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Abstract. Effectively classifying remote sensing scenes is still a chal-
lenge due to the increasing spatial resolution of remote imaging and
large variances between remote sensing images. Existing research has
greatly improved the performance of remote sensing scene classification
(RSSC) in recent years. However, these methods are not applicable to
cross-domain few-shot problems where target domain is with very lim-
ited training samples available and has a different data distribution from
source domain. To improve the model’s applicability, we propose the
feature-wise transformation module (FTM) in this paper. FTM trans-
fers the feature distribution learned on source domain to that of tar-
get domain by a very simple affine operation with negligible additional
parameters. Moreover, FTM can be effectively learned on target domain
in the case of few training data available and is agnostic to specific net-
work structures. Experiments on RSSC and land-cover mapping tasks
verified its capability to handle cross-domain few-shot problems. By com-
parison with finetuning methods, FTM achieves better performance and
possesses better transferability and fine-grained discriminability.

Keywords: Remote sensing scene classification · Few-shot learning ·
Cross-domain

1 Introduction

Remote sensing scene classification (RSSC) has attracted much attention in the
field of optical remote sensing image processing and analysis in recent years,
both due to the availability of high spatial-resolution images and its key role
in wide applications, e.g., disaster detection [12], environmental monitoring [2],
urban planning [37]. However, effectively classifying scenes from a newly obtained
remote sensing image (RSI) is still nontrivial owing to the rich content brought
by high-resolution, imaging conditions, seasonal changes and so on. Together
with the difficulty of collecting sufficient labeled training samples, these factors
make the robust-performance of RSSC a very challenging task.

To improve the performance of RSSC, deep learning methods [10,15,35] have
been widely used in RSSC. The deep learning based RSSC methods made use of
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Fig. 1. Illustration of our motivation. Source domain DS has sufficient training samples
for each class as shown here airplane, forest, lake, and river. Target domain DT may
have different classes from DS and provides only few training samples for each class
(here 3 samples for paddy field, river, and lake, respectively). As shown here, DS and
DT have a significant domain gap. The proposed FTM tries to transfer the feature
distribution learned on DS to matching that of DT by an affine transformation with a
negligible number of additional parameters, thus improving the applicability of models
learned on DS to cross-domain few-shot tasks.

the hierarchical network structure and feature abstraction ability of deep models
to extract robust features for classification [3,17,26] and have achieved a great
success, although they usually set aside the distribution differences between the
training and testing data. While in a more realistic setting, the distribution
difference was explicitly taken into consideration (under the framework of domain
adaption) to build more applicable RSSC models like [23,28,46]. These methods
usually require the same class distribution in the source and target domains. In
addition, existing methods are almost all built on the prerequisite that sufficient
training samples are available on target domain. This is, however, a very strict
constraint on many real RSSC applications, especially in those target samples
from a different distribution.

To address the difficulty of cross-domain RSSC tasks with few training sam-
ples, we propose a feature-wise transformation module (FTM) in deep CNNs
with a two-stage training strategy. FTM borrows the idea from feature-wise
linear modulation (FiLM) [29] but works in the unconditional setting and can
be inserted in every convolutional layer. It attacks the cross-domain problem by
transforming the distribution of features learned on source domain into matching
that of target domain (see Fig 1). To achieve this, a pair of scale and shift vectors
is applied to convolutional layers element-wisely. This pair of vectors, however,
is not learned on source domain with the backbone network parameters, but
instead trained on target domain without touching those already learned back-
bone parameters on source domain, which is different from [27,29,38] where
the FiLM parameters are learned with the backbone network in an end-to-end
manner. This two-stage training strategy can also alleviate the phenomenon of
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overfitting on target tasks with few labeled training samples due to the parsimo-
nious parameters involved in the second training stage. Generally, the two-stage
training strategy and the parsimonious usage of parameters in FTM make it well
adapted to scenarios with limited labeled training samples and class distribu-
tion mismatching between domains. We compare FTM with finetuning methods
in this study and show its better prediction performance, transferability, and
fine-grained discriminability. We notice that there is no existing work to deal
with this problem in RSSC and we approach this problem in this study with the
following contributions:

– We propose FTM for cross-domain few-shot RSSC. FTM transforms the fea-
ture distribution of source data into that of matching the target data via an
affine transformation.

– We propose a two-stage training strategy in which only FTM parameters are
involved in the second training stage on target tasks, thus alleviating the
overfitting problem.

– We validate the effectiveness of FTM on two cross-domain few-shot RSSC
tasks and demonstrate its applicability to land cover mapping tasks.

2 Related Work

Remote sensing scene classification (RSSC) has gained great progress in
recent years since the publication of several benchmark datasets such as AID [43]
and NWPU [5], which promote the application of deep models in RSSC. In early
studies, researches focus on directly transferring deep features [26] or explor-
ing deep network structures to utilize multi-layer [11,17,24] or multi-scale fea-
tures [21,22,42] for classification, thus fully exploiting granularity information in
RSIs [41]. Another line of research highlights the importance of local structures
and geometries and proposes to combine them with global features for more
discriminative representation [18,19,45]. Recently, the attention mechanism is
further incorporated in selectively attending informative areas [40] or assigning
objects with different weights for feature fusion [3]. In addition, nonlocal atten-
tions are also studied to integrate long-range spatial relationships for RSSC [9].
Although the mainstream deep learning methods are absorbed quickly by the
RSSC field and much progress has been achieved, these methods, however, are
not applicable to the setting in this paper where the training and testing data
have different distributions.

Few-shot learning (FSL) has attracted much attention in recent years
where the target tasks have very few training samples available. To tackle this
problem, a large-scale labeled dataset is usually supposed to be available for
prior knowledge learning and the learned prior knowledge can be adapted to
guide the model learning on target tasks, thus alleviating the overfitting prob-
lem in few-shot scenarios. The methodologies can be roughly grouped into three
categories. The metric-learning based methods [33,34,39] target at learning an
embedding space where an off-the-shelf or learned metric can be performed well.
In contrast, the meta-learning based methods [8,16,31] aim to make the learned
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model fast adapt to unseen novel tasks at the test stage. Recently, the finetuning
based methods [4] report exciting results by exploiting multiple subspaces [20] or
assembling multiple CNN features [6]. Meanwhile, FSL is also developed in set-
tings like incremental learning [32,36], cross-domain learning [30,38], etc. How-
ever, very few works investigate FSL in RSSC while it is widely admitted as a
practical problem in RSSC.

Domain adaption (DA) has gone through thorough studies and has been
introduced to RSSC for a long time. The research on DA in RSSC mainly borrows
ideas of existing DA approaches such as finetuning models on target domain [37],
minimizing the maximum mean discrepancy between the source and target data
distributions [28]. Specifically, [46] argues that the conditional distribution align-
ment is also important to cross-scene classification, thus they propose to combine
the marginal and conditional distributions for more comprehensive alignment. To
achieve fine-grained alignment, [47] tries to capture complex structures behind
the data distributions for improved discriminability and reduce the local discrep-
ancy of different domains to align the relevant category distributions. In addition,
the class distribution misaligned problem is investigated in [23] by multisource
compensation learning. Nevertheless, these methods assume sufficient training
samples available on target domain. [44] studies the cross-domain task with lim-
ited target samples in RSSC, their training samples on the target domain is,
however, orders of magnitude larger than ours.

3 Approaches

In this section, we propose FTM in deep CNNs that adapts the feature distri-
bution learned on source domain to that of target domain. Assuming a well-
labeled large-scale dataset and a newly acquired RS image with a small number
of labeled samples annotated from it, we define two domains, the source domain
DS and the target domain DT , respectively. The data of the two domains may
from different classes, CS �= CT and CS ∩ CT �= ∅. Our approach first learns a
backbone network on DS , and then adapts the backbone feature maps by FTM
on DT without touching the backbone network parameters. In the following, we
start by introducing FTM, followed by describing its training strategy, and then
present the FTM network (Fig. 2).

3.1 Feature-Wise Transformation Module

Modern deep CNNs usually include BN [13] layers that reduce internal covariate
shift and preserve feature distributions via a learned affine transformation for
training efficiency. This operation inspires us to model different feature distri-
butions by adjusting the feature map activations of a learned CNN, expecting it
can perform well on a different domain with few training examples.

Supposing a backbone network has been trained on DS . Feature-wise trans-
formation module (FTM) transforms the feature map by a pair of scale and shift
vectors (γ,β). Concretely, assuming the feature map of an input X ∈ R

3×H×W
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Fig. 2. Overview of the proposed FTM network. The detail of the FTM-ed residual
block is depicted in Fig. 3(b). Our approach first trains a backbone network (shaded
by gray blocks) on the source domain DS and then uses it to initialize a corresponding
FTM network (shaded by blue blocks). The aligned parts between the two networks
are then fixed and only the remained parts of the FTM network are learned on the
target domain DT by LDT

CE . The light green blocks are shared. Best viewed in color.
(Color figure online)

from the l-th layer is f l ∈ R
C×H′×W ′

, FTM transforms the distribution of f l

by modulating its activations:

f̃ l
c = γl

c � f l
c + βl

c, (1)

where the subscript c represents feature channel indices and � means element-
wise multiplication, γl,βl ∈ R

C are learnable parameters. FTM approaches the
change of distribution of f l by independently changing the activations of each
feature channel. Compared to FiLM [29], where (γ,β) are generated by a con-
ditioning network, FTM works in a unconditional setting and simply initializes
γ and β to 1 and 0, respectively. Moreover, FTM is learned on target domain
instead of source domain. By noting that the BN transform recovers feature
activations through an affine operation, FTM further adapts it to a larger range
and recovers the BN transform at γ = 1 and β = 0.

3.2 Optimization

To alleviate the overfitting phenomenon of deep CNNs with FTM on target
domain with few labeled training samples, we study a two-stage learning strat-
egy for optimization. Recalling that our target is transforming the feature dis-
tribution learned on source domain into that of target domain, we prefer to keep
the backbone parameters unchanged and only train FTM on target data. To this
end, we first optimize the backbone network by regular training on DS , then we
fix the backbone network parameters and optimize FTM parameters {γ,β} on
DT through SGD.

Intuitively, we put FTM between the BN layers and nonlinear activations.
It seems weird at first that applies two affine transformations – BN and FTM
successively, but the separated mechanism can bring advantages to optimization
and introduce different functions (see experiments). This operation, however, will
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cause the shift of mid-level feature activations if we keep the backbone network
parameters untouched, thus complicating optimization. To this end, we free the
statistics of BN layers by making them adapt to input changes and leave the
shift in activations to be compensated by {γ,β}.

3.3 The FTM Network

We instantiate our FTM network on the backbone of ResNet-34 [10]. It is worth
noting that FTM is agnostic to specific CNN structures and we choose ResNet-34
just for simplicity. ResNet-34 includes one convolutional stem and 4 stages with
each several residual blocks. Each residual block has two convolutional layers to
form a shortcut connection. We construct the corresponding FTM network by
inserting FTM after the BN layer of the second convolutional layer of the last
residual block in one or several stages. For simplicity, we insert FTM after the
BN layer of the last stage in ResNet-34 to illustrate its strength in this work. The
transformed feature maps are then rectified by ReLU [25] and globally averaged
pooled to be fed into a softmax function for classification. Figure 3 shows the
FTM-ed residual bock in conv5.

Fig. 3. (a) The shaded part is FTM, which operates on feature maps channel-wise.
⊗ and ⊕ represent element-wise multiplication and addition. (b) A FTM-ed residual
block.

4 Experiments

In this section, we evaluate the transferability of the FTM network on two cross-
domain few-shot applications: an RSSC task and a land-cover mapping task.
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Table 1. Learning hyper-parameters of FTM and FT on DT .

batch epochs lr step decay opt

FT 64 50 0.001 15 0.1 Adam
FT-full 64 50 0.0001 15 0.1 Adam
FTM/FT-bn 64 50 0.003 15 0.1 Adam

4.1 Datasets

Two datasets – NWPU-RESISC45 [5] (hereinafter called NWPU) and AID [43]
are separately employed as source domain DS in our experiments. Both of them
are collected from Google Earth RGB images but with different pixel resolution
ranges. NWPU images are with pixel resolutions ranging from 30m to 0.5m. It
has 700 sizes of 256 × 256 images for each class with a total of 45 scene classes
such as residential areas, river, and commercial areas. AID has 220 to 420 images
with each of size 600×600 and pixel resolutions ranging from 8m to 0.5m in each
class with a total of 30 classes, e.g., farmland and port. The two datasets have
19 classes in common that share the same semantic label. In addition, NWPU
captures more fine-grained labels than AID. For example, the farmland class in
AID is further divided into circular farmland, rectangular farmland, and terrace
in NWPU.

The target domain data are from the R, G, and B channels of GID [37] multi-
spectral images, which are collected from Gaofen-2 satellite with a spatial resolu-
tion of 4m. GID provides two subsets – a large-scale classification set (Set-C) and
a fine land-cover classification set (Set-F). Set-C includes 150 and 30 training and
validation images of size 6800 × 7200 with each pixel annotated into 5 coarse
categories. Set-F has a subset of 6, 000 image patches with train/val/testing
1500/3750/750 respectively. The image patches are of size 224× 224 and belong
to 15 fine-grained categories, which are subcategories of the 5 coarse categories
of Set-C. Set-F is used as DT and Set-C is only used for land-cover mapping
evaluation. We report the average performance over 5 trials on the RSSC tasks.

4.2 Implementation

We experiment with a FTM network based on the ResNet-34 backbone. The
ResNet-34 pretrained on ImageNet [7] is first employed to learn on DS , where
random crops of size 224×224 are used for training and 60 and 100 images from
each class are kept for validation on AID and NWPU, respectively. We train
ResNet-34 by Adam [14] on DS for 30 epochs with batch size 128, lr 10−4, and
decay lr by 0.1 every 10 epochs. After this stage, we select the best-performed
one to initialize the FTM network, keep the aligned parameters fixed, and learn
the remained parameters on DT for the few-shot RSSC tasks. The learning
hyper-parameters are presented in Table 1.

For the land-cover mapping task, we classify every pixel into one of the 5
coarse classes by combining the output probabilities of subcategories that belong
to the same coarse category.
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Fig. 4. Confusion matrices of FT-bn (left) and FTM (right) networks on the testing
set of Set-F. Both networks are trained with 10 shots on Set-F.

Baseline: we compare FTM network with the finetuning (FT) method, which
only finetunes the classification head of ResNet-34 trained on DS on DT . In
addition, FT-bn additionally finetunes the last BN layer on FT. See Table 1 for
learning hyper-parameters.

4.3 Experimental Results

RSSC Results. Table 2 and 3 compare the performance of FT, FT-bn and FTM
under various available shots on DT . The results are obtained from the testing
set of Set-F, and show that FTM improves the performance over FT (and FT-bn)
by > 3.1% and > 4.0% on average respectively, demonstrating the advantages
of FTM. Interestingly, the performance of FT-bn is only comparable to FT,
lagging behind FTM apparently. This illustrates the different functions of BN
and FTM in a residual block and signifies that additional affine transformation
after BN can achieve additional effects that are beyond the effects brought in by
BN. In addition, Table 2 and 3 illustrate that the performance of FT, FT-bn and
FTM can be steadily improved with more training shots and the improvement
of FTM over FT and FT-bn is relatively stable independent of the number of
available training shots. These observations validate that FTM possesses the
ability to transform the feature distribution learned on DS into that of target
domain even with very limited training shots available on the target domain,
thus alleviating the tendency to overfitting on target domain.

To understand which aspects of advantages brought by FTM, we make an
analysis of the confusion matrices of FTM and FT-bn networks trained with
10 shots on Set-F and with DS NWPU in Fig. 4. It can be seen that FTM
has a more concentrated diagonal distribution than FT-bn, indicating its better
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Table 2. Accuracy on Set-F under different shots with DS NWPU (
√

σ < 0.03).

3 5 10 15 20 30 50

FT 0.50 0.57 0.65 0.71 0.73 0.73 0.81
FT-bn 0.50 0.55 0.65 0.71 0.72 0.73 0.81
FTM 0.53 0.59 0.69 0.73 0.77 0.77 0.84

Table 3. Accuracy on Set-F under different shots with DS AID (
√

σ < 0.03).

3 5 10 15 20 30 50

FT 0.51 0.53 0.63 0.67 0.71 0.71 0.79
FT-bn 0.50 0.57 0.64 0.67 0.71 0.71 0.79
FTM 0.55 0.59 0.67 0.73 0.75 0.75 0.83

classification performance, especially in those subcategories belonging to the
same coarse category. The same phenomenon is also observed on Set-F with DS

AID. Specifically, we find that FTM can well separate urban residential from
rural residential and distinguish between river, lake, and pond effectively, which
are respectively from the same coarse categories – built-up and water, while these
are confused by the FT-bn. This signifies that FTM has the ability to transform
the original feature space into a more delicate and discriminative space where
the subtle differences between fine-grained categories can be better ascertained,
even in the case of very limited training shots available.

Land Cover Mapping Results. To verify that FTM can improve models’
applicability to across-domain tasks, we perform the land-cover mapping task
on two randomly selected GID images from the Set-C validation set. The two
GID images are taken from different locations and seasons showing a big domain
gap to the images in DS . For simplicity, we do not annotate additional training
samples from the two GID images as the target domain data but directly use the
Set-F training samples as target domain data since they are obtained from the
same satellite. In addition, we only compare FTM to FT in this task because of
the better performance of FT than FT-bn in RSSC.

To achieve pixel-level mapping, we on the one hand segment the full GID
image into 224 × 224 patches and classify them by using the FTM (or FT)
networks, on the other hand, we segment the full GID image into 100 superpixels
by using SLIC [1] and align them with the 224× 224 patches. Finally, we assign
labels to superpixels by assembling the labels of 224 × 224 patches within the
corresponding superpixels and labeling them by winner-take-all.

Table 4 shows the average F1 scores of the FT and FTM networks evaluated
on the 224× 224 patches of the two GID images. By comparison, FTM shows a
clear advantage over FT, achieving higher performance in all categories. Noting
that there is no meadow class because the image has no pixels belonging to it.
Further, it is worth special attention that the improvement on farmland is very
significant raising from 55.3% to 86.3%. These improvements further validate
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Table 4. F1 scores (%) of FT and FTM networks on land-cover mapping tasks with 3
training samples each class.

FT3 FTM3

Farmland 55.3 86.3
Built-up 80.6 90.0
Forest 35.2 53.0
Water 84.8 90.5
Average 64.0 80.0

the wide applicability of FTM to cross-domain few-shot tasks considering that
we even do not annotate training samples from the target image.

Fig. 5. The land-cover mapping results. (a, e) are RGB images from GID validation
set. (b, f) are ground-truth annotations. (c, g) and (d, h) are mapping results from
FTM and FT, respectively. The numbers at the bottom of (c, d, g, h) are class average
F1 scores evaluated on 224 × 224 image patches.

We further visualize the mapping results in Fig. 5. From it we find that large
variances exist between GID images. This poses great challenges to models appli-
cability where a large number of annotated training samples are usually needed
to be recollected to retrain the model. However, FTM can alleviate the anno-
tation requirements. The third and fourth columns of Fig. 5 show prediction
results. By comparison, we conclude that FTM can effectively predict the main
areas in the image and keep the smoothness between neighboring superpixels.
In contrast, FT fails to achieve these effects and results in fragmented superpix-
els. For example, large areas of farmland are mismapped into built-up by FT
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while correctly mapped by FTM. This is because seasonal changes cause large
differences between the source and target domains in the farmland class, thus
when the labeling information of the target data is limited, it is incapable of FT
to effectively represent contextual properties of this scene class. Although the
visualization effects are far behind satisfaction, we, however, should note that
our purpose is to validate the adaptability of FTM across domains while not the
mapping accuracy, which can be achieved via much smaller image patches and
more superpixels.

5 Conclusion

In this paper, we studied a feature-wise transformation module (FTM) that
adapts feature distributions learned on source domain to that of target domain
and verified that it has better transferability and fine-grained discriminability
relative to fine-tuning methods, especially in cases of limited training shots avail-
able. Although it is simple, FTM shows great applicability to the RS field where
large domain gaps exist and available training samples are extremely limited.

Problems remain. We notice that FTM still cannot well separate samples
from visually similar classes, thus limiting its performance to a certain degree.
This can be observed from the confusion matrices. The reason may be due in
part to the affine transformation of FTM, which cannot nonlinearly scale features
thus limiting its ability to explore more discriminative space. In addition, the
performance of FTM still lacks robustness, although it performs better than FT
and FT-bn on average. This is reflected in the land cover mapping tasks on
Set-C, where the performance of FTM on different trials with different training
samples varies. This phenomenon also indicates the weakness of FTM to reshape
the feature space. We will explore these in our future work.
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