
Making IP = PSPACE Practical: Efficient
Interactive Protocols for BDD Algorithms

Eszter Couillard1 , Philipp Czerner1(B) , Javier Esparza1 ,
and Rupak Majumdar2

1 Technical University of Munich, Munich, Germany
{coillar,czerner,esparza}@in.tum.de

2 Max Planck Institute for Software Systems (MPI-SWS),
Kaiserslautern, Germany

rupak@mpi-sws.org

Abstract. We show that interactive protocols between a prover and a
verifier, a well-known tool of complexity theory, can be used in practice
to certify the correctness of automated reasoning tools.

Theoretically, interactive protocols exist for all PSPACE problems.
The verifier of a protocol checks the prover’s answer to a problem instance
in probabilistic polynomial time, with polynomially many bits of commu-
nication, and with exponentially small probability of error. (The prover
may need exponential time.) Existing interactive protocols are not used
in practice because their provers use naive algorithms, inefficient even for
small instances, that are incompatible with practical implementations of
automated reasoning.

We bridge the gap between theory and practice by means of an inter-
active protocol whose prover uses BDDs. We consider the problem of
counting the number of assignments to a QBF instance (#CP), which
has a natural BDD-based algorithm. We give an interactive protocol for
#CP whose prover is implemented on top of an extended BDD library.
The prover has only a linear overhead in computation time over the nat-
ural algorithm.

We have implemented our protocol in blic, a certifying tool for #CP.
Experiments on standard QBF benchmarks show that blic is compet-
itive with state-of-the-art QBF-solvers. The run time of the verifier is
negligible. While loss of absolute certainty can be concerning, the error
probability in our experiments is at most 10−10 and reduces to 10−10k

by repeating the verification k times.

This work was supported by an ERC Advanced Grant (787367: PaVeS), by the
Deutsche Forschungsgemeinschaft project 389792660 TRR 248—CPEC, and by
the Research Training Network of the Deutsche Forschungsgemeinschaft (DFG)
(378803395: ConVeY).
c© The Author(s) 2023
C. Enea and A. Lal (Eds.): CAV 2023, LNCS 13966, pp. 437–458, 2023.
https://doi.org/10.1007/978-3-031-37709-9_21

https://doi.org/10.5281/zenodo.7877702
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-37709-9_21&domain=pdf
http://orcid.org/0009-0005-3609-1738
http://orcid.org/0000-0002-1786-9592
http://orcid.org/0000-0001-9862-4919
http://orcid.org/0000-0003-2136-0542
https://doi.org/10.1007/978-3-031-37709-9_21

438 E. Couillard et al.

1 Introduction

Automated reasoning tools often underlie our assertions about the correctness
of critical hardware and software components. In recent years, the scope and
scalability of these techniques have grown significantly.

Automated reasoning tools are not immune to bugs. If we are to trust their
verdict, it is important that they provide evidence of their correct behaviour. A
substantial amount of research has gone into proof-producing automated reason-
ing tools [4,14,16,22,23]. These works define a notion of “correctness certificate”
suitable for the reasoning problem at hand, and adapt the reasoning engine to
produce independently checkable certificates. For example, SAT solvers produce
either a satisfying assignment or a proof of unsatisfiability in some proof system,
e.g. resolution (see [16] for a survey). Extending such certificates beyond boolean
SAT is an active area of current research [3,4,18,24,29].

In the worst case, the size of certificates grows exponentially in the size of
the input, even for boolean unsatisfiability (unless NP = coNP). If users have
limited computational or communication resources, transferring and checking
large certificates becomes a burden. Large certificates are not just a theoretical
curiosity. In practice, resolution proofs for complex SAT problems may run to
petabytes [15]. Ideally, we would prefer “small” certificates (polynomial in the
size of the input) which can be checked independently in polynomial time.

The IP = PSPACE theorem proves that certification with polynomial ver-
ification time is possible for any problem in PSPACE, provided one trades off
absolute certainty for certainty with high probability [27]. The complexity class
IP consists of those languages for which there is a polynomial-round, complete
and sound interactive protocol [1,2,13,20]—a sequence of interactions between a
(computationally unbounded) prover and a (computationally bounded) verifier
after which the verifier decides whether the prover correctly performed a compu-
tation. The protocol is complete if, whenever an input belongs to the language,
there is an honest prover who can convince a polynomial-time randomised ver-
ifier in a polynomial number of rounds. The protocol is sound if, whenever an
input does not belong to the language, the Verifier will reject the input with
high probability—no matter what certificates are provided to the Verifier. That
is, a “Prover” cannot fool the certification process.

Since every language in PSPACE has an interactive protocol, there are interac-
tive protocols for UNSAT, QBF, counting QBF, safety verification of concurrent
state machines, etc. Observe that the prover of a protocol may perform expo-
nential time computations (which is unavoidable unless P = PSPACE), but the
verifier only requires polynomial time in the original input.

If interactive protocols provide a foundation for small and efficiently verifiable
certificates (at least for problems in PSPACE), why are they not in widespread
practice? We believe the reason to be the following: for asymptotic complexity
purposes, it suffices to use honest provers with best-case exponential complexity
that naively enumerate all possibilities. Such provers are incompatible with auto-
mated reasoning tools, which use more sophisticated data structures and heuris-
tics to scale to real-world examples. So we need to make practical algorithms

Efficient Interactive Protocols for BDD Algorithms 439

for automated reasoning efficiently certifying. We call an algorithm efficiently
certifying if, in addition to computing the output, it can execute the steps of an
honest prover in an interactive protocol with only polynomial overhead over its
running time.

In this paper, we show that algorithms using reduced ordered binary decision
diagrams (henceforth called BDDs) [9] can be made efficiently certifying. We
consider #CP, the problem of computing the number of satisfying assignments
of a circuit with partial evaluation (CP). Besides boolean nodes, a CP contains
partial evaluation nodes π[x:=false] (resp., π[x:=true]) that take a boolean predicate
as input, say ϕ, and output the result of setting x to false (resp., true) in ϕ. #CP
generalises SAT, QBF, and counting SAT (#SAT), and has a natural algorithm
using BDDs: Compute BDDs for each node of the circuit in topological order,
and count the accepting paths of the final BDD.

The theoretical part of the paper proceeds in two steps. First, we present
CPCertify, a complete and sound interactive protocol for #CP. CPCertify
is similar to the SumCheck protocol [20]. It involves encoding boolean formulas
as polynomials over a finite field. The prover is responsible for producing certain
polynomials from the original circuit and evaluating them at points of the field
chosen by the verifier. These polynomials are either multilinear (all exponents
are at most 1) or quadratic (at most 2).

Second, we show that an honest prover in CPCertify can be implemented
on top of a suitably extended BDD library. The run times of the certifying BDD
algorithms are only a constant overhead over the computation time without
certification—they depend linearly on the total number of nodes of the interme-
diate BDDs computed by the prover to solve the #CP instance. We use two key
insights. The first is an encoding of multilinear polynomials as BDDs; we show
that the intermediate BDDs represent all the multilinear polynomials a prover
needs during the run of CPCertify. The second shows that the quadratic poly-
nomials correspond to intermediate steps during the computation of the interme-
diate BDDs. We extend BDDs with additional “book-keeping” nodes that allow
the prover to also compute the quadratic polynomials while solving the problem.
So computing the polynomials required by CPCertify has zero additional cost;
the only overhead is the cost of evaluating the polynomials at the field points
chosen by the verifier.

We have implemented a certifying #CP solver based on our extended BDD
library. Our experiments show that the solver is competitive with state-of-the-art
non-certifying QBF solvers, and can outperform certifying QBF solvers based
on BDDs. The number of bytes exchanged between the prover and the veri-
fier are an order of magnitude smaller, and Verifier’s run time several orders
of magnitude smaller, than current encodings of QBF proofs, while bounding
the error probability to below 10−10. Thus, our results open the way for practi-
cally efficient, probabilistic certification of automated reasoning problems using
interactive protocols.

Additional Related Work. Proof systems for SAT and QBF remain an active
area of research—both in theoretical proof complexity and in practical tool devel-

440 E. Couillard et al.

opment. Jussila, Sinz, and Biere [17,28] showed how to extract extended reso-
lution proofs from BDD operations. This is the basis for proof-producing SAT
and QBF solvers based on BDDs [6–8]. As in our work, the proof uses inter-
mediate nodes produced in the construction of the BDD operations. We focus
on interactive certification instead of extended resolution proofs, which can be
exponentially larger than the input formula.

Recently, Luo et al. [21] consider the problem of providing zero-knowledge
proofs of unsatisfiability, a motivation similar but not equal to ours. Their tech-
niques require the verifier to work in time polynomial in the proof, which can be
exponentially bigger than the input formula. In contrast, the verifier of CPCer-
tify runs in polynomial time in the input. Since any language in PSPACE has a
zero knowledge proof [5], our protocol can in principle be made zero knowledge.
Whether that system scales in practice is left for future work.

Full Version. Detailed proofs can be found in the full version of the paper [11].

2 Preliminaries

The Class IP. An interactive protocol between a Prover and a Verifier con-
sists of a sequence of interactions in which a Verifier asks questions to a Prover,
receives responses to the questions, and must ultimately decide if a common
input x belongs to a language. The computational power of the Prover is
unbounded but the Verifier is a randomised, polynomial-time algorithm.

Formally, let P, V denote (deterministic) Turing machines.
We say that (r;m1, ...,m2k) is a k-round interaction, with r,m1, ...,m2k ∈

{0, 1}∗, if mi+1 = V (r,m1, ...,mi) for even i and mi+1 = P (m1, ...,mi) for odd
i. We think of r as an additional sequence of bits given to Verifier V that is chosen
randomly. The output out(P, V)(x, r, k) is defined as m2k, where (r;m1, ...,m2k)
is the unique k-round interaction with m1 = x.

A language L belongs to IP if there are V, PH and polynomials p1, p2, p3, s.t.
V (r, x,m2, ...,mi) runs in time p1(|x|) for all r, x,m2, ...,mi, and, for each x and
an r ∈ {0, 1}p2(|x|) chosen uniformly at random:

1. (Completeness) x ∈ L implies out(PH , V)(x, r, p3(|x|)) = 1 with probability
1, and

2. (Soundness) x /∈ L implies that for all P we have out(P, V)(x, r, p3(|x|)) = 1
with probability at most 2−|x|.

Intuitively, in an interactive protocol, a computationally unbounded Prover
interacts with a randomised polynomial-time Verifier for k rounds. In each round,
Verifier sends probabilistic “challenges” to Prover, based on the input and the
answers to prior challenges, and receives answers from Prover. At the end of k
rounds, Verifier decides to accept or reject the input. The completeness property
ensures that if the input belongs to the language L, then there is an “honest”
Prover PH who can always convince Verifier that indeed x ∈ L. If the input does
not belong to the language, then the soundness property ensures that Verifier

Efficient Interactive Protocols for BDD Algorithms 441

rejects the input with high probability no matter how a (dishonest) Prover tries
to convince them.

It is known that IP = PSPACE [20,27], that is, every language in PSPACE
has a polynomial-round interactive protocol. The proof exhibits an interactive
protocol for the language QBF of true quantified boolean formulae; in particular,
the honest Prover is a polynomial space, exponential time algorithm that uses a
truth table representation of the formula to implement the protocol.

Polynomials. Interactive protocols make extensive use of polynomials over some
prime finite field F.

Let X be a finite set of variables. We use x, y, z, . . . for variables and p, q, . . .
for polynomials. When we write a polynomial explicitly, we write it in brackets,
e.g. [3xy − z2]. We write 1 and 0 for the polynomials [1] and [0], respectively.
We use the following operations on polynomials:

– Sum, difference, and product. Denoted p+ q, p− q, p · q, and defined as usual.
For example, [3xy−z2]+ [z2 +yz] = [3xy+yz] and [x+y] · [x−y] = [x2 −y2].

– Partial evaluation. Denoted π[x:=a] p, it returns the result of setting variable
x to the field element a in the polynomial p, e.g. π[x:=5][3xy−z2] = [15y−z2].

– Degree reduction. Denoted δx p. It reduces the degree of x in all monomials
of the polynomial to 1. For example, δx[x3y + 3x2 + 7z2] = [xy + 3x + 7z2].

A (partial) assignment is a (partial) mapping σ : X → F. We write Πσ p
for π[x1:=σ(x1)]...π[xk:=σ(xk)] p, where x1, ..., xk are the variables for which σ is
defined. Additionally, we call σ binary if σ(x) ∈ {0, 1} for each x ∈ X.

Binary and Multilinear Polynomials. A polynomial is multilinear in x if
the degree of x in p is 0 or 1. A polynomial is multilinear if it is multilinear
in all its variables. For example, [xy − y2] is multilinear in x but not in y, and
[3xy − 2zy] is multilinear. A polynomial p is binary if Πσ p ∈ {0,1} for every
binary assignment σ. Two polynomials p, q are binary equivalent, denoted p ≡b q,
if Πσ p = Πσ q for every binary assignment σ. (Note that non-binary polynomials
can be binary equivalent.)

3 Circuits with Partial Evaluation

We introduce circuits with partial evaluation (CP), a compact representation of
quantified boolean formulae, and formulate #CP, the problem of counting the
number of satisfying assignments of a CP. #CP generalises QBF, the satisfiabil-
ity problem for quantified boolean formulas. Figure 1 shows an example of a CP.
Informally, it is a directed acyclic graph whose nodes are labelled with variables,
boolean operators, or partial evaluation operators π[x:=b]. Intuitively, π[x:=b]ϕ sets
the variable x to the truth value b in the formula ϕ. In this way, each node of a cir-
cuit stands for a boolean function, and the complete circuit stands for the boolean
function of the root. Figure 1 shows the formulae represented by each node.

Definition 1. Let X denote a finite set of variables and S ⊆ X. A circuit with
partial evaluation and variables in S (S-CP) has the form

442 E. Couillard et al.

– true, false, or x, where x ∈ S,
– ¬ϕ, ϕ ∧ ψ, or ϕ ∨ ψ, where ϕ,ψ are S-CPs, or
– π[y:=b] ϕ, where y ∈ X \ S, b ∈ {true, false}, and ϕ is an (S ∪ {y})-CP.

The set of free variables of a S-CP ϕ is free(ϕ) := S. The children of a CP are
inductively defined as follows: true, false, and x have no children; the children of
ϕ ∧ ψ and ϕ ∨ ψ are ϕ and ψ; and the only child of ¬ϕ and π[y:=b] ϕ is ϕ. The
set of descendants of ϕ is the smallest set M containing ϕ and all children of
every element of M . The size of ϕ is |ϕ| := |M |.

Fig. 1. A CP (Sect. 3), the boolean functions
represented by each node (in boxes), and the
arithmetisation of the formulae (Sect. 4.1).

We represent a CP ϕ as a directed
acyclic graph. The nodes of the
graph are the descendants of ϕ.
A CP ϕ encodes a boolean pred-
icate Pϕ, which maps assignments
σ : free(ϕ) → {false, true} to a truth
value Pϕ(σ) ∈ {false, true}. It does so
in the obvious manner, e.g., Px(σ) :=
σ(x), Pϕ∧ψ(σ) := Pϕ(σ) ∧ Pψ(σ),
etc. We use π[x:=b] as partial eval-
uation operator, so Pπ[x:=b]ϕ(σ) :=
Pϕ(σ∪{x 	→ b}). Intuitively, π[x:=b] ϕ
replaces each occurrence of x in ϕ
by b. An assignment σ satisfies ϕ if
Pϕ(σ) = true. We define the macros

∀xϕ := π[x:=0] ϕ ∧ π[x:=1] ϕ

∃xϕ := π[x:=0] ϕ ∨ π[x:=1] ϕ

Figure 1 shows a CP for the quanti-
fied boolean formula ∀y(¬x ∨ (x ∧ y)).

We consider the following problem:

#CP Input CP ϕ.
Output The number of satisfying assignments of ϕ.

Given a quantified boolean formula, we can use the macros for quantifiers to
construct in linear time an equivalent CP, i.e., a CP with the same satisfying
assignments. Similarly, #SAT instances can also be reduced to #CP.

Structure of the Rest of the Paper. In Sect. 4, we give an interactive pro-
tocol for #CP called CPCertify. In Sect. 5, we implement an honest Prover
for CPCertify on top of an extended BDD-based algorithm for #CP. The
prover runs in time polynomial in the size of the largest BDD for any of the
subcircuits of the initial circuit. Together, these results yield our main result,
Theorem 1, showing that any BDD-based algorithm can be modified to run an
interactive protocol with small polynomial overhead. Finally, Sect. 6 presents
empirical results.

Efficient Interactive Protocols for BDD Algorithms 443

4 An Interactive Protocol for #CP

In this section we describe an interactive protocol for #CP, following the Sum-
Check protocol of [20]. Section 4.1 introduces arithmetisation, a technique to
transform #CP into an equivalent problem about polynomials. Section 4.2 shows
how to transform #CP into an equivalent problem about evaluating polynomials
of low degree. Finally, Sect. 4.3 presents an interactive protocol for this problem.

4.1 Arithmetisation

We define a mapping [[·]] that assigns to each CP ϕ a polynomial [[ϕ]] over the
variables free(ϕ), called the arithmetisation of ϕ:

– [[true]] := 1; [[false]] := 0; [[x]] := [x] for every x ∈ X; and [[¬ϕ]] := 1 − [[ϕ]];
– [[ϕ ∧ ψ]] := [[ϕ]] · [[ψ]]; and [[ϕ ∨ ψ]] := [[ϕ]] + [[ψ]] − [[ϕ]] · [[ψ]];
– [[π[x:=b] ϕ]] := π[x:=[[b]]][[ϕ]], with x ∈ free(ϕ), b ∈ {true, false}.

Figure 1 also shows the polynomials corresponding to the nodes of the CP.
Let F be a fixed prime finite field. Given an arbitrary truth assignment

σ : X → {true, false}, let σ : X → F be the binary assignment given by σ(x) = 1
if σ(x) = true and σ(x) = 0 if σ(x) = false, where 0 and 1 denote the additive and
multiplicative identities in F. The mapping [[·]] is defined to satisfy the following
property, whose proof is immediate:

Proposition 1. Let ϕ be an S-CP encoding some boolean predicate Pϕ. Then
Pϕ(σ) = Πσ [[ϕ]] for every truth assignment σ to S.

So, intuitively, the polynomial [[ϕ]] is a conservative extension of the predicate
Pϕ: It returns the same values for all binary assignments. Accordingly, in the
rest of the paper we abuse language and write σ instead of σ for the binary
assignment corresponding to the truth assignment σ.

Observe that #CP can be reformulated as follows: given a CP ϕ, compute
the number of binary assignments σ s.t. Πσ[[ϕ]] = 1.

4.2 Degree Reduction

Given a CP ϕ, its associated polynomial can have degree exponential in the
height of ϕ. Since we are ultimately interested in evaluating polynomials over
binary assignments, and since x2 = x for x ∈ {0, 1}, we can convert polynomials
to low degree without changing their behaviour on binary assignments.

For this, we use a degree-reduction operator δx for every variable x. The
operator δxp reduces the exponent of all powers of x in p to 1. For example,
δx[x2y + 3xy2 − 2x3y2 + 4] = [xy + 3xy2 − 2xy2 + 4]. Observe that δxp ≡b p.
Instead of working on the input CP directly, we first convert it into a circuit with
partial evaluation and degree reduction by inserting degree-reduction operators
after binary operations. This ensures all intermediate polynomials obtained by
arithmetisation have low degree.

444 E. Couillard et al.

Definition 2. A circuit with partial evaluation and degree reduction over the
set S of variables (S-CPD) is defined in the same manner as an S-CP, extended
as follows:

– if ϕ is an S-CPD and x ∈ S, then δxϕ is an S-CPD,
– [[δxϕ]] := δx[[ϕ]], and
– ϕ is the only child of δxϕ.

For an S-CPD ϕ we define free(ϕ), |ϕ|, children, descendants, and the graphical
representation as for S-CPs.

Fig. 2. CPD and polynomials
for the CP of Fig. 1.

We convert a CP ϕ into a CPD conv(ϕ) by
adding a degree-reduction operator for each free
variable before any binary operation.

Definition 3. Given a CP ϕ with free(ϕ) =
{x1, ..., xk}, its associated CPD conv(ϕ) is
inductively defined as follows:

– conv(false) = false, conv(true) := true,
– conv(¬ψ) := ¬ conv(ψ), conv(π[x:=b] ψ) :=

π[x:=b] conv(ψ), and
– conv(ψ1 � ψ2) := δx1 ...δxk

(conv(ψ1) �
conv(ψ2)), for � ∈ {∨,∧}.

Figure 2 shows the CPD conv(ϕ) for the CP
ϕ of Fig. 1, together with the polynomials corre-
sponding to each node.

We collect some basic properties of CPDs:

Lemma 1. Let ϕ be a CP.

(a) [[conv(ϕ)]] is a binary multilinear polynomial
and [[conv(ϕ)]] ≡b [[ϕ]].

(b) For every descendant ψ of conv(ϕ), [[ψ]] has
maximum degree 2.

CPDs have another useful property. Recall
that given a CP ϕ we are interested in its number
of satisfying assignments. The next lemma shows
that this number can be computed by evaluating
the polynomial [[conv(ϕ)]] on a single input.

Lemma 2. A CP ϕ with n free variables has m < |F| satisfying assignments iff
Πσ[[conv(ϕ)]] = m · 2−n, where σ is the assignment satisfying σ(x) := 2−1 in the
field F for every variable x.1

1 Any prime field F with |F| > 2 has an element c such that 2c = 1.

Efficient Interactive Protocols for BDD Algorithms 445

4.3 CPCertify: An Interactive Protocol for #CP

We describe an interactive protocol, called CPCertify, for a CP ϕ with n
free variables. Let X denote the variables used in ϕ. Prover and Verifier fix a
finite field with at least m + 1 elements, where m is an upper bound on the
number of assignments (e.g. m = 2n). Prover tries to convince the Verifier that
Πσ[[conv(ϕ)]] = K for some K ∈ F.

In the protocol, Verifier challenges Prover to compute polynomials of the
form Πσ([[ψ]]), where ψ is a node of the CPD conv(ϕ) and σ : free(ψ) → F

is a (non-binary!) assignment; we call the expression Πσ[[conv(ψ)]] a challenge.
Observe that all assignments are chosen by Verifier. Prover answers with some
k ∈ F. We call the expression Πσ[[conv(ψ)]] = k a claim, or the answer to the
challenge Πσ[[conv(ψ)]].

CPCertify consists of an initialisation and a number of rounds, one for each
descendant of conv(ϕ). Rounds are executed in topological order, starting at the
root, i.e. at conv(ϕ) itself. The structure of a round for a node ψ of conv(ϕ)
depends on whether ψ is an internal node (including the root), or a leaf.

At each point, Verifier keeps track of a set C of claims that must be checked.

Initialisation. Verifier sends Prover the challenge Πσ[[conv(ϕ)]], where σ(x) :=
2−1 for every x ∈ free(ϕ). Prover returns the claim Πσ[[conv(ϕ)]] = K for some
K ∈ F. (By Lemma 2, this amounts to claiming that ϕ has K · 2n satisfying
assignments.) Verifier initialises C := {Πσ[[conv(ϕ)]] = K}.

Round for an Internal Node. A round for an internal node ψ runs as follows:

(a) Verifier collects all claims {Πσi
[[ψ]] = ki}m

i=1 in C relating to ψ, with assign-
ments σ1, . . . , σm : free(ψ) → F and k1, ..., km ∈ F. (Initially ψ = conv(ϕ)
and the only claim is Πσ[[conv(ϕ)]] = K.)

(b) If m > 1, Verifier interacts with Prover to compute a unique claim Πσ[[ψ]] =
k such that very likely2 the claim is true only if all claims {Πσi

[[ψ]] = ki}m
i=1

are true. For this, Verifier sends a number of challenges, and checks that
the answers are consistent with the prior claims. Based on these answers,
Verifier then derives new claims. (See “Description of step (b)” below.)

(c) Verifier interacts with Prover to compute a claim Πσ′ [[ψ′]] = k′ for each child
ψ′ of ψ. This is similar to (b): if Πσ[[ψ]] �= k, i.e. the unique claim from (b)
does not hold, then very likely one of the resulting claims will be wrong.
Depending on the type of ψ, the claims are computed based on the answers
of Prover to challenges sent by Verifier. (See “Description of step (c)” below.)

(d) In total, Verifier removed the claims {Πσi
[[ψ]] = ki}m

i=1 from C, and replaced
them by one claim Πσ′ [[ψ′]] = k′ for each child ψ′ of ψ.

Observe that, since a node ψ can be a child of several nodes, Verifier may collect
multiple claims for ψ, one for each parent node.

Round for a Leaf. If ψ is a leaf, then ψ = x for a variable x, or ψ ∈ {true, false}.
Verifier removes all claims {Πσi

[[ψ]] = ki}m
i=1 from C, computes the values ci :=

Πσi
[[ψ]], and rejects if ki �= ci for any i.

2 The precise bound on the failure probability will be given in Proposition 2.

446 E. Couillard et al.

Observe that if all claims made by Prover about leaves are true, then very
likely Prover’s initial claim is also true.

Description of Step (b). Let {Πσi
[[ψ]] = ki}m

i=1 be the claims in C relating to
node ψ. Verifier and Prover conduct step (b) as follows:

(b.1) While there exists x ∈ X s.t. σ1(x), . . . , σm(x) are not pairwise equal:
(b.1.1) For every i ∈ {1, ...,m}, let σ′

i denote the partial assignment which is
undefined on x and otherwise matches σi. Verifier sends the challenges
{Πσ′

i
[[ψ]]}m

i=1 to Prover. Prover answers with claims {Πσ′
i
[[ψ]] = pi}m

i=1.
Note that p1, . . . , pm are univariate polynomials with free variable x.

(b.1.2) Verifier checks whether ki = π[x:=σi(x)] pi holds for each i. If not, Ver-
ifier rejects. Otherwise, Verifier picks r ∈ F uniformly at random and
updates σi(x) := r and ki := π[x:=r]pi for every i ∈ {1, ...,m}.

(b.2) If after exiting the loop the values k1, ..., km are not pairwise equal, Verifier
rejects. Otherwise (that is, if k1 = k2 = · · · = km), the set C now contains
a unique claim Πσ[[ψ]] = k relating to ψ.

Example 1. Consider the case in which X = {x}, and Prover has made two
claims, Πσ1 [[ψ]] = k1 and Πσ2 [[ψ]] = k2 with σ1(x) = 1 and σ2(x) = 2. In step
(b.1.1) we have σ′

1 = σ′
2 (both are the empty assignment), and so Verifier sends

the challenge [[ψ]] to Prover twice, who answers with claims [[ψ]] = p1 and [[ψ]] =
p2. In step (b.1.2) Verifier checks that p1(1) = k1 and p2(2) = k2 hold, picks a
random number r, and updates σ1(x) := σ2(x) := r and k1 := p1(r), k2 := p2(r).
Now the condition of the while loop fails, so Verifier moves to (b.2) and checks
k1 = k2.

Description of Step (c). Let Πσ[[ψ]] = k be the claim computed by Verifier in
step (b). Verifier removes this claim from C and replaces it by claims about the
children of ψ, depending on the structure of ψ:

(c.1) If ψ = ψ1 � ψ2, for a � ∈ {∨,∧}, then Verifier sends Prover challenges
Πσ[[ψi]] for i ∈ {1, 2}, and Prover sends claims Πσ[[ψi]] = ki back. Verifier
checks the consistency condition k = π[x:=k1]π[y:=k2][[x � y]], rejecting if it
does not hold. If the condition holds, the claim Πσ[[ψi]] = ki is added to C,
to be checked in the round for ψi.

(c.2) If ψ = ¬ψ′, then Verifier adds the claim Πσ[[ψ′]] = 1 − k to ψ′.
(c.3) If ψ = π[x:=b] ψ

′, Verifier sets σ′ := σ ∪ {x 	→ b} and adds the claim
Πσ′ [[ψ′]] = k to C.

(c.4) If ψ = δxψ′, then Verifier sends Prover the challenge Πσ′ [[ψ′]], where
σ′ denotes the partial assignment which is undefined on x and other-
wise matches σ. Prover returns the claim p := Πσ′ [[ψ′]]. Observe that p
is a univariate polynomial over x. Verifier checks the consistency condi-
tion π[x:=σ(x)]δx p = k, rejecting if it does not hold. If it holds, Verifier
picks an r ∈ F uniformly at random, conducts the updates σ(x) := r and
k := π[x:=r] p, and adds Πσ[[ψ′]] = k to the set of claims about ψ′.

Efficient Interactive Protocols for BDD Algorithms 447

This concludes the description of the interactive protocol. We now show
CPCertify is complete and sound.

Proposition 2 (CPCertify is complete and sound). Let ϕ be a CP with
n free variables. Let Πσ[[conv(ϕ)]] = K be the claim initially sent by Prover to
Verifier. If the claim is true, then Prover has a strategy to make Verifier accept.
If not, for every Prover, Verifier accepts with probability at most 4n|ϕ|/|F|.

If the original claim is correct, Prover can answer every challenge truthfully
and all claims pass all of Verifier’s checks. So Verifier accepts. If the claim is not
correct, we proceed round by round. We bound the probability that the Verifier
is tricked in a single step to at most 2/|F| using the Schwartz-Zippel Lemma.
We then bound the number of such steps to 2n|ϕ| and use a union bound.

5 A BDD-Based Prover

We assume familiarity with reduced ordered binary decision diagrams (BDDs)
[9]. We use BDDs over X = {x1, . . . , xn}. We fix the variable order x1 < x2 <
. . . < xn, i.e. the root node would decide based on the value of xn.

Definition 4. BDDs are defined inductively as follows:

– 〈true〉 and 〈false〉 are BDDs of level 0;
– if u �= v are BDDs of level �u, �v and i > �u, �v, then 〈xi, u, v〉 is a BDD of

level i;
– we identify 〈xi, u, u〉 and u, for a BDD u of level �i and i > �u.

The level of a BDD w is denoted �(w). The set of descendants of w is the
smallest set S with w ∈ S and u, v ∈ S for all 〈x, u, v〉 ∈ S. The size |w| of w is
the number of its descendants.

The arithmetisation of a BDD w is the polynomial [[w]] defined as follows:
[[〈true〉]] := 1, [[〈false〉]] := 0 and [[〈x, u, v〉]] := [1 − x] · [[u]] + [x] · [[v]].

Figure 3 shows a BDD for the boolean function ϕ(x, y, z) = (x ∧ y ∧ ¬z) ∨
(¬x ∧ y ∧ z) ∨ (x ∧ ¬y ∧ z) and the arithmetisation of each node.

BDDSolver: A BDD-based Algorithm for #CP. An instance ϕ of #CP
can be solved using BDDs. Starting at the leaves of ϕ, we iteratively compute
a BDD for each node ψ of the circuit encoding the boolean predicate Pψ. At
the end of this procedure we obtain a BDD for Pϕ. The number of satisfying
assignments of ψ is the number of accepting paths of the BDD, which can be
computed in linear time in the size of the BDD.

For a node ψ = ψ1 � ψ2, given BDDs representing the predicates Pϕ1 and
Pϕ2 , we compute a BDD for the predicate Pϕ := Pϕ1 � Pϕ2 , using the Apply�
operator on BDDs. We name this algorithm for solving #CP “BDDSolver.”

448 E. Couillard et al.

Fig. 3. A BDD and its arithmeti-
sation. For 〈x, u, v〉, we denote the
link from x to v with a solid edge
and x to u with a dotted edge. We
omit links to 〈false〉.

From BDDSolver to CPCertify. Our
goal is to modify BDDSolver to play the
role of an honest Prover in CPCertify with
minimal overhead. In CPCertify, Prover
repeatedly performs the same task: evaluate
polynomials of the form Πσ[[ψ]], where ψ is
a descendant of the CPD conv(ϕ), and σ
assigns values to all free variables of ψ except
possibly one. Therefore, the polynomials have
at most one free variable and, as we have
seen, degree at most 2.

Before defining the concepts precisely, we
give a brief overview of this section.

– First (Proposition 3), we show that BDDs
correspond to binary multilinear polyno-
mials. In particular, BDDs allow for effi-
cient evaluation of the polynomial. As
argued in Lemma 1(a), for every descendant ψ of ϕ, the CPD conv(ψ) (which
is a descendant of conv(ϕ)) evaluates to a multilinear polynomial. In particu-
lar, Prover can use standard BDD algorithms to calculate the corresponding
polynomials Πσ[[ψ]] for all descendants ψ of conv(ϕ) that are neither binary
operators nor degree reductions.

– Second (the rest of the section), we prove a surprising connection: the inter-
mediate results obtained while executing the BDD algorithms (with slight
adaptations) correspond precisely to the remaining descendants of conv(ϕ).

The following proposition proves that BDDs represent exactly the binary
multilinear polynomials.

Proposition 3. (a) For a BDD w, [[w]] is a binary multilinear polynomial. (b)
For a binary multilinear polynomial p there is a unique BDD w s.t. p = [[w]].

5.1 Extended BDDs

During the execution of CPCertify for a given CPD conv(ϕ), Prover sends
to Verifier claims of the form Πσ[[ψ]], where ψ is a descendant of conv(ϕ), and
σ : X → F is a partial assignment. While all polynomials computed by CPCer-
tify are binary, not all are multilinear: some polynomials have degree 2. For
these polynomials, we introduce extended BDDs (eBDDs) and give eBDD-based
algorithms for the following two tasks:

1. Compute an eBDD representing [[ψ]] for every node ψ of conv(ϕ).
2. Given an eBDD for [[ψ]] and a partial assignment σ, compute Πσ[[ψ]].

Efficient Interactive Protocols for BDD Algorithms 449

Fig. 4. A node of a CP (�) gets a
chain of degree reduction nodes in
the associated CPD.

Computing eBDDs for CPDs: Informal
Introduction. Consider a CP ϕ and its asso-
ciated CPD conv(ϕ). Each node of ϕ induces
a chain of nodes in conv(ϕ), consisting of
degree-reduction nodes δx1 , . . . , δxn

, followed
by the node itself (see Fig. 4). Given BDDs
u and v for the children of the node in the
CP, we can compute a BDD for the node
itself using a well-known BDD algorithm
Apply�(u, v) parametric in the boolean oper-
ation � labelling the node [9]. Our goal
is to transform Apply� into an algorithm
that computes eBDDs for all nodes in the
chain, i.e. eBDDs for all the polynomials
p0, p1, . . . , pn of Fig. 4.

Roughly speaking, Apply�(u, v) recur-
sively computes BDDs w0 = Apply�(u0, v0)
and w1 = Apply�(u1, v1), where ub and vb are the b-children of u and v, and
then returns the BDD with w0 and w1 as 0- and 1-child, respectively.3

Most importantly, we modify Apply� to run in breadth-first order. Figure 5
shows a graphical representation of a run of Apply∨(u, v), where u and v are the
two BDD nodes labelled by x. Square nodes represent pending calls to Apply�.
Initially there is only one square call Apply∨(u, v) (Fig. 5, top left). Apply∨ calls
itself recursively for u0, v0 and u1, v1 (Fig. 5, top right). Each of the two calls
splits again into two; however, the first three are identical (Fig. 5, bottom left),
and so reduce to two. These two calls can now be resolved directly; they return
nodes true and false, respectively. At this point, the children of Apply�(u, v)
become 〈y, true, true〉 = true, and 〈y, true, false〉, which exists already as well
(Fig. 5, bottom right).

We look at the diagrams of Fig. 5 not as a visualisation aid, but as graphs
with two kinds of nodes: standard BDD nodes, represented as circles, and product
nodes, represented as squares. We call them extended BDDs. Each node of an
extended BDD is assigned a polynomial in the expected way: the polynomial
[[u]] of a standard BDD node u with variable x is x · [[u1]] + (1 − x) · [[u0]], the
polynomial [[v]] of a square ∧-node v is [[v0]] · [[v1]], etc. In this way we assign to
each eBDD a polynomial. In particular, we obtain the intermediate polynomials
p0, p1, p2, p3 of the figure, one for each level in the recursion. In the rest of the
section we show that these are precisely the polynomials p0, p1, . . . , pn of Fig. 4.

Thus, in order to compute eBDDs for all nodes of a CPD conv(ϕ), it suffices
to compute BDDs for all nodes of the CP ϕ. Since we need to do this anyway
to solve #CP, the polynomial certification does not incur any overhead.

3 In fact, this is only true when u and v are nodes at the same level and
Apply�(u0, v0) �= Apply�(u1, v1), but at this point we only want to convey some
intuition.

450 E. Couillard et al.

Fig. 5. Run of Apply∨(u, v), but with recursive calls evaluated in breadth-first order.
All missing edges go to node false.

Extended BDDs. As for BDDs, we define eBDDs over X = {x1, . . . , xn} with
the variable order x1 < x2 < ... < xn.

Definition 5. Let � be a binary boolean operator. The set of eBDDs (for �) is
inductively defined as follows:

– every BDD is also an eBDD of the same level;
– if u, v are BDDs (not eBDDs!), then 〈u � v〉 is an eBDD of level l where

l := max{�(u), �(v)}; we call eBDDs of this form product nodes;
– if u �= v are eBDDs and i > �(u), �(v), then 〈xi, u, v〉 is an eBDD of level i;
– we identify 〈xi, u, u〉 and u for an eBDD u and i > �(u).

The set of descendants of an eBDD w is the smallest set S with w ∈ S and
u, v ∈ S for all 〈u � v〉 , 〈x, u, v〉 ∈ S The size of w is its number of descendants.
For u, v ∈ {〈true〉 , 〈false〉} we identify 〈u � v〉 with 〈true〉 or 〈false〉 according
to the result of �, e.g. 〈〈true〉 ∨ 〈false〉〉 = 〈true〉, as true ∨ false = true. The
arithmetisation of an eBDD for a boolean operator � ∈ {∧,∨} is defined as for
BDDs, with the extensions [[〈u ∧ v〉]] = [[u]]·[[v]] and [[〈u ∨ v〉]] = [[u]]+[[v]]−[[u]]·[[v]].

Example 2. The diagrams in Fig. 5 are eBDDs for � := ∨. Nodes of the form
〈x, u, v〉 and 〈u ∨ v〉 are represented as circles and squares, respectively. Con-
sider the top-left diagram. Abbreviating x ⊕ y := (x ∧ ¬y) ∨ (¬x ∧ y) we get
[[Apply∨(u, v)]] = [[(x ⊕ y) ∧ (x ∧ y)]] = [[x ⊕ y]] · [[x ∧ y]] = (x(1 − y) + (1 − x) ·
y − xy(1 − x)(1 − y)) · xy, which is the polynomial p0 shown in the figure.

Efficient Interactive Protocols for BDD Algorithms 451

Table 1. On the left: Algorithm computing eBDDs for the sequence [[w]], δxn [[w]],
δxn−1δxn [[w]], . . ., δx1 · · · δxn [[w]] of polynomials. On the right: Recursive algorithm to
evaluate the polynomial represented by an eBDD at a given partial assignment. P (w)
is a mapping used to memoize the polynomials returned by recursive calls.

ComputeEBDD(w)

Input: eBDD w
Output: sequence w0, ..., wn of eBDDs
w0 := w; output w0

for i = 0, · · · , �(w) − 1 do
wi+1 := wi

for every node 〈u � v〉 of wi

at level n − i do
for b ∈ {0, 1} do

ub := π[xn−i:=b] u
vb := π[xn−i:=b] v
tb := 〈ub � vb〉

wi+1 := wi+1 [〈u � v〉 / 〈xn−i, t0, t1〉]
output wi+1

EvaluateEBDD(w, σ) =: Eσ(w)

Input: eBDD w; assignment σ : X → F

Output: Πσ[[w]]

if P (w) is defined return P (w)
if w ∈ {〈true〉 , 〈false〉} return [[w]]
if w = 〈u ∧ v〉

P (w) := Eσ(u) · Eσ(v)
if w = 〈u ∨ v〉

P (w) := Eσ(u) + Eσ(v) − Eσ(u)Eσ(v)
if w = 〈x, u, v〉 and σ(x) undefined

P (w) := [1 − x] · Eσ(u) + [x] · Eσ(v)
if w = 〈x, u, v〉 and σ(x) = s ∈ F

P (w) := [1 − s] · Eσ(u) + [s] · Eσ(v)
return P (w)

Computing eBDDs for CPDs. Given a node of a CP corresponding to a
binary operator �, Prover has to compute polynomials p0, δx1p0, . . . , δxn

...δx1p0
corresponding to the nodes of the CPD shown on the right. We show that
Prover can compute these polynomials by representing them as eBDDs. Table 1
describes an algorithm that gets as input an eBDD w of level n, and outputs a
sequence w0, w1, ..., wn+1 of eBDDs such that w0 = w; [[wi+1]] = δxn−i

[[wi]] for
every 0 ≤ i ≤ �(w) − 1; and wn+1 is a BDD. Interpreted as sequence of eBDDs,
Fig. 5 shows a run of this algorithm.

Notation. Given an eBDD w and eBDDs u, v such that �(u) ≥ �(v), we let w[u/v]
denote the result of replacing u by v in w. For an eBDD w = 〈xi, w0, w1〉 and
b ∈ {0, 1} we define π[xi:=b]w := wb, and for j > i we set π[xj :=b]w := w. (Note
that [[π[xj :=b]w]] = π[xj :=b][[w]] holds for any j where it is defined.)

Proposition 4. Let ψ1, ψ2 denote CPs and u1, u2 BDDs with [[ui]] = [[ψi]], i ∈
{1, 2}. Let w := 〈u1 � u2〉 denote an eBDD. Then ComputeEBDD(w) satisfies
[[w0]] = [[ψ1 � ψ2]] and [[wi+1]] = δxn−i

[[wi]] for every 0 ≤ i ≤ n− 1; moreover, wn

is a BDD with wn = Apply�(u1, u2). Finally, the algorithm runs in time O(T),
where T ∈ O(|u1| · |u2|) is the time taken by Apply�(u1, u2).

Evaluating Polynomials Represented as eBDDs. Recall that Prover must
evaluate expressions of the form Πσ[[ψ]] for some CPD ψ, where σ assigns values
to all variables of ψ except for possibly one. We give an algorithm to evaluate
arbitrary expressions Πσ[[w]], where w is an eBDD, and show that if there is
at most one free variable then the algorithm takes linear time in the size of ψ.
The algorithm is shown on the right of Table 1. It has the standard structure of
BDD procedures: It recurs on the structure of the eBDD, memoizing the result
of recursive calls so that the algorithm is called at most once with a given input.

452 E. Couillard et al.

Proposition 5. Let w denote an eBDD, σ : X → F a partial assignment, and
k the number of variables assigned by σ. Then EvaluateEBDD evaluates the
polynomial Πσ[[w]] in time O(

poly(2n−k) · |w|).

5.2 Efficient Certification

In the CPCertify algorithm, Prover must (a) compute polynomials for all
nodes of the CPD, and (b) evaluate them on assignments chosen by Verifier.
In the last section we have seen that ComputeEBDD (for binary operations
of the CP), combined with standard BDD algorithms (for all other operations),
yields eBDDs representing all these polynomials—at no additional overhead,
compared to a BDD-based implementation. This covers part (a). Regarding (b),
recall that all polynomials computed in (a) have at most one variable. Therefore,
using EvaluateEBDD we can evaluate a polynomial in linear time in the size
of the eBDD representing it.

The Verifier CPCertify is implemented in a straightforward manner. As the
algorithm runs in polynomial size w.r.t. the CP (and not the computed BDDs,
which may be exponentially larger), incurring overhead is less of a concern.

Theorem 1 (Main Result). If BDDSolver solves an instance ϕ of #CP
with n variables in time T , with T > n|ϕ|, then

(a) Prover computes eBDDs for all nodes of conv(ϕ) in time O(T),
(b) Prover responds to Verifier’s challenges in time O(nT), and
(c) Verifier executes CPCertify in time O(n2|ϕ|), with failure probability at

most 4n|ϕ|/|F|.
As presented above, EvaluateEBDD incurs a factor-of-n overhead, as every

node of the CPD must be evaluated. In our implementation, we use a caching
strategy to reduce the complexity of Theorem 1(b) to O(T).

Note that the bounds above assume a uniform cost model. In particular,
operations on BDD nodes and finite field arithmetic are assumed to be O(1).
This is a reasonable assumption, as for a constant failure probability log |F| ≈
log n. Hence the finite field remains small. (It is possible to verify the number of
assignments even if it exceeds |F|, see below.)

5.3 Implementation Concerns

We list a number of points that are not described in detail in this paper, but
need to be considered for an efficient implementation.

Finite Field Arithmetic. It is not necessary to use large finite fields. In par-
ticular, one can avoid the overhead of arbitrarily sized integers. For our imple-
mentation we fix the finite field F := Zp, with p = 261 − 1 (the largest Mersenne
prime to fit in 64 bits).

Incremental eBDD Representation. Algorithm ComputeEBDD computes
a sequence of eBDDs. These must not be stored explicitly, otherwise one incurs

Efficient Interactive Protocols for BDD Algorithms 453

a space-overhead. Instead, we only store the last eBDD as well as the differences
between each subsequent element of the sequence. To evaluate the eBDDs, we
then revert to a previous state by applying the differences appropriately.

Evaluation Order. It simplifies the implementation if Prover only needs to
evaluate nodes of the CPD in some (fixed) topological order. CPCertify can
easily be adapted to guarantee this, by picking the next node appropriately in
each iteration, and by evaluating only one child of a binary operator ψ1 � ψ2.
The value of the other child can then be derived by solving a linear equation.

Efficient Evaluation. As stated in Theorem 1, using EvaluateEBDD Prover
needs Ω(nT) time to respond to Verifier’s challenges. In our implementation
we instead use a caching strategy that reduces this time to O(T). Essentially,
we exploit the special structure of conv(ϕ): Verifier sends a sequence of chal-
lenges Πσ0δx1 ...δxn

w,Πσ1δx2 ...δxn
w, ...,Πσn

w, where assignments σi and σi+1

differ only in variables xi and xi+1. The corresponding eBDDs likewise change
only at levels i and i + 1. We cache the linear coefficients of eBDD nodes that
contribute to the arithmetisation of the root top-down, and the arithmetised
values of nodes bottom up. As a result, only levels i, i + 1 need to be updated.

Large Numbers of Assignments. If the number of satisfying assignments
of a CP exceeds |F|, Verifier would not be able to verify the count accurately.
Instead of choosing |F| ≥ 2n, which incurs a significant overhead, Verifier can
query the precise number of assignments, and then choose |F| randomly. This
introduces another possibility of failure, but (roughly speaking) it suffices to
double log |F| for the additional failure probability to match the existing one.
Our implementation does not currently support this technique.

6 Evaluation

We have implemented an eBDD library, blic (BDD Library with Interactive Cer-
tification)4, that is a stand-in replacement for BDDs but additionally performs
the role of Prover in the CPCertify protocol. We have also implemented a
client that executes the protocol as Verifier. The eBDD library is about 900
lines of C++ code and the CPCertify protocol is about 400 lines. We have
built a prototype certifying QBF solver in blic, totalling about 2600 lines of code.
We aim to answer the following questions in our evaluation:

RQ1. Is a QBF solver with CPCertify-based certification competitive? If so,
how high is the overhead of implementing CPCertify on top of the
BDD operations?

RQ2. What is the amount of communication for Prover and Verifier in execut-
ing the CPCertify protocol, what is the time requirement for Verifier,
and how do these numbers compare to proof sizes and proof checking
times for certificates based on resolution and other proof systems?

4 https://gitlab.lrz.de/i7/blic.

https://gitlab.lrz.de/i7/blic

454 E. Couillard et al.

Fig. 6. (a) Time taken on instances (dashed lines are y = 100x and y = 0.01x), (b)
Cost of generating a certificate over computing the solution, (c) Time to verify the
certificate, (d) Size of certificates

RQ1: Performance of blic. We compare blic with CAQE, DepQBF, and PGB-
DDQ, three state-of-the-art QBF solvers. CAQE [10,29] does not provide any
certificates in its most recent version. DepQBF [12,19] is a certifying QBF solver.
PGBDDQ [7,25] is an independent implementation of a BDD-based QBF solver.
Both DepQBF and PGBDDQ provide specialised checkers for their certificates,
though PGBDDQ can also proofs in standard QRAT format. Note that PGBDDQ
is written in Python and generates proofs in an ASCII-based format, incurring
overhead compared to the other tools.

We take 172 QBF instances (all unsatisfiable) from the Crafted Instances
track of the QBF Evaluation 2022.5 The Prenex CNF track of the QBF com-
petition is not evaluated here. It features instances with a large number of vari-
ables. BDD-based solvers perform poorly under these circumstances without
additional optimisations. Our overall goal is not to propose a new approach for

5 CAQE and DepQBF were the winner and runner-up in this category. The configu-
ration we used differs from the competition, as described in the full version of the
paper [11].

Efficient Interactive Protocols for BDD Algorithms 455

Table 2. Comparison of certificate generation, bytes exchanged between prover and
verifier, and time taken to verify the certificate on a set of QBF benchmarks from
[7]. “Solve time” is time taken to solve the instance and to generate a certificate (sec-
onds), “Certificate” is the size of proof encoding for PGBDDQ, and bytes exchanged by
CPCertify for blic, and “Verifier time” is time to verify the certificate (Verifier’s run
time for blic and time taken by qchecker).

Instance Solve time (s) Certificate (MiB) Verifier time (s)
n result blic PGBDDQ blic PGBDDQ blic qchecker

10 sat 0.03 3.67 1.20 8.48 0.01 3.80
10 unsat 0.03 3.66 1.20 8.45 0.01 3.83
15 sat 0.13 18.07 4.12 44.25 0.02 18.45
15 unsat 0.13 18.14 4.11 44.20 0.02 18.55
20 sat 0.54 82.92 11.59 198.54 0.07 80.28
20 unsat 0.53 83.02 11.64 198.76 0.06 79.05
25 sat 1.56 261.16 23.94 566.95 0.14 238.99
25 unsat 1.55 261.25 23.86 565.36 0.15 237.94
40 sat 25.22 4863.71 132.43 7464.96 0.95 5141.08
40 unsat 25.25 4827.06 132.67 7467.84 0.99 5463.54

solving QBF, but rather to certify a BDD-based approach, so we wanted to focus
on cases where the existing BDD-based approaches are practical.

We ran each benchmark with a 10min timeout; all tools other than CAQE
were run with certificate production. All times were obtained on a machine
with an Intel Xeon E7-8857 CPU and 1.58 TiB RAM6 running Linux. See the
full version of the paper [11] for a detailed description. blic solved 96 out of
172 benchmarks, CAQE solved 98, DepQBF solved 87, and PGBDDQ solved 91.
Figure 6(a) shows the run times of blic compared to the other tools. The plot
indicates that blic is competitive on these instances, with a few cases, mostly
from the Lonsing family of benchmarks, where blic is slower than DepQBF by
an order of magnitude. Figure 6(b) shows the overhead of certification: for each
benchmark (that finishes within a 10min timeout), we plot the ratio of the time to
compute the answer to the time it takes to run Prover in CPCertify. The dotted
regression line shows CPCertify has a 2.8× overhead over computing BDDs.
For this set of examples, the error probability never exceeds 10−8.9 (10−11.6

when Lonsing examples are excluded); running the verifier k times reduces it to
10−8.9k.

RQ2: Communication Cost of Certification and Verifier Time. We
explore RQ2 by comparing the number of bytes exchanged between Prover and
Verifier and the time needed for Verifier to execute CPCertify with the number
of bytes in an QBF proof and the time required to verify the proof produced by
DepQBF and PGBDDQ, for which we use QRPcheck [24,26] and qchecker [7,25],
respectively. Note that the latter is written in Python.

6 blic uses at most 60 GiB on the shown benchmarks, 5 GiB when excluding timeouts.

456 E. Couillard et al.

We show that the overhead of certification is low. Figure 6(c) shows the run
time of Verifier—this is generally negligible for blic, except for the Lonsing and
KBKF families, which have a large number of variables, but very small BDDs.
Figure 6(d) shows the total number of bytes exchanged between Prover and
Verifier in blic against the size of the proofs generated by PGBDDQ and DepQBF.
For large instances, the number of bytes exchanged in blic is significantly smaller
than the size of the proofs. The exception are again the Lonsing and KBKNF
families of instances. For both plots, the dotted line results from a log-linear
regression.

In addition to the Crafted Instances, we compare against PGBDDQ on a
challenging family of benchmarks used in the PGBDDQ paper (matching the
parameters of [7, Table 3]); these are QBF encodings of a linear domino placing
game.7 Our results are summarised in Table 2. The upper bound on Verifier
error is 10−9.22. We show that blic outperforms PGBDDQ both in overall cost
of computing the answer and the certificates as well as in the number of bytes
communicated and the time used by Verifier.

Our results indicate that giving up absolute certainty through interactive
protocols can lead to an order of magnitude smaller communication cost and
several orders of magnitude smaller checking costs for the verifier.

7 Conclusion

We have presented a solver that combines BDDs with an interactive protocol.
blic can be seen as a self-certifying BDD library able to certify the correctness of
arbitrary sequences of BDD operations. In order to trust the result, a user must
only trust the verifier (a straightforward program that poses challenges to the
prover). We have shown that blic (including certification time) is competitive
with other solvers, and Verifier’s time and error probabilities are negligible.

Our results show that IP = PSPACE can become an important result not only
in theory but also in the practice of automatic verification. From this perspec-
tive, our paper is a first step towards practical certification based on interactive
protocols. While we have focused on BDDs, we can ask the more general ques-
tion: which practical automated reasoning algorithms can be made efficiently
certifying? For example, whether there is an interactive protocol and an effi-
cient certifying version of modern SAT solving algorithms is an interesting open
challenge.

References

1. Arora, S., Barak, B.: Computational Complexity: A Modern Approach. Cambridge
University Press, Cambridge (2006). https://theory.cs.princeton.edu/complexity/
book.pdf

7 DepQBF only solved 1 of 10 instances within 120min, and is thus not compared.

https://theory.cs.princeton.edu/complexity/book.pdf
https://theory.cs.princeton.edu/complexity/book.pdf

Efficient Interactive Protocols for BDD Algorithms 457

2. Babai, L.: Trading group theory for randomness. In: Sedgewick, R. (ed.) Proceed-
ings of the 17th Annual ACM Symposium on Theory of Computing, 6–8 May
1985, Providence, Rhode Island, USA, pp. 421–429. ACM (1985). https://doi.org/
10.1145/22145.22192

3. Balabanov, V., Widl, M., Jiang, J.-H.R.: QBF resolution systems and their proof
complexities. In: Sinz, C., Egly, U. (eds.) SAT 2014. LNCS, vol. 8561, pp. 154–169.
Springer, Cham (2014). https://doi.org/10.1007/978-3-319-09284-3_12

4. Barbosa, H., et al.: Flexible proof production in an industrial-strength SMT solver.
In: Blanchette, J., Kovács, L., Pattinson, D. (eds.) IJCAR 2022. LNCS, vol. 13385,
pp. 15–35. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-10769-6_3

5. Ben-Or, M., Goldreich, O., Goldwasser, S., Håstad, J., Kilian, J., Micali, S., Rog-
away, P.: Everything provable is provable in zero-knowledge. In: Goldwasser, S.
(ed.) CRYPTO 1988. LNCS, vol. 403, pp. 37–56. Springer, New York (1990).
https://doi.org/10.1007/0-387-34799-2_4

6. Bryant, R.E., Biere, A., Heule, M.J.H.: Clausal proofs for pseudo-boolean reason-
ing. In: TACAS 2022. LNCS, vol. 13243, pp. 443–461. Springer, Cham (2022).
https://doi.org/10.1007/978-3-030-99524-9_25

7. Bryant, R.E., Heule, M.J.H.: Dual proof generation for quantified boolean formulas
with a BDD-based solver. In: Platzer, A., Sutcliffe, G. (eds.) CADE 2021. LNCS
(LNAI), vol. 12699, pp. 433–449. Springer, Cham (2021). https://doi.org/10.1007/
978-3-030-79876-5_25

8. Bryant, R.E., Heule, M.J.H.: Generating extended resolution proofs with a BDD-
based SAT solver. In: TACAS 2021. LNCS, vol. 12651, pp. 76–93. Springer, Cham
(2021). https://doi.org/10.1007/978-3-030-72016-2_5

9. Bryant, R.: Graph-based algorithms for Boolean function manipulation. IEEE
Trans. Comput. C-35(8), 677–691 (1986)

10. CAQE (2023). https://github.com/ltentrup/caqe. Accessed 03 Feb 2023
11. Couillard, E., Czerner, P., Esparza, J., Majumdar, R.: Making IP=PSPACE prac-

tical: efficient interactive protocols for BDD algorithms. CoRR abs/2305.11813
(2023). https://doi.org/10.48550/arXiv.2305.11813

12. DepQBF (2017). https://github.com/lonsing/depqbf. Accessed 03 Feb 2023
13. Goldwasser, S., Micali, S., Rackoff, C.: The knowledge complexity of interactive

proof-systems (extended abstract). In: Sedgewick, R. (ed.) Proceedings of the 17th
Annual ACM Symposium on Theory of Computing, 6–8 May 1985, Providence,
Rhode Island, USA, pp. 291–304. ACM (1985). https://doi.org/10.1145/22145.
22178

14. Henzinger, T.A., Necula, G.C., Jhala, R., Sutre, G., Majumdar, R., Weimer, W.:
Temporal-safety proofs for systems code. In: Brinksma, E., Larsen, K.G. (eds.)
CAV 2002. LNCS, vol. 2404, pp. 526–538. Springer, Heidelberg (2002). https://
doi.org/10.1007/3-540-45657-0_45

15. Heule, M.: Everything’s bigger in Texas: “the largest math proof ever”. In:
Benzmüller, C., Lisetti, C.L., Theobald, M. (eds.) GCAI 2017, 3rd Global Confer-
ence on Artificial Intelligence, Miami, FL, USA, 18–22 October 2017. EPiC Series
in Computing, vol. 50, pp. 1–5. EasyChair (2017). https://doi.org/10.29007/gdw8

16. Heule, M.J.H.: Proofs of unsatisfiability. In: Biere, A., Heule, M., van Maaren, H.,
Walsh, T. (eds.) Handbook of Satisfiability - Second Edition, Frontiers in Artificial
Intelligence and Applications, vol. 336, pp. 635–668. IOS Press (2021). https://doi.
org/10.3233/FAIA200998

17. Jussila, T., Sinz, C., Biere, A.: Extended resolution proofs for symbolic SAT solving
with quantification. In: Biere, A., Gomes, C.P. (eds.) SAT 2006. LNCS, vol. 4121,
pp. 54–60. Springer, Heidelberg (2006). https://doi.org/10.1007/11814948_8

https://doi.org/10.1145/22145.22192
https://doi.org/10.1145/22145.22192
https://doi.org/10.1007/978-3-319-09284-3_12
https://doi.org/10.1007/978-3-031-10769-6_3
https://doi.org/10.1007/0-387-34799-2_4
https://doi.org/10.1007/978-3-030-99524-9_25
https://doi.org/10.1007/978-3-030-79876-5_25
https://doi.org/10.1007/978-3-030-79876-5_25
https://doi.org/10.1007/978-3-030-72016-2_5
https://github.com/ltentrup/caqe
https://doi.org/10.48550/arXiv.2305.11813
https://github.com/lonsing/depqbf
https://doi.org/10.1145/22145.22178
https://doi.org/10.1145/22145.22178
https://doi.org/10.1007/3-540-45657-0_45
https://doi.org/10.1007/3-540-45657-0_45
https://doi.org/10.29007/gdw8
https://doi.org/10.3233/FAIA200998
https://doi.org/10.3233/FAIA200998
https://doi.org/10.1007/11814948_8

458 E. Couillard et al.

18. Katz, G., Barrett, C.W., Tinelli, C., Reynolds, A., Hadarean, L.: Lazy proofs for
DPLL(T)-based SMT solvers. In: Piskac, R., Talupur, M. (eds.) 2016 Formal Meth-
ods in Computer-Aided Design, FMCAD 2016, Mountain View, CA, USA, 3–6
October 2016, pp. 93–100. IEEE (2016). https://doi.org/10.1109/FMCAD.2016.
7886666

19. Lonsing, F., Egly, U.: DepQBF 6.0: a search-based QBF solver beyond traditional
QCDCL. In: de Moura, L. (ed.) CADE 2017. LNCS (LNAI), vol. 10395, pp. 371–
384. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-63046-5_23

20. Lund, C., Fortnow, L., Karloff, H.J., Nisan, N.: Algebraic methods for interactive
proof systems. J. ACM 39(4), 859–868 (1992). https://doi.org/10.1145/146585.
146605

21. Luo, N., Antonopoulos, T., Harris, W.R., Piskac, R., Tromer, E., Wang, X.: Prov-
ing UNSAT in zero knowledge. In: Yin, H., Stavrou, A., Cremers, C., Shi, E. (eds.)
Proceedings of the 2022 ACM SIGSAC Conference on Computer and Commu-
nications Security, CCS 2022, Los Angeles, CA, USA, 7–11 November 2022, pp.
2203–2217. ACM (2022). https://doi.org/10.1145/3548606.3559373

22. Namjoshi, K.S.: Certifying model checkers. In: Berry, G., Comon, H., Finkel, A.
(eds.) CAV 2001. LNCS, vol. 2102, pp. 2–13. Springer, Heidelberg (2001). https://
doi.org/10.1007/3-540-44585-4_2

23. Necula, G.: Proof-carrying code. In: Principles of Programming Languages, pp.
106–119. ACM Press (1997)

24. Niemetz, A., Preiner, M., Lonsing, F., Seidl, M., Biere, A.: Resolution-based cer-
tificate extraction for QBF. In: Cimatti, A., Sebastiani, R. (eds.) SAT 2012. LNCS,
vol. 7317, pp. 430–435. Springer, Heidelberg (2012). https://doi.org/10.1007/978-
3-642-31612-8_33

25. PGBDDQ (2023). https://github.com/rebryant/pgbdd. Accessed 03 Feb 2023
26. QRPcheck (2023). http://fmv.jku.at/qrpcheck/. Accessed 03 Feb 2023
27. Shamir, A.: IP = PSPACE. J. ACM 39(4), 869–877 (1992). https://doi.org/10.

1145/146585.146609
28. Sinz, C., Biere, A.: Extended resolution proofs for conjoining BDDs. In: Grigoriev,

D., Harrison, J., Hirsch, E.A. (eds.) CSR 2006. LNCS, vol. 3967, pp. 600–611.
Springer, Heidelberg (2006). https://doi.org/10.1007/11753728_60

29. Tentrup, L., Rabe, M.N.: Clausal abstraction for DQBF. In: Janota, M., Lynce, I.
(eds.) SAT 2019. LNCS, vol. 11628, pp. 388–405. Springer, Cham (2019). https://
doi.org/10.1007/978-3-030-24258-9_27

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the
chapter’s Creative Commons license, unless indicated otherwise in a credit line to the
material. If material is not included in the chapter’s Creative Commons license and
your intended use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright holder.

https://doi.org/10.1109/FMCAD.2016.7886666
https://doi.org/10.1109/FMCAD.2016.7886666
https://doi.org/10.1007/978-3-319-63046-5_23
https://doi.org/10.1145/146585.146605
https://doi.org/10.1145/146585.146605
https://doi.org/10.1145/3548606.3559373
https://doi.org/10.1007/3-540-44585-4_2
https://doi.org/10.1007/3-540-44585-4_2
https://doi.org/10.1007/978-3-642-31612-8_33
https://doi.org/10.1007/978-3-642-31612-8_33
https://github.com/rebryant/pgbdd
http://fmv.jku.at/qrpcheck/
https://doi.org/10.1145/146585.146609
https://doi.org/10.1145/146585.146609
https://doi.org/10.1007/11753728_60
https://doi.org/10.1007/978-3-030-24258-9_27
https://doi.org/10.1007/978-3-030-24258-9_27
http://creativecommons.org/licenses/by/4.0/

	Making IP=PSPACE Practical: Efficient Interactive Protocols for BDD Algorithms
	1 Introduction
	2 Preliminaries
	3 Circuits with Partial Evaluation
	4 An Interactive Protocol for #CP
	4.1 Arithmetisation
	4.2 Degree Reduction
	4.3 CPCertify: An Interactive Protocol for #CP

	5 A BDD-Based Prover
	5.1 Extended BDDs
	5.2 Efficient Certification
	5.3 Implementation Concerns

	6 Evaluation
	7 Conclusion
	References

