)[G(s, η) − 〈G(τ, η)〉 (14.62)

−(Q(s, η) − 〈Q(τ, η)〉)B0]ds − τ 2

2
(r − pB0) + B2(η)

and,

.
d2B0

dη2
+ (〈Q(τ, η)〉 + p)B0 = 〈G(τ, η)〉 + r (14.63)

where .η ≡ y and the component .Y 2 is still described by (14.58).

Example 14.3.1 Let us consider an infinite beam resting on a discrete foundation
represented by the periodic set of linearly elastic springs of stiffness c. The
corresponding differential equation of equilibrium is

.EI
d4w

dx4 + c

a
w

∞∑
k=−∞

δ
(x

a
− 1 − 2k

)
= f

( x

L

)
(14.64)

.(−∞ < x < ∞)

Let us introduce the following dimensionless values

.y = x

L
, ξ = y

ε
, W = w

a
, γ = cL4

aEI

where .ε = a/L << 1. As a result the above Eq. (14.64) for the beam’s center line
takes the form

.
d4W

dy4 − 1

2
γ sgn[τ (ξ)]e′ (ξ) W = γ

c
f (y) (14.65)

This equation becomes equivalent to (14.60), after the following substitutions

.z =
[

W

W ′′
]
, q =

[
0 −1
0 0

]
, p = γ

2

[
0 0
1 0

]
, g = γ

c
f (y)

[
0
1

]

and .r ≡ 0. Note that q and g do not have “imaginary parts” in hyperbolic elements
(14.51); therefore .G ≡ g, .Q ≡ q, .P ≡ 0, and .F ≡ 0. Inserting these values in
(14.62) and (14.58), one finally obtains
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.z = B0(y) + 1

2
ε2τ 2 (ξ) pB0(y) + O

(
ε3
)

or

.

[
W

W ′′
]

=
{[

1 0
0 1

]
+ 1

4
γ ε2τ 2

(y

ε

) [0 0
1 0

]}[
B0
1

B0
2

]
+ O

(
ε3
)

(14.66)

where the term .ε2B2(y) is ignored compared to the leading-order term .B0(y);
however, the terms of order .ε2 describing the discreteness effects are maintained.
The matrix-column .B0 = [B0

1 , B0
2 ]T is determined from Eq. (14.63). In a

component-wise form, this equation reads

.
d2

dy2

[
B0
1

B0
2

]
+ 1

2

[
0 −2
γ 0

] [
B0
1

B0
2

]
= γ

c

[
0
f (y)

]
(14.67)

This system is equivalent to

.
d4B0

1

dy4 + γ

2
B0
1 = γ

c
f (y) (14.68)

and .B0
2 = d2B0

1/dy2. Note that Eq. (14.68) is the result of a homogenization
of Eq. (14.65) with respect to the fast spatial scale .ξ . In other words, Eq. (14.68)
describes an elastic beam resting on the effectively continuous elastic foundation.
In order to illustrate the asymptotic solution, let us consider the case of sine-wave
loading, .f (x/L) .≡ .q0 sin (πx/L), where .q0 =const. Taking into account only the
leading order “slow” and “fast” components gives the bending moment in terms of
the original variables

.M(x) = EI
d2w

dx2 = −M0

[
1 − γ

( a

2πL

)2
τ 2
(x

a

)]
sin

πx

L
(14.69)

where .M0 = 2q0π2L2/(2π4 + γ ). The bending moment diagram is given in
Fig. 14.5.

Finally, note that the homogenization procedure described in [31] gives the
resultant equation in a slow spatial scale and a so-called cell problem in the fast
scale. In the above approach, the analog of cell problem associates with the fast
oscillating spatial scale given by the triangle wave function .τ(y/ε). As a result,
solution for the cell problem automatically unfolds on the entire structure so that the
fast and slow components of elastic states are eventually expressed though the same
coordinate in a closed form. Every cell of the infinite array of cells is associated
with same standard interval .−1 < τ < 1. Further clarifications are given in the next
section.
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Fig. 14.5 Bending moment of the beam on the discrete elastic foundation; numerical values of the
parameters are as follows: .L = π , . a = 0.2, and .γ = 1948.0

14.4 Wave Propagation in 1D Periodic Layered Composites

Propagation of waves in periodic media has been of significant interest in various
branches of optics, acoustics, and elastodynamics for several decades due to a
widening area of practical applications for composite materials and extensive usage
of periodic structures in civil engineering [12, 13, 31, 47, 118, 154, 159, 215, 216].
Periodicity in material properties can serve for passive control of wave propagation
in different micro- and macro-systems. Basic physical formulations and analytical
methodologies are systemized and documented, for instance, in [35, 36, 56].
Although linear problems may possess exact solutions, different approximate meth-
ods are quite popular by two major reasons. First, typical exact solutions are usually
represented as a combination of local solutions describing separate layers (cells),
while global characterization of propagating waves is of main interest. Second, the
exact approaches are usually difficult to extend on even weakly nonlinear materials.
Note that the wave dynamics of layered structures possess typical properties of
waves in continuous materials and those in discrete lattices, as confirmed by the
presence of so-called pass bands and stop bands in dispersion curves. Despite of
the extra complexity, such specifics widen the set of analytical, numerical, and
experimental tools. This section is based on reference [194].

14.4.1 Governing Equations and Zero-Order Homogenization

Let us consider longitudinal waves propagating along the infinitely periodic com-
posite rod consisting of alternating layers of two elastic materials as shown at the
top of Fig. 14.6. The governing one-dimensional wave equation is
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l

Fig. 14.6 1D periodic composite media with the corresponding basis functions, .τ and e; see also
Fig. 4.1 of Sect. 4.1.8 for details

.ρ± ∂2u±(t, x)

∂t2
− E± ∂2u±(t, x)

∂x2 = 0 (14.70)

where .E± are Young’s moduli; .ρ± are mass densities; and .u±(t, x) are displace-
ments; the superscript “.+” or “.−” indicates different types of layers. Since both
types of layers are assumed to be linearly elastic, the longitudinal stress is given by
Hooke’s law

.σ±(t, x) = E± ∂u±(t, x)

∂x
(14.71)

In the case of the perfect bonding between the layers, Eq. (14.70) must be
considered under the following continuity conditions at the layer interfaces .x = xn

.u−(t, xn) = u+(t, xn) (14.72)

.σ−(t, xn) = σ+(t, xn) (14.73)

.(n = 0,±1,±2, ...)

Due to linearity of the boundary value problem, (14.70) through (14.73), the
Floquet-Bloch approach [36] gives the exact dispersion relation [13]. However,
when elastic waves are considerably longer than typical cells of the material, the
idea of homogenization can be used for easing estimations of global elastodynamic
properties of composite structures. In such case, a natural small parameter character-
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izing the rate of heterogeneity and the corresponding scales for spatial coordinates
can be introduced as

.ε = l

L
<< 1, η = x, ξ = x

ε
(14.74)

where .ε is a unitless heterogeneity parameter, l is a cell (layer) thickness, L is the
wave length, .η is identical to the original coordinate x associated with the spatial
scale of the propagating wave, and .ξ is another coordinate, associated with the
spatial scale of heterogeneity.

Asymptotic homogenization procedures are usually designed in such way that .ξ
is a local coordinate attached to a typical cell of the material, and the corresponding
“cell problem” is assumed to depend slowly upon the global coordinate .η. As
a result, the effect of structural periodicity becomes somewhat shadowed in the
solution despite the fact that considering a single arbitrary cell is justified by
periodicity.

Note that a quasi static homogenization, corresponding to the limit .ε −→ 0, can
be conducted by calculating the effective Young’s modulus and mass density of a
single elementary cell composed of two different layers. For instance, neglecting the
inertia term in Eq. (14.70) gives general solution in the form .u± = A±x+B±, where
.A± and .B± are arbitrary constants and .x = 0 corresponds to the boundary between
two different layers. Two of the four constants are eliminated from this solution due
to the continuity of displacement and stress at the boundary .x = 0. Then, calculating
the effective strain of the entire cell of two layers, .ε = (

u+|x=l+ − u−|x=l−
)
/l,

gives the effective Young’s modulus

.E0 = σ+

ε
= σ−

ε
= E−E+

E−(1 − s) + E+s
(14.75)

where the parameter .s = l−/l describes the “inner geometry” of cells, .l = l+ + l−.
The effective mass density of the cell is given by

.ρ0 = ρ+l+ + ρ−l−

l
= ρ−s + ρ+(1 − s) (14.76)

Due to the structural periodicity of the composite rod, all the cells must have the
same effective Young’s modus and mass density. This actually means that the rod is
homogenized, and therefore its partial differential equation takes the form

.ρ0
∂2u0(t, x)

∂t2
− E0

∂2u0(t, x)

∂x2 = 0 (14.77)

However, this equation is justified only for very long waves, since it ignores the
dispersion of waves caused by their scattering at the boundaries between different
layers. Also the heterogeneity effect on wave shapes cannot be captured by the
function .u0(t, x).
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14.4.2 Structure Attached Triangle Wave Coordinate

Following publication [194], we introduce the periodic nonsmooth coordinate

.(−∞,∞) � ξ −→ τ ∈ [−1, 1]: τ = τ

(
4ξ

L
, γ

)
(14.78)

where .τ is a triangle wave whose geometry is linked to the structural periodicity of
composite as shown in Fig. 14.6.

The period of function (14.78) with respect to the original coordinate .x is
equal to the length of one cell, l, because .4ξ/L = 4x/l. Such a space folding
coordinate transformation incorporates micro-structural specifics of the material
into the differential equations of elastodynamics on the preliminary phase of
analysis. The shape of function (14.78) is controlled by the parameter

.γ = −1 + 2s, s = l−

l
(14.79)

where the ratio s is defined in (14.76) in such a way that, when the thickness of
different layers is the same, .l− = l+, then .γ = 0, and hence function (14.78)
describes the triangle wave.

Recall that function (14.78) is non-differentiable at points .{ξ : τ = ±1} and non-
invertible on the entire period. Therefore, using .τ as a new independent variable
requires a specific complexification of the unknown displacement function u as

.u(t, x) = U+(t, η, τ )e+ + U−(t, η, τ )e− (14.80)

where the algebraic basis is

.e± = 1

2
[1 ∓ γ ± (1 − γ 2)e] (14.81)

and e is a generalized derivative of the triangle wave function (14.78)

.e = e

(
4ξ

L
, γ

)
= ∂τ

(
4ξ

L
, γ

)
/∂

(
4ξ

L

)
(14.82)

In Eq. (14.81), the parameter of asymmetry .γ normalizes the range of change
for the basis elements to the standard intervals, .0 ≤ e+ ≤ 1 and .0 ≤ e− ≤ 1, as
illustrated in Fig. 14.7.

Differentiating (14.80) with respect to the original coordinate x gives yet again
the element of the same algebraic structure

.
∂u

∂x
= D+U+e+ + D−U−e− (14.83)
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Fig. 14.7 Example of idempotent basis generated by the function .τ(ϕ, γ ) for .γ = 0.6

where .D± are linear differential operators,

.D± ≡ ∂

∂η
± 4

εL(1 ∓ γ )

∂

∂τ

and the following displacement continuity condition is imposed

.(U+ − U−)|τ=±1 = 0 (14.84)

Condition (14.84) eliminates the .δ-function singularities caused by differentia-
tion of the stepwise discontinuous functions .e± in (14.80). In terms of the original
variables, such elimination of singularity is obviously equivalent to the displacement
continuity condition.

In compliance with (14.80), the mass density .ρ and Young’s modulus E are
represented in the same algebraic form

.ρ = ρ+e+ + ρ−e− (14.85)

E = E+e+ + E−e−
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Taking into account (14.83) and (14.85) gives the following expression for stress

.σ = E
∂u

∂x
= E+D+U+e+ + E−D−U−e− ≡ σ+e+ + σ−e− (14.86)

where orthogonality of the basis elements, .e+e− = 0, was used; see Fig. 14.7.
Analogously, combining (14.80) and (14.85) brings the inertia force to the form

.ρ
∂2u

∂t2
= ρ+ ∂2U+

∂t2
e+ + ρ− ∂2U−

∂t2
e− (14.87)

Expressions (14.86) and (14.87) enable one of describing the composite rod by a
“single” partial differential equation in the standard form

.ρ
∂2u

∂t2
− ∂σ

∂x
= 0 (14.88)

Now applying the differentiation rule (14.83)–(14.84) to the stress .σ gives

.

(
ρ+ ∂2U+

∂t2
− E+D2+U+

)
e+ +

(
ρ− ∂2U−

∂t2
− E−D2−U−

)
e− = 0

or

.ρ± ∂2U±

∂t2
− E±D2±U± = 0 (14.89)

under condition

.(σ+ − σ−)|τ=±1 = (E+D+U+ − E−D−U−)|τ=±1 = 0 (14.90)

The boundary condition (14.90) occurs in a similar way to (14.84) as a result
of elimination of singularity caused by differentiation of the stress function (14.86).
From the physical standpoint, this is equivalent to the continuity of stress at bonding
interfaces. Note that, during the procedure of asymptotic integration described
below, it is convenient to deal with the continuity conditions in the form

.(U+ − U−)|τ=1 ± (U+ − U−)|τ=−1 = 0 (14.91)

and

.(E+D+U+ − E−D−U−)|τ=1 ± (E+D+U+ − E−D−U−)|τ=−1 = 0 (14.92)

Equation (14.89) under the boundary conditions (14.91) and (14.92) represents
the final result of transition to the structure-based coordinate .τ . As compared to
the boundary value problem (14.70) through (14.73), the resultant problem still
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has the same dimension. However, representation (14.80) eventually provides a
closed-form description combining both global and local specifics of wave shapes.
In addition, the boundary conditions of continuity for the displacement and stress
occur automatically as a result of elimination singularities of their derivatives.

Remark Note that, due to the “functional linearity” property, the above formulation
remains valid for nonlinear cases as well. For instance, let the stress-strain relation-
ship for every “positive” layer be described by

.σ+(t, x) = F

(
ε+,

∂ε+

∂t

)
(14.93)

where .ε+ = ∂u+/∂x and F is a nonlinear function.
Assuming that every “negative” layer is linearly elastic and conducting the

derivations gives the boundary value problem

.ρ+ ∂2U+

∂t2
− D+

[
F

(
D+U+,D+

∂U+

∂t

)]
= 0

ρ− ∂2U−

∂t2
− E−D2−U− = 0 (14.94)

and

.

[
F

(
D+U+,D+

∂U+

∂t

)
− E−D−U−

]
|τ=±1 = 0 (14.95)

(U+ − U−)|τ=±1 = 0

Note that nonlinearities may lead to inevitable technical complications unrelated
to the key elements of the suggested formulation.

14.4.3 Algorithm of Asymptotic Integration

Let us seek solution of the boundary value problem (14.89), (14.91), and (14.92) in
the form of asymptotic expansions

.U± = u0(t, η) +
4∑

i=1

εiU±
i (t, η, τ ) + O(ε5) (14.96)

where .ε is the heterogeneity parameter defined in (14.74).
Note that the adopted asymptotic order provides sufficient details of the corre-

sponding homogenized equation, whose asymptotics appear to be delayed by two
steps of iterations. The time variable preserves its original scale, and zero-order
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(generating) term .u0(t, η) is assumed to be the same for both components .U± and
hence independent on the coordinate .τ . When substituted in (14.80), this term gives

.u(t, x) = u0(t, η)(e+ + e−) + O(ε) = u0(t, η) + O(ε) (14.97)

due to the property .e+ + e− = 1, as explained by Fig. 14.7.
Further, substituting (14.96) in Eq. (14.89) and the boundary conditions, (14.91)

and (14.92) and then matching terms of the same order of .ε give a sequence of linear
boundary value problems. At every step of iterations, the mathematical structure of
differential equations remains the same and takes the form

.
∂2U±

i (t, η, τ )

∂τ 2
= f ±

i (t, η, τ ) (14.98)

where the dependence .f ±
i (t, η, τ ) on .τ is polynomial, which is known as soon as

all the previous iterations have been processed, and the dependencies on t and .η are
combined of different derivatives of .u0(t, η).

General solution of Eq. (14.98) can be represented in the integral form

.U±
i (t, η, τ ) =

τ∫
0

f ±
i (t, η, s)(τ − s)ds + A±

i (t, η)τ + B±
i (t, η) (14.99)

where .A±
i (t, η) and .B±

i (t, η) are four arbitrary functions of the slow arguments.
On the i-iteration, the boundary conditions are not uniquely solvable for all

the four unknowns, .A±
i (t, η) and .B±

i (t, η). Three of the four boundary conditions
determine .A±

i (t, η) with the following coupling

.B+
i (t, η) = B−

i (t, η) (14.100)

while the fourth boundary condition can be represented in the form

.(E+D+U+ − E−D−U−)|τ=1
τ=−1 = 0 (14.101)

where the typical symbol of double substitution is used.
Due to the property, .e+ + e− = 1, the terms .B±

i (t, η) in (14.99) contribute
some correction into still arbitrary generating term .u0(t, η) (14.96) and thus can be
ignored. Boundary condition (14.101) plays a specific role. It is intentionally kept
unsatisfied as long as the generating term .u0(t, η) is maintained arbitrary. Once
a sufficient number of iterations have been processed, the corresponding truncated
series is substituted in (14.101) that leads to the homogenized equation for .u0(t, η).
Note that no operators of averaging are imposed on the original differential equation
(14.88). Instead, the homogenized model is generated by the boundary condition
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(14.101), which is one of the two continuity conditions for the stress function
(14.90).

14.4.4 Homogenized Equation and Solution

Conducting the first four steps of the asymptotic procedure, as described in the
previous section, gives the asymptotic solution in the form

.u(t, x) = u0(t, x) + εu1(t, x)τ + ε2
[
u+
2 (t, x)e+ + u−

2 (t, x)e−
] τ 2 − 1

2

+ε3
[(

u+
3 (t, x)e+ + u−

3 (t, x)e−
) τ 3

6
+ (

A+
3 (t, x)e+ + A−

3 (t, x)e−
)
τ

]

+O(ε4) (14.102)

where .η ≡ x (.−∞ < x < ∞), .τ = τ (4x/l, γ ), and .e± = e± (4x/l, γ ), and
different functions of the arguments t and x are sequentially expressed through
derivatives of the generating solution .u0(t, x) as

.u1 = L

4

(
1 − γ 2

) (
E− − E+)

(1 − γ )E− + (1 + γ )E+
∂u0

∂x

u±
2 = ∓L(1 ∓ γ )

16E±

[
8E± ∂u1

∂x
∓ L(1 ∓ γ )

(
ρ± ∂2u0

∂t2
− E± ∂2u0

∂x2

)]

u±
3 = ∓L(1 ∓ γ )

16E±

[
8E± ∂u±

2

∂x
∓ L(1 ∓ γ )

(
ρ± ∂2u1

∂t2
− E± ∂2u1

∂x2

)]

A±
3 = −3(1 ± γ )E±u±

3 + (1 ∓ γ )E− (u±
3 + 2u∓

3

)
6
[
(1 − γ )E− + (1 + γ )E+]

The asymptotic order of solution (14.102) is high enough for practical estima-
tions of the heterogeneity effects on wave shapes. One more iteration has to be
processed though in order to see such effects in terms of the homogenized equation,
which is obtained by substituting the components .U± (14.99) into the boundary
condition (14.101)

.ρ0
∂2u0(t, x)

∂t2
= E0

∂2u0(t, x)

∂x2 + (εL)2 E2
∂4u0(t, x)

∂x4 + O(ε4) (14.103)

The effective parameters are determined by collecting terms with different
derivatives and summarized as
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Fig. 14.8 Spatial shape of the propagating wave through the composite rod obtained from third-
order asymptotic solution (14.102) (thick line) and correction to the homogenized solution with the
amplitude zoomed by factor .ε−1 (thin line); .E+ = 7·1010 N/m.2, .E− = 21·1010N/m.2, .ρ− = 7800
kg/m.3, .ρ+ = 2700 kg/m.3, .l = 0.01 m, .L = 0.1 m, (.ε = 0.1), .γ = −0.4

.ρ0 = 1

2

[
(1 + γ )ρ− + (1 − γ )ρ+]

E0 = 2E−E+

(1 − γ )E− + (1 + γ )E+ (14.104)

E2 = 1

6

(
1 − γ 2

)2
E−E+ (E−ρ− − E+ρ+)2

[
(1 − γ )E− + (1 + γ )E+]3 [(1 + γ )ρ− + (1 − γ )ρ+]2

Note that substituting (14.79) in .E0 and .ρ0 gives (14.75) and (14.76), respec-
tively. Therefore, Eq. (14.103) is reduced to Eq. (14.77) as .ε −→ 0. Otherwise, the
term of order .ε2 describes the effect of wave dispersion due to the structural het-
erogeneity of the rod. After substitution (14.79), the effective parameters (14.104)
coincide those obtained in [64] and [12] by different methods. However, the main
target of this section is “closed-form” solution (14.102) describing both local and
global wave shapes within the same expression. As a result, it is possible to visualize
cell to cell transitions over the long wave length as shown in Fig. 14.8. Some
features, such as beating effects in the nonsmooth component of solution, would
be difficult to observe by other means. Besides, Fig. 14.8 validates the asymptotic
property of expansion (14.102) since the maxima of correction terms, .u − u0, even
with magnifying factor .ε−1 = 10 are about 50% below the wave amplitude.

14.5 Acoustic Waves from Nonsmooth Periodic Boundary
Sources

This section deals with two-dimensional acoustic waves propagating from a dis-
continuous periodic source located at the boundary of half-infinite space. It is
shown that introducing the triangular wave function as a specific spatial coordinate



14.5 Acoustic Waves from Nonsmooth Periodic Boundary Sources 405

Fig. 14.9 A half-infinite
acoustic media excited by the
stepwise discontinuous
periodic pressure source at
the upper boundary

0 ( )P t

y

zx

0a� a 3a

0 ( )P t 0 ( )P t

naturally eliminates discontinuities from the boundary condition associated with the
active boundary.

For illustrating purposes, let us consider the case of two-dimensional stationary
waves propagating in the half-infinite media from a piecewise-linear periodic
boundary source as shown in Fig. 14.9.

Let us describe acoustic waves by the linear wave equation in the standard form

.
1

c2f

∂2P

∂t2
= ∂2P

∂x2 + ∂2P

∂y2 + ∂2P

∂z2
(14.105)

where P is a pressure deviation from the static equilibrium pressure; .x, y, z, and t

are spatial coordinates and time, respectively; and .cf is the speed of sound in the
media.

Further, the plane problem is considered when .P = P(t, y, z), and therefore,
.∂2P/∂x2 = 0. Such an assumption can be justified by sufficiently long piezoelectric
rods whose characteristics are constant along the x-coordinate. Suppose that the
pressure generated by the rods near the boundary is .P0 = A sinΩt , where A and .Ω

are constant amplitude and frequency, respectively.
Let the boundary condition at .z = 0 to have the form

.P(t, y, 0) =
{

P0 (t) for (4n − 1) a ≤ y ≤ (4n + 1) a

0 for (4n + 1) a ≤ y ≤ (4n + 3) a
(14.106)

n = 0,±1,±2, ...

Note that, based on what is actually known near the fluid-source interface,
the boundary condition can also be formulated for pressure derivatives. From the
mathematical standpoint, this do not affect much the solution procedure though.

Let us seek the steady-state solution, which is periodic with respect to t and y

and remains bounded as .z → ∞.
Since the boundary condition is periodic along y-coordinate with period .T = 4a,

then, according to the idea of nonsmooth argument transformation, the triangular
wave periodic coordinate is introduced as .y → τ(y/a). As a result, the boundary
condition (14.106) and yet unknown solution are represented as, respectively,

.P(t, y, z)|z=0 = 1

2
P0 (t) + 1

2
P0 (t) τ ′ (y

a

)
(14.107)
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and

.P(t, y, z) = P1(t, τ (y/a), z) + P2(t, τ (y/a), z)τ ′(y/a) (14.108)

where the components .P1 and .P2 are considered as new unknown functions.
Taking into account the expression .[τ ′(y/a)]2 = 1 gives first generalized

derivative of the original unknown function in the form

.
∂P

∂y
= 1

a

∂P2

∂τ
+ 1

a

∂P1

∂τ
τ ′ (y

a

)
+ 1

a
P2τ

′′ (y

a

)
(14.109)

Since the function .P(t, y, z) has to be continuous with respect to y in the
unbounded open region .z > 0, then the periodic singular term .τ ′′ in (14.109) must
be eliminated by imposing condition

.P2|τ=±1 = 0 (14.110)

Analogously, second derivative takes the form

.
∂2P

∂y2 = 1

a2

∂2P1

∂τ 2
+ 1

a2

∂2P2

∂τ 2
τ ′ (y

a

)
(14.111)

under the condition

.
∂P1

∂τ
|τ=±1 = 0 (14.112)

Note that both derivatives, (14.109) and (14.111), as well as the original function
(14.108) appear to have the same algebraic structure of hyperbolic numbers.
Obviously, differentiation with respect to t and z preserves such a structure as well.
As a result, substituting the second derivatives into differential equation (14.105)
and collecting separately terms related to each of the basis elements .{1, τ ′} give two
partial differential equations for the components of representation (14.108)

.
1

c2f

∂2Pi

∂t2
= 1

a2

∂2Pi

∂τ 2
+ ∂2Pi

∂z2
(14.113)

(i = 1, 2)

Substituting then (14.108) in (14.107) gives the corresponding set of boundary
conditions

.Pi (t, τ , z) |z=0 = 1

2
P0 (t) = 1

2
A sinΩt (14.114)
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Now Eqs. (14.113) and boundary conditions (14.110), (14.112), and (14.114)
constitute two independent boundary value problems for the components .P1 and .P2.
However, the result achieved is that no discontinuous functions are present anymore
in the boundary conditions.

Solving the above boundary value problems by the standard method of separation
of variables gives finally

. P(t, y, z) = 1

2
A sinΩ

(
t − z

cf

)

+A

{
m∑

k=1

(−1)k−1

(k − 1/2) π
sinΩ (t − Kkz) cos

[(
k − 1

2

)
πτ
(y

a

)]
(14.115)

+
∞∑

k=m+1

(−1)k−1

(k − 1/2) π
sinΩt exp

(−χkz
)
cos

[(
k − 1

2

)
πτ
(y

a

)]}
τ ′ (y

a

)

where

.Kk =
√(

Ω

cf

)2

−
(

k − 1

2

)2 (π

a

)2
, k = 1, ..., m

χk =
√(

k − 1

2

)2 (π

a

)2 −
(

Ω

cf

)2

, k = m + 1, ...

and m is the maximum number at which the expression under the first square root is
still positive.

A three-dimensional illustration of solution (14.115) is given by Figs. 14.10
and 14.11 for two different magnitudes of the frequency .Ω . Besides, it is seen that
shorter waves are carrying the information about the discreteness of the wave source
for a longer distance from the source.

Note that solution (14.115) could be obtained in terms of the standard trigono-
metric expansions by applying the method of separation of variables directly to
the original problem, (14.105) and (14.106). However, the derivation of solution
(14.115) implies no integration of discontinuous functions, since all the discontinu-
ities have been captured in advance by transformation (14.108).

It is also worth to note that the terms of series (14.115) are calculated on the
standard interval, .−1 ≤ τ ≤ 1, which is covered by one half of the total period,
whereas the standard Fourier expansions must be built over the entire period. This
is due to the fact that representation (14.108) automatically unfolds the half-period
domain on the infinite spatial interval.
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Fig. 14.10 Acoustic wave surface for the set of parameters : .cf = 10.0, .a = 1, .Ω = 172, .t = 3,
and .A = 2

Fig. 14.11 Acoustic wave surface for the set of parameters: .cf .= 10.0, .a = 1, .Ω = 86, .t = 3,
and .A = 2
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14.6 Spatiotemporal Periodicity

As a possible generalization of the approach, let us consider, for instance, the
boundary condition in the form

.P(t, y, z)|z=0 = f (t, y) (14.116)

where the function f is periodic with temporal period .Tt = 2π/Ω and spatial period
.Ty = 4a.

Introducing the triangular wave spatial argument, .τy = τ(y/a), gives

.f (t, y) = F1(t, τ (y/a)) + F2(t, τ (y/a))τ ′(y/a) (14.117)

where

.F1(t, τ y) = 1

2
[f (t, aτy) + f (t, 2a − aτy)]

F2(t, τ y) = 1

2
[f (t, aτy) − f (t, 2a − aτy)] (14.118)

In a similar way, introducing the triangular wave temporal argument, .τ t =
τ(2Ωt/π), into both of the components, .F1 and .F2, gives eventually expression
of the form

.f (t, y) = f0(τ t , τ y)e0 + f1(τ t , τ y)e1 + f2(τ t , τ y)e2 + f3(τ t , τ y)e3 (14.119)

where components .fi(τ t , τ y) are uniquely determined by rule (14.118) applied to
each of the two arguments, and the following basis is introduced

.e0 = 1

e1 = τ ′(2Ωt/π)

e2 = τ ′(y/a) (14.120)

e3 = e1e2

Basis (14.120) obeys the table of products

.

× e0 e1 e2 e3

e0 1 e1 e2 e3

e1 e1 1 e3 e2

e2 e2 e3 1 e1

e3 e3 e2 e1 1

(14.121)
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Now, the acoustic pressure is represented in the similar to (14.119) form

.P(t, y, z) = P0(τ t , τ y, z)e0 + P1(τ t , τ y, z)e1 (14.122)

+P2(τ t , τ y, z)e2 + P3(τ t , τ y, z)e3

Regarding the problem described in the previous section, the components of
representation (14.122) can be obtained as an exercise by introducing the argument
.τ t directly into solution (14.115). However, formulations based on representa-
tion (14.122) become technically reasonable whenever the boundary pressure is
adequately described by the functions .τ t and .τy or their different combinations,
for instance, polynomials. In such cases, polynomial approximations with respect
to the bounded arguments may appear to be more effective as compared to
Fourier expansions. Let us, for instance, .P0 (t) describes the periodic sequence of
rectangular spikes of the amplitude A,

.P0 (t) = 1

2
A

[
1 + τ ′

(
2Ω

π
t

)]
≡ 1

2
A(1 + e1) (14.123)

Then, boundary condition (14.107) takes the form

.P(t, y, z)|z=0 = 1

4
A(1 + e1)(1 + e2)

≡ 1

4
A(e0 + e1 + e2 + e3) (14.124)

where the basis elements .{e0, e1, e2, e3} are given by (14.120) and the table of
products (14.121) is taken into account.

Now, substituting representation (14.122) in (14.124) gives the boundary condi-
tions for its components at .z = 0 as follows

.Pi(τ t , τ y, 0) = 1

4
A; i = 0,...,3

Finally, the three-dimensional case can be considered by adding periodicity
of the source along the x-direction at the boundary .z = 0 and introducing the
corresponding triangular wave argument, say .τx . The corresponding rules for
algebraic manipulations would be analogous to those generated by the arguments
.τ t and .τy . However, necessary details are illustrated below on another model.

14.7 Membrane on a Two-Dimensional Periodic Foundation

Consider an infinite membrane resting on a linearly elastic foundation of the
stiffness .K(x, y) under the transverse load .q(x, y). Assuming that both the stiffness
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Fig. 14.12 Fragment of the
map of periodic elastic
foundation; .a = 1.0 and
.b = 2.0

8

8
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K and load q are measured per unit membrane tension .T , the partial differential
equation of equilibrium is represented in the form

.Δu − K(x, y)u = q(x, y) (14.125)

Δ = ∂2

∂x2 + ∂2

∂y2

where .u = u(x, y) is the membrane transverse deflection.
The foundation is assumed to be stepwise discontinuous and periodic along each

of the coordinates as described by the function

.K(x, y) = k

4

[
1 + τ ′ (x

a

)] [
1 + τ ′ (y

b

)]
(14.126)

With reference to Fig. 14.12, function (14.126) is defined on the infinite plane,
such that

.K(x, y) =
{
0 (x, y) ∈ any “dark field”
k (x, y) ∈ any “light field”

(14.127)

In the same way, Fig. 14.13 provides maps for the elements of basis

.e0 = 1

e1 = τ ′(x/a)

e2 = τ ′(y/b) (14.128)



412 14 Spatially Oscillating Structures

0e 1e

2e 3e

0 x

y

0 x

y

0 x

y

0 x

y

Fig. 14.13 The standard basis map: each of the elements is equal to unity within light domains
and zero within dark domains; square areas [.−4 < x < 4, .−4 < y < 4] are shown under the
parameters .a = 1 and .b = 2

e3 = e1e2

The above table of products (14.121) is still valid for basis (14.128). As a result,
function (14.126) takes eventually the form

.K(x, y) = k

4
(e0 + e1 + e2 + e3) (14.129)

Now let us represent the membrane deflection in the form

.u(x, y) = X(τx, τ y, x, y)e0 + Y (τx, τ y, x, y)e1 (14.130)

+Z(τx, τ y, x, y)e2 + W(τx, τ y, x, y)e3

where .τx = τ(x/a) and .τy = τ(y/b) are triangular waves whose lengths are
determined by the periods of foundation along .x− and .y− direction, respectively;
scales of the explicitly present variables, x and y, are associated with the scales
of loading .q(x, y), which is assumed to be slow as compared to the spatial rate of
foundation.



14.7 Membrane on a Two-Dimensional Periodic Foundation 413

Note that both linear and nonlinear algebraic manipulations with combinations
of type (14.130) are dictated by the table of products (14.121). For example, taking
into account (14.129) and (14.130) gives

.Ku = k

4
(X + Y + Z + W)(e0 + e1 + e2 + e3) (14.131)

High-order derivatives of (14.130) are simplified by using the table of products
(14.121) and introducing specific differential operators as follows.

First, using the chain rule gives

.
dτx

dx
= 1

a
τ ′(x/a) = 1

a
e1. (14.132)

dτy

dy
= 1

b
τ ′(y/a) = 1

b
e2 (14.133)

Then, taking into account (14.121), (14.128), (14.132), and (14.133) gives first
derivatives of (14.130) in the form

.
∂u

∂x
=
(
1

a

∂Y

∂τx

+ ∂X

∂x

)
e0 +

(
1

a

∂X

∂τx

+ ∂Y

∂x

)
e1

+
(
1

a

∂W

∂τx

+ ∂Z

∂x

)
e2 +

(
1

a

∂Z

∂τx

+ ∂W

∂x

)
e3 (14.134)

+1

a
(Y + We2)

de1(x/a)

d(x/a)

.
∂u

∂y
=
(
1

b

∂Z

∂τy

+ ∂X

∂y

)
e0 +

(
1

b

∂W

∂τy

+ ∂Y

∂y

)
e1

+
(
1

b

∂X

∂τy

+ ∂Z

∂y

)
e2 +

(
1

b

∂Y

∂τy

+ ∂W

∂y

)
e3 (14.135)

+1

b
(Z + We1)

de2(y/b)

d(y/b)

Last addends in (14.134) and (14.135) include derivatives of the stepwise dis-
continuous functions .e1(x/a) and .e2(y/b). Such derivatives are expressed through
Dirac .δ-functions and therefore must be excluded from the expressions (14.134)
and (14.135) due to continuity of the original function .u(x, y). The .δ-functions are
eliminated under the boundary conditions

.Y |τx=±1 = 0

W |τx=±1 = 0 (14.136)
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and

.Z|τy=±1 = 0

W |τy=±1 = 0 (14.137)

The rest of terms in (14.134) and (14.135) represent linear combinations of
the basis .{e0, e1, e2, e3}. In order to formalize the differentiation procedure, let us
associate expansion (14.130) with the vector-column

.u =

⎡
⎢⎢⎣

X

Y

Z

W

⎤
⎥⎥⎦ (14.138)

In a similar way, let us introduce the vector-columns .ux and .uy associated
with derivatives (14.134) and (14.135) under conditions (14.136) and (14.137),
respectively,1

.u′
x = Dxu (14.139)

u′
y = Dyu

where

.Dx =

⎡
⎢⎢⎣

∂/∂x a−1∂/∂τx 0 0
a−1∂/∂τx ∂/∂x 0 0
0 0 ∂/∂x a−1∂/∂τx

0 0 a−1∂/∂τx ∂/∂x

⎤
⎥⎥⎦ (14.140)

and

.Dy =

⎡
⎢⎢⎣

∂/∂y 0 b−1∂/∂τy 0
0 ∂/∂y 0 b−1∂/∂τy

b−1∂/∂τy 0 ∂/∂y 0
0 b−1∂/∂τy 0 ∂/∂y

⎤
⎥⎥⎦ (14.141)

These differential matrix operators automatically generate high-order derivatives
of combination (14.130) provided that necessary smoothness (boundary) conditions
hold. For instance, the components of expansion for .Δu are given by the elements
of vector-column .(D2

x + D2
y)u under conditions

1 Note that .u′
x is not .∂u/∂x.
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.

(
1

a

∂X

∂τx

+ ∂Y

∂x

)
|τx=±1 = 0

(
1

a

∂Z

∂τx

+ ∂W

∂x

)
|τx=±1 = 0 (14.142)

.

(
1

b

∂X

∂τy

+ ∂Z

∂y

)
|τy=±1 = 0

(
1

b

∂Y

∂τy

+ ∂W

∂y

)
|τy=±1 = 0 (14.143)

Consider now the particular case .a = b = ε � 1. Following the differentiation
and algebraic manipulation rules as introduced above, and substituting (14.130) in
(14.125), gives

.ΔτX + 2ε

(
∂2Y

∂τx∂x
+ ∂2Z

∂τy∂y

)
+ ε2 (ΔX − F) = ε2q(x, y)

ΔτY + 2ε

(
∂2X

∂τx∂x
+ ∂2W

∂τy∂y

)
+ ε2 (ΔY − F) = 0

ΔτZ + 2ε

(
∂2W

∂τx∂x
+ ∂2X

∂τy∂y

)
+ ε2 (ΔZ − F) = 0 (14.144)

ΔτW + 2ε

(
∂2Z

∂τx∂x
+ ∂2Y

∂τy∂y

)
+ ε2 (ΔW − F) = 0

where .Δτ = ∂2/∂τ 2x + ∂2/∂τ 2y , .Δ = ∂2/∂x2 + ∂2/∂y2, and symbol F denotes the
following group of terms related to the elastic foundation

.F ≡ 1

4
k(X + Y + Z + W) (14.145)

Boundary conditions (14.142) and (14.143) can be simplified due to (14.136) and
(14.137). As a result, the complete set of boundary conditions takes the form

.
∂X

∂τx

|τx=±1 = 0,
∂X

∂τy

|τy=±1 = 0

Y |τx=±1 = 0,
∂Y

∂τy

|τy=±1 = 0

∂Z

∂τx

|τx=±1 = 0, Z|τy=±1 = 0 (14.146)

W |τx=±1 = 0, W |τy=±1 = 0
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Note that Eq. (14.144) has constant coefficients, whereas the stepwise discon-
tinuities of foundation have been absorbed by the triangular wave arguments .τx

and .τy . The corresponding boundary conditions (14.146) generate a so-called “cell
problem” [100] within the rectangular domain .{−1 ≤ τx ≤ 1, .−1 ≤ τy ≤ 1}.
Therefore, the arguments .τx and .τy locally describe the fast varying component of
membrane shape. In contrast, the explicitly present coordinates x and y describe the
slow component in the infinite plane .{−∞ < x < ∞, .−∞ < y < ∞}. Finally,
the increase in number of Eqs. (14.144) of-course complicates solution procedures
from the technical standpoint. However, the obvious symmetry of equations helps to
ease the corresponding derivations. For instance, Eqs. (14.144) can be decoupled by
introducing new unknown functions .Ui = .Ui(τx, τ y, x, y) (.i = 1, .., 4) as follows

.U1 = X + Y + Z + W

U2 = X + Y − Z − W

U3 = X − Y + Z − W (14.147)

U4 = X − Y − Z + W

Linear transformation (14.147) however makes boundary conditions (14.146)
coupled. New boundary conditions are given by the inverse substitution in (14.146)

.X = 1

4
(U1 + U2 + U3 + U4)

Y = 1

4
(U1 + U2 − U3 − U4)

Z = 1

4
(U1 − U2 + U3 − U4) (14.148)

W = 1

4
(U1 − U2 − U3 + U4)

Note that transformation (14.147) can be effectively incorporated at the very
beginning of transformations by using the idempotent basis as described in the next
section.

14.8 The Idempotent Basis for Two-Dimensional Structures

The two-dimensional idempotent basis is introduced as follows

.i1 = e+
1 e+

2 = 1

4
(e0 + e1)(e0 + e2) = 1

4
(e0 + e1 + e2 + e3)
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i2 = e+
1 e−

2 = 1

4
(e0 + e1)(e0 − e2) = 1

4
(e0 + e1 − e2 − e3)

i3 = e−
1 e+

2 = 1

4
(e0 − e1)(e0 + e2) = 1

4
(e0 − e1 + e2 − e3) (14.149)

i4 = e−
1 e−

2 = 1

4
(e0 − e1)(e0 − e2) = 1

4
(e0 − e1 − e2 + e3)

where the standard basis .ei is defined by (14.128) and the table of products (14.121),
and the following notations for one-dimensional idempotent basis are used

.e±
k = 1

2
(e0 ± ek) (14.150)

e+
k e−

k = 0; (k = 1, 2)

The main reason for using basis (14.149) is that its table of products has the
normalized diagonal form

.ikin = δkn (14.151)

where .δkn is the Kronecker symbol.
The geometrical meaning of property (14.151) follows from the maps in

Fig. 14.14.
In this basis, representation (14.130) takes the form

.u(x, y) =
4∑

k=1

Uk(τx, τ y, x, y)ik (14.152)

As a result,

.f

(
4∑

k=1

Ukik

)
=

4∑
k=1

f (Uk)ik (14.153)

where f is practically any function, linear or nonlinear.
First-order partial derivatives of representation (14.153) are obtained as follows

.
∂u(x, y)

∂x
(14.154)

=
4∑

k=1

[
1

a

∂Uk(τx, τ y, x, y)

∂τx

e1ik+∂Uk(τx, τ y, x, y)

∂x
ik+Uk(τx, τ y, x, y)

∂ik

∂x

]

Further, taking into account (14.149) and (14.150), gives
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1i

3i 4i

2i

0 x

y

x

y
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y
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y

0

0

0

Fig. 14.14 The map of idempotent basis: each of the elements is equal to unity within light
domains and zero within dark domains; square areas [.−4 < x < 4, .−4 < y < 4] are shown
under the parameters .a = 1 and .b = 2

.e1i1 = (e+
1 − e−

1 )e+
1 e+

2 = i1

e1i2 = (e+
1 − e−

1 )e+
1 e−

2 = i2

e1i3 = (e+
1 − e−

1 )e−
1 e+

2 = −i3

e1i4 = (e+
1 − e−

1 )e−
1 e−

2 = −i4

and

.
∂i1

∂x
= ∂e+

1

∂x
e+
2 = 1

2

∂e1

∂x
e+
2

∂i2

∂x
= ∂e+

1

∂x
e−
2 = 1

2

∂e1

∂x
e−
2

∂i3

∂x
= ∂e−

1

∂x
e+
2 = −1

2

∂e1

∂x
e+
2

∂i4

∂x
= ∂e−

1

∂x
e−
2 = −1

2

∂e1

∂x
e−
2
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As a result, derivative (14.154) takes the form

.
∂u

∂x
=
(
1

a

∂U1

∂τx

+ ∂U1

∂x

)
i1 +

(
1

a

∂U2

∂τx

+ ∂U2

∂x

)
i2

+
(

−1

a

∂U3

∂τx

+ ∂U3

∂x

)
i3 +

(
−1

a

∂U4

∂τx

+ ∂U4

∂x

)
i4 (14.155)

+1

2
(U1 − U3)

∂e1

∂x
e+
2 + 1

2
(U2 − U4)

∂e1

∂x
e−
2

Analogously, one obtains

.
∂u

∂y
=
(
1

b

∂U1

∂τy

+ ∂U1

∂y

)
i1 +

(
−1

b

∂U2

∂τy

+ ∂U2

∂y

)
i2

+
(
1

b

∂U3

∂τy

+ ∂U3

∂y

)
i3 +

(
−1

b

∂U4

∂τy

+ ∂U4

∂y

)
i4 (14.156)

+1

2
(U1 − U2)

∂e2

∂y
e+
1 + 1

2
(U3 − U4)

∂e2

∂y
e−
1

Let us introduce vector, associated with expansion (14.152), and the correspond-
ing differential matrix operators as, respectively,

.u =

⎡
⎢⎢⎣

U1

U2

U3

U4

⎤
⎥⎥⎦ (14.157)

and

.Dx =

⎡
⎢⎢⎢⎣

1
a

∂
∂τx

+ ∂
∂x

0 0 0

0 1
a

∂
∂τx

+ ∂
∂x

0 0

0 0 − 1
a

∂
∂τx

+ ∂
∂x

0

0 0 0 − 1
a

∂
∂τx

+ ∂
∂x

⎤
⎥⎥⎥⎦ (14.158)

.Dy =

⎡
⎢⎢⎢⎢⎣

1
b

∂
∂τy

+ ∂
∂y

0 0 0

0 − 1
b

∂
∂τy

+ ∂
∂y

0 0

0 0 1
b

∂
∂τy

+ ∂
∂y

0

0 0 0 − 1
b

∂
∂τy

+ ∂
∂y

⎤
⎥⎥⎥⎥⎦ (14.159)
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Substituting (14.152) into the original Eq. (14.125), using the differentiation rules
for idempotent basis, and assuming that .a = b = ε, gives

.ΔτU1 + 2ε

(
∂2U1

∂τx∂x
+ ∂2U1

∂τy∂y

)
+ ε2ΔU1 = ε2[q(x, y) + kU1]

ΔτU2 + 2ε

(
∂2U2

∂τx∂x
− ∂2U2

∂τy∂y

)
+ ε2ΔU2 = ε2q(x, y)

ΔτU3 − 2ε

(
∂2U3

∂τx∂x
− ∂2U3

∂τy∂y

)
+ ε2ΔU3 = ε2q(x, y) (14.160)

ΔτU4 − 2ε

(
∂2U4

∂τx∂x
+ ∂2U4

∂τy∂y

)
+ ε2ΔU4 = ε2q(x, y)

where the notations .Δτ and .Δ have the same meaning as those in Eqs. (14.144).
Equations (14.160) are decoupled, at cost of coupling the boundary conditions

though

.
∂(U1 − U3)

∂τx

|τx=±1 = 0,
∂(U1 − U2)

∂τy

|τy=±1 = 0

(U1 − U3)|τx=±1 = 0, (U1 − U2)|τy=±1 = 0

∂(U2 − U4)

∂τx

|τx=±1 = 0,
∂(U3 − U4)

∂τy

|τy=±1 = 0 (14.161)

(U2 − U4)|τx=±1 = 0, (U3 − U4)|τy=±1 = 0

Note that both boundary value problems (14.144) through (14.146) and (14.160)
through (14.161) implement the transition from two to four spatial arguments:
.{x, y} → {τx, τ y, x, y}. The arguments .τx and .τy naturally relate to cell problems
and incorporate the corresponding elastic components within the class of closed-
form solutions.

Finally, let us introduce two-dimensional idempotent basis generated by the
triangular asymmetric wave; see Fig. 14.15. First, following definitions of Chap. 4,
let us introduce one-dimensional idempotents associated with x and y coordinates

.e+
i = 1

2

[
1 − γ i +

(
1 − γ 2

i

)
ei

]

e−
i = 1

2

[
1 + γ i −

(
1 − γ 2

i

)
ei

]
(14.162)

(i = 1, 2)

where .e1 = ∂τ(x/a, γ 1)/∂(x/a) and .e2 = ∂τ(y/b, γ 2)/∂(y/b).
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Fig. 14.15 The map of idempotent basis generated by the asymmetric triangular waves with
parameters: .a = b = 1.0, .γ 1 = 0.2, and .γ 2 = 0.6; each of the elements is equal to unity
within light domains and zero within dark domains; square areas [.−4 < x < 4, .−4 < y < 4] are
shown

Now the two-dimensional idempotent basis is given by .i1 = e+
1 e+

2 , .i2 = e+
1 e−

2 ,
.i3 = e−

1 e+
2 , and .i4 = e−

1 e−
2 , although further expansions shown in (14.149) are not

valid any more.
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